View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Tennessee, Knoxuville: Trace

University of Tennessee, Knoxville
TRACE: Tennessee Research and Creative

Exchange

e UNIVERSITYof

TEHHE*:&}E_I_E._

Supervised Undergraduate Student Research

Chancellor's Honors Program Projects and Creative Work

5-2016

Second Creek Monitoring

Haley Whitaker
hwhitak1@vols.utk.edu

Aaron Young
ayoung48@vols.utk.edu

Ryan Wagner
rfx468@vols.utk.edu

Saajid Haque
shaqueb@vols.utk.edu

Benjamin Parrott
bparrot2@vols.utk.edu

See next page for additional authors

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

b Part of the Civil and Environmental Engineering Commons, and the Electrical and Computer
Engineering Commons

Recommended Citation

Whitaker, Haley; Young, Aaron; Wagner, Ryan; Haque, Saajid; Parrott, Benjamin; and Fagan, Richard,
"Second Creek Monitoring" (2016). Chancellor’'s Honors Program Projects.
https://trace.tennessee.edu/utk_chanhonoproj/1908

This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student
Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for
inclusion in Chancellor's Honors Program Projects by an authorized administrator of TRACE: Tennessee Research
and Creative Exchange. For more information, please contact trace@utk.edu.

https://core.ac.uk/display/268772575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1908&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Author
Haley Whitaker, Aaron Young, Ryan Wagner, Saajid Haque, Benjamin Parrott, and Richard Fagan

This dissertation/thesis is available at TRACE: Tennessee Research and Creative Exchange:
https://trace.tennessee.edu/utk_chanhonoproj/1908

https://trace.tennessee.edu/utk_chanhonoproj/1908

Second Creek Monitoring

April 25, 2016

Ben Parrott Aaron Young Saajid Haque
Haley Whitaker Ryan Wagner Richard Fagan

Customer: Dr. Jon Hathaway

Contents

1 Executive Summary

2 Requirements

3 Change Log

4 Documentation and Design Process

4.1

4.2

4.3

4.4

4.5

4.6

Allocation of Tasks
Research
Alternative Solutions
Selected Solution
4.4.1 Setting up Microsoft SQL Server
4.4.2 Pushing Data Through Flowlink
4.4.3 LoggerNet and LNDB,
4.4.4 Processing Data in SQL Server
4.4.5 Hosting the Website through Django
4.4.6 Website Creation
4.4.7 Data Retrievalo
4.4.8 DataDisplay
4.4.9 Explanationsof Data 0oL
4.4.10 Aesthetic Appeal
Completion of Requirements
Results and Outcomes L

5 Lessons Learned

5.1

Overcoming Challenges

10

10

11

12

12

12

13

13

14

14

15

18

18

19

5.2 Communication, 19

6 Statements of Team Members’ Contributions 20
6.1 Ben Parrott 20
6.2 Aaron Young 20
6.3 Saajid Haque 20
6.4 Haley Whitaker 21
6.5 Ryan Wagner 21
6.6 Richard Fagano 21

7 Signature of all Team Members and Customer 23

1 Executive Summary

Dr. Hathaway from the Department of Civil and Environmental Engineering has
an ongoing effort to collect high resolution data from Second Creek and a weather station
located on the University of Tennessee-Knoxville campus. Dr. Hathaway would like to host
a website which students and the general public can navigate to and see the conditions of
the local environment and creek, thereby promoting water quality and watershed awareness.
The website will provide a user-friendly, aesthetically pleasing interface and better access to
real time information about the local environment. Another goal of this project is to ensure
data security. It is critical to minimize any data loss that could potentially affect the ongoing
research.

Several unique and interesting challenges have presented themselves over the course
of this project. One such unexpected challenge was a communication issue between a new
sensor placed in Second Creek and the software that we were using to send the data to the
database. This error required a representative from ISCO (the company that manufactures
the sensors) to try to troubleshoot the problem and develop a solution. The solution to this
problem is still ongoing as company help is needed in order to fully solve this problem.

Another challenge involved pushing the data collected by the sensors in Second
Creek into the database. A communication issue occurred when the ISCO device at the creek
tried to push data to the computer in the hydraulics lab in the John D. Tickle Engineering
Building. This communication issue only manifested itself on that particular computer and
only when the computer was connected to the internet by means of an Ethernet cable. The
root cause of this problem was eventually tracked down to the delay of the wireless bridge
between the creek and University of Tennessee network. This delay resulted in the packets
from the flow meter to timeout before they could reach the server. An interesting solution to
this problem is to have the server consistently ping the flow meter, which causes the bridge
to remain active.

Even though a few obstacles had to be overcome, this project has resulted in an
aesthetically pleasing front-end website design with a robust back-end to support the website.
A Microsoft SQL Server holds all of the data from the sensors in Second Creek and the
weather station, which is then supplied to the website. The data is displayed in a mixture of
current value tiles and week-long display tiles. Pop-up explanations appear if the upper right
corner of a tile is clicked on, ensuring that the data is easily readable and understandable
by users. The primary goal of this project is the promotion of watershed and environmental
awareness; the created website, located at hydrolab02.engr.utk.edu, should certainly assist
in this process with the hope being that people will continue to use this website for years to
come.

2 Requirements

1 Back-end Requirements

1.1 Data Collection
1.1.1 An EXO Advanced Water Quality Monitoring Platform shall have sensors to
collect the following information from Second Creek:
1.1.1.1 Blue-green Algae Phycocyanin (PC)
1.1.1.2 Blue-green Algae Phycoerythrin (PE)
1.1.1.3 Conductivity
1.1.1.4 Depth
1.1.1.5 Dissolved Oxygen
1.1.1.6 fDOM
1.1.1.7 pH
1.1.1.8 Temperature
1.1.1.9 Turbidity

1.1.2 An Isco Signature flow meter shall collect the following information from

Second Creek:
1.1.2.1 Flow rate
1.1.2.2 Stage (height)

1.1.3 A weather station utilizing Campbell Scientific sensors shall collect the fol-
lowing information from the University of Tennessee - Knoxville agricultural

campus:
1.1.3.1 Relative Humidity
1.1.3.2 Soil Temperature
1.1.3.3 Air Temperature

1.1.3.4 Wind Direction

1.1.3.5 Wind Speed

1.1.4

1.1.5

1.1.6

1.1.7

1.1.8

Data shall be collected from the EXO Advanced Water Quality Monitoring

Platform at least every two minutes.

Data shall be collected from the Isco Signature flow meter at least every two

minutes.

The creek data shall be transmitted from the creek monitoring box to the

server via NanoStation.
The weather station data shall be collected at least every two minutes.

The weather station data shall be transmitted to the server via a Campbell

Scientific CRS6.

1.2 Data Storage

1.21

1.2.2

The data shall be stored in a SQL database.

The data shall be backed up to an additional SQL database.

2 Front-end Requirements

2.1 The data collected from the creek and the weather station shall be displayed on

a website.

2.2 The following data values from the creek shall be displayed on a website:

2.2.1

2.2.2

2.2.3

224

2.2.5

2.2.6

2.2.7

2.2.8

Conductivity
Depth

Dissolved Oxygen
pH

Temperature
Turbidity

Flow rate

Stage (height)

2.3 The following data values from the weather station shall be displayed on a website:

2.3.1 Relative Humidity
2.3.2 Soil Temperature
2.3.3 Air Temperature
2.3.4 Wind Direction
2.3.5 Wind Speed

2.4 The creek data and weather station data specified in sections 2.2 and 2.3 shall be

displayed in the following manner:
2.4.1 Each unique data value shall be presented with an accompanying graphic
tailored for the nature of the data value.

2.4.2 Each unique data value shall have an accompanying, non-technical description

explaining the nature of the data.

2.5 The website shall be compatible with Firefox 43, Chrome 48, Internet Explorer

11, and Safari 9.

2.6 The creek and weather station data website shall be linked from Dr. Hathaway’s

website (http://hathaway.utk.edu/).

3 Change Log

April 14, 2016 - Requirement 2.2.8 required the display of the "stage” data value
on the website. However, after consulting with our customer, we learned that the stage
measurement of Second Creek is the same as the depth measurement which is already being
displayed on the website. Therefore, another tile will not be created for the stage data value.

April 14, 2016 - Requirement 2.4.1 said that ”each unique data value shall be
presented with an accompanying graphic tailored for the nature of the data value.” After
discussing the graphs with our customer, he specified that some of the data does not need
both current and week-long displays on the website. For the creek information, the following
data does not need to be shown in one week graphics: pH, conductivity, and dissolved
oxygen. For the weather information, the wind direction does not need to displayed on a
one week graphic.

4 Documentation and Design Process

4.1 Allocation of Tasks

In order to decompose this project into manageable pieces, the six person team
was split into two groups with one group focused on the front-end of the website and one
group focused on the back-end of the website. The back-end team is comprised of Aaron
and Ben. The function of this group was to create a database to collect the data gathered
by the sensors in Second Creek and at the weather station and also to host the website on
the server with Django. Flowlink software interfaces with the sensors in Second Creek, and
LoggerNet interfaces with the sensors at the weather station, both of which the back-end
team has had to learn in order to utilize them effectively in the data retrieval process.

The front-end team is comprised of Ryan, Richard, Saajid, and Haley. Since Ryan
has the most experience with web development, he has been leading the effort by initially
creating the website which the rest of the team has helped design and optimize. The front-end
team is focused on displaying the data from the database in a user-friendly and aesthetically
pleasing format. Google Charts was chosen to display the week-long data and so this group
has had to familiarize themselves with the functionality of Google Charts in order to display
the information on the website effectively. In order to create the website, a combination
of HTML, Javascript, and CSS was used which is what the front-end team was focused
on. Once data was able to be displayed on the website, the front-end team shifted gears to
focus more on the aesthetics of the website and making sure that everything will be easily
understandable to anyone who navigates to the website.

4.2 Research

The main topic that needed to be researched in regards to this project involves the
software that pulls in the data from the sensors. Flowlink is used to gather the data from
all of the sensors that are in Second Creek. The Flowlink software pushes the data from
the creek to the database, so making sure that this step works properly is essential to being
able to display meaningful data on the website. Our research indicated that Flowlink is only
compatible with a few databases. Our team decided to use Microsoft SQL Server because it
was compatible with Flowlink, it works well on a Windows operating system, and our team
has prior experience with it. The flow of data is shown in Figure 1 below.

Weather Station

_

Second Creek———>

Public

"‘TELEDYNE ISCO Website

Sensors

Figure 1: Data Flow Diagram

Initially the website was only going to display values on our website collected by
the sensors in Second Creek. When the data from the weather station was added to the
project, research into how the data from the weather station was already being collected
was done. Dr. Wesley Wright, a professor in Bio-systems Engineering is currently managing
the weather station that is located in the University of Tennessee Gardens. He provided
information on the software, LoggerNet, that is used to gather the data. Later on, research
was also done in order to determine the best way to push the weather station data into the
database.

Lastly, research was done into how to display the data collected in a user-friendly
and aesthetically pleasing way. Our customer recommended Google Charts so we looked
into its capabilities and limits. Through this process, much information was gathered on
the different types of charts that can be utilized from scatter plots, bar graphs, gauges, etc.
In order to make the website interesting to look at, utilization of many different types of
charts will be necessary. Google Charts provides much of the code describing how to make
the charts along with examples of how to modify them. These modification include sizes of
objects; colors of data points, backgrounds, and labels; legends and keys; and many more.
This flexibility allows for us to have greater control over exactly how the design of the website
looks.

4.3 Alternative Solutions

One major choice made in this project was the decision to use Microsoft SQL Server
as the primary database. There were a couple of alternatives considered before this decision
was made. MYSQL was the first consideration, since our team has had the most experience
with it, and it is free to use. However, it was discovered that MYSQL is incompatible with

Flowlink which made it a poor choice. The other major consideration was Oracle. Oracle
has many features in common with Microsoft SQL and is also compatible with Flowlink.
Ultimately, Microsoft SQL Server was selected since it is the product with which our team
was most familiar.

For the weather station component, Dr. Wright mentioned an issue with the Log-
gerNet software: he had to be logged into his computer in order to collect data continuously
because the software has to be open and running to gather data. This was an issue as real
time data is needed for the website, and due to security reasons, the team decided that the
server computer should not be logged in at all times. One alternative that was explored
was running the program as a Windows Service so that the software would run even when
not logged in and then finding a way to move the data into the database. Unfortunately,
this method proved challenging. Another idea that was discussed was asking Dr. Wright to
create a data table for us from his computer because he was already collecting data contin-
uously by keeping his desktop logged into in his locked office. Then we would have received
the file from him via SharePoint. However, we still ran into the issue of putting this data
into the database, and we preferred not to rely on someone else for the data for our website
especially in case of any troubleshooting issues in the future. Consequently, neither of these
options were selected because using LNDB was found to be the best solution.

We considered options other than Google Charts to display our data. One option
we considered was D3.js, a JavaScript library for manipulating documents based on data. D3
provides a lot of potential to create impressive and appealing graphics and charts; however,
it has a higher learning curve and would have increased development time significantly.
We also considered using Bootstrap to create a responsive web page which reorganizes and
re-sizes according to the user’s screen size. We hoped that Bootstrap would simplify the
implementation of our websites tiled theme. Unfortunately, we discovered it was not sufficient
for our needs, and we had to create all of the necessary CSS manually.

4.4 Selected Solution
4.4.1 Setting up Microsoft SQL Server

The first task involved in getting the data collection to work is to set up a database
in which to hold the information. Our team used Microsoft SQL Server. Installation of SQL
Server is guided by the installer; in the installation process, it is important to remember to
used mixed authentication because SQL Server logins are required for configuring Flowlink.
In other respects, the defaults can be used during the installation process. During the
installation process, the login, password, and Server instance name should be noted since
they will be necessary to configure Flowlink and LoggerNet Database Software (LNDB).
Additional information was also provided by the Flowlink documentation, which specified
how to setup the database so that the Flowlink program would be able to add and modify
the tables pertaining to the creek data [1].

10

4.4.2 Pushing Data Through Flowlink

In order to aggregate data from the creek sensors, ISCO provides proprietary soft-
ware called Flowlink Pro. The Pro version allows for this data to be placed into a database.
Although this task was initially considered to be relatively simple, it turned out to be quite
challenging due to software and network problems encountered along the way.

The first step is to create the necessary tables in the database for Flowlink to fill.
For this purpose, Flowlink provides a tool called Flowlink Server Configuration Utility. You
will provide the SQL Server instance, the login information for the SQL Server, and the IP
address of the computer. Additionally, a new user name and password for the server will
need to be specified. Specific details concerning this process can be found in Flowlink Pro’s
installation guide [1].

After the database is set up, an IP Listener needs to be created. This can be
configured again through the Flowlink Server Configuration Utility. The purpose of this
action is to tell Flowlink to listen on a certain port for data packets from the flow meter.
The IP listener is configured to add data received from packets directly to the Microsoft SQL
Server database. More details on setting up this IP Listener can be found in the installation
guide [1].

Additionally, to get data to push to the server, the flow meter needs to be configured
with the IP address, port number, and pushing rate desired. The team used Flowlink to
configure the flow meter to send packets to the server every 5 minutes. This configuration
can also be done by interacting directly with the flow meter. It is important to note that due
to a bug in the Flowlink software, the data push settings sometimes are not saved; entering
and exiting the help page from the data push configuration window often causes the data
push settings to save. Although this is not a documented feature of Flowlink, this trick
nevertheless helps in such cases. When the settings are saved, the user should see a message
from Flowlink indicating a successful configuration.

After doing the above actions our team experienced network issues. The problem
encountered was that the flow meter never seemed to send packets to the server. When other
computers where similarly configured, the above steps worked without issue and debugging
with a wireless adapter also worked. The cause of this problem was determined to be the
delay of the wireless bridge between the flow meter and the University of Tennessee’s network.
This delay resulted in the packets from the flow meter to timeout before they could reach
the server. A interesting solution to this problem is to constantly ping the server, causing
the bridge to remain active. Our team formalized this simple solution by writing a Windows
Batch Script to constantly ping the server. Using Windows Task Scheduler, this script was
made to run in the background when the computer is powered on. This keeps the flow meter
communicating with the server and makes the data pushing successful.

11

4.4.3 LoggerNet and LNDB

LoggerNet is the program provided by Campbell Scientific to communicate with
their weather station sensors. The University of Tennessee already has a license to the
LoggerNet software and Dr. Wesley Wright installed and configured the LoggerNet software
on our server so that it would be able to directly collect data from the weather station.
He also setup the collection program that runs on the weather station so that the data we
wanted to display on the website would be collected into a table. LoggerNet is designed
to collect data into a plain text file, and it is unable to import the data directly to a SQL
database. After research, our team found a companion program, provided by Campbell
Scientific, that connects a running LoggerNet instance to a SQL database. This program is
called LoggerNet Database Software—or LNDB for short—and through its use, data from
the weather station is easily stored into tables in the database.

4.4.4 Processing Data in SQL Server

The system uses a set of recurring SQL queries process the data in the database.
The purpose of this processing is to reduce the size of the data set such that it is feasible
to send it to the client for display on the website. It was decided that hourly and daily
averages would be appropriate for this purpose. These values are stored in each database
under tables called Hourly and Daily.

The queries selectively average only the values which need to be updated. This
involves averaging all data points from two hours before the most recent item in the Hourly
table. Each query starts by deleting the “stale” values in the Hourly and Daily tables, re-
averages them, and inserts them into the table again. There are two scripts, one for the
second creek database and the other for the weather station database. In addition to these
two scripts, two other scripts were developed which clear the Hourly and Daily tables and
recalculate all the values. These scripts can be used to maintain the database, should the
tables get into a bad state.

A Microsoft SQL Server feature called SQL Agent is used to schedule the queries.
A job is created for each script and each job is set to run at a specified interval. At this
point in time, the jobs are scheduled to run every 10 minutes, but this interval is trivial to
configure. Running the jobs more frequently will increase the responsiveness of the history
values but at the cost of computational resources.

4.4.5 Hosting the Website through Django

The website is hosted using Django with Windows IIS. Django is the web framework
and IIS is the web server. In order for Django to communicate with the MSSQL server, a
package called Django MSSQL was used. This package allowed Django to be configured to

12

communicate with MSSQL and use Django’s database model interface to retrieve data from
it. The Django MSSQL package has strict dependencies which limited the versions of Python
and Django that could be used. Therefore Python 3.4 (64-bit), Django 1.7, and PyWin32
build 220 (64-bit) were installed. All of these versions work together and we were able to
setup Django and connect to the MSSQL server by following the instructions listed in the
quick-start guide for Django MSSQL [2].

Windows IIS is provided for windows as an optional feature that can be added.
It was enabled on our computer through the “Turn Windows features on or off” control
panel dialog. In order for IIS to host the Django website an intermediate protocol was also
needed. Our team decided to use FastCGI since it has high performance and it is easier to
setup. IIS and FastCGI were both setup by following the instructions provided by Microsoft
Azure documentation [3]. Although Azure was not used for this project, this documentation
adequately explained how IIS, FastCGI, and Django are all setup to work together.

4.4.6 Website Creation

To display our data, we decided to use a combination of Google Charts and our
own graphics. The large tiles on our website are containers for Google Charts which show
ranges of data, and the small tiles contain graphics showing the type of data displayed and
a single data point. Because Bootstrap was insufficient for our tiling needs, we used it solely
for the buttons at the top of the page. We designed the tiles in such a way that they will
re-size to fit the users browser window, even if the user adjusts the size after the website has
loaded. There are two different view modes depending on the browser window size which
determine how many tiles will fit on a row of the screen. On smaller screens, two small tiles
or one large tile will fit on a row. Larger screens can fit four small tiles, two large tiles, or
two small tiles and a large tile on each row.

We tried to minimize the number of external dependencies required by our website.
Our final list of dependencies not served from our own server is: Bootstrap, Google Charts,
and jQuery. Google Charts is, of course, a necessary dependency, and jQuery can be expected
to remain backwards compatible and available for our use. If there is ever an issue with
Bootstrap, our dependence on it is minimal and it should not be difficult to replace.

The management of each individual chart or tile has been simplified as much as
possible. As a result, it should be simple for the website to be modified after the end of
this semester. Data management and positioning is handled automatically, and only chart
specific options need to be specified to add or modify charts.

4.4.7 Data Retrieval

The website requests measurements from the server periodically in order to keep
the data on the web page up to date. These requests take the form of http requests. The

13

requests contains information specifying the database to pull data from (either the creek
data or the weather station data), the ID of the data to pull, and the range of data points
to collect. If this range is -1, only the current value is returned. Otherwise, the range
specifies the number of weeks from which to return data. For ranges which are not -1, a
table is also specified indicating which table (hourly or daily) the data should be pulled from.
Different measurements were assigned different ID’s. The Flowlink software comes with it’s
own measurement ID system which this project adopted for the creek data. The weather
station data uses ID’s based roughly on the column index in the data base. Other special
measurements, such as rainfall in the past 24 hours, were assigned their own ID and were
handled specially in Django.

4.4.8 Data Display

Our customer has the desire to display a combination of measurements on the
website. Both current values taken by the sensors and a full week of data will be displayed
on the website. In order to achieve this, we used rectangular tiles to display the week-long
data charts and smaller square tiles that are half of the size of the rectangular tiles for the
display of singular data values. For the longer data graphs, Google Charts is used to display
the data through a combination of bar graphs, line charts, and scatter plots. The single data
values are displayed mostly by pulling a single data value and displaying it in the center of
the square. For a select few graphs, a gauge or single value chart were used.

4.4.9 Explanations of Data

In order to assist viewers in understanding what the data displayed on the website
means, pop-up boxes were added to display information including what the measurement
determines and what a typical value for the measurement might be. For example, the pop-up
explanation for flow rate as shown in Figure 2 below includes information about what flow
rate measures, why measuring the flow rate of a creek is important, and how to quantify
the information that is being shown. This information is provided in order to assist user’s
in understanding the data that is being presented.

14

FLOW RATE

Flow rate measures what volume of water is flowing per some period of time. In
this case, we are measuring it in meters cubed per second. For comparison, one
cubic meter is roughly 264 gallons. That's a lot of water!

Flow rate is very important for the health of local creeks and streams. If the flow
rate is low, the water can get too hot in the summer, and too cold in the winter.
Extrame temperatures can ba harmful to local wild life in and around these
bodies of water. Additionally, low flow rate can lead to lower amounts of
atmospheric oxygen diffusion in the water. Fish "breathe” this dissolved oxygen in
the water through their gills, meaning it essential for their survival.

Normally, the flow rate greatly affects tha sort of life that develops in the water.
Massive deviation from a consistent flow rate can cause great damage to the
ecosystem. However, normal fluctuation such as heavy rainfall is fine. If you check
this website during heavy rain, expact to see the flow rate increase!

Figure 2: Pop-Up Explanation

4.4.10 Aesthetic Appeal

Our team conferred with design consultant FITZ + HEM over the aesthetic appeal
of our website. Color palettes, fonts, and general design were discussed. We choose an
abstract minimalism approach for the design of the website as can be seen in Figure 3 and
Figure 4 below.

15

2243°C

CURRENT WATER
TEMPERATURE

MAX WATER LEVE
24

0.54.m

CURREN
WATER LEVEL

Figure 3: Creek Data Page

16

ENGINEERING

science for a changing world

CU RRENT AIR AIR TEMPERATURE
TEMPERATURE[=

o

Apr 14, 2016, 6:00:00 AM

Average Air Temperature: 12.709
. N

10

o
Apr14, AprlS, Aprl6, Aprl7, Aprl8, Aprl9, Apr20,
2016 2016 2016 2016 2016 2016 2016

RAINFAL
PAST HOUR

O0.00mm | O.00OMmm

'WIND SPEED ?

24 ||

06

CURRENT anru, Apri1s, ApriS, Apr17, Apri8, ApriS, Apr20,
WIND DIRECTION

2016 2016 2016 2016 2016 2016 2016

SOIL TEMPERATURE BAROMETRIC PRESSURE
10
05
3 &
§ g 0.0
Q
05
10
Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr
, 14, 15, 16, 17, 18, 19, 20, 13, 14, 15 1 17, 18 19, 2, 2,
2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016

Figure 4: Weather Station Data Page

17

4.5 Completion of Requirements

In order to make sure that all agreed upon requirements were met, whenever dis-
cussing any deviations from our initial plan we consulted the requirements document and
the customer. Since bi-weekly meetings with the customer were held, any time the group
was thinking about changing or re-designing something, the customer was able to give his
feedback early on in the process. In regards to the back-end, the work progressed in stages
to ensure components worked together. The first task was to configure Flowlink and handle
the pushing of data from the flow meter to the server’s database. This functionality is a
built-in feature to Flowlink Pro, but the team had challenges getting this method to work
due to bugs in Flowlink and to network difficulties. With this component complete, the team
turned to setting up Django to work with the database from the sensors in Second Creek.
First, a plain webpage showing a single data point was developed and deployed on Django’s
development server. Then, this simple webpage was configured in Internet Information Ser-
vices. Once this example was developed, hosting the actual website was just a matter of
changing which files were served. Finally, once the group was able to make contact with
Dr. Wright, the data from the weather station was configured to be added to the database
through LoggerNet and LNDB.

After the requirements were created, the front-end was planned and designed with
these requirements, implementation feasibility, and potential for issues in mind. During the
implementation phase, features were chosen to be implemented based on the requirements
and the design plan. Periodically, the website was checked on a variety of browsers to ensure
compatibility. The website was primarily developed on the Google Chrome browser, so there
were a few compatibility issues when testing on different browsers. For example, Internet
Explorer does not support Promise objects, so a work-around was implemented using jQuery.
We also had to add some Firefox specific CSS because text was overlapping in one of the
small tiles. Once the website was nearly completed, we tested its features and browser
compatibility thoroughly to ensure it met the requirements and expectations of the previous
phases.

4.6 Results and Outcomes

This team has successfully created a functional website which meets the initial
requirements of the project. The data displayed represents the most up-to-date requests of
our customer and new data is automatically queried every five minutes. Informative and
entertaining information about the project and the meaning of the different data types is
available to the user. The data is displayed in a clear and visually appealing format, and
the website fluidly re-sizes and re-organizes to fill the user’s entire browser window. The
data has been processed by the back-end so that it loads quickly, and no unnecessary data is
sent. Loading animations are also employed to make any wait time more enjoyable. Logos
of the projects sponsors are also included in the page header. Our customer has repeatedly
expressed his satisfaction with our results.

18

5 Lessons Learned

5.1 Overcoming Challenges

During the course of this project, many unexpected challenges arose which provided
many opportunities for learning. As mentioned above, the communication issue the sensor
in Second Creek and the software was not a problem that we were initially expecting to have
to overcome since this error was not caused by our group. This situation is representative of
what working in the real world will be like though, because a problem will often occur due
to an issue in someone else’s product and a team will have to figure out how to work around
the issue.

One issue we ran into with the front-end was with transitioning from the different
data views. When making this transition, we need to hide the current charts, show the
loading screen, get the data, draw the new charts, and then display these new charts. The
hiding and showing of the charts takes time, so if the data arrived and the graphs were
populated too quickly, the charts would not display correctly. To solve this issue we made
use of JavaScript’s Promise object, but, as was stated earlier, we had to replace this with
jQuery’s Deferred object because of compatibility issues with Internet Explorer.

5.2 Communication

Another lesson learned throughout this process was the importance of early and
often communication with our customer. We had an initial meeting with our customer before
winter break and then once we met again in January, we set up a bi-weekly meeting on
Thursdays at 9 AM. Having at least an hour every two weeks to interact with our customer,
update him on our progress, and gather any feedback from him was invaluable in making
sure that we were staying on top of our project and satisfying the requirements that we
agreed upon.

19

6 Statements of Team Members’ Contributions

6.1 Ben Parrott

Responsibilities:

e Back-end Team Member
e Writer

e Presenter
Contributions:

e Set up Microsoft SQL Server, wrote SQL scripts for processing data, and handle
SQL Server job scheduling.

e Assisted with the configuration of Flowlink and LoggerNet.

6.2 Aaron Young
Responsibilities:

e Back-end Team Member
e Writer

e Presenter
Contributions:

e Worked on the database.
e Assisted with the configuration of Flowlink and LoggerNet.
e Set-up Django and IIS.

6.3 Saajid Haque
Responsibilities:

e Front-end Team Member
e Writer

e Presenter
Contributions:

e Used Google Charts to create and edit how data is represented on website.

20

6.4 Haley Whitaker
Responsibilities:

e Team Leader
e Front-end Team Member
o Writer

e Presenter
Contributions:

e Used Google Charts to create and edit how data is represented on website.

e Wrote and turned in bi-weekly progress report documents.

6.5 Ryan Wagner
Responsibilities:

e Front-end Team Lead
e Writer

e Presenter
Contributions:

e (Created initial website.

e Worked on optimization and design of website.

6.6 Richard Fagan
Responsibilities:

e Front-end Team Member
e Writer

e Presenter
Contributions:

e Used Google Charts to create and edit how data is represented on website.

e Wrote the pop-eup explanations for the website that describe what the data values
actually mean.

21

References

[1] Teledyne ISCO. ”Flowlink Pro Server Installation Guide.” (n.d.): n. pag. Web.

2] “Quickstart.” Quickstart——Django MSSQL Dev Documentation. Django MSSQL.
Web. 21 Apr. 2016.

[3] Valois, Hugues. “Django Hello World Web Application on a Windows Server VM.”
Python Web App with Django. Microsoft, 04 Aug. 2015. Web. 21 Apr. 2016.

22

7 Signature of all Team Members and Customer

Team iﬁ‘adcr
Bac:k—En{ Teadl Member

Back-End Team Member

ﬂuam Z/Wl

Front-End Team Leader

Front-End Tea#fn Member

B oS Jdaque

Front-End Te'zuu Member

23

April 25,

2016

Date

April 25.

2016

Date

April 25.

2016

Date

April 25.

2016

Date

April 25,

2016

Date

April 25.

2016

Date

	Second Creek Monitoring
	Recommended Citation
	Author

	tmp.1462034373.pdf.tQBtv

