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RESEARCH

Mechanism of lignin inhibition 
of enzymatic biomass deconstruction
Josh V. Vermaas1,2, Loukas Petridis1, Xianghong Qi1,3, Roland Schulz1,3, Benjamin Lindner1  
and Jeremy. C. Smith1,3,4*

Abstract 

Background:  The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially 
sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin 
severely limits the efficiency of this process.

Results:  By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, 
and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially 
both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to 
the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A 
(Y466, Y492, and Y493).

Conclusions:    Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explana-
tion of why hydrolysis yields increase with lignin removal.

Keywords:  Biofuel, Lignin, Cel7A, Cellulose crystallinity
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Background
Sustainable global economic growth requires the devel-
opment of technologies that will reduce the environ-
mental footprint of energy consumption, including the 
adoption of renewable, energy-dense transportation fuels 
[1]. The production of biofuels from abundant lignocel-
lulosic biomass is a potential alternative to fossil fuels. 
However, a significant barrier to cost-effective cellulosic 
biofuel production is the current inefficient hydrolysis of 
cellulose glycosidic bonds to fermentable sugars  by cel-
lulase enzymes [2–4].

Cellulose hydrolysis by cellulases is typically pre-
ceded by thermochemical pretreatment of biomass to 
increase the accessibility of the cellulose substrate to the 
enzyme. Dilute acid pretreatment removes almost all 
biomass components apart from the cellulose itself and 
lignin [5–7], a poly-aromatic amorphous and hydropho-
bic plant polymer [8]. However, even after pretreatment, 

enzymatic cellulose hydrolysis remains incomplete [9]. 
Overcoming this inefficiency presents one of the most 
important challenges in biotechnology [2–4, 10–13].

There is considerable evidence implicating lignin as a 
major culprit in reducing cellulase efficiency in pretreated 
biomass [3, 14–23], though its mechanism of action has 
not been definitively elucidated. Various lignin-related 
inhibitory processes have been proposed, including cel-
lulose association with lignin, blocking enzymatic access 
to cellulose [15–18], and the unproductive binding of the 
enzymes to lignin  [19–23]. Unproductive binding has 
been proposed to be non-specific and to occur via hydro-
phobic  [19, 22, 23] or electrostatic interactions [24–26], 
although no direct evidence has been observed for either 
hypothesis. It is also suspected that the cellulose-binding 
module (CBM) of cellulases participates in lignin bind-
ing, as enzymes containing a CBM have a higher affin-
ity for lignin than those without one  [20, 22]. However, 
an atomic-detailed characterization of how cellulases 
become inhibited by lignin is currently lacking.

In order to rationally design improved pretreatment 
processes which minimize the lignin’s adverse effect 
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in biofuel production and guide current developments 
in lignin bioengineering, it is important to understand 
mechanistically how lignin interferes with cellulose deg-
radation [27–29]. Here, we report molecular dynamics 
(MD) simulations of a model of a pretreated multi-com-
ponent biomass system, containing lignin, cellulose fibers 
of different degrees of crystallinity, and the industrially 
important  [30–32] Trichoderma reesei fungal cellulase 
(TrCel7A) enzyme. The simulation system models the 
crowded lignocellulosic environment in which TrCel7A 
operates during industrial biomass hydrolysis. The results 
indicate that lignin associates preferentially with the 
hydrophobic surface of cellulose, which is also the pre-
ferred substrate of TrCel7A. Lignin is also found to bind 
preferentially to the CBM tyrosine residues 466, 492, and 
493, which have been identified as being critical to cellu-
lose binding [33–38]. Thus, lignin directly and competi-
tively inhibits the recognition mechanism of the cellulase 
consistent with a competitive inhibition mechanism pre-
viously postulated by mutagenesis work and biochemical 
assays [9, 25, 39]. These atomistic details of the interac-
tion of a cellulase within a crowded biomass environ-
ment, including both substrate interactions and lignin 
inhibition, explain why lignin is such an effective bar-
rier to efficient enzymatic hydrolysis of post-pretreated 
biomass.

Results and discussion
The simulation specifically investigates the binding of 
Cel7A to cellulose prior to the enzyme hydrolyzing a 
glucan chain, and how this binding is affected by the 
presence of lignin. The simulation model was devised to 
represent a pretreated biomass system of cellulose and 
lignin at room temperature upon the addition of cel-
lulolytic enzyme. Other components of biomass, such 
as pectins and hemicellulose, are assumed to have been 
removed [5]. As detailed in Sect. “Methods,” a large vari-
ety of experimental data was used to construct a realistic 
model. The simulation system consisted of nine cellulose 
fibers, of which six were crystalline and the other three 
non-crystalline  [40], 54 glycosylated TrCel7A enzymes, 
and 468 lignin molecules in explicit solvent. In the start-
ing structure of the system, i.e., prior to the simulation 
(Fig. 1), no enzymes are bound to the biomass, but there 
is extensive cellulose–lignin association derived from 
previous simulations of pretreated biomass  [40] which 
remained virtually unchanged after the addition of the 
enzymes in the current study. Three different cellulose 
fiber–lignin distribution combinations were present in 
the simulation: CH (crystalline cellulose, high lignin cov-
erage), CL (crystalline cellulose, low lignin coverage), 
and NonC (non-Crystalline cellulose, low lignin cover-
age). These combinations are analyzed independently 

Fig. 1  Side view of the initial state of the lignocellulosic biomass system. Cellulose fibrils are red, lignin molecules blue, and TrCel7A enzymes green; 
the CBMs have a lighter color than the CDs, while glycosylations and linker regions are in pastel green. An animation from this starting structure is 
given as an Additional file 1
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throughout the text when clear differences were found in 
the properties observables studied.

Network formation
The intermolecular contacts, a measure of binding ther-
modynamics and defined in Eq.  1, indicate that during 
the simulation the degrees of lignin–lignin and lignin–
cellulose association do not vary significantly (Fig. 2a), as 
would be expected for the pre-equilibrated lignocellulose 
fibrils used here. As the simulation progresses a gradual 
increase in the number of enzymatic contacts is observed 
as the enzymes diffuse to the lignocellulose. However, 
all enzymes are bound to another interaction partner 
within 600 ns (Fig. 2b), so the growth in the number of 
enzyme–lignin contacts seen over the second half of the 
simulation in Fig. 2a arises from enzymes that are already 
bound optimizing their interfacial area with the lignin.

The cellulases overwhelmingly interact with either 
only lignin or both lignin and cellulose. Together, these 
equally large populations account for approximately 80 % 
of all enzymes (Fig.  2b). This corresponds to 160  mg of 
protein bound to 1  g of biomass “solids” (cellulose and 
lignin), in broad agreement with the experimentally 
determined cellulase binding capacity of thermochemi-
cally pretreated biomass systems, which is 160 mg/g for 
Douglas-fir softwood [41], 170 mg/g for poplar [42], and 
140–150 mg/g for corn stover [7, 43].

The cellulase interactions do not take place in isola-
tion, but rather are part of a crowded mesh formed by 
the superstructure formed by the biomass constituents 
(Fig. 3). This shows that lignin mediates the formation of 
a fully interconnected network of cellulose, lignin, and 
TrCel7A, with each molecule linked to all others directly 
or indirectly. These networks arise spontaneously in the 
simulations, and are only possible due to the simula-
tion incorporating multiple cellulose fibrils. Within the 
network, cellulose fibrils act as hubs, i.e., have numer-
ous connections to other molecules. TrCel7A and lignin 

Fig. 2  a Contact counts as a function of time between enzyme E, 
lignin L, and cellulose C molecules. b Time traces of the fraction of the 
54 enzymes that are unbound, U; bound only to cellulose, C; bound 
only to lignin, L; bound only to other enzymes, E; bound to enzymes 
and cellulose, E+C; bound to enzymes and lignin, E+L; bound to 
lignin and cellulose, L+C; bound to other enzymes, lignin and cel-
lulose, E+C+L. In this analysis, an enzyme is said to be bound if any of 
its heavy atoms are within 3.2 Å of a heavy atom in another molecule

Fig. 3  Schematic representation of the network formed by the 
individual biomass components at the end of the simulation. Each 
circle represents one element of the system: the large red circles are 
for cellulose fibrils, the small blue circles are for lignin molecules, and 
the intermediate green circles are for TrCel7A enzymes. The black 
lines connecting the components indicate a contact between two 
components, and the thickness represents the degree of contact (the 
contact number). The position of the individual particles is arbitrary, 
with the position determined using the ForceAtlas algorithm of 
Gephi [45], which treats the connection as springs connecting the 
elements. An animation of the time-evolution of this representation is 
given as an Additional file 3
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acts as a “glue” connecting these hubs. Within the net-
work, lignin’s role depends on its morphology. We iden-
tify three types of lignin aggregates (Additional file  2: 
Figure  S1): “sheets,” in which lignin monolayers bind to 
a single cellulose fiber; “piles,” in which the lignin aggre-
gates onto a single cellulose fibril but not as a monolayer; 
and “linkages,” in which the lignin aggregates connect 
cellulose fibrils. If lignin adopts an extended morphology 
(a sheet or linkage), more surface is exposed, and lignin’s 
propensity to bind to enzymes is increased (Table  S1). 
Therefore, piles are the least effective at trapping enzymes 
and hence the least inhibitory to cellulase action. It has 
been shown that increasing the hydrophobicity of lignin 
reduces its radius of gyration thereby making it more 
compact [44], which may favor pile formation over other 
lignin morphologies.

An implication of the existence of lignin-mediated net-
works is the retardation of enzyme diffusion due to con-
finement. Indeed, binding to cellulose or lignin leads to 
a three orders of magnitude slowdown in enzyme trans-
lational diffusion, decreasing from an initial ∼10−6  cm2

/s to a final ∼10−9  cm2/s, and one order in rotational 
diffusion, from ∼106 to ∼105 rad2/s (Additional file  2: 
Figure  S2). In comparison, the translational diffusion 
coefficient of proteins in living cells is ∼10−7 cm2/s [46] 
and that of bound cellulases processing on a cellulose 
surface is ∼10−10 − 10−11 cm2/s [47].

Cellulase binding to cellulose in the presence of lignin
Cellulase binding to cellulose is the first step of the mech-
anism of enzymatic deconstruction. TrCel7A possesses a 
typical cellulase multidomain organization, with a large 
catalytic domain (CD) connected to a CBM via a flexible 
linker. The enzyme possesses posttranslational modifi-
cations, in which the linker is highly O-glycosylated and 

the CD N-glycosylated  [32, 48]. To obtain a molecular-
level description of this binding in the presence of lignin 
we determined the propensity of the individual enzyme 
residues to participate in cellulose-TrCel7A binding 
and mapped them onto the TrCel7A structure (Fig.  4a; 
Additional file  4: Video S1; Additional file  5: Video S2; 
Additional file  6: Video S3; Table  1). From Fig.  4a, two 
regions stand out as forming the most contacts to cellu-
lose: three Tyr CBM residues and the linker glycosylation 
sugars. The linker glycosylations have been previously 
demonstrated to interact with cellulose  [32], although 
their physiological role has not been fully elucidated. The 
linker has been suggested to convey resistance to pro-
teolysis  [49], increase protein solubility  [50], minimize 
contact between the CD and the CBM  [51], and pro-
mote binding to cellulose  [32]. Here, the glycosylations 
are found to participate significantly in TrCel7A binding 
not only to cellulose, but also to lignin and other TrCel7A 
molecules (Table 1).

The flat hydrophobic surface on the CBM formed 
by three tyrosine residues (Y466, Y492 and Y493) pro-
motes binding to the hydrophobic surfaces of cellulose 
fibers  [33–38]. In the present simulations, the tyrosine 
residues form extensive contacts with the lignin. Indeed 
lignin outcompetes cellulose in terms of interacting with 
these residues (Table 1; Additional file 10).

However, in over half of the trajectories individual 
enzymes form interactions with the cellulose substrate. 
Among the 30 enzymes that bind to cellulose within our 
simulation, there are many that have their substrate tun-
nel aligned perpendicular to the fibril axis, some of which 
are only loosely connected via glycosylations to the fibril. 
A full gallery of all of these interactions is available as an 
Additional file  11. From our sampling, there are more 
cases where the substrate tunnel is aligned parallel to 

Fig. 4  Number of contacts, averaged over all enzymes and over the last 300 ns of simulation, at the end of the simulation of TrCel7A with cellulose 
(a), lignin (b), and other enzymes (c) mapped onto a model of TrCel7A. Cooler (blue) colors indicate fewer contacts, while warmer (red) indicate 
more. These figures are also available as Additional file 4: Video S1; Additional file 5: Video S2; Additional file 6: Video S3 as well as downloadable pdb 
files where the contact number is in the beta column (Additional files 7, 8 and 9)
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Table 1  40 residues of Cel7A interacting most frequently with other enzymes, lignin and cellulose

Contacts with Enzyme Contacts with Lignin Contacts with Cellulose
Residue Count Residue Count Residue Count

Man 522 0.7± 0.2 ASN 45 6.2± 0.6 Man 524 1.5± 0.3
ASN 45 0.5± 0.3 TYR 492 3.8± 0.4 GLY 22 1.1± 0.1
Man 523 0.5± 0.2 GluNAc 519 3.4± 0.3 Man 518 1.0± 0.3
Man 534 0.5± 0.2 Man 522 3.3± 0.5 Man 522 1.0± 0.3
Man 524 0.5± 0.2 Man 524 2.9± 0.5 Man 499 1.0± 0.2

Man 513 0.5± 0.1 TYR 466 2.4± 0.3 SER 21 0.9± 0.1
Man 502 0.4± 0.1 LEU 6 2.4± 0.3 Man 502 0.9± 0.3
Man 505 0.4± 0.1 Man 520 2.3± 0.3 Man 513 0.9± 0.2
Man 530 0.4± 0.2 ILE 472 2.2± 0.2 Man 529 0.9± 0.3
Man 536 0.3± 0.1 TYR 493 2.1± 0.3 Man 530 0.9± 0.3

Man 520 0.3± 0.1 Man 523 2.1± 0.4 ASN 45 0.8± 0.1
GLN 410 0.3± 0.1 Man 521 1.8± 0.3 TYR 492 0.8± 0.2
SER 409 0.3± 0.1 ASN 490 1.8± 0.2 GluNAc 519 0.7± 0.2
Man 512 0.3± 0.1 Man 506 1.7± 0.2 Man 508 0.7± 0.1
TYR 252 0.3± 0.1 ARG 450 1.6± 0.2 Man 503 0.7± 0.1

Man 500 0.3± 0.1 GLY 473 1.6± 0.2 Man 505 0.7± 0.2
Man 532 0.3± 0.1 Man 528 1.5± 0.4 Man 520 0.7± 0.1
Man 533 0.3± 0.1 ASN 384 1.5± 0.4 Man 501 0.6± 0.2
Man 535 0.3± 0.2 HSP 465 1.5± 0.3 Man 523 0.6± 0.2
Man 518 0.2± 0.1 LEU 489 1.5± 0.2 Man 528 0.6± 0.3

ASN 441 0.2± 0.1 Man 505 1.3± 0.3 ASN 436 0.6± 0.1
ASN 70 0.2± 0.1 GLY 439 1.3± 0.2 TYR 466 0.6± 0.1
Man 517 0.2± 0.1 PRO 438 1.3± 0.2 Man 536 0.6± 0.3
HSP 465 0.2± 0.1 THR 44 1.3± 0.2 Man 507 0.5± 0.1
GLN 7 0.2± 0.1 THR 5 1.2± 0.2 SER 156 0.5± 0.1

GLU 1 0.2± 0.1 Man 499 1.2± 0.2 Man 521 0.5± 0.1
Man 509 0.2± 0.1 Man 513 1.1± 0.3 GLY 473 0.5± 0.1
THR 44 0.2± 0.1 Man 510 1.1± 0.3 THR 296 0.5± 0.1
LYS 69 0.2± 0.1 GLN 495 1.1± 0.2 TYR 493 0.5± 0.1
VAL 488 0.2± 0.1 Man 516 1.1± 0.3 THR 310 0.5± 0.1

GLN 487 0.2± 0.1 Man 508 1.0± 0.2 Man 504 0.5± 0.2
GluNAc 531 0.2± 0.1 ASN 436 1.0± 0.2 Man 506 0.5± 0.2
GluNAc 519 0.2± 0.2 SER 47 1.0± 0.3 Man 510 0.5± 0.2
Man 521 0.2± 0.1 GLN 7 1.0± 0.2 Man 514 0.5± 0.1
GLU 190 0.2± 0.1 PRO 451 1.0± 0.1 Man 534 0.4± 0.3

LEU 6 0.2± 0.1 SER 320 1.0± 0.2 Man 500 0.4± 0.2
Man 529 0.2± 0.1 Man 500 1.0± 0.3 SER 482 0.4± 0.1
SER 87 0.2± 0.0 LYS 69 1.0± 0.2 ILE 472 0.4± 0.1
GLY 439 0.2± 0.1 ALA 100 1.0± 0.2 ILE 426 0.4± 0.1
ASN 200 0.2± 0.1 ASN 270 0.9± 0.1 LYS 354 0.4± 0.1

Cum. Sum 11.4 69.6 26.6
Tot. Sum 21.8 151.9 50.6

The values are the average number of contacts a cellulase residue makes with other cellulases (enzyme), lignin and cellulose for simulation times t > 1000 ns

The residues are color-coded based on their location within Cel7A

Blue text indicates a residue that is part of the CD, red of the CBM and black of the linker

Lighter text in lower case indicates a glycosylation (sugar) monomer, while bold upper case is an amino acid residue

The cumulative sum of the top 40 contacts and the total sum of all contacts are reported in the final two rows
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the cellulose fibril than where it is anti-parallel (Addi-
tional file 2: Figure S4). The observed preference toward 
a parallel orientation would facilitate processive binding, 
although we can identify no clear mechanism as to the 
origins of the preferential parallel orientation. It is pos-
sible that this orientation is enforced by the directionality 
of the CBM, as has been previously postulated [38, 52]. 
However, given how few CBMs are actually bound to cel-
lulose (see the gallery available online provided as Addi-
tional file  11), this cannot be determined based on our 
simulations.

Cellulose association with lignin
The cellulose surface is crowded. Nearly a quarter of the 
total cellulose surface area is consistently covered by lignin, 
significantly reducing the area accessible to the enzymes 
(Fig. 5a). In addition, the presence of lignin molecules on 
the cellulose surface is likely to interfere with the proces-
sive mechanism of cellulose hydrolysis  [31], reducing the 
distance an enzyme bound to cellulose can travel before its 
path is blocked by a lignin molecule (Fig. 5b).

Non-crystalline cellulose was engaged in twice as 
many contacts with the enzyme per fibril than does the 
crystalline polymer (Fig.  6a), which may be due in part 
to a reduced affinity of non-crystalline cellulose for 
lignin  [40]. The reduced affinity in turn increases the 
surface area available for enzymatic binding, and in fact 
the non-crystalline cellulose surface has comparatively 
little lignin coverage (Table  2). A second factor favor-
ing enzymatic binding to non-crystalline cellulose is the 
accessibility of surface cellulose hydroxyl groups, which 
account for more than half of the cellulose–enzyme con-
tacts (Fig. 6b); a larger fraction of these is buried in crys-
talline cellulose than in the non-crystalline form. Due 
to the lower lignin coverage of non-crystalline cellulose, 
enzymes can, in principle, process this form for a larger 
distance before being blocked by lignin (Fig. 5b).

Chains of crystalline cellulose on hydrophobic surfaces 
can be more readily decrystallized than those on hydro-
philic surfaces [53]. The present simulations reveal a pref-
erential association of both lignin and the enzymes with 
the hydrophobic face of the cellulose fibers (for a chain-
by-chain analysis see Additional file 2: Figure S5). Lignin 
contacts lead to the hydrophobic chains of crystalline cel-
lulose being only poorly accessible, with 30–40 % of their 
total surface area covered by lignin and only ∼3% covered 
by enzymes (Table 2). In contrast, in the non-crystalline 
fibers, the lignin contact area with the “hydrophobic” face 
is reduced by about half to ∼18%, while the proportion in 
contact with cellulases nearly doubles (Table 2). Moreo-
ver, the trend line between lignin and enzyme coverage 
of cellulose for the hydrophobic faces (Fig. 7a) has a nega-
tive slope, confirming competitive binding.

Unproductive binding of enzyme to lignin
Enzymes that bind irreversibly to lignin are prevented 
from binding to their cellulose substrate, such as the 
example configuration shown in (Fig. 8). The most prob-
able lignin–enzyme contacts involve either CBM residues 
or glycosylation sugars on the CD (Fig. 4b and Table 1). 
Three CBM tyrosine residues (Y466, Y492, Y493) that are 
known to recognize and bind to cellulose [33–38] play 
an outsized role in the lignin–enzyme association pro-
cess. In the simulations, the probability of these residues 
binding to lignin is approximately five times higher than 

Fig. 5  a Interface surface area for cellulose (C), lignin (L), and 
enzymes (E), their means values (for t > 800 ns) labeled above the 
curves. The % fraction of interface area over the total surface area of 
a species is also labeled below the curves. b Pictorial representation 
of the final configuration of the simulation, showing the positions of 
lignins (blue) and enzymes (green) on the hydrophobic surface of the 
nine cellulose fibrils (black line). The average “procession length” (dis-
tance along the fibril between two lignin clusters) depends on the 
type of fibril. CH fibrils have the shortest procession lengths (3.5 nm), 
CL fibrils intermediate (5.5 nm), and NonC the longest (9.2 nm)
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their binding to cellulose (Fig. 9). Figure 7b also indicates 
that, for the most part, the CBM Y466 and Y493 residues 
interact exclusively with either lignin or cellulose due to 
geometrical constraints, further suggesting that bind-
ing to lignin indeed impedes binding to cellulose. This 
is shown in another way in Fig.  7, which demonstrates 
that an individual residue is only rarely in contact with 
both lignin and cellulose. Taken together, these findings 
imply a competitive inhibition mechanism of TrCel7A, in 
which the binding of lignin to the CBM Tyr residues pre-
vents cellulose recognition.

To obtain further information on the Tyr-lignin bind-
ing we examined the stacking interactions of the aro-
matic side chains of the Tyr residues as determined by 
the angle γ between the planes of the tyrosine and the 
lignin/cellulose rings [54]. For the Tyr-cellulose stacking, 
the two rings are almost parallel, with a relatively nar-
row distribution peaked at γ ≃ 30

◦ that deviates from 
that that would be obtained in the absence of an angu-
lar energetic preference (Fig. 9b)  [54]. However, for the 
interaction of the Tyr residues with the phenolic rings of 
lignin γ has a broader distribution, which is more simi-
lar to what would be expected if there were no intrin-
sic angular energetic preference. This suggests enthalpy 
plays a more significant role in determining the ori-
entation preferences of Tyr–cellulose than Tyr–lignin 
interactions.

It has been suggested that enzymes may become dena-
tured on the lignin surface  [9]. However, in the ∼µs 
timescales examined here, no clear trend was observed 
between the average residue root mean square fluc-
tuation, an approximate measure of the propensity to 
denature, and the number of residue-lignin contacts 
(Additional file  2: Figure  S6). Rather than denaturing, 
the enzymes compact to a mean radius of gyration of 
24.8± 1.0 Å (Additional file 2: Figure S7) over the course 
of the simulation, in line with experimentally determined 
radius of gyration for Cel7A in solution of 26.1± 2.1
Å [55].

We find that the interactions lignin makes with other 
lignin molecules, cellulose, and cellulases are qualita-
tively different. Although lignin is hydrophobic overall 
due to its phenolic rings, monolignols also contain a flex-
ible three-carbon (C7–C9) chain with hydroxyl groups 
(Additional file  2: Figure  S8). Inter-lignin association is 
dominated by interactions between the rings, defined 
here as involving atoms C1–C6, O3, O4 , and C10 (Fig. 9c; 
Additional file 2: Figure S8). In contrast, enzyme associa-
tion with the lignin flexible chains (C7–C9 and O7–O9) is 
as frequent as with the lignin rings. Finally, when asso-
ciating with cellulose lignin interacts mostly via its flex-
ible chain atoms. Thus it is not simply a matter that either 

Fig. 6  a Contacts per fibril of crystalline and non-crystalline cellulose 
with the enzyme and with lignin. b Normalized number of contacts 
between any specific cellulose heavy atom and lignin and enzymes

Table 2  Total fibril cellulose surface area (AT), cellulose–
enzyme contact area (AE), cellulose–lignin contact area 
(AL), and  their corresponding ratios (AE/AT ) and  (AL/AT) 
for the three initial cellulose–lignin fibril combinations: CH 
(crystalline cellulose, high lignin coverage), CL (crystalline 
cellulose, low lignin coverage), and  NonC (non-crystalline 
cellulose, high lignin coverage)

Rows with "bold italic" background correspond to hydrophobic surfaces, while 
those with "italic" background correspond to the hydrophilic cellulose surfaces

The quantities reported here are the averages over the last 500 ns

AT AE AL AE/AT AL/AT

(104 Å2) (104 Å2) (104 Å2)

CH 6.51 0.18 3.02 0.03 0.46
6.74 0.15 1.33 0.02 0.20

CL 6.51 0.23 2.11 0.04 0.32
6.74 0.24 0.97 0.04 0.14

NonC 6.57 0.30 1.16 0.05 0.18
7.76 0.36 1.17 0.05 0.15
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ring-mediated hydrophobic [19, 22, 23] or hydroxyl-
mediated electrostatic interactions[24–26] that drive 
unproductive binding to lignin, but rather both elements 
contribute to the overall binding.

Conclusions
Atomistic MD simulations of a multi-component system 
of cellulose, lignin, and an industrially important cellu-
lase, TrCel7A, described here have led to a mechanistic 

Fig. 7  a Fraction of hydrophobic cellulose covered by lignin and enzymes per cellulose fibril type. Individual fibril types are labeled. The dotted line 
is a linear regression to the data. This contains the same information as Table 2. b Comparison of the number of simultaneous contacts between the 
specific CBM tyrosine residues, with a scatterplot in the main panel, and log-probability distributions for direct comparisons along each axis

Fig. 8  Snapshot of the simulation in which TrCel7A (green cartoon) is bound unproductively to a lignin cluster (blue surface) on a cellulose fiber 
(red). The CBM residues Y466, Y492, and Y493 are orange. The location CD catalytic tunnel is shown by a yellow spacefilling representation, and is 
provided for reference. No cellulose was within the tunnel at any point during the simulation, as the complete fibrils did not decrystallize. The inset 
is an enlarged image delineated by the dotted rectangle, which highlights the Tyr (orange)–lignin (blue) interactions. A gallery of images showing the 
cases where TrCel7A enzymes interact with cellulose are provided in the supplementary information†
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understanding of how lignin in biomass systems impedes 
binding of cellulase enzymes to cellulose, thus hindering 
hydrolysis. Lignin is known to directly associate with cel-
lulose and restrict its hydrolysis by cellulases [15, 16, 18]. 
The present simulations confirm the binding of lignin to 
cellulose, which decreases both the surface area avail-
able for enzymatic binding (Figs. 5a, 6a) and the length of 
the cellulose chain that can be processed before a lignin 
blocks its path (Fig.  5b)  [18, 31]. Furthermore, lignin is 
found to bind preferentially to the hydrophobic faces of 
cellulose (Table  2), as does TrCel7A   [36, 56], amplify-
ing the inhibitory effect. Importantly, the relationship 
between lignin and enzymatic binding (Fig. 7a) indicates 
a competitive binding mechanism, in which both enzyme 
and inhibitor (lignin) bind favorably to the substrate (cel-
lulose). The simulations thus establish a link between cel-
lulose accessibility to cellulases, a key physical property 
influencing pretreated biomass hydrolysis [57], and cellu-
lose–lignin association.

Secondly, TrCel7A is also known to bind unproduc-
tively to lignin, further limiting its ability to hydrolyze 
cellulose  [19–23]. The present simulations confirm this 
and provide atomic details of the interactions. Lignin 
forms specific interactions with those Tyr residues (Y466, 
Y492 and Y493) on the CBM that have been shown to 
anchor the enzyme to its cellulosic substrate (Fig.  8; 
Table 1). The relationship between Tyr binding to lignin 
and cellulose (Fig. 7b) indicates a second mechanism for 
competitive inhibition, in which specific binding of the 
inhibitor (lignin) to the recognition site on the enzyme 
(CBM) blocks the enzyme substrate binding. The Tyr–
lignin interactions may be particularly difficult to engi-
neer away in the enzyme, as mutations to the CBM that 
might disrupt the interaction with lignin will likely also 
reduce the affinity of the CBM for cellulose. Engineering 
the lignin within biomass may be a better approach, pos-
sibly by making it more hydrophobic such that it com-
pacts [44] and presents a smaller interaction surface area.

Fig. 9  a Probabilities of the three CBM Tyr residues (466, 492, and 493) being contact in contact to only lignin, only cellulose, both lignin and not 
bound to either (unbound). b The crossing angle between the ring normals of the three CBM Tyr residues (466, 492, and 493) and the closest (within 
5 Å) biomass ring (the glucose ring of cellulose or the phenolic ring of lignin). The dotted lines are distributions that would be obtained without an 
angular energetic preference from a random distribution. c Number of contacts per lignin residue with the enzyme (top), other lignins (middle), or 
cellulose (bottom). Contacts are labeled as “ring” when involving the lignin atoms C1–C6, O3, O4, and C10, while “chain” involves atoms C7–C9, O7–O9
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In conclusion, the present study furnishes a detailed 
description of interactions of a cellulase in a model 
crowded, pretreated, lignocellulosic environment. Lignin 
impedes enzymatic action by two competitive binding 
processes, the molecular bases of which are described 
here: binding to the hydrophobic face of cellulose, the 
preferred substrate of TrCel7A; and specific binding to 
the tyrosine residues of the CBM that recognize and bind 
cellulose. Lignin thus binds exactly where for industrial 
purposes it is least desired, providing a simple explana-
tion why hydrolysis yields increase with lignin removal. 
These findings explain why lignin is so effective at block-
ing cellulose hydrolysis by TrCel7A. This molecular-level 
description may be used to rationally optimize biofuel 
production processes which minimize lignin interfer-
ence. This could, for example, be achieved by pretreat-
ments that lead to non-crystalline cellulose, which 
associates less with lignin than the crystalline form.

Methods
Model
A 23.7-million atom, multi-component simulation model 
was build to represent a pretreated biomass system of 
cellulose and lignin at room temperature upon the addi-
tion of cellulolytic enzyme. The model consists of cellu-
lose fibers, lignin molecules, and Cel7A cellulases. Other 
components of biomass, such as pectins and hemicellu-
lose, are assumed to have been removed by dilute acid 
pretreatment [5].

Hexagonal cellulose fibers were constructed, each con-
taining 36 glucose chains  [58] of degree of polymeriza-
tion (d.p.) 160. Pretreated cellulose has a d.p. �140 [59]. 
Since cellulose in pretreated biomass exists in both highly 
crystalline and more amorphous forms, both types of fib-
ers were modeled: six crystalline fibers, obtained from 
the crystal structure of cellulose Iβ  [60]; and three non-
crystalline, obtained by simulating crystalline cellulose at 
650 K for 1 ns [40].

468 lignin molecules (52 per cellulose fibril) were 
included, comprising 18 copies each of 26 distinct lignin 
molecules obtained from previous studies  [61, 62]. All 
lignin molecules consisted of 61 monolignol monomers, 
and the lignin molecular weight, degree of branching, 
monomer, and linkage composition are consistent with 
those of softwood lignin  [61]. Briefly, structural models 
of the individual lignin molecules were generated by first 
deriving the bonding topologies of the molecules and 
subsequently generating the 3D coordinates. To gener-
ate the topologies, a variety of experimental data on the 
bulk chemical composition of softwood lignins was used. 
Softwood lignins are composed mainly of G units [63–
65] and therefore only G units were used here. The aver-
age linkage composition used is typical of softwoods [65, 

66]: β-O-4′  50 %, 5-5′  30 %, α-O-4′  10 %, and β-5′  10 %. 
The models also contain equal amounts of left- and right-
handed β-O-4′ , α-O-4′  and β-5′  linkages, so as to make 
the molecules optically inactive, in accord with experi-
ment [67]. Each molecule comprised 61 G units leading 
to a molecular weight of 13 kDa, within the experimen-
tally determined range [68]. Finally, an average crosslink 
density of 0.052, or 3.2 branch points per 61 monomers, 
was used, again as has been derived experimentally, for 
spruce wood [69]. The number of branch points per mol-
ecule and their location along the chain were assigned 
randomly using a computer algorithm: the resulting 26 
distinct lignin topologies have varying degrees of branch-
ing: one molecule has zero branch points, three have one, 
four have two, six have three, seven have four, three have 
five, and one molecule has six.

Subject to the constraints imposed by the above experi-
mental data, random primary structures of lignins were 
generated, producing 25 molecules that are different 
from each other but consistent with the average chemi-
cal properties of softwood lignin. For example, although 
for all 26 molecules 50% of linkages are of the β-O-4′  
kind, the positions of these linkages varies between mol-
ecules, as does the position of the branch points, and the 
lengths of the branches are different. Relaxed 3D struc-
tures for the lignin molecules were obtained from previ-
ous simulations [40].

The starting lignin and cellulose coordinates were 
obtained from the final state of previous MD simula-
tions of pretreated lignocellulose, in which 52 lignin mol-
ecules aggregated on the surface of individual cellulose 
fibers  [40]. Three states were used here, obtained from 
the end states of three prior simulations [40]: crystalline 
cellulose with high lignin coverage (CH), crystalline cel-
lulose with low lignin coverage (CL), and non-crystalline 
cellulose with low lignin coverage (NonC). (In our pre-
vious work, CH, CL, and NonC were denoted NC, FC, 
and FN, respectively  [40]). Nine cellulose fibers (and 
the lignin molecules associated with them) were placed 
parallel to each other, such that all cellulose fibers (three 
NC, three FC, and three NonC) have the same neighbors 
when periodic boundary conditions are applied.

54 identical trCel7A enzymes were constructed using 
the crystal structure of the catalytic domain  [70] and the 
NMR structure of the CBM [33]. The linker sequence was 
built as a linear segment connecting the two domains. 
N-glycans were attached to residues 45, 270, and 384 of 
the catalytic domain, and O-glycans were attached to the 
linker, in a manner consistent with experimental data [48, 
71]. This glycosylation pattern is that suggested by mass 
spectrometric methods  [48, 71]. The 54 enzymes were 
placed in the unoccupied space of the simulation box using 
a local algorithm that randomly varied their positions and 
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orientations until placements were achieved without steric 
clashes with other macromolecules already in the system. 
The system was solvated by 7.1 M water molecules and 
was subsequently neutralized using Na ions.

The relative mass ratio Rc:l of cellulose to lignin is 1.5 g 
cellulose per g of lignin, which is typical of thermochem-
ically pretreated biomass: Rc l ≈ 1.8− 1.9 for pretreated 
corn stover  [7, 72, 73], Rc l ≈ 1.7 for pretreated switch-
grass  [74], Rc l ≈ 1.2 for pretreated poplar  [75], and 
Rc l ≈ 0.9− 1.2 for pretreated pine [76, 77]. Overall, the 
absolute concentration of the solutes was higher than in 
typical enzyme binding experiments. For example, the 
cellulose concentration was 60 g/L (6 % w/v), while that 
commonly employed in enzyme binding is typically ∼
10 g/L (1 % w/v) [7, 42, 77]. The enzyme loading corre-
sponds to 230 mg protein/g of biomass solids (cellulose 
and lignin), which is within the range typically used in 
enzyme binding experiments (0–2000 mg/g) [7, 42, 77].

The dimensions of the simulation box are 95  nm × 
62.5 nm × 62.5 nm. The overall size of the system is deter-
mined by several requirements. The first is to match 
physical characteristics of the system, i.e., that pretreated 
cellulose fibers have lengths �100 nm [59], the lignin-to-
cellulose ratio and the typical enzyme loading. The sec-
ond is to obtain statistically meaningful enzyme binding 
propensities, which require ∼50 trCel7A molecules to be 
simulated. Finally, the system consists of highly heteroge-
neous mesoscale interactions determined by the variety 
of lignin polymers and association modes.

Molecular dynamics simulations
The simulations were performed with GROMACS 
4.6  [78] using the TIP3P water model  [79] and the 
CHARMM36 carbohydrate [80–82], protein [83, 84, 85], 
and lignin  [86] force fields. Fast hydrogen angle vibra-
tions and rotations were removed employing the virtual 
sites method  [87], thus allowing a 4  fs integration time 
step. The non-bonded electrostatic interactions were cal-
culated using the reaction field zero (RFZ) method  [88] 
with a 12 Å force and 15.68 Å neighbor-list cutoff. It has 
been shown that RFZ is of accuracy similar to the com-
monly used Particle Mesh Ewald method for biomass 
systems while allowing significantly better parallel com-
putational efficiency above 10,000 cores  [89]. A shifting 
function was applied to the entire Van der Waals poten-
tial so that the interaction is zero at the cutoff distance 
of 12  Å. Neighbor searching was performed every 16 
time steps. Bonds were constrained using the LINCS 
algorithm [90] and the water internal dynamics was con-
strained using the SETTLE routine  [91].The system was 
simulated in the NPT ensemble.

The equilibration was performed in three steps, dur-
ing which the temperature was controlled with the 

Nose–Hoover  [92] algorithm (time constant τ = 1  ps) 
and, apart from the second step, pressure was controlled 
with the Berendsen algorithm [93] (τ = 1 ps). First, 3000 
steps were performed, with pressure coupling, employing 
an integration time step of 1 fs, no virtual sites and con-
straining only bonds containing hydrogen atoms. Sub-
sequently, 50,000 steps without pressure coupling were 
performed, with a time step of 2 fs, no virtual sites and 
position restraints applied on all solute atoms. Finally, 
25,000 steps with pressure coupling were performed, 
with a 4 fs time step, virtual sites on and bonds contain-
ing all atoms constrained.

For production, the temperature and pressure were 
controlled using the velocity rescale thermostat [94] (τ =

1 ps) and the Parrinello–Rahman barostat [95] (τ = 4 ps). 
Virtual sites and a 4 fs time step were used and all bond 
lengths were constrained. The total simulation time was 
1312 ns. The simulations were carried out on the TITAN 
XC6 Supercomputer at Oak Ridge National Laboratory, 
using 60,000 cores at a peak performance of 45 ns/day.

Analysis methodology
The analysis of multi-million atom, µs-long MD simula-
tions introduces unique challenges, chief among them 
being the computational time required to obtain quan-
tities of interest over the entire trajectory using serial 
approaches. To address this in part, our analysis was 
was carried out with purpose-build python-based VMD 
scripts  [96] on only the heavy atoms of the solutes (cel-
lulose, lignin, and enzyme), thus reducing the number 
of atoms to be analyzed by a factor of 20. This reduces 
the memory requirement of the analysis scripts as well as 
the time to solution, as the time to execute many basic 
operations (such as selecting subsets of atoms or loading 
trajectory files) scales linearly with the number of atoms.

The critical concept underlying most of the analysis 
is that of contact. Traditionally, a “contact” would use 
a fixed cutoff distance, and if two atoms were within 
this cutoff, they would be considered in contact. How-
ever, the choice of the cutoff value will impact tremen-
dously the number of contacts found. Short cutoffs 
favor strong interactions such as hydrogen bonds, while 
longer cutoffs will begin to capture non-specific hydro-
phobic interactions. We strike a balance between these 
two extremes by adopting a weighted contact definition 
similar to the native contact definition introduced by 
Sheinerman and Brooks [97]. Specifically, the number 
of contacts between heavy atom i in interaction group A 
and all the heavy atoms in interaction group B is defined 
as

(1)Ci =

∑

j∈B

1

1+ exp
(

5Å−1
(

dij − 4 Å
)) .
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Here, groups A and B are subsets of the system (cellulose, 
lignin, or enzyme), and dij is the distance between atoms i 
and j. If groups A and group B are identical (for instance, 
in the calculation of lignin–lignin contacts), we only count 
the contacts between unique molecules, neglecting internal 
molecular contacts. This approach will count both weaker 
hydrophobic and stronger electrostatic interactions, and will 
give more weight to the stronger short-range interactions.

Contacts are made and broken repeatedly over the 
course of the simulation. Indeed, 83–93  % of interac-
tions formed break within 100 ns in our analysis. How-
ever, due to some particularly long-lived interactions, on 
the µs timescale, the mean duration of binding events to 
cellulases is on the order of tens of nanoseconds (Addi-
tional file  2: Figure  S3). This may not be representative 
of the overall binding time in  vivo due to limitations in 
timescale for typical MD simulations. While classical MD 
now routinely brings to life multi-million atom structures 
[98], atomistic MD of large complexes remains limited to 
ns-µs timescales due to the fs-scale timesteps required 
for accurate integration in time. Therefore, slow (relaxa-
tion time > µs) enzyme-biomass dissociation processes 
and similarly long binding events are not captured here. 
Explicit rare-event methods or biased sampling may be 
useful for characterizing such kinetics.

Further analysis was performed to determine the orien-
tation of the bound Cel7A relative to the long axis of the 
cellulose and the rotational and translational diffusion 
constants. These analyses were implemented as python-
based VMD [96] scripts, stored using numpy [99], and 
plotted using matplotlib [100]. In addition, the formation 
and time evolution of the interaction networks present 
in the simulation were carried out using the NetworkX 
library [101] and the Gephi program [45].

Surface area computation
Computing surface area for large systems using con-
ventional algorithms, where many random points on a 
sphere around every atom in the selection are checked 
for proximity to nearby atoms, was determined to be too 
inefficient for our purposes, as a single calculation on 
the complete trajectory was estimated to take a month 
in a serial process. Instead, we developed a new tool to 
efficiently calculate interfacial surface area by utilizing 
methodologies from the computer graphics literature 
which had already been incorporated into VMD [96]. In 
brief, we calculate the surface area using the grid-based 
QuickSurf [102] representation, and combined the sur-
faces from different groups of atoms to obtain the inter-
facial surface area between two groups. This approach is 
∼100 times faster than the conventional solvent acces-
sible surface area (SASA) calculation implemented in 
VMD. A conventional SASA calculation on 100,000 

atoms evaluates 500 points per atom and determines if 
they are within a cutoff distance (3–5 Å) of other nearby 
atoms (20–30 atoms) in that selection, which overall 
requires over 1 billion distance comparisons. In con-
trast, the QuickSurf surface calculation performed on the 
same 100,000 atoms evaluates the value of a Gaussian on 
a grid with a resolution on the order of 1 Å. The Gauss-
ian function is assumed to be negligible 5–7 Å away from 
its center (depending on the resolution requested), and 
therefore in total we only evaluate the Gaussian ∼100 
million times for each atom selection for which the area 
is computed. Additional computation is required to gen-
erate a surface using the marching cubes algorithm [103] 
and to calculate the surface area from the resulting tri-
angles. All of the aforementioned steps were carried 
out on a GPU and the net result is a calculation that is 
100–300 fold faster (Fig. 10), depending on the size of the 

Fig. 10  Accuracy (top) and runtime (bottom) of a conventional 
approach vs. our GPU-accelerated surface area calculation for test 
atom selections of a given size. The r-value for the linear fit between 
the conventional surface area and the GPU-calculated surface area 
is 0.99997 with a slope of 0.9997; however the intercept in the plot 
is not zero, indicating a consistent percentage offset of ~20 %. The 
runtimes represent the time required to calculate the surface area of 
a single atom selection once
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selection, compared to a conventional SASA calculation 
performed on one CPU.

To compute the surface, we added 3  Å to the radius 
of every heavy atom, so as to represent the radii of both 
the heavy atom and the missing hydrogens, then scaled 
them by 0.47 when calculating the Gaussian, and use 0.4 
as the Gaussian density threshold for computing the sur-
face. These parameters were determined by converting 
the optimal parameters found by Grant and Pickup [104], 
with a 1.5 Å grid spacing found through experimentation. 
Example surfaces and how they compare are shown in 
Additional file 2: Figure S9.

One particular caution to using the above approach is 
that the surfaces tend to be 10–20 % smaller than those 
computed by SASA, due to the smoother Gaussian sur-
faces that paper over the nooks and crannies between 
atoms (Additional file  2: Figure  S10). However, while 
the absolute values may be different, the trends and the 
relative surface areas are consistent between the two 
methods. In our particular application, where we are 
interested in the interface area relative to the total surface 
area, the difference between this method and conven-
tional SASA is expected to be minimal.
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