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Abstract 
 

 This study focused on three aspects of plant improvement for insect resistance 

including: testing of candidate organisms for their production of insecticidal proteins, 

testing of transgenic plants expressing insect resistance genes, and testing novel 

systems for the evaluation of insect resistance genes.  In the initial part of this study, 

the candidate fungus Beauveria bassiana was tested for its production of insecticidal 

proteins through a series of insect bioassays containing fungal protein extracts.  These 

extracts were shown to be orally toxic to Plutella xylostella (diamondback moth) and 

Spodoptera frugiperda (fall armyworm).  Assays involving protease treatments 

significantly decreased mortality indicating the presence of a protein based oral toxin.  

The following research tested transgenic tobacco plants expressing proteinase 

inhibitors from Brassica oleracea (cabbage) and Manduca sexta (tobacco hornworm) 

on the insect pests Helicoverpa zea (corn earworm) and Heliothis virescens (tobacco 

budworm).  Insects fed transgenic tobacco were able to adapt to the recombinant 

proteinase inhibitors to varying degrees and resulted in no major impacts on insect 

growth and development.  The last part of this study tested a novel insect resistance 

gene screening system.  Agroinfiltrated tobacco transiently co-expressing genes 

encoding GFP with either a known insecticidal protein (Bt Cry1Ac) or a candidate 

gene (Brassica oleracea proteinase inhibitor, BoPI) were fed to larval H. zea.  Insects 

fed the known insecticidal protein experienced high mortality.  Insects fed tobacco 

expressing GFP and BoPI showed significant decreases in growth compared to those 

fed GFP only tissue.  Insects feeding on GFP only tissue showed unexpected increases 
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in growth and development compared to insects fed control tissue.  Agroinfiltration 

coupled with an insect bioassay constitutes an efficient system for the evaluation of 

candidate insect resistance genes. 
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Introduction 

 
Impacts of Insects in Agriculture.  Global agriculture has been severely impacted by 

insect pests for many years.  In 2004, it was estimated that arthropod pests were 

responsible for the destruction of 18% of the world’s crop production and 20% of stored 

grains.  These losses were estimated at 100 billion US dollars annually (Nicholson 2007).  

The global cost of controlling arthropod pests in 2001 was estimated at 7.56 billion US 

dollars, with pesticides targeting lepidopteran pests constituting a significant portion 

(36%) of this total (Beckmann and Haack 2003).  These high losses in food production 

combined with an estimated 40% increase in the global population by 2050 (U.S. Census 

Bureau, 2006) highlight the need for improved insect pest control. 

 The production of transgenic plants expressing Bacillus thuringiensis δ-

endotoxins for protection against insect pests has consistently grown since first 

commercialization in 1996.  In 2007, 114.3 million hectares of transgenic crops were 

grown, consisting of approximately 18% or 20.3 million hectares planted for insect 

resistance (not including plants expressing multiple stacked genes). The advantages of 

these crops are seen in both crop yield and the reduction in chemical insecticide usage 

which can have major environmental impact (James 2007).  Global reliance on Bt crops 

for insect control has spurred concerns for years that insects may develop resistance to 

these insecticidal proteins (Stewart 1999).  Recently, field populations of Bt resistant corn 

earworm (Helicoverpa zea) have developed resistance to Bt toxins in Mississippi and 

Arkansas (Tabashnik et al. 2008).  These researchers proposed that resistant populations 

developed as a result of improper pest management issues, including lack of proper 
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refuge size and dosages that did not meet the minimum requirements.  These recent 

events underscore the need to develop alternatives to the current biotechnology strategies 

for insect control. 

 

Bacillus thuringiensis.  The existing transgenic plant technologies for insect control are 

highly reliant on the use of proteins from Bacillus thuringiensis.  B. thuringiensis (Bt) are 

spore-forming gram positive bacterium which are a well known pathogen of  

lepidopterans (Schnepf et al. 1998).  In 1977, B. thuringiensis subsp. israelensis was 

discovered, which was shown to have specific toxicity to dipterans (Goldberg and 

Margalit 1977).  This toxicity was due to ingested bacteria producing insecticidal 

proteins, called δ-endotoxins, in the insect midgut during sporulation,.  Two types of δ-

endotoxins, parasporal crystal toxins (Cry) and cytolitic toxins (Cyt), have been identified 

in Bt (Bravo et al. 2007). The cloning and expression of the first Bt δ-endotoxin gene 

occurred in Escherichia coli (Schnepf and Whiteley 1981).  The potential usage of these 

insecticidal genes in agriculture was identified and the first transgenic tomato and 

tobacco plants expressing δ-endotoxins were produced (Barton et al. 1987, Fischhoff et 

al. 1987, Vaeck et al 1987).  These plants were shown to have insect resistance to a 

variety of lepidopteran pests. 

 Cyt δ-endotoxins are mainly toxic to dipterans, while Cry δ-endotoxins have 

specificity to nematodes, coleopteran, dipteran, hymenopteran, and lepidopteran insects.  

Cry toxins are a diverse group with more than 50 subgroups (Bravo et al. 2007).  The Cry 

toxins produced by the Bt bacterium have a protoxin form, which requires the proteolytic 
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digestion of one or both terminal ends of the protein for proper activation.  Upon the 

ingestion of the bacterium by the insect host and sporulation in the insect midgut, the 

protoxin is activated by endogenous insect proteases, which cleave off the termini 

(Schnepf et al. 1998).  The activated form of the toxin folds into a new confirmation that 

can bind to and insert into the brush border membrane of the insect midgut.  Insertion 

into the brush border membrane causes the formation of pores in the midgut epithelium 

which leads to cell lysis and ion leakage.  Eventually disruption of the midgut allows for 

movement of the bacteria into the hemolymph and the insect dies of septicemia (Bravo et 

al. 2007).  Cry toxins in Bt transgenic plants are now truncated forms which lack the need 

for proteolytic activation (Peferoen 1997).  Insects feeding on the Bt transgenic plants die 

from disruption of the midgut and the loss of ion channel control (Kumar et al. 1996). 

 Transgenic plants employing the expression of Bt δ-endotoxins have been 

effective at controlling a variety of insect pests.  Commercialized Bt transgenic plants 

have focused on the use of Cry1Ab, Cry1Ac, and Cry9C for the control of lepidopteran 

pests (Shelton et al. 2002).  Theses variants have been effective at controlling Ostrinia 

nubilalis (European cornborer) (Koziel et al. 1993), Helicoverpa armigeria (corn 

earworm) (Chakrabarti et al. 2000), Helicoverpa zea (corn earworm) (Burkness et al. 

2001), Diatraea grandiosella (southwestern corn borer) (Reed and Halliday 2001), and 

Plutella xylostella (diamondback moth) (Stewart et al. 1996).  Control of coleopterans 

such as Leptinotarsa decemlineata (Colorado potato beetle) has been achieved by the use 

of Cry3a (Coombs et al. 2003).  Insect control through the use of these transgenic plants 

was effective for around a decade with only lab reared insects developing resistance 
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(Tabashnik 1994, Tabashnik et al. 1996, Perez and Shelton 1997, Tabashnik et al. 1997).  

The recent detection of field populations of corn earworms (Helicoverpa zea) with 

resistance to Bt Cry1Ac (Tabashnik et al. 2008) demonstrates the need for advances in 

the management of transgenic plants and for new alternatives in transgenic technologies. 

 

Candidate Genes for Insect Resistance in Transgenic Plants.  Insecticidal proteins 

including Bt endotoxins have been utilized in transgenic plants.  These proteins represent 

a wide variety of classes including proteinase inhibitors, cholesterol oxidases, lectins and 

chitinases. Proteinase inhibitors interfere with digestive enzymes in the insect gut by 

competitive inhibition (Haq et al. 2004).  Proteinase inhibitors have been shown to be 

effective in reducing herbivory in transgenic crops and usually result in developmental 

delays in the insect pest (Hoffman et al. 1992, Hilder et al. 1987, Sane et al. 1997, Xu et 

al. 1996).  Recent studies have identified a variety of insects with the ability to quickly 

adapt to these inhibitors, which may reduce their usefulness (Bown et al. 2004, Briochi et 

al. 2007, Volpicella et al. 2006).  Cholesterol oxidases are a group of enzymes with the 

ability to attack the insect midgut causing it to be lysed similar to the mode of action seen 

with Bt (Shen et al. 1997).  Transgenic tobacco expressing a cholesterol-oxidase gene 

was demonstrated to be toxic to the boll weevil (Anthonomus grandis), a major pest of 

cotton (Corbin et al. 2001).  Lectins are proteins found in a wide range of organisms with 

the ability to bind to sugars,  They are also toxic to coleopterans, lepidopterans, and 

homopterans (Carlini and Grossi-de-Sá 2002).  While the mode of action of these toxic 

proteins has not been elucidated, they have been transformed into oilseed rape and potato 
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and have exhibited deleterious effects on the pollen beetle (Meligethes aeneus) (Melander 

et al. 2003) and peach potato aphids (Myszus persicae) (Gatehouse et al. 1996), 

respectively.  Chitinases are enzymes that degrade chitin, the main polymer of the insect 

cuticle and a major constituent in the peritrophic membrane (Kramer and Muthukrishnan 

1997).  In transgenic plants, these enzymes have been effective against insects including 

Leptinotarsa decemlineata (Colorado potato beetle) (Lawrence and Novak 2006) and 

tobacco budworm (Ding et al. 1998).  Similar to proteinase inhibitors, α-amylase 

inhibitors inhibit the breakdown of sugars.  Alpha-amylase inhibitors have shown limited 

success in transgenic plants as they are effective against a number of weevils (Franco et 

al. 2002).  Other more recent candidate genes with proven insecticidal activity have come 

from pathogenic nematodes (ffrench-Constant et al. 2007), black widows (Rohou et al. 

2006), and scorpions (Wang et al. 2005).  While there are many candidate genes for 

insect resistance in plants, none of the genes discussed above have been shown to be as 

effective as Bt.  It may be that the next generation of insect resistance strategies in 

transgenic plants will involve the stacking or pyramiding of multiple, less effective genes, 

with Bt δ-endotoxins (Christou et al. 2006), or new toxins with novel modes of action 

will need to be discovered. 

 

Beauveria bassiana: a Candidate Organism for Insecticidal Gene Discovery. 

Beauveria bassiana is a ubiquitous soil-inhabiting entomopathogenic fungus and is the 

anamorph of the telomorph Cordyceps bassiana in the Ascomycota (Inglis et al. 2001). A 

variety of insects at all stages of development are susceptible hosts of B. bassiana 



 

 6

(McCoy et al. 1985). Due to its wide host range of almost 500 susceptible species of 

insects (Vilcinskas and Gotz 1999), B. bassiana has been tested as a microbial control 

agent against most of the economically important insect pests. Pests that have been 

successfully controlled by B. bassiana include: Elasmopalpus lignosellus (lesser stalk 

borer) (McDowell et al. 1990), Ostrinia nubilalis (Bing and Lewis 1991; Feng et al. 

1988), Phorodon humuli (hop aphid) (Dorschner et al. 1991), Trialeurodes vaporariorum 

(greenhouse whitefly) (Poprawski et al. 2000), Leptinotarsa decemlineata (Jaros-Su et al. 

1999) and a mosquito responsible for the transmission of malaria, Anopheles stephensi 

(Blanford et al. 2005).  The efficacy of B. bassiana as a biological control agent against 

these insects demonstrates that the fungi’s natural infection cycle, which includes the 

production of toxic compounds, is sufficient to cause significant mortality.   

The infection cycle of B. bassiana begins with the contact of a conidium with the 

cuticle of a susceptible host.  The conidium germinates and the fungus produces an array 

of enzymes that help degrade the outer integument. These enzymes include proteases, 

chitinases, and lipases. The fungus produces a germ tube that grows through the 

integument and toward the hemocoel. Once the hemocoel is entered, blastospore 

formation and toxin production begin (Boucias and Pendland 1988). As the fungus 

proliferates, the host dies and becomes mummified by hyphal growth that will later 

extrude from the cadaver through the intersegmental membranes (Pekrul and Grula 

1979). Death usually occurs in three to seven days and is attributed to nutrient deficiency, 

water loss, or the action of toxins (Boucias and Pendland 1988). 
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Oral Toxicity of Beauveria bassiana. 
   

Research on B. bassiana has demonstrated that this fungus may be orally toxic when 

ingested by lepidopterans. The first study to shed light on the subject observed that B. 

bassiana was able to grow endophytically in corn (Poaceae) (Lewis and Bing 1991) and 

confer resistance to insect herbivory.  After foliar application to corn plants at the V8 

stage, B. bassiana was recovered from the pith of plants. The percentage of plants with 

recovered B. bassiana was negatively correlated (r = -0.376) with insect damage per 

plant. Over the two-year study, plants treated with B. bassiana exhibited suppression of 

tunneling by larval European corn borer (O. nubilalis) ranging from 37.0 to 50.6% 

(Lewis and Bing 1991).  In a later study, granular formulations of conidia of B. bassiana, 

applied to the foliage of corn at the whorl-stage, grew into and colonized up to 98.3% of 

plants (Bing and Lewis 1991).  Once established in the plant, the fungus again decreased 

tunneling of O. nubilalis.  Endophytic colonization of corn by B. bassiana showed no 

yield reduction or adverse effects on plants (Lewis et al. 1996).  This reduction in insect 

herbivory may be attributed to increased plant defenses or the production of fungal 

compounds that serve as insect deterrents or orally active insect toxins. 

Further investigation of the effects of ingested B. bassiana on insect pests 

involved corn earworm larvae (Helicoverpa zea) fed a synthetic diet containing dried 

mycelia of two B. bassiana isolates (3-00 and 11-98) (Leckie et al 2008). Delayed 

development and high mortality were observed in larvae fed the highest rates (1 and 5% 

w/v) of fungal diet. Weights of surviving larvae and pupae were also lower for larvae fed 

the higher concentrations of mycelia. After 10 days, larval mortality was 100% for the 
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5% mycelia diet treatment of one isolate (11-98), which was significantly greater than 

control diets and diets containing isolate 3-00.  Some insects that died were observed to 

be stuck to the plastic cups by a translucent fluid that emanated from the anus of the 

insect. These observations may be similar to those noted by Ahmad et al. (1985), where 

house crickets, Acheta domesticus (Linnaeus), suffered from complete failure of the 

alimentary process due to feeding on perennial ryegrass infected with Neotyphodium 

loliae, an endophytic fungus responsible for tall fescue toxicosis. These deleterious 

effects were attributed to the toxic compounds in the mycelium. Differences in the effects 

of different isolates were attributed to the relative amounts of toxins produced by each 

isolate. Variations in production of toxic metabolites have been documented for a variety 

of entomopathogenic fungi and are not unusual (Strasser et al. 2000).  These findings 

have prompted the evaluation of B. bassiana for insecticidal proteins to be utilized in 

transgenic plants. 

 

Toxic Products of Beauveria bassiana.   
 
 
The isolation of high molecular weight compounds produced by B. bassiana has revealed 

several toxic proteins.  Two proteases were shown to be toxic when injected into Galleria 

mellonella (greater wax moth) (Kucera and Samainakova 1968).  Another protein with a 

toxic effect when injected into Galleria mellonella, Bclp, was isolated from B. bassiana 

and shown to induce cuticular melanization (Fuget et al. 2004, Fuget and Vey 2004).  

Bassiacridin, a protein with similarity to a yeast chitin binding protein, was toxic at low 

dosages when injected into Locusta migratoria (Quesada-Moraga and Vey 2004).  
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Although toxic when injected into the hemoceol, none of these proteins were evaluated 

for oral toxicity.  A single study has looked for orally toxic proteins in B. bassiana, and  

protein extracts had low toxicity (Quesada-Moraga et al. 2006). 

While only a few high molecular weight toxic compounds have been isolated 

from B. bassiana, a variety of low molecular weight toxic compounds have been 

reported.  These include beauvericin, bassianolide, and the red pigmented toxin 

oosporein. Cyclosporin is also produced as a secondary metabolite and is a known 

immunosuppressant produced by other fungi (Boucias and Penland 1998).  Beauvericin, 

when injected into adult blowflies, Calliphora erythrocephala (Meig.), resulted in 15% 

mortality by day 2. When injected into larval yellow fever mosquitoes, Aedes aegypti, 

mortality reached 39% at 48 hours (Grove and Pople 1980). Suspensions of beauvericin 

added to water containing larval northern house mosquitoes, Culex pipiens autogenicus, 

killed 44% of the larvae by 48 hours (Zizka and Weiser 1993). Beauvericin, when applied 

to leaf disks and fed to Colorado potato beetles, had an LC50 of 633 ppm and an LC90 of 

1196 ppm (Gupta et al. 1991). Conversely, beauvericin had no oral toxicity to silkworms 

at levels as high as 1000 ppm (Kanaoka et al. 1978). In this same study, bassianolide was 

administered orally to silkworms and was lethal at 8 ppm.  Fermentation broth obtained 

from the production of B. bassiana and containing the red pigment oosporein caused 

49.8% mortality in mealy bugs feeding on topically applied leaves (Eyal et al. 1994).  To 

correctly evaluate the potential of B. bassiana to produce insecticidal proteins, these 

secondary metabolites would need to be ruled out as the origin of oral toxicity. 
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Techniques for the Testing of Insect Resistance Genes.  The current technologies for 

the testing of insect resistance genes rely mainly on the generation of stably transformed 

plants.  The production of these plants, which requires tissue culture, is time consuming 

and expensive (Li et al. 2007).  An exception to this would be through rapid 

transformation of Arabidopsis such as floral dip (Sharma et al. 2005).  While Arabidopsis 

has been shown to be an effective tool for the screening of some common insect pests, 

the range of insects that will readily feed on Arabidopsis greatly restricts its application 

(Santos et al. 1997).   

 For many years scientists have also relied on the recombinant expression of 

insecticidal proteins in microorganisms, such as E. coli, and the testing of insects through 

incorporation into artificial diet (Schnepf and Whiteley 1981).  Since E. coli is 

prokaryotic, it lacks the ability to perform any required post-translational modifications to 

the proteins (Lawrence and Novak 2001).  Additionally, insects fed artificial diets have 

been shown to have significant effects on their gene regulation (Caudron et al. 2006), 

which may make the interpretation of insect growth and developmental data inapplicable 

to transgenic plants.  These unwanted effects of diet feeding tests suggest that the best 

method of evaluating an insect resistance gene may be in the insect’s natural host plant. 

 Recent technologies that allow for the transient expression of genes in plants have 

opened new avenues for the testing of insect resistance genes.  A transient expression 

system utilizing engineered plant viruses to produce insecticidal proteins in planta was 

suggested by Lawerence and Novak (2001).  This system removed the problems of post-

transcriptional modifications, as the plant transcriptional and translational processes are 
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employed for the production of the insecticidal protein.  While a viral system of transient 

expression has obvious advantages (i.e., time and cost) to the previous technologies, an 

agroinfiltration system might prove to be more efficient. 

Transient expression through agroinfiltration is a relatively simple procedure, 

which involves the injection of Agrobacterium tumefaciens containing the candidate 

transgene in a binary transformation vector for temporary transgene expression in leaves  

(Sparkes et al. 2006).  Agroinfiltration has been demonstrated to be effective for transient 

expression in many plant species including tobacco (Shelduko et al. 2006), grapevine 

(Santos-Rosa et al. 2008), lettuce, tomato, Arabidopsis (Wroblewski et al. 2005), 

switchgrass (VanderGheynst et al. 2008), radish, pea, lupine, and flax (Van der Hoorn et 

al. 2000).  Since there is a wide range of plant species susceptible to A. tumefaciens 

infection, the use of agroinfiltration for the evaluation of candidate insect resistance 

genes has great potential for a rapid screening on numerous target insects.  Since the 

construction of a binary vector for the implementation of this system is required, any 

positive candidate genes can quickly be moved to a stable transformation system for 

further characterization. 

 

Objectives 
 

The objectives of this research were: 

1. To test Beauveria bassiana isolate 11-98 for the production of insecticidal 

proteins. 
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2. To evaluate the growth and development of Helicoverpa zea and Heliothis 

virescens larvae that consume transgenic tobacco leaves expressing Brassica 

oleracea or Manduca sexta proteinase inhibitors. 

3. To test agroinfiltration as a technique for rapidly assaying candidate insect 

resistance genes in plants. 
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Beauveria bassiana extracts contain insecticidal proteins that are orally toxic to 

Helicoverpa zea and Spodoptera frugiperda1 
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Abstract 
 

 Beauveria bassiana is an entomopathogenic fungus with a history of effective use 

as a biological insect pest control agent.  Its value as a pest management tool is most 

often attributed to the organism’s parasitic lifecycle.  However, research has indicated 

that B. bassiana might contain numerous toxic compounds that would be useful as 

pesticides.  While many studies have focused on low molecular weight secondary 

metabolic compounds, it is possible that a number of higher molecular weight proteins 

are also present that would be suitable candidates for insecticidal biocides or transgenic 

traits.  This study evaluates protein extracts from one specific, highly insecticidal isolate 

(11-98) of B. bassiana.  Proteinacious compounds were present in the fungal extracts of 

this isolate, which resulted in significant mortality when fed to Plutella xylostella 

(diamondback moth) and Spodoptera frugiperda (fall armyworm) larvae.  These 

compounds also significantly reduced the development of larvae into adults.  Treatment 

of the extracts with proteases significantly reduced their toxicity, suggesting that this 

isolate of B. bassiana is an suitable candidate for future research to identify potentially 

novel insecticidal proteins.   
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Introduction 
 

Beauveria bassiana (Bals.) Vuill. is a soilborne entomopathogenic fungus with a 

wide host range (McCoy et al. 1985, Vilcinskas and Götz 1999).  This organism has been 

studied and is used as a biological control agent in agriculture against many economically 

important insect pests (McDowell et al. 1990, Bing and Lewis 1991, Feng et al. 1988, 

Dorschner et al. 1991, Poprawski et al. 2000, Jaros-Su et al. 1999, Blanford et al. 2005).  

Early research into the mechanisms of pathenogenicity identified numerous low 

molecular weight (< 1.3 Kda) secondary metabolites that adversely affect insect growth 

and development.  These compounds include beauvericins, bassianolide, cyclosporine, 

and oosporein (Grove and Pople 1980, Zizka and Weiser 1993, Gupta et al. 1991, 

Kanaoka et al. 1978, Eyal et al. 1994, Boucias and Penland 1998).  More recent research 

has indicated the presence of higher molecular weight (> 6 Kda) proteins that are also 

notably toxic to insects (Fuget et al. 2004, Fuget and Vey 2004, Quesada-Moraga and 

Vey 2004).  One protein, Bclp (28 Kda), induced cuticular melanization when injected 

into Galleria mellonella (Fuguet et al. 2004, Fuguet and Vey 2004).  Another toxic 

protein isolated from B. bassiana, bassiacridin (60 Kda), is similar to chitin-binding 

proteins and is toxic when injected into Locusta migratoria (Quesada-Moraga and Vey 

2004).  Theses are of particular interest because the identification of an effective protein-

based oral pesticide would be of significant value for agricultural pest management.    

 

Previously reported research used either protein injection into the insect hemocoel 

(Kučera and Samšiňáková 1968, Fuget et al. 2004, Fuget and Vey 2004, Quesada-Moraga 
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and Vey 2004), which does not directly address oral toxicity, or reported low oral toxicity 

(Quesada-Moraga et al. 2006).  The objective of this study was to evaluate the oral 

toxicity of protein extracts (> 5 kDa) from a specific B. bassiana isolate (11-98) on 

diamondback moth (Plutella xylostella L.), corn earworm (Helicoverpa zea), and fall 

armyworm (Spodoptera frugiperda) larvae.  Preliminary research on this isolate has 

indicated a significant level of insect mortality when fed to neonate diamondback moth 

larvae.  This study tests the hypothesis that the oral toxicity is, in part, due to the presence 

of insecticidal proteins. 

 

Materials and Methods 
 

Fungal material.  B. bassiana isolate 11-98 was obtained as a sporulating culture grown 

on Sabouraud dextrose agar + 0.5% yeast extract (SDAY) from Dr. Bonnie H. Ownley.  

Conidia were collected by lightly brushing culture with a stencil brush and then stored on 

silica gel at -80˚C.  B. bassiana 11-98 was originally collected from an Elaterid beetle in 

Scott County, TN, USA. 

 

Bt production. Bacillus thuringiensis (Berliner) strain HD-73 was used as a positive 

control and was received from Dr. Juan Jurat-Fuentes.  B. thuringiensis was grown, and 

purified Cry1ac protein extracted as described in Luo et al. (1999). 

 

Toxigenic fungal material.  To obtain a maximally toxic state, B. bassiana 11-98 was 

passed through a full infection cycle on P. xylostella as described here.  Neonate P. 
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xylostella (Benzon Research Inc., Carlisle, PA) were reared to second instar on artificial 

diamondback moth diet (Bio-Serv Inc., Frenchtown, NJ).  Insects were then washed with 

deionized H2O and spores of B. bassiana 11-98 were applied topically to the insect with a 

size 10/0 camel hair paint brush.  Larvae were then placed in a 60 ×15 mm Petri dish on 

moist filter paper and incubated at 24˚C for approximately 4 wk.  A mixture of conidia 

and mycelial growth from the cadavers were collected with a wire loop and used to 

inoculate SDAY plates (Goettel and Inglis 1997).  Plates were placed in a 24˚C incubator 

until sporulation (approximately 3 wk).  Conida were then harvested and stored on silica 

gel at -80˚C.  After passage through the first infective cycle, cultures were labeled 11-98 

Px.  Cultures passed through a second infective cycle were labeled 11-98 Px2.  Cultures 

of 11-98 Px2 were submitted to the ARS NRRL collection (Peoria, Illinois), which is 

archived as stock # 30872. 

 

Growth and Storage of Fungus.  A 25 ml starter culture of SDY liquid medium was 

inoculated with spores from isolate 11-98, 11-98 Px, or 11-98 Px2 and grown for 5 d on a 

rotary shaker (150 rpm) at room temperature.  The starter culture was used to inoculate 

12 L of SDY media divided into 12 two liter flasks.  Theses cultures were grown for 

either 6 or 28 d. Fungal mycelia were collected by centrifugation at 6000 × g for 30 min 

and then snap frozen with liquid nitrogen before storage at -80˚C. 

 

Protein Extraction.  Mycelium collected from B. bassiana isolates 11-98, 11-98 Px, or 

11-98 Px2 were ground in liquid nitrogen via mortar and pestle.  Proteins were extracted 



 

 26

using a HEPES buffer protein extraction protocol (Markham et al. 2006).  The protein 

extracts were dialyzed for 24 h using 3500 MWCO SnakeSkin® pleated dialysis tubing 

(Pierce Biotechnology, Rockford, IL) to remove secondary metabolites and other low 

molecular weight compounds.  Proteins were dialyzed in 20 L of buffer for 24 h.  Buffer 

was changed twice (2 and 4 h) during dialysis.  The resulting extracts were concentrated 

to 10 mg protein per ml buffer using a VivaSpin-20 centrifugal concentrator MWCO 

5000 (Sartorius Corporation, Edgewood, NY).  This process was repeated until a 

sufficient quantity of protein had been collected to allow for the insect bioassays post 

fractionation.  Protein concentrations were determined with coomassie plus (Pierce, 

Rockford, IL). 

 

Gel Electrophoresis.  SDS PAGE was performed in a Mini Protean III system (Bio-Rad, 

Richmond, CA).  A 5% stacking gel and 12% resolving gel were used to separate 

proteins.  Two micrograms of each sample were added to equal volumes of sample 

loading buffer (10% Glycerol, 0.05M Tris Cl pH 6.8, 0.005% Bromophenol blue, 1% 

SDS) prior to loading.  Pre-stained Novex sharp prestained protein ladder (Invitrogen, 

Carlsbad, CA) used for size estimation.  Gels were run at 110 v for 1.5 h.  Gels were 

stained with a modified plusone silver stain protocol (GE Healthcare, Buckinghamshrire, 

UK). 

 

HPLC Procedure.  HPLC was performed to detect the presence of the known secondary 

metabolic compound beauvericin (0.783 Kda) to confirm the efficacy of dialysis. Four 
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samples were analyzed; crude extracted protein (90 mg), dialyzed high molecular weight 

fraction (32 mg), buffer with beauvericin (500 µg), and buffer alone.  Samples were 

lyophilized and dissolved in 250 ml of methanol.  Precipitated proteins were removed by 

filtration.  Methanol extracts were dried and residue was suspended in 1 ml methylene 

chloride.  Columns were prepared as described in Leckie et al. (2008).  Samples were 

analyzed by LC using a Waters 1525 binary pumping system with a 717 autosampler and 

a SPD-10AV UV-Vis detector (absorbance = 204 nm) (Shimadzu Corp., Kyoto, Japan).  

Mobile system was acetronitrile:water (80:20). A standard curve was generated for 

estimation of beauvericin quantities from the buffer + beauvericin sample.  

 

Fungal Activation Bioassay.  The effect of consecutive infective cycles on the oral 

toxicity of B. bassiana was evaluated in a bioassay with larval P. xylostella.  Eggs 

received from Benzon Research, Inc. (Carlisle, PA) were placed into 160 cm3 plastic 

containers coated with a layer of artificial diamondback moth diet on the bottom of the 

cup.  The larvae were hatched and allowed to feed on standard diet for 24 h before being 

transferred to bioassay cups for experimentation.  Protein extracts from the 28 d growth 

of B. bassiana strain 11-98, 11-98 Px, and 11-98 Px2 were prepared and each was 

incorporated into artificial diet at a rate of 1 mg/ml.  Additionally, a diet containing only 

protein extraction buffer was used as a negative control.  A 1 cm3 square of diet was 

placed onto a moist piece of filter paper in a plastic specimen cup.  Ten neonate P. 

xylostella larvae were placed in each cup and then sealed with the lid.  Each of the 

treatments consisted of five replicate cups.  Cups were arranged in a complete 
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randomized design and placed into an incubator (24˚C, 12:12-h light: dark).  Additional 

treated diet was added as needed to maintain freshness.  After 11 d, the experiment was 

terminated and larval mortality recorded. 

 

Protease Bioassay.  A protease treatment was applied to the B. bassiana extracts in order 

to determine if the observed oral toxicity was a result of protein activity.  Purified Bt 

Cry1Ac protein and protein extracts from 6 and 28 d growth of B. bassiana 11-98 Px2 

were used in these assays.  The 6 day growth period was added to evaluate the rapid 

growth that would occur in an infected insect.  

 Beauveria bassiana (10 mg/ml) and Cry1Ac (0.26 mg/ml) protein extracts were 

divided into two 2 ml aliquots.  One of the 20-mg samples was exposed to Pronase 

protease cocktail (Roche Applied Science, Indianapolis, IN) at 1 mg/ml for 1 h at 40˚C.  

The proteases were then inactivated by a heat treatment at 85˚C for 10 min.  Protease 

digestion was confirmed by SDS-PAGE gel electrophoresis.  Protein from both digested 

and undigested B. bassiana extracts were incorporated into the diet at 1 mg/ml.  Cry1Ac 

protein diets had a rate of 0.026 mg/ml of diet.  Quantities of digested protein samples 

added to the diet were based on protein concentrations prior to digestion.  Extraction 

buffer samples with and without proteases were prepared as negative controls and added 

to diets at volumes equal to B. bassiana samples.  The bioassays were conducted in the 

same manner as described above except that each treatment consisted of ten replicates of 

ten insects per replicate.  Larval mortality was recorded on day 11. 

 



 

 29

Adult Development Assay.  In addition to larval mortality, data were collected on the 

impact of B. bassiana isolate 11-98 Px2 on adult development.  The bioassay was 

conducted as described above except that it was allowed to run for 28 d (sufficient time 

for the diamondback moths to pupate).  The experiment consisted of four treatments; an 

extraction buffer control, Cry1Ac, and two concentrations of B. bassiana 11-98 Px2 

protein extract (1 mg/ml and 0.1 mg/ml of diet).  The Cry1Ac positive control diet had a 

rate of 0.07 mg/ml.  The bioassay was performed in plastic containers, and each treatment 

consisted of 20 replicates with five insects each.  Larval mortality was recorded on day 7 

and the number of adult insects present on day 28. 

 

Fall Armyworm and Corn Earworm Assay.  Beauveria bassiana protein extract diets 

(1 mg/ml) and protease-treated diets were evaluated on fall armyworm (S. frugiperda) 

and corn earworm (H. zea) larvae.  Bioassays were conducted in 16 cell plastic trays 

(Bio-Serv Inc., Frenchtown, NJ) with a single insect and approximately 0.2 cm3 of diet 

per cell.  The experiment was performed as a randomized block design, each treatment 

consisted of 8 trays (block) containing 16 replicates (128 insects per treatment).  Diets 

were prepared as described above except that fall armyworm diet (Bio-Serv Inc., 

Frenchtown, NJ) was used.  Mortality of larvae was recorded on day 7.      

 

Statistical Analysis.  Analysis of variance (ANOVA) was performed with the mixed 

procedure of SAS 9.13 (SAS Institute 2003) and mean separation conducted using 

Fisher’s least significant difference.  Cry1Ac data in the adult survivorship assay were 
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not included in statistical analysis because of unequal variances in the analysis, which 

violates the assumptions of ANOVA. 

  

Results 
 

Fungal Activity Assay.  Insects fed the protein extracts from B. bassiana isolate 11-98 

had significantly higher mortality than controls, (F = 24.07; df = 3, 21; P < 0.0001) (Fig. 

1.1).  Passage of this isolate through an infective cycle (11-98 Px) in P. xylostella 

produced a significantly increased level of mortality (86%).  Undergoing a second 

infective cycle (11-98 Px2) did not significantly increase larval mortality of the fungal 

extracts (80%). 

 

Protease Bioassay.  Treatment of B. bassiana 11-98 Px2 proteins with Pronase 

successfully degraded the protein extract (Fig. 1.2) and significantly reduced oral toxicity 

to P. xylostella (F = 46.58; df = 7, 92; P < 0.0001) (Fig. 1.3).  Both the 6 and 28 d growth 

protein extracts were orally toxic; larvae fed these diets had 72 and 80% mortality, 

respectively.  When treated with protease, mortalities were reduced significantly to 45 

and 42%, respectively.  The inactivated Pronase control did not impact larval mortality.  

In our controls, purified Cry1Ac caused 99% mortality, while pronase-treated Cry1Ac 

was inactive (25% mortality, similar to buffer control). 

 

Adult Development.  Diet containing extracts from isolate 11-98 Px2 caused a 

significant reduction of the number in insects reaching adult stage by day 28 (F = 84.17; 
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df = 2, 117; P < 0.0001) (Table 1.1).  Only 0.5% of insects consuming the 1.0 mg/ml 

concentration of B. bassiana protein extract had developed into adults by day 28 in 

comparison to 54% of the buffer controls.  While only 10% of the larvae died when 

consuming the 0.1 mg/ml concentration of the protein extract (F = 279.22; df = 3, 136; P 

< 0.0001), only 21% developed into adults by day 28, suggesting a delay of insect 

development.   

 

Fall Armyworm and Corn Earworm Assay.  Fall armyworm larvae fed diets 

containing B. bassiana isolate 11-98 Px2 had significantly higher mortality (48%) than 

controls (F = 27.27; df = 3, 28; P < 0.0001) (Fig. 1.4).  Protease treatment of B. bassiana 

extracts resulted in a significant decrease in larval fall armyworm mortality (20%).  Corn 

earworm larvae fed both B. bassiana isolate 11-98 Px2 protein (2.3%) and protease-

treated protein (1.6%) extracts had low mortalities and were not significantly different 

from the controls (data not shown).  

 

Beauvericin Quantification.  Beauvericin was detected only in the crude protein extract 

(Fig. 1.5) and the buffer + beauvericin control samples.   Levels of this metabolite were 

estimated at 0.443 µg/mg of crude protein based on the standard curve. Beauvericin could 

not be detected in the dialyzed high molecular weight fraction, indicating the removal of 

this metabolite by dialysis. 
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Discussion 
 

In this study, high molecular weight protein extracts from a specific isolate of B. bassiana 

were orally toxic to diamondback moth and fall armyworm larvae.  While the origin of 

this toxicity has not been identified, the removal of all known orally toxic compounds by 

an effective dialysis procedure (Figs. 1.2 and 1.5) revealed a toxic compound/ 

compounds with previously unreported levels of toxicity.  This information together with 

a protease treatment resulting in significant reductions in oral toxicity, suggest that a 

large portion of that toxicity is proteinacious in origin.  These are encouraging results that 

warrant further investigation in order to determine and characterize the specific 

insecticidal compound(s).  Our results are similar to those reported by Quesada-Moraga 

et al. (2006), where extracts of two isolates of B. bassiana were orally toxic to 

Spodoptera littoralis (Boisduval).  These isolates resulted in 20-35% larval mortality 

when added to artificial diets at a rate of 1.8 mg/ml.  Although tested on different 

organisms, P. xylostella and S. frugiperda, isolates 11-98 Px and 11-98 Px2 exhibited 

higher insect mortality (86 and 48%, respectively) (Figs. 1.1 and 1.4) at almost half of the 

concentration tested on S. littoralis (Quesada-Morgana et al. 2006).  It is possible that 

passing the isolate through an infectious cycle increased the toxicity of the strain and it 

may have the same effect for the strains previously reported (Quesada-Moraga and Vey 

2003).  Alternatively, it is also possible that B. bassiana isolate 11-98 is more toxic than 

previously reported B. bassiana isolates.  Beauveria bassiana isolate 11-98 was selected 

for this study because of its high level of toxicity in comparison to other B. bassiana 

isolates when dried mycelia were fed to H. zea larvae (Leckie et al. 2008).  Interestingly, 
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H. zea larvae were unaffected by diets containing B. bassiana 11-98 proteins (data not 

shown).  This may mean the secondary metabolic products located in B. bassiana 

mycelia are highly toxic to H. zea, whereas the proteins have no oral toxicity to these 

larvae.  This lack of toxicity to H. zea indicates that the orally toxic protein(s) in B. 

bassiana 11-98 have species specificity.  Similarly, bassiacridin was demonstrated to be 

toxic to L. migratoria, Schistocerca gregaria (Forsskål), and Dociostaurus maroccanus 

(Thunberg), while exhibiting no toxic effect on S. littoralis and Tenebrio molitor (L.) 

(Quesada-Moraga and Vey 2004).  A study testing high molecular weight protein extracts 

from isolate 11-98 against several other B. bassiana isolate and with a number of insect 

species, including S. littoralis, would provide further insight into isolate specific 

insecticidal activity. 

   B. bassiana 11-98 is a multispore isolate collected from an Elaterid beetle in Scott 

County (TN, USA) that had been cultured on artificial medium prior to and after its 

storage in a -80˚C freezer stock.  The virulence of an entomopathogenic fungus has been 

shown to decline as a result of repeated subculturing on artificial media (Schaerffenberg 

1964, Morrow et al. 1989) and may be enhanced by in vivo passage (Hayden et al. 1992, 

Wasti and Hartmann 1974).  In order to ensure that the isolate was at optimal virulence 

for evaluation it was passed through two successive infective cycles in P. xylostella 

larvae.  The passage of the isolate through a host significantly increased oral toxicity 

(Fig. 1.1), which is consistent with research showing a similar phenomenon using 

injection into the hemocoel (Quesada-Moraga and Vey 2003). 
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 A protease treatment of the B. bassiana protein extracts was effective in 

degrading the B. bassiana proteins (Fig. 1.2) and significantly reduced the oral lethality 

of extracts (Fig. 1.3), suggesting that proteins are, in part, responsible for the observed 

insecticidal activity.  Quesada et al. (2006) observed similar reductions in oral toxicity of 

Metarhizium anisopliae proteins, where the efficacy of proteolytic digestion to reduce 

insecticidal activity varied based on the type of protease.  The growing body of evidence 

suggests that high molecular weight proteins with insecticidal activity exist in at least 

some isolates of B. bassiana and it would be valuable to continue research into the 

discovery of the specific compounds responsible for the activity and elucidate their mode 

of action.  This result is significant because an effective protein-based pesticide could 

have value as a potential biocide or transgenic trait for pest management.   
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Figure 1.12. The percent mortality after 11 d of diamondback moth larvae fed synthetic 
diet containing protein extraction buffer, protein extracts (1 mg/ml of diet) from B. 
bassiana prior to passage through an infective cycle (isolate 11-98), after a single passage 
through an infective cycle (11-98 Px), or after passage through two infective cycles (11-
98 Px2).  Error bars indicate the standard error of the mean and bars with the same letters 
are not significantly different (p < 0.05). 
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Figure 1.23. Comparison of B. bassiana 11-98 Px2 1. dialyzed protein extracts, 2. crude 
protein extracts, 3. protease treated dialyzed protein extracts, and 4. protein ladder from 
on an SDS PAGE gel. 
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Figure 1.34. The percent mortality after 11 d of diamondback moth larvae fed synthetic 
diet containing protein extracts (1 mg/ml of diet) from 6 and 28 day growth of B. 
bassiana isolate 11-98 Px2 or Cry1Ac (0.026 mg/ml of diet) with (dark bars) and without 
(light bars) a protease treatment.  Error bars indicate standard error of the mean and bars 
with the same letters are not significantly different (p < 0.05). 
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Figure 1.45.  The percent mortality after 7 d of fall armyworm larvae fed synthetic diet 
containing protein extracts (1 mg/ml of diet) from B. bassiana isolate 11-98 Px2 with and 
without a protease treatment.  Error bars indicate standard error of the mean and bars with 
the same letters are not significantly different (p < 0.05). 
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Figure 1.56.  HPLC chromatogram of B. bassiana A. crude protein extract and B. 
dialyzed high molecular weight fraction. Retention time for  beauvericin is 3.658 
minutes. Lyophilized extract was processed by flash chromatography as previously 
described for beauvericin isolation (Leckie, 2008).  Mobile system was 
acetronitrile:water (80:20), and detection was at 204 nm. 

A. 

B. 
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Table 1.1. The percent mortality (day 7) and percent of developed adults (day 28) of 
diamondback moth larvae fed synthetic diet containing protein extraction buffer, protein 
extracts from Beauveria bassiana isolate 11-98 Px2, and Bacillus thuringiensis Cry1Ac 
endotoxin. Values are reported with standard error of the mean and letters denote 
significance (p < 0.05). 
 

Diet 
Treatment 

Protein Extract 
(mg/ml) 

Larval Mortality 
(%) Adults (%) 

Buffer 0 4.5 ± 1.3a 54.0 ± 3.9a 

Bb 11-98 Px2 0.1 10.0 ± 3.0b 21.0 ± 3.2b 

Bb 11-98 Px2 1.0 77.5 ± 2.9c 0.5 ± 0.5c 

Cry1Ac 0.07 99.0 ± 1.0d 0 
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Growth and development of Helicoverpa zea and Heliothis virescens larvae that 

consume transgenic tobacco leaves expressing Brassica oleracea or Manduca sexta 

proteinase inhibitors 
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Abstract 
 
Transgenic plants expressing proteinase inhibitors have been shown to be effective at 

controlling lepidopteran insect pests.  Proteinase inhibitors from Brassica oleracea 

(BoPI) and Manduca sexta (VK32) were expressed in transgenic tobacco. Bioassays were 

performed on Helicoverpa zea (corn earworm) and Heliothis virescens (tobacco 

budworm) to evaluate these transgenic plants for the ability to control herbivorous 

insects.  Larval H. zea and H. virescens were apparently able to adapt to the proteinase 

inhibitors since little negative effects were shown, which contrast with earlier data.  

While H. virescens developed similarly to the control insects, H. zea grew significantly 

larger on both BoPI and VK32 plants. 
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Introduction 
 
Proteinase inhibitors are proteins synthesized in plant tissue that play a defensive role 

against herbivorous insects (Schuler et al. 1998).  Their importance was first identified in 

tomato where they rapidly accumulated in response to mechanical or insect wounding 

(Green and Ryan 1972, Jongsma and Bolter 1997).  These defensive compounds have 

since been shown to competitively inhibit the activity of proteases produced by various 

herbivores (Christeller et al. 1992, Hilder et al. 1987, Johnston et al. 1995).   

Proteinase inhibitors act against specific groups of endoproteases that cleave 

internal sites of proteins and are classified based on the composition of their active sites.  

The common classes of proteases are aspartic, cysteine, serine, and metallo proteases 

(Carlini and Grossi-de-sá 2002), which contain a signature aspartate, cysteine, serine, or 

metal ion (Zn, Co, or Mn) in their respective active sites.  In plants, serine proteases are 

involved in various processes including programmed cell death, tissue differentiation, and 

senescence (Palma et al 2002).  In the lepidopteran gut, serine proteases are the 

predominate type of proteases accounting for up to 95% of proteolytic activity 

(Srinivasan et al. 2006) and commonly have trypsin-, chymotrypsin-, or elastase-like 

activity.  A large number of serine proteinase inhibitors have been identified in plants.  

One of the most studied types of inhibitors is the Kunitz-type, which usually contains a 

single active site (Haq et al. 2004).  A well characterized member of this inhibitor family 

is the soybean Kunitz trypsin inhibitor, which has been shown to effectively inhibit in 

vitro trypsin activity in both H. zea and H. virescens (Purcell et al. 1992).  In vitro 
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activity against the proteases of these major insect pests makes them candidates as insect 

resistance genes for plant improvement.  

Transgenic plants expressing serine proteinase inhibitors have been effective at 

enhancing insect resistance toward a variety of lepidopteran pests including Manduca 

sexta (Hilder et al. 1987, Johnson et al. 1989), Chrysodexis eriosoma (McManus et al. 

1994), Spodoptera litura (Yeh et al. 1997), Seramia inferens, and Chilo supressalis (Xu 

et al. 1996).  One serine proteinase inhibitor isolated from cabbage, Brassica oleracea 

(BoPI) shows 30% sequence similarity and contains a signature amino-terminal motif of 

the soybean Kunitz trypsin inhibitor-3 (Jofuku et al. 1989).  In a previous study, this 

inhibitor was shown to have a high level of anti-trypsin activity and was effective at 

controlling two lepidopteran generalists, H. zea and H. virescens (Pulliam et al. 2001). 

The present study focuses on the growth and development of H. zea and H. 

virescens during an extended bioassay on transgenic tobacco expressing BoPI proteinase 

inhibitors.  In addition, a Manduca sexta proteinase inhibitor (VK32), which has been 

demonstrated to control Bemisia tabaci in transgenic tobacco (Thomas et al. 1995) and 

has anti-chymotrypsin activity (Pulliam et al. 2001) was evaluated.  Transcription of 

BoPI in transgenic lines was confirmed by real time PCR.  The hypothesis is that the 

transgenic lines expressing proteinase inhibitors will negatively affect the growth, 

development, and survivorship of larvae, when compared to insects fed wild-type 

(Xanthi) plant tissue.  The experiments focus on two individual lines with characterized 

proteinase inhibitor activity (BoPI 2 and BoPI 7) and an additional uncharacterized line 
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(BoPI 15). We also tested the hypothesis that insects can adapt to these PIs, which would 

render them ineffective as insect resistance genes in transgenic plants.  

 
Materials and Methods 

 

Transgenic Plants.  Five lines of T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi) 

expressing BoPI (Brassica oleracea serine proteinase inhibitor) (BoPI 2, BoPI 6, BoPI 7, 

BoPI 8, and BoPI 15) and a single line of VK32 (Manduca sexta serine proteinase 

inhibitor) were produced as described in Pulliam et al. 2001.  Seeds from T1 plants were 

surface sterilized and transgenic segregants were selected on Murashige and Skoog 

medium (1962) (MS) containing 200 mg/L kanamycin.  T1 plants exhibiting kanamycin 

resistance were allowed to self-pollinate and were grown to maturity.  T2 seed was 

collected from T1 plants.  Homozygous lines were confirmed by screening sterilized T2 

seeds on MS medium containing 200 mg/L kanamycin, and the homozygous lines were 

used for further research.  Wildtype tobacco (Nicotiana tabacum cv. Xanthi) and a high 

expressing homozygous line of pSAM 12 transgenic tobacco expressing both Cry1Ac 

and GFP5er (Bt/GFP) (Harper et al. 1999) were used as negative and positive controls, 

respectively. 

 Plants for insect bioassays and RT-PCR analysis were started from seed and 

grown in a growth chamber at 27˚C with 16 h light and 8 h dark photoperiod.  Plants 

were watered and fertilized as needed.  After 3 wk plants were transplanted to 4-L pots 

and allowed to grow for approximately 1 month before bioassays were performed.  

 



 

 51

Insects.  Eggs of H. zea and H. virescens were obtained from Benzon Research (Carlisle, 

PA).  Insect eggs were placed in a large plastic containers until they hatched.  Neonate 

larvae were then transferred to 128-well insect trays containing synthetic fall armyworm 

diet (Bio-Serv Inc., Frenchtown, NJ) and held for three days before bioassays were 

performed. 

  

RNA Extraction.  Total RNA was extracted using an RNeasy Plant Mini Kit (Qiagen, 

Valencia, CA) according to manufacturer’s instructions.  Tissue samples were excised 

from the first true leaves of transgenic tobacco plants.  Tissue was frozen in liquid 

nitrogen and stored in a -80˚C freezer until extraction. 

 Tissue for transgene expression comparisons between each of the five BoPI lines 

(BoPI 2, BoPI 6, BoPI 7, BoPI 8, and BoPI 15) was collected as 25 milligram samples 

from four plants per line and pooled for total RNA extraction and further analysis.  Tissue 

from the first true leaf of the three BoPI plants (BoPI 2, BoPI 7, and BoPI 15) used in the 

second feeding assay were collected as separate 100 milligram samples.    

  

Real Time PCR.  cDNA for real time PCR analysis was generated by reverse 

transcription of five micrograms of total RNA using the Superscript III first-strand 

synthesis kit (Invitrogen Corporation, Carlsbad, CA) and oligo(dT) primers.  Real time 

PCR was performed using an ABI Prism 7000 Sequence Detection System (Applied 

Biosystems, Foster City, CA).  Real time PCR reactions were carried out in 20 microliter 

reaction volumes consisting of gene specific primers and Power SYBR Green PCR 
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master mix (Applied Biosystems, Foster City, CA).  The gene specific primers for BoPI 

were TCCCGTGAAATTCTCAAACTGG (fwd) and 

ACTGAGCGCAGATCGTAGGTTC (rev), and were designed with primer express 

software (Applied Biosystems, Foster City, CA).  The reference gene used in RT-PCR 

analysis was ubiquitin.  The ubiquitin specific primers were described in Lacomme et al. 

(2003).  The Ct values were recorded for both the transgene and reference gene for 

further analysis. 

 RT-PCR was performed to compare transgene expression from each of the pooled 

samples from the original five BoPI lines (BoPI 2, BoPI 6, BoPI 7, BoPI 8, and BoPI 15).  

The second experiment compared transgene expression between each of the three plants 

per line (BoPI 2, BoPI 7, and BoPI 15) that were used in the second corn earworm 

feeding assay.  Normalized Ct values from each of the RT-PCR experiments were 

analyzed in paired t-tests using the mixed procedure of SAS 9.13 (SAS Institute 2003) 

(Yuan et al. 2008).  Ratios of expression were determined as described in Yuan et al. 

(2008).   

 

Insect Bioassays.  A total of three plants from each line (Xanthi, VK32, BoPI2, BoPI7, 

BoPI 15, and Bt/GFP) were evaluated individually in replicate corn earworm bioassays.  

The experimental design included 10 larvae per treatment, six treatments per replicate, 

three replicates with one plant per line tested per replicate.  Each plant was grown as 

described above.  Ten leaf discs (5.8 cm2) were obtained from a single leaf from each 

plant.  Each leaf disc was placed in a plastic cup (29.6 cm3) (Bio-Serv Inc., Frenchtown, 
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NJ) containing moist filter paper.  A single early second instar corn earworm larva was 

placed on each leaf disc.  Cups were sealed with a lid and held at RT for 17 days.  On the 

fourth day of the bioassay, leaf discs were collected to quantify insect herbivory.  Larger 

pieces of leaf tissue from the respective plants were substituted for the removed piece.  

Plant tissue was frequently added to maintain a constant source of food throughout the 

experiment.  Larval mortality and weights were recorded on days 4, 9, and 17.  Larval 

head capsule width was recorded on day 17 and the experiment was terminated.  Insect 

bioassays were performed also using tobacco budworm.  The tobacco budworm bioassay 

was performed as described above, except with only two replicates.  Larval weight, head 

capsule size, and larval mortality were analyzed with analysis of variance using the 

mixed procedure of SAS 9.13 (SAS Institute 2003) and mean separation conducted using 

Fisher’s least significant difference.  Tobacco budworm larval mortality was analyzed 

using the Glimix procedure of SAS 9.13 (SAS Institute 2003) due to its bimodal 

distribution.   

 

Leaf Disc Analysis.  Leaf discs collected on day 4 of each experiment were scanned with 

an HP Photosmart C4100 series scanner at 200 pixels per inch.  Scanned images were 

imported into SigmaScan Pro (Systat Software, Inc., San Jose, CA), where the area of 

each disc was recorded and converted to cm2. 
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Results 
 
 
Real Time PCR.  Comparisons of normalized Ct values of transgenic BoPI lines reveal 

no significant differences between lines, although BoPI 15 plants had the largest average 

ratio of expression (2.14), when compared to the internal reference gene ubiquitin (Fig. 

2.1).  Comparisons within lines of plants used in corn earworm bioassays showed no 

significant differences.  Wild-type samples in all tests were negative for transgene 

amplification.  

 

Corn Earworm Bioassay.  Tobacco lines expressing proteinase inhibitors (BoPI and 

VK32) and wild-type (Xanthi) tobacco fed to larval H. zea resulted in significantly lower 

insect mortalities than insects fed transgenic tobacco expressing Cry1Ac (Bt/GFP) (F = 

5.24; df = 5, 12; P = 0.0088) (Fig. 2.2).  While all of the Bt/GFP fed insects died before 

day 4 (data not shown), insects fed tissue from other plant lines had statistically similar 

mortalities on day17.  These mortalities ranged from 33.3 to 53.3% in wild-type and Line 

BoPI 7, respectively. 

 Leaf punches collected from containers with living insects on day 4 had no 

significant differences in the remaining total leaf punch areas (F=1.80; df= 4, 98; 

P=0.1344) (Fig. 2.3).  Punches from VK32 plants (5.12 cm2) had the smallest remaining 

mean leaf disc area.  The largest average total leaf punch area measured was from BoPI 

15 plants (5.42 cm2). 

 In general, weights of H. zea larvae fed the plant lines expressing proteinase 

inhibitors were larger throughout the entire experiment (Fig. 2.4).  Larval H. zea weights 
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recorded on Day 4 (F=2.64; df= 4, 98; P=0.0380) revealed that insects feeding on two 

transgenic plant lines, BoPI 15 (3.7 mg) and VK32 (3.6 mg), were significantly larger 

than those feeding on wild-type plant tissue (2.2 mg) (Fig. 2.5).  H. zea larval weights 

taken on Day 9 were similar to data recorded on day 4, with insects fed tissue from BoPI 

15 (32.2 mg) and VK32 (31.1 mg) plants having greater larval weights (F= 3.44; df= 4, 

88; P=0.0117) than insects fed the wild-type (12.3 mg) or BoPI 2 (15.0 mg) plants (Fig. 

2.6).  By day 17, insects fed tissue from BoPI 15 (369.2 mg) plants were over 1.5 times 

the size of insects fed the wild-type (233.8 mg) plants (Fig. 2.7).  H. zea larvae fed tissue 

from VK32 (326.5 mg), BoPI 7 (349.4 mg), and BoPI 15 plants were all significantly 

(F=2.92; df= 4, 83; P=0.0258) larger than the wild-type plants at the conclusion of the 

experiment.   

 Larval H. zea feeding on the transgenic and wild-type plant lines showed no 

significant differences in head capsule size at the conclusion of the experiment (F=0.88; 

df= 4, 83; P=0.4798) (Fig. 2.8).  All mean head capsule sizes for insects ranged from 2.6 

mm to 2.8 mm indicating that these larvae were in their 5th and 6th instar (Capinera 

2000a). 

 

Tobacco Budworm Bioassay.  Larval H. virescens fed wild-type plant tissue or 

transgenic tobacco lines expressing proteinase inhibitors (BoPI and VK32) had 

significantly less mortality than insects fed transgenic plants expressing Cry 1Ac 

(Bt/GFP) (F=547.39; df= 5, 18; P<0.0001) (Fig. 2.9).  Insects fed Bt/GFP plant tissue had 

complete mortality (100%), while all H. virescens fed on other plant lines survived. 
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 Leaf discs fed to larval H. virescens and collected on day 4 of the experiment had 

significant differences in defoliation (F= 13.66; df= 4, 94; P<0.0001) (Fig. 2.10).  Larval 

H. virescens fed wild-type and VK32 leaf punches ate significantly more leaf tissue than 

all other groups; remaining mean leaf areas were 3.70 and 3.93 cm2, respectively.  The 

largest remaining mean leaf disc areas were found for those insects fed BoPI 2 (4.99 cm2) 

and BoPI 7 (4.91 cm2), these were significantly larger than all other mean leaf disc areas.  

 Larval H. virescens fed different transgenic plant lines expressing proteinase 

inhibitors showed differences in weights early in the experiment but those differences had 

diminished by the end (Fig. 2.11).  Larval H. virescens had significantly different mean 

weight by day 4 (F= 5.24; df= 4, 94; P=0.0007) (Fig. 2.12) with insects fed wild-type 

(22.3 mg) plant tissue having larger weights than insects fed all BoPI plant lines.  Larval 

H. virescens weights on day 9 continued to have differences between treatments (F= 

2.12; df= 4, 94; P= 0.001) (Fig. 2.13).  Larval H. virescens fed wild-type (93.9 mg) plant 

tissues had the largest recorded weights on day 9, which were significantly larger than 

those larvae feeding on BoPI 2 (60.6 mg) or BoPI 15 (62.5 mg) plant tissue.  By the close 

of the experiment, there were no significant differences in larval weights (F=1.44; df= 4, 

94; P=0.2268) (Fig. 2.14).   

 Similar to H. zea larvae, H. virescens larvae showed no significant differences in 

head capsule sizes at the conclusion of the experiment (F= 1.09; df= 4, 94, P=0.3656) 

(Fig. 2.15).  Mean larval H. virescens head capsule sizes ranged from 2.3 to 2.4 mm for 

all treatments indicating they were primarily in the 6th instar of development (Capinera 

2000b). 
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Discussion 
 
The expected negative effects on insects feeding on transgenic tobacco expressing 

proteinase inhibitors were not seen in this study, with the exception of some early 

delayed development in those H. virescens feeding on transgenic BoPI lines.  The 

majority of insects grew at rates similar to or greater than those fed wild-type tissue, 

which may be the result of the insects adapting to the proteinase inhibitors.  

These results are extremely different than those reported in Pulliam et al. (2001), 

where both H. zea and H. virescens experienced high levels of mortality when fed 

transgenic BoPI and VK32 lines.  We expected to see improvements in insect control 

compared to the previous study as Pulliam et al. (2001) used both hemi- and homozygous 

lines in their assays.  A number of factors may have played into our reductions in insect 

mortality.  First, we allowed neonates to feed on artificial diets until they reached the 

second instar of development, this step was added to lower the levels of background 

mortality observed in insects fed on wild-type tobacco tissue immediately after hatching 

(data not shown).  While this waiting period may have improved background mortality, it 

may also have allow the neonate larvae to develop past crucial stage of development 

when proteinase inhibitor activity could have been fatal; i.e., they might be 

developmentally able to mount a counterdefense against proteinase inhibitors. Another 

factor that potentially improved our insect survivorship was the addition of only one larva 

per experimental unit.  Both H. zea (Chilcutt 2006) and H. virescens (Gould 1986) have 

been shown to exhibit high levels of cannibalism.  As the previous study used three 

insects per container there is a high likelihood that a large amount of insect mortality was 
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due to direct cannibalism or wounding of insects in this study.  As low mortality was seen 

in their control treatments, there is the potential for the wild-type tobacco tissue to be a 

suitable enough food source to lower any aggressive behavior.  

  It has been demonstrated that the gut proteases of both H. zea and H. virescens 

can be inactivated in vitro by the addition of soybean Kunitz trypsin inhibitor, but in 

assays where the inhibitor was added to artificial diet theses insects were unaffected 

(Purcell et al 1992, Bayes et al. 2006).  H. zea fed artificial diet supplemented with 

soybean Kunitz trypsin inhibitor have also been shown to produce a number of proteinase 

inhibitor insensitive proteases as a means to adapt (Volpicella et al. 2006).  Recent 

studies on a closely related species of lepidopteran, Helicoverpa armigeria, have revealed 

that the insects immediately up regulates numerous protease genes in response to 

inhibitors and then selectively down regulates those proteases which are sensitive to 

inhibition (Bown et al. 2004).  A similar “shotgun” reaction to inhibitors has been 

documented in Spodoptera frugiperda, except that the protease genes are left on without 

the decrease in sensitive proteases (Briochi et al. 2007).  As BoPI has sequence similarity 

to the soybean Kunitz trypsin inhibitor, adaptations analogous to those found in S. 

frugiperda and the closely related species H. armigeria may be responsible for the 

increased weights seen in H. zea throughout this study.  As similar weight gains were 

seen in those insects fed on anti-chymotrypsin VK32 plants, it may be that this “shotgun” 

approach is a general H. zea response to proteinase inhibitors regardless of their activity.  

H. virescens larvae have also been documented to adapt to proteinase inhibitors.  

These larvae have been shown to produce inhibitor insensitive proteases when exposed to 
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those found endogenously in N. tabacum (Brito et al. 2001).  Early in this study, H. 

virescens larvae fed BoPI tissues were observed to have stunted growth.  It may be that 

they adapt more slowly than H. zea, but as evidenced by their equal weights and head 

capsule sizes they reach the same size and developmental stage as those insects fed wild-

type plant material. The differing results found in this study for the two insect species, H. 

zea and H. virescens, are somewhat surprising as they are both generalists.  While both 

species have been documented to colonize B. oleracea, it has been recognized as a poor 

host plant for these insects (Harding 1976).  One possible explanation for these 

differences could be the use of lab-reared insects, which may have lost their ability to 

efficiently adapt to the addition of proteinase inhibitors in their diets.  The use of field 

captured insects may help to alleviate any unintended selection brought about by lab 

raising of a colony.   

 Control of both H. zea and H. virescens has been achieved using transgenic 

tobacco expressing the cowpea trypsin inhibitor (Hilder et al. 1987, Hoffman et al. 1992), 

a Bowman-Birk type serine proteinase inhibitor with two active sites.  In contrast, 

transgenic plants expressing Kunitz-type trypsin inhibitors have previously been 

demonstrated to be ineffective at controlling H. virescens (Gatehouse et al. 1994) and 

based on H. zea bioassay tests of artificial diets supplemented with these inhibitors 

(Bayes et al. 2006, Volpicella et al. 2006), our results are not surprising.  While numerous 

insect pests have been shown to be negatively affected by Kunitz-type trypsin inhibitors 

there have been no examples of controlling H. zea or H. virescens, which suggests that 

they are poor candidates for control of these insects. 
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Figure 2.1.  Ratio of transcription of the Brassica oleracea proteinase inhibitor (BoPI) 
transgene gene in lines (BoPI 2, 6, 7, 8, and 15) relative to the expression level of the 
internal reference gene ubiquitin.  There was no amplification for the nontransgenic 
control line. 
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Figure 2.2.  Percent mortality on day 17 of larval Helicoverpa zea fed wild-type (Xanthi) 
and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error bars indicate 
standard error of the mean and bars with the same letters are not significantly different (p 
< 0.05).
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Figure 2.3.  Area (cm2) of leaf discs after four days of feeding by larval Helicoverpa zea 
fed wild-type (Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf 
tissue.  Leaf discs on which larvae died before day 4 were not included in analysis. Error 
bars represent standard errors. 
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Figure 2.4.  Weights of larval Helicoverpa zea on days 4, 9, and 17 fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars represent standard errors.
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Figure 2.5.  Larval weight (mg) on day 4 of larval Helicoverpa zea fed wild-type (Xanthi) 
and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error bars indicate 
standard error of the mean and bars with the same letters are not significantly different (p 
< 0.05). 
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Figure 2.6. Larval weight (mg) on day 9 of larval Helicoverpa zea fed wild-type (Xanthi) 
and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error bars indicate 
standard error of the mean and bars with the same letters are not significantly different (p 
< 0.05). 
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Figure 2.7.  Larval weight (mg) on day 17 of larval Helicoverpa zea fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars indicate standard error of the mean and bars with the same letters are not 
significantly different (p < 0.05).
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Figure 2.8.  Head capsule size (mm) of larval Helicoverpa zea fed wild-type (Xanthi) and 
transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error bars represent 
standard errors.
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Figure 2.9.  Percent mortality on day 17 of larval Heliothis virescens fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars represent standard errors. Error bars indicate standard error of the mean and bars 
with the same letters are not significantly different (p < 0.05). 
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Figure 2.10.  Area (cm2) of leaf discs after four days of feeding by larval Heliothis 
virescens fed wild-type (Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) 
tobacco leaf tissue.  Leaf discs on which larvae died before day 4 were not included in 
analysis. Error bars indicate standard error of the mean and bars with the same letters are 
not significantly different (p < 0.05). 
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Figure 2.11.  Weights of larval Heliothis virescens on days 4, 9, and 17 fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars represent standard errors. 
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Figure 2.12.  Larval weight (mg) on day 4 of larval Heliothis virescens fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars indicate standard error of the mean and bars with the same letters are not 
significantly different (p < 0.05). 
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Figure 2.13.  Larval weight (mg) on day 9 of larval Heliothis virescens fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars indicate standard error of the mean and bars with the same letters are not 
significantly different (p < 0.05). 
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Figure 2.14.  Larval weight (mg) on day 17 of larval Heliothis virescens fed wild-type 
(Xanthi) and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error 
bars indicate standard error of the mean and bars with the same letters are not 
significantly different (p < 0.05). 
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Figure 2.15.  Head capsule size (mm) of larval Helicoverpa zea fed wild-type (Xanthi) 
and transgenic (VK32 and BoPI lines 2, 7, and 15) tobacco leaf tissue. Error bars 
represent standard errors. 
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Agroinfiltration as a technique for rapid assays for expressing candidate insect 

resistance genes in plants: exemplified by screening insect resistance genes for plant 
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Abstract 
 
Screening of candidate insect resistance genes is a time consuming task that may take 

months to years to achieve.  In this study, a rapid screening technique is characterized 

and evaluated that combines candidate gene transient expression by means of 

agroinfiltration of Nicotiana benthamiana with a simple insect bioassay.  Using this 

system the known insecticidal protein Cry1Ac is demonstrated to effectively control 

Helicoverpa zea.  Insects fed tissue expressing GFP were shown to have enhanced 

growth and development.  Additionally, a Brassica oleracea proteinase inhibitor (BoPI) 

with unproven insect resistance characteristics is demonstrated to hinder the growth and 

development of H. zea.   
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Introduction 
 

The evaluation of potential insect resistance genes in transgenic plants can be arduous, 

given that the generation of stably transgenic plants is costly and labor intensive.  Stable 

transformation of plants can take months-to-years to achieve and the resulting transgenic 

events usually vary with regards to transgene expression because of gene insertion effects 

and numbers of inserted genes (Wroblewski et al 2005).  The combination of a robust 

temporary (transient) transgene expression assay combined with a reliable screening 

protocol could decrease the time for initial transgene evaluation, i.e., is it worthwhile to 

conduct in-depth screening by expression in stably transgenic plants.  The use of transient 

expression through infiltration of Agrobacterium tumefaciens (agroinfiltration) harboring 

the transgene and promoter of interest can substantially decrease the time required to test 

candidate insecticidal genes and may also provide a better platform to assess the potential 

of these gene products.  This report notes how agroinfiltration can be coupled with a 

bioassay procedure to determine the predictive effects of over-expressing two different 

candidate insect resistance genes in plants: one that is a documented insecticidal gene, 

and another that is much less effective in transgenic plants.  

 Transient expression through agroinfiltration is a relatively simple procedure after 

a transgene construct is produced, which involves the injection of A. tumefaciens 

containing the candidate transgene under the control of a leaf-active or constitutive 

promoter in a binary transformation vector (Sparkes et al. 2006).  Agroinfiltration has 

been demonstrated to be effective for transient expression in many plant species 

including tobacco (Shelduko et al. 2006), grapevine (Santos-Rosa et al. 2008), lettuce, 
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tomato, Arabidopsis (Wroblewski et al. 2005), switchgrass (VanderGheynst et al. 2008), 

radish, pea, lupine, and flax (Van der Hoorn et al. 2000).  Since there is a wide range of 

plant species susceptible to A. tumefaciens infection, the use of agroinfiltration for the 

evaluation of candidate insect resistance genes has great potential for rapid screening on 

numerous target insects.  

 The objective of this study is to evaluate the ability of agroinfiltration with a 

subsequent insect bioassay to effectively screen potential insect resistance genes for 

efficacy.  A known insecticidal gene (Bt Cry1Ac) and a candidate insect resistance gene 

(BoPI) (Brassica oleracea protease inhibitor) were infiltrated into Nicotiana 

benthamiana and bioassays using larval Helicoverpa zea (corn earworm) were 

performed. 

 

Materials and Methods 
 

Plants.  Nicotiana benthamiana seeds were planted and grown in a growth chamber at 

25˚C with 16 h light and 8 h dark photoperiod.  Plants were grown for 2 mo before 

bioassays were performed.  

 

Insects.  Corn earworm eggs were obtained from Benzon Research Inc. (Carlisle, PA).  

Eggs were hatched in a large plastic container. Neonate larvae were immediately 

transferred to 128 well insect trays containing synthetic fall armyworm diet (Bio-Serv 

Inc., Frenchtown, NJ) and held for 3 days before beginning bioassays. Second instar 

larvae were used in bioassays. 
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Bacterial Strains and Vectors.  Transformed and non-transformed Agrobacterium 

tumefaciens strain GV3850 was used in all infiltrations.  Binary vectors in transformed 

bacteria included pBin/BoPI (containing Brassica oleracea serine proteinase inhibitor) 

(Pulliam et al. 2001), pH602SBt (containing synthetic Bt Cry1Ac) (Stewart et al. 1996), 

pBin-mGFP5-ER (containing GFP5-ER only) and pSAM12 (containing both GFP5-ER 

and synthetic Bt Cry1Ac) (Harper et al. 1999). GFP was used as a visual marker of 

agroinfiltration and transgene expression.  

 Transformed A.  tumefaciens test tube starter cultures were grown in a shaker 

overnight at 24˚C and 200 RPM in YEP media (1% peptone, 1% yeast extract, and 0.5% 

NaCl) (3 ml) containing 50 mg/L rifampicin and 50 mg/L kanamycin.  Optical density at 

600 nm was taken on starter cultures with a Synergy HT plate reader (BioTek 

Instruments, Inc, Winooski, VT).  Starter cultures were used to inoculate two 25 ml 

cultures to an OD600 of 0.004 and grown overnight.  Non-transformed A. tumefaciens 

were grown without kanamycin as an antibiotic selection agent. 

 

Transient Expression Procedure.  Agrobacterium infiltrations were performed as 

described in Sparkes et al. (2006).  Infiltration suspensions for each vector and non-

transformed Agrobacterium were brought to OD600 0.6.  Mixtures of bacterial 

suspensions (1:1) were made for co-infiltrations with a final OD600 of 0.6.  Co-

infiltrations suspensions included non-transformed GV3850 + pBin-mGFP5-ER 

(GV+GFP), non-transformed GV3850 + pSAM12 (GV+GFP/Bt), pBin-mGFP5-ER + 

pSG/Bt (GFP+Bt), pBin-mGFP5-ER + pBin/BoPI (GFP+BoPI), and non-transformed 
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GV3850 + non-transformed GV3850 (GV+GV).  The addition of multiple infiltration 

points per infiltration spot was used to expand the area of the spot to approximately 4 

cm2.  GV+GV infiltration spots were outlined with a black marker for later identification.  

After infiltration, plants were placed back into the growth chamber.  Three days after 

infiltration, spots were visualized with GFP expression under a BlackRay model B100 

UV light (UVP, Upland, CA) and excised with a scalpel (Fig. 3.1).  Outlined spots for 

GV3850-only infiltrations were excised also. 

 

Infiltration Characterization Experiment. Tobacco plants were grown and infiltrated 

as described above.  A single plant was infiltrated in five leaves, each leaf with a different 

co-infiltration treatment in two spots (one on each side of the mid-vein).  Three replicate 

plants were infiltrated for a total of six spots for each co-infiltration treatment.  After 

three days, spots were excised and measured with a GFP meter (Opti-Sciences Inc., 

Hudson, NH).  Tissue was snap frozen in liquid nitrogen and ground in a mortar and 

pestle with liquid nitrogen.  Tissue was then divided into three parts: 100 mg of tissue 

was placed in RLT (Qiagen RNeasy mini prep) buffer for RNA extraction and stored in a 

-80ºC freezer; one half of the remaining tissue was added to ice cold protein extraction 

buffer (100 µM Tris-HCl pH 7.5, 100 µM CaCl2) in a 1.5 ml microcentrifuge tube; the 

third portion was placed in a 2 ml cryo vial (Sarstedt Inc., Newton, NC) for potential 

future experiments.  Both portions were stored in a -80ºC freezer. 
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RNA Extraction.  Plant tissue samples were removed from the freezer and total RNA 

was extracted using an RNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to 

manufacturer’s instructions.   

 

Protein Extraction.  Frozen samples were thawed on ice and allowed to incubate for 1 

hr.  Tubes were clarified by centrifugation at 13,000 x g for 10 min at 4 ºC.  Supernatant 

was transferred to a new microcentrifuge tube and quantified using Commassie plus 

staining (Pierce biotechnology, Rockford, IL). 

 

Protein ELISAs.  GFP and Bt Cry1Ac were quantified from the infiltration 

characterization assay protein samples.  Protein from infiltrated tissue was adjusted to 10 

µg/ml for GFP quantification and 20 µg/ml for Bt quantification.  Protein was quantified 

for GFP using a Reacti-Bind Anti-GFP ELISA plate (Pierce biotechnology, Rockford, 

IL) according to the manufacturer’s instructions.  Bt Cry1Ac was quantified with a 

Cry1Ac QuantiPlate (EnviroLogix Inc., Portland, ME) according to the manufacturer’s 

instructions.  

 

Real Time PCR.  RT-PCR was performed to confirm expression of transgenes in all 

infiltrated tissues collected in the infiltration characterization experiment.  cDNA for real 

time PCR analysis was generated by reverse transcription of two micrograms of total 

RNA using the Superscript III first-strand synthesis kit (Invitrogen Corporation, 

Carlsbad, CA) and oligo(dT) primers.  Real time PCR was performed using an ABI Prism 
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7000 Sequence Detection System (Applied Biosystems, Foster City, CA).  Real time 

PCR reactions were carried out in 20 µl reaction volumes consisting of gene specific 

primers and Power SYBR Green PCR master mix (Applied Biosystems, Foster City, 

CA).  The gene specific primers were BoPI (fwd) TCCCGTGAAATTCTCAAACTGG, 

BoPI (rev) ACTGAGCGCAGATCGTAGGTTC, Bt Cry1Ac (fwd) 

CGCTCTCTTTCCCAACTACGA, Bt Cry1Ac (rev) 

ACCGTCGAAGTTCTCGAGGACT and were designed with primer express software 

(Applied Biosystems, Foster City, CA).  GFP gene specific primers (fwd) 

CAACTTCAAGACCCGCCACA and (rev) TCTGGTAAAAGGACAGGGCCA were 

designed and provided by Laura Abercrombie.  The reference gene used in RT-PCR 

analysis was ubiquitin.  The ubiquitin specific primers were described in Lacomme et al. 

(2003).  Ct values were recorded for both the transgene and reference gene for further 

analysis.  Ratios of expression compared to the reference gene were determined using 

∆Ct as described in Yuan et al. (2008). 

 

Insect Bioassay.  Two tobacco plants were infiltrated on five leaves for each co-

infiltration as described above.  Infiltrated spots were excised and GFP quantified with 

the GFP meter.  Ten excised infiltrated plant tissue pieces from each co-infiltration and 

ten excised plant tissue pieces from un-infiltrated N. benthamiana  were placed into clear 

plastic cups (29.6 cm3) (Bio-Serv Inc., Frenchtown, NJ) with 1/4th of a moist #5 

Whatman filter paper (Whatman International Ltd, Kent, UK).  One second instar corn 

earworm was place onto each infiltrated plant tissue piece.  Containers were sealed with a 
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lid and held at 24˚C.  Containers were arranged in a complete randomized design.  After 

six days, larval mortality, larval weight and larval head capsule size were recorded.  Head 

capsule size of larvae was measured with an eye piece micrometer in a stereoscope 

(Olympus SZ40, Olympus Imaging America Inc., Center Valley, PA) and larval weights 

were taken with a digital scale (Denver Instruments, Göttingen, Germany).  This insect 

bioassay was replicated in space for a total of twenty insects per treatment. 

 

GFP Meter Procedures.  GFP infiltrated leaf tissue was quantified with a hand held 

GFP meter.  Infiltrated leaf tissue was measure at four independent points and averaged 

according to a modified protocol described in Millwood et al. (2003). 

 

Statistical Analysis.  Larval weight and head capsule size were analyzed with analysis of 

variance (ANOVA) using the mixed procedure of SAS 9.13 (SAS Institute 2003).  Means 

separation was performed with Fisher’s least significant difference.  Larval mortality was 

analyzed with the Proc Glimix procedure of SAS 9.13 (SAS Institute 2003) since the data 

had a bimodal distribution. 

 

Results 
 
Real Time PCR.  Real time PCR analysis confirmed the transient expression of all 

transgenes in infiltrated tissue.  Large variations in GFP expression were observed 

between the different infiltrated spots (Fig. 3.2).  The highest relative GFP expression 

was found in a GV+GFP infiltrated spot which had 3.26 times that of the internal 
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reference gene ubiquitin.  The lowest relative GFP expression (0.59) was in a GFP+Bt 

infiltrated spot.  Bt Cry1Ac expression levels in all infiltrated spots were lower than the 

internal reference gene, while relative expression levels of BoPI were extremely high.  

Expression levels of BoPI ranged from 4.9 to 9 times the level of ubiquitin.  No transgene 

expression was detected in GV+GV samples. 

  

Protein Synthesis.  Protein levels of GFP measured by ELISA were significantly higher 

in the GV+GFP (1.36 % TSP) infiltrated tissues than in all other infiltration types 

(F=15.14, df=3,20; P<0.0001) (Fig. 3.3). The lowest level of expression detected by 

ELISA was in GFP+Bt infiltrated tissues, which had an average GFP total soluble protein 

of 0.57%.  No GFP was detected in GV+GV samples.   

 Bt Cry1Ac levels in infiltrated spots showed no significant differences between 

those co-infiltrated in different vectors (GFP+Bt) (0.022 %TSP) versus those in the same 

vector (GV+GFP/Bt) (0.031 %TSP) (Fig. 3.5).  The range of Bt Cry1Ac % TSP found in 

individual spots ranged from 0.054 to 0.015% TSP.  No significant associations were 

observed between Bt Cry1Ac %TSP and GFP % TSP for either infiltration types. 

 

GFP Meter.  GFP meter readings in the infiltration characterization experiment had a 

strong relationship with GFP ELISA data (R2=0.727).  Similar differences to those found 

in ELISA data were detected in average GFP meter readings (F=22.11; df=4, 25; 

P=0.0001) (Fig. 3.5).  GV+GV infiltrated spots had a low level of background at 61 

counts per second (CPS). 
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 GFP meter readings in the insect bioassay had levels of GFP expression than 

those found in the infiltration characterization assay.  Although there were significant 

differences found between infiltration types (F=15.51; df=4,95; P=0.0001) (Fig. 3.6) they 

were different than those found in the infiltration characterization assay.  GV+GV 

infiltrated spots had a low background of 23 CPS, while all non-infiltrated tissue 

measured had no signal (data not shown). 

 

Insect Bioassay.  Insects fed tobacco tissue transiently expressing synthetic Cry1Ac had 

high larval mortality (F = 772.42; df = 5, 18; P < 0.0001) (Fig. 3.7).  Both treatments 

GFP+Bt and GV+GFP/Bt resulted in 100% larval mortality.  No insect mortality was 

observed in larvae feeding on all other treatments. 

 Larval weights were recorded for all treatments except those containing synthetic 

Cry1Ac (GFP+Bt and GFP/Bt), which had no larvae remaining on day 6.  The largest 

average larval weight was observed in those insects feeding on the GV+GFP treatment 

(45 mg) (F = 6.16; df = 3, 76; P = 0.0008) (Fig. 3.8).  Insects feeding on all other 

treatments had significantly lower average larval weights.  The lowest average larval 

weight was recorded in insects fed the non-infiltrated N. benthamiana tissue (26.1 mg). 

 Average larval head capsule size was similar to average larval weight with values 

recorded for all treatments except those fed synthetic Cry1Ac (GFP+Bt and GFP/Bt).  

Insects fed the GV+GFP treatment resulted in the largest average larval head capsule size 

(1.59 mm) (F = 2.65; df = 3, 76; P = 0.0551), indicating that insects had developed to 

both the 4th and 5th instars (Caplinera 2000)(Fig. 3.9).  A significantly smaller average 
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larval head capsule size (4th instar) was observed in those insects fed the non-infiltrated 

tobacco tissue (1.35 mm), when compared to the GV+GFP treatment.  All other 

treatments were similar. 

 

Discussion 
 

These results demonstrate that a system combining agroinfiltration and insect bioassays 

can be used as a powerful tool for assessing the potential of candidate insect resistance 

genes.  Insects feeding on tissue infiltrated with a synthetic Bt Cry1Ac gene suffered 

100% mortality, indicating that the system is effective at evaluating genes for insecticidal 

activity.  Levels of Bt Cry1Ac detected in this study were similar to levels found in 

transgenic canola when transformed with the same construct (Moon et al. 2007). 

 Interestingly, insects fed tissue infiltrated with GFP as the only transgene had 

enhanced levels of growth and development.  This is evidenced by the increased larval 

weight and head capsule size, which have previously been used to determine effects on 

insect development (Broadway 1995, Daly 1985, De Leo et al. 1998).  The increase in 

development is, to our knowledge, the first report of transgenic plants expressing GFP 

having a positive effect on an insect herbivore.  This enhanced rate of growth may be 

explained by an increase in total soluble protein from the over-expression of GFP and 

potentially an increased availability of essential amino acids.  Another explanation of the 

increased growth and development may be due to an over-production of endogenous 

insect proteases.  From previous research, transient expression of GFP localized to the 

ER has been shown to up-regulate defensive genes such as protease inhibitors (Page and 
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Angell 2002) which may be expected to have a detrimental effect on larval lepidopterans.  

It has also been demonstrated that H. zea has the ability to adapt to plant protease 

inhibitors by the up-regulation of an array of protease inhibitor sensitive and insensitive 

proteases (Volpicella et al. 2006).  This increased production of proteases may allow the 

insect to more efficiently gain nutrients and subsequent increased growth.  Previously, H. 

zea larvae challenged with protease inhibitor rich diets have demonstrated increased 

weights (Baýes et al.2006, Broadway 1995); H. zea fed plants stably transformed with the 

Brassica oleracea proteinase inhibitor used in this study showed a significant increase in 

larval weight (data not shown).     

 When plants were co-infiltrated with both GFP and the BoPI serine protease 

inhibitor and fed to larval H. zea, a significant decrease in larval weights was detected 

compared to infiltrations containing GFP as the only transgene.  In addition, the larval 

head capsule size was smaller, although not significantly, than those insects fed GFP only 

infiltrated tissue. These results could be due to the lower levels of GFP total soluble 

protein in BoPI-infiltrated lines (Fig. 3.8).  This explanation is not likely due to an 

expected increase in growth of H. zea challenged with proteinase inhibitors.  As 

mentioned previously, stably transformed BoPI plants were shown to have a positive 

effect on the growth and development of H. zea and it would be expected that BoPI in 

infiltrated tissue would do the same.  One possible explanation could be that the levels of 

BoPI expression in infiltrated tissue were extremely high (ranging from ~5 to 9 times that 

of ubiquitin), while the levels in the stable transgenic tested were only around twice the 

level of ubiquitin (data not shown).  This extremely high titer of BoPI may have 



 

 92

mitigated the efficacy of the insect’s natural adaptive processes in response to both the 

endogenous plant proteases and BoPI.  The ability to evaluate candidate insect resistance 

genes at levels higher than those found in typical stable transformants is a major 

advantage to this screening system. 

 The use of this system to evaluate insect resistance genes has several benefits 

when compared to other systems.  As mentioned previously, the positional effects of 

transgene insertion are clouded by the transformation of individual cells and the time for 

preparation of transgenic tissue is drastically reduced: days instead of months 

(Wroblewski 2005).  In addition, serious ecological risks of the escape of transgenes into 

the environment are drastically reduced (Li et al. 2007).  When compared with previously 

described viral based screening systems (Lawrence and Novak, 2001), the time for 

expression of genes is cut in half.  As viral vectors are not used to generate stable 

transformants, a system containing agroinfiltration can be rapidly altered for the 

production of stable transgenic lines.  Additionally, viral vectors have size constraints in 

the transgenes they can produce (Gleba et al. 2007) making it a less attractive system. 

 As with any technology, there are also inherent pitfalls.  Large variations in 

expression were seen within infiltrated materials in this study.  There are many factors 

that influence transient expression from agroinfiltration.  One of the major considerations 

is the OD of the infiltration, which has been documented to have a large effect on the 

expression of the transgene (Santos-Rosa et al. 2008, Sparkes et al. 2006).  While this 

study used a standardized co-infiltration OD, it may be advantageous to adjust these ODs 

to suit a specific construct.  In addition, species, leaf position, and age of the plant can all 
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have impacts on expression (Sheludko et al. 2007).  Another issue with the high levels of 

transcription found in agroinfiltrated tissue is post transcriptional gene silencing, which 

by means of the plants endogenous defenses against viruses can hinder the amount and 

duration of transgene expression (Voinnet et al. 2003).  This problem may be alleviated 

by the addition of a silencing suppressor, such as P19 (Voinnet et al. 2003, Wroblewski et 

al. 2005), which may significantly increase the level and longevity of transgene 

expression. 

 The use of agroinfiltration in tandem with insect bioassays has promise as an 

effective means to test insect resistance genes.  This system allows for enhanced 

characterization of not only insecticidal genes, but genes which alter insect growth and 

development, which may have elusive modes of action. 
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Figure 3.1.  Infiltrated N. benthamiana tissue expressing GFP+Bt A. under ultraviolet 
light B. under white light, and C. excised under ultraviolet light.  
 

A. B. C. 
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Figure 3.2.  Ratio of transcription of the mGFP5-er, Bt Cry1Ac, and BoPI transgene 
genes relative to the expression level of ubiquitin in tobacco infiltrated with 
Agrobacterium tumefaciens containing (GV+GFP), (GFP+BoPI), (GFP+Bt), or 
(GV+GFP/Bt). Error bars indicate standard error of the mean. 
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Figure 3.3.  Average GFP percent total soluble protein in tobacco tissue infiltrated with 
Agrobacterium tumefaciens containing (GV+GFP), (GFP+BoPI), (GFP+Bt), or 
(GV+GFP/Bt).  Error bars indicate standard error of the mean and bars with the same 
letters are not significantly different (p < 0.05). 
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Figure 3.4.  Average Bt Cry1Ac percent total soluble protein in tobacco tissue infiltrated 
with Agrobacterium tumefaciens containing (GFP+Bt), or (GV+GFP/Bt).  Error bars 
indicate standard error of the mean.  
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Figure 3.5.  Infiltration characterization assay average GFP meter readings in counts per 
second of tobacco tissue infiltrated with Agrobacterium tumefaciens containing 
(GV+GV), (GV+GFP), (GFP+BoPI), (GFP+Bt), or (GV+GFP/Bt).  Error bars indicate 
standard error of the mean and bars with the same letters are not significantly different (p 
< 0.05). 
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Figure 3.6.  Insect bioassay average GFP meter readings in counts per second of tobacco 
tissue infiltrated with Agrobacterium tumefaciens containing (GV+GV), (GV+GFP), 
(GFP+BoPI), (GFP+Bt), or (GV+GFP/Bt).  Error bars indicate standard error of the mean 
and bars with the same letters are not significantly different (p < 0.05). 
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Figure 3.7.  Percent mortality on day 6 of larval Helicoverpa zea fed N. benthamiana leaf 
tissue infiltrated with non-transformed GV3850 + pBin-mGFP5-ER (GV+GFP), non-
transformed GV3850 + pSAM12 (GFP/Bt), pBin-mGFP5-ER + pH602SBt (GFP+Bt), 
pBin-mGFP5-ER + pBin/BoPI (GFP+BoPI), non-transformed GV3850 + non-
transformed GV3850 (GV+GV), or un-infiltrated N. benthamiana (NT). 
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Figure 3.8.  Average larval weight (mg) on day 6 of larval Helicoverpa zea fed N. 
benthamiana leaf tissue infiltrated with non-transformed GV3850 + pBin-mGFP5-ER 
(GV+GFP), pBin-mGFP5-ER + pBin/BoPI (GFP+BoPI), non-transformed GV3850 + 
non-transformed GV3850 (GV+GV), or un-infiltrated N. benthamiana (NT).  Error bars 
indicate standard error of the mean and bars with the same letters are not significantly 
different (p < 0.05). 
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Figure 3.9.  Average larval head capsule size (mm) on day 6 of larval Helicoverpa zea 
fed N. benthamiana leaf tissue infiltrated with non-transformed GV3850 + pBin-mGFP5-
ER (GV+GFP), pBin-mGFP5-ER + pBin/BoPI (GFP+BoPI), non-transformed GV3850 + 
non-transformed GV3850 (GV+GV), or un-infiltrated N. benthamiana (NT).  Error bars 
indicate standard error of the mean and bars with the same letters are not significantly 
different (p < 0.05). 
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