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Abstract

The switching capacity of an Internet router is often dictated by the memory bandwidth

required to bu¤er arriving packets. With the demand for greater capacity and improved

service provisioning, inherent memory bandwidth limitations are encountered rendering

input queued (IQ) switches and combined input and output queued (CIOQ) architectures

more practical. Output-queued (OQ) switches, on the other hand, o¤er several highly

desirable performance characteristics, including minimal average packet delay, controllable

Quality of Service (QoS) provisioning and work-conservation under any admissible tra¢ c

conditions. However, the memory bandwidth requirements of such systems is O(NR), where

N denotes the number of ports and R the data rate of each port. Clearly, for high port

densities and data rates, this constraint dramatically limits the scalability of the switch.

In an e¤ort to retain the desirable attributes of output-queued switches, while signif-

icantly reducing the memory bandwidth requirements, distributed shared memory archi-

tectures, such as the parallel shared memory (PSM) switch/router, have recently received

much attention. The principle advantage of the PSM architecture is derived from the use

of slow-running memory units operating in parallel to distribute the memory bandwidth

requirement. At the core of the PSM architecture is a memory management algorithm that

determines, for each arriving packet, the memory unit in which it will be placed. How-

ever, to date, the computational complexity of this algorithm is O(N), thereby limiting the

scalability of PSM switches.

In an e¤ort to overcome the scalability limitations, it is the goal of this dissertation to

extend existing shared-memory architecture results while introducing the notion of Fabric

on a Chip (FoC). In taking advantage of recent advancements in integrated circuit tech-

nologies, FoC aims to facilitate the consolidation of as many packet switching functions

as possible on a single chip. Accordingly, this dissertation introduces a novel pipelined

memory management algorithm, which plays a key role in the context of on-chip output-

queued switch emulation. We discuss in detail the fundamental properties of the proposed

scheme, along with hardware-based implementation results that illustrate its scalability and

performance attributes.

To complement the main e¤ort and further support the notion of FoC, we provide
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performance analysis of output queued cell switches with heterogeneous tra¢ c. The result

is a �exible tool for obtaining bounds on the memory requirements in output queued switches

under a wide range of tra¢ c scenarios. Additionally, we present a recon�gurable high-speed

hardware architecture for real-time generation of packets for the various tra¢ c scenarios.

The work presented in this thesis aims at providing pragmatic foundations for designing

next-generation, high-performance Internet switches and routers.
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Chapter 1

Introduction

Recent years have witnessed unprecedented advances in the design, veri�cation formal-

ism [1], and deployment of high-capacity, high-performance packet-switching fabrics. Such

fabrics are commonly employed as the fundamental building blocks in data-networking plat-

forms that span a wide variety of application spaces. The market segment for which a switch

or router was designed predominantly dictates its capacity. Core (or backbone) Internet

routers, for example, are able to support multiple terabits per second [2], while systems

built for metropolitan area networks (MANs) typically carry hundreds of gigabits per sec-

ond (Gbps). Local area networks, representing the lower end of the switch/router market,

have a switching fabric that supports up to tens of Gbps. However, switching fabrics are

not limited to Internet transport equipment. Storage area networks (SANs), for example,

often necessitate large packet switching engines to allow vast amounts of data to traverse

a fabric, whereby storage data segments (i.e. blocks) �ow from storage devices to servers

and users, and vice versa.

During the late 1990s, many believed that the growth in Internet tra¢ c would increase

at a rate that would require signi�cant upgrades in switching infrastructure as often as

every 18 months. However, despite the increasing growth in user tra¢ c (approximated to

double every 12 months)[3], the pragmatic requirements of backbone switches and routers

are somewhat more modest. Nevertheless, the large number of components in switch fab-

rics, which drive such large systems, renders the latter highly complex to design, test and

maintain. Thus, in an e¤ort to alleviate some of the key di¢ culties in designing large

1



switching fabrics, the concept of Fabric on a Chip (FoC) is introduced. In view of realistic

technological limitations, it should be noted that FoC solutions would not be designed for

core/backbone routers. Rather, the target application space for such products would be

where hundreds of Gbps and below are required, e.g. in MAN, high-end LAN, and SAN,

among others.

Taking advantage of recent advances in integrated circuit technologies, the goal of FoC

architectures is to enable the consolidation of as many core switching functions as possible

on a single chip. By achieving a high level of integration, it is argued that much larger

systems can be readily realized. Moreover, the resulting designs will consume signi�cantly

fewer resources than the traditional approach. Accordingly, this chapter focuses on the

topic of on-chip output-queued router emulation. The memory management problem is

introduced, to which solutions using a novel architecture and algorithms are o¤ered and

discussed in detail.

1.1 Bene�ts of the Fabric-on-a-Chip Approach

There are numerous bene�ts to considering the notion of consolidating switching fabric

functions on a chip. The �rst is the ability to reduce system physical components. By

reducing the number of chips in the system, we directly obtain a reduction in size and de-

sign complexity, resulting in simpli�ed board layouts and mechanical considerations. Such

improvements in the design process are far from negligible, because a corollary to simpli�ed

design is shorter design cycles. As discussed earlier, reduction of power requirements �a

crucial pragmatic aspect of any switch/router �is obtained due, primarily, to the reduction

in high-speed serial transceivers in use. The proposed approach replaces chip-to-chip com-

munication with on-chip communication, which has considerably lower power-consumption

characteristics.

When considering the design of systems with capacities of hundreds of Gbps and beyond,

other engineering aspects play a key role in guaranteeing successful deployment. One such

key issue is staying within a workable power budget; high-speed serial transceivers that

enable the transmission and reception of data signals at rates of Gbps, require a great
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deal of power. Practical maintenance constraints limit the amount of power that switches

and routers may consume. In conventional switch/router designs, multiple high-bandwidth

data signals originating from the input ports, arrive at the fabric and traverse it en route

to their destination ports. Any reduction in the number of serializer/de-serializer (SerDes)

circuits utilized by the various chips is guaranteed to directly reduce the overall system

power consumption. Yet another element impacting power consumption is the amount of

memory devices used.

A related advantage of FoC is higher reliability. It is generally acknowledged that low-

ering the number of (independent) components in any given system increases its reliability,

since fewer components are prone to failures and thus need to be replaced. In view of recent

technical standardization e¤orts pertaining to packet processing products, one may argue

that FoC helps facilitate the rapid exploitation of standard interfaces to further support

the interoperability between di¤erent semiconductor products used in a switch or router.

Lastly, the notion of FoC is coherent with the recent trend toward modern System on a

Chip (SoC), a trend that is gaining momentum due to the inherent advantages it presents,

in particular with respect to cost reduction.

Figure 1-1 illustrates the various components of a traditional input-queued switch; these

components have the potential to be integrated on a single chip as part of the FoC frame-

work. Improvements in the fabrication of VLSI circuitry play a key role as enablers for

FoC. Due to advances in packaging technology, it becomes plausible to consider that all

data packets arrive at the FoC directly. This reduces the need for virtual output queueing

[4] and some output bu¤ers associated with standard router architectures. Due to the ability

to embed multiple megabits of dual-port SRAM on a chip, packets can be e¢ ciently stored

and switched internally. We shall refer to packets as being of �xed size. This is generally

true for all practical switch fabric designs, as external packets are typically segmented into

�xed-size data units and reassembled as they exit the switch.

The crosspoint switches and scheduler, key components in input-queued switches, are

avoided thereby substantially reducing chip count and power consumption. Correspond-

ingly, much of the signaling and control information that typically spans multiple chips can

be carried out on chip. Finally, the router management and monitoring functions can be

3
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Figure 1-1: Potential functions to be consolidated as part of the FoC framework

centralized since all the information is available at a single location.

A packet switch can be viewed as a discrete time system connecting m inputs to n

outputs. Its core function is the forwarding of packets arriving at input link i, 1 � i � m,

to the output link j, 1 � j � n, provided by an identi�er located in the header of each

packet. It is commonly assumed that all links operate at the same transmission rate and that

packets are of the same �xed size. The arrival process, Ai;j (t) is a discrete time process

where packet arrivals occur occur at port i for output port j in slotted time intervals

corresponding to the transmission time of a single �xed size packet, or time slot. If we

consider the output queued switch, depicted in Figure 1-2, it is clear that multiple packets,

arriving during the same packet time, will likely be simultaneously destined for the same

output link. The departure process, Dj (t), is also a discrete time process such that either

zero or one packet can depart during a given time slot. Clearly, the simultaneous arrival

of more than one packet will result in a con�ict at the output, commonly referred to as

output contention. In a pure output queued switch, all packets arriving in the same time

slot, destined for the same output port, j, are eligible to be transferred across the switch

fabric into the same FIFO output queue, Qj , within one time slot.

All of the packet switching architectures detailed in this dissertation attempt to switch

packets from N input (ingress) to N output (egress) links, hence m = n. For the output

queued switch fabric, it is evident that transferring N packets, with a line rate of R, to a

single FIFO output queue results in an memory bandwidth requirement of O(NR). This is

derived from the need to be able to accept (write) up to N arriving packets while simulta-
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Figure 1-2: Components of an output queued (OQ) switch.

neously transmitting (reading) up to N departing packets. This requirement signi�cantly

limits the scalability of OQ switches with respect to their aggregate switching capacity.

Alternately, bu¤ering of packets can be designated to occur at the input ports, thereby

reducing the memory bandwidth requirement to match the line rate R. In the instance that

FIFO queueing at each input is employed, only the �rst packet in each queue is eligible for

transfer across the switch fabric. If the �rst cell at the front of the FIFO is blocked, other

cells in the queue cannot be forwarded to an unused output. This phenomenon is commonly

referred to as head-of-line (HOL) blocking and results in degraded switching throughput.

A switch architecture is called non-blocking if it satis�es the requirement that an arriving

packet destined for any output, to which no other packets are destined, can be forwarded

immediately regardless of the destinations assigned to all other arriving packets.

In comparing input queued and output queued switch fabrics, it is clear that output

queued switch fabrics require increased bandwidth for the interconnect and memory. How-

ever, they do not su¤er from HOL blocking as arriving packets destined to one output

link do not block packets destined to di¤erent outputs. A key advantage of output queued

architectures is that the average delay, as experienced by arriving packets, is kept to a min-

imum. Moreover, output queued switches facilitate controllable Quality of Service (QoS)

5



Figure 1-3: General structure governing the proposed parallel shared memory (PSM) switch
architecture. Incoming packets are placed in a set of K (>N) memory units

provisioning. There have been attempts to emulate the performance of an output queued

switch by means of utilizing input queued architectures with an internal speedup of 2. In

subsection 1.3.1, this approach and its inherent limitations are presented in detail.

1.2 The Parallel Shared Memory (PSM) Switch

In contrast to existing shared memory switch architectures, an alternative approach, termed

the parallel shared memory (PSM) switch, has recently received much attention. The PSM

switch o¤ers the ability to retain the desirable attributes of output queued switches while

signi�cantly reducing their memory bandwidth requirements [5]. A PSM switch fabric,

depicted in Figure 1-3, utilizes a pool of slow-running memory units operating in parallel.

In order to properly operate, the PSM switch must have su¢ cient memory bandwidth. At

the core of the architecture is a memory management algorithm that determines, for each

arriving packet, the memory unit in which it will be placed. However, the complexity of such

algorithms found to date is O(N), where N denotes the number of switch ports, thereby

inherently limiting the scalability of the scheme.

Initial work has indicated that, assuming each of the shared memory units can perform

at most one packet-read or -write operation during each time slot, a su¢ cient number of

memories needed to emulate a FCFS output queued switch isK = 3N�1 [5]. The latter can
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be proven by employing constraint sets analysis (also known as the "pigeon hole" principle),

summarized as follows. An arriving packet must always be placed in a memory unit that is

currently not being read from by any output port. Since there are N output ports, this �rst

condition dictates at least N memory units are available. In addition, no arriving packet

may be placed in a memory unit that contains a packet with the same departure time. This

results in additional N � 1 memory units representing the N � 1 packets having the same

departure time as the arriving packet, that may have already been placed in the memory

units. Should this condition not be satis�ed, two packets will be required to simultaneously

depart from a memory unit that can only produce one packet in each time slot.

The third and �nal condition states that all N arriving packets must be placed in

di¤erent memory units (since each memory can only perform one write operation). By

aggregating these three conditions, it is shown that at least 3N�1 memory units must exist

in order to guarantee FCFS output queueing emulation. Although this limit on the number

of memories is su¢ cient, it has not been shown to be necessary. In fact, a tighter bound

was recently found, suggesting that at least 2:25N memories are necessary [6]. Regardless

of the precise minimal number of memories used, a key challenge relates to the practical

realization of the memory management mechanism, i.e. the process that determines the

memories in which arriving packet are placed. Observably, the above memory management

algorithm requires N iterations to complete.

In [7][8] Prakash, Sharif, and Aziz proposed the Switch�Memory�Switch (SMS) archi-

tecture as an abstraction of the M-series Internet core routers from Juniper. The approach

consists of statistically matching input ports to memories, based on an iterative algorithm

that statistically converges in O(logN) time. However, in this scheme, each iteration com-

prises multiple operations of selecting a single element from a binary vector. Although

the nodes operate concurrently from an implementation perspective, these algorithms are

O(log2N) at best (assuming O(logN) operations are needed for each binary iteration as

stated above). Since timing is a critical issue, the computational complexity should directly

re�ect the intricacy of the digital circuitry involved, as opposed to the high-level algorithmic

perspective.
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1.3 Background

In this chapter, we summarize the current strategies employed in order to overcome the

high memory bandwidth requirements imposed by output queued switches, and identify

their key limitations. Moreover, we discuss the emulation of an output queued switch in

the context of input queued and combined input and output queued (CIOQ) architectures,

as commonly used in many of today�s large scale routers. This is followed by a survey of

existing shared memory architectures that serve as the basis for the work presented in this

dissertation.

1.3.1 Emulation of Output Queued Switches

The memory bandwidth required to bu¤er arriving packets often dictates the switching ca-

pacity of a packet switching fabric. With increasing line rates and the demand for greater ca-

pacity, inherent memory bandwidth limitations imposed by output queued switches proved

to be impractical for large scale implementation [9]. As a result, input queued switches

became a more widely used framework for practical packet switching. Since packets are

bu¤ered directly as they arrive at their respective inputs, the memory bandwidth require-

ment is merely R, the data rate at each port. This is a sharp contrast to the O(NR)memory

bandwidth requirements of output queued switches, where N denotes the number of ports

and R the data rate of each port. However, if the input bu¤er is FIFO and a packet at the

head of an input queue is blocked, then all packets behind it are precluded from traversing

the switch, even when the desired output link is idle. This problem is referred to as head-

of-line (HOL) blocking. It has been shown that, given uniformly distributed i.i.d. tra¢ c,

HOL blocking limits the switch throughput to 58% of the aggregate bandwidth [10]. This

problem can be eliminated altogether, if we allow each input to maintain a separate queue

for each output. This approach is known as virtual output queueing (VOQ) [11][12][13]. A

switch employing VOQs and a maximum weight matching algorithm can achieve the 100%

throughput [14] provided by the output queued approach. However, the maximum weight

matching algorithm is not practical to implement, as it has a lower-bound computational

complexity of O(N2:5).
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An alternative approach is to retain the VOQs at the input, while also including queues

at the output, and speedup the internal crossbar. This is yields a combined input and

output queued (CIOQ) switch architecture. With an internal speedup of two or greater, a

CIOQ switch can precisely emulate an output queued switch [15][16]. Hence, it is possible

to obtain the desirable performance characteristics of an output queued switch. However,

we contend that as line rates increase the scheduling algorithms required to emulate an OQ

switch do not scale well, thus raising the clear need for alternative solutions.

1.3.2 Shared Memory Switch Architectures

The shared memory switch architecture utilizes a sharply di¤erent approach to queueing

packets by providing only one stage of bu¤ering. This bu¤ering stage is placed between

an interconnect located at the ingress and egress ports of the switch. This is in contrast

to the CIOQ router which provides two bu¤ering stages, one at the ingress and another at

the egress, with the interconnect located in the middle. Shared memory architectures are

generally distinguished by the techniques used to represent the single stage of bu¤ering.

One such distinction is the scheduling which falls into one of two classes: (1) routers which

utilize a randomized switch scheme to achieve load balancing, or (2) deterministic routers

which attempt to emulate conventional routers to provide delay guarantees for packets [5].

The memory management algorithms presented in this dissertation are deterministic, given

they distribute packets in a structured manner across all memories located in the center

stage of the switch.

Single Bu¤ered Routers

A common attribute in single bu¤ered (SB) routers is the use of a crossbar at the switch

input to provide load balancing at the ingress port of the switch fabric [17]. Consider an

input queued switch utilizing VOQs, the crossbar allows incoming packets to be evenly

distributed in an e¤ort to reduce delay [18] and present a uniform tra¢ c distribution to

the bu¤ering stage. In the work presented by Chang [19][20] and later Keslassy [21], they

exploit the uniformity of the tra¢ c matrix to apply a Birkho¤-von Neumann capacity

decomposition approach in order to achieve an online switch complexity of O (1) and more
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e¢ cient use of the available bu¤er space. A drawback of this approach is that missequencing

of packets is common. To address this problem, the use of a coordination bu¤er [22] is

required.

Parallel Shared Memory Routers

Each of the various switch fabric architectures mentioned above assume that packet bu¤ers

operate at a rate, R, that is at least equivalent to the line rate. As the capacity of commercial

routers increases by 2.2 times every 18 months, the random access time of electronic memory

has increased by only 1.1 times over the same time frame [5]. Parallel shared memory

(PSM) routers were proposed to distribute the capacity across a pool of K memories,

located in a centralized location, operating below the line rate. Obviously, the pool of K

memories must provide su¢ cient bandwidth such that all packets can be placed in a single

time slot. If we assume that each of the shared memory units can perform at most one

packet-read or -write operation during each time slot, then we would like to determine

a su¢ cient number of memories required to emulate a FCFS OQ switch. This can be

determined through the application of constraint sets analysis (also known as the "pigeon

hole" principle), summarized in Section 1.2, to be 3N � 1. Although this limit on the

number of memories is su¢ cient, recent results suggest that 2:25N memories are necessary

for exact emulation of a FIFO output queued switch [6].

Distributed Shared Memory Routers

The distributed shared memory (DSM) switch represents a slight variation on the PSM

theme, whereby the pool of memories is no longer required to be located in a centralized

location. Instead, the memories are located in linecards that are interconnected by a cross-

bar [5]. In such a con�guration, arriving packets are immediately switched to a line card,

using the crossbar, for storage until they are scheduled to depart. When the scheduled

time arrives, the packet is read from the line card and switched, by means of a crosspoint

switch, to the correct output. It is important to note that every packet must traverse the

crossbar twice before reaching its destination. This results in a crossbar operating rate of

2R. Moreover, the DSM switch requires a crossbar operating rate of 6R and a total mem-
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ory bandwidth of 3NR to deterministically emulate a FCFS output queued router. The

ine¢ ciency of this architecture with regards to crossbar size and memory utilization limits

its scalability.

1.4 Tra¢ c Models for Performance Evaluation

Performance evaluation of packet switching architectures requires the use of tra¢ c models

to emulate the target environment of the switch in order to establish relevant metrics for

comparison. In general, the two principal criteria that a¤ect switch performance are the

arrival process and the destination distribution. The arrival process de�nes the time cor-

relation and/or dependence of incoming packets and is typically represented by two classes

of tra¢ c: bursty and non-bursty. The destination distribution corresponds to the prob-

ability that an arriving cell is destined to each of the output ports. The most common

and straightforward case is the uniform distribution, whereby each packet has an identical

likelihood of being destined to each output. Throughout this dissertation, we employ both

bursty and non-bursty tra¢ c arrival patterns in the course of our performance analysis.

The following subsections describe various tra¢ c models implemented in our performance

simulation environment.

1.4.1 Bernoulli Arrivals

The arrival process consists of packets arriving in succession with some associated inter-

packet delay. The simplest and most commonly deployed arrival process is Bernoulli i.i.d.,

which is a memoryless process generating an arrival with a given probability regardless of

the history of arrivals. In each time slot, a packet is generated with probability p, and no

packet is generated with probability 1� p; which means the inter-arrival time distribution

is a Bernoulli distribution with a parameter p. Clearly, for the Bernoulli arrival process, the

mean rate of the arrival process, or the average input o¤ered load, denoted by �, is equal

to p.
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Figure 1-4: Two-state Markov-modulated arrival process.

1.4.2 ON/OFF Model

It has been extensively shown in the literature that typical network tra¢ c tends to be

correlated or �bursty� [23]. This is principally due to the diversity of modern networking

applications and the aggregation of network tra¢ c. The bursty tra¢ c model employed in

this dissertation is based on a two-state Markov chain, see Figure 1-4.

The two-state Markov chain generates arrivals according to an alternating ON/OFF

source. For the two-state Markov modulated model presented in Figure 1-4, arrivals occur

when the process is in the ON state, while no packets are generated while the process

is in the OFF state. As a result, a stream of correlated bursts and silent periods, both

geometrically distributed in length, is produced. The load o¤ered by the two-state Markov

modulated process is given by

� =
1� �

2� (�+ �) ; (1.1)

where � and � denote the probability of remaining in the ON and OFF states respectively.

Furthermore, we represent the mean burst size, denoted by MBS, as

MBS =

1X
i=1

i�i�1(1� �) = 1

1� �: (1.2)

From equations 1.1 and 1.2, we obtain the following relationship between the average input

o¤ered load and the mean burst size,

� =
MBS(1� �)

MBS(1� �) + 1 =) �max =
MBS

MBS + 1
(1.3)
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Since at least a single OFF state separates two consecutive bursts, the maximal arrival rate

is bounded by MBS=(1 +MBS).

1.4.3 Destination Distribution

The destination distribution determines the destination output for incoming packets. Gen-

erally speaking, a destination distribution is characterized by a set of probabilities, pij ;

denoting the likelihood that an incoming packet at input i is destined to output j, and

satisfying
NX
j=1

pij = 1:

Let �i denote the average input o¤ered load for input port i; �j denote the average output

o¤ered load for output port j; and �ij the average number of packets arriving at input i

and destined to output j. Then, resulting relationship follows

�ij = �ipij (1.4)

�j =
NX
i=1

�ij =
NX
i=1

�ipij ; (1.5)

and the average output o¤ered load is given by

� =
1

N

NX
j=1

�j : (1.6)

Throughout this dissertation, we will consider only admissible tra¢ c, whereby

X
i

�i;j < 1;
X
j

�i;j < 1:

Uniform Destination Distribution

The most commonly deployed destination distribution is the uniform destination distri-

bution, For this distribution, each packet is destined for a given output with identical

probabilities such that pij = 1
N , for all i and j: Clearly, equations 1.4, 1.5, and 1.6, from
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the preceding section yield

�ij =
�i
N
; �j =

1

N

NX
i=1

�i

such that the average output o¤ered load is given by

� =
1

N

NX
j=1

1

N

NX
i=1

� =
1

N

NX
i=1

�i:

The Zipf Destination Distribution

In practice, packet streams are not distributed uniformly across the destinations. Instead,

tra¢ c tends to be focused on preferred, or popular, destinations. As means of evaluating

the performance of the proposed architectures, we employ a non-uniform destination dis-

tribution model that follows Zipf�s law [24][25][26]. The Zipf law states that the frequency

of occurrence of some events, as a function of the rank (m) which is determined by the

above frequency of occurrence, is a power-law function, i.e. Pk � 1=km. It has been shown

that many natural and human phenomena, such as Web access statistics, company size and

biomolecular sequences, all obey the Zipf law with the order being close to 1 [23]. The

probability that an arriving cell is heading to destination k was thus modeled by

Zipfm(k) = �m = k
�m

0@ X
j=0;1;::N

j�m

1A :
While m = 0 corresponds to uniform distribution, as m increases the distribution becomes

more biased towards preferred destinations. Clearly,

NX
j=1

pij =
NX
j=1

j�r

NX
k=0

k�r

=

NX
j=1

j�r

NX
k=0

k�r

= 1

�ij =
j�r�i
NX
k=0

k�r

; �j =
j�r

PN
i=1 �i

NX
k=0

k�r
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� =
1

N

NX
j=1

�j =
1

N

PN
j=1 j

�rPN
i=1 �i

NX
k=0

k�r

=
1

N

NX
i=1

�i

1.5 Motivation

It is the overall goal of this work to propose practical designs for high capacity packet

switches that:

� Emulate the desirable performance attributes of an output queued switch

� Provide a scalable solution that o¤ers quality-of-service (QoS) guarantees and support

for multicast tra¢ c

� Facilitate the consolidation of as many packet switching functions as possible on a

single chip

In the context of emulating an output queued switch, we would like to overcome the

high memory bandwidth requirements imposed by traditional shared memory architectures,

yet remain practical so as to yield a path towards practical hardware implementation. In

particular, this dissertation advocates a parallel shared memory approach whereby packets

are distributed across a �nite number of slow-running memories. A core challenge pertains

to the realization of a memory management algorithm with a computational complexity

of O (logN), and can utilize straightforward multiplexers to switch data segments from

one location to another, as opposed to necessitating a crosspoint switch. Acceptable costs,

according to the paradigm fostered here, include �xed latency and a reasonable increase in

the number of memory units employed.

To illustrate the practicality of the FoC approach, we propose a novel pipelined memory

management algorithm that is capable of providing the same QoS attributes found in output

queued switches. We demonstrate the proposed memory management algorithm by means

of hardware implementation and provide metrics related to its performance and resource

requirements.
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1.6 Dissertation Outline

In Chapter 1, we introduced the notion of Fabric on a Chip, the motivation for this approach,

and the strong desire to emulate an output-queued switch in the proposed framework.

Additionally, the primary features and limitations of existing packet switching architectures,

with respect to their ability to emulate the desirable attributes of an output queued switch,

were described.

In Chapter 2, a novel performance analysis for output queued cell switches with general

independent heterogeneous tra¢ c is introduced. In particular, we present an arrival process

in which input ports generate bursty streams that are non-uniformly distributed across

the outputs, and derive an approximation for related queue size distributions. This e¤ort

outlines a methodology for obtaining bounds on the behavior and expected performance

characteristics of output queued switches under a wide range of correlated tra¢ c scenarios.

Chapter 3 introduces two novel memory management algorithms for parallel shared

memory (PSM) switches. Each scheme proposed utilizes a pipelined hardware architecture

to achieve the throughput gain required. The algorithms exploit parallelism of the packet

placement process, thereby gaining execution speed at the expense of a �xed latency. In

Chapter 4, we present enhancements to provide QoS guarantees, multicast tra¢ c support,

and o¤er load balancing. This chapter concludes with a brief comparison of the proposed

architectures to current switch fabric solutions.

In Chapter 5, we provide implementation results relating to the hardware implementa-

tion of the proposed memory management algorithms. Additionally, we introduce a recon-

�gurable high-speed hardware architecture for heterogeneous mutlimodal packet generation

in an e¤ort to generate real-time stimulus for veri�cation of packet switching architectures.

Chapter 6 provides a summary of the contributions made thus far and outlines the plan for

work to be completed prior to the defense of the dissertation.
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Chapter 2

Analysis of Output Queued Cell

Switches with Heterogeneous

Tra¢ c

Output queued switches have been extensively studied in the literature. To a large extent,

they represent the theoretical limit on the performance that can be achieved in any space-

division switching fabric [10]. Consequently, performance analysis of input queued switches

is commonly carried out in comparison to that of an output queued router [10][27][28].

Pragmatic output queued switching fabrics, such as those based on shared memory archi-

tectures [29], have been deployed in switches and routers. However, the majority of the

studies performed on these systems considers tra¢ c that obeys a Bernoulli (uncorrelated)

process. Moreover, in most cases uniform destination distribution is assumed such that all

input ports o¤er the same load intensity to all output ports.

Recall from Section 1.1, that arriving cells in an output queued router architecture

traverse the switching fabric directly to their designated outputs, without being queued or

delayed in any way at the ingress (input) stage. Such a scheme requires that a dedicated

link, be it logical or physical, exist between each input port and each output port. In other

words, N2 such links are needed for an N �N switch. A key advantage of output queued

switches is that of minimal latency and controllable QoS provisioning, both a result of the
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Figure 2-1: A basic logical model of the queueing architecture employed at an egress port
of an output queued switch.

fact that arriving cells progress towards their destination without any impediment at the

ingress. In practical implementations, a shared-memory architecture is employed, whereby

multiple arriving cells are stored in a single physical memory unit. If a single memory unit

is utilized at each output port, an O (NR) memory bandwidth requirement results, where

R denotes the cell arrival rate. Figure 2-1 depicts a typical model for queueing architectures

in output queued switches, whereby each port generates cells at a di¤erent mean arrival

rate.

In this chapter, analysis for output queued switches is presented with non-uniformly dis-

tributed bursty arrivals that are generated using a multitude of ON/OFF arrival processes.

Random arbitration is applied between the queues such that non-empty queues compete

equally for service during each time slot. A random arbitration scheme is considered pri-

marily since it represents, from a hardware implementation perspective, a simple, scalable

approach to arbitrating between multiple queues. More sophisticated arbitration schemes,

such as those considering information regarding the queues�states, are expected to at least

match, if not exceed, the performance of random arbitration. In this respect, random

arbitration provides a lower bound on the attainable performance of the generic switch

architecture considered. Based on the per-queue probability generating functions of the

interarrival times distribution, it is shown that accurate depiction of the queues�behavior

can be obtained.
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2.1 Queuing Model with Bursty Arrivals

2.1.1 Notation and Formulation

Packets may vary in size as they arrive at the switch ports. In typical switching platforms,

a segmentation module partitions packets into �xed-size cells that are later reassembled

at the egress modules prior to departing the switch. Processing �xed-size data units has

proven both practical and easier to study. To that end, all data units traversing the switch

fabric are assumed to be of �xed size. We consider a discrete-time queueing system with N

queues of in�nite bu¤er capacity and a single server, in which all events occur at �xed time

slot intervals. Within each time slot, at most N arrivals may occur, originating from the

N inputs. Consequently, at most a single departure occurs servicing one of the non-empty

queues at each time slot.

We model the service distribution as a memoryless process for which there is a constant

probability of service, during each time slot. The aggregate service rate is, respectfully,

de�ned as

� =
NX
k=1

�k (2.1)

In order for the system to be stable, we require that the service rate, �, exceed the aggregate

steady-state rate of arrivals such that

NX
j=1

�j < � (2.2)

For a stable system, we can state that for each queue, the probability of arrival, must

converge to, or even equal, the departure rate such that

�k = �k

�
1� �(k)0

�
(2.3)

where �k denotes the probability that queue k is serviced given that the queue is non-empty,

and �(k)0 is the probability that the queue is empty.
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2.1.2 ON/OFF Arrivals with Geometric Service Times

It has been shown in the literature [30] that in a GI/Geo/1 discrete-time queueing sys-

tem (independent arrivals times and geometrically distributed service times), if fn (n � 1)

is the interarrival time distribution, with a p.g.f. F (z) =
P1
n=1 fnz

n, and queue ser-

vice times are geometrically distributed with parameter �k, then the stationary queue size

distribution,�m = (1� ) m m � 0, as viewed by an arriving cell will always be in the

form

�m =

8<: 1� �

� (1� ) m
m = 0

m � 1
(2.4)

where  is a unique root of the equation that lies in the region (0; 1) and � is constant. The

latter is, by de�nition, independent of arrivals. Hence utilizing (2.4) to derive � yields the

�rst moment

E [Q] =
1X
m=1

m�m =
�

(1� ) =
�

� (1� �) (2.5)

which provides us with the mean queue occupancy. Employing Little�s results [30][31], the

mean latency is given by

E [W ] =
1

� (1� ) (2.6)

A late arrival model is considered, for reasons of convenience, such that within a time

slot boundary a departure will always precede an arrival event. We observe the queue size

at instances following the arrival phase, such that time slot boundaries are delimited by the

observation instances. Consider a discrete-time, two-state Markov chain generating arrivals

modeled by an ON/OFF source which alternates between the ON and OFF states. While

in the ON state, a single cell is generated (per time slot). Let the parameters p and q denote

the probabilities that the Markov chain remains in states ON and OFF, respectively. An

arrival is generated for each time slot that the Markov chain spends in the ON state. The

result is a stream of correlated arrivals and silent periods, both of which are geometrically

distributed in duration.

It can easily be shown that the parameters p and q are interchangeable with the mean

arrival rate, � = (1� q) = (2� q � p), and mean burst size, B = 1=(1 � p). Consequently,

the o¤ered load is identical to the steady-state portion of the time the chain spends in state
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ON. Recalling the notation fn for the interarrival times distribution, the probability of two

consecutive arrivals occurring is identical to the probability that following an arrival the

Markov chain remains in state ON, i.e. f1 = p. Similarly, f2 is the probability that following

an arrival, the chain transitions to the OFF state and then returns to the ON state. For

n > 2, it is apparent that following a transition from the ON state to the OFF state, there

are n � 2 time slots during which the chain remains in the OFF state before returning to

the ON state. Accordingly, we obtain the following general expression for fn:

fn =

8<: p

(1� p)qn�2 (1� q)

n = 1

n > 1
(2.7)

The corresponding p.g.f. is

F (z) = pz + (1� p) (1� q) z2

1� qz (2.8)

Next we solve the equation z = F (z�+ (1� �)) to �nd that the root in the region (0; 1) is

 =
(1� �)
�

�
1

� (1� p� q) + q � 1
�

(2.9)

Examining the condition � < 1, which must be satis�ed for stability, yields the anticipated

inequality

� >
1� q

2� p� q = � (2.10)

2.2 Output Queued Switch Model with Bursty Arrivals

In the investigated system, random arbitration is employed, suggesting that during each

time slot for which a service event occurs, one of the non-empty queues is randomly selected

for transmission in an unbiased manner. The latter implies that the service discipline to

each queue is also memoryless since during each time slot no information regarding previous

service cycles is considered. As such, we will exploit the results for the GI/Geo/1 queueing

system to derive approximate behavioral analysis of the individual output queues.

We focus our analysis on queue k observing that three conditions must be met during
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each time slot for the queue to be serviced: (1) service must be granted to the port (output

link not congested), (2) the queue must be non-empty and, �nally, (3) the queue must prevail

when equally contending against the other non-empty queues. While the �rst two conditions

are rather straightforward, the third condition requires some elaboration. Assuming that

queue k is non-empty (Qk > 0), it has an equal probability of being selected for transmission

as any other non-empty queue. The mean number of non-empty queues, excluding queue

k, can be approximated by
P
j 6=k

�
1� �(j)0

�
where �(j)0 denotes the stationary probability

that queue j is empty, provided that queue k is non-empty. To obtain the mean size of the

contending set, we then add one to the mean number of non-empty queues. By multiplying

the expressions for the three conditions stated above, we �nd the probability of departure

from queue k to be

�k �
�
1� �(k)0

�
=

�
�
1� �(k)0

�
P
j 6=k

�
1� �(j)0

�
+ 1

=
�
�
1� �(k)0

�
N �

P
j 6=k �

(j)
0

(2.11)

Since the arrival rate should converge to, or even equal, the departure rate, we equate (2.11)

to the rate of arrivals for each queue, yielding

�k =
�
�
1� �(k)0

�
N �

P
j 6=k �

(j)
0

(2.12)

The latter holds when we assume that for large values of N the conditional probability

of each queue being empty, given the size of other queues, converges to the unconditional

probability of that queue being empty. Hence, we have N linear equations for the N

variables �(j)0 (j = 1; 2; :::; N). Solving for �(j)0 , we directly obtain �k, the probability of

service to each of the queues.

We next turn our attention to the case where each input produces a stream of bursty

arrivals modeled by a unique ON/OFF process, with respective parameters pk and qk per-

taining to tra¢ c originating at input (source) k. In view of the fact that queue sizes are

geometrically distributed, based on (2.9) the respective parameters of these distributions
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are

k =
(1� �k)
�k

(1� �)
�

�
1

�k (1� pk � qk) + qk
� 1

�
We note that, as expected, k is a function of both the arrival model parameters and the

rate at which the output queues are serviced. Fundamental performance metrics, such as

the mean cell latency, are directly derived for each of the queues as shown in (2.6).

2.3 Simulated Performance of an Output Queued Cell Switch

Our simulations pertain to a scenario where tra¢ c is both bursty and non-uniformly dis-

tributed between the inputs. Arrivals are generated by an ON/OFF model which is inde-

pendently operated for each input. As means of validating the analytical deductions with

simulation results, we employ a non-linear destination distribution model named Zipf�s law

[32][33]. The Zipf law states that the frequency of occurrence of some events, as a function

of the rank (m) where the rank is determined by the above frequency of occurrence, is a

power-law function: Pk � 1
km . Accordingly, the probability that an arriving cell is heading

to destination k is given by

�
(m)
k = k�m

0@ NX
j=1

j�m

1A�1

(2.13)

While m = 0 corresponds to a uniform distribution, as m increases the distribution

becomes more biased towards preferred destinations. There has been recent evidence that

the Zipf model accurately portrays web caching and access statistics, in particular when

the parameter m is close to unity. Recent studies have illustrated the presence of Zipf law

characteristics in Internet tra¢ c patterns [34].

Previous work [10] has shown that the mean queue size in an output queued router

with First-in-First-Out (FIFO) arbitration and tra¢ c arriving uncorrelated and uniformly

distributed, is

E [Q]FIFOBERNOULLI =
�2 (N � 1)
2 (1� �)N ; (2.14)

where N denotes the number of ports in the switch. Uniformly distributed ON/OFF arrivals

arriving at an output queued router employing FIFO arbitration yield the following mean
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Figure 2-2: Mean queue occupancy for each of the output queues in a 16-port switch where
� = 0:8 and � = 1. Arriving tra¢ c is distributed according to the Zipfk=0:5 with mean
burst sizes of 6 cells.

queue size

E [Q]FIFOON�OFF =
�B (N � 1)
(1� �)N ; (2.15)

where B is the mean burst length. Analysis that provides foundations for the above can be

found in [35]. By dividing each of the above mean queue sizes by the normalized o¤ered

loads, we obtain the corresponding mean cell latencies. We shall refer to these assertions

when comparing the latency of the FIFO discipline to that of random arbitration.

Figure 2-2 illustrates the mean queue occupancy for each of the output queues in a

16-port switch, where � = 0:8 and � = 1. Arriving tra¢ c is distributed between the

queues according to a Zipfm=0:5 distribution with a �xed mean burst size of 6 cells. As

can be observed, the latency for each queue is well correlated with its share of the o¤ered

load. The two curves correspond to the simulated model and analytical approximation, as

described in section 2:2. The simulation results clearly validate the accuracy of the proposed

analytical inference. For alll simulation results presented in this section, the duration in
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Figure 2-3: Queue size distribution for a 16-port switch with normalized o¤ered load of
0.75, mean burst size of 8 cells and a probability of service of 0.9.

each case was 100,000 time slots to ensure a consistent steady state response.

In Figure 2-3, the queue size distribution is shown, for a 16-port switch that is introduced

with uniformly distributed bursty tra¢ c and an aggregate normalized o¤ered load of 0.75.

The mean burst size is 8 cells, while the probability of service (�) is 0.9. The latter can

re�ect, for example, on a system that has a 10% congestion (no-service) time.

In Figure 2-4, the mean queue latency is presented as a function of the o¤ered load for

both random and FIFO arbitration. Tra¢ c is assumed to be governed by the ON/OFF

model with a mean burst size of 8 cells. Results for the case of random arbitration are

shown for di¤erent probability of service values, the impact of which is clearly observable in

particular as the o¤ered load approaches the service rate. Also shown are the mean latency

attributes of FIFO arbitration, which in many cases constitute the theoretical lower limit

on the delay through a space division switch. For the case of � = 1, FIFO and random

arbitration yield identical results, suggesting that the presented methodology for obtaining

the latency under generic tra¢ c conditions provides valuable approximation to a pure FIFO

system, as would be expected.
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Chapter 3

Scalable Packet Placement

Algorithms for PSM Switches

In this chapter, we present two novel pipelined memory management architectures which

play a key role in the context of on-chip output-queued switch emulation. We discuss in

detail the fundamental properties associated with each of the proposed schemes, along with

techniques for accelerating each architecture to achieve greater port density and further the

consolidation of packing switching functions on a single chip.

3.1 PSM Switch Architectures

This section focuses on the proposed pipelined memory management architecture for PSM

switches, as generally illustrated in Figure 1-3. The basic assumption in output queued

switching is that an arriving packet is assigned a departure time. The latter re�ects on

the number of time slots that the packet is to remain within the switch prior to departing.

Consequently, the �rst step is to calculate the departure time for each packet, prior to the

insertion of packets into the memory management subsystem. This process is de�ned by the

output scheduling algorithm employed, and is generally very fast. The most straightforward

scheduler is the �rst-come-�rst-serve (FCFS), in which packets are assigned departure times

in accordance with their arrival order. To provide delay and rate guarantees, more sophis-

ticated schedulers [36] can be incorporated, as re�ected by the departure time assignments.
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Figure 3-1: Memory-management pipeline architecture

The main contribution here lies in the fact that the placement algorithm distributes the

packet-placement process, thereby gaining execution speed at the cost of a �xed latency.

3.2 Row-associative memory management algorithm

The �rst router architecture we will propose is the row-associative memory management

algorithm. For this router architecture, the memory-management algorithm is implemented

using a multi-stage pipeline architecture, as depicted in Figure 3-1. The pipeline architecture

consists of L(L+1)
2 cell bu¤ering units arranged in a triangular structure. Each row is

associated, or coupled, with one of the parallel shared memory units. Hence, the architecture

requires L parallel shared memories. Incoming packets arriving at input port i are initially

inserted into row i. The underlying mechanism is that at every time slot, packets are

horizontally shifted one step to the right, with the exception being cells located on the

diagonal of the structure. The diagonal cells, in this scheme, have the ability to move

vertically to another row in the same column. A cell moves vertically if any of the following

two conditions are met: (1) the memory associated with the row in which it is currently

located already contains a packet with the same departure time; (2) there is another cell

ahead of it in the same row with the same departure time. Therefore, vertical moves are

used as means of resolving memory placement contentions. The goal of the placement
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scheme is that once a packet reaches the last column of the pipeline, it is guaranteed to be

located in a row which is associated with a memory that does not contain any packets with

the same departure time.

3.2.1 Memory Management Algorithm

In this section, we provide some complexity analysis results pertaining to the memory

requirements of the row associative memory management algorithm. In the proposed model,

rows of the pipeline are arranged in B sequential blocks, whereby there is one row per input

port (for total of N rows) in the �rst block. As such, every input port writes its packets

into one row. A cell in block r can only jump vertically to a cell in block r + 1. In order

to illustrate the underlying memory-management principal, we shall refer to the following

example.

Example 1 Consider the simple scenario depicted in Figure 3-2. The state of the pipeline

for four consecutive time slots (i.e. t, t+1, t+4, t+5) is shown. At time t, there are two

packets in the second row and three packets in the third row, all with the same departure time

D. Two packets are located at diagonal positions, and since there are two packets ahead of

them with the same departure time, they shift down to a row in the second block (row 6) and

then move one position to the right, as shown in the pipeline diagram for time t+ 1. Note

that the packets were not permitted to move to row 5 since their position is already occupied

with two other packet with departure times X and Y . At time t+ 4, the second packet with

departure time D in row 6 reaches the diagonal element, and, since there is another packet

ahead of it with same departure time, it moves vertically to a row in the third block (row

7), followed by a shift one step to the right, as shown in the t+5 diagram. In this example,

the pipeline consisted of three blocks of rows with 4, 2 and 1 rows in each, respectively. We

emphasize that the notion of blocks is used only for illustration purposes. As will later be

discussed, partitioning the structure into these blocks facilitates the complexity analysis as

well as memory requirements of the architecture.

Lemma 1 There should be at least 2N -r rows in block r, for r 2 [2; 3; : : :B].
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Figure 3-2: Example illustrating the proposed memory-management algorithm for a 4-port
switch. The state of the pipeline structure is depicted for 4 consecutive time slots.

Proof. Consider a cell that is shifting vertically from block r to block r + 1. It will

�nd at most N � 1 rows blocked by other packets, since there have been at most N � 1

other packets that may have arrived at the same time as this packet and may have shifted

down in prior time slots. Moreover, it will �nd at most N � r�1 other rows having packets

with the same departure time. Note that there could be at most N � 1 other packets in the

system with the same departure time; however, r of them have already been accounted for

having caused this packet to jump to block r + 1. Therefore, there are at most 2N � r � 2

rows (or locations) that this packet cannot move to in block r + 1. Using the pigeon-hole

principle, we conclude that 2N � r is a su¢ cient number of rows for block r 2 [2; 3; : : :B].
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From lemma 1, for a switch withN ports and B blocks, the total number of rows (parallel

memories) can be expressed as:

L(N) = N + (2N � 2) + (2N � 3) + :::+ (2N � B)

= N + 2N(B � 1)� (B + 2)(B � 1)=2

= (2B � 1)N � (B + 2)(B � 1)=2 (3.1)

In order to compute number of the rows, we have to �nd B(N), which directly re�ects

the maximum number of vertical shifts a packet can perform prior to being successfully

assigned to a memory. We shall refer to Example 1. and derive an upper limit on the

number of con�icting packets with the same departure time in the fourth block, i.e. after

three vertical shifts have occurred. We would like to �nd an upper limit on the number of

con�icting packets after three shifts and use that recursively to obtain the maximum number

of jumps, and hence blocks, that are su¢ cient to guarantee that each arriving packet will

be successfully assigned a memory.

Lemma 2 The maximum number of packets with the same departure time in the fourth

block is
�p
N -1

�
Proof. Suppose that there are P1 packets with the same departure time in the �rst

block. Throughout the proof, we shall refer to this set of packets having the same departure

time. Note that P1 � N , since there cannot be more thanN packets with the same departure

time in the system. Let us assume that these packets are located in R1(R1 � N) rows of

the �rst block. Therefore, the number of packets that move vertically to the second block

will be P2 = P1-R1. Next, we compute the number of rows in the second block that contain

one of these packets. There are N2 = N1-R1 packets that have moved to the second block,

and the maximum number of packets that can shift simultaneously to the same row is R1.

Hence,

R2 �
�
P1-R1
R1

�
(3.2)
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Therefore, the maximum number of packets with the same departure time that can move

to the third block is given by

P3 = P2-R2 � P1-R1-
�
P1-R1
R1

�
(3.3)

If N1-M1 is divisible by M1, then

P3 � P1(1-
1

R1
)-R1+1 (3.4)

otherwise, since N4 � N3-1, we have

P3 � P1(1-
1

R1
)-R1+2

P4 � P1(1-
1

R1
)-R1+1 (3.5)

The maximum value of the expression in 3.5 is reached when R1 =
p
P1. Substituting

P1 = N , yields the inequality

P4 �
�p
N -1

�2
(3.6)

Note that if N is a complete square we have,

P3 �
�p
N -1

�2
(3.7)

In the following corollary, we exploit these results to determine the order of the memory

blocks.

Corollary 1 A su¢ cient number of parallel memory blocks required for an NxN switch,

employing the proposed architecture, is O(
p
N)

Proof. Equation 3.6 shows that for an N -port switch, the maximum number of con-

�icting packets with the same departure time in the fourth block is
�p
N � 1

�2
. Let B(N)
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represent the number of stages required for an N -port switch. We thus have,

B(N) = B(N -2
p
N+1)+3

B(1) = 1 (3.8)

from which we conclude that B(N) = O(
p
N):

Theorem 1 For an N -port switch, where N � k2 k 2 f1; 2; : : : :g, the number of memories

is

L(N) � 4k3-5k2+k+1 (3.9)

with equality if N = k2:

Proof. We prove the equality for N = k2, suggesting that the general case trivially

follows. We �rst show by induction that the number of required row blocks are B(k2) = 2k-

1. For k=1, the result is trivial. We assume that the result holds for k and infer it for k+1.

For N = (k+1)2, using lemma 2 and (3.2) (given that N is a complete square), we have

B((k + 1)2) = B(k2) + 2 = 2k � 1 + 2 = 2(k + 1)� 1 (3.10)

Then, we utilize the relationship proven for L in (3.1) to obtain

L(k2) = (2B � 1)N � (B + 2)(B � 1)=2

= (4k � 3)k2 � (2k + 1)(2k � 2)=2

= 4k3 � 5k2 + k + 1 (3.11)

The above theorem states that the number of parallel memories required in this archi-

tecture is O(N1:5). Given that the minimum number of memories is O(N), the increased

memory requirement observed is the price paid in order make the assignment problem par-

allel and feasible from an implementation perspective. For example, with N = 16 (i.e.

k=4), the number of parallel memory elements is 177, arranged in 7 blocks. To illustrate a

case whereby this memory requirement is reached, we refer to the following example.
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Figure 3-3: Adversarial scenario demonstrating the su¢ ciency bound on the number of
memory units for a 9-port switch.

Example 2 We refer to the following adversarial scenario pertaining to a 9-port switch,

which is easily extendable to larger switch sizes when N is a complete square. Consider

the settings illustrated in Figure 3-3. There are nine packets with the same departure time

residing in the �rst block of memory. The �rst three packets are scheduled, while the others

are shifted vertically to the second block. Note that packets 4, 5 and 6 reach the diagonal

together and hence move down simultaneously. As shown, they may end up in the same

row. A similar pattern of behavior is observed for packets 7, 8 and 9. Packets 6 and 9

are scheduled in the second block, while packets 5, 8 and 4, and 7 move to the third block.

Once again packets 5 and 8 move simultaneously to the same row and packets 4 and 7 to a

di¤erent row. Clearly, after two moves we end up with a set of four con�icting packets, i.e.

from k = 3 we reach a condition with k = 2. Similarly, we need two more shifts to reach a

point with only one packet in a block.
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3.2.2 Accelerating the Memory Management Algorithm

Accelerated Packet Switch Architecture

In this section, we extend the memory management algorithm presented in Section 3.2.1

by introducing computation and memory speedup components such that a more e¢ cient

high-speed packet placement algorithm is attained, yielding higher system scalability. In

doing so, we maintain an identical pipeline architecture consisting of L(L+1)2 cell bu¤ering

units arranged in a triangular structure, where L denotes the number of parallel memory

units. By introducing the notion of speedup, s, we now require that the pipeline operate s

times faster than the line rate. An immediate bene�t of operating the pipeline at a higher

rate is reduced system latency. Moreover, if the incoming packets, from the set of N input

ports, are presented to the pipeline in groups of Ns , the number of con�icts from packets

with the same arrival time is reduced from N to N
s .

The introduction of speedup, in the context of reducing arrival con�icts, implies that

incoming packets from input port i be initially inserted into row imod
�
N
s

�
. The underlying

mechanism remains the same in that at every time slot, packets are horizontally shifted one

step to the right, with the exception of the diagonal cells. A packet residing in a diagonal

cell is either shifted (moved) vertically to another row in the same column or placed in

the memory associated with the row in which it resides. Vertical packet shifts occur if

the memory associated with the row in which the packet resides contains another packet

with the same departure time. If a vertical shift is to be performed, the diagonal cell

must select a row in its column that satis�es the conditions outlined by the "pigeon-hole

principle". Applying these constraints, vertical moves provide a mechanism for resolving

memory placement contentions. The goal of the scheme remains that once a packet reaches

a diagonal cell in the pipeline it has exclusive access to the memory located in its row. If

the current row memory is occupied, an attempt is made to place the packet in a row for

which there are no existing con�icts

Placement decisions along the diagonal are made concurrently and independently to

maximize the processing speed of the system. As selections are independently made for

each packet, it is possible for packets along the diagonal to simultaneously select the same
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row. In the single packet placement scheme presented in Section 3.2.1, there exists only one

memory location in a row for any given departure time. To reduce the number of con�icts

associated with packets simultaneously selecting the same row, the number of memory

locations in a row for a given departure time can be increased to m > 1. As multiple packet

placements to a single memory are now allowed, we must guarantee that m packets can

be read from memory during a single packet time. One might speculate that the pipeline

speedup, s, and the number of placements allowed, m, which is e¤ectively the memory read

rate, must be equal. This is generally not required, since it might be necessary to operate

the pipeline at a slower rate as dictated by potentially faster on-chip SRAM resources. In

this case, it is still prudent to o¤er additional placement locations in order to minimize

con�ict.

In provisioning m packet placement locations for each memory, it would appear that the

reduction in row memories is merely an inconsequential outcome of increasing the memory

depth. As packets shift vertically from block b to b+ 1, the block size, in terms of physical

rows, decreases as s and m increase. This suggests that a vertical movement bypasses fewer

potentially acceptable rows with each subsequent placement. In subsequent sections, we

provide analysis that derives optimal values for these parameters. In order to illustrate the

underlying memory-management principal, we refer to the following example.

Memory Requirements for the Accelerated Packet Placement Algorithm

In this section, we obtain an upper bound on the number of memories su¢ cient for the

pipelined memory management architecture, given a speedup factor, s. In constructing

the proof as we did in the previous section, we view the pipeline rows as arranged in B

sequential blocks. Speedup is introduced into the system through the partition of the N

arriving packets into s distinct segments. Packets that arrive to any of the N ports, at

time t, are presented to the �rst block which consists of Ns rows. Arriving packets are then

multiplexed and written to one of the N
s rows in this �rst block. Once placed in a row, a

packet can only be written to one of m memory locations for a given departure time, or

shift vertically to another row in block b+ 1.

Lemma 3 There should be at least
�
s+m
sm

�
N � b rows in block b, for b 2 [2; 3; :::B]:
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Proof. Consider a packet moving from block b to b+ 1. For a system with speedup s,

it will �nd at most Ns � 1 packets having the same arrival time. Furthermore, there are at

most N � bm � 1 packets with the same arrival time, since at least, bm packets with the

same arrival time are served in the �rst b blocks. Therefore, in block b + 1, there are at

most Ns � 1 rows occupied with packets with the same arrival time. Since up to m packets

with the same departure time can be served with one memory, we need N�bm
m additional

rows for packets with the same departure time. Hence, we need (Ns � 1) + (
N�bm
m ) rows for

block b+ 1, or ( s+msm )N � b rows for block b 2 [2; 3; ::;B].

For a switch with N ports and P blocks, the total number of rows (parallel memories)

can be expressed as:

L(N) =
N

s
+

��
s+m

sm

�
N � 2

�
+��

s+m

sm

�
N � 3

�
+ ::

+

��
s+m

sm

�
N � B

�
=

N

s
+N

�
s+m

sm

�
(B � 1)� (3.12)

(B + 2) (B � 1) =2

= N
((s+m) (B�1) +m)

sm
�

(B + 2) (B � 1) =2

To compute the total number of rows (or memory units), we must determine the max-

imum number of B(N) blocks, or vertical shifts, required to successfully assign all packets

to memory.

Lemma 4 The maximum number of packets with the same departure time in the fourth

block is P4 � P1
�
1� m

R1

�
�mR1 +m2.

Proof. Suppose there are P1 packets with the same departure time in the �rst block.

Recall that there can be no more than N
s packets with the same arrival time in the �rst

block and no more than N packets with the same departure time in the system, such that

P1 � N . Packets only move vertically from the �rst block if a given packet resides in a row
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that contains m other packets with the same departure time. Let us state that there are P1

packets residing in R1
�
R1 � N

s

�
rows of the �rst block, then the number of packets that

propagate vertically to the second block must equal the number of con�icting packets given

by

P2 = P1 �mR1:

Decisions regarding which row destination for a given packet are made independently such

that packets with the same departure time can shift simultaneously to the same row. Note

that a maximum of R1 packets can shift simultaneously such that the resulting number of

rows with con�icts in the second block is given by

R2 �
�
P1 �mR1

R1

�
(3.13)

The value of R2 represents the number of unique rows that received packets, with the

same departure time, from the �rst block. Applying these same principles, we can further

state the maximum number of packets with the same departure time that can shift to the

third block block is given by

P3 = P2 �mR2 � P1 �mR1 �m
��
P1 �mR1

R1

��
(3.14)

If P1 �mR1 is divisible by R1, then

P3 � P1
�
1� m

R1

�
�mR1 +m2 (3.15)

otherwise, since P4 � P3 � 1, we have

P3 � P1

�
1� m

R1

�
�mR1 +m2 + 1

P4 � P1

�
1� m

R1

�
�mR1 +m2 (3.16)
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The maximum value of 3.16 is obtained when R1 =
p
P1. Substituting P1 = N , yields

the following inequality

P4 �
�p
N �m

�2
(3.17)

Note that if N is a complete square we have,

P3 �
�p
N �m

�2
(3.18)

Corollary 2 A su¢ cient number of parallel memory blocks required for an NxN switch,

employing the proposed architecture, is O(
p
N):

Proof. Equation 3.17 shows that for an N -port switch, the maximum number of con-

�icting packets with the same departure time in the fourth block is
�p
N � 1

�2
. Let B(N)

represent the number of stages required for an N -port switch. We can thus express the

total number of stages required using the recursive relationship,

B(1) = 1
...

B(N) = B(N -2
p
N+1)+3 (3.19)

from which we conclude that B(N) = O(
p
N):

Theorem 2 For an N -port switch, where N � k2 k 2 f1; 2; : : : :g and s = m, the number

of memories is

L(N) � 4k3

m2
+ (

3

m
� 6

m2
)k2 � ( 5

m
� 4

m2
)k � (2� 5

m
+

2

m2
) (3.20)

with equality if N = k2

Proof. We prove the equality for N = k2, suggesting that the general case trivially

follows. We �rst show by strong induction that the number of required row blocks are

B(k2) � 2k

m
+ (2� 2

m
) (3.21)
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For k = 1, the result is trivial. In order to prove it for k � m, it is su¢ cient to show

B(m2) = 2. To that end, for k = m, notice that number of rows in the �rst block is,

R(1) = N=s = k2=s = m2=m = m:

Therefore, maximum number of packets that can move simultaneously to the same row in

the second block is m (one packet from each row in the �rst block). Since each memory can

serve up to m packets with same departure time, all packets in the second block rows can

be scheduled and there is no need to have third block rows.

So far, we have proved the result for k = 1; � � � ;m. Next we use, the strong induction

step to prove it for k > m. We assume it is true for 1; � � � ; k k � m and prove it for k + 1.

For N = (k + 1)2, using lemma 4 and (3.18) (given that N is a complete square), we have

B((k + 1)2) � B((k + 1�m)2) + 2

� 2(k + 1�m)
m

+ 2� 2

m
+ 2

=
2(k + 1)

m
+ (2� 2

m
) (3.22)

Now, we substitute (3.22) and s = m in (3.12) to obtain,

L(k2) = k2
2(B � 1)
m

� (B + 2)(B � 1)
2

� k2 2(2k=m� 2=m+ 1) + 1
m

�

(2km + 4� 2
m)(

2k
m + 1� 2

m)

2

=
4k3

m2
+ (

3

m
� 4

m2
)k2 � 2k

2

m2
�

(5� 4

m
)
k

m
� (2� 5

m
+

2

m2
)

=
4k3

m2
+ (

3

m
� 6

m2
)k2 � ( 5

m
� 4

m2
)k � (2� 5

m
+

2

m2
)

(3.23)
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In comparison to (3.11), the above theorem states that for a speedup of 4, with s = m,

a 16-port switch fabric can be realized with 58 memory units, as opposed to the 177 parallel

memory units required without the inclusion of speedup. Further, the number of required

memory units for a switch fabric with N = 64 ports is a quite practical 144 memory units.

It is apparent that the packet placement algorithm yields a substantial reduction in the

overall memory requirements, thus paving the way for the implementation of large scale

FoC based platforms.

3.3 Column-Associative Packet Placement Algorithm

In this section, we present an alternative memory management algorithm that employs a

column-associative memory management algorithm. The row-associative memory manage-

ment algorithm, presented in the previous section, determined placements by allowing each

cell located on the diagonal to determine whether it could be placed in the associated row

memory. If the row memory was occupied, the cell would then select a row, from a set of

2N�1 potential candidates, in which to place the con�icted cell. Essentially, the placement

algorithm allowed the cell move vertically until an available memory was found. With the

column-associative memory management algorithm, we no longer limit placement decision

considerations to one cell. Instead, we employ a pipeline memory management algorithm,

whereby all cells arriving at time t are coupled with a single memory each time slot. In

doing so, we allow multiple cells to be considered for placement at once while reducing

placement contention. This provides a signi�cant reduction in the memory requirement,

while simultaneously reducing packet delay. In subsequent sections, we will describe the

proposed architecture in detail then, in Chapter 4, enhacements that provide multicast

support, QoS guarantees, and load balancing capabilities are presented.

3.3.1 Column-Associative Packet Placement Algorithm

As we stated in our discussion of the row-associative packet placement architecture, packets

arrive at each ingress port where they are segmented into �xed size cells for e¢ cient place-

ment in memory. Prior to the presentation of a cell to the switch fabric, the departure time

41
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Input Port N

Packets shift horizontally each time slot

Figure 3-4: Packets are selected for placement into each column memory based on their
departure time.

must once more be determined in order to establish the appropriate departure sequence for

a given set of arriving cells. We initially consider a �rst-come-�rst-serve (FCFS) scheduler

whereby packets are assigned departure times in accordance with their arrival order. In

later sections, we will provide support for more sophisticated schedulers whose departure

time assignments are intended to provide delay and rate (QoS) guarantees.

The proposed memory management algorithm, illustrated in Figure 3-4, consists of

M � N cell bu¤ering units arranged in a rectangular structure, whereby cells enter at

the leftmost column and are guaranteed placement upon reaching the �nal column. Each

column in this structure is associated with a single parallel memory unit resulting in a total

of M parallel memories. Packets arriving at ingress port i are segmented into k byte cells

prior to insertion into row i. Consequently, cells located in the same column will contain

a matching arrival time when this scheme is utilized. At the end of each cell time, all

cells located in column i will be transferred to column i + 1, providing every cell with the

opportunity to be placed in each of the M available parallel memories.

The cell placement unit, located in each column, determines whether a cell, located in

its column, can be placed in the corresponding column memory. A cell will be placed in the

associated column memory if the following conditions are met: (1) the memory associated

with the column does not already contain another cell with an identical departure time; (2)
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the cell is selected for placement over the potential N � 1 other cells with the same arrival

time. As a cell progresses through each subsequent stage, memory placement contentions

are reduced. In this scheme, once a cell is shifted to the last column of the pipeline, it is

guaranteed to be placed in a memory that does not contain a cell with a matching departure

time.

In the proposed architecture, rows can be viewed as simple shift registers, whereby cells

are shifted one stage to the right at each time step. At each stage of the pipeline, a single

cell assignment is attempted per column. The motivation for this approach is to reduce the

complexity of the placement algorithm by isolating memory assignments, thus minimizing

memory contention.

3.3.2 Basic Analysis of Resource Requirements

Theorem 3 A total of 2N�1 column dual-port memories is su¢ cient for an N -port switch

utilizing the proposed packet placement algorithm.

Proof. Consider an arriving cell, C1. It will �nd at most N � 1 other cells with an

identical arrival time competing for the same memory. Furthermore, at most N � 1 other

cells with the same departure time could have been placed in unique memories prior to the

arrival of C1. Thus, at least (N � 1) + (N � 1) + 1 = 2N � 1 memories are required to

guarantee the placement of cell C1:

The cell placement unit, located in each column, maintains a mapping of memory lo-

cations to corresponding to departure times, that have been reserved by cells successfully

placed in the memory. This mapping, which is e¤ectively a binary mask, shall be referred

to as the column�s occupation vector. In addition, each column maintains a mapping that

speci�es pre-allocated (or reserved) departure times of cells that have yet to be placed in a

column memory. This mapping is referred to as the column�s vacancy vector. The placement

element in the pipeline performs a bitwise xor operation over the occupation and vacancy

vectors to determine if there is a cell with a departure time available for placement in the

memory. If a cell is selected for placement, it will be extracted from the pipeline and writ-

ten the corresponding column memory. Cells not selected for placement are subsequently

forwarded to the next stage of the pipeline.
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Example 3 Consider the simple scenario depicted in Figure 3-5 illustrating the state of the

pipeline for three consecutive time slots (i.e. t, t+1, t+2). At time t, three cells are inserted

into the �rst column of the pipeline with departure times f1; 2; 1g respectively. Assuming

that all memories are initially empty, the placement engine will simply select the �rst cell

in the column for placement. Thus, the cell in row 1 with departure time 1 is placed in the

memory associated with column 1: The remaining cells f2; 1g will shift right to column 2 at

time t+2, while new cells, with departure times f1; 3; 2g, are inserted into the �rst column.

The placement element at column 2 will now select the cell with departure time 2, leaving

the only remaining cell, f1g, to shift to column 3. In column 1, a cell with departure time

1 has already been placed in the memory associated with column 1. Thus, the placement

element in column one must select the cell at row 2, with departure time 3, for placement.

At time t+2; additional cells, with departure times f2; 4; 3g are introduced into the pipeline

at column 1. As the cell with departure time 2 has yet to be selected, it is next selected for

placement. Additionally, columns 2 and 3 both select cells with departure time of 1.

It can be observed from this example, that the column-based memory management

algorithm clearly provides an e¤ective mechanism for resolution of memory contention.

Scalability is achieved as decisions are disassociated from the number of ports in the

system. Increased port densities do not directly infer an increase in the time required to

make a placement decision. Instead, placement decisions are determined only by the number

of departure times o¤ered by the switch fabric in the form of the occupation and vacancy

vectors. In the context of FoC, these mapping vectors are bound only by the depth of an

individual column memory.

The coupling of placement decisions with memory depth is not unbounded. In all

practical switching systems, once a bu¤er approaches (or is close to approaching) its limit,

�ow-control signaling should be provided to the tra¢ c sources, indicating the need to either

slow down or temporarily stop the �ow of packets to a particular destination. Such a

mechanism is always required since instantaneous data congestion may occur at any router

or switch. In fact, even if the tra¢ c is said to be statistically admissible, implying that no

input or output is oversubscribed, it may still be the case that for short periods of time a

given output port is oversubscribed. To address such scenarios, and in an e¤ort to reduce
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Figure 3-5: Example illustrating the proposed memory management algorithm for a 3-port
switch. The state of the pipeline structure is depicted for 3 consecutive time slots.
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the probability of packet loss, the linecards typically host large memory spaces. As such,

each parallel memory unit contained in the FoC is relatively shallow with its depth governed

by the system response to backpressure and the number of memory units employed.

3.3.3 Incorporating Speedup

To achieve a further reduction in the number of required memories, it is clear that we must

limit memory contention in the packet placement process. One source of contention is a

blocked placement that occurs as a result of o¤ering only one memory location per departure

time for each memory unit. This constraint can be alleviated by provisioning multiple cell

placements for a single column memory, allowing a single memory to host 1 < m � N cells

with identical departure times. As a result, a cell C, with departure time d, will consider

a memory unavailable for placement only if it contains m cells, having arrived prior to C,

that have a matching departure time.

Theorem 4
�
m+1
m

�
N � 1 memories are guaranteed to be su¢ cient for an N�port switch,

where each memory can hold m cells with the same departure time.

Proof. Consider the arrival of cell C1 to the �rst column of the switch. It will �nd

at most N � 1 other packets with the same arrival time competing for the same memory.

Moreover, there are at most N � 1 other packets with the same departure time that may

have been placed in a memory prior to the arrival of C1: As cells are presented to memories

sequentially, each o¤ering multiple departure times, the N�1 cells with matching departure

times must be contained in one of Nm�1 memories. Therefore, a total of
�
N
m � 1

�
+(N � 1)+

1 =
�
m+1
m

�
N � 1 memories are required to ensure placement of C1:

It should be noted that provisioning multiple cell placements for each column memory

does not impact the time required to establish a memory�s availability. The primary trade-

o¤ in this instance resides in the increased density of each memory unit and the requirement

that packets must be read from memory at a rate m prior to being forwarded to the

appropriate egress ports. Having made this observation, we introduce a placement (or

computation) speedup of s, which assumes the pipeline operates at a rate s times faster

than the line rate. One advantage of operating the pipeline at an increased rate is reduced
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latency. Moreover, cell arrivals from a set of N inputs can be presented to the switch fabric

in groups consisting of Ns cells. This further provides a reduction in the number of con�icts

associated with packets possessing the same arrival time from N to N
s .

Theorem 5 A total of
�
s+1
s

�
N � 1 memories is su¢ cient for an N -port switch with a

placement speedup of s.

Proof. For a placement speedup of s, an arriving cell, C1, will �nd at most N
s � 1

other packets with the same arrival time competing for the same memory. Furthermore, at

most N � 1 other packets with the same departure time may have been placed in unique

memories prior to the arrival of C1: Therefore, at total of
�
s+1
s

�
N�1 memories are required

to ensure placement of cell C1:

Given that columns are interlocked with memories, the incorporation of placement

speedup infers a memory write speedup equal to s. However, o¤ering multiple cell place-

ments does not necessarily require an increase in memory write speed. Furthermore, the

multiple cell placements does not require a pipeline speedup either. Thus, we can utilize

both multiple cell placements and placement speedup concurrently to gain an even greater

reduction in memory requirements. In view of the above assertions, it should be evident

that the su¢ cient number of memories in this case is k =
�
s+m
sm

�
N � 1. Moreover, we

achieve a reduction in the size of the cell bu¤ering structure such that k � N
s cell bu¤ering

units are now required.
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Chapter 4

Enhancements to the Switch Fabric

on a Chip Architecture

This chapter extends the column-associative memory management algorithm, presented in

section 3.3, to provide support for additional features such as quality of service (QoS) guar-

antees, load balancing and multicast tra¢ c. In discussing multicast tra¢ c �rst, we recognize

that multicasting provides an e¤ective mechanism for conserving network bandwidth by en-

abling the e¢ cient transmission of a single stream of data to multiple destinations. This

has become increasingly important with the growing demand for multimedia applications

and has lead to considerable attention in the area of packet scheduling algorithms, as indi-

cated by [37][38][39][40]. In concert with this increased demand for multicast tra¢ c, there

exists a concurrent need for service guarantees to support multimedia applications such as

VoIP, IPTV, and video on demand (VOD). The basic framework for these multimedia ap-

plications require that content be sent to multiple recipients simultaneously while meeting

stringent performance requirements (low latency, minimal jitter, fairness, etc.). For contin-

ued proliferation of these applications, the underlying infrastructure must provide e¢ cient

mechanisms for storage and forwarding of packets while o¤ering quality of service (QoS)

guarantees. Indubitably, this presents a signi�cant challenge as we attempt to optimize

performance and resource requirements, by incorporating features such as load balancing,

while increasing the complexity in supporting multicast services and quality of service guar-
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antees. In this chapter, we present architectural enhancements that enable the inclusion of

these features. In the subsequent sections, we provide a detailed discussion of the proposed

feature enhancements, while also outlining metrics that establish their viability.

4.1 Memory Provisioning for Multicast Tra¢ c

The memory requirement for the proposed architecture has, to this point, been de�ned

considering unicast tra¢ c only. Given that each unicast cell can be destined for at most

one egress port, the analysis is considerably easier since there can be at most one departure

time assignment associated with each cell. With multicast tra¢ c, each cell can be destined

to multiple egress ports. The exact number of copies is expressed in terms of the maximum

fanout q, q 2 f1; ::; Ng, which denotes the number of egress ports for which a cell, C, can

be destined. Consequently, a total of q departure time assignments must be made for C.

One straightforward approach for processing multicast cells, known as copy multicast

[41], is to simply replicate the cell at the ingress, thus creating q unicast copies which

are each delivered to the fabric and switched individually. Copy multicast has obvious

drawbacks in that it requires a fabric speedup of q at the ingress, while also potentially

requiring q additional memory locations to store the copied cells in a column memory. This

is derived from the fact that each ingress port can receive a multicast packet destined for

up to q egress ports.

To more e¢ ciently store cells, an alternate approach, termed fanout multicasting, can

be employed. In fanout multicasting, a multicast cell is transmitted to the switch fabric

only once and avoids replication. Instead, only one copy of the cells is stored in memory

and is read by the fabric multiple times for delivery to each of the q destinations. From

an e¤ective memory utilization perspective, this is an optimal solution. However, achieving

this goal is a signi�cant challenge given the di¢ culty of the placement process.

Lemma 5 (q + 1) (N � 1)+1 memories is su¢ cient for a PSM switch, utilizing the column-

based packed placement algorithm, with fanout multicasting.

Consider fanout multicasting in a PSM switch, we observe an arriving multicast cell,

Cq, will contain �, � � q, unique departure times, which suggests there will also be �
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potential departure time con�icts. For the column-based placement process using fanout

multicasting, we recognize that a departure time con�ict with any of the � unique departure

times results in a placement failure. For each of the � unique departure times associated

with the arriving cell, there are at most (N � 1) other cells with the same departure time

that may have been placed in unique memories prior to the arrival of Cq. Ignoring arrival

time constraints for the moment, clearly the placement of the multicast cell Cq requires

q (N � 1) + 1 memories to resolve departure time contention when fanout multicasting is

employed.

A linear reduction in this memory requirement can be achieved with the inclusion of

memory speedup, m. If we allow multiple cells, having the same departure time, to be

written to the same memory, we reduce the departure time constraint such that

k =
�l q
m

m
+ 1

�
(N � 1) + 1 (4.1)

memories are now su¢ cient to ensure placement of a multicast cell into memory. However,

this approach has limited scalability given the speedup needed to minimize the number of

required memories cannot be easily attained.

The formulation of an optimal policy for placing cells into shared memories should incor-

porate the bene�cial aspects of both copy and fanout multicasting. For copy multicasting,

we seek to minimize the number of replications required to place a packet without increasing

the number of column memories required. To accomplish this goal, we utilize the positive

aspects of fanout multicasting by bounding the number of replications that can occur. This

can be achieved by allowing the association of a �nite number of departure times, b, to

occur for some number of replicated cells. The approach restricts the maximum number

of duplicate packets, or replications, to be
� q
b

�
. From Lemma 5, we recognize the memory

su¢ ciency condition can now be represented by

k = (b+ 1) (N � 1) + 1: (4.2)

Further optimization of the multicast placement algorithm can be attained with the intro-

duction of both memory and computation speedup.
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O¤ering a memory speedup, m, provides a mechanism for reducing the departure time

constraint associated with allowing multiple departure times to be contained in one cell.

Additionally, the incorporation of computation speedup, s, enables cells to be introduced

in groups of Ns which reduces the arrival time constraint. As a result, the introduction of

both memory and placement speedup yields a simultaneous reduction in both the arrival

and departure time constraints.

Theorem 6
�
sb+m
sm

�
N � b memories are su¢ cient for an N -port multicast PSM switch

utilizing the proposed packet placement algorithm.

Proof. For the N -port multicast switch with computation speedup, there are at most

b departure times associated with a given multicast cell, Cm. Additionally, there can be at

most m cells located in a given column memory with departure times that match those con-

tained in Cm. As placement opportunities occur sequentially, Cm can be denied placement

into at most b
�
N
m � 1

�
memories due to a departure time constraint violation. Furthermore,

an arriving multicast cell, Cm, will �nd at most N
s � 1 other cells with the same arrival

time. Therefore, a total of b
�
N
m � 1

�
+
�
N
s � 1

�
+ 1 =

�
sb+m
sm

�
N � b memories are required

to ensure placement of cell Cm.

Bounding the number of replications that can occur for each multicast cell facilitates an

optimal trade-o¤ between placement complexity, required memories, and memory depth.

For fewer cell replications, the replication bound, b, can be increased which results in re-

duction of the required memory depth. While this yields fewer duplicate cells, the number

of unique memory instances will increase given the added departure time con�icts. This

can be minimized if we tightly couple the replication bound with computation and memory

speedup. For s = m, the memory su¢ ciency condition becomes
�
b+1
s

�
N � b. In doing so,

we are able to limit the number of unique memory instances by only increasing the replica-

tion bound, b, in parallel with the speedup, s. Table 4.1 outlines the number of memories

needed for various port densities, and m and s values.
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Table 4.1: Number of memories required for the proposed PSM multicast switch employing
the column-associative memory management algorithm

Switch
Ports (N)

Speedup (s) Replication
Bound (b)

Maximum
Replica-
tions

Memory
Units

16 1 1 16 31
16 2 2 8 30
16 4 4 4 28
32 1 1 32 63
32 2 2 16 62
32 4 4 8 60
64 1 1 64 127
64 2 2 32 126
64 4 4 16 124

4.2 Providing QoS Guarantees

In a network of output-queued or shared memory switches, it has been demonstrated that

a scheduler capable of providing weighted fairness among �ows, or delay guarantees, at all

queueing points in the network can yield end-to-end guarantees for well-behaved �ows [42].

The FCFS scheduler considered thus far is incapable of providing such fairness, or delay

guarantees, as the scheme is biased toward �ows that transmit at high rates.

Implicit in our goal of controlling delay is an underlying need to modify the relative

departure times of packets residing in memory. This can be accomplished if we allow

the departure time assignment policy to follow any push-in �rst-out (PIFO) [43] queueing

discipline (WFQ, GPS, strict priority, etc.). In a PIFO queueing discipline, the relative

transmission order of cells remains �xed once placed in the queue. Arriving cells may be

inserted into the queue at any point, but always depart from the head of line. The departure

time assigned to an arriving cell is performed prior to insertion. The scheduling policy can

dictate cells within a packet be given sequential departure times, thus enabling performance

guarantees for both packets and cells.

Consider the single egress queue employing a PIFO queueing discipline, containing cells

destined for output a only. In this example, we denote the cell destined for output a,

with departure time 2, as a2, departure time 3 as a3, and so forth. Initially, three cells are

destined to leave output a in order, as depicted in Figure 4-1(a). Now consider the insertion
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Figure 4-1: (a) Initial ordering of PIFO queue prior to insertion of cell
�
a
0
2

�
(b) Ordering

of PIFO queue after cell
�
a
0
2

�
has been �pushed-in�

cell of a
0
2 into the PIFO queue. In this instance, a

0
2 is scheduled to depart prior to cell a2.

Thus, it will be �pushed in�just after the cell a1. The insertion of a
0
2 will obviously delay

the departure of cells a2 and a3, as depicted in Figure 4-1(b), by one cell time. This is the

desired outcome, as all cells will depart in the same relative order.

The introduction of PIFO queues does, however, introduce contention not evident in the

preceding example. In that instance, all cells were destined for a single output a and stored

in the same PIFO queue. This is convenient for the purpose of highlighting the operation

of a PIFO queue. However, this neglects potential con�ict associated with cells destined

for an output other than a in a system consisting of k PIFO queues. Allowing cells to be

placed into memories regardless of their departure times introduces a con�ict, whereby a

cell destined for output a could be pushed into a PIFO queue such that it modi�es the

relative order of cells destined for the other N � 1 egress ports.

To highlight the di¢ culty in managing k PIFO queues, we consider the insertion of

multiple cells, into a subset of k memories, to demonstrate con�icts that can can occur.

In Figure 4-2(a), we have three PIFO queues containing packets destined to ports a, b, and

c. The cells fa1; b1; c1g will depart together in the �rst time slot, then followed by cells

fa2; b2; c2g in the next time slot, and so forth. First, we consider the insertion of cell a
0
2,

depicted in Figure 4-2(b), into the �rst PIFO queue, just prior to cell a2. As observed in

the previous example, the relative order of departures of cells destined to port a remains
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Figure 4-2: (a) Initial ordering of PIFO queue prior to insertion of cell a
0
2 (b) Ordering of

PIFO queue after cell a
0
2 has been �pushed-in�

unchanged. However, the relative order of cells destined for port c does change, as c3 will

now depart one time slot later than its scheduled departure time. Further, consider the

insertion of b
0
3 into the second PIFO queue. We again face a similar problem given cell a3

will also depart one time slot after its scheduled departure time. Further, cells destined for

the same output, b
0
3 and b3, will now depart at the same time from separate memories. As

multiple cells can be delivered simultaneously to the same egress port, an output bu¤er,

operating at O (NR), is now required to eliminate output contention at each egress port.

This approach is impractical as it reintroduces the high bandwidth requirement found in

OQ switches, while also eliminating their desirable �ow isolation attributes.

To resolve the memory contention present when multiple PIFO queues are employed, we

�rst seek to avoid con�icts for cells destined to di¤erent output ports. To do so, we utilize

the con�ict-free permutation approach introduced in [5], whereby the relative departure

order is modi�ed to avoid read con�icts. With this approach, we adjust the read process

such that each output, in a router consisting of N outputs and k shared memories, is allowed

to read at most one cell from each of the k memories. If we consider a set of k memories,

whereby each memory is denoted by mi , i 2 k, then cells destined for output a would be

read from memories using the read sequence fm1;m2;m3; :::;mkg. As N cells will need to

depart every time slot to obtain maximum throughput, we de�ne a read window, w, that

consists of N cells (one cell destined for each egress port), such that N memories will be

simultaneously read. With this approach, the read sequence for additional outputs will
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need to be shifted in order to perform simultaneous reads for each output. Consider cells

destined for output b, the read cycle must start from m2 such that its read sequence does

not con�ict with sequence used by output a. Thus, for output b, the read sequence would

be fm2;m3; ::;mk;m1g. Assuming there is a cell in every memory, destined for each output,

then the application of this approach will achieve maximum throughput given each output

will receive k cells in an interval consisting of k cell times.

As we have elected to use an alternate read process, we have introduced an additional

source of contention. This contention is derived from the fact that at most one cell can

be read, during a single read cycle consisting of k cell times, from each of the k memories

for the individual outputs. For instance, if � cells, 2 < � � k; are destined for the same

output and happen to be placed in the same memory, then only one cell will depart in

the scheduled interval of k departure times. This results in the delay of � � 1 cells, such

that these cells will no longer depart during their assigned slot. This implies additional

placement constraints are needed to ensure each of the k cells, scheduled to depart in a

given read cycle, are placed in unique memories.

If we reconsider the scenario described above employing the alternate read process, we

must �rst de�ne a read cycle, &, to consist of 3 cell times. Prior to the insertion of a
0
2, &

consists of the cells fa1; a2; a3g. As such, each cell must be located in separate memories to

depart in the correct order. After the insertion of a
0
2, & now contains the cells

n
a1; a

0
2; a2

o
which all must be placed in unique memories. Further, if we considered the insertion of a

cell a
0
1, clearly & would then contain the cells

n
a
0
1; a1; a

0
2

o
, where the three cells are yet

again required to be located in unique memories. At this point, we have inserted two cells

and now require �ve unique memories to store each of the cells. If we allow incoming cells

to be "pushed in" to memories without restriction, the number of unique memory instances

required will clearly increase without bounds.

In outlining the placement constraints, we recall the read process is structured such

that k cells are delivered to each of the N outputs in a read cycle consisting of k cell times.

The exact number of shared memories, k, necessary to support this read operation must

be k � N , since each output must read at least one packet from each memory without

contention. For k = N , an arriving cell C1 must not be "pushed in" to one of the N � 1
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memories containing cells destined to depart in the N � 1 time slots prior to C1. This is

apparent given that each of the N cells scheduled to depart in the k cell times, all destined

for the same output, must be located in separate memories. While this ensures C1 will be

depart in the correct interval of k cell times, its insertion can still produce con�icts with

cells scheduled to depart after C1. This is obvious as the relative departure order of cells

following C1 is altered resulting in the scenario presented above. To resolve this issue, we

restrict C1 from being placed in the N � 1 memories containing cells scheduled to depart

just after it, that are also destined for the same output port: These two constraints can then

be combined to state an arriving cell, C1, should not be placed into the N � 1 memories

containing cells, destined for the same output port, that are scheduled to depart either

before, or after, C1. From these constraints, we observe that k = 2 (N � 1) + 1 = 2N � 1

memories is su¢ cient to ensure no placement con�icts will occur.

The result we have just presented, however, neglects the arrival time con�icts that are a

result of the column-associative packet placement algorithm. If we consider an arriving cell

can be blocked by at most N�1 cells having the same arrival time, we recognize the memory

su¢ ciency condition increases such that, k = 2 (N � 1)+(N � 1)+1 = 3N�2 memories are

now su¢ cient to ensure placement occurs without con�ict. Further reduction of the memory

requirement can be achieved by incorporating speedup as discussed in Section 3.3.3. Since

PIFO queues are employed, we do not need to o¤er multiple departure times for each

memory, instead we utilize both memory write- and read-speedup; s, to provide a reduction

in resource requirements. Cells will again be introduced to the pipeline in groups of Ns and

written to memory with speedup s. Additionally, we will now read cells from memory in

groups of Ns to achieve a simultaneous reduction in pipeline depth and memory requirements.

Incorporating the speedup gains, we observe the memory requirement decreases such that,

k = 2
�
N
s � 1

�
+
�
N
s � 1

�
+ 1 = 3

�
N
s

�
� 1 is now su¢ cient.

In reading a complete window of cells, the order in which cells arrive at a given output

is not guaranteed. The read process only ensures that all k cells scheduled to depart, in

a period of k cells times, will be delivered to each output in a given interval. Since the

order is not guaranteed, we recognize a small reordering bu¤er containing at least k � 1

cells is required to hold cells associated with a given read cycle. To determine the total
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delay observed by an arriving cell, we must include the delay of the pipeline, k cell times,

and the delay associated with the reordering bu¤er, k� 1 cell times. Aggregating the delay

associated with both the placement process and the reorder bu¤er, we note that a parallel

shared memory router, utilizing the column-associative packet placement algorithm, can

emulate an output queued router within 2k � 1 time slots

4.3 Load Balancing

Our discussion thus far has assumed that cells are inserted into the memory management

pipeline at the leftmost column and are shifted right at each time slot. As cells propagate

through the pipeline, column placement units select a single cell for storage in the associated

column memory. The progression of cells through each subsequent stage of the pipeline

results in placements that tend to be concentrated near columns closest to their insertion

point. This is intuitive considering that for every cell in a given pipeline column, there

must be a corresponding cell in that column�s memory with a matching departure time.

As a group of arriving cells, always located in the same column, advances in the pipeline,

the likelihood that a con�ict exists for all cells in the column decreases signi�cantly. In

addition, we note that after N � 1 successive occurrences where no packets are placed, at

least one packet is guaranteed to be placed in the successive N columns.

To illustrate the clustering of cell placements around the insertion point, we present sim-

ulation results, shown in Figure 4-3, for a 64-port switch with 127 memories. In highlighting

the clustering e¤ect, we employ a FIFO queueing scheme. Since the clustering of cells is the

result of a horizontal progression of cell placements (not the queuing discipline), the results

are equally relevant for PIFO queueing schemes. In the simulation results presented, cell

arrivals are uniformly distributed across the destinations and obey a Bernoulli i.i.d. process

with a normalized tra¢ c load of one. As evident from the queue distribution presented, cell

placements are densely clustered around the insertion point and drop o¤ considerably after

N placement opportunities.

From an implementation perspective, we would prefer the distribution of cells across the

shared pool of memories be uniformly distributed. This enables dynamic queue management
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Figure 4-3: Queue size distribution for a PSM system without load balancing.

algorithms and thresholds to be more e¢ ciently implemented. In order to more e¤ectively

distribute cell placements, the elements at which cells are inserted into the pipeline must

vary for each port to avoid clustering. To accomplish this goal, a rotation technique, pre-

sented in Figure 4-4, is employed, whereby cells arriving at port i are inserted into the

column that precedes the insertion point used in the previous time slot. For example, if at

time t a cell was inserted into column ', then all cells inserted at time t+1 must be placed

in column ' � 1. If a cell is inserted into the rightmost column and has yet to be placed

in memory, it is shifted to the leftmost column, representing a circular shift, to avoid cell

loss. As cells advance in a clockwise manner and insertion points occur counter-clockwise,

then we must ensure that a cell will not meet an insertion point within 2N � 1 time slots

to avoid cell loss.

Theorem 7 Uniform distribution of cells across the memories, employing a FIFO queuing

discipline, can be achieved with 4N � 2 memory units.

Proof. For a cell C1 inserted at column '1, there must be 2N � 1 columns prior to the

insertion of another cell. Thus, an additional 2N � 1 columns are required to rotate the
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Cell insertion point at time t+2

Figure 4-4: Rotation insertion scheme to support load balancing.

insertion points to ensure uniform distribution across the memories. Aggregating the two

terms, we conclude 4N � 2 memories are su¢ cient to achieve a balanced cell distribution.

In Figure 4-5, a 32-port switch with 126 memories is simulated assuming maximal load.

It is observed that a rather uniform memory occupancy distribution results, with fewer cells

stored in each memory.

4.4 Comparison of Switching Architectures

In evaluating switch architectures, considerations are most often given to performance,

scalability, and technical viability. Packet delay and throughput are critical components

in establishing switching fabric performance, whereas scalability and technical viability are

considered in terms of the resource utilization for increasing port densities. This section will

outline, with respect to the stated metrics, the bene�ts of the row-associative and column-

associative packet placement algorithms as compared to existing switching architectures
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Figure 4-5: Queue size distribution with load balancing.

(IQ, OQ, PPS, etc.). Our goal is to highlight the scalability of the proposed architectures

with regards to the memory bandwidth requirement, as well as discuss practical implemen-

tation considerations.

Several alternative architectures were presented in Section 1.3 to provide context for the

PSM architectures outlined in this dissertation. In Table 4.2, we provide a summary of the

bandwidth and memory resource requirements associated with each architcture. Perhaps

the most straightforward architecture is the shared memory switch, whereby all incoming

packets are placed into a single, shared bu¤er during each time slot. Additionally, all

outgoing packets must be read from the same shared bu¤er in one time slot resulting in a

memory bandwidth requirement of 2NR: Output queued (OQ) switches were proposed to

reduce this memory requirement by bu¤ering incoming packets at their destination. For

an OQ switch having N ports, there can be N packets destined for a single output queue.

This results in each queue having a memory bandwidth requirement of (N + 1)R. While

the shared memory and OQ switch architectures provide 100% throughput and o¤er ideal

delay properties, both impractical for increasing line rates and port densities given their
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Table 4.2: Comparison of various routing architectures.
Type Total

Memories
Memory
Bandwidth
Required

Total BW
Required

Comments

Shared
Memory

N 2NR 2NR O¤ers ideal delay and
throughput metrics.

Output
Queued

N (N + 1)R N (N + 1)R O¤ers ideal delay and
throughput metrics.

Input
Queued

N 2R 2NR Maximum through-
put 58% without
VOQs. Achieves
100% throughput
with MWM.

CIOQ 2N 2R 2NR Emulates FCFS OQ
switch with speedup
of 2.

Load Bal-
anced
Router

N 2R 2NR Mis-sequencing
present. O¤ers 100%
throughput

2N 2R 2NR Utilizes coordination
bu¤er to emulate OQ
switch and provide
QoS guarantees.

Distributed
Shared
Memory

N 4R 4NR Emulates FCFS OQ
switch.

N 4R 4NR Provides QoS guar-
antees.

Row-
associative
PSM

O
�
N1:5

�
2sR 2sNR Emulates FCFS OQ

switch.

Column-
associative
PSM

�
s+m
sm

�
N�1 2sR 2sNR Emulates FCFS OQ

switch

3
�
N
s

�
� 1 2sR 2sNR Provides QoS guar-

antees with delay of
2k � 1 time slots�

b+1
s

�
N � b 2sR 2sNR Supports multicast

tra¢ c with bound,
b, on the number of
copies.

4N � 2 2sNR 2sNR Provides load balanc-
ing
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respective memory bandwidth requirement.

In comparison to the shared memory and OQ switch architectures, both the row-

associative and column-associative packet placement approaches o¤er similar throughput

and delay properties. The shared memory and OQ switch architectures do o¤er better

performance when QoS guarantees are o¤ered. Recalling our discussion of the column-

associative packet placement architecture, in order to support QoS guarantees a reordering

bu¤er was required, which results in a delay of 2k � 1 cell times. However, both the row-

associative and column-associative architectures only require a memory bandwidth require-

ment of 2sR, which is considerably more practical as line rates and port densities increase.

Moreover, the multicast approach utilized by the column-associative PSM architecture pro-

vides considerably better memory utilization compared to the OQ architecture. For OQ

architectures, each multicast cell must be replicated and stored at each egress destination

upon arrival. This results in a sizable increase in the memory requirement relative to the

proposed PSM architectures.

Input queued (IQ) routers were introduced to minimize the high bandwidth of OQ

switches by bu¤ering arriving cells at their inputs. As indicated in Chapter 1.3, an IQ

switch that employs a FIFO queueing discipline has a maximum throughput of 58% due

to Head-of-Line (HOL) blocking. In the HOL blocking scenario, a blocked packet at the

head of an input queue prevents all packets that follow it from traversing the switch, even

when the desired output link is idle. Aside from the HOL blocking issue, the IQ switch does

possess a pragmatic memory bandwidth requirement of 2R. To eliminate the HOL block-

ing issue, an alternate approach, termed virtual output queueing, was proposed whereby

each input maintains a separate queue for each output. This approach allows the switch

to achieve 100% throughput using a maximal weight matching (MWM) algorithm. How-

ever, the MWM algorithm is not practical from an implementation perspective, as it has a

computational complexity of O
�
N2:5

�
.

A hybrid approach that utilizes both input and output queueing, referred to as com-

bined input output queueing (CIOQ), can emulate the delay and throughput properties

found in the shared memory and OQ switches with a speedup of two. While CIOQ does

address throughput and delay issues associated with IQ switches, the complexity of the
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scheduling algorithms remain a problem as they do not scale well. The advantage of em-

ploying the proposed PSM architectures is the scalability of the placement process. For

the column-associative packet placement algorithm, the placement process scales linearly,

while maintaining the same memory bandwidth requirements present in IQ and CIOQ.

In terms of resources, the number of physical memories required for IQ (N) and CIOQ

(2N) architectures remains �xed regardless of the features supported. Conversely, the pro-

posed column-associative PSM architecture requires additional resources if QoS provisioning

(3
�
N
s

�
�1) or multicast support (

�
b+1
s

�
N�b) are required. While speedup does impact the

scalabiliyt, given decisions must now be made faster, it does provide a signi�cant reduction

in the physical memory requirement not present in either the IQ or CIOQ architectures.

Similar architectures have been proposed that employ a central stage of bu¤ering to dis-

tribute to the memory bandwidth requirement. One such architecture is the load balanced

router which attempts to exploit the uniformity of the tra¢ c matrix to apply a Birkho¤-von

Neumann capacity decomposition approach to achieve O (1) placement complexity. This ap-

proach can achieve 100% throughput and o¤ers achievable memory bandwidth requirements

of 2R. However, the load balanced router has a signi�cant drawback in that mis-sequencing

of packets is common. This issue can be resolved by incorporating a coordination bu¤er

at the egress to resequence packets. The use of a coordination bu¤er require a crossbar,

operating at 2NR, to be located between the shared memory and egress bu¤ering. The load

balanced router, compared to the proposed PSM architectures, o¤ers equivalent throughput

and delay guarantees. Howevever, the proposed PSM architectures do not require the con-

struction and decomposition of the tra¢ c matrix which results in a less complex decision

process.

The �nal approach to be discussed is the distributed shared memory (DSM) architec-

ture. This architecture utilizes a shared pool of memories which are located in linecards

that are interconnected by a crossbar. Packets arriving to a DSM switch are immediately

switched to a line card, using the crossbar, and placed in memory. Packets remain in mem-

ory until their scheduled departure time arrives. At that point, the packet is read from the

line card and switched, by means of a crossbar, to the correct output. As packets must

traverse the crossbar upon arrival and departure, the resulting crossbar operating rate is
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at least 2R. The initial placement into memory does not ensure a packet is placed into

the line card from which it will depart. As a result, the DSM switch architecture requires

a crossbar operating rate of 4R and a total memory bandwidth of 3NR to emulate the

FCFS OQ switch performance. By comparison, the column-associative PSM architecture,

for all implementations, requires a memory bandwidth of 2sR. To provide QoS guarantees,

the crossbar operating rate and memory bandwidth requirement must increase to 4R and

4NR, respectively. Clearly, the lack of an intelligent placement process yields an ine¢ cient

architecture with regards to the crossbar operating rate and memory bandwidth require-

ments. Neither limitation is present in the column-associative and row-associative packet

placement architectures proposed in this dissertation.
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Chapter 5

Physical Realization of Packet

Placement Algorithm

In this chapter, we provide a detailed discussion on the di¤erent implementation aspects

pertaining to the proposed pipelined PSM architectures. In particular, we focus on the

critical design path, make observations regarding scalability, and rami�cations associated

with incorporating speedup into each design. Moreover, we present a modular architec-

ture for tra¢ c generation that is scalable with respect to the number of packet generation

modules and switch port densities supported. We conclude this chapter by discussing the

implementation results, in the context of simulation accuracy, resource consumption and

the scalability of the memory management core and tra¢ c generator.

5.1 Switch Fabric Design Flow

5.1.1 Row-Associative Packet Placement Architecture

In Section 3.1, the row-associative memory-management algorithm for PSM switches em-

ploying a pipeline architecture was introduced. In the proposed router architecture, the

memory-management algorithm is implemented using a multi-stage pipeline architecture

that distributes the packet-placement process, thereby exchanging �xed latency for in-

creased execution speed. The proposed pipeline architecture consists of L(L+1)2 cell bu¤ering
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units arranged in a square structure. Each row is associated with one of the parallel shared

memory units. Hence, the architecture requires L parallel shared memories. Incoming pack-

ets from input port i are initially inserted into row i. The underlying mechanism is that at

every time slot, packets are horizontally shifted one step to the right, with the exception

of the diagonal cells of the structure. The diagonal cells have the ability to move vertically

to another row of the same column. A cell moves vertically if any of the following two

conditions are met: (a) the memory associated with the row in which it is currently located

already contains a packet with the same departure time; (2) there is another cell ahead

of it in the same row with the same departure time. Therefore, vertical moves are used

as a means of resolving memory placement contentions. The goal of the scheme is that

once a packet reaches the last column of the pipeline, it is guaranteed to be located in a

row, having an associated row memory, that does not contain any packets with the same

departure time.

It should be evident that the critical path in the design is the memory assignment process

that takes place at the diagonal elements, or decision cells, of the pipeline structure. Let

us review the assignment process. Each decision cell, residing on row ri (i 2 [1; 2; : : : L])

must determine whether a packet, pi, can be placed at the memory associated with row i.

The memory is considered available for packet placement if it does not already contain a

packet with the same departure time di as the packet residing in the decision cell. If the

memory is occupied with a packet with the same departure time, then the packet is shifted

to another row.

The following three criteria govern the movement of packets to a new row rn:

1. The memory located on the selected row (rn) cannot contain a packet departing at

time di.

2. No other packets on row rn, ahead of the packet moved and which have yet to reach

a diagonal location, can have a departure time di.

3. Row rn must not contain one of the N �1 possible packets that have the same arrival

time as the shifted packet. In other words, the position in the new row should be

unoccupied.
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In light of these placement rules, an availability vector of length k is created to indicate

locations available for the placement of a packet at time di. In a distributed shared memory

switch, each shared memory will contain km cells representing k consecutive departure

times. A decision cell need not know the precise number of locations available for a given

departure time, only that at the number is less than m. Thus, the size of the availability

vector presented to the decision cell is simply k. In order to perform the appropriate

placement selection for packet pi with departure time di, the column of bits pertaining to

position d in the availability map is examined. In accordance with lemma 3, we can state

that since a packet always shifts into the next block, the maximal number of rows that is to

be examined by each diagonal cell is ( s+msm )N � 2. This inherently bounds the critical path

of the design, as it de�nes an upper bound on the search space that must be considered at

each step of the memory management process.

While the availability map provides information pertaining to the memories contents, it

does not provide any information regarding the location of the Ns �1 packets that potentially

arrived during the same time slot as pi. Having stated that a vector of length
�
s+m
sm

�
N � 2

is su¢ cient to locate an available row, an occupancy vector must be created to determine

the locations of Ns � 1 packets within the
�
s+m
sm

�
N � 2 subset, re�ecting potential adequate

rows. Hence, the bitwise-OR of the occupancy vector and availability vector provides a

single binary decision vector representing viable rows for packet placement. The decision

vector de�nes rows which (1) are not associated with memories that contain a packet with

departure time di, and (2) do not contain a packet with the same arrival time as pi.

The memory-management algorithm is based on selecting an available memory from one

of
�
s+m
sm

�
N�2 memories, such that all N packets are placed at the end of a at most O(N1:5)

phases. To accomplish this, we �rst determine whether the packet in the decision cell is

blocked by a packet with the same departure time as pi, as indicated by the availability

vector. If pi is blocked, the decision vector is then used to to select an available row from

one of
�
s+m
sm

�
N � 2 rows. The result of this decision process is that pi is either written to

the memory associated with the row in which it resides or placed in a row that is free of

con�ict. The decisions made at each location are represented by the �owchart in Figure

5-1.
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Figure 5-1: Outline of the process performed at the decision cells.
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While placement is certainly the more di¢ cult task, some consideration must be given

to retrieving packets from a shared memory structure. One practical solution is to present

a single packet bus to each shared memory unit. As packets are read from memory, each

output port will have at most one packet destined for it at any given time. Correspondingly,

we can present a shared packet bus of size N � packet_size to each memory unit such that

bus slice j, having width corresponding to a packet size, represents a packet destined for

output j. Each shared memory unit determines the destination (j) of the packet it is

transmitting to an egress port and only drives the jth bus slice of the packet bus. As a

result, each egress port will only be responsible for transmitting the packet located at the

jth bus slice, corresponding to the port enumeration of the packet bus. Implementation of

this scheme requires the need for an N � to� 1 multiplexer located in each memory cell.

5.1.2 Column-Associative Packet Placement Architecture

Critical Path Analysis

In Section 3.3, a column-associative memory-management algorithm for PSM switches was

introduced as an alternative to the row-associative approach discussed above. For the

column-associative memory management, a multi-stage packet placement architecture was

again employed to distribute the memory bandwidth requirement. In this instance, the

proposed pipeline architecture consisted of N � (2N � 1) cell bu¤ering units, where N is

the number of ports, arranged in a rectangular con�guration. Rather than couple rows

with memories, we instead chose to couple columns with memories to provide an equal

placement opportunity for all packets, having the same arrival time, to be placed in an

associated column memory. In this arrangement, the architecture required 2N � 1 shared

memories. Subsequent enhancements, in the form of QoS, multicast, and load balancing,

to the column associative memory management algorithm required an increase in number

of memories and, consequently, number of cell bu¤ering units required. The associated

memory and cell bu¤ering requirement for each enhancement is provided in Table 5.1.

The placement process receives incoming cells from input port i, then performs an initial

insertion into row i of column 1. For each placement, the underlying mechanism is that, at

every time slot, cells are horizontally shifted one step to the right, with the exception being
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Table 5.1: Memory and cell bu¤ering requirement for enhancements associated with the
column-associative memory management algorithm.
Architectural
Enhancement

Memory Requirement Cell Bu¤ering Requirement

Multicast d(sb+m) = smeN � b N � d(sb+m) = smeN � b
QoS 3 (N = s)� 2 N � 3 (N = s)� 2
Load Balancing 4N � 2 N � 4N � 2

cells selected for placement. In the most basic case, a cell is selected for placement if there

are no other cells, located in the associated column memory with a matching departure

time. Employing multicast requires no other cells, located in the selected memory, contain

matching departure time for each departure time associated with the multicast cell to be

placed. For QoS cells, we simply require there not be N � 1 cells having a departure time

either before or after that of the cell selected for placement. Regardless of the enhancements,

the goal of the scheme is that once a cell reaches the last column of the pipeline, it is

guaranteed to be located in a column, having an associated memory, that is devoid of

placement con�icts.

For the column-associative memory management architecture, clearly the critical path

in the design is again the placement decision process that must be made by the placement

primitives located in each column. Each primitive must determine whether a cell, residing in

column Ci (i 2 [1; 2; :::; k]) ; can be placed in the associated column memory. In the instance

where the queueing disciple is PIFO, cells located in each column must be inspected to

determine if they con�ict with those previously placed in the associated column memory.

If the cell is determined to be a viable candidate for placement, it is extracted from the

pipeline and written into the column memory. Otherwise, the cell will advance to the next

column where its placement viability will be re-evaluated for the next column memory.

To determine the feasibility of placing a cell in a column memory, each memory maintains

a binary occupation vector, of length k denoting the depth of the memory, to indicate

departure times that are currently reserved. To determine which cells in a given column are

available for placement, a requests vector is created as cells are inserted into the pipeline.

This vector, also of length k, provides a bitmap corresponding to the departure time for

each of the cells located in a column. For unicast tra¢ c, a single bit is set to indicate the
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requested location. In our discussion of multicast tra¢ c, we utilized the notion of a bound,

b, which limited the number of replications, or placement requests, that could be made by

a single cell. Consequently, a requests vector for a multicast cell can have at most b bits set

to indicate the requested placement location.

The requests and occupation vectors are constructed and maintained such that we can

obtain the set of viable cells (referred to as the candidates vector). If we denote the requests

vector by �, and the occupation vector as �, then each cell, ci; represents a single bit in the

candidates vector, �, which is constructed by performing the following bitwise operations

�(i) = ((: (� � �) & �) == �); (5.1)

where � and : denote the bitwise xor and bitwise not operations, respectively. The bitwise

xor of the requests vector and the occupation vector determines whether the requested

locations, in the case of multicast tra¢ c, are available for ci. The result is then masked

with, and later compared to, the requests vector to produce a single bit which indicates the

cells viability for a given memory. The candidates vector allows a priority encoder to be

used such that a cell can quickly be selected for placement into the corresponding column

memory. The cumulative result of this decision process is that ci is either written to the

memory associated with the column in which it resides or shifted to the next stage of the

pipeline.

Given that the xor operation can be achieved at high speed, it becomes apparent that the

priority encoder is the predominately time-consuming function. The complexity of a priority

encoder is generally acknowledged to be O(logNs ), where N denotes the number of elements

at its input, and s represents the placement speedup. It is noted that this complexity

pertains to 5 -bit-level operations (rather than more complex arithmetic abstraction), clearly

suggesting that the method is very e¢ cient from a computational standpoint.

Alternative Pipeline Structure

The column-based memory management algorithm discussed thus far consists of M � N

cell bu¤ering units arranged in a rectangular structure, where N is the number of switch
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ports and M represents the number of parallel memories. Recall from the implementation

discussion above, cells are introduced at the leftmost column and are guaranteed placement

upon reaching the �nal column. Once a placement decision is made, the cell is written

directly to memory. As a result, there can be up to M write operations that occur in

parallel. While the architecture will support M concurrent write operations, the system

only needs to support an aggregate of N write operations per time slot.

The use of M �N cell bu¤ering units implies a c�M �N register requirement, where

c is the cell size. If we consider a 32 port switch employing 63 memories, this would require

approximately 1 Mbit of registers to implement a pipeline using 64 byte cells. To reduce

this requirement, we observe that at most N cells are presented to the fabric during a single

time slot. In addition, each of these N cells are guaranteed placement upon reaching the

�nal column. Therefore, it is feasible to simply indicate which of the M memories a cell

should be written to as it passes through the pipeline. Once the N potential cells arrive at

the �nal column, they can all be written to memory simultaneously. Memory contention is

avoided as the pipelined placement algorithm dictates that all cells, with the same arrival

time, contain placement assignments to unique memories.

Given that cell placements can be delayed until the �nal column, it is no longer necessary

to propagate each cell through the pipeline. Rather, we can extract the departure time from

each arriving cell, then enqueue the cell in a delay bu¤er of depth M . Noting that only the

departure time is required by a cell placement unit, we can simply forward the extracted

departure time to the pipelined memory management algorithm. As the departure time for

each cell propagates through the pipeline, each column placement unit will attach the index

of the associated column memory to a selected departure time. Once all departure times

have reached the �nal column, the corresponding cell will be read from the delay bu¤er and

placed in the memory indicated by the attached index.

Propagating only the departure time and a memory index through the pipeline pro-

vides considerable reduction in the register requirement. The placement pipeline no longer

requires c�M�N registers to store cells as they are being placed. Instead, each cell bu¤er-

ing unit is only required to store the departure time, DT , and the index of the memory

for which the cell has been marked for placement. Therefore, the pipeline needs to be of
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size (dlog2 (DT )e+ dlog2 (M)e)�M �N , which is considerably smaller than a full 64-byte

cell. Considering, for example, a 64 port switch employing 127 memories and 256 depar-

ture times, we can now reduce to the register requirement to be approximately 28 Kbits,

considerably less than the 1 Mbit required when cells are propagated. This reduction does

have an associated cost in that we now require N multiplexors to place each cell in one of

the potential M memory destinations.

5.2 Packet Generation

Tra¢ c modeling plays a key role in the study of packet switching systems, such as Internet

routers. As line rates increase towards tens of gigabits per second, the duration of indi-

vidual packets decreases, rendering real-time tra¢ c generation a fundamental engineering

challenge. In evaluation of these systems, it is critical to reproduce tra¢ c conditions that

approximate the target environment. Additionally, the ability to generate tra¢ c �ows that

establish the limitations of a given algorithm or architecture is highly desirable. To address

these issues, we present a recon�gurable high-speed hardware architecture for heterogeneous

multimodal packet generation.

The tra¢ c generator we propose, presented in Figure 5-2, provides a modular architec-

ture that is scalable with respect to the number of packet generation modules and switching

port densities supported. There are �ve major components: a random number generator, ar-

rival process generator, source-destination lookup, packet formatter, and a departure-time

calculation module. Each module, with the exception of the departure time calculation

module, can be replicated N times and is capable of generating tra¢ c from one of k �ows.

The scalability of the departure time calculation module resides in the fact that it can ac-

cept destination addresses from N ports and will provide N departure times according to

a FCFS scheduling algorithm.

Establishing the arrival process generation, we have stated that support for both the

Bernoulli and two-state Markov modulated arrival processes is required. In the case of the

Bernoulli process, packets are uncorrelated and possess no temporal dependency properties.

Thus, each packet can be viewed as having a unique source-destination pair from cycle to
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Figure 5-2: Packet Generator Architecture
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cycle. For this reason, the Bernoulli arrival process module is designed to compare a random

arrival process value, ra, produced by the random number generator, to the user-con�gurable

per-�ow probability, pk, in order to determine whether a packet should be transmitted on a

per-cycle basis. The value of pk represents the probability that a packet will be transmitted

when �ow k is selected. This set of k probabilities is stored in the Source-Destination RAM,

with the index denoting the �ow selected, using the random �ow value, rf , that is again

produced by the random number generator. By dividing the n-bit number space of rf into

k distinct regions, the �ow index is then determined using comparators to determine the

kth region in which rf resides. Upon calculation of both ra and rf , the packet formatter is

instructed to send a packet when the following evaluation is true: ra � pk.

The two state Markov-modulated arrival process is simply an extension of the Bernoulli

arrival process architecture. The per-�ow probability is again selected using the random

�ow value, rf , by dividing its n-bit number space into k distinct regions to determine the

kth region in which rf resides. However, the �ow index is now used to retrieve two �ow

probabilities, pk and qk. The value of pk represents the probability that the Markov chain

remains in the ON and continues to transmit packets. Whereas, the value of qk represents

the probability that the Markov chain remains in the OFF state and does not transmit a

packet. These transition probabilities are compared to the random arrival process value,

ra, on each cycle to determine whether to perform a state transition. The bursty nature of

the two-state Markov modulated process can be maintained by storing new �ow probability

values only when the Markov chain transitions to the OFF state.

Prior to transmitting that a packet to the packet formatter, the arrival process module

must also produce a source-destination pair prior to packet construction. The approach

to generating a source-destination pair is to store the source-destination pairs in a RAM,

of depth k, then perform the selection in conjunction with �ow probabilities. The entire

solution can be realized with three RAMs located in the source-destination RAM module.

Two RAMs contain the arrival probabilities, pkand qk, while the third RAM contains only

the destination address for the packet. Since the source address is the same for all k

�ows in a single packet generator module, it can be represented by a single register that is

programmed during the initialization.
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Once the target destination for packets presented at each port has been determined, the

associated departure time can be calculated prior to transmission to the switch fabric. The

packet generation architecture we present supports systems implementing �rst-come-�rst-

serve (FCFS)-based scheduling. Packets arriving at a single port can have monotonically

increasing departure times based on the arrival order. To calculate the departure times for

a system with N ports, one must be able to compute departure times for the adversarial

case where all N packets are destined for the same output port. The computation of

departure times in a serial order would require that each computation complete in 50
N ns.

Given that packet switching architectures consisting of 64 ports or more are common, this

would require that each departure time be calculated in less than one nanosecond. Clearly,

this is not practical. Instead, departure times must be calculated in parallel at the cost of

silicon area. In Figure 5-3, the implementation of the departure time calculation fabric is

presented. Since departure times monotonically increase as packets arrive at a given output,

a register �le containing the current departure times for each output is stored in the base

departure time register �le. To compute the departure time at each port, the encoded

destination address presented to the fabric input is �rst split into an N -bit vectored request

where a single active bit represents the packet destination. Once the N -bit vector has

been generated for each destination address, the base departure time o¤set is computed by

summing the qth bit, where q identi�es each output port, of each N -bit vector. The result

of the summation represents the number of packets arriving at output port q. This base

departure time o¤set is then added to the base departure time at the end of each clock

cycle. This computation contains the critical path in the design due to the requirement of

N log2(N)-to-N multiplexors, whose output is immediately fed to a set of N adders that

sum N bits. This sum is then added to the base departure time register prior to being

registered.

Now that the method for calculating the base departure times has been established, the

method for calculating per-packet departure times must now be stated. The departure time

for each packet is a function of the destination address for every other packet arriving at

that time cycle and the base departure time for each packets destination. Since we have

the base departure time for each destination, all that is needed is to assign an o¤set for
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Figure 5-3: Departure Time Calculation Architecture
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each packet relative to other packets arriving during the same time slot. The o¤set for each

packet is calculated relative to the input port at which it was received. This e¤ectively

establishes a priority to each input port in terms of calculating its departure time o¤set.

The �rst input port automatically has the highest priority. For each successive port, a

comparator is needed to determine if a higher priority input has the destination. The result

of each boolean comparison is added to the packets departure time o¤set. From this, we can

establish that a packet arriving at input port 1 is automatically given a departure time of

1. Hence, input port 2 will require one comparator and possess a departure time of either 1

or 2. For input port N, a total of N-1 comparators is required to produce a departure time

than can vary from 1 to N. Once the departure time o¤set is calculated, it is added to the

base departure time o¤set register, speci�ed by the destination address, to determine the

per-packet departure time. The selection of this base departure time o¤set register requires

N of N -to-1 multiplexors because each packet can possess one of N destinations.

Upon calculating the departure time, its output is forwarded to the packet formatter

which is responsible for synchronizing the departure time, destination and packet trans-

mission information. The departure time, as well as the packet validity, is considered test

information. For this reason, this information is embedded in the payload, by the packet

formatter, for evaluation and performance analysis at the output of the switch. After for-

matting has completed, the packet is presented to the ingress interface of the switch fabric.

5.3 Hardware Implementation Results

5.3.1 Packet Generator Module

FPGA Implementation

The design of the packet generator architecture has been coded in Verilog HDL and synthe-

sized using the Synplicity SynplifyPro synthesis tool targeting a Xilinx Virtex-4 XC4VLX80-

11-FF1148 FPGA device. This implementation consists of 64-ports and supports 128 �ows.

Packets are produced at the output of the packet generator every 50 ns.

In order to maximize the devices available for implementation, we decided to reduce the

logic resources required to compute departure times by limiting the computations to N=2,
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Table 5.2: FPGA Implentation Cost and Expected Slack
Module LUTs Slack (ps)

Departure Time Calculation 24674 +0.657
Packet Generator 19214 42.83
Complete Design 43793 +0.27

or 32, departure times in a single cycle. By clocking the departure time calculation fabric

at least 2x faster than the rest of the system, 64 departure times could be computed in

the required 50 ns period. However, synchronization of the two clock domains requires an

additional two clock cycles. For this reason, the departure time computation fabric operates

at 12.5 ns, or 4x faster than the rest of the system.

The full implementation of the 64-port packet generator required 43,793 Lookup-Tables

(LUTs), or 61% of the LUTs available in a Xilinx Virtex-4 XC4VLX80 device. Targeting

a 20 MHz operation frequency, synthesis was able to meet timing with 27 ps slack. Recall

three RAMs, two for probabilities and one for the source-destination pairs, are required

by each generator module, resulting in a 3N RAM architectural requirement. Accordingly,

this implementation consumed 192 of the 200 RAMs made available by the device.

Lookup-Table (LUT) resource consumption, presented in Table 5.2, re�ects the imple-

mentation cost of each module. The departure time computation fabric �ts comfortably in

this device suggesting that the actual computation fabric could be designed to operate at

the same clock rate as the rest of the system.

Simulation Observations

Correct operation of our packet generator architecture was veri�ed using stimulus written

in SystemC, and co-simulated with the Verilog HDL implementation, using the Synopsys

VCS-MX simulator. Programming the individual packet generators, as well as simultane-

ously starting all packet generators after con�guration, was performed using this stimulus.

Con�guration of the device is performed using a single shared bus with a per-generator

address decoder that is located at the top-level of the packet generator implementation.

The user has the ability to set values for each of the 2k �ow probabilities, the k source-

destination pairs, seeds for the two random number generators (LFSRs), and the arrival
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Table 5.3: O¤ered Load Variance
Simulated Samples Expected O¤ered Load Actual O¤ered Load

1500 0.8 0.806832
200,000 0.8 0.800771
1� 107 0.8 0.799683

process type for each packet generator. Hence, the duration of the con�guration process for

the entire system consists of (2k + 3)N clock cycles.

Once the device is con�gured, each packet generator is enabled to generate packets

concurrently. To verify the correct operation, the load o¤ered by each packet generator was

measured to determine the variance between the expected o¤ered load and the o¤ered load

produced via simulation. Table 5.3 presents the simulation results for the 64-port packet

generator con�gured to produce an o¤ered load of 0.8.Results presented in this instance

were for a single instance, but remain consistent across mutliple iterations. The variance

between the expected and o¤ered load decreases as the simulation length indicating that a

real-time implementation would yield results that closely approximates the desired o¤ered

load.

5.3.2 FoC Implementation Results

Row-Associative Packet Placement Architecture

To establish the viability of the FoC architecture, employing the row-associative memory

management approach, the algorithm was implemented in hardware targeting an Altera

Stratix II EP28S60 FPGA device. The implementation consisted of eight ports, each op-

erating at 10 Gbps, representing a switch with an aggregate capacity of 80 Gbps. The

maximum departure time, k; was set to 64. Further, the system was designed with a place-

ment decision speedup (s) of four, requiring packet placement decisions to be performed in

approximately 12:5 ns: Additionally, there were four unique locations for each departure

time in each row memory, i.e. m = 4. The prototype system, with speedup and multiple

packet placement, utilized eight physical memories consuming a total of 26:624 kb, including

logic mapped to memory. This assumed that only packet headers are processed (as pay-

load is irrelevant to the decision making process). However, if 64-byte payload is assumed,

80



Table 5.4: Number of memories in the row-associative PSM switch
Switch Ports (N) Speedup (s) Memory Units

8 2 19
8 4 5
16 2 58
16 4 18
32 4 51
64 4 144

the aggregate on-chip memory requirements increased to 1:05 Mbit. While eight physical

memories were implemented, principally for symmetry and test purposes, no more than �ve

memories were actually required (as stated in Table 5.4).

The design required 17,383 adaptive look-up tables (ALUTs), or 35% of the ALUTs

available on the target device. Proper evaluation of the switch was established by attaching

a packet generator, implemented using an Altera Cyclone EP1C6Q-240C8 device, to apply

both Bernoulli i.i.d. as well as bursty tra¢ c to the PSM switch fabric. In varying the tra¢ c

load and patterns over a wide range of possible scenarios, the viability of the proposed

algorithm in a real-time environment was established. The overall latency contributed by

the architecture with respect to a pure output-queued router was 100 ns (8 stages of 12:5 ns

each).

Column-Associative Packet Placement Architecture

The technical feasibility of the column-associative packet placement architecture was es-

tablished by evaluating both the critical path and area requirement for a single column.

As placement decisions are independent, the increase in delay and area requirements as

columns are added is approximately linear with respect to port density. To obtain the

relevant metrics, a switch fabric implementation consisting of 32 ports, each operating at

10 Gbps, having an aggregate capacity of 320 Gbps, was developed. As before, the system

was designed with a placement decision speedup (s) of four, requiring packet placement

decisions to be performed in approximately 12:5 ns: Additionally, there were four unique

locations for each departure time in each column memory, i.e. m = 4. Utilizing an Altera

Stratix II EP28S60 FPGA device, the delay associated with the decision process (criti-
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cal path) was obtained and determined to be 10:844 ns. For the area requirement, the

single column implementation of the placement process yielded an adaptive look-up table

(ALUT) requirement of 1,279. From this, we can conclude that a full system consisting of�
s+m
sm

�
N � 1 columns, in this instance 15 columns, would necessitate a minimum ALUT

requirement of 19,185. One last metric of note is the overall latency contributed by the

architecture, with respect to a pure output-queued router. This was found to be 187:5 ns,

which is derived from having 15 stages, each requiring 12:5 ns.

For the implementation presented above, we de�ned the maximum departure time, k; to

be 64 and the �xed cell size to be 64 bytes. Additionally, we can establish the 32 port system

requires requires 15 physical memories since s = m = 4. Given multiple departure times are

o¤ered per column memory, i:e: m = 4, there must be 256 cell locations per memory. This

results in a total memory requirement of 1:97 Mbit. Clearly, this memory requirement is

practical given the current level of memory provisioning present in current VLSI o¤erings.

In fact, the relatively small resource requirements of the column-associative packet place-

ment architecture yields a solution that allows further consolidation of additional switching

functions.
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Chapter 6

Conclusions

6.1 Summary of Dissertation Contributions

6.1.1 Performance Analysis of Output Queued Cell Switches

In Chapter 2, a novel performance analysis of output queued cell switches with general in-

dependent heterogeneous tra¢ c was presented. Random arbitration was employed whereby

non-empty queues compete equally for service within each switching interval. In particu-

lar, the case of bursty two-state Markov-modulated arrivals in which input ports generate

bursty streams that are non-uniformly distributed was studied. Under the assumption of a

memoryless server, the probability generating function of the interarrival process is utilized

to derive an approximation for the queue size distribution. The methodology established

provides a �exible tool in obtaining bounds on the behavior and expected performance

characteristics of output queued switches under a wide range of correlated tra¢ c scenarios.

The validity of the analytical inference was established via simulation results.

6.1.2 Scalable Packet Placement Algorithms for PSM Switches

In Chapter 3, we described two distinct pipelined memory management algorithms for PSM

switches. The �rst was a row-associative memory management algorithm which employed

a triangular pipelined structure to place incoming packets into a pool of shared memories.

Each row was coupled with a corresponding memory, such that placements were determined
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by allowing each cell, located on the diagonal of the triangular structure, to determine

whether it could be placed in the associated row memory. If the row memory was occupied,

the cell would then select a row, from a set of 2N�1 potential candidates, in which to place

the con�icted cell. Essentially, the placement algorithm allowed the cell move vertically

until an available memory was found. We then proceeded to introduce a column-associative

memory management algorithm, whereby a rectangular pipeline structure was employed

such that each column was coupled with a single memory. Individual cell placements were

no longer constrained to the row in which they were located. Instead, all cells arriving at

time t were coupled with a column memory for placement consideration during each time

slot. At the end of each time slot, the group of cells, having the same arrival time, would

then advance to the next column for further consideration. Upon reaching the last column

in the pipeline, all cells were guaranteed placment.

Each of the proposed schemes exploit time-space trade-o¤s to o¤er reduced computa-

tional complexity of the memory management process, thereby gaining scalability at the

cost of �xed latency. In each instance, we provided analysis that outlined the memory

and delay bounds, while also highlighting mechanisms, such as memory speedup, that can

further reduce these bounds. In Chapter 4, we extended the column-associative PSM archi-

tecture to o¤er QoS guarantees, support for multicast tra¢ c, and provide load balancing

capabilities. We concluded with a comparison spanning the performance, implementation,

and scalability attributes, between the proposed PSM solutions and existing switch fabric

architectures.

6.1.3 Hardware Realization of a Fabric-on-Chip Architecture

In the �rst section of Chapter 5, we provide a detailed discussion pertaining to the di¤erent

implementation aspects of the proposed memory management algorithms. In particular,

we focus on the critical design path, scalability, and the e¤ect of speedup in reducing the

memory requirements for the parallel shared memory switch. At the conclusion of Chapter

5, implementation performance attributes, such as resource consumption and scalability

prospects for each packet placement algorithm were discussed.
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6.1.4 High-Speed Recon�gurable Architecture for Heterogeneous Multi-

modal Packet Tra¢ c Generation

The remainder of Chapter 5 was dedicated to an issue complementing the implementa-

tion the FoC, which is the design of a recon�gurable high-speed hardware architecture for

heterogeneous mutlimodal packet generation. The proposed architecture supports �ow ag-

gregation as well as provides a modular architecture that is scalable with respect to the

number of packet generation modules and switching port densities supported. Support

for both Bernoulli and two-state Markov modulated arrival processes was provided. Fur-

thermore, FPGA implementation and simulation results were discussed to emphasize the

viability of this architecture.

6.2 Relevant Publications

The following is a list of publications pertaining to contributions made thus far, as described

in this dissertation:

� B. Matthews, I. Elhanany, "Multicast and QoS Provisioning in Parallel Shared
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� Xike Li, I. Elhanany, B. Matthews, "A Scalable Frame-based Multi-Crosspoint

Packet Switching Architecture," in review for IEEE Transactions on Computers.

� B. Matthews, I. Elhanany, "A Scalable Memory-E¢ cient Architecture for Parallel

Shared Memory Switches," 2007 IEEE Workshop on High Performance Switching and

Routing (HPSR), May, 2007

� B. Matthews, I. Elhanany, V. Tabatabaee, "Accelerated Packet Placement Archi-

tecture for Parallel Shared Memory Routers", Proceedings of IFIP Networking 2007,

May, 2007

� B. Matthews, I. Elhanany, "Switch Fabric on a Recon�gurable Chip using an Accel-
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agement Perspective,�High-Performance Packet Switching Architectures, Springer-

Verlag, London, September 2006.

� B. Matthews, I. Elhanany, "On the Performance of Output-Queued Cell Switches

with Non-Uniformly Distributed Bursty Arrivals," IEE Proceedings on Communica-
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� B. Matthews, I. Elhanany, V. Tabatabaee, "Fabric on a Chip: Toward Consolidating
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� B. Matthews, I. Elhanany, "A High-Speed Recon�gurable Architecture for Heteroge-

neous Multimodal Packet Tra¢ c Generation," Proc. IEEE 48th Midwest Symposium
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