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ABSTRACT 

 

This dissertation investigates variability in the echolocation calls of 

Brazilian free-tailed bats, Tadarida brasiliensis (Chiroptera: Molossidae), and 

explores how bats adjust echolocation call structure in response to different 

behavioral and ecological conditions.   Substantial geographic variation exists in 

the echolocation call structure of T. brasiliensis throughout the species range in 

the US, but this variation does not correlate with geographic or climatic patterns.  

Most variation in call structure is due to differences between and within the calls 

of individuals.  When exposed to broadcasts of high frequency insect sounds, 

free-flying bats consistently responded by shifting call frequencies away from the 

broadcast frequencies.  This response suggests that bats are sensitive to local 

acoustic interference that decreases the efficiency of echo reception.  In another 

investigation of reactions to interfering sounds, bats responded to echolocation 

playbacks by rapidly shifting their call frequencies away from playback 

frequencies, indicating that a jamming avoidance response was occurring.  Bats 

more frequently shifted their calls upwards to higher frequencies, which may be 

due to maximal jamming power of the lower frequency portion of echolocation 

calls.   Flexibility in their echolocation calls also was evident in calls produced by 

T. brasiliensis while emerging from roosts in a tight column formation.  Bats 

emitted two distinct call types during emergence, sweep and hook calls, which 

were substantially different from foraging calls.  Call structure differed between 

roosts, which may be related to differences in the spacing of bats within 
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emergence columns.  In a final experiment, it was found that bat activity was 

substantially greater in response to echolocation playbacks that contained 

feeding buzz calls compared to broadcasts that did not contain these signals, 

indicating that bats eavesdrop on the echolocation calls of conspecifics.  Overall, 

this study documents the highly flexible nature of echolocation in Brazilian free-

tailed bats and demonstrates that bats respond acoustically to behavioral and 

ecological influences. 
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CHAPTER I 

Introduction 
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Echolocation is a form of biological sonar in which calls emitted by an 

animal are reflected off objects in the environment and return to the sender as 

echoes.  By comparing the echo to the original signal, the calling animal obtains 

information about the surrounding environment (Griffin 1958).   Echolocation 

involving simple signals, such as tongue clicks, has been reported in some birds 

(Konishi and Knudsen 1979), shrews (Tomasi 1979), and megachiropteran bats 

(Roberts 1975).  Substantially more complex forms of echolocation involving the 

use of highly structured signals and sophisticated neural processing to allow 

extraction of detailed information about target range and identity occur in 

cetaceans and microchiropteran bats (Thomas et al. 2004).    

Although all microchiropteran bats use some form of echolocation, 

considerable differences exist between species in the temporal and spectral 

structure of calls.  Bats exhibit substantial interspecific variability in fundamental 

frequency, call shape, energy distribution (Fenton and Bell 1981), use of 

harmonics (Simmons and Stein 1980), duty cycle (Jones and Rayner 1989), and 

tolerance of pulse-echo overlap (Fenton et al. 1995).  Intraspecific variability in 

echolocation of bats also has been documented.  In some species, echolocation 

structure is associated with characteristics of an individual, such as age, sex, or 

body size (Jones et al. 1992, Barclay et al. 1999).  Bats have also been shown to 

adjust their call structure in reference to conditions at a foraging site, including 

the proximity of insect prey (Griffin 1958), the amount of vegetative clutter (Kalko 

and Schnitzler 1993, Obrist 1995), and the presence of nearby conspecifics 

(Habersetzer 1981, Ulanovsky et al. 2004).  Because many bats use 
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echolocation for both orientation and prey capture (Griffin 1958), such 

adaptability of call structure is critical to maximizing the efficiency of echolocation 

under different conditions.  

The research presented in this dissertation expands our understanding of 

intraspecific variation in the echolocation of bats, by investigating behavioral and 

ecological influences on call structure that have not been thoroughly explored in 

the past, if at all.  This dissertation includes six chapters; the first of which is this 

introduction and overview.  Chapters 2 – 5 are manuscripts that are in press, 

submitted and under review, or in preparation, that describe my studies 

investigating variation in the echolocation calls of Brazilian free-tailed bats, 

Tadarida brasiliensis, in different geographical, behavioral and ecological 

contexts.  

Chapter 2 (in press, Animal Behaviour) describes geographic variation in 

the echolocation calls of Brazilian free-tailed bats throughout their range and in a 

variety of different habitats in the southern United States.  Substantial differences 

in call structure are documented, but these differences do not correspond to 

geographic or climatic patterns, and are attributed to substantial flexibility in 

individual call structure.  In chapter 2, I also assess the effects of local acoustic 

environments on variation in echolocation calls by examining the response of 

bats to broadcasts of high frequency insect sounds.   

  Chapter 3 (in press, Proceedings of the Royal Society of London B: 

Biological Sciences) provides the first experimental evidence that bats shift call 

frequencies to avoid spectral overlap with the calls of nearby conspecifics, a 
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phenomenon described in the literature as a jamming avoidance response (JAR).  

Previous research has suggested that bats exhibit jamming avoidance, but these 

studies relied on behavioral correlations rather than well-controlled experimental 

playbacks.  Bats consistently exhibited a rapid jamming avoidance response to 

playback stimuli, and showed an asymmetrical response toward shifting their 

calls upwards to higher frequencies, which I hypothesize is due to the greater 

jamming power of lower frequency call components  

  Chapter 4 (for submission to Acta Chiropterologica) describes the calls 

emitted by Brazilian free-tailed bats during evening emergences from major 

roosts in South Central Texas.  Bats exiting roosts experience a highly cluttered 

acoustic environment that presents very different challenges for orientation than 

foraging for insects in open airspace.  In this chapter, I describe two very 

different, high frequency call types that are produced by emerging bats.  I 

examine whether call structure changes in relation to the number of emerging 

bats, as estimated from thermal imaging video recordings, and speculate on the 

possible functions of these calls. 

Chapter 5 (in review, Canadian Journal of Zoology) demonstrates that 

free-flying bats eavesdrop on the echolocation calls of conspecifics and are 

attracted to playbacks of ‘feeding buzz’ calls that indicate successful foraging.  

While eavesdropping on echolocation calls has been reported in the past, this 

research expands on previous studies by comparing responses to realistic 

echolocation playbacks, which allows me to demonstrate that the feeding buzz 
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component of call sequences attracts bats to apparent “hotspots” of successful 

foraging.  

Chapter 6 concludes the dissertation with a summary of the important 

findings from chapters 2 - 5, and suggestions for potential areas of productive 

research in the future 
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CHAPTER II 

Variability In the Echolocation of Tadarida brasiliensis: Effects of 
Geography and Local Acoustic Environment 

 
This chapter is a version of a paper by the same name currently in press in the 
journal Animal Behavior by Erin H Gillam and Gary F McCracken: 
 
Gillam, E.H. and McCracken, G.F.  Variability in the echolocation of Tadarida 
brasiliensis: effects of geography and local acoustic environment.  Animal 
Behaviour in press. 
 
My consistent use of “we” throughout this chapter is in reference to my co-author, 
Gary McCracken and myself.  I was the primary contributor to this work, which 
involved the following tasks:  (1) development of project design and all data 
collection, (2) measurement of acoustic signals and statistical analysis of the 
dataset, (3) gathering and interpretation of the relevant literature, and (4) all of 
the writing.   
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ABSTRACT 

 

We examined variation in the echolocation calls of Brazilian free-tailed 

bats, Tadarida brasiliensis, on a broad geographic scale and in response to local 

environmental variables.  Significant differences in call structure were observed 

among populations throughout the species range in the United States, but this 

variation was not associated with geographic distance or local weather 

conditions.  Observed variability between sites was due primarily to differences 

between bats, and the flexibility in call structure that can be achieved by 

individuals.  During this study, we observed that bats recorded in the presence of 

high frequency sounds from chorusing insects used higher call frequencies than 

bats recorded in silence.  This led us to test the hypothesis that bats adjust 

echolocation call structure in response to local ambient noise.  We broadcast 

experimentally manipulated ultrasonic insect sounds to free-flying Brazilian free-

tailed bats and found a positive correlation between the frequency of the insect 

sound stimulus and the call frequencies used by bats.  These results document 

that bats adjust echolocation call structure to avoid acoustic interference from 

ambient noise in their local environment.     

 

INTRODUCTION 

 

Variation in the structure of intraspecific communication signals can occur 

between populations or among individuals within populations.  In geographically 
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separated populations, signals may differ as a result of adaptation to local 

environmental conditions (Wilczynski & Ryan 1999; Slabbekoorn & Smith 2002), 

learning, or genetic differentiation (Catchpole & Slater 1995).  Within populations, 

plasticity in signal structure allows individuals to respond to varying behavioral 

and ecological factors, such as changes in predation risk (Endler 1987) or local 

habitat characteristics (Brumm 2004).  

Much of the research on intraspecific variation in communication has 

focused on signals used in mate choice and species recognition, with fewer 

studies investigating variability in echolocation signals.  Because echolocation 

involves a single individual that is both signaler and receiver, the incidence and 

patterns of intraspecific variation may differ from communication signals 

exchanged between two or more individuals.  For example, differences in female 

preference may drive the maintenance of population dialects in bird song (Baker 

& Cunningham 1985), but are unlikely to explain patterns of geographic variation 

in echolocation.  In bats, echolocation signals are adapted for foraging, and 

short-term flexibility in call structure may be especially critical for detecting prey 

within varying local environments (Arlettaz et al. 2001).   

In bats, plasticity in echolocation call structure has been observed in 

response to a variety of conditions, including proximity to prey (Griffin 1958) and 

the amount of vegetative clutter in a foraging space (Kalko & Schnitzler 1993; 

Obrist 1995).  Geographic variation in echolocation has also been documented, 

and variability in call structure has been linked with morphological differences 

between populations in several species (Heller & von Helversen 1989; Parsons 
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1997; Francis & Habersetzer 1998; Barclay 1999; Guillen et al. 2000; Law et al. 

2002; Aspetsberger et al. 2003).  Other species of bats exhibit geographic 

variation in echolocation that is not associated with morphology or distance 

between sites (Thomas et al. 1987; O'Farrell et al. 2000; Murray et al. 2001).      

Flexibility in call structure may be especially useful in the presence of 

ambient noise, which can mask weak echoes and decrease the efficiency of 

echolocation.  Potentially masking background noise may arise from both abiotic 

(e.g. wind, rain, flowing water) and biotic sources (sounds of other animals).  

Several taxa exhibit changes in signal structure under noisy environmental 

conditions, including increases in signal amplitude (Lopez et al. 1988; Brumm et 

al. 2004), duration (Leonard & Horn 2005; Penna et al. 2005), and redundancy 

(Lengagne et al. 1999), as well as shifts in call frequency (Au et al. 1985; Lopez 

et al. 1988; Slabbekoorn & Peet 2003).  Some species of bats exhibit different 

call structures when foraging alone or in the presence of conspecifics 

(Habersetzer 1981; Kalko & Schnitzler 1993), possibly to avoid ‘jamming’ from 

the calls of neighboring individuals (Ulanovsky et al. 2004).  To our knowledge, 

the calls of other individuals are the only acoustic signals that have been tested 

in bats for effects on echolocation call structure.   

The objective of this research was to investigate the influence of both 

broad and fine scale effects on the echolocation call structure of Brazilian free-

tailed bats, Tadarida brasiliensis (F., Molossidae).  First, we described 

geographic variation in this species by documenting call structures from across 

the United States.  Brazilian free-tailed bats within the U.S. are currently placed 
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in two subspecies (Wilkins 1989, Figure 1), although recent molecular studies 

reveal no discernable genetic structure across the species range in the U. S. and 

much of Mexico, suggesting panmixia and that subspecific classification is 

unwarranted (McCracken & Gassel 1997; Russell et al. 2005).  These bats also 

have an especially variable call repertoire, with recordings made in similar 

habitats and nearby locations yielding very different descriptions of the primary 

call type (Simmons et al. 1979; Fenton & Bell 1981; Ratcliffe et al. 2004).  Given 

their lack of phylogeographic structure, we hypothesized that any variability 

observed in the echolocation calls of T. brasiliensis would result from factors 

other than subspecific differences or geographic structuring of populations.  The 

results of our geographic analysis led us to evaluate a second factor that may be 

responsible for the observed patterns of variability, and to test the hypothesis that 

bats adjust their call structure to avoid spectral overlap with local ambient noise 

(e.g. insect choruses) that may interfere with echolocation.   

 

METHODS 

 

Geographic variation 

We recorded echolocation calls of 50-60 Brazilian free-tailed bats at each 

of16 sites, spanning most of the species range in the United States (Figure 1).  

Data were collected between May and September 2004 and 2005 under an 

approved protocol from U of Tennessee Animal Care and Use committee, and 

scientific collection permits from state wildlife agencies.  At each site, bats were 
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Figure 1.  Continental US range map of Tadarida brasiliensis.  Grey area shows the species range.  White 

circles denote the 16 sites at which bats were collected and recorded for the geographic variation study.  

Dotted line indicates the putative subspecific division between T.b. cynocephala in the southeastern US and 

T.b. mexicana in the western US.   

 
 



captured at the roost using padded sweep nets, harp traps, or mist nets.  After 

capture, standard measurements were taken from each animal, including mass, 

forearm length, sex, age, and reproductive condition.  To control for possible 

effects of age (Jones and Ransome 1993; Masters et al. 1995), only the calls of 

adult animals were recorded.   

Within two hours of capture, bats were released individually after a 3.8 cm 

chemiluminescent tag (Chemical Light, Inc., Vernon Hills, IL) was attached to 

their dorsal side with multi-purpose glue.  The light tag allowed us to track the 

animal and confirm that recorded calls were emitted by the released bat (Murray 

et al. 2001).  Separate release of marked individuals also ensured that we only 

recorded a bat once and avoided pseudoreplication, which has been a potentially 

confounding factor in previous studies that have relied on recordings from free-

flying, unmarked bats.  Release sites were open areas, such as a baseball field 

or park, within two miles of the roost.  These locations were selected because 

they provided unobstructed airspace for flying bats, thus standardizing release 

conditions between sites as much as possible.  Prior to the release of bats, we 

used acoustic monitoring to ensure that other bats were not actively foraging in 

the area.  A real-time, high speed recording system was used to record the bat 

as it foraged in the area.  Signals received by an S-25 ultrasonic detector 

(Ultrasound Advice, UK, frequency response ± 3 dB between 20 and 120 kHz) 

attached to a F2000 Control/Filter unit (Pettersson Electronik, Sweden) were 

captured with a high speed sound card (DAQCard-6062E, National Instruments, 

USA) and saved on the hard drive of a Dell Inspiron laptop computer.  Calls were 
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analyzed with BatSoundPro (Pettersson Electronik, Sweden) using 16-bit 

resolution and a 200 kHz sampling rate.   

 From the data-files, we selected high-quality call sequences, according to 

the following criteria: (i) recordings exhibited a high signal-to-noise ratio, and 

contained primarily search phase calls, which are emitted before an animal has 

detected a target insect, (ii) only one bat was present in the recording area, as 

determined by stable inter-call intervals, and (iii) recordings were at least 15-s in 

duration.  Calls emitted within the first 10-s of release were discarded because 

they are often shorter in duration and more broadband in frequency than those 

typically used for foraging.  After 10-s, recorded calls generally exhibited the 

typical call structure used by foraging T. brasiliensis, and call sequences often 

contained feeding buzzes, which indicated successful feeding (EHG, personal 

observation).  We obtained acoustic measurements from spectrograms 

(frequency x time representation) computed using a 256-point Fast Fourier 

Transform (50% overlap).  From each sequence, we selected the 5-10 highest-

quality search calls and measured duration, maximum frequency (at the start of 

the call), minimum frequency (at the end of a call), and peak frequency 

(frequency of maximum energy) using Avisoft SasLab Pro (Avisoft Bioacoustics, 

Germany).  Peak frequency was the maximum point in the power spectrum, while 

minimum and maximum frequency were respectively the lowest and highest 

frequencies above the background noise, which corresponded well to 20 dB 

below the maximum peak in the spectrum (Figure 2).   
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Figure 2.  Recording of a search-phase echolocation call and the 21.5 kHz insect 
sound stimulus. (a) spectrogram (frequency vs time) and (b) power spectrum 
(amplitude vs frequency) of both signals.  Frequency ranges of the insect sound 
stimulus and the bat call are marked.  The three measured spectral variables of 
the bat call - maximum frequency (Fmax), minimum frequency (Fmin), and peak 
frequency (Fpeak) - are indicated on the power spectrum 
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To determine if differences in call structure existed between sites, we 

conducted a univariate one-way analysis of variance (ANOVA) for each of the 

four call parameters, using averaged values for each sequence.  We used nested 

GLM ANOVA to assess which factors were associated most strongly with the 

observed patterns of variation.  In this analysis, the variance components 

calculated from mean square values indicate the percentage of total variation 

associated with differences among locations, and among individuals within a 

location, while the error-variance component refers to the amount of variation 

due to differences within call sequences of individuals (Sokal & Rohlf 2000). We 

also performed a linear discriminant function analysis using sequence averages 

for all call variables to establish if sequences could be correctly assigned to the 

site of collection.   

To test if differences in call structure were associated with geographic 

distances between populations, we first conducted a principal component 

analysis on the average sequence values of the four call parameters.  We used 

the first two uncorrelated PC factor scores to calculate a dissimilarity matrix of 

acoustic Euclidean distances between populations.  We then calculated a 

geographic distance matrix from the latitude and longitude of each location, and 

compared the acoustic and geographic distance matrices using a non-parametric 

Mantel test of matrix association (Mantel 1967, MANTEL v. 1.18, Rio de Janeiro, 

Brazil).  The Mantel statistic calculated from these two matrices was then 

compared to a simulated sampling distribution constructed by randomly 

reallocating the order of elements in the matrices 1000 times.   
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Weather conditions also may have influenced echolocation call structure.  

Body temperature, which is affected by air temperature, is correlated with call 

frequency in some species (Huffman and Henson Jr. 1991), and humidity can 

influence call frequency due to it’s effect on atmospheric attenuation of acoustic 

signals (Guillen et al. 2000).  Because of these potential influences, we tested for 

associations between observed call structures and weather conditions at the 

release site.  We gathered weather information for each collection site from 

NOAA’s online database 

(http://www.ncdc.noaa.gov/oa/climate/stationlocator.html), including temperature, 

precipitation, wind speed, and relative humidity recorded as close in time as 

possible to when the bats were released, as well as averages for these variables 

on the date of study.  We conducted a series of linear regressions of each call 

variable against each weather variable, using a Bonferroni-corrected p-value of 

0.0125.   To evaluate any cumulative effects of these weather data, we 

performed a principal component analysis on the eight weather variables, and 

used the first two PC factor scores to obtain a matrix of Euclidean distances.  

This weather matrix was then compared to the previously calculated acoustic 

matrix with a Mantel test, as described above.   

Since characteristics of an individual bat may influence echolocation, we 

tested for associations of sex, body size, and reproductive condition with call 

structure.  Linear regressions for each of the four call variables were performed 

to test for associations with mass and forearm length.  T-tests were used to 

determine if call structure differed by sex and/or reproductive condition (pregnant 
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vs. lactating females).  We excluded non-pregnant and post-lactating females 

from our analysis of reproductive condition due to low sample sizes for these 

groups (n<20).  We also excluded males from the analysis of reproductive 

condition because we captured very few males in an active reproductive state.   

 

Broadcast experiments using insect sounds 

We experimentally tested the responses of free-flying T. brasiliensis to 

broadcasts of high frequency insect sounds.  We performed broadcasts on eight 

nights between 25 May and 10 June 2005, on a cotton farm in the vicinity of 

Uvalde, Texas.  This site is close to several large Brazilian free-tailed bat 

colonies, and bats were often observed foraging on insects found in high 

densities over the crop fields where we conducted our study.  

Stimulus signals were constructed from the calls of unidentified 

orthopterans recorded in the Chihuahan desert of Carlsbad Caverns National 

Park, Carlsbad, NM (Figure 2).  The multiple insect sounds captured in these 

recordings ranged in frequency from 5-60 kHz, although signal amplitudes were 

strongest between 8 and 30 kHz.  These calls were prominent on one night (11 

August 2004) during our study of geographic variation, and appeared to influence 

the call structure of released bats.  We created a series of broadcast stimuli by 

repeating a 1-s field recording to create a 5-min signal, and shifting the maximum 

frequency of the insect sound signal to six different frequencies (16.5, 19, 21.5, 

24, 26.5, and 29 kHz).  These frequencies were selected because they fell within 

the 8-30 kHz range of high amplitude insect sounds recorded at Carlsbad 
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Caverns National Park.  Further, Brazilian free-tailed bats exhibit maximum 

sensitivity over a broad hearing range from 10-40 kHz (Henson Jr. 1970), 

indicating that all broadcast stimuli should have been equally audible to free-

flying bats.  Shifts in signal frequency were accomplished with the “Frequency 

Domain Transformation” feature of Avisoft SasLab Pro.  A 5-min broadcast of 

silence was also created as a control.  To avoid order effects, we broadcast a 

mix of these seven stimuli every night and changed the broadcast order on 

successive nights.  We presented each signal on average five times per night 

and at least ten times over the course of the study. 

We began broadcasting stimuli each night between 20:30 and 20:45, 

when the first bat was sighted in the area, and continued for 2-3 hours during the 

period of peak bat activity.  Broadcast and recording equipment was arranged in 

a line, with a microphone at 0 and 20 m, and the speaker at 10 m.  We broadcast 

stimuli through an omnidirectional ultrasonic speaker (Avisoft 60401; frequency 

response ± 5 dB between 15 and 43 kHz) mounted on a tripod 2.5 m from the 

ground.  Two solid dielectric microphones (Avisoft CM16; frequency response ± 3 

dB between 10 and 100 kHz) were positioned at a height of 2 m and oriented at 

45۫۫ above the horizontal and towards the speaker.  Stimuli were generated from a 

Dell Inspiron laptop computer through a high-speed sound card (DAQCard-

6062E, National Instruments, Austin, TX) and an amplifier (Avisoft 70101) 

powered by three 12 V 7.2 A gel cell batteries.  High-speed data acquisition was 

accomplished with Avisoft’s Ultrasound Gate 416, using the same computer that 

was used for conducting broadcasts.  We broadcast stimuli at 83dB, which was 
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the highest intensity possible without overloading the speaker (measured with a 

B&K ¼ " condensor microphone # 4939 and a B&K measuring amplifier # 2606, 

Brüel & Kjær, Denmark).  Both broadcast and recording were performed using 

Avisoft RECORDER.  Recordings were 5-min long, and made with 16-bit 

resolution and a 166 kHz sampling rate.  Recordings included both the broadcast 

signal and the calls of free-flying bats in the area.   

We located sequences of echolocation calls by searching the oscillogram 

(amplitude x time representation) for high amplitude signals that indicated the 

presence of a nearby bat.  We only selected sequences for further analysis that: 

(i) exhibited a high signal-to-noise ratio, (ii) contained primarily search phase 

calls, and (iii) included calls of only one bat.  For multiple sequences recorded 

within one 5-min recording, we only used sequences separated by > 1 min of 

silence to minimize the chance of analyzing calls of the same bat.  While we 

cannot eliminate the possibility that we selected multiple sequences from the 

same bat, the fast flight speed of T. brasiliensis (average 6 m/s; Hayward and 

Davis 1964) and rapid turnover rate of bats foraging in the study area indicate 

that repeated sampling is unlikely.  We selected the 20 highest-quality call 

sequences for each of the seven broadcast stimuli and measured 10 calls per 

sequence.  For each call, we measured duration, maximum frequency, minimum 

frequency, and peak frequency from spectrograms generated with a 256-point 

Fast Fourier Transform (50% overlap).  To avoid pseudoreplication, we 

conducted analyses on the average call measurements of a sequence.   
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Differences in call structure between stimulus conditions were assessed 

using univariate one-way ANOVA and Tukey’s HSD test for each call variable, as 

well as a multivariate analysis of variance (MANOVA) that included all four call 

variables.  Pearson’s product-moment correlation coefficents were calculated to 

determine the relationship between each call variable and frequency of the insect 

sound stimulus.   

Call duration and call frequency are negatively correlated in some bat 

species (Jones 1999), thus a potential issue is that any frequency changes we 

observed may have been an indirect response to shortened call durations 

instead of a direct response to frequency of the insect sound stimulus.  We used 

linear regression to test for associations between call duration and each of the 

spectral variables.  To determine if bats were flying closer to the ground in the 

presence of the insect sound stimulus, we measured signal amplitude from the 

amplitude envelope for all calls in the dataset, and used a t-test to assess if 

average call amplitude differed between sequences recorded in silence 

compared to those recorded in the presence of insect sounds.   

 

Hand-released bats in the absence of insect sounds 

As another test of the hypothesis that insect sounds affect echolocation 

call structure in bats, we recorded additional hand-released bats near Carlsbad 

Caverns National Park.  In contrast to the previous recordings in August 2004, 

we chose a release site that was distant from nocturnally calling insects, although 

this was still within the vicinity of the park.  Releases were conducted on 16 June 
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2005 in a large parking lot in which the calls of insects in the surrounding 

vegetation were not detectable with an S-25 bat detector (Ultrasound Advice, 

UK).  Recording equipment, procedures, and criteria for sequence selection were 

the same as those described above for our study of geographic variation.  We 

measured calls from 18 individuals, and calculated average values of call 

duration, maximum frequency, minimum frequency, and peak frequency for each 

bat.  T-tests were used to determine if any of the four call parameters differed 

between bats recorded in the presence (11 August 2004) or absence (16 June 

2005) of insect sounds.  To test for multivariate effects, we conducted a 

MANOVA that included all four call variables in the analysis.  Bats were also 

recorded at Carlsbad Caverns on 10 August 2004, but we chose not to include 

these data in this analysis because levels of insect activity were not assessed at 

the time of recording.   

 

RESULTS 

 

Geographic variation 

 From the 16 sampled sites, we analyzed a total of 3901 calls from 410 

individuals.  On average, we analyzed 30 call sequences per site, (range: 13-44 

sequences/site).  Bats exhibited significantly different call structures amongst 

sites (ANOVA: F15, 394 > 7.2, P < 0.0001 for all four call parameters; Table 1).  Our 

analysis of the nested ANOVA variance components revealed that differences 

between locations were significant (F14, 3665 > 7.2, P < 0.0001), but explained only  
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Table 1.  Call parameters (average ± standard deviation) at each collection site 
and results of one-way ANOVA tests.   
 
________________________________________________________________ 

      
Location # 

Bats
Duration 
(msec) 

Max freq 
   (kHz) 

Max freq 
   (kHz) 

Peak freq 
    (kHz) 

________________________________________________________________ 
      
Melbourne, FL  26 11.4±1.5 23.0±1.4 31.7±2.5 26.7±1.7 
Gainesville, FL 23 11.2±1.3 22.4±1.5 34.6±4.1 27.7±2.1 
Valdosta, GA  25 12.4±1.6 22.8±1.9 29.8±2.7 25.9±2.1 
Conway, SC 44 13.5±1.2 20.9±0.9 30.0±2.0 25.2±1.2 
Ocean Springs, MI 20 11.2±1.2 22.5±1.2 35.2±3.5 27.8±1.6 
Fort Polk, LA 26 12.4±2.1 22.0±1.8 33.2±3.7 26.8±2.0 
Hot Springs, AR 33 12.2±1.7 21.3±1.2 31.1±3.0 25.4±1.4 
Waynoka, OK 26 11.9±1.5 21.7±1.1 32.8±3.7 26.2±2.1 
Uvalde, TX 44 11.0±1.7 22.9±15 34.5±4.0 27.9±2.4 
Carlsbad, NM* 27 11.6±1.0 24.5±2.2 35.6±3.6 29.3±2.4 
      8/10/2004 (13) 11.3±1.0 23.3±2.4 33.2±3.1 28.1±2.8 
      8/11/2004   (14) 11.8±1.0 25.6±1.4 37.7±2.6 30.5±1.3 
Salida, CO 13 12.0±1.2 21.8±1.4 30.8±2.9 25.9±1.7 
Tucson, AZ 15 12.3±0.9 22.1±1.2 31.5±2.3 26.5±1.6 
Clearfield, UT 21 12.7±1.5 21.6±1.4 30.7±2.5 25.7±1.7 
Topanga, CA 16 11.2±1.3 22.2±1.6 37.3±6.0 27.5±2.2 
Fairfield, CA 21 11.6±1.6 22.6±1.4 35.2±4.1 27.6±2.0 
Los Molinos, CA 30 11.4±1.1 21.4±0.9 34.3±3.6 26.5±1.1 
________________________________________________________________ 

One-way ANOVA 410 
F15, 394 = 7.3 
P < 0.0001 

F15, 394 = 
10.8 
P < 0.0001

F15, 394 = 
10.8 
P < 0.0001 

F15, 394 = 
10.1 
P < 0.0001 

________________________________________________________________  
 

 
* Data from Carlsbad, NM are divided by date of collection to illustrate the 
increased call frequencies of bats recorded on 11 August 2004.  We recorded 
nocturnal insects producing high amplitude, high frequency sounds at the release 
site on 11 August 2004, but not on 10 August 2004.   
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15-22% of the variability in call structure (Table 2).  We found that differences 

among individual sequences within a location explained 51-56% of the variation 

and differences among calls within an individual sequence explained 19-32% of 

the variation, indicating that there is a high degree of variability in call structure 

both among and within bats.  A linear discriminant function analysis could assign 

only 21.4% of the sequences to the correct site of collection.  This poor 

classification rate is consistent with the low percentage of variation explained by 

location in nested ANOVA tests.   

Acoustic differences were not associated with geographic distances 

between sites (Mantel test: r = -0.06, P = 0.29, Figure 3a).  Individual linear 

regressions and a Mantel test using data from all weather variables revealed no 

significant associations between weather conditions at the release site and call 

structure (Mantel test: r = 0.14, P = 0.85, Figure 3b).  Taken together, all of these 

analyses suggest that geographic patterning in the echolocation calls of Brazilian 

free-tailed bats is weak to nonexistent, and any differences that might exist are 

hidden by the large amount of variability among bats within sites.  

Mass and forearm length were not associated with changes in call 

structure (R2 <0.05 for all parameters), and no differences were found between 

the echolocation calls of males and females.  Lactating females used higher 

average minimum frequencies than pregnant females (lactating: n = 41, 23.1 ± 

1.6 kHz, pregnant: n = 133, 22.0 ± 1.4 kHz, two-tailed t test: t177 = 4.33, P < 

0.0001).  Although this finding is statistically significant, the average frequency 

difference between pregnant and lactating females is small (1.1kHz, or < 5% of  
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Table 2.  Variance components for each call parameter.  Explained variance is 
due to differences: (1) among locations, (2) between individuals at a location, and 
(3) within individuals at a location.   
 
  % variance due to*  
 locations individuals Calls 
duration 14.8 53.1 32.1 
max frequency 21.4 51.1 27.5 
min frequency 24.1 56.8 19.1 
peak frequency 21.1 54.0 24.9 

 
* Variance components are calculated from mean square values of nested 
ANOVA tables. 
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Figure 3.  Relationships of acoustic Euclidean distance with (a) geographic 
distance and (b) weather Euclidean distance.  Points represent all possible 
pairwise comparisons of the sixteen collection sites.   
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the average), and further sampling is necessary to determine if this relationship is 

biologically significant.   

Calls recorded at Carlsbad Caverns National Park, NM on 11 August 2004 

were noticeable outliers, exhibiting significantly higher minimum frequencies 

compared to other sites and to data collected at the same site on different nights 

(Table 1).  As noted above, recordings from 11 August 2004 contained loud, high 

frequency sounds produced by nocturnal insects, and such insect calls were not 

present in recordings from the previous night.  This observation motivated us to 

conduct the experiments described above to test the influence of insect sounds 

on echolocation call structure. 

   

Effects of insect sounds 

Bats exhibited significant differences in call structure in the presence of 

the seven broadcast stimuli (Figure 4, ANOVA: duration: F6,133 = 8.5, P < 0.0001; 

maximum, minimum, and peak frequency: F6,133 > 23.5, P < 0.0001, MANOVA 

(Wilks’ Lambda):  F24,458 = 9.6, P < 0.0001).   Average echolocation call 

frequency exhibited a strong positive correlation with frequency of the insect 

sound stimulus (maximum frequency: R2 = 0.62, minimum frequency: R2 = 0.46, 

peak frequency: R2 = 0.55, P < 0.0001 for all three tests).  Average call duration 

and stimulus frequency were negatively correlated, although this was weaker 

than correlations for the spectral variables (R2 = 0.19, P < 0.0001).  Control 

recordings during silence were significantly lower in frequency than calls 

recorded during experimental broadcasts, with the exception of the two lowest 
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frequency stimuli (also marginally for the third lowest frequency stimulus for 

minimum frequency).  Call frequency was negatively correlated with call duration 

for all three spectral variables (maximum frequency: R2 = 0.33, minimum 

frequency: R2 = 0.19, peak frequency: R2 = 0.27, P < 0.0001 for all three 

regressions), but we found that average call amplitudes were not different for 

sequences recorded in silence compared to those recorded in the presence of 

insect sounds (t138 = -.24, P = 0.81). 

Because our study involved unmarked, free-flying bats, it is possible that 

sex, age, and reproductive condition influenced call structure.  However, we 

believe these factors had little effect on our data because: (1) our geographic 

variation analysis indicated that sex does not influence call structure in Brazilian 

free-tailed bats, (2) the study period (25 May – 10 June) spanned only one 

reproductive period (late pregnancy), eliminating concerns for potential 

differences between pregnant and lactating females, as well as between subadult 

and adult bats (Masters et al. 1995), and 3) we broadcast a mixed order of all 

stimuli each night.   

 Significant differences existed in the structure of calls recorded from hand-

released bats in the presence (11 August 2004) and absence (16 June 2005) of 

high frequency insect calls (Table 3).  Recordings from light-tagged bats where 

insect sounds were absent were significantly longer in duration (two-tailed t-test:  
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Table 3.  Hand-released calls from Carlsbad Caverns National Park.  Call 
parameters (average ± standard deviation) for recordings at release sites near 
the park, in which nocturnally calling insects were present (+) or absent (-).  Note 
that bats calling in the presence of high frequency insect sounds used higher 
average call frequencies than bats recorded in the absence of insect sounds.   
 
_________________________________________________________________ 

 
Date # Bats Duration 

(msec) 
Min freq 

(kHz) 
Max freq 

(kHz) 
Peak freq 

(kHz) 
________________________________________________________________

      
8/11/2004 (+) 14 11.8±1.0 25.6±1.4 37.7±2.6 30.5±1.3 
6/16/2005 (-) 18 13.0±1.2 22.8±1.0 29.3±1.4 26.0±1.0 

 
 

Two-tailed    
t-test 32 t30 = 2.8 

P = 0.0009 
t30 = -11.7 
P < 0.0001 

t30 = -6.6 
P < 0.0001 

t30 = -11.0 
P < 0.0001 

_________________________________________________________________ 
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t30 = 2.78, P < 0.0001), and lower in maximum (t30 = -11.74, P < 0.0001), 

minimum (t30 = -6.64, P < 0.0001), and peak frequency (t30 = -11.01, P < 0.0001) 

compared to calls recorded in the presence of insect sounds.  MANOVA revealed 

a similar pattern, with highly significant differences in call structure between 

nights (Wilks’ Lambda: F4,27 = 36.2, P < 0.0001.  These results follow the trend 

observed in the broadcast experiment.   

 

DISCUSSION 

 

Geographic Variation  

The substantial variation in call structure that we document here is 

concordant with other reports of the highly labile echolocation calls of Brazilian 

free-tailed bats (Simmons et al. 1979; Ratcliffe et al. 2004).  While we did 

observe significant differences in call structure among sites, most of the 

observed variation occurs between and within individuals (Table 2), and is not 

associated with geographic distance between locations (Figure 3a) or with 

putative subspecific distinctions (Figure 1).  Observed differences amongst sites 

may be due to the influence of other local conditions on echolocation that were 

not addressed in this study, and we have shown that at least one feature of a 

bats foraging environment (presence of high frequency insect sounds) can 

strongly influence call structure.  Thus, we conclude that the echolocation calls of 

Brazilian free-tailed bats do not exhibit a discernable geographic pattern, and 

differences among locations result from the wide range of call structures that can 
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be used by an individual bat, or by different individuals within a population.  This 

observed absence of geographic structure is consistent with studies on gene 

pool structure that demonstrate panmixia among colonies of Brazilian free-tailed 

bats throughout North America (McCracken & Gassel 1997; Russell et al. 2005).   

While sex and body size have been shown to influence call structure in 

some bat species (Jones et al. 1992; Barclay et al. 1999; Guillen et al. 2000), we 

found no evidence for such effects in Brazilian free-tailed bats.  We did find that 

reproductive condition influenced call structure, with pregnant females using 

lower call frequencies than lactating females.  This pattern may be explained by 

differences in body size and energetic demands of pregnant and lactating 

females.  Use of lower frequencies, which increase a bat’s detection range, may 

be useful for pregnant females that experience reduced maneuverability due to 

the increased weight of the fetus.   Alternatively, lactating females require the 

highest energetic intake for milk production (Kunz et al. 1995).  Use of higher 

frequency calls may allow lactating females to detect a greater variety of small 

insects (Pye 1993), although the strength of the relationship between call 

frequency and detectable target size is not always strong (Waters et al. 1995; 

Houston et al.2004) and the small differences observed here may not translate to 

differential detection abilities.  Despite this, evidence that Brazilian free-tailed 

bats feed more heavily on small Hymenoptera during lactation than during 

pregnancy (Kunz et al. 1995) is consistent with the idea that lactating females eat 

smaller prey items. 
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Effects of insect sounds and local environmental conditions   

The nocturnal chorus of insect sounds present at Carlsbad Caverns 

National Park on 11 August 2004 spanned both sonic and ultrasonic frequencies, 

with the highest amplitude band of calls between 8 and 30 kHz.  These insect call 

frequencies overlap with the echolocation frequencies typically used by Brazilian 

free-tailed bats (Ratcliffe et al. 2004).  While the amplitudes of these insect calls 

were not measured, the insects clearly provided a loud source of background 

noise that could potentially influence the echo-reception of bats foraging near the 

ground.  The use of significantly lower frequencies by bats at a nearby site where 

calling insects were absent suggests that the observed increase in echolocation 

frequency on 11 August 2004 was due to a temporary adjustment of the bats’ 

calls to avoid overlap with high frequency insect sounds.   

Results of our experimental broadcast of insect sounds further support the 

hypothesis that bats adjust their echolocation to avoid spectral overlap with 

ambient noise from calling insects.  This suggests that separating weak echoes 

of echolocation calls from broadband noise may challenge the signal-processing 

algorithms of Brazilian free-tailed bats, and that bats adjust call structure to avoid 

jamming effects from the noise signal.   This signal-processing problem is similar 

to the pyschoacoustic challenge faced by humans in attending to a single 

speaker under crowded conditions in which several other people are talking 

simultaneously.  Humans are capable of separating one auditory channel (the 

speaker of interest) from several other auditory channels (other speakers in the 

room), in what is known as the “cocktail party effect” (Haykin and Chen 2005).  
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However, this task may be more difficult for echolocating bats, as the amplitudes 

of echoes are more highly attenuated compared to the amplitudes of original 

calls, and thus are more easily obscured by high amplitude noise.   

It is notable that calls recorded in the presence of the experimental 16.5 

kHz and 19 kHz insect sounds were not significantly different from calls recorded 

in silence (Figure 4), indicating that bats did not respond to the lower frequency 

stimuli.  As the average minimum frequency of Brazilian free-tailed bats is 

typically above 19 kHz (22.3 kHz for the geographic variation dataset), these 

frequencies of insect sounds should not interfere with echolocation.  Broadcasts 

at higher frequencies within the spectral range of T. brasiliensis echolocation did 

result in a change in call frequency, with a positive, essentially linear relationship 

between the spectral parameters of recorded calls and the frequency of the 

insect sound stimulus (Figures 4b-d).  These results demonstrate that Brazilian 

free-tailed bats are capable of making fine-scale adjustments to their call 

structure (<1 kHz shifts in call frequency) that lead to decreased spectral overlap 

with an interfering acoustic signal.   

 An alternative explanation for the observed changes in call frequency is 

that bats perceived the insect sound broadcast as a potential foraging “hotspot”, 

and flew closer to the ground in an attempt to capture prey.  Bats flying near the 

ground may then have shortened call duration to avoid pulse-echo overlap, and 

shifted to higher call frequencies to allow for shorter target detection distances.  

We believe this is unlikely because: (1) orthopterans, which were the source of 

our insect sound broadcast, comprise < 2% of the diet of T. brasiliensis (Lee and 
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McCracken 2005), and (2) call amplitude did not change in response to the 

presence of the insect sound stimulus, suggesting that bats were flying at similar 

distances from the ground under all study conditions.   Thus, we have no reason 

to expect that bats directly adjusted call duration across stimuli.  Alternatively, 

bats may have shifted their call frequencies upward to avoid spectral overlap with 

the insect sound stimulus, resulting in indirect adjustments to call duration.  This 

interpretation explains the association of call duration and call frequency, and 

conforms to our hypothesis that bats shift their frequencies in a manner that 

avoids overlap with the insect sound stimulus.   

External noise is known to affect flight behavior in some bat species, and 

presumably has an adverse impact on the efficiency of echolocation.  Broadcasts 

of broadband noise affected the ability of Plecotus rafinesquii to navigate 

between sets of thin wires, although their abilities were not compromised when 

flying between larger wires (Griffin 1958).  Three species of insectivorous bats 

(Myotis lucifugus, M. daubentonii, Eptesicus fuscus) have been shown to avoid 

foraging over stream riffles compared to calm pools, despite equally or greater 

insect abundances over riffles (von Frenckell & Barclay 1987; Mackey & Barclay 

1989; Rydell et al. 1999).  Behavioral avoidance of riffles is likely due to 

interference from noise produced by fast-flowing water, as broadcasts of high 

frequency water sounds over calm pools also resulted in reduced foraging 

activity (Mackey & Barclay 1989).  While these previous studies demonstrated 

behavioral changes in the presence of acoustic interference, they did not 

investigate whether bats adjust their echolocation structure in response to noise.  
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M. lucifugus, M. daubentonii, and E. fuscus exhibit flexibility in call structure in 

response to other foraging conditions (Obrist 1995; Schnitzler et al. 2003; 

Broders et al. 2004), and if experimentally tested, we would expect these species 

to exhibit a response to high frequency insect sounds similar to that of T. 

brasiliensis.   

In bats, call structure in the presence of an external noise source has only 

been examined in response to the calls of nearby conspecifics.  Some bat 

species have been shown to exhibit a jamming avoidance response, in which 

individuals alter their echolocation to avoid spectral overlap with the calls of 

neighboring individuals (Ulanovsky et al. 2004).  In this study, we document an 

analog to jamming avoidance and show that T. brasiliensis make fine-scale 

changes to their echolocation calls in a manner that effectively avoids 

interference from local sources of environmental noise.  It is likely that foraging 

Brazilian free-tailed bats frequently encounter sources of acoustic interference, 

such as the sounds of calling insects, and this behavioral flexibility should 

enhance the efficiency of echolocation for orientation and prey detection.   
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CHAPTER III 

Rapid Jamming Avoidance in Biosonar 

This chapter is a version of a paper by the same name that is currently available  
online in the journal Proceedings of the Royal Society of London B: Biological 
Sciences by Erin H Gillam, Nachum, Ulanovsky, and Gary F McCracken: 
 
Gillam, E.H., Ulanovsky, N., and McCracken, G.F. 2007. Rapid Jamming 
Avoidance in Biosonar.  Proceedings of the Royal Society of London B: 
Biological Sciences. FirstCite early online publication 
(doi:19.1098/rspb.2006.0047) 
 
My consistent use of “we” throughout this chapter is in reference to my co-
authors, Nachum Ulanovsky, Gary McCracken, and myself.  I was the primary 
contributor to this work, which involved the following tasks:  (1) development of 
project design and all data collection, (2) measurement of acoustic signals and 
most of the statistical analysis of the dataset, (3) most of the gathering and 
interpretation of the relevant literature, and (4) most of the writing.   
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ABSTRACT 

 

The sonar systems of bats and dolphins are in many ways superior to 

man-made sonar and radar systems, and considerable effort has been devoted 

to understanding the signal-processing strategies underlying these capabilities.  

A major feature determining the efficiency of sonar systems is sensitivity to noise 

and jamming signals.  Previous studies indicated that echolocating bats may 

adjust their signal structure to avoid jamming (‘jamming avoidance response’).  

However, these studies relied on behavioral correlations and not controlled 

experiments.  Here we provide the first experimental evidence for jamming 

avoidance response in bats. We presented bats (Tadarida brasiliensis) with 

‘playback stimuli’ consisting of recorded echolocation calls, at one of six 

frequencies. The bats exhibited a jamming avoidance response by shifting their 

call frequency away from the presented playback frequency.  Approaching bats, 

challenged by an abrupt change in the playback stimulus, responded by shifting 

their call frequencies upwards, away from the playback.  Interestingly, even bats 

initially calling below the playback’s frequency shifted their frequencies upwards, 

‘jumping’ over the playback frequency.  These spectral shifts in the bats’ calls 

occurred often within less than 200 ms, in the first echolocation call emitted after 

the stimulus-switch – suggesting that rapid jamming avoidance is an important 

response for Brazilian free-tailed bats. 
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INTRODUCTION 

 

Echolocation is a critical sensory system in most bats, and it is used for 

detecting and assessing prey as well as for orientation and navigation (Griffin 

1958; Schnitzler et al. 2003).  Most echolocating bats use calling patterns 

consisting of sequences of short calls (pulses) separated by long periods of 

silence, during which the bat listens to the returning echoes that provide 

information about the target (Schnitzler et al. 2003).  Many whale and dolphin 

species also echolocate, using biosonar pulses that differ in design from those of 

bats (Cranford & Amundin 2004; Nakamura & Tomonari 2004).   

Echolocating animals may experience acoustic interference from ambient 

sources of noise or from the calls of conspecifics (Dusenbery 1992), which may 

require a ‘jamming avoidance response,’ in which the animal adjusts its call 

structure to minimize interference.  It is possible, however, that the signal-

processing algorithms of echolocating bats are sufficiently sophisticated that they 

need not alter their signals. For example, bats may use differences in the 

direction of arrival of sounds to separate multiple noise and signal sources, 

similarly to what is done by humans in the ‘cocktail party effect’ (e.g. Bronkhorst 

& Plomp 1992). Thus, the study of possible jamming avoidance responses 

provides a window into the signal-processing capabilities of animals that use 

biosonar. 

Early experiments indicated that long-eared bats (Plecotus) are 

surprisingly resistant to jamming by high-intensity white noise (Griffin et al. 1963), 
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but it was unclear whether the bats achieved the reported high performance by 

changing their calls when the noise was present.  In recent years, accumulating 

indirect evidence has indicated that some bats shift their echolocation call 

frequencies in the presence of the calls of conspecifics (Habersetzer 1981; Miller 

& Degn 1981; Obrist 1995; Surlykke & Moss, 2000; Ibanez et al. 2004; Ratcliffe 

et al. 2004; Ulanovsky et al. 2004).  These observations have often been 

interpreted as a jamming avoidance response.  To the best of our knowledge, 

jamming avoidance has not been studied in echolocating marine mammals. 

These previous suggestions for jamming avoidance in bats did not rely on 

experimental manipulations, but relied rather on analysis of correlations between 

call frequency and the absence or presence of conspecifics, or on correlations 

between call frequency and call amplitude.  However, because some bats 

change the frequencies of their echolocation calls under a variety of 

circumstances unrelated to conspecific calls (Kalko & Schnitzler 1993), 

correlation-based inferences do not provide conclusive evidence for a jamming 

avoidance response.  Moreover, in previous studies (Habersetzer 1981; Miller & 

Degn 1981; Obrist 1995; Surlykke & Moss, 2000; Ibanez et al. 2004; Ratcliffe et 

al. 2004; Ulanovsky et al. 2004) the spatial positions of the bats were unknown – 

hence it was unclear whether the directional echolocation beams of the bats 

(Schnitzler & Grinnell 1977; Hartley & Suthers 1989) were aimed towards each 

other (which may increase the jamming) or away from each other.   The 

correlational approach meant also that no ‘time zero’ point was available for 

aligning any observed frequency changes in a bat’s calls to the changes in the 
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jamming signals.  Thus, to demonstrate a jamming avoidance response that is 

causally linked to the jamming signals, requires experimental presentation of 

well-controlled acoustic stimuli, designed to provoke a switch in the bat’s call 

frequency at a known ‘time zero’.    

Here we report the results of experimental tests of jamming avoidance 

response in echolocating bats.  In the field, we presented free-flying bats 

(Tadarida brasiliensis) with playbacks of pre-recorded echolocation calls at one 

of six different frequencies. Bats consistently minimized spectral overlap with 

playback signals by shifting the dominant frequencies of their echolocation calls.  

In a separate experiment we challenged approaching bats by abruptly switching 

the frequency of the playback stimulus. Within 200 ms, by the next echolocation 

call, bats shifted their call frequencies upwards.  Our findings provide the first 

conclusive evidence for a jamming avoidance response in echolocating animals. 

 

METHODS 

 

Recording site and bats 

Experiments involving presentation of playbacks of echolocation calls to 

freely-flying Brazilian free-tailed bats (Tadarida brasiliensis), were conducted 

using methods approved by the University of Tennessee Animal Care and Use 

Committee.  We performed experiments between 23 May and 9 July 2005, on a 

cotton farm in the vicinity of Uvalde, South Central Texas, within 10 miles of Frio 

cave, which has been estimated to contain 10 million T. brasiliensis. Bats were 
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often observed foraging on insects that were found in high densities over these 

crop fields. 

 

Acoustic playback stimuli and data acquisition 

Similar to most insectivorous bats, T. brasiliensis utilize short frequency-

modulated (FM) sweeps for echolocation (Figure 5a).  Call structure in this 

species may vary between geographic locations (e.g. Ratcliffe et al. 2004), so to 

minimize effects due to this variation, playback stimuli were assembled from 

recordings of bats foraging at the same study site.  We constructed the signal 

using one prototypical call taken from recordings of the ‘search-phase’ of bat 

echolocation (Griffin et al. 1960; Figure 5a).  Although search calls recorded at 

the study site often exhibited FM structures very similar to this prototypical call, 

the call structure varies within and between individual bats, so further 

experiments are needed to investigate possible influences of the detailed FM 

structure on jamming avoidance responses.  To create our stimuli, this 

prototypical call was repeated at 200-ms intervals for 8.8 s, followed by a 1.45-s 

sequence of ‘approach’ and terminal ‘feeding buzz’ calls (Griffin et al. 1960).  

This 10.25-s composite signal was repeated to create a 5-min playback 

sequence. We then created a series of six playback stimuli by shifting the 

frequency of this playback signal to one of six different frequency positions (we 

shifted the frequencies of all search, approach, and buzz calls, together). This 

resulted in playback stimuli with the following six values for the minimum 

frequencies of the search calls: 22.3, 24.3, 26.3, 27.3, 27.8, and 28.3 kHz (Figure  
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Figure 5.   Spectrograms (frequency versus time) of search-phase bat calls and 
playback calls.  (a) Spectrogram of one search-phase playback call with a 
minimum frequency of 24.3 kHz (left) and one recorded Tadarida brasiliensis 
search call with a minimum frequency of 25.8 kHz (right). Color scale: Linear, 
with red corresponding to high intensity values and blue to low intensity values.  
Red arrows: Minimum and maximum frequencies of the signal.  Also shown is 
the quasi-constant frequency (quasi-CF, or QCF) part of the playback call.  
Dividing the frequency-range between the minimum and maximum frequency into 
four frequency quartiles, the lowest-frequency quartile contained 43.9% of the 
call duration, whereas the highest-frequency quartile contained only 9.5% of the 
call duration.  (b) Spectrograms of all the six playback search calls used in this 
study; numbers below each call represent the minimum frequency, in kHz.  
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5b).  A 5-min control broadcast of silence was also created (no sound was 

presented during those 5 minutes). 

Several clarifications are needed regarding the playback stimuli.  First, 

unless stated explicitly otherwise, all references to the ‘frequency’ of a call 

pertain to its minimum frequency (Figure 5a, lower red arrow).  Second, the 

playback frequencies used in this study (minimum frequencies of search calls 

between 22.3 and 28.3 kHz) were selected because preliminary experiments 

indicated that these frequencies span the range of search call frequencies used 

by these bats when presented with playback stimuli.  Third, bats of some 

species, including T. brasiliensis, are attracted to feeding buzzes produced by 

conspecifics (Balcombe & Fenton 1988; E.H.G. & G.F.M, personal observations), 

so the purpose of presenting the approach and feeding buzz calls was to attract 

more bats into the range of our recording equipment. However, for all of our 

analyses we used only data collected during the time periods when search-phase 

playback calls were presented, and we only measured search-phase calls 

produced by the bats. 

Each night, we began playbacks at between ca. 20:30 and 20:45, when 

the first bat was sighted in the area, and continued for 2-3 hours, corresponding 

to the times of peak bat activity.  We presented acoustic stimuli through an 

omnidirectional ultrasonic speaker (Avisoft Magnat 60401, Avisoft Bioacoustics, 

Berlin, Germany; frequency response ± 5 dB between 15 and 43 kHz) mounted 

2.5 m above the ground on a tripod.  Two condenser microphones (Avisoft 
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CM16; frequency response ± 3 dB between 10 and 100 kHz) were placed in 

opposite directions 10 m from the speaker.  Microphones were positioned at a 

height of 2 m and oriented at 45° above the horizontal and towards the speaker.  

Stimuli were generated by a Dell Inspiron laptop through a high-speed sound 

card (DAQCard-6062E, National Instruments, Austin, TX) and an Avisoft 70101 

ultrasonic amplifier. High-speed data acquisition was carried out using Avisoft’s 

Ultrasound Gate 416 and Avisoft RECORDER, using the same laptop that was 

used for stimulus presentation. Recordings were done with 16-bit resolution and 

a 166-kHz sampling rate.  Recorded files were 5-min long, and included both the 

playback signals and the calls of free-flying bats in the area. 

 

Static-stimulus experiment 

We initially tested for a jamming avoidance response by broadcasting the 

six playback stimuli and the silence control in a randomized order and recording 

the calls of free-flying bats in the vicinity.  We changed the playback order on 

successive nights, and presented each 5-min signal five times per night, on 

average, and at least fifteen times over the course of the entire study.  From the 

data-files, we selected recorded call sequences, according to the following 

criteria: (i) only one bat was present near our recording equipment, as evidenced 

by the stable inter-pulse intervals of recorded search-phase calls (Speakman & 

Racey 1991; Ulanovsky et al. 2004); (ii) we only used sequences separated by > 

1 min of silence, in order to minimize the chances of analyzing multiple 

recordings of the same bat; (iii) the recorded call sequences had high signal-to-
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noise ratio; (iv) the sequences consisted primarily of search-phase echolocation 

calls. Using these criteria, we selected the 30 highest-quality call sequences for 

each of the 7 playback conditions (6 frequencies + silence), resulting in a total of 

210 sequences.  We did not select sequences based on whether any frequency 

changes were observed in the bat’s behavior.  From each sequence, we then 

selected the highest-quality search calls, 7-10 calls per sequence, and used 

Avisoft SasLab Pro to measure the call parameters (as described below), for a 

total of n = 2070 search calls. We then computed the average pulse parameters 

for each sequence, and used these average values for subsequent analyses of 

the static-stimulus experiment. 

 

Dynamic-stimulus experiment  

To determine whether changes in call frequency were in direct response 

to the playback signal, we conducted a second experiment in which we abruptly 

switched the stimulus as an individual bat approached the speaker. We used five 

of the seven playback stimuli (22.3, 24.3, 26.3, 28.3 kHz, and silence), and 

performed all of the possible 20 switches between these five conditions.  The 

presence of a single bat was assessed in real time based on the stability of the 

inter-call intervals, as above, and was later verified offline.  The pre-switch 

playback stimulus was broadcast until an individual bat approached the recording 

area. We then switched the playback stimulus when the calls of the bat increased 

in amplitude to a level similar to that of the playback signal, indicating that the bat 

was approaching our recording system.  The switch in playback frequencies 
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resulted in a small temporal gap (< 1.5 sec) between the end of the pre-switch 

signal and the start of the post-switch signal, and when analyzing the data we 

used the starting time of the post-switch signal as the alignment point, t = 0.  We 

continued recording until the echolocation calls of the bat were no longer visible 

on the oscillograms.  

For analysis, we selected the 10 highest-quality call sequences for each of 

the 20 switches, using the same selection criteria as above, and the additional 

criterion that the sequence contained at least ten calls pre-switch and ten post-

switch.  This resulted in a total of 200 sequences. We then extracted two subsets 

out of those 200 sequences:  (i) the ‘main dataset’, defined as a subset of 

sequences where before the switch (t < 0) the pre-switch playback frequency 

differed by > 3 kHz from the bat’s frequency ( = the average pre-switch bat 

frequency), and where at the switch (t = 0), the new playback frequency differed 

by < 1.75 kHz from the bat’s average pre-switch frequency. These criteria 

resulted in 39 sequences in the main dataset (1078 total calls), for which we 

expected a jamming avoidance response to occur after the switch (t > 0) because 

of the small frequency separation between the playback and the bat calls at t = 0.    

(ii) The ‘control dataset’, defined as a subset of sequences where both before (t < 

0) and at the switch moment (t = 0), the playback frequency differed by > 3 kHz 

from the average pre-switch bat frequency. These criteria resulted in 24 

sequences in the control dataset (673 total calls), for which we did not expect a 

jamming avoidance response to occur after the switch (t > 0), because of the 

larger frequency separation between the playback and the bat calls at t = 0.   
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Selection of a value of > 3 kHz for delineating these subsets of the data was 

informed by the results of the static-stimulus and dynamic-stimulus experiments, 

as described below. 

For the population analyses of the frequency shifts, we computed for each 

individual sequence the differences between the frequency of each bat call and 

the corresponding average pre-switch bat frequency. These differences are, by 

definition, 0 kHz before the switch (t < 0), so that any post-switch frequency shift 

will be expressed as a deviation from 0 kHz.  We then pooled all the 39 

sequences of the main dataset, or 24 sequences of the control dataset, and 

grouped these data into 1-s time bins. For each time-bin we then computed the 

following three average frequency values:  (1) average for all the 39 sequences 

of the main dataset or 24 sequences of the control dataset; (2) average only for 

the sequences in which at t = 0 the bat was calling at a frequency above the 

post-switch playback signal (fplayback < fbat), and (3) average only for the 

sequences in which at t = 0 the bat was calling at a frequency below the post-

switch playback signal (fplayback > fbat).  We plotted the data only for time-bins that 

included ≥ 25 calls per bin in all these 3 averages. 

The inter-call interval of search-phase calls in the dynamic-stimulus 

experiment had an average of 227 ± 55 ms (mean ± s.d.).   Averages were 

calculated over intervals < 350 ms, to remove potential bias due to missed calls. 

Averaging over intervals < 500 ms resulted in an average inter-call interval of 266 

± 89 ms. 
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Measurement of pulse parameters 

After the conclusion of the experiments, and following selection of all 

sequences for analysis, we extracted data from each selected file by digitally 

high-pass filtering the recording using a finite impulse response filter with 5-kHz 

cutoff, and computed the spectrogram (frequency × time representation) using a 

1024-point Fast Fourier Transform (93.75% overlap). For the 166-kHz sampling 

rate we used, this gave a 162-Hz frequency resolution. 

We excluded all the playback calls, which were easily identified based on 

their inter-call interval and spectro-temporal shape, both of which were highly 

reproducible due to our usage of a single replicated call with a fixed interval.  

From the spectrogram of the search-phase calls of the bats, we measured  (i) 

minimum frequency and (ii) maximum frequency, defined as the lowest and 

highest frequencies above the background noise, respectively (Figure 5a) (both 

of these measurements also corresponded well with –20 dB points below the 

maximal peak of the power spectrum, data not shown), (iii) call bandwidth, 

defined as the maximum frequency – minimum frequency, and (iv) inter-call 

interval, defined as the time between the onsets of consecutive calls.  Unless 

otherwise stated, we used the minimum frequency in our analyses because a) 

calls at lower frequencies are less subject to atmospheric attenuation and signal 

degradation than are calls at higher frequencies (Lawrence & Simmons 1982), 

and b), the quasi-constant-frequency region near the lowest frequency of the call 

allows for more precise measurement of minimum frequency than is possible for 

the higher frequency portions of the call.  From the oscillogram, we measured the 
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call amplitudes for the 39 sequences in our main dataset.   Finally, we returned to 

the spectrograms of the original recordings and measured the numerical values 

of the minimum frequencies of the playback calls (22.3, 24.3, 26.3, 27.3, 27.8, 

and 28.3 kHz; Figure 5b), using the same methods and same settings that were 

used for measuring the bat calls (1024-point Fast Fourier Transform, 93.75% 

overlap). 

 

Doppler shift estimation (dynamic-stimulus experiment) 

To estimate the effect of the Doppler shift caused by the bat approaching 

or flying away from our microphones, we used the following values: average flight 

speed during foraging, v = 6 m/s (Hayward & Davis 1964) (minimal reported flight 

speeds are 5 m/s, Vaughan 1966); average frequency of all bat calls in the main 

dataset of the dynamic-stimulus experiments, f = 25.22 kHz; speed of sound, c = 

331.4 m/s. These values were substituted into the formula of the relative Doppler 

shift between an approaching bat (t << 0) and a bat flying away (t >>0): 2 × v × f  

/ c , yielding a difference value of 0.91 kHz for an approaching bat versus a bat 

flying away from the microphone. 

 

Statistical tests 

For the Monte-Carlo simulations of the static-stimulus experiment, we 

randomly reshuffled the playback frequency associated with each bat-call 

frequency, and calculated a new set of frequency differences. This random 

reshuffling was repeated 1000 times. We constructed histograms of the real and 
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the simulated data using 0.5-kHz bins between –9 and 9 kHz.  For the simulated 

data, we divided the counts by the number of permutations used (n = 1000) in 

order to create an identical sample size for both distributions (n = 180). We then 

performed a χ2 test to compare the real and the simulated distributions (the test’s 

results were similar with other bin-sizes). The simulations were done using 

Matlab (Mathworks, Natick, MA, USA).   For this and all other statistical tests, we 

used a p < 0.05 significance level.  

 

RESULTS 

 

Static-stimulus experiment  

A scatter plot of the average frequency in each sequence of bat calls, 

versus the corresponding playback frequency, indicated that the bat calls were 

usually displaced above or below the frequency of the playback stimuli       

(Figure 6a).  To quantify this observation, we performed three analyses.  First, 

we pooled data from the two lowest-frequency playbacks (22.3 and 24.3 kHz) 

into a ‘low’ group, and data from the two highest-frequency playbacks (27.8 and 

28.3 kHz) into a ‘high’ group (Figure 6a, two left-most versus two right-most 

columns of black dots).  Average call frequency differed between the low and 

high groups, with bats exhibiting higher-frequency calls in the presence of lower-

frequency playbacks (two-tailed t-test: t = 4.37, df = 118, p < 0.0005).    
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Figure 6.   Static-stimulus experiment.   (a) Frequency of bat calls versus 
frequency of playback stimuli.  Each dot represents the average frequency of one 
sequence of search calls, recorded from one bat; black dots: recorded bat calls, 
n = 180.  Gray dots: ‘Silence’ control (n = 30).  Open squares: The six frequency 
values used for the search-phase playback stimuli.  (b) Distribution of frequency-
difference values (average bat frequency – playback frequency), pooled over all 
the 6 playback frequencies (n = 180); bin size, 0.5 kHz; vertical dashed line 
indicates zero.   (c) Distribution of reshuffled frequency-difference data from the 
Monte-Carlo simulation.  (d) Difference between the original histogram in b and 
the Monte-Carlo simulation in c. 
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Second, we subtracted the frequency of the playback from the frequency 

of the bat’s calls, and constructed a histogram of these differences (Figure 6b).  

This histogram showed a bimodal distribution of the frequency differences, with a 

trough near zero and peaks on either side of zero.  This pattern indicates that 

most bats did not call at or near the frequency of the playback, suggesting a 

jamming avoidance response.  Monte Carlo simulations of randomly reshuffled 

frequency differences (Figure 6c; see Methods) showed a unimodal distribution 

that was significantly different from the bimodal distribution of our data (χ2 test: X2 

= 69.57, df = 35, p < 0.0005). This suggests that the trough near zero (Figure 6b) 

is real, and provides evidence for a jamming avoidance response in the presence 

of conspecific calls. 

Finally, the call frequencies used by bats in the presences of the ‘silence’ 

control (Figure 6a, gray dots) were significantly lower than the frequencies used 

by bats in the presence of any of the six playback stimuli (black dots) (one-sided 

t-test: t > 4.27, df = 58, p < 0.0001, individually for five of the six comparisons, 

with the 28.3-kHz playback yielding  t = 2.61, p = 0.0057; all six t-tests remained 

significant after application of a Bonferroni correction for multiple comparisons, 

which yields a significance threshold of 0.0083). This suggests that in the 

presence of playback calls, the bats tended to shift their call frequencies upwards 

rather than downwards.   Another asymmetry in the bats’ behavior is seen in 

Figure 6d, which shows the difference between the real and the Monte-Carlo-

simulated data: Although bats employed both positive and negative frequency 

shifts, the bats seemed to avoid particularly the frequencies below the playback 
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stimulus, i.e., a larger portion of the frequency differences forming the trough was 

to the left from 0 than to the right from 0 (Figure 6d, sign test for the number of 

sequences between –3 and 0 kHz vs. their number between 0 and +3 kHz: p < 

0.02).  We will return to these asymmetries later. 

 

Dynamic-stimulus experiment 

Sequences of bat call frequencies collected in the dynamic stimulus 

experiment (Figure 7a-b, top panels), illustrate that the bats shifted their call 

frequencies upwards in response to the stimulus-switch at t = 0. In Figure 7b, the 

initial rapid shift upwards was larger than 3 kHz.  Note, also, the gradual increase 

in the amplitude of the calls as the bat approached the microphone, and then the 

gradual decrease as it flew away (Figure 7a-b, bottom panels). 

The average frequency difference between the post-switch and pre-switch 

bat calls plotted vs the frequency difference between the pre-switch bat call and 

the post-switch playback stimulus (Figure 7d suggested the following: If at t = 0 

there is a small frequency-difference between the playback and the bat 

frequency  (x-axis < ±1.75 kHz), the bats shifted their call frequencies, and these 

shifts are mostly upwards; however, if at t = 0 there was a larger frequency-

difference between the playback and the bat frequency (x-axis > ±3.0 kHz), the 

bats did not shift frequencies. This was the motivation for dividing our sequences 

into a ‘main dataset,’ with x-axis between ±1.75 kHz, and a ‘control dataset,’ with 

x-axis larger than ±3.0 kHz, as described above (see Methods). 
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Figure 7.   Dynamic-stimulus experiment: Examples.   (a-b) Examples of 
recorded sequences of bat search calls, where the bats adjusted their call 
frequency in response to the playback. Top panels: Call frequency versus time; 
red lines indicate the playback frequency.  Bottom panels: Normalized call 
amplitudes versus time, showing the gradual increase in recorded amplitude as 
the bat approached the microphone, and then the gradual decrease as the bat 
flew away.  (a) The playback stimulus switched at t = 0 from a frequency of 22.3 
kHz to 28.3 kHz (red lines); t = 0 (vertical dashed line) corresponds to the start of 
the post-switch stimulus.   (b) The playback stimulus switched at t = 0 from 
‘silence’ to a frequency of 24.3 kHz.  (c) The playback frequency switched at t = 0 
from 26.3 to 24.3 kHz.  Here the bat slowly shifted its frequency upward, 
eventually ’jumping‘ over the playback frequency.  (d) Population graph showing 
for each sequence (dots) the bat’s frequency shift at t > 0 compared to t < 0 (y-
axis) versus the frequency difference between the bat calls and the playback 
stimulus (x-axis). We included in this plot all sequences in which no ‘silence’ 
stimuli occurred before or after the switch (n = 164/200 sequences). Gray lines, 
25th and 75th percentiles of the y-values of the dots, computed in 2-kHz bins 
along the x-axis.   
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Population analysis of the main dataset (Figure 8a) demonstrated that 

bats made rapid changes to the frequencies of their calls when the playback 

stimulus was switched at t = 0 to within a small frequency-difference (< 1.75 kHz) 

from the bat’s frequency. Such changes were not observed in the control dataset, 

where the frequency shift of the playback stimulus was to within > 3.0 kHz from 

the bat’s frequency (Figure 8a, Inset). Very similar results were obtained in the 

subset of sequences in which the stimulus was switched from ‘silence’ to a 

playback frequency that was close to the bat’s frequency (data not shown).   In 

other words, the response of the bats was frequency-specific, occurring only 

when the post-switch playback frequency was close to the bat’s frequency – 

suggesting a jamming avoidance response. 

To examine the effect of having a positive versus negative initial frequency 

difference between the playback and the bat calls, we decomposed the dataset 

into two groups of sequences (Figure 8b), based on whether the average pre-

switch bat frequency was above the post-switch playback frequency (open 

squares) or below it (closed squares).  The bats that used frequencies above the 

playback (open squares) shifted their call frequencies upwards, away from the 

playback, as expected from a jamming avoidance response.  However, many 

bats that used frequencies below the playback (closed squares) also shifted their 

frequency upwards – towards the playback frequency. Comparison of the 

average frequency at t > 0 versus t < 0 showed that 100% of the sequences in 

the fplayback < fbat group exhibited an upward frequency shift (14/14 sequences, 

sign test: p < 0.0005), and 72% of the sequences in the fplayback > fbat group also 
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Figure 8.   Dynamic-stimulus experiment: Population analysis.   (a) Average 
frequency-difference values versus time. Main dataset is shown in the main plot, 
while the control dataset is shown in the inset.  Averages were obtained by 
aligning the sequences at the start of the post-switch stimulus (t = 0), pooling all 
sequences and grouping them into 1-s time bins. Errorbars denote mean ± s.e.m.  
Vertical dashed line, t = 0; horizontal dashed line, frequency-difference = 0.  (b) 
Average frequency-difference versus time, using the same data as in figure 8a, 
decomposed based on whether the post-switch playback frequency was above 
the average pre-switch bat frequency (closed symbols) or below it (open 
symbols).  (c) Average normalized amplitude of recorded bat calls, computed for 
the main dataset.   (d) Data from figure 8b corrected for Doppler shift.  Gray 
arrow: Average frequency difference between the playback frequency and the 
bat frequency, for the group of sequences where fplayback > fbat.  (e) Schematic of a 
spectrogram summarizing the bats’ responses in the dynamic-stimulus 
experiment. When the playback frequency is below the bat’s frequency (fplayback < 
fbat, left), the bat shifts its frequency upwards, away from the playback; when the 
playback frequency is above the bat frequency (fplayback > fbat, right), the bat also 
shifts its call frequency upward, towards and beyond the playback frequency.  (f) 
Data from Figure 8a replotted on a finer time-scale (bin size = 200 ms). Arrow: 
First time-bin that showed a significant upwards frequency shift by the bats.  (g) 
Average frequency-difference versus time, using the maximal frequency, Fmax.   
(h) Average call bandwidth versus time. Arrow shows the bandwidth of the 
playback call, 6.6 kHz..  (i) Average frequency overlap between the bat calls and 
the playback, defined as the percent of the bat call bandwidth overlapped by that 
of the playback.  Inset, control dataset. 

 59  



 60  
time (s)

-3.5-2.5-1.5-0.5 0.5 1.5 2.5 3.5 4.5 5.5

ca
ll 

Fm
ax

 - 
av

g 
pr

e-
sw

itc
h 

Fm
ax

 (k
H

z)

-4

-3

-2

-1

0

1

2

3

4

(g) 

-3.5-2.5-1.5-0.5 0.5 1.5 2.5 3.5 4.5 5.5

ba
nd

w
id

th
 (k

H
z)

5

6

7

8

9

10

11

12

-3.5-2.5-1.5-0.5 0.5 1.5 2.5 3.5 4.5 5.5

%
 o

ve
rla

p

60
62
64
66
68
70
72
74
76
78
80

20

25

30

(i) 
time (ms)

-400 -200 0 200 400

ca
ll 

fr
eq

 - 
av

g 
pr

e-
sw

itc
h 

fr
eq

 (k
H

z)

-0.5

0.0

0.5

1.0

time (s)
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5

am
pl

itu
de

 (n
or

m
)

0.0

0.3

0.6

time (s)
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5ca

ll 
fr

eq
 - 

av
g 

pr
e-

sw
itc

h 
fr

eq
 (k

H
z)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(c) (d) 

(e) (f) 

(h) 

playbac
ba

fplayback < fbat 

time 

fre
qu

en
cy

 

playbac
ba

fplayback > fbat 

time (s)
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5ca

ll 
fr

eq
 - 

av
g 

pr
e-

sw
itc

h 
fr

eq
 (k

H
z)

-0.5

0.0

0.5

time (s)
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5ca

ll 
fr

eq
 - 

av
g 

pr
e-

sw
itc

h 
fr

eq
 (k

H
z)

-1.0

-0.5

0.0

0.5

1.0
f playback > f bat
f playback < f bat

(a) (b) 

time (s) time (s)



exhibited an upward frequency shift (18/25, sign test: p < 0.05).  These upward 

frequency shifts were maintained almost as long as we could reliably record the 

bats as they flew away from the speaker (on average, up to t = 3.5 s). No upward 

frequency shifts were observed in the control dataset, and a downward shift was 

observed for the control group with fplayback > fbat (Figure 8b, Inset). 

Two possible explanations can be invoked for the counter-intuitive 

frequency shift of bat calls towards the playback frequency. First, this may be an 

artifact caused by the Doppler shift due to the bats’ motion. Second, the bats 

may have been shifting their frequencies towards and beyond the playback 

frequencies, perhaps in order to ‘jump’ over the playback frequency: Figure 7c 

shows an example of a recorded bat sequence where this seems to be the case, 

with the bat slowly shifting its call frequencies upwards, eventually reaching 

frequencies higher than the playback. 

To determine the magnitude of the Doppler shift due to the bats’ motion, 

we first plotted the average amplitudes of recorded bat calls (Figure 8c): These 

amplitudes increased as the bat approached our recording system (t ~ 0), 

remained high as the bat flew near our system, and then decreased as the bat 

flew away (t ≥ 3.5 s).  Because we performed the frequency-switch of the 

playback as the bat was approaching the microphones (Figure 8c, t = 0 is on the 

rising phase of the amplitude curve), this meant that at times t << 0 there was a 

positive Doppler shift from the approaching bat – so the actual pre-switch 

frequencies were  lower than what we recorded. Conversely, because of the 

negative Doppler shift for a bat flying away, the post-switch frequencies were  
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higher than those recorded.  Using the estimate of a Doppler shift of 0.91 kHz for 

a bat approaching the microphone (t << 0) versus a bat flying away (t >>0; see 

Methods), we re-plotted the data from Figure 8b with a linear rise in the Doppler 

shift from a 0-kHz shift at t = 0 to a 0.91-kHz shift at t = 4.5 s (Figure 8d).   A 

linear change in the Doppler shift was used because we did not know the 

direction of the bat’s flight immediately after t = 0.  Therefore, this estimate may 

be inaccurate at t ~ 0, but at t >> 0 it provides a reasonable approximation of the 

Doppler shift.  The main point conveyed by Figure 8d is that the Doppler-

corrected frequency shift (Figure 8d) was even larger than our initial 

measurements (Figure 8b). 

Next, to determine whether the bats indeed shifted their frequency beyond 

the playback frequency for sequences with fplayback > fbat (Figure 8d main plot, 

closed squares), we computed the average value of fplayback – fbat for these 

sequences, using pre-switch fbat and post-switch fplayback. This frequency 

difference was 0.82 kHz. We then plotted this difference value in Figure 8d (gray 

arrow). Since the bat frequencies after the switch were above the gray arrow 

(Figure 8d closed squares, t = 3.5 and 4.5-s bins), this demonstrated that the 

bats shifted their frequency not only towards, but also beyond the playback 

frequency. For the fplayback > fbat group, we also directly examined individual call 

sequences for evidence of upward shifts, calculating the percentage of 

sequences in which the bat’s call frequency was above the playback frequency 

presented to the bat.  For time-bins 0.5, 1.5, 2.5, 3.5 and 4.5 s, these 

percentages were 29%, 42%, 48%, 65% and 63%, respectively. This 
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demonstrates that after 5 seconds there was an increase of > two-fold in the 

number of bats calling above the playback signal, with the majority of sequences 

surpassing the playback frequency by the last two time bins. 

Figure 8e shows a schematic summarizing this behavior of the bats. When 

the bats used call frequencies above the playback (Figure 8e, left), they shifted 

their call frequencies upwards, away from the playback. When the bats used call 

frequencies below the playback (Figure 8e, right), they also tended to shift their 

call frequencies upwards, towards and beyond the playback – ‘jumping’ over the 

playback frequency. 

Finally, to address how quickly the bats reacted to the stimulus-switch, we 

reexamined the dataset from Figure 8a using smaller, 200-ms, time bins rather 

than 1-s bins (Figure 8f).   This higher temporal resolution demonstrates that a 

significant upward frequency shift was apparent already in the first time-bin after 

the switch (Figure 8f, arrow; one-sided t-test for this bin: t = 1.80, df = 30, p < 

0.05). This bin was centered at t = 100 ms, and spanned the times from t = 0 to 

200 ms (gray horizontal bar). Therefore, on average, the bats shifted their call 

frequencies upwards within less than 200 ms. Because the bats’ average inter-

call interval during search phase was 227 ± 55 ms (mean ± s.d.), this means that 

many bats shifted their call frequencies upwards already in their first call after the 

stimulus-switch. 
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Other changes in call structure 

 Components of calls other than the minimum frequency also changed in 

response to the playback stimuli.   A plot of the changes in the maximum 

frequency of the bat calls, Fmax, shows that at t > 0 the bats rapidly shifted their 

Fmax upwards, with an average shift of +3 kHz at t = 3.5 s (Figure 8g).  The 

bandwidth of the bat calls also increased at t > 0, as seen in Figure 8h (t-test of –

0.5 s time-bin versus 3.5 s time-bin in Figure 8h: t = 3.92, p < 0.0002). In the 

static experiment, the bandwidth also increased in the presence of playbacks 

compared to the ‘silence’ condition (bandwidth = 6.74 ± 2.30 kHz, mean ± s.d., 

compared to 4.15 ± 1.93 kHz for ‘silence’; t-test: t = 5.86, p < 0.0001).  The 

increase in bandwidth, combined with the upward frequency shift, suggests that 

the bats were decreasing the frequency overlap between their calls and the 

playback stimuli. A slight, but significant decrease in the frequency overlap, from 

71% to 65% overlap, was indeed observed between the t = –0.5 s time-bin and 

the t = 4.5 s time-bin (Figure 8i, one-sided t-test: t = 1.35, p < 0.05). 

 Measures of non-frequency call parameters showed that the amplitude of 

the calls did not increase after the stimulus-switch in the dynamic experiment (no 

stepwise increase in amplitude at t = 0 in Figure 8c), indicating that the bats did 

not increase their call loudness in response to the playback.   However, the inter-

call interval was slightly and significantly shorter in the static-stimulus experiment 

under the playback versus the ‘silence’ conditions (mean ± s.d. = 247 ± 34 

versus 262 ± 17 ms, respectively; two-sided t-test: t = 2.12, df = 197, p < 0.05), 
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suggesting that the bats increased their call-rate in the presence of conspecifics.  

The duration of the calls also was shorter under the playback versus the ‘silence’ 

conditions (11.8 ± 1.6 versus 13.7 ± 0.9 ms; two-sided t-test: t = 5.81, df = 197, p 

< 0.0001).  As a result the duty cycle, defined as the percentage of time when a 

bat is calling, was not significantly different between the playback and the 

‘silence’ conditions (duty cycle: 4.98 ± 0.97 and 5.33 ± 0.74 percent, respectively; 

2-sided t-test: t = 1.72, df = 197, n.s.). This suggests that the bats did not 

increase the redundancy of their signals, an increase that has been previously 

reported as a response to noise in other taxa (e.g. Lengagne et al. 1999).  

In summary, the jamming avoidance response in T. brasiliensis consisted 

of several changes to the bats’ calls, including an upward frequency shift, 

increase in bandwidth, decrease in duration, slight decrease in spectral overlap 

between the bat call and the jamming call, and an increase in call-rate. 

 

DISCUSSION 

 

 Jamming avoidance response and its role in electrolocation have been 

well documented in a number of weakly electric fish, particularly the knife fish 

Eigenmannia (Watanabe & Takeda 1963; for reviews see Heiligenberg 1991; 

Metzner 1999). Here, we provide the first direct experimental evidence for 

jamming avoidance in echolocating animals.  Our ‘static stimulus experiment,’ 

where we presented playbacks of pre-recorded calls shifted to one of six 

frequencies, demonstrated that free-flying bats (Tadarida brasiliensis) avoided 
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using frequencies that were close to the presented stimulus frequency, creating a 

notch in the distribution of used frequencies (Figure 6b).  A causal link between 

stimulus and response was demonstrated in the ‘dynamic stimulus experiment,’ 

which involved abruptly switching the playback stimulus as a bat approached our 

recording equipment. Here, bats clearly exhibited a jamming avoidance 

response, by shifting their call frequencies upwards (Figures 3, 4). Surprisingly, 

the bats that originally used frequencies below the playback frequency also 

shifted upwards, ‘jumping’ over the frequency of the playback stimulus (Figure 

8d).  Finally, we showed that the jamming avoidance response was very rapid, 

with the bats shifting their frequencies within < 200 ms of the stimulus-switch 

(Figure 8f). 

 

Comparisons to previous studies of jamming avoidance 

 Several previous studies in echolocating bats have provided evidence that 

some bat species which produce frequency-modulated (FM) signals (‘FM bats’) 

shift their call frequency in response to conspecifics (Habersetzer 1981; Miller & 

Degn 1981; Obrist 1995; Surlykke & Moss, 2000; Ibanez et al. 2004; Ratcliffe et 

al. 2004; Ulanovsky et al. 2004). This includes the species studied here (Ratcliffe 

et al. 2004) and the related species Tadarida teniotis (Ulanovsky et al. 2004).  In 

species that produce constant-frequency (CF) signals, so-called ‘CF bats,’ no 

robust frequency shifts have been found (Jones et al. 1994) – but this may be 

expected, since auditory neurons in CF bats have an extremely narrow-band 

tuning to the bat’s call frequency (Suga et al. 1987), making spectral jamming 
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less likely. Similarly, no shifts were found in the bat Taphozous perforatus, which 

is an FM bat that uses unusually narrowband calls (Ulanovsky et al. 2004). 

In some of the previous studies of FM bats, the evidence for frequency 

shifts consisted of examples of recordings in which two or three bats were flying 

together and maintained particularly large frequency differences between their 

calls (Habersetzer 1981; Miller & Degn 1981; Surlykke & Moss 2000). Other 

studies have shown that groups of bats flying in the same area exhibit a larger 

variation in frequencies compared to ‘virtual groups’ constructed from calls of 

bats flying alone (Obrist 1995; Ibanez et al. 2004; Ratcliffe et al. 2004; Ulanovsky 

et al. 2004). The most extensive evidence for frequency shifts involved a recent 

study of Tadarida teniotis (Ulanovsky et al. 2004), which suggested long-term 

‘static’ frequency shifts as well as more rapid dynamic shifts within a ~1-s 

timescale, when two bats were flying together.  Interestingly, several of these 

previous studies have indicated a bias for upward frequency shifts (Obrist 1995; 

Ibanez et al. 2004; Ulanovsky et al. 2004), similar to the current study. 

Although the frequency differences observed in previous studies can be 

interpreted as a jamming avoidance response, other interpretations are likely, 

particularly because echolocating bats are known to shift their call frequencies 

under a variety of circumstances, such as when approaching a cluttered 

environment (Kalko & Schnitzler 1993). For example, bats flying in groups may 

fly at different speeds compared to solitary bats, or at different heights, or at 

different distances from vegetation – all of which may aid in collision avoidance. 

Therefore, changes in call design reported in previous studies (Habersetzer 
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1981; Miller & Degn 1981; Obrist 1995; Surlykke & Moss, 2000; Ibanez et al. 

2004; Ratcliffe et al. 2004; Ulanovsky et al. 2004) may have been due to these or 

other behavioral factors, rather than to a jamming avoidance response to the 

conspecific calls.  Because of the lack of experimental manipulations, these 

studies do not provide information about the behavioral significance of any 

observed frequency shifts.  Moreover, several methodological difficulties were 

inherent to all previous studies, which relied on recording the calls of free-flying 

bats and then using a post-hoc correlation analysis of call parameters. First, the 

locations of the recorded bats relative to each other and to the recording 

microphone were unknown, so it was unclear whether the bats were approaching 

or departing from each other, which may influence whether jamming avoidance 

was to be expected at all. Second, because experimental manipulations were not 

used, there was no ‘time zero’ around which to measure any presumed 

frequency changes, confounding the analysis of any dynamic frequency shifts.   

In the current study, explicit experimental manipulations allowed us to overcome 

these methodological limitations. By switching the playback frequency as the bat 

approached our speaker, and by then aligning the analysis to the switch-time 

(time zero), we provide the first demonstration that frequency shifts are causally 

linked to experimental playback stimuli.  These frequency shifts were very rapid, 

occurring in some bats within less than 200 ms, suggesting that these frequency 

shifts are not caused by factors such as changes in the bat’s height or the level 

of ultrasonic clutter, which are unlikely to change appreciably within 200 ms – but 

were, in fact, induced by the playback calls themselves. 
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 The jamming avoidance described in this study differs from the jamming 

avoidance response in the electrolocation system of weakly electric fishes in that  

jamming avoidance in fishes typically develops slowly, sometimes over a few 

tens of seconds (e.g. Kawasaki, 1997), in contrast to the very rapid frequency 

shifts that occurred in the bats.  In other respects, the asymmetric response that 

we report for the bat T. brasiliensis, which shifted its frequencies mostly upwards, 

is similar to some species of fish (Apteronotidae) that also exhibit an asymmetric 

response, always shifting their discharge frequency upwards (Heiligenberg et al. 

1996).   However, in weakly electric fishes, the picture is known to be more 

complex, as other species (Eigenmannidae) exhibit a symmetric jamming 

avoidance response, shifting their frequency upwards when encountering a 

lower-frequency conspecific signal and shifting downwards when encountering a 

higher-frequency signal (Heiligenberg 1991).  Other species of echolocating bats 

may also exhibit a symmetric jamming avoidance response, similar to that of the 

weakly electric fish Eigenmannia. 

 

Hypotheses accounting for jamming avoidance in the bat 

Several explanations may account for the upward shifts in the bats’ call 

frequencies.  First, the bats may be exhibiting a vocal startle response to the 

playback stimuli (a ‘surprise response’), rather than be avoiding jamming, and 

this startle response may be expressed as an upward frequency shift. However, 

the long duration of the response, lasting several seconds – as long as we could 

record the calls (Figure 7a,b) – suggests that these frequency shifts do not reflect 
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an instinctive, transient, startle response.    Second, if the bats are avoiding 

jamming, they may prefer to shift their frequencies upwards rather than 

downwards if they have more sensitive hearing at above-average frequencies 

than at below-average frequencies. However, this explanation is unlikely 

because published audiograms of T. brasiliensis suggest that the hearing of this 

bat is most sensitive over a wide frequency range between 10-40 kHz (Henson 

Jr. 1970), covering frequencies both above and below the bat’s dominant 

frequency.  Third, the observed increase in Fmax (Figure 8g) and bandwidth 

(Figure 8h) after the stimulus switch could reflect an attempt by the bats to 

specifically avoid jamming of their highest call frequencies. Yet, similar increases 

in these call parameters are often noted when bats are attempting to gain more 

detailed information about their environment, such as when foraging in the 

presence of vegetative clutter (Obrist 1995). Brazilian free-tailed bats often 

forage in the presence of multiple conspecifics (Ratcliffe et al. 2004), so 

increasing the Fmax and bandwidth would provide a foraging bat with more 

precise information about the location of nearby conspecifics, which may be 

helpful for reducing mid-air collisions.  Fourth, the bats may be changing their 

calls in order to minimize the frequency overlap with the playback stimuli, as 

reflected by the significant decrease in overlap that was observed following the 

stimulus switch (Figure 8i).  However, the decrease in overlap was small in size, 

from 71% overlap just before the switch (at t = –0.5 s) to 65% overlap long after 

the switch (at t = 4.5 s). This small decrease was most likely caused by the 

increased bandwidth of post-switch calls rather than by frequency shifts, and it 
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suggests that the bats were not attempting to substantially reduce the frequency 

overlap. 

A fifth hypothesis, that can account for the results of both the static-

stimulus and dynamic-stimulus experiments, is that the jamming power of 

playback calls is not uniform across frequencies – but that the narrowband, so 

called ‘quasi-constant-frequency’ (QCF) component that occurs near the end of 

the playback call (Figure 5a), produces the most effective jamming. Two factors 

may add to the jamming potency of the QCF part of the playback call.  First, this 

part of the playback call is relatively long in duration (see Figure 5a).  Second, it 

contains lower frequencies, which are least subject to atmospheric attenuation 

(Lawrence & Simmons 1982). Therefore, we propose that the bat’s sonar is most 

jammed if the lowest (QCF) frequency of the playback call is anywhere within the 

bandwidth of the bat’s own call.  This hypothesis explains why in the dynamic-

stimulus experiment the bats tended to shift their frequencies upwards, above the 

playback frequency (Figure 8d) – because an upward shift puts the QCF part of 

the playback call below the bandwidth of the bat’s own call. 

This hypothesis also accounts for several results of the static-stimulus 

experiment.  First, the hypothesis explains why, compared to the ‘silence’ 

condition, the bats preferentially shifted their frequency upwards when the 

playback frequencies were presented (Figure 6a).  Second, the hypothesis 

suggests that the bats’ frequencies should form an asymmetric ‘hole’ mostly 

below the playback frequency, because the bats calling below the playback 

would shift their frequencies upwards, above the playback frequency. This 
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asymmetry in the ‘hole’ was observed in the static-stimulus experiment (Figure 

6d).  The hypothesis does not explain however the finding that bats used lower 

call frequencies when presented with higher playback frequencies, which is the 

opposite of what we might expect (Figure 6a) – although this could reflect a 

physical limit of the bats’ ability to shift their frequency upwards when presented 

with the highest playback frequencies.  Thus, our hypothesis explains the results 

of the dynamic-stimulus experiment (Figures 3, 4), as well as most of the results 

of the static-stimulus experiment (Figure 6). 

In conclusion, several intriguing questions remain. For example, what 

happens when two bats approach one another: do they both shift their 

frequencies upwards?  What, if any, are the rules that govern their ‘group 

behavior’ under such conditions?  One way to address these questions 

experimentally is to use sequences of playback calls that do not have a fixed 

frequency as in this study, but rather change their frequencies across successive 

calls, according to the time-course reported here for the real bats. It would also 

be informative to digitally manipulate the lowest-frequency (QCF) and highest-

frequency parts of the playback calls, in order to test the hypothesis that there 

are differential effects of various parts of the playback call on the bats’ behavior.  

These and other experiments could help elucidate the ability of echolocating bats 

to forage and avoid collisions when flying in high-density groups that often 

consist of tens or hundreds of bats (Adams & Simmons 2002) – an ability that is 

yet to be matched by man-made airborne radars. 
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CHAPTER IV 

Flight in a Column Formation: Echolocation Calls of Brazilian Free-Tailed 
Bats, Tadarida brasiliensis, During Mass Emergence from Cave Roosts 

 
 
My consistent use of “we” throughout this chapter is in reference to my co-
authors, Gary McCracken, Nickolay Hristov, and myself.  I was the primary 
contributor to this work, which involved the following tasks:  (1) development of 
project design and collection of all acoustic data, (2) measurement of acoustic 
signals and all statistical analysis, (3) all gathering and interpretation of the 
relevant literature, and (4) all of the writing.   
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ABSTRACT 

 
Brazilian free-tailed bats, Tadarida brasiliensis, emerging from cave roosts 

in tight serpentine columns must monitor the surrounding environment and avoid 

collisions with nearby conspecifics.  The objectives of this research were to 

describe and quantify the structure of calls produced by emerging T. brasiliensis 

to assess how bats are able to effectively orient in a column formation.  We 

recorded emergence calls from two roosts with approximate colony sizes of 

350,000 and 35,000 bats.  Brazilian free-tailed bats emit two distinct call types 

during emergence that we categorize as sweep and hook calls, both of which are 

significantly different from echolocation calls emitted by foraging bats.  We 

propose that hook calls are used to localize the positions of nearby bats within 

the column, which is important for collision avoidance, and that sweep calls are 

used to gain information about predators and other objects in the relatively 

uncluttered environment outside of the column. Both call types exhibited 

significant structural differences between sites, although a detailed assessment 

of sweep calls found no relationship between call structure and the number of 

bats emerging from a roost, as quantified using thermal imaging technology.  Site 

differences in calls may be associated with the spacing of bats during 

emergence.   
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INTRODUCTION 
 

 Numerous studies demonstrate that bats modify the structure of their 

echolocation signals under different behavioral and ecological conditions.  As 

examples, bats alter call structure in response to the proximity of insect targets 

(Griffin 1958), the amount of vegetative clutter in an environment (Rydell 1990, 

Kalko and Schnitzler 1993, Obrist 1995), and the presence of conspecifics 

(Obrist 1995, Gillam et al. 2007).  Since no call structure is ideal for all situations, 

flexibility will be critical for bats to adapt calls to fit differing demands for obtaining 

information (Obrist 1995).   

  A situation that has not been well-explored concerns if and how bats alter 

their echolocation calls during emergence flights from roosts.  Bats exiting roosts 

in high densities face the dual challenge of avoiding collisions with other bats and 

evading predators (Lee and Kuo 2001). While short, broadband calls are ideal for 

precise localization of nearby conspecifics, long, narrowband signals will be best 

for long distance detection of avian predators. Characterization of emergence 

calls may provide insight into how bats avoid collisions and identify predators, 

thus accommodating the apparent need for two conflicting call structures.   

Emergences of Brazilian free-tailed bats, Tadarida brasiliensis, from day 

roosts can range from a few individuals leaving a tree-hole or bat house to 

millions of bats exiting in huge densities from large limestone caves (Davis et al. 

1962, Cockrum 1969).  At larger colonies T. brasiliensis emerge in a tight 

serpentine column (Wilkins 1989), which appears to be a tactic for avoiding 
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predation by raptors that commonly hunt near cave entrances (Lee and Kuo 

2001).  However, bats emerging in columns are separated from each other by 

very short distances and are at high risk of collision with other bats.    

The foraging calls of Brazilian free-tailed bats consist of long, narrowband 

signals (typically 10-14 ms duration with a 2-15 kHz bandwidth) that are well 

suited for detecting prey at long distances in open environments (Simmons et al. 

1979, Ratcliffe et al. 2004, Gillam et al. in press).  Calls emitted by T. brasiliensis 

emerging from a building roost were substantially more broadband (35 kHz) and 

shorter in duration (7.1 ms) than foraging calls, and contained a constant-

frequency (CF) component at the start of the call not previously reported in this 

species (Simmons et al. 1979).  These calls were recorded under emergence 

conditions (i.e. bats exiting a small opening) that appear to be very different from 

those experienced at a large cave colony in which hundreds of bats emerge 

every second.   

  In this study, we document call structures used by Brazilian free-tailed 

bats during mass emergences from one large cave roost and one smaller cave 

roost in South Central Texas.  Audio recordings were made simultaneously with 

thermal imaging video recordings of bats exiting each roost to investigate 

relationships between call structure and the number of emerging bats.  
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METHODS 
 

 We recorded emerging T. brasiliensis at two roosts in South Central 

Texas; 1) Ney Cave near Bandera, TX, which contains a large maternity colony 

estimated to contain 300,000 –400,000 bats (Betke et al. in prep, TH Kunz and N 

Hristov personal communication), and 2) the Bamberger Chiroptorium near 

Johnson City, TX, an artificial cave built in 1998 that currently houses 

approximately 30,000 – 40,000 Brazilian free-tailed bats during the spring and 

summer months (TH Kunz and N Hristov, personal communication).  

 

Field recordings 

 Audio and thermal imaging recordings of emerging bats were taken at Ney 

Cave on 26 and 27 June 2006 and at the Chiroptorium on 2 July 2006.  

Recordings began at the time bats first exited the roost and continued until bats 

stopped exiting (Chiroptorium), or until an approximately equal number of bats 

were observed entering and exiting the roost (Ney Cave).     

 We obtained real-time audio recordings using Avisoft CM16 solid dielectric 

microphones (Avisoft Bioacoustics, Germany, frequency response of ± 3 dB 

between 10 and 100 kHz) mounted on light stands.  We placed two microphones 

at Ney Cave, with one oriented perpendicular to the emerging column at a height 

of 1.5 m, and another placed directly below the column at a height of 1 m and 

oriented upwards.  Due to the smaller colony size at the Chiroptorium, we only 

used one microphone, which we pointed perpendicular to the emerging column 
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at a height of 1.5 m.  At both sites, high-speed acoustic data acquisition was 

accomplished with Avisoft’s Ultrasound Gate 416 connected to a Dell Inspiron 

laptop running Avisoft RECORDER.  Recordings were 5-min long, but sampling 

was continuous as there was no time-gap between consecutive recording files.  

Recordings were made with 16-bit resolution and a 166 kHz sampling rate.   

We used a FLIR/Indigo Systems Merlin Mid infrared thermal camera to 

image bats as they emerged from the roost.  The camera acquired 12-bit 

intensity values in 320 x 240 digital video format at a rate of 60 frames per 

second, which was recorded directly to a computer hard drive (Kunz et al. in 

press). At both sites, the camera was oriented perpendicular to the emerging 

column.  While we were able to obtain video of the entire column at Ney Cave, 

the landscape at the Chiroptorium prevented a complete census, and a small, 

unknown percentage of bats were not filmed.  This counting error should not 

have affected our analyses, as video data was used only for relative 

comparisons.    

 

Data measurement and analysis 

After recordings were complete, we removed extraneous noise by digitally 

high-pass filtering all sound files using a finite impulse response filter with a 15-

kHz cutoff.  For analysis we selected only calls with a high signal-to-noise ratio in 

which signal structure could be accurately assessed.  All measured calls were 

separated by a minimum of 5-s, although this interval was often greater.  Due to 

the large number of individuals exiting the cave simultaneously and the fast flight 
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speed of emerging bats (8.6 ± 1.6 m/s, J Reichard, personal communication), it is 

highly unlikely that calls recorded at >5-s apart were emitted by the same bat.  

We obtained acoustic measurements from spectrograms (frequency x time 

representation) computed using a 1024-point Fast Fourier Transform (93.75% 

overlap).  For each selected call, we measured five variables; 1) duration, 2) 

maximum frequency (at the start of the call), 3) minimum frequency (at the end of 

a call), and 4) peak frequency (frequency of maximum energy) using Avisoft 

SasLab Pro (Avisoft Bioacoustics, Germany).  We calculated 5) bandwidth by 

subtracting minimum frequency from maximum frequency for each measured 

call.   

Methods for analyzing video data are described in Kunz et al. (in press) 

and Betke et al. (in review).  Pixels from video recordings were identified as a bat 

with an adaptive filtering method that assessed changes in pixel values over 

time, such that significant deviations over short time periods indicated the 

presence of a bat.  Bats were then tracked using a recursive Bayesian filtering 

method and a data-association algorithm that assigned new observations to 

previously established tracks.  These methods allowed hundreds of bats to be 

simultaneously tracked and for accurate censuses of the numbers of bats exiting 

a roost.  Data was outputted at 600-frame intervals, which yielded a count of the 

number of bats emerging every 10-s.  Due to differences in the camera’s field of 

view, we were unable to calculate the density of emerging bats, and instead 

report flow rates as the number of bats emerging in 10-s intervals. 
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We aligned our video and audio data so that each 10-s emergence count 

was associated with measurements of one ‘sweep call’ that was randomly 

selected from the same 10-s period; sweep calls were short, frequency-

modulated (FM) signals that exhibited a sweeping structure common to the 

echolocation calls of most aerial-hawking bats (Figure 9a, Griffin 1958).  We 

performed a series of linear regressions to determine if emergence count was 

associated with any of the call variables.  Since call data were not normally 

distributed and common transforms did not fix this problem, we conducted a non-

parametric bootstrap analysis.  This analysis, which was conducted with NCSS 

(Statistical Systems, Kaysville, UT), used 3000 bootstrap samples and yielded 

bias-corrected R2 estimates. 

In addition to calls recorded during emergence, we obtained 

measurements from echolocation calls of free-flying T. brasiliensis foraging over 

a cotton field in the same region of South Central Texas (Gillam et al. in press).  

These calls were recorded and measured using the same equipment and 

methods described in this study.  We selected one call from each of 30 

sequences, which were most likely from different individuals (see Gillam et al. in 

press, details).  Due to unequal sample size, unequal variances, and lack of 

normality, we used non-parametric bootstrap analyses for all comparisons 

between call types.  We also used bootstrap comparisons to assess effects of 

location and date on call structure.  Each analysis involved resampling the 

dataset 3000 times and computing a bootstrap p-value.  Bootstrap comparisons  
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Figure 9.  Spectrogram depicting an assemblage of recorded call types.  (a) 
sweep call recorded during 26 June emergence at Ney Cave. (b) hook call with a 
small hook section recorded during 26 June emergence at Ney Cave.  (c) hook 
call with a larger hook section recorded during 2 July 2006 emergence from 
Bamberger Chiroptorium.  (d) echolocation call recorded from T. brasiliensis 
foraging over a cotton field in South Central Texas in May 2005.   
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were performed in SPSS 15.0 (SPSS Inc., Chicago, IL) using the BOOTDIFF 

macro (Hayes 2005).    

 

RESULTS 
 

On 26 June, the emergence at Ney Cave began at 6:37pm and ended at 

9:44pm.  During this time, we observed three distinct emergence periods 

separated by periods of no emergence activity (11-min emergence, 88-min 

break, 6-min emergence, 26-min break, 56-min emergence).  A census analysis 

from thermal imaging data estimated that a total of 370,556 bats exited the roost.  

On 27 June, bats began exiting the cave at 6:11pm and stopped at 9:43pm, with 

three separate emergences (9-min emergence, 69-min break, 8-min emergence, 

66-min break, 60-min emergence) and a total census estimate of 355,846 bats. 

The substantially shorter emergence at the Chiroptorium on 2 July started at 

7:28pm and stopped at 8:42pm, with two distinct periods of activity (6-min 

emergence, 63-min break, 5-min emergence) and a total estimate of 31,417 bats 

(although some bats were missed).  Average and peak flow rates (bats/10-s) 

were respectively 816 and 5,948 at Ney Cave, and 582 and 3,714 at the 

Chiroptorium.  To provide a visual representation of the recorded sounds, a short 

section of an emergence recording from the Chiroptorium is shown in Figure 10.  

From the emergence recordings at both caves, we identified two distinctive call 

types, which we describe as (1) sweep calls, and (2) hook calls.   

 82  



 
 
 

0 300 
0

70

Time (ms) 

Fr
eq

ue
nc

y 
(k

H
z)

 

 
 
 
Figure 10.  Spectrogram (frequency x time representation) of an emergence 
recording from Bamberger Chiroptorium on 2 July, 2006.  The signal has been 
high-pass filtered using a cut-off of 15 kHz, which was below the minimum 
frequency of recorded calls.   
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Sweep Calls 

Sweep calls were the most common call type recorded during emergence 

(Figure 9a).   These calls began with a steep downward slope and transitioned to 

a quasi-constant frequency (QCF) section that often ended with a short FM tail 

(Table 4, Figure 9a).  We measured one sweep call from every 10-s increment of 

emergence recordings, for a total of 944 sweep calls (885 calls from Ney Cave 

and 59 calls from the Chiroptorium).  On average, calls were 8 ms long, ranged 

from 53 to 29 kHz, and had a peak frequency of 33 kHz.  Linear regressions 

revealed that the flow rate of emerging bats was not a strong predictor of call 

structure and explained only a small amount (< 15 %) of variation in any call 

variable (bootstrap parameter estimates ± standard error:  duration R2 = 0.09 ± 

0.02; min frequency R2 = 0.09 ± 0.02; max frequency R2 = 0.002 ± 0.003; peak 

frequency R2 = 0.13 ± 0.03; bandwidth R2 = 0.01 ± 0.007). 

 

Hook Calls 

Hook calls were distinguished from sweep calls as highly broadband 

signals that began with a distinctive convex hook of variable size, followed by a 

steep linear downward slope (Figure 9b,c).  While these calls were prevalent in 

our recordings, they were substantially less common during times when relatively 

few bats were emerging from the roost (<100 bats in a 10-s period), which 

prevented us from conducting a comparison to bat counts extracted from thermal 

video data.  Instead, we measured 50 hook calls from each of the 3 recording  
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Table 4.  Mean ± standard deviation of the five measured call variables.  Data 
has been divided by call type (sweep, hook, foraging) and the location of 
collection (Ney Cave, Bamberger Chiroptorium).   
 

 
 Emergence Sweep Emergence Hook Foraging 

 NC BC NC BC  
N 884 59 100 50 30 
Dur (ms) 7.9 (1.0) 9.8 (1.6) 6.7 (0.8) 7.8 (1.4) 12.8 (1.1) 
Fmin (kHZ) 28.8 (2.1) 27.5 (2.0) 25.0 (2.4) 24.4 (3.2) 22.7 (1.5) 
Fmax (kHz) 53.6 (3.5) 47.8 (7.0) 52.2 (2.2) 50.0 (2.9) 27.0 (3.0) 
Fpeak (kHZ 32.9 (2.8) 30.8 (1.7) 50.6 (2.2) 33.0 (3.0) 24.5 (1.6) 
Bandwidth 24.8 (3.2) 20.3 (5.8) 27.2 (2.2) 25.7 (3.2) 4.3 (2.4) 
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nights.  On average, the 150 measured calls were 7 ms long and spanned a 

frequency range of 25 to 52 kHz, with a peak frequency of 45 kHz.   

 

Comparisons Between Call Types 

Comparison of emergence calls to the echolocation signals of foraging T. 

brasiliensis (Figure 9d) revealed that both sweep and hook calls were shorter, 

more broadband, and higher in minimum, maximum, and peak frequencies than 

foraging calls (p < 0.0001 for all analyses).    

Visual comparison of sweep and hook calls revealed two major structural 

differences:  (1) a low-frequency QCF section was present in sweep calls and 

absent in hook calls, and (2) a high-frequency hook section was present in hook 

calls and absent in sweep calls.  Comparison of hook and sweep calls revealed 

significant differences (p < 0.0001) for all call variables.  On average, sweep calls 

were longer, less broadband and higher in minimum and maximum frequency, 

although these differences were small (Table 4).  The largest discrepancy was 

the substantially lower peak frequency of sweep calls compared to hook calls.  In 

general, peak frequency was found in the lower frequency QCF section of sweep 

calls and in the upper half or hook section of hook calls.   

While we found no effect of date on call structure, there was a significant 

effect of location for both call types.  Sweep calls from Ney Cave were shorter, 

more broadband, and higher in frequency than sweep calls from the Chiroptorium 

(p < 0.0001 for all call variables).  The same pattern was observed for hook calls, 

although no differences were observed in minimum frequency (p < 0.0001 for the 
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other four variables).  The most striking difference between sites was a 17 kHz 

higher average peak frequency of hook calls from Ney Cave (Table 4).  Due to 

this site effect, all reported comparisons between call types were performed 

separately for each location. 

 

DISCUSSION 

 

 Simmons et al. (1979) stated that calls of emerging Brazilian free-tailed 

bats began “with a short constant-frequency (CF) component with a duration of 

1.5 ms at 55 kHz”.  We believe that the described CF region corresponds to the 

hook structure reported in this study.  While both studies used the same method 

of sound analysis (Fast Fourier Transform), we suspect that signal resolution was 

limited in 1979 by the relatively slow processing speed of computers.  

Alternatively, current processors allow us to quickly perform FFT analyses using 

a very large FFT length (1024), which results in much greater frequency 

resolution.  Spectrograms created using a lower FFT length (64) show the hook 

section as a constant frequency, similar to Simmons et al. (1979).  Further, the 

duration and frequency of Simmon’s CF region are very similar to the hook 

structures observed in this study.   

 

Emergence vs. Foraging Calls 

 The differences observed between the emergence and foraging calls of T. 

brasiliensis are analogous to changes in other species related to the amount of 
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vegetative clutter at a feeding site.  Bats foraging amongst thick vegetation use 

short, broadband signals to accurately localize objects in the environment and 

assist in collision avoidance (Rydell 1990, Kalko and Schnitzler 1993, Obrist 

1995).  Similarly, emerging Brazilian free-tailed bats use short, broadband 

signals, evidently in response to the highly cluttered conditions created by the 

presence of many bats.  The high frequency of emergence calls also results in 

short detection distances, which will be useful when bats need information about 

nearby targets.  Alternatively, the long, narrowband calls of foraging bats are 

ideal for flying in relatively uncluttered conditions and searching for distant 

insects.  Interestingly, foraging T. brasiliensis also increase the bandwidth and 

frequency of their calls in the presence of echolocation playbacks (Gillam et al. 

2007), indicating that foraging bats also adjust call structure to gather more 

detailed information in the presence of conspecifics.   

  

Sweep vs. Hook Calls 

 While sweep and hook calls are both emitted during emergence, they 

exhibit substantive differences in call structure.  It is implausible that these calls 

were produced by different species, as the vast majority of bats at both sites are 

T. brasiliensis (Davis et al. 1962, G McCracken personal communication) and the 

echolocation calls of other species in the area exhibit very different call 

structures.  Therefore, sweep and hook calls are evidently distinctive call types 

produced by emerging Brazilian free-tailed bats that likely allow the bats to obtain 

different types of information about their surroundings.   

 88  



Because flying bats can direct their calls by moving their head from side-

to-side (Simmons 1973), it is likely that individuals near the edge of the 

emergence column direct some calls towards nearby bats and other calls 

towards the uncluttered environment outside of the column.  We propose that T. 

brasiliensis use hook calls when oriented towards the column in order to 

accurately localize the position of adjacent bats.  The distinctive hook region 

provides a precise starting point to a call for accurate target ranging (Bradbury 

and Vehrencamp 1998) and a high peak frequency will increase detail about a 

bat’s immediate surroundings.   We further propose that sweep calls are emitted 

when bats direct signals outside of the column and are primarily used for 

assessing characteristics of the surrounding environment.  The low frequency, 

high amplitude QCF region of sweep calls should lead to longer detection 

distances, which will be important for identifying raptors that are in the vicinity but 

are further away than adjacent bats.  This hypothesis also explains our 

observation that hook calls are less common during periods of sparse 

emergence when bats do not form a column.  Greater spatial separation will 

decrease the risk of collisions, and target-ranging information obtained from hook 

calls should be less important.  Further, if column formation is a tactic for 

predator avoidance (Lee and Kuo 2001), bats emerging at low densities may be 

more susceptible to predation and information from sweep calls about distant 

targets will be important for detection of raptors.  While more detailed research is 

necessary to confirm the conditions under which bats emit sweep and hook calls, 
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it seems plausible that a mix of the two call types will allow bats to obtain the 

information needed for collision avoidance and predator detection.   

  

Changes in the Structure of Sweep Calls 

We did not find that bats altered call structure in reference to the number 

of individuals exiting the roost, although we only assessed this relationship with 

sweep calls.  If the proposed functions of sweep and hook calls are correct, we 

would not necessarily expect a relationship between sweep call structure and 

emergence count, as the surrounding area will generally be open and 

uncluttered.  Alternatively, it is possible that bats adjust their spatial distribution in 

response to changes in the flow rate of emerging bats.  Further assessment of 

hook calls and flow rate of emerging bats will be necessary to determine if this is 

the case.   

Despite the lack of a relationship between emergence count and sweep 

calls, the significant differences observed between locations suggest that bats 

may adjust their call structure under different emergence conditions.  The colony 

at Ney Cave was much larger than the Chiroptorium colony, and qualitative 

visual assessments indicate that bats are spaced closer together as they leave 

Ney Cave than eaving the Chiroptorium.  The shorter, higher frequency calls 

recorded at Ney Cave would be consistent with a tighter spatial distribution, as 

such calls attenuate faster and provide more accurate target range estimates.  

The much higher (17 kHz average) peak frequency of bats emerging from Ney 

Cave may also be related to spatial distribution. The general use of a higher peak 
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frequency during a dense emergence may serve as a form of collective jamming 

avoidance, as greater signal attenuation may decrease the interference produced 

by conspecific calls and allow bats to be spaced closer together.  Further testing 

is necessary to determine if the peak frequency used by bats at different caves is 

associated with colony size.    

While emergence in a tight column likely provides a predator dilution effect 

(Wilson 2000), bats face the task of avoiding collisions with conspecifics present 

at very short distances while still monitoring the area outside of the column.  

Brazilian free-tailed bats appear to solve this problem by emitting two call types, 

which are used for extracting different information from the surrounding 

environment.  These results further substantiate the high flexibility of 

echolocation in this species (Simmons et al. 1979, Ratcliffe et al. 2004, Gillam et 

al. 2007, Gillam et al. in press), and demonstrate that Brazilian free-tailed bats 

orient and echolocate effectively even when flight conditions are very different 

from those experienced during foraging.   
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CHAPTER V 

Eavesdropping by Bats on the Feeding Buzzes of Conspecifics 

 
This chapter is a version of a paper by the same name currently under review in 
the Canadian Journal of Zoology by Erin H Gillam. 
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ABSTRACT 

 

Echolocation calls of most bats are loud in amplitude and subject to 

eavesdropping by nearby conspecifics.  Bats may be especially attentive to 

‘feeding buzz’ calls, which are emitted immediately before prey capture and 

indicate successful hunting.  While previous work has shown that some species 

are attracted to feeding buzzes, these studies did not provide a well-controlled 

test of eavesdropping since comparisons were made between responses to 

natural and altered signals (eg. forward vs backward broadcasts of calls).  In this 

study, I assessed the importance of feeding buzzes by conducting playbacks of 

controlled echolocation stimuli.  I presented free-flying Brazilian free-tailed bats, 

Tadarida brasiliensis, with echolocation call sequences in which feeding buzz 

calls were either present or absent, as well as a silence control.  I determined 

levels of bat activity by counting the number of echolocation calls recorded in the 

presence of each stimulus, and found significantly greater bat activity in response 

to broadcasts that contained feeding buzzes compared to broadcasts without 

feeding buzzes.  These results indicate that bats are especially attentive to 

conspecific feeding buzz calls, and that eavesdropping should allow a bat to 

more readily locate rich patches of insect prey. 
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INTRODUCTION 

 

Food resources often occur in small, ephemeral patches that are 

separated by larger areas of poor quality.  While such an uneven distribution may 

increase the time an animal must dedicate to foraging (Stephens and Krebs 

1986), efforts to locate areas of high resource density may be enhanced by 

monitoring conspecific cues that indicate successful feeding (McGregor 2005).  

For example, the conspicuous sounds of an agouti, Dasyprocta punctata, 

chewing a nut attract other agoutis to a feeding site (Smythe 1970).  Such 

passive information transfer via eavesdropping on conspecific foraging cues can 

occur at the feeding site (McQuoid and Galef 1993, 1992; Nieh et al. 2004), or at 

a colony or roost, which may serve as an ‘information center’ (Chauvin and 

Thierry 2005; Ratcliffe and ter Hofstede 2005; Wright et al. 2003).   

Several species of bats gain knowledge of food resources by attending to 

the cues of conspecifics.  Short-tailed fruit bats, Carollia perpiscillata, alter their 

food preferences based on olfactory cues obtained in the roost from conspecifics 

that have recently fed (Ratcliffe and ter Hofstede 2005).  Evening bats, 

Nycticieus humeralis, follow successful foragers from roosts to rich feeding 

areas, with bats alternating the roles of leader and follower on subsequent trips 

(Wilkinson 1992).  Group departures from a roost have been observed in several 

other species (Fenton et al. 2004; Racey and Swift 1985), although it is often 

unclear if such behavior is due to passive information transfer (Wilkinson 1992), 
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active recruitment of roostmates via communication calls (Wilkinson and 

Boughman 1998), or bottlenecks at the roost exit (Speakman et al. 1992).   

High amplitude echolocation calls of bats reveal information about the 

foraging success of an individual and could be especially susceptible to 

eavesdropping.  Attention to the calls of nearby conspecifics potentially can lead 

to opportunistic aggregations of bats at insect-rich locations (Bell 1980; Fenton et 

al. 1976; Vaughan 1980).  Specifically, bats may be attracted to terminal-phase, 

‘feeding buzz’ calls, which are emitted as a bat captures an insect.  These calls 

indicate successful foraging and exhibit a substantially different structure from 

calls used when a bat is searching for (search-phase), or approaching 

(approach-phase) a prey target (Griffin 1958). 

Three previous studies have investigated the response of bats to 

echolocation call sequences containing feeding buzzes.  Barclay (1982) 

broadcast signals of feeding Myotis lucifugus (which contained search, approach, 

and feeding buzz calls) to free-flying conspecifics, and found that bat activity was 

significantly higher when the foraging signal was played forwards compared to 

trials in which the signal was played backwards.  Leonard and Fenton (1984) 

found similar results when performing a forward/backward playback experiment 

with the foraging calls of Euderma maculatum, and suggested that this species 

may use echolocation to regulate individual spacing within a feeding area.  

Balcombe and Fenton (1988) performed the most direct test of eavesdropping on 

feeding buzz calls, showing that foraging activity of Lasiurus borealis greatly 

increased in the presence of repeated conspecific feeding buzzes compared to 
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presentations of an unedited foraging sequence that contained all three phases 

of bat echolocation.   

The objective of this study was to further test the hypothesis that bats 

eavesdrop on the echolocation calls of nearby conspecifics and are especially 

attracted to feeding buzzes.  Although this question has been investigated in the 

past, previous playback experiments did not specifically address the response of 

bats to the presence of feeding buzzes in realistic echolocation sequences.  The 

backward broadcasts conducted by Barclay (1982) and Leonard and Fenton 

(1984) altered important information about the echolocation signal, including the 

direction of a call’s frequency sweep and the temporal pattern of the call 

sequence (Barclay 1982).  It is possible that the altered signal was not 

recognized by bats as a sequence of foraging calls, resulting in lower responses 

compared to the forward broadcast, independent of the presence or absence of 

feeding buzzes.  Balcombe and Fenton (1988) used a ‘super-stimulus’ of 51 

repeated feeding buzzes that lacked the search- and approach-phase signals 

that almost always occur between consecutive buzzes (Schnitzler and Kalko 

2001).  Thus, none of these studies investigated responses of bats to realistic 

playbacks in which terminal-phase signals were either present or absent.  In this 

study, I performed a controlled experiment in which I compared bat activity in 

response to two echolocation playback stimuli: (1) a call sequence that contained 

only search-phase calls, and (2) the same search-phase sequence with a typical 

series of approach-phase and feeding buzz calls added at regular intervals.  This 

design allowed us to control for other stimulus characteristics, such as call 
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frequency and duration.   

 I chose to investigate the effects of conspecific feeding buzzes with 

Brazilian free-tailed bats, Tadarida brasiliensis.  This species is highly 

gregarious, forming colonies that reach into the millions in South Central Texas 

(Davis 1962).  Despite their ability to disperse 25 or more kilometers from the 

roost (Davis 1962; Williams et al. 1973), these bats experience a high interaction 

rate with conspecifics while foraging (Ratcliffe et al. 2004).  The echolocation 

calls of T. brasiliensis are generally narrowband and relatively low in frequency 

(average minimum frequency of 22.3 kHz; Gillam and McCracken in press), and 

as a result calls will propagate substantial distances in the environment and be 

audible to nearby bats.  This foraging behavior makes T. brasiliensis an optimal 

species for studying the response of bats to the feeding buzzes of conspecifics.   

 

METHODS 

 

Field Experiments with Echolocation Playbacks 

I performed playback experiments between 21:20 and 00:20 on eight 

nights from 3 June to 12 June 2006.  All experiments were performed on a cotton 

farm in the vicinity of Uvalde, Texas, which is close to several large Brazilian 

free-tailed bat colonies (Tadarida brasiliensis), and bats were often observed 

foraging on insects found in high densities over the crop fields where I conducted 

the study.  
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Playback stimuli were constructed from previously obtained recordings of 

bats foraging at the study site.  The first playback signal, referred to as “Feeding 

Buzzes Present”, contained calls from the search, approach, and terminal 

phases of bat echolocation (Figure 11a).  I assembled this signal by repeating 

one typical search-phase call at 200-ms intervals for 8.8-s, and appending a 

1.45-s sequence of approach-phase and feeding buzz calls.  This 10.25-s 

composite sequence was repeated to create a 10-min playback.  The second 

playback signal, referred to as “Feeding Buzzes Absent”, contained only search-

phase calls (Figure 11b), and was constructed by repeating the same search-

phase call from the first playback at 200-ms intervals to create a 10-min signal.  I 

also used a 10-min control broadcast containing no sound, referred to as 

“Silence”. 

Each night, I broadcast six replicates of each stimulus in a mixed order, 

and changed the playback order on successive nights to control for temporal 

effects.  This design ensured an even distribution of the stimulus presentations 

throughout the evenings over the study period.  I broadcast stimuli through an 

omnidirectional ultrasonic speaker (Avisoft 60401, Avisoft Bioacoustics, 

Germany; frequency response ± 5 dB between 15 and 43 kHz) mounted on a 

tripod 3 m from the ground.  Broadcast amplitude was 74 dB at 10 cm from the 

speaker, as measured with a B&K ¼ " condensor microphone # 4939 and a B&K 

measuring amplifier # 2606 (Brüel & Kjær, Denmark).  This is lower than the 
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Figure 11.  Spectrograms of the final 2-second portion of the echolocation 
playback stimuli.  (a) “Feeding Buzzes Present” stimulus containing search, 
approach, and terminal-phase calls.  The preceding 8.25-s of the call sequence 
that is not shown is composed of search-phase calls identical to the first four 
signals in this shortened sequence.  (b) “Feeding Buzzes Absent” stimulus 
containing search-phase calls only.  The preceding 8.25-s of the call sequence 
that is not shown is identical to the depicted calls. 
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typical call amplitude of many insectivorous bats (>100 dB; Lawrence and 

Simmons 1982; Waters and Jones 1995), but was the highest intensity possible 

without overloading the speaker.  A solid dielectric microphone (Avisoft CM16; 

frequency response ± 3 dB between 10 and 100 kHz) was positioned 2 m to the 

left of the speaker at a height of 3 m and oriented directly upward.  Stimuli were 

generated from a Dell Inspiron Laptop through a high-speed sound card 

(DAQCard-6062E, National Instruments, Austin, TX) and an amplifier (Avisoft 

70101) powered by three 12 V 7.2 A gel cell batteries. High-speed data 

acquisition was accomplished with Avisoft’s Ultrasound Gate 416 through the 

same laptop that was used for broadcasts.  Both playback and recording were 

conducted with Avisoft RECORDER.  Recordings were 5-min long, but sampling 

was continuous as there was no time-gap between consecutive recording files.  

Recordings were made with 16-bit resolution and a 166 kHz sampling rate, and 

included both the playback signal and the calls of free-flying bats in the area.   

 

Pulse Count Analyses 

All acoustic measurements and analyses were conducted with Avisoft 

SasLab Pro.  I digitally high-pass filtered all recordings to remove background 

noise, using a finite impulse response filter with a 5-kHz cutoff.  I excluded from 

analysis files that contained high levels of wind noise.  To assess levels of bat 

activity in the presence of the three playback signals, I performed a pulse train 

analysis that automatically detected and counted echolocation calls.  This 

analysis provided information about relative bat activity in the presence of each 
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playback stimulus, but could not be used to estimate the number of bats in the 

recording area since the calls of individual bats could not be distinguished.  I 

used a hysteresis searching method to detect calls, in which an amplitude peak 

was counted only if it exceeded the pre-peak amplitude by a pre-defined 

threshold (Specht 2004).  The value of this hysteresis threshold influences the 

pulse counts produced by the program.  To ensure that I chose an appropriate 

value, I counted several recordings by hand and compared my counts to those 

produced by the pulse train analysis at different hysteresis settings.  A 20dB 

hysteresis threshold yielded the most accurate pulse counts, and thus was used 

for all analyses.   

  The pulse count analysis also was influenced by the amplitude threshold 

setting, with lower thresholds resulting in increased detection of weak signals and 

a higher final pulse count.  I counted the calls in each recording file using three 

amplitude thresholds: 100 mV, 300 mV, and 500 mV (Figure 12).  This allowed 

me to assess the relative amplitude of detected calls and gain insight into how 

close bats were flying to the recording system. Use of multiple thresholds was 

preferred to directly assessing the amplitude of each call, as the latter approach 

required the logistically difficult task of individually excluding each recorded 

playback call from analysis instead of simply subtracting the total number of 

playback calls from the pulse count (see below).  While the 100 mV analysis 

detected the greatest number of calls, the 300 mV and 500 mV analyses counted 

a decreasing number of pulses, only detecting higher amplitude signals (Figure 

12).   
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Figure 12.  Amplitude detection thresholds.  Amplitude envelope depicting the 
detection of five calls with inter-call intervals of approximate 210 ms.  In this 
example, the 100 mV amplitude threshold detects all five calls, the 300 mV 
detects three calls, and the 500 mV threshold only detects the loudest call.   
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Playback calls were present in recordings, but were only detectable by the 

100 mV analysis.  To obtain a pulse count that excluded the playback calls, I 

broadcast each stimulus before bats arrived at the study site and counted the 

number of detected pulses in these “bat-free” recordings.  I then subtracted the 

appropriate playback pulse count (“Feeding Buzzes Present” or “Feeding Buzzes 

Absent”) from the counts produced by the 100 mV analyses. Another issue was 

that some bat calls overlapped with playback calls and were not counted.  

Although this led to lower pulse counts, I chose not to include a correction for this 

overlap error in the final analysis, as corrections resulted in only small changes to 

the final counts and the unadjusted value was more conservative 

 

Statistical Analyses 

I tested if the number of detected bat calls differed between the three 

playback stimuli (Feeding Buzzes Present, Feeding Buzzes Absent, Silence) by 

conducting a one-way ANOVA for each of the amplitude thresholds, and 

conducting post-hoc Tukey-Kramer multiple comparison tests.  A significance 

level of 0.05 was used for all tests.   

 

RESULTS 

 

 I analyzed 40 ten-minute recordings for each of the three playback signals 

(n=120 total).  Bat activity was significantly different between the three stimuli at 

100 mV (F = 3.14, P = 0.047), 300 mV (F = 13.36, P < 0.0001), and 500 2,117 2,117 

 103  



mV (F2,117 = 14.66, P < 0.0001).    For the 300 mV and 500 mV analyses, Tukey-

Kramer tests revealed that bat activity was significantly greater in response to 

“Feeding Buzzes Present” compared to “Feeding Buzzes Absent” or “Silence” 

(see Tukey-Kramer groupings and legend, Figure 13).  Despite a significant p-

value for the ANOVA test, no differential response between broadcast stimuli 

was observed for the 100 mV analysis, although there is an obvious trend for the 

same pattern of increased activity in response to the “Feeding Buzzes Present” 

stimulus (Figure 13).   

 

DISCUSSION 

 

The results of this study support the hypothesis that bats eavesdrop on 

the echolocation calls of conspecifics and are attracted to terminal-phase feeding 

buzzes that indicate successful foraging by other bats.  While significant 

differences existed between stimuli for all three analyses, it is interesting that the 

largest differences were observed in the 300 and 500 mV analyses (Figure 13).  

This suggests that the playback stimulus containing feeding buzzes not only 

attracted more bats, but that these bats more closely approached our speaker 

system, as revealed by the high amplitude of the detected echolocation calls.  

Overall, these results provide evidence that bats approach conspecifics emitting 

terminal-phase calls, likely in an attempt to enhance feeding success or to gain 

more detailed information about the signaling animal and its foraging area.   
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Figure 13. Levels of bat activity in the presence of each playback stimuli.  Bat 
activity was assessed by pulse count analyses using three different amplitude 
thresholds (100, 300, 500 mV).  * indicates ANOVA was significant at the 0.05 
level.  Letters indicate results of Tukey-Kramer multiple comparison tests from 
one-way ANOVA; counts from stimuli labeled “A” are not significantly different 
from each other, but are significantly different from stimuli labeled “B”.  For the 
300 mV and 500 mV threshold analyses, significantly more bat activity was 
detected during broadcast of the “Feeding Buzzes Present” stimulus compared to 
the “Feeding Buzzes Absent” or “Silence” stimuli.  While Tukey-Kramer 
comparisons did not assign these differences in the 100 mV analysis (all are 
grouped into “A”), ANOVA revealed significant differences between stimuli (p = 
0.047) and a trend similar to the other analyses is observed.   
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  Our findings agree with those of previous studies demonstrating that bats 

are attracted to terminal-phase feeding buzzes (Barclay 1982, Leonard and 

Fenton 1984, and Balcombe and Fenton 1988).  While Barclay (1982) reported 

that more bats responded to foraging calls played forward compared to backward 

broadcasts, he also indicated feeding buzzes may not be critical to 

eavesdropping, as there were no differences in the response of M. lucifugus to 

conspecific ‘foraging’ and ‘non-foraging’ sequences.  However, because the non-

foraging playback used in the study was recorded during swarming, when bats 

aggregate for mating (McCracken and Wilkinson 2000), the signal may have 

contained social communication calls that could have attracted bats to the 

playback despite the absence of feeding buzzes.  Here we demonstrate that 

when exposed to two realistic and otherwise identical echolocation stimuli, the 

signal containing approach-phase and feeding buzz calls was more attractive, 

suggesting that bats pay particular attention to the portion of a call sequence that 

is associated with insect capture.    

The question remains as to whether eavesdropping on conspecific feeding 

buzzes represents information parasitism or information transfer.  Information 

parasitism occurs if foraging success decreases when conspecifics are attracted 

to a bat’s foraging area, while information transfer occurs if sharing information 

about foraging areas either does not affect or increases an individual’s foraging 

success (Wilkinson 1992).  Information transfer can be further divided into: (1) 

passive transfer, which occurs when animals mimic the behavior of conspecifics 

(Wilkinson 1992), and (2) active transfer, in which information is actively relayed 
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to other individuals, often through a developed system of communication, such 

as the dance language of honey bees, Apis mellifera (von Frisch 1967).   

The conditions in which T. brasiliensis forage suggest that eavesdropping 

on the echolocation calls of conspecifics is best described as passive information 

transfer.  Brazilian free-tailed bats aggregate in large numbers and ultimately 

encounter many conspecifics while foraging (Ratcliffe et al. 2004).  Despite a 

high interaction rate, agonistic interactions are rarely observed (GF McCracken, 

personal observation) and large numbers of bats are commonly seen foraging 

over crop fields in close proximity to one another.  If information parasitism were 

occurring, agonistic encounters would be expected when bats forage at high 

densities (Racey and Swift 1985).   

The rich food sources exploited by Brazilian free-tailed bats also 

compliment the hypothesis of passive information transfer.  Moths are a major 

food source for T. brasiliensis, sometimes comprising over 80% of their diet 

(Whitaker et al. 1996; Lee and McCracken 2002).  Noctuid moths, such as 

Helicoverpa zea, are very abundant in South Central Texas, and the distribution 

of these insects is highly variable in space and time (Fitt 1989).  Mass 

emergences of billions of moths occur asynchronously over crop fields within 

brief time windows (Raulston 1990), resulting in strong spatial and temporal 

heterogeneity in resource availability (JK Westbrook and EH Gillam, unpublished 

data).  These extremely high densities of moths suggests that the presence of 

multiple bats feeding in close proximity is unlikely to affect the foraging success 

of any individual bat.  Such rich, ephemeral patches of insects have previously 
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been suggested as ideal conditions for information transfer, as patches contain 

sufficient prey to support successful foraging by multiple bats but do not persist 

long enough to warrant territoriality and defense (Wilkinson 1992).  

Eavesdropping on conspecifics by Brazilian free-tailed bats should allow 

individuals to enhance foraging success by decreasing the amount of time spent 

in a poor area and gaining information about the presence of new, ephemeral 

patches that are rich in insect prey (Galef and Giraldeau 2001).   

While echolocation signals in bats are primarily used for orientation and 

prey detection, it has been suggested that echolocation evolved from social 

communication calls (Fenton 1984).  Most bats emit a wide range of social calls 

that are associated with several behaviors, including mating (Bradbury 1977), 

mother-young interactions (Balcombe and McCracken 1992), and alarm signaling 

(Russ et al. 1998).  The results of this study enhance the link between 

echolocation and social calls by further demonstrating that echolocation calls can 

have a communicative function.   
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CONCLUSIONS 

 

Chapter II 

•  Brazilian free-tailed bats exhibit significant variation in call structure among 

populations with regard to call frequency and duration.  However, the 

observed variation is not associated with geographic distance or local 

weather conditions.  I conclude that little or no geographic patterning exists in 

the echolocation calls of T. brasiliensis, and that the observed variability in 

call structure is due primarily to the variability within and between individual 

bats.    

• There is a positive correlation between the echolocation call frequencies used 

by bats and the experimental broadcast frequencies of ambient insect 

sounds.  This finding indicates that bats adjust their echolocation call 

structure to avoid acoustic interference from ambient noise in the local 

environment.     

• Brazilian free-tailed bats exhibit substantial flexibility in call structure, and 

variability in call parameters are as expected for maximizing the efficiency of 

echolocation under different behavioral and ecological conditions.   

 

Chapter III 

 
• The results of this chapter provide the first experimental evidence for jamming 

avoidance in bats  
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• Using an experimental playback design, I found that free-flying Brazilian free-

tailed bats shifted their call frequencies away from the frequencies of 

playback calls that simulated the presence of other bats foraging in the same 

airspace.  When I challenged approaching bats with a playback near their call 

frequency, a jamming avoidance response also was observed, although there 

was a bias for shifting upwards to higher frequencies.   

• As expected, bats challenged with a playback frequency below their initial 

calling frequency exhibited positive shifts.  An unexpected finding was that 

bats exposed to a playback higher in frequency than their own calls also 

shifted upwards.   

• Spectral shifts in call frequency often occurred within less than 200 ms, in the 

first echolocation call emitted after the stimulus-switch.   Such a rapid reaction 

suggests that jamming avoidance responses are important for ensuring 

effective echo reception and signal processing.   

• A model proposed to explain the observed jamming avoidance response 

hypothesizes that bats are most sensitive to interference from the high 

amplitude, lower frequency portion of echolocation calls known as the “quasi-

constant frequency” region. 

 

Chapter IV 

• Brazilian free-tailed bats emerging from roosts emit two distinct call types, 

that I describe as sweep and hook calls.  Both sweep and hook calls are 
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significantly different from the echolocation calls typically emitted by free-

flying T. brasiliensis foraging over a cotton field.   

• I hypothesize that hook calls provide bats with information about the distance 

to nearby bats within the emergence column, which is important for regulating 

individual spacing.  I hypothesize that bats use sweep calls for gaining 

information about targets in the relatively uncluttered environment outside of 

the column, such as avian predators.   

• The structure of sweep calls does not change in relation to the number of bats 

emerging from the roost.  However, both hook and sweep calls differed 

significantly between sites, perhaps due to associations with the spacing of 

bats during emergence.   

 

Chapter V 

• I assessed bat activity in response to echolocation playbacks by counting the 

number of recorded echolocation calls that exceeded a pre-set amplitude 

threshold.  I found that bat activity was substantially greater in response to 

playbacks that contained search, approach, and feeding buzz calls compared 

to playbacks that contained only search calls, or silence.   

• Brazilian free-tailed bats are especially attentive to feeding buzz calls of 

conspecifics.  Eavesdropping should be an effective strategy for increasing 

individual foraging success, as Brazilian free-tailed bats forage on insects that 

are often found in rich, ephemeral patches that can support simultaneous 

foraging by multiple bats.   
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DIRECTIONS FOR FUTURE RESEARCH 

 

  Several potential areas of research arise from the findings of this 

dissertation.  I believe one of the most important areas for further investigation 

concerns jamming avoidance in bats.  While our experiments in Chapter 4 tested 

the reaction of bats to signals from a stationary speaker, in reality bats use 

jamming avoidance during encounters with fast-flying conspecifics in a shared 

airspace.  Use of microphone arrays to estimate 3D positions of multiple bats, will 

allow us to answer questions about the fine details of jamming avoidance, such 

as: “Is the onset of JAR related to the position and flight direction of other bats in 

the area?”, and “Are spectral shifts maintained for long periods of time (several 

minutes) or do bats dynamically adjust their call frequencies in reference to the 

proximity of conspecifics?”.  Answers to these questions will not only provide a 

better understanding of JAR under realistic flight conditions, but will allow us to 

further quantify the flexibility of echolocation in Brazilian free-tailed bats.   

  In Chapter 4, I propose that the “quasi-constant frequency”, or QCF, 

section of echolocation calls causes the greatest amount of interference, and that 

bats shift to higher call frequencies in an attempt to minimize overlap with the 

QCF region of other bats.  While this hypothesis fits most of the observed 

responses, it has not been experimentally tested.  Laboratory range 

discrimination tests, in which bats are exposed to broadcasts of calls varying in 

the intensity and structure of the QCF region, would be useful for testing the 

proposed hypothesis.  Further field playbacks using a range of echolocation call 
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types would determine if the extent of frequency shifts is related to the structure 

of the overlapping signal.  Overall, these studies will provide insight into how the 

characteristics of interfering signals influence the efficiency of echolocation.   

Further examination of calls produced by bats during emergence would 

also be a worthwhile area of research, as the behavioral and ecological 

conditions experienced by emerging bats are substantially different from foraging 

situations.  Predation risk is often higher at roosts, especially by owls and 

raptors, and call structure will influence how efficiently avian predators can be 

detected and avoided.  Substantial inter- and intra-specific variation exists in 

patterns of emergence (column, clustered, single bats), which will influence the 

risk of collision and potentially the call structure used by bats.  Finally, previous 

studies of intraspecific variability in echolocation have strictly examined foraging 

calls, and adding emergence calls to the description of a species’ echolocation 

repertoire will better characterize natural variability in call structure.   
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