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FOREWORD 

The first name in structured programming is Edsger W. Dijkstra (Holland), 
who has originated a set of ideas and a series of examples for clear 
thinking in the construction of programs. These ideas are powerful tools 
in mentally connecting the static text of a program with the dynamic 
process it invokes in execution. This new correspondence between program 
and process permits a new level of precision in programming. Indeed, it 
is contended here that the precision now possible in programming will 
change its industrial characteristics from a frustrating, trial and error 
activity to a systematic, quality controlled activity. 

However, in order to introduce and enforce such precision programming 
as an industrial activity, the ideas of structured programming must be 
formulated as technical standards, not simply as good ideas to be used 
when convenient, but as basic principles which are always valid. A good 
example of a technical standard occurs in logic circuit design. There, 
it is known, from basic theorems in boolean algebra, that an~ logic 
circuit, no matter how complex its requirement, can be constructed using 
only AND, OR, and NOT gates. 

Our interest is similar, to provide a mathematical assurance, for manage
ment purposes, t:'hat: a .. ac1ni':C&1..L 'il"L<mdM..4.. ~!t !LO_u_qQ_ a_!!~l_ ~ractical. This 
mathematical assurance is due, in large part, to Corrado Bohm and 
Giuseppe Jacopini (Italy), who showed how to prove that relatively simple 
(structured) program control logics were capable of expressing any pro
gram requirements. 

Initial practical experience with structured programming indicates there 
is more than a technical side to the matter. There is a psychological 
effect, as well, when programmers learn of their new power to write 
programs correctly. This new power motivates, in turn, a new level of 
concentration, which helps avoid errors of carelessness. This new 
psychology of precision has a mathematical counterpart in the theory of 
program correctness, which we formulate in a new way. 

The mathematical appYoach we take in formulating stYuctured programming 
and the correctness problem emphasizes these combinatorial aspects, in 
order to demonstrate for programmers that corre~t programming involves 
only combinatorial selection, and not problems requiring perfect pre
cision, on a continuous scale. Because of this, we are confident that 
programmers will soon work at a level of productivity and precision 
which will appear incredible compared to early experience with the 
programming problem. 
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COMPLEXITY AND PRECISION IN PROGRAMMING 

The digital computer has introduced a need for highly complex, precisely 
formulated, logical systems on a scale never before attempted. Systems 
may be large and highly complex, but if human beings, or even analog 
devices, are components in them, then various error tolerances are 
possible, which such components can adjust and compensate for. However, 
a digital computer, in hardware and software, not only makes the idea of 
perfect precision possible -- it requires perfect precision for satis
factory operation. This complete intolerance to the slightest logical 
error gives programming a new character, little known previously, in its 
requirements for precision on a large scale. 

The combination of this new requirement for precision, and the commercial 
demand for computer programming on a broad scale, has created many false 
values and distorted relationships in the past decade. They arise from 
intense pressure to achieve complex and precision results in a practical 
way without adequate technical foundations. As a result, a great deal of 
programming uses people and computers highly inefficiently, as the only 
means presently known to accomplish a practical end. 

It is universally accepted today that programming is an error-prone 
activity. Any major programming system is presumed to have errors in it. 
Only the very naive would believe otherwise. The process of debugging 
programs and systems is a mysterious art. Indeed, more programmer time 
goes into debugging than into program designing and coding in most large 
systems. But there is practically no systematic literature on this 
large undertaking. 

Yet, even though errors in program logic have always been a source of 
frustration, even for the most careful and meticulous, this may not be 
necessarily so in the future. Programming is very young as a human 
activity -· some twenty years old. It has practically no technical 
foundations yet. Imagine engineering when it was twenty years old. 
Whether that was in 1620 or 1770, it was not in very good technical 
shape at that stage either! As technical foundations are developed for 
programming, its character will undergo radical changes. 

We contend here that such a radical change is possible now •• that in 
structured programming the techniques and tools are at hand to permit 
an entirely new level of precision in programming. 

This new level of precision will be characterized by programs of large 
size (from tens of thousands to millions of instructions) which have 
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mean time between detected errors of a year or so. But to accomplish 
that level of precision a new attitude toward programming expectations 
will be required in programmers, as well. 

THE PSYCHOLOGY OF PRECISION 

A child can learn to play the game of tic tac toe perfectly -· but a man 
can never learn to saw a board exactly in half. Playing tic tac toe is 
a combinatorial problem, selecting, at every alternative, one of a finite 
number of possibilities. Sawing a board exactly in half is a physical 
problem, for which no discrete level of accuracy is sufficient. 

The child who has learned to play tic tac toe need never make a mistake, 
except through a loss of concentration. In any game he believes important 
(say played for a candy bar) he is capable of perfect play. 

Computer programming is a combinatorial activity, like tic tac toe, not 
like sawing a board in half. It does not require perfect resolution in 
measurement and control -- it only requires correct choices out of finite 
sets of possibilities at every step. The difference between tic tac toe 
and computer programming is complexity. The purpose of structured program
ming is to control complexity through theory and discipline. And with 
complexity under better control, it now appears that men can write sub
stantial computer programs correctly. In fact, just as a child moves 
from groping and frustration to confidence and competence in tic tac toe, 
so men can now find solid ground for program development. 

A child, in learning to play tic tac toe, soon develops a little theory, 
dealing with ''center squares'', ''corner squares'', ''side squares'', 
and the self discipline to block possible defeats before building threats 
of his own. In programming, theory and discipline are critical, as well, 
at a man's level of intellectual activity. Structured programming is 
such a theory, which provides a systematic way of coping with complexity 
in program design and development. It makes possible a discipline for 
program design and construction on a level of precision not previously 
possible. 

But for the child, knowing how to play tic tac toe perfectly is not 
enough. He must know that he knows. This knowing that he knows is a 
vital ingredient in his self discipline -· knowing that he is capable 
cf analyzing the board, and doesn't need to guess and hope. 

It is the same with the programmer. If a programmer knows that what is 
in his mind is correct, then getting it onto paper precisely is more 
important, as is checking details of data definitions, and whatever, 
in his coding process. On the other hand, if a programmer thinks what 
is in his mind is probably all right, but is subconsciously counting on 
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debugging and integration runs to iron out logic and interface errors, 
then the entire process of getting it onto paper and into the computer 
suffers in small ways to later torment him. 

It takes some learning on the part of experienced programmers to discover 
that structured programs can be written with unprecedented logical and 
interface precision. As with the child, it is not enough to be able to 
program with precision. The programmer must know his capability for 
precision programming in order to supply the concentration to match his 
capability. 

THE PROBLEM OF COMPLEXITY 

Five hundred years ago men did not know that the air we breathe, and 
move through so freely, has weight. Air is hard to put on a scale, or 
even identify as any specific quantity for weighing at all. But now we 
know that air has weight -· at sea level, the weight of a column of 
water 34 feet high. 

It is easy to imagine, in hindsight, the frustrations of a well pump 
manufacturer, whose ''research department'' is operating on the theory 

-that ''nature abhors a vacuum''· Water can be raised up a well pipe 15, 
20, then 25 feet, by using a plunger and tightening its seals better 
and better. All this merely seems to confirm the ''current theory'' 
about the operation of such pumps. But at 35 feet, total frustration 
ensues. No matter how tight the seals, the water cannot be raised. 

In computer programming today, we do not yet know that ''complexity 
has weight''· Since it is not easily measured or described, like storage 
requirements or throughput, we often ignore the complexity of a planned 
program or subprogram. But when this complexity exceeds certain unknown 
limits, frustration ensues. Computer programs capsize under their own 
logical weight, or become so crippled that maintenance is precarious and 
modification is impossible. Problems of storage and throughput can always 
be fixed, one way or another. But problems of complexity can seldom be 
adequately recognized, let alone fixed. 

The syndrome of creating unsolvable problems of complexity because of 
anticipated problems of storage and thr oughput is well known. It is the 
work of amateurs. It arises in a misguided arrogance that ''what 
happened to them won't happen to me!'' But it keeps happening, over and 
over. 
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THE IDEA OF STRUCTURED PROGRAMMING 

Closely related to many original ideas of E. Dijkstra [10], and using 
key results of C. Bohm and G. Jacopini [5], P. Naur [32], and R. Floyd 
[13], structured programming is based on new mathematical foundations 
for programming (in contrast to the use of programming to implement 
mathematical processes, or to study foundations of mathematics). It 
identifies the programming process with a step by step expansion of 
mathematical functions into structures of logical connectives and sub
functions, carried out until the derived subfunctions can be directly 
realized in the programming language being used. The documentation of 
a program is identified with proof of the correctness. of these expansions . 
Aspects of this approach is illustrated as well in work of Ashcroft and 
Manna [3), Hoare [17], and Wirth [39]. A major application to a program
ming system of considerable size is described by Baker [4]. 

Four mathematical results are central to this approach. One result, 
a ''Structure Theorem'', due in original form to Bohm and Jacopini, 
guarantees that any flowchartable program logic can be represented by 
expansions of as few as three types of structures, e.g., (1) f THEN g , 
(2) IF p THEN f ELSE g, (3) WHILE p DO f, where f, g, are flowcharts , 
with one input and one output, p is a test, THEN, IF, ELSE, WHILE, DO, 
are logical connectives. This is in sharp contrast to the usual 
programming practice of flowcharting arbitrary control logic with un
restricted control branching operations. 

In block structured programming languages, such as Algol or PL/I, such 
structured programs can be GOTO-free, and be read sequentially without 
mentally jumping from point to point. In a deeper sense, the GOTO-free 
property is superficial. Structured programs should be characterized not 
simply by the absence of GOTO's, but by the presence of structure. 
Structured programs can be furthe r organized into trees of program 
''segments'', such that each segment is at most some prescribed size, 
e.g., a page (some 50 lines) in length, and with entry only at the top 
and exit at the bottom of the segment. Segments refer to other segments 
at the next level in such trees , each by a single name, to represent a 
generalized data processing operation at that point, with no side effects 
in control. In this way, the size and complexity of any programming system 
can be handled by a tree structure of segments, where each segment -
whether high level or low level in the system hierarchy -· is of precisely 
limited size and complexity. 

The Structure Theorem has a constructive proof, which provides insight, 
itself, into program design and construction techniques. Although a flow
chart may be of any size, the Structure Theorem guarantees that its 
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control logic can be represented in a finite basis, with a corresponding 
reduction in the compl~xity chara~teristic of arbitrary flowcharts. The 
Structure Theorem also provides a canonical form for documenting and 
validating programs, to help define operational procedures in programming. 

The second mathematical result is a ''Top Down Corollary'', which 
guarantees that structured programs can be written or read ''top down'', 
i.e., in such a way that the correctness of each segment of a program 
depends only on segments already written or read and on the functional 
specifications of any additional segments referred to by name. The 
application of this Corollary requires a radical change in the way most 
programmers think today, although advocates of ''functional programming'' 
have proposed such ideas independently, e.g., Randell and Zurcher [40], 
Landin [22], Strachey [37], Burge [6], and Scott [35]. It is a· nearly 
universal practice, at the present time, to write large programs ''bottom 
up'' -· coding and unit testing program modules, then subsystems, and 
finally systems integration and testing. In top down programming, the 
integration code is written first, at the system, then subsystem levels, 
and the functional modules are written last. As discussed by Mills [29], 
top down programming can eliminate the necessity for the simultaneous 
interface assumptions that frequently result in system errors during 
integration. 

The third mathematical result is a ''Correctness Theorem'', which shows 
how the problem of the correctness of structured programs can be reduced 
to function theoretic questions to which standard mathematical practices 
apply. These questions necessarily go into the~n;~~of intentions and 
operations available for writing programs. Ordinarily, they will require 
specific mathematical frameworks and procedures for - their resolution. 
Indeed, for complex programs, the mathematical questions may be more 
comprehensive and detailed than is practical to resolve at some accept· 
able level of mathematical rigor. But, in any ca·se, the questions can 
be formulated on a systematic basis, and techni_cal judgements can then 
be applied to determine the level of validation which is feasible and 
desirable for a given program. 

In this connection, we note that mathematics consists of a set of 
logical practices, with no inherent claim to absolute rigor or truth, 
e.g., see Wilder [38, pp 196]. Mathematics is of human invention, and 
subject to human fallibilities, in spite of the aura of supernatural 
verities often found in a schoolboy world. But even so, the reduction 
of the problem of program meanings to such mathematical practices 
permits the classification and treatment of ideas in terms of processes 
which have been subjected to considerable analysis and criticism by 
mankind. 
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The fourth mathematical result is an ''Expansion Theorem'' which defines 
the freedom available in expanding any functional specification into a 
structure at the next level. Perhaps the most surprising aspect of this 
result is how little freedom a programmer has in correctly expanding pro
grams top down. For exa~ple, it will be clear in defining the structure 
''IF p T~EN f ELSE g'', that the choice of p automatically defines f and 
g -- that the only freedom in such a structure is in its predicate. 
Even more surprising, is the result that in the expansion ''WHILE p DO 
f'', no freedom exists at all ~ in the selection of p -- the looping 
predicate will be seen to be totally determined by the functional 
specification itself. 

Our motivation in this final result is to exhibit programming as an 
analysis, rather than a synthesis, activity, that is, to identify the 
top down programming process as a sequence of decompositions and 
partitions of functional specifications and subspecifications, each of 
which produces simpler subspecifications to handle, until finally the 
level of programming language instructions or statements is reached. 
This is in contrast to programming as a synthesis of instructions or 
statements that ''accomplish'' the functional specifications. It is in 
this distinction that programming emerges as a readily perceived 
combinatorial activity. 

THE CORRECTNESS OF STRUCTURED PROGRAMS 

With structured programming, programmers are capable of high precision 
programming, but, as in tic tac toe, it is important for their concentra
tion to know their own capability for this high precision. The Correctness 
Theorem provides concepts and procedures for realizing this precision in 
programming. Correctness proofs are demonstrations of human devising for 
human consumption. There is no such thing as an absolute proof of logical 
correctness. There are only degrees of rigor, such as ''technical english'', 
''mathematical journal proof'', ''formal logic''', etc., which are each 
informal descriptions of mechanisms for creating agreement and belief 
in a process of reasoning. 

It is clear that a whole spectrum of rigor will be useful in correct
ness proofs. A casual program~ used in an experimental investigation, 
may warrant no more than a few lines of explanation. A heavily used 
program -- say a text editor or a compiler -- may warrant a much more 
formal proof. London has furnished several realistic examples of proof 
at a mathematics level [23, 24, 25], including the proof of an optimizing 
LISP compiler. Jones [20) has given an example of a proof in more formal 
terms. King [21] and Good (14] have developed more automatic machinery. 
Dijkstra [9] has illustrated less formal ideas which may be even more 
convincing in some programs. The persuasion of a proof depends not only 
on its formality, but on its brevity. Unfortunately, formality and 
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brevity do not often cooperate, and the programmer has a difficult 
balancing problem in selecting the best compromise between formality and 
brevity. 

Our approach is functional (or denotational, as used by Ashcroft [2], 
rather than computational -- instead of proving assertions about computa
tional steps in a program (as introduced by Naur [31], Floyd [12], et. 
al.), we formulate assertions about functions whose values are computed 
by programs and subprograms. In this approach, the set theoretic 
definition of a function a~ a set of ordered pairs is of critical 
convenience. For example, an IFTHENELSE subprogram corresponds to a 
partition of a corresponding function into two subsets of ordered pairs, 
which, as subfunctions, correspond to the THEN clause and ELSE clause 
of the original subprogram. 

As noted, structured programs admit decompositions into subprograms 
of very simple types, such as THEN, IFTHENELSE, and DOWHILE subprograms. 
Our main interest is to show that each type leads to a characteristic 
logi~al assertion about the correctness of a subprogram. These assertions 

- are eventually embodied in function theoretic questions, dealing with 
composition and partition of functions, .e.g., for some sets f, g, h, 
(not necessarily distinct), it is to be proved that 

f , •g*h or f - g u h. 

These relations assert equalities between sets of ordered pairs. There 
a~e many acceptable ways in current mathematical practice to prove such 
assertions, such as an induction over some common structural feature of 
the sets involved. But such ways are outside our current interest in 
formulating the assertions themselves. 

We recognize, with Floyd [12], that the question of program correctness 
is simply the question of program meaning, i.e., knowing what a program 

-does. Any program, including pure gibberish, exhibits some behavior, and 
it is correct with respect to that behavior, independent of what other 
capabilities may be envisioned for it. In this context, it is crucial to 
distinguish between correct ness and capability. A program under construction 
top down can be correct at every stage , but not capable of its eventual 
requirements until completed. An error in a program is an unexpected 
action. A function theoretic descrip t ion of the behavior of a program 
can thus be regarded as a pure description or a normative prescription, 
but the correctness problem comes down to the agreement between a 
functional description and a program behavior. 
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FUNCTIONS 

We adopt the common mathematical notion that a function is a set of 
ordered pairs, c.f., Halmos [15], say 

f = { ( x 1 ' Y 1 ) ' ( x2 ' Y 2) ' • • • } 

such that if (x,y) E f, (u,v) E f, x = u, then y = v. The relation (x,y) E f 
is often written as 

y = f(x), 

and x is called the argument, y is called the value of function f. The 
sets of first, second members of the ordered pairs of a function are 
called the domain, range of the function, respectively. In the example 
above, 

domain (f)= {x
1

,x
2

, ••• } 

Note these definitions for domain, range include only arguments, values 
of the function, and no other elements. 

Since a function is a set, it makes sense to use the terms ''empty 
function'', ''subfunction'', ''function partition'', etc., with the word, 
suffix or prefix ''set'' replaced by ''function'', whenever the conditions 
further required by a function can be guaranteed to hold. Instances 
which violate these conditions include the case of the power set -- the 
set of subsets of a function is not itself a function, but is a set of 
functions -- and the union of functions -- the uniqueness of a value for 
a given argument -· may be lost in forming the union of two functions. 
However, the union of disjoint functions or intersection of two functions 
is again a function, as is the difference (set) of two functions. 

FUNCTIONS AND RULES 

In the description of a function f as a set of ordered pairs, it is 
often convenient to give a rule for calculating the second member from 

e first, as in 

f • {(x,y) I y = x2 + 3x + 2}, 
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or 

(x,x2 + 3x + 2) E f, 

r even 

2 f(x) = x + 3x + 2, 

here domain (f) is given in some broader context. A rule used in defining 
a function in this way is not unique. For example, if 

x2 + 3x + 2 = (x + 1) (x + 2), 

then the new function and rule 

g = {(u,v) I v = (u+1)(u+2)} 

or 

g(u) a (u+1)(u+2) 

defines the same set as before, i.e., f=g (as sets). 

If a function is finite, then its enumeration can serve in a rule. The 
rule is to find any given argument as a first member of an ordered pair, 
if possible, and to extract the second member, if found, as the value 
for that argument. Otherwise, if enumeration is impossible or 
impracticable, a rule must be expressed as an algorithm, possibly very 
complex, but with unambiguous outcome for every argument. 

In programming, there is a direct correspondence to the relationship 
between functions and rules -- it is between functional specifications 
and programs. The problem of program correctness then becomes the 
problem of showing that a given function is defined by a given rule. 
Perhaps the simplest form of the program correctness problem is defined 
by function rules of enumeration, or ''table lookup'', If a table 
lookup program has been proved to be correct previously, then any finite 
functional specification, entered as a table, can be verified to be 
correct by verifying the table entries therein. 

Since functions are merely sets of ordered pairs, we regard the usual 
idea of a ''partial function'' to be a relationship between two sets, 
one of which is the domain of some function under consideration, In 
our case, we use the term partial rule to mean a rule of computation 
not always defined over some given set. 
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FUNCTION COMPOSITION AND COMPLETION 

Beyond operations directly inherited from sets, function composition 
is based on the fact that functions are sets of ordered pairs. A 
composition of two functions is a new function which represents the 
successive use of the vaiues of one function as the arguments of the 
other. That is, we define the new function composition, using an infix 
notation, i.e., 

f * g = {(x,y) I 3 z (z=g(x) A y = f(z))}. 

If range (g) and domain (f) are disjoint, then f * g is the empty function; 
otherwise, f * g is just the set of ordered pairs which is defined through 
the application of g then f to arguments of g to get values of f. 

Conversely, we say an ordered pair of functions, (f,g), is a decomposition 
of a function, h, if h = f * g. Clearly, for any function h, there 
may be many decompositions. 

It is clear that function composition is associative -· i.e., that 

(f * g) * h = f * (g * h) 

for all functions f, g, h; hence, the parentheses can be omitted without 
ambiguity, as in 

f * g * h 

Then, the composition of a function with itself can also be denoted 
simply by an exponent notation, i.e., 

f
4 

• f * f
3 = f * f * f * f. 

It will be occasionally convenient to permit a zero exponent, and inter
pret fO as an identity function (see below). 

Given a function, we consider its repeated composition with itself, re
using values as new arguments, until, if ever, such values are not 
members of the domain of the function. The number of compositions then 
possible depends on the original argument, of course. Thus, we define a 
function completion, say for function f, to be 

* f * • {(x,y) I 3 k ((x,y) E fk) A y ¢domain (f)}. · 
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SPECIAL FUNCTIONS 

We identify, for future convenience, several general classes of functions, 
namely: 

a. Identity Functions: 

I = { f I (x,y) E f ~ y = x } 

b. Constant Functions: 

C(a) • { f I (x,y) E f ~ y = a } 

c. Permutation Functions: 

P = { f I domain (£) = range (f)} 

d. Inverse Function Pairs: 

R = { (£,g) f * g = g * f E I } 

(If (f,g) E R, we say 

·1 -1 
g = f or f = g .) 
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PROGRAMS 

We abstract the commonly known idea of a (computer) program as a finite 
set of functions, called instructions, each with a finite domain contained 
in a common set, called the data space, and a finite range contained in 
the cartesiarr product of the data space and the program, called the 
state space. Members of the data space, state space are called data values, 
state values, respectively. 

A program execution is a sequence of state values, say 

s = 
i 

such that 

si+l = fi(di), i = 0,1, ••• 

which terminates, if ever, when fi(di) fails to exist-- i.e., when di 

~domain (fi). The state value s0 is called the initial value of the 

execution. If the execution is finite, say 

then t is called the final value of the execution. 

Since the state space of a program is finite, it is decidable, for 
every initial value, s, whether that execution terminates, and, if so, 
what the final value, t, is. Therefore, a program automatically defines 
a function of ordered pairs (s,t) defined by terminating executions, 
called the program function. If a program is given by a set P, we denote 
its program function by [P). In retrospect, a program is a specific 
(non-unique) rule for calculating the values of its program function. 

A subprogram is a subset of a program, which inherits its state space. 
A subprogram execution is a contiguous subsequence of a program 
execution which terminates, if ever, when an instruction not in the 
subprogram appears in the state value. To each subprogram corresponds 
a subprogram function, as well. 
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CONTROL GRAPHS 

The instructions (functions) of a program determine a directed control 
graph whose nodes are instructions and whose directed lines are the next 
possible instructions. A node of such a graph may have several input lines 
and several output lines which denote the direction of control flow, 
as shown: 

An instruction (node) has a natural decomposition between control and 
data effects which can be displayed by its partition (of its set of 
ordered pairs) into subsets, each of whose values contain identical 
(next) instruction components. The instruction node displayed above 
then has the form: 

where the diamond (control node) represents an identity function for 
values in the data space and a square (process node) represents a 
constant function for values in the program (next instruction). Since 
the program (set) is finite, this partition can be refined so that 
control nodes each contain exactly two output lines, called predicate 
nodes. 
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From these considerations we are led to directed graphs with predicate 
and process nodes of the form shown. 

It will be convenient to introduce a symmetry into such directed graphs, 
by augmenting the original program with ''noop'' instructions (collecting 
nodes) which collect and transfer control from exactly two input lines 
each, which we diagram as shown: 

Control graphs are also called program schemas [19]. 

PROGRAMS IN FLOWCHART FORM 

We can represent a program in flowchart form. A flowchart is defined 
by a control graph, and by operations and tests to be carried out on 
data in a sequence determined by that control graph. As noted, we 
consider control graphs with only three types of nodes: 
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Process 

Predicate Collecting 

The upper and lower lines out of a predicate node are labeled ''True'' 
and ''False'', respectively, just to be definite, unless otherwise noted. 

In a flowchart, each process node is associated with a function, or data 
transformation, and each predicate node is associated with a predicate 
function, or a binary valued data test. Each line of a flowchart is 
associated with a set of possible data states. A set of data states may 
be the set of all possible machine states, for a program in a machine 
language, or may be the set of all variables allocated at a point in a 
program in a programming language. The function associated with a process 
node maps a set of data states associated with its input line into a set 
of data states associated with its output line. A function f from X to Y 
is identified in a flowchart as: 

This mapping is a subfunction, say g, of f, namely: 

g • { (x, y) I x E X A (x, y) E f A y E Y } • 

If x ~X, no such input is possible; if y ~ Y, no such output is possible; 
if x EX but (x,y) ~ f or y ~ Y, the operation is not completed. 

The predicate function associated with a predicate node maps the set of 
data states associated with its input line into the set {True, False} 
but does not transform data otherwise, that is, the flowchart figure 
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y 

X 

is associated with the identity mappings of data from input to output. 
But in order to satisfactorily comp~ete the test, the condition 

x E X /\ ( ((x, True) E p /\ x E Y) V {x, False) E p /\ x E Z)) 

must be satisfied. 

The collecting node is also associated with an identity mapping, from 
the flowchart figure: 

X 

Also, to complete the transfer of control, the condition 

(x E X /\ x E Z) V (y E Y /\ y E Z) 

must be satisfied. In early practice and in current programming theory, 
the sets associated with control lines are often taken to be identical 
•• a ''state vector'' set. However, with data seeping and dynamic 
storage allocation, as found in contemporary practice, the data space 
is variable, rather than constant, over a program or flowchart. 

PROGRAM EXECUTION 

The execution of a program is easily visualized in a flowchart, using 
the control graph to identify the sequence of operations and tests on 
data required. For example, consider the program f in flowchart form: 
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Where possible, initial data r E R is converted by f into intermediate 
data s E S, then t E T and v E V, or n E U, then wE W, and ultimately 
into final data x EX, by functions g, h, and k, under the control of 
predicate P• I.e., the program function [f] of program f has values, 
when they exist, given by: 

x ... k (h(g(r))) 

x • k (g(r)) 

More precisely, we mean: 

if 

if 

p(g(r)) • True 

p(g(r)) • False. 

[f] • { (r,x) l r ERA( 3:s, v ((r,s) E g A(s, True) EpA 

(s,v) E h A (v,x) E k)) V (3' s((r,s) EgA 

(s, False) E p A (s,x) E k) Ax E x }. 

PROPER PROGRAMS 

We define a proper program to be a program in which: 

a. There is precisely one input line and one output line 

b. For every node, there exists a path from the input line 
through that node to the output line. 

Note we admit the possibility of programs with no nodes, a single 
input/output line. We call such a program ~. Clearly, the program 
function[~) is an identity function; i.e., [~] E I. In illustration, 
the following are not proper programs. 
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R 

R 

This definition of proper programs is primarily motivated by the 
interchangeability of proper programs and process nodes in larger 
programs. 

Henceforth, we take the ''proper program'' and ''program'' to be 
synonymous. If necessary, we will use the term ''improper program'' 
to refer to a program which is not a proper program. 

PROGRAM EQUIVALENCE 

We will say two proper programs are equivalent when they define the 
same program function, whether or not they have identical control 
graphs, re~uire the same number of operations, etc. For example, the 
two programs 

s 

and 
R 

s 
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have the same program function, as do the two programs: 

R 

R 

T u 

That is, two programs are equivalent if they define the same program 
function, even though the programs may represent different rules for 
computing the values of the program function. In particular, given 
program f and its program function [f], the new program g 

domain([~ ([f]) 

~ 

is equivalent to f. In this case g is a table lookup version of f. 

PROGRAM EXPANSIONS 

If a program contains a process node, as 
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R .. D s .. 

it may happen, that a rule for computing the values of f is defined as 
another program. We call such a program an expansion of the function 
f, such as shown next. 

In this case, it is asserted that the program function of the latter 
program is f. That is, any expansion of a function is simply a rule for 
computing its values, possibly using other functions and predicates to 
do so. 

Programs with loops may or may not terminate. This property of termina· 
tion partitions an input set R into Rt and R·Rt, where Rt is the subset 

of inputs for which the evaluations terminate. If Rt ~ R, then the pro

gram defines a partial rule, rather than a rule. Note, in fact, that a 
program may terminate by reaching an output line (normal termination) 
or by reaching a node with a data value not in the domain of the 
corresponding function (abnormal operation termination) or by reaching 
a line with a data value not in the data space (abnormal storage termina· 
tion). 

CONTROL GRAPH LABELS 

The set of all control graphs of proper programs can be enumerated and 
labeled. The beginnings of such an enumeration is given in Figure 1. 
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1. 

2. ·D • 

3. 

8. 

9 . 

etc. 

Figure 1. Control Graphs 
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In fact, a few such control graphs are given special mnemonic labels in 
various programming languages. For example, the following labels are 
common: 

IFTHEN 

IFTHENELSE 

DOWHILE 
DO UNTIL 

(IFTHEN is 9, in the enumeration started above, IFTHENELSE might be 
37, 42, etc.) 

However, there is nothing special about these graphs except for their 
simplicity. Any control graph possibly more complicated than these might 
be so labeled if it were useful. In particular, we label the sequence 
of two process nodes 

BLOCK 

for future reference. 

PROGRAM FORMULAS 

A program can be given as a formula, by associating an ordering with 
the set of process nodes, predicate nodes and control lines of its 
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control graph, and by listing the label of its control graph, followed 
by labels for the functions, predicates and state sets of the program. 
For notational convenience, we will use parentheses and commas to de
note the list structure of a program formula, e.g., 

(A, p, q, f, g, h, R, S, T, U) 

means a program given by a control graph labeled A, with predicates p, 
q, functions f, g, h, and state sets R, S, T, U, associated with the 
nodes and lines of A. For example 

(BLOCK, f, g, R, S, T) 

defines a program 

R T 

whose action on an input r E R is to produce output t E T if it exists, 
such that 

t • g(f(r)), 

more precisely, 

[ (BLOCK,f,g,R,S,T)] • { (r,t) I 3 s (r E R 

A s E S A t E T A ( r, s) E f A ( s, t) E g) } • 

The list 

IFTHENELSE, p, f, g, R, S, T, U, V, W) 

defines a program 

R 
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which maps any r E R into some wE W, if it exists, such that 

w. { 
f(r) if p(r) • True 
g(r) if p(r) = False • 

More precisely, 

(IFTHENELSE, p,f,g,R,S,T,U,V,W)) 

= { ( r, w) I r E R A w E W A (( ( r, True) E p A 

r E S A (r,w) E f A w E U) V 

((r, False) EpA rET A (r,w) EgA wE V))}. 

In much of what follows, the list of data sets is not central to the 
ideas under development. In this case, they will be suppressed. However, 
such data sets are always implicit to program descriptions and discussions. 

Since function composition is associative, i.e., 

(f * g) * h - f * (g * h), 

so is BLOCK formation, i.e., 

(BLOCK, [ (BLOCK,f,g)], h) ] • [ (BLOCK,f, [ (BLOCK,g,h)) ]) 

and no ambiguity results by extending the meaning of BLOCK to several 
nodes, e.g., 

(BLOCK3,f,g,h) • (BLOCK,(BLOCK,f,g),h), 

etc. In particular, we permit zero or one nodes in a BLOCK, as in 

(BLOCKO) = X (BLOCK1, f) • 

Then, for example, we have the identity 

f • [ (BLOCK1,f,domain(f), range(f)) ]. 

It may happen that a function listed in a program formula is, itself, 
a program function given by another formula, such as 

(IFTHEN,p, [ (BLOCK,g,h)]). 
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We extend the idea of program formula to permit the replacement of a 
program function by its program formula, such as 

(IFTHEN,p,(BLOCK,g,h)). 

It is clear that, while these are different programs, they have identical 
program functions, just by the definition of program functions. 

PROGRAM DESCRIPTIONS 

Flowcharts and formulas are simply two alternative ways of describing 
(possibly partial) rules, with some internal structure, in terms of 
other rules (or partial rules). Still another way of description is in 
programming language text such as 

and 

and 

IF p THEN 
f 

ELSE 
g 

END IF 

~UpOO 

f 
END DO 

BLOCK 
f 
g 

END BLOCK 

etc. We find all three types of description useful in various circumstances 
in programming. Typically, flowcharts are useful in general discussions 
because of their graphics, formulas are useful in stating and proving 
theoretical properties of such rules, the text is useful in the actual 
construction of large complex programs. For example, the same program 
is given in the formula 

(IFTHENELSE,p ,(DOWHILE,q,f), (BLOCK,g,h)), 
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the flowchart, 

or in program text, 

IF p THEN 

ELSE 

WHILE q DO 
f 

END DO 

BLOCK 
g 
h 

END BLOCK 
END IF 
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STRUCTURED PROGRAMS 

As flowcharts increase in size, we can often identify patterns which 
give more coherence and understandability to a whole flowchart. For 
example, the control graph next 

----- --- -........ ...... 
/ ...... 

----- -- ' ..... ' ...... 
'\ " \ \ 

\ 
\ - - --- \ -- --- - - I -- I 
I 

I 
J 

\ 

" ' ........ / '\. - - - - - - / 

" ' ........ / 
........ ........ 

- - -- -

has three definite nested substructures, which are control graphs for 
proper programs, which make the whole more easily considered. But the 
following control graph 
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admits no such structuring. By simply continuing this last pattern 
indefinitely, it is easy to see that indecomposable control graphs exist 
of any size. 

Having noted that programs of arbitrary size may be indecomposable, we 
next add the possibility of operations and tests on data outside the 
original data sets of a program. The additional operations and tests 
correspond to ''flag'' setting and testing. But we can couch these 
operations in the concept of a push down stack to show their economy. 
In addition to the functions and predicates original to a given program, 
we introduce three new functions and one predicate. 

More specifically, we define process nodes with functions named TRUE, 
FALSE, POP_, and a predicate node with function named TOP, which --aacr 

-truth values True, False, remove, and test such truth values in an input 
data set, respectively. That is, for any data set Y, andy E Y and z E 
{ True, False } , 

TRUE(y) • (y, True) 

FALSE(y) = (y, False) 

POP(y,z) • y 

TOP(y,z) • z 

These new functions and predicate allow us to construct explicit control 
logic in the form of flags. For example, a program whose control 
structure is in the indecomposable pattern above is shown next. 

T X 

R 

This program is equivalent to the new program, where the output line X 
and return line Y are tagged and the tag later tested. 
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Only the original data sets have been shown; the remaining ones can be 
inferred from the definitions above. Close inspection will reveal that 
the net effect of TRUE, FALSE, POP, and TOP is to present just the 
correct original data set to each of the original functions and predicates 
of the program. It may not be obvious that this equivalent program is of 
any value in this case. It seems rather more complex -- except that there 
is now a substructure, a proper program, which contains all the original 
functions and predicates, and furthermore, has no loop in it. This 
particular application previews a fundamental construction in the p~oof 
of the main Structure Theorem below. As a result, this new program can 
now be decomposed into two sections, of the forms 

R •I TRUE ~~...--Po_P_~..__P_o_P_ X "" 

where process node f is given by 

s 
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Before proving this Theorem, we introduce a simple Lemma which counts 
the control lines of a proper program in terms of its function and 
predicate nodes. 

THE NUMBER OF CONTROL LINES IN A PROPER PROGRAM 

Lemma 

If the number of function, predicate, and collecting nodes is ~, ~, y, 
respectively, and the number of control lines, i.e., (edges) is e, in a 
proper program, then 

~ = y 

and 

e • 1 + ~ + 3~ • 

Proof 

In order to prove this Lemma, count the ''heads and tails'' of the con· 
trol lines, adjacent to all the nodes, and at the input and output of 
the program, to get: 

Predicate 
Collect· 

Control Function ing 
Line Input Node Node Node Output Total 

Heads • 'lr 2y 1 t+'n'+2y+1 

Tails 1 ' 2~ y '+2~+y+1 

Since the total number of heads must equal the total number of tails, 
and each equal e, 

~ + 1r + 2y + 1 • e • ' + 2~ + y + 1 

and the equations of the Lemma follow. 
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STRUCTURE THEOREM 

Any proper program is equivalent to a program whose formula contains at 
most the graph labels BLOCK, IFTHENELSE, and DOUNTIL, and additional 
functions TRUE, FALSE, POP and predicate function TOP. 

Proof* 

We prove the Theorem by induction on the number of lines of a proper 
program. The induction step is constructive, and identifies, for any 
proper program of more than one node, an equivalent proper program 
which is a formula in at most graph labels BLOCK, IFTHENELSE, and 
DOUNTIL and new proper programs, each with fewer lines than the initial 
program. 

In order to carry out the induction, we first define a structuring 
process, S, on any proper program, f, whose result we denote by S(f), 
as follows. For convenience, we abbreviate the graph labels BLOCK, 
IFTHENELSE, DOUNTIL to BLK, IF, DO, respectively, in the remainder of 
the proof. 

Since f is a proper program, it has exactly one input and one output. 
We identify several cases that are possible. 

Case 1-No Nodes 

If f has no nodes, we define 

S(f) • A. 

Case 2-0ne or More Nodes 

If f has at least one node, we examine the unique node reached by the 
input line. There are three possible cases: 

*Thanks go to J. Misra for suggestions and assistance in developing the 
following Proof. Thanks are also due to s. Cole for discussions about 
the Theorem and methods for its Proof. 
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Case 2a-Predicate Node. If the first node is a predicate node, then f is 
of the form 

X 

·~' ~~~~ 
y ...... 

Since f is a proper program, the line z can be reached from both x and 
y,* and we construct two constituent programs which consist of all nod~s 
accessible in f from x and y, respectively, calling them g and h, 
respectively. 

,.- ... 
X I \ Z 

---Lg I_. 
\ I .... _ .... 

,.-, 
\ _V_fa- h ~ 

\ I ... _ ..... 

The constituents may contain identical nodes from f, so that g and h 
represent duplications of parts of f. If a collecting node in g or h 
is reached by only one input line (the other line in f being in the 
other constituent), we suppress that collecting node, i.e., 

becomes • 

Note g and h are each proper programs; otherwise f is not a proper 
program. Note also g and/or h may be A, a program with no nodes. 

*Our definition of proper programs is necessary for this assertion. The 
proof of Bohm and Jacopini [5] breaks down at this point, 
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-- - - ---~ 

Since each g and h contain at least one less predicate node than does 
f, at least one collecting node is suppressed in each constituent. 
Next, we consider the new proper program, (IF,p,g,h), 

X 

.... -
/ ' g 

' I _., 

.... -

z 

1 ' 
h 'i---~ 

y ,_ ...... z 

with the original predicate p and the constituents g and h of f (and a 
new collecting node, not from g or h). In this case, we define 

S(f) • (IF,p,g,h). 

Also, in this case, we observe that 

e(g) ~ ~(f)+3(w(f)•1)+1 • e(f)-3 

e(h) ~ ~(f)+3(~(f)·1)+1 • e(f)·3 

since g and hat least do not contain predicate node f. (We use e(f), 
~(f), and ~(f) to denote the number of lines, function nodes, and 
predicate nodes, respectively, in f, etc.) 

Finally, it is clear by construction that S(f) is equivalent to f • 

Case 2b-Function Node. If the fi r st node is a function node, then f 
is of the form 

and h is a proper program, possibly A. In this case, we define 

S(f) • (BLK,g,h) • 
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Also, in this case, it is easy to count the number of lines ~n h, given 
that there are e(f) lines in f. The number is 

e(h) • (~(f)·1)+3~(f)+1 = e(f)-1 • 

Finally, it is clear by tonstruction that S(f) is equivalent to f. 

Case 2c-Collecting Node. If the first node is a collecting node, then 
f must be of the form 

" ' I \ 
~ 

\ I ,_ ..... 

and we examine the next unique node reached from this collecting node. 
It is clear that such a next node exists, because a predicate node, at 
least, must be reached in the remaining improper program in order to 
have two output lines. There are three subcases to be examined. 

2.c.(1) Predicate Node-If the next node is a predicate node, then f is 
f is of the form 

-- ...... 
/ ' ' I \ 

X 
\ 
\ z 

I • 
I 

y 
\ I 

' / 
....... / ...... - _.,. 

As before, we construct two programs which consist of all nodes which 
can be reached from x and y, which terminate in z or r. We suppress 
collecting nodes with only one input, as before. These programs will not 
be proper programs if both r and z can be reached from x or y. However, 
since f is a proper program, we know that each constructed program must 
reach at least z or r, and that each z and r must be reached by at least 
one constructed program. These constructed programs have the form 
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~ ' r 

X I ~ 
------r- J \ ,_ _ _. 

,_, z 

.... -
I ' r \--.. 
~I 

' ~ _ _.. 

where the solid output line is necessary, and the dotted output line may 
or may not exist. We use TRUE, FALSE function nodes (to set flags) and 
possibly collecting nodes to construct new proper progr~s from these 
shown, of the form 

or 

and 

I 
X I 
~ 

\ 

---
""" ' / 

' ' .... __ ., 

,.----- ....... 

/ ' 
I ' 

FALSE 

TRUE 

I \ 
24 ~r, FALSE r-.. 

\ I ~----~ 
\ I 
', / .... _., 

---""" ' / -'r-~ 

I 
v I 

---r 
\ 

' ' """ 
..... __ 
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or 

,...--- ........ 

/ ' 
I ' I \ 

y \ : z 1 TRUE ~ 
\ I '------' 

' / ' ---
depending on whether or not the dotted output lines r and z exist. 

We label these proper programs g and h (such that g has at least the 
r output line and h has at least the z output line). Now, we consider 
the new program 

~-' ' r-----. g )'------, 

' _/ 

TRUE 

--
/ ' 

h ' / -,..,. 

with g and h as constituent programs. In this case, we define 

S(f) • (BLK,TRUE,(BLK,(DO,TOP,(BLK,POP,(IF,p,g,h))),POP)) • 

We observe that g and h does not have the predicate node p and eacn has 
at most two more function nodes. Hence, 

e(g) ~ ~(f)+2+3(~(£)-1)+1 • e(f)-1 

e(h) ~ ~(£)+2+3(~(£)•1)+1 • e(f)-1 

Finally, it can be verified that S(f) is equivalent to f. 
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2.c.(2). Function Node-If the next node is a function node, then f 
is of the form 

and we consider the new program 

.,. -- ....... , 
', h 

\ 
\ 
\ 

' I 
' I 

\ I ~ 
I I ,_ ..... ~ ~ 

........... ___ ., / 
;' 

with new program labeled h. In this case, we define 

S{f) • (BLK,g,h). 

Also, in this case, we observe directly that 

e(h) • e(f) 

but that also, the number of lines, say i(f), required to reach the first 
predicate of f is reduced by one, i.e., that 

i(h) • i(f)-1 

Finally, it is clear that S(f) is equivalent to f. 

2.c.(3). Collecting Node-If the next node is a collecting node, 
then f is of the form 
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and we consider the new program 

' \ 

\ ~ 
' I _., 

I ' ~ 
\ I ..... _., 

called g. In this case we define 

S(f) • g 

Also, in this case, we observe directly that 

e(g) • e(f) 

i(g) - i(f)-1 

It is clear that S(f) is equivalent to f. 

Summat'y 

This completes the analysis of cases for the input region of f, and the 
definition of the structuring process S. In surnmaTy, in each case, we 
have defined a new program, S(f), equivalent to f, such that S(f) is a 
fot'mUla in, at most, graph labels BLOCK, IFTHENELSE, DOUNTIL, functions, 
predicates, and constituent proper programs. In several cases, the 
number of edges of the constituents of f are seen to be less than the 
numbet' of edges in f. In two cases, this number of edges was not decreased, 
but the number of edges from input to the first predicate node, was 
decreased. It is clear that the number of edges from input to the first 
predicate node is bounded by the number of edges of a program. When we 
apply this information to that generated in the case analyses above, 
we get Table 1 • 
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Table 1. Case Analysis -- Structuring Process 

Case e values i values 

2a e(g) < e(f)-3 i(f) < e(f)-3 
e(h) < e(f)-3 i(h) - e(f)-3 

2b e(h) • e(f)-1 i(h) < e(f)-1 

2c (1) e(g) ....; e(f)-l i(g) ~ e(f)-1 
e(h) < e(f)-1 i(g) ..; e(f)-l 

2c(2) e(h) • e(f) ... (h) - i(g)-1 

2c(3) e(g) • e(f) i(g) - i(f)-1 

We are now ready to summarize our proof, as follows: 

First, it is clear that the Theorem is true for ~ oper programs with 
one line, for such a program is simply A. 

Next, suppose the Theorem is true for proper programs :~ t'l. lines or 
less for n > 1. Let f be a proper program with n + 1 11. ~. We apply 
S to f. If cases 2a, 2b, or 2c(l) apply, we have a new equivalPnt 
program, whose constituent programs are proper and have at most .l lines; 
and each such constituent, by our induction hypothesis, satisfies t r e 
Theorem. Moreover, the new equivalent program has a formula in, at l'~' ·· t, 
graph labels BLOCK, IFTHENELSE, DOUNTIL, predicates and its constituenu . 
Therefore, the new program satisfies the Theorem. If none of cases 2a, 
2b, or 2c{1) apply, then i(f) < n, and case 2c(2) or 2c(3) must apply. 
In each such case, there remains only one constituent, say g, and 

e(g) • e{f), i{g) • i(f)- 1 

Therefore, after, at most, n such applications, case 2c(1) must apply, 
and the final equivalent program satisfies the Theorem. 

This completes the Proof of the Structure Theorem. 

TOP DOWN COROLLARY 

Any proper program is equivalent to a program of one of the forms 

(BLOCK,g,h) 
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(IFTHENELSE,p,g,h) 

(OOUNTIL , p, g) 

where p is a predicate of the original program or TOP, and g,h are each 
proper programs, functions of the original program, TRUE , FALSE , or 
POP . 

S·STRUCTURED PROGRAMS 

The Structure Theorem motivates the definition of a structured program 
as follows: 

Let S be any finite set of labels associated with control graphs of 
proper programs. Then any program whose formula contains only graph 
labels from S is said to be an S-structured program. 

When the prefix ''S'' is not critical, or understood, it will be 
suppressed. 

PROGRAM REPRESENTATIONS 

The result of the Structure Theorem is similar to representation theorems 
in other branches of matryematics, in which it is shown that all elements 
of a set, or ''space'', can be represented by combinations of a subset of 
''basic elements'' of the space. For example, three nonplanar vectors 
span a three-dimensional Euclidean space, the set { sin nx, 
cos nx I n•O,l, ..• } span a set of real functions in the interval 
[0, 2w] --i.e., a ''function space''. The foregoing examples refer to 
linear combination for representation. 

In the Structure Theorem, it is shown that three simple types of programs, 
defined by BLOCK, IF-THEN-ELSE, and DO-UNTIL control graphs, span the set 
of all proper programs, using substitution of proper programs for process 
nodes as the only rule of combination. Such a representation theorem 
permits the resolution of questions of the adequacy of a programming 
language simply and effectively. For example, all one needs to show a 
new set of basis programs will span the set of all proper programs is 
that one can represent BLOCK, IF-THEN-ELSE, and DO-UNTIL programs in 
this new set. 

One simple illustration of a new basis is to represent DOUNTIL in terms 
of BLOCK and DOWHILE, as follows 
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or 

(DOUNTIL,p,f) • (BLOCK,f,(DOWHILE,p,f)). 

Hence, BLOCK, IFTHENELSE, and DOWHILE, provide a sufficient control 
structure to represent all proper programs as well as BLOCK, IFTHENELSE 
and DOUNTIL. 

PROGRAM TREES 

The formula of a structured program can be displayed in a program tree 
in a natural way, with the graph labels, functions and predicates 
assigned to nodes of the tree. For example, the formula 

(IFTHENELSE,p,g,h) 

defines the program tree. 

IFTHENELSE 

1\ 
p g h 

and the formula 

(DOWHILE,p,(IFTHENELSE,q,g,(BLOCK,h,k))) 

defines the program tree 
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DOWHILE 

/~ 
p IFTHENELSE 

/~ 
q 9 BLOCK 

/\ 
h k 

Conversely, given any program tree of graph labels, functions and predi~ 
cates, the original program can be recovered. In particular, any subtree 
defined by a node plus all its successors in the tree defines a sub
program of the original program. 

The program tree provides a convenient way of visualizing program 
structure in the form of subprograms. By labeling subprograms, and 
referring to their program functions at higher levels in the program, 
an original program of any size can be organized as a set of subprograms, 
each of a prescribed maximum size. 

It is clear that the subprograms so defined are each proper programs. 
That is, they each map an input data set into an output data set, with 
no control side effects. 
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PROGRAM CORRECTNESS 

We have already noted that program correctness is a question of pre
dictability. More precisely, given a program, f , and a function, g , 
we are interested in whether g is the same as the program function [f). 
If we know both g and (f], we can resolve the question by comparison. 
Carrying out such a comparison of two sets is a general mathematics 
problem whose solution will depend on how the sets are defined. In few 
cases they will be enumerated. In that case their elements can be ordered 
and matched, a pair at a time. In most cases such sets will be defined 
by conditions or rules in some broader (less formal) context than set 
theory per se. There may be natural numbers involved, in which case 
inductive definitions and comparisons may be possible. In any case, the 
techniques for comparison are beyond our present interest, and must be 
formulated in whatever terms are available. 

In the case of structured programs, the program tree permits the 
decomposition of the correctness problem into a series of nested problems, 
each of a simple type which can be prescribed in advance. 

CORRECTNESS THEOREM 

If the formula of a program contains at most graph labels BLOCK, IFTHEN, 
IFTHENELSE, DOWHILE, and DOUNTIL, and satisfies a loop qualification, 
then it can be proved correct by a tour of its program tree, in which, 
at each node, the relevant one of five cases must be proved (data sets 
suppressed-see below for data set versions): 

If f • (BLOCK,g,h), prove 

ff] • {(r,t) I ~ s((r,s) E (g] A (s,t) E [h))} 

Iff • (IFTHEN,p,g), prove 

[f] • { (r,s) I ((r, True) E p A(r,s) E [g] V 

((r, False) E p A(r,s) E pAr • s)} 

If f a (IFTHENELSE,p,6,h), prove 

[f) • { (r,s) I ((r, True) A p A (r,s) A [g)) V 

((r, False) EpA (r,s) E [h])} 
Iff • (DOWHILE,p,g), prove 

f f] .. ( (IFTHEN, p, (BLOCK, f g] , [ f])) ] 

If f • (DOUNTIL,p.g), prove 
[f] • [(BLOCK,(g], (IFTHEN,p,[f]))] 
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Proof 

By hypothesis each node in the program tree is one of the five types 
listed. Beginning at the root of the tree, the program function [f ] 
of program f is determined by possibly a predicate, and program 
functions fg], [h] of constituent subprograms g,h, and so on, until 
functions are reached at the endpoints of the tree. If the program 
function at each node is known with respect to program functions of its 
successor nodes, then by finite induction, the program function at the 
root of the tree is known with respect to the functions in the program. 

It remains to validate the detailed assertions case by case. 

Case f = (BLOCK,g,h) 

In flowchart form, 

f = 

Now 

by the definition of program functions [g], [h]. Then, program function 
[f] can be formulated directly as 

[f] - {(r,t) I r E R a s((r,s) E [g] s E S (s,t) E [h]) t E T}. 

This agrees with the statement of the Theorem with the data sets suppressed. 

44 



' ' 

. . " 
4 • t 

·- - - -

Case f • (IFTHEN,p,g) 

In flowchart form, 

Now 

Then 

s 

f = 

s T 

u 

[f] • {(r,v) I r ERA 

(((r,True) E p ArES A(r,v) E [g] AvE T) 

V((r,False) EpA r • v AvE U)) AvE V}. 

This agrees with the statement of the Theorem with the data sets 
suppressed. 

Case f • (IFTHENELSE,p,g,h) 

In flowchart form, 

s T 

u v 
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164 SOFTWARE PRODUCTIVITY 

Now 

s T 

R w 
[!] = 

u v 

Then 

[f] = {(r, w) IrE R /\ (((r, True) E p /\rES/\ (r, w) E [g] /\ w 
E T) A ((r, False) EpA rE U /\ (r,w) E [h] /1. wE V)) /\wE W}. 

This agrees with the statement of the theorem with the data sets suppressed. 

Case f = (DO-WHILE, p, g) 

In flowchart form, 

u T 

R v 
f= s 

Now 

u T 

R 
(!) = 

v 
s 



and, indeed, 

[ f J 

by construction and inspection, where i is an identity function. We note 
that if R = U then the DOWHILE subprogram in the dotted section has 
program function [f] i.e., 

[ f J 

This agrees with the statement of the Theorem with the data sets 
suppressed. We call the condition R•U the loop qualification on f; i.e., 
both input lines to the collecting node have identical data spaces. 

Case f • (DOUNTIL,p,g) 

In flowchart form, 
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Now, 

and, indeed, 

by construction and inspection. If R aU, (the loop qualification), then 
the DOUNTIL subprogram in the dotted section has program function [f], i.e., 

[ f 1 ; [ 

This agrees with the statement of the Theorem with the data sets 
suppressed. 

With this case, the proof of the Theorem is completed. 

Correctness Notes 

At first glance, the verification conditions for DOWHILE and DOUNTIL 
seem to involve a recursive relation in program function [f]. But this 
is not the case; the verification conditions involve [f] as an input, 
not as an unknown to be solved for. 
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It is also noteworthy that the top down approach to correctness avoids 
the problem of incomplete rules (or in other formulations, incomplete 
functions, for which we have no counterparts), and termination. In a 
program equation such as 

f • lmiLE p DO g , 

the functions p and [g] are usually taken to be the ''independent 
variables'' and the function [f] to he the ''dependent variable'', 
a ''bottom up'' viewpoint. Of course, even though p and lg] may be 
given by complete rules, the new rule ''lmiLE p DOg'' may turn out to 
be partial because of nontermination. However, in the top down view
point, the function ff] is the ''independent variable'', and the program 
equation defines ''dependent variables'' p and [g] implicitly, (and 
meaningfully). Now, since (f] is a function, p and [g] must be defined 
such that the rule ''WHILE p DOg'' terminates for any input in the 
domain of (f]. 

The loop qualification required in the Correctness Theorem is a serious 
restriction with respect to the allocation and freeing of storage space. 
If the body of a DO loop allocates or frees space, then the loop quali
fication is not satisfied, and the reduction of a loop verification to 
the form of the Theorem is not valid. 
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TOP DOWN PROGRAM EXPANSIONS 

Thus far, we have considered pro~rams first, and then their meanings as 
program functions. In top down programming, we want to reverse that 
order of conception. That is, given a function (a program specification) 
we want to find some program (a rule) which has that program function. 
This reversal of conception allows us to avoid questions of ''partial 
rules'', ''partial correctness'', and the general termination problem, 
because they never arise. In the usual way of looking at program 
equations, such as 

f a (DOWHILE,p,g) 

the graph label DOWHILE, predicate p, and function or subprogram g, are 
usually taken to be the ''independent variables'' and program f taken to 
be the ''dependent variable''. In this case, even though p and g are given 
by rules defined everywhere on their domains, the new program (DOWHILE,p,g) 
may not terminate and thus be called a partial rule. One may prove 
properties relating p and g to f in case of termination to get partial 
correctness, but one must also establish termination separately to get 
total correctness. 

We observe that if we take f to be the independent variable in the fore
going equation, then these partial rule and partial correctness problems 
disappear. If f denotes a complete rule, then p and g must denote complete 
rules, in order to satisfy the equation as dependent variables. That is 
the essence of top down programming, regarding the constituent subpro
grams and predicates of an expansion as dependent variables which satisfy 
a prescribed equation which is inherited top down. 

When this approach is taken, perhaps the most surprising result is the 
amount of freedom available to a programmer in writing a correct program. 
In the bottom up approach, programming appears to be an activity with 
almost unlimited freedom to improvise or solve problems in various ways. 
But in developing a program top down, it is clear that this freedom is 
highly restricted. At first glance it may seem there is less freedom 
in programming top down than in bottom up, but a second thought shows 
that is not the case. They must lead to equivalent results and, in fact, 
what really is exhibited in the bottom up approach is a false freedom 
that is subsequently paid for in a painful error elimination process, 
following an original ''gush of originality.'' 

In order to exhibit the degree of freedom available in programming, we 
formulate the Expansion Theorem below in both a verbal and a set theoretic 
version. The Structure Theorem exhibits characteristics of a completed 
program, while the Expansion Theorem shows how programs can look at 
every intermediate stage of their construction. At every such intermediate 
stage, a program developed in a top down discipline can be guaranteed to 
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be correct, insofar as it is developed, without the necessity of altering 
parts of the program already done, in order to accommodate the remaining 
parts of the program yet to be developed. It is a familiar experience in 
large program development to get ''90% done'' and to remain at that 
90% level for a lengthy period. That phenomena occurs not because the 
last 10% is difficult to write, but because in order to write the last 
10%, critical sections of the first 90% need to be altered. The Expansion 
Theorem and top down programming can guarantee that the first 90% can 
remain intact while the last 10% is finished on schedule. 

EXPANSION THEORID-t (VERBAL VERSION) 

In a program function expansion of the form (data sets suppressed -- see 
below for more detail): 

(1) f = [(BLOCK,g,h)] 
Any pair (g,h) whose composition is f may be chosen. 

(2) f = f(IFTHENELSE,p,g,h)] 

(3) 

Any predicate p with the same domain as f may be chosen, 
then g and h are fully determined, as the members of the 
partition of f defined by p. 

f = [(DOWHILE,p,g)] 
The program function f must be the identity in the 
intersection of its domain and range, any function g may 
be chosen whose completion is the varying part of f, and 
p is fully determined by f and g. 

In short, the invention of an IFTHENELSE program is equivalent to a 
partition of a prescribed program function, while the invention of a 
DOWHILE program is equivalent to the determination of a function whose 
completion is a prescribed program function. That is, the only freedom 
in an IFTHENELSE program is its predicate, and the only freedom in a 
DOWHILE program is its iterative process -- all other freedoms, in the 
THEN or ELSE clauses, in the WHILE predicate, are illusions. THEN and 
ELSE clauses are frequently used for elaborating functional specifica
tions not fully stated; but these are not freedoms of choice, but 
interpretations of intentions at more detailed levels. The point is that 
if functional specifications are sufficiently well defined to decide 
whether a program satisfies them, then there is no freedom beyond the 
choice of the predicate in an IFTHENELSE program. In the case of the 
DOWHILE, the question is more subtle, and relates to the character of 
the termination questions in programming top down, in contrast to bottom 
up. The WHILE predicate is completely determined on the domain and range 
of the function (specification). The DOWHILE program must terminate on 
reaching any element of the range, and must continue otherwise; because, 
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if not, it cannot possibly satisfy the prestated (top down inherited) 
function specification. 

In order to formulate a more concise, set theoretic version of the 
Expansion Theorem, we introduce a reinterpretation of the logical 
constant ''True'', Ordinarily, a predicate is taken to be a function, 
p, such that 

range(p) = { True, False }. 

We reinterpret the constant True by the statement for an associated 
function 

p = {(x,y) I (x,True) E p} 

i.e., if p(x) is true, then for any element y , (x,y) E p. 

We also introduce the idea of a refinement of a function, corresponding 
to the ordinary idea of the refinement of a partition. (A refinement of 
a partition is simply a new partition, each of whose members is a subset 
of some member of the original partition.) We form a partition of the 
domain of a function, called a partition of level sets, or the contour 
of the function, by grouping arguments which have identical values into 
subsets of the domain. Then we say one function is a refinement of another 
if its contour is a refinement of the others. 

Finally, we define the fixed points of a function f, denoted as the 
fixed (f) subset 

fixed(f) = { (x,y) I (x,y) E f 1\ x = y}. 

EXPANSION THEOREM (SET THEORETIC VERSION) 

In a program expansion of the form (data sets suppressed -- see below 
for more detail): 

(1) f • [(BLOCK,g,h)) 

(a) choose function g as any refinement of program function f 

(b) then h is uniquely determined by the relation 
f ... g * h 

(2) f • [(IFTHENELSE,p,g,h)) 

(a) choose predicate p such that dornain(p) • domain(£) 

52 



Proof 

(b) then g and h are uniquely determined by the relations 

g ... p n f 
h - f - g 

(3) f = [(DOWHILE,p,g)] 

(a) verify that 
domain(fixed(f)) = domain(£) n range(£) 

(b) choose function g such that 
* g * = f - fixed(£). 

(c) then p is uniquely determined such that 
p(x) = True if x E domain(g)-range(f) 
p(x) = False if x E range(£) 

Case fa [(BLOCK,g,h)] 

In flowchart form 

R T 
f = [ -----t~ 

Consider the following construction of g, h, R, S, T: 

Set R • domain(£). 

Set T • range(f). 

Choose any refinement of f, say g; then for any x E R, y E R, 

g(x) • g(y) ~ f(x) • f(y) 

Set S • range(g) 

Set h • {(s,t) I (r,s) EgA (r,t) E f} 

Now, it is easy to verify by this construction that 

( (BLOCK,g,h)] • {(x,y) I (x,y) E f} 

as was to be shown. The function h is uniquely determined in the 
construction by f and g. 
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Case f = [(IFTHENELSE,p,g,h)] 

In flowchart form 

F = [_..;..;.R_.,< w 

Consider the following construction of p, g, h, R, S, T, U, V, W: 

Set R = domain(f) 

Choose any predicate p such that domain(p) = domain(f) • R 

Set s = { s I (s,True) E p} 

Set g = {(s,t) I s E s A (s,t) Ef} 

Set T • range(g) 

Set u = {u I (u,False) E p} 

Set h • {(u,v) I u E U A (u,v) E f} 

Set V • range(h) 

Set W ,. T U V 

Now, it is easy to verify by this construction that 

[(IFTHENELSE,p,g,h)] • {(x,y) (x,y) E f} 

as was to be shown. Note that g is a subset off defined by p, i.e., 
p n f, and his the complement of gin f, i.e., f- g. 

Case f = [(DOWHILE,p,g)] 

In flowchart form 

54 



.· - ~ 

- ~ J~~ 

u T 

v 

Consider (s,v) E £,i.e., v E range(£). We note that necessarily p(v) = 
False. Otherwise the control path to g is taken, and the program cannot 
terminate with value v, which contradicts the correctness of the expansion. 

Next, consider (r,v) E f such that r E domain(£) n range(£); then p(v) = 
False by the foregoing remark, and the function g is bypassed, so that 
necessarily v • r, orr E domain(fixed(f)). Conversely, if r E 
domain(fixed(f)), then r E range(£) and p(r) • False, hence r E 
domain(£) n range(£). That is, domain(fixed(f)) =domain(£) n range(£) 
as needed to be shown. 

Next, choose function g such that* g * = f - fixed(£). At least one such 
choice is possible, namely for g = f- fixed(£), since the domain and 
range of f - fixed(£) is disjoint. 

Finally, we have already seen that necessarily p(x) a False when x E 
range(£). But clearly, we must have p(x) =True when x E domain(g), in 
order that the correct control path be taken to finally reach an output 
v E range(£); in addition, since * g * ~ £, then necessarily domain(g) 
~ doma1n(*g*) ~domain(£), so that x E domain(g) implies x E domain(f). 
Thus, in summary, 

p(x) • True if x E domain(g) - range(£) 

p(x) • False if x E range(£) 

as was to be shown. 

The data sets required are as follows: 

Set R • domain(£) 

Set v- range (f) 

Set T .. domain (g) 

Set u • range(g) 

Set s - RUU 
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This discussion is concluded with a combinatorial characterization of g, 
the iterative process of a DOWHILE program: 

For function f, consider any superfunction h, such that range (h) 
= range(f). For each level set, or contour, of h, define any arbitrary 
set of rooted trees on its elements. If x of domain(h) is a root of such 
a tree, then we set 

y(x) ~ h(x). 

If x E domain(h) is not a root of such a tree, let y denote the parent 
of x in that tree, and define 

g(x) = y. 

It is easily verified that any function g so defined, and no other, will 
satisfy the relation * g * • f. 

With this, it is clear that in all three cases, the entire freedom of 
choice is a combinatorial one. In a BLOCK program, it is the choice of 
a function; in an IFTHENELSE program, the choice is a partition of a 
function; in a DOWHILE program, the choice is a tree structure within 
the level sets of a function. 
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INDETERMINATE PROGRAMS 

In certain applications, particularly those of artificial intelligence 
(33], it is convenient to generalize the idea of a program to a construct 
which permits ambiguity in execution, rather than uniqueness. For example, 
an algorithm may specify a selection of a member of some set for process
ing, without naming a specific member. In this event, intermediate and/ 
or final results may be indeterminate. Such ''indeterminate algorithms'', 
are often useful in describing the essentials of a process, without 
getting unduly involved with its specifics. Indeterminate algorithms are 
also useful for treating a man-machine computing system, in which the 
actions of men -- say at terminals -- are indeterminate. Then, an entire 
system can be defined to be governed by an indeterminate algorithm. 

Our development of programs, which we call ''determinate programs'', 
where necessary, can be generalized to include ''indeterminate pro
grams'' by a very simple extension --namely, by extending the idea of 
function, throughout, to the idea of relation. A relation is defined to 
be a set of ordered pairs, without the additional qualification required 
of a function to provide unique values for given arguments. As with 
functions, relations inherit set properties. In fact, not only the 
intersection and difference of two relations are new relations (as in 
the case of functions), but the union of two relations is also a relation 
(not generally so for functions). Domains and ranges of relations are 
defined as for functions. 

Next, we define an indeterminate program to be a finite set of relations, 
called indeterminate instructions, whose domains are each included in a 
data space, and whose ranges are each included in the cartesian product 
of the data space and the indeterminate program, again called the state 
space. An indeterminate program execution is, again, a sequence of state 
values 

such that 

(di' !:li+1) E ri, i • 0, 1, ••• 

which terminates, if ever, when di ~domain (ri). Precisely as before, 

all executions which terminate define a set of ordered pairs, now a 
relation, instead of a function, which we call the indeterminate program 
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relation; i.e., in retrospect, an indeterminate program is a (nonunique) 
rule for calculating the members of its relation, using other relations 
in so doing. 

At this point, we leave it to the reader to observe that every con
struction and theorem goes through for indeterminate programs and their 
relations, just as for determinate programs and their functions. 
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