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ABSTRACT 

Low temperatures negatively affect the quality and yield of plants. Many plants, 

including Arabidopsis thaliana, have evolved mechanisms that allow them to acclimate to cold 

temperatures, enhancing their tolerance to these low temperature conditions. Although wild type 

Arabidopsis thaliana plants can acclimate to 12 °C and 4 °C, the Arabidopsis mutant ijT1, which 

is a mutation in the IOJAP gene that encodes a chloroplast protein, has difficulties acclimating to 

this drop in temperature. While the ijT1 plant functions normally at 22 °C, lower temperatures 

negatively affect its phenotype. Additionally, ijT1 plants appear to recover over time as they 

mature at 12 °C but not at 4 °C. IOJAP proteins are hypothesized to affect translation, as it 

appears that they have an impact on ribosome biogenesis and the formation of the large 

ribosomal subunit. There are at least two possible explanations for the temperature-sensitive 

phenotype of A. thaliana: protein targeting and splicing. Arabidopsis thaliana has 2 IOJAP 

genes, cp-IOJAP and mt-IOJAP, that are believed to encode proteins directed to the chloroplast 

and mitochondria, respectively. Protein import, however, is inhibited by low temperatures. 

Because the transit peptide sequence of mt-IOJAP appears to be dual targeted to the 

mitochondria and the chloroplast, we hypothesized that mt-IOJAP can compensate for the loss of 

cp-IOJAP in normal temperature environments in the mutant ijT1 but not at low temperatures. 

Further work in the lab is needed before addressing any possible conclusions regarding this 

protein targeting process. Additionally, the ijT1 plants have a T-DNA insertion in the first intron 

of the cp-IOJAP gene. This mutant will only be able to produce the wild type transcript if the 

intron with the inserted T-DNA sequence is properly spliced out. Exposure to cold stress affects 

splicing and may prevent the T-DNA insertion from being spliced out. We hypothesized that 

increasingly colder temperatures will lead to reduced splicing in mutant ijT1 plants at low 
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temperatures because the T-DNA may be spliced out at 22 °C but not at 12 °C or 4 °C. Our 

results suggested that the T-DNA is properly spliced out at 22 °C, spliced out with a decreased 

efficiency at 12 °C, and not spliced out at all at 4 °C. The phenotype recovery of ijT1 at 12 °C 

may occur as the amount of successfully spliced products gradually accumulates over time. We 

conclude that the splicing defect of the ijT1 mutant may be able to explain the temperature 

sensitivity of the mutant. 
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INTRODUCTION 

 

The Arabidopsis thaliana mutant ijT1 is negatively affected by lower temperatures 

Cold affects the quality and yield of plants; because of this, it is important to understand 

how plants are able to respond and adapt to low temperatures (Hannah et al. 2005). Many plants, 

including Arabidopsis thaliana, have evolved mechanisms that enhance their tolerance to low, 

but non-freezing temperatures (Miura & Furumoto 2013). This process is referred to as cold 

acclimation. Cold acclimation consists of complex physiological and biochemical changes that 

affect growth and water balance, membrane and cell wall composition, and cold-regulated gene 

expression and protein levels (Hannah et al. 2005). Although wild type Arabidopsis thaliana 

plants can acclimate to 12 °C and 4 °C, we have found an Arabidopsis thaliana mutant, ijT1, that 

has trouble acclimating to this drop in temperature. The chloroplast function of ijT1 plants 

appears to be impacted by changes in temperature, as their phenotypes are exacerbated at 

increasingly lower temperatures. While ijT1 plants are able to function normally at 22 °C, 

previous work in the lab showed that lower temperatures cause ijT1 plants to be smaller and 

exhibit abnormal leaves and roots that are approximately 60-80% shorter than those of the wild 

type plant. When exposed to cold, these leaves become chlorotic, have protruding hydathodes, 

and show the hyponastic response (Figure 1). These leaves, however, appear to recover over 

time as they mature at 12 °C but remain chlorotic at 4 °C. Additionally, the phenotype seems to 

be most apparent in young developing leaves. There are at least two possible explanations for the 

temperature-sensitive phenotype of A. thaliana: protein targeting and splicing. 
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Transit peptide sequences of IOJAP proteins in Arabidopsis direct protein import 

Arabidopsis thaliana has two homologous IOJAP proteins. Although these proteins are 

widely conserved among different organisms, their function remains poorly characterized 

(Butland et al. 2015). Based on the function of IOJAP orthologues in Escherichia coli (E. coli) 

and human mitochondria, IOJAP genes in Arabidopsis are suspected to affect protein translation, 

as they are associated with ribosome biogenesis and the formation of the large ribosomal subunit 

(Häuser et al. 2012; Fung et al. 2013). The Arabidopsis mutant ijT1 is a mutation in the IOJAP 

gene directed toward the chloroplast. These IOJAP genes are located in the nucleus and their 

encoded proteins are suspected to be imported to the mitochondria or chloroplast via transit 

peptide (TP) sequences that act as signals attached to the IOJAP protein. The TP sequence is 

read post-translationally and directs the IOJAP protein to the organelle of its final destination. 

The TP sequences of genes that are imported in the mitochondria generally have an abundance of 

WT 

ijT1 

22
o
C 12

o
C 4

o
C 

Figure 1. The effect of increasingly cold temperatures on Arabidopsis thaliana wild 
type and mutant ijT1. All pictures taken at the same magnification. When exposed to 
cold, the leaves of the mutant ijT1 are smaller than those of the wild type. They become 
chlorotic, have protruding hydathodes, and show the hypnoastic response. 
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positively charged arginine residues and have the capacity to form amphipathic alpha helices (Ge 

et al. 2014). The TP sequences of genes that are targeted to the chloroplast, on the other hand, 

have an abundance of serine and proline and are generally longer and unstructured (Ge et al. 

2014). There are also transit peptides that are dual targeted to both the mitochondria and 

chloroplasts; these use an ambiguous dual targeting peptide that has an intermediate sequence 

pattern between that of the chloroplast and mitochondria (Ge et al. 2014). 

The mt-IOJAP gene (At1g67620) is hypothesized to encode a protein that is transferred 

to the mitochondria based on tandem mass spectrometry (MS/MS) (Hooper et al. 2014). MS/MS 

also determined that the cp-IOJAP protein (At3g12930) likely localizes to the chloroplast 

(Hooper et al. 2014). Additionally, Target P analysis of the TP sequences indicated that there 

was a 91.5% probability that the cp-IOJAP protein would be translocated to the chloroplast. The 

mt-IOJAP protein was found to have a 66.7% chance of being translocated to the mitochondria 

and a 57.6% chance of being translocated to the chloroplast (Emanuelsson et al. 2007), 

suggesting that it may be dual targeted to both organelles (Figure 2). The A. thaliana mutant ijT1 

is a mutation of cp-IOJAP, as it has an insertion in the first intron of the cp-IOJAP gene. At 22 

°C, with a mutant ijT1 plant, we hypothesize that the mt-IOJAP protein can be imported to the 

chloroplast to rescue the lack of cp-IOJAP of the Arabidopsis plant. At 12 °C, however, it is 

possible that the mt-IOJAP protein cannot be transported to the chloroplast efficiently, impairing 

the chloroplast function of the A. thaliana ijT1 plant. This import occurs across organelle 

membranes and has been reported to be inhibited by low temperatures (Leheny & Theg, 1994). 

For example, the effect of temperature on protein translocation has been noted in chloroplasts, as 

reactions that occur rapidly at 25 °C are significantly slowed at lower temperatures (Leheny & 

Theg, 1994). By observing the cp-IOJAP and mt-IOJAP proteins of A. thaliana and their 
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subcellular localization, we plan to address whether or not mt-IOJAP can compensate for the loss 

of cp-IOJAP in normal temperature environments. 

 

Cold stress affects splicing in Arabidopsis 

 The ijT1 plants have a transfer DNA (T-DNA) insertion in the first intron of the cp-

IOJAP gene (Figure 3). Most T-DNA insertions lead to loss-of-function alleles; for example, if 

the mRNA is transcribed with the T-DNA insertion, the T-DNA sequence may contain stop 

codons that would result in premature translation termination (Wang 2008). Wang (2008) found 

that when T-DNA is inserted in an intron, it does not have an effect on the transcript level in only 

0.7% of cases. When the T-DNA is inserted into an intron, the mutant will be able to produce the 

wild type transcript only if the intron with the inserted T-DNA sequence is spliced out (Wang 

2008). Although wild type transcripts may be produced, they are often made with decreased 

efficiency and a reduced level of the correctly spliced transcript (Wang 2008). RNA splicing 

 

Transit Peptide 

 
Transit Peptide 

Figure 2. The cp-IOJAP and mt-IOJAP proteins are directed to their final 
destinations by transit peptides. While it is very likely that the cp-IOJAP 
protein is translocated to the chloroplast (91.5%), the translocation of the mt-
IOJAP protein is predicted to be split between the mitochondria (66.7%) and 
the chloroplast (57.6%) (Emanuelsson et al. 2007). 

mt-IOJAP: 

cp-IOJAP: 
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works to remove introns and join exons together and is required before mRNA can be translated 

into a protein. 

 

 Splicing plays an important role in post-transcriptional gene regulation, as it contributes 

to proteome diversity and can affect mRNA stability (Leviatan et al. 2013). Exposure to biotic 

and abiotic stresses affects splicing (Staiger 2015); cold stress, for example, affects the splicing 

of precursor-mRNA (pre-mRNA) and results in a change in splicing patterns (Leviatan et al. 

2013). Increasingly colder temperatures may affect whether or not the first intron of the cp-

IOJAP gene (and the T-DNA inserted in that intron) is spliced out. We hypothesized that 

increasingly colder temperatures have a greater effect on the low temperature phenotype of 

mutant ijT1 plants because the T-DNA may be spliced out at 22 °C in the ijT1 plant but not at 12 

°C or 4 °C.  

 

 

 

 

 

 

T-DNA 

Figure 3. Arabidopsis thaliana ijT1 has a T-DNA. The T-DNA insertion is 
approximately 10,000 bp long and located in the first intron of the cp-IOJAP gene. Figure 
drawn using scale 1 in = 1000 bp. 

cp-IOJAP 
      

 

 

= untranslated region 

= exon 
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MATERIALS AND METHODS 

 

Amplification of Insert 

To amplify the cp-IOJAP sequence present in the wild type Arabidopsis thaliana plant, 

polymerase chain reaction (PCR) was performed on genomic DNA (gDNA) extracted from the 

wild type plant. Phusion DNA Polymerase was used because it is a high fidelity enzyme that has 

the lowest probability for mistakes. The Phusion protocol was followed as described by New 

England Biolabs (NEB) with the following primers and annealing temperatures (Table 1). The 

primers were designed to have SpeI and XmaI restriction enzyme sites (underlined). 

Table 1: PCR to amplify the cp-IOJAP sequence 

DNA sequence Primer sequence 
Annealing 

temperature (°C) 

Extension time 

(min) 

cpIJ-cI-F1 
5’-CGAACTAGTAGAACAAA 

GGCGAAGGGTTTTAGAT -3’ 
69 1:30 

cpIJ-cI-R1 
5’-GCACCCGGGGTTCCGTGG 

TTGTGACTGATCC-3’ 

 

Isolation of plasmid 

Cultures of Escherichia coli (E. coli) bacteria were grown in LB liquid media with 100 

µg/mL of ampicillin to isolate plasmid pAN578. This plasmid has the ampR
 gene that confers 

resistance to the antibiotic ampicillin and a sequence encoding a cerulean fluorescent protein 

(CFP). pAN578 also has restriction enzyme sites that can be cut by the restriction enzymes SpeI 

and XmaI. These restriction enzyme sites are located between the promoter sequence (35S) and 

the CFP sequence of the plasmid. Additionally, the SpeI and XmaI restriction enzyme sites are 

also present on the PCR product of the cp-IOJAP gene, which can be inserted into the plasmid 

vector.  
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Restriction digest and ligation 

A double digest was performed using SpeI and XmaI for both the cp-IOJAP PCR product 

and the pAN578 plasmid. A solution was prepared with 10 units SpeI, 10 units XmaI, 10x 

Cutsmart NEBuffer, and 1 µg DNA for each digestion. These enzymes have 100% activity in the 

1X Cutsmart NEBuffer. The remaining volume of the digest consisted of dH20 to bring the total 

reaction volume to 20 µL. The digestion was incubated for 2 hours at 37 °C. The Wizard SV Gel 

and PCR Clean-Up System was then used on the digested cp-IOJAP insert and pAN 578 plasmid 

products. 

Following digestion, a ligation reaction involving a 3:1 insert to plasmid molar ratio 

(19.15 ng insert: 25 ng plasmid) was performed to place the insert in the plasmid. The ligation 

reaction took place at 14 °C for 24 hours and was then held at 4 °C. The plasmid products were 

transformed using Top10 E. coli competent cells by heatshock. 100 µL of these transformed cells 

were spread on ampicillin resistant plates (LB and 100 µg/mL ampicillin) and incubated for 14 

hours. 

Colony PCR 

Following incubation, colony PCR was performed to search for plasmids with the 

appropriate insert. Each PCR reaction was performed with a small sample obtained from a single 

colony, Taq DNA polymerase, and the following primers and annealing temperatures (Table 2). 

Gel electrophoresis was performed with 1% agarose to determine which colonies contained 

transformed plasmids.  

Table 2: Colony PCR of transformed DNA 

Primer Primer sequence  Tm (°C) 
Extension time 

(min) 

35S-F 5’-CGCACAATCCCACTATCCTTCGCA-3’ 
60 2:00 

CFP-R 5’-CTGCACGCCCCAGGTCAG-3’ 
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Amplification of transformed plasmid 

 The colonies of the successfully transformed plasmids were grown in LB liquid media 

with 100 µg/mL of ampicillin at 37 °C.  The new plasmids were sequenced at the UT Molecular 

Biology Resource Facility with the following primers (Table 3) to determine whether or not the 

correct insert was placed in the plasmid vector. These sequences were analyzed using 

Sequencher and Meg Align from DNAStar.  

Table 3: DNA sequencing 

Primer Primer sequence 

35S-F 5’-CGCACAATCCCACTATCCTTCGCA-3’ 

CFP-R 5’-CTGCACGCCCCAGGTCAG 

 

TA cloning: Amplification of insert 

 The cp-IOJAP sequence was amplified as mentioned above. Following the initial PCR, 

an additional PCR was performed by adding Taq polymerase to the Phusion PCR product. This 

generated a single 3’-adenosine overhang at the end of each strand of DNA. 

Cultures of Escherichia coli (E. coli) bacteria were grown in LB liquid media with 100 

µg/mL of ampicillin to isolate plasmid pKRX. This plasmid was digested with the enzyme XcmI 

to leave a thymine residue at each end of the vector. This allows the insert and vector to 

hybridize due to the complementarity of their adenine and thymine nucleotides. A ligation 

reaction involving a 3:1 insert to plasmid molar ratio (30 ng insert: 25 ng plasmid) was 

performed to place the insert in the plasmid. The ligation reaction took place for 24 hours, 

continually cycling through the following temperatures in ten minute intervals: 16° C, 12° C, 8° 

C, and 4° C. (Matsumura 2015). The plasmid products were then transformed into Top10 E. coli 

competent cells by heatshock. 100 µL of these transformed cells were spread on ampicillin 
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containing plates (LB and 100 µg/mL ampicillin) and incubated for 14 hours. Following 

incubation, colony PCR, with the primers listed in Table 4, was performed to search for plasmids 

with the appropriate insert.  

Table 4: Colony PCR of transformed DNA (pKRX + cp-IOJAP) 

Primer Primer sequence  Tm (°C) 
Extension time 

(min) 

cpIJ-cl-F1 
5’-CGAACTAGTAGAACAAA 

GGCGAAGGGTTTTAGAT -3’ 
53 0:30 

cp-TP20-R 
5’-GCATCTAGACTCATTC 

GCTCACATTC- 3’ 

 

 

RNA extraction and Reverse Transcriptase PCR 

 Wild type and mutant ijT1 A. thaliana seeds were sterilized, stratified, and held at 4 °C 

for two days. The seeds were then plated on MS plates (1/2 MS, 1% sucrose, 5% phytagel) and 

held at 22 °C for two days before being moved to their target temperatures. Wild type and mutant 

ijT1 A. thaliana seeds were grown at 22° C for 10 days, 12° C for 42 days, and 4° C for 61 days. 

RNA extraction was then performed by freezing the roots and leaves of the plants with liquid 

nitrogen and homogenizing them with a mortar and pestle and 500 µL TRIzol (Life 

Technologies) per 50 mg tissue. The RNA was precipitated, washed, and treated with DNase I. 

The extracted RNA was used to synthesize cDNA with M-MuLV Reverse Transcriptase (New 

England BioLabs). A PCR was performed on the cDNA using three sets of primers (Table 5). 

Gel electrophoresis was performed to compare the lengths of the products generated with the 

anticipated product lengths (Table 6).  
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Table 5: PCR of cDNA 

Primers Primer sequences Tm 

(°C) 

Extension 

time (min) 

Cycle 

# 

mt-TP20-F1 

+ mt-cl-R1 

5’-CGATCTAGACTCGACGTGAAAGCTGA-3’ 

+ 5’GCACCCGGGAGAATAGCCCGGTTTCCT-3’ 

56 1:00 40 

Rv-ij-LB + 

Rv-iojap 

5’-CCTTATAATTGCTGTTGGCGACT-3’ + 

5’-TCTCTGCATCATCGTCAACC-3’ 

54 0:45 40 

cp-TP20-F + 

cp-cl-R1 

5’-CGATCTAGAGAGAGACTTGTTCAACA-3’+  

5’-

GCACCCGGGGTTCCGTGGTTGTGACTGATCC-

3’ 

56 1:00 40 

 

Table 6: Anticipated PCR products 

Primers Product size (bp) Length of gDNA (bp) 

mt-TP20-F1 + mt-cl-R1 450 ~1000 

Rv-ij-LB +Rv-iojap 223 ~300 

cp-TP20-F + cp-cl-R1 515 ~950 

 

RESULTS AND DISCUSSION 

Efficiency of Chloroplast Import at Low Temperatures 

 mt-IOJAP has previously been inserted into the plasmid pAN581, which encodes a 

yellow fluorescent protein (YFP) using the SpeI and XmaI restriction enzyme sites. Following 

successful insertion of cp-IOJAP into the pAN578 plasmid, both tagged proteins will be 

bombarded into plant cells using tungsten particles coated with the plasmid DNA. These 

particles will be shot into the cells in the epidermal strip of an onion storage leaf. The location of 

the fusion proteins encoded by the plasmids will be tracked by the fluorescent proteins (CFP or 

YFP) present in their respective coding sequences using an inverted fluorescent light microscope 

(Zeiss). The fluorescent proteins are able to track the movement of these proteins and thus 



 15 

determine the destination of the proteins encoded by cp-IOJAP and mt-IOJAP genes. This 

particle gun bombardment will be performed at 22 °C, 12 °C, and 4 °C to see which organelle(s) 

receives the cp-IOJAP and mt-IOJAP transformed proteins at each temperature. This will be 

determined by using microscopy. 

To create the cp-IOJAP-CFP fusion protein, we inserted the genomic sequence of cp-

IOJAP into the pAN578 plasmid. Colony PCR was performed to determine whether or not the 

insert DNA was present in the plasmid. Gel electrophoresis followed to analyze the size of the 

DNA in the colonies. The plasmid pAN 578 showed a band at ~ 300 base pairs, as PCR involved 

part of the 35S promoter and the CFP sequence. The plasmid pAN 578 with a cp-IOJAP insert is 

expected to show a band at ~1500 base pairs because the restriction enzyme sites for SpeI and 

XmaI lie between the 35S promoter sequence and the fluorescent protein (Figure 4). This ~1500 

base pair sequence would indicate that the 1234 base pair cp-IOJAP insert has been successfully 

integrated into the pAN 578 plasmid between the restriction enzyme sites. 

 

DNA collected from colonies that appeared to be successful ligations was then amplified 

and sequenced to determine the precise order of nucleotides within the DNA. Sequencher was 

~1500 bp 

 
 
 
~300 bp 

Figure 4. Colony PCR of ligated pAN578 and cp-IOJAP. 
1% gel ran at 100 Volts for 30 min. 
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used to compare the DNA sequence of the transformed pAN 578 vectors with the cp-IOJAP gene 

of A. thaliana. The sequence of the DNA using the forward primer 35S is represented by the top 

two lines of Figure 5 (Q101_E11_cp-igap-578#3_Seq35s-F1_044, Q101-G11-cp-igap-

578#6_Seq35s_F1_042), as two samples were sequenced. The reverse primer CFP-R was also 

used to sequence the DNA, which is shown on the bottom two lines of the figure (Q101_F11_cp-

igap-578#3-Seq-CFP-RQ_043, Q101_H11_cp-igap-578#6-Seq-CFP-RQ_041). These sequences 

were compared against the sequence of the cp-IOJAP insert, which is also known as cp-IOJAP 

gDNA TAIR. Although the sequence of the cp-IOJAP insert in the pAN 578 plasmid appeared to 

be the correct number of base pairs in length, a deletion was detected in the reverse iojap primer 

(cpIJ-cI-R1) when compared to the cp-IOJAP gene (Figure 5). This deletion results in a 

frameshift mutation that would prevent translation of the CFP sequence of the plasmid.   

 

 Because there was a deletion in the reverse primer used to amplify the cp-IOJAP 

sequence (cpIJ-cl-R1), new primers were ordered and the cloning experiment was repeated. 

Because the cp-IOJAP product was generated with primers designed with the SpeI and XmaI 

Figure 5. (a) DNA sequencing of two vectors transformed with cp-IOJAP of A. thaliana 
and compared to the cp-IOJAP insert sequence. (b). At ~1240 bp, a base pair deletion is 
seen in the reverse primer. 

(a) 

(b) 

) 
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restriction enzyme sites, these sites are located at the far ends of the cp-IOJAP sequence. It was 

impossible to distinguish between the digested and undigested cp-IOJAP product on the gel, as 

there was only an 8 base pair difference in size between the digested and undigested product. To 

ensure that only the digested cp-IOJAP insert product is being used in the ligation, the cp-IOJAP 

PCR product was first inserted into the pKRX plasmid by TA cloning. This would allow us to 

easily distinguish between the digested product and any products that did not successfully 

complete the double digest reaction. Colony PCR was performed following TA cloning to 

determine whether or not the ligation of the pKRX plasmid and cp-IOJAP was successful. The 

transformation reaction yielded one colony and gel electrophoresis was used to analyze the DNA 

in that colony. A band is shown at ~500 bp, which was the expected product length given the 

chosen primers (Figure 6). In a next step, this transformed product will be digested alongside the 

plasmid pAN578 with the restriction enzymes SpeI and XmaI. A ligation reaction will then be 

performed with these digested products to clone the cp-IOJAP gene in a plasmid with CFP. 

 

 

Efficiency of Splicing at Low Temperatures 

Figure 6. Colony PCR of ligated pKRX and cp-IOJAP. 1% 
gel ran at 100 Volts for 30 min.     
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 Because it has been found that a mutant will only be able to produce the wild type 

transcript if the intron with the inserted T-DNA is spliced out (Wang 2008), gel electrophoresis 

of the RT-PCR products was performed to compare the products of ijT1 with those of the wild 

type. This was done to verify whether or not the T-DNA present in the first intron of the mutant 

ijT1 was spliced out at 22 °C, 12 °C, and 4 °C. Table 5 lists the three primer sets used throughout 

the experiment. Primer set 1 (mt-TP20-F1 + mt-cl-R1) serves as a control that amplifies a DNA 

sequence in the mt-IOJAP gene. DNA should be amplified in both the wild type and mutant 

plants. Primer set 2 (Rv-ij-LB + Rv-iojap) and primer set 3 (cp-TP20-F + cp-cl-R1) amplify 

sequences in the cp-IOJAP gene. The forward and reverse primers in primer set 2 anneal on the 

first and second exon (Figure 7); a product should only be generated if the T-DNA is properly 

spliced out. The primers of primer set 3 anneal on the second exon and the last exon and may 

also be produced if the T-DNA is not spliced out (Figure 7).  

 

Gel electrophoresis showed that the products were the expected length (Figure 8). DNA 

from A. thaliana grown at 22 °C appeared similar for both the wild type and ijT1 plants. The 

bands for the ijT1 plants grown at 12 °C were not as bright as those of the wild type, which is 

indicative of decreased DNA amplification in the ijT1 plants. These results may suggest that a 

decrease in splicing efficiency occurs at 12 °C. The phenotype recovery of ijT1 at 12 °C may 

Figure 7. Location of primer sets 2 and 3 on the cp-IOJAP gene. Not drawn to scale. 

          

= exon 
 

 
= intron 

 = T-DNA 

2 2 3 3 
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occur as the amount of successfully spliced products increases over time. The greatest effect is 

seen with plants grown at 4 °C. Primer set 1 shows no effect on the ijT1 plants grown at 4 °C, as 

this primer set relied on cDNA sequences from a control gene (mt-IOJAP) that is not affected by 

the T-DNA insertion. When primer set 2 was used on ijT1 grown in 4 °C, no DNA was 

amplified. Additionally, when primer set 3 was used on ijT1 grown in 4 °C, the amount of DNA 

that was amplified was noticeably less than that of the wild type. These results show that T-DNA 

is likely spliced out at 22 °C and even 12 °C, but not at 4 °C. 

 

 

CONCLUSIONS 

 We hypothesized that at 22 °C, with a mutant ijT1 A. thaliana, the mt-IOJAP protein can 

be imported to the chloroplast, which is why these plants appear healthy. At 12 °C and 4 °C, 

however, it is likely that the mt-IOJAP protein cannot be transported to the chloroplast to 

compensate for the loss of the cp-IOJAP. Difficulties in assembling the cp-IOJAP-CFP plasmid 

prevented us from testing this hypothesis. Once this construct has been created, particle 

bombardment of mt-IOJAP and cp-IOJAP will allow us to track the subcellular localization of 

these proteins to determine whether or not lower temperatures affect protein import. 

We also hypothesized that increasingly colder temperatures negatively affect the low 

temperature phenotype of mutant ijT1 plants because although the T-DNA may be spliced out of 

Figure 8. PCR of cDNA. 1% gels ran at 100 Volts for 30 min. W= wild type, I= IjT1 

22 °C 4 °C 12 °C 

W1  W2  W3        I1    I2    I3      W1   W2  W3          I1   I2    I3      W1  W2  W3        I1    I2    I3 
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ijT1 at 22 °C, this may not occur at 12 °C or 4 °C. Our results suggest that the T-DNA is 

properly spliced out at 22 °C, spliced out with a decreased efficiency at 12 °C, and not spliced 

out at all at 4 °C. A splicing defect at low temperatures may explain the phenotype of the mutant 

ijT1 plants. Comparisons of the gels of wild type and ijT1 plants show that DNA amplification is 

unaffected at 22 °C but appears to decrease with increasingly colder temperatures in ijT1 in 

comparison to the wild type plant. At 12 °C, it appears that a decrease in splicing efficiency 

occurs, as some products may be properly spliced while others are not. These results, however, 

are not quantitative so the wild type and ijT1 template levels will need to be investigated in more 

detail. The amount of DNA throughout PCR must also be further explored to ascertain that DNA 

amplification was being observed prior to saturation of the PCR product. The PCR that was 

performed on the cDNA is only able to give results of DNA amplification after the PCR has 

completed all of its cycles; this cycle number may have been too large to reveal differences in 

template concentration. Because the PCR products of the cDNA sequences generated from RT 

PCR are the expected length, qPCR will be performed to amplify the DNA. qPCR uses 

fluorescent dyes to label PCR products during thermal cycling to give precise quantification of 

the PCR products. This would show the amount of DNA produced at each time point, which 

would show whether or not increasingly colder temperatures affect splicing of the DNA in the 

mutant ijT1.  
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