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Abstract

Fundamental analysis is an approach for evaluating a public firm for its investment-

worthiness by looking at its business at the basic or fundamental financial level. The

focus of this thesis is on utilizing financial statement data and a new generaliza-

tion of the Data Envelopment Analysis, termed the GDEA model, to determine a

relative financial strength (RFS) indicator that represents the underlying business

strength of a firm. This approach is based on maximizing a correlation metric be-

tween GDEA-based score of financial strength and stock price performance. The

correlation maximization problem is a difficult binary nonlinear optimization that

requires iterative re-configuration of parameters of financial statements as inputs

and outputs. A two-step heuristic algorithm that combines random sampling and

local search optimization is developed. Theoretical optimality conditions are also de-

rived for checking solutions of the GDEA model. Statistical tests are developed for

validating the utility of the RFS indicator for portfolio selection, and the approach

is computationally tested and compared with competing approaches.

The GDEA model is also further extended by incorporating Expert Information

on input/output selection. In addition to deriving theoretical properties of the model,

vi



a new methodology is developed for testing if such exogenous expert knowledge can

be significant in obtaining stronger RFS indicators. Finally, the RFS approach under

expert information is applied in a Case Study, involving more than 800 firms covering

all sectors of the U.S. stock market, to determine optimized RFS indicators for stock

selection. Those selected stocks are then used within portfolio optimization models

to demonstrate the superiority of the techniques developed in this thesis.
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Chapter 1

Introduction

This thesis is concerned with the development of a new methodology termed Gen-

eralized Data Envelopment Analysis (GDEA) that enables ranking of a firm’s fun-

damental business strength, relative to other firms, and using such ranking in the

design of financial portfolios. Portfolio design in an uncertain environment is of

paramount importance in the management of mutual funds, retirement and pension

funds, bank and insurance portfolio management, for instance. Such problems in-

volve, first, choosing individual firms, industries, or industry groups that are expected

to display strong performance in a competitive market, thus, leading to successful

investments in the future; second, it also requires a decision analysis of how best to

periodically rebalance such funds to account for evolving general and firm-specific

economic conditions. It is the success of both these functions that allows a portfolio

manager to maintain the risk-level of the fund within acceptable limits, as specified

1



by regulatory and other policy and risk considerations. This thesis aims to pro-

vide a significant contribution to the former function. The work in this thesis also

complements the latter function by the development and computational testing of

a stochastic programming investment optimization model that determines optimal

portfolio dynamic allocations satisfying risk and policy specifications. These models

are empirically tested using real-world data from the U.S. stock market.

1.1 Conceptual Framework

In determining the financial strength of a given firm/industry/sector, this research

focuses on the financial data that are made public through balance sheet, income

statement, etc, on a quarterly basis. The central premise of this research is that

market (stock) prices have factored in publicly-available information about the firm,

but the future expectations of price performance are determined by the perceived

business strength of the firm. This notion is consistent with the ”efficient market

hypothesis”(EMH) [41], where the price of a stock is assumed to reflect the knowledge

and expectations of all investors since everyone has the same information about

the stock. It must be noted that EMH does not imply that investors have perfect

(or identical) powers of prediction; all it means is that the current stock price is

an unbiased estimate of the firm’s true economic value based on the information

revealed.

A firm’s business (or economic) strength can be evaluated by factors that are

internal as well as external to the firm. From the perspective of internal factors, a

2



publicly traded firm is in the business of producing marketable outputs, which are

products and services, using an input supply of raw materials, labor, and other re-

sources. Such a business is typified, in microeconomics, by a production process that

transforms or converts inputs into outputs, and a productivity or efficiency metric

can be associated with such a transformation process. A firm’s internal business

strength is directly related to its productivity or efficiency in the conversion of in-

puts to outputs. For example, if a firm increases its productivity, it is likely that

this firm can produce products with lower production cost, thus, resulting in higher

profits. Then, such productivity gains will be reflected in the financial statement

data revealed by the firm.

On the other hand, from the perspective of external factors, a firm’s business

success often depends on whether the firm produces to growth or matured markets

and also on market factors such as product competition, substitution effects, and

market supply/demand imbalance, for instance. Therefore, it is the relative business

strength of a firm, relative to competition with other firms in a similar business seg-

ment, that influences the firm’s overall financial success. Consequently, in this thesis,

the basic underlying concept is that the stock price performance of a firm is dictated

by both the internal productivity/efficiency considerations as well as external rela-

tive valuations in the presence of other firms. In the absence of strong competition,

the lack of internal productivity may not significantly affect the financial well-being

of the firm, and thus, the stock returns. However, in the presence of strong mar-

ket participants, productivity losses can lead to severe internal financial ill-health,

and thus, diminished stock market performance for the firm. This triad notion of

3
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Figure 1.1: Schematic of the framework

productivity, competition, and market returns is conceptualized in the schematic in

Figure 1.1. This conceptual framework is the basic building block of this thesis.

In general, financial statements provide the basic data that reflects both internal

and external influences on a firm’s financial performance. Consequently, analysis of

financial statements is a common approach for gauging a firm’s business strength.

For instance, many accounting models, such as the free cash flow model [58] and

the residual income valuation model [29], have been developed to determine a firm’s

intrinsic value, based on information (or forecasts thereof) obtained from the financial

statements of the firm. Such an intrinsic value can then be compared with the firm’s

current market value with the hope of finding investments where the intrinsic value

exceeds the market value. The notable drawback of this approach is that such an

intrinsic value has only implicitly accounted for business strength of other competing

firms. This lack of explicit relative valuation makes it difficult for fund managers

to allocate portfolio dollars to firms with similar value/price ratios. In contrast, our
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approach strives to determine a strength metric for the firm that provides an explicit

reference to the operation of other firms in the same business segment. Then, the

resulting financial strength metric for the firm is computed relative to other firms,

instead of computing a firm-specific absolute intrinsic value.

In this thesis, a firm’s financial strength is, thus, measured by taking both pro-

ductivity and strengths of other firms into consideration. The aim is to provide a

measurable (objective) metric that is highly correlated with stock price performance

under the assumption of “Efficient Market Hypothesis”. This metric represents the

performance of firms on a quarterly basis, and thus, it pertains to a relatively short-

term of financial strength analysis. Such a metric can then be used as a proxy for

gauging a firm’s expected financial performance, and hence the firm’s future (quar-

terly) stock price performance. The basic modeling tool employed for this purpose

is the so-called Data Envelopment Analysis (DEA) methodology.

DEA is a ranking technique, which estimates a firm’s efficiency, by comparing

the firm to many other firms operating under a similar environment. A detailed

description of DEA methodology will be provided in Chapter 2. To the best of our

knowledge, this thesis is the first instance where DEA-based methodology has been

incorporated for fundamental analysis towards portfolio selection.

1.2 Fundamental Analysis

Fundamental analysis and technical analysis are two basic methodologies that are

typically used to make stock selection decisions. Fundamental analysis is the study
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of economic, industry specific, and firm specific conditions in order to determine the

underlying value of a (public) company’s stock. At the economic level, fundamental

analysis studies if overall macroeconomic conditions, as measured by interest rate,

inflation rate, unemployment, etc., are favorable for the stock market. At the in-

dustry level, fundamental analysis examines the underlying factors of supply and

demand for the products offered in a given industry and determines how strong that

industry is for investment. At the company level, it evaluates a public firm for its

investment-worthiness by looking at its business at the basic or fundamental financial

level, see [62]. It involves examining a firm’s financials and operations, especially,

sales, earnings, growth potential, assets, debt, management, products, and competi-

tion. The end goal of performing fundamental analysis is to understand the business

strength of a firm, identify the intrinsic or fundamental value of its stock shares, and

hence, determine an investment position to take in the security market, see [23] [48],

for instance. Thus, fundamental analysis takes on a longer-term perspective in de-

termining which firms are most likely to perform well in the future, based on their

fundamental business strength.

On the other hand, technical analysis focuses on analyzing actual market price

behavior of a security, rather than directly evaluating fundamental business strength

of the firm. Strategies based on technical analysis generally utilize a series of calcu-

lations designed to detect when a price change is likely to occur. Then, an investor

can use such detections to manage market positions in the short-term, such as the

case in highly leveraged derivative markets. One plausible argument for technical

analysis is that historical (price and volume) charts represent the past behavior of
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the pool of investors. Since that pool does not change rapidly, one might expect

to see similar chart patterns in the future. A second argument in favor of technical

analysis is that the chart patterns display the action inherent in an auction market.

Since not everyone reacts to the information instantly, technical chart analysis can

provide some predictive value in the short-term.

This thesis focuses on the longer term perspective as contemplated by the fun-

damental analysis. In particular, the focus in fundamental analysis in this thesis is

limited to the two dimensions provided by the industry- and firm-specific conditions,

thus leaving out macroeconomic conditions. Consequently, our use of the term fun-

damental analysis refers to financial statement analysis, which involves the use of

various financial statements of firms in a given market segment.

1.2.1 Financial statements

Financial statement analysis is a standard practice in understanding the underlying

internal business strength of a firm. Financial statements typically include balance

sheet and income statement that are released to the public at regular time intervals.

A balance sheet summarizes the book value of all assets, liabilities, and shareholder’s

equity of a business at a specific point in time, usually the end of a year or a quarter.

The purpose of the balance sheet is to examine what a company owns and owes at

that point in time. The balance sheet must follow the following basic expression:

Assets - Liabilities = Stockholder’s Equity
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Each of three components in the above formula has many subcomponents, referred

to as accounts, and each account corresponds to a value at a specific point in time.

For instance, accounts such as cash, accounts receivable, inventory and property are

on the asset side of the balance sheet, while on the liability side there are accounts

such as accounts payable and long-term debt. Under stockholder’s equity, accounts

such as common stock and retained earnings are present. However, not all accounts

are present in every balance sheet, and they may differ by company and by industry.

The income statement is another important financial information issued by the

company. It summarizes revenues and expenses in a particular period of time, usually

the end of a year or a quarter. The purpose of an income statement is to show

investors how much revenue and profit a company has generated over the given

period. The items in the income statement include revenue, operating and non-

operating activities, interest expenses, and net income before and after tax, etc.

Using the above two types of statements, balance sheet and income statement,

certain derivative statements can be produced, such as statement of retained earn-

ings and cash flow statement [34]. Retained earnings are earnings not paid out as

dividends, but retained by the company to be reinvested in itself or to pay debt.

Statement of retained earnings explains the changes in a company’s retained earn-

ings over the reporting period. The cash flow statement reports on a company’s

cash flow activities, particularly its operating, investing and financing activities [30].

These statements, including the balance sheet, the income statement, the cash flow

statement, and statement of retained earnings, provide an overview of a firm’ s prof-

itability and financial condition, in a quarterly, semiannual, or annual basis.
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1.3 Some Existing Methodologies for Firm Valu-

ation

As stated earlier, in financial statement analysis, one attempts to understand the

firm’s business via its industry position, sales, costs, earnings, etc., see [58]. It is the

combination of many data elements in financial statements that point to a metric of

the value of the firm. In the literature, many methods have been developed to assess

a firm’s value, based upon cash flows, growth, and risk. For instance, the dividend

discount model, the free cash flow model, and the residual income valuation model

are standard methods for firm valuation.

1.3.1 Dividend Discount Model (DDM)

The DDM is the simplest and the oldest present value approach to valuing an equity.

The value of a stock is the present value of the future expected dividends produced

by the firm. When an investor buys a share of the stock, he/she generally expects

to get two types of cash flow – expected dividends during the period of holding the

stock and an expected price at the end of the holding period. If the holding period

is finite, for an n-period model, the value of the stock is the present value of the

expected dividends for the n-periods plus the present value of the expected price at

the end of period n, see, for instance, [58]. The formula for the finite-period case is

then given by

V =
n∑
t=1

Dt

(1 + r)t
+

Pn
(1 + r)n

, (1.1)
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where V is the present value of a share of stock, Dt is the expected dividends per

share in period t, Pn is the expected price per share in period n, and r is the cost

of equity. Cost of equity (COE) is the rate of return required by shareholders for

investing in a stock. It generally reflects the dividends paid on the shares and the

appreciation in the market value of the stock. If an investor invests in a more risky

stock, then COE will be higher because the investor would expect a higher return to

compensate for the increased risk.

The underlying concept of the equation in (1.1) is that cash flows in different

time periods cannot be directly compared since investors prefer to receive a payment

of a fixed amount of money today rather than an equal amount in the future, all else

being equal. This is because the cash today could be deposited in an interest-bearing

bank account.

If the holding period of a stock is extended indefinitely, the stock’s value becomes

V =
∞∑
t=1

Dt

(1 + r)t
, (1.2)

which is the present value of all expected future dividends. Such an infinite sequence

of cash flow is the basis of the two valuation models presented next.

1.3.2 Free cash flow to equity (FCFE) model

FCFE is the cash flow available to a firm’s shareholders after all operating expenses,

interest, and principal payments have been paid and necessary investment in working

capital (i.e., inventory) and fixed capital (i.e., equipment) have been made [58].
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FCFE can be computed as the cash flow from operations minus capital expenditures

minus payments to debt-holders, as given by the expression

FCFE = NI +NCC − FCInv −WCInv +NB, (1.3)

where NI is net income available to common shareholders, NCC is net non-cash

charges, such as depreciation or depletion, FCInv is investment in fixed capital,

WCInv is investment in working capital, and NB is net borrowing, which is net debt

issued less debt repayments over the period of calculating the free cash flow.

The value of equity (V ) is then computed by discounting FCFE at the cost of

equity (r) as given by

V =
∞∑
t=1

FCFEt
(1 + r)t

. (1.4)

FCFE is the cash flow remaining for shareholders after all claims are satisfied, thus,

discounting FCFE by r gives the present value of the firm’s equity. Dividing the

total value of equity by the number of outstanding shares gives the value per share,

see [58]. Consider the special case where FCFE grows at a constant rate g for every

future period. Then,

FCFEt = FCFEt−1 × (1 + g). (1.5)

Therefore, the current value of equity is given by

V =
FCFE1

1 + r
+
FCFE1(1 + g)

(1 + r)2
+ . . .+

FCFE1(1 + g)n−1

(1 + r)n
+ . . . , (1.6)
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which is an infinite sequence. Each term in the above expression is equal to the

previous term times the constant r̄ = 1+g
1+r

< 1,

V =
FCFE1

(1 + r)(1− r̄)
=
FCFE1

r − g
=
FCFE0(1 + g)

r − g
. (1.7)

1.3.3 Residual Income Valuation Model (RIV)

The RIV is based on the valuation models that are deducted from the theory of

capital value [58]. The RIV analyzes the intrinsic value of a firm in two components:

the current book value of a firm, and the present value of expected future residual

income. The residual income is defined as the difference between reported income

and the cost of equity capital multiplied by reported book value at the beginning

of a period [2]. It represents the net dividends being paid to a firm’s shareholders

for a given period of time. In RIV, given the expected total dividend paid to the

shareholders (D) and the cost of equity capital (r), a stock’s fundamental value at

the present time t is equal to the present value of its future (expected) dividend

payments, i.e.,

Vt =
∞∑
τ=1

Dt+τ

(1 + r)τ
. (1.8)

Furthermore, RIV assumes that the clean surplus relation of accounting holds in

each period (t+ τ), that is,

Dt+τ = Bt+τ−1 + It+τ −Bt+τ (1.9)
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must hold, where It+τ is the accrued net income and Bt+τ is the book value of owner’s

equity. This assumption allows future dividends to be expressed in terms of future

earnings and book value. It implies that the net dividend being paid at the end of a

period equals to the difference between the net income and the change in the book

value of shareholder’s equity during that period. Clean surplus relation of accounting

requires all gains and losses that affect book value to be included in the earnings.

Combining the clean surplus relation in (1.9) with (1.8) yields

Vt = Bt +
∞∑
τ=1

Bt+τ−1 + It+τ −Bt+τ

(1 + r)τ
. (1.10)

By simple algebraic transformation, (1.10) can be rewritten as:

Vt = Bt +
∞∑
τ=1

It+τ − r ·Bt+τ−1

(1 + r)τ
. (1.11)

Equation (1.11) is also equivalent to

Vt = Bt +
∞∑
τ=1

vt+τ − r
(1 + r)τ

·Bt+τ−1, (1.12)

where vt+τ is the (book) return on owner’s equity given by vt+τ = It+τ/Bt+τ−1.

According to the above expression, the fundamental value of a stock equals its book

value per share plus the present value of expected future per-share residual income.

Note that when the present value of future per-share residual income is positive, the

value of the stock is always greater than the book value per share [58]. The present

capital Vt is then determined by first expanding (1.8) to T terms (for a chosen time
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horizon T ), and then taking the remaining terms in the expansion as a perpetuity,

under a long-term constant growth rate g of earnings. The RIV with T = 3 future

periods is then given by, see [2],

Vt = Bt +
(vt − r)
(1 + r)

Bt +
(vt+1 − r)
(1 + r)2

Bt+1 +
(vt+2 − r)
(1 + r)2r

Bt+2. (1.13)

To apply (1.13), book value of owner’s equity (B) and earning (I) must be estimated,

and then, return on equity is forecasted as suggested in [29]:

vt =
It

(Bt−1 +Bt−2)/2
, (1.14)

vt+1 =
It+1

(Bt +Bt−1)/2
, (1.15)

and

vt+2 =
It+1(1 + g)

(Bt+1 +Bt)/2
, (1.16)

assuming the future earnings are expected to grow at a constant rate g.

1.3.4 Comparison of valuation models and drawbacks

Valuation models based on discount dividends, free cash flow, and residual income

determine a firm’s intrinsic value, using different approaches. For example, both

DDM and FCFE models require forecasts of future expected cash flows generated

by the firm and find the value of the corresponding stock by discounting the cash

flows back to the present using the required return on equity. In the DDM model,

dividends are used as a measure of the cash flows returned to the shareholder. In
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contrast, RIV starts with a value based on the financial statements, book value of

common equity, and adjusts this value by adding the present values of expected

future residual income [58]. In practice, a firm with positive and predictable cash

flow that pays dividends to shareholders are suited for DDM and FCFE models.

However, if a firm has near-term negative free cash flow or the future cash flow is

uncertain, a RIV model may be more appropriate [58].

The purpose for using the above valuation models is to estimate the intrinsic

value of securities so that investments in the firm’s stock returns a true value that

exceeds its current market value. When forecasts of cash flow are made, as required

by the valuation models, there is no formal mechanism for objectively considering

the relative strength of the firm in the presence of other competing firms. Thus,

absolute intrinsic value so-computed for a firm is likely to be a weak metric due to

a lack of influence from other firms. This renders the valuation models to be highly

sensitive to forecasts that the analyst may use. For instance, if the future net income

or long-term growth rate of a firm is inappropriately estimated, the intrinsic value of

the firm, determined by RIV model, may be overweighted. This will give investor a

sign to buy the firm’s stock, which may result in financial loss in the stock market. In

contrast, the methodology in this thesis advocates a relative ranking system, which

is based upon measuring relative productivity/efficiency, and it is likely to be more

stable under such scenarios.
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1.4 Productivity and Technical Efficiency

A firm’s business strength is related to its productivity and efficiency to a great

extent. For instance, if a firm achieves economies of scale, this firm may lower

the average cost per product through increased production. As a result, the firm’s

revenue, net income, and cash balance, etc., which are the accounts listed in balance

sheet and income statements, may be greatly improved. Thus, the firm might be

considered with better financial circumstance by investors and hence its stock may

be considered as a favorable candidate for investment.

Consider a firm as a production system that transforms inputs to marketable

outputs (i.e., goods and services). This transformation process may involve man-

ufacturing, storing, shipping, and packaging, etc. A production plan with a given

input-output combination is called feasible if the specified amount of output can be

produced by the specified input amount. Usually a firm’s resource utilization or per-

formance can be characterized by two concepts: productivity and efficiency. They

are often treated the same in the sense that if firm A is more productive than firm

B, then firm A is also believed to be more efficient. However, these two concepts

are fundamentally different, although they are closely related. Productivity and ef-

ficiency are different measures of performance of a firm. Productivity is the amount

of output created (in terms of goods produced or services rendered) per unit input

used. Efficiency is used to determine whether a production process is optimal. A

production process is said to be efficient if its productivity index is optimal, that is,

a given quantity of inputs produces the maximum amount of outputs. Similarly, a

production process is called inefficient when there exists another feasible production

16



plan that produces higher outputs using the same quantity of inputs. The difference

between productivity and efficiency can be easily understood using an example of

two firms from a single-input, single-output industry, as discussed next.

1.4.1 The Single-Input and Single-Output case

Suppose firms A and B are in a similar type of production, using the same input to

produce the same output. Firm A uses an input amount of xA to produce an output

amount of yA and firm B uses xB units of input to produce yB units of output. The

average productivity for firm A is PA = yA

xA
and that for firm B is PB = yB

xB
. If

PA > PB, we say firm A is more productive than firm B. The productivity index of

firm A relative to firm B can be measured by PA

PB
= yA

xA
/ yB

xB
= m. If m is greater than

1, then we can say firm A is more productive than firm B, or more specifically, firm

A is m times as productive as firm B.

Let the production function y = f(x) represent the input-output conversion pro-

cess for firms A and B, where x is the input units, y is the output units, and f

represents the technology or the transformation process. Let y∗A = f(xA), i.e., the

maximum level of output that can be produced by using xA. Similarly, let y∗B = f(xB)

be the maximum level of output that can be produced by using xB. The efficiencies

for firm A can be measured by comparing its actual output with the maximum pro-

ducible output when the input is fixed, i.e., efficiency EA = yA

y∗A
and the efficiency of

firm B is EB = yB

y∗B
. Then P ∗

A = yA∗
xA

is the average productivity when the maximum

output is produced, and that for firm B is P ∗
B =

y∗B
xB

. The efficiencies for firms A and
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B can also be represented by their average productivities. That is,

EA =
yA
y∗A

=
yA/xA
y∗A/xA

=
PA
P ∗
A

,

EB =
yB
y∗B

=
yB/xB
y∗B/xB

=
PB
P ∗
B

.

Therefore, the efficiency of a firm is its productivity index (under input x) relative

to the productivity of a virtual firm that produces the efficient production plan

(x, f(x)), see, for example, [51].

1.4.2 The Multiple-Input and Multiple-Output case

In a world of multiple inputs and multiple outputs, the average productivity concept

introduced in the preceding section is no longer valid to compare productivities of

firms. Let us consider the case when two inputs (indexed by 1 and 2) are used to

produce a single output. Suppose firm A uses input levels x1A and x2A to produce an

output level yA and firm B uses inputs x1B and x2B to produce output yB. Then, two

sets of average productivities can be computed for firm A: P1A = yA

x1A
and P2A = yA

x2A
.

Similarly, those for firm B are P1B = yB

x1B
and P2B = yB

x2B
. In this case, we cannot

say firm A is more productive than firm B if P1A > P1B because it is possible that

P2A < P2B.

The average productivity of a firm relative to one input depends on the quan-

tity of other inputs. Therefore, it is inappropriate to measure a firm’s productivity

relying on only one input but disregarding all the others. Thus, in the above single-

output, two-inputs case, we need to find a representative input. We may consider
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Figure 1.2: Aggregation of two inputs

an aggregate of the two input values into a composite input [51]. Let v1A and v2A

denote the aggregation multipliers for inputs x1A and x2A, respectively. Thus, the

aggregated input for firm A is presented as follows: XA = v1Ax1A+v2Ax2A. Similarly,

for firm B, it is XB = v1Bx1B + v2Bx2B.

The aggregation of two inputs can be illustrated in Figure 1.2. Suppose a is

the input quantity for x1A and b is the quantity for x2A. The aggregation of inputs

x1A and x2A without the inclusion of aggregation multipliers is represented by the

vector oc. With the inclusion of multipliers (v1A, v2A), the aggregated input can be

represented by, for example, the vectors with broken lines. It must be noted that

the aggregation multipliers must be nonnegative, and thus, the aggregation of two

inputs will be in the domain of positive quadrant.
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Then, the average productivity for firms A and B can be measured by the ratio

of output quantity to the quantity of the aggregated input. That is,

PA =
yA

v1Ax1A + v2Ax2A

,

PB =
yB

v1Bx1B + v2Bx2B

.

Now let y∗A = f(x1A, x2A) be the maximum level of output that can be produced

by using inputs x1A and x2A. Similarly, let y∗B = f(x1B, x2B) be the maximum level

of output that can be produced by using x1B and x2B. Following the argument of the

single-input and single-output case, the efficiency for firm A is EA = yA

y∗A
= yA/XA

y∗A/XA
=

PA

P ∗
A

and the efficiency for firm B is EB = yB

y∗B
= yB/XB

y∗B/XB
= PB

P ∗
B
.

This two-inputs case can also be generalized to multiple-inputs case. If there

are more than one output for a firm, we can aggregate all the output values in a

similar manner. Such a view of aggregated inputs and outputs form the basis of

Data Envelopment Analysis of efficiency evaluation.

1.5 Data Envelopment Analysis (DEA)

It is evident from the preceding discussion that a firm’s efficiency measures whether

the firm’s average productivity is optimal, that is, whether a firm can produce the

maximum level of (aggregated) output by using a certain level of (aggregated) input.

This is the basic idea behind DEA methodology. However, in DEA, the notion of

efficiency of a firm is measured relative to a reference set of other firms that also use

the same input/output set. If the evaluated firm can produce the maximum amount
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of output using a certain level of input, compared to the firms in the reference set, we

say the firm achieves its 100%-efficiency relative to the others. In this sense, it is a

relative efficiency score, where every firm must use the same aggregation multipliers.

If one or more firms in the reference set produce a larger amount of output than

that of the evaluated firm, using the same level of input, we conclude that the firm

being evaluated is not 100%-efficient, or inefficient. The DEA model that maximizes

outputs for given inputs is termed an output-oriented DEA model.

In DEA methodology, an alternative view of measuring efficiency of a firm is to

check if the firm can produce a certain level of output using the minimum possible

level of input, hence, termed input-oriented DEA. If the firm can use the minimum

amount of input to produce the same amount of output, compared to the firms in

the reference set, the firm is 100%-efficient relative to the other firms. If one or

more firms in the reference set can produce the same amount of output using less

input, we conclude that the evaluated firm is inefficient. Therefore, DEA provides

a performance measure for each unit, relative to other units under consideration.

The key feature that makes the units comparable is that all firms use the same set

of inputs and outputs and typically all these firms operate under a similar business

environment. For example, when comparing performance of banks, one approach is

to view banks as institutions that use capital and labor to produce loans and deposit

account services. In this case, labor, capital, and operating costs can be considered

as inputs and the number of accounts and transactions can be treated as outputs [61].
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The DEA model was first introduced by Charnes, Cooper, and Rhodes in 1978

[16]. It has been extensively used in performance appraisal in a wide range of ap-

plications including financial performance as well as non-financial performance mea-

surement. In the non-financial area, DEA has been applied in industry performance

ranking [3], hospital performance comparison [6], university selection [14], and in

electricity distribution districts [44], for instance. In the financial applications of

DEA methodology, DEA has been applied to evaluate performance of banks [64],

CRAF participants [11], defense business segments [12], and credit unions [47], etc.

A detailed discussion on applications of DEA will be provided in Chapter 2.

The DEA model is a nonlinear optimization problem of maximizing the output to

input ratio. The basic preliminaries of mathematical optimization are summarized

in the next section for convenience of the reader.

1.6 Mathematical Optimization: Review

A mathematical programming model is an optimization problem of the form

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

(1.17)

whereX is a nonempty subset of Rn and is in the domain of the real-valued functions,

f : Rn → R1, and g : Rn → R1 for i = 1, . . . ,m. The relation, gi(x) ≤ 0 is called a

constraint, and f(x) is called the objective function, see [9] for details.
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A given x ∈ Rn is feasible if it is in the domain of X and satisfies the constraints

gi(x) ≤ 0,∀i. A point x∗ is said to be a global optimum if it is feasible and if the

value of the objective function is not more than that of any other feasible solution:

f(x∗) ≤ f(x) for all feasible x. A point x̂ is said to be a local optimum if there

exists an ε-neighborhood Nε(x̂), i.e., a ball of radius ε with center at x̂, such that

f(x̂) ≤ f(x) for each x ∈ X
⋂
Nε(x̂).

A set S is said to be convex if the line segment connecting any two points in

the set belongs to the set. That is, if x1 and x2 are any two points in the set S,

then a linear combination of these two points, denoted by λx1 + (1 − λ)x2, is in S

for any λ ∈ [0, 1]. A function f is said to be convex on S if f [λx1 + (1− λ)x2] ≤

λf(x1) + (1− λ)f(x2), for each x1 and x2 in S and for each λ ∈ [0, 1]. The function

f is said to be quasiconvex if for each x1, x2 ∈ S, the following inequality holds:

f [λx1 + (1− λ)x2] ≤ maximum {f(x1), f(x2)}. Let E be a nonempty set and f is

differentiable on E. The function f is said to be pseudoconvex if for each x1, x2 ∈ S

with ∇f(x1)
′
(x2 − x1) ≥ 0 we have f(x2) ≥ f(x1). A convex function is also

pseudoconvex, but not vice versa; a pseudoconvex function is also quasiconvex; but

not vice versa. The negative of a convex function is a concave.

The Karush-Kuhn-Tucker (KKT) conditions, see [9], are usually used to verify

if a solution x∗ is (global/local) optimal to an optimization problem. The KKT
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conditions for the problem in (1.17) are given as follows:

∇xf(x) +
m∑
i=1

λi∇xgi(x) = 0

λigi(x) = 0 i = 1, . . . ,m

gi(x) ≤ 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . ,m,


(1.18)

where ∇xf represents the gradient vector with respect to x. If x∗ is a local minimum

for the problem (1.17) and Constraint Qualification holds at x∗, then x∗ satisfies the

KKT conditions in (1.18). In addition, if f(x) and gi(x) are differentiable, f(x) is

pseudoconvex and gi(x), i = 1, . . .m is quasiconvex, x∗ is a global minimum solution

to the problem (1.17) if x∗ satisfies the KKT conditions in (1.18).

The Generalized DEA (GDEA) model developed in this research has a form

similar to problem (1.17). However, the GDEA model is a difficult problem because

the objective function is neither convex, pseudoconvex, nor quasiconvex, and also,

it is non-differentiable. This thesis develops a direct search method to solve this

problem and use the conditions that are similar to (1.18) to test the optimality of a

solution.

1.7 The Scope of Research

The scope of this research is limited to determining a relative financial strength metric

for publicly-traded firms using financial statement data and to demonstrate the use of

that metric in portfolio selection. In the sequel, this thesis develops both the detailed
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theoretical framework and the methodological solution approach to accomplish the

above tasks. In particular, the standard DEA modeling paradigm is generalized in

which the input/output selection process is defined under an optimization criterion.

Such an approach has not been taken in the existing literature of DEA theory and

applications. Moreover, statistical tests are developed for validation of the approach.

Through an application involving more than 800 firms from the U.S. stock mar-

kets, the developed procedures are empirically tested, and portfolios are analyzed

and compared with standard stock selection methodologies. Furthermore, this thesis

also introduces the notion of expert information into DEA modeling. However, the

expert information considered in this thesis is limited to those that are concerned

with input/output selection for DEA models.

It must be stated that no attempt is made in this thesis to develop methodologies

to determine if a given stock is over- or under-valued. Furthermore, the view of

fundamental analysis as treated in this thesis is limited to that provided by the

collective set of financial statements of firms in an industry or sector of the market.

No attempt has been made to factor macroeconomic information into the analysis in

this thesis.

1.8 Outline of the Thesis

The thesis is organized in 8 chapters. The topics covered in each chapter of this

thesis are outlined below.

25



• Chapter 2 provides the mathematical formulation of a standard DEA model,

along with some pertinent properties.

• Chapter 3 develops a new DEA-based financial strength measure based on

financial statements of public firms. An application to the U.S. Technology

sector is provided for illustration.

• Chapter 4 develops a new generalization of the DEA approach, where in-

puts/outputs are specified endogenously. An optimization model is developed

to maximize the correlation between the DEA-based financial strength and the

firms (stock) market performance and a two-stage (heuristic) solution scheme

is developed for its solution. The method is applied to the Technology sector

and compared to the standard DEA.

• Chapter 5 identifies several drawbacks of the GDEA-based strength measure.

The model is enhanced by developing a Corrected GDEA model.

• Chapter 6 discusses the question of input/output selection under Expert Infor-

mation (EI). The utility of such EI is tested via the developed Value of Expert

Information measure. Pertinent theoretical properties of the model, as well as

its optimality conditions, are derived.

• Chapter 7 provides a detailed Case Study of the GDEA-based strength measure

(under expert information) to portfolio optimization using about 800 firms in

9 sectors that collectively span the major stocks in the U.S. stock markets,

including S&P 500 firms.
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• Chapter 8 concludes this dissertation and presents directions for future re-

search.
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Chapter 2

DEA Methodology

DEA is a nonparametric method for measuring the relative efficiencies of a set of

similar decision making units (DMUs) by relating their outputs to their inputs and

categorizing the DMUs into managerially efficient and managerially inefficient. Non-

parametric models differ from parametric models in that the model structure is not

specified a priori but is instead determined from data. Therefore, nonparametric

methods require very few assumptions about the form of the population distribution

from which the data are sampled, see [59].

The idea of DEA was germinated by Farrell [28] who was motivated by the need

for developing better methods and models for evaluating productivity. In 1978,

Charnes, Cooper, and Rhodes introduced the first DEA model [16] by combining

Farrell’s idea and multidimensional engineering efficiency. This model is called the

CCR ratio model, which is based on a nonlinear programming formulation that seeks

to optimize the ratio of a linear combination of outputs to a linear combination of
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inputs and subject to production constraints to determine the (managerial) DEA-

efficiency of a given DMU relative to other DMUs. Thus, the application of a DEA

model presupposes that a certain set of inputs and outputs are clearly identified for

the case in hand. Therefore, depending on the application, these input/output sets

of performance measurement can be very different. Various applications from both

financial and nonfinancial areas will be considered next to highlight such choices in

inputs and outputs.

2.1 The applications of the DEA model

DEA models have been widely applied in both financial and non-financial areas.

In the non-financial DEA applications, Ali and Nakosteen [3] rank the economic

performance of different industries. Barua and Brockett et al. [8] compare the per-

formance between internet dot com companies that produce only physical products

and those that produce only digital products. Banker [6] examines the performance

of 117 North Carolina hospitals. Moreover, Carrico and Hogan et al. [14] develop

a decision-making process for university selection, and Miliotis [44] measures the

efficiency for 45 electricity distribution districts in Greece.

In the financial applications of DEA methodology, one particularly appealing idea

is to measure managerial efficiency of a company by using its financial statements.

In such cases, data from financial reports of a given firm can be used as inputs and

outputs for a DEA model. For example, using certain financial ratios as inputs and

outputs, Yeh [64] uses the DEA model to evaluate performance of banks. Bowlin [11]
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compares the importance of United States Department of Defense’s Civil Reserve

Air Fleet (CRAF) participants. Bowlin [12] also examines the financial performance

of defense-oriented business segments, compared to non-defense business segments.

Pille [47] investigates the weakness of credit unions in Ontario. Ozcan [45] derives

an aggregate metric, termed “financial performance index (FPI)”, using DEA and

compares it with various financial ratios to indicate performance levels. Seiford [55]

develops a two-stage DEA model to examine the profitability and marketability of

large banks. DEA has also been investigated as a viable modeling tool in comparison

to alternative methods. For instance, Cielen [17] compares DEA and decision tree

models in the classification of performance of bankruptcy predictions. Gregoriou [31]

compares DEA-based efficiencies and Sharpe ratios [56] to evaluate performance of

different hedge funds. Alam and Robin [1] compute relative technical efficiencies for

firms in the airline industry and analyze their association with corresponding stock

price returns. However, their work is based upon input and output variables that

are generally non-financial in nature and they are typically not found in the publicly

available financial statements. The corresponding input and output selections for

the above DEA models are summarized in Table 2.1.

2.2 Graphical example of DEA

The basic idea of DEA can be demonstrated using a simple two-dimensional example.

Assume there is a group of workers (i.e., group of DMUs), denoted by A, B, C, D,

and E, each using the same amount of a single input (denoted by x) and producing
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Table 2.1: Inputs/outputs selection of the DEA model
Application Area Inputs Outputs

Industry Ranking cost of materials, production
hour, and capital expendi-
tures

value added and value of shipments

Dot Com Companies IT capital, NIT capital, labor,
and number of years in busi-
ness

sales and gross margins

Rate Department total costs of rates collection non-council hereditaments, rate re-
bates granted, summonses issued and
distress warrants obtained, and net
present value of non-council rates col-
lected

University Selection entry points to university student/staff ratio, library spending,
accommodation, teaching assessment,
and proportion of first class degrees
awarded, and research

Electricity Distribu-
tion Districts

network, capacity of installed
transformation points, gen-
eral expenses, administrative
labor, and technical labor

number of customers and energy sup-
plied

Hospital nursing service hours, general
service hours, ancillary service
hours, and number of beds

patient days for patients less than 14
years old, between 14 and 65 years in
age, and more than 65 years old

Bank number of employees, assets,
and equity

revenue and profit

CRAF Participants operating cash flow, free cash
flow, operating income, net in-
come, sales, market value, and
market returns

total assets, operating expenses, num-
ber of shares of common stock out-
standing, number of employees, and
property, plant, and equipment

Defense Business Seg-
ment

operating expenses and iden-
tifiable assets

operating profit, operating cash flow,
and sales

Ontario Credit
Unions

non-interest expense, and de-
posits

loans, cash, and investment, equity,
and net interest income and other in-
comes

Mutual Fund transaction costs, operational
expenses, management fees,
and market and administra-
tive expenses

mean portfolio return of mutual fund

Hedge Fund lower mean monthly semi-
skewness, lower mean
monthly semi-variance,
and mean monthly lower
return

upper mean monthly semi-skewness,
upper mean monthly semi-variance,
and mean monthly upper return
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Figure 2.1: Graphical example of DEA with one input and two outputs

different amounts of two outputs (denoted by y1 and y2) at a production facility. The

ratio of output to input is computed for a given worker and it is compared with that

of every other worker. Figure 2.1 shows a plot of the output/input ratios, z1 = y1/x

and z2 = y2/x, for each of the workers.

A given point (DMU) is a nondominated DMU if and only if there does not

exist any other DMU having a higher value in each coordinate zk,∀k. Thus, DMUi

dominates DMUj, denoted by DMUi � DMUj, if the following is satisfied:

Definition 2.2.1 DMUi � DMUj ⇔ zik ≥ zjk, ∀k, and for at least one k, zik >

zjk holds, where k is the index number of dimensions K, k = 1, . . . , K.

From Figure 2.1, it is clear that workers D and E are dominated by worker B

because B is higher in both coordinates than those of either D or E. Thus, D and E

are in the dominated set. In contrast, A, B, and C are not dominated by any other

worker, hence, A, B, and C are in the non-dominated set. Connecting points in
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the non-dominated set forms the efficient frontier, which is a piecewise linear curve,

stretches around the periphery of all workers, forming an envelope around the set of

all points. Any points on the line segments that connect two non-dominated points

are on the efficient frontier. Workers on the efficient frontier are considered to be

efficient, i.e., A, B, and C. Workers that are not on the efficient frontier, such as D

and E, are termed inefficient in the presence of A, B, and C.

Suppose we add another worker F in the worker group. It should be noted that

worker F is not dominated by workers A, B, and C. However, if we extend the line

OF to the efficient frontier and let the point G be the intersection, it is clear that

G dominates F . Thus, F is inefficient compared to the virtual worker G and the

efficiency of F is determined by the ratio OF/OG. The efficiencies of D and E can

be computed in a similar manner. In the case when there are two inputs and only

one output, a similar analysis to the above can be performed.

When considering the case of multiple inputs (x1, . . . , xn) and only two outputs

(y1 and y2), a representative input is needed and it can be obtained by aggregating

the input values into a composite input, i.e., x(u) =
∑n

i=1 uixi, where ui, i = 1, . . . , n

are input multipliers, also see Section 1.4.2. For a given multiplier vector u ∈ Rn,

define the output to input ratios z1(u) = y1/x(u) and z2(u) = y2/x(u). These ratios

for all workers are plotted in Figure 2.2 for two given vectors ū ∈ Rn and û ∈ Rn,

where Figure 2.2 (a) uses u = ū and Figure 2.2 (b) uses u = û.

When u = ū, notice that workers B, E, and F are not on the efficient frontier,

thus, B, E and F are inefficient, while workers A, C, and D are efficient. However,

as u is changed from ū to û, see Figure 2.2 (b), the position of each worker changes
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Figure 2.2: Graphical example of DEA with two outputs and multiple inputs

as shown. For example, the worker B is now brought on to the efficient frontier, and

thus, B now becomes efficient.

This idea that by changing the aggregating multipliers, a given DMU, (such as B,)

can attempt to be as efficient as possible, in the presence of other DMUs, is the basis

of the DEA methodology. That is, a DMU under evaluation is given the freedom to

choose its own multipliers so as to bring the DMU to the efficient frontier as close

as possible. If the DMU can be brought to the efficient frontier by a certain choice

of multipliers, then it is termed DEA-efficient; however, if such a set of multipliers

does not exist, the DMU is said to be inefficient.

The above basic concept can be extended to multiple inputs and multiple outputs,

where one identifies a vector of input multipliers (u) as well as a vector of output

multipliers (v). However, the identification of DMUs on the efficient frontier becomes

significantly more complicated as the dimension of inputs and outputs increases.

Therefore, the graphical analysis above must be formalized for this purpose. The
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mathematical programming model provided by DEA is a step in this direction. Such

a model allows one to compute the efficient frontier for a large number of DMUs

with multiple inputs and outputs with relative ease.

2.3 CCR model

To explain the basic premise of a DEA model, let there be J independent DMUs

(firms) whose performance (or efficiency) must be evaluated relative to each other.

One begins with a given set of inputs parameters (say, M) and a given set of output

parameters (say, N) which are measured for all J firms. For a given firm j, j =

1, . . . , J , let ξimj be the (measured) level of input parameter m, m = 1, . . . ,M , while

that of the output parameter n is denoted by ξonj for n = 1, . . . , N . The input and

output nonnegative multipliers for firm j are denoted by the variables um and vn,

m = 1, . . . ,M and n = 1, . . . , N , respectively. Then, by taking the nonnegative

linear combination of the M inputs, the inputs are aggregated as
∑M

m=1 ξ
i
mjum, and

the outputs can be aggregated as
∑N

n=1 ξ
o
njun using a similar manner, see Section

1.4.2. The productivity (for firm j) that measures how well the firm j (in the

group of J firms) converts its M inputs to the N outputs, can be computed as

the ratio of the aggregated output measure to the aggregated input measure, i.e.,∑N
n=1 ξ

o
njun/

∑M
m=1 ξ

i
mjum. By choosing its own input and output multipliers, the

productivity of firm j(= 1, . . . , J) is to be brought on to the efficient frontier as

much as possible.
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Following this idea, the relative efficiency fk of a given firm k (from the set of

J firms), is then defined as its maximized productivity, determined over all possible

aggregating multipliers such that no firm in the group will attain a relative perfor-

mance measure greater than unity. This results in the so-called CCR model [16], as

follows:

fk := max
u,v

∑N
n=1 ξ

o
nkvn∑M

m=1 ξ
i
mkum

s.t.

∑N
n=1 ξ

o
njvn∑M

m=1 ξ
i
mjum

≤ 1, j = 1, . . . , J

um, vn ≥ 0, m = 1, . . . ,M, n = 1, . . . , N.

(2.1)

The model in (2.1) yields the maximum achievable efficiency for firm k, denoted

by fk, provided every other firm is also applying the same aggregating nonnegative

multipliers in computing their input to output conversion ratios, and it is termed

the DEA efficiency score of firm k. An efficiency score of less than one is indicative

of that it may be possible to decrease the level of input for the same level of output,

while a score of 1 indicates the firm is DEA-efficient. By applying (2.1) to each firm

independently, the respective (maximum) relative efficiency score for each firm is

computed.

In order to simplify the CCR ratio model in (2.1), Charnes and Cooper [15]

employed a linear transformation method, which results in a linear programming

(LP) formulation. The equivalent linear programming formulation of model (2.1) is,
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see [16]:

f̂k := max
u,v

N∑
n=1

ξonkvn

s.t.
M∑
m=1

ξimkum = 1

−
M∑
m=1

ξimjum +
N∑
n=1

ξonjvn ≤ 0, j = 1, . . . , J

um, vn ≥ 0, m = 1, . . . ,M, n = 1, . . . , N.

(2.2)

It is straightforward to show that f̂k = fk holds under the nonnegativity of the

observed data. More precisely, if ξimk > 0 for some m = 1, . . . ,M , then, f̂k = fk

holds.

One property of the CCR model is that as the number of inputs and outputs

increased, the efficiency score calculated by (2.2) will have a better chance to reach

the efficient frontier. This is caused by model saturation, a phenomenon attributed to

over-specifying parameters in a model. A similar situation also occurs in statistical

regression modeling, where the coefficient of determination R2 can be arbitrarily

increased towards 1 by adding (or saturating) more independent variables. In this

case, R2 fails to capture the predictive power of the model. Likewise, the choice of

parameters in a DEA model is of paramount interest.

To show the explicit dependence of f̂k in (2.2) on the number of inputs/outputs,

let f̂k(ΠI ,ΠO) be the efficiency score when using the input set ΠI and the output set

ΠO. The following properties holds for the CCR model.

Proposition 2.3.1 1. f̂k(Π
1
I ,ΠO) ≤ f̂k(Π

2
I ,ΠO) if Π1

I ⊆ Π2
I ;
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2. f̂k(ΠI ,Π
1
O) ≤ f̂k(ΠI ,Π

2
O) if Π1

O ⊆ Π2
O;

3. f̂k(Π
1
I ,Π

1
O) ≤ f̂k(Π

2
I ,Π

2
O) if Π1

I ⊆ Π2
I and Π1

O ⊆ Π2
O.

Proof.

1. Π1
I ⊆ Π2

I implies that model (2.2) with input set Π2
I is a relaxed problem

compared to model (2.2) having input set Π1
I . Thus, the maximized objective value

is greater under the input set Π2
I .

2. Similarly, Π1
O ⊆ Π2

O implies that model (2.2) with output set Π2
O is a relaxed

problem compared to model (2.2) with output set Π1
O. Given the maximization

objective of the model, the result follows.

3. Combining the results of 1 and 2, the result follows.

Proposition 2.3.2 f̂k in (2.2) is positively homogeneous of degree zero in ξimk and

ξonk jointly and separately, for m = 1, . . . ,M , n = 1, . . . , N .

Proof. Write the optimal value of (2.2) as a function of an input/output pair (m,n)

of firm k as f̂k(ξ
i
mkξ

o
nk). For the joint homogeneity (of degree zero), we must show

that f̂k(λξ
i
mk, λξ

o
nk) = f̂k(ξ

i
mk, ξ

o
nk) for all scalars λ > 0. Let an optimal solution of

model (2.2) be given by (u∗, v∗), i.e., f̂k(ξ
i
mk, ξ

o
nk) =

∑N
n=1 ξ

o
nkv

∗
n. When the input

and output data is increased by λ, construct the solution (û, v̂) such that ûm = λu∗m

and v̂n = λv∗m. Then, this ”hat” solution can be verified to be feasible in (2.2) for

(λξimk, λξ
o
mk) with the associate objective value f̂k(ξ

i
mk, ξ

o
nk). Thus, f̂k(λξ

i
mk, λξ

o
nk) ≥

f̂k(ξ
i
mk, ξ

o
nk). Similarly, considering an optimal solution u∗∗, v∗∗ of the model (2.2)

with (λξimk, λξ
o
nk), one can claim analogously f̂k(ξ

i
mk, ξ

o
nk) ≥ f̂k(λξ

i
mk, λξ

o
nk). Thus,

f̂k(λξ
i
mk, λξ

o
nk) = f̂k(ξ

i
mk, ξ

o
nk) follows.
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Table 2.2: Financial characteristics for three firms in the example
Parameter Company A Company B Company C

Output Net profit margin 0.05 0.3 0.8
Earnings per share 12 18 20

Input Current ratio 4.7 2.2 3.6
Inventory Turnover 6.8 5.6 12.1

Leverage Ratio 1.3 1.8 6.5

The positive homogeneity (of degree zero) in (ξimk, ξ
o
nk) separately can also be

shown in an analogous manner, i.e., f̂k(λξ
i
mk, ξ

o
nk) = f̂k(ξ

i
mk, ξ

o
nk) and f̂k(ξ

i
mk, λξ

o
nk) =

f̂k(ξ
i
mk, ξ

o
nk) for λ > 0.

The above homogeneity property will be utilized in the generalization of the

DEA model, termed the GDEA model, see Section 4.1.1. In particular, this property

enables an efficient description of the feasible domain for the GDEA model.

2.4 A numerical example of CCR model

Consider three companies A, B, and C, each with the financial characteristics given

in Table 2.2.

Suppose vi, i = 1, 2 represents the multipliers for outputs and uj, j = 1, 2, 3

represents the multipliers for inputs. The DEA models for evaluating each company

are listed below.
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Company A: maximize 0.05v1 + 12v2

s.t 4.7u1 + 6.8u2 + 1.3u3 ≤ 1

−4.7u1 − 6.8u2 − 1.3u3 + 0.05v1 + 12v2 ≤ 0

−2.2u1 − 5.6u2 − 1.8u3 + 0.3v1 + 18v2 ≤ 0

−3.6u1 − 12.1u2 − 6.5u3 + 0.8v1 + 20v2 ≤ 0

u1, u2, u3, v1, v2 ≥ 0.

Company B: maximize 0.3v1 + 18v2

s.t 2.2u1 + 5.6u2 + 1.8u3 ≤ 1

−4.7u1 − 6.8u2 − 1.3u3 + 0.05v1 + 12v2 ≤ 0

−2.2u1 − 5.6u2 − 1.8u3 + 0.3v1 + 18v2 ≤ 0

−3.6u1 − 12.1u2 − 6.5u3 + 0.8v1 + 20v2 ≤ 0

u1, u2, u3, v1, v2 ≥ 0.

Company C: maximize 0.8v1 + 20v2

s.t 3.6u1 + 12.1u2 + 6.5u3 ≤ 1

−4.7u1 − 6.8u2 − 1.3u3 + 0.05v1 + 12v2 ≤ 0

−2.2u1 − 5.6u2 − 1.8u3 + 0.3v1 + 18v2 ≤ 0

−3.6u1 − 12.1u2 − 6.5u3 + 0.8v1 + 20v2 ≤ 0

u1, u2, u3, v1, v2 ≥ 0.
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Table 2.3: Summary of the optimal results of the DEA models in the example
Firm Objective Value Variable

(f̂) u1 u2 u3 v1 v2

A 0.923 0 0 0.769 0 0.077
B 1 0 0 0.056 0 0.056
C 1 0.278 0 0 0.688 0.022

The optimal solutions from the above LPs are summarized in Table 2.3.

The objective value column in Table 2.3 represents the relative efficiency of each

firm. It is evident that firm B and C have efficiency of 1, implying these two firms are

DEA-efficient. The efficiency of firm A is 0.923, indicating DEA-inefficient relative

to the two efficient firms B and C.

The variables u and v in Table 2.3 represent the multipliers of inputs and outputs

in the model. A nonzero multiplier indicates an input or output that contributes to

increasing the efficiency of the evaluated firm. If a multiplier is zero, the correspond-

ing input or output is non-contributive. For example, for firm C, the multipliers for

current ratio, net profit margin, and earnings per share are nonzero. This indicates

that the most preferred way for firm C to measure its productivity, in comparison

to firm A and B, is to measure only two outputs, net profit margin and earnings per

share, with respect to a single input, current ratio. In this sense, firm C emerges

DEA-efficient when the same input and output multipliers are applied to the A and

B as well. In contrast, firm A which chooses the sole input, leverage ratio, and the

sole output, earnings per share, finds it impossible to be DEA-efficient and its best

efficiency is still only 92.3%.
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2.5 Returns to scale and DEA Modeling

2.5.1 Basic concepts on returns to scale

Returns to scale (RTS) is a key concept in economics. It indicates how production

changes if we increase all inputs by a constant multiplicative amount λ, where λ >

1. If a given proportionate increase in all inputs leads to the same proportionate

increase in production, the production system is said to display Constant Returns to

Scale (CRS). If a given proportionate increase in all inputs leads to even a greater

proportionate increase in output, we have Increasing Returns to Scale (IRS). If the

proportionate increase in output is less than a given proportionate increase in all

inputs, the system has Decreasing Returns to Scale (DRS). The latter two cases are

commonly referred to as Variable Returns to Scale (VRS) in production.

Consider a production process in which a firm uses M input amounts (x1, . . . , xM)

to produce a single output amount (y). Let x =
∑M

m=1 xmum be the aggregated input,

where um,m = 1, . . . ,M are input multipliers. The production function, denoted by

f(x), is defined as the maximum quantity of output (y) that can be produced by

the aggregated input (x), i.e., y = f(x). The production function has the following

properties, see [18].

• Nonnegativity: the production function is defined only for nonnegative values

of the input and output levels;

• Weak Essentiality: a positive minimum level of input is required to produce

positive output;
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• Nondecreasing in x: the production function is normally assumed to be non-

decreasing;

• Concave in x: any linear combination of input vectors x1 and x2 will produce

an output that is no less than the same linear combination of f(x1) and f(x2),

see Section 1.17 for the definition of concavity.

As discussed in Section 1.4.1, the average productivity is computed by P (x) =

f(x)
x

, at some given point x on the production function. By the definitions of different

types of RTS introduced above, it is clear that the production is IRS, DRS, or CRS

depending on whether P (x) increases, decreases, or remains the same, respectively,

as x increases. It should be noted that the concavity property of f(x), plus x being

linear (and x > 0 for positive output), implies that the average productivity P (x) is

a pseudoconcave function, see [42] for details. Therefore, when the first derivative

P
′
(x) = 0, the average productivity P (x) reaches a maximum at a finite level of x,

see [9]. Furthermore,

P
′
(x) =

xf ′(x)− f(x)

x2
=
f(x)

x2

[
xf ′(x)

f(x)
− 1

]
. (2.3)

Both f(x) and x are positive for a production system that produces positive outputs,

thus, when P
′
(x) = 0, we have

xf ′(x)

f(x)
= 1⇒ f ′(x) =

f(x)

x
= P (x). (2.4)
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Let the input x be increased by a multiplicative amount λ to λx, where λ > 1,

and P̂ (λx) = f(λx)
λx

is the corresponding productivity. By applying the definition of

the derivative of the function f at x, at maximum productivity,

P (x) = f
′
(x) = limλ→1

f(λx)− f(x)

λx− x
. (2.5)

By contradiction, suppose f(λx) > λf(x). Then, limλ→1
f(λx)−f(x)

λx−x > limλ→1
λf(x)−f(x)

λx−x

holds, which implies f
′
(x) > P (x). On the other hand, if f(λx) < λf(x), then,

limλ→1
f(λx)−f(x)

λx−x < limλ→1
λf(x)−f(x)

λx−x holds, and thus, f
′
(x) < P (x). Therefore, it is

clear that f
′
(x) = P (x) necessarily implies that f(λx) = λf(x). That is, at the

maximum productivity, the production level displays CRS.

It should be noted that when f(λx) > λf(x), we have f(λx)
λx

> λf(x)
λx

, thus, P > P̂ ,

which indicates the production system exhibits IRS. Similarly, we can show that

the system displays DRS when f(λx) < λf(x). Therefore, we have the following

properties: when λ > 1,

if f(λx) > λf(x), then f
′
(x) > P (x) (IRS);

if f(λx) < λf(x), then f
′
(x) < P (x) (DRS);

if f(λx) = λf(x), then f
′
(x) = P (x) (CRS).

(2.6)

Note that if f(λx) = λf(x),

P (λx) =
f(λx)

λx
=
λf(x)

λx
= P (x), (2.7)
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Figure 2.3: Production function under returns to scale

which implies that the productivity is positively homogeneous of degree zero. The

CCR model introduced in Section 2.3 has the same property, thus, the CCR model

assumes CRS.

A production process may allow multiple returns to scale, i.e., IRS, CRS, and

DRS. Figure 2.3 shows various returns to scale in a production function (f(x)) with

multiple inputs and a single output, where xmin is the minimum input level below

which production cannot occur. It is observed that from xmin to x∗, f ′(x) > P (x),

indicating an IRS. Beyond input level x∗, f ′(x) < P (x), exhibiting DRS in this

region. At the point x∗, f ′(x) = P (x), hence CRS holds.

Suppose the single output (in the above case) is extended to N outputs, i.e.,

(y1, . . . , yN), where N > 1. The multi-output production function is defined as

F = [f1, . . . , fN ]′, where y1 = f1(x), . . . , and yN = fN(x), where x =
∑M

m=1 xmum.

The same aggregation technique discussed in Section 1.4.2 can be applied to find an

composite production function, i.e., f̂(x) =
∑N

i=1 fi(x)vi. The new productivity can
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then be computed by f̂(x)
x

. The RTS cases discussed above can also be shown in a

similar manner.

2.5.2 Returns to scale approach with DEA model

If a firm’s production curve overlaps with the production function f(x), as shown in

Figure 2.3, it indicates that the firm produces the maximum level of output using a

certain level of input. If a firm’s operating curve is below the production function

f(x), as presented by the broken curve, it shows that this firm does not manage its

resources as efficiently as a firm that produces the maximum output. This type of

efficiency is termed ”technical efficiency”, which is determined by a firm’s managerial

and operational capability.

On the other hand, a firm’s production system may exhibit IRS, DRS, or CRS. If

the system exhibits IRS, it is more efficient to produce with a larger plant. The firm

may increase production scale to provide cheaper goods. However, if the system dis-

plays DRS, a smaller plant may be more preferable in order to increase productivity.

If the production system presents CRS, it indicates that the firm is operating at the

optimal scale size. Such a measurement that is based on a firm’s actual scale condi-

tions under which the firm is operating is termed ”scale efficiency”. For example, in

Figure 2.3, g(x), a ray from origin, is a tangent line to the production function f(x).

g(x) is called CRS frontier and the scale efficiency is then determined by f(x)
g(x)

. At the

operating point (x∗, y∗), the firm’s scale efficiency is 1, thus, the average productivity

of the firm reaches its maximum.
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Figure 2.4: CRS vs VRS frontier

Both technical efficiency and scale efficiency are measured in the DEA models.

As discussed in the previous section, the CCR model assumes a CRS relationship

between inputs and outputs, see [20]. On the other hand, DEA models that are

based on VRS assumption have been proposed, see the BCC model [7], for instance.

Figure 2.4 shows the comparison of efficient frontier for both CCR model and BCC

model in a single input single output case.

Suppose we have four firms, A, B, C, and D as shown in Figure 2.4. Ray OC

is the CRS frontier (or CCR frontier). AC and CD constitute the VRS frontier

(or BCC frontier). In order to be efficient under CRS assumption, a firm has to be

operating at its optimal scale, that is, the scale efficiency must be 1. In addition, the

firm must be technically efficient as well. It can be observed in Figure 2.4 that only

firm C can be described as CRS-efficient because it is both technically efficient and
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scale efficient. However, when imposing VRS, a firm maybe technically efficient but

not operating at its optimal scale, i.e., firm A and D are on the VRS frontier but

not on CRS frontier. Furthermore, on the line segment AC, IRS prevails to the left

of C, and on the line segment CD, DRS prevails to the right of C. At the point C,

CRS is exhibited. Let the efficiencies that are evaluated under both CCR and BCC

models be termed CCR-efficiency and BCC-efficiency, respectively. The difference

between these two efficiencies can be illustrated by the following example. In Figure

2.4, firm B is neither CCR-efficient nor BCC-efficient. The technical efficiency under

CRS assumption of firm B is TE-CRS=O
′
B
′

O′B
. The technical efficiency under VRS

assumption is TE-VRS=O
′
B
′′

O′B
and the scale efficiency is SE= O

′
B
′

O′B′′ . The relationship

between CCR-efficiency and BCC-efficiency can be summarized as follows:

CCR-efficiency = TE-CRS = TE-VRS × SE = BCC-efficiency × SE

Same can be applied to firms A and D. For both of these two firms, BCC-

efficiency=1; however, for firm A, CCR-efficiency is determined by O
′
A
′

O′A
, and that

for firm D is O
′
D
′

O′D
. It is clear that BCC-efficiency will always be greater than equal

to CCR-efficiency because the scale efficiency is always bound by 1. Also note that

firm C is both CCR-efficient and BCC-efficient.

Therefore, if the BCC model is used to evaluate a firm’s performance, only pro-

ductivity inefficiency that is caused by managerial and operational drawbacks in the

firm’s activities is captured, while the production scale condition of the firm is not

taken into consideration. Hence, an inefficient firm is only compared to efficient ones

of similar scale, thus the efficiency score only represents the pure technical efficiency.

However, if the CCR model is used, both technical efficiency and scale efficiency
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are under consideration, thus, the efficiency score captures not only the productivity

inefficiency of a firm at its actual scale size, but also any inefficiency due to its actual

scale size being different from the optimal scale size [6].

In the financial application of DEA in this thesis, the objective is to screen compa-

nies within a given market segment based on their business performance attributes,

although these firms may be of different scale sizes. In this sense, the CCR model is

seen to provide a viable approach (over BCC) for measuring the underlying funda-

mental business strength in order to make successful investment decisions.

2.6 DEA model and financial statements

In order to apply the CCR model, the input parameters and output parameters are

required to be explicitly identified a priori. While this may be possible in evaluating

the efficiency of production processes where input (such as raw materials and labor)

to output (such as product and services) conversion mechanism are well-understood,

our case is different. Instead of focusing on examining the internal managerial level of

a firm using inputs and outputs collected from the production process, we use publicly

available financial statement information as a proxy so that financial parameters

derived from financial statements can be used as inputs and outputs of the DEA

model. Thus, the underlying strength of a business can be measured, relative to

other businesses in the same market segment. By doing so, a relative ranking system

can be established to determine how strong/weak a firm is, in the presence of other

competing firms, both in terms of if the firm is operating with optimal productivity
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and optimal scale size. Therefore, it provides a form of relative ranking that cannot

be directly obtained from other valuation models. The way of identifying inputs

and outputs from financial statements and how they can be incorporated with DEA

model will be discussed in the next chapter.
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Chapter 3

DEA-based financial strength

measure

This chapter focuses on using financial information obtained from publicly available

(quarterly) financial statements as inputs and outputs in the DEA model to compute

relative efficiency scores for firms in a given market segment, such as an industry

group. In DEA, all required input and output parameters must be identified a priori,

and in particular, when these parameters are obtained from financial statements,

the resulting DEA scores may be interpreted to provide a relative measure of the

concerned firm’s financial strength. The aim here is to verify if such a measure can

be strongly (positively) correlated with the stock market returns, and to develop

statistical tests that are necessary to establish the significance of that correlation.

Indeed, the latter correlation depends on the chosen inputs and outputs. The basic

premise is that a financial strength indicator computed using an appropriate choice
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of inputs/outputs would be expected to have high correlation with the stock market

returns under the Efficient Market Hypothesis (EMH). Can such a financial strength

indicator have predictive power of the direction of (quarterly) stock prices? If so,

well-informed assessments can be made for stock selection in investment portfolios.

3.1 Financial statement parameters

The input and output selection in the DEA model is of paramount importance for

assessing the financial strength of a firm. In the context of comparing the financial

health of commercial air carriers using DEA, Bowlin [11] stated that the specified

inputs and outputs should correspond to financial measures used in analyzing the

actual performance of a firm. Thus, the main concern is to choose metrics that are

generally used by the accounting community to establish financial performance of

firms and use those metrics as inputs/outputs of the DEA model.

A number of different approaches might be used in assessing the financial per-

formance a firm. For many investors, financial statements are the only sources of

financial information they can obtain for the firm. Thus, information from that

firm’s financial statements needs to be utilized in order to assess the financial con-

dition and performance of the firm. In a direct approach of choosing inputs and

outputs for the DEA model, raw parameters obtained from financial statements may

be directly used, for instance, accounts receivables (AR), inventory (IN), total assets

(TA), total liabilities (TL), long-term debt (LD), revenue (RV), net income (NI),
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and shareholder’s equity (SE). Inputs and outputs for the DEA model may then be

selected from these raw data.

On the other hand, ratio analysis is another approach to investigate the financial

performance of a firm. However, no one ratio in itself is sufficient for realistic assess-

ment of financial performance of a firm. With a group of ratios, however, reasonable

judgments can be made, see [34]. Thereby, various financial ratios can be computed

from financial statements in order to help an individual understand a firm’s strength

or weakness relative to those of competitors.

3.1.1 Ratio Definition

In order to assess a firm’s business strength, we consider 18 financial ratios (or

parameters) and the descriptions of these parameters are given below. These are

standard descriptions, and they can be found in [21] and [52].

1. Return on Equity (P1) = Net Income
Shareholders’ Equity

Return on Equity measures how much profit a firm earned in comparison to

shareholders’ book-value investment. It shows how well a firm uses investment

dollars to generate earnings growth.

2. Return on Assets (P2) = Net Income
Total Assets

Return on Assets tells how profitable a firm is relative to its available assets.
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It gives an idea of the effectiveness of the firm’s management in using its assets

to generate earnings.

3. Net Profit Margin (P3) = Net Income
Sales

Net Profit Margin measures profitability with respect to sales generated. This

number is an indication of how effective a firm is at cost control.

4. Earnings per Share (P4) =
Net Income - Dividends on Preferred Stock

Outstanding Shares

Earnings per Share serves as an indicator of a firm’s profitability. It repre-

sents how much of earnings each share is entitled to.

5. Receivables Turnover (P5) = Sales
Receivables

Receivables Turnover measures how many times the receivables have been

turned over (into cash) within a given financial reporting period. It provides

insight into quality of the receivables.

6. Inventory Turnover (P6) =
Cost of Goods Sold

Inventory

Inventory Turnover measures the number of times that the inventory has been

turned over (sold) within a given financial reporting period. It is a good indi-

cator of inventory quality and inventory management.

7. Asset Turnover (P7) = Sales
Total Assets
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Asset Turnover measures a firm’s efficiency of using its total assets to gen-

erate sales. It is an indicator on performance of the assets, whether they under

performing or over performing.

8. Current Ratio (P8) = Current Assets
Current Liabilities

Current Ratio determines if a firm is able to pay its short-term obligations

with current assets. It tells us the current financial strength of the firm, pri-

marily in terms of the cash and credit standing of the firm.

9. Quick Ratio (P9) = Current Assets - Inventories
Current Liabilities

Quick Ratio is also called Acid Test Ratio, which is a more conservative mea-

sure of liquidity of a firm. It investigates the ability of a firm to meet short-term

obligations with most liquid current assets, i.e, cash and cash equivalents, ac-

counts receivables, etc.

10. Debt to Equity Ratio (P10) =
Long-term Debt

Shareholders’ Equity

A measure of a firm’s financial leverage calculated by dividing long-term debt

by stockholder equity. This measure tells us the relative importance of long-

term debt to the financial structure of a firm.

11. Leverage Ratio (P11) = Total Assets
Shareholders’ Equity

This ratio shows the percentage of assets centered in fixed assets compared
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to total equity. A higher percentage indicates that capital is frozen in the

form of machinery and the margin for operating funds becomes too narrow for

day-to-day operations.

12. Solvency Ratio - I (P12) =
Total Liability
Total Assets

This debt ratio highlights the relative importance of debt financing to the

firm by showing the percentage of the firm’s assets that is supported by debt

financing.

13. Solvency Ratio - II (P13) =
Total Liability

Shareholders’ Equity

This ratio serves a similar purpose to Solvency Ratio - I. It a measure of the

extent to which a firm’s debt financing is used relative to equity financing.

14. Price to Earnings Ratio (P14) =
Market Value per Share

Earnings per Share

Price to Earnings (P/E) Ratio examines the relationship between the stock

price and the firm’s earnings. It is sometimes referred to as the ”multiple”

because it shows how much investors are willing to pay per dollar of earnings.

15. Price to Book Ratio (P15) =
Market Capitalization

Book Value

Price to Book Ratio compares the market’s valuation of a firm to the value

of that firm as indicated on its financial statements. If it is below 1.0, then
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it means that the firm is selling below book value and theoretically below its

liquidation value.

16. Revenue Growth Rate (P16) =
Current Quarter’s Revenue
Previous Quarter’s Revenue

− 1

This ratio measures the growth potential of a firm’s revenue.

17. Net Income Growth Rate (P17) =
Current Quarter’s Net Income
Previous Quarter’s Net Income

− 1

This ratio measures the growth potential of a firm’s net income.

18. Earnings per Share Growth Rate (P18) =
Current Quarter’s EPS
Previous Quarter’s EPS

− 1

This ratio measures the growth potential of a firm’s earnings per share.

These financial parameters represent a firm’s underlying performance from differ-

ent perspectives, such as profitability, asset utilization, liquidity, leverage, valuation,

and growth perspectives. By applying these parameters (as inputs and outputs) to

the DEA model, a measure of the firm’s business strength, relative to its competitors,

can be determined.

3.2 Possible input/output selection of DEA model

There are multiple ways of categorizing the available financial parameters as inputs

and outputs for the DEA model. On one hand, the raw data that are directly

obtained from the financial statements can be used as inputs and outputs of the

57



model. On the other hand, the computed financial ratios based on the raw data can

also be considered as input/output candidates.

3.2.1 Direct selection of financial data

As discussed in the preceding section, inputs and outputs for the DEA model can

be formed by directly using raw parameters obtained from financial statements, for

example, accounts receivables (AR), inventory (IN), total assets (TA), total liabilities

(TL), long-term debt (LD), revenue (RV), net income (NI), and shareholder’s equity

(SE). Thus, inputs and outputs for the DEA model must then be selected from these

raw data. NI and RV are certainly measures of output, while TA, TL, LD, IN,

and AR are typically concerned with input control. Since SE=TA-TL, shareholder’s

equity cannot be treated as an independent input or output in the presence of TA

and TL. Accordingly, we define the Direct Selection (DS) of inputs/outputs as the

following categorizations of the raw data, denoted by input set Πd
I and output set

Πd
O.

Πd
I = {AR, IN ,TA,TL,LD} (3.1)

Πd
O = {RV ,NI } . (3.2)

Therefore, the DS-based DEA model has 6 inputs and 2 outputs.

3.2.2 Ratio-based inputs and outputs

In this section, a firm’s relative business strength is measured using a DEA model

specified with the 18 financial parameters presented in Section 3.1.1. These ratios are

58



first categorized into various perspectives of functionality based on generally-accepted

knowledge. That is, the inputs/outputs selection process is driven by the knowledge

and understanding of how these parameters are related to the general operation of a

firm. Such “a priori” knowledge is hereby termed expert information on parameter

selection, which is a subject of extended discussion in Chapter 6.

Return-on-Equity (P1), Return-on-Assets (P2), Net Profit Margin (P3), and

Earnings per Share (P4) represent a firm’s profitability perspective. Receivables

Turnover (P5), Inventory Turnover (P6), and Asset Turnover (P7) measure the de-

gree of asset utilization of a firm. Current Ratio (P8) and Quick Ratio (P9) examine

liquidity level of a firm. Debt to Equity Ratio (P10), Leverage Ratio (P11), Solvency

Ratios - I and II (P12, P13) are estimators of a firm’s leverage condition. Price to

Earnings Ratio (P14) and Price to Book Ratio (P15) are indicators of a firm’s val-

uation perspective. Revenue Growth Rate (P16), Net Income Growth Rate (P17),

and Earnings per Share Growth Rate (P18) measure the growth potential.

It is commonly known that profitability and growth perspectives are measures

of outputs because revenue or income generation is a major objective criterion for

a firm. On the other hand, asset utilization, liquidity, and leverage perspectives are

considered as inputs because they are concerned with the planning and operational

strategies of a firm. In contrast, valuation perspective is concerned with how well

the equity markets perceive ”success” of a firm, and thus, it is not concerned with

a firm’s input strategy; however, its inclusion in the output set must depend on the

degree of predictive power the Valuation perspective offers for stock returns.
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Basic and Augmented selection

First, by dropping the valuation perspective (due to its ambiguity as an output), we

define the following input/output categorization of the financial parameters, which

is referred to as Basic Selection (BS), where Πb
I and Πb

O denote the input and output

sets, respectively,

Πb
I = {P5,P6,P7,P8,P9,P10,P11,P12,P13} (3.3)

Πb
O = {P1,P2,P3,P4,P16,P17,P18} . (3.4)

The Basic selection results in 9 inputs and 7 output parameters. Next, by incorpo-

rating the valuation perspective to the output set, an Augmented Selection (RS) is

defined by the input/output pair (Πb
I , Πa

O), where

Πa
O = {P1,P2,P3,P4,P14,P15,P16,P17,P18} . (3.5)

Let the efficiency score calculated by model (2.2) for firm k using Basic selection

be denoted by f̂k(Π
b
I ,Π

b
O), and that using Augmented selection is f̂k(Π

b
I ,Π

a
O). Due to

Proposition 2.3.1, we have f̂k(Π
b
I ,Π

b
O) ≤ f̂k(Π

b
I ,Π

a
O) because Πb

O ⊂ Πa
O. However, it

is neither implied nor asserted that the Augmented selection-based DEA score leads

to an increased predictive power for stock price returns over the Basic selection-based

model. Indeed, the choice between Augmented selection and Basic selection has to

be made in the context of the predictive power they yield for stock price returns

across the market, as we shall consider computationally.
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3.3 Negative data in DEA model

As stated in Section 2.5.2, in order to measure the strength due to both technical

efficiency and scale efficiency, the CCR-based DEA model in (2.2) is used. The CCR

model in (2.2) is based on the assumption that all input and output parameters are

positive [16]. However, in our case, it is possible that all of the input parameters

for a given firm have non-positive observations (financial data), depending on how

the input parameters are chosen from financial statements. For instance, if “return

on assets” and “return on equity” are chosen as the only input parameters, and if

these two parameters are negative for a given firm, then the linear model in (2.2)

is infeasible, i.e., constraint
∑M

m=1 ξ
i
mkum = 1 in (2.2) cannot be satisfied. While

it makes no sense to assign an efficiency score in such a case, for computing an

underlying strength index for the firm, a value must be assigned - the least possible

efficiency of zero. Consequently, the model below is presented, which is a slight

generalization from (2.2), and it is hereby referred to as the DEA model of financial

strength and its value is simply called the Relative Performance Score (RPS).

f ∗k := max
u,v

N∑
n=1

ξonkvn

s.t.
M∑
m=1

ξimkum ≤ 1

−
M∑
m=1

ξimjum +
N∑
n=1

ξonjvn ≤ 0, j = 1, . . . , J

um, vn ≥ 0, m = 1, . . . ,M, n = 1, . . . , N.

(3.6)
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The only difference in (3.6) from (2.2) is that the equality in the first constraint

is now replaced with an inequality. The two models are equivalent if at least one of

the input metrics is strictly positive for the firm , as claimed in Proposition (3.3.1)

below. The fact that the resulting efficiency is zero for a firm whose all of the input

metrics are non-positive is shown in Proposition (3.3.2).

Proposition 3.3.1 Suppose ξimk > 0, for some m, where m = 1, 2, . . . M . Then

f ∗k = f̂k holds.

Proof. Since the constraints in (3.6) provide a relaxation to those in (2.2) - due to

the inequality replacing the strict equality - it follows that f ∗k ≥ f̂k. Conversely,

suppose an optimal solution of (3.6) is given by (ûm, v̂n). If
∑M

m=1 ξ
i
mkûm = 1 for this

optimal solution, the result f ∗k = f̂k follows trivially. Otherwise, if
∑M

m=1 ξ
i
mkûm < 1,

then for an index p such that ξipk > 0, define

ūp = ûp +

(
1−

∑M
m=1 ξ

i
mkūm

)
ξipk

,

and thus, ūp > ûp, and set ūm = ûm for m 6= p. Therefore,
∑M

m=1 ξ
i
mkūm = 1 holds.

Moreover, since ūp > ûp holds, it follows that

N∑
n=1

ξonj v̂n ≤
M∑
m=1

ξimjûm <

M∑
m=1

ξimjūm,

and thus, (ū, v̂) is feasible in problem (2.2). Therefore, f̂k ≥ f ∗k holds. Combining

with f ∗k ≥ f̂k, the proof is completed.
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Proposition 3.3.2 If ξimk ≤ 0, for all m = 1, 2, . . . M , then f ∗k = 0.

Proof. ξimk ≤ 0 implies
∑M

m=1 ξ
i
mkum ≤ 0 < 1 because um ≥ 0 ∀m. Therefore, the

second constraint for j = k implies
∑N

n=1 ξ
o
njvn ≤

∑M
m=1 ξ

i
mjum, and thus, f ∗k ≤ 0

must hold. On the other hand, the solution um = 0 for all m = 1, 2, . . . ,M , along

with vn = 0, n = 1, 2, . . . , N , is feasible in (3.6), which leads to the trivial lower

bound f ∗k ≥ 0. Therefore, f ∗k = 0 follows.

For a detailed discussion on DEA models that involve negative inputs/outputs,

see [38] and [49], for instance. Proposition 3.3.1 and 3.3.2 treated negative data in

the inputs. On the other hand, if all outputs are negative for a firm, it follows that

the computed RPS in (3.6) is zero. In addition, the following properties can also be

shown in a straightforward manner.

Proposition 3.3.3 Given a firm k under evaluation in (3.6), if there exists an

output parameter that is positive for k and there exists an input parameter that is

positive for all firms, then the DEA efficiency computed in (3.6) is strictly positive;

Proof. Suppose the positive output for firm k is ξoqk and the positive input for all

firms is ξipj, where j = 1, . . . , J . Construct the solution (û, v̂) such that ûp > 0 and

ûm = 0,∀m 6= p, and v̂q > 0 and v̂n = 0,∀ n 6= q. Then, (û, v̂) can be verified feasible

in (3.6). In particular, ûp = 1/ξipk > 0 and 0 ≤ v̂q ≤ ξipjûp/ξ
o
qj, ∀j. Furthermore,

the objective value is f ∗k = ξoqkv̂q. Given the maximization objective of the model,

f ∗k > 0.

Proposition 3.3.4 Given a firm k under evaluation in (3.6), if there exists an

output parameter q such that ξoqk > 0, but ξoqj ≤ 0, j 6= k, and there is an input
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parameter p that is positive for all firms, then the DEA efficiency computed in (3.6)

is one, i.e., firm k is DEA-efficient;

Proof. Given ξoqk > 0, but ξoqj ≤ 0, j 6= k, and since ξipj > 0, where j = 1, . . . , J ,

we construct the solution (û, v̂) such that ûp = 1
ξi
pk
> 0 and ûm = 0,∀ m 6= p, and

v̂q = 1
ξo
qk
> 0 and v̂n = 0,∀ n 6= q. Then, it is straightforward to verify that the pair

(û, v̂) is feasible in (3.6). This implies f ∗k ≥
∑N

n=1 ξ
o
nkv̂n = ξoqkv̂q=1. Since f ∗k ≤ 1

must also hold, we have f ∗k = 1.

Proposition 3.3.5 Given a firm k under evaluation in (3.6), if there exists an

output parameter n such that ξonk < 0, and ξonj ≥ 0, j 6= k, then in the optimal

solution of (3.6), the multiplier for this output parameter is zero, i.e., vn = 0.

Proof. Let (û, v̂) be one of the solutions to model (3.6). The second constraint in

(3.6) can be written as
∑N

n=1 ξ
o
nkv̂n ≤

∑M
m=1 ξ

i
mkûm, j = k, which is denoted by l1

and
∑N

n=1 ξ
o
nj v̂n ≤

∑M
m=1 ξ

i
mjûm, j 6= k, denoted by l2. When v̂n > 0, l1 is easier

to be satisfied than l2 due to the given conditions. When v̂n = 0, the problem is

equivalent to that output parameter n is removed from the model, which is also

feasible to model (3.6). The objective value is f ∗k =
∑N

n=1 ξ
o
nkv̂n. Since ξonk < 0 and

given the maximization objective of the model, v̂n = 0.

3.4 Correlation between RPS and Stock Return

By computing an RPS using various input/output selections, as discussed in Section

3.2, we pursue the question as to which selection is the most representative of the
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underlying business strength of a firm, as supported by stock price action. For

this purpose, correlation between the RPS and the stock price returns is examined

under various input/output selections by considering all firms within a given market

segment, such as an industry. Finding such high correlations allows RPS to have

high predictive ability of stock price returns, which is valuable when designing equity

portfolios.

For a given market segment, i.e., industry, consider the RPS model in (3.6) in

which inputs and outputs are specified either with the 18 financial ratio parameters

discussed in Section 3.1.1, or with the Direct selection in Section 3.2.1. The rate of

return (RoR) for each stock for different time periods can also be computed from

market data. RoR is defined as the percentage of gain (positive) or loss (negative)

generated from a $1 investment over the specified period. We denote this RoR

variable by rjt for firm j and period t. Here, a period refers to a quarter of financial

information. The RPS in (3.6) computed under the input/output categories given

by the Direct model (Πd
I , Πd

O) is denoted by ηdjt := f ∗j (Π
d
I ,Π

d
O). Similarly, ηbjt :=

f ∗j (Π
b
I ,Π

b
O) refers to RPS under Basic selection and ηajt := f ∗j (Π

b
I ,Π

a
O) refers to RPS

under Augmented selection.

Let Fh denote the set of firms in industry h and Jh := |Fh| is the number of

firms. To compute the required correlations, collect market price RoR values rjt

for each period t = 1, ..., T for firm j, in industry h, and form the RoR vector (or

sequence) for firm j, denoted by Rj(h). This process is repeated for all j ∈ Fh and

for all h = 1, ..., H. Similarly, collecting ηbjt (for the Basic selection) for each period

t = 1, ..., T , the RPS vector (or sequence) Eb
j (h) is formed. This process is repeated
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for all j ∈ Fh and for all industries h = 1, ..., H. The correlation coefficient between

the two vectors Eb
j (h) and Rj(h) is ρbS(E

b
j (h), Rj(h)), or simply referred to as ρbS(h, j).

The subscript S indicates it is a synchronous correlation for firm j in industry h and

it is called synchronous because firm j’s efficiency scores are correlated with stock

returns of similar (or contemporaneous) time periods. The term synchronous is

used to indicate that under EMH, financial strength of a firm in a certain period is

correlated with the stock return of the firm in the same period. The significance of

this synchronous correlation will be investigated using statistical tests in the next

section.

3.5 Statistical tests of correlations

3.5.1 Correlation test

For a given firm j in industry h, a computed synchronous correlation ρbS(h, j) -

for Basic selection, for instance - is checked for its significance using the following

hypothesis test:

H0 : ρ̃bS(h, j) = 0

H1 : ρ̃bS(h, j) 6= 0,

 (3.7)

where ρ̃bS(h, j) is the (true) population correlation coefficient. The null hypothesis

H0 indicates that there is no correlation between DEA-based strength and RoR of
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the same quarter. Under H0, it can be shown that the test statistic,

ζbS(h, j) =
ρbS(h, j)

√
T − 2√

1−
[
ρbS(h, j)

]2 (3.8)

is student-t distributed, see [59], with T − 2 degrees of freedom (d.f.). Given a

significant level α, for the two-sided test, if the critical student-t value ζcr(T −2, α/2)

is smaller than the computed sample statistic ζbS(h, j), then the null hypothesis is

rejected in favor of accepting that there is predictive power in firm j’s efficiency score

on its stock price RoR.

It should be noted that when student-t test is used to examine the correlation be-

tween two random variables, these two random variables must come from a bivariate

normal distribution, see [59]. The stock returns are often assumed to be normally

distributed, see for instance [4]. However, the distribution of RPS scores remains

largely unknown. In the event, RPS values are non-normally distributed, to the best

of the author’s knowledge, there does not exist a computable test statistic for the cor-

relation hypothesis test. In Chapter 5, transformations to obtain near-normality are

considered. In the ensuing discussion, we proceed with the test assuming normality

of RPS.

Using the RPS model in (3.6), the above synchronous-test statistics are computed

for the Direct, Basic, and Augmented selections, denoted by ζdS(h, j), ζ
b
S(h, j), and

ζaS(h, j), respectively, for each firm j ∈ Fh and for all industries h = 1, ..., H. If

any of these test statistics are consistently large across the firms in an industry,

then the corresponding RPS measure can be interpreted to have a strong predictive
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power in the industry. Furthermore, if such strength is also strong across all industry

groups, the corresponding DEA input/output selection may be deemed to provide a

significant measure of underlying relative financial strength of firms. First, in order to

establish a given input/output selection leads to consistently-significant correlations

across firms in an industry, the statistical test in the following section is applied.

3.5.2 Identifying industries lacking RPS-based predictabil-

ity

Let us consider the Basic RPS model with synchronous correlations for industry

h. The same procedure is applied to the direct and augmented versions of the RPS

model. Consider the null hypothesis H0 in (3.7) for all firms j = 1, . . . , Jh, i.e.,

H0 : ρ̃bS(h, j) = 0, j = 1, . . . , Jh

H1 : ρ̃bS(h, j) 6= 0, for some j.

 (3.9)

If H0 in (3.9) holds, then each test statistic ζbS(h, j) in (3.8), for j = 1, . . . , Jh,

has a student-t distribution with T − 2 d.f. Thus, it follows that the collection

Qb
S(h) :=

{
ζbS(h, j)

}Jh

j=1
of the test statistics is a sample drawn from a student-t

distribution with (T − 2) d.f. under H0 in (3.9).

In order to test if the sample Qb
S(h) comes from a student-t distribution with (T−

2) d.f., we employ a Chi-Square (χ2) goodness-of-fit test. Using a grid of l intervals,

the resulting goodness-of-fit test statistic, denoted by ωbS(h), is χ2 -distributed with

(l− 1) d.f., see [59]. For the one-sided test and a significant level of α, if the critical
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χ2 value

ϑcr(l − 1, α) ≥ ωbS(h), (3.10)

we fail to reject the null hypothesis H0 in (3.9) and conclude that the sample Qb
S(h)

must have come from a student-t distribution with (T −2) d.f. That is, this industry

h does not support using the basic selection-based DEA model as a proxy for stock

price returns (of the same quarter). Indeed, if

ϑcr(l − 1, α) < ωbS(h), (3.11)

then rejecting H0 in (3.9) does not necessarily imply that RPS is a strong predictor

for every firm.

The basic methodology described so far is illustrated with an application to the

technology sector of the U.S. stock market, in the next section.

3.6 Application of RPS to the Technology Sector

The validity of the DEA-based RPS as a predictor for stock returns (RoR) is demon-

strated using publicly traded U.S. firms. Only the technology sector is used for the

experimentation, of which six broad industry groups are formed: Computer Software

(h = 1), Communication Equipment (h = 2), Computer Hardware (h = 3), Elec-

tronics (h = 4), Semiconductors (h = 5), and Computer Services (h = 6) industries.

Firms belonging to each of these 6 industry groups were identified using public in-

formation available from the website: http://biz.yahoo.com/p/8conameu.html. In
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some cases, several individual industries of similar type are aggregated to form one

industry group, as shown in Table 3.1.

Quarterly financial statements for the period 1996 to 2002 for all firms in our

six industry groups are electronically obtained from the WRDS (Wharton Research

Data Services) database. The financial statement data, as well as quarterly stock

prices, are checked for completeness and only those firms with complete data are

chosen in each industry group. Thus, the usable number of firms (i.e., sample size)

in each industry group is limited. For each group h, the usable set of firms, denoted,

is unique, and the number of firms, is shown in Table 3.1. Thus, there is a total of

313 firms, referred to as the universe of firms.

First, using the stock prices from 96Q1 to 02Q4, quarterly RoR for each firm in

each industry group is calculated for all 27 quarters, i.e., 96Q2 to 02Q4. Second,

RPS values using model (3.6) are calculated for each firm in each industry group,

for every quarter from 96Q2 to 02Q4. The first quarter (i.e., 96Q1) is set aside

for the computations of RoR and the 18 financial parameters presented in Section

3.1.1. The quarterly RPS values so-computed are plotted in Figure 3.1, where ηbjt

are averaged over all Jh firms for industry h and over all 27 quarters, and denoted by

η̄bh = 1
27Jh

∑27
t=1

∑Jh

j=1 η
b
jt, where t = 1 refers to the 96Q2 quarter. In the same graph,

η̄dh and η̄ah, for Direct and Augmented selections, are also plotted for each industry h.

It is evident that the Augmented selection produces larger average efficiency scores

than the Basic selection (as supported by Proposition 2.3.1). Also, it appears that

the Direct RPS model that uses raw financial parameters yield larger average RPS

scores compared to the Basic RPS model. Is this increased RPS value of a firm
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Table 3.1: Industries and number of firms
Industry Group Industries Included # firms
Software
(h = 1)

Application software, Multimedia &
graphics software, Technical & systems
software

42

Communications
(h = 2)

Communication equipment, Processing
systems & products

49

Hardware
(h = 3)

Computer peripherals, Data storage de-
vices, Networking & communication de-
vices

43

Electronics
(h = 4)

Diversified electronics, Printed circuit
boards, Scientific & technical instruments

74

Semiconductors
(h = 5)

Semiconductor equipment & materials,
Semiconductor-Broad line, Integrated cir-
cuits, Specialized, Memory chips

69

Services
(h = 6)

Information technology services, Internet
software & services, Business software &
services, Telecom services

36
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Figure 3.1: Average Efficiency Scores for each industry

representative of higher relative financial strength for the firm? The question will be

answered by analyzing the correlation between firms’ RPS and their stock returns.

3.6.1 Synchronous versus lagged correlations

A high synchronous correlation would indicate that stock returns are influenced by

firms’ underlying financial strength in a contemporaneous manner, thus representing

the case for market informational efficiency (or, EMH). However, the implementation

of the RPS as a proxy of stock returns is complicated due to two reasons. First, a

quarter’s financial information is not available prior to the beginning of a quarter, and

thus, any implementation requires forecasting RPS to the immediate quarter that

follows. Second, quarterly financial information typically is not released to the public

immediately after a quarter ends, but could take as much as an additional month
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or more. Therefore, any useful application of the RPS concept needs to examine

if the financial strength in a given quarter (as determined by RPS) is significantly

correlated with stock returns that occur a month or many months beyond the quarter.

For this purpose, we define “Lagged Correlations” associated with RPS.

“Lagged Correlations” measure the influence of business strength observed at

the end of quarter t on the RoR in a 3-month period starting τ months from the

beginning of quarter t. We set τ to be 1, 2, or 3 months. A pictorial representation

of the synchronous and lagged concept is Figure 3.2. Suppose RPS is calculated for

a firm for quarter 1, i.e., January to March, which is denoted by RPSQ1. Then the

“synchronous” correlation measures the correlation between the RPSQ1 with stock

returns that is also from January to March. However, “one-month Lagged” (Lag1)

correlation (τ = 1) examines the correlation between the RPSQ1 and the stock

returns from February to April. “Two-month Lagged” (Lag2) correlation (τ = 2)

examines the correlation between the RPSQ1 and the stock returns from March to

May. “Three-month Lagged” (Lag3) correlation (τ = 3) examines the correlation

between the RPSQ1 and the stock returns from April to June. Thus, the case of

τ = 3 measures the lagged correlation between financial strength in quarter t with

RoR of quarter t+ 1.

These three forms of lagged correlations are denoted by ρbL,τ (h, j) for τ = 1, 2, 3

(for the Basic selection), and thus, ρbL,3(h, j) is the one-quarter lagged correlation for

firm j. This procedure is repeated for the Direct and Augmented selections to com-

pute the corresponding synchronous and the three versions of the lagged correlation.
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Figure 3.2: Synchronous versus lagged concept of correlations

In order to find RPS values that are highly correlated with stock market returns,

statistical tests are provided for all versions of these correlations, as discussed next.

3.6.2 Comparison of RPS

The proportions of significant correlations (over all firms) in each industry for all

three input/output selections are presented in Figure 3.3, where each “vertical bar”

represents the cumulative proportion over all industries. Note that, in this figure, all

four cases of synchronous, one-month lagged, two-month lagged, and three-month

lagged correlations are presented. In particular, the Basic RPS is the strongest in

the synchronous and lagged correlations, while Direct RPS is the weakest. Are these

strong correlations largely positive or negative? In Figure 3.4, we plot average t-

test statistics for each industry for the Basic RPS, where synchronous test statistics
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ρbS(h, j), as well as the lagged test statistics ρbLτ (h, j), for τ = 1, 2, 3 months, are

averaged over all firms in an industry. If the average test statistic is positive and

large, it is indicative of significant (positive) correlation. Generally, with increased

time lag between RPS measurement and stock returns, correlations seem to lose their

strength, although 1-month lagged case appears quite significant.

For determining the consistency of high correlations across all firms, the goodness-

of-fit tests (see Section 3.5.2) are performed for each industry group for synchronous

and lagged cases, using the all three versions of input/output selection. These χ2-

values are reported in Table 3.2. A few observations come to light from the results

in Tables 3.2. First, the Direct Selection of inputs/outputs from raw financial data

does not yield significant correlations in at least 3 of the 6 industry groups, for either

the synchronous or the lagged cases. Consequently, it is concluded that the Direct

RPS is not a significant proxy for financial strength of a firm.

In contrast, the Basic and Augmented selections for the RPS model in (3.6) are

seen to provide significant correlations across many industries. In particular, the

Basic RPS is significant across 5 out of the 6 industries under either the synchronous

or lagged modes, with the exception of the 3-month lagged case. Recall that finan-

cial information almost surely is not available in a contemporaneous manner; instead,

quarterly financial information for a given quarter is generally made public only with

a certain time delay, e.g., 30 days or more. In lagged correlations, referring to Table

3.2, it is evident that the Basic RPS is the most significant for both 1- and 2-month

lags. The Augmented RPS is significant only for 1-month lag (in 3 of the 6 industry
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Table 3.2: Goodness-of-fit χ2-values for each industry using RPS model in (3.6)

Model Combination Software Comm. Hardware Elec. Semi. Services
Synchronous Direct 12.286 29.163 29.326 1.889 5.928 6.222

Basic 39.429 27.939 34.442 29.111 18.681 13.444
Augm. 37.524 27.122 22.349 28.278 23.029 20.667

Lagged Direct 18.476 24.0674 47.930 6.611 14.044 10.111
(1 month) Basic 28.952 41.000 59.093 21.333 24.768 11.222

Augm. 29.905 17.327 20.023 9.389 15.493 12.333
Lagged Direct 18.000 17.417 24.191 26.889 9.406 6.778
(2 month) Basic 20.381 22.000 43.714 21.056 28.826 9.000

Augm. 8.000 8.250 14.191 9.667 10.565 11.222
Lagged Direct 24.667 5.898 14.442 14.111 33.174 9.556
(3 month) Basic 7.048 3.857 28.861 18.000 9.696 6.778

Augm. 10.857 8.347 7.000 5.222 7.087 7.333

groups), although even in this case, the Basic RPS generally outperforms the Aug-

mented RPS with stronger statistics. For a 3-month delay in quarterly information,

none of these two input/output selections provides a measure of underlying financial

strength to predict stock returns 3 months later. Thus, it is concluded that RPS

computed by the model in (3.6) using the Basic Selection of inputs/outputs in (3.3)-

(3.4) qualify as a proxy for relative financial strength of a firm when applied with one

or two-month lag for stock selection. The efficiency score of the Basic selection-based

RPS model in (3.6) is hereby termed the Basic-RPS, or BRPS, indicator.

We test the BRPS indicator, under 1-, 2-, and 3-month lagged forms, using the

(in-sample) historical quarterly data from 96Q1-02Q4, for selection of firms with a

favorable potential for investments. These firms are then used in a portfolio weighting

model for portfolio optimization. To benchmark the BRPS indicator, the RIV model
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presented in Section 1.3.3 is also used for stock selection and compared with portfolios

determined under BRPS.

3.6.3 BRPS- and RIV-based stock selection

The set of 313 firms in the 6 industry groups, presented in Table 3.1, forms the

universe of stocks for the experiments in this section. However, under the BRPS

indicator, only 5 of the 6 industry groups display significant predictive power of

stock returns (when quarterly information is made public with a time delay), and

thus, Services group is eliminated from the BRPS-based stock selection. For each of

the 277 firms in the remaining 5 industry groups, the BRPS indicator is forecasted

for the (future) quarter 03Q1, based on the already computed historical BRPS series

that use the financial reports up to 02Q4. A simple forecast given by the two-quarter

moving average, i.e., the arithmetic average of BRPS for 02Q3 and 02Q4. Then, we

apply:

BRPS-based Stock selection rule: a firm is considered investment-worthy only

if its predicted BRPS ≥ 0.90.

The above rule results in a total of JBRPS = 78 firms for possible inclusion in the

portfolio. The distribution of these 78 firms chosen by the BRPS selection across the

5 industry groups is also indicated in Table 3.3.

The Residual Income Valuation (RIV) model, as introduced in Section 1.3.3, is

used to compare with the BRPS-based portfolio selections. RIV model is chosen,

instead of DDM and FCFE models, because the latter two models are usually used
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Table 3.3: Selection of firms using DEA and RIV models

Indicator Industry Group
Software Comm. Hardware Elec. Semi. Services

BRPS 17 14 19 15 13 -
RIV 15 15 16 20 8 9
Common 5 6 11 6 2 0

to compute a firm’s intrinsic value when the firm has positive and predictable cash

flow that pays dividends to stockholders. However, not all of the firms that are used

in our application are guaranteed to have positive and predictable cash flow. The

RIV model, on the other hand, is more suited for firms with negative or uncertain

cash flow.

As for applying the RIV model, book value of shareholder’s equity (Bt) and

earnings (It) must be forecasted for 03Q1, 03Q2, and 03Q3. We use a simple estima-

tion procedure using past quarters up to 02Q4; the details are omitted for brevity.

Long term (5-year) growth rates for each firm were taken from the publicly avail-

able data and geometric-adjusted for quarterly periods to obtain the required growth

rate g. The cost of capital r values are not readily available for each firm, and their

computations require much more information than discussed in this thesis so far.

Consequently, a representative r value was obtained for each industry from pub-

lished sources, and within a given industry, this value was set fixed for each firm. It

is noted that for a more rigorous calculation of RIV, additional information such as

volatility measurement, beta, and coupon rate of issued bond will be necessary for

each firm in each industry. Accordingly, the present capital value V0j is calculated

using (1.13) for each firm j in the universe of 313 firms, and compared to the stock
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price as of the end of 2002Q4, denoted by Pj. The following RIV-based Stock

selection rule is used:

RIV-based Stock selection rule: a firm is considered investment-worthy only if

its value-to-price ratio V0j/Pj ≥ 1.05.

This procedure resulted in a total of JRIV = 83 firms for possible inclusion in the

portfolio. The distribution of these 83 firms across the 6 industry groups is indicated

in Table 3.3. Observe that the number of firms that are common between the BRPS

and RIV selections is 30.

The BRPS- and RIV-based stock selections are compared with the case when

portfolio optimization uses the entire universe of 313 stocks, referred to as the ALL

case. No quarterly financial performance information is utilized in the ALL case,

and thus, any one of the JALL = 313 firms is a potential candidate for investment

within the portfolio selection model.

3.6.4 Application of BRPS in a Portfolio Selection Model

As stated earlier, quarterly financial information is made public with a certain time

delay, typically a month or two after the quarter ends. Furthermore, the BRPS

indicator was shown to be statistically significant for 1 or 2-month lagged cases while

a 3-month lagged case is not significant. To ascertain the value of this in portfolio

optimization, the BRPS (and RIV) stock selections are applied over an investment

horizon of 3 months under three cases: from Feb 2003 to Apr 2003, from Mar 2003 to

May 2003, and from Apr 2003 to June 2003, representing 1-month lagged, 2-month
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lagged, and 3-month lagged investments, respectively - these 3 cases are simply

referred to as Lag-1, Lag-2, and Lag-3 investment horizons. A monthly-rebalancing

strategy is applied in each case where portfolio allocations are optimally adjusted

at the beginning of each of the 3 months in a given investment horizon. Portfolio

allocations are determined using a static mean-variance framework, see [43], where

portfolio expected return is traded off with portfolio variance, as follows.

Maximize
J∑
i=1

µixi −
J∑
i=1

L(yi)− λ
J∑
i=1

J∑
j=1

σijxixj

Subject to
J∑
i=1

xi ≤ C0

yi =
∣∣xi − x0

i

∣∣ , i = 1, . . . , J

xi ≥ 0, i = 1, . . . , J.

(3.12)

Optimal portfolio allocations xi ($ investment), for firm i = 1, . . . , J , are deter-

mined by solving the quadratic portfolio optimization model in (3.12) for the three

cases: J = JBRPS, J = JRIV , and J = JALL, with an initial budget of $C0. Observe

that a slippage loss function L(.) is incorporated in the objective of (3.12) to account

for possibly investing in stocks with relatively light trading volume, see [27]. The

loss function applied here has the general form

L(yi) = ayi + b(yi)
2/voli, (3.13)

where voli is the (estimated) market total daily trading dollar volume, yi is the

dollar volume of shares purchased/sold in stock i, and a, b are constants. Two levels
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of values for (a, b) are applied depending on whether the stock has very low trading

volume or not. For very low volume (under 50K shares a day), (a, b) = (0.10, 5.0)

is set while for others, (a, b) = (0.05, 1.0). For details, see [25]. The initial budget

is set at C0 = 100, 000 and the initial stock positions x0
i = 0 in all stocks for

the first month of investments. For the remaining two rebalancing periods, C0 is

automatically adjusted to the cash position carried forward in the portfolio and x0
i

is set to the beginning stock positions at the rebalancing time. Expected (monthly)

rate of return is µi, covariance of RoR between stocks i and j is σij, and λ > 0 is a

risk tolerance parameter where larger λ implies an increased risk-aversion.

The required statistical parameters are estimated using historical stock price data

of the year 2002, using the same estimation techniques for all three cases: BRPS, RIV,

and ALL. Under the monthly rebalancing strategy, such estimations are needed at

the beginning of each month in the horizon, conditional upon the data available prior

to that point in time. This approach results in dynamically evolving monthly port-

folios, and these portfolios are (out-of-sample) simulated using the (actual) realized

price series during the horizon. The portfolio model executions and out-of-sample

simulations are all performed using c©MiSOFT software, see Edirisinghe [26].

Standard & Poor 500 index-tracking stock ticker SPY is used as the market

barometer to track the (overall) market performance. The market volatility during

the investment horizon is given by the annualized standard deviation of SPY, which is

about 21.6%, 21.2%, and 18.0%, respectively, for Lag-1, Lag-2, and Lag-3 investment

horizons. Thus, for the purposes of relative portfolio performance comparisons, when

the portfolio model in (3.12) is executed for stock selections in BRPS, RIV, and ALL

82



0

0.5

1
1.5

2

2.5

3

3.5
4

4.5

5

BRPS RIV ALL SPY index

A
nn

ua
liz

ed
 S

ha
rp

e 
ra

tio

Feb-Apr Mar-May Apr-Jun

Figure 3.5: Portfolio performances under 1-, 2-, and 3-month lagged investments

versions, risk tolerance level λ is adjusted such that the resulting portfolio annualized

standard deviation is roughly coincide with that of SPY in each investment horizon.

Hence, the market and the portfolios obtained by solving (3.12) have approximately

the same volatility. Portfolio performance is then measured by the (annualized)

Sharpe Ratio, see [56], which is the annualized RoR (less the risk-free rate, which

is zero in our case) divided by the annualized volatility. These Sharpe ratios are in

Figure 3.5 for each investment horizon using the three model versions of (3.12), along

with the market performance.

Observe that the BRPS indicator has the strongest performance under Lag-1

investment. For Lag-2 investment, BRPS is still the best stock selection criterion,

while RIV is a close second. However, Lag-3 investment is relatively a weak proposi-

tion for the BRPS selection, as it was also evident in the statistical significance tests
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reported in Table 3.2. In Lag-1 and Lag-2 cases, BRPS selection outperforms both

the RIV selection and the ALL option. The market has the strongest performance

in the Lag-3 investment horizon, and only the RIV selection is able to significantly

outperform the market. The relative weak performance of the ALL case may be par-

tially explained by the fact that BRPS or RIV has smaller dimensions of uncertainty

(78 or 83) compared to the ALL case with 313 stocks. The smaller dimension may

possibly avoid unnecessary estimation biases, which help in increasing the accuracy

of the diversification afforded by the portfolio optimization model.

3.7 Noteworthy Issues

Although the DEA-based BRPS indicator provides a new stock selection approach

for portfolio investment and the results show that BRPS indicator outperforms the

RIV-based stock selection, there are still a few issues that need to be highlighted.

First, Proposition 2.3.1 implies that the model saturation problem will occur in

the DEA model if too many inputs and outputs are chosen for the model. In this

case, the DEA model will lose its ability to discriminate the underlying firms. The

generally-accepted ”Rule of Thumb” is that the sample size should be at least twice

the product of the number of inputs and number of outputs, see [24]. In the foregoing

application, this rule of thumb is violated by the Basic and the Augmented selections.

For the Basic RPS, at least 126 firms are required. The number of firms required for

the Augmented selection is even larger. However, the sample sizes for the industry

groups that are used in the previous application are fixed and none of them exceeds
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the required number. Thus, an approach that can reduce the number of inputs and

outputs in DEA-based strength analysis is highly desirable.

Second, the performance scores computed by the RPS model (3.6) are in the range

of 0 to 1, which implies that firms with score of 1 cannot differentiate themselves, and

the firms with score 0 cannot be differentiated either. Thus, the computed correlation

may be affected by this ”truncation phenomenon”. For illustration, the RPS values

computed using the Basic model for each industry group are plotted in Figure 3.6 -

Figure 3.11. The frequency of RPS being 1 is quite evident from these figures. Most

notably, Services industry shows a high incidence of such a case. These frequencies

under the Basic model (considering all 27 quarters in each industry) is plotted in

Figure 3.12. Given the apparent high proportion of RPS=1, a further ranking of the

DEA-efficient firms may be desirable towards a modified RPS value.

Third, when the student-t test is used to examine the correlation between firms’

efficiency scores (that are computed using model (3.6)) and stock RoRs, the normality

assumption was made for both the efficiency scores and RoR. The histogram of RPS

values, computed using the Basic model, for a given firm across all quarters in

Electronics industry is plotted in Figure 3.13. It is observed that the normality

assumption does not hold for the RPS values. Hence, a transformation of the DEA-

based scores is needed to ensure a closer satisfaction of the required normality.

The foregoing issues will be addressed in the subsequent chapters. More specifi-

cally, the first issue is addressed in Chapter 4, while the second and third issues are

further discussed and developed in Chapter 5.
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Figure 3.6: RPS values using Basic model for Software industry

Figure 3.7: RPS values using Basic model for Communication industry
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Figure 3.8: RPS values using Basic model for Hardware industry

Figure 3.9: RPS values using Basic model for Electronics industry
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Figure 3.10: RPS values using Basic model for Semiconductors industry

Figure 3.11: RPS values using Basic model for Services industry
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Figure 3.12: Percentage of 100%-efficient firms in each industry using Basic selection
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Figure 3.13: Histogram of the efficiency scores for firm SPEC in Electronics industry
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3.8 Comments on using linear regression

When considering the influence of RPS on stock returns, one may be tempted to

apply a regression model. That is, stock returns of all firms over all quarters are

regressed on RPS scores of all firms and quarters. Consider stock RoR rjt and RPS

ηjt, for j = 1, . . . , J and t = 1, . . . , T . Let p = J × T and construct the two vectors

R ∈ <p and E ∈ <p, where

R = {r11, . . . , rJ1, r12, . . . , rJ2, . . . , r1T , . . . , rJT}
′

and

E = {η11, . . . , ηJ1, η12, . . . , ηJ2, . . . , η1T , . . . , ηJT}
′
.

Consider the simple linear regression model

R = β0 + β1E, (3.14)

where β0 and β1 are scalars. The overall relationship between stock returns, R,

and financial strength, E, over all firms and quarters is examined by model (3.14).

However, such an overall treatment fails to capture the possibility of RPS being

not predictive on RoR for certain firms, since (3.14) is only concerned with the

existence of a linear trend across all firms in an industry. However, under EMH, the

focus should be to verify that RPS would be a strong predictor across all (or most)

firms in the industry. This was the underlying premise of the correlation analysis in

Section 3.5. To be consistent, under regression analysis, a set of separate J simple

linear regressions must be performed and those separate “slope” coefficients must
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Table 3.4: F ratios for Basic model using simple linear regression in (3.14)

Software Comm. Hardware Elec. Semi. Services
Sync. F Ratio 16.444 2.637 18.004 21.773 21.993 5.544

P-value <.0001 0.105 <.0001 <.0001 <.0001 0.019
Lagged F Ratio 18.416 16.350 47.664 23.336 21.581 1.627
(1 mon.) P-value <.0001 <.0001 <.0001 <.0001 <.0001 0.203
Lagged F Ratio 11.624 1.100 32.787 14.054 10.692 0.080
(2 mon.) P-value. 0.0007 0.295 <.0001 0.0002 0.0011 0.777
Lagged F Ratio 1.923 0.405 13.089 13.187 5.205 0.003
(3 mon.) P-value 0.166 0.525 0.0003 0.0003 0.023 0.957

be tested for significance. This would then be essentially equivalent to what was

performed in the statistical test in Section 3.5.2.

The results of the regression model in (3.14) are reported in Table 3.4. In this

case, the results indicate an overall agreememnt with those in Table 3.2, except

for Communications and Services industries. However, this similarity should be

considered a manifestation of the data used in this case, rather than an agreement

of the conceptual basis of the two approaches.
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Chapter 4

The Generalization of DEA Model

The purpose of selecting inputs and outputs in the DEA model is to develop a relative

financial strength (of a firm) that will be highly correlated with stock return. Given

the 18 financial parameters (in Section 3.1.1), it still remains unknown how these pa-

rameters should be allocated into input/output sets so that the resulting correlation

between a firm’s relative performance score (RPS) and its stock market return will

be maximized. If the inputs and outputs are set “a priori”, it is unlikely that these

selected inputs and outputs will produce the highest correlation. Furthermore, if the

number of selected inputs and outputs exceeds a certain threshold, where the sample

size is less than twice the product of the number of inputs and number of outputs,

see [24], model saturation problem may occur. In this case, the DEA model will lose

its ability to discriminate the relative performance of firms, thus, a firm with weak

performance may be falsely treated as a strong firm. Subsequently, the computed

RPS values will have weak correlation with stock market returns.
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The focus is to find a set of inputs/outputs that provides a relative strength

measure that has the highest correlation with stock market returns. A generalized

DEA model is developed to determine such a configuration of input/output that

maximizes the correlation between the DEA-based RPS scores and the stock market

performance. This maximization involves a difficult binary nonlinear program that

requires iterative re-configuration of parameters of financial statements as inputs and

outputs. A two-step heuristic algorithm that combines random sampling and local

search optimization is utilized for this purpose. A statistical test is developed and

it is used to validate the maximized correlation. A predictor termed the “Relative

Financial Strength Indicator (RFSI)” is developed, which is representative of the

stock market returns. The methodology is tested in the U.S. Technology sector to

determine RFSI indicators for stock selection. Then, those selected stocks are used

within portfolio optimization models to demonstrate the usefulness of the scheme for

portfolio risk management. It should be noted that the “model saturation” issue,

raised in Section 3.7, will be corrected under the GDEA approach.

4.1 The Generalized DEA Approach

When the DEA-based RPS model in (3.6) is used, the M input parameters and N

output parameters are required to be explicitly identified a priori, i.e., an exogenous

specification. While this may be possible in certain applications (such as produc-

tion) where input to output conversion mechanisms are well-understood, our case is

different. We must select a set of input and output parameters from the universe
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of 18 financial parameters describing a firm’s financial health (see Section 3.1.1).

The objective of such a selection is that the resulting RPS score of a firm can be

interpreted as providing a measure of its underlying financial strength. Such finan-

cial strength measures are required to be strongly correlated with the market price

process, under the efficient market hypothesis. If the inputs and outputs for the

RPS model are inappropriately chosen, the resulting RPS values for firms may not

be representative of the fundamental financial strengths that are rewarded by the

financial markets. The generalized DEA approach (GDEA) developed in this chapter

leaves the selection of inputs and outputs as flexible as possible in the sense that a

proper selection of the latter is sought iteratively to maximize the correlation of the

DEA-based strength evaluation and the stock market performance. This process is

best-explained in Figure 4.1, and thus, the GDEA model is based on an endogenous

input/output specification.

The GDEA process of input/output selection in Figure 4.1 can be described as

follows. Suppose a group of firms in a specific industry is under consideration. For

a given fixed input/output categorization, solve the DEA model to obtain the RPS

for each firm, then, the correlation between the RPS and the stock market returns

will be measured and checked if it has the maximum value. If not, reconfigure inputs

and outputs according to some criterion and re-solve the DEA model. This iterative

process that reconfigures the input/output sets, leading to the highest correlation, is

termed the Generalized DEA approach.

More specifically, let us consider the universe of I (=18) parameters that are

potential inputs and outputs. Suppose a given parameter i may be used as an
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Figure 4.1: Schematic of the Generalized DEA approach

input and/or output, or not used at all. Furthermore, suppose the level at which

a parameter must be specified in the DEA model in (3.6) is treated as unknown.

Consequently, for a parameter i with an observed (data) value ξij for firm j, the

level at which it enters the model as an input is denoted by yiξij, where the input

scaling variable yi ≥ 0. Similarly, the level at which the parameter i enters as an

output for firm j is ziξij and the output scaling variable zi ≥ 0. Collecting the yi and

zi components for all parameters, we define an input scaling parameter vector by

y ∈ <I and an output scaling vector by z ∈ <I . An appropriate selection of values

for the pair (y, z) ∈ <2I is not a firm-specific issue. Rather, it must be chosen as a

property of the industry, so that RPS of firms can be compared to each other within

the same industry. More importantly, such a performance score must represent the

fundamental financial strength of a firm that is predictive of (or highly correlated
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with) the stock price action. Therefore, the vector (y, z) is to be held fixed when

computing performance scores of all J firms in the group. Under the scaling vector

parameterization (y, z), the resulting DEA model is

ηk(y, z) := max
u,v

∑I
i=1(ziξik)vi∑I
i=1(yiξik)ui

s.t.

∑I
i=1(ziξij)vi∑I
i=1(yiξij)ui

≤ 1, j = 1, . . . , J

ui, vi ≥ 0, i = 1, . . . , I,

(4.1)

where y is chosen such that
∑I

i=1 yi > 0. ηk(y, z) is the relative performance score

(RPS) of firm k corresponding to the input/output scaling vector pair (y, z). The

following equivalent linear programming model can be used to compute ηk(y, z).

ηk(y, z) := max
u,v

I∑
i=1

(ziξik)vi

s.t.
I∑
i=1

(yiξik)ui ≤ 1

−
I∑
i=1

(yiξij)ui +
I∑
i=1

(ziξij)vi ≤ 0, j = 1, . . . , J

ui, vi ≥ 0, i = 1, . . . , I.

(4.2)

In DEA, the issue of setting a given parameter in both the input and output sets

simultaneously has been addressed in, for instance, see [10] and [19]. In the case of

a CCR model, when a parameter is used both in inputs and outputs, the resulting

DEA score is 1 for each firm. That is,
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Proposition 4.1.1 For some parameter i ∈ {1, . . . , I}, let yi > 0 and zi > 0. For a

firm k being evaluated, suppose the measured value of parameter i satisfies xik > 0.

Then, ηk(y, z) = 1 holds.

Proof. Considering the model (4.2), construct the solution (û, v̂): ûr = 1
yrξrk

> 0,

ûi = 0 if i 6= r and v̂r = 1
zrξrk

> 0, v̂i = 0 if i 6= r. The solution (û, v̂) satisfies the

constraints of (4.2) since (yrξrk)ûr = 1 and

−(yrξrj)ûr + (zrξrj)v̂r = 0, j = 1, . . . , J.

Thus, ηk(y, z) ≥ (zrξrk)v̂r = 1. Since ηk(y, z) ≤ 1 also must hold, we conclude

that ηk(y, z) = 1.

For example, when the parameter i is the “Current Ratio”, the data is always

positive for all firms. If “Current Ratio” is chosen as both input and output in

the DEA model, the performance scores for all the firms under evaluation will be

1. Thus, the model fails to uncover a firm’s business strength. In such a case,

correlation between the computed RPS and the stock market performance is zero,

and thus, such a choice on (y, z) will not maximize the desired strength-market

correlation, see Figure 1. Consequently, to reduce the search space for (y, z) in the

correlation maximization, for every component pair (yi, zi), we must specify yizi = 0

for all i = 1, . . . , I. This prohibits a given financial parameter i from being in the

inputs and outputs simultaneously.
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Definition 4.1.2 A given vector-pair (y, z) is said to satisfy the complementarity

condition if and only if yizi = 0 for all i = 1, . . . , I. In this case, such a pair is simply

referred to as a complementary pair (y, z).

Therefore, a complementary pair (y, z) allows the categorization of the universe of I

parameters as distinct inputs and outputs. In contrast, Cook et al. [19] introduced

the notion of flexible measures whereby a new parameter can be considered in the

presence of existing input/output sets. Their model then determines if this new

parameter should be an input or an output in order to improve the (maximized) DEA

efficiency. In our case, the objective is to have the highest correlation between DEA-

based RPS and the stock market returns. Therefore, we take a different approach that

allows the complementary vector pairs (y, z) to play the role of flexible measures in a

more generalized setting. For this purpose, the domain of (y, z) must be appropriately

chosen to force which parameters should never (or must) be in inputs/outputs.

Recall that in Chapter 3, the term “expert information on parameter selection”

was used to indicate the existence of “expert knowledge” in specifying inputs and out-

puts in the DEA model. For example, the parameters of asset utilization, liquidity,

and leverage perspectives can generally be interpreted as inputs because activities

that are measured by these parameters depend on the planning and operational

strategies of a firm. On the other hand, the parameters of profitability and growth

perspectives are generally considered as outputs because revenue/income generation

is a major objective criterion for a firm. The valuation parameters measure how well

the equity markets perceive “success” of a firm, and they are generally not concerned

98



with a firm’s input strategy. By considering the above “a priori” knowledge, the Aug-

mented selection of inputs and outputs (see (3.3) and (3.5)) is developed by including

all 18 parameters in the model. By incorporating the concept of complementary pair

(y, z), the Augmented selection can be expressed using the following complementary

pair,

ya := {0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}

za := {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1} .

 (4.3)

However, the purpose of this chapter is to find a DEA-based relative performance

strength for a firm such that the correlation between the firm’s RPS and stock

market returns is maximized. Although the Augmented selection uses some expert

knowledge to partition inputs and outputs, is it really necessary to include all these

parameters in the model? Will the correlation increase by reducing the number

of inputs and the number of outputs? What input/output category will produce

the highest correlation? To answer these questions, an input/output search needs

to be conducted in the inputs and outputs feasible domain. In this domain, input

parameters are only chosen from the perspectives of asset utilization, liquidity, and

leverage, while the output parameters are chosen only from the profitability, growth,

and valuation perspectives.

4.1.1 Feasible Domain of Scaling Vectors

Appealing to Proposition 2.3.2, it follows that the DEA model in (4.2) is positively

homogeneous of degree 0 in (y, z) jointly and separately. The main implication of

this result is that it restricts the domain of feasible complementary vector pairs (y, z)
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to a binary space. Along with the complementarity condition in Definition 4.1.2,

thus, the feasible domain of the scaling vectors (y, z) in (4.2) must satisfy,

yizi = 0, yi, zi ∈ {0, 1}, i = 1, . . . , I. (4.4)

An equivalent linear transformation of (4.4), along with the condition that
∑

i yi > 0

and expert information, is considered. This yields the following Restricted Binary

Complementary Domain (RBCD), denoted by Ω∗, for the feasible choices for (y, z).

RBCD : Ω∗ :=

(y, z)

∣∣∣∣∣∣∣∣∣∣

I∑
i=1

yi ≥ 1, yi + zi ≤ 1,
4∑
i=1

yi +
18∑
i=14

yi = 0,

13∑
i=5

zi = 0, yi, zi ∈ {0, 1}, i = 1, . . . , I

 . (4.5)

The reason the above domain is called Restricted binary complementary domain is

that it is restricted by some expert information. Accordingly, for every firm k in

the industry, the corresponding relative performance score ηk(y, z) is determined by

the model in (4.2) for a specified binary complementary vector pair (y, z) ∈ Ω∗.

The goal is to search for (y, z) ∈ Ω∗ such that the relative performance score so-

computed would be a suitable metric of the underlying financial strength of a given

firm, relative to all firms in the group.

When the model in (4.2) is specified using parameters under the RBCD condition

in (4.5) that requires choosing (y, z) ∈ Ω∗, it is herein referred to as GDEA under

Restricted BCD, or simply, Restricted GDEA version.
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On the other hand, a relaxed version of the Restricted binary complementary

domain is also considered when the prior information is not applied in parameter

categorization. This leads to the following Unrestricted Binary Complementary Do-

main (or UBCD).

UBCD : Ω :=

{
(y, z) :

I∑
i=1

yi ≥ 1, yi + zi ≤ 1, yi, zi ∈ {0, 1}, i = 1, . . . , I

}
.

(4.6)

If the model in (4.2) uses parameters under the UBCD condition in (4.6) that

requires choosing (y, z) ∈ Ω, it is herein referred to as GDEA under Unrestricted

BCD, or simply, Unrestricted GDEA version. Performance of the Restricted and

Unrestricted GDEA versions will be compared within portfolio optimization using

the application reported in Section 4.5. In the sequel, the results using GDEA

approach will also be compared with the Basic input/output selection in (3.3) and

(3.4).

4.2 Relative Financial Strength Indicator (RFSI)

The process of determining an RFSI requires, first, determining a correlation metric

for the DEA-based RPS scores and the stock price returns, for the industry as a

whole, for a given vector pair (y, z), and second, designing a suitable iterative pro-

cedure to choose (y, z) ∈ Ω (or Ω∗) in an attempt to maximize the latter correlation

metric (see Figure 4.1).
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In Chapter 3, the basic idea behind determining correlation between a DEA-

based financial strength and its stock price returns for each firm was presented. In

the development here, this idea will be more formalized. The discussion here pertains

to the unrestricted Ω; for the restricted version of RFSI, Ω is simply replaced with

Ω∗.

Let the DEA-based performance score for a firm k in a given industry be de-

termined according to the model in (4.2) as ηk(y, z), for a specified categorization

(y, z) ∈ Ω. Solving (4.2) requires the realized values ξij of all financial parameters for

all firms. The future value of a parameter i for firm j is a random variable, denoted

by Ξij. The collection of random variables Ξij for i = 1, . . . , I = 18 and j = 1, . . . , J

is Ξ. Realizations of Ξij are observed as ξij in (published) financial statements of a

given period (i.e., quarter). For a future period t of uncertain financial performance,

the collection of random variables is the vector Ξt := {Ξtij : ∀i, ∀j}. Let the

DEA-based relative performance score (RPS) for the industry is represented by the

collection of random variables ηt(y, z) := {ηj(y, z;Ξt) : j = 1, . . . , J}. Once the

period t financial statements are observed, with Ξt realized as ξt, the random vector

ηt(y, z) is realized as the vector of values
{
ηj(y, z; ξ

t) : j = 1, . . . , J
}
. In addition,

let Rt
j denote the stock price rate of return (RoR) random variable (for future pe-

riod t) of firm j, and those for all firms are represented by the random J-vector

Rt := {Rt
j : j = 1, . . . , J}. Observed realizations of period t RoR is the vector

rt := {rtj : j = 1, . . . , J}. Consider the pairwise correlations between the two

random vectors ηt(y, z) and Rt, denoted by the correlation vector Γt(y, z) ∈ <J . Its
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jth component, for firm j, is given by

Γtj(y, z) := Corr
{
ηj(y, z;Ξ

t) , Rt
j

}
, (4.7)

where j = 1, . . . , J . The correlation vector Γt(y, z) is, therefore, a measure of the

predictive power of the DEA-based RPS value on stock price returns for the chosen

industry. Indeed, a positive and significant correlation vector Γt(y, z) implies that the

DEA-based performance score is a valuable proxy of the stock market performance

of the industry. Observe that Γt(y, z) for period t depends on the chosen binary

complementary vector (y, z) ∈ Ω. The best industry correlation is thus obtained

when one searches for (y, z) ∈ Ω such that an appropriate metric of the vector

Γt(y, z) is maximized. Vector norms cannot be used as appropriate metrics here

because the goal is to seek positive (and large) correlations across all firms in the

industry. While more complicated formulae are possible, we use the simple average

metric,

Γ̄t(y, z) :=
1

J

J∑
j=1

Γtj(y, z), (4.8)

herein termed the industry correlation metric, to search for the highest positive

correlations industry-wide. Note that the correlation vector Γt(y, z) is unknown for

the future period t, and thus, it must be forecasted. To estimate Γt(y, z), we use the

historical (observed) sample ξ`, ` = 1, . . . , t−1. Using a history length of t0 periods,
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Γtj(y, z) is estimated by the sample correlation coefficient, given by

γtj(y, z) := Correlation coefficient between
{
ηj(y, z; ξ

`)
}t−1

`=t−t0
and

{
r`j
}t−1

`=t−t0
.

(4.9)

Then, the industry correlation metric Γ̄t(y, z) in (4.8) is estimated as

γ̄t(y, z) :=
1

J

J∑
j=1

γtj(y, z). (4.10)

Observe that the statistic γ̄t(y, z) for period t depends on the chosen binary com-

plementary vector (y, z) ∈ Ω. The best industry-correlation metric is thus obtained

when one searches for (y, z) ∈ Ω such that γ̄t(y, z) is maximized, i.e., solve the

industry-correlation maximization model

(CORMAX) : γ̄0 := max
y,z

γ̄t(y, z)

s.t. (y, z) ∈ Ω.

(4.11)

Let the objective value for model (4.11) when Ω is replaced with Ω∗ be denoted by

γ̄∗. Then, we have the following result:

Proposition 4.2.1 γ̄0 ≥ γ̄∗ := max
y,z

{
γ̄t(y, z) : (y, z) ∈ Ω∗}.

Proof. The model in (4.11) with domain Ω is relaxed problem of model in (4.11)

with domain Ω∗. Given the maximization objective, the result holds.

Let an optimal binary complementary pair solving the above maximization (in

(4.11)) be denoted by (y∗, z∗), and that for using domain Ω∗ is (ŷ∗, ẑ∗). Note that

dependence of this pair on the period index t is suppressed. Although the in-sample
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correlation that is obtained from GDEA under Unrestricted BCD is higher than that

from GDEA under Restricted BCD, will it imply that the out-of-sample portfolio

test using stocks selected based on (ŷ∗, ẑ∗) will outperform that based on (y∗, z∗)?

This will be pursued in Section 4.6. Although the maximized industry correlation

metric Γ̄t(y∗, z∗) in (4.8) is estimated by solving the model in (4.11), it is required

to be statistically significant, for if not, the use of the DEA-based financial strength

indicator for the given industry cannot be validated for investment decision making.

Statistical tests for this purpose are discussed in Section 4.3. When this industry

correlation metric is verified to be statistically significant, the Relative Financial

Strength Indicator (RFSI) for a given firm in the industry is defined as follows.

Definition 4.2.2 Suppose Γ̄t(y∗, z∗) is statistically significant for a given industry,

where (y∗, z∗) is an optimal solution of (4.11). Then, the Relative Financial Strength

Indicator (RFSI) of firm j for (a future) period t, given the observed financial state-

ment data ξ` for t− t0 ≤ ` ≤ t− 1 for the industry, is defined by

RFSI(t, j) := E
[
ηj(y

∗, z∗;Ξt) | ηj(y∗, z∗; ξt−t0), . . . , ηj(y∗, z∗; ξt−1)
]
, (4.12)

where ηj(y
∗, z∗; ξ`) is computed according to the DEA model in (4.2) for the in-

put/output categorization (y∗, z∗), and E[.] denotes the conditional expectation given

the RPS scores of the historical t0 periods.
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To simplify the computation of RFSI, the expectation in (4.12) is estimated by the

simple moving average forecast (of t̂ periods, t̂ ≤ t0), given as

RFSI(t, j; t̂) =
1

t̂

t−1∑
`=t−t̂

ηj(y
∗, z∗; ξ`). (4.13)

RFSI(t, j; t̂) is bounded within 0 and 1, where a value of unity indicates the high-

est possible relative financial strength indicator for firm j, relative to the industry

concerned. Also note that a single input/output categorization (y∗, z∗) of the 18 fi-

nancial parameters in Section 3.1.1 is used in computing the RFSI for all firms in the

industry, for the future period t. For future periods beyond t, it may be necessary to

adapt RFSI to new financial statement observations, by resolving (4.11) for a revised

optimal input/output categorization.

4.2.1 Solution method

The CORMAX model in (4.11) is a difficult optimization problem because evaluation of

the objective function (statistic) γ̄t(y, z) in (4.10) requires the solution of a sequence

of linear optimization models (4.2) so that each of the sample correlation coeffi-

cients γ`j(y, z) in (4.9) can be computed. Therefore, the objective function in (4.11)

cannot be explicitly written in closed-form nor can it be verified to be concave (or

pseudo-concave) in the 2I-dimensional decision variable-vector (y, z). Nonconvex op-

timization is known to be computationally tedious, see for instance, [35]. Moreover,

Ω is a binary solution space, i.e., (4.11) is a binary nonconvex optimization model.

Global optimality conditions for discrete nonconvex optimization have been studied,
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e.g. see [36]. However, efficient methods are available only for specially structured

problems and/or without integer restrictions, e.g. see [60] and [65]. Alternatively,

we employ the following heuristic solution scheme: Random Sampling with Local

Optimization (RSLO).

Random Sampling

The method is a two-step procedure, which is based on, first, sampling a set of

initial (y, z) points from the feasible domain Ω, and then, performing a local-search

optimization in Ω for each of those initial sample points. Consider a random sample

of (vector) points ωs := (ys, zs) ∈ Ω ⊂ <2I , for s ∈ S, where S denotes the index

set of the sample points. For each sample point, the objective criterion is calculated

and the sample of industry correlation metric values

{
γ̄t(ys, zs) : s ∈ S

}
(4.14)

is collected. Then, each sample value γ̄t(ys, zs) is improved locally by employing

a non-gradient based local search procedure, starting from the point ωs ∈ Ω. The

corresponding locally improved solution is denoted by ω̃s := (ỹs, z̃s), which is termed

a pseudo-optimal solution. (Local optimality of pseudo-optimal solutions is pursued

in Chapter 6). Then, an approximation for the best input/output categorization for

the industry is determined by

(y∗, z∗) = arg max
s∈S

{
γ̄t(ỹs, z̃s)

}
. (4.15)
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The following procedure is applied to generate a (random) sample point ωs ∈ Ω:

randomly draw a set of 2I values from a continuous uniform distribution in [−1, 1].

The first I values are collected to form the I-vector αs. The last I values are collected

to form the I-vector βs. Then, the sample point ωs = (ys, zs) is defined by the

solution of the binary linear program

(ys, zs) := arg max
(y,z)
{(αs)′y + (βs)′z : (y, z) ∈ Ω} , (4.16)

where a prime denotes the transposition of a vector. This process is then repeated

for each s ∈ S.

Local search

The non-gradient-based local search procedure applied here is a modification

from the Hooke and Jeeves (HJ) method, see [9]. Given a current solution ωp, at

some iteration p of the local search procedure, the original HJ method performs

an exploratory search along the coordinate directions. Coordinate directions that

improve the objective function are used to define a new iterate. The direction to the

new iterate from the starting solution ωp is used to perform a pattern search. The

basic idea about local search is plotted in Figure 4.2, where (y0, z0) is the starting

location and (ŷ, ẑ) is the local optimal. This modified HJ method is adapted to the

binary model in (4.11).

For some candidate ωp ∈ Ω, the ith coordinate ωpi is either 0 or 1. If ωpi = 0,

then an exploratory move is allowed only in the positive (ωi) coordinate direction.

If ωpi = 1, then an exploratory move is allowed only in the negative (ωi) coordinate
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Figure 4.2: Local optimization steps

direction. Once, a new iterate ω̂p is so-determined, a pattern (line) search is not

necessary in our case since the search point ωp + λ(ω̂p− ωp) 6∈ Ω for λ 6∈ {0, 1}. The

resulting algorithmic steps are as follows:

Algorithm-LS

Initialization: Given ωs = (ys, zs) ∈ Ω, see (4.16), determine γ̄t(ωs).

Set p = 1, f(p) = γ̄t(ωs), and ω(p) = ωs.

Step 1: For i = 1, . . . , 2I and denoting the ith elementary coordinate direction by

ei, let

ωi := ω(p) + ei if (ω(p) + ei) ∈ Ω and f(p) < γ̄t(ω(p) + ei)

else, ωi := ω(p)− ei if (ω(p)− ei) ∈ Ω and f(p) < γ̄t(ω(p)− ei)

else, ωi := ω(p).
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Compute ω2I+1 by the XOR ("exclusive or" or "not equal to") operation:

ω2I+1 := ω1 xor ω2 xor · · · xor ω2I .

If ω2I+1 6∈ Ω, set ω2I+1 = ω(p). If ω2I+1 ∈ Ω, compute γ̄t(ω2I+1).

Step 2: Let ω(p+ 1) := arg max {γ̄t(ωi) : i = 1 . . . , 2I + 1}.

If γ̄t(ω(p+1)) = γ̄t(ω(p)) : Terminate the local search and set ω̄s = ω(p).

Else, if γ̄t(ω(p+ 1)) > γ̄t(ω(p)), let f(p+ 1) = γ̄t(ω(p+ 1))

set p← p+ 1 and go to Step 1.

4.3 Statistical tests of Correlations

Suppose given H industries, we are concerned with identifying industries that do not

provide statistical evidence for RFSI-based predictability of stock returns, i.e., the

industry correlation metric Γ̄th(y
h∗, zh∗) is not a significant positive value. Consider

the following hypothesis test for a minimum positive correlation (ρ0) for a given

industry h,

H0 : Γ̄th(y
h∗, zh∗) ≤ ρ0

H1 : Γ̄th(y
h∗, zh∗) > ρ0.

 (4.17)

The above null hypothesis H0 indicates that DEA-based relative financial strength is

not consistent with the efficiency market hypothesis (EMH) for industry h. Note that

Γ̄th(y
h∗, zh∗) := 1

Jh

∑J
j=1 Γtj,h(y

h∗, zh∗), see (4.8), and firm-correlations Γtj,h(y
h∗, zh∗)

are estimated by γtj,h(y
h∗, zh∗) in (4.9). Consider the following arctan hyperbolic
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transformation of γtj,h(y
h∗, zh∗):

ψj,h := tanh−1 γtj,h(y
h∗, zh∗) =

1

2
loge

[
1 + γtj,h(y

h∗, zh∗)

1− γtj,h(yh∗, zh∗)

]
. (4.18)

Using the results that E[γtj,h] ≈ Γtj,h and V ar(γtj,h) ≈
[
1− (Γtj,h)

2
]2

, R.A. Fisher

(1890-1962) showed that ψj.h is approximately normally distributed,

ψj,h ≈ Normal

(
1

2
loge

[
1 + Γtj,h(y

h∗, zh∗)

1− Γtj,h(y
h∗, zh∗)

]
,

1

t0 − 3

)
, (4.19)

see [59], where t0 is the number of periods used in the estimation in (4.9). Next,

define the industry-average statistic by

ψ̄h :=
1

Jh

Jh∑
j=1

ψj,h , (4.20)

which is the sum of Jh normal random variables, and thus, ψ̄h is normally distributed:

ψ̄h ≈ Normal

(
1

2Jh

Jh∑
j=1

loge

[
1 + Γtj,h(y

h∗, zh∗)

1− Γtj,h(y
h∗, zh∗)

]
, σ̂2

)
, (4.21)

where the variance of ψ̄h is given by

σ̂2 :=
1

Jh(t0 − 3)
+

2

(Jh)2

∑
j<k

Cov (ψj,h, ψk,h) . (4.22)

Cov (ψj,h, ψk,h) in (4.22) depends on the covariance between γtj,h(y
h∗, zh∗) and γtk,h(y

h∗, zh∗).

The latter two correlations are the point estimates of the firm-correlations Γtj,h(y
h∗, zh∗)
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and Γtk,h(y
h∗, zh∗), for firms j and k. Firm-correlation measures the degree of associa-

tion between a firm’s financial strength and its stock price return, a process that may

be expected to be fairly consistent across all firms in the industry. Therefore, when

firms j and k operate independent of each other, the point estimates γtj,h(y
h∗, zh∗) and

γtk,h(y
h∗, zh∗) of the firm-correlations Γtj,h(y

h∗, zh∗) and Γtk,h(y
h∗, zh∗), respectively, can

be expected to be independent of each other as well. This independence assumption

results in Cov (ψj,h, ψk,h) = 0, and thus, the parameters of distribution of ψ̄h are

(approximately) known once the value of Γtj,h(y
h∗, zh∗) is known.

Observe that under the equality sign in the null hypothesis in (4.17), one has

reference only to the industry correlation metric, i.e., Γ̄th(y
h∗, zh∗) = ρ0; however,

we need knowledge of the individual firm-correlations Γtj,h(y
h∗, zh∗). Let the latter

correlations be given by

Γtj,h(y
h∗, zh∗) = ρ0θj,h , for j = 1, . . . , Jh, (4.23)

where θj,h must satisfy the requirements:

Jh∑
j=1

θj,h = Jh and − 1

ρ0

≤ θj,h ≤
1

ρ0

,∀j = 1, . . . , Jh. (4.24)

The constraints in (4.24) follow from the fact that the industry-correlation metric is

ρ0 (specified as a positive value) and that firm-correlations are bounded within −1
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and +1. Then, denoting

ψ0(θ) :=
1

2Jh

Jh∑
j=1

loge

[
1 + ρ0θj,h
1− ρ0θj,h

]
and σ2 :=

1

Jh(t0 − 3)
, (4.25)

it follows that ψ̄h ≈ Normal (ψ0(θ), σ
2). For finiteness of the mean, ψ0(θ), the

inequalities in (4.24) must be satisfied as strict inequalities, i.e., − 1
ρ0
< θj,h <

1
ρ0

,

j = 1, . . . , Jh. Then, for α-significance level and for the one-sided test, H0 is accepted

if √
Jh(t0 − 3)

(
ψ̄h − ψ0(θ)

)
≤ Z−1(1− α), (4.26)

or,

ψ̄h ≤ ψ0(θ) +
Z−1(1− α)√
Jh(t0 − 3)

, (4.27)

where Z−1(.) is the inverse c.d.f. of a standard normal random variable. To test

H0 to conclude that the DEA-based relative strength does not provide sufficient

explanatory power for stock price returns in industry h, therefore, specific θ values

are required. Such information is not available, nor can it be estimated. However,

if H0 is accepted for the smallest (threshold) value of the right hand side in (4.27)

over all possible θ, then, indeed H0 is accepted for the industry h. Define,

ψmin
0 := inf

θ

{
ψ0(θ) :

Jh∑
j=1

θj,h = Jh , −
1

ρ0

< θj,h <
1

ρ0

, j = 1, . . . , Jh

}
. (4.28)

Hence, if ψ̄h ≤ ψmin
0 + Z−1(1−α)√

Jh(t0−3)
, then H0 is accepted for the industry h.
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Proposition 4.3.1 For 0 < ρ0 < 1,

ψmin
0 =

1

2
loge

(
1 + ρ0

1− ρ0

)
. (4.29)

Proof. Note that ψ0(θ) is nonconvex - it is convex in the positive orthant and concave

in the negative orthant. Consider the (relaxed) minimization problem:

Z∗ := min
θ

{
ψ0(θ) :

Jh∑
j=1

θj,h = Jh

}
, (4.30)

and thus, Z∗ ≤ ψmin
0 . Since the constraints of (4.30) are linear, “Constraint Quali-

fication” (CQ) is satisfied at all feasible solutions, thus implying that every optimal

solution of (4.30) must be a Karush-Kuhn-Tucker (KKT) point, see [9]. Denoting the

Lagrange multiplier associated with the equality constraint by λ, the KKT conditions

yield,

2ρ0

1− (ρ0θj,h)
2 + λ = 0 , ∀j = 1, . . . , Jh. (4.31)

Therefore, θj,h = νja must hold for all j = 1, . . . , Jh, where νj is +1 or −1 and a

is a positive constant. The equality constraint thus implies that
∑Jh

j=1 νj = Jh/a >

0, which is the net count of positive values in θj,h for j = 1, . . . , Jh, and thus,∑Jh

j=1 νj = 1, 2, . . . , Jh. That is, a can take on the set of possible discrete values

{1, Jh

Jh−1
, Jh

Jh−2
. . . , Jh

2
, Jh}. Each of these values for a defines a distinct KKT point
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provided the objective function is well-defined at those points, which is given by

1

2Jh

 ∑
j:νj=+1

loge

(
1 + aρ0

1− aρ0

)
+

∑
j:νj=−1

loge

(
1− aρ0

1 + aρ0

)
=

1

2Jh

(
Jh∑
j=1

νj

)
loge

(
1 + aρ0

1− aρ0

)

since the following identity holds:

loge

[
1 + ρ0(a)

1− ρ0(a)

]
+ loge

[
1 + ρ0(−a)
1− ρ0(−a)

]
= 0.

Therefore, the objective value associated with each KKT-point is given by 1
2Jh

[
Jh

a
loge

1+aρ0
1−aρ0

]
provided a ≤ 1

ρ0
. Then, the minimum in (4.30) is obtained by

Z∗ = min

{
1

2a
loge

(
1 + aρ0

1− aρ0

)
: a = 1,

Jh
Jh − 1

,
Jh

Jh − 2
. . . ,min{Jh, 1/ρ0}

}
.

(4.32)

Next, noting that the function f(x) = 1
x

loge

(
1+xρ0
1−xρ0

)
is monotonically nondecreasing

in x for x ∈ [1, 1/ρ0], it follows that a = 1 is indeed the optimal solution in (4.32),

which thus implies that each νj = +1 at the optimum. That is, θj,h = 1, ∀j, solves

the relaxed problem in (4.30), which yields Z∗ = 1
2
loge

(
1+ρ0
1−ρ0

)
. But, for 0 < ρ0 < 1,

we have − 1
ρ0
< θj,h = 1 < 1

ρ0
for all j. This leads to the feasible point upper bound

on the infimum in (4.28) as ψmin
0 ≤ Z∗. Combining with Z∗ ≤ ψmin

0 , the proof is

completed.
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4.4 Selection criteria for portfolio optimization

The foregoing statistical analysis can be used to determine an industry partition for

investment. Given a set of industries h = 1, . . . , H for consideration in period t,

an investment-worthy (screened) set H is determined under the Industry Selection

Criterion given by

(ISC) : H :=

{
h : ψ̄h >

κ

2
loge

(
1 + ρ0

1− ρ0

)
+
Z−1(1− α)√
Jh(t0 − 3)

, h = 1, . . . , H

}
,

(4.33)

where κ ≥ 1 is a user-specified (safety) factor. For each industry h ∈ H, individual

stocks j are chosen from the given firms j = 1, . . . , Jh by using RFSI as a selection

discriminator. Under Definition 4.2.2 and referring to the computation of RFSI in

(4.13), for a given industry h ∈ H, evaluate the moving average forecast of t̂ periods,

RFSI(t, j; t̂) =
1

t̂

t−1∑
`=t−t̂

ηj(y
h∗, zh∗; ξ`). (4.34)

The subset (of firms) Jh from industry h ∈ H is chosen for portfolio analysis under

the Stock Selection Criterion given by

(SSC) : Jh :=
{
j : RFSI(t, j; t̂) ≥ R∗, j = 1, . . . , Jh

}
, (4.35)

where R∗ is a prespecified threshold, where 0 < R∗ ≤ 1. The stocks in the subset

Jh, for h ∈ H, are then expected to perform well in the stock market with high
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confidence. The universe of securities for portfolio analysis is thus given by

N :=
⋃
h∈H

Jh, (4.36)

which is a subset of the original universe of stocks, i.e., |N | ≤ J0 :=
∑H

h=1 Jh.

Investment weight to be attached to each stock j ∈ N is then determined by a

portfolio optimization model. There are several models in the literature for this

purpose, and the choice of a model is primarily guided by risk/return considerations.

Risk specifications are multi-pronged and portfolio optimization models are multi-

faceted. For instance, when there are transactions and slippage costs of trading,

portfolio drawdown characteristics are a major concern of risk. Also, when market

evolutionary dynamics are nonstationary, multiperiod sequential stochastic decision

optimization is shown to yield superior performance compared to static one period

models, see [25] for details.

The focus here is to demonstrate the usefulness of the preceding selection criteria,

(ISC) and (SSC), over the unscreened set of J0 stocks. We will use the portfolio

optimization model in (3.12) to construct two portfolios: one using all J0 stocks, and

the other using N stocks that is selected by using ISC and SSC. The performance

of these two portfolios are compared in the next section.

4.5 Application of RFSI in the Technology Sector

The preceding relative financial strength indicator, RFSI, is applied in portfolio op-

timization using the data set in Section 3.6, where several (publicly-traded) U.S.
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companies in various industries are considered. The objective is to validate the use

of RFSI-based stock selection as a means of improving risk/return performance of

optimized portfolios. Quarterly financial statements of firms during the period 1996

to 2002 are used. Reported results pertain to a time window of t0 = 27 quarters

for industry-correlation maximization in (4.11). The data set involves only the tech-

nology sector, as identified by the industry groups listed in Table 3.1: Computer

Software (h = 1), Communication Equipment (h = 2), Computer Hardware (h = 3),

Electronics (h = 4), Semiconductors (h = 5), and Computer Services (h = 6). Thus,

the total number of firms is 313.

Consider the concept of synchronous and lagged correlations introduced in Sec-

tion 3.6.1. Also, recall that lagged correlations are important from the standpoint

of implementations because quarterly financial information is made public with a

certain time delay, typically a month after the quarter ends. Thus, the maximum

synchronous correlation, along with one-month lagged maximum correlation, are

computed through the GDEA process for each industry group in the Technology

sector.

In order to determine the optimal input/output categorization of the 18 financial

parameters in Section 3.1.1, the two-step heuristic solution method in Section 4.2.1

is applied, where an initial sample (ys, zs), s ∈ S, is determined using a sample of

size |S| = 20. The corresponding sample of objective correlations in (4.14) is then

computed. For each sample point, the objective industry-correlation value γ̄thS(y, z)

is improved via the local search procedure in Algorithm-LS, see 4.2.1. Note that

the subscript S indicates it is a synchronous correlation. The optimal vector pairs
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(yh∗S , z
h∗
S ) corresponding to the largest correlation are then obtained, see Table 4.1.

This process is repeated to obtain one-month lagged optimal correlation, which is

denoted by γ̄thL(yh∗L , z
h∗
L ), where (yh∗L , z

h∗
L ) is the corresponding optimal input/output

pair, see Table 4.2. The notation ‘in’, ‘out’, or ‘-’ represent a given financial statement

parameter i is an input, output, or it is not considered, respectively, in an industry

h. These results pertain to the Unrestricted version that uses Ω in (4.6). Those for

the Restricted version Ω∗ in (4.5) are in parentheses in Table 4.1 and 4.2.

The local search trajectory corresponding to the sample point that leads to the

reported optimal input/output categorization is plotted, for the Unrestricted domain

Ω and the Restricted domain Ω∗ for both synchronous and one-month lagged cases,

in Figures 4.3, 4.4, 4.5, and 4.6, respectively, for each industry.

For industry-optimal (yh∗S , z
h∗
S ) categorization, for both cases of Unrestricted and

Restricted domains, industry-correlation metric γ̄thS(y
h∗
S , z

h∗
S ) is estimated according

to (4.9), and each industry is tested for statistical significance using the hypothesis

test in (4.17). The test statistic ψ̄hS in (4.20) is computed and reported in Table

4.1. The same process is repeated for one-month lagged case and the corresponding

test statistic ψ̄hL is reported in Table 4.2. The minimum positive correlation is

set to ρ0 = +0.10, which yields ψmin
0 = 0.1003, see (4.29). Setting the level of

significance α = 5% and the safety factor κ = 1.2, the resulting critical values for

the ISC criterion in (4.33) are also reported in Table 4.1 and 4.2. Observe that

optimized industry-correlation metric under Unrestricted parameter domain Ω and

the Restricted domain Ω∗, for the synchronous case, all six industries are chosen by

the ISC criterion. However, for the one-month lagged case, under both Unrestricted
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Table 4.1: Optimal input/output categorization (yh∗S , z
h∗
S ) for (synchronous) RFSI in

each industry
Financial Industry (h)

parameter (i) Software Communic. Hardware Electro. Semicond. Services
1 in (out) out (-) - (-) out (out) - (-) out (out)
2 out (-) - (-) - (-) - (-) - (-) - (-)
3 in (out) in (out) - (-) in (-) - (-) - (-)
4 - (-) out (in) - (-) - (in) out (-) in (in)
5 - (in) in (in) - (-) - (-) - (-) out (-)
6 in (in) - (-) - (-) - (-) out (-) - (-)
7 - (in) - (in) in (in) in (in) out (-) in (in)
8 out (-) - (-) - (-) - (-) in (in) - (-)
9 in (in) - (-) - (-) - (-) - (-) - (in)
10 - (in) - (in) in (in) - (-) out (-) in (-)
11 - (-) - (in) in (in) - (-) in (in) - (-)
12 in (-) - (-) - (-) - (-) in (-) in (-)
13 - (-) - (-) - (-) - (-) in (-) out (out)
14 out (out) out (out) out (out) out (out) - (out) out (out)
15 in (out) - (out) out (out) - (-) - (-) out (out)
16 out (-) - (-) - (-) - (-) out (out) out (out)
17 - (-) - (-) - (-) - (-) - (-) - (-)
18 - (-) - (-) - (-) - (-) - (-) - (-)

Max.Corr. γ̄t
hS(yh∗

S , zh∗
S ):

Unrestricted domain 0.247 0.330 0.234 0.283 0.233 0.200
Restricted domain (0.245) (0.249) (0.234) (0.278) (0.225) (0.198)

Test statistic ψ̄S
h :

Unrestricted domain 0.261 0.365 0.250 0.308 0.244 0.212
Restricted domain (0.258) (0.263) (0.250) (0.301) (0.242) (0.209)

Basic categorization :
Corr. γ̄t

hS(y0S , z
0
S) 0.142 0.137 0.139 0.098 0.085 0.058

Test statistic 0.149 0.144 0.144 0.101 0.089 0.059

ISC Critical Value 0.172 0.169 0.172 0.160 0.161 0.175
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Table 4.2: Optimal input/output categorization (yh∗L1
, zh∗L1

) for (one-month lagged)
RFSI in each industry

Financial Industry (h)
parameter (i) Software Communic. Hardware Electro. Semicond. Services

1 in (-) out (-) out (out) out (out) out (-) - (-)
2 out (out) in (-) - (-) - (-) out (-) - (-)
3 out (out) - (-) out (out) - (-) in (-) - (-)
4 - (-) out (in) in (-) - (-) - (-) - (in)
5 out (in) in (in) out (-) in (in) out (-) - (in)
6 in (-) - (-) - (-) - (-) - (-) - (-)
7 - (in) out (-) in (in) in (in) - (-) in (in)
8 - (-) - (-) - (-) - (-) in (in) in (in)
9 - (-) - (-) - (-) - (-) - (-) - (in)
10 - (in) - (-) - (-) - (-) - (-) in (-)
11 - (-) - (-) in (in) - (-) in (in) out (-)
12 in (in) - (-) - (-) - (-) - (in) out (-)
13 - (-) - (-) - (-) - (-) - (-) out (out)
14 out (out) out (out) - (out) out (out) - (out) out (out)
15 - (out) - (out) out (out) - (-) - (-) out (out)
16 - (out) - (out) out (out) - (-) out (out) - (out)
17 out (-) - (out) - (-) - (-) - (-) - (-)
18 in (out) - (-) - (-) - (-) - (-) - (-)

Max.Corr. γ̄t
hL(yh∗

L , zh∗
L ):

Unrestricted domain 0.208 0.278 0.264 0.220 0.212 0.156
Restricted domain (0.185) (0.194) (0.252) (0.220) (0.201) (0.125)

Test statistic ψ̄L
h :

Unrestricted domain 0.220 0.303 0.283 0.239 0.224 0.161
Restricted domain (0.194) (0.206) (0.272) (0.239) (0.214) (0.130)

Basic categorization :
Corr. γ̄t

hL(y0L, z
0
L) 0.141 0.130 0.207 0.090 0.108 0.034

Test statistic 0.147 0.134 0.220 0.093 0.113 0.034

ISC Critical Value 0.172 0.168 0.172 0.160 0.161 0.175
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and Restricted domains leads to rejecting one industry, Services (h = 6). As stated

earlier, synchronous correlation is not appropriate to be used for industry/stock

selection due to the time delay of quarterly financial statements going public, thus,

only the one-month lagged correlation is used as a metric for industry/stock selection.

Correlations corresponding to the exogenous Basic selection of input/output in

(3.3) and (3.4) are also reported in Table 4.1 and 4.2, respectively, for synchronous

and one-month lagged cases. Note that the maximized correlations are strictly better

than those resulting from the Basic selection of the 18 financial parameters. Also note

that the Basic selection fails to pick a single industry for investment for synchronous

case, while for the one-month lagged case, only Hardware industry (h = 3) is selected,

based on DEA-based predictability.

For the industries chosen as above using one-month lagged correlation, RFSI

indicator is computed according to (4.34), with t̂ = 2. That is, the most recent two

quarter moving average is computed for predicting RFSI for quarter 1 of 2003. These

RFSI predictions are plotted in Figures 4.7 and 4.8, respectively, for Unrestricted and

Restricted cases. Specifying the threshold R∗ = 0.60 for the stock selection criterion

in (4.35), stocks are chosen for portfolio optimization. As evident from Figures 4.7

and 4.8, only a small fraction of the universe of 313 securities are chosen by the SSC;

for the Unrestricted case, 51 securities are selected (|N | = 51) and for the Restricted

case, 60 securities are selected (|N | = 60).
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4.6 Portfolio optimization

The portfolio optimization model in (3.12) is executed for several risk tolerance levels

using the screened subsets of stocks, under the stock selection criterion. Portfolio

allocations (i.e., weights) are determined by solving the appropriate quadratic pro-

gramming models, specified with a model-time period of 3-months from Feb 01-Apr

30, 2003, herein referred to as the investment horizon. A monthly-rebalancing strat-

egy is applied where portfolio allocations are optimally adjusted at the beginning of

each of the 3 months in the investment horizon. Consequently, the resulting portfo-

lios are evaluated (i.e., out-of-sample simulated) on a daily basis by using the actual

price realizations from the investment horizon. That is, portfolio allocations deter-

mined at the end of 2002 by the model are simulated using prices from Feb 01-Apr

31, 2003 to determine the actual portfolio performance characteristics. All portfolio

computations are carried out within c©MiSOFT software, see [26].

Performance characteristics are compared for the following four cases: stock selec-

tion over Unrestricted domain, stock selection over Restricted domain, stock selection

using Basic model that is introduced in Chapter 3, and stock selection using the RIV

model in Section 1.3.3. By varying the value of the risk tolerance parameter λ in

each case, efficient frontiers are traced and plotted in Figure 4.9. It is evident that

the RFSI-based stock selection outperforms the the case that uses the Basic selection

and RIV selection, with the Unrestricted RFSI version showing better portfolio gains

than the Restricted version.

During the same investment horizon, the market barometer index, S&P-500 in-

dex, displays an annualized standard deviation of 22.4%. The Unrestricted RFSI,

126



Basic, and RIV versions of portfolio investment are set such that each version will

provide a portfolio with an annualized standard deviation of (approximately) 22.4%.

Portfolio evolutions corresponding to this case are depicted in Figure 4.10, where the

performance of S&P-500 index is also indicated. It is observed that the cumulative

return reaches the highest level at the end of the investment horizon in the case

of the RFSI-based stock selection using the Unrestricted selection of input/output

parameters.

4.6.1 Concluding remarks

This chapter developed a new quantitative metric, termed the Relative Financial

Strength Indicator (RFSI), which is designed to have high correlation with stock

price returns. The underlying methodology is based on using a generalized version of

data envelopment analysis, coupled with selecting inputs and outputs from financial

statements via a well-defined optimization process. From Table 4.1 and 4.2, it is

observed that the number of inputs and outputs selected by this optimization process

is much less than that chosen by Basic selection, which includes 9 inputs and 7

outputs. For example, for the one-month lagged case, in Communications industry,

2 inputs and 4 outputs are chosen using both Unrestricted BCD and Restricted BCD.

In Semiconductor industry, 3 inputs and 4 outputs are chosen using Unrestricted

domain and 3 inputs and 2 outputs are chosen using Restricted domains. Thus, the

model saturation problem is fixed to a great extent, while increasing the required

correlations significantly.
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Chapter 5

Improvements on the GDEA

Approach

In Section 3.7, three specific noteworthy issues were discussed to improve the DEA-

based strength evaluation. The issue of model saturation effect was rectified via the

GDEA approach given in Chapter 4. That is, by optimally choosing those subsets of

inputs and outputs that lead to maximized correlation, GDEA model is not subject

to parameter saturation. However, the issue of Relative Performance Score (RPS)

being restricted between 0 and 1 remains a major concern. That is, firms with RPS

of 1 do not differentiate themselves, and also since firms with RPS of 0 are not further

discriminated either. Hence, the computed correlations may be adversely affected by

this truncation phenomenon. Furthermore, in the third issue raised, the assumption

of normality for the RPS values may very well be violated as demonstrated earlier.

This assumption is necessary when statistical significance tests are performed, and
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therefore, the raw RPS values may need to be transformed. Such a transformation is

investigated so that a near-normal strength metric can be developed, which has high

correlation with market returns. These are the topics of discussion in this chapter.

5.1 Discrimination of efficient firms

The problem of non-discrimination of firms with RPS of 1 is exemplified using the

Basic selection of inputs and outputs in Section 3.7. Figure 3.12 shows that there

is a high percentage of firms labeled RPS=1 across almost all industry groups. This

artificial (upper) truncation of RPS by 1 may result in a lack of discrimination of firms

that are labeled strong, hence, its correlation with market return may be adversely

affected. Below, a modified RPS score, denoted by ηck(y, z), is developed for firm k

that mitigates this truncation error.

The method developed here is essentially an extension of the idea proposed by

Anderson and Peterson [5], where they provided a fix for the truncation error of

VRS-based DEA models, such as the BCC model. However, in our case, the DEA

model is CRS, and the following correction is made, where C is a constant greater
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than unity.

ηck(y, z) := max
u,v

I∑
i=1

(ziξik)vi

s.t.
I∑
i=1

(yiξik)ui = 1

−
I∑
i=1

(yiξij)ui +
I∑
i=1

(ziξij)vi ≤ 0, ∀j, j 6= k

−C
I∑
i=1

(yiξik)ui +
I∑
i=1

(ziξik)vi ≤ 0,

ui, vi ≥ 0, i = 1, . . . , I.

(5.1)

The basic idea of the corrected GDEA model in (5.1) is to check how much further

an efficient firm can increase its inputs proportionately without sacrificing the firm’s

efficiency. Note that the proportionate constant C (C > 1) is introduced in the

model only for firm k that is being evaluated. The model in (5.1) has the following

properties:

Properties:

1. 0 ≤ ηck(y, z) ≤ C

2. ηck(y, z) ≥ ηk(y, z), ∀k

3. ηck(y, z) = ηk(y, z) if ηk(y, z) < 1

4. ηck(y, z) > 1 only if ηk(y, z) = 1
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Whether the corrected DEA model leads to improving the differentiation among

firms that are under evaluation will be addressed in the computational results in

Section 5.3 of this chapter.

5.2 Transformation of RPS Values

There does not exist, to the best of the author’s knowledge, computable statistical

analysis of correlation when the underlying random variables are non-normally dis-

tributed. RPS (or the corrected RPS (CRPS)) scores are generally non-normally

distributed, see Figure 3.13. In this case, a transformation is needed to obtain ap-

proximately normally distributed CRPS scores. Generally, stock returns are assumed

to be normally distributed, see [4]. Thus, this section attempts to transform CRPS

to assure near-normality. In the sequel, such a transformed CRPS score is referred

to as the relative financial strength of a firm.

The transformation function B should have the following two properties: first, B

must be nondecreasing, which indicates that a firm’s high CRPS will correspond to a

high measure of relative financial strength; second, the range of B must be (−∞,∞),

representing the range of a normal distribution. The Box-Cox transformation [13]

is one of the most commonly used nonlinear transformations that satisfy these two

properties, see [39].

The Box-Cox transformed CRPS score η, denoted by Bα(η), is

Bα(η) =


ηα−1
α

when α 6= 0

log(η) when α = 0,
(5.2)
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where α is a scalar parameter, see [63] for details. Since (5.2) is not well defined for

η = 0, we set a lower bound to CRPS as η ≥ ε for some small ε > 0. The transformed

value Bα(η) has the following properties:

Properties:

1. Bᾱ(η) ≥ Bα̂(η) if ᾱ ≥ α̂

2. if α > 1, Bα(η) is convex

3. if α < 1, Bα(η) is concave

4. if α = 1, Bα(η) is linear

5. if α > 0, Bα(η) ≤ log(η)

6. if α < 0, Bα(η) ≥ log(η)

The Box-Cox method suggests that for some α values, Bα(η) is normally distributed,

see [50].

The Box-Cox normality transformation can be applied to the performance scores,

ηck(y, z), that are computed by the modified GDEA model in (5.1). In this case,

the range of ηck(y, z) is between ε and C, i.e., 0 < ε ≤ ηck ≤ C. It is necessary

to choose an α value such that the transformed scores Bα(η
c
k(y, z)) become near-

normally distributed. This will be addressed in the following section using firms

from the Technology sector in the U.S. market.
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5.3 Computational Results

The same industry groups in Technology sector that are used for experimentation

in Chapters 3 and 4, see Table 3.1, are employed in this chapter to validate the

methods proposed in Sections 5.1 and 5.2. By applying the corrected DEA model

in (5.1), the CRPS values are obtained for the Basic model using C = 100. The

histogram of CRPS values that are greater or equal to 1 are plotted in Figure 5.1-

5.6, for each industry group. It is evident that firms with RPS value of 1 are now

further differentiated and their corrected values, in most cases, remain between 1

and 3. With this additional layer of differentiation of firms with RPS value of 1,

the resulting CRPS must be transformed under the Box-Cox method to test if more

normally distributed relative strength scores can result under a suitably-chosen α

value. To test this computationally, CRPS values are computed using the optimal

inputs and outputs obtained using the GDEA approach in Chapter 4.

Using the optimal input/output vector (yh∗S , z
h∗
S ) obtained using the GDEA model

in Chapter 4 for industry h under both Unrestricted and Restricted domains, see Table

4.1, the CRPS values, denoted by ηcjt(y
h∗
S , z

h∗
S ), are computed for j = 1, . . . , Jh and

t = 1, . . . , t0. Note that the subscript S indicates that (yh∗S , z
h∗
S ) corresponds to the

maximized synchronous correlation.

For a given firm j, consider the sample of t0 values of the CRPS ηcjt ≡ ηcjt(y
h∗
S , z

h∗
S )

for t = 1, . . . , t0. The focus here is on whether the transformed sample, Bα

(
ηcjt
)
,

t = 1, . . . , t0, can be near-normally distributed for a certain α specified in (5.2). To

verify this normality, the Chi-square (χ2) goodness-of-fit test is employed. Using a

grid of 10 intervals, the resulting goodness-of-fit test statistic, denoted by Ψc
j(α), is
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industry–Basic model
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Figure 5.4: Histogram of corrected RPS values for 100%-efficient firms in Electronics
industry–Basic model
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Figure 5.5: Histogram of corrected RPS values for 100%-efficient firms in Semicon-
ductors industry–Basic model
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Figure 5.6: Histogram of corrected RPS values for 100%-efficient firms in Services
industry–Basic model
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χ2-distributed with 9 d.f. For the one-sided test and a significance level of 5%, the

critical value is χ2
9,0.05 = 16.919. Thus if Ψc

j(α) ≤ 16.919, it is concluded that the

sample Bα

(
ηcjt
)
, t = 1, . . . , t0, comes from a normal distribution. Otherwise, there is

no statistical evidence for the required normality. This process is repeated for each

firm j = 1, . . . , Jh, in the chosen industry h = 1, . . . , H. Accordingly, the measure of

Normality Satifaction Degree is defined for each industry as follows.

Definition 5.3.1 (Normality Satisfaction Degree: NSD)

The Normality Satisfaction Degree, for given α, is defined for a chosen industry h

by ph(α) =
∑Jh

j=1w
h
j (α)/Jh, where

whj (α) :=

 1 if Ψc
j(α) ≤ 16.919

0 otherwise.

With C value in (5.1) set to 100, the degree of normality measure ph(α) is com-

puted for α = −0.2,−0.1, 0, 0.1, 0.2, 1, and they are given in Table 5.1 and 5.2,

respectively, for Unrestricted and Restricted cases for each industry. Note that α = 1

indicates that no Box-Cox transformation is applied to the efficiency scores. In the

same tables, the last column represent the NSD measure for the case of C = 1

and α = 1, that is, no further differentiation of efficient firms nor any nonlinear

transformation of the efficiency scores are applied.

It must be observed that NSD values are improved in most cases under the Box-

Cox transformation on ηcjt(y
h∗
S , z

h∗
S ), and the improvement varies with the chosen α

value. An appropriate choice of α is made under the following two rules of thumb:
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Industry C = 100 C = 1
Group α = −0.2 α = −0.1 α = 0 α = 0.1 α = 0.2 α = 1 α = 1

Software 42.86% 35.71% 33.33% 16.67% 14.29% 11.90% 28.57%
Communication 16.33% 38.78% 63.27% 57.14% 65.31% 46.94% 57.14%

Hardware 88.37% 86.05% 86.05% 86.05% 86.05% 58.14% 41.86%
Electronics 88.89% 88.89% 88.89% 83.33% 80.56% 41.67% 41.67%

Semiconductors 59.42% 57.97% 50.72% 46.38% 49.28% 44.93% 28.12%
Services 84.21% 86.84% 84.21% 71.05% 73.68% 33.33% 53.53%

Average NSD 63.35% 65.71% 67.75% 60.10% 61.53% 39.49% 41.82%

Table 5.1: Normality Satisfaction Degree for different α values for each industry
under Unrestricted domain

Industry C = 100 C = 1
Group α = −0.2 α = −0.1 α = 0 α = 0.1 α = 0.2 α = 1 α = 1

Software 80.95% 85.71% 85.71% 76.19% 76.19% 47.62% 42.86%
Communication 73.47% 79.59% 83.67% 79.59% 79.59% 55.10% 40.82%

Hardware 88.37% 86.05% 86.05% 86.05% 86.05% 58.14% 41.86%
Electronics 86.11% 88.89% 90.28% 88.89% 88.89% 56.94% 58.33%

Semiconductors 86.96% 82.61% 81.16% 81.16% 75.36% 26.87% 33.33%
Services 89.47% 89.47% 89.47% 76.32% 73.68% 38.89% 26.32%

Average NSD 84.22% 85.39% 86.06% 81.37% 79.96% 47.26% 40.59%

Table 5.2: Normality Satisfaction Degree for different α values for each industry
under Restricted domain

139



30%

40%

50%

60%

70%

80%

90%

-0.2 0 0.2 0.4 0.6 0.8 1

alpha

Av
er

ag
e N

SD

Unrestricted Restricted

Figure 5.7: Average NSD for various α values for C = 100 under Unrestricted and
Restricted domains

(i) NSD value under the chosen α must yield a significant increase over that under

α = 1 for every industry.

(ii) NSD value under the chosen α must have the highest average over all industries.

By the above rules of thumb, it is concluded that α = 0 is an appropriate choice for

the transformation of CRPS scores to obtain near-normal distributions, see Figure

5.7.
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Chapter 6

Value of Expert Information under

GDEA

The concept of “Expert Information (EI)” was introduced in Chapter 4 where an

outside expert or specialist (of an industry/market) may provide additional (exoge-

nous) information on input/output selection for the GDEA model. Such information

may be based on his/her knowledge or experience with respect to the ability of the

chosen universe of financial parameters to represent the underling operational suc-

cesses of the firms. For example, the Restricted BCD version, see (4.5), of the GDEA

model employs such an approach where the 18 financial parameters are categorized

into broader input and output sets. Then, the GDEA model determines an optimal

set of inputs and outputs, within those categories of expert judgment, to maximize

the correlation metric between the relative strength so-determined and the market

returns. Literature on incorporating expert judgment with input/output selection
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in DEA or analyzing the value of such information is non-existent to the best of our

knowledge. This chapter provides a framework for objectively evaluating the value

of such expert information. By comparing the correlation metric with that due to

not utilizing the expert knowledge at all, i.e., the Unrestricted version of GDEA in

(4.6), or not fully utilizing the expert information, the value of EI can be gauged.

However, direct comparisons of the correlation metrics are data-specific, and such

point-wise comparisons cannot be used to reach a definitive conclusion regarding the

Value of EI, or VEI. That is, VEI requires statistical justification with respect to the

(population-based) correlation metrics. In the first part of this chapter, this is the

main focus. The second half of the chapter is concerned with developing theoretical

optimality conditions for the GDEA optimization model under expert information.

6.1 Model under Expert Information

Recall that the GDEA approach considers an optimal partitioning of the parameters

from the Unrestricted binary complementary domain Ω, mathematically expressed

as

Ω =

{
x ∈ {0, 1}2I :

I∑
i=1

xi ≥ 1, xi + xI+i ≤ 1, i = 1, . . . , I

}
, (6.1)

where the binary complementary vector pair (y, z), see (4.6), is represented by the

2I-dimensional binary vector x with xi = yi and xI+i = zi for i = 1, . . . , I. Then,
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the GDEA model in (5.1) can be rewritten as:

ηckτ (x) := max
u,v

I∑
i=1

(xI+iξikτ )viτ

s.t.
I∑
i=1

(xiξikτ )uiτ ≤ 1

−
I∑
i=1

(xiξijτ )uiτ +
I∑
i=1

(xI+iξijτ )viτ ≤ 0, ∀j, j 6= k

−C
I∑
i=1

(xiξikτ )uiτ +
I∑
i=1

(xI+iξikτ )viτ ≤ 0,

uiτ , viτ ≥ 0, i = 1, . . . , I,

(6.2)

where ηckτ (x) is the corrected RPS (CRPS) value for firm k and period τ , where in

period τ , financial data ξijτ is realized for each firm j, j = 1, . . . , J .

In Section 5.2, the Box-Cox transformation is applied to the computed CRPS

values in order to make the distribution of CRPS values more normally dispersed.

While it was concluded in Section 5.3 that α = 0 is the appropriate choice to ensure

near normality, the development in this chapter is for a general α. Therefore, the

CRPS value after the Box-Cox transformation is defined by η̂jτ (x) := Bα(η
c
jτ (x)) if

ηcjτ (x) > 0. If ηcjτ (x) = 0, η̂jτ (x) := Bα(1/C), and thus, Bα(1/C) ≤ η̂jτ (x) ≤ Bα(C).

Note that these transformed CRPS values are also referred to by the term “RPS”.

As in Section 4.2, define the correlation

γj(x) := Correlation {(η̂jτ (x), rjτ ) | τ = 1, . . . , t0} ,
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which is the computed correlation between the RPS scores and stock returns over the

considered t0 time periods of historical data for firm j. This is a sample-computed

value of the population correlation parameter, denoted by Γj(x). Then, the vector

of correlations Γ(x) := [Γ1(x), . . . ,ΓJ(x)] is a measure of how good the GDEA-based

relative financial strength measure will be for predicting the stock returns, and then,

the Sector Correlation Metric is defined as follows.

Definition 6.1.1 (Sector Correlation Metric: SCM) For the sector identified

by the firms j = 1, . . . , J , SCM is defined by Γ̄(x) := 1
J

∑J
j=1 Γj(x), for a given

2I-dimensional binary vector x.

Thus, SCM is the average of components of the vector Γ̄(x), and it is sample-

estimated by γ̄(x) = 1
J

∑J
j=1 γj(x). For more details, see Section 4.2. In the GDEA

approach, the maximized SCM is estimated by searching over an appropriate set Ω̄

of binary complementary solutions such that for some x̄ ∈ Ω̄, γ̄(x) is maximized -

see (4.11) -, and its statistical significance is verified using the statistical test in Sec-

tion 4.3. According to the feasible domain Ω̄, a relative financial strength indicator,

herein referred to as RFS, for a given firm in a sector, is defined as follows.

Definition 6.1.2 (Relative Financial Strength: RFS) Suppose Γ̄t(x̄) is statis-

tically significant for a given sector, where x̄ is an optimal solution of the sector cor-

relation metric (SCM) maximization problem. Then, the Relative Financial Strength

(RFS) of firm j for (a future) period t is defined by

RFS(t, j) := E [η̂jt(x̄) | η̂j,t−t0(x̄), . . . , η̂j,t−1(x̄)] , (6.3)
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where η̂jτ (x̄)) for t − t0 ≤ τ ≤ t − 1 are computed according to the modified GDEA

model in (6.2) for the input/output categorization x̄, and E[.] denotes the conditional

expectation given the RPS scores of the historical t0 periods.

In particular, under the Unrestricted binary complementary domain Ω, a sample

statistic of the correlation metric Γ̄0 is determined by solving the nonlinear binary

optimization model, see Section 4.1 and 4.2:

γ̄0 := max
x

γ̄(x)

s.t. x ∈ Ω.

(6.4)

Note that an optimal input/output solution vector x0 of the above correlation max-

imization model in (6.4) is determined in an “unrestrictive” manner in that no prior

knowledge of expert information on x has been utilized. That is, the feasible vec-

tors x are only required to satisfy the required binary complementarity. However,

in most practical situations, an expert or specialist may provide additional (exoge-

nous) information regarding which parameters are appropriate or inappropriate as

inputs and outputs, based on his/her knowledge or experience. Availability of such

expert information (EI) would essentially restrict the binary feasibility domain Ω of

the maximization in (6.4). This section considers how the existence of exogenous

information would modify the feasible set Ω, and thus the so-computed RFS, and

also how one would model violation of such exogenous information.

Expert knowledge may be presented in a very general format with regard to

parameters, as indicated below, in K distinct information categories.

145



Description of EI set:

I1: Given a set G of parameters (G ⊂ {1, . . . , I}), each i ∈ G is an input.

I2: Given a set G of parameters (G ⊂ {1, . . . , I}), each i ∈ G is an output.

I3: Given a set G of parameters (G ⊂ {1, . . . , I}), not all of i ∈ G are inputs.

I4: Given a set G of parameters (G ⊂ {1, . . . , I}), not all of i ∈ G are outputs.

I5: Given two sets G1, G2 of parameters (G1, G2 ⊂ {1, . . . , I}), if i ∈ G1 are inputs,

then i ∈ G2 cannot be outputs.

...

IK : etc.

Information categories Ik, k = 1, . . . , K collectively represent the expert’s knowl-

edge. Clearly, each Ik can be associated with a set of complementary binary vectors

x ∈ Ω satisfying the conditions in Ik. That is, there exists a mappingMk : Ik → Ωk

where Ωk ⊂ {0, 1}2I . Then, all information corresponding to the expert knowledge

is represented by the set

ΩI :=
K⋂
k=1

Ωk,

and thus, maximizing the correlation metric subject to expert information requires

solving the problem:

γ̄∗ := maxx γ̄(x)

s.t. x ∈ Ω∗ := Ω
⋂

ΩI ,

(6.5)
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where γ̄∗ is the sample estimate of Γ̄∗. Ω∗ is the feasible domain of all binary

complementary vectors satisfying the specified expert information. Hence, the above

problem represents fully utilizing EI. Let the optimal solution of model (6.5) be

denoted by x∗, i.e., γ̄∗ = γ̄(x∗) = 1
J

∑J
j=1 γj(x

∗). While γ̄0 ≥ γ̄∗ holds, the focus here

is on the value of (or lack thereof) EI. Can the expert information be violated to some

degree without losing the predictive ability of the RPS so-computed? The notion

of Value of Expert Information (VEI) is thus introduced, under possible violations

of the EI when RPS is determined. Toward this, we impose penalty for violating

expert’s knowledge. Violation of expert information (of the category Ik) by some

x̄ ∈ {0, 1}2I is measured by the distance from the set Ωk, defined hereby as

D(x̄,Ωk) := min
x∈Ωk

||x− x̄||1,

where norm-1 distance metric ||x||1 =
∑

i |xi|. See the illustration in Figure 6.1.

Such violation in the information category Ik is penalized by a (cost) function

Πk (D(x̄,Ωk)) where Πk : < → < is a convex, increasing function such that Πk(0) = 0,

for all k = 1, . . . , K. Then, the overall penalty on violating the expert’s information

is given by

Π(x) :=
K∑
k=1

Πk (D(x,Ωk)) .

The EI-penalty function Π : {0, 1}2I → < is defined to be convex, increasing, and it

satisfies Π(x) = 0 for x ∈ ΩI and Π(x) > 0 for x 6∈ ΩI .
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Figure 6.1: Violation of Expert Information

6.2 Hypothesis of VEI

How much importance should be given to exogenous information that represents an

expert’s knowledge? Indeed, a complete disregard of the EI results in the unrestricted

version of the GDEA model, see (6.4), which yields the sample estimate γ̄0 for the

population correlation metric Γ̄0. In contrast, under a certain “degree of violation”

of EI, as measured by Π(x) = π (for π > 0), let the resulting maximized SCM be

denoted by Γ̄π, which is estimated by solving the model

γ̄π := maxx γ̄(x)

s.t. Π(x) = π

x ∈ Ω,

(6.6)

whose solution is denoted by xπ, and thus, γ̄π = γ̄(xπ). In particular, when π → 0,

one has strict satisfaction of EI, and thus, Γ̄π → Γ̄∗, see (6.5), which is the correlation

metric under full EI.
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Definition 6.2.1 For a given degree of EI-violation, denoted by π, the Value of

Expert Information, VEI, is defined by V(π) := Γ̄π − Γ̄∗.

Thus, V(π) represents the relative benefit due to the specified degree of violation π of

EI (relative to its strict satisfaction). For some finite π, suppose V(π) is significantly

positive. Then, one may conclude that the EI is not valuable relative to a violation

of size π, i.e., VEI is not significant at violation level π. Note that this is a local

property for VEI at Π(x) = π. On the other hand, if V(π) is significantly positive

for all π ≥ 0, then, VEI is declared unimportant globally. To test the local property

of EI, consider the following hypothesis test, for a given threshold ν0(> 0), at a fixed

violation level π:

H0 : V(π) ≤ ν0

H1 : V(π) > ν0.

 (6.7)

Definition 6.2.2 If H0 is not rejected for some π > 0, then we say, VEI holds

locally at π. If H0 is not rejected for all π > 0, then we say, VEI holds globally.

The statistical procedures for the preceding hypothesis test will be provided in

Section 6.3. Next, we provide the specific set of expert information that will be

analyzed in the Case Study of Chapter 7, where statistical estimates of the VEI are

computed for various market sectors.

6.2.1 Specific case of EI

For the purposes of illustration in this section, the following general view of the 18

(financial) parameters given in Section 3.1.1 is considered as the expert information:
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“Profitability and growth perspectives are typically considered as outputs because

revenue or income generation is a major objective criterion for a firm. On the other

hand, asset utilization, liquidity, and leverage perspectives are considered as inputs

because they are concerned with the planning and operational strategies of a firm. In

contrast, valuation perspective is concerned with how well the equity markets perceive

success of a firm, and thus, it is not concerned with a firm’s input strategy.”

Accordingly, the EI can be presented as follows.

I1: Each Profitability parameter is an output

I2: Each Valuation parameter is an output

I3: Each Growth parameter is an output

I4: Each Asset Utilization parameter is an input

I5: Each Liquidity parameter is an input

I6: Each Leverage parameter is an input.

Then, the corresponding Ωk sets are given by,

Ω1 = {x ∈ {0, 1}36 | x1 = x2 = x3 = x4 = 0}

Ω2 = {x ∈ {0, 1}36 | x14 = x15 = 0}

Ω3 = {x ∈ {0, 1}36 | x16 = x17 = x18 = 0}

Ω4 = {x ∈ {0, 1}36 | x23 = x24 = x25 = 0}

Ω5 = {x ∈ {0, 1}36 | x26 = x27 = x28 = 0}

Ω6 = {x ∈ {0, 1}36 | x29 = x30 = x31 = 0} .



(6.8)
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The corresponding distance functions are then given by

D(x,Ω1) = x1 + x2 + x3 + x4, D(x,Ω2) = x14 + x15,

D(x,Ω3) = x16 + x17 + x18, D(x,Ω4) = x23 + x24 + x25,

D(x,Ω5) = x26 + x27 + x28, D(x,Ω6) = x29 + x30 + x31.

 (6.9)

Defining a quadratic penalty function on violation in each information category, we

have Πk(.) = (.)2, ∀k, and thus, it follows that

Π(x) = (x1 + x2 + x3 + x4)
2 + (x14 + x15)

2 + (x16 + x17 + x18)
2

+ (x23 + x24 + x25)
2 + (x26 + x27 + x28)

2 + (x29 + x30 + x31)
2 . (6.10)

We will employ the above EI penalty function in the Case Study reported in Chapter

7.

6.3 Statistical Tests for Value of EI

For the correlation metric maximized under expert information in model (6.5), where

γ̄∗ = 1
J

∑J
j=1 γj(x

∗), consider the following arctan hyperbolic transformation of the

firm-correlations γj(x
∗):

ψ∗j := tanh−1 γj(x
∗) =

1

2
loge

[
1 + γj(x

∗)

1− γj(x∗)

]
. (6.11)

Then,

ψ∗j ≈ Normal

(
1

2
loge

[
1 + Γj(x

∗)

1− Γj(x∗)

]
,

1

t0 − 3

)
, (6.12)
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see Section 4.3. Defining the average-statistic by ψ̄∗ := 1
J

∑J
j=1 ψ

∗
j , it can be shown

that ψ̄∗ is approximated normally distributed:

ψ̄∗ ≈ Normal

(
1

2J

J∑
j=1

loge

[
1 + Γ∗j
1− Γ∗j

]
,

1

J(t0 − 3)

)
, (6.13)

see Section 4.3 for details. Similarly, for the correlation maximizing model in (6.6)

under violation of EI by a given level π > 0, γ̄π = 1
J

∑J
j=1 γj(x

π), and defining

ψπj := tanh−1 γj(x
π) =

1

2
loge

[
1 + γj(x

π)

1− γj(xπ)

]
. (6.14)

Then, by defining ψ̄π := 1
J

∑J
j=1 ψ

π
j , it follows that

ψ̄π ≈ Normal

(
1

2J

J∑
j=1

loge

[
1 + Γπj
1− Γπj

]
,

1

J(t0 − 3)

)
. (6.15)

Since ψ̄∗ is calculated under the full use of EI and ψ̄π is calculated under a certain

violation level π of EI, the sample statistics ψ̄∗ and ψ̄π are independent. Then, by

defining the difference

ψ̄(π) := ψ̄π − ψ̄∗, (6.16)

ψ̄(π) ≈ Normal

(
1

2J

{
J∑
j=1

loge

[
1 + Γπj
1− Γπj

]
−

J∑
j=1

loge

[
1 + Γ∗j
1− Γ∗j

]}
,

2

J(t0 − 3)

)
.

(6.17)

Also, see Section 4.3 for details. Consequently, ψ̄(π) will be used as a test statistic

for the hypothesis test on V(π) = Γ̄π − Γ̄∗ given in (6.7).
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Under the equality sign in the null hypothesis in (6.7), one has reference only to

the overall difference Γ̄π − Γ̄∗ = ν0; however, we need knowledge of the individual

firm-correlations under both the full use of EI (i.e., Γ∗j) and under EI violation level

π (i.e., Γπj ). Let the firm-correlations under the full use of EI be given, for unknown

coefficients θj, by

Γ∗j = ν0θj , for j = 1, . . . , J, (6.18)

and those under EI violation level π be given, for unknown coefficients βj, by

Γπj = ν0βj , for j = 1, . . . , J, (6.19)

where θj and βj must satisfy the restrictions:

J∑
j=1

(θj − βj) = J and − 1

ν0

≤ θj, βj ≤
1

ν0

,∀j = 1, . . . , J. (6.20)

Then, ψ̄(π) ≈ Normal (ψ0(θ, β), σ2), where

ψ0(θ, β) :=
1

2J

J∑
j=1

[
loge

(
1 + ν0θj
1− ν0θj

)
− loge

(
1 + ν0βj
1− ν0βj

)]
and σ2 :=

2

J(t0 − 3)
.

(6.21)

For finiteness of the mean, ψ0(θ, β), the inequalities in (6.20) must be satisfied as

strict inequalities, i.e., − 1
ν0
< θj, βj <

1
ν0

, j = 1, . . . , J . Then, for α-significance level

and for the one-sided test, H0 in (6.7) is accepted if

√
J

2
(t0 − 3)

[
ψ̄(π)− ψ0(θ, β)

]
≤ Z−1(1− α), (6.22)
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or, the computed sample value ψ̄(π), for a given EI violation level π > 0, must satisfy

ψ̄(π) ≤ ψ0(θ, β) +
Z−1(1− α)√

J
2
(t0 − 3)

, (6.23)

where Z−1(.) is the inverse c.d.f. of the standard normal random variable. To test

H0 to conclude that the value of expert information (VEI) is significant at a given

violation level π, therefore, specific values for θ and β vectors are required. Such

information is not available, nor can it be estimated. However, if H0 is accepted for

the smallest (threshold) value of the right hand side in (6.23), over all possible θ and

β, indeed H0 is accepted. To this end, define:

ψmin
0 := inf

θ,β

{
ψ0(θ, β) :

J∑
j=1

(θj − βj) = J , − 1

ν0

< θj, βj <
1

ν0

, j = 1, . . . , J

}
.

(6.24)

Hence, if ψ̄(π) ≤ ψmin
0 + Z−1(1−α)√

J
2
(t0−3)

, then H0 is accepted at the specified violation level

π.

Proposition 6.3.1 For 0 < ν0 < 2,

ψmin
0 = loge

(
2 + ν0

2− ν0

)
. (6.25)

Proof. Note that ψ0(θ, β) is a nonconvex function. Consider the (relaxed) minimiza-

tion problem:

Z∗ := min
θ,β

{
ψ0(θ, β) :

J∑
j=1

(θj − βj) = J

}
, (6.26)
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and thus, Z∗ ≤ ψmin
0 . Since the constraints of (6.26) are linear, “Constraint Quali-

fication” (CQ) is satisfied at all feasible solutions, which implies that every optimal

solution of (6.26) must be a Karush-Kuhn-Tucker (KKT) point, see Bazaraa et al. [9].

Denoting the Lagrange multiplier associated with the equality constraint by λ, the

KKT conditions yield,

2ν0

2J
[
1− (ν0θj)

2] + λ = 0 , ∀j = 1, . . . , J, (6.27)

and

2ν0

2J
[
1− (ν0βj)

2] + λ = 0 , ∀j = 1, . . . , J, (6.28)

which imply that |θj| = |βj|, ∀j. Therefore, θj = pja and βj = qja must hold for

all j = 1, . . . , J , where pj and qj are each +1 or −1 and a is a positive constant.

The equality constraint then implies that
∑J

j=1 rj = J
2a

, where rj = 1
2
(θj − βj)

can take on values −1, 0, or 1. Therefore, a = J
2b

where b =
∑J

j=1 rj can take

on values −J, −J + 1, ..., 0, 1, 2, ..., J . Since a > 0, b must be positive and thus,

a ∈ {1
2
, J

2(J−1)
, J

2(J−2)
, . . . , J

2
}. Each of these values for a defines a distinct KKT

point, provided the objective function is well-defined at those points, which is given
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by

1

2J

 ∑
j:pj=+1

loge

(
1 + ν0a

1− ν0a

)
+

∑
j:pj=−1

loge

(
1− ν0a

1 + ν0a

)

−
∑

j:qj=+1

loge

(
1 + ν0a

1− ν0a

)
−

∑
j:qj=−1

loge

(
1− ν0a

1 + ν0a

)
=

1

2J

[
J∑
j=1

(pj − qj)

]
loge

(
1 + ν0a

1− ν0a

)
=

b

J
loge

(
1 + ν0a

1− ν0a

)
=

1

2a
loge

(
1 + ν0a

1− ν0a

)

Then, the minimum in (6.26) is obtained by

Z∗ = min

{
1

2a
loge

(
1 + ν0a

1− ν0a

)
: a =

1

2
,

J

2 (J − 1)
,

J

2 (J − 2)
, . . . ,

J

2

}
. (6.29)

Next, noting that the function f(x) = 1
x

loge

(
1+xν0
1−xν0

)
is monotonically nondecreasing

in x for x ∈
[

1
2
, J

2

]
, it follows that a = 1

2
is indeed the optimal solution in (6.29),

which thus implies that each pj = +1 and qj = −1 at the optimum. That is, θj = 1
2

and βj = −1
2
, ∀j, solve the relaxed problem in (6.26), which yields Z∗ = loge

(
2+ν0
2−ν0

)
.

But, for 0 < ν0 < 2, we have − 1
ν0
< θj − βj = 1 < 1

ν0
for all j. This leads to the

feasible point upper bound on the infimum in (6.24) as ψmin
0 ≤ Z∗. Combining with

Z∗ ≤ ψmin
0 , the proof is completed.
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The most conservative form of the test in (6.23) is then given by

ψ̄(π) ≤ loge

(
2 + ν0

2− ν0

)
+
Z−1(1− α)√

J
2
(t0 − 3)

. (6.30)

For a given π > 0, if (6.30) is satisfied, then VEI is significant at the EI-violation

level π. However, if (6.30) is violated at a given π, it does not necessarily imply that

H0 is rejected. For this purpose, we introduce a rejection tolerance κ ≥ 1, where if

ψ̄(π) > κ loge

(
2 + ν0

2− ν0

)
+
Z−1(1− α)√

J
2
(t0 − 3)

(6.31)

holds, then it is concluded that VEI is not significant at the violation level π.

It is of interest to determine how the significance of VEI changes as π changes.

As the violation level π is decreased towards zero, Γ̄π − Γ̄∗ → 0 holds, and thus H0

will not be rejected. Alternatively, it is of interest to determine whether it is more

likely to reject H0 as π is increased. These concerns will be pursued empirically using

the Case Study in Chapter 7.

6.4 Model for Computing VEI

The model in (6.6) is difficult to compute because the maximization involves choos-

ing a binary vector (in 2I = 36 dimensions) with a complicated nonlinear objective

function and linear and nonlinear constraints. An alternative, but equivalent, for-

mulation is utilized below, where any EI-violation is traded-off with the correlation
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metric using the tolerance parameter w(≥ 0):

f(w) := max
x∈Ω
{γ̄(x)− wΠ(x)} . (6.32)

When w = 0, note that (6.32) is the (unrestricted) maximum correlation under

no expert information γ̄0 in (6.4), i.e., f(0) = γ̄0. The model in (6.32) can be

solved using the direct search technique under sampling from the feasible domain,

as described in Section 4.2.1, for a specified value of w. However, since (6.32) is

a nonlinear binary mathematical program, there is no guarantee that the solutions

so-obtained would be globally optimal. To this end, we derive certain theoretical

properties that are useful in checking whether additional sampling from the feasible

domain would be needed to obtain an optimal solution.

6.4.1 Properties of f(w)

We will discuss several pertinent properties of the optimal value function f(w). First,

Theorem 6.4.1 For γ̄0 in (6.4) and for an optimal solution x(w) of (6.32) for some

w > 0, it holds that γ̄0 ≥ γ̄(x(w)), i.e., γ̄0 is the highest-achievable correlation.

Proof. Noting that an optimal solution of (6.32) is feasible in (6.4), the proof follows

in a straightforward manner.

Theorem 6.4.2 For all w ∈ <, f(w) ≥ γ̄∗ holds. Moreover, limw→∞ f(w) = γ̄∗

holds.
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Proof. Let an optimal solution of the correlation maximization problem in (6.5) be

denoted by x∗. Then, γ̄∗ = γ̄(x∗) and x∗ ∈ Ω
⋂

ΩI , and thus, Π(x∗) = 0 holds.

Since x∗ ∈ Ω, x∗ is feasible in (6.32), and thus, f(w) ≥ γ̄(x∗) − wΠ(x∗) = γ̄(x∗)

for any w, which proves the first assertion. Moreover, taking limits on both sides,

limw→∞ f(w) ≥ γ̄∗, and thus, limw→∞ f(w) ≥ −1.

Given an optimal solution x(w) of (6.32), since f(w) = γ̄(x(w)) − wΠ(x(w)) ≤

1− wΠ(x(w)),

−1 ≤ lim
w→∞

f(w) ≤ 1− lim
w→∞

[wΠ(x(w))] ,

implying that M := limw→∞ [wΠ(x(w))] is finite (and M ≥ 0 since w,Π ≥ 0). Define

π∞ := limw→∞ Π(x(w)), and thus, π∞ ≥ 0. Suppose (by contradiction) π∞ > 0.

Then, for small ε > 0 (such that ε < π∞) it follows that there exists w(ε) such that

for all w > w(ε), |Π(x(w))− π∞| < ε. Thus,

w(π∞ − ε) < wΠ(x(w)) < w(π∞ + ε) , for w > w(ε),

and thus, by taking limits, limw→∞ [wΠ(x(w))] = M → +∞, which violates the

previous conclusion that M is finite. Therefore, π∞ = 0 must hold.

Denoting x∞ := limw→∞ x(w), since, Π is a continuous function, Π(x∞) = 0

follows. Moreover, x∞ ∈ Ω∗ since Ω∗ is closed. Thus,

lim
w→∞

f(w) = lim
w→∞

γ̄(x(w))− lim
w→∞

[wΠ(x(w))]

= γ̄(x∞)−M

≤ γ̄(x∞).
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Since x∞ ∈ Ω, we have f(w) ≥ γ̄(x∞) − wΠ(x∞) = γ̄(x∞), and also, γ̄∗ ≥ γ̄(x∞).

Combining with the previous inequality, we get

γ̄(x∞) ≥ lim
w→∞

f(w) ≥ γ̄∗ ≥ γ̄(x∞),

and thus, limw→∞ f(w) = γ̄∗ = γ̄(x∞). This completes the proof.

In particular for w = 0, we have the Relaxed maximum of correlation under no

expert information γ̄0, i.e., f(0) = γ̄0, and due to Theorem 6.4.2, γ̄0 ≥ γ̄∗.

Theorem 6.4.3 The function f(w) is monotonically nonincreasing in w ∈ <.

Proof. For w1 ∈ < and w2 ∈ < such that w1 < w2, let the associated optimal solutions

(input/output partitions) of the mathematical program in (6.32) be denoted by x1

and x2, respectively. Then,

f(w2) = γ̄(x2)− w2Π(x2)

≤ γ̄(x2)− w1Π(x2) (since w1 < w2 and Π ≥ 0)

≤ γ̄(x1)− w1Π(x1) (since x2 is feasible in (6.32) for w = w1)

= f(w1).

Furthermore,

Theorem 6.4.4 The function f(w) is convex in w ∈ <.
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Proof. For w1, w2 ∈ <, and α ∈ [0, 1], let wα := αw1 + (1− α)w2. Then,

f(wα) = max
x∈Ω
{γ̄(x)− [αw1 + (1− α)w2]Π(x)}

= max
x∈Ω
{α[γ̄(x)− w1Π(x)] + (1− α)[γ̄(x)− w2Π(x)]}

≤ max
x∈Ω
{α[γ̄(x)− w1Π(x)]}+ max

x∈Ω
{(1− α)[γ̄(x)− w2Π(x)]}

= αf(w1) + (1− α)f(w2),

and thus, f is convex.

The above properties confirm that f(w) is convex, nonincreasing and its maximum

is at w = 0 with the function value γ̄0, and f reaches γ̄∗ for sufficiently large w

(certainly as w → ∞), see the illustration in Figure 6.2. The convexity of f may

be used to check if f values obtained for a given set of w values satisfy (global)

optimality. This idea will be utilized when the two-stage heuristic, see Section 4.2.1,

is applied for solving the problem in (6.32) in the Case Study in Chapter 7.

w

)(wf

*γ

0γ

Figure 6.2: Optimal value function under Expert Information
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6.4.2 Marginal Value of Expert Information (MVEI)

Considering VEI in Definition 6.2.1, the focus here is on the incremental gain in VEI

per unit violation of expert information, termed the Marginal VEI (MVEI). That is,

MVEI is given by dV(π)
dπ

, and its maximum value is associated with the EI violation

level π∗∗ = arg max
π≥0

dV(π)

dπ
. Determining this population-parameter is difficult, if

not impossible. Instead, the maximum MVEI is estimated by solving the following

fractional mathematical program:

w∗ := sup
x

{
γ̄(x)− γ̄∗

Π(x)
: Π(x) > 0, x ∈ Ω

}
. (6.33)

Then, w∗ is termed the (estimated) maximum marginal value of expert information

per unit violation of the EI.

Theorem 6.4.5 f(w) = γ̄∗ for w ≥ w∗.

Proof. Since

w∗ ≥ γ̄(x)− γ̄∗

Π(x)
, ∀x ∈ Ω and Π(x) > 0,

it follows that

γ̄∗ ≥ γ̄(x)− w∗Π(x) , ∀x ∈ Ω and Π(x) > 0

≥ γ̄(x)− wΠ(x) , ∀x ∈ Ω, Π(x) > 0 and w ≥ w∗

≥ sup
x∈Ω,Π(x)>0

{γ̄(x)− wΠ(x)} , ∀w ≥ w∗

= f(w) , ∀w ≥ w∗.
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Moreover, in the proof of Theorem 6.4.2, it was shown that f(w) ≥ γ̄(x∗) for any

w ≥ 0. This along with f(w) ≤ γ̄(x∗) for any w ≥ w∗ proves the assertion.

Theorem 6.4.6 f(w) > γ̄∗ for w < w∗.

Proof. By contradiction, suppose for some ŵ such that ŵ < w∗, we have f(ŵ) = γ̄∗.

Then,

γ̄∗ = max
x∈Ω
{γ̄(x)− ŵΠ(x)}

≥ γ̄(x)− ŵΠ(x) ∀x ∈ Ω s.t. Π(x) > 0

> γ̄(x)− w∗Π(x) ∀x ∈ Ω s.t. Π(x) > 0,

and thus,

w∗ >
γ̄(x)− γ̄∗

Π(x)
∀x ∈ Ω s.t. Π(x) > 0.

This violates the optimality of the objective value w∗ in (6.33).

Theorem 6.4.7 For all w ≥ w∗, Π(x(w)) = 0 must hold, where x(w) is an optimal

solution of (6.32), i.e., f(w) = γ̄(x(w))− wΠ(x(w)).

Proof. By contradiction, suppose for some ŵ > w∗, we have Π(x(ŵ)) > 0. Then, by

Theorem 6.4.5, f(ŵ) = γ̄∗ and

γ̄∗ = f(ŵ) = γ̄(x(ŵ))− ŵΠ(x(ŵ))

< γ̄(x(ŵ))− w∗Π(x(ŵ)) (since ŵ > w∗ and Π(x(ŵ)) > 0),
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and thus,

w∗ <
γ̄(x(ŵ))− γ̄∗

Π(x(ŵ))

holds for x(ŵ) ∈ Ω, which violates the optimality of the objective value w∗ in (6.33).

This completes the proof.

The maximum MVEI, w∗, can be determined by the following computational proce-

dure for solving fractional mathematical programs (see, Lasdon [37]):

Procedure-MVEI

Step-0: (Initialization) Solve the model in (6.4) to determine an optimal solution

x0, and define, w0 = γ̄(x0)−γ̄∗
Π(x0)

.

Set iteration count k = 0.

Step-1: Solve the model in (6.32) for w = wk and obtain its solution xk+1.

Step-2: Define, wk+1 = γ̄(xk+1)−γ̄∗
Π(xk+1)

.

If wk+1 ≤ wk, Stop (and set w∗ := wk).

Otherwise, set k ← k + 1, and go to Step-1.

It is neither asserted nor proven that w∗ is finite. In order to obtain the max-

imized MVEI value, the model in (6.32) needs to be solved iteratively. This is a

nonlinear binary problem and the objective function is neither concave nor pseudo-

concave, and it is also non-differentiable. Thus, it is necessary to verify whether the

chosen (heuristic) solution procedure yield input/output categorizations that satisfy

optimality conditions. These optimality conditions are developed in the next section.
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6.5 First-order conditions of optimality

The feasible set (Binary Complementary Domain - BCD) Ω in (4.5) has the following

continuous representation:

Ωc :=

{
x ∈ <2I |

I∑
i=1

xi ≥ 1, xixI+i ≤ 0, xi, xI+i ≥ 0,∀i = 1, . . . , I

}
, (6.34)

which implies that Ωc is a convex set in <2I . Therefore, the problem in (6.32) has

the following equivalent representation:

f(w) := max
x∈Ωc

{γ̄(x)− wΠ(x)} . (6.35)

Although Ωc is convex, its interior is not non-empty, and thus, (Slater’s) regularity

condition does not hold. It can be shown that not all feasible solutions in Ωc are

regular, i.e., the Constraint Qualification (CQ) may not hold everywhere on Ωc.

Consequently, the first order conditions for (6.35) may not even be necessary for

optimality. To see this, denoting the constraints by g(x) =
∑I

i=1 xi− 1 ≥ 0, h1
i (x) =

xixI+i ≤ 0 and h2
i (x) = xi ≥ 0, for an arbitrary feasible x ∈ Ωc, define the set of

directions d ∈ <2I , let

D̄(x) :=
{
d : ∇g(x)′d ≥ 0, ∇h1

i (x)
′d ≤ 0, ∇h2

i (x)
′d ≥ 0

}
=

{
d :

I∑
i=1

di ≥ 0, xI+idi + xidI+i ≤ 0, di ≥ 0, ∀i

}
.
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Now, consider the set of feasible directions in Ωc, denoted by D̂(x) for some given

x ∈ Ωc, as given by

D̂(x) :=
{
d : ∃µ > 0 s.t. g(x+ µd) ≥ 0, h1

i (x+ µd) ≤ 0, h2
i (x+ µd) ≥ 0

}
=

{
d :

I∑
i=1

di ≥ 0, xI+idi + xidI+i + µdidI+i ≤ 0, di ≥ 0, ∀i

}
.

For the CQ to hold, we must have D̄(x) ⊆ D̂(x) for all x ∈ Ωc. But, when a

parameter k is not chosen in the DEA model, we have xk = xI+k = 0, and thus,

choose d̂ ∈ D̄(x) such that d̂k > 0 and d̂I+k > 0. Hence, d̂kd̂I+k > 0, which violates

a condition in the definition of the set D̂(x), i.e., d̂ 6∈ D̂(x).

If each and every parameter is included in the DEA model, and thus, xi+xI+i > 0,

∀i, it can be shown that CQ holds. However, since some parameters may have to be

dropped when maximizing the correlation metric, one has to proceed differently in

order to formulate first order conditions of optimality.

6.5.1 Continuous model and discontinuities

The complementary conditions xixI+i = 0 are merely incorporated to ensure that a

given parameter is not chosen both as input and output. By doing so, the binary

search space has been significantly reduced. However, in the event xixI+i > 0,

the resulting DEA-based RPS score is not representative of the firm’s fundamental

performance, as RPS may turn out to be identically C across all (or many) firms, as

claimed next.
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Theorem 6.5.1 For some parameter i ∈ {1, . . . , I}, let xi > 0 and xI+i > 0. For

some company j being evaluated (in time period t), suppose the measured value of

parameter i satisfies ξijt > 0. Then, for the optimal value in (6.2), ηcjt(x) = C holds.

Proof. Set ûkjt = 0 and v̂kjt = 0 for all k 6= i. Given xi > 0 and xI+i > 0, let

ûijt = 1/(xiξijt) and v̂ijt = C/(xI+iξijt). This (û, v̂) solution is feasible in (6.2) with

the objective value C, and thus, ηcjt(x) ≥ C. Since ηcjt(x) ≤ C must also hold, the

result follows.

Therefore, under the conditions in Theorem 6.5.1, many firms can end up having

constant scores of C, which would then result in very low correlation, i.e., γ̄(x) ≈ 0.

Therefore, choices of x such that xixI+i > 0 would not emerge as optimal solutions

of the correlation maximization problem. Consequently, without loss of generality,

the correlation maximization model under DEI can be restated as:

f(w) = max
x≥0
{γ̄(x)− wΠ(x)} , (6.36)

with the revised objective function definition:

γ̄(x) :=

 γ̄(x) if
∑I

i=1 xi > 0

−∞ if
∑I

i=1 xi = 0.
(6.37)

While the constraint set of the alternative formulation in (6.36) is simply the nonneg-

ativity restrictions (and thus, CQ holds everywhere!), its objective function is still

discontinuous. To see this, note that each function γjt(x) is the correlation between
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the (transformed) DEA-based score ηcjt(x) and the stock return random variable rjt.

The function ηcjt(x) is discontinuous at boundaries where xi = 0. For example, given

a point x̄ such that x̄i = 0 for some i ≤ I, consider ηcjt(x̄+µei) = a(µ), where ei is the

ith elementary vector, and µ is a scalar. It is possible that a(1) > a(0) if including

the parameter i as an input can strictly improve the DEA score. Thus, a(µ) > a(0)

for µ > 0, and there exists a discontinuity at µ = 0, noting that a(µ) is a constant

for all µ > 0.

In the preceding example, the discontinuity can be removed by modifying the

function description of ηcjt in the interval of µ ∈ [0, 1] such that it is replaced by a

polyhedral (in the case of the above example, by a piecewise linear) function qjt(.)

satisfying:

qjt(x̄) = ηcjt(x̄)

qjt(x̄+ µei) = ηcjt(x̄+ µei), µ ≥ 1

qjt(x̄+ µei) = ηcjt(x̄) + µ
[
ηcjt(x̄+ ei)− ηcjt(x̄)

]
, µ ∈ (0, 1).

See the illustration in Figure 6.3 where the concerned polyhedral function is

shown in 2-dimensions. For our purposes here, it is neither necessary to understand

a polyhedral construction nor is it relevant how this polyhedral function behaves in

areas where xi is between 0 and 1. The main reason for this is, as it will become clear

later, that the optimality conditions are eventually stated in terms of only binary x

solutions. However, the polyhedral nature of q(.) implies that it is nondifferentiable
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Figure 6.3: Continuous approximation for discontinuous function

precisely at those binary x points, and thus, we have to derive optimality conditions

for the nondifferentiable optimization problem:

g(w) := max
x≥0
{γ̄q(x)− wΠ(x)} (6.38)

where γ̄q function represents the correlation metric computed under the q(.) function,

instead of the ηc(.) function. Clearly, f(w) ≤ g(w) holds since an optimal solution

defining f is a binary solution. The approach is to verify the optimality of a binary

solution to (6.38) so that g(w) ≤ f(w) holds as well, and thus, f(w) = g(w) holds.

6.5.2 Nondifferentiable Optimization

Although qjt(x) is not differentiable at locations where xi = 1, it is subdifferentiable.

As such, we have to resort to optimality conditions for subdifferentiable functions,

see [53].
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Definition 6.5.2 A vector a ∈ <n is called a subgradient of f : <n → < at

x̄ ∈ dom(f) if for all x ∈ dom(f), f(x) ≥ f(x̄) + a′(x − x̄). If f is convex and

differentiable, then its gradient at x̄ is a subgradient. But a subgradient can exist

even when f is not differentiable at x̄. A function f is called subdifferentiable at x̄ if

there exists at least one subgradient at x̄. The set of subgradients of f at the point

x̄ is called the subdifferential of f at x̄, and is denoted ∂f(x̄). If f is convex and

differentiable, then ∂f(x̄) = {∇f(x̄)}.

Theorem 6.5.3 At some x ≥ 0, let the ith component of a subgradient ∂iqjt(x) ∈ Si.

If xi = 1, then Si = [aijt(x) , 0], where

aijt(x) = ηcjt(x− ei)− ηcjt(x) ≤ 0. (6.39)

If xi = 0, then Si = {bijt(x)}, where

bijt(x) := ηcjt(x+ ei)− ηcjt(x) ≥ 0. (6.40)

Moreover, the subdifferential at x is given by S := ×2I
i=1Si.

Proof. Straightforward by appealing to the positive homogeneity result in Proposi-

tion 2.3.2.

The generalization of the Karush-Kuhn-Tucker (KKT) conditions for the (generic)

subdifferentiable optimization problem in

minx f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
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under Constraint Qualification (CQ) are given by, see [53],

fi(x) ≤ 0, λi ≥ 0

0 ∈ ∂f0(x) +
∑m

i=1 λi∂fi(x)

λifi(x) = 0, i = 1, . . . ,m.

(6.41)

Specialization of (6.41) to the problem in (6.38) yields the following first order con-

ditions (since CQ is satisfied for the nonnegativity constraints) where λ ∈ <2I is a

vector of dual multipliers:

0 ∈ ∂γ̄q(x)− w∇Π(x)− λ

λixi = 0, λi, xi ≥ 0, ∀i = 1, . . . , 2I.

 (6.42)

Every local optimum of (6.38) must satisfy the above conditions. The subgradients

of γ̄q are determined by noting γ̄q(x) = 1
N

∑N
j=1 γjq(x), and the firm-correlations

(computed over T time periods) between q̂jt(x) :=
[qjt(x)]

α−1

α
and rjt are given by

γjq(x) =
1

AB

[
t0∑
t=1

q̂jt(x)rjt −
1

t0

(
t0∑
τ=1

q̂jτ (x)

)(
t0∑
τ=1

rjτ

)]
, (6.43)

where

A =

 t0∑
t=1

(q̂jt(x))
2 − 1

t0

(
t0∑
t=1

q̂jt(x)

)2
 1

2

(6.44)

and

B =

 t0∑
t=1

(rjt)
2 − 1

t0

(
t0∑
t=1

rjt

)2
 1

2

. (6.45)
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Then, partial derivatives
∂γjq

∂q̂jt
can be obtained from (6.43) as

∂γjq
∂q̂jt

(x) =
1

AB

(
rjt − ravj

)
− γjq(x)

A2

[
q̂jt(x)− q̂avj (x)

]
(6.46)

and ravj is the average of returns over t0 periods and q̂avj is the average of (modified)

scores q̂jt(x) over t0 periods for firm j. Therefore,

∂γ̄q(x)

∂xi
=

1

J

J∑
j=1

t0∑
t=1

(
∂qjt
∂xi

)(
qα−1
jt

∂γjq
∂q̂jt

)
(6.47)

Observing that qjt(x) is not differentiable w.r.t. xi everywhere, its subgradient are

given in the Theorem 6.5.3 for binary x values.

6.5.3 Optimality conditions under violation of EI

Consider x ∈ Ω, and thus, x is a binary vector. For such x, define

αj(x) =

 t0∑
t=1

((
ηcjt(x)

)α − 1

α

)2

− t0 (η̄j(x))
2

 1
2

and βj =

[
t0∑
t=1

(rjt)
2 − t0 (r̄j)

2

] 1
2

(6.48)

where

η̄j(x) :=
1

t0

(
t0∑
t=1

(
ηcjt(x)

)α − 1

α

)
and r̄j :=

1

t0

(
t0∑
t=1

rjt

)
. (6.49)

Define the partial derivative of γj, for j = 1, . . . , N , by

ϑj(x) :=
1

αj(x)βj
(rjt − r̄j)−

γj(x)

(αj(x))
2

((
ηcjt(x)

)α − 1

α
− η̄j(x)

)
. (6.50)
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For x ∈ Ω, if xi = 1, define the (univariate interval) set Si(x), i = 1, . . . , 2I, by

Si(x) :=

{
1

J

J∑
j=1

t0∑
t=1

ϑj(x)θijt
(
ηcjt(x)

)α−1
: θijt ∈ [aijt(x) , 0]

}
, (6.51)

where aijt(x) is defined in (6.39), and if xi = 0, define the scalar δi(x), i = 1, . . . , 2I,

by

δi(x) =
1

J

J∑
j=1

t0∑
t=1

ϑj(x)bijt(x)
(
ηcjt(x)

)α−1
, (6.52)

where bijt(x) is defined in (6.40). Under the notation ϑ−j (x) = min{ϑj(x), 0} and

ϑ+
j (x) = max{ϑj(x), 0}, notice that (6.51) can be simplified as

Si(x) =
[
sli(x) , s

u
i (x)

]
, where

sli(x) :=
1

J

J∑
j=1

t0∑
t=1

aijtϑ
+
j (x)

(
ηcjt(x)

)α−1

sui (x) :=
1

J

J∑
j=1

t0∑
t=1

aijtϑ
−
j (x)

(
ηcjt(x)

)α−1
.


(6.53)

Theorem 6.5.4 Suppose an optimal solution x∗ of (6.38) satisfies x∗ ∈ Ω, i.e., x∗ is

a (binary) input/output choice-vector for a given w ≥ 0. Then, x∗ is also an optimal

solution of the model in (6.32) and the following condition must hold at x∗ ∈ Ω:

w∇xΠ(x∗) ≤ ω(x∗), (6.54)
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where ωi(x
∗) is defined, for every i = 1, . . . , 2I, by

ωi(x
∗) :=

 sui (x
∗) if x∗i = 1

δi(x
∗) if x∗i = 0.

(6.55)

Proof. When x∗i = 1, referring to the conditions in (6.42), λi = 0 holds, and thus,

w∂Π(x)/∂xi ∈ Si(x∗), and thus,

sli(x
∗) ≤ w

∂Π

∂xi
|x∗ ≤ sui (x

∗).

Since aijt ≤ 0, sli(x
∗) ≤ 0 holds. Moreover, Π(.) is a nondecreasing convex function

implying that ∂Π(x)/∂xi ≥ 0. Thus, w ≥ 0 yields w∂Π(x)/∂xi ≤ ωi(x
∗) for x∗i = 1.

When x∗i = 0, we have 0 ≤ λi = ∂iγ̄q(x)− w∇iΠ(x), which yields

w
∂Π

∂xi
|x∗ ≤ δi(x

∗).

Noting the definition of ω(x∗), the proof is completed.

Corollary 6.5.5 For a given w = ŵ ≥ 0, suppose x∗ ∈ Ω is a KKT point of (6.38).

Then, x∗ is also a KKT point of (6.38) for any w ∈ [0, ŵ].

6.5.4 Conditions for the specific case of EI

For the specific case of Expert Information considered in Section 6.2.1, recall the

penalty function Π(x) in (6.10). The following simplified results hold:
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1. For some w ∈ <, if an optimal solution x(w) ∈ Ω satisfies Π(x(w)) = 0, then

the condition in (6.5.4) reduces to

δi(x(w)) ≥ 0 if xi(w) = 0.

2. If w = 0, then the condition in (6.5.4) reduces to

δi(x(0)) ≥ 0 if xi(0) = 0.

3. If w > 0 and xi is one of the variables included in the definition of the function

Π(x) in (6.10), then the condition in (6.5.4) reduces to


w ≤ 0.5sui (x(w)) if xi(w) = 1

δi(x(w)) ≥ 0 if xi(w) = 0.
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Chapter 7

Case Study of the U.S. Market

Sectors

The Expert Information (EI)-based GDEA approach is applied to the U.S. stock

markets involving more than 800 publicly-traded firms. These firms span 9 major

market sectors and they include all stocks of the Standard & Poors 500 index. These

9 sectors are Technology (h = 1), Health Care (h = 2), Financial (h = 3), Energy

(h = 4), Utilities (h = 5), Consumer Discretionary (h = 6), Consumer Staples

(h = 7), Basic Materials (h = 8), and Industrial Goods (h = 9). The industries

that are included in each sector are obtained from http://biz.yahoo.com/p/ and

they are listed in Table A.1 - Table A.9, see Appendix. The objectives of this case

study include, first, determining which market sectors support the expert knowledge

presented in Section 6.2.1 for input/output selection; second, determining the value

of that EI for determining optimal Relative Financial Strength (RFS) indicators for
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each sector; and finally, to use those RFS indicators in stock screening for portfolio

optimization and comparing performances of such portfolios with the market (S&P

500 index) itself. In the sequel, the input/output solutions of the GDEA-based

optimization model obtained via the heuristic methodology are checked for local

optimality using the first-order conditions developed in Section 6.5.3.

Quarterly financial statements of firms during the period 1997 to 2004 are used

in the case study. Of the 32 consecutive quarters, the first quarter is set aside

for the initial calculations of RoR, growth rates etc. Quarterly data for all firms are

electronically obtained from the WRDS (Wharton Research Data Services) database.

The financial statement data, as well as quarterly stock price information, are checked

for completeness and only those firms with complete data are chosen within each

sector. Thus, the usable number of firms (Jh) in each sector are J1 = 159, J2 = 107,

J3 = 86, J4 = 49, J5 = 128, J6 = 110, J7 = 68, J8 = 58, and J9 = 62. This leads to

a unique set of
∑9

h=1 Jh = 827 firms.

In the case study, both synchronous and lagged predictions of stock returns are

examined. In the lagged case, GDEA-based RFS value of a firm in a given quarter is

expected to influence the return on its stock price within a one month offset after the

beginning of the quarter. Such a case is of paramount interest due to a possible delay

of one month in releasing quarterly financial results to the public. Portfolio selection

using a “lagged” measure of RFS score can lead to quite different investments, relative

to that using a “contemporaneous” or synchronous measure of the RFS score. These

cases are compared and discussed towards the end of this chapter.
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7.1 VEI under Synchronous Case

The case of synchronous RFS measures is addressed, and the subscript S is used

to identify the correlations computed in this case. First, the unrestricted model

in (6.4) was solved to determine an optimal input/output categorization of the 18

financial parameters in Section 3.1.1 using the two-step heuristic solution method

in Section 4.2.1, using a sample size of 20 runs. Referring to Section 6.4.1, see

Theorem 6.4.1, if the computed γ̄0
S is less than that computed under some w > 0, i.e.,

γ̄0
S < γ̄S(x(w)), then additional solution sample runs are conducted to better-estimate

γ̄0
S. Maximized sector correlation metrics (SCM) γ̄0

S, along with their associated EI-

penalty π0
S = Π(x0

S), are reported in Table 7.1. Next, the model in (6.5) under the full

use of EI is executed to determine SCM values γ̄∗S, which thus have π∗S = Π(x∗S) = 0,

and reported in the same table. Then, running the GDEA model under EI violations,

under various choices of the tolerance parameter w, see (6.32), the maximized SCM

values γ̄πS for EI-penalty levels π = 1, 2, 3 are also given in Table 7.1.

The distances between the input/output parameters with π = 0 (under fully

complying with EI) and those with π = 1, 2, and 3 are also listed in Table 7.1. The

distance is evaluated by norm-1 distance, that is,

dπS = ‖xπS − x∗S‖1 =
36∑
i=1

|(xπS)i − (x∗S)i|. (7.1)

It can be observed, generally, that dπS is small when π is small, i.e., for small violations

of EI, and the optimal input/output categorization has many common parameters

with that resulting under the full use of EI. As the violations become larger (e.g.
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Table 7.1: Maximum synchronous correlations for each sector under different levels
of EI violation

Sector Unrestricted (π = 0) π = 1 π = 2 π = 3 MVEI
name γ̄0

S, π
0
S γ̄∗S γ̄πS dπS γ̄πS dπS γ̄πS dπS w∗S

Technology 0.310, 1 0.299 0.310 3 0.196 10 0.171 12 0.011
Health Care 0.200, 1 0.192 0.200 1 0.166 6 0.131 10 0.008
Financial 0.252, 2 0.121 0.247 9 0.252 8 0.247 12 0.126
Energy 0.180, 1 0.153 0.180 2 0.152 9 0.127 10 0.027
Utilities 0.206, 3 0.184 0.205 5 0.136 6 0.120 5 0.016
Cons. Discr. 0.236, 1 0.208 0.236 5 0.235 5 0.231 9 0.028
Cons. Stap. 0.268, 0 0.268 0.219 6 0.220 5 0.198 10 -
Basic Mat. 0.186, 3 0.169 0.181 4 0.180 10 0.186 10 0.006
Ind. Goods 0.246, 3 0.210 0.211 8 0.216 7 0.246 9 0.012

π = 3), the optimal input/output sets tend to become more different from that

under fully complying with the EI.

The optimal correlations γ̄πS over a wide range of π is plotted in Figure 7.1 for all

sectors. Note that the maximum achievable correlation metric is computed by model

(6.4), herein denoted by γ̄0,h
S for industry h, and the corresponding EI-violation and

the input/output vector are denoted by π0,h
S and x0,h

S , respectively. It is evident from

Figure 7.1 that in most sectors, such as Technology, Health care, Basic materials, En-

ergy, Industrial goods, Consumer discretionary, and Utilities, the correlation metric

changes only marginally when the expert information is violated slightly. For exam-

ple, in Technology sector, correlation is improved from 0.299 for π = 0 to 0.310 for

π = 1, indicating that EI violation does not lead to any significant gains on the pre-

dictive value of RFS. Note that Technology sector has the highest correlation under

all levels of EI violation. However, in Financial sector, significant gains in correlation
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Figure 7.1: Maximum sector-correlations vs. EI-penalty (synchronous)

can be achieved under moderate violation of EI. On the other hand, for instance in

Consumer Staples sector, violation of EI leads to significant decay in predictive value

of the Relative Financial Strength (RFS). Nevertheless, excessive violation of EI tend

to weaken the predictive value of RFS across all sectors. This supports the view that

the input/output perspectives of financial ratios from accounting statements, as de-

scribed under EI, do carry value in representing the underlying performance of a

firm.

The maximum marginal value of expert information (MVEI), see w∗S in (6.33), is

also computed for each sector h using the Procedure-MVEI, see Section 6.4.2. These

values are in the last column in Table 7.1. w∗S measures the relative importance of EI.

For example, in Financial sector, correlation can be improved by approximately 13%

by not complying with the expert in at least one input/output parameter. MVEI for
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Consumer Staples sector is not defined since the trade-off curve of γ̄πS , as a function of

π, is negatively sloped at π = 0. In the remaining sectors, MVEI values are relatively

insignificant.

The value of EI is verified using the statistical test developed in Section 6.3.

The hypothesis test given in (6.7) can be used to test the significance of correlation

improvement as EI is violated in each sector. Of the 9 sectors, Consumer staples is

excluded from the test because, as Figure 7.1 indicates, correlation strictly decreases

as π increases from 0. In the remaining 8 sectors, only correlations (associated

with π = 1, 2, and 3) that are larger than γ̄∗S are tested for VEI using (6.31). The

threshold of VEI is determined for each sector by requiring a minimum of 10% relative

improvement over the correlation γ̄∗,hS for sector h, i.e., (γ̄π,hS − γ̄∗,hS )/γ̄∗,hS ≥ 10%.

Thus, threshold in (6.7) for industry h is νh0,S = 0.10γ̄∗,hS . The test results of (6.7) are

shown in Table 7.2.

If VEI is statistically significant with a certain π value, we can conclude that

the expert information can be violated by the corresponding amount in order to

improve the correlation between RFS and stock returns. On the other hand, if

the improvement of the correlation is not statistically significant, it indicates that

expert information should not be violated when inputs and outputs are selected to

compute the GDEA-based RFS. Results in Table 7.2 show that with the exception

of the Financial sector, none of the sectors provide statistical evidence for violating

the expert information in input/output selection. Indeed, Consumer staples sector

provides the strongest evidence for supporting expert information in input/output

selection for computing the RFS in that sector. Thus, we can conclude that as
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Table 7.2: VEI significance results (synchronous)
Sector π = 1 π = 2 π = 3 Critical ν0,S

name Statistic Signi. Statistic Signi. Statistic Signi. value
Technology 0.015 No - - - - 0.070 0.030
Health Care 0.008 No - - - - 0.065 0.019
Financial 0.132 Yes 0.137 Yes 0.10 Yes 0.072 0.012
Energy 0.028 No - - - - 0.081 0.015
Utilities 0.022 No - - 0.023 No 0.077 0.018
Cons. Discr. 0.029 No - - - - 0.067 0.021
Cons. Stap. - - - - - - - -
Basic Mat. 0.015 No - - 0.019 No 0.068 0.017
Ind. Goods 0.003 No 0.010 No 0.044 No 0.064 0.021

the degree of EI violation is increased, the relative gain in predictive value of RFS

is statistically insignificant in all sectors except for Financial sector. Accordingly,

optimal input/output vectors are computed using no violation of EI for all sectors,

except for Financial sector where it is optimal to set π = 1 (since π = 2 does not yield

significantly better correlation). The corresponding optimal input/output vectors,

denoted by xhS, h = 1, . . . , 9, are reported in Table 7.3. Note that in Table 7.3,

“EI” indicates the inputs/outputs under full EI condition, while “VEI” indicates the

inputs/outputs that utilize the value of expert information.

7.2 VEI under Lagged Case

The lagged correlation measures the influence of financial strength observed at the

end of quarter t on the stock return in a 3-month period starting one month from

the beginning of the quarter t, see Section 3.6.1 for details. Lagged correlation is

computed for the investment purpose since the quarterly financial statements are
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Table 7.4: Maximum one-month lagged correlations for each sector under different
levels of EI violation

Sector Unrestricted (π = 0) π = 1 π = 2 π = 3 MVEI
name γ̄0

L, π
0
L γ̄∗L γ̄πL dπL γ̄πL dπL γ̄πL dπL w∗L

Technology 0.224, 1 0.209 0.224 2 0.199 7 0.195 8 0.001
Health Care 0.152, 4 0.141 0.148 9 0.143 8 0.143 10 0.003
Financial 0.214, 4 0.125 0.194 5 0.162 6 0.180 9 0.069
Energy 0.238, 1 0.163 0.238 8 0.192 7 0.157 5 0.026
Utilities 0.183, 3 0.149 0.170 7 0.182 2 0.183 3 0.011
Cons. Disc. 0.178, 5 0.161 0.176 6 0.162 8 0.145 10 0.004
Cons. Stap. 0.192, 2 0.130 0.192 3 0.193 6 0.072 9 0.061
Basic Mat. 0.216, 2 0.143 0.190 6 0.216 6 0.110 5 0.047
Ind. Goods 0.189, 3 0.172 0.147 5 0.186 5 0.189 6 0.004

often released to the public one month after the quarter ends. Therefore, one-month

lagged correlation is utilized in this section to examine the value of EI.

The testing in Section 7.1 is repeated for the one-month lagged case. The max-

imized SCM γ̄0
L computed using model in (6.4), γ̄∗L computed using model in (6.5),

and γ̄πL obtained using model in (6.32) with π = 1, 2, 3 for all sectors are reported in

Table 7.4. The subscript L corresponds to lagged correlation.

It is clear that the lagged correlations are lower than the synchronous correlations,

in general. For example, only Energy and Basic Materials have higher unrestricted

correlations in the lagged case. In addition, it is observed that lagged case allows

more violation on EI in order to obtain the maximum SCM. For instance, penalties

π0 corresponding to the unrestricted SCM γ̄0
L increase for all sectors except for Ba-

sic Materials. In Health Care, Financial, Consumer Discretionary, and Consumer

Staples, the penalties increase by at least 2. Especially in Consumer Staples sector,
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π0 = 0 corresponds to the highest SCM in the synchronous case, however, π0 = 2

relates to the highest SCM in the lagged case. As far as the amount of improvement

on SCM is concerned when violation on EI is allowed, it is clear that in sectors such

as Technology, Health Care, Consumer Discretionary and Industrial Goods, the cor-

relation metric increases only slightly when the EI is violated. On the other hand,

the improvement in correlation is relatively large with EI violation in Financial,

Energy, Utilities, Consumer Staples, and Basic Materials. However, whether these

improvements are significant have to be examined using the statistical test developed

in Section 6.3.

The distances between the input/output parameters with π = 0 and those with

π = 1, 2, 3 are computed (using the norm-1 distance) and reported in Table 7.4,

as well as the maximum marginal value of expert information (MVEI) w∗L. Unlike

the synchronous case, where the distance dπS increases when π increases from 1 to

3, there is no such clear trend on distance dπL in the lagged case. For example,

only Technology, Financial, Consumer Discretionary, and Consumer Staples sectors

have that tendency as in the synchronous case. In other sectors, the distances either

remain in a close range or decrease when π increases. The value of MVEI, w∗L, is listed

in the last column of Table 7.4 for each sector. It is evident that for those sectors that

show slight improvement on correlation metric when EI is violated, w∗L is also small.

This happens in Technology, Health Care, Consumer Discretionary, and Industrial

Goods. For example, the correlation is increased by 0.015 in Technology sector when

EI is violated, and its corresponding w∗L is 0.005. On the other hand, in the sectors

with relatively large gains on correlation when EI is violated, w∗L is also relatively
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Figure 7.2: Maximum sector-correlations vs. EI-penalty (one-month lagged)

large, see Financial, Energy, Utilities, Consumer Staples, and Basic Materials, for

instance. It should be noted that Financial sector has the highest w∗L among all U.S.

sectors, which also happens in the synchronous case although w∗L < w∗S in Financial

sector. The optimal correlations γ̄πL over a wide range of π is plotted in Figure 7.2.

It is evident from Figure 7.2 that similar to the synchronous case, under sufficiently

large violation of the expert information, correlations diminish in value across all

sectors.

The significance of correlation improvement as EI is violated in each sector is

tested using the statistical test in Section 6.3. Only correlations (associated with

π = 1, 2, 3) that are larger than γ̄∗L are tested for VEI. The threshold of VEI is

computed in the same way as it is determined in the synchronous case. That is, a

minimum of 10% relative improvement over the correlation γ̄∗L is required for each
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Table 7.5: VEI significance results (one-month lagged)

Sector π = 1 π = 2 π = 3 Critical ν0,L

name Statistic Signif. Statistic Signif. Statistic Signif. value
Technology 0.017 No - - - - 0.060 0.021
Health Care 0.007 No 0.002 No 0.001 No 0.059 0.014
Financial 0.073 Yes 0.037 No 0.057 No 0.073 0.012
Energy 0.080 No - - - - 0.082 0.016
Utilities 0.025 No 0.040 No 0.040 No 0.074 0.015
Cons. Disc. 0.014 No < 0.001 No - - 0.061 0.016
Cons. Stap. 0.063 No 0.063 No - - 0.069 0.013
Basic Mat. 0.048 No 0.077 Yes - - 0.065 0.014
Ind. Goods - - 0.018 No 0.021 No 0.060 0.017

sector, i.e., (γ̄π,hL − γ̄∗,hL )/γ̄∗,hL ≥ 10%. Thus, threshold in (6.7) for industry h is

νh0,L = 0.10γ̄∗,hL . The test results of hypothesis test given in (6.7) are shown in Table

7.5.

Table 7.5 shows that significant improvements occur in Financial and Basic ma-

terials sectors when EI is violated, i.e., π=1 in Financial sector and π = 2 in Basic

Materials sector, which indicates that EI-violation should preferably be allowed in

input/output selection. In the remaining sectors, none of them provide statistical

evidence for violating the expert information in input/output selection. The corre-

sponding input/output vector, denoted by xhL, h = 1, . . . , 9, are reported in Table

7.6. Note that “EI” indicates the optimal input/output categorization that does

not violate the expert information, while “VEI” indicates the optimal input/output

categorization that is determined by the value of expert information.
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Overall, in the lagged case, the maximum correlation allows more violation on

the expert information, in comparison to the synchronous case. Hence, for contem-

poraneous prediction of stock returns, EI appears more important. Does this lead to

making more successful investments in portfolio selection using expert information?

To answer this question, performance of the synchronous and lagged cases will be

compared within portfolio optimization using the 9 sectors in the U.S. stock market.

7.3 Stock Selection Criterion

The purpose of applying EI-based input/output selection is to determine whether

the resulting RFS measure enables stock selection that would improve risk/return

performance of optimized portfolios. This process involves two steps: first, determin-

ing if RFS has predictive power in a given market sector; second, selecting individual

stocks based on predicted high RFS values to be included in stock portfolios from

the chosen sectors.

Sector selection is based on the significance of the industry correlation metric

(ICM) as discussed in Section 4.3. Sectors that are chosen for RFS-based investment

are indicated in Table 7.7 and 7.8, respectively, for synchronous and lagged cases.

For the synchronous case, only the Energy sector escapes any investment under

the RFS measure. However, for the lagged case, Health Care, Utilities, and Consumer

Staples are not selected for portfolio investment due to low correlations. For the

chosen sectors in both cases, individual stock selection is performed as given below.
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Table 7.7: Sector selection using correlation metric (synchronous)
Sector Correlation Test Statistic Critical value Selection
Technology 0.299 0.322 0.145 Yes
Health Care 0.192 0.202 0.150 Yes
Financial 0.247 0.260 0.161 Yes
Energy 0.153 0.159 0.165 No
Utilities 0.184 0.191 0.160 Yes
Consumer Discre. 0.208 0.216 0.150 Yes
Consumer Staple 0.268 0.286 0.158 Yes
Basic Mat. 0.169 0.175 0.154 Yes
Industrial Goods 0.210 0.216 0.148 Yes

Table 7.8: Sector selection using correlation metric (one-month lagged)
Sector Correlation Test Statistic Critical value Selection
Technology 0.209 0.219 0.145 Yes
Health Care 0.141 0.147 0.150 No
Financial 0.194 0.204 0.161 Yes
Energy 0.163 0.171 0.165 yes
Utilities 0.149 0.156 0.160 No
Consumer Discre. 0.161 0.168 0.150 Yes
Consumer Staple 0.130 0.137 0.158 No
Basic Mat. 0.216 0.227 0.154 Yes
Industrial Goods 0.172 0.179 0.148 Yes
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For each chosen sector h, using the optimal input/output vector xh, the RPS

value η̂jt(x
h
S) (for synchronous case) is computed, see Section 6.1, for each stock

j = 1, . . . , Jh and for the last τ (< t0) quarters, t = t0 − τ + 1, . . . , t0. τ represents

the historical period of RPS values to predict an RFS for stock j for the future quarter

t0 + 1. This forecast is denoted by RFSj(τ). A stock is chosen for investment in

quarter t0 + 1 only if this predicted RFS value is no less than prespecified threshold

R∗. That is, the set of stocks Jh selected for possible portfolio analysis from sector

h is given by the Stock Selection Criterion (SSC):

(SSC) : Jh := {j : RFSj(τ) ≥ R∗, j = 1, . . . , Jh} , (7.2)

for all sectors h, except Energy sector (h = 4). We set τ = 4 (i.e., from 04Q1 to

04Q4) and use a moving average forecasting method for computing RFSj(τ). The

predicted RFS values are plotted in Figure 7.3 for all stocks in the chosen 8 sectors.

Setting R∗ = −0.45 in (7.2), stocks are chosen to be included in the portfolio, which

results in 13 stocks from Technology, 13 stocks from Health Care, 15 stocks from

Financial, 13 stocks from Utilities, 5 stocks from Consumer Discretionary, 4 stocks

from Consumer Staples, 18 stocks from Basic Materials, and 8 stocks from Industrial

Goods sectors. Therefore, a total of 89 stocks are selected under the synchronous

case. Such a universe of stocks under RFS is denoted by the generic set N . This

stock selection involves using the inputs/outputs that incorporate the value of expert

information, which allows a certain degree of violation, see Table 7.3, hence, it is

referred to as the case under violated EI condition.
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Figure 7.3: Predicted 2005Q1 RFS-values for stocks (under violated EI, synchronous)

In order to examine whether the value of expert information is useful in in-

put/output selection, stock selection using inputs/outputs that fully comply with

the expert information is also performed for the above 8 chosen sectors. The corre-

sponding RFS values are plotted in Figure 7.4. By applying the same stock selection

rule in (7.2), a total of 88 stocks are selected for investment. This stock selection is

thus referred to as the case under full EI condition. Note that only the Financial

sector has a different selection of stocks for investment, relative to the case under

violated EI.

The same stock selection criterion is applied to the chosen sectors for the lagged

case. First, RFS are computed under violated EI condition for the 6 chosen sectors.

Note that Health Care (h = 2), Utilities (h = 5), and Consumer Staples (h = 7)

are excluded from any investment. Using stock selection rule in (7.2), a total of
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Figure 7.4: Predicted 2005Q1 RFS-values for stocks (under full EI, synchronous)

90 stocks are selected with 4 stocks from Technology, 11 stocks from Financial, 14

stocks from Energy, 22 stocks from Consumer Discretionary, 25 stocks from Basic

Materials, and 14 from Industrial Goods. The RFS values from these 6 chosen sectors

are plotted in Figure 7.5. Next, RFS scores are computed under the full EI condition

for the 6 chosen sectors and they are plotted in Figure 7.6. This results in a total

of 88 stocks selected for investment, with 4 stocks from Technology, 17 stocks from

Financial, 14 stocks from Energy, 22 stocks from Consumer Discretionary, 17 stocks

from Basic Materials, and 14 from Industrial Goods. Note that only Financial and

Basic Materials sectors have different stocks for investment.
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Figure 7.5: Predicted 2005Q1 RFS-values for stocks (under violated EI, lagged)
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Figure 7.6: Predicted 2005Q1 RFS-values for stocks (under EI, lagged)
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7.4 Comments on Theoretical Properties

The model in (6.32) can be used to obtain the value of expert information for the

following cases: (i) expert information is completely disregarded; (ii) expert infor-

mation is fully complied; and (iii) expert information is partially used (or partially

violated). When w = 0, the model in (6.32) is equivalent to the model in (6.4),

which pays no attention to the expert information. When w ≥ w∗, where w∗ is the

maximum marginal value of EI, the model in (6.32) is equivalent to the model in

(6.5), in which expert information must be fully satisfied. If w < w∗, expert infor-

mation is allowed to be violated with a certain degree. The w∗ for each sector are

reported in Table 7.1 and 7.4, respectively, for the synchronous and lagged cases.

However, obtaining globally optimal solutions to (6.32) is computationally tedious,

and certainly, the heuristic employed for solution is not guaranteed to provide such

a solution. Several properties are developed for f(w) in Section 6.4.1, where f(w) is

shown to be convex and monotonically nonincreasing in w, and f(w) ≥ γ̄∗, for all

w ∈ <. These properties can guide us to determine if the sample size need to be

increased when the two-step heuristic solution method is applied to solve the model.

Using various w values, the trade-off between f(w) and w for each sector for syn-

chronous case is plotted in Figure 7.7, and those for lagged case are plotted in 7.8

and 7.9. These figures show that the objective values obtained from model (6.32)

follow the afore-mentioned theoretical properties of f(w).

However, it must be noted that the heuristic solution scheme in 4.2.1 is at best a

direct search technique without any guarantee of satisfying the first order conditions

of optimality, let alone global optimal solutions. It is neither asserted nor proven that
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Figure 7.7: trade-off curve under expert information (synchronous)
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Figure 7.9: trade-off curve under expert information (lagged) (b)

this solution method provides locally maximum correlations. Towards verifying the

local optimality, the first order conditions in Section 6.5.3 are numerically checked.

For this, we define the term optimality satisfaction degree as follows.

Definition 7.4.1 (Optimality Satisfaction Degree: OSD) Given a binary in-

put/output vector x ∈ <36, let σi = 1 if (6.54) is satisfied for coordinate i, i =

1, . . . , 36; σi = 0 otherwise. Then, φ =
∑36

i=1 σi/36 is defined as the measure of the

optimality satisfaction degree of solution x.

The OSD for the optimal inputs/outputs obtained under violated EI condition and

under full EI condition for both synchronous and lagged cases are reported in Table

7.9. It is evident that none of the inputs/outputs obtained using the heuristic solution

method in Section 4.2.1 completely satisfy the first order optimality conditions. That
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Table 7.9: Optimality Satisfaction Degree for each sector
Sector Synchronous Lagged
name Under violated EI Under EI Under violated EI Under EI
Technology 38.89% 38.89% 58.33% 58.33%
Health Care 30.56% 30.56% 77.78% 77.78%
Financial 72.22% 52.78% 66.67% 50.00%
Energy 50.00% 50.00% 72.22% 72.22%
Utilities 50.00% 50.00% 47.22% 47.22%
Consu. Discre. 88.89% 88.89% 47.22% 47.22%
Consu. Stap. 75.00% 75.00% 47.22% 47.22%
Basic Mat. 63.89% 63.89% 41.67% 83.33%
Indus. Goods 58.33% 58.33% 38.89% 38.89%

is, the solutions obtained are not Karush-Kuhn-Tucker (KKT) points, hence, they

are not locally optimal.

7.5 Portfolio Optimization

The foregoing RFS-based stock selections are applied over an investment horizon of

3 months in 2005. As mentioned earlier, synchronous case is often not practically

implementable in investment because quarterly financial information usually will

not be released to the public until one month after the quarter ends. Therefore,

the lagged case is the practically viable means of implementing RFS for investment

purposes. Consider the following three portfolio strategies:

Strategy 1: Use the optimal inputs/outputs that correspond to the synchronous

correlation to compute RFS and rank firms by the end of December 2004.
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Then, form portfolios at the beginning of January 2005. Thus, the investment

horizon is from January 2005 to March 2005.

Strategy 2: Use the optimal inputs/outputs that correspond to the synchronous

correlation to compute RFS and rank firms by the end of December 2004.

Then, form portfolios at the beginning of February 2005. Thus, the investment

horizon is from February 2005 to April 2005.

Strategy 3: Use the optimal inputs/outputs that corresponds to the one-month

lagged correlation to compute RFS and rank firms by the end of January 2005.

Then, form portfolios at the beginning of February 2005. Thus, the investment

horizon is from February 2005 to April 2005.

Observe that Strategies 2 and 3 represent the fact that public knowledge of quarterly

financial information is delayed by one month. Also, note that Strategies 1 and 2

assume that a firm’s underlying financial strength influences its stock return in the

same quarter in an efficient market; however, Strategy 2 implements with a month’s

delay. In contrast, Strategy 3 assumes that a firm’s underlying financial strength

influences its stock return with a one-month time delay, being efficient up to the

availability of financial information. The above strategies are applied under both

violated EI condition and under full EI condition, and performances are compared.

A monthly-rebalancing strategy is applied where portfolio allocations are opti-

mally adjusted at the beginning of each of the 3 months in the investment horizon.

There are several models in the literature for determining portfolio allocations based

upon various risk expressions, see Edirisinghe [25] for instance. For the illustration
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here, the tracking risk control model developed in the latter reference, see [25, Section

4.1.1], is employed to determine the portfolio allocations. This form of risk control

has been demonstrated to track a market index in “good” times, and stay “neutral”

during other times, and it is shown to outperform the pure mean-variance model of

Markowitz [43].

To present the tracking risk expression, let y ∈ <|N | be a vector of portfolio

weights for each stock, and R be the random variable representing the market rate

of return. Then, denote the market expected return by m = E[R], its variance by

M = V ar(R), and for each stock j, define its “beta” by

βj :=
Cov(rj, R)

M
.

Note that βj is a measure of volatility of stock return rj in comparison to the market

return (say, using a market index). Moreover, βj = 1 indicates that stock j moves

in-sync with the market. βj < 1 means that the stock j is less volatile than the

market. βj > 1 indicates that stock return is more volatile than the market return.

Then, the tracking risk control is expressed by y′Qy, where the matrix

Q = V + (µ−m1)(µ−m1)
′
+M(β − 1)(β − 1)

′
, (7.3)

and µ ∈ <|N | is the vector of expected rate of return for each stock, β ∈ <|N | is the

stock beta-vector, and 1 ∈ <|N | is a vector of 1’s. The first term, V , of (7.3) is the

variance-covariance matrix that accounts for risks due to inherent stock correlations,

the second term accounts for risk due to not tracking benchmark mean return, and
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the third term is for risk when portfolio beta is not aligned with the market. In a

static one period setting, the portfolio investment model under tracking risk control

is as follows:

max
y

µ
′
y − λy′Qy

s.t. y
′
1 ≤ C0

|β ′
y| ≤ b

y ≥ 0,

(7.4)

where the initial budget is set at C0 = $1m and the initial stock positions are zero

in all stocks for the first month of investments. For the remaining two rebalancing

periods, C0 is automatically adjusted to the cash position carried forward in the

portfolio. λ is a user-specified risk tolerance parameter where larger λ implies an

increased risk-aversion. Also, b is a user-specified control on portfolio beta, β′y, to

keep it within prespecified bounds.

All required statistical parameters are estimated using historical stock price data

of the years 2003 and 2004. Under the monthly rebalancing strategy, such estimations

are needed at the beginning of each month in the horizon, conditional upon the data

available prior to that point in time. This approach results in a dynamically-evolving

portfolio, and the resulting portfolios are (out-of-sample) simulated using the (actual)

realized price series during the horizon. In the portfolio selection model in (7.4), risk

is controlled by both the portfolio variance trade-off parameter λ and the portfolio

beta parameter b. Larger the value of λ is, more risk-averse the portfolio allocations

would be, while higher the value of b is, more volatile the portfolio return would be
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Figure 7.10: RFS-based portfolio efficient frontier

relative to the market. All estimations, portfolio optimizations, and simulations are

performed using c©MiSOFT software, see [26].

Solving the model (7.4) by changing the pair of values (λ, b), one determines

the efficient frontier of portfolio investments. There are 6 possible efficient frontiers

under consideration - Strategy k under EI, or under violated EI, for k = 1, 2, 3.

These frontiers are depicted in Figure 7.10. Evidently, Strategy 1, under violated

EI, has the highest performance, notably when the annualized standard deviation is

below 14%. However, for increased portfolio volatility, Strategy 3, under EI, performs

better. Strategy 2 remains a fairly-weak proposition for portfolio investment.

Standard & Poor 500 index-tracking stock ticker SPY is used as the market

barometer to track the (overall) market performance. The market volatility during

the investment horizon is given by the annualized standard deviation of SPY, which
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is about 10.2% from January, 2005 to March, 2005, and 12.2% from February, 2005

to April, 2005. Thus, for the purposes of relative portfolio performance comparisons,

efficient portfolios having standard deviations as same as the market were chosen

using the efficient frontiers in Figure 7.10. That is, for the Strategy 1, standard

deviation is set at 10.2%, while that for the Strategies 2 and 3 are set at 12.2%.

The daily performances of these portfolios are compared for the cases of violating EI

and fully satisfying EI in Figures 7.11, 7.12, and 7.13, respectively, for each of the

strategies 1, 2, and 3. As can be seen from these figures, the market index is well

outperformed by Strategy 1 and 3, while Startegy 2’s performance is only modest

relative to the market. The Sharpe ratios for the 3 strategies under both violated

EI and full EI conditions are shown in Figure 7.14. Observe that strategy 1 under

violated EI condition has the strongest performance while its performance under full

EI condition cannot perform as strong as strategy 3 under both violated EI and full

EI conditions. As is expected from the daily performance curves, Strategy 2 has the

weakest Sharpe ratio, compared to the other two strategies.
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Strategy 3
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Chapter 8

Concluding Remarks

This thesis makes several contributions, both in the development of DEA-based

methodology, as well as in the application in financial investments. Most notably,

the thesis provides a generalization framework for Data Envelopment Analysis. In the

standard DEA, a set of input and output parameters of performance measurement

must be identified to rank overall performance of one firm relative to other firms.

The Generalized DEA (GDEA) method developed in the thesis allows for an iterative

process for selecting inputs/outputs such that the resulting strength metric of firms

will have high correlation with an obervable reward metric, in this case, stock returns.

In this sense, the GDEA model may be used in areas outside financial applications.

With the developed statistical testing methodology, such correlations can be verified

to be sufficiently significant as the particular application may require. Moreover,

theoretical optimality conditions are also developed for the GDEA model solutions.
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The application of the GDEA for fundamental analysis provides a novel use of

mathematical optimization techniques in stock selection for investments, as opposed

to using the standard accounting models in the literature. In particular, this thesis

develops a computable objective metric, termed Relative Financial Strength (RFS),

that uses only the financial information that is publicly available. By applying the

RFS indicator for stock selection in a lagged-format, it is successfully demonstrated

that portfolio optimization can benefit immensely with such techniques. The novelty

of the RFS approach is that it is a measure of relative strength of a firm, rather than

an absolute intrinsic measurement (or forecast) of a firm’s share value.

The method of RFS is further complemented by considering expert information

on input/output selection. This idea is particularly useful in cases where an outside

expert’s knowledge is being sought to improve the analysis. This is the first instance

of using expert information in the context of DEA analysis. The required theoretical

insight as well as statistical tests are developed for objectively verifying the value of

such expert information. As the case study involving over 800 firms indicated, such

expert knowledge can sometimes be accurate (as in certain market sectors in this

case study), and at other times, it is best violated to improve the predictive power

of the indicator. The degree of violation required to obtain the maximum predictive

power was determined objectively.

While there have been numerous research in applying optimization methodol-

ogy for risk-return trade off for portfolio rebalancing, selecting individual assets for

this purpose has not been addressed sufficiently in the literature using mathemat-

ical programming methods. In that regard, the optimization-based framework for
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stock selection developed in this thesis can become a strong complement to other

fundamental analysis tools used by fund managers.

8.1 Directions for Future Research

The GDEA optimization model developed in this thesis is a difficult mathematical

problem because the objective function is neither concave nor pseudoconcave. Fur-

thermore, there is no closed form expression for the objective function, i.e., evaluation

of the objective function requires the solution of a sequence of linear programming

models. The two-step heuristic algorithm proposed for solving this model does not

guarantee a local optimum solution, let alone a global optima. While the algorithm

yielded substantial correlations that are significant, a better solution methodology

could improve upon these correlations. A first step in this direction is utilizing the

first-order optimality conditions to guide a solution approach. More specifically,

when the heuristic fails to satisfy the optimality conditions, a new search direction

may be formed to improve the current iterate. This would certainly be a valuable

avenue to follow in future research.

Finally, while the GDEA approach for fundamental analysis focused solely on in-

puts/outputs from public financial statements, there is no reason why the model can-

not consider factors that are not directly financial in nature as input/output parame-

ters. For instance, computable metrics representing a firm’s CEO-strength/expertise,

208



or the quality of the workforce of the firm (as measured by, for instance, educa-

tional/training level, prior experience). The GDEA model has the ability to objec-

tively verify if such parameters add value for an indicator of a firm’s relative strength

in predicting its stock returns.
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Sector Industries Included
Technology
Number of Firms =
159

Application Software
Business Software & Services
Communication Equipment
Computer Based Systems
Computer Peripherals
Data Storage Devices
Diversified Communication Services
Diversified Computer Systems
Diversified Electronics
Healthcare Information Services
Information & Delivery Services
Information Technology Services
Internet Information Providers
Internet Service Providers
Internet Software & Services
Long Distance Carriers
Multimedia & Graphics Software
Networking & Communication Devices
Personal Computers
Printed Circuit Boards
Processing Systems & Products
Scientific & Technical Instruments
Security Software & Services
Semiconductor-Broad Line
Semiconductor-Integrated Circuits
Semiconductor-Specialized
Semiconductor Equipment & Materials
Semiconductor-Memory Chips
Technical & System Software
Telecom Services-Domestic
Telecom Services-Foreign
Wireless Communications

Table A.1: Industries included in Technology sector
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Sector Industries Included
Health Care
Number of Firms =
107

Biotechnology
Diagnostic Substances
Drug Delivery
Drug Manufacturers-Major
Drug Manufacturers-Other
Drug Related Products
Drugs-Generic
Health Care Plans
Home Health Care
Hospitals
Long-Term Care Facilities
Medical Appliances & Equipment
Medical Instruments & Supplies
Medical Laboratories & Research
Medical Practitioners
Specialized Health Services

Table A.2: Industries included in Health Care sector

Sector Industries Included
Basic Materials
Number of Firms =
86

Agricultural Chemicals
Aluminum
Chemicals-Major Diversified
Copper
Gold
Industrial Metals & Minerals
Nonmetallic Mineral Mining
Silver
Specialty Chemicals
Steel & Iron
Synthetics

Table A.3: Industries included in Basic Materials sector
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Sector Industries Included
Energy
Number of Firms =
49

Independent Oil & Gas
Major Integrated Oil & Gas
Oil & Gas Drilling & Exploration
Oil & Gas Equipment & Services
Oil & Gas Pipelines
Oil & Gas Refining & Marketing

Table A.4: Industries included in Energy sector

Sector Industries Included
Industrial Goods
Number of Firms =
128

Aerospace/Defense - Major Diversified
Aerospace/Defense Products & Services
Cement
Diversified Machinery
Farm & Construction Machinery
General Building Materials
General Contractors
Heavy Construction
Industrial Electrical Equipment
Industrial Equipment & Components
Lumber
Wood Production
Machine Tools & Accessories
Manufactured Housing
Metal Fabrication
Pollution & Treatment Controls
Residential Construction
Small Tools & Accessories
Textile Industrial
Waste Management

Table A.5: Industries included in Industrial Goods sector
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Sector Industries Included
Consumer Discre-
tionary
Number of Firms =
110

Appliances
Auto Manufacturers-Major
Auto Parts
Business Equipment
Electronic Equipment
Home Furnishings & Fixtures
Housewares & Accessories
Office Supplies
Packaging & Containers
Photographic Equipment & Supplies
Recreational Goods - Other
Recreational Vehicles
Rubber & Plastics
Sporting Goods
Textile-Apparel Clothing
Textile-Apparel Footwear & Accessories Toys & Games
Trucks & Other Vehicles

Table A.6: Industries included in Consumer Discretionary sector
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Sector Industries Included
Consumer Staples
Number of Firms =
68

Beverages-Brewers
Beverages-Soft Drinks
Beverages-Wineries & Distillers
Cigarettes
Cleaning Products
Confectioners
Dairy Products
Farm Products
Food-Major Diversified
Meat Products
Paper & Paper Products
Personal Products
Processed & Packaged Goods
Tobacco Products-Other

Table A.7: Industries included in Consumer Staples sector
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Sector Industries Included
Financial
Number of Firms =
58

Accident & Health Insurance
Asset Management
Closed-End Fund-Debt
Closed-End Fund-Equity
Closed-End Fund-Foreign
Credit Services
Diversified Investments
Foreign Money Center Banks
Foreign Regional Banks
Insurance Brokers
Investment Brokerage - National
Investment Brokerage - Regional
Life Insurance
Money Center Banks
Mortgage Investment
Property & Casualty Insurance
Property Management
Real Estate Development
Regional - Mid-Atlantic Banks
Regional - Midwest Banks
Regional - Northeast Banks
Regional - Pacific Banks
Regional - Southeast Banks
Regional - Southwest Banks
REIT - Diversified
REIT - Healthcare Facilities
REIT - Hotel/Motel
REIT - Industrial
REIT - Office
REIT - Residential
REIT - Retail
Savings & Loans

Table A.8: Industries included in Financial sector
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Sector Industries Included
Utilities
Number of Firms =
62

Diversified Utilities
Electric Utilities
Foreign Utilities
Gas Utilities
Water Utilities

Table A.9: Industries included in Utilities sector
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