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ABSTRACT 

The elastic properties of a solid are of considerable interest to both science and 

technology. Not only do they contain fundamental information about the nature of the 

inter-atomic bonding in the material, but they also determine the mechanical behavior of 

solids. In the past few years, considerable effort has been devoted to the study of elastic 

properties of bulk metallic glasses (BMGs), a relatively new class of metallic materials 

that display a unique combination of mechanical and physical properties. Our research 

has focused on Zr-based, Cu-based and Ca-based metallic glasses. Zr-based BMGs are 

known to have superior glass forming ability and high strength, but their ductility is too 

low for wide-spread practical applications. Cu-based BMGs recently received wide 

interest because of their low cost and good mechanical properties. Ca-based BMGs have 

low glass transition temperature Tg, around 390 K, which make them very attractive to be 

studied near Tg.  

 

In this work, resonant ultrasound spectroscopy (RUS) has been applied to study the 

elastic properties of above mentioned BMGs from 5 K to their glass transition 

temperature Tg. RUS is a novel technique for determining the elastic moduli of solids, 

based on the measurement of the resonances of a freely vibrating body. In an RUS 

experiment, the mechanical resonances of a freely vibrating solid of known shape are 

measured, and an iteration procedure is used to “match” the measured lines with the 

calculated spectrum. This allows determination of all elastic constant of the solid from a 

single frequency scan. 

 

Below Tg, the elastic constants of the BMGs under investigation show “normal” behavior, 

i.e. with increasing temperature, all moduli decrease and Poisson ratio increases. Above 

Tg changes in the trends occur due to structural relaxation and crystallization. We 

confirmed the suggested link between ductility and Poisson ratio: BMGs showing good 

ductility display high Poisson ratio. By increasing palladium content in Zr50Cu40-xAl10Pdx 

alloys, BMGs with high Poisson ratio and thus good ductility have been obtained. In 

addition, we developed a simple model to provide fast and good estimate of the 
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temperature dependence of elastic constants of BMGs from room temperature 

measurements. 

 

Keywords: Elastic properties; Bulk metallic glasses (BMGs); Resonant ultrasound 

spectroscopy (RUS); Internal friction. 
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INTRODUCTION 

Bulk metallic glasses (BMGs), displaying a unique combination of mechanical and 

physical properties, have emerged over the past few years as a new class of metallic 

materials. The structural use of BMGs, however, encounters a technical difficulty in that 

most BMGs exhibit low ductility during plastic deformation under tension. In order to 

solve this material problem, considerable effort has been devoted to the alloy 

development of “ductile” BMGs. Whereas the brittleness of crystalline metals is known 

to be correlated to the ratio of the elastic shear modulus to the bulk modulus, G/B (Pugh, 

1954), a similar assessment for metallic glasses was not available until recently, when a 

universal correlation between the energy of fracture and the Poisson ratio for bulk 

metallic glasses was reported, with ductile glasses displaying a high Poisson ratio 

(Lewandowski, 2005). This confirms earlier results from Schroers et al. who concluded 

that a large Poisson ratio and a low glass transition temperature might be used as a means 

of identifying ductile BMGs (Schroers, 2004). The importance of the Poisson ratio in the 

study of glasses was also pointed out by Novikov and Sokolov (Novikov, 2004), who 

showed that the ratio of instantaneous shear to bulk modulus G/B in glasses, or, 

alternatively, the Poisson ratio ν, is linked to the fragility of the glass-forming liquid, an 

important parameter used to evaluate the glass forming ability (GFA) of glasses. Even 

though this finding is still controversial (Wang, 2006) (Battezzati, 2005) (Yannopoulos, 

2006) (Johari, 2006), it suggests that a systematic study of the elastic properties and thus 

the Poisson ratio of metallic glasses is expected to yield important information about their 

mechanical properties.  

 

Zr-based BMGs have superior glass forming ability (GFA) and high strength, but their 

ductility needs to be improved. Ca-based BMGs have low glass transition temperatures 

(Tg ≈390 K), which make them very attractive to be studied near Tg. Cu-based BMGs 

recently have received wide interest because of their low cost and good mechanical 

properties. In this work, we have applied Resonant Ultrasound Spectroscopy (RUS) to 

study the elastic properties of these BMGs. Elastic properties provide valuable 
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information about mechanical properties, physical properties and thermodynamic 

properties. 

 

In Chapter 1, we will give a brief summary of the literature. The development of BMGs, 

the parameters used to evaluate glass forming ability of BMGs, and recent studies of 

elastic properties of BMGs will be reviewed. Chapter 2 describes the experimental details 

on the RUS technique, sample preparation and data analysis. In Chapter 3, the elastic 

properties of Zr-based and Cu-based BMGs are reported. The temperature dependence of 

elastic constants and internal friction was studied up to their glass transition temperature 

(Tg ≈710 K). By increasing Pd content in Zr50Cu40-xAl10Pdx, BMGs with high Poisson 

ratio and thus better ductility were obtained. The effects of casting diameter on the elastic 

moduli have also been investigated. The newly developed two-phase Zr63.8Ni16.2Cu15Al5 

alloy was found to have a very high Poisson ratio ∼0.39. In Chapter 4, the temperature 

dependence of elastic constants, internal friction, and heat capacity of Ca-based BMGs 

were investigated up to their glass transition temperature (Tg ≈390 K). In Chapter 5, a 

simple model is proposed to predict the temperature dependence of the elastic moduli for 

BMGs based on room temperature measurements. The validity of the model is tested 

using our own database of experimental data obtained on a large variety of BMGs. In 

Chapter 6, correlation with other work and perspective for future work is discussed. 
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CHAPTER 1  

LITERATURE REVIEW 

Bulk metallic glasses (BMGs) have very high yield strength, high hardness, good 

corrosion resistance and wear resistance, low melting temperature Tm and net-shape 

casting capability. They are used as industrial coatings, electronic casings, fine jewelry, 

medical devices, sporting goods, as well as hinge applications 

(http://www.liquidmetal.com). However, their applications as structural materials 

encounter difficulty because of the low ductility, high cost and small critical casting 

diameter. 

 

1.1 Development of BMGs 

The formation of the first metallic glass, Au75Si25 was reported by Klement, Willens and 

Duwez at Caltech in 1960, using the rapid quenching technique at ultra-high cooling rate 

(105-106 K/s) to prevent the formation of crystalline structures (Klement, 1960). The 

technique allows the preparation of large quantities of glassy alloys. However, the ultra-

high cooling rate limits the geometry of the glassy alloys to samples with thin cross-

section (ribbons, wires, droplets etc.). The first bulk metallic glass, ternary Pd-Cu-Si 

alloy, was prepared by Chen in 1974 (Chen, 1974). Cylinders with diameter 1-3 mm were 

prepared using suction-casting methods with the cooling rate less than 103 K/s. In 1982, 

Lee et al. prepared spheres of metallic glass Au55Pb22.5Sb22.5 with diameter up to 1.5 mm 

(Lee, 1982). Drehman et al. produced spheroids of Pd40Ni40P20 glass with diameters of 5-

9 mm at the cooling rate of 1 K/s, under the condition that the alloy was kept very clean 

to inhibit heterogeneous nucleation (Drehman, 1982) (Drehman, 1984). Kui et al. 

obtained Pd-Ni-P glass ingot of centimeter size at a cooling rate of 10 K/s, using a boron 

oxide (Kui, 1984). Even though these achievements are exciting, the high cost of Au and 

Pd metals has limited the interest for these alloys to academic research. 

 

Inoue’s group in Tohoko University of Japan succeeded in finding new multicomponent 

alloys without the expensive noble metals. Amorphous La55Al25Ni20 ribbon (Inoue, 1989) 

http://www.liquidmetal.com/
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and Zr60Al20Ni20 ribbon (Inoue, 1990a) were formed by melt-spinning. The high thermal 

stability of the supercooled liquid was believed to result from optimum bonding and 

packing states of the constituent atoms. In 1990, amorphous La55Al25Ni20 rods and bars 

with critical casting diameter of 2-3 mm were prepared by low pressure casting the alloy 

melt into a water-cooled copper mold (Inoue, 1990 b). In 1992, amorphous Mg65Cu25Y10 

cylinder with diameter of 7 mm was prepared using a high-pressure die casting process 

(Inoue, 1992). In 1993, bulk amorphous Zr65Cu17.5Ni10Al7.5 rods with diameter up to 16 

mm were formed by water quenching the alloy melt in a quartz tube (Inoue, 1993a). It 

indicated the possibility of forming BMGs by conventional casting processes. 

 

Johnson’s group in Caltech recognized the significance of research in BMGs and started 

to search for new compositions. In 1993, Peker and Johnson developed a highly 

processable metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, in the form of rods up to 14 mm in 

diameter by casting in silica containers with critical cooling rate in the order of 10 K/s or 

less (Peker, 1993). Inoue’s group continued the significant work devoted to BMGs. In 

1996, Inoue’s group formed bulk glassy Pd40Cu30P20Ni10 alloys of 40 mm in diameter by 

water quenching (Inoue, 1996). Using a B2O3 flux treatment to suppress the 

heterogeneous nucleation, amorphous Pd40Cu30P20Ni10 alloys with maximum thickness 

up to 75 mm were prepared with a low critical cooling rate of 0.1 K/s (Inoue, 1997a) 

(Inoue, 1997b). Co-based and Fe-based BMGs, Co56B20Fe16B8, Fe56B20Zr10Co7Ni7, 

Fe56B20Zr8Co7Ni7Nb2 and Fe60B15Zr10Co8Mo5W2 with maximum casting diameter of 1 

mm to 6 mm were prepared by arc melting a mixture of the components in an argon 

atmosphere followed by injection casting of the molten alloy into copper mold. These 

BMGs exhibited good soft magnetic properties characterized by low coercive force and 

high permeability (Inoue, 1998). Cu-based BMGs Cu60Zr30Ti10 and Cu60Hf25Ti15 with 

diameter 4 mm were formed by copper mold casting method and they showed high 

fracture strength, above 2 GPa (Inoue, 2001a). 

 

Many researchers are devoted to the study of BMGs, as is reflected by the annual 

symposia on BMGs organized by The Materials Research Society and The Mineral, 



Metals and Materials Society as well as the biannual BMG conference. Figure 1.1 shows 

how the critical casting thickness of BMGs has increased three-orders of magnitude over 

the past forty years (Loffler, 2003). The potential applications of BMGs are summarized 

in Table 1.1 (Inoue, 2000) (Wang 2004c). 

 

1.2 Glass Forming Ability 

The Glass Forming Ability (GFA) reflects how easy a liquid vitrifies on cooling. It is 

often considered as a dynamic competition between cooling rate and crystallization 

kinetics. It is related to the glass’s resistance against devitrification on heating 

(Nascimento, 2005). Above the critical cooling rate Rc, no crystallization occurs during 

solidification. BMGs with high GFA can be vitrified with low critical cooling rate Rc and 

into geometries with large critical casting diameter dc. However, Rc is not easily 

measured. 

 

It is a time-consuming process since solidification trials with various cooling rates are 

needed. Various criteria have been proposed to evaluate the GFA of alloys based on the 

 

 
Figure 1.1: Evolution of the critical casting thickness for bulk metallic glasses over the 

past forty years (Loffler, 2003). 
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Table 1.1: Application fields for BMGs (Inoue, 2000) (Wang, 2004 c). 

 

Properties                                                         Application field 

High strength                                                   Machinery structural materials 

High hardness                                                  Cutting materials 

High fracture toughness                                   Die materials 

High impact fracture energy                            Tool materials 

High fatigue strength                                        Bonding materials 

High elastic energy                                           Sporting goods materials 

High corrosion resistance                                 Corrosion resistance materials 

High wear resistance                                         Writing application materials 

High reflection ratio                                          Optical precision materials 

High viscous flowability                                   Ornamental materials 

High wear resistance and manufacturability      Medical devices materials  

 

characteristic temperatures, easily obtained by differential thermal calorimetry and/or 

differential thermal analysis.  

 

In 1969, the first criterion was proposed by Turnbull, using the reduced glass transition 

temperature Trg, 

                                                               Trg=Tg/Tl                                                       (1.1) 

with Tg the glass transition temperature and Tl the liquidus temperature (Turnbull, 1969). 

Turnbull predicted that a liquid with Trg≥ 2/3 becomes very sluggish on laboratory time 

scale and can only crystallize within a very narrow temperature range, and thus can be 

readily undercooled into the glassy state with a low cooling rate. Larger Trg indicates 

better GFA because of smaller temperature range from melt to glassy solid state during 

the solidification, leading to easier freezing of the glassy state. Turnbull’s criterion has 

played a crucial role in the early development of BMGs (Inoue, 1989) (Inoue, 1990a). 

Nowadays it is still widely used to find BMGs of new compositions and good glass 

formers (Waniuk, 2001) (Inoue, 2001a). Lu et al. reported that Tg/Tl showed better 
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correlation with GFA than Tg/Tm (with Tm the melting temperature) after examining 

various BMGs, including Mg-Ni-Nd, Zr-Al-Cu-Ni, Ti-Zr-Cu-Ni, La-Al-Ni-Cu, Pd-Cu-Si, 

Pd-Cu-Ni-P, Nd (Pr, Sm, Y)-Fe-Al etc. (Lu, 2002). 

 

Since the late 1980s, the supercooled liquid region ∆Tx has been used to evaluate the 

GFA of BMGs: 

                                                      ∆Tx=Tx-Tg                                                                (1.2) 

with Tx the onset crystallization temperature (Inoue, 1989) (Inoue, 1990a) (Zhang, 1991) 

(Inoue, 1996) (Inoue, 1997a) (Inoue, 1999). Large ∆Tx indicates good GFA, since it 

implicates that the supercooled liquid can exist in a wide temperature range without 

crystallization and the resistance to the transition from solid glassy state to crystalline 

state during the heating is high. Inoue et al. investigated a number of Fe-, Pd-, Pt-, La-, 

Zr- and Mg-based BMGs and proved the correlation among the critical cooling rate Rc, 

maximum sample thickness tmax and supercooled liquid region ∆Tx as shown in Figure 1.2 

(Inoue, 1999). Not shown in the figure is the additional correlation that was found 

between Rc, tmax and the reduced glass transition temperature Trg. 

 

Although both Trg and ∆Tx have been widely used to evaluate GFA of BMGs, they show 

different trends versus GFA in some alloy system. For instance, Waniuk et al. reported 

that for Zr-Ti-Cu-Ni-Be BMGs only Trg correlated well with GFA (Waniuk, 2001). Inoue 

et al. showed that for Cu-Zr-Ti and Cu-Hf-Ti alloys GFA correlated better with Trg than 

with ∆Tx (Inoue, 2001a) (Inoue, 2001b). On the other hand, it was reported that for 

Pd40Ni40-xFexP20 (Shen, 1999a), Fe-(Co, Cr, Mo, Ga, Sb)-P-B-C (Shen, 1999b), and 

Mg65Cu15M10Y10 (M=Ni, Al, Zn, Mn) (Murty, 2000), ∆Tx, rather than Trg, provided good 

gauge for the optimization of GFA. 

 

In 1972, the Hruby factor Kgl was proposed to evaluate GFA of non-polymer glasses, 

such as As-Te-Si, As-Te-Tl, As-Te-Ge, Cd-Ge-As-P (Hruby, 1972). Defined as 

                                                             Kgl=(Tx-Tg)/(Tl-Tx)                                           (1.3) 

with Tx, Tg and Tl as defined above, this factor is also used to evaluate GFA of BMGs and 



 
Figure1.2: Relation among the critical cooling rate Rc, maximum sample thickness tmax 

and supercooled liquid region ∆Tx for typical bulk glassy alloys (Inoue, 1999). 

 

it was reported that Kgl is more suitable than ∆Tx and Trg in the evaluation of GFA of Zr-

Cu-Al alloys (Yokoyama, 2004). 

 

The “confusion principle” indicates that when more elements are involved, there is 

smaller chance that the alloy can select viable crystal structures, leading to a greater 

chance of glass forming (Greer, 1993). It is believed that large glass forming ability 

results from a combined effect of the difficulty of long-range atomic redistribution 

required for the precipitation of the compounds, the rapid increase of viscosity with 

decreasing temperature and the large liquidus-solidus interfacial energy stemming from 

the optimally bonding and packing states due to large negative heat of mixing and large 

atomic size ratios (Inoue, 1993b). The empirical criteria are summarized as follows: 

(1) multicomponent alloy of three or more elements with a composition close to the deep 

eutectic;  

(2) atomic radius mismatch between the components is greater than 12%; 

(3) large negative heat of mixing between the main components (Inoue, 1995) (Inoue, 

1998).  
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Lin et al. proposed that the critical cooling rate Rc can be estimated from the critical 

casting diameter dc,  

                                                                   2

10

c
c d

R =                                                     (1.4) 

with Rc in the unit of K/s and dc in the unit of cm (Lin, 1995). 

 

In supercooled liquids, the movement of atoms slows down upon supercooling, which is 

illustrated by the increase in the viscosity η of the liquid. The Vogel-Fulcher-Tammann 

equation,  

                                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0 exp
TT

Aηη                                         (1.5) 

with η0 the high temperature limit of viscosity and T0 the VFT temperature at which the 

barrier to flow goes to infinity, was proposed to describe the temperature dependence of 

the viscosity η (Vogel, 1921) (Fulcher, 1925) (Tammann, 1925). The concept of the 

fragility of a glass forming liquid was proposed by Angell, who modified the Vogel-

Fulcher-Tammann equation into 

                                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0
0 exp

TT
DT

ηη                                         (1.6) 

with D the fragility parameter (Angell, 1985) (Angell, 1995). A large D value indicates a 

strong liquid and thus a good glass former, showing an Ahrrenius temperature 

dependence of the viscosity in the supercooled melt, 

                                                                )/exp(0 TEaηη =                                          (1.7) 

with Ea the high temperature activation energy. Small D values indicate a fragile liquid, 

and thus a bad glass former, showing non-Ahrrenius temperature dependence of viscosity. 

The viscosity is typically normalized to the glass transition temperature Tg, where the 

viscosity is 1013 poise, i.e. 1012 Pa⋅s, as shown in Figure 1.3.  

 

The fragility index m is defined as  
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Figure 1.3: Scaled viscosity data for glass-forming liquids showing range of behavior 

from “strong” characteristic of open tetrahedral network liquids, to “fragile” typical of 

ionic and molecular liquids. ZBLA is (ZrF4)0.53(BaF2)0.20(LaF3)0.04(AlF3)0.03(NaF)0.20 

(Angell, 1985). 

 

                                                                
gTTg TT

Tm
=

∂
∂

=
)/(
)(logη                                        (1.8) 

(Angell, 1985) (Novikov, 2004). Large m values indicate a fragile liquid, and thus a bad 

glass former. The Angell plot of the viscosities of Mg-based, Zr-based BMGs and several 

nonmetallic glasses is shown in Figure 1.4 (Busch, 1998). It indicates that BMGs are 

moderately strong liquids. D usually ranges from 3 (for fragile liquids, such as pure 

metals) to 40 (for strong liquids, such as silica). For BMGs, D is typically 15-25 (Busch, 

2001). Tanaka studied a number of Mg-, Zr-, Cu-, Pd-, La-based BMGs and proved the 

correlation between GFA (indicated by the critical cooling rate Rc) and fragility 

parameter D, as shown in Figure 1.5 (Tanaka, 2005).  

 

In general, the lower the Gibbs free energy difference ∆G between the liquid and the 

crystalline states, the better the glass forming ability of the alloy. Glade et al. 

calculated∆G for some Zr-based, Cu-based and Mg-based metallic glasses and gave a 

qualitative evaluation of the GFA, as shown in Figure 1.6 (Glade, 2000).  
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Figure 1.4: Angell plot of the viscosities of Mg-based, Zr-based BMGs and several 

nonmetallic glasses (Busch, 1998). 

 

 

 

1.  Mg65Cu25Y10
2.  Zr46.75Ti8.25Cu7.5Ni10Be27.5
3.  Zr41.2Ti13.8Cu12.5Ni10Be22.5
4.  Pd40Ni40P20
5.  Pd48Ni32P20
6.  Cu47Ti34Zr11Ni8
7.  Pd77.5Cu6Si16.5
8.  La55Al25Ni5Cu10Co5
9.  La55Al25Ni10Cu10
10. La55Al25Ni15Cu5
11. La55Al25Ni5Cu15
12. La55Al25Ni20

Figure 1.5: Correlation of the inverse of the critical cooling rate Rc
-1 with the fragility 

parameter D (Tanaka, 2005). 
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Figure 1.6: The calculated difference in the Gibbs free energy between the liquid and the 

crystalline states for a number of glass forming alloys (Glade, 2000). 

 

Lu and Liu proposed a parameter γ to indicate the GFA of BMGs based on crystallization 

processes during cooling and reheating of the supercooled liquid (Lu, 2002) (Lu, 2003). 

                                                                 γ=Tx/(Tg+Tl)                                                 (1.9) 

The maximum value of γ is 0.5. Larger γ indicates better GFA. After examining 49 

metallic glasses, including Mg-based, Zr-based, La-based, Pd-based, Nd-based, Cu-based 

and Ti-based metallic glasses, an exponential relationship was found between Rc and γ,  

                                                          γ9.5071.21log10 −=cR                                     (1.10) 

as shown in Figure 1.7. The statistical correlation factor R2 of the fit is as high as 0.91, 

implying a strong correlation between Rc and γ. The critical casting diameter dc as a 

function of γ for typical BMGs shows also an exponential relationship, 

                                                         γ11.1855.6log10 +−=cd                                    (1.11) 

but with a lot of scattering (R2=0.57). 

 

Du et al. proposed a modified γ parameter (Du, 2007a), defined as 

                                                                γm=(2Tx-Tg)/Tl                                              (1.12) 
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Figure 1.7: Correlation between parameter γ and critical cooling rate Rc for representative 

metallic glasses (Lu, 2002). 

 

with increasing γm, Rc is lower, indicating better GFA. 

 

Gorsse et al. performed thermodynamic analysis of GFA in Ca-Mg-Zn BMGs and 

proposed that the combination of low onset driving forces, high solid/liquid interfacial 

energy and strong liquid behavior lead to better GFA (Gorsse, 2006). Senkov proposed 

the parameter F1, 

                                                    

211

2

min

1

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

rgTm
m

F                                          (1.13) 

where m is the fragility index and Trg is the reduced glass transition temperature, to 

evaluate GFA of glasses (Senkov, 2007). Small m values indicate a strong glass forming 

liquid and thus a good glass former. The extremely strong liquid shows Arrhenius 

behavior and has the minimum m value, mmin≈16. The extremely fragile liquid has m 

value close to infinity. F1 is close to zero for an extremely fragile liquid, and it is equal to 
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2Trg / (1+Trg) for an extremely strong liquid. With increasing Trg and decreasing m, F1 

increases and the critical cooling rate Rc decreases, as shown in Figure 1.8. An 

exponential relationship between F1 and Rc, 

                                                         cRF 101 log047.054.0 −=                                    (1.14) 

 was identified and verified by available experimental data for metallic Mg-, Pd-, Cu-, Zr-, 

La-based glasses and nonmetallic glasses, as shown in Figure 1.9. F1, a function of Trg 

and m, has better correlation with Rc than Trg and m individually. 

 

The various approaches to estimate the glass forming ability are further complicated by 

the fact that the characteristic temperatures, e.g. Tg, Tx and Tl, depend on the heating rate  

 (Debenedetti, 2001). For instance, when the cooling rate changes by one order of 

magnitude, the change in Tg is 3-5 K. When GFA is evaluated using the above parameters, 

the heating rate needs to be considered. Lu et al. examined some BMGs and reported that 

when the heating rate is changed from 10 K/min to 40 K/min, the change in γ value is less 

than 5% (Lu, 2003). With the development of new BMGs and other glasses, research 

efforts are devoted to the search of a better GFA parameter. 

 

 
Figure 1.8: Dependence of the glass forming ability parameter F1 on the fragility index m 

at three different Trg values (Senkov, 2007). 
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Figure 1.9: Correlation between the critical cooling rate Rc and the glass forming ability 

parameter F1 for several glass forming systems. Solid circles correspond to the bulk 

metallic glasses and open diamonds correspond to the nonmetallic glasses (Senkov, 2007). 

 

1.3 Elastic Properties of BMGs 
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The elastic properties of a solid describe how the material responds to stress and are of 

considerable interest to both science and technology. Not only do they contain 

fundamental information about the nature of the interatomic bonding in the material, they 

determine the mechanical behavior of solids, and are therefore essential parameters to 

determine potential failure of an object in a given application. In the past few years, 

significant research efforts have been devoted to the study of the elastic properties of bulk 

metallic glasses (BMGs) (Wang, 2006) (Tarumi, 2007) (Duan, 2008). Knuyt et al. 

calculated the difference between the moduli of the amorphous and crystalline phases 

using a Gaussian distribution for the nearest-neighbor distance and a two-particle inter-

atomic potential (Knuyt, 1991). It was demonstrated that the anharmonic part of the inter-

atomic potential and local relative atomic displacements lead to the lower moduli in the 

amorphous phase. According to the computer simulation, the bulk modulus is 4% lower 

and the shear modulus is 30% lower in the amorphous solid compared to its crystalline 

counterpart, in agreement with a number of experimental data (Golding, 1972) (Chen, 



1978) (Knuyt, 1986). Section 1.3.1 will focus on the effects of temperature, pressure and 

composition on the elastic properties. Section 1.3.2 will concentrate on the relationship 

between elastic constants and mechanical properties. Section 1.3.3 will focus on the 

correlation of elastic constants with the glass transition temperature Tg and with the glass 

forming ability (GFA). Section 1.3.4 will concentrate on the physics of elastic properties. 

 

1.3.1 Effects of temperature, pressure and composition on elastic properties 

Wang et al. measured the elastic moduli of Pd39Ni10Cu30P21 BMG (with Tg=564 K and 

Tx=637 K) as a function of annealing temperature as shown in Figure 1.10 (Wang, 2000). 

With increasing annealing temperature, both the density and the elastic moduli increase 

due to the progressive ordering while the sample stepwise undergoes structural relaxation 

and crystallization. After crystallization, Young’s modulus E increases 25.1%, the shear 

modulus G increases 27.3% and the Debye temperature θD increases 12.3%. On the other 

hand, the bulk modulus B increases only 1.25% and the density ρ increases 0.62%. The 

large increase in G and θD is mainly attributed to the strong interactions among atoms, 

 

 

 

Figure 1.10: Dependence of shear modulus G and Debye temperature θD on annealing 

temperature (Wang, 2000). 
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rather than densification. Harms et al. investigated the effect of annealing and plastic 

deformation on the density and moduli of Pd40Cu30P20Ni10 and also found that the relative 

change in the shear modulus is much larger than that in the density (Harms, 2003). 

 

Ichitsubo et al. investigated the elastic properties of Zr55Cu30Al10Ni5 BMG at high 

temperatures (Ichitsubo, 2003). As shown in Figure 1.11, the elastic constants of as-cast 

samples decrease monotonically upon warming and then jump up around Tg due to 

structural relaxation in the heating process. Such jump does not occur in the cooling and 

subsequent heating processes. The temperature dependence of the ultrasonic attenuation 

is shown in Figure 1.12. Upon heating, a prominent attenuation peak occurs near Tg due 

to atomic movements.  

 

Wang’s group in China studied the pressure dependence of the elastic response of various 

BMGs, including Zr-based (Wang, 1999), Pd-based (Wang, 2003a), Nd-based (Zhang, 

2003) and Ce-based BMGs (Zhang, 2005). Zr-based, Pd-based and Nd-base BMGs show 

normal behavior, i.e. the elastic constants and Debye temperature increase slightly with 

 

 
Figure 1.11: Changes in the elastic constants in the heating and cooling processes 

(Ichitsubo, 2003). 
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Figure 1.12: Changes in the ultrasonic-attenuation coefficients in the heating and cooling 

processes (Ichitsubo, 2003). 

 

increasing pressure, as shown in Figure 1.13 and Figure 1.14, respectively (Wang, 1999). 

The increase in elastic constants is attributed to the denser packing of the metallic glasses. 

On the other hand, Ce-based BMGs show unusual behavior (Zhang, 2005): with 

increasing pressure, shear modulus increases, but bulk modulus and Poisson ratio 

decrease. It is suggested that in the Ce-based BMGs, the local structure typical of regular 

BMGs may coexist with the covalent bonding structure typical of oxide glasses. 

 

The composition dependence of the elastic properties has been widely studied (Wang, 

2006) (Gu, 2006) (Duan, 2007) (Zhang, 2007a) (Duan, 2008). Recent attempts to 

“predict” the elastic moduli of novel BMGs have explored to what extent the elastic 

constants of the glasses can be regarded as a weighted average of the moduli of the 

constituent crystalline elements. These calculations are based on the concept of the 

property of a glass being an average, restricting consideration to systems in which all the 

constituent elements are metallic. The averages of the moduli can be obtained by atomic 

fraction or volume fraction. 
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Figure 1.13: Variation of elastic constants C of Zr41Ti14Cu12.5Ni9Be22.5C1 with pressure P. 

C is normalized by (C-C0)/C0, where C0 is a normal modulus at ambient P0 (Wang, 1999). 

Pressure, P (GPa) 

 

 

 

 
Pressure, P (GPa) 

Figure 1.14: Dependence of Debye temperature on the pressure in 

Zr41Ti14Cu12.5Ni9Be22.5C1 (Wang, 1999). 

 



Wang’s group in China showed that the elastic constants of BMGs can be estimated using 

                                                                      1
1

−∑
=

iaiCx
C                                       (1.15) 

where the sum is taken over all constituent elements of the BMG, xai is the atomic 

fraction of the constituent element and Ci is elastic constant of the corresponding 

constituent element of the material  (Zhang, 2003) (Zhang, 2004) (Wang, 2006). Based 

on the evaluation of 21 BMGs, including Zr-, Nd-, Pd-, La-, Cu-, Pr-, Mg-, Gd-, Ni-, Ce-, 

and Er-based BMGs, the ratio of calculated elastic constants to experimental results was 

found to be in the range of 0.93 to 1.2. It provides useful guidelines for the development 

of BMGs with desirable properties by properly selecting constituents. 

 

Based on composite mechanics, Zhang and Greer proposed that the elastic constants of 

BMGs can be estimated by averaging the elastic constant of the constituent elements by 

volume fraction (Zhang, 2007a). Assuming uniform strain, the elastic constants of BMGs 

can be estimated using 

                                                                      iviCxC ∑=                                        (1.16) 

where the sum is taken over all constituent elements of the BMG, xvi is the volume 

fraction of the constituent element and Ci is elastic constant of the corresponding 

constituent element of the material. It is expected to give an upper limit for the expected 

elastic constants of a given BMG. On the other hand, assuming uniform stress, the elastic 

constants of BMGs can be estimated using 

                                                                      
∑ −

= 1
1

iviCx
C                                        (1.17) 

with xvi and Ci as defined above. It is expected to give a lower limit for the expected 

elastic constants of a given BMG. Good correlations between the estimated elastic 

moduli and the measured values have been found. However, the averaging techniques 

have to be used with caution, as it has been shown that they sometimes fail to provide an 

accurate estimate for BMGs (Gu, 2006).  
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1.3.2 Relationship between elastic constants and mechanical properties 

The ductility of crystalline materials is known to be correlated to the ratio of the elastic 

shear modulus to the bulk modulus G/B, which is in turn related to the Poisson ratio ν 

(Pugh, 1954) (Kelly, 1967) (Rice, 1974) (Hecker, 1978). In crystalline materials, plastic 

deformation involves the motion of dislocations on close-packed planes. The bulk 

modulus B is related to the surface energy, which in turn is related to the brittle fracture 

strength (Elliott, 1947). In crystalline materials, brittle fracture involves the tensile 

separation of non-close-packed atomic planes caused by the propagation of cracks 

through grains or along the grain boundaries. A low G/B, or high ν, is a good 

phenomenological indicator of inherent ductility. For ideally brittle materials, the fracture 

energy Gf, i.e. the energy required to create two new fracture surfaces, is twice the 

surface energy per unit area. Under plane strain, the fracture energy Gf is 

                                                          
E

KG f
)1( 22 ν−

=                                               (1.18) 

where K is the stress intensity, E is the Young’s modulus and ν is the Poisson ratio (Irwin, 

1957) (Knott, 1973). 

 

A similar assessment for metallic glasses was not available until recently. The fracture 

toughness KIc of BMGs was first reported in 1997 (Conner, 1997) (Gilbert, 1997). KIc≈ 

55 MPa⋅m1/2 for amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5, comparable to that of high 

strength steel and aluminum alloys. After heat treatment at temperatures above Tg, 

crystallization occurred, leading to drastic reduction of KIc to ∼1 MPa⋅m1/2 (Gilbert, 1997). 

Wesseling et al. investigated Cu60Zr20Hf10Ti10 BMG and reported that KIc> 65 MPa⋅m1/2 

(Wesseling, 2004). At temperatures between 0.7Tg and 0.8Tg, significant softening occurs, 

indicated by a drastic decrease in hardness, as shown in Figure 1.15 (Wesseling, 2004). It 

is expected that homogeneous deformation of metallic glasses occurs at T> 0.6Tg.  

 

Schroers and Johnson prepared Pt57.5 P22.5Cu14.7Ni5.3 BMG, which showed 20% plastic 

strain in compression, more than 3% strain to failure during bending, and a high fracture 

toughness, KIc ≈ 80 MPa⋅m1/2 (Schroers, 2004). The large ductility is caused by the 
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Figure 1.15: Microhardness versus temperature for Cu60Zr20Hf10Ti10 BMG (Wesseling, 

2004). 

 

formation of very dense shear bands. The high Poisson ratio, ν=0.42, leads to the 

extension of a shear band, rather than the initiation of a crack. Therefore, deformation is 

achieved by the formation of multiple shear bands, resulting in large global ductility and 

high fracture toughness. The deformation changes from inhomogeneous to homogenous 

during heating and large plasticity is exhibited in the vicinity of the glass transition 

temperature Tg. BMGs with low Tg (ie. close to room temperature where mechanical 

properties are typically determined), are more likely to exhibit room temperature ductility. 

It has been suggested that a large Poisson ratio and a low glass transition temperature 

might be regarded as indicators of the ductile character of a bulk metallic glass and could 

therefore be used as a means of identifying ductile BMGs. 

 

Xi et al. reported a correlation between the fracture toughness KIc and the plastic zone 

size w for various BMGs, as shown in Figure 1.16 (Xi, 2005). The plastic zone size w can 

be calculated using 

                                                          
2

025.0 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

y

IcK
w

σ
                                               (1.19) 
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Figure 1.16: Fracture toughness or strength response to the plastic process zone size (Xi, 

2005). 

 

where σy is the yield strength. KIc is ∼10 MPa⋅m1/2 for Ce70Al10Ni10Cu10 and ∼2 MPa⋅m1/2 

for Mg65Cu25Tb10. With increasing KIc, w increases, indicating better ductility. It was 

shown that the fracture in brittle glasses also proceeds by the local softening mechanism, 

similar to the tough glasses, but at different length scales.  

 

Lewandowski et al. reported a universal correlation between the fracture energy Gf and 

the Poisson ratio ν for metallic glasses (including Mg-, Ce-, Fe-, Zr-, Cu-, Pd-, and Pt- 

based BMGs) and oxide glasses as shown in Figure 1.17, with ductile glasses displaying 

a high Poisson ratio (Lewandowski, 2005). The transition from tough to brittle regimes is 

in the range ν=0.31-0.32. 

 

The mechanical and physical properties of 35 BMGs, including Zr-, Ti-, Cu-, Pd-, Fe-, 

Ni-, Co-, W-, Mg-, La-, Ce-, Nd-, Pt-, Al- and Ca-based BMGs, were examined (Wang, 

2005). Good correlation of fracture strength σ and Vickers hardness Hv with Young’s 

modulus E were found with σ≈E/50 and Hv≈E/20, as shown in Figure 1.18. The fracture 

strength of BMGs ∼ E/50 is close to the theoretical strength ∼ E/5 – E/10 (Greer, 1995) 

and higher than that of crystalline materials (Wang, 2005). 
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Figure 1.17: The correlation of fracture energy Gf with Poisson ratio ν for metallic 

glasses (as-cast and annealed) and oxide glasses (Lewandowski, 2005). 
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Figure 1.18: Correlation of fracture strength σ and Vickers hardness Hv with Young’s 

modulus E for various BMGs (Wang, 2005). 
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Inoue et al. compared Cu-, Zr-, Pd-, Mg-, La-based BMGs with conventional structural 

materials, including Ti alloy, Mg alloy, stainless steel, super high strength steel and 

Duralumin in terms of σ/E and Hv/E and found that BMGs have higher values, as shown 

in Figure 1.19 (Inoue, 2002). Based on room temperature elastic constants and 

compressive yield stresses for ∼30 metallic glasses including Zr-, Pd-, Ni-, Cu-, Pd-, Pt-, 

Mg-, Ce-, Cu-, Fe- and Au-based BMGs, Johnson et al. reported that yielding can be 

described by a critical shear strain 0020.00267.0/ ±== GYC τγ  with τY the shear stress  

at yielding and G the shear modulus (Figure 1.20) (Johnson, 2005). Based on the concept 

of inherent states and potential energy landscapes, a cooperative shear model was 

developed, leading to a universal criterion for plastic yielding of metallic glasses with γC 

∝ (T/Tg)2/3. 

 

Using molecular dynamics simulations, the dependence of the elastic properties on 

configurational changes in Cu–Zr BMGs was studied (Duan, 2006). The simulation 

results are consistent with the experimental results reported by Lind et al. (Lind 2006), 

who measured the isoconfigurational elastic constants of Zr46.25Ti8.25Cu7.5Ni10Be27.5 using 

the pulse-echo overlap technique. The samples were isothermally annealed and quenched 

near the glass transition temperature. It was found that the shear modulus G has a strong 

dependence on annealing temperatures and, thus, on the specific configurational potential 

energy of the equilibrium liquid. 

 

1.3.3 Correlation of elastic constants with Tg and GFA 

Egami proposed a correlation between the glass transition temperature Tg and the bulk 

modulus B, as 

                                                               2)(
2

crit
v

Bg

BV
kT

ε=                                              (1.20) 

where V is the average local volume, kB is Boltzmann constant and is the critical 

volume strain ∼0.0554, assuming that the atomic level stresses are totally localized and 

the stresses at neighboring sites are uncorrelated (Egami, 1984) (Egami, 1997). When the 

system is frozen, a long-range stress field is produced and the glass transition temperature 

crit
vε
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Figure 1.19: Relationship between mechanical properties of typical BMGs with Young’s 

modulus E. (a) Tensile fracture strength vs. E; (b) Vickers hardness vs. E (Inoue, 2002). 

 

 
Figure 1.20: Experimental shear stress at yielding, τY vs. shear modulus G at room 

temperature for ∼30 bulk metallic glasses (Johnson, 2005). 
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Tg depends not only on bulk modulus B but also on Poisson ratio ν, 

                                                               
)1(3

))(21(2
2

2,

ν
εν
−

−
=

critT
vBg

BV
kT

                            (1.21) 

where is the critical transformation volume strain ∼0.095 (Egami, 2007). The 

predicted glass transition temperature using Equation 1.21 is in good agreement with 

experimental results in metallic glasses, as shown in Figure 1.21. An empirical linear 

relationship between T

critT
v

,ε

g and Young’s modulus E for 35 metallic glasses, shown in Figure 

1.22, was reported by Wang (Wang, 2005). A correlation between Tg or Tx and the elastic 

constants E, B and G has been reported for rare earth based BMGs, as shown in Figure 

1.23 (Wang, 2006) (Li, 2008). 

 

According to the Lindemann melting criterion, Tm is related to Debye temperature θD  

                                                                                       (1.22) )9/( 222 hukMT DBam ><= θ

where Ma is the average atomic mass, h is Planck constant and u is the oscillation 

displacement. Correlation of Tm and Tg with θD
2 was reported, and a relationship between 

Tg and the shear modulus G was shown for 32 metallic glasses (Wang, 2003b). 

 

Novikov and Sokolov analyzed a large number of glasses, including covalent and 

hydrogen-bonded, Van der Waals, and ionic glasses, and reported the ratio of 

instantaneous bulk to shear bulk modulus B/G in glasses (or Poisson ratio ν) is linked to 

the fragility of the glass-forming liquid, as shown in Figure 1.24 (Novikov, 2004). With 

increasing B/G or ν, the fragility index m increases, indicating larger fragility and poorer 

glass forming ability. Novikov and Sokolov’s work is quite controversial. It was shown 

that when more glasses are examined, including organic, inorganic and metallic glasses, 

the correlation between melt fragility and elastic properties is poor (Battezzati, 2005) 

(Yannopoulos, 2006) and that increasing m will lead to a decreasing Poisson ratio (Johari, 

2006).  

 

Wang investigated 18 metallic glasses, including Zr-, Cu-, Pd-, Pt-, Ce-, Pr-, Gd-, La-, 
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Figure 1.21: Glass transition temperature Tg multiplied by kB/(2BV) as a function of 

Poisson ratio for various metallic glasses. The solid line indicates 
)1(3

))(21(2 2,

ν
εν
−

− critT
v  with 

=0.095 (Egami, 2007). critT
v

,ε

Poisson ratio 

 
 

 
Figure 1.22: Correlation between glass transition temperature Tg and Young’s modulus E 

for various BMGs (Wang, 2005). 



 
(a) 

 
(b) 

Figure 1.23: The correlation of elastic constants with Tg and Tx for rare-earth based 

BMGs (Wang, 2006). 
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 B/G=(vl/vt)2-4/3
 

Figure 1.24: Correlation of fragility with the ratio of the bulk and shear moduli in the 

glassy state (Novikov, 2004). 

 

Nd-, Mg-, Fe-, and Ho-based BMGs, and found a weak correlation between m and B/G, 

as shown in Figure 1.25 (Wang, 2006). A rough correlation was found between Poisson 

ratio ν and critical cooling rate Rc, with BMGs that display a high ν showing poor GFA. 

Novikov and Sokolov reported similar results, shown in Figure 1.26 (Novikov, 2006). 

The difference between metals and non-metals is due to the free electron gas, which leads 

to an additional contribution to the bulk modulus B of metallic glasses. The energy of the 

free electron gas Eel only depends on its density and is insensitive to structure 

rearrangements during structural relaxation at a fixed volume V. On the other hand, the 

shear modulus is insensitive to the free electron gas, since shear strain does not change 

the volume. In metallic glasses, B=Bel+Blat, with Blat the lattice contribution and 

. In nonmetallic glasses, B=B22 / VEVB elel ∂∂= lat. Therefore, the linear correlation 

between m and B/G in metallic glasses has a slope that is lower than that in nonmetallic 

glasses by a factor Blat/(Blat+Bel).  
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Figure 1.25: Correlation between fragility of liquids m and the ratio of instantaneous bulk 

to shear modulus B/G for metallic glasses (Wang, 2006).  

 

 
 B/G
 

Figure 1.26: Correlation between fragility of liquids m and the ratio of instantaneous bulk 

to shear modulus B/G of respective glasses. Circles – data for nonmetallic glass formers. 

Triangles – data for metallic glass formers. Solid lines – linear fits (Novikov, 2006). 
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1.3.4 The physics of elastic properties 

The elastic properties of a given material are linked to its atomic bonding and thermal 

expansion. The dependence of the potential energy U and the force F on the interatomic 

distance r is shown in Figure 1.27 (Kittel, 1986) (Shelby, 1997). 

                                                                
r
UF
∂
∂

=                                                        (1.23) 

When r is large, the atoms do not exert any force on each other. With decreasing r, an 

attractive force acts, pulling atoms closer. When r decreases further, a repulsive force 

kicks in. F=0 (and U is minimized) at the equilibrium interatomic distance r0. The energy 

at r0, U0, is the bonding energy, i.e. the energy required to separate the atoms. Typically, 

materials with high bonding energy also display high melting temperature. According to 

Hooke’s law, the elastic constant C is the derivative of force and second derivative of 

elastic energy with respect to the interatomic distance as follow. 

                                                         2

2

r
U

r
FC

∂
∂

−=
∂
∂

−=                                              (1.24) 

With increasing temperature, the interatomic distance increases due to higher kinetic 

energy (see below), and the curve of the force vs. interatomic distance becomes flattened, 

leading to decreasing elastic constant.  

 

The asymmetry of potential energy vs. interatomic distance leads to thermal expansion, 

as shown in Figure 1.28 (Mohazzabi, 1997). Adjacent atoms in a solid typically behave 

as if they were connected by tiny springs. The amplitude of an oscillation is taken to be 

the horizontal distance between two points of equal potential energy. With increasing 

temperature, the kinetic energy increases, and the atoms vibrate with greater amplitude. 

The average interatomic distance increases, leading to thermal expansion. The thermal 

expansion is related to elastic modulus as follows (Schreiber, 1974), 

                                                                    
s

PG

B
C

3
ργ

α =                                            (1.25) 

where α is the linear expansion coefficient, Bs is the adiabatic bulk modulus, CP is the 

specific heat at constant pressure, ρ is the density, and γG is the Grüneisen constant, 
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Figure 1.27: Dependence of force F and potential energy U on interatomic distance r. (a) 

F vs. r. (b) U vs. r (Kittel, 1986) (Shelby, 1997). 
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Figure 1.28: Schematic relationship between potential energy U and interatomic distance 

r at different temperatures (Mohazzabi, 1997).  
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with θD  the  Debye temperature and V the volume. 

 

Materials with strong bonds usually display high elastic modulus. The shear modulus G is 

defined as follows, 

                                                            
γ
τ

=G                                                               (1.27) 

where τ is the shear stress and γ is the shear strain. It indicates the resistance to shear 

deformation, which involves no change in volume, only a change in shape. The bulk 

modulus B indicates the resistance to a volume change 
V
V∆ , and it is defined as follows, 

                                                          
V

PVB
∆

−=                                                           (1.28) 

where P is the pressure. It provides a good link between thermodynamics and elasticity 

theory. The behavior of bulk modulus can be quite different from that of shear modulus; 

e.g. temperature has typically a much larger effect on shear modulus than on bulk 

modulus. The existence of free electrons in metals and alloys makes them hard to be 
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compressed, but easy to shear, leading to smaller changes in bulk modulus than in shear 

modulus. 

 

Usually when the material is stretched in one direction, it will expand in the other two 

directions. The Poisson ratio is defined as, 

                                                          
y

x

ε
ε

ν −=                                                             (1.29)  

with εy the strain along the stress-applying direction and εx the strain along the 

perpendicular direction. ν is always in the range between -1 and 0.5, and is close to zero 

for cork, close to 0.5 for rubber and equal to 0.5 for liquid. The auxetic materials have 

negative Poisson ratio. The microscopic reason for Poisson’s effect is due to atomic 

movements and stretching of bonds to accommodate the stress. When the bonds elongate 

in the stress direction, they shorten in the other directions. Noble metals such as Pd and 

Au are known to have a high Poisson ratio, ∼0.39. This is due to their electronic 

configuration. For example, Pd has the electronic configuration, 

1s22s22p63s23p64s23d104p65s04d10, with a full d shell. The d-electrons make it hard to 

change volume but easy to shear, leading to high Poisson ratio. 
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CHAPTER 2 

EXPERIMENTAL DETAILS 

In this work, the elastic properties of bulk metallic glasses (BMGs) have been studied 

using resonant ultrasound spectroscopy (RUS). This chapter will focus on the RUS 

technique, including its development, principle and setup. In addition, the sample 

preparation and data analysis will be described. 

 

RUS is a relatively new technique for determining the complete elastic tensor of a solid 

by measuring its free-body resonances (Migliori, 1993) (Migliori, 1997). The mechanical 

resonances can be calculated for a sample with known dimensions, density, and elastic 

tensor, which is known as the “forward problem”.  In a RUS experiment, the mechanical 

resonances of a freely vibrating solid of known shape are measured, and an iteration 

procedure is used to “match” the measured frequencies with the calculated spectrum, i.e. 

solving the inverse problem.  This allows determination of the full elastic tensor of the 

solid from a single frequency scan, which clearly indicates a main advantage of RUS: 

there is no need for separate measurements to probe different moduli, and multiple 

sample remounts and temperature sweeps are avoided. Another advantage lies in the 

ability of RUS to work with small samples: RUS measurements can be made on mm-

sized samples. 

 

RUS is based on the measurement of the vibrational eigenmodes of samples of well 

defined shapes, usually parallelepipeds, cylinders or spheres. The vibrational eigenmodes 

of a three-dimensional object are rather complicated. Figure 2.1 shows some example of 

the calculated eigenmodes for a rectangular parallelepiped (Leisure, 1997). Although the 

methods used in RUS can be traced back to more than one hundred years ago, RUS has 

received wide interest only with the increasing availability of powerful computers.  

  

The first RUS measurement was done in 1964 by Frasier and LeCraw (Fraser, 1964), 

who used the analytic solutions to the forward problem for a sphere of isotropic material 



 
Figure 2.1: An illustration of several vibrational eigenmodes for a rectangular 

parallelepiped (Leisure, 1997).  

 

and inverted graphically. In 1970, Anderson, Schreiber and their coworkers improved the 

method, applied it to spherical lunar rock samples and compared the observed  low sound 

velocities to those in various cheeses (Schreiber, 1970a) (Schreiber, 1970b). In 1971, 

Demarest determined the elastic constants of an isotropic cube and reported that the 

method can be used not only for spheres of isotropic materials, but also for rectangular 

parallelepiped anisotropic crystalline materials (Demarest, 1971). In 1976, Ohno further 

improved the method and used it to determine the elastic constants of orthorhombic 

crystals (Ohno, 1976). Finally, Migliori, Visscher et al. extended the use of this method 

from the geophysics community to the general physics community, introduced the 

computer algorithms and proposed the term “resonant ultrasound spectroscopy” (Migliori, 

1990a) (Migliori, 1990b) (Visscher, 1991) (Migliori, 1993) (Migliori, 1997). 

 

The basic physics is generalized in Hooke’s law. For the one-dimensional case, 

                                                                 
dx
ducc == εσ                                                (2.1) 

where σ is the applied stress, c is the elastic constant, ε is the resulting strain, and u is the 

displacement. For a three-dimensional case,
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where cijkl is the elastic constant tensor. The number of independent elastic constants is 21 

for samples with triclinic symmetry, but is reduced significantly for materials with higher 

symmetry: cubic materials have three independent elastic constants, and isotropic 

materials have only two independent elastic moduli.  

 

The elastic constants of a material can be determined by measuring the sound velocities 

in it and the relations for a cubic material are as follows, 

                                                                           
ρ
11cvl =                                             (2.3) 
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where  is the longitudinal sound velocity,  and  are the transverse sound 

velocities, c

lv 1Tv 2Tv

11 is the longitudinal modulus and c44 and (c11-c12 )/2 are the shear moduli.  

 

For an object with a free surface S surrounding a volume V, the general form of the 

Lagrangian is as follows, 
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where KE is the kinetic energy, PE is the potential energy, ω is the angular frequency, ρ 

is the density, cijkl is the elastic tensor, ui is the i-th component of the displacement vector 

and is assumed to have harmonic time dependence, i.e. u(t)=u0eiωt. When u varies 

arbitrarily in V and on S, the variation in L is as follows, 
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where nj is the outer normal of the free surface. Therefore, the minima of L with respect 

to unrestricted variation of ui occur, when the elastic wave equation in V, 

                                                    0
2

2 =
∂
∂

+∑
jkl lj

k
ijkli xx

u
cuρω                                          (2.8) 

and the free surface boundary conditions, 

                                                               0=
∂
∂∑

jkl l

k
ijklj x

u
cnr                                             (2.9) 

are satisfied. The corresponding angular frequencies ω are the normal mode frequencies 

of the free vibration of the object (Migliori, 1990a) (Visscher, 1991) (Migliori, 1993) 

(Migliori, 1997).  

 

Using the Rayleigh-Ritz method (Arfken, 1970), the displacement vector is expanded in 

some suitable set of basis functions, 

                                                                    ∑ Φ=
λ

λλii au                                           (2.10) 

with aiλ the expansion coefficient. The normalized Legendre polynomials are usually 

chosen to be the basis functions to make the eventual matrix elements easy to compute. 

Therefore,  

                                        )/()/()/( 321 bzPbyPbxPau nml
Nnml
ilmni ∑

≤++

=                          (2.11) 

where P are the Legendre polynomials and 2b1, 2b2, 2b3 are the sample dimensions. By 

substituting Equation 2.11 into Equation 2.6, L is obtain as follows, 

                                                        ( )aaL T rr
Γ−= 2

2
1 ρω                                             (2.12) 

where Γ is a matrix of order  (N+1)(N+2)(N+3)/2, and ar  is the column vector {ailmn}, i=1, 

2, 3, and l+m+n≤N. Maximizing Equation 2.12 with respect to ailmn yields the eigenvalue 

equation, 

                                                                 aa rr 2ρω=Γ                                                  (2.13) 

In practice, N is chosen to give a good compromise between computational accuracy and 

computing time and memory requirements. It is found that N=10 is a reasonable choice. 
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The size of the matrix is 858×858. However, the matrix can be split into blocks to save 

the computing time. For a rectangular parallelepiped crystal having orthorhombic or 

higher symmetry, a tremendous simplification takes place. The largest block is 125×125 

for N=10. The eigenvalues ω2 give the square of the resonant frequencies and the 

eigenvectors conveniently give the displacements (Migliori, 1990a) (Visscher, 1991) 

(Migliori, 1993) (Migliori, 1997).  

 

The next step in RUS is to solve the inverse problem, i.e. to determine the elastic 

constants from the resonant frequencies. Since there is no analytical method, an indirect 

method is used. The difference between the calculated and measured resonant frequency 

spectrum is quantified by a figure-of-merit function as follows, 

                                                           
2
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mea
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i
i f

ff
wF                                 (2.14) 

where fi
cal is the i-th calculated frequency, fi

mea is the i-th measured frequency, and n is 

the number of frequencies. wi is a weighting factor to reflect the degree of confidence in 

the measured frequency fi
mea, and it is usually either 0 or 1. Finally, the Levenberg-

Marquardt method is used to locate the minimum of F in a multidimensional elastic-

constant space (a two-dimensional space in the case of isotropic materials). F is assumed 

to be a quadratic function of the elastic constants near the minimum, so that the surface of 

constant F are ellipsoid with major axes related to the accuracy with which the 

corresponding elastic constants are determined. The accuracy for each elastic constant is 

estimated by finding the length of the corresponding semi-major axis of the ellipsoid 

when F exceeds the minimum by 2% (Chu, 1995). 

 

Figure 2.2 shows a schematic diagram of the measurement setup (Chu, 1995). The 

parallelepiped sample is corner-mounted between two LiNbO3 piezoelectric transducers. 

The two corners on a body diagonal of the sample touch the transducers. The sample is 

excited by a signal applied to one of the transducers. The frequency is swept through a 

range corresponding to a large number of vibrational eigenmodes of the sample. The 

resonant response of the sample is detected by the receiving transducer. A large response  
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Figure 2.2: Schematic setup of resonant ultrasound spectroscopy (Chu, 1995). 

 

is observed when the frequency of the applied signal corresponds to one of the sample’s 

eigenfrequencies. A typical RUS scan is shown in Figure 2.3. The arrows indicate the 

resonant frequencies. The transducers apply some force to the sample, so the boundaries 

are not entirely free. However, it has been found (Migliori, 1993) that if the force applied 

by the transducer is 0.01 N or less, and the drive voltage is kept low, the shift in 

eigenfrequencies resulting from this force is of the order of parts per million. 

 

For our studies, samples of approximately 3x3x3 mm3 are cut from BMG ingots and then 

polished into rectangular parallelepipeds (RP). The mass and dimensions of each sample 

are measured and its density is calculated. The sample is mounted between the two 

transducers of the RUS probe. Measurements as a function of temperature between 5 K 

and 400 K are performed using a specially designed probe that fits in a Physical Property 

Measurement System from Quantum Design. 

 

Figure 2.4 shows the RUS probe for corner-mounting. When the sample is corner-

mounted, the restriction of its vibration is reduced to the least. However, small forces 

exerted on the sample may knock the sample out from between the transducers. Migliori 
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Figure 2.3: a typical RUS scan. 
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Figure 2.4: RUS probe for corner-mounting. 
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suggested that these problems can be avoided by flat-mounting the sample. As illustrated 

(and exaggerated) in Figure 2.5, when the transducers are not entirely parallel, the sample 

surfaces are not clamped and the sample is still allowed to vibrate freely. The RUS probe 

for flat-mounting is shown in Figure 2.6. Measurements at higher temperatures (up to 750 

K) are performed using the high temperature apparatus developed by Gladden’s group at 

The University of Mississippi, as shown in Figure 2.7. The sample is mounted between 

two buffer rods. The transducers are placed outside the furnace to maintain their function. 

 

Only two independent elastic constants need to be determined for elastically isotropic 

materials such as BMGs. In crystalline solids, these two elastic constants would be 

labeled c11 and c44, where the subscripts refer to the crystallographic axes. Since BMGs 

have no crystallographic reference axes, longitudinal (L) and shear (G) directions are 

used. The bulk modulus B, Young’s modulus E and Poisson ratio ν, can be calculated 

using the equations below. 
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Figure 2.5: Schematic of the sample flat-mounted between the transducers. 
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Figure 2.6: RUS probe for flat-mounting. 

 

 

 
Figure 2.7: High temperature apparatus. 
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The Debye temperature of the solid θD can be obtained from the room temperature elastic 

moduli, with G and B the shear and bulk modulus at room temperature, M the molecular 

mass, ρ the physical density, h the Planck constant, kB the Boltzmann constant, and NA 

Avogadro’s number (Girifalco, 1973) (Kittel, 1986) (Wang, 1999) (Wang, 2003b). 
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The energy dissipation (or loss) is typically expressed in terms of the quality factor Q of 

the resonance. It can be determined from the full width at half maximum (FWHM) of the 

resonant frequencies.  

                                                                 
f
fQ ∆

=−1                                                     (2.20) 

 

The heat capacity of BMGs reported in this work has been measured using a Physical 

Property Measurement System from Quantum Design. BMG samples of mass ∼20 mg 

were mounted on the microcalorimeter platform of size 3x3mm2 using cryogenic grease 

(Apiezon N Grease for T < 350 K and Apiezon H Grease for T > 350 K). High vacuum is 

maintained during heat capacity measurement. 
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CHAPTER 3 

ZIRCONIUM BASED AND COPPER BASED BULK METALLIC 

GLASSES 

Zr-based alloys have received wide interest because of their superior GFA, high strength, 

and relatively low cost (Yokoyama, 2003) (Inoue, 1990a) (Zhang, 1991) (Peker, 1993). 

However, the low ductility limits their applications as structural materials. Previously 

reported measurements of the mechanical properties of Zr-based alloys include tensile 

and compressive tests at room temperature (Liu, 1998), quasi-static uniaxial compression 

tests (Gu, 2003), tensile tests (Wang, 2004a), Charpy impact tests (Yokoyama, 2003) 

(Yokoyama, 2002) as well as fatigue behavior measurements (Wang, 2004a) (Peter, 

2002) (Wang, 2004 b). Since Pd has a high Poisson ratio (∼0.39), it is expected that by 

increasing Pd content in Zr50Cu40-xAl10Pdx, BMGs with high Poisson ratio and thus better 

ductility will be obtained.  

 

Section 3.1 will focus on the elastic properties of several Zr-based BMGs, measured 

using resonant ultrasound spectroscopy. Our data include measurements on the recently 

developed Zr63.8Ni16.2Cu15Al5 alloy, which contains two amorphous phases (Du, 2007b). 

It shows remarkable plasticity, i.e. 30% plastic strain, at room temperature. According to 

the computational-thermodynamic approach, the compositions of the two liquid phases in 

the liquid temperature region are Zr68.4Ni23.9Cu6.6Al1.1 and Zr61.7Ni12.8Cu18.8Al6.7, 

respectively. As shown in Figure 3.1, scanning electron microscopy (SEM) image and X-

ray diffraction (XRD) pattern confirm the glassy nature of the BMG. The transmission 

electron microscopy (TEM) bright-field image and the selected area-diffraction pattern 

illustrate the existence of two glassy phases with bright and dark contrasts, respectively. 

The high resolution electron microscopy (HREM) image of the interface shows that the 

two glassy phases combine homogeneously.  

 

Cu-based BMGs have attracted intensive interest because of their low cost and good 

mechanical properties (Inoue, 2001a) (Qiao, 2007) (Duan, 2008) (Fu, 2008) (Lin, 2008).  



 
Figure 3.1: Microstructures of Zr63.8Ni16.2Cu15Al5. (a) Scanning electron microscopy 

image of the etched as-cast microstructure with the inserted X-ray diffraction pattern. (b) 

and (c) Transmission electron microscopy bright-field image. (d) High resolution electron 

microscopy image of the interface marked in (c) (Du, 2007b). 

 

Their thermal properties, mechanical properties and corrosion properties have been 

widely studied. Section 3.2 will concentrate on the elastic properties of Cu-based BMGs. 

 

3.1 Zr-Based BMGs 

3.1.1 ZrCuAl and ZrCuAlNi (Ta, Y, Ti) BMGs 

Zr-based BMGs, Zr52.5Cu17.9Ni14.6Al10Ti5, Zr50Cu30Ni10Al10 and Zr50Cu40Al10 were 

prepared by arc-melting pure elements in argon atmosphere (Yokoyama, 2003) 

(Yokoyama, 2002) (Gu, 2003). Table 3.1 summarizes the glass transition temperature Tg, 

crystallization temperature Tx, liquidus temperature Tl determined using differential 

scanning calorimetry (DSC) and differential thermal analysis (DTA). In addition, Glass 

Forming Ability (GFA) parameters, including the supercooled liquid region ∆Tx, reduced 

glass transition temperature Trg, Hruby factor Kgl, γ and γm of Zr-based BMGs are also 

shown in Table 3.1. 
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Table 3.1: Glass transition temperature Tg, crystallization temperature Tx, liquidus 

temperature Tl, supercooled liquid region ∆Tx, reduced glass transition temperature Trg, 

Hruby factor Kgl, γ and γm of Zr-based BMGs. 

 

Composition Tg  

(K) 

Tx  

(K) 

Tl  

(K) 

∆Tx  

(K) 

Trg Kgl γ γm

Zr50Cu30Ni10Al10 708 779 1100 71 0.644 0.221 0.431 0.773

Zr50Cu40Al10 706 792 1092 86 0.647 0.287 0.440 0.804

Zr52.5Cu17.9Ni14.6Al10Ti5  686 740 1076 54 0.638 0.161 0.420 0.738

Zr54.45Cu29.7Al9.9Ni4.95Y1 671 747  76     

Zr63.8Ni16.2Cu15Al5 647 745 1178 98 0.549 0.226 0.408 0.716

Zr50Cu37Al10Pd3 705 795 1090 90 0.647 0.305 0.443 0.812

Zr50Cu35Al10Pd5 718 793 1098 75 0.654 0.246 0.437 0.791

Zr50Cu33Al10Pd7 715 792 1110 77 0.644 0.242 0.434 0.783

 

Figure 3.2 (a) shows the temperature-dependence of the shear modulus G for two 

different samples of the Zr-based alloy Zr50Cu30Ni10Al10, and illustrates how the modulus 

increases with decreasing temperature. The small difference between both samples is 

most likely due to a minor difference in density, the sample with the higher density (6.88 

g/cm3) having a slightly higher modulus compared  to the sample with the lower density 

(6.86 g/cm3). The temperature-dependence of the shear modulus can be modeled quite 

well using the so-called Varshni function, with T the temperature,  the elastic constant 

at 0 K, and s and t fitting parameters (Varshni 1970). 

0
ijc

                                                                                                (3.1) )1/()( /0 −−= Tt
ijij escTc

This function was shown by Varshni to describe the temperature-dependence of the 

elastic constants of many simple substances and characterizes to some extent “normal” 

elastic behavior. A similar temperature-dependence is observed in 

Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr50Cu40Al10 BMGs, illustrated in Figure 3.2 (b). The figure 

clearly illustrates how all three alloys follow the “normal” Varshni-behavior, and at the 

same time shows how the elastic moduli of the alloys reflect changes in composition: the 
 49
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Figure 3.2: Shear modulus G as a function of temperature. (a) For two samples of 

Zr50Cu30Ni10Al10; (b) For Zr50Cu30Ni10Al10 ( ), Zr50Cu40Al10 ( ), and 

Zr52.5Cu17.9Ni14.6Al10Ti5 ( ). The solid lines represent a fit using the Varshni model, with 

parameters s= 0.7 GPa and t = 100 K. c0=36.0 GPa and 35.9 GPa for Zr50Cu30Ni10Al10, 

c0=35.7 GPa for Zr50Cu40Al10, and c0=34.0 GPa for Zr52.5Cu17.9Ni14.6Al10Ti5. 

 

shear modulus of Zr50Cu30Ni10Al10 is the highest over the temperature range from 5 to 

300 K, followed by that of Zr50Cu40Al10. The shear modulus of Zr52.5Cu17.9Ni14.6Al10Ti5 is 

the lowest. 

 

Room temperature longitudinal modulus L, bulk modulus B, Young’s modulus E and 

Poisson ratio ν are summarized in Table 3.2. Young’s moduli are in good agreement with 

the results obtained from tensile and compression tests at room temperature for alloys 

with comparable composition, i.e. i.e. 86 GPa for Zr52.5Cu17.9Ni14.6Al10Ti5 (Gu, 2003), 93 

GPa for Zr50Cu43Ni10Al10 (Wang, 2004a) and 89 GPa for Zr50Cu40Al10 (Wang, 2004a). In 

addition, the elastic constants of our Zr-based BMGs follow the trend of previously 

reported data for Zr-based alloys with slightly different compositions (Wang, 2004c) 

(Wang, 2006). Zr52.5Cu17.9Ni14.6Al10Ti5 has high Poisson ratio, reaching 0.374 at room 

temperature. 

 

Figure 3.3 shows the temperature dependence of the longitudinal modulus L, the bulk 
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Table 3.2: Room temperature elastic constants for various Zr-based BMGs. 

 

Composition G 

(GPa) 

L 

(GPa) 

B 

(GPa) 

E 

(GPa) 

B/G ν 

Zr50Cu30Ni10Al10 34.0 165.3 120.0 93.2 3.53 0.371 

Zr50Cu40Al10 33.4 157.5 112.9 91.3 3.38 0.365 

Zr52.5Cu17.9Ni14.6Al10Ti5  32.2 159.7 116.8 88.4 3.63 0.374 

Zr54.45Cu29.7Al9.9Ni4.95Y1 31.1 151.8 110.4 85.2 3.55 0.371 

Zr59Cu18Al10Ni8Ta5 30.9 143.3 102.1 84.3 3.30 0.362 

Zr60Cu30Al10 29.7 146.6 107.0 81.5 3.61 0.373 

Zr63.8Ni16.2Cu15Al5 27.5 147.7 111.1 76.2 4.04 0.386 

Zr65Cu17.5Ni10Al7.5 27.5 143.6 107.0 75.9 3.89 0.382 
aZr65Cu15Ni10Al10 31.0 148.0 106.7 83.0 3.52 0.367 
aZr57Nb5Cu15.4Ni12.6Al10 32.0 150.4 107.7 87.3 3.37 0.365 
aZr53Ti5Cu20Ni12Al10 32.1 149.6 106.8 87.6 3.32 0.363 
aZr48Nb8Cu12Be24Fe8 35.2 160.3 113.4 95.7 3.22 0.359 

a Data from (Wang, 2006). 
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Figure 3.3: Longitudinal modulus L, bulk modulus B and Young’s modulus E as a 

function of temperature for Zr50Cu30Ni10Al10 ( ), Zr50Cu40Al10 ( ), and 

Zr52.5Cu17.9Ni14.6Al10Ti5 ( ). 
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modulus B and Young’s modulus E between 5 K and 300 K. The moduli decrease with 

increasing temperature. Figure 3.4 shows the temperature dependence of the Poisson ratio 

ν as well as the ratio of bulk modulus to shear modulus B/G. With increasing temperature, 

ν and B/G increase. The high Poisson ratios (and B/G values) correlate with the enhanced 

ductility observed in these alloys (Yokoyama, 2003) (Yokoyama, 2002), confirming the 

suggested link between the elastic moduli and the ductility of the alloys.  

 

Zr-based BMGs, Zr54.45Cu29.7Al9.9Ni4.95Y1, Zr59Cu18Al10Ni8Ta5, Zr60Cu30Al10, 

Zr63.8Ni16.2Cu15Al5 and Zr65Cu17.5Ni10Al7.5 were prepared by arc-melting pure elements in 

argon atmosphere and in situ suction casting in a copper mold (Okai, 2007) (Yokoyama, 

2007) (Du, 2007b) (Okuda, 2006). The characteristic temperatures, Tg, Tx and Tl, and the 

GFA parameters are given in Table 3.1. Room temperature elastic constants are shown in 

Table 3.2. Our RUS measurements reveal that the two-glassy-phase BMG 

Zr63.8Ni16.2Cu15Al5 is elastically homogeneous. The striking high Poisson ratio ∼0.39 at 

room temperature agrees with the excellent ductility found in this BMG. The high 

ductility is attributed to the chemical inhomogeneity on the micron scale, i.e. hard phases 

surrounded by soft phases, leading to extensive shear-band formation, interactions and 

multiplication (Du, 2007b). Figure 3.5 shows the temperature dependence of the 

longitudinal modulus L and the bulk modulus B for Zr59Cu18Al10Ni8Ta5, Zr60Cu30Al10, 

Zr63.8Ni16.2Cu15Al5 and Zr65Cu17.5Ni10Al7.5 between 5 K and 300 K. The temperature 

dependences of the shear modulus G, Young’s modulus E , the ratio of bulk modulus to 

shear modulus B/G and Poisson ratio ν are shown in Figure 3.6 and Figure 3.7. They all 

show “normal” elastic behavior, i.e. L, B, G and E decrease with increasing temperature, 

and B/G and ν increase with increasing temperature. 

 

3.1.2 ZrCuAlPd BMGs 

Zr50Cu40-xAl10Pdx (x=0, 1, 2, 3, 5, 6, 7, 9, 12 and 15 at.%) BMGs were prepared by high-

pressure die-casting of the melt into cylindrical copper molds (Yokoyama, 2002) (Maeda, 

2007) (Wang, 2007). For Zr50Cu40-xAl10Pdx (x=0, 3, 6, 9, 12 and 15 at.%) BMGs, rods 

with casting diameters of 4 mm, 6 mm and 8 mm were prepared, in order to investigate 
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Figure 3.4: The ratio of bulk modulus to shear modulus B/G and the Poisson ratio ν as a 

function of temperature for Zr50Cu30Ni10Al10 ( ), Zr50Cu40Al10 ( ), and 

Zr52.5Cu17.9Ni14.6Al10Ti5 ( ). 
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Figure 3.5: Longitudinal modulus L and bulk modulus B as a function of temperature for 

Zr59Cu18Al10Ni8Ta5 ( ), Zr60Cu30Al10 ( ), Zr63.8Ni16.2Cu15Al5 (Ο), Zr65Cu17.5Ni10Al7.5 

( ). 
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Figure 3.6: Shear modulus G and Young’s modulus E as a function of temperature for 

Zr59Cu18Al10Ni8Ta5 ( ), Zr60Cu30Al10 ( ), Zr63.8Ni16.2Cu15Al5 (Ο) and 

Zr65Cu17.5Ni10Al7.5 ( ). 
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Figure 3.7: Ratio of bulk modulus to shear modulus B/G and Poisson ratio ν as a function 

of temperature for Zr59Cu18Al10Ni8Ta5 ( ), Zr60Cu30Al10 ( ), Zr63.8Ni16.2Cu15Al5 (Ο) and 

Zr65Cu17.5Ni10Al7.5 ( ). 
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the effect of casting diameter. 

 

Figure 3.8 shows the longitudinal modulus L, shear modulus G and Poisson ratio ν for 

Zr50Cu40-xAl10Pdx (x=0, 3, 6, 9, 12 and 15 at.%) at room temperature. The bulk modulus 

B and Young’s modulus E are shown in Figure 3.9. The elastic moduli are plotted versus 

the casting diameter of the rods, illustrating that the effects of casting diameter are minor. 

With decreasing casting diameter, the Poisson ratio slightly increases, the shear modulus 

and Young’s modulus slightly decrease, and the longitudinal modulus and the bulk 

modulus generally remain the same.  

 

Since the changes in elastic moduli with diameter are less than 1 %, the discussion of the 

data for various Pd content uses moduli that are averaged over the different casting 

diameter. These averaged moduli for Zr50Cu40-xAl10Pdx (x=0, 1, 2, 3, 5, 6, 7, 9, 12 and 15 

at.%) are listed in Table 3.3, together with the density ρ and Debye temperature θD 

obtained for these materials. Figure 3.10 and Figure 3.11 show the room-temperature 

dependence of the longitudinal modulus, bulk modulus, Poisson ratio, shear modulus and 

Young’s modulus on Pd content. With increasing Pd content (or decreasing Cu content), 

the longitudinal modulus, bulk modulus and Poisson ratio increase gradually. This is in 

agreement with what is expected since Pd has a larger longitudinal modulus, shear 

modulus and Poisson ratio than Cu, as shown in Table 3.4 

(http://www.webelements.com/webelements/elements/). On the other hand, with 

increasing Pd content (or decreasing Cu content), the shear modulus and Young’s 

modulus gradually increase, reach a maximum at 12 at.% Pd and then decrease.  

 

The temperature dependence of longitudinal modulus L, shear modulus G, bulk modulus 

B, Young’s modulus E and Poisson ratio ν for Zr50Cu40-xAl10Pdx BMGs with x=0, 2, 5, 6, 

7, 9, 12 and 15 at.% between 5 K and 400 K are shown in Figures 3.12-3.16. With 

increasing temperature, L, G, B and E decrease, and ν increases.  

 

http://www.webelements.com/webelements/elements/
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Figure 3.8: Dependence of longitudinal modulus L, shear modulus G and Poisson ratio ν 

on the casting diameter of the samples for Zr50Cu40-xAl10Pdx (x=0, 3, 6, 9, 12 and 15 at.%) 

alloys. Pd: 0 at.% ( ), 3 at.% (O), 6 at.% ( ), 9 at.% ( ), 12 at.% ( ) and 15 at.% ( ). 
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Figure 3.9: Dependence of bulk modulus B and Young’s modulus E on the casting 

diameter of the samples for Zr50Cu40-xAl10Pdx (x=0, 3, 6, 9, 12 and 15 at.%) alloys. Pd: 0 

at.% ( ), 3 at.% (O), 6 at.% ( ), 9 at.% ( ), 12 at.% ( ) and 15 at.% ( ). 
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Table 3.3: Density ρ, shear modulus G, longitudinal modulus L, bulk modulus B, 

Young’s modulus E, Poisson ratio ν and Debye temperature θD of Zr50Cu40-xAl10Pdx (x=0, 

1, 2, 3, 5, 6, 7, 9, 12 and 15 at.%) alloys. 

 

Composition ρ 

(g/cm3) 

G 

(GPa) 

L 

(GPa) 

B 

(GPa) 

E 

(GPa) 

ν θD  

(K) 

Zr50Cu40Al10 6.808 33.49 159.07 114.4 91.54 0.3666 282.81 

Zr50Cu39Al10Pd1 6.851 33.74 157.62 112.7 92.02 0.3639 282.91 

Zr50Cu38Al10Pd2 6.868 33.84 158.95 113.8 92.37 0.3648 282.71 

Zr50Cu37Al10Pd3 6.885 33.72 159.90 114.9 92.16 0.3664 281.61 

Zr50Cu35Al10Pd5 6.932 33.93 159.87 114.6 92.65 0.3653 281.06 

Zr50Cu34Al10Pd6 6.979 33.92 160.54 115.3 92.67 0.3661 280.20 

Zr50Cu33Al10Pd7 7.008 34.09 161.79 116.4 93.16 0.3666 280.21 

Zr50Cu31Al10Pd9 7.030 33.99 162.83 117.5 93.01 0.3681 278.67 

Zr50Cu28Al10Pd12 7.141 34.15 164.88 119.4 93.54 0.3694 277.13 

Zr50Cu25Al10Pd15 7.191 33.86 165.28 120.1 92.85 0.3712 274.21 
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Figure 3.10: Dependence of longitudinal modulus L, bulk modulus B and Poisson ratio ν 

on the Pd content for Zr50Cu40-xAl10Pdx alloys. 
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Figure 3.11: Dependence of shear modulus G and Young’s modulus E on the Pd content 

for Zr50Cu40-xAl10Pdx alloys. 

 

 

Table 3.4: Density and elastic moduli of the elements Zr, Cu, Al and Pd 

(http://www.webelements.com/webelements/elements/). 

 

Element   ρ (g/cm3)    G (GPa)    L (GPa)    B (GPa)    E (GPa)        ν                  

 Zr            6.511             33            136            92             68            0.34 

Cu            8.920             48            204           140           130           0.34 

Al             2.700             26            111            76             70            0.35     

Pd            12.023            44            239           180           121          0.39     
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Figure 3.12: Longitudinal modulus L as a function of temperature for Zr50Cu40-xAl10Pdx 

BMGs. 
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Figure 3.13: Shear modulus G as a function of temperature for Zr50Cu40-xAl10Pdx BMGs. 
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Figure 3.14: Bulk modulus B as a function of temperature for Zr50Cu40-xAl10Pdx BMGs. 
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Figure 3.15: Young’s modulus E as a function of temperature for Zr50Cu40-xAl10Pdx 

BMGs. 
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Figure 3.16: Poisson ratio ν as a function of temperature for Zr50Cu40-xAl10Pdx BMGs. 

 

The internal friction Q-1 is shown in Figure 3.17 as a function of temperature for 

Zr50Cu40-xAl10Pdx BMGs with x=0, 2, 3, 6, 12 and 15 at.%. The internal friction refers to 

the energy dissipation (or loss). It provides valuable information about atomic 

displacement and has been widely studied for various bulk metallic glasses (Ichitsubo, 

2003) (Hiki, 2003) (Hiki, 2008) (Yang, 2007) (Fukuhara, 2007) (Fukuhara, 2008). Figure 

3.17 shows that, below 300 K, the internal friction increases slowly with increasing 

temperature. Above 300 K, the internal friction increases more rapidly. The increase in 

the internal friction is attributed to the atomic motion during relaxation, which is also 

known to cause a peak in Q-1, as is observed in the internal friction of Zr50Cu38Al10Pd2 

around 250 K. Similar results have been reported for Zr45Cu45Al5Ag5 (Fukuhara, 2008). 

 

The elastic constants of Zr50Cu25Al10Pd15 were measured up to 730 K, above the glass 

transition temperature (Tg ≈ 720 K). The temperature dependence of the shear modulus G, 

Young’s modulus E and Poisson ratio ν are shown in Figure 3.18. The temperature 

dependence of the longitudinal modulus L and the bulk modulus B are shown in Figure 

3.19. With increasing temperature, all moduli gradually decrease up to about 500 K. 

Above 500 K, a dramatic decrease in B and L is observed. G and E show an almost  
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Figure 3.17: Temperature dependence of internal friction Q-1 for Zr50Cu40-xAl10Pdx BMGs. 
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Figure 3.18: Temperature dependence of shear modulus G, Young’s modulus E and 

Poisson ratio ν of Zr50Cu25Al10Pd15 up to the glass transition temperature. 
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Figure 3.19: Temperature dependence of longitudinal modulus L and bulk modulus B of 

Zr50Cu25Al10Pd15 up to the glass transition temperature. 
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 64

temperature-independent behavior between 500 K and 600 K. With increasing 

temperature, ν increases first, but starts decreasing above 550 K. These changes in elastic 

constants are believed to be related to the crystallization. Using high energy Synchrotron 

X-ray diffraction, Jiang et al. have examined the as-cast sample, which was only 

measured at 300 K using RUS, and the heated sample, which was measured up to 730 K 

using RUS (Jiang, unpublished). The indicators of crystallization have been observed in 

the heated sample, according to the diffraction images and peaks shown in Figure 3.20 

and Figure 3.21, respectively. 

 

3.2 Cu-Based BMGs 

Recently Cu-based BMGs have attracted intensive interest because of their low cost and 

good mechanical properties. Cu-based BMGs, Cu53.9Zr39.2Al4.9Er2, Cu47.5Zr47.5Al5, 

Cu47.5Zr38Hf9.5Al5, Cu47Zr47Al6, Cu46.25Zr46.25Al7.5, Cu46.25Zr45.25Al7.5Sn1, and 

Cu42.5Ti41.5Ni7.5Hf5Zr2.5Si1 were prepared by arc-melting the pure elements in argon 

atmosphere and then casting into a copper mold (Qiao, 2007). The glass transition 

temperature Tg, crystallization temperature Tx, liquidus temperature Tl, and the glass 

forming ability parameters are listed in Table 3.5. The density and room temperature 

elastic constants are listed in Table 3.6. The elastic constants of Cu-based BMGs are also 

sensitive to the composition of BMGs. The Poisson ratio of Cu47.5Zr47.5Al5 reaches 0.374, 

indicating good ductility. Generally, the elastic constants of Cu-based BMGs are close to 

those of Zr-based BMGs. 

 

The longitudinal modulus L, shear modulus G, bulk modulus B, Young’s modulus E and 

Poisson ratio ν as a function of temperature for Cu53.9Zr39.2Al4.9Er2, Cu47.5Zr47.5Al5, 

Cu47.5Zr38Hf9.5Al5 and Cu47Zr47Al6 are shown in Figures 3.22-3.26, respectively. From 5 

K to 350 K, the elastic constants show “normal” behavior, i.e. with increasing 

temperature L, G, E and B decrease and ν increases.  

 

 

 



 
                                     (a)                                                                (b) 

Intensity Intensity 

Figure 3.20: Diffraction image of Zr50Cu25Al10Pd15 using high energy Synchrotron X-ray 

diffraction. (a) as-cast sample (300 K). (b) heated sample (730 K) using the wavelength 

λ=0.0107480 nm. (Jiang, unpublished).  
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Figure 3.21: High energy Synchrotron X-ray diffraction of Zr50Cu25Al10Pd15 as-cast 

sample (300K) and heated sample (730 K) using the wavelength λ=0.0107480 nm. (Jiang, 

unpublished).  
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Table 3.5: Glass transition temperature Tg, crystallization temperature Tx, liquidus 

temperature Tl, supercooled liquid region ∆Tx, reduced glass transition temperature Trg, 

Hruby factor Kgl, γ and γm of Cu-based BMGs. 

 

Composition Tg  

(K) 

Tx  

(K) 

Tl  

(K) 

∆Tx  

(K) 

Trg Kgl γ γm

Cu47.5Zr47.5Al5 695 756 1189 61 0.585 0.141 0.401 0.687

Cu47.5Zr38Hf9.5Al5 705 767 1189 62 0.593 0.147 0.405 0.697

Cu53.9Zr39.2Al4.9Er2 698        

 

 

Table 3.6: Density and room temperature elastic constants for various Cu-based BMGs. 

 

Composition ρ 

(g/cm3) 

L 

(GPa) 

G 

(GPa) 

B 

(GPa) 

E 

(GPa) 

ν 

Cu53.9Zr39.2Al4.9Er2 6.987 155.4 32.6 111.9 89.2 0.367 

Cu47.5Zr47.5Al5 7.057 161.5 32.4 118.3 89.1 0.374 

Cu47.5Zr38Hf9.5Al5  7.006 159.2 32.3 116.2 88.7 0.373 

Cu47Zr47Al6 6.972 157.2 32.2 114.3 88.3 0.371 

Cu46.25Zr46.25Al7.5 7.002 161.8 34.4 116.0 93.8 0.365 

Cu46.25Zr45.25Al7.5Sn1 7.054 165.7 35.7 118.1 97.3 0.363 

Cu42.5Ti41.5Ni7.5Hf5Zr2.5Si1 7.047 171.4 37.2 121.8 101.3 0.361 
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Figure 3.22: Longitudinal modulus L as a function of temperature for Cu-based BMGs 

Cu53.9Zr39.2Al4.9Er2 ( ), Cu47.5Zr47.5Al5 ( ), Cu47.5Zr38Hf9.5Al5 ( ) and Cu47Zr47Al6 ( ). 
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Figure 3.23: Shear modulus G as a function of temperature for Cu-based BMGs 

Cu53.9Zr39.2Al4.9Er2 ( ), Cu47.5Zr47.5Al5 ( ), Cu47.5Zr38Hf9.5Al5 ( ) and Cu47Zr47Al6 ( ). 
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Figure 3.24: Bulk modulus B as a function of temperature for Cu-based BMGs 

Cu53.9Zr39.2Al4.9Er2 ( ), Cu47.5Zr47.5Al5 ( ), Cu47.5Zr38Hf9.5Al5 ( ) and Cu47Zr47Al6 ( ). 

 

0 50 100 150 200 250 300 350
86
87
88
89
90
91
92
93
94
95

 Cu53.9Zr39.2Al4.9Er2

 Cu47.5Zr47.5Al5
 Cu47.5Zr38Hf9.5Al5
 Cu47Zr47Al6Y

ou
ng

's
 m

od
ul

us
, E

 (G
P

a)

Temperature, T (K)
 

Figure 3.25: Young’s modulus E as a function of temperature for Cu-based BMGs 

Cu53.9Zr39.2Al4.9Er2 ( ), Cu47.5Zr47.5Al5 ( ), Cu47.5Zr38Hf9.5Al5 ( ) and Cu47Zr47Al6 ( ). 
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Figure 3.26: Poisson ratio ν as a function of temperature for Cu-based BMGs 

Cu53.9Zr39.2Al4.9Er2 ( ), Cu47.5Zr47.5Al5 ( ), Cu47.5Zr38Hf9.5Al5 ( ) and Cu47Zr47Al6 ( ). 
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CHAPTER 4 

CALCIUM BASED BULK METALLIC GLASSES 

Ca-based BMGs are a relatively new class of amorphous alloys, first reported by Amiya 

and Inoue in 2002 (Amiya, 2002a). Various ternary and quaternary systems, including 

Ca-Mg-Zn, Ca-Mg-Cu, Ca-Mg-Zn-Cu, Ca-Mg-Ag-Cu, have been successfully 

synthesized (Amiya, 2002a) (Amiya, 2002 b) (Guo, 2004) (Senkov, 2004a) (Senkov, 2004 

b) (Park, 2004) (Park, 2005) (Senkov, 2005) (Senkov, 2006). Unique properties have been 

reported, such as low density (∼2.0 g/cm3) and low Young’s modulus comparable to the 

modulus of human bones (Senkov, 2006). In addition, Ca-based BMGs have low glass 

transition temperatures (∼390 K), which makes them very attractive for studies near the 

glass transition temperature. 

 

Ca-based BMGs, Ca50Mg20Cu30, Ca55Mg18Zn11Cu16 and Ca65Mg15Zn20, were prepared by 

Senkov et al. using the method as follows (Senkov, 2005) (Senkov, 2006). Mixtures of 

pure elements (99.9 %) were induction melted in a water-cooled copper crucible in an 

argon atmosphere and the alloys were then re-melted in a quartz crucible and cast into a 

water-cooled copper mold. The characteristic temperatures (glass transition temperature 

Tg, crystallization temperature Tx and liquidus temperature Tl) and glass forming ability 

parameters of these samples are listed in Table 4.1.  

 

The longitudinal modulus L, shear modulus G, bulk modulus B, Young’s modulus E and 

Poisson ratio ν for Ca-based glasses with three different compositions are plotted in 

Figure 4.1 to Figure 4.5, respectively. A clear transition in the temperature-dependence of 

the elastic constants is observed at ∼362 K for Ca65Mg15Zn20, ∼386 K for 

Ca55Mg18Zn11Cu16 and ~400 K for Ca50Mg20Cu30. Below the transition temperature, all 

moduli decrease with increasing temperature, while the Poisson ratio increases with 

increasing temperature. Above the transition temperature, the rate of softening is 

significantly decreased or is fully arrested.  

 



Table 4.1: Glass transition temperature Tg, crystallization temperature Tx, liquidus 

temperature Tl, supercooled liquid region ∆Tx, reduced glass transition temperature Trg, 

Hruby factor Kgl, γ, γm, and critical casting thickness dmax for Ca-based BMGs, 

determined by differential scanning calorimetry (DSC) with the heating rate at 0.667 K/s. 

 

Composition Tg  

(K) 

Tx  

(K) 

Tl  

(K) 

∆Tx  

(K) 

Trg Kgl γ γm dmax 

(mm) 

Ca50Mg20Cu30 401 442 690 41 0.581 0.165 0.405 0.700 8 

Ca55Mg18Zn11Cu16 392 441 622 49 0.630 0.271 0.435 0.788 >10 

Ca65Mg15Zn20 375 410 630 35 0.595 0.159 0.408 0.706 6 
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Figure 4.1: Longitudinal modulus L as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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Figure 4.2: Shear modulus G as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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Figure 4.3: Bulk modulus B as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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Figure 4.4: Young’s modulus E as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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Figure 4.5: Poisson ratio ν as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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The transition temperatures observed in our data are roughly equivalent to the Tg values 

for the respective glasses, suggesting that structural relaxations are responsible for the 

observed transitions. This is also similar to observations in Zr-based BMGs, as discussed 

in section 3.1.2. The transitions observed in our data happen at temperatures slightly 

below the expected Tg. This can be explained because Tg and Tx depend on the heating 

rate. Table 4.2 lists the dependence of Tg and Tx on heating rate for Ca65Mg15Zn20. It 

indicates that Tg and Tx decrease with decreasing heating rate. The heating rate is rather 

slow in our measurements, leading to a lower transition temperature than expected Tg. 

 

A systematic influence of composition on elastic moduli is apparent in Figure 4.1 to 

Figure 4.5, where moduli increase with increasing Cu and decreasing Ca concentration. 

This follows the trend for the elastic properties of the constituent elements (Table 4.3) 

(http://www.webelements.com/webelements/elements/). The calculated moduli based on 

atomic fraction and volume fraction of the components are compared with the values 

measured by RUS at room temperature in Table 4.4. These calculations support the 

observed composition dependence, and estimates based on constituent volume fraction 

provide very good agreement with the experimental results. 

 

 

Table 4.2: Dependence of glass transition temperature Tg and crystallization temperature 

Tx on the heating rate for Ca65Mg15Zn20. 

 

Heating rate (K/min)                         Tg (K)                 Tx (K)     

1a                                                                                   377.2 

5a                                                        355.1                  387.5 

40a                                                      376.8                   406.6 

40a                                                      398.0                    424.1           
a Continuous heating. 
b Isothermal holding at 375 K for 30 min followed by continuous heating. 

 

http://www.webelements.com/webelements/elements/
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Table 4.3: Atomic volume, VA, density, ρ and elastic constants of elements 

(http://www.webelements.com/webelements/elements/). 

 

Element   VA (cm3/mol)  ρ (g/cm3)  G (GPa)  B (GPa)  E (GPa)    ν 

Ca             26.20             1.55              7.4       17             20          0.31 

Mg            14.00             1.74              17        45             45          0.29 

Zn             9.16               7.14              43        70            108         0.25 

Cu             7.11               8.92              48       140           130         0.34 

 

 

Table 4.4: Comparison of measured elastic constants (meas.) at room temperature with 

the calculated values based on atomic fraction (calat.) and volume fraction (calvol.) of 

components. 

 

Property    Ca50Mg20Cu30             Ca55Mg18Zn11Cu16              Ca65Mg15Zn20

                   meas.  calat.  calvol.      meas.  calat.   calvol.          meas.  calat.   calvol.

G (GPa)     12.6   21.5   13.7         11.9    19.5   13.0           10.1    16.0    11.5 

B (GPa)     29       60      35.9         26        48     30.8            23       32      24.4 

E (GPa)     33.2    58.0   36.9          31.0    51.8   34.5           26.4    32      30.2 

ν               0.311  0.315  0.310       0.305  0.305  0.306        0.306  0.295  0.303 

 

 

 

 

 

 

 

 

 

 

http://www.webelements.com/webelements/elements/


The internal friction Q-1 of the Ca-based BMGs as a function of temperature is shown in 

Figure 4.6. The internal friction gradually increases with increasing temperature, and the 

increase becomes quite dramatic near the glass transition temperature. A similar increase 

in Q-1 has been observed by Ichitsubo et al. (Ichitsubo, 2003) in Zr-based BMGs. 

 

The heat capacity of Ca50Mg20Cu30, Ca55Mg18Zn11Cu16 and Ca65Mg15Zn20, measured as a 

function of temperature, is shown in Figure 4.7. There is a peak at 387 K for 

Ca55Mg18Zn11Cu16 and at 364 K for Ca65Mg15Zn20, respectively. The peak temperatures 

are consistent with the transition temperatures observed in elastic constant measurements. 

The difference between the peak temperatures and the glass transition temperature 

measured using DSC is again attributed to the difference in heating rate. 

 

Ca-based BMGs, Ca55Mg15Zn15Al10Cu5 and Ca60Mg15Zn15Al10 were prepared by Poon’s 

group in University of Virginia using an induction furnace under a flowing argon 

atmosphere (Guo, 2004). The glass transition temperatures of Ca55Mg15Zn15Al10Cu5 and 

Ca60Mg15Zn15Al10 determined using DSC are 446 K and 443 K, respectively. The density 

and room temperature elastic constants are listed in Table 4.5. They are close to the 

values for other Ca-based BMGs. 
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Figure 4.6: Internal friction Q-1 as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). 
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Figure 4.7: Heat capacity as a function of temperature for Ca50Mg20Cu30 ( ), 

Ca55Mg18Zn11Cu16 ( ) and Ca65Mg15Zn20 ( ). (a) 3-300 K. (b) 295-398 K. 
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Table 4.5: Density and room temperature elastic constants for various Ca-based BMGs. 

 

Composition ρ 

(g/cm3) 

L 

(GPa) 

G 

(GPa) 

B 

(GPa) 

E 

(GPa) 

ν 

Ca55Mg15Zn15Al10Cu5 2.217 48.3 13.4 30.4 35.1 0.308 

Ca60Mg15Zn15Al10 2.056 46.2 12.5 29.5 32.9 0.314 

Ca50Mg20Cu30 2.584 46.0 12.7 29.2 33.2 0.311 

Ca55Mg18Zn11Cu16 2.404 42.3 11.9 26.5 31.0 0.305 

Ca65Mg15Zn20 2.040 36.1 10.1 22.6 26.4 0.306 

 

 

The dependence of the bulk modulus B, shear modulus G, Young’s modulus E and 

longitudinal modulus L on the glass transition temperature Tg and the crystallization 

temperature Tx for Zr-based, Cu-based and Ca-based BMGs is shown in Figures 4.8 and 

4.9. Linear correlations of elastic moduli with Tg and with Tx are observed, confirming 

results reported by Wang and Li (Wang, 2006) (Li, 2008). 
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Figure 4.8: Dependence of bulk modulus B, shear modulus G, Young’s modulus E and 

longitudinal modulus L on glass transition temperature Tg for Zr-based, Cu-based and Ca-

based BMGs. 
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Figure 4.9: Dependence of bulk modulus B, shear modulus G, Young’s modulus E and 

longitudinal modulus L on crystallization temperature Tx for Zr-based, Cu-based and Ca-

based BMGs. 
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CHAPTER 5  

MODEL TO PREDICT THE TEMPERATURE DEPENDENCE OF 

ELASTIC MODULI 

In 1970, Varshni (Varshni 1970) examined the temperature dependence of 57 elastic 

constants for 22 substances, which led to the so-called Varshni equation (see chapter 3, 

Equation 3.1), describing the temperature-dependence of elastically “normal’ solids. 

Even though this equation has only marginal theoretical justification (s and t are arbitrary 

fitting parameters), it has been shown to adequately model the temperature-dependence 

of the elastic moduli of a large variety of solids. In this chapter, we report on our attempt 

to take this Varshni model one step further, and eliminate the fitting parameters with the 

goal of developing a model that can be used to extrapolate/calculate elastic moduli 

measured at room temperature to lower and/or higher temperatures.  

 

Our approach is based on two assumptions. The first assumption is inspired by Varshni’s 

remark that in the case of metals, melting takes place when the shear modulus G is 

reduced to 55 % of the modulus at 0 K, i.e. G(Tm) = (1-nG)G0, with nG = 0.45, Tm the 

melting temperature and G0 the shear modulus at 0 K. The second assumption is to take t 

=θD, the Debye temperature of the solid, which can be obtained from the room 

temperature elastic moduli using Equation 2.19. Using the above assumptions, the 

Varshni-parameter sG can be obtained from 
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with TRT room temperature. Consequently, the entire temperature dependence of the shear 

modulus can be determined using 
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Figure 5.1 compares this model calculation with recently obtained measurements of the 

temperature-dependence of the shear modulus for a variety of bulk metallic glasses 

(Zhang, 2007b) (Zhang, 2007c) and shows excellent agreement between our model and 

the experimental data for the shear modulus. The solid lines in the figure were obtained 

from Equation 5.1 and Equation 5.2, using the “average” melting temperature of the 

compound, listed in Table 5.1 together with the values for the parameters used in our 

calculation. The “average” melting temperature was obtained using  with xim
i

im TxT ,∑= i 

the atomic fraction of component i and Tm,i its melting temperature. The average melting 

temperature represents the lattice elastic energy of a multi-component system better than 

the real melting temperature, which is affected by subtle balance in free energy against 

liquid and is lowered, for instance, in the eutectic alloy system. The average melting 

temperature provides a good zeroth-order estimate of the relative magnitude of ν0B, with 

ν0 the atomic volume and B the average bulk modulus. There is good correlation (Egami, 

1982) (Egami, 1984) between the average melting temperature and the glass transition 

temperature, which is related to the elastic moduli (Egami, 2007). 
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Figure 5.1: Temperature dependence of shear modulus for Zr-based BMGs, 

Zr50Cu30Ni10Al10 (□), Zr50Cu40Al10 (■), Zr52.5Cu17.9Ni14.6Al10Ti5 (○), Zr50Cu35Al10Pd5 (▲), 

Zr50Cu33Al10Pd7 (◊) and Zr50Cu31Al10Pd9 (∇), Cu-based BMGs, Cu47.5Zr47.5Al5 (∆) and 

Cu47.5Zr38Hf9.5Al5 (▼) and Ca-based BMGs, Ca55Mg18Zn11Cu16 (◄) and Ca65Mg15Zn20 

(►). The solid line is the model calculation. 
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Table 5.1: Averaged melting temperature Tm, density ρ, shear modulus at room 

temperature G(TRT), bulk modulus at room temperature B(TRT), Debye temperature θD, sG 

and sB for Zr-based, Cu-based and Ca-based BMGs. 

 

Composition                      Tm          ρ       G(TRT)  B(TRT)      θD         sG          sB 

                                          (K)     (g/cm3)  (GPa)    (GPa)       (K)     (GPa)   (GPa)             

Zr50Cu30Ni10Al10             1737.5  6.862     33.98    120.0    285.28  2.8738   4.8302   

Zr50Cu40Al10                    1700.5   6.714     33.56   116.1    283.83  2.8934   4.7605      

Zr52.5Cu17.9Ni14.6Al10Ti5  1802.9   6.632     32.18   116.8    279.73  2.5558    4.4187      

Zr50Cu35Al10Pd5              1724.0   6.890     34.17   121.7    282.58  2.8866    4.8912         

Zr50Cu33Al10Pd7              1733.4   6.771     33.52   107.3    279.15  2.7780    4.2308       

Zr50Cu31Al10Pd9              1742.8   7.067     34.14   130.1    279.47  2.8153    5.1053 

Cu47.5Zr47.5Al5                 1702.4   7.058     32.43   118.3    275.52  2.7058    4.6926 

Cu47.5Zr38Hf9.5Al5           1738.3   7.006     32.29   116.2    265.73  2.5321    4.3329 

Ca55Mg18Zn11Cu16          1072.8   2.404     11.87   26.45    236.33  1.4505    1.5019    

Ca65Mg15Zn20                  1001.7   2.040     10.12   22.64    226.03  1.2827    1.3264     
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The next step is to test the validity of this model to calculate/predict other moduli as well.  

As discussed above, the shear modulus in metals is known to decrease about 45 % 

between 0 K and melting temperature. The bulk modulus, however, is not expected to 

change as much. It has been shown that the topology of the dense random packing 

structure is unstable against shear deformation, leading to obvious softening of the shear 

modulus of the glassy state compared to the crystalline state (Suzuki, 1985). On the other 

hand, the bulk modulus of the glassy state is about the same as that of the crystalline state 

(Egami, 1982). The distribution of the local atomic level shear modulus indicates that 

there are some atomic sites with vanishingly small values of shear modulus. This is not 

the case for the bulk modulus, leading to less softening of the bulk modulus (Egami, 

1982). A careful evaluation of the available data for the bulk modulus B shows that a 

typical variation in B is of the order of 20-25 % in metals. We therefore took our above 

model with nB= 1-B(Tm)/B0= 0.22, and compared the calculated temperature dependence 

to our experimental data for the bulk modulus, shown in Figure 5.2. Very good 

agreement is reached for the various alloys. 

 

In a final test, we calculated the temperature-dependence of the longitudinal modulus, 

Young’s modulus and Poisson ratio using Equation 2.16, Equation 2.17 and Equation 

2.18 and the parameters obtained from the calculated shear and bulk modulus (Table 5.1). 

Results are shown in Figure 5.3, Figure 5.4 and Figure 5.5. Adequate agreement is 

reached for all moduli for this large variety of alloys: the differences between the 

predicted values and the experimental results are less than 1 %. The excellent agreement 

between the model calculation and the experimental data indicates that our attempt to 

eliminate the arbitrary Varshni parameters using two basic assumptions is quite 

successful. However, it needs to be pointed out that using the model for BMGs with 

various compositions may require slight modification of nB for bulk modulus. 
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Figure 5.2: Temperature dependence of bulk modulus for Zr-based BMGs, 

Zr50Cu30Ni10Al10 (□), Zr50Cu40Al10 (■), Zr52.5Cu17.9Ni14.6Al10Ti5 (○), Zr50Cu35Al10Pd5 (▲), 

Zr50Cu33Al10Pd7 (◊) and Zr50Cu31Al10Pd9 (∇), Cu-based BMGs, Cu47.5Zr47.5Al5 (∆) and 

Cu47.5Zr38Hf9.5Al5 (▼) and Ca-based BMGs, Ca55Mg18Zn11Cu16 (◄) and Ca65Mg15Zn20 

(►). The solid line is the model calculation. 

 

0 50 100 150 200 250 300 350 400
36
39
42
45

Temperature, T (K)

150
153
156
159
162
165
168
171
174
177
180

 

Lo
ng

itu
di

na
l M

od
ul

us
, L

 (G
P

a)

 
Figure 5.3: Temperature dependence of longitudinal modulus for Zr-based BMGs, 

Zr50Cu30Ni10Al10 (□), Zr50Cu40Al10 (■), Zr52.5Cu17.9Ni14.6Al10Ti5 (○), Zr50Cu35Al10Pd5 (▲), 

Zr50Cu33Al10Pd7 (◊) and Zr50Cu31Al10Pd9 (∇), Cu-based BMGs, Cu47.5Zr47.5Al5 (∆) and 

Cu47.5Zr38Hf9.5Al5 (▼) and Ca-based BMGs, Ca55Mg18Zn11Cu16 (◄) and Ca65Mg15Zn20 

(►). The solid line is the model calculation. 
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Figure 5.4: Temperature dependence of Young’s modulus for Zr-based BMGs, 

Zr50Cu30Ni10Al10 (□), Zr50Cu40Al10 (■), Zr52.5Cu17.9Ni14.6Al10Ti5 (○), Zr50Cu35Al10Pd5 (▲), 

Zr50Cu33Al10Pd7 (◊) and Zr50Cu31Al10Pd9 (∇), Cu-based BMGs, Cu47.5Zr47.5Al5 (∆) and 

Cu47.5Zr38Hf9.5Al5 (▼) and Ca-based BMGs, Ca55Mg18Zn11Cu16 (◄) and Ca65Mg15Zn20 

(►). The solid line is the model calculation. 
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Figure 5.5: Temperature dependence of Poisson ratio for Zr-based BMGs, 

Zr50Cu30Ni10Al10 (□), Zr50Cu40Al10 (■), Zr52.5Cu17.9Ni14.6Al10Ti5 (○), Zr50Cu35Al10Pd5 (▲), 

Zr50Cu33Al10Pd7 (◊) and Zr50Cu31Al10Pd9 (∇), Cu-based BMGs, Cu47.5Zr47.5Al5 (∆) and 

Cu47.5Zr38Hf9.5Al5 (▼) and Ca-based BMGs, Ca55Mg18Zn11Cu16 (◄) and Ca65Mg15Zn20 

(►). The solid line is the model calculation. 
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CHAPTER 6 

CORRELATION WITH OTHER WORK AND PERSPECTIVES FOR 

FUTURE WORK 

The fracture strength, fatigue limit and Vickers hardness of Zr-based, Cu-based and Ca-

based BMGs are listed in Table 6.1. Their correlations with elastic moduli are shown in 

Figures 6.1, 6.2 and 6.3, respectively. Elastic moduli increase with increasing fracture 

strength and Vickers hardness. Similar observations have been reported by Inoue (Inoue, 

2002). For Zr-based and Cu-based BMGs, which have a fatigue limit between 0.2 and 1.0 

GPa,  the elastic moduli are barely dependent on the fatigue limit. Ca-based BMGs have 

much lower fatigue limit than Zr-based and Cu-based BMGs, and they also display lower 

elastic moduli. The dependence of fracture strength and fatigue limit on the Poisson ratio 

is shown in Figure 6.4. BMGs with higher Poisson ratio tend to display higher fracture 

strength. Weak correlation is shown between the fatigue limit and the Poisson ratio. The 

dependence of the ratio of fatigue limit to fracture strength on the Poisson ratio is shown 

in Figure 6.5.  

 

Table 6.1: Fracture strength, fatigue limit and Vickers hardness of Zr-based, Cu-based 

and Ca-based BMGs. 

 

 

Composition 

Fracture 

strength, 

σfrac (GPa) 

Fatigue 

limit, σfati 

(GPa) 

Vickers 

harness, Hv 

(GPa) 

 

Reference 

Zr50Cu40Al10 1.821 0.752 506 (Wang, 2004a) 

Zr50Cu30Ni10Al10 1.900 0.865 504 (Wang, 2004a) 

Zr50Cu37Al10Pd3 1.899 0.983  (Wang, 2007) 

Cu47.5Zr47.5Al5 1.85 0.224  (Qiao, 2007) 

Cu47.5Zr38Hf9.5Al5 1.59 0.378  (Qiao, 2007) 

Ca65Mg15Zn20 0.364 0.140 1.42 (Wang, unpublished) 
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Figure 6.1: Correlation of elastic moduli with fracture strength. 
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Figure 6.2: Correlation of elastic moduli with fatigue limit. 
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Figure 6.3: Correlation of elastic moduli with Vickers hardness. 
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Figure 6.4: The dependence of fatigue limit and fracture strength on the Poisson ratio. 
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Figure 6.5: The dependence of the ratio of fatigue limit to fracture strength on the Poisson 

ratio. 

 

Wang et al. reported that the ratio of fatigue limit to fracture strength tends to increase 

with increasing Poisson ratio (Wang, 2007). This claim is not confirmed by our results. 

 

Limited data of elastic constants and mechanical properties are available for various 

BMGs. In the future, more data point can be added in above figures to carefully study the 

correlation between elastic constants and mechanical properties. For instance, more work 

can be done to investigate BMGs with Poisson ratio between 0.31 and 0.36, and Vickers 

hardness between 2 and 500 GPa. Furthermore, it needs to be pointed out that the 

mechanical properties of BMGs reported in literature are usually obtained under various 

conditions, leading to the scattering in the data. In the future, a systematic study is needed.  
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CONCLUSIONS 

Elastic properties of Zr-based, Cu-based and Ca-based BMGs were investigated. Below 

the glass transition temperature, elastic constants show “normal behavior”, i.e. with 

increasing temperature, longitudinal modulus, shear modulus, bulk modulus and Young’s 

modulus decrease but Poisson ratio increases. Above the glass transition temperature, 

changes in the trends occur due to structural relaxation and crystallization. The elastic 

properties of BMGs are sensitive to their compositions. Reasonable estimation of elastic 

properties of BMGs can be obtained from the elastic constants of the constituent elements. 

A simple model is developed to provide fast and good estimate of the temperature 

dependence of elastic constants of BMGs.  
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