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Abstract

Graph-based methods used in the analysis of DNA microarray technology can be powerful
tools in the elucidation of biological relationships. As these methods are developed and
applied to various types of data, challenges arise that test the limits of current algorithms.
These challenges arise in all phases of data analysis: data normalization, modeling biological
networks, and interpreting results.

Spectral graph theory methods are investigated as means of threshold selection, a key
step in constructing graphical models of biological data. Also important in constructing
graphs is the selection of an appropriate gene-gene similarity metric, and an overview of
similarity profiles for some biological data sets is present, along with a similarity thresholding
method based upon structural properties of random graphs.

The identification of altered relationships between two or more conditions is a goal
of many microarray gene expression studies. Clique-based methods can identify sets of
coexpressed genes within each group, but additional computational methods are required
to uncover the differential relationships and sets of genes changing together between groups.
Differential filters are reviewed to highlight those changing interactions and sets of changing
genes. The effect of various normalization methods on these differential results is also
studied.

Finally, how methods commonly used in the analysis of gene expression data can be used
to investigate relationships in noisy and incomplete historical ecosystem data is explored.
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Chapter 1

Introduction and Background

1.1 Introduction

With the advent of high throughput platforms for gene expression profiling, many novel
computational methods have been introduced to extract biological knowledge from the
mass of data available. These range from speedy heuristics such as hierarchical clustering to
computationally-intensive exact algorithms for extracting dense sets of highly-related genes.
Other than the principle challenge of developing tools that produce biologically-relevant
results, many challenges arise in the preprocessing and modeling of, and computation on,
various data sets.

In addition to the challenges that are currently faced, designing and applying novel
computational methods to new, larger, and different types of data sets leads to even more
issues. There is a constant effort to develop new technologies that allow researchers to ex-
amine the genome at higher resolution and finer granularity. New techniques and platforms
are also needed to keep up with current biological knowledge, an example of which is the
recent technology of microRNA expression profiling.

1.2 Motivation

This dissertation focuses on the challenges that arise in a graph-based analysis of high-
throughput data, specifically the clique-based methods described in [1, 2]. These methods
have been applied to a variety of genomic and proteomic data from an array of species
[1, 3, 4], as well as historical ecosystem data [5]. Challenges arise in each step of the
analysis process. Normalizing data, deciding on parameters for building models, processing
results, and dealing with noisy or incomplete data all present unique problems that must
be faced to turn raw data into useful information.

Many of these challenges crop up in most graph-based analyses of gene expression data,
such as the selection of an appropriate similarity metric for computing gene-gene correla-
tions. These challenges have been met in a variety of ways. Unfortunately, there is often
no clear answer or best approach, so it is wise to be equipped with a “toolbox” of meth-
ods. What follows is a description of the steps involved in this graph-based approach and
an analysis of some issues and questions that arise as one progresses through the entire
process.

1



1.3 Microarray technology background

The first DNA microarray experiment was reported in 1995 by Mark Schena et al., then at
Stanford University. The authors analyzed the expression profile of the plant Arabidopsis
thaliana and performed a differential expression analysis between the wild type and a trans-
genic line overexpressing the gene HAT4 [6]. Since then, the use of microarray technology
has exploded. There are presently more than 8,000 publicly-available gene expression data
sets comprised of over 220,000 samples available online in the Gene Expression Omnibus
(GEO) repository [7, 8].

DNA microarrays allow the large-scale monitoring of gene expression levels, as measured
by cellular mRNA concentration, for thousands of gene transcripts simultaneously. The
level of gene expression is measured by the detection of dye-labeled mRNA hybridized to
complementary DNA transcripts printed on the microarray. Performing microarray analysis
over multiple conditions facilitates the detection of relative changes in expression, which is
usually performed with the help of traditional differential expression methods [9, 10].

Although only expression levels from one microarray per sample group are necessary
for most differential expression methods, many graph-based approaches require data from
multiple arrays from each group. These methods can then uncover changes in consistent
relationships between genes rather than comparing expression levels from two different
genomic “snapshots.” The samples to be processed on these microarrays can be collected
from different strains, individuals, or taken at various time points.

1.3.1 Normalization and preprocessing

Raw data should be preprocessed before computational or statistical tools can be applied.
After background signal is subtracted from each expression level, a normalization method is
usually used to bring values on each array into comparable ranges, illustrated in Figure 1.1.
This is necessary due to differences in microarray chips, dye intensity, and other sources of
variation within the technology itself [11].

There are several methods to preprocess and normalize raw microarray data, including
MAS5, RMA, gcRMA, PDNN, VSN, and d-Chip, among others. Each of these is explored
in more detail in Chapter 5. It has been observed that varying the normalization method
often leads to inconsistent results [13]. The question therefore arises of which preprocessing
method is “best,” or which is most appropriate under differing circumstances. Chapter 5
investigates the effect of normalization method choice on differential comparisons other than
basic differential expression.

1.4 Graph-based analysis toolchain background

Most graph theoretical methods model biological relationships, in this case derived from
gene expression data, using the mathematical structure of a graph. Gene transcripts are
represented by vertices in the graph while relationships between genes are represented by
edges. Edge weights are determined by similarity of the respective transcripts in the ex-
pression profile. Modeling biological networks using graphs offers the benefit of having at
hand the rich collection of knowledge and results from the field of graph theory.

Along with preprocessing and normalization, the procedure of building the coexpression
network and subsequent computation can be viewed as distinct steps and implemented in a
graph-based analysis toolchain. Figure 1.2 shows the general progression of the clique-based
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(a) (b)

Figure 1.1: Effect of normalization on gene expression values on five microarrays from
the data set described in [12]. (a) Raw .CEL data before normalization. (b) After RMA
preprocessing and normalization.
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Figure 1.2: A toolchain for the analysis of high throughput microarray data. Computational
tools are used to extract sets of coexpressed genes.

analysis toolchain. Specifically, the computation of gene-gene similarities, thresholding, and
deriving biological knowledge from long lists of computational results are steps relevant to
this work.

1.4.1 Building gene coexpression networks

There are two key steps involved in building gene coexpression networks: computing sim-
ilarities between gene expression profiles, and applying a threshold to these similarities to
retain only putatively biologically-significant relationships. Choices made at these steps can
significantly affect results at later stages. Thresholds must be selected so that similarities
surpassing a particular level represent only true biological relationships, as supported by
the data. Of course, the choice of a similarity metric can cause edges of a particular weight
to surpass or fall below that threshold, especially if the value is marginal.

As previously mentioned, the process begins with a weighted graph with edge weights
determined by some similarity value computed for each pair of vertices, based upon their
associated gene’s expression profile. These similarities can be computed using a variety of
techniques, with the Pearson product-moment correlation coefficient being the most popular
choice. The Pearson correlation coefficient is given in Equation 1.1, with x being the sample
mean and Sx the sample standard deviation. Other possibilities include the Spearman rank
correlation coefficient, the shrinkage estimate, and mutual information. Chapter 3 seeks to
identify commonalities in the structure of biological graphs, based upon their clique profiles,
constructed using the various similarity metrics above.

rxy =
∑

(xi − x)(yi − y)
(n− 1)SxSy

(1.1)

The thresholding step takes as input the weighted graph and a threshold th, and removes
all edges whose absolute value fall below that threshold. Absolute edge weights are used
since negative correlations are often as informative as the positive ones, in the case of sup-
pressive relationships. The edge weights are removed from the remaining edges, leaving an
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unweighted graph. Isolated vertices, vertices with degree zero, can be also be removed from
the analysis. A network of only putatively biologically-significant relationships remains.

There are a variety of methods to select this threshold value th. A popular choice is
to compute the significance of each correlation coefficient. It is well-known that if the true
correlation between two random variables is 0, then

t =
r√

(1− r2)(N − 2)
(1.2)

is distributed approximately as t with N − 2 degrees of freedom, where N is the sample
size and r is the calculated Pearson correlation coefficient [14]. A simple Student’s t-test
produces a p-value, which serves as a measure of significance for the associated correlation
value. This value indicates the probability of obtaining a result at least as extreme as
the observed value. After adjustment for multiple tests, the usual significance threshold
of α < 0.05 can then be applied. Of course, this method is only applicable to similarities
computed using Pearson correlation coefficients, but there is also a method for testing
significance of the Spearman rank correlation [15].

The selection of the threshold value th presents one of the most significant challenges
in a graph-based analysis. Many papers describing a gene expression microarray study
also include a discussion of threshold selection, and there is no clear concensus as to which
method should be used. In fact, Elo et al. point out that the performance of traditional
methods for threshold selection can vary and that there has been no systematic approach
to addressing the thresholding problem [16].

Chapter 2 seeks to address the thresholding problem, while Chapter 3 examines some
of the structural properties of various biological graphs using different similarity metrics.
Chapter 6 addresses the construction of networks from corrupt and incomplete data.

1.4.2 Computational methods

Two well-known problems in graph theory are used to extract key sets of related genes:
maximum clique and maximal clique enumeration. Paraclique [17] is also often employed
to adjust for noisy data. Although they are not discussed here, many other problems in
graph theory have found utility in biological applications, including biclique, cluster edit,
feedback vertex set, and dominating set among others [18, 19, 20, 21].

Definition 1. Given a graph G = (V,E) a clique C ⊆ V is a set of vertices such that there
exists an edge between every vertex in C. In other words,

∀u, v ∈ C, (u, v) ∈ E

Also known as a complete subgraph, a clique of size five is illustrated in Figure 1.3. The
decision version of the clique problem takes as input a graph G = (V,E) and constant k and
answers the question “Does G contain a clique of size at least k?” An algorithm to solve the
clique problem, along with a binary search, can be used to find the maximum clique size in
the graph. The search version of the clique problem also returns the members of the clique.
Determining whether a graph has a clique on at least k vertices is NP-complete [22].

Finding all maximal cliques in a graph is also useful for finding sets of genes with similar
expression profiles. While most biological graphs might only have a few cliques of maximum
size, the number of maximal cliques can number in the thousands or millions.
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Figure 1.3: A clique on five vertices.

Definition 2. A maximal clique is a complete subgraph to which no additional vertices can
be added.

The four highlighted vertices in Figure 1.4 do indeed form a clique of size four, but it is
not maximal–vertex A can be added, resulting in a clique on five vertices. Since a clique
of maximum size in the graph G must also be maximal, maximal clique enumeration must
also be computationally difficult; in fact, it is NP-hard.

In the context of gene-gene relationships, a maximal clique is a maximal set of completely
connected genes–the densest set of relationships that can be extracted from the data. Edges
linking vertices in a clique represent the “most trusted associations” between genes [23]. It
is important to note that maximal cliques can be overlapping. That is, a single gene
can appear in multiple maximal cliques, offering greater fidelity with actual biology when
compared with traditional clustering methods.

The significance of these maximal cliques is based upon the principle of guilt by asso-
ciation, the idea that genes having a similar expression profile are more likely to share a
biological pathway, and possibly have the same function [24]. By definition, all genes in a
clique have similar expression profiles, with the definition of “similar” being determined by
the chosen threshold. Therefore, one would expect genes appearing in cliques together to
generally have similar function and participate in the same pathways. When the function
of a gene is unknown, the function of its fellow clique members can be used to extrapolate
its purpose.

A benefit of the clique-based approach is the natural resistance to false positives, since
all edges must be present to form a clique. This protection comes at a price–microarray
data is inherently noisy, and even a single missing connection can cause a vertex to be
lost from the clique. The paraclique algorithm was invented by M. A. Langston and first
reported in [17] to overcome this limitation of the technology. Paraclique is based upon
the observation that if a vertex is connected to say, all but one of the genes in a clique,
then that vertex should likely belong to the clique as well. The single missing edge is likely
due to noise bringing the weight of that edge just under the threshold. The algorithm
“gloms” these vertices onto the original clique, resulting in a “paraclique,” as illustrated
in Figure 1.5. Various implementations of the algorithm allow for the specification of the
number of allowable missing edges (referred to as the “glom factor”), as well as a lower
threshold for edges that can be incorporated into the paraclique.
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Figure 1.4: The four highlighted vertices do not form a maximal clique.

Figure 1.5: A paraclique with glom factor of n− 1.
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Figure 1.6: Differential correlation graph. Source: [1].

1.4.3 Differential filters

Maximal clique results on biological graphs often take the form of thousands or millions of
sets of completely connected vertices. With such a large set of cliques and a high degree
of overlap, computational tools are often required just to make sense of the output. To
address this abundance of results when performing comparative analyses, differential filters
have been developed to identify genes, associations, and groups of interacting genes for
further study [1].

In a differential analysis, which involves the comparison of expression profiles over two
or more groups, the central problem is to identify which genes and sets of relationships are
changing. These changes could result from exposure to some environmental factor or stress
or be due to some fundamental difference such as gender. If a graph is created and maximal
cliques are enumerated separately for each group, it is possible to identify correlations
that “appear” or “disappear” from one group to the next. Examining differences at the
subgraph level, which involves identifying sets of genes and associations changing together
from one group to another, is also informative. Chapter 4 formalizes these concepts, termed
differential correlation and differential topology, respectively. Figure 1.6 from [1] shows a
differential correlation graph in which red and blue edges are those that surpass a preselected
threshold in one group but fall below a lower threshold in the other.

1.4.4 Postprocessing

Once dense sets of related genes or those genes changing associations between groups have
been identified, it is often desirable to compare these results to current biological knowledge.
The purpose here is twofold: to ensure that what was found is true and to infer a function or
regulatory mechanism for certain genes based upon the genes with which they are associated.
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For instance, if some gene A of unknown function is present in a clique or paraclique with
many immune response-related genes, then gene A is more likely to have an immune-related
function (recalling the idea of guilt-by-association). Likewise, genes that have been identified
as participating in many changing relationships at the edge or subgraph level upon exposure
to some environmental factor might share a regulatory relationship with, say a transcription
factor, whose associated gene transcript might have also been identified. There are many
tools available to examine the function of genes and sets of genes, such as Gene Ontology
[25], WebGestalt [26], and Ingenuity Pathway Analysis [27].

It is important to view such functional and regulatory annotations using results as a
starting point for biological validation. Given the noise inherent in microarray data, results
that are highly dependent on threshold selection and the small but ever-present threat of
false positive, only biological experiments can truly validate computational findings. The
value of the differential screens is that a list of 55, 000 gene transcripts can be distilled into a
set of perhaps the 100 possibly most important in the response to a certain disease, stress,
or environmental factor. Similarly, methods like paraclique produce putative functional
annotations to test, where none previously existed.

1.5 Theory and computational requirements

Although we have seen that both the maximum clique and maximal clique enumeration
problems are NP-complete, it is still desirable to solve these problems exactly. A collection
of heuristics are explored in [28], but with the expense and effort involved in collecting
gene expression data, an exact approach seems more sensible. This is especially true when
considering that exact results are necessary to build networks that are maximally reliable
and consistent with actual biology. Luckily, solving these problems exactly for large data
sets is not as intractable as it might first seem.

Given an input of size n and parameter k, a problem is fixed parameter tractable (FPT)
if there exists an algorithm to solve it that runs in O(f(k)nc) time, where c is constant.
This gives hope that there might be polynomial time algorithms for certain problems. The
benefit here is that the running time of the algorithm is no longer based upon the input
size, but instead upon some fixed parameter k. With a favorable function f(k) and constant
c, solving instances of FPT problems becomes feasible. The most comprehensive work on
fixed parameter tractability is the 1999 monograph of Downey and Fellows [29].

Maximum clique is not FPT, but its complementary dual, vertex cover, is FPT.

Definition 3. Given a graph G = (V,E), a vertex cover is a set V C ⊂ V such that each
edge in E has an end point in VC. In other words, ∀(u, v) ∈ E, (u ∈ V C) ∨ (v ∈ V C).

Note that a clique C in G = (V,E) is an independent set in Gc. Now, V −C is a vertex cover
in Gc. The maximum clique problem can therefore be approached by finding a minimum
vertex cover in graph complement. The input to the decision version of the minimum
vertex cover problem is a graph G and parameter k. The question to be answered is “Does
the graph G contain a vertex cover of size at most k?” The current best bound on the
complexity of the vertex cover problem is O(1.2852k + kn) [30].

Although the complexity of the vertex cover problem is much better than one might
expect for a NP-complete problem, identifying a maximum clique for some graphs can
result in a large value for k. Add to this the fact that the problem must be solved mul-
tiple times using a binary search, and that the hardest case–the one in which there is no
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clique of size k, for the largest value of k–must be solved once to verify there are no larger
cliques. In practice, larger biological graphs also tend to have a larger maximum clique size.
Hence, computational requirements can still be rather restrictive. For this reason, parallel
implementations of the vertex cover algorithm are often employed [31].
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Chapter 2

Spectral Thresholding

2.1 Introduction

The two main operations in building gene co-expression networks are computing gene-gene
similarities, and setting a threshold past which these similarities are considered biologically
significant. This thresholding step has been addressed in the literature in various fashions,
including choosing a percentage of the highest correlations as a cutoff value [32, 33], retain-
ing only statistically-significant similarities [34, 35], permutation testing [23], examining
network structure and properties [16, 36], and control spot verification [1], among many
others.

Here, the focus is on a linear algebra-based method to select a threshold that can quantify
“real” biological relationships. It is assumed that some pairwise gene-gene similarity has
been computed. As previously mentioned, vertices representing genes are joined by an edge
weighted with their similarity. Now an attempt to zero in on an appropriate edge weight
threshold with the aid of spectral graph theory techniques can be made.

Spectral graph theory has a long history of use in the natural sciences as well as decades
of work developing its mathematical foundations [37, 38, 39, 40]. Spectral methods have
been used in computer graphics [41, 42], communications networks [43, 44], and theoreti-
cal chemistry [45, 46, 47]. From the biological domain, spectral clustering and partitioning
approaches have been applied to high-throughput biological data. Eigenvalues and eigenvec-
tors of graphs produced from microarray data have been studied and used for classification
of samples in the classic acute lukemia data of Golub [48] and also to cluster genes and
conditions simultaneously, so-called co-clustering, or biclustering [49].

Spectral graph theory involves the decomposition of a graph into its representative
eigenvalues and eigenvectors and the study of these pieces. Examination of these spectral
components can uncover information about the structure of the graph, in this case repre-
sentative of a biological network. For example, the number of connected components in a
graph can be determined, as well as whether the graph is complete or bipartite, and how
well connected it is.

Although they have found wide utility, spectral methods face some limitations when
applied to large data sets, such as those generated by high-throughput technologies such as
microarrays. Computing exact eigenvalues on large data sets with conventional methods is
expensive in both processing and memory requirements. In this paper, a simple spectral
clustering algorithm is used. This algorithm is based upon a single selected eigenvalue
and eigenvector, which is relatively easy to estimate for sparse matrices. This particular
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algorithm operates on unweighted, undirected graphs, which makes it possible to apply an
edge weight threshold at a variety of points and examine the spectral properties of the
resulting graph. This approach was also chosen for the property of being unsupervised,
which removes any bias that might be introduced by the selection of parameters such as
cluster size or number of iterations.

2.1.1 Definitions

Definition 4. Given an undirected, unweighted graph G = (V,E), define the adjacency
matrix A of G to be

Au,v =

{
1 if (u, v) ∈ E,
0 otherwise.

Definition 5. Let the diagonal n× n degree matrix D be defined to be

Du,v =

{
deg(u) if u = v,
0 otherwise.

Definition 6. Define the Laplacian matrix of the simple graph G, L(G), to be

L(G) = D−A

or alternatively,

L(G)u,v =


deg(u) if u = v,
−1 if u 6= v and (u, v) ∈ E,
0 otherwise.

Definition 7. The Normalized Laplacian matrix of the simple graph G, denoted L(G) is
defined by

L(G)u,v =


1 if u = v,

−1√
deg(u)·deg(v)

if u 6= v and (u, v) ∈ E,

0 otherwise.

2.1.2 Background

From this point forward, the Laplacian and normalized Laplacian will be referred to by L
and L, respectively, when the graph being operating on is clear or irrelevant. In addition,
unless otherwise noted, operations will be performed on the Laplacian matrix L rather than
the normalized Laplacian matrix.

Definitions 6 and 7 illustrate that the Laplacian matrix of a graph contains not only
adjacency information, but also the degree structure of the graph. For this reason, it is
preferred to analyze the Laplacian matrix rather than the adjacency matrix alone.

The characteristic equation of G, based upon the Laplacian, is given by equation 2.1.

det(L− λI) = 0 (2.1)
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The symmetric eigenvalue program will be solved on the Laplacian matrix L by finding
solutions to the linear system

Lx = λIx (2.2)

giving a set of eigenvalues and eigenvectors. Note that the adjacency matrix A, and hence
the Laplacian matrix, is symmetric for all undirected graphs and is square of order n, where
n = |V |. This implies that there are n eigenvalues and eigenvectors. Since L is symmetric
and positive-definite, all eigenvalues are real and the eigenvectors are orthogonal.

To facilitate referencing certain eigenvalues by their relative magnitude, the eigenvalues
of L are ordered such that they are monotonically increasing as in equation 2.3.

λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn−1 (2.3)

These eigenvalues, along with their associated eigenvectors v0,v1, . . . ,vn−1 are referred to
as the “spectrum” of G.

Since the main focus is on the spectral analysis of biological data, one can make use of the
structure of biological networks to solve the eigenvalue problem. As previously mentioned,
gene co-expression graphs are undirected, having an edge between vertices only if there is
some significant biological relationship between the two genes represented by those vertices.
It is also known that, in general, there are relatively few of these biologically significant
relationships, resulting in sparse graphs.

Although biological data sets usually do give rise to sparse graphs (and hence sparse
Laplacian matrices,) there are often a large number of gene transcripts involved. With such
large matrices, solving the eigenvalue problem is often prohibitive in terms of processing time
and memory requirements. The Arnoldi methods [50] for large scale eigenvalue problems of
ARPACK [51] overcome these limitations when one is interested in only select eigenvalues
and eigenvectors. These symmetric, sparse eigensolvers are employed as implemented in
ARPACK and incorporated within MATLAB. The sparse matrix support in MATLAB also
eases the memory requirements during computation and storage of the Laplacian.

2.1.3 Connectivity

The smallest non-zero eigenvalue is referred to as the Fiedler value, or the algebraic con-
nectivity of the graph, due to [52]. In a connected graph, the algebraic connectivity will
be equal to λ1. This value gives a measure of how well connected the graph is, or a rela-
tive measure of the proportion of edges that must be removed before the graph becomes
disconnected. This tells how well the graph can be cut. As the graph becomes increasingly
sparse, λ1 tends toward zero.

Since the multiplicity of the zero eigenvalue in the spectrum of the Laplacian is deter-
mined by the number of connected components in the graph, λ1 = 0 for any disconnected
graph. In fact, a graph with k connected components has the property that

λ0 = λ1 = . . . = λk−1 = 0 (2.4)
0 < λk ≤ λk+1 ≤ . . . λn−1 (2.5)

The primary interest here is the smallest non-zero eigenvalue and its associated eigen-
vector. In an ordered list of eigenvalues for a disconnected graph, one cannot be sure to
which component the smallest non-zero eigenvalue belongs. To prevent the analysis from
being based upon the spectrum of a smaller, insignificant pieces of the graph, Observation 1
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allows the graph to be decomposed into its connected components and their spectra com-
puted individually. This analysis can then be continued on the spectrum of only the largest
connected component.

Observation 1. “The spectrum of a graph is equal to the union of the spectra of its con-
nected components” [37].

Proof. This follows from the definition of the spectrum of a graph [37]. Let G = (V,E)
be a graph on n vertices with k connected components, then the rows and columns of the
adjacency matrix of G (and hence its Laplacian matrix L) can be arranged in block diagonal
form so that

A =


A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Ak


where A1,A2, . . . ,Ak are the adjacency matrices of the connected components of G. The
goal is to to solve the system of equations Ax− λIx = 0:

A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Ak




x1

x2

· · ·
xk

 =


λx1 0 0 0

0 λx2 0 0

0 0
. . . 0

0 0 0 xk


Let mi be equal to the number of vertices of the ith connected component, and hence the
order of the matrix Ai. Because of the block nature of the matrix A, the elements of Ai

only operate on the first mi elements of the vector x in the matrix-vector multiplication,
and contribute only to the first mi rows and columns of the product matrix. So the equation
can be solved as separate systems of linear equations:

Aixi − λxi = 0

for each connected component i from 1 to k, producing the spectrum of each individual
connected component.

Similarly, the spectrum of each connected component, produced from solving k linear
systems as above, can be combined into a single system of equations, with A having the
aforementioned block diagonal form.

2.1.4 Spectral clustering

The goal of a clustering algorithm is to partition data points into subsets of highly-related
data items, usually based upon some distance measure or similarity metric. When applied
to vertices in a graph, the methods are often referred to as graph partitioning algorithms.
For example, there are three natural clusters in Figure 2.1.

There have been many spectral-based clustering algorithms proposed for approximating
an optimal partitioning. Among these are the algorithms described in [53, 54]. A good
review of spectral clustering algorithms can be found in [55].

The simplest spectral clustering method is a recursive bisectioning of the graph [56,
57]. One simple implementation of a spectral bisection algorithm examines the eigenvector
associated with the smallest non-zero eigenvalue, which is often referred to as the Fiedler
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Figure 2.1: A graph comprised of three natural clusters.

vector. Elements of the Fiedler vector are sorted, and separated into two groups: elements
that are less than zero, and elements that are greater than zero. Since each eigenvector
has length n, and each element in an eigenvector is associated with a vertex in the graph,
this gives a bipartitioning of the data. This procedure is then repeated until the desired
level of granularity is reached. Other methods, so-called multispectral methods, make use
of multiple eigenvectors to partition the data.

The method employed here is based upon the observation that the lower-order eigenvec-
tors, after being sorted in a monotonically increasing fashion, exhibit a step-function-like
property, as seen in Figure 2.2 [58]. Large, acute “gaps” in the eigenvector element values
are used to delineate cluster boundaries while vertices whose associated eigenvector values
reside on “plateaus”–consecutive elements showing little or no change–belong in clusters
together. These gaps and plateaus will be used in the search for an ideal edge weight
threshold. As previously mentioned, this method has the benefits of being unsupervised
and operating on unweighted graphs, which allows a threshold to be applied at various
correlations and an analysis of the resulting graph to be performed.

2.2 Application to thresholding

If one is to extract biological knowledge from large microarray data sets, it must be rea-
sonably assured that the model accurately reflects true biological relationships. One way
to do this is to determine the cutoff at which the natural separations in the network begin
to appear. A threshold of zero results in a completely connected graph. As the threshold
increases, the graph becomes less dense–some areas of the graph more than others. This is
the nature of scale-free networks, which are frequently claimed to represent many biological
graphs [59].

The methods implemented here are especially suited to this task because of the unsu-
pervised nature of the algorithms. In contrast to supervised methods, it is not necessary
to specify the number of clusters desired in advance, thereby imposing artificial limitations
on the results. The results produced by the spectral methods described are completely
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Figure 2.2: Eigenvector values associated with Lower-order eigenvalues show a step-like
property when sorted.
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data-based. Because only selected eigenvalues and eigenvectors are extracted, using sparse
matrix operations, the methods are also not computationally- or memory-intensive.

Two possible thresholding methods are introduced and applied to the data sets described
in Section 2.3.1. For both methods, the first step is to build a gene co-expression network,
represented as a weighted graph with vertices representing genes and edge weights deter-
mined by the Pearson correlation coefficient between two genes. Iterating over thresholds
from 0 . . . 1 in 0.01 increments, each graph is decomposed into its connected components. A
subset of the spectrum is computed for the largest connected component at each threshold.

2.2.1 An eigenvalue-based approach

The first method is a purely eigenvalue-based approach, in which the smallest non-zero
eigenvalue of the largest component is computed. A line chart of these eigenvalues at
multiple thresholds is examined and inflection points identified. As the threshold increases,
biological graphs tend to decrease in connectivity until reaching and holding steady at a
low connectivity level before sharply rising. The increase in the magnitude of eigenvalues
is likely due to the decrease in size of the largest connected component in the graph. It
was observed that it is “easier” for smaller components to be well-connected than larger
components.

The point at which the graph transitions from almost disconnected to rather well con-
nected, as indicated by low and subsequently very high algebraic connectivity values, is
likely to be a good point at which to threshold edge weights. One would expect this inflec-
tion point to be a suitable threshold because it allows for the best separation of subsets of
vertices in the graph, without the graph becoming too small. This ensures that the network
model represents only the strongest relationships and that so many edges have not been
excluded that important vertices are likely to have become isolated.

The difference between each pair of smallest non-zero eigenvalues computed at consec-
utive thresholds is examined. Changes between these eigenvalues at consecutive thresholds
usually remain “flat.” Relatively large changes at high or low thresholds indicate signifi-
cant fluctuations in connectivity. Looking at this difference between thresholds allows one
to identify stable periods during which connectivity remains relatively unchanged. This is
an alternate approach to viewing the eigenvalue plot mentioned above, since this plot also
identifies those changes from low to high connectivity values.

2.2.2 An eigenvector-based approach

A natural approach is to base the threshold on the results of an unsupervised spectral
clustering. Both the smallest non-zero eigenvalue of the largest graph component, as well
as its Fiedler vector, are computed. This vector is sorted in monotonically increasing order
and transitions of the step-like function are identified.

To identify these gaps and plateaus, a sliding window is employed, which compares
eigenvector members windowsize units apart. Iterating over each element of the eigen-
vector, the first point at which the difference between the element at position windowsize
and the element at position i falls below some predetermined level serves as the starting
position of a cluster. The end of the cluster is determined by the next point at which this
difference exceeds the predetermined level. This iteration continues, identifying all possible
clusters. Figure 2.3 demonstrates one iteration of the sliding window operation.
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Figure 2.3: A sliding window is used to identify gaps in the sorted Fiedler vector.

Figure 2.4: Identifying clusters using linear regression slope. In this example, eleven sample
points are used to illustrate the positioning of the regression line and sliding window. The
yellow box shows the current location of the sliding window and identifies the data points
used in the regression line computation.

The sliding window is necessary because it is not sufficient to base cluster boundaries
on changes between consecutive eigenvector elements. Transitions between plateaus may
occur gradually. When this occurs, the difference between any two consecutive eigenvector
members might fall below the threshold for a significant change, while elements windowsize
distance apart surpass that threshold. In this case, elements at position i and i+windowsize
should belong to two different clusters, but the gradual transition will cause the transition
to be missed when considering only consecutive values.

Using a method based upon the eigenvector members themselves helps to avoid arbitrary
choices when determining what is a significant difference between the elements at the start
and end of the sliding window. A change is considered significant if it is greater than
the median plus 1

2 of a standard deviation of the differences between the smallest nonzero
eigenvector values occurring windowsize distance apart. Also tested is another method that
uses a similar sliding window technique and computes the regression line slope using points
lying within the sliding window (see Figure 2.4). It has been suggested that this slope could
be used to identify inflection points at which the curve shows a significant change [60]. The
slope of the regression line is computed used formula 2.6. If this slope is greater than ε,
then the difference is considered significant.

m =
n

∑
(xy)−

∑
x

∑
y

n
∑

(x2)− (
∑
x)2

(2.6)

The threshold value producing the largest number of clusters is selected. Using the
value that produces the largest number of clusters allows for partitioning of the data points
at the finest granularity, with the sliding window or regression line technique ensuring that
the individual clusters are still well-defined. If two or more threshold values produce the
maximum number of clusters, the lowest threshold at which this first occurs should be
chosen, giving the largest cluster sizes. Choosing the higher thresholds would only serve to
decrease cluster sizes, possibly excluding genes from the analysis that would have otherwise
been in a cluster.
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Notice that this method does not require the specification of parameters affecting clus-
tering membership, nor does it force all genes into clusters. Genes whose associated eigen-
vector member fall within a transition area (i.e. do not occur within cluster boundaries)
are not placed into clusters. Likewise, genes whose associated eigenvector elements occur
in plateaus less than some designated size are excluded from the results.

2.2.3 Implementation

Datagen version 1.4a by Jon Scharff was used to compute pairwise Pearson correlation
coefficients for each pair of genes sharing at least 10 observations. To avoid recomputing
correlation values at each threshold, a weighted edge list was output with a threshold applied
at the lowest correlation for which spectral properties were to be examined. This weighted
edge list was then filtered as the threshold was stepped in 0.01 increments to the maximum,
resulting in an unweighted graph.

At each step, the graph was decomposed into its connected components and a Perl script
was employed to compute the Laplacian matrix of the largest connected component. For
compatibility with MATLAB’s sparse matrix functions, the Laplacian matrix L was output
in a sparse format such that the coordinates for each nonzero matrix value are followed by
the value at that location. For example,

i j -1

indicates a value of −1 in row i and column j.
This Laplacian matrix was then passed to MATLAB and converted to MATLAB’s in-

ternal sparse format using the spconvert function. The two smallest eigenvalues and eigen-
vectors were then computed using the function eigs. Since the smallest eigenvalue is known
to be 0, only the second eigenvalue and associated eigenvector were extracted for analysis.
The script then employed both the previously described sliding window and regression slope
techniques to identify gaps in this eigenvector.

2.3 Results

2.3.1 Data sets

Two well-studied biological data sets are examined and an appropriate threshold deter-
mined:

Yeast cell cycle
The Spellman, et al. Saccharomyces cerevisiae data set [61], in which the authors used
microarray data to identify and study cell-cycle regulated genes.

GNF human
Homo sapiens microarray data collected by the Genomics Institute of the Novartis Research
Foundation [12], to form a panel of baseline expression values over seventy-nine tissue types.

2.3.2 Graph structure

Examining properties of the graph at various thresholds can often provide some intuition
into changes occurring at various correlation thresholds. In Figure 2.5, the density of the
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entire yeast cell cycle and GNF graphs at various thresholds is computed using the formula
d = e

n(n−1)/2 , where e is the number of edges in the graph and n is the number of vertices
after isolated ones have been removed.

Both Figures 2.5a and 2.5b show a gradual decline and subsequent increase in graph
density, although the densities are much lower in the yeast cell cycle data. It is clear that
something is happening at the higher thresholds–above 0.92 in yeast and 0.94 in GNF. The
data show that the number of isolated vertices increases rapidly as the thresholds become
high, and that there are a core set of edges with high correlations that are present, resulting
in higher densities. In choosing an appropriate threshold, one goal is to avoid analyzing
graphs that are too dense, but avoid removing too many significant interactions. Lower
densities also allow for a better partitioning of the data.

Since it is known that the multiplicity of the zero eigenvalue always represents the
number of connected components in a graph, the number of connected components in each
of the data sets at the same thresholds can be examined. Figure 2.6 shows that in both
cases, the maximum number of connected components occurs at a threshold value of 0.84.
This identifies which thresholds produce the largest natural separation in the data, though
there is usually one large component (the one used in the spectral analysis) while the others
are very small.

2.3.3 Spectral results

Figure 2.7a shows the smallest nonzero eigenvalue for both the Laplacian and normalized
Laplacian of the yeast cell cycle data. This eigenvalue was calculated at thresholds from
0.50 to 0.99 of the Pearson correlation coefficient. By visual inspection, the smallest nonzero
eigenvalue of the Laplacian matrix reaches the beginning of an inflection point at a threshold
of about 0.77, although the eigenvalue is at a low, relatively stable level between about 0.77
and 0.87. By choosing the first point at which this minimal period is attained, a threshold of
0.77 results. Figure 2.7b shows the same information for the normalized Laplacian matrix.
Here, the eigenvalue declines at a much slower and steadier pace, decreasing monotonically
until the 0.83 threshold. Knowing that a low, nonzero Fiedler value indicates the presence
of nearly disconnected components [58], and hence a good separation between clusters, an
appropriate threshold choice here might be 0.82.

As previously mentioned, another way of visualizing the change in eigenvalues is to ex-
amine the difference between the smallest nonzero eigenvalue at consecutive thresholds. As
the magnitude of the observed eigenvalues decreases, changes between subsequent thresh-
olds will also decrease. Figure 2.8 shows that after a stable period, significant variation
between consecutive cutoff values appears at thresholds above 0.87. These spikes are due
to increases in the connectivity of the largest component. As one might expect, this coin-
cides with the end of the stable period at 0.87 observed in Figure 2.7. This increase in the
smallest eigenvalue, along with much smaller graph sizes and significantly higher densities,
suggests that a good separation of clusters might not be possible at these higher thresholds.
Therefore, a threshold of at most 0.86 would be most appropriate.

The number of clusters identified by both the basic sliding window difference method
as well as the regression line slope method is indicated in Figure 2.9. In both cases, the
number of clusters reaches a maximum at threshold 0.78.

The smallest nonzero eigenvalues of both the Laplacian and normalized Laplacian of the
GNF graph were calculated at thresholds between 0.70 and 0.99 and shown in Figure 2.10.
In both cases, the eigenvalues show a steady period of low connectivity values up to threshold
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(a)

(b)

Figure 2.5: Density of the (a) yeast cell cycle and (b) GNF graphs at various thresholds.
Isolated vertices have been removed.
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(a)

(b)

Figure 2.6: Number of connected components in the (a) yeast cell cycle and (b) GNF graphs
at various thresholds.
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(a)

(b)

Figure 2.7: Yeast cell cycle smallest nonzero eigenvalues. (a) Plot of smallest nonzero
eigenvalues of the Laplacian at various thresholds. (b) Smallest nonzero eigenvalues of the
normalized Laplacian at various thresholds.
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(a)

(b)

Figure 2.8: Difference between eigenvalues at consecutive thresholds for yeast cell cycle data.
(a) Difference between smallest nonzero Laplacian eigenvalues at consecutive thresholds.
(b) The same differences between eigenvalues computed on the normalized Laplacian.
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(a)

(b)

Figure 2.9: Number of clusters identified in yeast cell cycle data. (a) Using the basic
sliding window technique with a median- and standard deviation-based cluster identification
method. (b) Using the linear regression slope method.
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Table 2.1: Thresholding results produced by several different methods for both the yeast
cell cycle and GNF baseline expression panel data sets.

Data set λ1 λ1 norm Sliding window Regression slope p < 0.05 1% 0.1%
Yeast 0.77 0.82 0.78 0.78 0.22 0.55 0.72
GNF < 0.92 < 0.92 0.80 0.90 0.22 0.65 0.77

0.92, indicating a good separation of the data should be possible at the lower thresholds
up to 0.92. The chart of the difference between eigenvalues at consecutive thresholds in
Figure 2.11 shows the same variation seen in the yeast cell cycle data, beginning here at
the 0.92 point.

The number of clusters obtained in the GNF network using the basic sliding window
technique (Figure 2.12a) and regression line slope method (Figure 2.12b) show maximums at
0.80 and 0.90, respectively. The sliding window method generally detects clusters at a finer
granularity, with the regression line slope method recognizing only larger gaps, resulting in
a higher threshold.

2.3.4 Comparison with other methods

Table 2.1 show thresholds selected by the spectral methods as well as the conventional p-
value threshold, top one percent, and top one-tenth percent of correlations. In every case,
the spectral methods selected a higher threshold than either the p-value method at the
α < 0.05 significance level or choosing the top one or one-tenth percent of correlations.
While this results in edges that would otherwise be considered statistically-significant being
excluded, it is often desirable to reduce the size of the network. For example, the GNF
graph at a threshold of 0.22 has 106629395 edges on 22283 vertices. When analyzing the
resulting gene expression network, the size of the graph becomes prohibitive in terms of
memory and processing requirements.

2.4 Conclusions

Both an eigenvalue- and eigenvector-based method to select thresholds for building gene
coexpression networks from microarray data have been introduced. Both of these methods
have been tested in various flavors, including using the normalized Laplacian for analysis,
as well as both the basic sliding window and regression line slope approaches to identify
clusters from the Fiedler vector. For two well-studied data sets, the spectral methods
suggest a much more conservative threshold than either retaining all statistically-significant
correlations (p < 0.05) or considering only the top one percent of all correlations. These
spectral methods are more dependent upon the underlying data and graph structure than
the p-value or correlation-based methods, which rely exclusively upon sample size and
correlation distribution to formulate a threshold, respectively.
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(a)

(b)

Figure 2.10: GNF smallest nonzero eigenvalues. (a) Plot of smallest nonzero eigenvalues
of the Laplacian at various thresholds. (b) Smallest nonzero eigenvalues of the normalized
Laplacian at various thresholds.
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(a)

(b)

Figure 2.11: Difference between eigenvalues at consecutive thresholds for GNF data. (a) Dif-
ference between smallest nonzero Laplacian eigenvalues at consecutive thresholds. (b) The
same differences between eigenvalues computed on the normalized Laplacian.

28



(a)

(b)

Figure 2.12: Number of clusters identified in GNF data. (a) Using the basic sliding win-
dow technique with a median- and standard deviation-based cluster identification method.
(b) Using the linear regression slope method.
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2.4.1 Future work

Since there has been much previous work on spectral partitioning and clustering, an inter-
esting extension to this work would be to compare thresholding results based upon other
spectral clustering methods. The method implemented here was simple, being based upon
a single eigenvalue or eigenvector. An advanced method should be able to perform a more
accurate clustering, increasing the confidence in the threshold chosen to give the best sep-
aration of the data points.
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Chapter 3

Clique Profiles and Similarity
Metrics

3.1 Introduction

One of the key steps in constructing gene coexpression networks is the computation of some
similarity of the expression profile between each pair of genes. With edge weights based
solely upon this metric, changing the method used can obviously affect which relationships
are determined to be biologically significant. Graph structure, including maximum and
maximal clique properties, might also then be affected. The degree, correlation, and clique
profiles for several biological data sets are examined to identify differences between similarity
computation methods.

The question then arises of whether there are “normal” or “usual” degree or clique
profiles that one would expect to result from analysis on biological data. Having this
information available can help identify data sets that deviate from the norm, indicating
that the reason for this deviation must be identified.

This chapter examines some of the common properties in similarity and structural pro-
files for four different methods. Also presented is a characterization of these properties for
a collection of biological data sets and scale-free synthetic networks generated using the
Barabasi-Albert method [62].

3.2 Computation and comparison of similarities and clique-
based properties

Using several biological data sets from two separate gene expression studies, pairwise sim-
ilarities were computed for each pair of gene transcriptions. For each data set, similarity
results for the methods discussed below were compared on four different criteria: similarity
distribution, degree structure, maximum clique size, and clique profile.

3.2.1 Similarity computation

Four different methods were used to compute gene-gene similarities. Correlations com-
puted on a small number of data values are inherently less reliable and values based upon a
smaller number of observations often tend toward extremes. Two genes need only move in
the same direction, either up or down, over two conditions to produce a perfect correlation.
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Pearson and Spearman correlation values computed on fewer than ten pairwise-complete
observations were not included in the analysis. While variables with fewer than ten obser-
vations cannot result in a reliable correlation value, note that additional correlations might
be removed based upon the number of pairwise-complete data items. To help equalize the
effect of excluding these correlations in the comparisons, any transcript with fewer than ten
present values was removed from all analyses.

Pearson

One of the most well-known and widely used measures of similarity in gene coexpression
studies is the Pearson product-moment correlation coefficient, which was discussed in Chap-
ter 1 and whose formula was given in Equation 1.1. Pearson’s r represents a measure of
linear relationship between two normally distributed variables in the range −1 . . . 1 with a
correlation of zero indicating no relationship. Positive and negative correlations result from
variables moving in the same and opposite directions over some set of samples, respectively.

Spearman

Spearman’s rank-based correlation coefficient ρ presents an option for similarity computa-
tion that is useful for data likely to contain larger numbers of outliers. From the surface,
Spearman correlation values exhibit similar properties as Pearson correlations, with values
lying in the same range. The non-parametric nature of this method, however, makes this
correlation coefficient desirable for use with variables not drawn from a normal distribution
or for which the theoretical distribution is not known. The formula for computing Spearman
correlation values, shown in Equation 3.1 is given in [14].

ρ = 1− 6
∑
D2

n(n2 − 1)
(3.1)

where D is the rank difference between corresponding data items. For example, suppose
that for two random variables X and Y the rank of value xi and yi are 4 and 1, respectively.
In this case, D = 3.

Shrinkage

The shrinkage-based estimate of the correlation matrix described in [63] presents an ap-
proach that is more suitable for the small sample sizes and large number of variables usu-
ally found in high throughput biological data. Schäfer and Strimmer argue that the use
of the standard covariance in such “small n, large p” situations is inappropriate and in-
troduce a new estimator with better mean squared error than traditional approaches. The
shrinkage-based correlation estimator given in [63] is seen in Equation 3.2.

r∗ij =

{
1 if i = j

rij min(1,max(0, 1− λ̂∗)) if i 6= j
(3.2)

where rij is the empirical correlation and

λ̂∗ =

∑
i 6=j V̂ ar(rij)∑

i 6=j r
2
ij
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Computation of the unbiased variance estimate V̂ ar is described in [63].

Mutual information

The use of the mutual information measure has recently become popular in biological studies
[64, 65]. Mutual information (MI) can be considered a measure of dependence between two
variables. As such, MI can indicate the presence of nonlinear relationships between genes.
Unlike previously mentioned approaches, all MI values are nonnegative and do not fall
within a predefined range.

Mutual information is described in [64] in terms of relative entropy. The authors note
that entropy is a measure of the information contained within a gene’s expression profile,
for example. The entropy H(A) of a variable A with some number of observations is given
in Equation 3.3. Note that the range of values for the variable A has been divided into n
subintervals x1 . . . xn into which the values have been binned.

H(A) = −
n∑
i=1

p(xi) log2 p(xi) (3.3)

where p(xi) is the proportion of values lying in the interval xi.
Having defined entropy, mutual information can be computed as in Equation 3.4.

MI(A,B) = H(A) +H(B)−H(A,B) (3.4)

where the conditional entropy H(A,B) can be calculated as in Equation 3.3 while using the
joint entropy p(x, y) and summing over both x and y. A lower mutual information value
translates into a higher degree of independence between two variables while larger MI values
indicate a non-random relationship [64].

A comprehensive comparison of mutual information with Euclidean distance and Pear-
son correlation is presented in [66]. While the authors mention that other studies have
found a high degree of concordance between these approaches, their results showed that MI
produced better clustering results.

3.2.2 Implementations

The stand-alone program “Datagen” version 1.4a by Jon Scharff was employed to compute
both Pearson and Spearman correlation coefficients. Shrinkage and mutual information
values were computed using the R statistical package version 2.6.1 with various additional
packages. The shrinkage correlation matrix was computed using the Corpcor package ver-
sion 1.4.7 [67]. Missing values are not a problem per se when using the shrinkage approach,
since the cor.shrink function requires all observations to be present. For this reason, the
Bioconductor EMV package version 1.3.1 [68] was used to impute missing values using the
k nearest neighbors (KNN) method. The mutualInfo function within the Bioconductor
package bioDist version 1.10.0 [69] was used to compute pairwise MI values.

3.2.3 Clique-based methods

After the computation of gene-gene similarities using each of the four methods, graphs were
constructed using the methods described in Chapter 1. By applying a high pass threshold
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filter, an unweighted graph was created from only those edges surpassing the selected thresh-
old. The maximum clique size was found and maximal cliques were enumerated from graphs
constructed at various thresholds. Due to variations in density and computational resources
required for individual graphs, the thresholds used in the analyses varied depending upon
both data set and choice of similarity metric.

3.2.4 Scale-free comparisons

Although biological networks are often poorly modeled by graphs on synthetic data, it is
often observed that graphs on biological data exhibit the property of scale-freeness. Scale-
free networks have the property that their vertex degree distribution follows the power
law P (K) ∼ k−γ . Scale-free networks were discussed extensively and properties such as
component size and average path length were examined in [62].

Various properties of scale-free networks are compared with the gene expression data sets
described in Section 3.3.1. Scale-free networks were constructed using the Barabasi-Albert
(BA) method described in [62]. This method uses a growth and preferential attachment
approach to construct a graph with the desired degree distribution. As implemented here,
the algorithm begins with a small number of nodes m0 that are connected in a star. A new
vertex is added at each time step and is connected to m = m0 of the nodes already in the
graph with probability

Π(ki) =
ki∑
j kj

(3.5)

where ki is the degree of vertex i. Vertices are selected at random for possible connection
to the new node until m connections have been made. Constructing graphs using this
preferential attachment approach allows graphs with higher degree to accumulate edges
faster, resulting in the hub structures seen in scale-free networks.

It is also noted in [62] that the number of vertices and edges in the resulting graph
will be t + m0 and mt, respectively, where t is the number of time steps. Therefore, with
m = m0, the mechanism for controlling density is the variation of m0. Scale free graphs
were generated here to have similar density and size as the biological graphs under study.

3.3 Results

3.3.1 Data sets

Correlation and degree distributions of two biological data sets were examined: seasonal
allergic rhinitis and low dose ionizing radiation data. Clique profiles and maximum clique
sizes of these two data sets were also computed at various thresholds, as described in Sec-
tion 3.3.3.

Seasonal allergic rhinitis
In this allergy data set, studied further in Chapter 4, gene expression was measured in
twenty allergic patients outside of allergy season before and again after allergen challenge
on Illumina Human WG-6 BeadChips [70]. Twelve arrays passed quality control in the
control group and nineteen in the allergen-stimulated group.

Low dose ionizing radiation
This data was collected for a study of the effects of low dose ionizing radiation in spleen
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tissue, and was reported in [1]. Twenty samples from both control and radiation-exposed
groups were analyzed on custom cDNA microarrays from six standard inbred Mus musculus
strains.

3.3.2 Similarity profiles

Over all data sets, Pearson correlations fell within the range −0.99 . . . 1 while Spearman
coefficients consumed the entire range of −1 . . . 1. Shrinkage values ranged from −0.62
to 0.62. Mutual information values, which are not constrained by the usual 1 . . . 1 range,
spanned 0.1 to 2.5. This range of MI levels is similar to the limits of 0.1 and 2.5 observed
in [64].

Figure 3.1 shows the distribution of similarity values for each method and data set. It
is important to note that the amplitude of the curve for each data set will vary depending
upon the number of the correlate pairs examined. It is the shape of the distribution that is
interesting to compare for different methods. Because the distribution of mutual information
values did not vary with each increment of one-hundredth as did the other methods, MI
scores were binned at the tenths level.

All distributions exhibited a bell-shaped curve with the exception of the shrinkage corre-
lations computed on the stimulated allergy data set, which had no obvious tails. Shrinkage
values for all data sets fell within a smaller range than other methods, with many more
correlations centered around zero.

Degree profiles were extracted from graphs produced from each similarity method at
thresholds typically used in clique-based analyses. A threshold of 0.85 was applied to both
Pearson and Spearman correlation. Shrinkage values varied widely depending upon the
data set examined, so a threshold was chosen for each data set to attempt to equalize the
maximum degree within each graph. Graphs from mutual information similarities were
constructed at the 1.95 MI threshold. Figure 3.2 shows the degree profile produced by
similarities from each method.

Again, the degree distribution of graphs produced from each similarity method exhibited
a similar shape over all biological data sets. When comparing degree profiles produced by
the various methods, mutual information produced several genes of high degree with the
degree falling sharply when examining genes from the most to the least connected.

3.3.3 Clique profiles

Maximum clique sizes were computed for graphs from each biological data set using the
four previously described similarity methods. A lower bound on the threshold for each
method and data set was applied to allow for maximum clique sizes to be found quickly.
Prior experience shows that these thresholds also equate to graph of size such that maximal
cliques can also be enumerated. The lower bound selected for Pearson and Spearman
methods was 0.85. Shrinkage values varied widely, so 0.37, 0.56, 0.36, and 0.40 were chosen
as the smallest thresholds for allergy control, allergy stimulated, spleen control, and spleen
dose data respectively. The lowest threshold examined for mutual information values was
1.95.

Figure 3.3 illustrates that maximum clique sizes for each data set and similarity method
were found to be approximately linearly decreasing as the threshold increased. There was
a high degree of similarity observed in the maximum clique sizes on graphs from Pearson
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(a)

(b)

Figure 3.1: Similarity distributions for graphs on allergy and spleen data using various
similarity methods. (a) Pearson, (b) Spearman, (c) Shrinkage, (d) Mutual Information.
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(c)

(d)

Figure 3.1: Continued.
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(a)

(b)

Figure 3.2: Degree profiles for graphs on allergy and spleen data using various similarity
methods. (a) Pearson, (b) Spearman, (c) Shrinkage, (d) Mutual Information

.
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(c)

(d)

Figure 3.2: Continued.
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Table 3.1: Summary of scale-free graphs generating using the Barabasi-Albert method.

Graph Vertices Edges Density
BA-8000-12 8000 95856 0.30%
BA-8000-20 8000 159600 0.50%
BA-10000-10 10000 99900 0.20%
BA-10000-15 10000 149775 0.30%
BA-15000-15 15000 224775 0.20%
BA-15000-20 15000 299600 0.27%
BA-20000-20 20000 399600 0.20%
BA-20000-25 20000 499375 0.25%

and Spearman correlations. Sizes on graphs constructed from shrinkage-based correlations
in Figure 3.3c showed a considerable difference between the stimulated allergy data and the
rest of the data sets. Mutual information maximum clique sizes in Figure 3.3d exhibited
a step-like property, which was found to be due to the fact that some thresholds did not
exclude any additional edges.

Maximal cliques were enumerated at various thresholds again using the lower threshold
bounds defined above. Figure 3.4 shows the number of maximal cliques of each size for
all of the similarity methods. Because of the scale of the values involved, the y axis of
all graphs is log scale. It is obvious that maximal clique distributions on these biological
graphs have a distinct shape, which is approximately bell-shaped in a non-log scale. Many
of the distributions are well-skewed in the positive or negative direction, indicating that
more small or large cliques are present, respectively.

3.3.4 Scale-free comparisons

Scale-free networks of similar size and density as biological graphs on Pearson and Spearman
correlations at the lowest thresholds studied were constructed. The Barabasi-Albert method
described in Section 3.2.4 was employed to ensure the scale-free property of the graphs’
degree distribution. Table 3.1 shows a summary of the graphs constructed. Graphs were
named with the number of vertices along with the selected size for the parameter m0.

The BA-8000-12 and BA-8000-20 graphs most resemble the allergy control and stimu-
lated graphs with a Pearson correlation threshold applied at 0.90. The allergy graphs have
size 8487 and 7512 with density 0.30% and 0.50%, for control and stimulated groups respec-
tively. BA-20000-20 and BA-20000-25 are most similar in size and density to spleen control
and spleen low dose radiation graphs at a threshold of 0.85. Those biological data sets have
size and density 19389, 0.21% and 19371, 0.22%, respectively. A selection of graphs of size
10000 and 15000 with varying densities was also generated.

Sample degree distributions for the randomly-generated scale-free networks are given
in Figure 3.5. Only the degree for the first 5000 vertices is pictured, by which point the
scale-free nature of the degree distribution is evident.

Maximum clique size was measured and averaged over 50 instances of each of the graphs
listed in Table 3.1. Figure 3.6 shows that maximum clique size increases steadily with size
and density. Note that while BA-8000-12 and BA-8000-20 are smaller than the 10000 vertex
graphs, they exhibit larger maximum clique sizes due to their increased density. Compared
to graphs constructed from Pearson and Spearman correlations, the synthetic scale-free
graphs exhibited a significantly smaller maximum clique sizes than the biological graphs of
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(a)

(b)

Figure 3.3: Maximum clique sizes for graphs on allergy and spleen data using various
similarity methods. (a) Pearson, (b) Spearman, (c) Shrinkage, (d) Mutual Information.
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(c)

(d)

Figure 3.3: Continued.
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(a)

(b)

Figure 3.4: Maximal clique profiles for graphs on allergy and spleen data using various
similarity methods. (a) Pearson, (b) Spearman, (c) Shrinkage, (d) Mutual Information.
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(c)

(d)

Figure 3.4: Continued.
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Figure 3.5: Degree distribution for the first 5000 vertices in scale-free graphs generated with
the BA method.
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Figure 3.6: Maximum clique sizes for scale-free graphs generated with the BA method.

similar size and density. Allergy control and stimulated graphs at a Pearson threshold of
0.90, for example, achieved maximum clique sizes of 55 and 110, respectively. BA-8000-12
and BA-8000-20, on the other hand, had average sizes of 8 and 12.

Maximal cliques were enumerated from a scale-free graph selected from those generated
for each size and density combination. Figure 3.7 shows the maximal clique profile for
each of the larger graphs, as well as BA-20000-40, another 20000 vertex graph with 0.40%
density. All of the synthetic graphs show a large number of small cliques with the number
dropping precipitously as the clique sizes increase. Comparatively, most of the biological
profiles at similar densities showed a bell-shaped distribution.

3.4 Conclusions

The analysis of correlation and degree distributions, along with maximum and maximal
clique profiles, of various biological data sets can help identify properties that are likely to
be found in many biological data sets. Genome-scale computations and visualization of each
of these properties indicate that many of them remain essentially unchanged regardless of
the similarity computation method used.

Some of the properties that characterize the data sets examined here are bell shaped
similarity distributions and scale-free degree distributions. Linear decreasing maximum
clique sizes were observed as the threshold was increased. Maximal clique profiles were
found to be mostly unimodal and possibly skewed, depending upon the data set studied.

Results on random scale-free networks constructed using the Barabasi-Albert method
showed relatively smaller maximum clique sizes than biological graphs from Pearson and
Spearman graphs of similar size and density. Figure 3.7 also indicates that significantly
fewer maximal cliques are to be expected in the BA scale-free networks.

46



Figure 3.7: Maximal clique profiles for scale-free synthetic graphs.
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An ideal extension to this work is a large-scale study of the previously discussed cor-
relation and structural properties of biological graphs. With thousands of gene expression
data sets available from the Gene Expression Omnibus website [8], an automated process
to compute selected graph metrics could build a compendium of properties for biological
data. This work focused explicitly on gene expression data, but the same approach can be
applied to other types of biological data such as proteomic and SNP data.
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Chapter 4

Identifying Stress- and
Disease-Associated Genes From
Graph-Based Models

4.1 Introduction

A central goal in many gene expression microarray studies is to identify those genes that are
involved in some biological response to stress. This stress can take the form of changes in
environmental factors such as temperature, atmosphere, or the introduction of some other
external factor like radiation. Microarrays are also often used to quantify genetic change
due to disease. The aim in this type of study is to uncover those genes related to complex
disease by identifying altered expression levels and gene interactions between healthy and
disease states in various organisms.

This chapter focuses on the identification of genes involved in complex diseases, which are
those that involve multiple genes. Simultaneous disease-related changes in the expression of
multiple genes can be identified in an analysis of microarray data from healthy and disease
samples. The classical approach to identifying these genes is a basic differential expression
analysis, which is explored further in Section 4.2.1.

Uncovering disease-related genes can assist in the diagnosis and treatment of many
diseases. However, traditional differential expression can detect only changes in expression
level between two or more groups, not changes in interactions. The maximal clique approach
and associated tools introduced in Chapter 1 are ideal for identifying both localized and
network-wide changes. The benefit of microarray technology and the clique-based approach
is that it looks at relationships between all genes. The challenge to overcome in this case is
the difficulty in interpretation of the possibly millions of correlations. Researchers require
a systematic approach to extracting biologically meaningful differences based upon these
correlation results.

4.2 Triple screen

The use of three separate gene filters, each applied either to correlation or clique results,
is introduced to help identify those genes that are most “different” between two or more
groups of samples. These screens were developed by M. A. Langston and first introduced
in [1] to identify genes involved in a response to low doses of ionizing radiation, but are
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used here to find genes that are most likely to be involved in some biological response to a
disease. Genes and relationships identified by these methods can also be used to distinguish
between each type of sample. The filters can be applied in series or simultaneously in
parallel. The individual resulting gene sets are then intersected to obtain a single list of
genes passing all three screens. The use of these methods helps to overcome the limitations
of traditional differential expression methods and the challenges presented by correlation
and clique analysis.

4.2.1 Differential expression

A differential expression analysis identifies those genes that exhibit a significant change in
expression level between different groups of samples. Genes found to differ in expression
between healthy and disease samples, for example, are likely to have been affected in some
way by the disease. Multiple samples for each group can be included in the analysis,
increasing the fidelity with which differentially expressed genes are identified.

Examining differences in expression for a single gene between two groups is the most
commonly used and most basic way to find genes possibly associated with some disease,
and has been in use since the first microarray study [6]. Many methods exist for differential
expression analysis, including [9] and [10]. The standard differential expression process is
performed for each gene under study (usually all genes on the particular microarray chip
model). For each gene, the most basic methods generally compute a fold change, which
is a measure of the degree of increase or decrease between two groups. Many methods
also perform some statistical test as a measure of significance of the differential expression
results. Those genes with the largest absolute fold change and most significant p-value are
normally retained for further study.

In a graph-theoretical context, differential expression can be viewed as a vertex-level
comparison. The goal is to identify those vertices that differ between two groups, and no
other graph structures such as edges or subgraphs are examined.

Traditional differential expression methods have some benefits, mainly that they provide
a quick, well-accepted approach to identifying changing genes. These methods, however,
are based upon changes in expression in individual genes and are unable to detect changes
in relationships between two or more genes. For example, suppose we have two groups of
samples A and B and that genes u and v are highly and lowly expressed over all samples, re-
spectively, as illustrated in Figure 4.1a. Genes u and v are then not differentially expressed.
Notice the pattern of expression for genes u and v are exactly the same, resulting in a
correlation value of 1.0. Figure 4.1b shows the same two genes; still neither is differentially
expressed, but the expression profile of gene v has changed. This results in a correlation
value of 0.0. Although in neither figure are u and v differentially expressed, there is an
altered interaction between the two genes from group A to group B.

4.2.2 Differential correlation

In the same vein as traditional differential expression methods, differential correlation iden-
tifies pairs of genes that exhibit a significant change in their correlation value between two
groups of samples. However, differential correlation addresses the shortcomings of standard
differential expression by examining changes in gene-gene correlations between two or more
sample groups rather than just changes in expression value. This allows one to uncover
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(a)

(b)

Figure 4.1: Expression levels for two hyothetical genes illustrating changes in gene-gene
relationships. (a) shows expression levels for sample group A while (b) shows the expression
levels for group B.
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altered interactions associated with stress or disease, and can identify important genes even
if they do not differ significantly in expression level between two or more groups.

Two genes are differentially correlated if their correlation value is less than some lower
threshold tl in one group and greater than an upper threshold in the other group. This is
stated more formally in Definition 8. Without loss of generality, the following definitions
assume that the lower or less significant correlation value occurs in sample group A.

Definition 8. Two genes u and v are said to be differentially correlated between two groups
A and B if |rA(u, v)| ≤ tl and |rB(u, v)| ≥ th, for some predetermined thresholds tl and th,
called the ”lower” and ”upper” thresholds, respectively.

To be more statistically rigorous, specifically when dealing with Pearson correlation
coefficients, Definition 9 can be employed. This approach identifies differentially correlated
genes based upon a measure of significance of the correlation value. Again, the lower or
more significant correlation value can occur in either sample group A or B.

Definition 9. Two genes u and v are differentially correlated if |pA(u, v)| < α and |pB(u, v)| ≥
α at a particular significance level α.

Note that this approach does not take into account the size of the difference in the mag-
nitude of correlation between gene u and gene v, but only if the relationship is considered
statistically significant. This method can be modified, however to require a difference of say
0.05 between the upper and lower correlations. This would require that |pA(u, v)| < α and
|pB(u, v)| ≥ α + 0.05. Since there is a one-to-one correspondence between each correlation
value together with the corresponding sample size and the significance p-value, this method
approach is somewhat equivalent to Definition 8.

Just as differential expression operates at the vertex level, differential correlation per-
forms edge-level comparisons, and can be viewed in a graph-theoretical framework. Suppose
network graphs have been constructed from two different types of samples, resulting in two
graphs GA and GB.

Definition 10. Given graphs GA = (V,EA) and GB = (V,EB), two vertices u ∈ V and
v ∈ V are differentially correlated if |wA(u, v)| ≤ tl and |wB(u, v)| ≥ th.

Any of these three flavors of differential correlation are applicable to graph-based mi-
croarray analysis and will find those altered gene-gene relationships between two groups.
However, Definition 8 will be used exclusively for the analyses in the remainder of this
chapter.

4.2.3 Differential topology

Having already explored methods to identify vertex-level and edge-level differences in two
different graphs, the remaining changes to uncover occur at the subgraph level. There are
many different ways to compare particular subgraphs within two different graphs, including
searching for maximum common subgraphs, and analyzing clique intersection graphs [71].

Two approaches are examined here to identify genes participating in differential topolog-
ical relationships. The first is to quickly determine those transcripts showing a differential
clique abundance and the second performs an exhaustive comparison of the densest sub-
graphs from each group. Each of these approaches assumes that two graphs, GA and GB,
representing biological networks have been constructed from two different groups of microar-
ray samples. Maximal cliques have been enumerated from each of these graphs, resulting
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in two different, but possibly overlapping collections of cliques A and B.

Differential clique abundance
The most basic approach to differential topology is to compute a measure of differential
clique abundance for each gene. The idea is to find those genes that differ most in abundance
between maximal cliques enumerated from graphs on two different groups of samples. The
hypothesis is that a gene appearing in many cliques in one group but not the other plays
an important role in a stress or disease response. To identify these key genes, a scaled
difference score is calculated.

Definition 11. Let A and B be two collections of cliques. Define the scaled difference
score (SDS) for each vertex in either A or B to be the absolute percent difference in clique
membership between the two collections of cliques, scaled between 0 and 1.

Let pctA and pctB equal the percent of all cliques CA ∈ A and CB ∈ B containing vertex
u, respectively. The unscaled difference score is calculated as

DS(u) = 100 · |pctA − pctB|pctA+pctB
2

(4.1)

This scaled difference score is designed to mimic the standard percent change formula

Percent change = 100 · New−Original
Original

observing that this formula requires some modification to be applicable in this case. Specif-
ically, it must be ensured that both increases and decreases of equal magnitude bear the
same weight. This is achieved in Equation 4.1 by dividing by the average of the two percent
changes instead of the initial value.

This difference score DS(u) is computed for each vertex, maintaining the global mini-
mum (MIN) and maximum (MAX), which are used to compute the scaled difference score

SDS(u) =
DS(u)−MIN

MAX −MIN
(4.2)

bringing the difference score for each vertex into the range 0 . . . 1.
Note that the vertex showing the largest percent difference between the two groups will

have a scaled difference score of exactly 1.0 while the vertex with the least difference will
have a scaled difference score of 0.0. The scaled difference score says nothing of the absolute
magnitude of the difference in abundance, but its magnitude is only relative to all of the
other differences. One must look to the absolute difference in abundance between the two
collections of cliques for this information.

Clique similarity
It is often desirable to know exactly which cliques from one collection appear in another.
A simple clique containment similarity metric, based upon the well-known information
theoretic measure known as precision, can be computed for each clique within each group.
In practice, one begins with two collections of maximal cliques that were enumerated from
two different graphs on the same vertex set. A similarity score is computed between each
clique in the first collection and each clique in the second collection. Those cliques with
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Table 4.1: Jaccard index example.

(a)

Clique Members
A 1 2 3
B 3 4 5

(b)

Clique Members
A 1 2 3
C 3 4 5 6 7

the lowest similarity with each of the cliques in the second collection are the most unique
between the two collections.

The Jaccard index is often used to measure the similarity between sets of objects. Here,
when comparing clique A to all cliques in collection B, the goal is to find the maximum
proportion of clique A that is found in some clique in B. This allows the identification of the
most unique cliques in each group. The example in Table 4.1 illustrates why the Jaccard
index, defined in Equation 4.3, fails in this case.

J(A,B) =
|A ∩B|
|A ∪B|

(4.3)

The two cliques in Table 4.1a have a Jaccard index of 1
5 , since they share one element of

five total. However, the Jaccard index of the cliques in Table 4.1b is 1
7 . Obviously, the

same amount of clique A is contained within both cliques B and C, but the similarities are
different because of the increase number of elements in the union.

This difficulty can be corrected using a modified similarity metric, defined in Defini-
tion 12.

Definition 12. Let A and B be two collections of cliques. Define the containment simi-
larity between set A and set B to be S(A,B) : A× B → R such that

S(A,B) =
|A ∩B|
|A|

Lemma 1. For every A and B in C1 and C2, respectively

0 ≤ S(A,B) ≤ 1

Proof. Clearly both |A ∩ B| ≥ 0 and |A| ≥ 0, so |A∩B||A| > 0. The largest that |A ∩ B| can

be is |A|, since each element of A ∩B must be contained in A, hence |A∩B||A| ≤ 1. Therefore
0 ≤ S(A,B) ≤ 1.

S(A,B) = 0 when the sets A and B have no elements in common while S(A,B) = 1 if
and only if A is contained entirely in the set B. We can think of S(A,B) as a measure of
the number of elements of A that are also contained in the set B. It is worthwhile noting
that the two parameters of S are not commutative.

Lemma 2. S(A,B) = S(B,A) if and only if |A| = |B|.
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Proof. (⇒) Suppose S(A,B) = S(B,A), then

|A ∩B|
|A|

=
|B ∩A|
|B|

⇒ |B||A ∩B| = |A||B ∩A|
⇒ |B||A ∩B| = |A||A ∩B|

⇒ |B| = |A|

(⇐) Suppose |A| = |B|, then

S(A,B) =
|A ∩B|
|A|

, but since |A| = |B|,

|A ∩B|
|A|

=
|A ∩B|
|B|

=
|B ∩A|
|B|

= S(B,A)

Observe that this measure of set similarity is inversely related to a measure of set
dissimilarity.

S(A,B) = 1− S(A,B)

Having defined a metric to compute clique-clique similarities, it can now be applied to
the collections of maximal cliques enumerated from the graphs GA and GB constructed on
two different sample sets. The first step is to identify the largest part of each clique in A
that can also be found in some clique in B.

For each A ∈ A compute
Mi = max

1≤j≤|B|
S(A,Bj)

where Bj is the jth clique in B. These Mi values are then sorted in ascending order, leaving
the cliques most unique to collection A at the beginning of the order. This process must
then be repeated for each clique in B due to difference in cliques in each collection, and the
noncommutativity of the scaled difference score.

4.2.4 Implementation

This conceptually simple comparison requires considerable computational resources, espe-
cially when the size of the collections of cliques involved is considered. The graph from each
group may have millions of maximal cliques within it, resulting in trillions of comparisons.
For this reason, a parallel MPI implementation of the clique similarity has been employed
in these analyses.

Each round of comparisons begins with a master process assigning BLOCKSIZE cliques
from the first set of maximal cliques to np worker processes. Workers then compute the
similarity from Definition 12 for each of the cliques specified by the master. These scores
are returned to the master node, and the most unique cliques are identified.
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4.3 Results

Each of the three differential screens were performed on data from a study of seasonal allergic
rhinitis (SAR). SAR is thought to be a complex disease, involving altered expression and
interactions between many genes. The three differential gene filters described above were
used to identify disease- and treatment-associated changes at the vertex, edge, and subgraph
levels.

4.3.1 Data set

Samples from twenty patients were collected and underwent microarray analysis, collected
from allergic patients under three conditions: control samples collected outside of allergy
season (control), samples collected after exposure to an allergen (stimulated), and samples
after the patient was treated with cortisone (treated). As is common with microarray
data, several of the microarray results were bad, resulting in data containing 13 control,
19 stimulated, and 19 treated samples. The hypothesis proposes that key genes related
to SAR will show an increase in expression (or decrease) with allergen challenge, some of
which will be reversed by the introduction of the steroid. Moreover, differential correlation
and topology can uncover interactions and sets of relationships changing due to the allergen
stimulated and subsequent treatment.

Individual data values with an associated detection score less than 0.95(p < 0.05) were
removed, as were entire transcripts of poor or uncertain annotation. Correlations based
upon fewer than ten pairwise-complete observations were also excluded from the analysis.
log2 expression values were computed and used in the analysis.

4.3.2 Differential screen results

Differential expression

Using the method described in [9], genes differentially expressed between the control and
stimulated as well as the stimulated and treated groups were identified. 1493 transcripts
were found to show a significant (α < 0.05) change in expression level between control and
stimulated. This number was 1268 for the stimulated vs. treated comparison, and 997
of these were differentially expressed in both comparisons. All but six of these differen-
tially expressed in control vs. stimulated and also stimulated vs. treated show opposite
changes between the two comparisons, as would be expected from the effect of the cortisone
treatment.

Differential correlation

Differential correlation was also performed using the criterion that differentially correlated
edges must have a correlation value greater than or equal to 0.90 in one graph and less
than or equal to 0.15 in the other. In contrast to differential expression, the differential
correlation filter identified many genes participating in differential relationships: 6976 and
2904, respectively, from a total of 35713 and 2835 differentially correlated edges.

Figures 4.2 and 4.3 illustrate a portion of the differential correlation graphs for control
vs. stimulated and stimulated vs. treated, respectively. In Figure 4.2, red edges are
those interactions appearing with allergen stimulation while blue edges show nonsignificant
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Figure 4.2: Control vs. stimulated differential correlation graph.

correlation due to the allergen stimulation. Similarly, red and blue edges in Figure 4.3
denote edges appearing and disappearing with steroid treatment respectively.

These graphs were constructed to emphasize the star-like structures found within the
differential correlation graphs, where only vertices participating in six or more differential
relationships were depicted. Also, vertices at the center of stars with neighbors attached
to too many other vertices were removed for clarity. These differential correlation graphs
have been created on graphs constructed from normally distributed random values in the
range −1 . . . 1 and a threshold applied at 0.90, but similar “star” shapes have not been
identified. Figure 4.4a, which shows the number of differentially correlated edges incident
to each vertex in a sample random graph, illustrates that those pendant vertices are not
present to make the star-like structures. In contrast, Figure 4.4b shows a large number of
the low-degree vertices available in the control vs. stimulated graph to appear within the
stars.

Differential topology

Graphs were constructed from microarray samples of all three sets of samples at the thresh-
old of 0.93 in control and 0.94 in the stimulated and treated groups. These thresholds were
chosen to keep the number of edges in each graph relatively equal. Since the total number
of vertices (including isolated vertices) in each graph is the same, this also attempts to
equalize the graphs’ density. Maximal cliques were then enumerated from each graph and
the percent of cliques containing each gene was calculated. Table A.1 shows a summary of
the structures of the graphs at various thresholds, including the number of vertices, edges,
maximal cliques, and maximum clique size.
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Figure 4.3: Stimulated vs. treated differential correlation graph.
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(a)

(b)

Figure 4.4: Degree of vertices within random and allergy differential correlation graphs.
(a) random and (b) allergy differential correlation graphs.
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Table 4.2: Number of genes identified by each differential filter.

Exp Cor Top Exp ∩ Cor Exp ∩ Top Cor ∩ Top Exp ∩ Cor ∩ Top
C vs. S 1493 6576 94 981 7 74 4
S vs. T 1268 2904 210 315 30 123 23

C vs. S ∩ S vs. T 999 1664 90 184 7 2 0

In the differential abundance analysis, the control vs. stimulated comparison showed 94
genes with more than a ten percent absolute difference, while this number was 210 in the
stimulated and treated comparison. Ninety of these genes were found to have significant
topological differences in both comparisons. Again, most genes showed a significant increase
in abundance in the stimulated group followed by a much lower clique membership in the
cortisone treated cliques. Incidentally, all of the top ten genes showing the largest difference
between control and stimulated are also the ten most different genes in stimulated and
treated.

Intersecting gene filters

Table 4.2 shows the number of genes passing each of the filters, and all possible combination
of filters applied in series. It is evident that the differential topology filter is the most
stringent of the three screens. This outcome is to be expected due to the strict requirement
that all edges be present between vertices within a clique. Also obvious is that the differential
expression filter is often at odds with the differential correlation and topology screens.
Intersecting the differentially expressed genes with those identified by the other two filters
drastically reduces the number of genes continuing through the combined analysis.

Clique similarity results were examined by considering only those cliques with a max-
imum similarity of zero between two groups. This allowed the identification of maximal
cliques that were enumerated from control individuals, for example, but were completely
absent from cliques on allergen-stimulated graphs. These cliques appearing only in one
group or the other can be examined for genes known to be key to a particular disease.
Other genes appearing in the same cliques might therefore also be determined to be asso-
ciated with the disease.

Control vs. stimulated comparisons identified 2801 maximal cliques appearing only in
the control group. These cliques ranged in size from 3 to 11. The stimulated vs. control
comparison showed the largest differences with 6139 cliques present in the stimulated results
but not in control. Over 2000 of these maximal cliques had size at least 30 with the largest
containing 41 transcripts.

The difference between the stimulated and treated collections of maximal cliques was
much less pronounced. One hundred six maximal cliques appearing in the stimulated group
were not present in the treated group while 382 were present in treated and not stimulated.
The maximum sizes of these cliques were 4 and 6, respectively.

4.4 Conclusions

Filters were reviewed to expand and improve upon the traditional differential expression
methods for cases where there is enough data available to compute reliable correlation
coefficients. Traditional differential expression methods, in this case, identified almost 1500
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genes showing differences from the control to stimulated group. With the goal of laboratory
verification, it is often desirable to reduce this number to a smaller set of genes that are
likely to be involved in many altered relationships between two groups. The application of
differential correlation and differential topology filters brought this number to a manageable
74 genes for further study and validation.

Parallel code to compute pairwise clique similarities was implemented and cliques found
to be entirely present in only one group or the other (control and stimulated, for example)
were identified. These cliques provide another means to reduce large lists of maximal
cliques for each group into only those that best differentiate between two groups of samples.
Cliques identified as being unique to one group or the other can then be examined for
possible disease-associated genes.
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Chapter 5

Effects of Choice of Preprocessing
Method on Correlation, Graph
Structure, and Differential
Comparisons

5.1 Introduction

In Chapter 4, two new measures of differential comparisons were reviewed that augment the
standard differential expression analysis: differential correlation and differential topology.
These comparison methods are applicable to a wide range of data, specifically any data
upon which two or more sets of reliable correlations can be computed. When analyzing
biological data, however, the natural question of the effect of data preprocessing on differ-
ential screen results arises when working with gene expression data. It is known that choice
of preprocessing method affects correlations between gene-gene correlations [72]. Graph
structure and differential comparisons are closely linked to pairwise transcript correlations
and are likely to also be affected by choice of data preprocessing method. The consistency
of differential correlation and differential topology results over several normalization and
preprocessing methods is examined.

As already mentioned, preprocessing and normalization of microarray data is a key step
to bring all data values into comparable levels and to remove some sources of technical
variation. This preprocessing of gene expression microarray data prior to analysis can be
separated into three steps [73], the first of which may or may not be applied:

1. Background subtraction is the measurement and removal of background signal. This
noise is mostly the result of the natural background level of the microarray chip and
also nonspecific binding [74, 75]. To facilitate the measurement of background levels,
Affymetrix chips include mismatch probes, as described in Section 5.1.1.

2. Normalization, which is required to make values comparable among different arrays.
This is necessary in any type of differential comparison based upon values from more
than one array. This step can incorporate information from an assortment of chips to
perform the normalization, or perform a predefined scaling on each chip.
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Figure 5.1: Affymetrix probe pairs consists of both a Perfect Match (PM) and Mismatch
(MM) probe.

3. Expression summarization includes both the computation of final expression values
for each probe set and the possible application of a logarithmic or trigonometric
transform.

5.1.1 Affymetrix probe background

This comparison focuses on analysis of data generated with the Affymetrix GeneChip plat-
form because of the prevalence of the Affymetrix system and the available of publicly-
accessible raw GeneChip data sets in the NCBI Gene Expression Ombibus (GEO) [7, 8].
Data from other platforms such as Illumina and Agilent were not considered, as many of the
software packages and implementations usually used for preprocessing and normalization
are not available for data from these platforms.

For each of the data sets examined here, gene transcripts of 25 bases are measured
by eleven probe pairs, with each pair comprised of a Perfect Math (PM) and a Mismatch
(MM) probe. These PM and MM probes have the exact same sequence, except for an
inversion of the middle (thirteenth) base in the Mismatch probe, illustrated in Figure 5.1.
The Mismatch probe helps in estimating the intensity of the background signal, since RNA
should not hybridize to this sequence. As a consequence, it also serves as a measure of
probe-dependent nonspecific hybridization, or stray signal [76].

Although Affymetrix probes contain both Perfect Match and Mismatch probes, many
preprocessing and normalization methods (RMA, described later, for instance) ignore the
value of the Mismatch probe. There has been disagreement about the usefulness of back-
ground subtraction in general. Irizarry et al. show that background correction improves
accuracy but decreases the precision of differential expression results [73]. Accuracy and
precision represent specificity (the proportion of true negatives) and sensitivity (the pro-
portion of true positives), respectively. Wang et al. also show that background correction
using the Mismatch probe value can lead to fewer candidate genes with possible biological
relevance in [77]. One cause of the difficulty with the Mismatch probe is that the MM
intensity increases with an increase in true signal as measured by the PM probe. Hence,
the Mismatch probe is measuring some actual signal and subtracting it from the PM probe
would remove that detected signal [74].

5.1.2 Preprocessing methods

Many methods exist to preprocess data and bring disparate values from several arrays into
comparable ranges. Six of these approaches were chosen to be examined here because of
their pervasiveness in the genomics literature: MAS5, RMA, gcRMA, PDNN, dChip, and
VSN. There has been no clear consensus on a “best” or even most favored method, and
each of these approach the task of preprocessing and normalization from a slightly different
standpoint.
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5.1.3 MAS5 (Affymetrix Microarray Suite 5.0)

The method implemented in the Affymetric Microarray Suite version 5.0 is usually generi-
cally referred to as MAS5 or MAS5.0. With details described in [76], this approach performs
a zone-based local background correction followed by a global scaling of each individual ar-
ray to the desired mean value. This method makes use of the PerfectMatch−Mismatch
difference (PM−MM) to attempt to correct for nonspecific binding. Final expression sum-
maries are generally not log transformed by the software, although log2 values are used in
some intermediate steps.

5.1.4 RMA (Robust Multichip Average)

The robust multichip average (RMA) was introduced in [74, 78]. RMA background correc-
tion uses a convolution approach that models the observed signal S = X+Y , where X and
Y are signal and background, respectively, with X ∼ exp(α) and Y ∼ N(µ, σ2). Corrected
expression levels are represented by E(X|S = s) [79]. This method uses only PM probe
values and ignores the MM probes. Quantile normalization is performed to give values from
each array the same distribution.

5.1.5 GC-RMA (GC Robust Multichip Average)

GC-RMA [80, 81] uses a different statistical model to calculate background noise based upon
probe sequence information. Rather than subtracting the entire Mismatch probe intensity,
this model subtracts a fraction of the MM level, which has been adjusted for the probe
affinity. Normalization and summarization remain the same as in standard RMA.

5.1.6 PDNN (Positional-Dependent Nearest Neighbor)

The Positional-Dependent Nearest Neighbor method provides another method for incorpo-
rating probe sequence information into the background correction process [82]. In contrast
with GC-RMA, this approach makes use of a free energy model and is based upon only
the PM probe intensities. Quantile normalization is once again employed to equalize the
distribution of expression values among arrays.

5.1.7 dChip

dChip, introduced in [83] uses an invariant set normalization described in [84]. Similar to the
MAS5.0 approach, dChip divides each microarray into zones to compute a local background
noise value. This is performed post-normalization. A multiplicative model developed around
the model-based expression index (MBEI) is then applied to the background-adjusted ex-
pression values. This method uses both PM and MM probe intensities, but can also be
used with PM-only technologies [85]. As with MAS5.0, final dChip expression values are
also not usually log transformed by the software.

5.1.8 VSN (Variance Stabilizing Normalization)

The variance stabilizing normalization is concerned only with the normalization and expres-
sion summarization steps of preprocessing. The authors note that the variance of expression
values increases with their mean and introduce a variance stabilizing method to help address
this problem [86, 87]. In the tests here, the VSN method was used with no background
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Table 5.1: Comparison of preprocessing methods.

Method Background Correction Seq. Info. Normalization PM/MM
MAS5.0 Yes No Linear scaling Both
RMA Yes No Quantile PM-only

gcRMA Yes Yes Quantile Both
PDNN Yes Yes Quantile PM-only
dChip Yes No Invariant set Both
VSN N/A No Variance stabilizing N/A

correction and used only PM intensities in the analysis. Rather than using the standard
log transform, a trigonometric transformation is employed when computing final expression
values. VSN also calibrates arrays with the aim of bringing values on different chips into
comparable scales.

5.1.9 Method comparisons

Table 5.1 presents a comparison of all of these methods based upon background correction
and normalization type, and whether the approach makes use of probe sequence information
or Mismatch probe intensity.

5.1.10 Implementations

While possibly several implementations are available for each of the methods above, those
developed for the R statistical language and Bioconductor package were used to standardize
the data input and output process across various methods. The MAS5.0 and RMA methods
used were implemented in the Bioconductor affy package version 1.12.2[88]. The GC-RMA
package used was gcrma 2.6.0 [89], and variance stabilization was performed with the vsn
package version 3.2.1. [86]. The PDNN (version 2.3.0.0) [90] and dChip (version 2007) [91]
software used were stand-alone Windows-based programs developed by the authors of the
respective methods.

5.2 Contrasting differential results between preprocessing meth-
ods

The effect of preprocessing method on differential correlation and differential topology re-
sults is examined. The first of the three differential screens, differential expression, is not
examined here. There have been many studies investigating how the set of differentially
expressed genes identified is affected by varying the normalization and background correc-
tion method used. Some of these, such as [13, 92] have shown that differential expression
is highly dependent upon choice of preprocessing method. Others have observed only little
impact, although a different type of microarray and a different subset of methods were
studied [93].

5.2.1 Assumptions

It was seen in Chapter 4 that the differential correlation and topology screens can be used
to identify putative disease-associated genes. Each of the data sets on which comparisons
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are performed in Section 5.3 is comprised of two groups of samples. These groups are a set
of healthy or “normal” samples and a set of samples from an individual with a particular
disease, which will be referred to as the “control” and “disease” groups, respectively.

To assist in designing fair comparisons, certain assumptions must be made. In order
for comparisons to reflect likely everyday use by researchers, defaults were used in each
software package implementing the various preprocessing methods. Detection scores, if
produced by the platform or software, were ignored. While this might affect final data set
quality, results from each method should be affected equally. Not removing values with
low detection scores also ensures that the data set contains no missing values and that
each equal pair of correlation coefficients computed in each data group is assigned the same
significance level.

Because Pearson correlation coefficients are most often used in genetic coexpression
studies, they were also used here in both differential filters. If a preprocessing method did
not output expression values sufficiently transformed (logarithmic or otherwise), expression
levels were log2 transformed prior to correlation computation. Since correlations are the
values under study in both the differential correlation and differential topology filters, no
adjustments to the data were required to bring values in different groups to comparable
levels.

5.2.2 Expression-level-based filtering

To avoid spurious results caused by correlation between unexpressed genes, transcripts that
are consistently lowly expressed must be removed from the comparisons. To this end, a very
conservative filter that excludes transcripts that are consistently lowly expressed in both
groups was applied. [94] gives several options for intensity-based filtering. The approach
used here is based upon background levels as measured by control probes.

The Affymetrix arrays studied here contain several poly-adenylated control probes to
detect specific sequences from the organism B. subtilis [95]. These probes were used to
calculate a global measure of low expression based upon the average expression of each
of these probes over all arrays. A threshold was set at two standard deviations less than
this average, and any transcript that is never greater than this cutoff in either group were
removed. This allowed the retention of those genes that were highly expressed in one group,
or even one array, but not in the others. On the data sets described in Section 5.3.1, this
identified from 0 to 3225 transcripts as lowly expressed for data sets on the HG-U133a
and MG-U74v2 arrays, depending upon data set and normalization method used. For data
from the HG-U133 Plus 2.0 array, which contains many more transcripts, up to 35371 were
removed due to low expression levels.

5.2.3 Variance-based filtering

Probesets showing little variation were also ignored in the comparison, since it is those
genes whose expression level is varying–both within group and between groups–that are of
the most interest. Several options are given in [96] for dealing with genes exhibiting low
variance. Here, low variance genes were defined to be those in the lowest half of all genes in
both the control and disease group. This is the most conservative option, since the variance
is required to be significant in only one group.

It is often desirable to retain genes that are “flat” in both groups (control and disease),
specifically if the gene is consistently low in one group and high in the other. Combining
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Algorithm 1: Expression-based filtering
Input: Affymetrix microarray data set
Output: List of probes of low expression to be removed
foreach Control do

xi = Average expression for control i over all arrays
σi = Standard deviation for control i over all arrays

x = Average expression of all controls
σ = Standard deviation of expression for all controls
foreach Probeset do

foreach Array do
if Expression < x− 2 · σ then

Add Probeset to remove list

return remove

Algorithm 2: Variance-based filtering
Input: Affymetrix microarray data set
Output: List of probes of low variance to be removed
foreach Probeset do

σControl(i) = Expression variance in control group for probeset i
σDisease(i) = Expression variance in disease group for probeset i

σControl = 50th percentile of variance in control group
σDisease = 50th percentile of variance in disease group
foreach Probeset do

if (σControl(i) < σControl) AND (σDisease(i) < σDisease) then
Add Probeset to remove list

return remove
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Figure 5.2: Differentially expressed probesets show increase variance over all arrays. Here,
expression values are observed for two sample groups A and B. Values are consistently high
in group A and low in group B, resulting in a large variance.

data from both groups and choosing those genes with variance in the top fifty percent would
keep these key genes in the analysis. Overall, these genes exhibit variance, but there is no
within-group variation. However, calculating the variance and choosing the top fifty percent
for each group separately consistently produced lower variance limits, resulting in a more
conservative approach. Hence this was the approach used here, to allow the greatest number
of genes to be retained for further analysis. These higher limits, when considering the groups
together, could be caused by differential expression. If a gene is consistently high in one
group and low in the other with the mean lying near the median, a large variance would
result, as illustrated in Figure 5.2. While variance within each group is relatively small,
the variance across the entire data set is great. A more practical reason for considering the
groups separately is that there is often a different sample size in each of the two groups.

Genes with variance in the top fifty percent were retained to ensure that the same
number were removed from each set for a more fair comparison. Another option would
be to consider only genes determined to be differentially expressed via some statistical
method or simple fold change. As previously mentioned, differential expression is often
at odds with with other two filters of the triple screen. This method is not used, since
it has been shown (see citations in Section 5.1) that differential expression results can
be influenced significantly by choice of normalization. Yet another method would be to
consider an absolute variance cutoff, but data-dependent methods are usually preferable.
This could also affect fair comparisons between various methods as different methods can
cause individual genes to exhibit more or less variance.

It is important that this filtering process happen post-background correction and post-
normalization. It is difficult to know which probesets truly have low intensity or variance
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across multiple arrays using unnormalized values. Also, these low expression values are
often necessary to perform reliable normalization and therefore must be retained.

5.2.4 Correlation computation and differential comparisons

To compare differential results among various preprocessing methods, pair-wise correla-
tion coefficients were computed between each pair of genes for the data sets described in
Section 5.3.1 for control and disease groups separately. Before differential correlation and
differential topology filters were applied, correlation histograms were plotted. All within-
group correlations were assigned the same significance, since there were no missing values.
This allows for a direct comparison of the correlation coefficients to be made. Visual inspec-
tion of the correlation distributions in Figure 5.3 shows that the same correlation threshold
cannot be chosen for all of the normalization methods, so a percentage of the top correlations
were chosen from which to create graphs.

Graphs were constructed for control and disease groups separately at the chosen thresh-
olds and the degree of each vertex was computed for a comparison of the most highly
connected genes from each method using Jaccard similarities. The number of maximal
cliques and maximal clique sizes were also recorded for selected threshold values.

The differential correlation filter described in Chapter 4 was applied using a slight mod-
ification of the differential correlation definition. Since the thresholds for significant corre-
lations were systematically computed for both the control and disease group, differentially
correlated genes were determined using both of these thresholds, as in Definition 13.

Definition 13. Two genes u and v are differentially correlated if

|rControl(u, v)| > thControl
and |rDisease(u, v)| < tl

or
|rDisease(u, v)| > thDisease

and |rControl(u, v)| < tl

where thControl
and thDisease

are the selected upper thresholds for the control and disease
group, respectively. The lower threshold tl remains the same for both groups.

Differential topology results using the differential abundance method require no such
modification, so the topology filter was applied on maximal cliques enumerated from con-
trol and disease graphs at the chosen threshold. Genes showing greater than a ten percent
difference in clique membership between control and disease groups were identified as ex-
hibiting differential topology.

Pair-wise comparisons of the lists of genes passing the differential correlation and topol-
ogy filters were performed for each pair of methods. The overlap of the 100 genes showing
the greatest correlation and topological difference between methods was computed, as well
as the number of vertices and edges identified as participating in significantly different
relationships by both preprocessing methods. For differential topology comparisons, the
number of genes identified by both methods was also calculated, as was the total number
of genes passing both of the differential filters in both methods. Similarities between the
methods are computed with the Jaccard similarity index introduced in Chapter 4.

In an attempt to identify outlier preprocessing methods, in respect to differential results,
five-way intersections of each of these measures were performed, as well as intersections of
all six methods. By removing one preprocessing method from the intersection of the results,
it is possible to see whether that one method caused an unproportionate decrease in the
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(a)

(b)

Figure 5.3: Control group correlation distributions for each of the three data sets under
study. (a) Bipolar disorder, (b) Pulmonary adenocarcinomas, (c) Colorectal adenomas.
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(c)

Figure 5.3: Continued.
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number of genes identified as differentially correlated or having participating in differential
topology.

Lastly, the biological significance of the difference in results between all the methods is
tested using web-based ontological tools such as WebGestalt [26].

5.3 Results

5.3.1 Data

Three publicly-available data sets whose experimental design are amenable to differential
comparisons were examined. These data sets were chosen because they were produced on
Affymetrix GeneChip arrays and should contain enough samples in each group to compute
reliable pairwise correlations.

Pulmonary adenocarcinomas
Data was collected to study lung tumors resulting from exposure to urethane in Mus mus-
culus. MG-U74v2 microarrays were used to measure gene expression in twenty-nine tumor
samples and fifteen samples from adjacent normal tissue [97].

Bipolar disorder
This Homo sapiens data set contains measurements of expression levels for sixty-one samples
collected post-mortem from thirty bipolar individuals and thirty-one controls, processed on
HG-U133A GeneChips [98].

Colorectal adenomas
Samples of a colorectal adenoma were collected from thirty-two patients, along with samples
from the patients’ normal mucosa of the colon [99]. mRNA expression levels were collected
using HG-U133 Plus 2.0 GeneChips.

5.3.2 Effect on correlation and graph structure

Figures 5.3 and 5.4 show the distribution of correlation values for each of the three data sets
described above, for the control and disease groups, respectively. Only correlations on genes
common to all preprocessing methods after the removal of low intensity and low variance
transcripts are shown here. This ensures that the number of correlate pairs computed
on data from the various methods is consistent. In both figures, the MAS5.0, GC-RMA,
and dChip methods show a larger peak at the zero correlation value in the bipolar and
adenocarcinoma groups, caused by a greater number of nonsignificant correlations. The
other three methods exhibit heavier tails, and hence, on average, more dense graphs at the
higher thresholds.

This distinction is not evident in the correlation on genes in the colorectal adenoma
samples, and in fact the MAS5.0 method has a smaller peak at zero and much heavier tails.
Different preprocessing methods remove a different set of genes exhibiting low intensity and
variance. By computing only correlations on the genes lying at the intersection of these sets,
it is possible that other preprocessing methods removed genes that would have exhibited
lower correlations for MAS5.0. As previously mentioned, independently visually examining
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correlations on data produced by different methods presents difficulty. Specifically, distri-
bution sizes will differ due to the varying sample sizes.

When examining graph structure, it is possible to compare the methods in a manner
closer to their likely use by retaining gene-gene correlations produced by one method even
if those genes are not present in the second. Figures 5.5a and 5.5c show that the GC-
RMA method stood out with respect to the large maximum clique size in the bipolar
and adenocarcinoma studies. It is also interesting to note that the number of maximal
cliques within the GC-RMA graphs, illustrated in Figures 5.5b and 5.5d, was similar to
the other methods except at the higher end of the correlation spectrum. On the other
hand, Figures 5.5e and 5.5f show that the PDNN and VSN methods produced the largest
and most numerous maximal cliques in the graph on colorectal data. However, the VSN
difference was more pronounced in the normal-state graph (not shown) than in the disease.

Results from comparisons of the one hundred most highly connected genes between each
pair of methods were somewhat dependent upon the data set under study. In the bipolar
disorder normal state data, those comparison showing a Jaccard similarity greater than
0.90 were PDNN vs. RMA, PDNN vs. VSN, RMA vs. VSN, and GC-RMA vs. MAS5.0
at various thresholds ranging from 0.85 to 0.96. Differences were also evident between the
normal and disease groups. The bipolar disease data demonstrated that top similarities
exist between the previously mentioned methods as well as GC-RMA vs. VSN, GC-RMA
vs. RMA, and dChip vs. MAS5.0. Similarities above 0.90 in the colorectal data (both
normal and disease states) were comprised exclusively of the PDNN vs. RMA and GC-
RMA vs. RMA comparisons at various thresholds. For pulmonary adenocarcinoma data,
the similarities above 0.90 were PDNN vs. VSN in the normal state, and PDNN vs. VSN
and RMA vs. VSN in disease. Full results are available in Tables B.1, B.2, and B.3.

5.3.3 Effect on differential comparisons

As it has been defined, differential correlation is an edge-based comparison imposed upon
a vertex by considering vertices participating in a differential relationship as differentially
correlated. Considering vertices is often desirable since examining individual differential
edges can be unwieldy. Comparisons between normalization methods here consider both
sets of differentially correlated edges as well as lists of differentially correlated vertices.
Approaching the comparisons from the vertex level is likely to be more robust with respect
to normalization method, since there are many opportunities for a vertex to be labeled as
differentially correlated.

For the colorectal adenoma data, the difference in comparing differential correlation
edges and vertices is clear. In computing pairwise intersection size for the edge compar-
isons, Figure 5.6a shows that only one method exhibited a Jaccard index greater than 0.2.
The similarities between the methods become much greater when considering the vertex
comparison in Figure 5.6b, where several indices surpassed 0.6 and one was higher than 0.7.

With these first comparisons, shown in Figure 5.6, it is evident that differential corre-
lation results are highly data-dependent. Figure 5.7 illustrates the wide disparity in the
pair-wise method similarities. It is interesting to note, however, that the last three com-
parisons in Figures 5.6b, 5.7b, and 5.7d–PDNN vs. RMA, PDNN vs. VSN, and RMA vs.
VSN–all showed relatively high differentially correlated vertex similarities in each of the
three data sets. The charts in Figures 5.6a, 5.7a, and 5.7c show that the edge comparisons
were in stark contrast with one another depending upon the data set.
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(a)

(b)

Figure 5.4: Disease group correlation distributions for each of the three data sets under
study. (a) Bipolar disorder, (b) Pulmonary adenocarcinomas, (c) Colorectal adenomas.
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(c)

Figure 5.4: Continued.
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(a)

(b)

Figure 5.5: Maximum clique size and number of maximal cliques for each data set. (a) Bipo-
lar disorder maximum, (b) Bipolar disorder maximal, (c) Pumonary adenocarcinoma maxi-
mum, (d) Pulmonary adenocarcinoma maximal, (e) Colorectal adenoma maximum, (f) Col-
orectal adenoma maximal.
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(c)

(d)

Figure 5.5: Continued.
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(e)

(f)

Figure 5.5: Continued.
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(a)

(b)

Figure 5.6: Differential correlation similarities for colorectal adenoma data. (a) Differen-
tially correlated edge comparison, (b) Differentially correlated vertex comparison.
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(a)

(b)

Figure 5.7: Differential correlation similarities for bipolar disorder and pulmonary adenocar-
cinoma data. (a) Bipolar disorder vertex comparison, (b) Bipolar disorder edge comparison,
(c) Pulmonary adenocarcinoma vertex comparison, (d) Adenocarcinoma edge comparison.
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(c)

(d)

Figure 5.7: Continued.
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The pair-wise differential topology filter indicated similar results, given in the Appendix,
in Figure B.1. Alongside the differential topology results are pair-wise similarities between
the top one hundred genes showing the greatest difference in correlation and topology, shown
in Figures B.2 and B.3. Where one hundred genes did not pass the differential filter for
one or more data sets, the Jaccard similarity was computed on those genes that did pass
the filter. Once again, the final three comparisons (PDNN vs. RMA, PDNN vs. VSN, and
RMA vs. VSN) showed a relatively high degree of concordance in the one hundred most
differentially correlated genes between the methods while the overlap in differential topology
results varied greatly between methods. This smaller overlap in differential topology results
is likely due to the conservative nature of the clusters identified by the maximal clique
approach: the absence of a single edge will remove a vertex from the clique. In contrast,
it is much “easier” for a vertex to participate in at least one differential relationship and
appear in the list of differentially correlated genes.

Figure 5.8 shows the number of genes identified by both the differential correlation and
differential topology filters for each pair of preprocessing methods. It is important to note
that many methods show a significant number of genes in common between the two methods,
considering that both the correlation and the much more conservative topology filter were
applied. The comparisons of dChip vs. MAS5.0 and RMA vs. VSN show similarities across
all three data sets, while many methods identify a relatively large number of genes across
two of the data sets.

Figure 5.9 condenses the pair-wise comparison into a single metric spanning each of the
data sets and differential filters. Each pair of methods was assigned a similarity value that
is the average of the similarities for each differential screen (correlation edges, correlation
vertices, and topology) over all data sets. It is evident that dChip and MAS5.0 showed
significant similarities, as did RMA and VSN. Another five or so methods fell near the 0.2
Jaccard index.

Five-way comparisons to identify outlier methods are shown in Figure 5.10. Methods
were removed one at a time and the sets of genes passing the differential correlation vertex
filter were intersected and unioned, respectively. Figure 5.10a shows that only in the ade-
nocarcinoma data did any of the methods identify a significantly different set of genes as
differentially correlated than all of the others. Removal of the GC-RMA results from the
intersection resulted in far more genes passing the filter. Figure 5.10b shows that removal
of MAS5.0 from the union caused relatively fewer genes to be identified as differentially
correlated in all data sets. This indicates that MAS5.0 data contained significantly more
differentially correlated genes than did any of the other methods.

5.3.4 Biological comparisons

It was shown in Figure 5.8 that there is some degree of concordance in differential screen re-
sults between many pairs of preprocessing methods. The question then arises of whether the
genes identified as exhibiting differential correlation and topology match similar biological
pathways when using different data preprocessing methods. Would a researcher examin-
ing biological enrichment of differential screen results observe different pathways depending
upon the normalization method used?

To answer this question, data preprocessed using each method were filtered separately
to remove genes with low expression and variance. Genes passing both the differential
correlation and differential topology filters were examined for KEGG pathway enrichment
at the α < 0.05 level for each data set using WebGestalt [26]. The number of pathways
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(a)

(b)

Figure 5.8: Number of genes passing both differential correlation and topology filters for
each pair of preprocessing methods. (a) Bipolar disorder, (b) Pulmonary adenocarcinoma,
(c) Colorectal adenomas.
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(c)

Figure 5.8: Continued.

Figure 5.9: Average similarity for each preprocessing methods based upon all differential
metrics.
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(a)

(b)

Figure 5.10: Five-way intersection and union comparison to identify outlier methods.
(a) The intersection, (b) The union.
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enriched in results for each pair of methods was computed. Pulmonary adenocarcinoma
data showed little overlap between methods, with dChip, PDNN, and VSN sharing only
the “Neuroactive ligand-receptor interaction” pathway and the “Cell adhesion molecules
(CAMs) pathway showing up in MAS5.0, PDNN, and RMA. Bipolar disorder data showed
a much higher degree of similarity between methods in the pathways that were enriched, with
between 5 and 18 pathways matching between each pair of methods (PDNN was removed
from the comparison since differential results on PDNN data matched no pathways). The
average number of pathways matching between two methods was about 11. The three
greatest intersections were between GC-RMA and VSN (size 18), RMA (17), and MAS5.0
(16). The similarities in pathway matches between methods in colorectal adenoma data
were mainly between GC-RMA and RMA (13), dChip (8), as well as dChip and RMA (7).

In two of the data sets there existed significant overlap in the pathways matched using
different preprocessing methods. For all methods, pulmonary adenocarcinoma data hit
fewer biological pathways than the other data sets, resulting in fewer chances for overlap
between methods. In both the bipolar disorder and colorectal adenoma data, GC-RMA and
RMA showed a high degree of concordance with other methods, and most methods hit at
least one of the same pathways. Otherwise, it appears that here the choice of preprocessing
method did affect the pathways in which differential results were enriched.

5.4 Conclusion

Overall, the choice of data preprocessing method significantly affects the results of the dif-
ferential correlation and differential topology filters described in Chapter 4, as has already
been seen in differential expression results. Although different sets of altered interactions
were identified by the screens depending upon the method used, a core of differentially
correlated vertices common to all methods was observed for each of the three data sets.
These are the genes passing the differential correlation filter regardless of the preprocessing
method used. It is possible that these genes are likely to be participating in altered biolog-
ical relationships and that the differences in correlation are not due solely to noise or the
normalization method used. It has been suggested that genes lying at the intersection of
those identified by several normalization methods be used to narrow the list of candidates
for validation [13].

The data itself seems to play an important role in determining the similarity between
various methods. At the lowest level, graph structure results as measured by the degree
distribution of the most connected genes, indicate some similarity between several methods
but also a significant degree of data dependence. Similarly, it has been noted that clustering
results are likely to vary depending upon experimental factors such as microarray platform
and noise level [100].

The condensed analysis of similarities between methods, presented in Figure 5.9, showed
the highest degree of concordance between the RMA and VSN methods, as well as dChip
and MAS5.0. This latter similarity may be due to the similar nature of the two methods,
including the zone-based background calculation and the use of mismatch probes in prepro-
cessing. The reason for similarity between RMA and VSN, however, is not so clear. Unlike
RMA, the VSN preprocessing did not perform background subtraction, and uses a different
normalization method and transform of the subsequent expression values.

Comparisons of biological enrichment showed that genes lying at the intersection of
differential correlation and differential topology are often enriched in a similar set of KEGG
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pathways, although the degree of similarity varies depending upon the data set. Since
there is likely to be variation in the number of pathways involved in each experimental
design, it is difficult to asses how much variation should be expected from one data set to
another, and hence the number of pathways identified in results from each method. For
example, in contrast to bipolar disorder data, results on pulmonary adenocarcinoma data
were enriched in relatively few pathways over all methods. As with other comparisons, the
methods identified as similar varied somewhat depending upon the data set analyzed.

5.4.1 Future work

This analysis did not consider several components that could play a key role in future
comparisons. The effect of similarity metric choice on differential screens might contribute
as much as preprocessing method to differences in results. Thresholding was minimally
investigated in the graph structure results, but Chapter 2 shows that it is not always
so simple an issue. It is also unclear whether background correction, normalization, and
summarization methods contribute equally to differential results. Future analyses might
consider these three normalization steps independent of the others, as suggested in [72].
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Chapter 6

A Graph Theoretical Approach to
Integrated Ecosystem Analysis∗

6.1 Introduction

Up to this point, this discussion has centered on challenges arising in the use of clique tools to
analyze networks modeled from DNA microarray data. However, the graph-based approach
described in Chapter 1 requires only that reliable pairwise correlations can be computed
between some set of variables. Many types of data are amenable to such an analysis.
This chapter focuses on the application of clique-based tools to historical ecosystem data,
specifically that of the North Sea. It will be seen that the approach is very similar to the
approach used in gene coexpression studies, from the preprocessing of the data and building
models of ecosystem interactions to the extraction of key relationships.

An analysis of the North Sea ecosystem allows one to answer several key questions
important to marine biologists, fisheries researchers, and those setting fisheries and envi-
ronmental policy in the North Sea area. How do abiotic environmental factors affect marine
species in the North Sea? What are the effects of fishing on these species, and how do the
biotic and abiotic factors affect one another? More generally, how are points in time and
space related to one another based upon changes in the ecosystem? These are the types of
factors that may admit an answer in a temporal and spatial analysis of the data.

Previously, these questions have been addressed using dimensionality reduction tech-
niques such as hierarchical clustering and principal component analysis (PCA), especially
as implemented in [101]. As mentioned in Chapter 1, a clique-based analysis is often prefer-
able to these methods due to the exact nature of the clique algorithm and the density of
the resulting sets of interacting variables.

Ecological data offer some interesting and unique challenges for the graph-based analysis
toolchain. As a result of the method of collection, such data are often full of missing or
corrupt values. As observations are extracted from the database at increasingly finer levels
of temporal and spatial granularity, the number of incomplete entries also increases. There
may be no observations for certain oceanic locations for a particular month, for example,
but that location will possess a yearly average provided that an observation is made for at
least one month. This introduces the related problem of unequal effort, which is described
in Section 6.2.
∗Portions of the results and figures contained here were initially presented in [5]
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Table 6.1: Summary of North Sea ecosystem data available. Source: portions extracted
from [102] and [103].

Data type Source Spatial Temporal
Abiotic ICES X X
NAO Univ. East Anglia X
Fish CPUE ICES (IBTS) X X
Flux NORWECOM (PGNSP) X
Seabirds WGSE/ESAS X X
Plankton CPR (SAHFOS) X X
Fisheries landings Scotland, England and Wales authorities X X
Benthos North Sea benthos survey X
Mammals WGSE/ESAS X

6.2 North Sea historical data

The data used in this analysis were collected from a variety of sources, and are described
in more detail in [102]. Temporal and spatial data sets are comprised of a subset of the
described data, containing measurements of the following: abiotic observations, fish catch
per unit effort (CPUE), seabird abundance, plankton, mammals, benthos, North Atlantic
Oscillation index (NAO), Norwegian ecological model (NORWECOM) flux, and fisheries
pressures. Table 6.1 summarizes the data available at each level of temporal and spatial
granularity.

In working with this data, it is useful to define the notion of a “parameter.” “Parameter”
is used as a general term for an observation of some biotic or abiotic quantity. Surface
salinity, which is a measurement of the water’s salt content at the surface, is an example of
an abiotic parameter. Biotic parameters include a measure of the abundance of the seabird
Auk (Hydrocoloeus minutus), or the plankton Calanus helgolandicus, for example.

6.2.1 Data collection and processing issues

The problem of unequal effort in data collection was previously mentioned. An illustration
of the problem is the effect of an outlier on a sample mean; a mean based upon fewer
observations is more heavily influenced by the outlier. If a particular parameter measured
temporally has only one or two monthly observations, it is not as reliable as those with
twelve monthly measurements. Similarly, the number of measurements over which spatial
data is averaged, also varies. A solution to this problem remains elusive, at least until data
cataloging the effort spent producing each measurement becomes available in the REGNS
database.

6.2.2 Temporal data

Temporal data was extracted from the database at multiple levels of granularity, compli-
cating a temporal analysis. Observations are present for all parameters on a yearly basis.
NAO, flux, seabirds, and plankton also have monthly observations, while the finest gran-
ularity for which fish CPUE data are available is quarterly. Hence, it is not possible to
consider catch per unit effort data in a monthly analysis.
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(a) (b)

Figure 6.1: Missing values for (a) yearly and (b) quarterly data. Red indicates missing
values and black indicates present

The data is most complete for the years 1973–2004, so the analysis is limited to those
years. Some parameters contain observations from the pre-1973 era, but those data are
excluded due to the lack of concurrent data from other parameter types. On the other
hand, regular observations for some parameters begin post-1973, resulting in missing data
values in the tables to be analyzed. Figure 6.1a illustrates the number of missing values
present in yearly data, and Figure 6.1b shows the increase in missing values when looking
at the data at a finer granularity, in this case monthly. Table 6.2 shows the temporal data
available and the time span for which data was used in the analysis.

The North Sea has been divided into five sub-regions and ecological data was extracted
from the database separately for each region. Somewhat unintuitive is that this division is
only a factor in a temporal analysis. The spatial analysis is performed on data collected
over all squares in the North Sea, so all regions are implicitly included. Again, to simply
the analysis, the methods and results here are concerned only with data averaged over the
entire North Sea.

6.2.3 Spatial data

Not only has the North Sea been divided into regions, but a grid dividing the North Sea into
20km square “ICES statistical squares” has also been defined. These squares span the entire
North Sea and the collection of squares for which data has been collected varies among
the different parameter types. Purely marine-based species or abiotic parameters (fish
CPUE or surface salinity, for example) cannot be observed in squares containing exclusively
coastal land. Aligning the entire set of statistical squares with each of the parameter types
necessarily involves the inclusion of additional missing values, which were already implicitly
present. Figure 6.2 shows a comparison of the missing values present by parameter type.

It is obvious that certain North Sea statistical squares would be home to more fishing
activity than others. This affects the observation of plankton, seabirds, and most other
biotic species recorded from fishing vessels. It is likely that abiotic measurements are also
taken unevenly over the whole of the North Sea. This problem of unequal measurement
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Table 6.2: Time period and granularity for which temporal ecosystem data available.

Data type Time span Granularity
Abiotic 1973–2004 Yearly
NAO 1973–2004 Monthly
Fish CPUE 1983–2004 Quarterly
Fisheries 1974–2004 Yearly
NORWECOM Flux 1973–2004 Monthly
Seabirds 1980–2004 Monthly
Plankton 1973–2004 Monthly
Landings 1973–2004 Yearly

Figure 6.2: Missing values in spatial data by parameter type.
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effort is a particular problem with spatial data, as one would expect data collection activities
to be more unevenly distributed over space than time.

6.2.4 Parameter-based vs. temporal-spatial analysis

When implementing the similarity computation and network construction described in
Chapter 1, it should be noted that there are multiple ways to build a model of ecosys-
tem relationships depending upon the question one wishes to answer. The analysis can be
performed from a parameter-based or temporal-spatial standpoint.

In a parameter-based analysis, the goal is to uncover relationships between parameters
based upon changes in those parameters in time or space. A temporal-spatial analysis
uncovers relationships between discrete time points or locations in the North Sea, respec-
tively. In this sense, the analysis can be approached from three different directions based
upon the units between which correlations are computed; biotic and abiotic parameters,
time points, or spatial locations. The parameter-based correlations can be derived from
temporal, spatial, or a combination of temporal and spatial data.

6.3 Graph-based analysis

Both the parameter-based and temporal-spatial graph analyses of the North Sea ecosystem
data proceed as the generalized description in Chapter 1. A graph was constructed with
either parameters, time points, or spatial locations represented by vertices. Edge weights
were determined by some similarity between the vertices. The large number of missing
values present in the data indicates that the number of observations in common between
each pair of variables should play a role in computing edge weights. The natural choice is
to compute p-values as measures of statistical significance.

Before computing any measure of similarity, it is necessary to recognize that different
types of variables are measured in various units and on different scales, so some transforma-
tion must be performed to bring the values in comparability with one another. The approach
employed here was a simple standardization, which centers the mean of the observations
for each parameter at zero with a standard deviation of one.

6.3.1 Parameter-based clique analysis

To elucidate relationships between biotic and abiotic parameters, the ecosystem model was
constructed with parameters as vertices and edges assigned weights based upon the statisti-
cal significance of the pairwise Pearson’s correlation coefficient, measured by the associated
p-value. Any correlation based upon fewer than 12 pairwise-complete observations was
removed from further analysis. The standard thresholds of α < 0.05 and α < 0.01 were em-
ployed to transform the remainder of the weighted graph into an unweighted graph. Since
the significance of the Pearson correlation is dependent upon the sample size, the magnitude
of correlation that is considered significant varies for each pair of parameters. If all obser-
vations were present, then the correlation threshold was determined to be as low as about
r = 0.349 and r = 0.173 for yearly and quarterly data, respectively. When correlations are
computed over time points, and r = 0.135 when computed over ICES statistical squares.

Maximal cliques were then enumerated from the unweighted graph. These cliques consist
of factors that are changing together in time or space. Since this is an integrated analysis,
each clique can be made up of different types of parameters. For example, the clique
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Figure 6.3: An example of a heterogeneous clique enumerated at the α < 0.05 threshold.
Blue: fish CPUE, green: seabirds, orange: plankton.

shown in Figure 6.3 contains plankton, seabirds, and fish CPUE variables. A legend for the
parameters used in this and the remainder of the clique figures in this chapter can be found
in Table 6.3.

6.3.2 Temporal-spatial paraclique analysis

As before, a network model was constructed; points in time or space were the variables
between which Pearson correlations were calculated. With the large number of parameters
available over which to compute correlations in time and space, a paraclique analysis was
used to extract dense subsets of highly related time points or spatial locations with the
paraclique threshold based upon a raw correlation value cutoff.

Since results on temporal and spatial variables have such a natural visualization, a
web-based paraclique tool was developed to allow researchers to investigate relationships
in space and time. Computing dense sets of ecosystem relationships in real-time provides
a significant computational challenge, met in this case with paraclique codes based upon
a very efficient vertex cover-based maximum clique implementation (vc 0.3 by Yun Zhang)
on a limited input size.

An interactive tool producing real-time results makes it possible to uncover the different
parameter types driving temporal and spatial correlations. By varying the biotic and abiotic
conditions used in the analysis, one can quickly uncover latent relationships that might have
been obscured in an investigation of the entire data set.

6.3.3 Implementing a web-based temporal-spatial tool

The web tool consists of an HTML and Macromedia Flash interface† connecting to custom
script-driven back-end maximum clique and paraclique codes. The graphical front end
passes user-defined parameters via the HTTP POST protocol to a PHP driver. This script
†Flash front end was developed in cooperation with fellow EECS student Gary L. Rogers.
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Table 6.3: A legend for biotic and abiotic parameters used in these analyses.

Type Short name Description

Fish

Limanda Limanda limanda
Trachurus Trachurus trachurus
Ammodytidae Ammodytidae
Merlangius Merlangius merlangus
Scomber Scomber scombrus
Sprattus Sprattus sprattus
Kitt Microstomus kitt

Seabirds

Little Gull Hydrocoloeus minutus
Black Headed Gull Larus ridibundus
Divers Gavia
Skua Stercorarius parasiticus
Puffin Fratercula arctica
Shearwater Puffinus puffinus

Plankton

Calfin Calanus finmarchicus
Calhel Calanus helgolandicus
Decap Decapoda total
Colour “Greenness”
Echinol Echinoderm larva
Dino Dinophysis spp.
Pp Para-Pseudocalanus spp.
Proro Prorocentrum spp.
Dem
Totcop
Caltot Calanus total traverse
Cmacro Ceratium macroceros

Abiotic
Btemp Bottom temperature
Stemp Surface temperature
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then uses the parameters to choose the data file to be analyzed as well as the subset of
data to extract. The selected data items are then loaded into normalization software to
bring variables into a comparable range and perform a log2 transform. Paraclique codes are
executed on the normalized data with the parameters such as threshold and “glom factor”
chosen by the end user. Points in time or space are converted to graphical coordinates and
sent to the GUI for display. For visualization purposes, each paraclique identified in the
analysis is displayed in a different color. This allows quick and easy identification of related
temporal or spatial points.

The model described here can be modified slightly to accommodate various data types
and to perform many types of graph-based analyses. With such a high degree of similarity
between historical ecosystem data and other types of biological data, only the method of
visualization need be changed to perform a paraclique analysis on gene coexpression data,
for example.

6.4 Results

6.4.1 Parameter-based results

Network models were created for both temporal and spatial data using pairwise Pearson
correlation coefficients between only abiotic variables, fish CPUE, seabirds, and plankton
data. The distribution of correlation values is illustrated in Figure 6.4. It is clear that
correlation distributions of the temporal data, both at yearly and quarterly levels, have
well-defined tails, indicating that a good threshold choice likely exists. In contrast, the
spatial distribution shows a more square distribution, where it is difficult to define a cutoff
between the lower and the highest correlation values.

Unlike clusters produced by traditional clustering algorithms, the maximal cliques enu-
merated here are overlapping. It is often interesting to examine the parameters lying at the
intersection of two or more cliques. Figure 6.5 illustrates two cliques derived from yearly
data at the α < 0.05 significance level. The one on the left is comprised mostly of fish while
the one on the right is dominated by abiotic factors. It is important to note that variables
lying exclusively in the left cluster or the right cluster are not well-correlated with those
only in the other cluster. Some clustering methods would have forced the fish in the inter-
section of Figure 6.5 to reside only in the left or right cluster while they are actually highly
correlated with parameters in both clusters. In a way, these factors present in both cliques
act as a connector between two cliques of various parameter types and as an indicator of
changes in their respective observation levels.

Quarterly data was also analyzed, which produced some larger and more heterogeneous
clusters. Maximal cliques were enumerated at the more conservative threshold of α < 0.01,
producing a large number of overlapping cliques, three of which are depicted in Figure 6.6.
It can be seen that plankton dominates the intersection between each pair of cliques, and
also the overlapping area of all three cliques. Also present are the bottom and surface
temperature variables, indicating that both plankton and temperature link these three
particular cliques.

6.4.2 Spatial results

Spatial relationships were extracted from the data using the web-based analysis tool. Abiotic
factors, fish landings, fish CPUE, seabirds, and plankton data were used to build the network
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(a)

(b)

Figure 6.4: Distribution of correlation coefficients for (a) temporal and (b) spatial data.
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Figure 6.5: Two cliques extracted from yearly relationships illustrating clique overlap. The
clique on the left is made up of fish CPUE variables while the one on the right contains
mostly abiotic parameters.

Figure 6.6: Three cliques extracted from the graph on quarterly data. The three cliques
were enumerated from a graph constructed at the lower threshold of α < 0.01, resulting in
more heterogenous cliques.
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Figure 6.7: Ecosystem analysis results on spatial data.

model from which paracliques were computed. Mammal and benthos data were excluded,
due to the very incomplete nature of the data. A threshold of 0.25 and a glom factor of 0
were used, which is equivalent to extracting all maximal cliques at the 0.25 threshold. This is
useful for finding non-overlapping interactions, which are required for a clean visualization,
without decreasing the density of the clusters. For further clarity, any clusters of size less
than ten were also removed from the display. Figure 6.7 shows the result of the paraclique
computation, where the clusters found roughly coincide with the divisions of the North Sea
drawn up by the Oslo and Paris commission based upon the ocean flushing rates [104].

6.4.3 Temporal results

The web-based ecosystem analysis tool was also used to perform a yearly temporal analysis
using abiotic, flux, fisheries pressures, fish landings, fish CPUE, seabird, and plankton
data. A glom factor of 2 and a paraclique threshold of 0.25 were used, and the resulting
clusters were filtered to remove those smaller than five elements. This resulted in three
clusters: 1977–1982, 1989–1994, and 1997–2003, illustrated in Figure 6.8a. These clusters
are consistent with prior results.

Previously, Weijerman, et al. indicated the possibility of regime shifts in the North Sea
based upon the results of a chronological clustering [105]. Similar results were reported in
[102]. Kenny, et al. found that there were stable periods in the North Sea during the pre-
1983 era and post-1997, but found that the intervening years were dominated by instability.
This corresponds with the findings here, but these present results indicate that there might
also be another stable period from 1989–1994. This is supported by [105], which found a
possible regime change in 1988.

A quarterly analysis was also performed, as seen in Figure 6.8b, but the increased
granularity created difficulty in interpretation. Again, a glom factor of 2 was used, this
time with a threshold of 0.3 and a minimum clique size of 12. It is interesting to note,
however, that quarters three and four are almost always in the same cluster. Quarters one
and two are consistently in the same cluster as well, but there seems to be a change around
1987–1988.
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(a) (b)

Figure 6.8: Ecosystem analysis results on (a) yearly and (b) quarterly temporal data.

6.5 Conclusions

Challenges arising in the analysis of historical ecosystem data were addressed by considering
significance of correlation coefficients in building a network model of ecosystem interactions.
Paraclique was also employed in a temporal-spatial analysis to deal with noise and permit
the clear visualization of highly overlapping sets of cliques.

In the parameter-based analysis, completely connected sets of interacting variables were
extracted, and key sets of biotic and abiotic parameters linking these cliques, plankton and
temperature, were identified.

A real-time web-based tool for extracting dense subsets of highly related ecosystem
variables was developed and used to perform a temporal and spatial analysis of the North
Sea ecosystem. Results were presented that coincide and validate previous findings on
post-1973 regime shifts in the North Sea as well as North Sea divisions based upon flushing
rates.

6.5.1 Future work

The work here has uncovered many avenues for future investigation. One of the most
obvious is expanding the capabilities of the web-based ecosystem analysis tool introduced in
Section 6.3.2. Incorporating the parameter-based analysis into this tool is an ideal extension.
The present work has also not taken full advantage of the richness of the North Sea ecosystem
data that is available. With the incorporation of regional ecosystem data, relationships
between spatial locations can be discovered at a finer spatial granularity.

By using the real-time temporal-spatial analysis web tool, it might also be possible to
uncover the causes of a regime change in the North Sea. [105] indicated that biological fac-
tors contribute more to identifying a putative regime shift in the North Sea, although there
may be some contribution by environmental and human-influenced factors. The ecosystem
analysis tool described here can be used to vary the parameters used in the analysis and
and uncover the variables which may contribute to changes in the North Sea.
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Chapter 7

Conclusions

The preceding chapters presented a discussion of some of the challenges that often arise in
a graph theoretical analysis of various types of data. Selecting an appropriate threshold,
working with data containing many missing values, and uncovering differential relationships
from maximal clique results all present unique questions. Although there is often no single
best way to deal with the issues that arise, approaches for handling each of these situations
were presented and examined.

A key step in constructing gene coexpression networks is determining an appropriate
threshold used to identify biologically-significant relationships. A novel threshold selection
approach based upon spectral clustering was introduced and shown to produce results that
were more conservative and more dependent on the underlying biological data than retaining
only the highest or only statistically significant correlations. These methods were examined
along with other approaches in a bootstrap analysis [106] of three yeast data sets. It was
found that the spectral threshold selection produced thresholds of 0.93, 0.97, and 0.89 for
yeast anoxia and reoxygenation [107], and yeast Alpha-factor arrest [61] data sets. These
thresholds correspond to maximum clique sizes of 73, 17, and 15, respectively.

Before a threshold selection can be made, pairwise gene similarities must be computed.
Chapter 3 examined similarities computed with four methods commonly used in genetic
coexpression studies. Correlation and structural properties for graphs on allergy and low
dose ionizing radiation microarray data were presented to uncover those properties that are
common to biological data sets. Having available a set of correlation and clique profiles
expected in biological data can allow researchers to identify data sets deviating from the
norm, including those of low quality or erroneous preprocessing. The same information was
extracted from scale-free synthetic networks to further identify those properties that are
due to biology and not just the scale-free nature of the graphs.

Identifying disease-associated genes was discussed and the differential correlation and
differential topology filters were examined to find those genes participating in altered rela-
tionships between two groups of samples. These filters were applied to data from a seasonal
allergic rhinitis study to identify genes possibly associated with the disease. The effect
of various data preprocessing methods on these differential filters had not been examined,
so Chapter 5 sought to quantify the similarity in differential results between each of the
methods. Significant differences in differential correlation and topology on data from each
of the preprocessing methods were identified, although there was a core set of genes passing
differential filters for each pair of methods. Biological pathways in which these genes were
enriched were examined and it was found that results from two methods are often enriched
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in some of the same pathways. Particularly, GC-RMA and RMA showed similarity with
other methods and with one another on two data sets. Many similarities between methods
were found to be largely dependent upon the data set analyzed.

Finally, clique tools were applied to noisy and incomplete historical ecosystem data.
It was shown that this data is amenable to such graphical analysis and from it can be
produced sets of highly related points in space and time that correspond to previous studies
of the North Sea ecosystem. Analysis of various biotic and abiotic ecosystem parameters
also identified sets of possibly interacting species, environmental, and man-made factors. A
new web-based temporal and spatial analysis tool was developed and discussed, which will
make graphical analysis of the North Sea ecosystem readily accessible to researchers in the
field.

Directions for future research have been proposed with each chapter. Particularly inter-
esting is the use of the wealth of data found on the Gene Expression Omnibus website [8] to
compile a compendium of biological graph properties. Also, considering each step of data
preprocessing (background correction, normalization, and expression summarization) sepa-
rately in a comparison of preprocessing methods would allow for a finer-grained comparison
of the methods.
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Appendix B

Effects of Preprocessing Method
on Correlation, Graph Structure,
and Differential Comparisons

For Tables B.1, B.2, and B.3, J indicates the Jaccard similarity between each pair of
methods.

Table B.1: Similarity in the top one hundred most connected genes for bipolar disorder
data.

Normal Disease
Threshold Method 1 Method 2 J Threshold Method 1 Method 2 J

0.85 PDNN RMA 1.00 0.85 GC-RMA VSN 1.00
0.85 PDNN VSN 1.00 0.85 PDNN RMA 1.00
0.85 RMA VSN 1.00 0.85 RMA VSN 1.00
0.86 PDNN RMA 1.00 0.86 GC-RMA MAS5.0 1.00
0.86 PDNN VSN 1.00 0.86 GC-RMA VSN 1.00
0.86 RMA VSN 1.00 0.86 PDNN RMA 1.00
0.87 PDNN RMA 1.00 0.86 PDNN VSN 1.00
0.87 PDNN VSN 1.00 0.86 RMA VSN 1.00
0.87 RMA VSN 1.00 0.87 GC-RMA MAS5.0 1.00
0.88 PDNN RMA 1.00 0.87 GC-RMA VSN 1.00
0.88 PDNN VSN 1.00 0.87 PDNN RMA 1.00
0.88 RMA VSN 1.00 0.87 PDNN VSN 1.00
0.89 PDNN RMA 1.00 0.87 RMA VSN 1.00
0.89 PDNN VSN 1.00 0.88 GC-RMA VSN 1.00
0.89 RMA VSN 1.00 0.88 PDNN RMA 1.00
0.90 PDNN RMA 1.00 0.88 PDNN VSN 1.00
0.90 PDNN VSN 1.00 0.88 RMA VSN 1.00
0.90 RMA VSN 1.00 0.89 GC-RMA VSN 1.00
0.91 PDNN VSN 1.00 0.89 PDNN RMA 1.00

continued on next page
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continued from previous page
Normal Disease

Threshold Method 1 Method 2 J Threshold Method 1 Method 2 J

0.91 RMA VSN 1.00 0.89 PDNN VSN 1.00
0.92 PDNN VSN 1.00 0.89 RMA VSN 1.00
0.92 RMA VSN 1.00 0.90 GC-RMA MAS5.0 1.00
0.93 PDNN VSN 1.00 0.90 PDNN RMA 1.00
0.94 PDNN VSN 1.00 0.90 PDNN VSN 1.00
0.91 PDNN RMA 0.98 0.90 RMA VSN 1.00
0.92 PDNN RMA 0.98 0.91 PDNN RMA 1.00
0.93 PDNN RMA 0.98 0.91 PDNN VSN 1.00
0.93 RMA VSN 0.98 0.91 RMA VSN 1.00
0.94 PDNN RMA 0.98 0.92 PDNN RMA 1.00
0.95 PDNN RMA 0.98 0.92 PDNN VSN 1.00
0.85 GC-RMA MAS5 0.96 0.92 RMA VSN 1.00
0.86 GC-RMA MAS5 0.96 0.93 PDNN RMA 1.00
0.87 GC-RMA MAS5 0.96 0.93 PDNN VSN 1.00
0.94 RMA VSN 0.96 0.93 RMA VSN 1.00
0.95 PDNN VSN 0.96 0.94 RMA VSN 1.00
0.88 GC-RMA MAS5 0.94 0.85 GC-RMA MAS5.0 0.98
0.89 GC-RMA MAS5 0.92 0.85 PDNN VSN 0.98
0.90 GC-RMA MAS5 0.90 0.88 GC-RMA MAS5.0 0.98
0.96 PDNN RMA 0.90 0.89 GC-RMA MAS5.0 0.98

0.90 GC-RMA VSN 0.96
0.91 GC-RMA MAS5.0 0.96
0.91 GC-RMA VSN 0.96
0.93 GC-RMA MAS5.0 0.96
0.94 PDNN RMA 0.96
0.94 PDNN VSN 0.96
0.85 dChip MAS5.0 0.94
0.86 dChip MAS5.0 0.94
0.92 GC-RMA MAS5.0 0.94
0.95 PDNN RMA 0.94
0.96 PDNN RMA 0.94
0.85 GC-RMA RMA 0.92
0.86 GC-RMA RMA 0.92
0.95 PDNN VSN 0.92
0.87 dChip MAS5.0 0.90
0.87 GC-RMA RMA 0.90
0.89 GC-RMA RMA 0.90
0.95 RMA VSN 0.90

115



Table B.2: Similarity in the top one hundred most connected genes for pulmonary adeno-
carcinoma data.

Normal Disease
Threshold Method 1 Method 2 J Threshold Method 1 Method 2 J

0.85 PDNN VSN 0.92 0.90 PDNN VSN 0.98
0.86 PDNN VSN 0.92 0.91 PDNN VSN 0.98
0.87 PDNN VSN 0.92 0.91 RMA VSN 0.98
0.88 PDNN VSN 0.92 0.92 PDNN VSN 0.98
0.89 PDNN VSN 0.92 0.92 RMA VSN 0.98
0.94 PDNN VSN 0.92 0.93 PDNN VSN 0.98
0.95 PDNN VSN 0.92 0.93 RMA VSN 0.98
0.90 PDNN VSN 0.90 0.94 PDNN VSN 0.98
0.92 PDNN VSN 0.90 0.88 PDNN VSN 0.96

0.89 PDNN VSN 0.96
0.90 RMA VSN 0.96
0.89 RMA VSN 0.94
0.94 RMA VSN 0.94
0.95 PDNN VSN 0.94
0.85 PDNN VSN 0.92
0.87 PDNN VSN 0.92
0.86 PDNN VSN 0.90
0.95 RMA VSN 0.90
0.96 PDNN VSN 0.90
0.96 RMA VSN 0.90
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Table B.3: Similarity in the top one hundred most connected genes for colorectal adenoma
data.

Normal Disease
Threshold Method 1 Method 2 J Threshold Method 1 Method 2 J

0.85 PDNN RMA 1.00 0.93 GC-RMA RMA 1.00
0.86 PDNN RMA 1.00 0.93 PDNN RMA 1.00
0.87 PDNN RMA 1.00 0.94 PDNN RMA 1.00
0.88 PDNN RMA 1.00 0.98 PDNN RMA 1.00
0.89 PDNN RMA 1.00 0.89 PDNN RMA 0.98
0.90 PDNN RMA 1.00 0.90 PDNN RMA 0.98
0.93 PDNN RMA 1.00 0.91 PDNN RMA 0.98
0.96 PDNN RMA 1.00 0.92 PDNN RMA 0.98
0.91 PDNN RMA 0.98 0.95 GC-RMA RMA 0.98
0.92 PDNN RMA 0.98 0.95 PDNN RMA 0.98
0.94 PDNN RMA 0.98 0.96 PDNN RMA 0.98
0.90 GC-RMA RMA 0.96 0.97 PDNN RMA 0.98
0.93 GC-RMA RMA 0.96 0.86 PDNN RMA 0.96
0.95 GC-RMA RMA 0.96 0.87 PDNN RMA 0.96
0.95 PDNN RMA 0.96 0.88 PDNN RMA 0.96
0.97 PDNN RMA 0.96 0.94 GC-RMA RMA 0.96
0.92 GC-RMA RMA 0.94 0.85 PDNN RMA 0.94
0.88 GC-RMA RMA 0.92 0.92 GC-RMA RMA 0.94
0.91 GC-RMA RMA 0.92 0.96 GC-RMA RMA 0.94
0.94 GC-RMA RMA 0.92 0.98 GC-RMA RMA 0.92
0.96 GC-RMA RMA 0.92 0.97 GC-RMA RMA 0.90
0.89 GC-RMA RMA 0.90 0.99 PDNN RMA 0.90
0.97 GC-RMA RMA 0.90

117



(a)

(b)

Figure B.1: Differential correlation similarities for bipolar disorder, pulmonary adenocar-
cinoma, and colorectal adenoma data. (a) Bipolar disorder comparison, (b) Pulmonary
adenocarcinoma comparison, (c) Colorectal adenoma comparison.
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(c)

Figure B.1: Continued.
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(a)

(b)

Figure B.2: Differential topology similarities for the top 100 genes showing the largest
difference in topology for bipolar disorder, pulmonary adenocarcinoma, and colorectal ade-
noma data. (a) Bipolar disorder comparison, (b) Pulmonary adenocarcinoma comparison,
(c) Colorectal adenoma comparison.
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(c)

Figure B.2: Continued.
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(a)

(b)

Figure B.3: Differential topology similarities for the top 100 genes showing the largest
difference in topology for bipolar disorder, pulmonary adenocarcinoma, and colorectal ade-
noma data. (a) Bipolar disorder comparison, (b) Pulmonary adenocarcinoma comparison,
(c) Colorectal adenoma comparison.
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(c)

Figure B.3: Continued.
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