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This dissertation focuses on the development of a computationally efficient and fast 

method that incorporates the kinematics obtained from fluoroscopy and extends it to the 

prediction of the in-vivo contact mechanics at the femoro-tibial articulation in modern 

knee implants for the deep knee bend activity. In this endeavor, this dissertation deals 

with the use of an inverse dynamic rigid body model characterizing the slip and roll 

behavior observed in the femoro-polyethylene articulation and a coupled deformation 

model where the polyethylene in knee implants are modeled as hexahedral discrete 

element networks. The performance of this method is tested by comparing force 

predictions from a telemetric knee and finite element analysis. Finally, the method is 

applied to study the in vivo contact mechanics and mechanics of the quadriceps 

mechanism in six popular knee designs. During the deep knee bend activity, the contact 

force generally increased with flexion. However, the medial lateral forces were not 

equally distributed and the medial lateral force distribution generally varied from 60%-

40% at full extension to as high as 75%-25% at full flexion in some patients. Also, the 

magnitude of axial force in the superior-inferior direction was the highest and was found 

to contribute around 98%-99% of the total load acting at the femorotibial joint. The 

forces in the medio-lateral and antero-posterior directions were low and the maximum 
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magnitude observed was around 0.5BW. The contact areas and contact pressures were 

much more sensitive to the geometries involved and the in vivo kinematics. Though no 

definite pattern was observed for the variation of the contact areas throughout flexion, the 

contact pressures increased in both condyles with increasing flexion. Also, the contact 

pressures on the medial condyle were higher than the contact pressures observed in the 

lateral condyle. The patellofemoral and the quadriceps force ratio increased with the 

increase in flexion while the patellar ligament and the quadriceps force ratio decreased 

with increasing flexion. In some patients at high flexion, the quadriceps force and as a 

result the patellofemoral, patellar ligament and the knee contact forces were found to 

decrease due to the wrapping of the quadriceps coupled with posterior movement of the 

femoral condyles leading to the increase in the quadriceps moment arm.   
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The knee is the largest joint in the human body, serving as the connection between the 

upper and the lower leg and controlling the relative motion between the two structures. It 

consists of bicondylar articulation between the femur (thigh bone) and the tibia (shin 

bone) and the articulation of the patella in the trochlear grove of the femur. In the normal 

knee, direct bone to bone contact is prevented by the presence of soft cushioning 

viscoelastic cartilage and meniscal layers. It is a diarthrodial or synovial joint, i.e. a freely 

moving joint, lubricated by synovial fluid and the whole structure is enclosed in a joint 

capsule.   

 

According to the Arthritis Foundation, arthritis-related problems are second only to heart 

disease as the leading cause of work disability. Mechanical loading, especially dynamic 

loading, is believed to play a major role in the degenerative process, where the 

cushioning layers are damaged and create bone to bone contact. Osteoarthritis can be 
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extremely disabling, leading to discomfort and often excruciating pain. Therefore 

artificial orthopedic implants are designed so as to replace these damaged articulating 

surfaces and provide pain relief and allow a subject with severe osteoarthritis to return to 

a normal daily life.  

 

Since the knee carries a high amount of load, it is highly susceptible to osteoarthritis. The 

first attempt to design knee arthroplasty occurred approximately 80 years ago. With more 

research focusing in this area and with greater knowledge about normal knee kinematics, 

these knee arthroplasty designs have transformed from highly constrained hinged type 

and highly conforming designs to moderately conforming designs. Modern knee 

arthroplasty designs can largely be classified as unicondylar or total (bicondylar). While 

in total knee arthroplasty (TKA), the complete femorotibial and patellofemoral 

articulation is reconstructed, unicondylar knee arthroplasty (UKA) is utilized in minor 

osteoarthritis damage, when only one condyle of the femorotibial articulation has to be 

reconstructed. 

 

A modern TKA design consists of at least three components. (Figure 1-1). Two 

components, attached separately to the femur and the tibia, are made of high strength, 

wear resistant and biocompatible titanium or cobalt chromium alloys. The other 

component is made of biocompatible crosslinked ultra high molecular weight 

polyethylene and acts a bearing material between the femoral and tibial components.  
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Figure 1-1: Simplified image of TKA. 

 

The contact surface between the polyethylene insert and the tibial component is generally 

flat with modifications pertaining to fixation mechanisms between them. The articulation 

between the femoral condyles and the polyethylene bearing is characterized by elliptical 

surfaces having single or multiple radii both in the sagittal and the coronal planes. There 

can be a fourth component, a dome shaped insert made of polyethylene, fitted to the 

patella bone, to aid in the patellofemoral articulation. However, the use of this component 

is a subject of much debate. While some surgeons routinely resurface the patella and fit 

this insert others are skeptical towards its use. Nonetheless, the original or resurfaced 

patella articulates in a reconstructed grove made on the anterior aspect of the femoral 
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component and resembles the articulation of the patella on the trochlear grove in the 

femur of the normal knee. 

 

In a normal knee, with the increase in flexion (bending of the knee), the femoral condyles 

roll with slip in the posterior direction (known as rollback) on the tibial plateau. Since the 

medial condyle radius in the normal knee is different compared to the lateral condyle, 

such a posterior motion is also accompanied by an external axial rotation of the femur 

with respect to the tibia. In general, throughout most flexion angles, both the femoral 

condyles remain in contact with the tibia. However, at extreme, very high flexion angles 

(> 140º), there can be a condition when only one femoral condyle stays in contact. This 

happens mainly due to two reasons: (1) Extreme roll back in the knee causing the lateral 

condyle to lose contact with the tibial surface in the posterior direction. (2) Generation of 

an abduction/adduction moment that causes one of the condyles to lift off the tibial 

surface. The patellar always remains in contact with the femur and with increasing 

flexion travels upward on the trochlear grove of the femur and rotates towards the femur. 

The incidence of normal axial rotation of the femur on the tibia has been found to affect 

patellofemoral tracking significantly. 

 

Various approaches are used by surgeons in order to cut through the skin in order to reach 

the bones during a TKA. Also, in order to make space for the implant components, a 

sufficient amount of bone has to be cut off and necessary soft-tissue structures released 
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and resected to ensure proper fit, correct alignment and balancing of the installed 

components. Since the normal soft tissue constraints present in the normal knee are 

modified after TKA implantation, the TKA kinematics have been found to be different 

than normal knee kinematics. Some of the abnormalities include: 

 

(1) The incidence of paradoxical anterior slide of the femur on the tibia with 

increasing knee flexion. This results in the impingement of the femoral condyles 

on the polyethylene bearing, resulting in a loss of flexion. 

(2) Opposite axial rotation patterns, where the femur rotates internally relative to the 

tibial component with increasing knee flexion and can occur throughout flexion 

or at various increment of flexion. 

(3) Incidence of condylar lift-off, throughout normal ranges of flexion causing higher 

stresses to be generated in the polyethylene bearing surface. 

(4) Incidence of patellar separation (patella losing contact with femur), patellar 

dislocation and abnormal patellar tracking that causes pain and discomfort and is 

one of the leading causes of revision surgery. 

 

Armed with the knowledge of the drawbacks of current designs and with the focus of 

attaining normal knee kinematics in TKAs, the design of knee implants have 

continuously evolved and there are various types of knee implants in the market. Modern 

TKA designs can be broadly classified into the following groups:  



Background 
 

 
 - 6 - 

(1) Cemented, non-cemented or hybrid:  This classification is based on the 

attachment of the components on the respective bones. The femoral, tibial and 

patellar components can be attached to the bone with the use of bone cement, or 

can be fixated without cement, using the concept of interference fit. The non-

cemented designs use a porous coating on the surface for the bone to grow into 

the metallic components leading to a more secure fixation. A hybrid approach, 

utilizing some cemented and some non-cemented components can also be used. 

(2) Fixed or mobile bearing: This classification is based on the attachment of the 

polyethylene insert on the tibial component. Fixed bearings rigidly fix the two 

components with grooves, notches and other locking mechanisms. In this case, the 

femoro-polyethylene is much less constrained in order to account for the 

multiaxial rotational nature of the femoral motion. Mobile bearings, however, 

allow relative motion between the tibial and polyethylene articulation. Such 

designs aim to separate the translational and rotational nature of the femoral-

polyethylene articulation and therefore can employ higher constrained designs. 

Mobile bearing designs can be of the more successful rotating type (where only 

rotational motion of the polyethylene insert is allowed) or the less popular 

meniscal type (where the polyethylene insert can rotate and translate on the tibial 

component). 

(3) Cruciate retaining, cruciate sacrificing or cruciate substituting: This classification 

is based on the surgical procedure that is adopted during TKA for the cruciate 



Background 
 

 
 - 7 - 

ligaments (the main anterior-posterior stabilizers in the normal knee).  Though 

some TKAs are designed to retain the anterior cruciate ligament (ACL), in most 

designs the ACL is resected to facilitate in the fitting of the implant.  With respect 

to the posterior cruciate ligament (PCL), TKAs can be PCL retaining (PCR), PCL 

sacrificing (PCS) or PCL substituting, also known as posterior stabilized (PS).  PS 

designs differ from the PCR designs by having an additional cam-spine (also 

called post-cam) mechanism between the femoral component and the 

polyethylene insert in order to initiate posterior femoral rollback, the primary role 

of the PCL. The spine (post) is located on the polyethylene insert and the cam is 

provided on the femoral component in between the two condyles. PCR designs do 

not have this mechanism as the PCL in these designs is not resected.  The PCS 

designs resect the PCL and do not provide for any substitution. In modern PCS 

designs, stability is achieved by incorporating spherical femoro-polyethylene 

contact surfaces in the medial condyle to facilitate “pivotal motion” in that 

condyle.  

(4) Symmetrical or asymmetrical condyles:  This classification is based on the design 

differences between the two femoral condyles and their corresponding articulating 

surfaces on the polyethylene insert. The newer, asymmetrical designs are 

motivated by the asymmetrical nature of the femoral condyles in the normal knee 

which is believed to be a main cause for normal axial rotation. In, these designs, 

the medial condylar radii are smaller than the lateral condylar radii, just as in the 
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normal knee. Therefore, for same amount of flexion, the distance traveled by the 

medial condyle is lesser than the distance traveled by the lateral condyle causing a 

normal axial rotation pattern. Some newer designs also incorporate different 

heights of the medial and lateral condyles when measured in the superior-inferior 

direction. The symmetrical designs are characterized by identical radii in both the 

medial and lateral condyles.  

  
With more successful designs in the market, advancement of technology and higher 

patient expectations, newer generation knee implants are aiming for higher performance 

goals and some of the current trends driving new knee designs are as follows:  

 

(1) High Flexion: These types of designs are intended to provide patients with the 

capability of experiencing activities that require very high flexion range (>120º) 

such as kneeling, squatting, gardening, etc. New TKAs accommodating for as 

high as 160º of flexion are available today. These high flexion designs 

incorporates subtle changes in the femoro-polyethylene articulation radii so as 

provide extra articulating surface and reduce the chance of the femoral 

component falling of the polyethylene surface. They also employ a deeper 

anterior groove on the polyethylene insert in order to prevent the impingement of 

the patellar tendon during high flexion. 
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(2) Gender knees: Compared to males, females have a wider pelvis, a higher antero-

posterior (AP) to medio-lateral (ML) length ratio and a greater Q-angle. Today, 

modern TKAs are designed so as to better fit both the female and the male knee 

geometry. In order to reduce overhang of the bone and the fitted implant 

components some designs incorporate modified AP/ML ratios while other 

designs provide a wider range of available component sizes to choose from. Also, 

the trochlear groves in these designs are more anatomical and are adjusted so as 

to account for the varying Q-angle between men and women. 

(3) Resurfacing: Aimed at a much younger, active population who have good bone 

quality, these designs are thinner and resects much less bone than normal TKA 

implant.  These designs aim at replacing only the damaged contact surfaces rather 

than provide for a complete reconstruction of the entire knee joint.  
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The disparities in the in-vivo performance of a TKA compared to the normal knee and 

the nature of its failure have been the main driving force behind the evolution and 

development of TKAs. Since cadaveric studies fail to simulate in-vivo conditions 

adequately (Komistek 2005) and experimental studies are difficult and restrictive in 

humans due to their invasive nature, researchers have strived for new and unique methods 

for indirect measurements.  

 

Modern day TKAs have been found to have survival rates of more than 90% at ten years 

and 84% at fifteen years (Godest 2000; Rand 2003) and have been found to be very 

successful in treating severe osteoarthritis. However, failure, especially in the form of 

polyethylene wear limits its longevity (Howling 2001; Currier 2005). Efforts to address 

this issue have concentrated on improving the manufacturing process and the material 

properties. Some of these efforts include improvement of the sterilization techniques to 
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reduce oxidation and therefore reduce fatigue related delamination and pitting of the 

polyethylene (Li 1994; Williams 1998), development of highly crosslinked polyethylene 

(MarathonTM, Depuy; LongevityTM and DurasulTM,, Zimmer; CrossfireTM and X3TM, 

Stryker) and scratch resistant femoral components (OxiniumTM, Smith and Nephew, 

Ceramics) to reduce abrasive wear mechanisms (Wroblewski 1999; Heimke 2002). 

 

Methods to study wear behavior in ultra high molecular weight polyethylene 

(UHMWPE) have been limited to the use of simulators or retrieval studies (Hood 1983; 

Wasielewski 1994, 1997; DesJardins 2000; Currier 2005). Simulators work under in-vitro 

conditions for a prescribed, often assumed, motion pattern and truly do not reflect the in-

vivo patient specific patterns.  A comparison between wear generated by simulators and 

that obtained from retrieval studies, for the same bearing designs and for similar cycles, 

have indicated greater amount of wear in the retrieved inserts (Harman 2001). However, 

physical wear testing is essential and recent knee simulator designs are becoming more 

and more successful in simulating wear patterns observed in retrievals (Walker 1997; Bei 

2003) However, high costs and the time required in using a physical simulator limit their 

mass scale applicability. Retrieval studies, on the other hand, involve a backward 

approach and can only give us an idea about what ‘might have caused’ such wear rather 

than pinpointing as to ‘this is the cause’. Also, revision and post-mortem retrievals are 

difficult to obtain and can take significant time before they are available (Harman 2001; 

Bei 2003).  
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A computational wear model is therefore an attractive solution to these limitations 

(Sathasivam 1998; Bei 2003; Fregly 2005). Wear is a complicated surface/sub-surface 

phenomenon which is ideally a function of kinematics, contact kinetics and material 

properties (Wimmer 1997; Sathasivam 2001). Interestingly enough, all the various types 

of TKA available today use similar material types but have wide differences in the design 

and the dimension of the components. With new designs being created and with modern 

TKA designs aiming at higher degree of flexion, which generates higher forces 

(Komistek 2005), and TKAs being implanted in younger and more active patients, 

analyses of their kinematics and contact mechanics quickly and efficiently become 

increasingly important (Walker 1999).  

 

Previous methods to study in vivo TKA kinematics have produced invasive techniques 

like fracture fixation devices (Cappozzo 1993), bone pins (LaFortune 1992; Benoit 2006) 

and Roentgen Stereophotogrammetric Analysis (RSA) (Karrholm 1989; Nilsson 1995) 

and non invasive techniques like skin markers (Antonsson 1989; Benedetti 1994; 

Andriacchi 2000), externally worn goniometric devices (Chao 1980; Holden 1997), 

single plane and biplanar fluoroscopic techniques (Banks 1996; Hoff 1998; Komistek 

2003; Tashman 2003) and non-invasive RSA technique (Valstar 2001).  Due to high 

amount of out of plane rotational and translational error between skin markers and the 

underlying osseous structures (Murphy 1990; Holden 1997), skin marker technology 

using suitable correction measures like artifact assessment, point cluster technique and 
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optimization using minimization (Lucchetti 1998; Andriacchi 2000; Alexander 2001) are 

used extensively when multi body movements need to be tracked. However, for the 

analysis of in vivo kinematics of individual joints, use of video fluoroscopy along with 

two dimensional (2D) to three dimensional (3D) registration technique (Mahfouz 2003) 

has become the golden standard due to the low amount of error associated with the 

process. 

 

In order to estimate in vivo joint loads telemetric implants are being developed. Studies 

using telemetry utilize force sensors, fitted to the prosthetic components, which are 

implanted directly inside the human body.  This method does generate the most accurate 

results because it directly derives in vivo measurements. Previous attempts to incorporate 

telemetry for the knee have either used special femoral prosthesis (non TKA) fitted with 

strain gauges (Taylor 1998, 2001; Burny 2000) or have used a modified tibial tray of the 

TKA fitted with load cells (Kauffman 1996; Morris 2001). While the first set of studies 

has generated in vivo data for weight bearing conditions, the second set was tested in-

vitro. Telemetry is a developing art and recently a few telemetric TKAs has been 

designed (D’Lima 2005; D’Lima 2007; Grachien 2007) and implanted which have 

provided valuable insight into knee forces and moments. Nonetheless, telemetry is 

restricted in its use because of the high amount of costs involved in developing a 

telemetric implant, making it unsuitable for mass scale production and use. Also, being 

invasive in nature, this method is not feasible for non-implanted natural joints. 
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In order to estimate contact areas and pressures, in vitro experimental methods are 

extensively used mainly due to their ability to quickly generate data. Some experimental 

techniques used previously include stereophotogrammetric methods (Ateshian 1994), dye 

injection methods (Greenwald 1971; Black 1981), silicone rubber methods (Kurosawa 

1980), 3S technique (Yao 1991), Fuji pressure sensitive film (Stewart 1995), resistive ink 

sensors (K-ScanTM) (Ochoa 1993), ultrasound (Zdero 2001), piezoelectric transducers 

(Mikosz 1988; Buechel 1991) and micro-indentation transducers (Ahmed 1983). All of 

these experimental methods, however, are in vitro techniques that either assumes the 

contact forces and/or the orientation of the implanted components. Also, the differences 

between these various techniques and loading conditions make direct data comparisons 

difficult.  

 

The key, therefore, lies in the development of a non-invasive approach for measuring in 

vivo joint loading and their contact mechanics. As a result, computational modeling and 

simulations have been extensively used to develop predictions. Since muscle co-

contractions increase joint compressive forces, multibody dynamic musculoskeletal 

models have been used previously to provide the estimated muscle forces (Delp 1998; 

Anderson 1999; Neptune 2000; Davoodi 2003). Due to a large number of muscles and 

soft tissues, the number of unknowns in the human body is large and is mathematically 

indeterminate in nature. Therefore mathematical modeling of the human body is a 

challenging task and relies on two techniques – optimization and reduction, to resolve 
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this issue. In the optimization technique, the number of unknowns is greater than the 

number of equations that can be generated for the solution (Komistek 2005). Therefore, 

the process deals with the solution generated by the minimization of a suitably chosen 

objective function (Seireg 1973; Brand 1982; Anderson 2001; Piazza 2001). However, 

there still lacks a consensus as to which objective function is physiologically most 

suitable (Komistek 2005). The reduction technique, however, uses simplifying 

assumptions to reduce the complexity of the system. In this case the system is always 

kept determinate i.e. the number of unknowns is always made equal to the number of 

equations that can be generated to solve them (Paul 1965, 1976; Wimmer 1997; Lu 1997, 

1998; Komistek 1998, 2005; Sharma 2007, 2008). This method therefore generates a 

faster solution when compared to optimization, but only a certain number of values can 

be calculated. 

 

The knee is one of the most investigated joints in the human bodies. Therefore, there 

exists a wide range of knee models. Though, the earlier knee models were two 

dimensional (2D), it is now widely accepted that three dimensional (3D) anatomical 

models produces muscle force estimates that are more consistent with experimental EMG 

data (e.g. antagonistic muscle activity) than estimates from 2D models (Li 1999; Bei 

2003). 3D knee models have progressed from quasi-static to dynamic, from rigid body to 

deformable body and from simple surface geometry to complex surface geometry. 

Wismans et al. (Wismans 1980) was one of the first studies to develop a quasi-static 
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three-dimensional natural knee model using rigid body contact. Pandy et al. (Pandy 1997) 

presented a quasi-static natural knee model using deformable contact with idealized (i.e., 

planes and polynomials) surfaces. Abdel-Rahman and Hefzy (Abdel-Rahman 1998) used 

similar idealized surfaces with rigid body contact to create a dynamic model of a natural 

knee. Piazza and Delp (Pizza 2001) extended this work by applying rigid body contact to 

an artificial knee within a full-body dynamic simulation. Sharma et. al. (Sharma 2007, 

2008) developed a rigid body knee model to predict separate medial and lateral condyle 

contact forces. Blankevoort et al. (Blankevoort 1991), Cohen et al. (Cohen 2001, 2003), 

Kwak et al. (Kwak 2000), and Elias et al. (Elias 2004) reported quasi-static natural knee 

models with deformable contact, where subject-specific contact surfaces were generated 

from medical imaging data. Bei (Bei 2003) and Fregly et al. (Fregly 2003, 2005) 

developed dynamic models of artificial knees using deformable contact.  

 

Significant rigid body computational tools already exist for modeling and simulating of 

human movement (Delp 1995; Komistek 1998, 2005; Davoodi 2001, 2003). Rigid body 

contact analyses using multibody simulation methods have been successfully used to 

predict knee motion and contact forces (Godest 2000; Piazza 2001; Komistek 2005; 

Sharma 2007, 2008) build on subject-specific models. However, this method cannot 

predict the contact pressures occurring at the joint interfaces. Therefore, deformable body 

contact analyses become important. One of the first used methods in this regard was in 

the use of Hertzian contact analysis (Hertz 1881) to calculate the stresses in polyethylene 
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insert (Bartel 1985; Walker 1988; Jin 1995). However, the accuracy of this method is 

limited due to the simplifying assumptions on which the theory is based (Lewis 1998). 

The most accurate and widely used method today is finite element analysis (FEA) (Lewis 

1998). FEA has been used to study knee joint contact mechanics under static loading 

conditions (Bartel 1986, 1995; Bendjaballah 1997; Sathasivam 1998, 1999; Périé 1998; 

D’Lima 2001; Otto 2001; Rawlinson 2002; Machan 2004). Dynamic FEA has recently 

been applied to simulations of knee implant components under well-defined loading 

conditions (Giddings 2001; Godest 2002; Halloran 2005). Apart from a significant 

amount of preprocessing required, one major drawback of these analyses is their 

intensive use of CPU time especially during nonlinear analysis which requires repeated 

updates of the stiffness matrix. This makes them impractical for incorporation into larger 

multi-dynamic musculoskeletal models.  Furthermore, detailed stress analyses carried out 

by FEA are unimportant in gross movement simulations (Fregly 2005).  

 

Therefore, in order to be applicable to multibody dynamic simulations, the best method 

would be to use one that has comparable accuracy as FEA and is also computationally 

not very intensive and fast. A feasible solution might be in the use of discrete element 

analysis (DEA). Discrete spring networks (mostly 2D) also known as lattice models are 

used extensively to model atomic level interactions where the continuum theory does not 

hold good. Lattice models are used in the field of molecular dynamics, micromechanics, 

statistical and computational mechanics to study behavioral characteristics and failure 
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nature in various types of materials – crystalline solids, granular, amorphous, composite, 

polymers, etc (Alexander 1998, Burda 1998, Roberts 2002, Bolander 2005). Discrete 

networks can also be used to model continuum where the lattice is much coarser than the 

true atomic one. This coarse lattice idea obviates the need to work with enormously large 

degrees of freedom required in a true lattice and allows a very modest number of nodes 

per heterogeneity. As a result, discrete networks are a close relative of the much more 

widespread finite element method (Starzewski 2002). For both these methods the solution 

technique is discrete, however, finite element method is based on the principles of 

continuum while discrete networks do not assume continuum. 

 
 

With the development of computational speed and power, the branch of computer 

animations is a highly researched field where the challenge has been to constantly 

improve animations of deformable objects that appear realistic and closer to the real 

world physics. Various methods ranging from non-physical to continuum mechanics 

based have been explored. Some of them include elastic theory method (Debunne 1999), 

tensor mass model (Cotin 1997; Picibono 2002), hybrid elasticity model (Cotin 1999; 

Tseng 2000), method of finite spheres (De 2001; Kim 2002), boundary element method 

(James 2001), long element method (Costa 2001) and volume distribution method 

(Sundaraj 2004).  The two most widely used approaches for modeling soft tissues are 
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discrete spring networks (Walters 1987; Terzopoulos 1990; Brown 2001) and modified 

FEA (Dimaio 2002; Menzoda 2003).  

 

Spring systems have been widely used in 2D and 3D (tetrahedral) facial animation. 

Terzopoulos et. al. (Terzopoulos  1990) used a three-layer mesh of mass points associated 

to three anatomically distinct layers of facial tissue (dermis, subcutaneous fatty tissue, 

and muscle). To improve realism, Lee et. al. (Lee 1995) added further constraints to 

prevent penetrations between soft tissues and bone. In biomechanical modeling, mass-

spring systems were used by Nedel et. al. (Nedel 1998) to simulate muscle deformation. 

Muscles were represented at two levels: action lines and muscle shape. This shape was 

deformed using a spring mesh. Aubel et. al. (Aubel 2001) used a similar approach with a 

multi-layered model based on physiological and anatomical considerations. Bourguignon 

et. al. (Bourguignon 2000) proposed a model offering control of the isotropy or 

anisotropy of elastic material. Mass spring systems have also been used for cloth motion 

(Baraff 1998) and surgical simulation (Brown 2001).   

 

Spring networks are therefore very versatile. They have been used in atomic scale 

modeling where the focus is on correct solution and less on computational speed. The 

goal in the field of animations is entirely opposite – achieve fast computational speeds as 

long as the solutions look realistic. Moreover, they are easy to construct as they do not 
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have stringent mesh requirements, and can handle both large displacements and large 

deformations (Maciel 2003).  

 
With respect to TKA mechanics, previous studies have concentrated on a simpler version 

of the spring network systems known as the elastic foundation contact model 

(Blankevoort 1991; Li 1997; Pandy 1997; Nuño 2001). In this method the polyethylene is 

modeled as a bed of discrete non-connected springs. Fregly et. al (Fregly 2005) has also 

extended this method in the prediction of wear. The greatest advantage of using this 

method is that a pressure over closure relationship can be analytically obtained. Thus the 

contact pressures can be easily calculated based on the amount of interpenetration of the 

femoral component on the polyethylene. This makes this method computationally very 

efficient. However, this method is restrictive as the deformation in this case is essentially 

one-dimensional (ID) with no capability to reflect the Poisson’s ratio of the material, in 

other words deformations in other dimensions. Also, the deformation of one spring does 

not affect the others. Thus, in essence the contact area prediction in this case is analogous 

to an interference area of the femur with polyethylene leading to higher values being 

calculated (Gonzalez 2008). Due to these drawbacks, some studies have concentrated on 

using optimized parameters while using this method (Fregly 2005; Halloran 2005; 

Gonzalez 2008). However, these suggested correction parameters are non physiological 

and different values must be used for different thickness of the deformation layer.
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The primary goal of this dissertation is to introduce the use of discrete element models in 

the study of TKA mechanics. In this endeavor, this dissertation focuses on the 

development of a computationally efficient and fast method that incorporates the 

kinematics obtained from fluoroscopy (the golden standard in joint kinematics) and 

extends it to the prediction of the in-vivo contact mechanics (contact forces, contact areas 

and contact pressures) at the femoro-tibial articulation in modern knee implants. This 

methodology is not only fast and accurate but also works with minimal amount of human 

interaction with a minimum amount of preprocessing so that it can be easily automated.  

 

In the fluoroscopic process dynamic X-ray video is discretized into individual frames. 3D 

CAD models are overlaid on the 2D images based on their silhouette to generate the 

transformation matrices that defines the assembly of the components (Figure 3-1).  
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Figure 3-1: Series of fluoroscopy images and corresponding CAD model overlays.  

 

The polyethylene inserts used in knee implants and neighboring soft tissues are invisible 

to X-rays. Therefore, this process entirely relies on image registration algorithms and 

does not take into account the interaction of neighboring objects. The error associated 

with the fluoroscopic process is a function of the resolution of the image used in the 

registration process. Higher the resolution of the image, lesser is the error.  In an error 

analysis by Mahfouz et. al. (Mahfouz 2003) of the fluoroscopic process from video 

obtained using a  commercially available C-arm system, the upper bound of the 

translational error in the antero-posterior, the superior-inferior and the medio-lateral 

directions were -0.023 ± 0.473 mm, 0.086 ± 0.449mm, and 1.054 ± 3.031mm 

respectively. The upper bound of the rotational error in the coronal plane, the axial plane 

and the sagittal plane were -0.068º ± 0.942º, 0.001º ± 0.771º, 0.253º ± 0.841º 

respectively.  These errors are small when compared to the overall movements of the 
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knee joint, however, they are high for the measurement of deformation where sensitivity 

can be in the order of 0.1mm or less. Moreover, since the softer materials are invisible, 

their deformation, due to forces acting and as a result the possible changes in contact due 

to change in shape cannot be accounted for. This might not be a serious limitation for 

implanted joints as in normal joints due to the much stiffer components used. 

Nonetheless, direct calculation of polyethylene deformation from the assembly obtained 

using fluoroscopy is not suitable.  

 

As a result, the calculations of in-vivo contact mechanics in knee implants from 

fluoroscopic measurements in this dissertation involves a two step approach – estimating 

the total contact forces acting on the system and then using those magnitudes to calculate 

deformations. The analysis is performed on kinematic data obtained for subjects 

performing a deep knee bend activity. 

 

The total contact forces are calculated using a inverse dynamic rigid body model. Inverse 

dynamic modeling is proven to be a reliable and fast method of estimating forces from 

kinematics obtained from fluoroscopy (Komistek 2005). The greatest benefit of this 

method is that the second order differential equations of motion are a set of linear 

algebraic equations in terms of the forces. The femoral and tibial components in knee 

implants are made of steel which has a Young’s modulus in the order of 102 GPa. On 

comparison, polyethylene has a Young’s modulus in the order of 102 MPa. Also, the 
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deformation in polyethylene is negligible compared to the overall kinematics observed in 

the knee. Therefore, the contact forces can be calculated using a rigid body model 

without significant loss of accuracy. In this dissertation, the rigid body model used in this 

analysis has been modified from the one previously developed for the deep knee bend 

activity by Sharma et. al. (Sharma 2007, 2008).  

 

Once the total contact force acting at the femorotibial interface is obtained, the force 

distributions on each condyle is calculated using a deformation contact model consisting 

of the rigid femoral component and a deformable polyethylene insert. Instead of using 

finite elements, which can be slow and requires considerable post processing, the 

polyethylene insert is modeled using discrete spring networks. Discrete spring networks 

have never been previously used with respect to implant mechanics. Also, most spring 

networks developed in the field of biomechanics have either been 2D or have used 3D 

tetrahedral structures using linear material models. Since hexahedral elements have been 

found to have higher accuracy than tetrahedral elements in FEA, therefore, this 

dissertation concentrates on creating 3D hexahedral spring networks. The physics 

associated with spring networks are different than the constitutive laws based on 

continuum. Therefore, this dissertation focuses on the determination of spring parameters 

for the incorporation of nonlinear materials.  Hexahedral meshing of random geometry is 

a challenging task.  It has not yet been possible to implement such an algorithm that 

works automatically for any geometry. This necessitates a significant amount of pre-
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processing time that must be devoted in conducting FEA with hexahedral elements. In 

this regard spring networks, being a discrete element model not assuming continuum, 

offers a distinct advantage as once the nodes are generated, connection of two nodes 

creates an element. With very few nodes this can result in distortion of geometry, 

however, this problem can be resolved with sufficiently refined number of nodes. In this 

dissertation, a versatile approach for generating the nodes replicate the polyethylene 

geometry in TKAs is used. This approach is formulated assuming triangulated surface 

definitions of the CAD models.  
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4.1 Generating Nodes in the Polyethylene: 
 
After the orientation of the implant components are obtained from fluoroscopy the first 

step is to create the grid of nodes inside the polyethylene. This grid of nodes is used to 

check for the correctness of assembly, apply corrections when needed and compute 

surface distances and normals and is then further developed into the spring network with 

interconnections between them. Therefore, the objective is to find a way to automatically 

create this grid that is robust enough to be applicable for all knee implants. Different knee 

implants have differing geometries. However, the differences in the same genre of 

implants are mainly in the radii of the surfaces in contact without a huge difference in 

shape. The major differences in the designs occur when comparing fixed versus mobile 

(due to the attachment mechanisms of the polyethylene insert with the tibial component) 

or when comparing PCR versus PS implants (due to presence of the cam-post mechanism 

in the PS implants) (Figure 4-1).  
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Figure 4-1: (Left) PS mobile bearing. (Right) PCR fixed bearing. 

 

 

Nonetheless all knee implants are characterized by a mostly flat surface of the 

polyethylene component which rests on the tibial implanted base-plate. Being flat, this 

surface is easy to identify.  The femoral condyle contact surfaces lie almost parallel to the 

flat surface. These surfaces are however curved. The grid of nodes is generated by using 

a ray-firing algorithm which generates rays normal to the flat surface and measures the 

intersection of the rays with the polyethylene surface. The nodes only need to be created 

once before the start of analysis. The sequence of the method is outlined below and 

assumes that the CAD model has triangulated surface definitions: 

 

1. Let us assume that the insert is denoted as Body A and in this axis system ‘A1>’ 

represents the antero-posterior direction, ‘A2>’ represents the superior-inferior 
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direction and ‘A3>’ represents the medio-lateral direction. However, just as a 

cross-check the flat surface of the polyethylene is identified. It can generally be 

identified with the maximum number of nodes in the CAD model having one of 

their coordinates same and the maximum number of same normals defined.  

Incase the flat surface does not lie in the A1-A3 plane, the whole assembly is re-

oriented so that the flat surface lies parallel to the A1-A3 plane (Figure 4-2).  

2. Calculate the bounding box of the polyethylene component along the A1>, A2>, 

A3> axis. Depending on the dimensions of the bounding box calculate the number 

of nodes required along each dimension in order to ensure that a unit grid is 

approximately cubic (equal sides) in nature. For reasons that is explained later 

(refer to patch test), and to prevent distortion of geometry it is important to keep 

sufficient number of nodes per dimension.      

3. Based on the number of nodes and the bounding box dimensions, a 2D grid of 

references points is created along the A1-A3 plane lying outside the polyethylene 

bounding box. Rays are initiated from these reference points in the A2> direction 

and the intersections of these rays with the CAD model surfaces are recorded.  

4. With an automated process is mind, it is best and most generic to find the 

intersections of a ray with all the triangle definitions associated with the CAD 

model and then search for the correct intersections. Since, a triangulated surface 

represents a plane, there should be some intersection value of the ray with a 

triangle. The correct intersections are found based on the following logic: 
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Figure 4-2: Flow chart used to create the nodes in the polyethylene. 
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I. Only the coordinates of the intersection of the ray that lies within the triangle 

are possible candidates (Figure 4-3).  

II. All other intersections that do not lie within the triangle represents the 

possible intersection had the triangle been extended in space. An intersection 

at infinity represents the case when a triangle is parallel to the ray. 

III. No possible intersections indicate that the point from which the ray is fired 

lies outside the polyethylene geometry. 

    IV. There can be cases when the same possible intersection point is associated with   

           multiple triangles. This generally happens when the intersection falls on the  

           common sides or vertices of the triangles. In this case, any triangle is chosen as  

           it does not change the coordinates of the intersection 

 
Figure 4-3: Reference nodes and corresponding intersections on the top surfaces.  
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5. Since, the reference points from which the rays are fired lie outside the 

polyethylene geometry, which is a closed geometry, ideally the number of 

intersections of each ray should always be even. However, sometimes due to 

slight gaps in the CAD models there can be cases when the number of 

intersections is odd. In those cases, the intersections of the neighboring rays are 

checked and pseudo-intersections are generated based on a simple average of the 

neighboring intersections (Figure 4-4). 

6. In most cases the number of intersections should be two. This represents the 

scenario that between the two intersecting coordinates, the ray lies entirely inside 

the polyethylene geometry. However, due to some special features in the 

geometry (holes for attachment of polyethylene on the tibia, presence of the spine 

in polyethylene of PS implants, etc.) the number of intersections can be more than 

two but is always even. These represent cases where between the maximum and 

minimum intersecting coordinates, a ray lies partly inside the polyethylene 

geometry and partly outside. To correctly identify the lattice nodes in the A2> 

direction that lie inside the polyethylene geometry the ray intersections are 

assigned identification numbers (ID) in an ascending order based on their A2> 

coordinates. The number of interactions is broken into pairs based on an odd and 

the corresponding higher even number ID. Such pairs represent parts of the ray 

that lie inside the polyethylene (Figure 4-4).  
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Figure 4-4: Generation of pseudo nodes in case of gaps and assigning pairs if 
intersections are more than two in order to identify parts of the ray inside the surface. 

 

7. A 3D grid of possible nodes based on the bounding box dimensions is generated 

to calculate the possible y-coordinates that would be associated with each ray. 

Based on the maximum and minimum A2> coordinates of the pair created from 

the intersection of the rays, the nodes of the 3D grid created that lie inside 

(excluding the surface) the polyethylene are assigned. 

8. To correctly form the surface geometry, the coordinates of the nodes must match 

the intersection coordinates. This is especially important at the surfaces in contact. 

This raises the concern of the grid quality near the surface. The internal nodes are 

all spaced equally. However, the surface nodes cannot be. Therefore, to keep 

mesh distortion low, the distance of the surface interaction from the nearest 

internal node (in the A2> direction) is calculated. If this distance is less than or 

equal to half the gridsize in the y-direction, the nearest internal node is moved to 
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the surface.  If this distance is greater than half gridsize in the A2> direction, then 

the nearest external node is moved to the surface (Figure 4-5). 

9. Due to intricacies in the geometry (small holes and edges) there is a possibility of 

no internal node or just one internal node between two intersecting pairs. This can 

happen when the geometry is small and the distance between the intersection 

coordinates is less than the gridsize. When there is no internal node and the length 

distance between the intersection coordinates is greater than half the gridsize, the 

two external nodes (top and bottom) closest to the surfaces are moved to the 

surface. If the distance between the intersection coordinates is less than half of 

gridsize, then only one node is added. This node is placed at the mean value of the 

intersection coordinates. A similar idea is used when there is just one internal 

node. If the distance between the intersection coordinates is less than half of 

gridsize then nothing is done. However, if the distance is greater than half 

gridsize, the internal node and one external node is matched to the surface. This is 

not an essential step to the performance of the network in general as long as the 

contact surfaces are not involved. 

10. The above procedure should create a fairly structured grid of nodes. With 

sufficient number of nodes the whole structure of the polyethylene can be 

modeled pretty closely. However, it is to be noted, that since rays are fired in the 

A2> direction, there cannot be any intersections with the surfaces that are parallel 
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Figure 4-5: Identifying the nodes that would form the surface. 
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      to the A2> axis. For more accurate geometrical representation, the above steps are  

      repeated with reference points created in the A1-A2 plane and rays fired in the  

      A3> direction and with reference points in the A2-A3 plane and rays fired in the  

      A1> direction. This process can be carried out for as many planes  

      desired. 

11. Once, the grid nodes forming a part of the polyethylene insert are obtained, the 

nodes need to be assigned to either three types – contact nodes, internal nodes and 

boundary condition nodes. The contact nodes are all the nodes which lie on the 

top surface of the polyethylene. These are the nodes that would come in contact 

with the femur. The boundary condition nodes are the nodes on the bottom 

surface of the polyethylene. These are the nodes that would come in contact with 

the tibial component and would be used to assign boundary conditions. All other 

nodes lie inside the polyethylene geometry and are considered as internal nodes. 

12. In order to facilitate measurement of distances on the surfaces, the contact nodes 

on the polyethylene surface are fitted with piecewise continuous cubic splines to 

create an UV grid. The U lines connect nodes having the same A3> coordinates 

and the V lines connect the nodes having the same A1> coordinates. These UV 

lines are also used to generate normal definitions at each node (Figure 4-6). The 

normal is defined as the average of the values obtained for the U and V lines 

associated with a particular node. The UV lines are also used to measure arc 

distances when required. 
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Figure 4-6: Creation of UV lines on the contact surfaces. 
 
 

 
 
4.2 Femoral Nodes and Contact Detection: 

At the beginning of the analysis, the algorithm outlined before is used to create nodes and 

UV line definitions for the femoral lower surface to measure arc lengths on the femoral 

surface that is used for slip calculations. For contact detection, rays are projected in the 

A2> direction from the contact nodes of the polyethylene lattice to generate interactions 

on the lower surface of the femur (Figure 4-7). The difference in the A2> coordinates 

between the intersections on the lower surface of the femur and the contact nodes of the 

polyethylene insert is used to check for contact. A negative value indicates contact while 

a positive value indicates separation. However, for numerical stability of the contact 



Materials and Methods 
 

 
 - 37 - 

algorithm any node having a distance value lesser than a desired tolerance is assumed to 

be in contact. For each time step, the orientation of the femur and polyethylene is fixed. 

However, during the deformation analysis, the nodes associated with the polyethylene 

can move in the A1> and A3> directions. Therefore, new rays are projected onto the 

femoral surface whenever contact needs to be calculated. Thus a small sliding 

formulation of the contact problem with node to node contact detection is executed at 

each time step. Also, this prevents intersection of the femoral and polyethylene nodes 

during the analysis since the contact nodes on the polyethylene and the femoral surfaces 

are always matched.  

 
 

 
Figure 4-7: Rays are projected from the polyethylene surfaces nodes to create femoral 

nodes and check for contact. 
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4.3 Adjustment of Femoral Orientation: 
 
Based on the transformations obtained from fluoroscopy, there can be three conditions 

for the articulation of the femoral condyles on the polyethylene: 

1. Neither of the two femoral condyles are in contact with the polyethylene surface. 

This condition is not physically possible and is not considered. 

2. Only one of the femoral condyles contacts the polyethylene while the other does 

not. This condition has been referred to as condylar lift-off and is quite often 

observed in knee implants and less frequently in normal knees.  

3. Both the femoral condyles contact the polyethylene surface. 

Telemetric studies have shown that the maximum force occurring between the femoral 

and the polyethylene components occur in the superior inferior direction with a very 

small amount of force in the medial-lateral and antero-posterior direction (D’Lima, 

2007). Since deformation analysis is more sensitive than the error range of the 

fluoroscopic 3D to 2D registration process, a slight modification in the orientation of the 

femur with respect to the polyethylene is performed at the beginning of the analysis. 

 

The purpose of the adjustment is to realign the coronal orientation of the femoral 

component so that both condyles of the femur come in contact with the polyethylene until 

there is a clear evidence of lift-off. A cut-off of 0.5mm in translation and 0.5º in rotation 

is used. These values are the general error estimates that are considered to be associated 
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with the fluoroscopic process. Though, lift-off is frequently observed in TKAs however, 

at the small values for which the correction is performed, there is no way of knowing 

whether the result is due to measurement error from fluoroscopy or otherwise. Therefore, 

by realigning the femur we take a much more conservative approach so that the 

possibility of lift-off is not over predicted. If the correction is performed, the femoral 

penetration and coronal angle is checked after the completion of the deformation 

analysis. If the final femoral penetration and coronal angle is more than the adjustments 

made, the original orientation of the femur is restored and the analysis is reconducted 

(Figure 4-8). The following logic is used: 

1. The distance of the closest point of each femoral condyle to the corresponding 

polyethylene surface and the corresponding difference is measured.  

2. Assuming small angles, the ratio of the difference of these distances with the 

intercondylar distance of the contact points projected onto the coronal plane 

generates the coronal inclination. If this angle (‘A’ in Figure 4-9) is found to be 

less than 0.5º, then the femoral component is rotated in the coronal plane till the 

difference becomes zero.  

3. If the angle is greater than 0.5º, then no correction is performed.  

4. The femoral condyles are always translated in the superior-inferior direction until 

it touches the polyethylene surface (the difference between the contact node in the 

polyethylene and the corresponding femoral node is zero). Whether there is 

contact on one condyle or both the condyles depends upon the coronal orientation  
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Figure 4-8: Flow chart of initial adjustment correction. 
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Figure 4-9: Coronal alignment of the femur with respect to the polyethylene. 
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4.4 Inverse Dynamic Rigid Body Modeling: 
 

The purpose of the rigid body model was to estimate the total contact force acting 

interactively between the femoral component and the polyethylene and to generate the 

equations of motion related to the activity. This 3D model for the deep knee bend activity 

is based on the principles of inverse dynamics, utilizing the reduction technique 

(Komistek 2005) and was created in AutolevTM (Online Dynamics Inc, Sunnyvale, CA) a 

symbolic manipulator based upon the concepts of Kane’s dynamics.  

 

The model consists of a kinematic chain from the ankle to the hip and consists of the 

femur, tibia and patella which were assumed to be rigid bodies (Figure 4-10). The hip 

joint was modeled as a resultant reaction force having three scalar components. The foot 

was not modeled as it remained fixed to the ground (heel not lifting up) during the 

activity. The ground reaction force, obtained from a force plate, was applied at the ankle.  

The tibia was assumed to rotate only in the sagittal plane about the ankle. The 

patellofemoral joint was modeled by a single contact point which started inferior but 

moved in the superior direction about its mass center with the increase in knee flexion. 

The closest point of the patella to the femoral implant was assumed to be the contact 

point.  Incidence of patellar dislocation and separation was neglected and the patella was 

assumed to be always in contact with the femur. The patella was assumed to rotate only  
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Figure 4-10: Schematic diagram of the rigid body model. 
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in the sagittal plane about its mass center which was assumed to be the centroid of the 

patellar bone. 

 

At the first time increment the femur is assumed to be static with zero initial velocities. 

However, for all successive increments the femur is modeled to roll with slip on the 

polyethylene. The slip calculation is based on the lowest point of the femoral condyles. 

For pure rolling, the arc length of the femoral surface in between the two lowest points 

measured in between two time intervals must be equal to the arc length in the 

polyethylene surface corresponding to the projections of the lowest point. However, since 

the femur rolls with slip, the arc length in the femur is greater than the arc length in the 

polyethylene (Figure 4-11). The difference between the arc length traveled by the femoral 

contact points and the arc length of the polyethylene contact points are used to calculate 

the amount of slip.  For equal slip on both the condyles, the difference in the arc length 

should be equal. However, due to the coupled axial rotation of the femur along with 

flexion, the arc length measured on the polyethylene surface is different on the two 

condyles. The difference in the arc length is assumed to be due to the axial rotation of the 

femur and the rotational axis is assumed to pass through the geometrical center of the 

femur. After correction in the arc lengths of the femur due to axial rotation, the amount of 

slip is calculated (Figure 4-12). Slip is entered into the system by the addition of a 

translation velocity (obtained after differentiating the slip length) in the femur in the 

direction of flexion.  
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Figure 4-11: Contact behavior when two bodies roll against each other. 
 

 
Figure 4-12: Amount of slip is based on the lowest points of the femur. 
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Since the femoral and polyethylene condyles are characterized by smooth quadratic 

surfaces their contact surfaces are elliptical and therefore the centroid of the ellipse 

that is formed due to the contact can be assumed to be the location for the resultant 

force and the contact point. Under this assumption, the point on the femur that was 

closest to the polyethylene surface was used as the contact point on each femoral 

condyle that is in contact with the polyethylene insert. It is to be noted that since the 

femoral and polyethylene surfaces are curved, the lowest point on the femoral 

condyle is not necessarily the contact point. The contact constraint was enforced by 

zero velocity in the normal direction of the points in contact. A frictional force in the 

direction opposite to the relative velocity of the points in contact was also 

incorporated (Figure 4-13). Coulomb frictional formulation was used where the 

magnitude of the frictional force was obtained as the product of a frictional 

coefficient and the normal force. A constant frictional coefficient of 0.05 was 

assumed. The contact forces were transferred to the global (polyethylene) coordinate 

system and summed up to obtain the total contact forces for use in the deformation 

modeling. 

 

The collateral ligaments (medial and lateral) and the cruciate ligaments (when 

applicable) were incorporated in the model as non-linear elastic springs which carry a 

load only when extended. The posterior cruciate ligament (PCL) was divided into a 

posteromedial and anterolateral bundle (Hughston 1980; Burks 1990; Amis 2003; 
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Shin  2007). The anterior cruciate ligament (ACL) comprised of an anteromedial and 

a posterolateral bundle (Arnoczky 1983; Norwood 1979; Shin 2007). The lateral 

collateral ligament (LCL) was modeled as a single element (Abdel-Rahman 1998; 

Shin 2007). The medial collateral ligament (MCL) was divided into three bundles 

(Abdel-Rahman 1998; Caruntu 2004; Shin 2007). The force versus extension profile 

for the ligaments was formulated as combination of two linear springs to represent the 

toe region and the terminal stiffness region and is given by Shin et.al.  (Shin 2007): 
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The lengths of the ligaments are computed by tracking the distance between the proximal 

and distal ends. All other relevant ligament parameters are obtained from previously 

published literature Shin et. al. (Shin 2007). 

 

The extensor mechanism (quadriceps muscle and patellar ligament) is the primary 

activator during a deep knee bend activity. In order to keep the system determinate, the 

quadriceps muscles were assumed to be a single muscle having its attachment points 

corresponding to the vastus intermedius. The quadriceps muscle and the patellar ligament 
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were modeled as massless and entered into the system as equal and opposite forces acting 

along their lengths. Wrapping of the quadriceps and the patellar ligament at higher 

flexion angles, when occurring, was taken into account. Since in this inverse dynamic 

model the muscles forces are computed therefore the model does not incorporate muscle 

activation dynamics. 

 

Figure 4-13: The direction of the femoro-polyethylene contact forces used in the model. 
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4.5 Deformation Modeling: 
 
 
4.5.1 The Lattice Template: 
 

For the deformation model to work, the grid of nodes, that were previously generated, 

need to be transformed into a discrete network by adding spring interactions between the 

neighboring nodes. In the discrete network, any two neighboring nodes are connected by 

a single spring. However, when considering more than two nodes in the structure a 

hexahedral (cubic) grid of connections is used. For eight nodes forming the corners of a 

cube several formulations of interconnections are possible. The behavior of the network 

depends on the interconnection chosen. For example a template might be used where 

connections are created among the nearest nodes. This generates a grid with connections 

along the edges of the cube. However, such a cube does not exhibit any Poisson ratio 

effect under uniaxial load conditions as the spring members perpendicular to the load do 

not deform and therefore do not carry any load in other directions. Therefore, in order to 

have an effect of unidirectional load on other directions diagonal members are needed. 

Use of a nearest and next to nearest neighbor algorithm creates additional diagonal 

members across the faces of the imaginary cube formed by 8 nodes at the corners. (Figure 

4-14)  
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Figure 4-14: (Left) Connections formed by a nearest node template. (Right) Connections 
formed using a nearest plus next to nearest node template. 

 
 

To model the polyethylene as generically as possible a combination of body centered 

cubic (BCC) and face centered cubic (FCC) template was used. This was analogous to 

using a nearest plus next-to-nearest plus next-to-next-to-nearest node algorithm. Thus in 

this case each internal node (not on the surface or edge) (green node in Figure 4-15) was 

connected to 26 of its neighbor nodes, 8 BCC nodes (red nodes in Figure 4-15) and 18 

FCC nodes (blue nodes in Figure 4-15). It is to be noted that for a single cube of 8 nodes 

this template for connection generates 8C2 = 28 connections. In other words for 8 nodes 

that form a cube, each node was connected to every other node in the grid. However, for 

more than 8 nodes in the network, when multiple cubes with 8 nodes can be formed, this 

template eliminates the double connections caused due to cubes in a grid sharing 

common faces. In other words for a 27 noded grid this template generates 158 

connections as opposed to 224 that would have been obtained using 8 individual cubes 

having 28 connections each.  
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Figure 4-15:  (Left) Unit cell of the template used. (Right) Connections for 8 nodes 
forming an imaginary cube 

 
 
 
 
4.5.2 Calculating Spring Stiffness:  
 
The idea behind material models is to find a constitutive relationship between stress and 

strain in the material and is independent of size or dimensions of the material. The 

principles of continuum mechanics aimed at the development of these constitutive 

relationships are based on the principles of strain energy. For any geometrical structure, 

its stiffness is a measure of its force versus deformation relationship and is associated 

with the potential energy stored in the system due to the deformation. Potential energy is 

the sum of the internal strain energy and the work done due to the forces acting on it. 

Thus stiffness of a structure depends both on the properties of the material as well as the 

geometry of the structure.  Though, strains (ratio of deformation and original length) can 

be defined for a spring, there is no physical definition of stresses associated with a spring. 
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Springs are characterized by their force versus deformation relationship and store 

potential energy when they deform. Therefore, the stiffness associated with a spring is a 

function of both the material and the geometry it represents. For a spring of stiffness ‘k’, 

the force in it and the energy stored can be computed as:  

spring  theofLength  
spring in theenergy  Potential 

spring in the Force   where
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Assuming that stiffness of the spring is independent of the length of the spring and at zero 

deformation there in no energy stored in the spring, the force and energy associated with 

the springs have the following relationships: 
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The spring stiffness is calculated based on the equivalence of the total energy stored in a 

unit cell of the spring network of volume ‘V’ with that obtained using continuum.  

continuumcell UU =  
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For this unit cell the total energy is: 

springeach  ofn Deformatio 
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Assuming that the stiffness of the springs are independent of their initial lengths and 

spatially linear displacement fields u, i.e. we assume uniform strain fields, the total 

energy in an unit cell per unit volume reduces to: 
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Based on continuum mechanics the energy of the unit cell can be computed as: 

strain  
stress where
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For linearly elastic materials and assuming small deformations the energy per unit 

volume is: 
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material  theof tensor Stiffness where
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Equating the energy per unit volume for the unit cell with that obtained using continuum 

we have: 
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For the above spring network, the only material variable is the stiffness of the springs 

which was assumed to be the same for all the springs in the unit cell. Once the spring 

stiffness was defined, the Poisson’s ratio was automatically defined by the structure of 

the network. For a linearly elastic material, there are two material variables defined as the 

Lame’s constants. Therefore, the stiffness tensor of the spring network would not match 

the stiffness tensor of a material obtained using the principles of continuum mechanics. 

This problem can be solved by using different spring stiffness for the different spring 

elements defining the cube. However, this aspect has not been explored in this 

dissertation. Since the knee joint experiences maximum loads in the superior inferior 

direction, so the diagonal element in the compliance tensor matrix (obtained as the 

inverse of the stiffness tensor matrix) corresponding to superior inferior direction is 

compared to find the stiffness of each spring and we obtain: 

ECk =  

Where E = the Young’s modulus of the material 
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C = a factor related to the geometry of the unit cube presented by the spring network and 
has a dimension of [L]. 

 
 

Since ‘C’ is a factor associated with the volume of the material represented by the unit 

cube, therefore it was assumed constant. Using this representation of the spring stiffness, 

both linear and nonlinear material behavior (assuming nonlinear elastic) was obtained. 

Since,
ε
σ
∂
∂

=E , therefore the expressions for stiffness, force and energy for the springs 

can be defined as: 
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Using this formulation and a piecewise continuous relationship that is at least first order 

differentiable (to be able to calculate E), any stress strain relationships with linear or 

nonlinear elastic material models can be incorporated. In this dissertation, the stress strain 

relationship for the polyethylene used is based on the true stress strain data for 

polyethylene as reported by Halloran et. al. (Halloran 2005). 
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4.5.3        Creating the Global Stiffness Matrix: 

A standard algorithm is used to assemble stiffness matrices:  
 

1. Based on the lattice nodes already created and the BCC+FCC connection 

structure defined before, the number of element connections was calculated. 

2. For each element, the element stiffness matrix was computed. For a  spring 

element as used in our case the element stiffness matrix was of the following form 

 transposeindicate tosubscript A 
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3. A simple spring can carry a load only when extended or deformed. So all the 

nodes in this deformation model were assigned 3 degrees of freedom. Therefore, 

the global stiffness matrix was 3Nx3N (N=number of nodes) which was 

assembled from the individual element stiffness matrix by matching the global 

degrees of freedom with the degrees of freedom associated for each element. 

4. Depending on the number of nodes, the global stiffness matrices can be huge and 

can serve as a possible bottleneck in the speed of the total algorithm. Thus a 

vectorized approach was used in the global stiffness assembly routine. In this 

approach all loops are converted to matrix multiplications. Elimination of the 

loops increases speed of the computation but it is accomplished at the cost of a 

high amount of memory usage needed to store large matrices. 
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4.5.4            Assigning Boundary Conditions: 

Since, the tibial component of knee implants is made of alloy steel, so it was considered 

to be rigid. Therefore, boundary conditions were applied at the nodes of the polyethylene 

that were in contact with the surface of the tibial component. Based on the attachment of 

the polyethylene to the tibial component, knee implants can be classified as fixed or 

mobile. Therefore depending on the type of implant modeled the following boundary 

conditions were applied: 

1. If the implant modeled is of a fixed type, all the nodes at the bottom of the lattice 

are assumed to be fixed in all three directions and therefore their deformations 

were zeros. This is analogous to assuming that the polyethylene is rigidly 

connected to the tibia at these nodes.  

2. For a mobile bearing implant, the nodes at the bottom of the flat surface resting on 

the tibia, were assumed to be fixed to the tibial component only in the A2> 

direction, but can freely deform in the A1> and A3> directions. This however 

leads to rigid body modes for the solution algorithm which causes singularity in 

the stiffness matrix. Therefore, to remove any rigid body motion, the two end 

nodes on the bottom surface measured in the A3> direction was fixed in the A1> 

and A3> directions. 

The imposition of the boundary conditions essentially means that the deformation of the 

nodes on which the conditions have been imposed are known (zero in this case).  
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4.5.5         The Solution Algorithm: 

The equation for solving deformation models under static conditions is: 

freedom of degreeeach at  acting forces  theofA vector 
freedom of degreeeach at   ntsdisplaceme ofA vector  

matrix stiffness global The where
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Therefore, if the force was known at each node, the solution could be achieved in a single 

step. However, from the multidynamic rigid body model only the total contact force for 

the femoral and the polyethylene component can be calculated. As a result, the force 

distribution acting on the node must first be calculated before the final solution is 

possible. Thus the solution is essentially deformation driven rather than being force 

driven, where the aim is to find the correct deformation for the known total external force 

Fext. The algorithm is outlined below: 

1. Move the femur by a distance D. 

2. Check elements in contact N0 and the corresponding assumed nodal displacements 

{d0}. 

3. Calculate nodal forces {f0}=[K0]{d0}. ([K0] is the global stiffness matrix 

associated with the undeformed structure). 

4. Calculate actual nodal displacements {x0}=[K0]-1 {f0}. ({x0} is in the global 

coordinates). 

5. Calculate the internal force {Fint} based on {x0}. This calculation includes the 

following substeps: 
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(A) Based on {x0} calculate the length |r| and strain ε  in each spring. 

(B) Based on strain and material properties calculate force fel and stiffness kel 

of each spring. Note that fel is a vector with components (fel)x, (fel)y, (fel)z  in 

the A1>,A2>,A3>, directions.  

(C) Sum spring contributions for each node to obtain the total force at a node 

fint. 

(D) Assemble fint into the global internal force {Fint}. 

(E) Compute {Fint}NC for the nodes not in contact and {Fint}C for the nodes in 

contact. 

(F) Assemble the new global stiffness matrix K1 based on the new spring 

stiffness kel. 

6. Check ||{Fint}NC||< tolerance. If yes move to step 11 else move to step 7. 

7. Define {f1}= -{Fint}. Assign zeros at the degrees of freedom for the nodes in 

contact N0. 

8. Compute {Δx1}=[K1]-1 {f1}. 

9. {x1}={x0}+{Δx1}. 

10. Repeat Steps 5 to 9 until; ||{Fint}NC||< tolerance. 

11. Compute the total reaction force Freact =||{Fint}C|| for the nodes in contact. 

12. Check (Freact – Fapplied) < tolerance. If yes terminate. Else move to step 13. 

13. Compute xD
F

F
D

react

applied
new = . 
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14. Repeat steps 2 to 12 until (Freact – Fapplied) < tolerance. 

 

The basic idea behind the algorithm is to start with an assumed displacement to calculate 

the nodal displacement and the force distribution for the whole network. Since only the 

nodes that are in contact are constrained and the remaining nodes are free to displace in 

any direction, they always remain in equilibrium. Therefore, the total internal reaction 

force in the non contact nodes should always be equal to zero and only the contact nodes 

would carry a distributed load based on the amount of penetration of the femoral surface 

on the polyethylene and that would be the reaction force for the assumed deformation.  

 

For a nonlinear material formulation, the stiffness properties of the springs in the network 

change with respect to the current nodal deformation. Therefore, the current properties 

need to be computed on an element basis before they can be assigned globally. This is 

achieved in steps 5A to 5F. Also due to the change in the stiffness, the total amount of 

internal force in the structure also changes and therefore steps 7-10 is an iterative loop 

aimed to ensure that the nodes not in contact are in equilibrium and carry a zero force. 

Once the force associated with a particular deformation is obtained, a new deformation is 

calculated in order to match the total force driving the femoral component into the 

polyethylene (step 13). Since the external force versus deformation behavior of the 

structure is nonlinear so the current formulation is based on the secant slope of the 

material (Figure 4-17).   
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Figure 4-17: The secant slope is used for convergence in the nonlinear algorithm 
 
 
For a linear elastic material formulation, since the stiffness of the structure does not 

depend on the current deformation, it has to be computed only once. This also eliminates 

the requirement for steps 5A to 5F as well as steps 6 to 10. As a result the solution can be 

obtained much faster using the following refined algorithm: 

1. Move femur by a distance D. 

2. Check elements in contact N0 and the corresponding assumed nodal displacements 

{d0}. 

3. Calculate nodal forces {f0}=[ K]{d0}. ([K] is the stiffness matrix). 

4. Calculate actual nodal displacements {x}=[K]-1 {f0} 

5. Calculate total reaction force Freact. 

6. Check (Freact – Fext) < tolerance. If yes move to step 15 else move to step 7. 
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7. Calculate residual force F* = Freact – Fext. 

8. Create dummy nodal displacements {Δd}. It is a vector contains ones for nodes 

that are in contact and zeros elsewhere. 

9. Calculate dummy nodal forces {Δf} =[K]{Δd}. 

10. Calculate dummy nodal displacements {Δx}=[K]-1 {Δf}. 

11. Calculate dummy reactions Δfreact. 

12. Calculate scalar λ = F*/ Δfreact. 

13. Move femur by distance (D+ λ). 

14. Check new elements in contact N1. 

15. If N1 = N0, repeat steps 2 to 4, else repeat steps 2-15 until termination. 

The basic idea behind the algorithm is that, since the material is assumed to be linearly 

elastic, its force versus deformation profile is also linear if the number of nodes in contact 

remains the same. Therefore, once the slope is correctly identified (using the dummy 

displacements), the correct solution can be obtained in a single step if the nodes that are 

in contact remain the same. If the number of nodes that are in contact changes due to the 

actual calculated deformation, the process has to be repeated. Since, steps 3-5 and 8-10 

are similar, the only difference is that while {d0} represent actual values, {Δd} contains 

unit deformation (for slope calculation), they are combined in the code so that the 

computations are conducted simultaneously. 
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4.5.6          Contact Areas and Contact Pressures: 

Unlike finite element analysis which involve pressure over closure relationships for 

contact and, therefore, can output contact pressures associated with each node, the 

discrete element model can only predict the force distribution associated with the nodes 

in contact. For a lattice network in which the springs are interconnected, there are no 

concrete ways to identify the area of influence (Gonzalez 2008) that can be used to 

correctly predict the contact pressures. Therefore, we used an indirect approach for 

measuring contact pressures. First the total area in contact is calculated. The total area in 

contact is assumed to be the area of the femoral surface that interferes with the 

undeformed polyethylene surface. The associated area of influence is the ratio of the total 

contact area divided by the number of nodes found to be in contact. This is an 

approximate measure of the contact pressures as it assumes that the area of influence is 

equal for all the nodes in contact. Also the force associated with each node is obtained in 

the global reference frame. Therefore, the force obtained at each node is oriented along 

the normal direction associated with each node. Therefore contact pressure at each node 

is defined as: 
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We also define average contact pressure as:  A
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5.1          Patch Test: 

In simple terms, the patch test is any test conducted in a scenario where the analytical 

solution is known. This is a very important step to assure convergence of the deformation 

solution with sufficient mesh refinement. For our patch test we chose a box representing 

the polyethylene, which was assumed to be a linear, isotropic material. This box is rigidly 

fixed to a base-plate representing the tibial component and is deformed on the other side 

by the application of force on another rigid plate that can move. This represents the femur 

for our scenario.  Contact can cause non-linearity in the system because the number of 

elements in contact can change. Therefore, the dimensions of the plate representing the 

femoral component are chosen to be slightly bigger than the polyethylene component, in 

order to ensure that all surface nodes of the polyethylene remain in contact (Figure 5-1). 

Thus this set up represents a truly linear problem – linear in geometry, linear in contact 

and linear in material.  
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Figure 5-1: Set up used for the patch test. 

 
The femur was assumed to be pressed down with a vertical load of 1000N. A linear 

elastic isotropic material model has two independent material constants which are also 

known as the Lame’s constant. As stated before, for this current formulation of the 

discrete spring model only one material variable (which is assumed to be independent of 

the length of each spring) has been used. Under these conditions, the Poisson’s ratio is a 

function of the structure of the network.  Since, the maximum forces in knee occur in the 

superior-inferior direction with small forces in other directions (D’Lima 2007), we 

concentrated on how this spring network behaves under mesh refinement in the vertical 

direction (along the direction of the applied load) when compared against the actual 

analytical solution for polyethylene assuming it to be linear elastic with a Young’s 

modulus of 561.5 MPa and a Young’s modulus of 0.45 (Halloran 2005).  
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It has been previously documented that the presence of the diagonal springs produce an 

extra force that causes the elongation of the object to be shorter than expected and the 

spring model can behave stiffer (Maciel 2003). This effect is pronounced when the mesh 

size is course and thus represents a larger volume of the continuum and decreases with 

mesh refinement. Therefore, the result from the patch test is utilized to estimate the 

minimum mesh size that must be used so as to keep the error less than 2%. Therefore, for 

creating the nodes of the grid as described earlier, the number of nodes per dimension is 

selected so as to keep the sides of each mesh less than 1.5mm. Finer meshes can easily be 

selected at the expense of higher memory requirements due to the vectorization of the 

global stiffness assembly routine. 

 

 
Figure 5-2: Effect of mesh refinement on deformation. 
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The variation of deformation with mesh size for a linear case exhibited by discrete spring 

models is a significant difference in its behavior when compared to finite elements. For 

this linear case tested above, the deformation predicted by finite elements, would be 

independent of mesh size. However, the actual stress and strain values in the solution 

accuracy of finite elements still increases with mesh refinement. Therefore to check the 

variation of contact pressure over the contact surface of the polyethylene the values 

obtained using the spring network model were compared with that obtained using finite 

elements implemented in Abaqus/StandardTM (Dassault Systemes S.A.) where the 

polyethylene was modeled using C3D8 (8 noded brick) elements. For both the methods 

the number of nodes was matched and sufficient mesh refinement (1mm grid) was 

incorporated so that both the methods predict results with high accuracy.  

 

Due to the effect of Poisson ratio in the material, the force distribution is not uniform at 

all the nodes. The contact pressure at the center nodes is higher than the contact pressure 

at the edge nodes. Both the methods exhibited similar results. While the maximum and 

minimum contact pressures predicted by finite elements were 9.11 MPa and 3.40 MPa 

respectively for the spring network model, the values were 8.64 MPa and 3.33 MPa 

respectively. Also, the variations of contact pressure along the contact area were similar 

in profile and symmetrical in distribution due to the regular geometries used. 
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Figure 5-3: Pressure distributions obtained from finite elements. 

 
Figure 5-4: Pressure distribution obtained from the discrete spring network. 
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5.2            Performance of the Whole Method: 

The method to calculate in vivo contact mechanics of total knee implant from kinematics 

obtained using fluoroscopy has two distinct components – estimation of the contact 

forces from rigid body modeling and then based on the contact forces, calculating the 

contact behavior at the femorotibial interface using the discrete element deformation 

model. For checking the performance of the method, an error analysis was conducted 

from data obtained with a telemetric implant. The comparisons of force were performed 

using the data from the telemetric implant (D’Lima 2005). However, the telemetric 

implant does not generate contact pressures and contact areas. Therefore, these values 

were compared with a static finite element analysis in Abaqus/StandardTM (Dassault 

Systemes S.A.). 

 

Telemetric data was collected while the patient performed a deep knee bend activity from 

full extension to 120º of weight bearing flexion under fluoroscopic surveillance in the 

sagittal plane. Ground reaction force data obtained from a force plate was also 

simultaneously recorded. The telemetric knee is a fixed polyethylene type and a PCR 

type implant which measures the tibiofemoral contact forces with the help of 4 force 

transducers incorporated in the tibial component of the implant (D’Lima 2005). Sum of 

forces from all the sensors gives the total femorotibial force. For measurement of the 
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lateral and medial forces separately, the sensors are symmetrically placed with 2 each on 

the medial and the lateral side respectively (Figure 5-5).  

 

For finite element modeling IGES CAD models of the components were used. The 

polyethylene was meshed at an approximate seed size (element size) of 1mm. The mesh 

contained a mixed linear hexahedral (C3D8) and linear tetrahedral (C3D4) element 

formulation and was obtained using Abaqus CAETM (Dassault Systemes S.A). The 

possible contact regions were meshed with hexahedral elements and the regions not in 

contact were meshed with tetrahedral elements to reduce time with the meshing process. 

The femoral component was assumed to be rigid and was modeled as a shell structure of 

quadratic elements (R3D4). Polyethylene was modeled using the Ramberg-Osgood 

equation which was found to closely match the stress strain data of polyethylene (Figure 

5-6) as reported by Halloran et. al.  (Halloran 2005).  

 
Figure 5-5: (Left) Polyethylene and tibial component of the telemetric implant.  
(Right) Location of the force transducers in the implant. (from D’Lima 2005). 
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In one dimension, the model is: 
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Using a nonlinear curve fitting algorithm, the material parameters for the stress strain 

data of polyethylene using the above model was found to be 

5485.4,4194.80.0389, ,5.561 0 ==== nE σα . 

 
Figure 5-6: Comparison of the true stress strain data and the material model used for 

finite elements. 
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The lower surfaces of the polyethylene were considered to be completely fixed without 

any translation or rotation. The femoral component was fixed to prevent any rotation but 

was free to translate. The force was applied at a reference point on the femur. Separate 

surface to surface contacts were defined on the medial and the lateral condyles and a 

small sliding algorithm was selected for the analysis. The analysis was conducted at 15º 

flexion increments. 

 

5.2.1          Comparison of Total Forces: 

An overall comparison of the total force variations obtained from telemetry with respect 

to the total force predicted by the rigid model revealed three distinct regions (Figure 5-7). 

During high flexion and the maximum force region (Region A), the model was the most 

accurate and had a maximum difference of 0.15 BW compared with that obtained using 

telemetry. At this region, the telemetric implant measured a total femorotibial peak load 

of 3.84BW occurring at 103° of flexion, whereas the model predicted a peak load of 

3.81BW at 100° of flexion. Between 10º and 60° of knee flexion (Region B), the model 

had a maximum difference of 0.3BW compared with the results obtained using telemetry. 

For the low-flexion, low-force region (Region C), the model had the highest amount of 

difference. In this region, the telemetric patient exhibited a surprisingly high force of 

approximately 1.5BW. We believe that this occurred because of the isometric contraction 

of the quadriceps at full extension. At full extension, the telemetric patient attempted to 

hyperextend his knee, leading to firing of the quadriceps muscle, which the model did not  
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Figure 5-7: Comparison of the total forces. 

 

take into account as it does not incorporate muscle activation dynamics. Also, the model 

started from a static initial condition and therefore, the initial force prediction is low. 

 

5.2.2              Effect of Femoral Alignment Correction: 

The model was found to be extremely insensitive (difference less than 0.001BW) in the 

prediction of the total forces acting on the femur when comparisons were made between 

the corrected femoral alignment as previously described to reduce over prediction of lift-

off and the uncorrected femoral alignment directly obtained from fluoroscopy  This is 

probably because the proposed correction is small with respect to the overall movement 

of the femoral component on the polyethylene through the flexion cycle. The deformation 

and the contact on the condyles were found to be significantly affected when the femoral 
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correction is applied before the start of the analysis when compared to the scenario when 

it was not performed. Even though there was no clear evidence of lift-off, if the 

uncorrected femoral orientation was used in the deformation analysis, both the 

deformation model predicted that the lateral condyle was not in contact at 15º and 30º of 

flexion. The problem was found to be that the maximum deformation in the medial aspect 

of the polyethylene was lesser than the difference between the probable contact point on 

the femur and the polyethylene on the lateral condyle. After using the proposed 

correction, this problem was not observed at any flexion increment.   

 

5.2.3              Comparison of Medial-Lateral Condyle Force Distribution: 

The medial and lateral contact force also exhibited similar variation through the flexion 

cycle as the total contact force. Thus they were the most accurate at the higher flexion 

ranges.  However, at the beginning of the flexion cycle, the predicted forces were lesser 

than the magnitudes obtained from telemetry (Figures 5-8, 5-9).  While the lateral-medial 

force distribution obtained using telemetry ranged between 0.78-1.23, the deformation 

model predicted a lateral medial force distribution from 0.87-1.15 (Figure 5-10). 
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Figure 5-8: Comparison of the medial forces.  

 

 
Figure 5-9: Comparison of the lateral forces. 
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           Figure 5-10: Comparison of lateral to medial force distribution ratio.  

 
 

5.2.4             Comparison of Deformation: 
 
Since the femoral component is assumed to be rigid, and moves into the polyethylene 

surface due to the force acting on it, so the maximum deformation in the polyethylene is 

analogous to the movement of the femur. The variation of the maximum deformation, 

with the increase in flexion angle in the polyethylene predicted by the spring lattice 

model, was very similar to that obtained using the finite element analysis. The maximum 

deformation in the lattice model for any flexion angle was slightly lesser than that of 

finite elements indicating that this model behaves a little stiffer when compared to finite 

elements. The maximum difference between the values predicted by finite element 

analysis and that obtained from the lattice model was less than 0.02mm (Figure 5-11).  
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Figure 5-11: Comparison of maximum deformation. 

 
 
5.2.5           Comparison of Contact Areas: 
 

The variation of the medial and lateral contact areas with flexion as predicted by the 

spring lattice model with that of finite elements were similar (Figures 5-12, 5-13). 

However, in all cases the area calculated using the spring model were always lesser than 

that obtained using finite elements. This might be due to the small differences in the 

deformation between the two methods as observed previously and also different CAD 

models used in the process. The maximum difference in the contact areas for any condyle 

was less than 7mm2.  
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Figure 5-12: Comparison of medial contact area.  

 
 

 
Figure 5-13: Comparison of lateral contact area. 



Error Analysis 
 

 
 - 80 - 

5.2.6              Comparison of Force Distribution: 
 
The femoral and the polyethylene components are characterized by quadratic surfaces at 

the condyles which come in contact. Under such circumstances, the contact is elliptical in 

nature where the maximum forces and pressures occur at the center of the contact 

followed by a decreasing value away from the center of the contact. Also, the variation of 

forces and pressures away from the center of the contact show an elliptical trend. The 

spring lattice model when compared to finite elements show a similar variation of the 

forces distribution indicating that the contact is elliptical in nature with maximum force 

occurring at the center of the contact (Figures 5-14, 5-15).  

 

 
Figure 5-14: Pressure variation with finite elements across the contact region. 
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Figure 5-15: Pressure variation with spring lattice elements across the contact region. 

 

Abaqus/ Standard does not output the force associated with each node. As stated before 

the spring lattice model, being discrete in nature, can only predict the force distributions. 

Therefore, the prediction of contact pressure from the lattice model is based on an 

assumed area of influence. When comparing the maximum contact pressures, the 

maximum difference between the lattice model and the results obtained using finite 

elements were found to be less than 15%. However, when comparing the average contact 

pressures defined as the ratio of the total forces divided by the area in contact, the 

difference was found to be less than 5%. This is because the average contact pressures are 

independent of the assumed area of influence. 
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5.2.7           Speed of computation: 

Use of nonlinear material models require repeated calculations of the stiffness matrix and 

its inverse. The algorithms for the discrete spring element model are coded in Matlab 

(Matworks Inc.). Also, the time associated for the final solution is sensitive to the initial 

deformation used. As a result the solution time using the lattice model under the current 

formulation when using a 1.8 GHz Core 2Duo Processor was found to vary between 32 

sec to 3.6 minutes. Nonetheless, this was found to be much faster than finite elements 

using Abaqus which took from 56 minutes to 1.8 hours.  
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Knee implant designs undergo extensive clinical tests before being released in the 

market. However, in vivo performances of implants vary considerably than found in the 

normal knee. Nonetheless, there are various types of knee implants in the market with 

excellent long term results. Therefore the above method was used to study the in vivo 

performance in 6 popular designs so as to get a general idea about the magnitudes of the 

contact forces and the forces in the quadriceps mechanism during a deep knee activity.  

 

The study was conducted on 6 different types of implants implanted on 29 subjects - 5 

PFC Sigma fixed bearing traditional TKA (Sigma FB), 5 PFC Sigma mobile bearing 

traditional TKA (Sigma MB), 5 LPS Flex fixed bearing high flexion TKA (LPS-Flex), 5 

Nexgen PCR fixed bearing high flexion TKA (CR-Flex), 5 Natural Knee II fixed bearing 

traditional TKA with congruent insert fixed (NKII CP), 4 Natural Knee II fixed bearing 

traditional TKA with ultra congruent insert (NKII UCP). While the first two implants are 
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manufactured by Depuy Orthopaedics Inc. (Warsaw, IN), the other implants are 

manufactured by Zimmer Inc. (Warsaw, IN). The subjects were matched so that the 

groups were similar to age, weight, body mass index, pre-operative range of motion and 

postoperative alignment. All implantations were judged clinically successful (Hospital for 

Special Surgery knee scores >90) with no ligamentous laxity or pain. None of the patients 

had any incidence of lift off. However, the patients were not matched based on their in 

vivo kinematics. Also, since the sample size is small therefore, the derived mechanics 

may be affected by individual patient outliers. 

 

The Sigma FB and Sigma MB are PS type designs with symmetrical condyles and 

incorporate a femoral component with multiple radii (radius decreasing with increasing 

flexion) in the sagittal plane. Due to the ability of the polyethylene insert to rotate axially, 

the mobile bearing design incorporates a polyethylene design that is much more 

conforming and constrained in the coronal plane. The high flexion designs LPS-Flex and 

the CR-Flex incorporate modifications in the component geometry to account for high 

flexion. The sagittal radii of the femoral J curve for the CR-Flex when compared with its 

traditional counterpart are smaller starting at 90º flexion through deep flexion. The 

sagittal radii of the LPS-Flex are smaller than its traditional counterpart in flexion 

transitioning to the same contour at approximately 30º of flexion. In both designs, 

approximately 2 mm of additional bone is resected posteriorly to allow the condyle to 

sweep further in deep flexion to increase contact area. The CR-Flex has asymmetrical 
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condyles whereas the LPS-Flex has symmetric condyles. Also, in general the LPS-Flex 

has smaller sagittal radii from mid flexion through deep flexion compared with the CR-

Flex.  The Natural Knee II is a fixed bearing traditional design with asymmetrical 

condyles and offers variations in the polyethylene bearing design – the standard 

congruent (CP) and the ultra-congruent (UCP). Whether to use the congruent or ultra-

congruent polyethylene design is an intra-operative decision taken by the surgeon as both 

designs use the same femoral and tibial components. The CP insert is the more 

conventional design and is used when the PCL is retained by the surgeon. However, if the 

surgeon for some reason decides to resect the PCL then he uses the ultra-congruent 

design. Since for the CP insert the PCL is present to provide rollback to the knee joint 

while for the UCP insert it is absent, so the designs of these polyethylene inserts are 

slightly different. The ultra-congruent design has a much steeper anterior slope and a 

much posterior inflexion point so as to constrain the anterior movement of the femoral 

component, thus ensuring a favorable condition for posterior movement. 

 

 

 

 

 

 

 



In Vivo Mechanics of Knee Implants 
 

 
 - 86 - 

6.1         Femorotibial Contact Mechanics: 

Both the medial and lateral contact forces increased with the increase in knee flexion and 

the total contact force varies from, on average, about 0.8BW at the start of flexion to 

about 3.7BW at the end of flexion. In some patients, the total contact forces reached 

values as high has 4.2 BW. However, the total contact force was not equally distributed 

between the medial and lateral condyles. On average, the medio-lateral force distribution 

ranged from 60%-40% to 75%-25% throughout the flexion cycle across all the implants. 

Also for the symmetrical condylar designs, the medio-lateral forced distribution generally 

increased with flexion. However, for the asymmetrical condyle designs the variation of 

medio-lateral force distribution was much lesser and no distinct trend was observed. Also 

no significant difference was observed in the medial forces observed in the implants 

(Figure 6-1). However, the lateral forces were found to be more variable depending on 

the type of implant. In this regard, the implants with asymmetrical condyles experienced 

the highest amount of lateral forces (Figure 6-2).  The lateral forces were found to have a 

high correlation with the amount of axial rotation. The asymmetrical condyle designed 

implants experienced consistent higher axial rotation of the femur with respect to the 

femur and that might be the cause for the higher lateral forces.  
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Figure 6-1: Total contact forces in the medial condyles. 

 

 
Figure 6-2: Total contact forces in the lateral condyles. 
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When the total force is resolved into the axial (superior-inferior), and shear (medio-lateral 

and antero-posterior) directions, the maximum force occurs in the superior-inferior 

direction and accounts for 98-99% of the total load. The maximum magnitude of the 

shear forces was found to be 0.51BW. In some of the patients the contact forces also 

decreased at high flexion angles. 

 
There was no consistent variation between the medial and lateral condyle contact areas 

with flexion and high standard deviations were observed for each patient with the same 

implant and across the implants (Figures 6-3, 6-4). The contact areas are a function of 

deformation as well as the geometry and the orientation of the components. In this regard 

asymmetrical designs generally experienced higher contact areas on the lateral side than 

on the medial side as the radii in the medial condyle in these designs are generally 

smaller. Also interestingly, the contact areas in the PFC Sigma MB and FB decreased 

with increase in flexion. The PFC Sigmas have much larger femoral radii in the deeper 

flexion ranges and a higher amount of conformity than the other designs. This effect was 

much more noticeable on the lateral side due to the smaller magnitudes of contact forces, 

than on the medial side where the effect was somewhat negated by the increase of contact 

area due to increased deformation and higher medial contact forces. The LPS-Flex and 

CR-Flex designs as well as the NKII designs have smaller femoral radii at the higher 

flexion ranges and, the contact areas was found to increase in higher flexion regions.   
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Figure 6-3: Contact areas in the medial condyles. 

 

 
Figure 6-4: Contact areas in the lateral condyles. 
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Both the medial and the lateral contact pressures increased with increasing flexion and 

were higher on the medial condyle than on the lateral condyles due to the higher amount 

of forces on those condyles (Figures 6-5, 6-6). This correlates well with the retrieval 

studies which show that the wear on the medial side is more than the wear on the lateral 

side (Wasielewski 1994; Currier 2005). Due to the decrease in contact area observed in 

the Sigma implants at higher flexion, the average contact pressures increased the most in 

these implants with increasing flexion. Two patients implanted with Sigma fixed bearing 

implants, were found to have higher average contact pressure on the medial side than the 

yield strength of polyethylene (~ 21 MPa).  

 

 
Figure 6-5: Average contact pressure in the medial condyle. 
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Figure 6-6: Average contact pressure in the lateral condyle. 

 

6.2      Quadriceps Mechanism Forces: 

The quadriceps muscle is the main force producer during a deep knee activity. For the 

asymmetrical condylar design, the quadriceps forces were similar throughout the flexion 

cycle. However, for the symmetrical condylar designs the quadriceps forces were 

generally low during low to mid flexion. However, at higher flexion the values were 

similar and ranging about 2.8BW to 3.3BW (Figure 6-7).  The variation of the ratio 

between the patellofemoral force and the quadriceps force increased and varied from 

about 0.2 at full extension to about 1.0 at full flexion with increasing flexion (Figure 6-8). 

The force ratio between the patellar ligament and the quadriceps decreased from 1.0 at 

full extension to about 0.45 at full flexion (Figure 6-9). 
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Figure 6-7: Magnitude of quadriceps forces. 

 
 

 
Figure 6-8: Variation of the patellofemoral to quadriceps force ratio. 
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Figure 6-9: Variation of the patellar ligament to quadriceps force ratio. 

 
 

No noticeable differences were observed across the various implants with respect to the 

variation of the patellofemoral and patellar ligament force ratios with the forces in the 

quadriceps.  

 

Since, the mass of the patella is small, inertia effects due to the patella is also small as the 

accelerations in the patella are not very high. As a result the patella acts similar to a three 

force system, where the values of the patellofemoral force and the forces in the extensor 

mechanism is mainly governed by the angle between the patellar ligament and the 

quadriceps with respect to the patella longitudinal axis and was found to influence the 

force ratios. At full extension, these angles are low and the quadriceps muscle and the 

patellar ligament are almost along the same axis. Thus the forces in them are almost 
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equal, resulting in low patellofemoral force. In deeper flexion, the quadriceps muscle 

vector becomes more aligned to the patellofemoral force vector causing the 

patellofemoral force to increase. However, at increasing flexion angle, the angle between 

the quadriceps force and the patellar ligament force increases causing the force in the 

patellar ligament to decrease.     

 

In some patients, the quadriceps force decreased with high flexion (Figure 6-10). As a 

result the patellar ligament forces, the patellofemoral forces and the contact forces in the 

knee also decreased. The decrease in the quadriceps force is observed due to the increase 

in the moment arm (Churchill 2001; Browne 2005).  

 
 

The moment arm of the quadriceps depends upon the angle of the quadriceps with respect 

to the femur and location of the femorotibial contact point. Generally, with increase in 

flexion, the femorotibial contact point moves posterior, increasing the moment arm. 

However, this is associated with the decrease in angle of the quadriceps with respect to 

the femur tending to increase the moment arm. Due to wrapping of the quadriceps on the 

femur at higher flexion, the angle of the quadriceps with respect to the femur does not 

change. In this case, whether the contact force increases or decreases depends on whether 

the femoral condyles move anterior or posterior. 
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Figure 6-10: Sample patient where the force decreased at high flexion.
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In summary this dissertation is focused and streamlined towards the development of a 

methodology to predict the contact mechanics in knee implants from the kinematic data 

obtained using fluoroscopy during a deep knee activity.  It not only works accurately but 

also presents far reaching implications from the perspective of a process that is fast and 

can be easily automated to work without any external preprocessing requirements. In this 

regard the uniqueness and contributions to the field of biomechanics are: 

1. Development of a detailed methodology pertaining to the measurement of contact  

     forces and contact stresses, using kinematics derived from fluoroscopy, taking into  

     account errors involved in the process and possible means of correction.  

2. Implementation of a multidynamic mathematical model for the deep knee activity 

that utilizes a new, more accurate and automated method for characterizing the slip 

and/or roll movement of the femoral component on the polyethylene insert and  

calculates the in vivo forces at the femoropolyethylene articulation. 
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3. Introduction and development of a detailed methodology pertaining to the use of 

hexahedral discrete lattice model for deformation modeling of polyethylene in 

knee implants as a tool that is not only accurate but fast and automatic without 

any separate preprocessing requirements. Therefore, it can be used as an efficient 

contact algorithm in multidynamic simulations. 

4. Introduction and development of an algorithm to create a 3D cubic grid from 

triangulated surface defined models that is customized for knee implants but can 

easily be extended to other joints. 

5. Verification of the computational model using a telemetric knee data and finite 

elements in order to determine the accuracy of this in vivo process to determine 

the in vivo mechanics. 

6.   Studying the contact behavior in some popular knee designs and determination of 

the in vivo mechanics of the quadriceps mechanism and understanding the 

influence of the quadriceps muscle in the in vivo mechanics of the knee joint 

during a deep knee bend activity. 

 

Though the process has been validated, however, some limitations still remain which we 

intend to improve with future work: 

1. The multidynamic rigid body used to estimate the total contact forces starts from 

a static condition and does not assume muscle activation dynamics. Muscle 

activations can substantially change the force carried experienced in it. We would 
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like to incorporate EMG data so as to be able to characterize muscle activations. 

Also, the model does neglects lift-off. Lift-off causes the contact forces to pass 

through only one condyle and would thus increase the contact pressures 

experienced at the condyles. 

2. In the current formulation, polyethylene is modeled as non linear elastic and the 

springs are assumed to be independent of original length and thus there is just one 

variable tuning the behavior of the network. In the future, we would like to 

incorporate additional springs and dampers in series and parallel so as to be able 

to characterize more advanced properties like viscoelasticity and viscoplasticity. 

Also, we would like to work on using different spring stiffness along different 

directions so that 3D deformation in polyethylene as well as other materials can 

be more accurately predicted.  

3. Currently, using this method only deep knee bend activity in TKAs has been 

studied. We would like to extend the algorithms so that diverse activities 

involving more joints can be studied.  
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The following directions and planes are used in the medical field and also in the field to 

biomechanics to describe the locations on the human body: 

 

 Superior or Cranial – direction towards the head or the upper part of the body 

(above). 

 Inferior or Caudal – direction away from the head and towards the lower part of 

the body (below). 

 Medial – direction towards the midline of the body (inner side). 

 Lateral – direction away from the midline of the body (outer side). 

 Anterior or Ventral – direction towards the front of the body (front). 

 Posterior or Dorsal – direction towards the back of the body (back). 

 Proximal –direction towards or nearest the trunk or the point of origin of a body 

part (closer). 

 Distal – direction away or farthest from the trunk or the point of origin of a body 

part (farther).  

 Superficial – direction towards the surface of the body (external). 
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 Profundum – direction away from the surface of the body (internal). 

 Sagittal or Lateral – plane perpendicular to the ground in the antero-posterior 

direction dividing the body into right and left. A sagittal plane which divides the 

body into two equal halves is also known as the Medial Plane. 

 Coronal or Frontal – plane perpendicular to the ground in the medio-lateral 

direction dividing the body into front and back. 

 Transverse or Horizontal– plane parallel to the ground dividing the body into 

upper and lower.  

 
 

The Anatomical Planes defined in the Human Body (from SEER, 2008). 
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Bone Structure 

The knee joint is made up of three bones – the femur (thigh bone), the tibia (shin bone) 

and the patella (knee cap). There is one more bone in the lower leg, the fibula, but it does 

not form a part of the knee joint. However, it does serve as an attachment site for soft 

tissues associated with the knee.  

 

(Left) Anterior view (Right) Medial view of the Normal Knee (from Ahlfeld  Sports   
                     Medicine Orthopaedic Centre, 2008). 
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The femur and the tibia are the two longest bones in the body and form the femoro-tibial 

articulation. The inferior end of the femur has two convex shaped condyles which are 

positioned medially and laterally and are separated by the intercondylar notch in the 

posterior direction and the trochlear groove in the anterior direction. The condyles have 

varying radii of curvatures when moving in the antero-posterior direction.  Femoro-tibial 

articulation is achieved by the contact of the femoral condyles with shallow concave 

shaped condyles present in the tibia. The femoro-tibial articulation carries the maximum 

load passing through the knee joint. To accommodate this, the femur and tibia is made of 

hard cortical bone on the outside and soft and more compressible cancellous bone on the 

inside. 

 

The patella is a sesamoid bone (formed completely within the structure of a tendon). The 

patello-femoral articulation is achieved by the contact of the patella on the medial and 

lateral condyles of the femur just adjacent to the trochlear groove, the place where the 

patella is located. The function of the patella is to increase the lever arm of the quadriceps 

extensor mechanism and to provide antero-posterior constraint for the femur. 

 

Articular Cartilage and Meniscus 

Cartilage is a collagen based soft viscoelastic material and is attached to the end of the 

knee joint bones where articulation occurs. This makes the mating surfaces almost 

frictionless and helps in smooth motion in the knee with less wear and tear. This is also 
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facilitated by the viscous, protein filled, synovial fluid which is filled up in the joint 

capsule and acts as the natural lubricant. 

Between the articular cartilage coated ends of the femur and tibia are two crescent shaped 

pieces of fibrocartilage, called the meniscus. Due to their wedge-like shape, which 

deepens to cup-shape for the femur to articulate and move, they increase the contact area 

of the bones. Thus they serve to cushion the joint against impact type loads and distribute 

the compressive and shear loads across vulnerable articular cartilage surfaces. They also 

contribute in overall joint stability. 

 

Ligamentous Structures 

Ligaments are fibrous tissues, carrying only tensile loads, connected from bone to bone 

which help in stabilization of the joint. There are two main groups of ligaments that play 

a significant role in the control and stabilization of the knee joint – the collateral 

ligaments and the cruciate ligaments.  

 

The collateral ligaments attach at the sides of the joint laterally and medially. The lateral 

collateral ligament is a round cord-like ligament that attaches on the outer side of the 

lateral femoral condyles and on the superior end of the fibula. The medial collateral 

ligament is a flat band like ligament attached to the outer side of the medial condyle of 

the femur and extends downwards to attach on the tibia on the antero-medial aspect. The 
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medial and lateral collateral ligaments assist in supporting the knee during abduction-

adduction (valgus-varus) motion.  

 

The cruciate ligaments are found at the centre of the knee within the joint space and are 

so named because the two ligaments in this group cross each other. The anterior cruciate 

ligament (ACL) inserts on the anterior end between the tibial condyles and on the medial 

side of the femoral lateral condyle. The posterior cruciate ligament (PCL) is attached 

more laterally on the tibia compared to the ACL and inserts on the medial side of the 

medial femoral condyle. The PCL is located posteriorly compared to the ACL. These 

ligaments are flat in cross-section and are twisted between their insertion points. These 

ligaments stabilize the knee against antero-posterior translations as well as the medial and 

lateral rotations of the tibia relative to the femur. The ACL restrains anterior subluxation 

while the PCL restrains posterior subluxation of the tibia. 

  

Muscle Structures 

Muscles are the motion generators in the human body and connect to the bone through 

the tendons. Force is generated in them during the extension of the fibers. The major 

muscle groups in the upper leg are the quadriceps and the hamstrings. In the lower leg the 

largest muscle group is the gastrocnemius. All these muscles are biarticulate, that is, they 

work on more than one joint. However, the level of activity for one joint is much more 

than the other joint. 
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The quadriceps, technically known as, the quadriceps femoris muscle group is made up 

of four muscles located anteriorly in the upper leg - rectus femoris, vastus laterlis, vastus 

medialis and vastus intermedius. Except for the rectus femoris, which inserts in the ilium 

(one of the bones making the pelvis), all the muscles insert on the femur. All the four 

muscles coalesce to form the quadriceps tendon. The quadriceps tendon, containing the 

patella bone, attaches the quadriceps muscle group to the anterior tibial bone and is 

known as the patellar tendon in the region between the patella and the tibia. The 

quadriceps muscles are the primary extensors of the knee.  

 

Major Muscles used in the Flexion and Extension of the Knee (Modified from     
                     American Academy of Family Physicians, 2008). 
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The hamstring muscle group is situated posteriorly on the upper leg and is made up of 

three separate muscles – biceps femoris (lateral side), semitendinosus and 

semimembranosus (medial side). Other medial thigh muscles, the gracilis, the pectinius 

and the adductor longus/ brevis/ magnus are not technically part of the hamstring group. 

All the hamstring muscles have one of their insertion points on the ischium (one of the 

bones making the pelvis) while the other insertion points lie on the fibula and femur (for 

biceps femoris) and on the tibia (for semitendinosus and semimembranosus). The 

hamstring muscles are the primary flexors of the leg. 

 

The gastrocnemius muscle group, commonly known as the calf muscles, is located 

posteriorly in the lower leg and is made of three muscles - soleus, medial gastrocnemius 

and lateral gastrocnemius. While the soleus inserts in the fibula and the tibia, the medial 

and lateral gastrocnemius muscles insert on the posterior aspect of the femoral condyles. 

All the three muscles coalesce to from the Achilles tendon, which is attached to the back 

of the heel. Though these muscles primarily function in extending the heel, they also 

assist in the flexion of the leg. 
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Osteoarthritis in the Knee 

 

Osteoarthritis is a degenerative joint disease caused due to the break down of the articular 

cartilage. Over a period of time, as the articular cartilage is worn away, bone to bone 

contact sets in. This leads to excessive joint pain and causes roughening and even 

wearing away of the bone articulation. Bony protrusions, known as osteophytes may also 

appear at the edge of the bone.  This results in significant pain, inflammation and a loss 

of function and mobility.  Though ideally osteoarthritis should develop during old age, 

however, early onset of the disease is accelerated by injuries, trauma and bone 

deformities. Treatments such as weight loss, braces, orthotics, steroid injections and 

physical therapy can alleviate the symptoms associated with mild to medium level of 

osteoarthritis. However, in severe cases the only choice remains is to undergo a knee 

replacement surgery. Knee replacement surgery consists of replacing the degenerated 

contact surfaces at the knee. If the arthritis affects only one side of the joint then it is 

replaced with a unicondylar knee replacement which resurfaces only the single damaged 

femoral and tibial condyle. If the arthritis affects the whole joint then a total knee 

arthroplasty (TKA) is used. Apart from restructuring both the femoral and tibial condyles, 

this type of replacement also has a component that fits with the patella. 
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Deterioration in the Knee caused by Osteoarthritis (from Queen’s University, 2008). 
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Kane’s method combines the advantages of both Newton-Euler methods and the 

Lagrangian method (Huston, 1990). By using generalized forces, this method avoids the 

incorporation of non-contributing interactive and constraint forces between the bodies. 

Also this method avoids the use of energy functions. Finally, in this method 

differentiation needed to compute velocities and accelerations are obtained through the 

use of vector products.  

 
 
The governing equation for Kane’s method is that the sum of the generalized active 

forces and the generalized reactive forces should be zero. The key component while 

conducting an analysis with the Kane’s method lies in development and the use of 

“partial velocities” and “partial angular velocities”. 

 

Calculating the partial velocities: 

 

Generalized coordinates, rq  – These are defined as time varying translations and 

rotations selected to define the position of all points and the orientation of rigid bodies. 
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     ( 1,........., )rq r n=  

 

Where ' 'n  is the number of degrees of freedom. 

 

Generalized speeds, ru  – These are defined as time varying linear functions of 'srq
•

 

(derivative with respect to time) selected so as to simplify expressions for velocities of 

points and angular velocities of rigid bodies. 
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Where 1' '  and ' '  are functions of ' ,....., '  and time ' '.rs r nY Z q q t  

 

Partial angular velocities, rω , and partial velocities, rν  – These are time varying 

linear functions of 'sru , determined by inspection, which greatly facilitate the 

formulation of the equations of motion. 
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Where ' 'ω  is the angular velocity of the rigid body, ' 'ν  is the velocity of a point, and, 

' ', ' ', ' '  and ' 'r r t tω ν ω ν  are the functions of 1' ,......, '  and ' '.nq q t   In principle, partial 

angular velocities need only be formed for those rigid bodies subjected to applied torques 

and possessing inertia, while partial velocities need only be forces for those points 

subjected to applied forces or possessing mass. 

 

Using the partial velocities: 

 

Generalized active forces, rF  – These are the quantities formed by taking the dot 

products of partial velocities and active (i.e. applied) forces and dot products of partial 

angular velocities and active torques. For each point ' 'iP  subjected to an applied force, 

  

( )         ( 1,......., )i
i i

P
r rP PF R r nν= =  
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Where ' 'iP
rν  is the thr partial velocity of ' ' and ' '

ii PP R  is the resultant of all contact and 

distance forces acting on ' 'iP . Similarly, for each rigid body ' 'jB  subjected to an applied 

torque,  

 

 ( )          ( 1,........, )j
j j

B
r rB BF T r nω= =  

 

Where ' 'jB
rω  is the thr partial velocity of ' ' and 'T '

jj BB  is the resultant of all couples 

acting on ' 'jB . The thr  generalized active force ' 'rF  can then be determined by summing 

the results over all points ' 'iP  and all rigid bodies ' 'jB : 

 

 
1 1
( ) ( )           ( 1,........, )

i jr r rP B
i j

F F F r n
κ λ

= =
= + =∑ ∑  

 

Where ' 'κ  is the number of points subjected to applied forces and ' 'λ  is the number of 

rigid bodies subjected to applied torques. 

 

Generalized inertia forces, *
rF  - These are the quantities formed by taking the dot 

products of partial velocities and inertia forces and dot products of partial angular 

velocities and inertia torques. For each point ' 'iP  possessing mass, 
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* *( )         ( 1,......., )i
i i

P
r rP PF R r nν= =  

 

Where ' 'iP
rν  is the thr partial velocity of *' ' and ' '

ii PP R  is the inertia force for ' 'iP and is 

defined as 

 

 * i
i i

P
P PR m a= −  

 
Where ' '

iPm  is the mass of ' 'iP  and ' 'iPa  is the acceleration of ' 'iP .Similarly, for each 

rigid body ' 'jB  possessing inertia, 

 

 * *( )          ( 1,........, )j
j j

B
r rB BF T r nω= =  

 

Where ' 'jB
rω  is the thr partial velocity of *' ' and 'T '

jj BB  is the inertia torque for ' 'jB  and 

is defined as 

  

/ /* * *j j j j j j j
j

B B B B B B B
BT I Iα ω ω= − − ×  
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Where / *' 'j jB BI  is the inertia dyadic of ' 'jB  about its mass centre *' 'jB , ' 'jBω  is the 

angular velocity of  ' 'jB  and ' 'jBα  is the angular acceleration of ' 'jB . 

 

 The thr  generalized active force *' 'rF  can then be determined by summing the results 

over all points ' 'iP  and all rigid bodies ' 'jB : 

 

 * * *

1 1
( ) ( )           ( 1,........, )

i jr r rP B
i j

F F F r n
μ η

= =
= + =∑ ∑  

Where ' 'μ  is the number of points possessing mass and ' 'η  is the number of rigid bodies 

possessing inertia. 

 

Equations of motion: 

 

The equations of motion can be generated by adding all the generalized active forces and 

the generalized reactive forces and then equating the results to zero. 

 

 * 0          ( 1,........, )r rF F r n+ = =  

 

In this method statics problems can be solved by considering 0rF = . 
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Table D-1: Total contact forces in the medial condyle (BW) 
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Table D-2: Total contact forces in the lateral condyle (BW) 
 

 
 
 

Table D-3: Contact area in the medial condyle (mm2) 
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Table D-4: Contact area in the lateral condyle (mm2) 
 

 
 
 
 

Table D-5: Average contact pressures in the medial condyle (MPa) 
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Table D-6: Average contact pressures in the lateral condyle (MPa) 
 

 
 
 
 

Table D-7: Forces in the quadriceps muscle (BW) 
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Table D-8: Forces in the patellar ligament (BW) 
 

 
 
 
 

Table D-9: Patellofemoral contact forces (BW) 
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Table D-10: Total contact forces in the antero-posterior direction (BW) 
 

 
 
 
 

Table D-11: Total contact forces in the medio-lateral direction (BW) 
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Table D-12: Total contact forces in the superior-inferior direction (BW) 
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