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ABSTRACT 

 
 

Implementation of Lean manufacturing systems often turn into expensive hit-or-miss  

 

propositions.  Whereas many organizations that lack immediate success quickly abandon their  

 

‘Lean’ plans in hopes that the next great marketing panacea will solve their efficiency woes,  

 

organizations that experience early success often have difficulty in sustaining their Lean efforts.   

 

To further exacerbate the dilemma, knowledge of the reliability of Lean systems is currently  

 

inadequate.  This paper proposes a contemporary Lean paradigm – reliability in Lean systems –  

 

through the development of an innovative Lean System Reliability model (LSRM).   Principally,  

 

LSRM models the reliability of Lean subsystems as a basis for determining the reliability of Lean  

 

systems as a whole.  Lean subsystems, in turn, consist of reliability measures for Lean  

 

components.  Once principal components analysis techniques are employed to determine critical  

 

subsystems, value stream mapping is used to illustrate the critical subsystem workflow sequence.   

 

Monte Carlo simulations are performed for the Lean system, its subsystems, and components and  

 

are then compared with historical data to determine the adequacy of the LSRM model.  In  

 

addition, a regression model is developed to ascertain the contribution of LSRM towards  

 

predicting  % on time delivery. 
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1.   Introduction 
 
While much has been published with regard to both the implementation of Lean concepts and  

 

reliability measures, there has been a dearth of published research in the area integrating  

 

reliability with Lean systems.  This is largely attributed to an organization’s dedicated emphasis  

 

towards the successful application of one concept or the other, but not both simultaneously.   

 

 

1.1  Integrating Reliability with Lean  
 
Successful Lean systems that also prove reliable will likely result in sustainable Lean systems.   

 

Without knowledge of its reliability, however, a Lean system’s benchmark for success is  

 

measured only by its components.  For example, whereas decreases in order lead time and waste,  

 

along with increases in % on time delivery and machine uptime demonstrate success with Lean   

 

initiatives, neither provides information regarding the reliability of the system as a whole. 

 

 

Research questions 

The following research questions will be investigated with regard to the integration of reliability  

 

with Lean systems and will be rejoined in the conclusion. 

 

1. What is the conceptual framework of a Lean System Reliability model (LSRM)? 

2. What is the algorithm for developing a stochastic LSRM? 

3. How are critical subsystems determined? 

4. How does one determine the LSRM workflow sequence? 

5. How is the reliability of LSRM determined? 

6. How is the reliability of Lean critical subsystems determined? 

7. How is the reliability of Lean components determined? 

8. How is LSRM validated? 

9. What is the contribution of LSRM to Lean systems? 
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1.2   Background 

 
Reliability is the probability that an item will perform a required function under prescribed  

 

conditions for a stated period of time (Summers, 1997; Badcock, 1998).  Therefore, reliability can  

 

be thought of in terms of its probability of survival, )(tR .  The following equation illustrates the  

 

relationship between reliability and failure: 

 

 

The probability of survival, )(tR , +  the probability of failure, )(tF , =  1 

 

 

In a Lean manufacturing system, the required function consists of satisfactory operations (i.e.,  

 

survivals) such as machine uptime, on time delivery, and zero defects.  The prescribed conditions  

 

include working with aged machinery involving dynamic, moving parts in a safe environment.  

 

The stated period of time varies but typically refers to the time during which satisfactory  

 

operation is desired such as the time required to setup and run a given order.   

 

 
Modeling the reliability of a Lean system is an important issue because Lean systems are not  

 

necessarily reliable.  Whereas Lean tools are effectively used to improve the efficiency, quality,  

 

and reliability of various aspects of the manufacturing system, the reliability of the Lean system  

 

as a whole, its subsystems, and components are important metrics because these terms represent a  

 

set of interrelated elements working together toward the attainment of on time delivery of high  

 

quality products at minimum cost.  

 

 
Failures occur when an event adversely impacts the Lean system.  Machine breakdowns,  

 

adjustments, parts replacement, product defects, lack of or inadequate inspection during a  

 

production run and environmental conditions such as power outages and safety issues are  

 

examples of failures.  Failures in a manufacturing environment typically do not occur at a  

 

uniform rate, but rather follow a distribution known as a “bathtub curve” (Meeker and Escobar,  
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1998).  The life of a product or system can be divided into three distinct regions: Infant Mortality  

 

period, which indicates a declining failure rate; Random Failures period, which indicates a  

 

constant failure rate; and a Wearout Failures period, which indicates increasing failure rates. 

 

 

Products or systems that survive the Infant Mortality period have a high probability of surviving  

 

the conditions provided by the system and its prescribed environment.  During the Random  

 

Failures period, failures may be residual defects surviving the Infant Mortality period or may  

 

occur randomly due to unpredictable system or environmental conditions or may wear out  

 

prematurely.  Wearout failures are typically associated with excessive exposure to stress-related  

 

conditions such as pressure or thermal fatigue and cycle or use fatigue. 

 

 
A system may be defined as an assemblage or combination of elements or parts forming a  

 

complex or unitary whole, such as an rail transportation system, or a coordinated body of  

 

methods or complex scheme, such as a manufacturing system. 

 

 

1.2.1  Assumptions 
 

The researcher shall consider the following assumptions with respect to using the appropriate 

 

method in analyzing data in this reliability study. 

 

Use a nonparametric method if the data is: 

 

• Distinctly non-normal and cannot be transformed 

• From a sample that is too small to apply the central limit theorem and, therefore, 

cannot lead to normality of averages 

• From a distribution not covered by parametric methods 

• From an unknown distribution 

• Nominal or ordinal 

 

Use a parametric method when: 

 

• The assumptions for the population probability distribution hold true 

• The sample size is large enough to apply the central limit theorem leading to 

normality of averages 

• The data is non-normal but can be transformed 
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Along with the application of a variety of mathematical and statistical techniques to address  

 

prominent, it is important to identify the probability distributions of Lean subsystems and  

 

components that satisfy certain assumptions from which the data follows as in the examples  

 

shown in Figure 1. 

 

 

Assumptions for Principal Components Analysis (PCA) and multivariate regression techniques  

 

that are introduced in Chapter 3 include the absence of any outliers in the data, a lack of  

 

multicollinearity among the predictor variables, and the distribution of the response variables  

 

following a multivariate normal distribution.  Should any of these assumptions be violated, a  

 

transformation of the data will be necessary in order to eliminate bias.   

 

 

1.3   Elements of a System 
 

A system may be defined as an assemblage or combination of elements or parts forming a  

 

complex or unitary whole, such as a rail transportation system; or a coordinated body of methods  

 

or complex scheme, such as a manufacturing system.  Systems are comprised of components,  

 

attributes, and relationships.  These are described as follows: 
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1. Components are the operating parts of a system consisting of inputs, processes, and  

 

outputs.  Each system component may assume a variety of values to describe a particular  

system state dictated by control action and one or more restrictions. 

 

2. Attributes are the properties of discriminate features of the components of a system.   

 

These attributes characterize the parameters of a system. 

 

 

3. Relationships concatenate components and attributes.  Relationships that are functionally  

 

necessary to each other are designated as first-order relationships.  An example is  

 

symbiosis, any interdependent or mutually beneficial relationship between two individual  

 

components.  Second-order relationships, known as synergistic, are cooperative  

 

interactions that enhance system performance.  Redundancy is characterized as a third- 

 

order relationship.  Redundancy occurs when duplicate components are in place to ensure  

 

continued system performance in the event of primary component failure. 

 

 

1.4   Methodology 
 

This dissertation consists of the three phase development of a new reliability model for Lean  

 

systems, called Lean System Reliability model, or LSRM.  This model is designed to measure  

 

the reliability of a Lean system with respect to its critical subsystems and components.  Phase 1  

 

consists of the model’s conceptual framework.  Phase 2 discusses the methodology necessary to  

 

design an LSRM.  Phase 3 consists of methodology for validating the LSRM model.  In addition,  

 

a regression model is developed to determine the contribution of LSRM to Lean systems. 

 

 

1.5   Research Objective 
 

The researcher’s objective is to develop a mathematical model that measures the reliability of  

 

Lean systems (hence, LSRM) for manufacturing firms.  The LSRM model is based on the  
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manufacturer’s Lean critical subsystems.  LSRM is a pragmatic model for numerous reasons:  

 

 

1) it provides a straightforward composite measure of the overall reliability of a Lean 

system  

 

2)   the model can be monitored over time for evaluation of improvement, sustainability, or  

deterioration  

 

3)   problem areas can be pinpointed with relative ease since each critical subsystem is 

monitored daily through data collection.  Prompt corrective action allows the system to 

quickly regain full functioning capacity 

 

 

By quantifying data obtained in the manufacturing process, LSRM can be used to effectively  

 

evaluate and assess the reliability performance of Lean systems. 

 

 

1.6  Anticipated Conclusions 
 

It is anticipated that the newly developed reliability model – LSRM, will serve as an informative  

 

and validated decision-making model of the reliability of a firm’s Lean manufacturing system by  

 

comparing simulation results with historical data.  Moreover, it is anticipated that LSRM will  

 

make a significant contribution towards predicting % on time delivery. 

 

 

1.7  Organization of Chapters  
 

The ensuing chapters are presented as follows:  In Chapter 2, an extensive literature review of the  

 

Lean paradigm is conducted.  Literature with regard to the integration of reliability with Lean  

 

manufacturing is also examined.  Chapter 3 discusses the methodology for LSRM development,  

 

including its conceptual framework, its model development, and model validation techniques.   

 

Chapter 4 follows an application of LSRM and validation of the model through a case study.  In  

 

Chapter 5, conclusions and areas of future research are discussed.  Chapter 6 includes references  

 

cited in this paper. 
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2.   Literature Review 
 

The intent of the literature review is to discover models, methods, or software that integrate  

 

reliability with Lean systems.  The following databases were searched resulting in over 150  

 

articles that address some aspect of reliability and Lean systems. 

 

 

Databases: 

 

• Compendex 

• Web of Science 

• Academic Search Premier 

• IEEE Xplore 

• Material Business File 

• National Technical Information Service 

• Business Source Premier 

 

 

Current software utilized in the literature include Root Cause Analysis (RCA) and Computer  

 

Maintenance Management System (CMMS) for reliability.  Arena simulation software as well as  

 

Bootstrapping and Monte Carlo techniques are employed for simulation tests.  Statistical software  

 

packages include SAS, JMP, Minitab, Excel, S-Plus, StatGraphics, and Splida.   

 

 

Research with respect to the integration of reliability with Lean systems has revealed scant  

 

published works in this area.  The essential focus of Lean manufacturing is the efficient use of  

 

scarce resources through the minimization of all forms of waste and non-value added activities in  

 

the organization.  Current thinking comes from different perspectives whereby performance  

 

reliability, safety, and culture are believed to be important criteria for successful integration.   

 

 

Roberts (1990) identifies High Reliability Organizations (HROs) as the subset of hazardous  

 

organizations that achieve a record of high safety over long periods of time.  If an organization  

 

failures could result in catastrophic consequences on the order of tens of thousands of times, but  

 

these failures were prevented, then the organization is considered a ‘high’ reliability organization. 
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Hence, safety is the primary organizational objective for high reliability organizations.  Such  

 

organizations hold the optimistic view that accidents can be prevented through good  

 

organizational design and management and that a ‘high-reliability culture’ breeds a value  

 

system that provides incentives for failure detection rather than punishment (Wieck, 1987). That  

 

is, the culture perpetuates the view that when employees see a problem, they ‘own it’ until it is  

 

solved or until others who can solve it take responsibility for it.  This culture empowers  

 

people to stop and fix problems, ensuring quality results the first time (Liker, 2004).  

 

 

Smart et al., (2003) poses the challenge of integrating design principles of both lean and high- 

 

reliability models where performance reliability and safety are critical, rather than merely  

 

substituting one for another.  They further suggest incorporating design principles that focus on  

 

the achievement of medium- and long-term goals over short-term efficiency gains.  High  

 

reliability organizations place an emphasis in organization design whereby ‘failure is simply not  

 

an option’. 

 

 

Resnick (2005) suggests going beyond traditional methods of reliability by widening an  

 

organization’s scope of analysis to include all stages of the life cycle and additional interactions  

 

between system components.  These interactions are evaluated to discern their effects on system  

 

reliability and to discover ways to identify sources of error or component failure.   

 

 

Resnick also notes that reliability is affected at the management level by factors such as corporate  

 

culture, supervisory practices, and human resources.  Citing the Columbia Space Shuttle failure  

 

in 2003, NASAs corporate culture was such that systems approval was given based on a previous  

 

history of success despite deviations in performance for this particular launch.  This resulted in a  

 

failed mission caused by foam that struck the orbiter’s wing.  Supervisory policies that emphasize  

 

productivity measures over safety and quality may reduce systems reliability due to neglected  
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maintenance issues and safety hazards.  Moreover, inadequately trained employees can lead to  

 

product reliability issues. 

 

 

A strict organizational structure, decentralized decision making, quality training, an experienced  

 

workforce, redundancy in the workplace, and simulation modeling are considered important  

 

requisites for becoming a highly reliable organization (LaPorte, 1991; Roberts, 1993).  Bain  

 

(1999) suggests that lean and high-reliability should be viewed as ‘complementary, not  

 

competing perspectives.’   

 

 

2.1   Chronology of Lean 
 

The transformation of production systems in the motor vehicle industry has been well chronicled  

 

(Hounshell, 1984); in particular, the success of the Toyota Production System (TPS) (Ohno,  

 

1988; Fujimoto, 1999; Liker, 2004).  TPS is a hybrid production system that merged Ford’s mass  

 

production techniques with a small batch production system along with concepts derived from  

 

Toyota Motor Company founder Sakichi Toyoda’s former loom business (Ohno, 1988; Monden,  

 

1998; Fujimoto, 1999). 

 

 

Toyoda Motor Company was founded in 1918 and, though struggling financially until 1930,  

 

made use of Ford and GM components to design Model AA automobiles (Cusumano, 1985).   

 

By 1930, the company changed its name to ‘Toyota’ to simplify its pronunciation.   By 1935, car  

 

production began and truck production began in 1936 under the leadership of Kiichiro Toyoda,  

 

Sakichi’s son, in 1935.  By 1937, the Toyota Motor Company was formally formed. 

 

 

Although Eiji Toyoda, Kiichiro’s cousin, is credited with first implementing mass production  

 

techniques at Toyota, Taiichi Ohno, a mechanical engineer, is credited with implementing a  

 

manufacturing system capable of economically producing a large variety of automobiles in small  

 

volumes (Ohno and Boden, 1988), which became the origin of the Just-in-Time philosophy  
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(Cusumano, 1985).  Ohno’s focus on waste elimination also led to the development of the Jidoka  

 

concept, which became an integral part of the Toyota Production System (TPS), and led to the  

 

establishment of the two pillars of TPS: autonomation and Just-in-Time (Ohno and Boden, 1988).   

 

 

Shigeo Shingo, an industrial engineer, was hired as a consultant for Toyota in 1955.  During his  

 

time with Toyota, Shingo developed the Single Minute Exchange of Dies (SMED) concept  

 

(Shingo, 1983; Dillon and Shingo, 1985; Shingo, 1996), which focused on changeover reduction  

 

methods and the concept of poka-yoke (Shingo, 1986; Shingo, 1988; Shingo and Dillon, 1992) –  

 

developing techniques for mistake-proofing production processes. 

 

 

According to Ohno, the development of TPS began attracting attention during the first oil crisis in  

 

1973 (Ohno and Kumagai, 1980).  However, prior to the oil crisis, there was little interest from  

 

the outside world with regard to what Toyota was doing (Ohno, 1988).   

 

 

The Toyota Production System (TPS) was established based on the philosophies of Jidoka and  

 

Just-in-Time (Womack, 1990).  Jidoka has a number of meanings: 1) it means that a machine  

 

safely stops when normal processing is completed; 2) operators are empowered to stop the  

 

machine immediately upon the detection of defects in the process, thus preventing additional  

 

defective products from being produced; and 3) as a quality or equipment problem occurs, the  

 

machine detects the problem with the aid of sensors and immediately stops the machine.  When a  

 

quality or equipment problem arises, it is communicated via a highly visible “andon” problem  

 

display board. As a result, only products that meet customer specifications are sent to the next  

 

process. 

 

 

The emphasis with the Just-in-Time (JIT) concept is for every process to produce only what is  

 

needed, when it is needed, and in the quantity needed by the next process in a continuous flow. 

 

Spear and Bowen (1999) refer to TPS’s use of powerful Lean concepts including just-in-time  
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(JIT) delivery of products; Kaizen (continuous improvement in all aspects of life); Kanban  

 

(emphasizing a “pull” production flow system); Jidoka, and Genba Kanri (consists of 3s, standard  

 

operations, skill control, and kaizen) as the ‘DNA’ of the TPS system.  With Genba Kanri, if  

 

an operator follows standard operating procedures and maintains a correct level of skill to  

 

perform a given task in a controlled work environment, the potential for error, or failure, is  

 

minimized.  When a failure does occur, systematic problem solving aids in the prevention of a  

 

repeat failure. 

 

 

Other TPS Lean concepts include heijunka (the leveling of production volume); muda (the  

 

elimination of all forms of waste); the visual workplace (using andon lighted boards to provide  

 

shop floor visual feedback of production troubles and production performance); Single Minute  

 

Exchange of Dies, or SMED (reducing setup times to single digit minutes); and 5s (an emphasis  

 

on cleanliness and orderliness on the shop floor). 

 

 

Although the Toyota Production System (TPS) placed less emphasis on employee satisfaction and  

 

the humanization of work, it works very well in attaining high levels of customer satisfaction – a  

 

direct result of strong efforts at quality improvement, operational efficiency, and manufacturing  

 

flexibility to meet the demands of highly competitive and diversified product markets (Ohno,  

 

1988), (Womack et al., 1990), (Pil and Macduffie, 1999), and (Liker, 2004).  Fucini and Fucini  

 

(1990) and (Babson, 1993) suggest that TPS achieves exceptional organizational performance at  

 

the expense of employee well-being.  Whereas Toyota has made efforts to create group autonomy  

 

and worker identity with cellular manufacturing, its emphasis remains on controlling and  

 

reducing process variation and the use of standard operating procedures (SOPs) (Adler and Borys,  

 

1996).   

 

 

The term “Lean manufacturing” was first recognized in Womack’s highly influential book, The  
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Machine That Changed The World, (Womack, 2003) cites Toyota’s extraordinary success with  

 

using Lean manufacturing methods as a means of overcoming the mass production paradigm,  

 

given new customer requirements of smaller batch sizes coupled with demands for variety of  

 

product options.  In Lean Thinking (Womack, 2003), Womack explains that Lean is a way of  

 

thinking – a whole-systems approach that creates a culture in which everyone in the organization  

 

continuously improves their processes and production.  In Becoming Lean – Inside Stories of U.S.  

 

Manufacturers, (Liker, 1997) describes accounts by U.S. manufacturers on the principles and  

 

techniques needed in order to become Lean, the obstacles that might be encountered, and what it  

 

takes to overcome them.  In The Toyota Way, (Liker, 2004) articulates the management principles  

 

of Toyota, whom he considers the world’s greatest manufacturer. 

 

 

In 1981, a study group called the ‘Repetitive Manufacturing Group (RMG)’ held a meeting at  

 

Kawasaki’s Lincoln, Nebraska motorcycle plant.  Out of participants’ exposure to Kawasaki’s  

 

implementation of JIT concepts came published works on JIT (Schonberger, 1982; Hall, 1983;  

 

Schonberger and Gilbert, 1983, and Schonberger, 1983). 

 

 

2.2   Lean Sigma 
 

Six Sigma utilizes quality management and statistical techniques for data collection, analysis, and  

 

interpretation  Advanced statistical techniques such as design of experiments (DOE) provide the  

 

needed knowledge linking process parameters to performance measures that reflect the needs of  

 

the customer, known as critical to quality (CTQ)s, thus making optimization of key process  

 

parameters possible even for complex processes (Goh, 2002).   

 

 

The emphasis of Six Sigma is the reduction of process variation and the key statistical measure to  

 

consider for processes that conform to a normal distribution is the standard deviation (Ha, 2005).   

 

In order to meet customer specification tolerances of nominal +/- specification limit, process  
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variation must be both controlled and reduced.  When the range of six standard deviations  

 

between the process mean and the specification limits is achieved, the process is said to operate  

 

within “Six Sigma,” which corresponds to a defective rate of 3.4  parts per million (ppm).   

 

 

When the Six Sigma concept is applied to physical items such as product fill weight, for example,  

 

level of performance is often referred to as defective parts per million pieces.  When applied to  

 

non-physical items, however, the level of performance is referred to in terms of defects per  

 

million opportunities, or dpmo.  Therefore, at some sigma level, both manufacturing and  

 

administrative processes can be measured.   The more consistent a manufacturing or  

 

administrative process, the smaller will be the value for the standard deviation, or sigma, and,  

 

consequently, process variation (Goh and Xie, 2004). 

 

 

While Lean Sigma is a structured approach for continuous improvement, combining Lean  

 

concepts with Six Sigma, Nash et al. (2006) suggest synchronizing these concepts in an integrated  

 

manner.  They propose that organizations that enter Six Sigma after working with Lean will  

 

derive the most benefits.   

 

 

Although many philosophical similarities exist between Lean and Six Sigma such as a focus on  

 

the customer, use of a scientific approach, and teamwork,  Pannell (2006) contrasts slight  

 

differences.  For example, whereas Six Sigma achieves productivity improvements through  

 

reductions in process parameter variation, Lean focuses on process design and the elimination of  

 

wasted activities to improve productivity. 

 

 

2.3   Lean Maintenance 
 

Among the many problems associated with integrating reliability with Lean systems include  

 

operating with unreliable equipment, slow response time and lack of familiarity with the  

 

equipment by maintenance personnel, and poor communication between shifts (Hancock, 1998).   
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Maintenance can be classified into two main types: corrective and preventive (Li et al., 2006;  

 

Waeyenbergh and Pintelon, 2004).  Whereas corrective maintenance refers to maintenance that  

 

occurs after a systems failure occurs, preventive maintenance is maintenance that is performed  

 

prior to the occurrence of a systems failure.  Preventive maintenance is conducted to retain  

 

equipment in a specified condition by providing systematic inspections, detection, and prevention  

 

of incipient failure (Wang, 2002).  This approach requires proactive maintenance personnel and  

 

uses a predictive, planned, and total maintenance scheme. 

 

 

Reliability centered maintenance (RCM) is a process that focuses on optimizing maintenance  

 

effectiveness by determining the maintenance of physical assets in their present operating context  

 

(Smith, 2004).  With this approach, the organization’s maintenance department must be proactive  

 

in the prevention of equipment failures, plan and schedule periodic maintenance, have multi- 

 

skilled technicians with both mechanical and electrical backgrounds, and maintain a just-in-time  

 

philosophy regarding parts and materials ordering using a computerized maintenance system.   

 

 

The practice of Total Productive Maintenance (TPM) is designed to make Lean processes and  

 

systems run smoothly and reliably by keeping three major categories of loss to a minimum or  

 

eliminating them (Butler, 2005).  The three loss categories are: 1) machine availability, which is  

 

reduced through breakdowns and changeover losses; 2) performance losses, which include minor  

 

stops and losses through running at a reduced speed; and 3) quality losses, which include waste  

 

and start-up losses that involve production of scrap or rework.  TPM requires machine operators  

 

and maintenance technicians to work together.  Machine operators may be required to assume  

 

routine care and maintenance tasks so that maintenance technicians pursue more advanced  

 

maintenance tasks.   

 

 

The use of a computerized maintenance management system (CMMS) and asset enterprise  
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management (AEM) system assist Lean maintenance by monitoring and controlling parts  

 

inventory (Bagadia, 2008).  In addition, this computerized system is capable of automating parts  

 

purchasing and refining performance metrics. 

 

 

Finigan and Humphries (2006) suggest six Lean tools that fit naturally into a Lean maintenance  

 

program beginning with the use of clear and concise visual controls which display how  

 

maintenance activities measure up against identified key performance metrics and the use of  

 

andon lights or horns in the plant to alert the need for emergency repairs.  The 5s concept is the  

 

practice of simplifying processes and workspaces by sorting, straightening, scrubbing, stabilizing,  

 

and sustaining on a daily basis.  Additionally, the maintenance function can direct their focus on  

 

identifying and eliminating the seven sources of waste in their own department.  These include  

 

waiting time by technicians for access to equipment, having suppliers deliver needed parts to  

 

point of use or other designated locations, and reducing spare parts inventory.  Maintenance  

 

personnel can apply single-minute exchange of dies (SMED) principles to reduce product  

 

changeover times.  Further, maintenance personnel can apply the “poka-yoke” mistake-proofing  

 

technique to eliminate repair errors and prevent accidents by using color coding, part location  

 

slots, and differing plugs for electrical connections. 

 

 

Additionally, Lean concepts such as 5s and weekly Kaizen improvement events could be  

 

performed by maintenance employees.  Lean maintenance involves the diagnosis of all machine  

 

failures using failure analysis techniques such as root cause failure analysis (RCFA), fault tree  

 

analysis (FTA), and cause-and-effect diagrams, to name a few.  Hence, Lean maintenance plays a  

 

critical role in an organization’s reliability engineering discipline (Wang et al., 2006).  Finigan  

 

(2006) suggests that a simultaneous focus on Lean maintenance and reliability improvement is an  

 

excellent strategy for optimizing asset performance. 

 

 



 

 16 

Cost reductions result in maintaining reliable equipment for which a variety of methods are in   

 

use today.  For example, if the state of the system is viewed as a function of system age, then  

 

using time-scaled criteria may assist in determining whether to repair or replace equipment  

 

(Lugtigheid et al., 2007).  Another method in current practice is the use of a Markovian arrival  

 

process to decide whether to perform minimal or perfect equipment repair (Montoro-Cazorla,  

 

2008), (Montoro-Cazorla, 2006), (Perez-Ocon, 2004).   

 

 

By systematically surveying and analyzing each machine and control system to determine which  

 

basic stresses affect machinery over time and then outlining a scheme to protect each machine or  

 

control system from these stresses, Lean maintenance allows for maximum permanent reduction  

 

of scheduled downtime (Pal, 2006). 

 

 

2.4   Lean Distribution 
 

Lean distribution, a concept similar to Lean supply (Hines, 1994; MacDuffie and Helper, 1997)  

 

applies Lean principles to the distribution system, which follows downstream from the point of  

 

final manufacturing.  Although it began to attract mainstream attention in the late 1980s (Davis,  

 

1993; Lowson et al., 1999), much focus continues to depend on the manufacturing concern rather  

 

than the distribution system in the overall supply chain (Kiff, 1997, Holweg and Pil, 2004). 

 

 

Lean distribution can best be described as an extension of the Lean “pull” concept, wherein  

 

customers “pull” products from the manufacturer rather than having products “pushed” on them  

 

by manufacturer’s representatives.  As Ohno (1988) points out, the application of this concept  

 

avoids “overproduction,” one of the forms of waste in an organization.  As customers pull  

 

products from the manufacturer, these products are then replenished in the quantities just pulled  

 

from the manufacturer. 

 

 

Although Lean distribution can apply to all types of supply chains, there are exceptions that  
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prohibit the notion of “one size fits all.”  For example, as one might imagine, build-to-order  

 

supply chain distributions, such as furniture and computers, will differ markedly from inventory- 

 

based supply chain distributions, such as automobiles, apparel, and books, where immediate  

 

variety to the customer is offered.  Hence, the Lean concept of reducing production lead time in  

 

order to minimize stock on hand (Shingo, 1989; Monden, 1998) depends on various product and  

 

market-related variables. 

 

 

The idea of minimizing stock on hand for inventory buildup items lends itself to the  

 

manufacturing paradigm known as Agile manufacturing, where quick response from highly  

 

skilled workers to demand volatility is the primary emphasis (Mason-Jones et al. 2000). 

 

 

 

2.5   Recent Lean Developments 
 

There has been considerable focus on error-proofing techniques to effectively design products  

 

and workflow to avoid making mistakes (Hoske, 2007).  Dhafr et al., (2005) developed a  

 

methodology for quality improvement in manufacturing organizations that consists of a Fault tree  

 

model for the identification of various sources of quality defects on a finished product.   

 

 

Rosenberg (2006) identifies two types of error-proofing techniques used in manufacturing: active  

 

and passive.  Active error-proofing refers to the use of sensing devices to verify that a process  

 

step such as part installation, matching color schemes, labeling, and product delivery sequence  

 

are completed correctly, as well as tracking the overall process.  Passive error-proofing refers to  

 

utilizes a mechanical means of ensuring that a part is present and in the correct orientation or  

 

position for further processing.   

 

 

Manivannan’s (2006) breakdown of mistake-proofing into three distinct categories – 1) physical,  

 

such as component installation; 2) operational, such as making modifications or installing devices  
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that reinforce the correct procedure sequence; and 3) philosophical, which involves the  

 

identification of situations that cause defects and then providing a solution – is helpful in drawing  

 

attention to different categories of mistakes, thereby narrowing one’s focus on corrective action  

 

procedures. 

 

 

Safety issues are particularly important since injury rates are relatively high among the  

 

manufacturing sector (Brown, 1996).  Existing evidence suggests a relatively high prevalence of  

 

shoulder pain among industrial workers who are subjected to extremes in reach during overhead  

 

work (Sood, et al., 2007).  It is imperative that an organization create a safety culture, which is a  

 

set of values and policies shared by organizational members related to the reduction of exposure  

 

to occupational risks by employees (Fernandez-Muniz, 2007), thereby engaging employees'  

 

involvement with management’s commitment to safety (Mearns et. al., 2003; Cox and Cheyne,  

 

2000). 

 

 

Yu et al., (1999) found that inappropriate design of standard operating procedures (SOPs) or  

 

standard assembly procedures (SAPs) were contributing factors to ‘human error’ in the  

 

workplace.  This led to the development of the human error criticality analysis (HECA) method in  

 

order to identify the potentially critical problems caused by human error in the human operation  

 

system.  For example, based on the SOP, a human error probability (HEP) is calculated for each  

 

human operation step, and its error effects to the entire system is then assessed, which shows the  

 

interrelationship between critical human tasks, critical human error modes, and human reliability  

 

information of the system. 

 

 

Information technology (IT) can be viewed as a giant umbrella under which several categories  

 

such as information processing, radio-frequency identification (RFID), simulation modeling,  

 

automation, and robotics lay.  In manufacturing, IT can be used to integrate systems in real time  
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linking the organization with its supply chain, warehouse, and logistics functions (Wheatley,  

 

2005) and generating automated warnings if disruptions in the supply chain occur (Bartels, 2005). 

  

 

International Paper uses RFID technology to manage its inventory at its Texarkana, Texas paper 

 

mill and warehouse (Andel, 2003).  RFID technology is used in warehouses when products are  

 

stored and retrieved and can also be mounted on forklifts to expedite information processing  

 

(Trebilcock, 2007; Albright, 2005).  Dot Foods uses RFID to automate receipt and storage  

 

processes and for accurate inventory tracking of their 26,000 SKU’s.  A corollary to RFID, they  

 

use real-time locater system (RTLT) technology to track the location of assets in real-time,  

 

such as trailers in the yard, and to move them in and out of loading docks (Trebilcock, 2006). 

 

 

Radio-frequency identification (RFID) technology offers substantial benefits to both  

 

manufacturers and their supply chain partners (Attaran, 2006).  With RFID, smart tags can be  

 

applied to individual products or to pallets containing multiple units, and they can be read through  

 

most materials.  Additionally, RFID technology is superior to traditional bar codes in that RFID  

 

readers can scan multiple items simultaneously versus the one at a time scanning technology of  

 

bar codes, and this information can be transmitted immediately to suppliers to improve just-in- 

 

time deliveries.  Most importantly, RFID technology substantially improves the reliability of data  

 

tracking such as accurate inventory counts and their specific location in a warehouse. 

 

 

Demand-driven supply networks (DDSN) focus on sustainable Lean supply chain improvements  

 

by making planning information and real-time scheduling visible via computerized information  

 

technology (Tinham, 2005). 

 

 

Simulation models are used in manufacturing to expedite the assessment of potential outcomes  

 

without the necessity of costly setups and waste.  Among other analyses, simulation is used to  
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automate assembly lines (Croci, 2000), to understand kanban principles (where signaling systems  

 

are used to send product upstream when needed) and applications (Ren, 2006), to design cell  

 

formations (Wu, 2008), and to analyze value stream mapping (Lian, 2007; Abdulmalek, 2007),  

 

(Van Landeghem, 2006). 

 

 

Automation is used to improve efficiencies and reduce labor costs (Pullin, 2006; Wallans, 2006)  

 

but is not restricted to the shop floor only.  Rather, automation can also be used in the office  

 

environment to generate routine reports, to simplify administrative processes, and serve as a  

 

means for getting the entire organization working and thinking the same way (Holmes, 2007). 

 

Robotics are commonly used in assembly operations to minimize task completion times (Laslo,  

 

2008), where custom grippers are designed to pick up parts or tools and perform routine tasks  

 

such as spray painting in the automotive industry (Chen, 2008), handling sliced fruit and  

 

vegetables (Davis, 2008), and operating an automated evaporation injection station in a chemistry  

 

laboratory (Manley, 2008).  

 

 

Manufacturing has extended well beyond the local, regional, or even national level.  During the  

 

past twenty five years, for various economic, technical, social, and political reasons,  

 

manufacturing, and their supply chain partners, has become globalized.  Just as manufacturing  

 

has become globalized so, too, has the marketplace with the efficacy of communication and  

 

information technologies.  Consequently, customer demand has become more unpredictable and  

 

dynamic leading to planning difficulties with regard to ordering raw materials with lead time  

 

constraints, scheduling orders to run, staffing, smaller lot sizes, more frequent setups, etc.   

 

 

Currently, myriad books and articles in academic journals have been published aimed at  

 

demystifying the successful use of Lean principles around the world, in general; and at Toyota, in  

 

particular (Sugimori et al., 1977; Monden, 1998; Spear and Bowen, 1999; Swank, 2003; Womack  
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and Jones, 2005; Morgan and Liker, 2006; Liker and Hoseus, 2007).  Common to these  

 

contributions is a focus on shop floor techniques, inventory reduction, cellular manufacturing and  

 

group technology, production smoothing, service operations, and establishing a Lean culture. 
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3.  Research Methodology 
 

3.1   Reliability Relationships in Lean Systems 
 

Lean does not necessarily imply that a system is reliable.  As an organization practices Lean  

 

concepts in the workplace, reliability may go in any of three directions:  

 

 

1) Reliability may increase, as Pratt and Whitney experienced by aligning value-creating  

 

activities with the concept of continuous flow (Womack and Jones, 2003)  

 

2) Reliability may decrease, as may occur with the Lean concept of inventory  

 

reduction, where the cost of unscheduled equipment downtime in Lean manufacturing  

 

environments, without excessive inventory buffers, is five to thirty times what it is in  

 

other manufacturing environments because it results directly--and immediately--in lost  

 

opportunity, failed shipping schedules, and lost sales (Cooper, 2004). 

 

3) Reliability may remain  unchanged, as may occur with Lean concepts such as 5s (sort,  

 

stabilize, shine, standardize, and sustain), which is a teamwork-building series of  

 

activities for eliminating wastes that contribute to errors, defects, and injuries (Liker,  

 

2004).   

 

 

3.2   LSRM Development 
 

A Lean systems reliability model (LSRM) is developed to measure the reliability of a stochastic  

 

Lean system.  A stochastic system contains one or more random variables and allows for random  

 

variation in one or more of these variables over time based on fluctuations observed in historical  

 

data.  This development of the model consists of three phases:   

 

           Phase 1: Conceptual framework  

           Phase 2: Development of LSRM 

           Phase 3: Model Validation 

 

The overview algorithm for developing an LSRM is illustrated in Figure 2.  The LSRM  

 

conceptual framework algorithm is illustrated in Figure 3. 
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3.3 LSRM Conceptual Framework – Phase 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

            Fig. 3  LSRM Conceptual Framework 
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3.3.1   LSRM Assumptions 
 

A Lean system is a set of interrelated components working together in a subtle balance toward a  

 

common objective of achieving targeted on time delivery of quality products in a manner that  

 

provides the manufacturer a competitive edge such as minimized cost.  The objective of LSRM  

 

is to improve the reliability of the Lean system through the functional relationships between the  

 

interacting components of the system.  A Lean system is dependent upon the components,  

 

attributes, and relationships required in order to accomplish its objective.   

 

 

The set of Lean system components has the following properties: 

 

 

1. The properties and behavior of each component of the set has an effect on the  

 

properties and behavior of the set as a whole. 

 

2. The properties and behavior of each component of the set depends upon the  

 

properties and behavior of at least one other component in the set. 

 

3. Each possible subset of components contains the two properties cited above; that is,  

 

the components cannot be divided into independent subsets.  

 

 

The above properties ensure that the set of components constituting a Lean system always has  

 

some characteristic or pattern of behavior that cannot be exhibited by any of its subsets.   

 

 

3.3.2   LSRM Overview 
 

The definition of an LSRM is defined in terms of its intended function, system effectiveness, and   

 

Reliability as follows: 

 

 

Intended Function:  Minimum cost (given continuous pressure for reducing overall cost) for on  

 

time delivery of goods (given continuously reduced lead times) of quality products or services  

 

(given continuously increasing customer expectations). 
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System Effectiveness:  The probability that the system can successfully meet an operational  

 

demand within a given time when operated under specified conditions is contingent upon factors  

 

such as system performance, operational readiness, and system cost. 

 

 

System performance pertains to: 1) Technical capabilities, such as equipment, personnel, internal  

 

logistics, and sales forecasting; 2) Performance limitations, such as capacity, capabilities, and  

 

vulnerability to both competitors and the economy; 3) Special environmental issues impacting  

 

performance, such as pollution or emission controls; and 4) Special business conditions impacting  

 

performance, such as excessively high fuel and energy costs.  Operational readiness refers to  

 

system reliability and maintainability.  System cost refers to system design cost, system  

 

development cost, cost of production, and operational cost. 

 

 

Reliability:  The probability that the Lean system will perform satisfactorily for at least a given  

 

period of time under certain prescribed conditions significantly increases with properly  

 

maintained equipment, failure free operations, redundancy in the workplace, and maintaining a  

 

safe work environment. 

 

 

3.3.3   LSRM Framework 
 

3.3.3.1   System Level 

 

Elements of the Lean system should be further decomposed.  This conceptual framework for  

 

LSRM is represented by three hierarchical levels:  the higher level is called the system; the middle  

 

level is called the subsystem; and the lower level is called the component.  In our context, the  

 

entire manufacturing process is the system.  Order Processing, Machinery, and Parts  

 

Availability at the Work Station are examples of subsystems.  Suppliers and machinery are  

 

examples of subsystem components.  Hence, the levels of system, subsystem, and component are  

 

relative terms, since the system at one level in the hierarchy is the component at another level.   
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An overview of the LSRM conceptual framework at the system level is illustrated in Figure 4. 

 

 

3.3.3.2   Parallel, Series, and Redundant Systems 

 
LSRM may be comprised of subsystems in a parallel system, subsystems in a series system,  

 

redundant subsystems, or any combination thereof.   

 

 

In a parallel system, the Lean system will continue to function if at least one subsystem has not  

 

failed.  Parallel systems offer the advantage of a paralleled subsystem taking over functioning of  

 

the failed subsystem.  Hence, all subsystems must fail in order for the Lean system to shut down.   
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                                          Fig. 4  Overview of LSRM Conceptual Framework 
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 The formula for a parallel system is given by:   

 

 

 

Parallel system: 

 

                   )]1()1)(1)(1[(1 321 np rrrrR −−−−−= L  

 

where 

 

                  =pR  reliability of a parallel system 

         =ir  reliability of ith subsystem 

                       =n  number of components in the system 

 

 

Conversely, if one component fails in a series system, the entire Lean system fails, or shuts down.   

 

The formula for a series system is given by: 

 

 

 

 

Series system: 
 

                  ns rrrrR ×××= L321  

 

where 

 

    =sR  reliability of a series system 

                =ir  reliability of ith subsystem 

                     =n  number of components in the system 

          

    
Redundant systems employ backup components to increase overall Lean system reliability.   

 

Backup components are only used if the primary component fails.  The formula for a redundant  

 

system is given by: 
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Redundant (or backup) system: 
 

                                      )1( 11 rrrR bb −+=   

 

where 

 

                  =bR  reliability of redundant system 

       =1r  reliability of primary subsystem 

       =br  reliability of backup subsystem 

 =− 11 r  probability of having to use the backup subsystem 

 

 

 

3.3.3.3   Calculating the Reliability of LSRM 

 
An example for calculating the reliability of LSRM is given by: 

                       

        )()()()()()()( DpWSpFsEpMsOPpPSss rrrrrrrR ××××××=  

      

where 

  

 

            =sR   reliability of Lean system 

        =
)(PSsr  operational availability of series Power Source subsystem 

       =)(OPpr  reliability of parallel Order Processing subsystem 

                    =)(Msr  operational availability of series Machinery subsystem 

                    =)(Epr  reliability of parallel Employee subsystem 

       =)(Fsr  reliability of series Parts Availability at Facility subsystem 

     =)(WSpr  reliability of parallel Parts Availability at Work Station subsystem 

                   =)(Dpr  reliability of parallel Delivery subsystem
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3.3.3.4   Subsystem Level 
 

The conceptual framework consists of subsystems.  These subsystems are Power Source, Order  

 

Processing, Machinery, Employees, Parts Availability at the Facility, Parts Availability at the  

 

Work Station, and Delivery.    Each of these subsystems will be discussed in terms of their  

 

respective intended function, system effectiveness, and reliability.  The intended function of each  

 

subsystem component states the purpose of the subsystem with regard to the organization’s  

 

purpose, system effectiveness refers to the probability that the Lean system can successfully meet  

 

an operational demand within a given time when operated under specified conditions.  Finally,  

 

reliability is defined as the probability that the Lean system will perform satisfactorily for at least  

 

a given period of time when used under stated conditions.  Following are examples of  

 

decomposed subsystems within a Lean system beginning with the decomposed Power Source  

 

subsystem in Figure 5. 
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                                                                               Fig. 5  Power Source Subsystem 
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Intended Function:  Provide a constant supply of power when required to reduce the  

 

probability of a Lean systems failure due to disruptions in power. 

 

 

System Effectiveness:  The probability of successfully meeting operational demand depends  

 

on the availability of electricity, backup source, water, air, liquid propane, battery, etc.  

 

 

Reliability Defined:  Reliability for Power Source is defined as operational availability, or  

 

proportion of time that each source of power is available for use under specified conditions  

 

versus the total time required in a series system as follows: 

 

 

BLPAWEbEPSs rrrrrrrR ××××−+= )]1([)(  

 

 where 

 

         =
)(PSsR  operational availability of Power Source subsystem  

                  =Er  operational availability of Electricity 

                  =br  operational availability of backup Electrical supply 

                 =Wr  operational availability of Water 

                  =Ar  operational availability of Air 

                =LPr  operational availability of Liquid Propane 

                 =Br  operational availability of Battery 

 

 

The decomposed Order Processing subsystem is shown in Figure 6. 
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                                                                          Fig. 6  Order Processing Subsystem 

 

 

Intended Function:  Receive and process accurate order information from customers,  

 

salespeople, and customer service into a computerized production scheduling system.  

 

 

System Effectiveness:  When work orders contain accurate information, system effectiveness  

 

is enhanced substantially because it entails all of the following when producing orders – the  

 

correct machine is available when needed, sufficient manpower is scheduled and available to  

 

produce the order, correct raw materials are available for materials processing, unitizing or  

 

packaging instructions are easily accessible to producers, and delivery information is  

 

immediately available for the Logistics department. 

 

 

Reliability Defined:  Reliability for Order Processing is defined as the proportion of orders  

 

that are completely and accurately entered into the production system over time in a parallel  

 

system as follows: 

 

       )1)(1)(1(1)( SCSCOPp rrrR −−−−=  
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where 

 

=)((OPpR  reliability of Order Processing subsystem 

        =Cr  reliability of Customer-provided order information 

      =CSr  reliability of Customer Service-provided order 

    information and order entries 

        =Sr  reliability of Sales-provided order information 

 

 

The decomposed Machinery subsystem is shown in Figure 7. 
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                                                                               Fig. 7  Machinery Subsystem 

 

 

Intended Function:  Assure machinery availability when required by operational demand. 
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System Effectiveness:  To successfully meet operational demand, system effectiveness  

 

depends on factors such as:  

 

 

1) Properly maintained machinery with periodic preventive maintenance activities  

2) Operating machinery under specified conditions 

3) Following standard operating procedures. 

 

 

Reliability Defined:  Reliability for Machinery is defined as operational availability, or  

 

proportion of time each machine is available for use under specified conditions versus the  

 

total time required in a series system as follows: 

 

  

               54321)( rrrrrR Ms ××××=  

 where 

 

                                       =)(MsR  operational availability of Machinery subsystem 

         =1r  operational availability of Machine 1 

         =2r  operational availability of Machine 2 

      =3r  operational availability of Machine 3 

         =4r  operational availability of Machine 4 

         =5r  operational availability of Machine 5 

 

 

The decomposed Employee subsystem is shown in Figure 8. 
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                                                                                Fig. 8  Employees Subsystem 

 

 

Intended Function:  Stable, substance-free workforce with perfect attendance. 

 

 

System Effectiveness:  Successfully meeting operational demand is contingent upon factors  

 

such as:  

 

1)  Employees arriving on time for scheduled work 

2)  Employees who are “substance –free” 

3)  Employees following standard operating procedures 

 

 

Reliability Defined:  Reliability for Employees is defined as the proportion of substance-free  

 

employees arriving on time for scheduled work in a parallel systems as follows: 

 

 

                                   SFAEp rrR ×=)(  

where 

        

      =)(EpR  reliability of Employee subsystem 

     =Ar  reliability of employee attendance 

   =SFr  reliability of “substance-free” employees 

 

 

The decomposed Parts Availability subsystem is shown in Figure 9. 
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                                                              Fig. 9 Parts Availability at Facility Subsystem 

 

 

 

Intended Function:  Correct parts arriving on time at the facility. 

 

 

System Effectiveness:  Successfully meeting operational demand depends on factors such as:  

 

 

1) Using parts that meet or exceed customer specifications  

2)    The transport of parts to eithera storage area or directly to the work station 

3)   Tracking system to easily locate parts. 

 

 

Reliability Defined:  Reliability for Parts Availability at Facility is defined as the proportion  

 

of orders received with correct product description and quantity and proportion of orders  

 

received on time in a series system as follows: 

 

          DCBAFs rrrrR ×××=)(  
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where 

 

     =)(FsR reliability of Parts Availability at Facility subsystem 

         =Ar  reliability of supplier A 

         =Br  reliability of supplier B 

         =Cr  reliability of supplier C 

         =Dr  reliability of supplier D 

 

 

The decomposed Parts Availability at Work Station is shown in Figure 10. 
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                                                               Fig. 10 Parts Availability at Work Station system 

 

 

Intended Function:  Correct parts arriving at the work station when required. 
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System Effectiveness:  Successfully meeting operational demand depends on factors such as:  

 

 

1) Using parts that meet or exceed customer specifications  

2)   The transport of parts directly to the work station 

                   3)   Tracking system to easily locate parts. 

 

 

Reliability Defined:  Reliability for Parts Availability at Work Station is defined as the  

 

proportion of orders received with correct product description and quantity and proportion of  

 

orders received on time is a series system as follows: 

 

 

                   UWSIPDOSWSp rrrR ××=)(  

 

where 

 

             =)(WSpR  reliability of Parts Availability at Work Station subsystem 

      =OSr  reliability of Outside Suppliers 

     =IPDr  reliability of Internal Parts Depot 

    =UWSr  reliability of Upstream Work Stations 

 

 

The decomposed Delivery subsystem is shown in Figure 11. 
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                                                                                  Fig. 11  Delivery Subsystem 

 

 

 

Intended Function:  Deliver orders on time at the proper destination at minimal cost. 

 

 

System Effectiveness:  The probability of successfully meeting operational demand from a  

 

Delivery standpoint is contingent on factors such as the production of customer orders with  

 

accurate information made with the correct parts, proper identification and loading of  

 

customer orders from the production line or from the warehouse, properly maintained  

 

delivery vehicles or reliable third-party freight carriers. 

 

 

Reliability:  Reliability for Delivery is defined as % on time delivery, whether by company- 

 

owned truck or via third-party carrier, under specified conditions over time in a parallel  

 

system as follows: 

 

 

)1)(1(1)( TPCCTDp rrR −−−=  

 

  

where 
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    =)(DpR  reliability of parallel Delivery subsystem 

      =CTr  reliability of Company Trucks 

     =TPCr  reliability of Third-Party Carriers 

 

 

 

3.3.3.5   Component Level 
 

A description of subsystem components regarding their intended functions, system effectiveness,  

 

and reliability follows: 

 

 

1.   Power Source  Components 

 

 

Intended Function:  Provide a constant supply of power when required to reduce the  

 

probability of a Lean systems failure due to a disruption in power. 

 

 

System Effectiveness:  The probability that the system can successfully meet an operational  

 

demand depends on a constant current of electrical, water, and air power when required. 

 

 

Reliability Defined:  Reliability for Power Source components is defined as operational  

 

availability, or proportion of time each source of power is available for use under specified  

 

conditions versus the total time required over time. 

 

 

Components for Power Source are shown in Figure 12.   
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                                                                 Fig. 12  Components of Power Source Subsystem 

 

 

 

2.   Order Processing Components 
        

Intended Function:  Provide customer service personnel complete and accurate order  

 

information for entry into the production scheduling system.  

 

 

System Effectiveness:  The ability of the system to meet an operational demand is contingent  

 

upon the acquisition of accurate order information and the provision of scheduled raw  

 

materials, available machinery, and manpower to produce the order. 

 

 

Reliability Defined:  Reliability for Order Processing components is defined as the proportion  

 

of orders that are completely and accurately communicated to customer service and entered  

 

into the production system over time. 

 

        
Components for Order Processing are shown in Figure 13. 
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                                                             Fig. 13  Components of Order Processing Subsystem 

 

 

 

 

3.    Machinery Components 
 

Intended Function:  Machinery availability when required by operational demand. 

 

 

System Effectiveness:  To successfully meet operational demand, system effectiveness  

 

depends on factors such as: 1) Properly maintained machinery with periodic preventive  

 

maintenance activities; 2) Operating machinery under specified conditions; and 3) Following  

 

standard operating procedures. 

 

 

Reliability Defined:  Reliability for Machinery components is defined as operational  

 

availability, or proportion of time each machine is available for use under specified  

 

conditions versus the total time required. 

 

 
       Components for Machinery are shown in Figure 14. 
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                                                                Fig. 14  Components of Machinery Subsystem 

 

 
 

4.   Employees Component 
 

 

Intended Function:  Stable workforce with perfect attendance. 

 

 

System Effectiveness:  Successfully meeting operational demand is contingent upon factors  

 

such as: 1) Employees arriving on time for scheduled work; 2) Employees who are free of  

 

distractions, including substance abuse; 3) Employees following standard operating  

 

procedures; and 4) Employees working together towards a common goal. 

 

 

Reliability Defined:  The reliability for Employees component is defined as the proportion of  

 

employees arriving on time for scheduled work. 

 

 

       Components for Employees are shown in Figure 15. 
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                                                                  Fig. 15  Components of Employees Subsystem 

 

 

 
5.   Parts Availability at Facility Components 
 

 

Intended Function:  Correct parts arriving on time at the facility from each supplier. 

 

 

System Effectiveness:  Successfully meeting operational demand depends on factors such as:  

 

 

1) Using parts that meet or exceed customer specifications  

2) The transport of parts to either a storage area or directly to a work station 

3) Tracking system to easily locate parts 

 

 

Reliability Defined:  Reliability for Parts Availability at Facility components is defined as the  

 

proportion of orders received on time with correct product description and quantity. 

 

 

       Components for Parts Availability at Facility are shown in Figure 16. 
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                                               Fig. 16  Components of Parts Availability at Facility Subsystem 

 

 

6.   Parts Availability at Work Station Components 
  

 

Intended Function:  Correct parts arriving at the work station when required from each  

 

supplier. 

 

 

System Effectiveness:  Successfully meeting operational demand depends on factors such as:  

 

 

1) Using parts that meet or exceed customer specifications  

2) The transport of parts to either a storage area or directly to a work station 

3) Tracking system to easily locate parts 

 

 

Reliability Defined:  Reliability for Parts Availability at Work Station components is defined  

 

as the proportion of orders received with correct product description and quantity and  

 

proportion of orders received that are defect-free. 

 

 
       Components for Parts Availability at Work Station are shown in Figure 17. 
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                                              Fig. 17  Components of Parts Availability at Work Station Subsystem 

 

 

 

7.   Delivery Components 
 

 

Intended Function:  Deliver orders on time at the proper destination at minimal cost. 

 

 

System Effectiveness:  The probability of successfully meeting operational demand from a  

 

Delivery standpoint is contingent upon factors such as the production of customer orders with  

 

accurate information made with the correct parts, proper identification and loading of  

 

customer orders from the production line or from the warehouse, properly maintained  

 

delivery vehicles and reliable third-party freight carriers. 

 

 

Reliability Defined:  Reliability for Delivery components is defined as % on time delivery,  

 

whether by company-owned truck or via third-party carrier, under specified conditions over  

 

time. 

 

 

      Components for Delivery are shown in Figure 18. 
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                                                                     Fig. 18  Components of Delivery Subsystem 

 

 

3.4   Data Collection Methodology 

 

3.4.1   LSRM Operational Measures 
 

An operational measurement scheme of inputs, process measures, and outputs is used to describe  

 

Lean subsystems. 

 

 

1.    Power Source  
 

Input  measures for the reliability of sources of power components including electricity,  

 

natural gas, liquid propane, air, and water consist of the amount of the time (measured in  

 

minutes) that each component is required during the workday.   

 

 

Process measures include both the number of power failures and the length of time (using a  

 

timing device such as a stopwatch) of each failure.   

 

 

Output measures consist of the percentage of workday time that each power source  

 

component is available for use versus the total time required for use. 

 

 

2.    Parts Availability at Facility   
 

Input measures for the reliability of parts availability at the facility consist of the timeliness of  

 

arrival at the facility versus the requested time when parts or materials orders are placed.   
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Process measures include average wait time if parts or materials arrivals are delayed, correct  

 

quality levels (percentage of average deviation from the ideal for various critical parameters  

 

such as correct item description, size, color, etc.), and quantity levels (comparing the total  

 

quantity and unit counts of parts or materials arriving at the facility versus requested total  

 

quantity and unit counts when parts or materials orders are placed), and cycle time (minutes  

 

to complete an activity once started).   

 

 

Output measures include output quality (percentage level of defects in finished parts or  

 

materials), and delivery accuracy (time of delivery of finished products versus required  

 

delivery time). 

 

 

3.    Parts Availability at Work Station   
 

Input measures for the reliability of parts availability at the work station requires materials  

 

handling from station to station and consists of the timeliness of arrival at the work station  

 

versus the required time when parts or materials are needed and quality of incoming materials  

 

(number of errors).   

 

 

Process measures include average wait time if parts or materials arrivals are delayed from  

 

upstream work stations, correct quality levels (percentage of average deviation from  

 

specifications for various critical parameters such as correct item description, size, color,  

 

etc.), quantity levels (comparing the total quantity and unit counts when parts or materials  

 

arriving at the work station versus the required total quantity and unit counts when parts or  

 

materials are needed), and rework levels (percentage of time rework activity occurs to correct  

 

errors), and cycle time (minutes to complete an activity once started).   

 

 

Output measures include output quality (percentage level of defects in delivered parts or  
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materials), delivery accuracy (time of delivery of finished products versus required delivery  

 

time), and employee satisfaction (downstream employee perception of department versus  

 

defined criteria). 

 

 

4.    Order Processing   
 

Input measures for order processing involve three components in parallel – the customer, the  

 

salesperson, and the customer service representative and consists of the number of orders  

 

entered and the number of orders completed daily.   

 

Process measures include number of handoffs (average number of people an order passes  

 

through before it is entered into the system) and average wait time (minutes that orders are  

 

held in queue until complete information is obtained from the customer or salesperson such  

 

as purchase order number, product identification, quantity, due date, special instructions,  

 

shipping destination, etc.).   

 

 

Output measures include order accuracy (percentage of orders entered and invoiced with  

 

complete and accurate information) and employee satisfaction (downstream work station  

 

employee perception of department versus defined criteria). 

 

 

5.    Machinery   
 

Input measures for the reliability of machinery consist of machine availability.   

 

 

Process measures include order cycle time (minutes to complete an order once started at a  

 

machine center), average wait time (minutes waiting for people, parts, or materials), and  

 

downtime (percentage of time machines are unavailable for use).   

 

 

Output measures consist of the proportion uptime each machine is available for use versus to  

 

total available machine time. 
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6.    Employees   
 

Input measures for the reliability of employees consist of the number of employees who are  

 

scheduled to work and the number of orders that are produced.   

 

 

Process measures include setup failure levels (percentage of orders containing setup errors),  

 

problem diagnosis failure levels (percentage of orders containing run time problems that are  

 

mis-diagnosed by the machine operator), and inspection failure levels (percentage of orders  

 

that were produced products out-of-specification).   

 

 

Output measures include employee attendance, that is, the proportion of employees who  

 

arrive at work on time, are tardy, or absent relative to the total number of employees  

 

scheduled to work and order accuracy (percentage of correctly produced orders versus the  

 

total number of orders run).   

 

 

7.    Delivery   
 

Input measures for the reliability of deliveries include the percentage of completed orders that  

 

are ready for delivery from upstream work stations versus the number of orders that are  

 

scheduled for delivery each workday.   

 

 

Process measures include average wait time (minutes waiting to load trucks at the  

 

manufacturer’s facility or waiting to unload trucks at the customer’s location), downtime  

 

(percentage of time delivery trucks are unavailable for use due to maintenance issues such as  

 

breakdowns or service work), and number of deliveries scheduled.   

 

 

Output measures include on time delivery percentage and delivery accuracy; that is, the  

 

percentage of orders delivered to the correct destination, within the designated receiving  

 

hours, and via the correct mode of transport.   
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3.4.2   Data Collection 
 

The primary purpose of data collection is to obtain accurate production information to support   

 

dynamic changes in the manufacturing process as a direct result of ongoing Lean initiatives.   

 

Reliability data for each Lean subsystem and subsystem components is collected in the following  

 

manner: 

 

 

 

1.    Power Source  
 

Operational availability, which measures the proportion of time each power source is  

 

readily available for use relative to the total time required, is recorded each workday.  A  

 

timing device such as a stopwatch is routinely used to measure the length of downtime (in  

 

minutes) due to power outages or power disruptions.   

 

 

2.    Order Processing   
 

The reliability for Order Processing components is measured as the proportion of orders that  

 

are completely and accurately entered into the production scheduling system over time.  This  

 

information is recorded daily by customer service personnel with regard to the  

 

communication of order information from salespeople and customers via telephone, fax, or  

 

email to customer service.  Additionally, the proportion of orders with complete and accurate  

 

information entered by customer service personnel via computer into the production system is  

 

recorded daily. 

 

 

3.    Machinery  
 

Operational availability, which measures the proportion of time each machine is  

 

readily available for use relative to the total time required, is recorded each workday.  A  

 

timing device such as a stopwatch is routinely used to measure the length of downtime (in  
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minutes) due to breakdowns, adjustments, replacement parts, or preventive maintenance.   

 

 

4.    Employees  

 
The reliability of employees is measured as the proportion of employees arriving on time for  

 

scheduled work.  An employee is considered “on time” when he or she clocks in prior to their  

 

scheduled start time and is ready for work when the shift begins.  Vacation time and excused  

 

absences such as bereavement time or jury duty are omitted from data analysis as prior notice  

 

is provided.  Unexcused absences, tardiness, and illness are considered failures in this  

 

subsystem and, therefore, impacts negatively with regard to the overall reliability of  

 

employees. 

 

 

5.   Parts Availability at Facility   
 

The reliability of parts availability at facility is measured by the receiving clerk, who  

 

compares each parts arrival with a copy of the purchase requisition.  The proportion of parts  

 

orders received when required with correct product description and quantity and that are  

 

defect-free during each workday is documented on a spreadsheet. 

 

 
6.   Parts Availability at Work Station   

 

The reliability of parts availability at facility is measured by the shop floor supervisor, who  

 

compares each parts arrival with the internal parts requisition.  Parts may arrive from outside  

 

suppliers, the internal parts depot, or from an upstream work station.  The proportion of parts  

 

orders received when required with the correct product description and quantity and that are  

 

defect-free during each workday is documented on a spreadsheet. 

 

 

7.   Delivery   
 

The reliability for Delivery is measured as % on time delivery, whether by company-owned  



 

 53 

 

truck or via third-party carrier.  Hence, this metric is measured by the logistics manager as the  

 

daily proportion of orders that arrive at the proper destination per scheduled due date. 
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3.5   Development of LSRM – Phase 2 

 

3.5.1   Methodology for Determining Critical Subsystems 
 

When a data set consists of many variables, it is considered highly dimensional data, and  

 

redundancy may exist among the variables.  In this context, redundancy implies that some of the  

 

variables are correlated with one another (Nagai et al., 2008).  Because of this redundancy, it is  

 

possible to reduce the observed variables into a smaller set of critical subsystems that will  

 

explain most of the variation in the original set of observed variables. 

 

 

The identification of critical subsystems for highly dimensional data involves the use of a  

 

procedure known as Principal Components Analysis (PCA), which is used to transform  a set of  

 

correlated response variables into a smaller set of uncorrelated variables called principal  

 

components, or subsystems (Johnson, 1998); thus, reducing the dimensionality (i.e., the number  

 

of variables) in the data set.  The mathematical technique used in PCA is called eigen analysis,  

 

which solves for the eigenvalues and eigenvectors of a square symmetrical matrix with sums of  

 

squares and cross products. 

 

 

Critical subsystems are weighted linear combinations of input variables and are orthogonal (i.e.,  

 

uncorrelated) to and independent of other components.  The critical subsystems are generated  

 

so that the first subsystem accounts for the most variation, followed by the second subsystem,  

 

and so on.  The flow chart in Figure 19 displays the algorithm used to determine critical  

 

subsystems.   

 

 

PCA computes both eigenvalues and eigenvectors for a given data set.  The number of  

 

eigenvalues is equal to the number of rows (or columns) in the matrix.  Eigenvalues measure the  

 

strength (relative length) of an axis that is derived from a square symmetric matrix.  The  

 

magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector  
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                            Fig. 19  Flow chart for Determining Critical Subsystems 
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directions.  The sum of the eigenvalues is equal to the trace, which is the sum of the diagonal  

 

elements of the square matrix. 

 

 

Each eigenvalue has a respective eigenvector.  Whereas an eigenvalue provides us with the length  

 

of an axis, the eigenvector determines its orientation in space and is normally standardized; that  

 

is, eigenvectors convert data to normal scores with a mean of 0 and a standard deviation of 1 by  

 

thefollowing method: 

 

 

       
σ

µ−ix
  , where µ and σ are the mean and standard deviation of ix ’s 

 

 

If all variables are considered equally important, then eigenvectors (shown in Table 1) and  

 

eigenvalues (shown in Table 2) are determined for all response variables using a correlation  

 

matrix (shown in Table 3), which standardizes the data.  The principal subsystem values are  

 

derived from the eigenvector linear combination of the standardized variables.   

 

 

A correlation matrix is a square symmetrical N x N matrix that describes correlation among the N  

 

variables (McClave and Benson, 1985).  In this matrix, the (ij)th element, where  

 

 

           i = element in row i  

      j = element in column j 

 

     

 

 
           Table 1  Eigenvectors of Response Variables Using Correlation Matrix 
 

 Comp Prin1 Prin2 Prin3 Prin4 Prin5 

1 -0.42451 0.09821 0.89535 -0.05294 0.07549 

2 0.52600 0.29886 0.29070 0.55934 -0.48645 

3 -0.49820 0.12008 -0.22801 0.77532 0.29030 

4 0.26811 0.76335 -0.01379 -0.16153 0.56491 

5 0.47226 -0.55128 0.24833 0.23902 0.59520 
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                    Table 2  Eigenvalues of Response Variables Using Correlation Matrix 
 

Number Eigenvalue Percent Percent Cum Percent 

1 1.4096 28.191  28.191 

2 1.1452 22.905  51.096 
3 0.9091 18.181  69.277 

4 0.8840 17.681  86.958 

5 0.6521 13.042  100.000 

 
 
 

                   Table 3  Correlation Matrix 
 

Comp 1 2 3 4 5 

1 1.0000 -0.0947 0.1040 -0.0504 -0.1244 

2 -0.0947 1.0000 -0.0972 0.1973 0.1565 

3 0.1040 -0.0972 1.0000 -0.0842 -0.1824 

4 -0.0504 0.1973 -0.0842 1.0000 -0.1214 

5 -0.1244 0.1565 -0.1824 -0.1214 1.0000 

 

 

 

is equal to the correlation coefficient (also called the Pearson product moment coefficient of  

 

correlation), which is calculated as follows: 
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where 

 

     =ix  ith element of each predictor variable 

     =iy ith element of the response variable 

      =n  number of observations 

 

The correlation coefficient, r, indicates the degree of linear relationship between two variables.   

The correlation coefficient always lies between -1 and +1.  A value of r near or equal to zero  

implies little or no linear relationship between the two variables of interest.  In contrast, the       

 

closer r is to -1 or +1, the stronger the linear relationship between the two variables of interest.   

 

Positive r values indicate that as one variable increases, the other variable increases.  Negative r  



 

 58 

 

values indicate that as one variable decreases, the other variable increases.  The diagonal elements  

 

of a correlation matrix are always equal to 1, since they represent correlations of variables with  

themselves. 

 

If all variables are not considered equally important, then eigenvectors (shown in Table 4) and  

 

eigenvalues (shown in Table 5) are computed using a covariance matrix (shown in Table 6),  

 

which computes the covariance between each of the columns of the data.  Covariance is always  

 

measured between two dimensions.   

 

 

The formula for covariance is given by: 
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                                        Table 4  Eigenvectors of Response Variables Using Covariance Matrix 

 

Comp Prin1 Prin2 Prin3 Prin4 Prin5 

WS -0.04878 -0.10792 -0.05099 0.77837 -0.61442 

D 0.08337 0.54910 0.82309 0.11606 -0.02435 

F -0.07000 -0.13658 0.03699 0.59886 0.78514 

M -0.06878 0.81742 -0.55404 0.12530 0.06659 

PS 0.99047 -0.00443 -0.10765 0.07959 0.03191 

 

 

 

 

         Table 5  Eigenvalues of Response Variables Using Covariance Matrix 
 

Number Eigenvalue Percent Percent Cum Percent 

1 0.0078 60.761  60.761 

2 0.0021 16.127  76.888 

3 0.0012 9.684  86.572 

4 0.0009 7.152  93.725 

5 0.0008 6.275  100.000 
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                                      Table 6  Covariance Matrix 
 

Comp 1 2 3 4 5 

1 0.00091 -0.00011 0.00009 -0.00006 -0.00033 

2 -0.00011 0.00153 -0.00011 0.00033 0.00054 

3 0.00009 -0.00011 0.00090 -0.00011 -0.00048 

4 -0.00006 0.00033 -0.00011 0.00182 -0.00045 

5 -0.00033 0.00054 -0.00048 -0.00045 0.00767 

 

 

 

However, calculating the covariance between one dimension and itself is reduced to the variance,  

 

 

whose formula is given by: 
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Higher-dimensional data sets require a covariance measurement for each dimension.  For an n- 

 

dimensional data set, one could compute 
2)!*2(

!

−n

n
 different covariance values.  For example, a  

 

covariance matrix for a 3-dimensional data set is given by: 

 

 

         

cov (x,x)     cov (x,y)     cov (x,z) 

C =   cov (y,x)     cov (y,y)     cov (y,z) 

            cov (z,x)     cov (z, y)     cov (z,z) 

 

 

 

Using the Kaiser criterion (Havold, 2005), we would retain only subsystems with eigenvalues  

 

greater than 1 as shown in the example in Table 2, since these subsystems explain more of the  

 

variance than any single variable in the analysis.  Eigenvalues close to zero measure nothing but  

 

random noise and may be ignored.  In this hypothetical example, we would retain only two  

 

subsystems.  We observe that the first principal subsystem accounts for 23.79% of the total  

 

variability, and the second principal subsystem accounts for 20.57% of the total variability.  The  
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first two principal subsystems together account for 44.36% of the total variability. Note that the  

 

eigenvalues sum to 5, the number of response variables in this analysis.  With PCA, all response  

 

variables are measured in the same units.   

 

 

Cattell (1966) offers a graphical criterion test known as a Scree plot to determine factor retention  

 

as shown in Figure 20.  A Scree plot is constructed by plotting the value of each eigenvalue  

 

against the numbered eigenvalue in which it represents.  This Scree plot suggests that the true  

 

dimensionality of the space in which the data lie is 2 within the 5-dimensional sample space.   

 

Therefore, the number of principal subsystems to use is also 2. 

 

 

Under normal conditions, which means having relatively few factors and many cases, both  

 

subsystem retention criteria work quite well (Cattell and Sullivan, 1962; Cattell and Jaspers,  

 

1967; Cattell, 1978; Zwick and Velicer, 1982; Heymann and Noble; 1989).  In practice, one may  

 

examine several solutions with more or less factors, choosing the one that makes the best  

 

practical sense. 
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                                                                            Fig. 20  Scree Plot 
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3.5.2 Characteristics of Critical Subsystems 
 

The following is a brief explanation of the characteristics of critical subsystems: 

 

 

1) The first subsystem obtained in the PCA accounts for the greatest amount of total  

 

variance in the observed variables.  Total variance in the data set equals the sum of  

 

the variances of the observed variables.  This implies that the first subsystem will be  

 

correlated with at least some of the observed variables.  The eigenvectors associated  

 

with the largest eigenvalue has the same direction as the first critical subsystem. 

 

 

2) The second subsystem obtained will have two significant characteristics.  First, this  

 

subsystem will account for the greatest amount of total variance in the observed  

 

variables that was not accounted for by the first subsystem.  This implies that the  

 

second subsystem will be correlated with at least some of the observed variables that  

 

did not exhibit strong correlations with the first subsystem.  The eigenvector  

 

associated with the second largest eigenvalue determines the direction of the second  

 

critical subsystem. 

 

 

The second significant characteristic of the second subsystem is that it will be  

 

orthogonal, or uncorrelated, with the first subsystem.  This implies that the  

 

correlation coefficient between the first and second subsystem will be zero. 

 

 

The remaining subsystems are obtained in the same manner and with the same characteristics as  

 

in the second subsystem.  That is, each successive subsystem will account for the greatest  

 

amount of total variance in the observed variables that were unaccounted for by all preceding  

 

subsystems; is orthogonal with all preceding components; and its eigenvalue determines the  

 

direction of the critical subsystem.  Hence, each successive subsystem accounts for  

 

progressively smaller amounts of variation in the observed variables, is orthogonal with all  
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preceding subsystems, and its direction is based on its respective eigenvalue. 

 

 

3.6   Methodology for Determining Critical Workflow Sequence 
 

Those with expert knowledge of a given Lean system are already familiar with the critical  

 

workflow sequence of its Lean subsystems.  However, for those unfamiliar with the critical  

 

workflow sequence, a Value Stream Map (VSM) is a graphical depiction of the entire flow of  

 

activities and subsystems in a complex manufacturing system.  Value streams consist of all the  

 

activities, both value added and non-value added, that are currently required to produce and  

 

deliver the product to the customer.  A VSM is used to define value from the customer’s  

 

perspective and to delineate which process steps create value and which are waste.  The goal is to  

 

identify, demonstrate, and decrease sources of waste (Ohno, 1985) and create the most value  

 

while consuming the fewest resources (Womack, 1996).  For example, a VSM for the current  

 

state of a hypothetical manufacturing firm is presented in Figure 21. 

 

 

A natural presumption is that all employees arrive on time for scheduled work so that all required  

 

work activities can be performed (Employees subsystem).  Moreover, it is naturally assumed that  

 

all power sources including electricity, water, and air are operationally available when needed  

 

(Power Source subsystem). 

 

 

The workflow sequence begins with the customer in the form of orders placed.  The customer  

 

may call the manufacturer directly to place an order via telephone, fax, or email, or may contact  

 

the manufacturer’s rep to place an order.  In this example, customer orders are placed weekly.   

 

Customer service personnel typically enter customer orders into a computerized scheduling  

 

system (i.e., Materials Requisition Purchasing (MRP) system or other scheduling system).  Raw  

 

materials are then ordered from suppliers on a daily basis to produce customer orders (Order  

 

Processing subsystem).  Parts and other raw materials arrive at the manufacturer’s facility daily  
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                Fig. 21  Current State Value Stream Map     

 

 

 

and are either stocked in inventory (i.e., at the internal parts depot or other designated storage  

 

location) until required for use, or transported directly to a machine center for processing.  The  

 

receiving clerk compares parts arrivals with purchase requisitions for various attributes such as on  

 

time arrival, receipt of correct products, correct quantities, etc. (Parts Availability at Facility  

 

subsystem). 

 

 

Parts or raw materials must arrive when required at the work station for conversion (Parts  

 

Availability at Work Station subsystem).  These parts may arrive from outside suppliers, the  

 

internal parts depot, or from upstream work stations. 

 

 

Next, available machinery to process orders (Machinery subsystem) are required.  In this  

 

example, parts or raw materials are run through a series of value-added activities including  
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processing through a press, then gluing, inspecting, and packaging operations.  We observe in the  

 

current VSM that this aspect of the production process requires a total of 7 employees (3  

 

employees for the press + 2 employees for gluing + 1 employee to inspect + 1 employee to  

 

package the products = 7 employees).  We also observe that the manufacturer currently requires 8  

 

days lead time to produce an order.  During these 8 days, the total processing time requires only  

 

106 seconds!  

 

 

On time delivery to the customer (Delivery subsystem) is the final aspect of the Lean  

 

manufacturing system.  A future VSM aids in prioritizing Lean activities that lead to the  

 

achievement of some future state. 

 

 

3.7   Stochastic Nature of LSRM 
 
Mathematical models can be classified as either probabilistic or deterministic.  Because stochastic  

 

models involve collections of random variables indicated by parameters such as time and space,  

 

they are classified as probabilistic models.  Stochastic models are based on random trials of  

 

random variables.  Random variation is normally based on fluctuations observed in historical  

 

data.   

 

 

A stochastic system integrates structural components with activity.  An example is a Lean  

 

manufacturing system, combining a building, machinery, raw materials, production workers,  

 

management, and work order information.  In a stochastic system, the inputs, processes, and  

 

outputs can only be described in statistical terms.  Uncertainty often results in both the number of  

 

inputs as well as the distribution of these inputs over time.  However, with sufficient data, these  

 

inputs can be described in terms of their probability distributions.  Hence, a stochastic Lean  

 

system can be described in a probabilistic sense. 

 

Stochastic modeling employs simulation techniques such as Monte Carlo simulation and  
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variations of the Markov chain model, in which ranges of values for each variable are used for  

 

estimating probability distributions of potential outcomes.   These probability distributions are  

 

derived from a large number of simulations, which reflect the random variation in the input  

 

variables.  Then stochastic projections are made and the results are noted.  The stochastic  

 

process is repeated thousands of times resulting in a probability distribution of outcomes from  

 

which additional information can be extracted, such as revealing both the most likely estimate  

 

as well as reasonable ranges of the outcome.  If the probability distribution provides a good fit to  

 

the data, the properties of the data set may be approximated by the properties of the probability  

 

distribution.  Volatility and variability (in the form of randomness) are built into the simulation in  

 

order to provide a more accurate representation of real life.   

 

 

By comparison, deterministic models utilize point estimates to represent the value of each  

 

variable.  Consequently, deterministic models always produce the same output for a given starting  

 

condition. 

 

 

3.7.1   Monte Carlo Simulation 
 

Simulation involves the development of mathematical models to imitate aspects of real life, or to  

 

make future predictions.  Based on historical data, field expertise, or past experience, estimates  

 

can be drawn to project what actual future values will be. 

 

 

Monte Carlo simulation is an iterative stochastic modeling technique, which involve inputs that  

 

are randomly generated from probability distributions to simulate the process of sampling from  

 

an actual population.  Given a random seed number to start with, a number of mathematical  

 

operations can be performed on the random seed to generate pseudorandom numbers.  The  

 

pseudorandom numbers are then analyzed with stringent statistical tests to ensure that the  

 

numbers are, indeed, random with respect to one another.  For multiple trials, different random  
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seeds are required to assure obtaining a different set of random numbers each time.  A probability  

 

distribution for the inputs is chosen that most closely matches the process data set already  

 

obtained, which best represents the current state of knowledge. 

 

 

The goal of Monte Carlo simulation is to determine how random variation and lack of sufficient  

 

knowledge affects model characteristics such as sensitivity, performance, and reliability.  Monte  

 

Carlo simulation is conducted using the five-step process in Figure 22: 

 

 

When the simulation is complete, a large number of results from the model are saved, each  

 

based on random input values from the chosen probability distribution.  These results are used to  

 

describe the likelihood, or probability, of the resulting outcomes in the model. 

 

 

 

          Step 1: 

 

  

 

 

 

         Step 2: 

 

 

 

 

         Step 3: 

 

 

 

 

         Step 4: 

 

 

 

 

         Step 5: 

          

 

 
         Fig. 22  Flow Chart of Monte Carlo Simulation 
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3.7.2   Methodology for Detecting Data Abnormalities 
 

After the simulation is completed, outlier box plots, scatter plots, or histograms of the data will be  

 

constructed to detect abnormalities such as outliers or distinct patterns that may bias the results.   

 

Outliers are data points well outside the range of remaining values.  Since Monte Carlo  

 

simulation entails the use of random data, abnormal patterns may consist of linearity, curvature,  

 

or clusters of data points.  Abnormal patterns clearly lack the desired properties of “randomness.” 

 

Once abnormalities are detected, they are excluded from further analyses in order to eschew the  

 

possibility of obtaining skewed results. 

 

 

3.7.3   Methodology for Fitting Distributions of Subsystems and Components 
 
Simulation data will be entered into a statistical software package such as SAS, SPSS, JMP,  

 

Minitab, Excel, etc., and various probability distributions will be fitted to the data.  The  

 

probability distribution that provides the best “fit” to the data is selected as representative of the  

 

data and its associated assumptions will be adjudicated when analyzing the data.  The properties  

 

of the data set can then be approximated by the properties of the distribution. 

 

 

While it is possible to make inferences without prior assumptions of a particular parametric  

 

form for failure time data, it is appropriate to use a location-scale based parametric distribution  

 

form in order to fit the best model possible.  A random response variable Y belongs to the  

 

location-scale family of distributions if its cdf can be expressed as 
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3.7.3.1   Likelihood for Location-Scale Distributions 
 

For a random failure variable ∞<<∞− T , the likelihood for failure sample ntt ,....,1  from a  

 

location-scale distribution with exact (i.e., not censored) and right-censored (i.e., observance for  

 

a given random variable ceases once a failure occurs) can be written as 
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which can be expressed as 
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where 

 

1 if it  is an exact observation 

=iδ  

                               0  if it  is a right-censored observation 

 

 

3.8   Model Validation – Phase 3 
 

Recall that the levels of system, subsystem, and component are relative terms, since the system at  

 

one level in the hierarchy is the component at another level.  If the range of mean reliability  

 

simulation results among Lean components, Lean subsystems, and the Lean system are accurate  

 

to within 3% of historical data results, then the LSRM model is considered a valid model because  

 

it is accurate at any level within the Lean system.  Amodel validation flow chart is illustrated  

 

in Figure 23. 

 

 

3.8.1   Monte Carlo Simulation of Components 
 

To predict the reliability of Lean subsystem components, we employ Monte Carlo simulation  

 

based on historical data.  Random data generated from historical observations will be used to  
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Fig. 23  Model Validation Flow Chart 
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simulate each subsystem component in the following manner.  Histograms and summary statistics  

 

will be obtained from n = 1000 trial runs of 500 random samples for analysis.  The probability  

 

distributions for the random samples in the simulation will resemble the probability distributions  

 

of the historical data.  For each subsystem component, we will then be able to determine its mean  

 

and standard deviation as well as the range of reliability values.  This information will be used  

 

later in comparison with the reliability of Lean subsystems. 

 

 

3.8.2   Monte Carlo Simulation of Subsystems  
 

Random data generated from historical observations will be used to simulate each critical  

 

subsystem in the following manner.  Histograms and summary statistics will be obtained from  

 

n = 1000 trial runs of 500 random samples for analysis.  The probability distributions for the  

 

random samples in the simulation will resemble the probability distributions of the historical data.   

 

For each subsystem, we will then be able to determine its mean and standard deviation as well as  

 

the range of reliability values.  This information will be used later in comparison with both the  

 

reliability of its subsystem components and, more importantly, with the reliability of the Lean  

 

system. 

 

 

3.8.3   Monte Carlo Simulation of Lean System  
 

Random data generated from historical observations will be used to simulate the Lean system  in  

 

the following manner.  Histograms and summary statistics will be obtained from n = 1000 trial  

 

runs of 500 random samples for analysis.  The probability distributions for the random samples in  

 

the simulation will resemble the probability distributions of the historical data. For the Lean  

 

system, we will then be able to determine its mean and standard deviation as well as the range  

 

of reliability values.  This information will be used to estimate the true reliability of a stochastic  

 

Lean system. 
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3.8.4   Regression Model to Determine Contribution of LSRM 
 

A substantial benefit of LSRM is the ability to measure its effect on % On Time Delivery.   One  

 

could argue, in fact, that an efficient Lean system should have a statistically significant effect on  

 

predicting % On Time Delivery (% OTD).  Therefore, a regression model is developed to  

 

analyze predictor variables against the response variable, % OTD, which is defined as the  

 

proportion of orders that are delivered on time in accordance with their scheduled due dates.  An  

 

algorithm for regression analysis is presented in Figure 24.  

 
 

 3.8.4.1   Strategy for Regression Analysis 

 

A.   Conduct Preliminary Checks on Data Quality 

  

Beginning with a histogram to screen data for unusual behavior such as outliers and non- 

 

normality before fitting any model, we analyze a scatter plot matrix in order to detect  

 

unusual pattern behavior such as linearity or curvature among the data.  A correlation matrix  

 

is then examined to determine whether a strong correlation exists among the predictor 

 

variables. 

 

 

B.   Develop a Full Model 

 
       Beginning with a general first-order model 

 

 

             εββββ +++++= kko xxxy L2211  

       

 

summary statistics including the mean, 
2R , adjusted 

2R , and root mean square error are    

 

obtained.  The mean is simply the sample mean of the response variable.  Computation of the  

 

coefficient of multiple determination, 
2R , which measures the proportion of variation in  

 

% OTD explained by the model as a whole is given by 

      

 

 



 

 72 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

                                      No 

 

 

                  Fit 

                  Full  

                 Yes               Model 

      

 

 

 

 

                                     No 

 

 

                 Yes 

 

 

 

                        No 

 

 

 

 

     Yes 

 

 

 

 

 

 

 

 

 

 

 

 

Collect data 

Fit Full regression model 

Conduct preliminary checks 

on data quality 

Compute Statistics 

Retain parameter and fit 

Reduced model 

Does data 

appear 

normal? 

Is p-value  

< 

 α value? 

Compute Statistics 

Drop 

parameter 

from 

model 



 

 73 

   

 

 

 

   No 

 

 

 

 

       

      Yes  

 

 

 

 

 

 

 

 

 

 

       Fit 

       Reduced 

       Model 

 

 

 

 

             No 

 

 

 

 

                  Yes 

 

 

 

 

 

 

 

                        No 

 

 

 

 

  

 Yes

Is p-value  

< 

 α value? 

Drop 

parameter if 

non-

hierarchical 

Have  

replicated  

data? 

No  

Lack of  

Fit Test 

Conduct Lack of Fit Test 

Does  

model fit  

data? 

Conduct Test for Normality 

Is  

data 

normal? 



 

 74 

              

Yes 

 

 

 

 

               Diagnostic 

               Checks 

               and 

                                       Yes                  Remedial 

               Measures 

 

 

 

 

 No 

 

 

 

 

 

               Residuals 

               Analysis 

                                       Yes 

 

 

 

 

 No 

 

 

 

 

 

 

 

 
      Fig. 24  Strategy for Regression Analysis 
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The remaining error is attributed to random error.  Since the sum of squared error terms for  

 

the model (SSR) and, therefore, 
2R  increase as predictors are added to the model, we  

 

sometimes refer to the adjusted 
2
aR , which adjusts 

2R  by dividing each sum of squares by its  

 

associated degrees of freedom.   Generally speaking, the degrees of freedom are equal to the  

 

number of independent scores that apply to an estimate minus the number of parameters  

 

estimated.  Adjusted 
2
aR  may increase or even decrease when another predictor variable is  

 

added to the model because any decrease in the sum of squared error terms for the data (SSE),  

 

may be more than offset by the loss of a degree of freedom in the denominator pn − , where  

 

n is the number of observations and p is the number of parameters estimated by the model.   

 
2

aR  is calculated by 

 

 

                        
MST

MSE

SST

SSE

pn

n

n

SST

pn

SSE

Ra −=








−

−
−=

−

−
−= 1

1
1

1

12
,       10 2 ≤≤ aR  

 

 

       where 

 

           
2)ˆ( ii yySSE −=∑    
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df

SSR
MST =  

 

 

The value for 
2

aR  is significant since this value adjusts for the number of predictor terms in  

 

the model and, thus, provides a truer measure of goodness of fit than 
2R  alone.  That is, the  

 
2

aR  value increases only if a new term improves the model more than would be expected by  

 

chance. 

 

The standard error of the estimate, also known as root mean square error (RMSE), measures  

 

the average size of the prediction error in the model.  In other words, RMSE measures the  

 

distance, on average, of a data point from the fitted line, measured along a vertical line.   

 

RMSE is calculated by                                                           

       

 

MSERMSE =  

 

 

An Analysis of Variance (ANOVA) table, which captures the degrees of freedom, sum of  

 

squares, and mean square information, is also obtained.  In the ANOVA table, an F-ratio is  

 

computed, which measures the ratio of the model mean square to the mean square for error.   

 

A large F-value indicates that the model is significant, meaning that we have obtained a good  

 

model to fit the data.   

 

 

Next, parameter estimates for a full model are obtained.  In addition, the standard error, t- 

 

ratio, and p-value for each estimate is displayed.  The t-ratio is the ratio of the parameter  

 

estimate to its standard error.  It is used to test for the hypothesis that the true estimate of each  

 

parameter is equal to zero; in other words, that the parameter has zero slope and, thus, is not a  

 

contributing variable in the model.   
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Another way to determine statistical significance of the model is to look at the p-value.  The  

 

p-value is a measure of how much evidence we have against the null hypothesis, which  

 

typically represents a hypothesis of no change or no effect.  The p-value measures  

 

consistency by computing the probability of observing sample results that are more extreme,  

 

assuming a true null hypothesis.  The p-value is often compared to arbitrarily observed  

 

significance probabilities of 0.10 or 0.05.  A small p-value is evidence against the null  

 

hypothesis while a large p-value means little or no evidence against the null hypothesis.  We  

 

retain only those parameters whose p-value is less than the observed significance probability  

 

level.  The significance of retained parameters can be verified in a Normal plot. 

 

 

C.   Fitting a Reduced Model 
 

Whereas the Reduced model retains statistically significant parameters from the Full model, it  

 

may also include statistically non-significant parameters.  For example, higher-order terms  

 

(i.e., interaction terms) must retain all lower-order terms that comprise the higher-order term.  

 

This results in a hierarchical Reduced model. 

 

 

The Reduced model also includes analyses beyond the Full model.  For example, if the 

 

Reduced model contains replicated data, we would conduct a Lack of Fit test to determine 

 

whether the model is a good fit to the data.  In the Lack of Fit test, we test the null hypothesis  

 

that the model lacks fit versus the alternative hypothesis that the model is a good fit to the  

 

data. 

 

 

Next, we conduct a test for normality as another criterion for the adequacy of the  

 

regression model.  That is, we want to test the null hypothesis that the data in the Reduced 

 

model follows a normal distribution versus the alternative hypothesis that the data follows a 

 

non-normal distribution.  With a large amount of data, one would expect the Central Limit 
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Theorem to apply, thereby hypothesizing that the data are normally distributed.  The 

 

Shapiro-Wilk test for normality is used to test this hypothesis. 

 

 
      We will also check Predicted Sum of Squares (or PRESS), and PRESS root mean square  

 

error (RMSE) statistics to corroborate the results found by 
2R  and 

2

aR .  The PRESS statistic  

 

is a measure of how well the use of the fitted values for a subset model can predict the  

 

observed responses, iy .  The PRESS statistic is computed as the sums of squares of the  

 

prediction residuals for those observations as follows.  

 

 

                                          
2

)(

1

)ˆ( ii

n

i

ip yyPRESS −= ∑
=

 

where  

 

                   =pPRESS  the sum of squared prediction errors over all n cases  

                               =iy  ith case of observed response 

                            =)(
ˆ

iiy  fitted observed response, with first subscript (i) indicating 

                                         a predicted value for the ith case and the second subscript (i) 

                                         indicating that the ith case was omitted when the regression 

                                         function was fitted 

 

 

 Minimizing pPRESS  is desirable because when the prediction errors )(
ˆ

iii yy −  are small, so  

 

are the squared prediction errors and the sum of the squared prediction errors.  The PRESS  

 

RMSE tests how well the reduced model would predict each of the data points if they were  

 

not included in the regression.   

 

 

The analysis is concluded by estimating individual 95% confidence intervals on jβ , where  

 

β is the slope for kj ,...,1,0=  parameters.  Confidence intervals for the transformed  

 

parameters are estimated by 
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    }{);2/1( jj bspntb −−± α  

 

 

D.   Diagnostic Checks and Remedial Measures 

 

Diagnostic checks play an important role in the development and evaluation of regression  

 

models.  Box plots for each of the predictor variables and for the response variable can  

 

provide helpful, preliminary information about these variables.  A scatterplot of the response  

 

variable against each predictor variable is helpful in determining the nature and strength of  

 

the bivariate relationship between the predictor variables and the response variable as well as  

 

in identifying gaps for the data points as well as outlying points.  A scatterplot of each  

 

predictor variable against each of the other predictor variables is helpful in examining the  

 

bivariate relationships among the predictor variables and for finding gaps and detecting  

 

outliers. 

 

 

A correlation matrix is helpful in confirming whether any linear associations exist among  

 

predictor variables and the response variable. 

 

 

A  plot of the residuals against the fitted values is helpful in assessing constancy of variance  

 

of the error terms, as well as providing information about outliers.  In addition, residuals  

 

should be plotted against each of the predictor variables to provide further information about  

 

the adequacy of the regression function with respect to that predictor variable (i.e., whether a  

 

curvature effect is required for that variable).   

 

 

Should the residuals exhibit unusual behavior, remedial measures such as a Box-Cox  

 

transformation may be necessary to remedy model deficiencies.   Transformations on the  

 

response variable may be useful when the distributions of the error terms are quite skewed  

 

and the variance of the error terms is not constant.  Transformations of some of the predictor  

 

variables may be helpful when the effects of these variables are curvilinear. 
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E.   Residuals Analysis 
 

Residuals analyses will be conducted by plotting a histogram of the residual values, plotting  

 

residuals vs. predicted values, and a normality plot of residuals to check for any departures  

 

from the normality assumption. 

 

 

F.   Conclusion 
 

Comparing reliability results from a stochastic Lean system with respect to its components,  

 

subsystems, and the entire Lean manufacturing system serves to validate the model if all three  

 

reliability results are consistent.   

 

 

Following diagnostic checks and remedial measures of the Reduced model, we formulate the  

 

regression model and assess the contribution of LSRM to the response variable, % on time  

 

delivery. 
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4.  Case Study – Empty Box Company 
 

4.1   Background  

 

Empty Box Company (EBC) is a manufacturer of corrugated boxes in the Southeast.  It operates  

 

as a sheet plant, which means that it converts sheet stock from its paper mill suppliers into  

 

finished boxes.   

 

 

Orders are typically received by customer service personnel from customers or salespeople via  

 

telephone, fax, or email.  In most cases, customers submit their orders on a weekly basis.  These  

 

orders are then entered into a computerized scheduling system.  A Master List, which is a daily  

 

production listing of all orders by customer due date, is generated and serves as a guideline for  

 

the continuous flow of orders through the factory. 

 

 

Raw materials and parts, such as sheet stock and tooling (i.e., printing dies or cutting dies), are  

 

ordered on a daily basis.  When raw materials arrive at the facility, they are either transported  

 

directly to a machine center for immediate processing or are temporarily stored in a staging area  

 

such as raw materials inventory or at the internal parts depot.  Raw materials may go through  

 

several processing steps; hence, both upstream and downstream work stations are usually active.   

 

Work stations may require materials directly from outside suppliers, the internal parts depot, or  

 

from upstream work stations in order to perform required processing activities.   

 

 

All orders are periodically inspected during and after each production run for quality attributes  

 

such as print quality, slot depth, gap dimensions, and bundle counts.  Afterwards, the units of  

 

boxes are packaged, or palletized, for delivery.  Orders are typically delivered in company-owned  

 

trucks.  Occasionally, however, shipments are made via third-party carriers upon customer  

 

request. 
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Daily operating assumptions include: 

 

 

1) Operational availability of all power sources 

2) Perfect attendance of all employees who are scheduled to work 

3) Operational availability of all machinery and equipment 

 

 

Power sources include electricity, water, air, liquid propane, battery, and a backup generator for  

 

electricity.  Perfect attendance means that employees clock in and are ready to work at their  

 

scheduled time.   

 

 

The goals of the case study are to develop and validate an LSRM for Empty Box Company and  

 

then determine whether LSRM has a significant effect in predicting % on time delivery. 
 

 

 

4.2   LSRM Conceptual Framework – Phase 1 
 

An overview of EBCs Lean system are decomposed in Figure 25.  The system level is  

 

represented by the entire manufacturing system.  The subsystem level consists of subsystems such  

 

as Order Processing and Machinery.  The component level for Order Processing, for example,  

 

consists of customers, customer service, and salespeople.  Reliability measures for each  

 

component are also displayed. 
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System level: 
     

 

 

 

Subsystem level: 
 

 

 

 

 

Component level: 

 

 

 

 

 

Reliability: 
 

 

 

 

 

 

 
     

         Fig. 25  Overview of LSRM at EBC 

 

 

4.3   Development of LSRM – Phase 2 

 

4.3.1   Determining EBCs Critical Subsystems 
 

EBCs Lean subsystems were identified in Figure 23.  All subsystem variables are considered  

 

equally important.  Hence, eigenvectors and eigenvalues will be computed using a correlation  

 

matrix.  Both the Kaiser criterion and Scree test will be used to determine critical subsystems  

 

with an eigenvalue threshold of 1.  That is, only subsystems whose eigenvalue exceeds 1 are  

 

retained in the model as critical subsystems.  Those subsystems whose eigenvalue do not exceed  

 

1 are dropped from the model. 

 

 

Eigenvectors for EBCs subsystem response variables are shown in Table 7.  Eigenvalues are  

 

shown in Table 8.   
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              Table 7  Eigenvectors of EBCs Response Variables 

        
Comp WS F D M PS OP E 

WS -0.29891 -0.01503 0.24652 0.47435 0.75566 0.22735 0.04397 

F 0.52190 0.38195 0.24269 0.33275 -0.03611 -0.00203 -0.64094 

D -0.32303 -0.08851 0.42128 0.39286 -0.63389 0.38397 0.08219 

M 0.00305 0.78224 0.12331 -0.32616 0.04589 0.38380 0.34221 

PS 0.29031 -0.04619 -0.70174 0.36742 -0.05063 0.51510 0.13513 

OP 0.32621 -0.46705 0.30628 -0.46028 0.14505 0.57230 -0.14567 

E 0.58585 -0.11785 0.31842 0.23813 0.01228 -0.24640 0.65110 

 

 

 
                  Table 8  Eigenvalues of EBCs Response Variables 
 

Comp Eigenvalue Percent Percent Cum Percent 

M 1.7867 25.524  25.524 

WS 1.2042 17.203  42.728 

D 1.0892 15.560  58.288 

OP 1.0228 14.612  72.900 

PS 0.8953 12.790  85.690 

E 0.6145 8.778  94.468 

F 0.3872 5.532  100.000 

 

 

 

Using the Kaiser criterion, we would retain only subsystems whose eigenvalues are greater than  

 

1, since these subsystems explain more of the variance than any single variable.  In this example,  

 

we would retain four subsystems.  Recall that the total variance in the data equals the sum of the  

 

variances of the observed subsystems.  The first principal subsystem, Machinery, accounts for the  

 

greatest amount of total variance (25.52%) followed by the second principal subsystem, Parts  

 

Availability at Work Station (17.20%).  The third principal subsystem, Delivery, accounts for  

 

15.56% of the total variability and the fourth principal subsystem, Order Processing, accounts for  

 

14.61% of the total variability.  In sum, the first four principal subsystems account for 72.90% of  

 

the total variability in the data.  Note that the eigenvalues sum to7, the number of response  

 

variables in this analysis. 
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Table 9  Correlation Matrix for EBC 
 

Comp WS F D M PS OP E 

WS 1.0000 -0.0947 0.1040 -0.0504 -0.1244 -0.1312 -0.1247 

F -0.0947 1.0000 -0.0972 0.1973 0.1565 0.0444 0.4956 

D 0.1040 -0.0972 1.0000 -0.0842 -0.1824 -0.1348 -0.1282 

M -0.0504 0.1973 -0.0842 1.0000 -0.1214 -0.1219 -0.1158 

PS -0.1244 0.1565 -0.1824 -0.1214 1.0000 -0.0449 0.1121 

OP -0.1312 0.0444 -0.1348 -0.1219 -0.0449 1.0000 0.2801 

E -0.1247 0.4956 -0.1282 -0.1158 0.1121 0.2801 1.0000 

 

 

There appears to be a moderately positive correlation between Employee and Parts Availability at  

Facility )4956.0( =r , but this has no substantive meaning.  Otherwise, no correlations exist  

among the remaining subsystem variables. 

 

A Scree plot to determine factor retention is displayed in Figure 26.  This Scree plot suggests that  

 

the true dimensionality of the space in which the data lie is 4 within the 7-dimensional sample  

 

space.  Therefore, the number of principal subsystems to use is also 4.  The results of both the   

 

Kaiser criterion and the Scree plot concur. 
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                                                                          Fig. 26  Scree Plot for EBC 
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Therefore, based on its critical subsystems, the LSRM model is  

 

 

     OPDWSMs rrrrR ×××=  

 

where 

 

   =sR  reliability of the Lean system 

   =Mr  operational availability of Machinery subsystem 

              =WSr  reliability of Parts Availability at Work Station subsystem 

   =Dr  reliability of Delivery subsystem 

              =OPr  reliability of Order Processing 

 

 

 

4.4   Determining EBCs Critical Workflow Sequence 
 

A value stream map (VSM) for a manufacturer’s current state was developed in Chapter 3.   

 

Recall that a value stream map is a graphical depiction of the entire flow of activities and  

 

subsystems in a complex manufacturing system.  Value streams consist of all the activities, both  

 

value added and non-value added, that are currently required to produce and deliver the product  

 

to the customer.  The goal of value stream maps is to identify, demonstrate, and decrease sources  

 

of waste and create the most value while consuming the fewest resources.  An example of a future  

 

state value stream map is presented in Figure 27.  By using group technology in the future state,  

 

the manufacturing processes of press, gluing, and inspecting are consolidated into a single work  

 

cell operation rather using than three separate work stations as inthe current state (VSM) shown  

 

in Figure 21.  By doing so, the same volume of work is created with fewer employees.  The  

 

benefits are substantial.  They include a 62.5% reduction in lead time by reducing lead time from  

 

8 days to 3 days.  Processing time is reduced from 106 seconds to 50 seconds per piece, for a  

 

reduction in processing time of 53%.  Additionally, by reducing related work activities that once  

 

required 7 employees down to 3 employees, the firm realizes a savings of 57% in labor costs. 
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          Fig. 27  EBCs Future State Value Stream Map 

 

 

The workflow sequence in the future state begins with the customer in the form of orders placed.   

 

The customer may call the manufacturer directly to place an order via telephone, fax, or email, or  

 

may contact the manufacturer’s rep to place an order on a daily basis.  This aids both the  

 

customer and the manufacturer because both can realize economies of scale.  For the customer,  

 

daily placement of orders enables a more level flow of incoming shipments into their facility  

 

during the week rather than large volumes of incoming shipments arriving on only certain days of  

 

the week.  It also increases their cash flow, since their capital is not consumed in weekly batches  

 

of orders, some of which may not be processed until days after arrival.  Now, the customer can  
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receive their orders daily; that is, specifically when they require them.  For the manufacturer,  

 

economies of scale are realized in scheduling and raw materials purchases.  In scheduling, orders  

 

received may be scheduled to run in groups with common characteristics such as ink color, size,  

 

etc.  For example, boxes requiring black ink would be grouped together before producing boxes  

 

requiring red ink in order to reduce press downtime when changing ink colors, which involves a  

 

setup procedure known as a “ink washup.”  Additionally, the manufacturer maintains better  

 

control over receipt of incoming raw materials when purchased with daily customer orders than  

 

with weekly customer orders.   

 

 

EBC customer service personnel typically enter customer orders into a computerized scheduling  

 

system.  Raw materials are then ordered from suppliers on a daily basis to produce customer  

 

orders (Order Processing subsystem).  Parts and other raw materials arrive at the manufacturer’s  

 

facility daily and are either stocked in inventory (i.e., at the internal parts depot or other  

 

designated storage location) until required for use, or transported directly to a machine center for  

 

processing.  The receiving clerk compares parts arrivals with purchase requisitions for various  

 

attributes such as on time arrival, receipt of correct products, correct quantities, etc.  Parts or raw  

 

materials must arrive when required at the work station for conversion (Parts Availability at Work  

 

Station subsystem).  These parts may arrive from outside suppliers, the internal parts depot, or  

 

from upstream work stations. 

 

 

Next, operationally available machinery to process orders (Machinery subsystem) are required.   

 

In this example, parts or raw materials are run through a series of value-added activities.  As  

 

observed in the future state value stream map, group technology allows for consolidating multiple  

 

processes into work cells that run more productively and efficiently than individual work stations.   

 

At EBC, stock sheets are processed through a press, including gluing and inspecting, in the same  
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work cell.  Previously, this series of operations were performed at three separate work stations.   

 

Hence, lost time in the form of waiting time, materials handling time, searching for supervisory  

 

approval to run orders at each work station, etc. have been greatly reduced .  Efficiencies gained  

 

will also allow for producing more orders with reduced lot sizes, thereby adding flexibility in the  

 

manufacturing system.  Reduced lot sizes will accommodate a greater number and variety of  

 

orders in response to increasing customer demand.   

 

 

Once the units of boxes are unitized, they are delivered to customers either on company-owned  

 

trucks or via third-party carriers.  Daily deliveries to customers becomes the norm, rather than  

 

weekly deliveries, again benefitting both the customer and the manufacturer.  Hence, based on  

 

EBCs critical subsystems, the workflow sequence is presented in Figure 28. 

 

 

4.5   Model Validation – Phase 3 
 

4.5.1   Monte Carlo Simulation of EBCs Lean Components 
 

To predict the reliability of Lean subsystem components, we employ Monte Carlo simulation  

 

based on historical data.  Random data generated from historical observations will be used to  

 

simulate each subsystem component in the following manner.  Histograms and summary statistics  

 

will be obtained from n = 1000 trial runs of 500 random samples for analysis.  The probability  

 

distributions for the random samples in the simulation will resemble the probability distributions  

 

of the historical data.  For each subsystem component, we will then be able to determine its mean  

 

and standard deviation as well as the range of reliability values.  This information will be used  

 

later in comparison with the reliability of Lean subsystems. 

 

 

 

 

 

 

  
         Fig. 28  EBCs Critical Workflow Sequence 
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4.5.1.1   Fitting Distributions to EBCs Lean Components 

 

Order Processing Components 

 

Fitted distributions for Customers, Customer Service, and Sales reliability data are shown in  

 

Figures 29 and 30.  No outliers are observed in the outlier box plots or histograms for these three  

 

probability distribution.  The mean, standard deviation, and range of reliability values for each  

 

component are shown in Table 10. 

 

 
Order information provided by customers and salespeople to customer service personnel appears  

 

to be highly reliable, as is the entry of order information into the computerized scheduling system  

 

at EBC. 

 

 

 

 
              Table 10  Order Processing Component Statistics 
 

Component Mean Standard deviation Range of reliability values 

Customers 0.9696 0.0182 (0.9375, 1.0) 

Customer Service 0.9630 0.0211 (0.9277, 1.0) 

Sales 0.9687 0.0179 (0.9375, 1.0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                 Fig. 29  Probability Distributions of Customers and Customer Service  

Customers           
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    LogNormal(-0.0311,0.0188) 

    
   Beta(1.02412,0.96606,0.9375,0.0625) 

    
   Weibull(0.97845,59.7219) 

      

  Customer Service      

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

 

  
 Beta(0.94758,0.97763,0.9277,0.0723) 

  
 LogNormal(-0.0379,0.02193) 

  
 Weibull(0.97343,49.7982) 
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            Fig. 30  Probability Distribution of Sales 

 
 
 
 

Parts Availability at Work Station Components 

 

Fitted distributions for Outside Suppliers, Internal Parts Depot, and Upstream Work Stations are  

 

shown in Figures 31 and 32.  The data for the three components follow a Weibull probability  

 

distribution.  The mean, standard deviation, and range of reliability values for each component  

 

are shown in Table 11. 

 

 

Parts availability at the work station is highly reliable.  The arrival of parts when required by  

 

downstream work stations from each of the three sources for parts and materials is very reliable. 

 

 
   

   Table 11  Parts Availability at Work Station Component Statistics 

 

Component Mean Standard deviation Range of reliability values 

Outside Suppliers 0.9951 0.0196 (0.80, 1.0) 

Internal Parts Depot 0.9954 0.0188 (0.81, 1.0) 

Upstream Work 

Stations 

0.9945 0.0214 (0.83, 1.0) 

 

 
 

 Sales 

0.94 0.95 0.96 0.97 0.98 0.99 1

 

 
 LogNormal(-0.032,0.01842) 

 
 Weibull(0.97745,60.2986) 

 
 Beta(1.04188,1.04529,0.9375,0.0625) 
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                          Fig. 31 Probability Distribution s of Outside Suppliers and Internal Parts Depot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                       

 

                                         

                                          Fig. 32 Probability Distribution of Upstream Work Stations 

 

 

 

  Outside Suppliers    

0.8 0.9 1

 

   
  Weibull(0.99955,196.75) 

   
  LogNormal(-0.0051,0.02073) 

   
  Beta(3.76385,1.47222,0.8,0.2) 
 

 Internal Parts Depot   

0.8 0.9 1

 

   
  Weibull(0.99954,211.554) 

   
  LogNormal(-0.0048,0.01988) 

   
  Beta(3.22072,1.06871,0.81,0.19) 
 

   Upstream Work Stations   

0.9 1

 

     
    Weibull(0.99939,174.98) 

     
    LogNormal(-0.0058,0.02276) 

     
    Beta(3.41474,1.27017,0.83,0.17) 
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Machinery Components 
 

Fitted distributions for reliability data with regard to Machines 1 – 5 are shown in Figures 33  

 

through 35.  No outliers are observed in the outlier box plots or histograms for these five  

 

components.  Additionally, it appears that the data for all five components follow the Weibull  

 

probability distribution.  The mean, standard deviation, and range of reliability values for each  

 

component are shown in Table 12. 

 

 

Utilizing a Lean maintenance program has enabled EBC to maintain high operationally available  

 

machinery.   

 

 
 

        Table 12  Machinery Component Statistics 
 

Component Mean Standard deviation Range of reliability values 

Machine 1 0.9919 0.0196 (0.8, 1.0) 

Machine 2 0.9957 0.0188 (0.8, 1.0) 

Machine 3 0.9755 0.0482 (0.58, 1.0) 

Machine 4 0.9969 0.0146 (0.80, 1.0) 

Machine 5 0.9930 0.0236 (0.81, 1.0) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                           Fig. 33  Probability Distributions of Machine 1 and Machine 2 
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    Weibull(0.99956,224.091) 
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                                           Fig. 34  Probability Distributions of Machine 3 and Machine 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                            Fig. 35  Probability Distribution of Machine 5 
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 Machine 4 

0.8 0.9 1

 

  
 Weibull(0.99973,315.913) 

  
 LogNormal(-0.0032,0.01547) 

  
 Beta(5.44605,1.17266,0.8,0.2) 

 

    Machine 5    

0.8 0.9 1

 

     
    Weibull(0.99902,137.766) 

     
    LogNormal(-0.0074,0.02506) 

     
    Beta(2.88021,1.15896,0.81,0.19) 
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Delivery Component 
 

Fitted distributions for reliability data with regard to Deliveries are shown in Figure 36.  One  

 

outliers is observed in the outlier box plots for company-owned trucks; however, no outliers are  

 

observed for third party carrier data.  Additionally, it appears that the data for both components  

 

follow the Lognormal probability distribution.  The mean, standard deviation, and range of  

 

reliability values for each component are shown in Table 13. 

 

 

The most reliable components for EBCs Lean subsystems are the delivery components.  Both  

 

company trucks and third-party carriers are highly reliable in delivering products of superior  

 

quality to customers on time. 

 

 

 

 
        Table 13  Delivery Component Statistics 

 

Component Mean Standard deviation Range of reliability values 

Company Trucks 0.9984 0.0010 (0.9898, 1.0) 

Third-Party 

Carriers 

0.9983 0.0010 (0.9965, 1.0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                          Fig. 36  Probability Distributions of Company Trucks and Third Party Carriers 

   Company Trucks   

0.99 0.992 0.994 0.996 0.998 1

 

     
    LogNormal(-0.0016,0.001) 

     
    Weibull(0.99886,1150.21) 

     
    Beta(9.56748,1.81377,0.9898,0.0102) 

 

  Third Party Carriers   

0.997 0.998 0.999 1

 

    
   LogNormal(-0.0017,0.00101) 

    
   Weibull(0.99879,1103.04) 

    
   Beta(1.19317,1.14415,0.9965,0.0035) 

 



 

 96 

 

4.5.2  Monte Carlo Simulation of EBCs Lean Subsystems 
 

Random data generated from historical observations will be used to simulate each subsystem  

 

in the following manner.  Histograms and summary statistics will be obtained from n = 1000 trial  

 

runs of 500 random samples for analysis.  The probability distributions for the random samples in  

 

the simulation will resemble the probability distributions of the historical data.  For each  

 

subsystem , we will then be able to determine its mean and standard deviation as well as the range  

 

of reliability values.  This information will be used later in comparison with the reliability of  

 

subsystem components as well as the Lean system. 

 

 

 

 

4.5.2.1   Fitting Distributions to Lean Subsystems 
 

Order Processing Subsystem 

 
A histogram of the Order Processing subsystem is shown in Figure 37.  After n = 1000 trial runs,  

 

the distribution of reliability results clearly follows a Weibull distribution with 99996.0=µ  and  

 

0001.0=σ .  Some outliers are observed in the simulated data.  Additionally, a results summary  

 

and percentile distribution of simulation values is displayed in Table 14. 
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                                                    Fig. 37  Order Processing Simulation Histogram  
 

 

 

 

 

 

 

 

 

 

 
            Table 14  Simulation Results Summary for Order Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean 0.9999637 

Std Dev 0.0001482 

Std Err Mean 4.6855e-6 

upper 95% Mean 0.9999729 

lower 95% Mean 0.9999545 

N 1000 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  0.9999 

2.5%  0.9998 

0.5%  0.9993 

0.0% minimum 0.9971 

 

    

0.997 0.998 0.999 1

                

   
  Weibull(0.99999,28825.1) 

   
  LogNormal(-3.6e-5,0.00015) 

   
  Beta(31.4071,1.73634,0.9971,0.0029) 
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A plot of n = 1000 trial runs for each subsystem in the Monte Carlo simulation is shown in Figure  

 

38.   The parallel system formula for computing reliability for Order Processing is 

 

 

)1)(1)(1(1 SCScOP rrrR −−−−=
 

 

        )9687.1)(9630.1)(9696.1(1 −−−−=  

 

        99996.=  

 

where 

 

           =OPR  reliability of Order Processing subsystem 

             =Cr  reliability of Customer provided information 

            =CSr  reliability of Customer Service 

              =Sr  reliability of Sales provided information 

 

 
Random variation and statistical fluctuations are observed in the plot.  However, no unusual  

 

patterns are detected. 
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                                       Fig. 38  Plot of n = 1000 Simulation Results for Order Processing 
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Parts Availability at Work Station Subsystem 

 

A histogram of Parts Availability at Work Station is shown in Figure 39.  After n = 1000 trial  

 

runs, the distribution of reliability results best follows a Weibull distribution with 985.0=µ   

 

and 0358.0=σ .  Outliers are observed in the simulated data.  A summary of results and a  

 

percentile distribution of simulation values is displayed in Table 15. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Fig. 39  Parts Availability at Work Station Simulation Histogram 

 

            

0.7 0.8 0.9 1

 

  
 Weibull(0.99644,66.2554) 

  
 LogNormal(-0.0159,0.03859) 

  
 Beta(4.81971,1.23817,0.7055,0.2945) 
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                            Table 15  Simulation Results Summary for Parts Availability at Work Station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plot of Parts Availability at Work Station is displayed in Figure 40.  The series system  

 

formula for computing Parts Availability at Work Station is 

 

 

          UWSIPDOSWS rrrR ××=
 

 

                                                                  9945.9954.9951. ××=  

 

                                                                  98497.=  

 

where 

 

          =WSR  reliability of Parts Availability at Work Station 

           =OSr  reliability of Outside Suppliers 

          =IPDr  reliability of Internal Parts Depot 

         =UWSr  reliability of Upstream Work Stations   

 

 

 Mean 0.9849694 

Std Dev 0.0357816 

Std Err Mean 0.0011315 

upper 95% Mean 0.9871898 

lower 95% Mean 0.982749 

N 1000 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  0.9400 

2.5%  0.8800 

0.5%  0.8051 

0.0% minimum 0.7055 
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                        Fig. 40  Plot of n = 1000 Simulation Results for Parts Availability at Work Station 

 
 

 

Random variation and statistical fluctuations are observed in the plot.  No unusual patterns are  

 

detected. 

 

 

 

 

Machinery Subsystem 
 

A histogram of Machinery is shown in Figure 41.  After n = 1000 trial runs, the reliability results  

 

for Machinery best follows a Weibull distribution with 9537.0=µ   and 0622.0=σ .  A  

 

summary of results and a percentile distribution of simulation values is displayed in Table 16. 
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         Fig. 41  Machinery Simulation Histogram 

 

 

 

 

 

 

 

 

 

 
                                                  Table 16  Simulation Results Summary for Machinery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean 0.9536953 

Std Dev 0.062244 

Std Err Mean 0.0019683 

upper 95% Mean 0.9575578 

lower 95% Mean 0.9498328 

N 1000 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 0.9800 

25.0% quartile 0.9200 

10.0%  0.8554 

2.5%  0.7857 

0.5%  0.7503 

0.0% minimum 0.5800 

 

           

0.6 0.7 0.8 0.9 1

 

           
          Weibull(0.97848,24.7357) 

           
          LogNormal(-0.0497,0.06926) 

           
          Beta(5.3678,1.23489,0.58,0.42) 
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The time series plot of Machinery is shown in Figure 42.  The series system formula for  

 

computing Machinery is 

 

 

                54321 rrrrrRM ××××=
 

 

                       9930.9969.9755.9957.9919. ××××=  

 

                       9537.=  

 

 where 

 

                                       =MR  operational availability of Machinery subsystem 

         =1r  operational availability of Machine 1 

         =2r  operational availability of Machine 2 

      =3r  operational availability of Machine 3 

         =4r  operational availability of Machine 4 

         =5r  operational availability of Machine 5 
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                  Fig. 42  Plot of n = 1000 Simulation Results for Machinery 
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Random variation and statistical fluctuations are observed in the plot.  No unusual patterns are  

 

detected. 

 

 

 

Delivery Subsystem 
 

A histogram of Delivery is shown in Figure 43.  After n = 1000 trial runs in the simulation, the  

 

distribution of reliability results clearly follows a Weibull distribution with 0.1=µ
 
and  

 

0=σ .  A summary of results and a percentile distribution of simulation values is  

 

displayed in Table 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    

                            Fig. 43  Delivery Simulation Histogram  
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                                                  Table 17  Simulation Results Summary for Delivery 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plot of Delivery is shown in Figure 44.  The parallel system formula for computing Delivery  

 

is 

 

  )1)(1(1 TPCCTD rrR −−−=
 

 

         )9983.1)(9984.1(1 −−−=  

 

         1=  
 

 where 

 

     =DR  reliability of parallel Delivery subsystem 

  =CTr  reliability of Company Trucks 

             =TPCr  reliability of Third-Party Carriers 

 
        

 
Random variation and statistical fluctuations are observed in the plot. 

 
 

 

Mean 1 

Std Dev 0 

Std Err Mean 0 

upper 95% Mean 1 

lower 95% Mean 1 

N 1000 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  1.0000 

2.5%  1.0000 

0.5%  1.0000 

0.0% minimum 1.0000 
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                                                 Fig. 44  Plot of n = 1000 Simulation Results for Delivery 

 

 

4.5.3   Monte Carlo Simulation of EBCs Lean System 
 

Random data generated from historical observations will be used to simulate the Lean system  in  

 

the following manner.  Histograms and summary statistics will be obtained from n = 1000 trial  

 

runs of 500 random samples for analysis.  The probability distributions for the random samples in  

 

the simulation will resemble the probability distributions of the historical data. For the Lean  

 

system, we will then be able to determine its mean and standard deviation as well as the range  

 

of reliability values.  This information will be used to estimate the true reliability of a stochastic  

 

Lean system. 

 

 

 
4.5.3.1   Fitting Distributions to EBCs Lean System 
 

Lean System 

 

A histogram of the Lean system is shown in Figure 45.  After n = 1000 trial runs in the  

 

simulation, the distribution of reliability results best follows a Weibull distribution with  

 

9394.0=µ
 
and 0709.0=σ .  A summary of results and a percentile distribution of simulation  

 

values is displayed in Table 18. 
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              Fig. 45  Simulation Histogram of LSRM 

 

 

 

 

 

The plot of LSRM is displayed in Figure 46.  Random variation and statistical fluctuations are  

 

observed in the plot.  No unusual patterns are detected. 
 

 

 

 

 

                Table 18  Simulation Results Summary for LSRM 

                

0.6 0.7 0.8 0.9 1

 

  
 Weibull(0.96816,20.0536) 

  
 LogNormal(-0.0656,0.08046) 

  
 Beta(2.65658,0.56722,0.58,0.42) 

 

 

Mean 0.9394008 

Std Dev 0.0709138 

Std Err Mean 0.0022425 

upper 95% Mean 0.9438013 

lower 95% Mean 0.9350003 

N 1000 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 0.9999 

50.0% median 0.9699 

25.0% quartile 0.9016 

10.0%  0.8300 

2.5%  0.7562 

0.5%  0.6722 

0.0% minimum 0.5800 
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                                                      Fig. 46  Plot of n = 1000 Simulation Results for LSRM 

 

 

 

4.6   EBCs Lean Subsystem Historical Data Results 
 
Historical observations from EBCs manufacturing process were obtained.  Probability  

 

distributions that provide the best ‘fit’ to the data are then determined via histograms.  For each  

 

subsystem , we will then determine its mean and standard deviation as well as the range of  

 

reliability values.  This information will be used later in comparison with the reliability of  

 

subsystem components as well as the Lean system. 

 

 

4.6.1   Fitting Distributions to Lean Subsystems 
 

Order Processing Subsystem 

 
A histogram of the Order Processing subsystem is shown in Figure 47.  Clearly, the distribution  

 

of historical values best fits a Weibull distribution.  Additionally, a results summary and  

 

percentile distribution is displayed in Table 19. 

 

 

The mean reliability is 0.9982 and the standard deviation is approximately 0.0080.  A time series  

 

plot of n = 185 observations is shown in Figure 48. 
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                                            Fig. 47  Order Processing Histogram with Historical Data 

 
 
 

 

 

 

 

 

 

 

 
                 Table 19  Historical Results Summary for Order Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

0.9 0.92 0.94 0.96 0.98 1 1.01

 

   
  Weibull(0.99984,550.213) 

   
  LogNormal(-0.0018,0.00831) 

   
  Beta(26.5578,5.7469,0.91,0.09) 

 

 

Mean 0.9982162 

Std Dev 0.0080458 

Std Err Mean 0.0005915 

upper 95% Mean 0.9993833 

lower 95% Mean 0.9970491 

N 185 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  1.0000 

2.5%  0.9800 

0.5%  0.9100 

0.0% minimum 0.9100 
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                                          Fig. 48  Plot of Historical Data Results for Order Processing 

 

 

 

Parts Availability at Work Station Subsystem 
 

A histogram of the Parts Availability at Work Station subsystem is shown in Figure 49.  Clearly,  

 

the distribution of historical values follows a Weibull distribution.  Additionally, a results  

 

summary and percentile distribution is displayed in Table 20. 

 

 

The mean reliability is 0.9994 and the standard deviation is approximately 0.0062.  A time series  

 

plot of n = 185 observations is shown in Figure 50. 
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                                   Fig. 49  Parts Availability at Work Station Histogram with  

                    Historical Data 

 
 
 
 
 
 
 
 
 
 

 
                        Table 20  Historical Results Summary for Parts Availability at Work Station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

0.94 0.95 0.96 0.97 0.98 0.99 1

 

             
            Weibull(0.99999,1494.94) 

             
            LogNormal(-0.0007,0.0064) 

             
            Beta(.,.,0.94,0.06) 
 

 

  

Mean 0.9993514 

Std Dev 0.0062215 

Std Err Mean 0.0004574 

upper 95% Mean 1.0002538 

lower 95% Mean 0.9984489 

N 185 

 

 

    

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  1.0000 

2.5%  1.0000 

0.5%  0.9400 

0.0% minimum 0.9400 
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           Fig. 50  Plot Historical Data Results for Parts Availability at Work Station 
   

  

  

 

Machinery Subsystem 
 

A histogram of the Machinery subsystem is shown in Figure 51.  Clearly, the distribution of  

 

historical values follows a Weibull distribution.  Additionally, a results summary and percentile  

 

distribution is displayed in Table 21. 

 

 

The mean reliability is 0.9664 and the standard deviation is approximately 0.0623.  A time series  

 

plot of n = 185 observations is shown in Figure 52. 
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                                     Fig. 51  Machinery Histogram with Historical Data 

 

 

 

 

 

 

 

 

 

 

  
                                        Table 21  Historical Results Summary for Machinery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

0.6 0.7 0.8 0.9 1

 

      
     Weibull(0.98842,30.4528) 

      
     LogNormal(-0.0365,0.07109) 

      
     Beta(5.45419,1.33679,0.58,0.42) 

 

 

Mean 0.9664324 

Std Dev 0.0622777 

Std Err Mean 0.0045787 

upper 95% Mean 0.975466 

lower 95% Mean 0.9573988 

N 185 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 0.9600 

10.0%  0.8720 

2.5%  0.8065 

0.5%  0.5800 

0.0% minimum 0.5800 
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                              Fig. 52  Plot of Historical Data Results for Machinery 

 

 

 

Delivery Subsystem 
 

A histogram of the Delivery subsystem is shown in Figure 53.  Clearly, the distribution of  

 

historical values follows a Weibull distribution.  Additionally, a results summary and percentile  

 

distribution is displayed in Table 22. 

 

 

The mean reliability is 0.9957 and the standard deviation is approximately 0.0266.  A time series  

 

plot of n = 185 observations is shown in Figure 54. 
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              Fig. 53  Delivery Histogram with Historical Data 

 

 

 

 

 

 

 

 

 

 

 

  
                                        Table 22  Historical Results Summary for Delivery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7 0.75 0.8 0.85 0.9 0.95 1

 

 
 Weibull(0.99979,212.444) 

 
 LogNormal(-0.0047,0.03075) 

 
 Beta(14.4376,4.06543,0.69,0.31) 
 

 

Mean 0.9957297 

Std Dev 0.0266342 

Std Err Mean 0.0019582 

upper 95% Mean 0.9995931 

lower 95% Mean 0.9918663 

N 185 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 1.0000 

10.0%  1.0000 

2.5%  0.9265 

0.5%  0.6900 

0.0% minimum 0.6900 

 



 

 116 

    

                           

0.7

0.75

0.8

0.85

0.9

0.95

1

D
e
liv

e
ry

0 50 100 150 200

Row
 

   

                                      Fig. 54  Plot of Historical Data Results for Delivery 

 

 

 

4.7   EBCs Lean System Historical Data Results 
 

Historical observations from EBCs manufacturing process were obtained.  The probability  

 

distribution that provide the best ‘fit’ to the data is then determined via a histogram.  For the Lean  

 

system , we will then be able to determine its mean and standard deviation as well as the range of  

 

reliability values.  This information will be used to estimate the true reliability of a stochastic  

 

Lean system. 

 

 

4.7.1   Fitting Distributions to EBCs Lean System 
 

Lean System 

 

A histogram of the Lean system is shown in Figure 55.  The distribution of historical values best  

 

fits a Weibull distribution.  Additionally, a results summary and percentile distribution is  

 

displayed in Table 23. 

 

 
The mean reliability is 0.960 and the standard deviation is approximately 0.0682.  A time series  

 

plot of n = 185 observations is shown in Figure 56. 
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          Fig. 55  Lean System Histogram with Historical Data 

 

 

 

 

 
 

 

 

 

  
                                   Table 23  Historical Results Summary for EBCs Lean System 

 

 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
           

0.6 0.7 0.8 0.9 1

 

 
 Weibull(0.98468,26.0958) 

 
 LogNormal(-0.0437,0.07841) 

 
 Beta(4.6229,1.21022,0.58,0.42) 

 
 Gamma(174.66,0.0055,0) 
 

 

Mean 0.9599914 

Std Dev 0.0681906 

Std Err Mean 0.0050135 

upper 95% Mean 0.9698826 

lower 95% Mean 0.9501001 

N 185 

 

 

100.0% maximum 1.0000 

99.5%  1.0000 

97.5%  1.0000 

90.0%  1.0000 

75.0% quartile 1.0000 

50.0% median 1.0000 

25.0% quartile 0.9400 

10.0%  0.8480 

2.5%  0.7866 

0.5%  0.5800 

0.0% minimum 0.5800 
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                        Fig. 56  Plot of Historical Data Results for EBCs Lean System 

 

 

 

4.7.2   Select Regression Model 

 
The reliability of the Lean system (LSRM) is a series system composed of subsystems given by 

 

 

         DMWSOPS rrrrR ×××=
 

 

           9957.9664.9994.9982. ×××=  

 

           9599.=  

 

where 

 

             =SR  reliability of the Lean system  

            =OPr  reliability of Order Processing  

            =WSr  reliability of Parts Availability at Work Station 

             =Mr  operational availability of Machinery 

             =Dr  reliability of Delivery 

 

 

Since the reliability of the Lean system is computed as .9599, this means that, on average, the  

 

Lean system is functional and all subsystems are working in concert approximately 96% of the  

 

time. 
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4.8   Regression Model to Determine Contribution of LSRM 
 

A substantial benefit of LSRM is the ability to measure its effect on % On Time Delivery.   One  

 

could argue, in fact, that an efficient Lean system should have a statistically significant effect on  

 

predicting % On Time Delivery (% OTD).  Therefore, a regression model is developed to  

 

analyze predictor variables against the response variable, % OTD, which is defined as the  

 

proportion of orders that are delivered on time in accordance with their scheduled due dates.  

 
 

4.8.1   Developing the Regression Model 
 

We shall develop a multivariate regression model to determine which predictor  

 

variables are significant contributors toward estimating response variable, % OTD.  Predictor  

 

variables include sR (reliability of the LSRM model),  Operational Availability, and Cost of 
 

 

Quality.  A brief explanation of each variable follows. 

 

 

The response variable, % OTD, is defined as the proportion of orders that are delivered on time  

 

according to the scheduled due date versus the total number of orders due on the due date.   

 

Reliability of the Lean system, or sR , is defined as the reliability of the Lean system based on  

 

four critical subsystems: Order Processing, Parts Availability at Work Station, Machinery, and  

 

Delivery.  Operational Availability (OA) refers to proportion uptime , or the proportion of time  

 

that machinery is available for use relative to the total amount of work time.  Cost of Quality  

 

(COQ) is defined as [1 – Total cost of quality as a percentage of sales revenues].  Total cost of  

 

quality includes cost of repairs, cost of quality complaints, and training.  Cost of repairs refers to  

 

the total cost of investigating, troubleshooting, repairing, replacing, or adjusting equipment to  

 

make them functional again when a breakdown or the likelihood of a potential breakdown occurs.   

 

Cost of quality complaints refers to the total cost of investigating complaints (whether on site or  

 

at the customer’s location) plus the cost of corrective action.  This may involve rework, order  
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replacement, or credit issued.  Training costs refer to training for new hires or for cross-training.   

 

The diagram in Figure 57 provides an overview of the regression model. 

 

 

4.8.2   Overview of % On Time Delivery Model 
 

The functional relationships of the multiple regression model are represented by: 

 

                    ×= sRfOTD {%  OA ×  COQ }                      

 

with 

 

          Response variable: 

 

                     == OTDy %  % On Time Delivery 

 

and 

       

Predictor variables: 

                                     

               == COQx1  1 – (Total cost of quality as a % of Sales) 

                                == sRx2  Reliability of Lean System 

                                  == OAx3  Operation Availability         

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                              

 

 

                         Fig. 57  Overview of % OTD Regression Model 
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 4.8.3   Regression Analysis Procedure 
 

A.   Conduct Preliminary Checks on Data Quality 

  
We begin by using histograms as shown in Figure 58 to screen data for unusual behavior such 

 

as outliers and non-normality before fitting any model.  The histograms for all three predictor 

 

variables: sR , Operational Availability, and Cost of Quality, indicate no unusual values and  

 

each variable appears to follow a Normal distribution.   

 

 

Next, we analyze a scatter plot matrix in Figure 59 to determine whether relationships exist  

 

among the predictor variables and the response variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Fig. 58  Histograms of Predictor Variables 
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  Fig. 59  Scatterplot Matrix for Full Model 

 

 

 

In examining both the scatterplot matrix and the correlation matrix, there appears to be  

 

a strong positive correlation between % OTD and sR .  No correlations appear to exist  

 

among the other predictor variables. 
 
 

A correlation matrix is displayed in Table 24 to determine the strength of relationships among  

 

the predictor variables and the response variable. 
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                                                  Table 24  Correlation Matrix for Full Model 
 

 % OTD COQ R(s) Oper. Avail. 

% OTD 1.0000 0.0023 0.6447 -0.0291 

COQ 0.0023 1.0000 0.0040 -0.1245 

R(s) 0.6447 0.0040 1.0000 -0.0375 

Oper. Avail. -0.0291 -0.1245 -0.0375 1.0000 

 

 

 

B.   Develop a Full Model 

 
We begin with a three-factor multiple regression model.  That is, a regression model is 

 

developed to regress all main effects, all two-factor interactions, and all three-factor 

 

interaction terms against the response variable, iY . 

 

 

          εββββ +++++= kko xxxy L2211  

 

 

Where y is the response variable, % OTD, that we wish to predict; ,0β kββ ,,1 K  are  

 

parameters with unknown values; ,1x kxx ,,2 K  are information-contributing variables that  

 

are measured without error; and ε  is the random error component.  Since ,0β kββ ,,1 K  and  

 

,1x kxx ,,2 K  are based on historical data and, therefore, are nonrandom, the quantity 

 

 

kko xxxy ββββ ++++= L2211  
 

 

represents the deterministic portion of the model.  Hence, y is composed of two components –  

 

one fixed and one random – and, consequently, y is a random variable. 

 

 

        Deterministic                              Random 

                                               portion of model                              error 

       

   kko xxxy ββββ ++++= L2211        
+        ε  
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C.    Assumptions for Random Error ε  

   

1. For any given set of values of ,1x kxx ,,2 K , the random error ε  has a normal  

probability distribution with mean equal to zero and variance equal to 
2σ . 

 

2. The random errors are independent. 

 

 

D.   Fitting the Full Model 
 

Summary statistics for the Full model are shown in Table 25.  We want to choose an  

 

estimated model  

 

 

              
εββββ +++++= kko xxxy ˆˆˆˆˆ

2211 L
 

    332121 9674.572626.9182.7451.0060.3783. xxxxxxx x+−+++=
 

        
ε+−− 32132 5152.4618798.37 xxxxx

 
 

that minimizes 

 

 

                                                       1823.0)ˆ( 2 =−= ∑ ii yySSE  

 

 

Recall that 
2σ  is the variance of the random error, ε .  If 02 =σ , all the random errors will  

 

equal zero and the predicted values, ŷ , will be identical to the mean value, )(yE .   

 

Conversely, a large value of 
2σ implies large absolute values of ε and larger deviations  

 

between the predicted values, ŷ , and )(yE . 

 

 

An ANOVA table is shown in Table 26.   

 

 
                          Table 25  Summary of  Fit for Full Model 

 
Statistic  Result 

RSquare 0.426559 

RSquare Adj 0.412399 

Root Mean Square Error 0.027447 

Mean of Response 0.80318 

Observations (or Sum Wgts) 250 
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            Table 26  Analysis of Variance for Full Model 

 
Source DF Sum of Squares Mean Square F Ratio 

Model 7 0.13561563 0.019374 25.7291 

Error 242 0.18231393 0.000753 Prob > F 

C. Total 249 0.31792956  <.0001 

 

 

The mean is simply the sample mean of the response variable.  

 

 

 80318.0=y  

 

 

This means that the overall reliability for % OTD, on average, given by this model is  

 

80.318%. 

 

 

 The coefficient of multiple determination, 
2R , which measures the proportion of variation in  

 

% OTD explained by the model as a whole is given by 

      

 

         426559.
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The remaining error is attributed to random error.  The adjusted 
2

aR , which adjusts 
2R  by  

 

dividing each sum of squares by its associated degrees of freedom is computed by 
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The value for 
2

aR  is significant since this value adjusts for the number of predictor terms in  

 

the model and, thus, provides a truer measure of goodness of fit than 
2R  alone.   

 

 

The standard error of the estimate, also known as root mean square error (RMSE), measures  
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the distance, on average, of a data point from the fitted line, measured along a vertical line.   

 

RMSE is calculated by                                                           

       

 

    027447.000753. === MSERMSE  

 

In the ANOVA table, an F-ratio is computed, which measures the ratio of the model mean  

 

square to the mean square for error.  A large F-value indicates that the model is significant,  

 

meaning that we have obtained a good model to fit the data.  The F-ratio is computed by 

 

 

                                                  7291.25
000753.

019374.
===

MSE

MSR
F  

 

 

The F-value of 25.791 is relatively large, indicating that the model is a good fit to the data.   

 

We can assess the model’s significance by it p-value.  A p-value smaller than 05.0=α  
 

would corroborate our findings with regard to the F-value.  In the Full model,  

 

 

                  0001.0<− valuep  

 

 

Parameter estimates for the full model are shown in Table 27.   When we examine the p-value  

 

parameter estimates for statistical significance at 05.0=α , only the parameter estimate, sR ,  

 

is significant with a p-value < 0.0001.  This means that we are 95% confident that sR has a  

 

statistically significant effect on predicting the response variable, % OTD.  Note that the two- 

 

factor interaction term, COQ*Operational Availability, is significant at .10.0=α   The  

 

significance of retained parameters can be verified in a Normal plot as shown in Figure 60,  

 

where the isolated sR term is orthogonal to the Normal plot line. 
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             Table 27   Parameter Estimates for Full Model 

 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 0.3782694 1.113097 0.34 0.7343 

COQ 0.0060499 0.054854 0.11 0.9123 

R(s) 0.745132 0.057942 12.86 <.0001 

(COQ-0.88062)*(R(s)-0.91443) 0.9181537 1.902033 0.48 0.6297 

Oper. Avail. -0.262556 1.107718 -0.24 0.8128 

(COQ-0.88062)*(Oper. Avail.-0.99561) 57.967385 33.60725 1.72 0.0858 

(R(s)-0.91443)*(Oper. Avail.-0.99561) -37.87975 38.79519 -0.98 0.3298 

(COQ-0.88062)*(R(s)-0.91443)*(Oper. Avail.-

0.99561) 

-461.5152 1239.699 -0.37 0.7100 
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                Fig. 60  Normal Plot of Full Model 

 

 

 

E.   Fitting the Reduced Model 
 

The Reduced model retains statistically significant parameters from the Full model, but it  

 

may also include statistically non-significant parameters.  For example, higher-order terms  

 

(i.e., interaction terms) must retain all lower-order terms that comprise the higher-order term.  

 

This results in a hierarchical Reduced model.  However, since sR is the only significant term  

 

in the Full model, we retain only this term and drop all other terms to fit a Reduced model. 

 

 



 

 128 

Summary statistics for the Reduced model are shown in Table 28.  An ANOVA table is  

 

shown in Table 29.  Parameter estimates for the Reduced model are shown in Table 30.  We  

 

want to choose an estimated model  

 

 

 

                         
εββββ +++++= kko xxxy ˆˆˆˆˆ

2211 L
 

                           
ε++= 27597.1085. x

 
 

that minimizes 

 

 

                                                       1858.0)ˆ( 2 =−= ∑ ii yySSE  

 

 

 

 

 

 

 

 

 

 
                                 Table 28  Summary of  Fit for Reduced Model 

 
 
 
 

         

 

 

 

 

                                                    Table 29   Analysis of Variance for Reduced Model 
 

Source DF Sum of Squares Mean Square F Ratio 

Model 1 0.13213228 0.132132 176.3686 

Error 248 0.18579728 0.000749 Prob > F 

C. Total 249 0.31792956  <.0001 

 

 
        Table 30   Parameter Estimates for Reduced Model 
 

Term Estimate Std Error t Ratio Prob>|t| Lower 95% Upper 95% 

Intercept 0.1084697 0.05234 2.07 0.0393 0.0053828 0.2115566 

R(s) 0.7597235 0.057206 13.28 <.0001 0.6470511 0.8723959 

 

 

Statistic Result 

RSquare 0.415602 

RSquare Adj 0.415602 

Root Mean Square Error 0.027368 

Mean of Response 0.80318 

Observations (or Sum Wgts) 250 
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The mean is simply the sample mean of the response variable.  

 

 

 80318.0=y  

 

 

This means that the overall reliability for % OTD, on average, given by this model remains at  

 

80.318%. 

 

 

 The coefficient of multiple determination, 
2R , which measures the proportion of variation in  

 

% OTD explained by the model as a whole is given by 
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The remaining error is attributed to random error.  The adjusted 
2

aR , which adjusts for the  

 

single predictor term in the model by  
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The value for 
2

aR  is significant because, by retaining only one parameter estimate in the  

 

Reduced model, sR  it is equal to 
2R . 

 

 

The standard error of the estimate, also known as root mean square error (RMSE), measures  

 

the distance, on average, of a data point from the fitted line, measured along a vertical line.   

 

RMSE is calculated by                                                           

       

 

    027368.000749. === MSERMSE  
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The analysis includes estimating individual 95% confidence intervals on
jβ , where  

 

β is the slope for kj ,...,1,0=  parameters.  Confidence intervals for the transformed  

 

parameters are estimated by 

 

 

    }{);2/1( jj bspntb −−± α  

 

 

From Table 30, we observe that the 95% confidence intervals on 2β  are (0.6471, 0.8724). 

 

This means that we are 95% confident that the true mean for the sR  parameter estimate lies  

 

between 0.6471 and 0.8724.   

 

 

Lack of Fit test is conducted when the data contains replicated observations.  The measured  

 

error for these replicates is called pure error.  This is the portion of the sample error that is  

 

unaccounted for or predicted regardless of the form the model uses.  The test for lack of fit  

 

for the Reduced model is shown in Table 31. 

 
 
The Lack of Fit test tests the following hypothesis: 

 

 

         :oH  Model lacks fit 

         :aH  Model does not lack fit 

 
 
 
 

                                                     Table 31  Test for Lack of Fit 
 

Source DF Sum of Squares Mean Square F Ratio 

Lack Of Fit 219 0.17059181 0.000779 1.4856 

Pure Error 29 0.01520546 0.000524 Prob > F 

Total Error 248 0.18579728  0.1019 

    Max RSq 

    0.9522 
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Since the p-value > 0.10, we can marginally conclude that the model lacks fit to the data at  

 

10.0=α .  The reduced model, however, with only one parameter estimate, sR , as shown in  

 

Table 23, is statistically significant with a p-value < 0.0001. 

 

 

Next, we conduct a test for normality as another criterion for the adequacy of the  

 

regression model.  That is, we want to test the null hypothesis that the data in the Reduced 

 

model follows a normal distribution versus the alternative hypothesis that the data follows a 

 

non-normal distribution.  The Shapiro-Wilk test for normality is used to test this hypothesis. 

 
 

The Shapiro-Wilk test in Table 32 is a formal test to determine whether the reduced model is  

 

normally distributed.  It tests the following hypothesis: 

      

 

          :oH  Distribution is normal 

          :aH  Distribution is non-normal 

 

 

Since 05.05148.0 =>= αW , we conclude that the data is normally distributed. 

 
 

We will also check Predicted Sum of Squares (or PRESS), and PRESS root mean square  

 

error (RMSE) statistics to corroborate the results found by 
2R  and 

2

aR .  The PRESS statistic  

 

is a measure of how well the use of the fitted values for a subset model can predict the  

 

observed responses, iy .   Minimizing 
pPRESS  is desirable because when the prediction  

 
 
 
 

      
                          Table 32  Shapiro-Wilk W Test 
 

W   Prob<W 

0.959933   0.5148 
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errors 
)(

ˆ
iii yy −  are small, so are the squared prediction errors and the sum of the squared  

 

prediction errors.  The PRESS RMSE tests how well the reduced model would predict each of  

 

the data points if they were not included in the regression.  The Press statistic of  

 

18867.0=pPRESS shown in Table 33 indicates that the reduced model fits the data well in  

 

the sense of having small prediction errors.   

 
 

 

The PRESS RMSE tests how well the reduced model would predict each of the data points if  

 

they were not included in the regression.  PRESS RMSE = 0.02747 found in Table 33  

 

indicates that the model is not overly sensitive to any single data point.  In addition, this small  

 

pPRESS  value also validates the small RMSE value found in Table 21. 

 

 

A plot of actual % OTD vs. sR  is displayed in Figure 61 to determine fit.  The plot confirms  

 

our earlier discovery that there exists a strong, positive, linear correlation between % OTD  

 

and sR . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                          Table 33  Press Statistic 
 

Press Press RMSE 

0.1886721011 0.02747159 
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                         Fig. 61 Plot of  % OTD vs. sR  

 

 

 

F.   Diagnostic Checks and Remedial Measures: 
 

A scatterplot matrix is helpful in determining the nature and strength of the bivariate  

 

relationship between the predictor variable, sR , and the response variable, % OTD, as well as  

 

in identifying gaps for both the data points as well as outlying points as shown in Figure 62. 

 

The scatterplot matrix confirms a positive linear relationship between sR and % OTD. 
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                              Figure 62  Scatterplot Matrix for Reduced Model 

 

 

 

The correlation matrix found in Table 34 are helpful in confirming whether any linear  

 

associations exist among predictor variables and the response variable.   Indeed, we observe a  

 

correlation coefficient of 0.6447 between sR and % OTD, which indicates a fairly strong,  

 

positive linear relationship. 
 

 

 

 

        Table 34  Correlation Matrix for Reduced Model 

 

 % OTD R(s) 

% OTD 1.0000 0.6447 

R(s) 0.6447 1.0000 
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G.   Residuals Analysis 

 

Residuals analyses will be conducted by plotting a histogram of the residual values, plotting  

 

residuals vs. predicted values, plotting residuals vs. the predictors variable, and a normality  

 

plot of residuals to check for any departures from the normality assumption. 

 

 

A histogram of residual values is found in Figure 63.  The residuals appear to follow a normal  

 

distribution.  Additionally, there is no indication of outliers in the residual values as observed  

 

in the outlier box plot above the histogram. 

 

 

A plot of residuals vs. predicted values is shown in Figure 64.  No abnormalities are detected  

 

in the scatter plot.  Residuals appear to be random in nature. 

 

 

A normality plot of residuals is shown in Figure 65.  The residuals conform rather  

 

tightly to the normal quantile plot line.  This is further evidence that the residuals are  

 

normally distributed. 

 

 
After satisfying diagnostic checks and residuals analyses, our Reduced model is 

 

   ε++= 27597.1085.ˆ xy  
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                                           Fig. 63  Histogram of Residual % OTD 
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                                         Fig. 64   Plot of Residuals vs. Predicted Values 
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                Fig. 65  Normality Plot of Residuals 
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5.   Conclusions and Areas of Future Research 
 

5.1   Conclusions 
 

A reliable Lean system is essential in accomplishing its mission of minimizing cost for on  

 

time delivery of goods of quality products or services.  A Lean systems reliability model  

 

(LSRM) was developed to measure the reliability of a stochastic Lean system.  The LSRM  

 

model consists of three phases:  

 

 

Phase 1 – Conceptual Framework  

Phase 2 – Development of LSRM 

Phase 3 – Model Validation. 

 

 

In Phase 1, an infrastructure was developed for evaluating Lean systems.  Operational  

 

measures for Lean systems, including inputs, processes, and outputs, were identified.   

 

Phase 2 consisted of using principal components analysis to identify Lean critical subsystems.   

 

A value stream map of the current state was used to represent a workflow sequence.  Later, a  

 

value stream map of the future state was created to demonstrate how group technology  

 

enabled consolidation of a series of work activities into a single work cell, thereby improving  

 

both productivity and efficiency.   

 

 

Research questions from Chapter 1with regard to the integration of reliability with Lean  

 

systems will now be revisited. 

 

1.   What is the conceptual framework of a Lean System Reliability model (LSRM)? 

The conceptual framework of LSRM consists of three hierarchical levels – System level, 

Subsystem level, and Component level – within the Lean system as shown in Figure 66.  

Reliability measures for each component are provided in the framework.  
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System level: 
     

 

 

 

Subsystem level: 
 

 

 

 

 

Component level: 

 

 

 

 

 

Reliability: 
 

 

 

 

 

 

 
     

                                                  Fig. 66  Overview of LSRM Hierarchical Levels 

 

 

 

2.   What is the algorithm for developing a stochastic LSRM? 
 

The algorithm for developing a stochastic LSRM is displayed in Figure 67 consisting of  

 

three phases: 

 

 

           Phase 1: Conceptual framework  

           Phase 2: Development of LSRM 

           Phase 3: Model Validation 
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3.   How are critical subsystems determined? 

Critical subsystems are determined using a mathematical procedure known as Principal  

 

Components Analysis.  Once a determination is made whether all subsystems are  

 

considered of equal importance, eigenvectors and eigenvalues are calculated for either a  

 

correlation matrix (if all subsystems are of equal importance) or a variance-covariance  

 

matrix (if all subsystems are not of equal importance).  Whereas an eigenvalue provides  

 

us with the length of an axis, the eigenvector determines its orientation in space and is  

 

normally standardized   A threshold value known as a Kaiser criterion is arbitrarily  

 

determined to assess the criticality of subsystems.  In our example, only subsystems  

 

whose eigenvalues are  > 1(Kaiser criterion) are retained in the model.  A Scree plot is a  

 

graphical method for discriminating critical subsystems by employing a similar threshold  

 

criterion as the Kaiser criterion for retaining or dropping subsystems from the model. 

 

 

4.   How does one determine the LSRM workflow sequence? 

A Value Stream Map (VSM) is a graphical depiction of the entire flow of activities and  

 

subsystems in a complex manufacturing system.  A VSM is used to define value from the  

 

customer’s perspective and to delineate which process steps create value and which are  

 

waste.  A current state VSM is useful for identifying current value added and non-value  

 

added activities that are required to produce and deliver the product to the customer.  A  

 

future state VSM provides a blueprint for improvements can be made to eliminate non- 

 

value added activities and remove waste for the manufacturing system.  The goal is to  

 

identify, demonstrate, and decrease sources of waste and create the most value while  

 

consuming the fewest resources.   
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5.   How is the reliability of LSRM system determined? 

The reliability of LSRM is determined by simulation techniques such as Monte Carlo 

simulation.  Random samples are drawn from trial runs from probability distributions that 

represent historical data.  The reliability of the Lean system is determined by its critical 

subsystems, represented in a series system reliability model. 

 

6.   How is the reliability of Lean critical subsystems determined? 

The reliability of LSRM is determined by simulation techniques such as Monte Carlo 

simulation.  Random samples are drawn from trial runs from probability distributions that 

represent historical data.  The reliability of Lean critical subsystems is determined by its 

subsystem components as represented by parallel, series, or redundant reliability system 

formulas within each subsystem.  

 

7.   How is the reliability of LSRM components determined? 

The reliability of LSRM is determined by simulation techniques such as Monte Carlo 

simulation.  Random samples are drawn from trial runs from probability distributions that 

represent historical data.  The reliability of components is determined by its reliability 

measures, or proportion success of key component characteristics. 

 

8.   How is LSRM validated? 

Recall that the levels of system, subsystem, and component are relative terms, since the  

 

system at one level in the hierarchy is the component at another level.  If the range of  

 

mean reliability results among Lean components, Lean subsystems, and the Lean system  

 

are accurate to within 3%, then the LSRM model is considered a valid model due to its  

 

accurate at any level within the Lean system.   
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9.   What is the contribution of LSRM to Lean systems? 
 

LSRM can be shown through regression analysis to have a statistically significant effect  

 

on % on time delivery.  This is important because the on time delivery of products or  

 

services at minimum cost is a fundamental tenet of Lean systems. 

 

 

5.2   Case Study Conclusions 
 

A stochastic reliability model for Lean systems was developed using Monte Carlo simulation  

 

leading to the scientific selection of a reliability model.  The simulation was composed of  

 

three parts: 

 

 

1. Performing a simulation of n = 1000 trial runs of 500 random samples for all Lean 

components based on historical observations. 

 

2. Performing a simulation of n = 1000 trial runs of 500 random samples for all Lean 

critical subsystems based on historical observations. 

 

3. Performing a simulation of n = 1000 trial runs of 500 random samples for the Lean 

system based on historical observations. 

 

 

A comparison of simulation results for components, subsystems, and the Lean system is  

 

presented in Table 35.  A comparison of historical data results are displayed in Table 36.   
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                                          Table 35  Summary of Monte Carlo Simulation Results 
 

 µ  σ  Range of R(s) values 

Component Level    

Customers .9696 .0182 .9375-1.0 

Customer Service .9630 .0211 .9277-1.0 

Sales .9687 .0179 .9375-1.0 

Outside Suppliers .9951 .0196 .80-1.0 

Internal Parts Depot .9954 .0188 .81-1.0 

Upstream W. Stations .9945 .0214 .83-1.0 

Machine 1 .9919 .0196 .80-1.0 

Machine 2 .9957 .0188 .80-1.0 

Machine 3 .9755 .0482 .58-1.0 

Machine 4 .9969 .0146 .80-1.0 

Machine 5 .9930 .0236 .81-1.0 

Company Trucks .9984 .0010 .9898-1.0 

Third Party Carriers .9983 .0010 .9965-1.0 

    

Subsystem Level    

Order Processing .99996 .0001 .9971-.1.0 

Parts/Work Station .9851 .0358 .7055-1.0 

Machinery .9537 .0622 .58-1.0 

Delivery 1.0 0 .9995-1.0 

    

System Level    

Lean System .9394 .0709 .58-1.0 

 

 

 

The mean reliability results for the simulated data compare very favorably with the results  

 

from historical data.  Subsystems for both sets of data follow a Weibull distribution.  The  

 

mean reliability for the simulated stochastic Lean system is .9394, which is within 2.19% of  

 

the mean reliability of the stochastic Lean system using historical data.  This satisfies the  

 

criterion of whether the simulated mean reliability is accurate to within 3% of the mean  

 

reliability based on historical data, as specified in the Model Validation Flow Chart shown in  

 

Figure 23.  Therefore, we conclude that the LSRM model is a validated model. Moreover,  

 

the researcher’s objective of developing a mathematical model that measures the reliability of  

 

Lean systems based on its critical subsystems has been achieved. 
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                                                Table 36  Summary of Historical Data Results 
 

 µ  σ  Range of R(s) values 

Component Level    

Customers .81 .0114 .785-1.0 

Customer Service .905 .016 .895-1.0 

Sales .896 .0135 .8788-1.0 

Outside Suppliers 1.0 .015 .96-1.0 

Internal Parts Depot .9999 .0176 .945-1.0 

Upstream W. Stations .9995 .0128 .9615-1.00 

Machine 1 1.0 .0162 .925-1.0 

Machine 2 .9999 .0188 .9478-1.0 

Machine 3 .9895 .0215 .93-1.0 

Machine 4 .9831 .0266 .915-1.0 

Machine 5 .9935 .0167 .9555-1.0 

Company Trucks .915 .0124 .8708-1.0 

Third Party Carriers .95 .0128 .9195-1.0 

    

Subsystem Level    

Order Processing .9982 .0080 .91-1.0 

Parts/Work Station .9994 .0062 .94-1.0 

Machinery .9664 .0623 .58-1.0 

Delivery .9957 .0266 .69-1.0 

    

System Level    

Lean System .960 .0682 .58-1.0 

 

 

 

Reliability formulas presented in Chapter 3 will be repeated to provide a relative measure of  

 

mean reliability results when comparing the component level, subsystem level, and the  

 

system level of a Lean system based on historical data. 

 

 

Component Level 
 

             ][)]1)(1)(1(1[ UWSIPDOSSCSCComponents rrrrrrR ⋅⋅×−−−−=  

                                         )]1)(1(1[][ 54321 TPCCT rrrrrrr −−−×⋅⋅⋅⋅×  

 

                 ]9995.9999.0.1[)]896.1)(905.1)(81.1(1[ ⋅⋅×−−−−=  

        )]95.1)(915.1(1[]9935.9831.9895.9999.0.1[ −−−×⋅⋅⋅⋅×  

 

    9599.=  
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Subsystem Level 
 

                                          
DMWSOPSubsystems rrrrR ×××=  

 

      9957.9664.9994.9982. ×××=  

 

      9599.=  

 

 

System Level 
 

        960.=SystemR  

 

 

In Phase 3, a regression model was developed to determine the effect of three predictor  

 

variables and their interaction effects on the response variable, % on time delivery.  The  

 

Reduced model confirms a strong positive relationship between a reliable Lean system, sR ,  

 

and % on time delivery.  The  reduced model is 

 

 

         ε++= 27597.01085.0ˆ xy  

 

 

5.3   Areas of Future Research 
 

Proposed future research includes a significant industrial validation study of reliability in Lean  

 

systems using the LSRM model with compatible statistical and simulation software based on the  

 

interrelationships among the Lean system as a whole, its subsystems, and its components.  The  

 

beginning of the validation process is this paper and readers’ response to it. 

 

 

Another proposed area of future research involves the integration of human reliability with Lean  

 

systems.  Exploration into the design of standard operating procedures (SOPs) and standard  

 

assembly procedures (SAPs) using human error criticality analysis (HECA) techniques may help  

 

to explain the phenomenon of how human error affects the reliability (and safety) of Lean  

 

systems. 
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Additionally, a thorough examination of organizational culture and its contribution to Lean  

 

initiatives may unveil a latent contributing factor towards the reliability of Lean systems. 
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