
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2007

Application of Particulate-Filled Composite (PFC)
Theory to Hot-Mix Asphalt (HMA) Mixtures
Xiang Shu
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Shu, Xiang, "Application of Particulate-Filled Composite (PFC) Theory to Hot-Mix Asphalt (HMA) Mixtures. " PhD diss., University
of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/302

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Xiang Shu entitled "Application of Particulate-Filled
Composite (PFC) Theory to Hot-Mix Asphalt (HMA) Mixtures." I have examined the final electronic
copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy, with a major in Civil Engineering.

Baoshan Huang, Major Professor

We have read this dissertation and recommend its acceptance:

Edwin G. Burdette, Eric C. Drumm, Cheng-Xian Lin, Zukang Yao, Qiuhong Zhao

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council: 
 
I am submitting herewith a dissertation written by Xiang Shu entitled “Application of 
Particulate-Filled Composite (PFC) Theory to Hot-Mix Asphalt (HMA) Mixtures”.  I 
have examined the final electronic copy of this dissertation for form and content and 
recommend that it be accepted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy, with a major in Civil Engineering. 
 
 
 
 
 
 
 
 
We have read this dissertation 
and recommend its acceptance: 
 
 
Edwin G. Burdette 
 
 
Eric C. Drumm 
 
 
Cheng-Xian Lin 
 
 
Zukang Yao 
 
 
Qiuhong Zhao 
  
 
 
 
 
 
 
 
 

 
 
 

Baoshan Huang 
Major Professor 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accepted for the Council: 
 
 

Carolyn R. Hodges 
Vice Provost and Dean of the Graduate 
School

(Original signatures are on file with official student records.) 



 
 
 

APPLICATION OF PARTICULATE-FILLED COMPOSITE (PFC) HEORY  
TO HOT-MIX ASPHALT (HMA) MIXTURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Dissertation  
Presented for the  

Doctor of Philosophy 
        Degree 

The University of Tennessee, Knoxville 
 
 
 
 
 
 
 
 
 
 
 
 

Xiang Shu 
August 2007 

 



 ii

 
 
 
 

Copyright © 2007 by Xiang Shu 
All rights reserved. 



 iii

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to my advisor, Dr. Baoshan Huang, 

for his guidance, support, help, and encouragement throughout my doctoral study. 

Without his insightful suggestions on the research topics, I could not have been where I 

am now. I would also like to thank other professors in my doctoral committee, Dr. Edwin 

G. Burdette, Dr. Eric Drumm, Dr. Cheng-xian Lin, Prof. Zukang Yao, and Dr. Qiuhong 

Zhao, for taking their precious time to serve on my committee.  

My thanks also go to Mr. Yip Chan for his help during sample preparation. I 

would like to extend my appreciation to my colleagues and friends, Mr. Randy 

Rainwater, Dr. Jingyao Cao, Dr. Xingwei Chen, Feng Chen, Dragon Vukosavljevic, 

Laura Robison, Wenbin He, Jay Bass, and Qiao Dong, for their help and friendship. 

Finally, I would like to thank my wife, Zhongxin, and my daughter, Amy, for 

always being supportive and patient in my study. Their love and encouragement deserve 

special recognition. 

 

 

 

 

 

 



 iv

ABSTRACT 
 

Dynamic modulus (|E*|) of HMA mixtures is one of the fundamental engineering 

properties measured by the Simple Performance Tester (SPT) and has been incorporated 

as a basic input parameter in the American Association of State Highway and 

Transportation Officials (AASHTO) 2002 Mechanistic-Empirical (M-E) Design Guide 

for flexible pavement design. Although direct laboratory testing and empirical equations 

(such as the Witczak model and the Hirsch model) provide two ways to obtain the values 

of dynamic modulus of HMA mixtures, a predictive model based on the microstructure of 

HMA mixtures is more desirable.  

HMA mixtures consist of three phases: aggregate, asphalt binder (or mastic), and 

air voids. During the blending process of HMA mixtures, every aggregate particle, 

regardless of its size, is coated with a thin film of asphalt mastic. Therefore, the resulting 

mixture can be considered as a particulate-filled composite (PFC) with aggregate 

particles dispersed in the asphalt matrix. Consequently, the theoretical approaches for 

PFC can be applied to HMA mixtures. 

This study presents an attempt to apply PFC models to predict the dynamic 

modulus of HMA mixtures. A three-dimensional two-layered model and several models 

from the differential method were developed and formulated. These PFC models have the 

ability to take into account the particular characteristics of HMA mixtures: the 

viscoelastic nature, aggregate gradation, and air voids.  

Laboratory experiments were conducted to evaluate the applicability of the newly 

developed and some currently existing PFC models to HMA mixtures. Dynamic shear 
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rheometer (DSR) testing was conducted on asphalt binder and mastic for their dynamic 

shear moduli. HMA mixture was tested for its dynamic modulus.  

PFC models were first applied to predict dynamic shear modulus of asphalt mastic 

with the measured dynamic shear modulus of asphalt binder as input parameter. The 

predicted dynamic shear moduli of asphalt mastic from all PFC models were fairly close 

to the measured results. Then, the PFC models were used to predict the dynamic modulus 

of HMA mixtures with dynamic shear modulus of asphalt binder or mastic as an input 

parameter. The predicted dynamic modulus values of HMA mixtures were found to 

deviate from the measured data to varying degrees.  

  The reasons for the discrepancy between the predicted and measured dynamic 

moduli were analyzed. Sensitivity analysis was conducted to explore the effects of 

different factors on dynamic modulus of HMA mixtures. 

 

 
 
 
 
 
 
 
 
 
 
 
 



 vi

TABLE OF CONTENTS 

 

CHAPTER 1 INTRODUCTION................................................................................1 

Research Background ......................................................................................................1 

Importance of Dynamic Modulus in AASHTO 2002 Design Guide...............................2 

Literature Review ............................................................................................................6 

PFC Theory..................................................................................................................6 

Application of PFC Models to Asphalt Mastics and Mixtures and Their 

Limitations .................................................................................................................14 

Latest Models for Predicting Dynamic Modulus of HMA Mixtures.........................16 

Research Objectives and Significance...........................................................................21 

Arrangement of the Dissertation....................................................................................21 

CHAPTER 2 THEORECTICAL BACKGROUND...............................................23 

Material Properties in Linear Viscoelasticity ................................................................23 

Elastic-Viscoelastic Correspondence Principle .............................................................32 

Prony Series Representation ..........................................................................................34 

Construction of Master Curve........................................................................................37 

CHAPTER 3 DEVELOPMENT OF THREE-DIMENSIONAL                      

TWO-LAYERED MODEL FOR HMA MIXTURES....................41 

Modeling of Three-Dimensional Two-Layered Elastic HMA Mixtures .......................41 

Micromechanical Model ............................................................................................41 

Formulation Development .........................................................................................43 

Complex Modulus Converted from Elastic Modulus ....................................................49 



 vii

Consideration of Air Voids Effect .................................................................................49 

CHAPTER 4 DEVELOPMENT OF FORMULATIONS FOR PFC        

MODELS USING  DIFFERENTIAL METHOD ...........................52 

Introduction....................................................................................................................52 

Formulation Development for Elastic and Complex Modulus Predictions...................53 

Formulation Development for Shear and Complex Shear Modulus Predictions...........62 

Formulation Development for Bulk and Complex Bulk Modulus Predictions .............64 

CHAPTER 5 LABORATORY EXPERIMENTS...................................................67 

Introduction....................................................................................................................67 

Asphalt Binder and Mastic Tests ...................................................................................67 

Materials ....................................................................................................................67 

Sample Fabrication ....................................................................................................68 

Dynamic Shear Rheometer (DSR) Testing................................................................70 

HMA Mixture Test ........................................................................................................73 

Materials ....................................................................................................................73 

Mixture Design ..........................................................................................................75 

Sample Fabrication ....................................................................................................75 

Dynamic Modulus Testing.........................................................................................77 

CHAPTER 6 PREDICTION OF DYNAMIC SHEAR MODULUS                     

OF ASPHALT MASTIC ...................................................................81 

Introduction....................................................................................................................81 

Determination of Input Parameter Values .....................................................................82 

Elastic Prediction ...........................................................................................................83 



 viii

Flow Chart .................................................................................................................83 

Predictive Models ......................................................................................................85 

Prediction Results and Analyses ................................................................................85 

Error Analyses ...........................................................................................................94 

Viscoelastic Prediction ..................................................................................................96 

Flow Chart .................................................................................................................96 

Predictive Models ......................................................................................................96 

Prediction Results and Analyses ................................................................................98 

Error Analyses ...........................................................................................................98 

Comparison between Elastic and Viscoelastic Predictions......................................121 

CHAPTER 7 PREDICTION OF DYNAMIC MODULUS OF HMA     

MIXTURE ........................................................................................124 

Introduction..................................................................................................................124 

Input Parameter Values................................................................................................126 

Binder-Aggregate System Prediction ..........................................................................126 

Flow Chart ...............................................................................................................126 

Prediction Results and Analyses ..............................................................................130 

Mastic-Aggregate System Prediction ..........................................................................142 

Flow Chart ...............................................................................................................142 

Prediction Results and Analyses ..............................................................................144 

Analysis on Possible Reasons for Under-prediction of Dynamic Modulus ................157 

Sensitivity Analysis .....................................................................................................158 

Effect of Aggregate Gradation.................................................................................161 



 ix

Effect of Aggregate Modulus...................................................................................162 

Effect of Asphalt Content ........................................................................................163 

Effect of Air Voids...................................................................................................164 

CHAPTER 8 SUMMARY, CONCLUSIONS AND         

RECOMMENDATIONS.................................................................166 

Summary......................................................................................................................166 

Research Objectives.................................................................................................166 

Development of PFC Models...................................................................................166 

New Features of Proposed Models ..........................................................................167 

Laboratory Testing...................................................................................................168 

Evaluation of Proposed Models ...............................................................................169 

Conclusions..................................................................................................................169 

Recommendations........................................................................................................172 

REFERENCES ............................................................................................................175 

APPENDICES ............................................................................................................183 

APPENDIX A  TEST DATA FOR MASTER CURVE  OF ASPHALT          

BINDER AND MASTIC ................................................................184 

APPENDIX B  TEST DATA FOR MASTER CURVE OF HMA MIXTURE ........189 

APPENDIX C  EXAMPLE OF COMPUTER PROGRAM FOR PREDICTION   

OF DYNAMIC (SHEAR) MODULI OF ASPHALT MASTIC 

AND HMA MIXTURE....................................................................194 

VITA ............................................................................................................202 



 x

LIST OF FIGURES 

 
Figure 1.1 Microstructure Schematic of HMA Mixtures.................................................... 2 

Figure 1.2 Overall Design Process for Flexible Pavements (NCHRP 2004) ..................... 4 

Figure 1.3 Various Types of Micromechanical Models ..................................................... 7 

Figure 1.4 Comparison of Different Types of Micromechanical Models .......................... 9 

Figure 1.5 Hashin’s Composite Spheres Model (Christensen and Lo 1979).................... 11 

Figure 1.6 Christensen and Lo’s Generalized Self-Consistent Model               

(Christensen 1990) .......................................................................................... 11 

Figure 2.1 Stress and Strain in a Relaxation Test ............................................................. 25 

Figure 2.2 Stress and Strain in a Creep Test..................................................................... 27 

Figure 2.3 Stress and Strain in a Dynamic Modulus Test................................................. 29 

Figure 2.4 Generalized Maxwell Model ........................................................................... 36 

Figure 2.5 Generalized Kelvin (or Voigt) Model ............................................................. 38 

Figure 2.6 Construction of Master Curve of Dynamic Modulus ...................................... 39 

Figure 3.1 Three-Dimensional Two-Layered Model for HMA Mixtures ........................ 42 

Figure 3.2 Air Void Size Distribution in HMA Mixture .................................................. 51 

Figure 3.3 Incorporation of Air Voids in Equivalent HMA mixtures .............................. 51 

Figure 5.1 Particle Size Distribution of Mineral Filler ..................................................... 69 

Figure 5.2 Microscopic Picture of Mineral Filler (400X)................................................. 69 

Figure 5.3 Asphalt Binder or Mastic Samples .................................................................. 70 

Figure 5.4 Schematic of Dynamic Shear %Rheometer (Roberts et al. 1994)................... 71 

Figure 5.5 Anton Paar Physica MCR 501 Rheometer ...................................................... 72 



 xi

Figure 5.6 Physica Rheoplus Software ............................................................................. 73 

Figure 5.7 Aggregate Gradation in HMA Mixture ........................................................... 74 

Figure 5.8   HMA Specimens for Dynamic Modulus Test ............................................... 76 

Figure 5.9   Dynamic Modulus Test Setup ....................................................................... 78 

Figure 5.10   Axial Stress and Strains in Dynamic Modulus Test.................................... 78 

Figure 6.1 Master Curves for Complex Shear Moduli of Asphalt Binder (25°C)............ 83 

Figure 6.2 Flow Chart for Elastic Prediction of Dynamic Shear Modulus....................... 84 

Figure 6.3 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic       

(Model 1) ........................................................................................................ 87 

Figure 6.4 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic        

(Model 2) ........................................................................................................ 88 

Figure 6.5 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic       

(Model 3) ........................................................................................................ 89 

Figure 6.6 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic        

(Model 4) ........................................................................................................ 90 

Figure 6.7 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic       

(Model 5) ........................................................................................................ 91 

Figure 6.8 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic        

(Model 6) ........................................................................................................ 92 

Figure 6.9 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic       

(Model 7) ........................................................................................................ 93 

Figure 6.10 Errors in Elastic Prediction of Dynamic Shear Modulus of Asphalt        

Mastic.............................................................................................................. 95 



 xii

Figure 6.11 Flow Chart for Viscoelastic Prediction of Asphalt Mastic............................ 96 

Figure 6.12 Predicted vs. Measured Values of Asphalt Mastic (Model 1)....................... 99 

Figure 6.13 Predicted vs. Measured Values of Asphalt Mastic (Model 2-1) ................. 101 

Figure 6.14 Predicted vs. Measured Values of Asphalt Mastic (Model 2-2) ................. 103 

Figure 6.15 Predicted vs. Measured Values of Asphalt Mastic (Model 3-1) ................. 105 

Figure 6.16 Predicted vs. Measured Values of Asphalt Mastic (Model 3-2) ................. 107 

Figure 6.17 Predicted vs. Measured Values of Asphalt Mastic (Model 4-1) ................. 109 

Figure 6.18 Predicted vs. Measured Values of Asphalt Mastic (Model 4-2) ................. 111 

Figure 6.19 Predicted vs. Measured Values of Asphalt Mastic (Model 5)..................... 113 

Figure 6.20 Predicted vs. Measured Values of Asphalt Mastic (Model 6)..................... 115 

Figure 6.21 Predicted vs. Measured Values of Asphalt Mastic (Model 7)..................... 117 

Figure 6.22 Errors for Dynamic Shear Modulus in Viscoelastic Prediction .................. 119 

Figure 6.23 Errors for Phase Angle in Viscoelastic Prediction ...................................... 120 

Figure 6.24 Errors Caused by Elastic Prediction Method............................................... 123 

Figure 6.25 Errors Caused by Elastic Prediction Method for Model 4-1 ....................... 123 

Figure 7.1 Schematic for Binder-Aggregate System of HMA Mixtures ........................ 125 

Figure 7.2 Schematic for Mastic-Aggregate System of HMA Mixtures ........................ 125 

Figure 7.3 Master Curves of Complex Shear Moduli of Asphalt Mastic                            

at 25 v.% (25°C) ........................................................................................... 127 

Figure 7.4 Flow Chart for Binder-Aggregate System Prediction ................................... 128 

Figure 7.5 Relationship between Retaining Ratio and Air Voids Content ..................... 129 

Figure 7.6 Predicted vs. measured *E  and φ  of HMA mixture................................... 131 



 xiii

Figure 7.7 Predicted vs. measured *E  and φ  of HMA mixture (Model 1) ................. 132 

Figure 7.8 Predicted vs. measured *E  and φ  of HMA mixture (Model 2-1) .............. 133 

Figure 7.9 Predicted vs. measured *E  and φ  of HMA mixture (Model 2-2) .............. 134 

Figure 7.10 Predicted vs. measured *E  and φ  of HMA mixture (Model 3-1) ............ 135 

Figure 7.11 Predicted vs. measured *E  and φ  of HMA mixture (Model 3-2) ............ 136 

Figure 7.12 Predicted vs. measured *E  and φ  of HMA mixture (Model 4-1) ............ 137 

Figure 7.13 Predicted vs. measured *E  and φ  of HMA mixture (Model 4-2) ............ 138 

Figure 7.14 Predicted vs. measured *E  and φ  of HMA mixture (Model 5) ............... 139 

Figure 7.15 Predicted vs. measured *E  and φ  of HMA mixture (Model 6) ............... 140 

Figure 7.16 Predicted vs. measured *E  and φ  of HMA mixture (Model 7) ............... 141 

Figure 7.17 Flow Chart for Mastic-Aggregate System Prediction ................................. 143 

Figure 7.18 Predicted vs. Measured *E  and φ  of HMA Mixture................................ 145 

Figure 7.19 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 1)............... 146 

Figure 7.20 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 2-1) ........... 147 

Figure 7.21 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 2-2) ........... 148 

Figure 7.22 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 3-1) ........... 149 

Figure 7.23 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 3-2) ........... 150 

Figure 7.24 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 4-1) ........... 151 

Figure 7.25 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 4-2) ........... 152 



 xiv

Figure 7.26 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 5)............... 153 

Figure 7.27 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 6)............... 154 

Figure 7.28 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 7)............... 155 

Figure 7.29 Prediction Errors in Mastic-Aggregate System Prediction ......................... 156 

Figure 7.30 Aggregate Gradations.................................................................................. 159 

Figure 7.31 Air Voids Size Distribution for Sensitivity Analysis .................................. 160 

Figure 7.32 Effect of Aggregate Gradation .................................................................... 161 

Figure 7.33 Effect of Aggregate Modulus ...................................................................... 162 

Figure 7.34 Effect of Asphalt Content............................................................................ 163 

Figure 7.35 Effect of Air Voids ...................................................................................... 165 

 



 xv

LIST OF TABLES 
 

Table 1.1 Summary Statistics for the Witczak Predictive Model      

(Andrei et al. 1999). ........................................................................................ 18 

Table 2.1 Four Basic Viscoelastic Elements..................................................................... 35 

Table 5.1 Asphalt Binder Properties................................................................................. 68 

Table 5.2 Properties of Aggregates................................................................................... 74 

Table 5.3 Volumetric Properties of HMA Mixture .......................................................... 75 

Table 6.1 Values of Input Parameter in Predictive Equations .......................................... 82 

Table 6.2 Prony Series Constants for Relaxation Shear Modulus of Asphalt Binder ...... 84 

Table 6.3 PFC Models Used for Elastic Prediction of Asphalt Mastic ............................ 86 

Table 6.4 Models Used for Viscoelastic Prediction of Asphalt Mastic............................ 97 

Table 7.1 Prony series constants for relaxation shear modulus of asphalt mastic        

at 25 v.% ....................................................................................................... 127 

Table 7.2 Input Parameters and Their Values for Sensitivity Analysis.......................... 160 

 

 
 
 
 
 
 
 



 xvi

LIST OF SYMBOLS 
 
 
A coefficient; or cross sectional area 
A1, A2 coefficients 
a aggregate radius 
ai radius of the opening size of the No. i sieve 
ai+1 radius of the opening size of the No. (i+1) sieve 
amax maximum aggregate radius 
amin minimum aggregate radius 

Ta  horizontal shift factor 
AASHTO American Association of State Highway and Transportation Officials 
AC asphalt content 
B coefficient 
BBR bending beam rheometer 
b aggregate radius plus thickness of asphalt mastic 
C coefficient 
c volume fraction of inclusion; or radius of equivalent medium 
D compliance; or constant 
DSCM differential self-consistent method 
DSR dynamic shear rheometer 
Dg glassy compliance  
E elastic modulus; or relaxation modulus 
E  Laplace transform of E 
E~  Carson transform of E 
E ′  storage modulus 
E ′′  loss modulus 
E* complex modulus  

*E  dynamic modulus 

voidsair
E

 
*  predicted dynamic modulus of HMA mixtures with air voids 

voidsairno
E

  
*  predicted dynamic modulus of HMA mixtures without air voids 

mix
E *  absolute value of mixture dynamic modulus 

E0 elastic modulus of equivalent medium 
E1 elastic modulus of asphalt mastic 
E2 elastic modulus of aggregate 
Ec elastic modulus of composite 

*
cE  complex modulus of composite 

Ee long-time equilibrium modulus 
Ei elastic modulus of inclusion 
Em elastic modulus of matrix 

*
mE  complex modulus of matrix 

F constant 



 xvii

f loading frequency 
f1 volume fraction of asphalt mastic in HMA mixture 
f2 volume fraction of aggregate in HMA mixture 
f3 volume fraction of air voids in HMA mixture 

Tf  frequency at temperature T 

0Tf  frequency at the reference temperature T0 

G shear modulus 
G* complex shear modulus 

*G  dynamic shear modulus 

GL gauge length 
GSCM generalized self-consistent method 

binder
G *  absolute value of asphalt binder complex modulus 

Gc shear modulus of composite; or relaxation shear modulus of composite 
*
cG  complex shear modulus of composite 

cG~  Carson transform of Gc 

elastic
G *  predicted dynamic shear modulus with the elastic prediction method 

Gi shear modulus of inclusion 
Gm shear modulus of matrix; or relaxation shear modulus of matrix 

mG  Laplace transform of Gm 

mG~  Carson transform of Gm 
*
mG  complex shear modulus of matrix 

Gmb bulk specific gravity of compacted HMA mixture 
Gmm maximum theoretical specific gravity of loose HMA mixture 
Gsb bulk specific gravity of aggregate 

icviscoelast
G *  predicted dynamic shear modulus with the viscoelastic prediction method 

( )tH  Heaviside step function 
HMA hot-mix asphalt 
i 1−  
J creep compliance 
J  Laplace transform of J 
J~  Carson transform of J 
J ′  storage compliance 
J ′′  loss compliance 
J* complex compliance 

*J  dynamic compliance 

K bulk modulus 
K* complex bulk modulus 

*K  dynamic bulk modulus 

Kc bulk modulus of composite 



 xviii

*
cK  complex bulk modulus of composite 

Ki bulk modulus of inclusion 
Km bulk modulus of matrix 

*
mK  complex bulk modulus of matrix 

L boundary at r = c 
MTM Mori-Tanaka method 
m number of dashpots in the generalized Maxwell model 
NCHRP National Cooperative Highway Research Program 
n number of dashpots in the generalized Kelvin model; or coefficient 
P  average loading amplitude 

( )aP  weight fraction of aggregates with radius less than a 
PAV pressure aging vessel 
p radial stress applied at r = c 
p1 induced radial stress at r = b 
p2 induced radial stress at r = a 
Pc coefficient in the predictive equation of the Hirsch model by Christensen 

et al. (2003) 
PFC particulate-filled composite 
Q  operational relaxance 
q  polynomial in s 
qm constant coefficient 
R retaining ratio 
R2 correlation coefficient 
RTFO rolling thin-film oven 
r radius 
s Laplace variable 
SCM self-consistent method 
SPT Simple Performance Tester 
Se standard error of estimate 
Sy standard deviation of observed values 
T temperature 
T0 reference temperature of master curve 
ti average time lag between peak stress and peak strain 
tp average time for a loading cycle 
U  operational retardance 
Umac strain energy when HMA is considered as a macroscopically 

homogeneous material 
Umic strain energy when HMA is considered as a microscopically 

inhomogeneous material 
u  polynomial in s 

bu0  radial displacement of equivalent medium at r = b 

cu0  radial displacement of equivalent medium at r = c 



 xix

au1  radial displacement of asphalt mastic at r = a 

bu1  radial displacement of asphalt mastic at r = b 

au2  radial displacement of whole HMA mixture medium as a macroscopically 
homogeneous medium at r = c 

cu  radial displacement of aggregate at r = a 
un constant coefficient 
VFA voids filled with asphalt  
VMA voids in mineral aggregates 
Va air void content 
Vbeff effective bitumen content 
Vi volume fraction or concentration of inclusion 
Vm volume fraction or concentration of matrix 
x volume fraction of the lower of the first-order two constituents combined 

in series in the Hirsch model 
x1, x2 coefficients; or roots of quadratic equation 
α, α1 ~ α8 coefficients 
β0, β1 ~ β8 coefficients 
∆  average deformation amplitude 

( )tδ  Dirac delta function 
ε normal strain 
ε&  time derivative of ε 
ε  Laplace transform of ε 

0ε  strain amplitude 
φ phase angle 

maxγ  maximum shear strain 
η bitumen viscosity 
η1, η2, η3, coefficients 
ρ34 cumulative % retained on the 19-mm sieve 
ρ38 cumulative % retained on the 9.5-mm sieve 
ρ4 cumulative % retained on the 4.75-mm sieve 
ρ200 % passing the 0.075-mm sieve 
ρ  relaxation time 
σ normal stress 
σ&  time derivative of σ 
σ  Laplace transform of σ 

0σ  stress amplitude 

ssσ  steady state stress response 

ssσ  Laplace transform of ssσ  
τ  retardation time 

maxτ  maximum shear stress 
v0 Poisson’s ratio of equivalent medium 



 xx

v1 Poisson’s ratio of asphalt mastic 
v2 Poisson’s ratio of aggregate 
vi Poisson’s ratio of inclusion 
vm Poisson’s ratio of matrix 
ω radian frequency 
ξ coefficient 
 
 
 
 



 1

CHAPTER 1 INTRODUCTION 

Research Background  

Flexible pavements are widely used in the United States and all over the world. 

Hot mix asphalt (HMA) mixtures are commonly used in flexible pavements as surface 

and load carrying layers. HMA mixtures consist of asphalt cement binder, coarse and fine 

aggregates, and mineral filler mixed together at a high temperature and placed and 

compacted on the road while still hot.  

During the mixing process of HMA mixtures, every aggregate particle, regardless 

of its size, is coated with a thin film of asphalt cement mastic (asphalt cement + mineral 

filler).  Therefore, the resulting asphalt mixtures can be considered as a composite 

material with aggregate particles and air voids dispersed in the asphalt mastic matrix 

(Figure 1.1) (Li et al. 1999; Huang et al. 2007).  Thus, HMA mixtures actually belong to 

a class of materials known as particulate filled composite (PFC) materials, which, by 

definition, consist of a single continuous phase (asphalt cement mastic) and one or more 

discontinuous particulate phases (aggregate particles) (Young et al. 1998). 

As a composite material, the overall (or effective) behavior of HMA mixture is 

totally dependent on the properties and volumetric fractions of the individual constituents 

and their interactions. The overall properties of HMA mixture (such as effective modulus, 

effective strength, etc) can also be theoretically determined, provided that the properties 

and volumetric fractions of the individual constituents are already known. 

Particulate filled composite (PFC) theory is one of the most widely used 

micromechanics-based modeling techniques to characterize the overall physical, 
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Asphalt binder 
(or mastic)

Aggregate

Air Voids

 

Figure 1.1 Microstructure Schematic of HMA Mixtures 

 
mechanical, thermal, magnetic behavior of composites (Nemat-Nasser and Hori 1999). 

However, its application has long been limited to ceramic, metal, and polymer matrix 

composites other than asphalt mixtures (Christensen 1979; Nemat-Nasser and Hori 

1999).  In recent years, research efforts have been made to apply PFC theory to predict 

the mechanical properties of asphalt mastics and mixtures, such as elastic modulus, 

resilient modulus, dynamic (complex) modulus, and tensile strength (Lytton 1990; Buttlar 

and Roque 1996; Buttlar et al. 1999; Li et al. 1999; Shashidhar and Shenoy 2002; Huang 

et al. 2003, 2007; Kim and Little 2004; Li and Metcalf 2005). 

Importance of Dynamic Modulus in AASHTO 2002 Design Guide 

With the transition of flexible pavement design from empirical to mechanistic-

empirical method, modulus or stiffness has long been considered one of the most 

important mechanical properties of HMA mixtures (Li et al. 1999; Huang 2004). In the 

pavement analysis with the mechanics method, modulus of HMA mixtures is a necessary 
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input parameter to calculate the stress and strain in the pavement layers under various 

traffic loadings. From the calculated stress and strain, the pavement performance can be 

predicted using the empirical relationships developed from long term observation and 

experience (Huang 2004).  

However, use of an elastic stiffness parameter, such as elastic modulus or resilient 

modulus, cannot accurately characterize the viscoelastic properties of HMA mixtures 

resulting from asphalt binder. In the newly approved  and implemented American 

Association of State Highway and Transportation Officials (AASHTO) 2002 

Mechanistic-Empirical (M-E) Design Guide for new and rehabilitated pavement 

structures, the dynamic modulus |E*| was selected as one of the important material 

property input parameters for flexible pavement design. Dynamic modulus can reflect the 

temperature and frequency dependency of HMA mixture properties (NCHRP 2004). 

In the pavement analysis according to the AASHTO 2002 M-E Design Guide, 

dynamic modulus value of HMA mixtures (among the other material properties needed), 

together with other design inputs (such as traffic loading, environmental conditions, and 

pavement structure) is used to predict the distress of flexible pavements with the distress 

prediction models and to make sure that the final designed pavement can meet all the 

requirements of pavement design (Figure 1.2). 

Dynamic modulus |E*| is one of the fundamental engineering properties widely 

used to characterize the viscoelastic behavior of HMA mixtures. There are many ways 

available to obtain the dynamic modulus value of HMA mixtures. The most reliable one 

is through direct laboratory testing on HMA specimens at different loading frequencies  
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Figure 1.2 Overall Design Process for Flexible Pavements (NCHRP 2004) 

 

and temperatures. However, dynamic modulus measurements are hard to obtain in 

laboratory testing under extreme conditions of temperatures or loading frequencies. 

Besides, laboratory testing is usually more costly and time-consuming than other 

methods. Currently, dynamic modulus can also be estimated using available empirical 

relationships, such as the Witczak model and the Hirsch model (Andrei et al. 1999; 

Christensen et al. 2003; Dongré et al. 2005).  

The AASHTO 2002 M-E Design Guide employs the hierarchical approach for 

determining pavement design inputs based on the philosophy that the level of engineering 

efforts exerted in the pavement design process should be consistent with the relative 

importance, size, and cost of the design project. The hierarchical approach provides three 

levels of dynamic modulus input (NCHRP 2004): 



 5

• Level 1 material input provides the highest level of accuracy and requires the 

direct measurement of dynamic modulus of HMA mixtures through laboratory 

or field testing.  

• Level 2 provides an intermediate level of accuracy. It does not require 

dynamic modulus testing. In level 2, the Witczak model is recommended to be 

used to predict the dynamic modulus value with laboratory measured binder 

stiffness or viscosity. 

• Level 3 provides the lowest level of accuracy and thus does not require the 

laboratory testing for binder stiffness or viscosity. In level 3, the dynamic 

modulus predictions use the default binder properties established for all binder 

grades in the 2002 M-E Design Guide. 

In parallel with incorporating dynamic modulus in pavement analysis and design 

as a basic input parameter, the dynamic modulus test has also been selected as a Simple 

Performance Tester (SPT) in the Superpave mixture design to provide the dynamic 

modulus value of HMA mixtures under the NCHRP 9-19 project: “Superpave Support 

and Performance Models Management” and NCHRP 9-29 project: “Simple Performance 

Tester for Superpave Mix Design” (NCHRP 2003; Bonaquist 2003). 

However, a problem arises regarding whether accurate dynamic modulus 

prediction can be obtained from the empirical relationships. The empirical predictive 

equations can give satisfactory estimates only under conditions in which they were 

developed. Since there are so many types of asphalt binder and aggregates used in HMA 

mixtures, it is very hard, if not impossible, to establish a universal relationship that can be 

applied to all the HMA mixtures. 
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Recent studies show that PFC theory provides another possible approach for 

obtaining the dynamic modulus values of HMA mixtures (Huang et al 2007; Buttlar and 

Roque 1996; Buttlar et al. 1999; Li et al. 1999; Shashidhar and Shenoy 2002).  This 

micromechanics approach is based on the fact that HMA mixtures are actually a 

composite material composed of three phases: aggregates, asphalt mastic, and air voids 

(Figure 1.1).   

Literature Review 

PFC Theory 

PFC materials have been widely used in various industries due to their low 

production cost, ease of manufacture, and good properties (such as thermal stability, 

macroscopic isotropicity). Numerous particulate micromechanical models have been 

proposed to characterize the overall properties of PFC materials based on the properties 

and volume fractions of individual components and their interactions.  

The parallel (or Voigt) model (Figure 1.3a) and the series (or Reuss) model 

(Figure 1.3b) are two commonly used micromechanical models (Paul 1960). The 

effective elastic modulus of the composites for the parallel and the series models can be 

calculated as follows: 

mmiic VEVEE +=     (Parallel model)                                                       (1.1) 

m

m

i

i

c E
V

E
V

E
+=

1          (Series model)                                                         (1.2) 

where  

Ec = effective elastic modulus of composite;  
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Ei = elastic modulus of inclusion;  

Em = elastic modulus of matrix;  

Vi = volume fraction of inclusion; and 

Vm = volume fraction of matrix. 

The parallel model, in which the two component phases are subject to uniform 

strains, provides the upper-bound solution for the elastic modulus. Eq.(1.1) is now 

commonly known as the law of mixtures, or the rule of mixtures. The series model, in 

 

(b) Series model

(d) Counto's model

(a) Parallel model

(c) Hirsch's model

 

Figure 1.3 Various Types of Micromechanical Models 
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which the two component phases are subject to uniform stresses, provides the lower-

bound solution for the elastic modulus. 

These two models provide such a broad range in the prediction of elastic modulus 

when the constituent properties differ greatly that they actually offer no practical use but 

a rough estimate.  Therefore, more complex composite models have been developed to 

give more realistic representations of particulate composites. The Hirsch model (Figure 

1.3c) and the Counto model (Figure 1.3d) are two of these models (Hirsch 1961, 1962; 

Counto 1964). They give the following predictive equations: 

( ) ⎟⎟
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111     (Hirsch model)                     (1.3) 
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E +−
+

−
=

1
11     (Counto model)                          (1.4) 

where  

x = volume fraction of the lower of the first-order two constituents combined in series in 

the Hirsch model; and 

1−x = volume fraction of the upper of the first-order two constituents combined in series 

in the Hirsch model. 

These four above-mentioned particulate micromechanical models are compared 

graphically in Figure 1.4. 

In 1957, Eshelby developed an important concept of equivalent medium which 

forms the basis for the mechanics of composite materials (Eshelby 1957). Since then, 

many more sophisticated models and methods have been proposed to predict the 

properties of PFC.  These models based on the equivalent medium can be divided into 
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Figure 1.4 Comparison of Different Types of Micromechanical Models  

(Assuming Ei = 10 Em, x = 0.5 for the Hirsch model) 

 

two main categories. The first one is the dilute model with the assumption that a single 

inclusion is embedded in an infinite matrix subjected to a remote loading in the 

composites (Christensen 1979). Due to the failure to take into account the inclusion 

distribution and interaction between inclusion and matrix, the dilute model is not suitable 

for high inclusion-concentrated composites (such as HMA mixtures). To account for the 

inclusion interaction, many other models have been developed. Among them are the self-

consistent method (SCM) (Hill 1965), the differential self-consistent method (DSCM) 

(McLaughlin 1977), the generalized self-consistent method (GSCM) (Christensen and Lo 

1979, 1986), and Mori-Tanaka method (MTM) (Mori and Tanaka 1973). The generalized 

self-consistent method is a more sophisticated micromechanical approach. It is based on a 
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three-phase model: an inclusion is embedded in a finite matrix, which in turn is 

embedded in an infinite equivalent medium of the composite.  Christensen gave a critical 

evaluation of the GSCM estimate and the corresponding DSCM and MTM estimates for 

the shear modulus of PFC (Christensen 1990).  

In recent years, many research efforts have been directed to use the particulate 

micromechanical models to determine the stiffness or modulus of asphalt mastics and 

mixtures, among which are the Hashin’s composite sphere model (Figure 1.5) and the 

Christensen and Lo’s generalized self-consistent model (Figure 1.6). The composite 

sphere model proposed by Hashin (1962) consists of a series of perfectly packed 

spherical inclusions coated with concentric shell matrix. It is also assumed that all 

composite spheres have identical particle-to-matrix diameter ratios (a/b, see Figure 1.5) 

and are completely bounded by adjacent composite spheres. Hashin derived the exact 

solution to the effective bulk modulus of the model and also provided a good estimate of 

the effective shear modulus as follows: 
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where  
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Figure 1.5 Hashin’s Composite Spheres Model (Christensen and Lo 1979) 

 

 

Figure 1.6 Christensen and Lo’s Generalized Self-Consistent Model (Christensen 1990) 
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Kc = effective bulk modulus of composite;  

Ki = bulk modulus of inclusion;  

Km =  bulk modulus of matrix;  

c = volume fraction of inclusion;  

vm = Poisson’s ratio of matrix.  

Gc = effective shear modulus of composite;  

Gi = shear modulus of inclusion; and 

Gm = shear modulus of matrix. 

The elastic (Young’s) modulus, E, can be obtained by using its relationship with 

bulk modulus, K, shear modulus, G, and Poisson’s ratio, v: 

( )KvE 213 −=                                                                                             (1.7) 

( )GvE += 12                                                                                               (1.8) 

GK
KGE
+

=
3
9                                                                                                 (1.9) 

The generalized self-consistent model proposed by Christensen and Lo (1979) 

consists of a single composite sphere embedded in an infinite equivalent homogeneous 

medium of unknown properties (Figure 1.6). The exact solution to the effective shear 

modulus can be obtained by solving the following quadratic equation: 
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where 
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where  

vi = Poisson’s ratio of inclusion. 

However, the above mentioned particulate micromechanical models can not be 

readily used to accurately predict the modulus of asphalt mixtures because they cannot 



 14

take into account the particular characteristics of HMA mixtures, such as aggregate 

gradation, viscoelastic effect, and air voids, etc. 

Application of PFC Models to Asphalt Mastics and Mixtures and Their Limitations 

Micromechanical modeling techniques have long been successfully used to 

characterize the overall properties using the volume fractions and properties of individual 

components for engineering materials such as ceramics, metals, etc. (Eshelby 1957; 

Christensen and Lo 1979, 1986; Hashin 1962, 1965; Mclaughlin 1977; Mori and Tanaka 

1973; Hansen 1965). Not until recent years have research efforts been made to apply the 

micromechanical models to predict the mechanical properties of asphalt mastics and 

mixtures (Lytton 1990; Buttlar and Roque 1996; Buttlar et al. 1999; Li et al. 1999; 

Shashidhar and Shenoy 2002; Huang et al. 2003, 2007; Kim and Little 2004; Li and 

Metcalf 2005).  

Lytton (1990) proposed a three-phase (aggregate, asphalt binder, and air voids) 

model to predict the modulus of HMA mixtures by considering two phases at a time from 

binder-air system to aggregate-binder-air system. Buttlar and Roque (1996) evaluated the 

applicability of four well-known modulus prediction models to HMA mixtures. Buttlar et 

al. (1999) also employed various micromechanical models to investigate the mastic 

reinforcing mechanisms and found the generalized self-consistent model (GSCM) to 

produce reasonable results. Li et al. (1999) developed a two-layer built-in 

micromechanical model and used the model to predict the elastic modulus of HMA 

mixtures. Compared to the conventional PFC mechanics method, Li’s model has the 

capability of taking into account aggregate gradation and maximum aggregate particle 
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size of HMA mixtures. Shashidhar and Shenoy (2002) explored the applicability of PFC 

models in describing the dynamic mechanical behavior of asphalt mastics and simplified 

GSCM using an order of magnitude analysis. Using a two-phase composite model, 

Huang et al. (2003) developed the analytical equation to estimate the tensile strength of 

HMA mixtures at low temperatures. The predicted results were found to be in good 

agreement with the experimental data. Huang et al. (2007) also used the micromechanical 

model to characterize a three-layered HMA mixture produced with a type of hard and 

solid asphalt, Gilsonite, as an interlayer between asphalt binder and aggregate particles. 

Kim and Little (2004) used micromechanical models to assess the effects of filler on the 

performance of asphalt mastics based on the linear viscoelastic analysis and found good 

agreement between predicted results from traditional micromechanical models and 

testing data. Li and Metcalf (2005) proposed a two-step approach to predict the resilient 

modulus of HMA mixtures from two-phase micromechanical models and found the 

predicted results from appropriate models reasonably approximate the measured results. 

Of all the micromechanical models mentioned previously, the predicted (elastic or 

resilient) modulus/stiffness results of HMA mixtures (or asphalt mastics) show varied 

agreement with the measured data. The discrepancy between predicted and measured 

moduli can be attributed to the fact that HMA mixtures possess distinctly different 

characteristics from the other ordinary engineering materials. Firstly, HMA mixtures 

exhibit time and temperature-dependent response resulting from the viscoelastic 

properties of asphalt cement binder. However, except for the work of Kim and Little 

(2004), all of the previously mentioned micromechanical models are based on the elastic 

analysis rather than viscoelastic analysis. Secondly, the aggregate gradation also 
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contributes to the discrepancy since almost all the micromechanical models can not take 

into account aggregate size distribution except the one developed by Li et al. (1999). 

Lastly, none of the micromechanical models can address the interlocking between 

aggregate particles, which may play an important role in the reinforcement mechanisms 

of HMA mixtures. Buttlar and Roque (1996) attributed the discrepancy to the incapability 

of the models to incorporate aggregate interlock. However, Li and Metcalf (2005) argued 

that there is no direct contact between large aggregates in a typical dense-graded HMA 

mixture (Roberts et al. 1996). 

Latest Models for Predicting Dynamic Modulus of HMA Mixtures 

Numerous empirical models have been proposed to predict the modulus/stiffness 

of HMA mixtures due to its importance in structural design of flexible pavements and the 

desire to reduce the amount of laboratory testing. Examples include the Heukelom and 

Klomp’s relations (Heukelom and Klomp 1964), the relations proposed by Bonnaure et 

al. (1977), the SHRP SUPERPAVETM Single-Function Power Model (Roque et al. 1994), 

and the Multiple-Function Power Model (Buttlar and Roque 1996). 

  As previously mentioned, Level 2 and 3 material inputs in the AASHTO 2002 

Design Guide recommended the use of the Witczak model for predicting dynamic 

modulus value of HMA mixtures in terms of asphalt binder, aggregate, and mix 

properties. The Witczak model is expressed as (NCHRP 2004): 
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where  

|E*| = dynamic modulus, psi;  

η = bitumen viscosity, 106 Poise;    

f = loading frequency, Hz;   

Va = air void content, %;  

Vbeff = effective bitumen content, % by volume;   

ρ34 = cumulative % retained on the 19-mm sieve;   

ρ38 = cumulative % retained on the 9.5-mm sieve;   

ρ4 = cumulative % retained on the 4.75-mm sieve;  and 

ρ200 = % passing the 0.075-mm sieve. 

The Witczak model is based on work developed by Witczak and his co-workers 

over nearly 30 years (Andrei et al. 1999). It is a purely empirical regression model 

developed from a large database of over 2700 laboratory test measurements of dynamic 

modulus value (Andrei et al. 1999). Table 1.1 summarizes the characteristics of the 

diverse set of mixtures in the database used to formulate and calibrate Eq. (1.17), as well 

as the relevant goodness-of-fit statistics for the model. 

Another model lately developed to predict the dynamic modulus of HMA mixture 

is the Hirsch model (Christensen et al. 2003). The original Hirsch model was developed 

by Hirsch to calculate the modulus of elasticity of cement concrete or mortar in terms of 

one empirical constant, the aggregate modulus and cement mastic modulus, and mix 

proportion (Hirsch 1961, 1962). Hirsch assumed that the responses of the constituents 

(cement matrix, aggregate, and the composite concrete) behave in a linear elastic manner. 
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Table 1.1 Summary Statistics for the Witczak Predictive Model (Andrei et al. 1999). 

Statistics Value 

Goodness of fit (log⎥E*⎢space) R2=0.96, Se/Sy=0.24 

Data points 2750 

Temperature range 0 to 130 °F 

Loading rates 0.1 to 25 Hz 

Mixtures 

205 Total 

171 with unmodified asphalt binders 

  34 with modified asphalt binders 

Binders 

23 Total 

9 Unmodified 

14 Modified 

Aggregates 39 

Compaction methods Kneading and gyratory 

Specimen sizes Cylindrical 4 in. by 8 in. or 2.75 in. by 5.5 in. 

 

Christensen developed a relatively simple version of the Hirsch model (Eq. 1.18) to 

predict dynamic modulus of HMA mixtures from the complex shear modulus |G*| of 

asphalt binder and volumetric properties of HMA mixtures. The estimated standard error 

reported by Christensen is 41 percent for the Hirsch model (Christensen et al. 2003). 
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 |E*|mix = absolute value of mixture dynamic modulus, psi;   

|G*|binder = absolute value of asphalt binder complex modulus, psi;  

VMA = voids in mineral aggregates, %; and 

VFA = voids filled with asphalt, %. 

Dongré et al. (2005) evaluated the predictive capability of the Witczak and Hirsch 

models by comparing the predicted dynamic modulus values to the results measured in 

the laboratory of the Federal Highway Administration (FHWA) Mobile Asphalt 

Laboratory (MATL) using asphalt mixtures from five pavement construction sites across 

the United States. They found that both models provide reasonable predictions of 

dynamic modulus within the scope of their study. The accuracy and robustness of the 

Witczak model was also evaluated by Schwarz (2005) through a set of sensitivity and 

validation studies. He found that the Witczak model may overestimate dynamic modulus, 

particularly at higher temperatures. His overall findings confirmed that the Witczak 

model can provide sufficiently accurate and robust estimates of dynamic modulus for use 

in mechanistic-empirical pavement performance prediction and design. Birgisson et al. 

(2005a) evaluated the Witczak model using 28 mixtures commonly used in the state of 

Florida. They found that the Witczak model appeared to work well for mixtures in 

Florida. However, a multiplier has to be introduced to account for the uniqueness of local 

mixtures. Birgisson et al. (2005b) also investigated the effects of aggregate characteristics 
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on dynamic modulus of HMA. They suggested to use the power-law-based aggregate 

gradation factors to identify and evaluate the relationships between gradation factors and 

dynamic modulus at higher temperatures (40°C). They also established a tentative 

framework to optimize the mixture gradations for dynamic modulus. Using two 25-mm 

Superpave mixtures with two different binder types, Mohammad et al. (2005) evaluated 

both Witczak and Hirsch prediction models. They found that both models can predict the 

dynamic modulus values from mixture properties within a reasonable reliability. 

Although both the Witczak and the Hirsch models can give relatively accurate 

prediction of dynamic modulus, the full aggregate gradation is not taken into 

consideration in either model (Four representative points ρ34, ρ38, ρ4 and ρ200 on the 

aggregate gradation curve are incorporated in the Witczak model; whereas the aggregate 

gradation characteristics are totally neglected in the Hirsch model). This implies that 

given the same other conditions, different aggregate gradations can lead to the same 

dynamic modulus value. It has been well recognized that aggregate gradation 

characteristics exhibit important effects on the dynamic modulus value (Birgisson et al. 

2005b). Poor gradation may lead to low dynamic modulus value, which will result in 

poor performance of flexible pavements.  In addition, these equations do not consider the 

internal micromechanical structure (such as air voids size distribution) of HMA mixtures. 

Theoretical relationships based on appropriate micromechanical models to determine the 

value of dynamic modulus of HMA mixtures is more desirable. The micromechanical 

models are also helpful in gaining insight into the mechanical behaviors of HMA 

mixtures from the viewpoint of their individual constituents. 
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Research Objectives and Significance 

The objectives of this study were as follows: 

1. To develop new PFC micromechanical models and modify existing PFC models 

for predicting dynamic modulus of asphalt mastic and mixtures;  

2. To evaluate the newly developed and modified PFC models for HMA mixtures 

through a comparison of the predicted and laboratory measured dynamic moduli; 

3. To investigate the effects of different factors (such as properties and volumetric 

fractions of individual constituents) on dynamic modulus of HMA mixtures. 

Although there are many micromechanical models now available to determine the 

properties of PFC, they cannot be readily used to predict the dynamic modulus of HMA 

mixtures without further extension or modification. Through this proposed research, more 

models will be developed to better reflect the features of HMA mixtures and can be used 

to accurately predict the dynamic modulus value of HMA mixtures. These 

micromechanical models can also be helpful in promoting the understanding of the 

mechanical behavior of HMA mixtures and provide a basis for future substitution for 

expensive and time-consuming laboratory testing of HMA mixtures for dynamic 

modulus. 

Arrangement of the Dissertation 

This dissertation is divided into eight chapters. Chapter 1 introduces the research 

background, objectives, and literature review on some PFC models and attempts to use 

them in asphalt mastic and mixtures by some researchers. Chapter 2 provides the 

necessary theoretical background of linear viscoelasticity for the formulation of PFC 
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models for HMA mixtures, including the representation of viscoelastic material 

properties, elastic-viscoelastic correspondence principle for converting elastic modulus 

into complex modulus and the construction of master curve. Chapters 3 and 4 present the 

formulation of the three-dimensional two-layered model for HMA mixtures and the PFC 

models derived using the differential method. Chapter 5 describes the laboratory testing 

on asphalt mastic and HMA mixture to obtain the input parameters for the predictive 

models and to measure the dynamic modulus and phase angle values of asphalt mastic 

and mixture so that comparison can be made between the predicted and measured results. 

In Chapter 6 and 7, the proposed models in this study were used to predict the dynamic 

modulus and phase angle values of asphalt mastic and mixture. The proposed PFC 

models were also evaluated by comparing the predicted value to the measured results. 

Chapter 8 summarizes the conclusions from this study and recommends possible future 

research topics in this area. 
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CHAPTER 2 THEORECTICAL BACKGROUND 

Material Properties in Linear Viscoelasticity 

In linear viscoelasticity, the relationship between the time-dependent stress and 

strain of a viscoelastic material can be expressed using a linear differential equation with 

constant coefficients (Tschoegl 1989; Ferry 1980; Park and Schapery 1999; Kim and 

Little 2004): 

( ) ( )∑∑
==

=
M

m
m

m

m

N

n
n

n

n dt
tdq

dt
tdu

00

εσ                                                                   (2.1) 

where  

un and qm = constant coefficients. 

The Laplace transformation of Eq. (2.1) leads to 

( ) ( ) ( ) ( )ssqssu εσ =                                                                                  (2.2) 

where 

s  = Laplace variable; 

( )sσ  = Laplace transform of stress ( )tσ , i.e.,    

      ( ) ( ) dtets st−∞

∫=
0

σσ                                                                                   (2.3) 

( )sε  = Laplace transform of strain ( )tε , i.e., 

              ( ) ( ) dtets st−∞

∫=
0

εε                                                                                   (2.4) 

 ∑
=

=
N

n

n
n susu

0
)(                                                                                         (2.5) 

 ∑
=

=
M

m

m
m susq

0

)(                                                                                        (2.6) 
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It should be noted that Eqs.(2.5) and (2.6) are valid only under the zero initial 

conditions. Fortunately, zero initial conditions can almost always be obtained by 

appropriately defining the stress and strain history (Tschoegl 1989). 

Eq.(2.2) can also be expressed as:  

( ) ( ) ( )ssQs εσ =                                                                                        (2.7) 

or 

( ) ( ) ( )ssUs σε =                                                                                        (2.8) 

where  

( )sQ  = operational relaxance,  

 ( ) ( )
( )su
sqsQ =                                                                                             (2.9) 

( )sU  = operational retardance,      

( ) ( )
( )sq
susU =                                                                                            (2.10) 

Eqs.(2.7) and (2.8) are also called Hooke’s law in the Laplace-transformed 

domain (Tschoegl 1989). 

From Eq.(2.2), the following relationship holds:  

( ) ( ) 1=sUsQ                                                                                        (2.11) 

The material function, ( )sQ  or ( )sU ,  includes all the necessary information to 

characterize the viscoelastic property of a material. 

In order to obtain ( )sQ  or ( )sU , a relaxation or creep test can be conducted. In 

the relaxation test, a strain 0ε   is suddenly applied to a specimen at time t = 0 and then 
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maintained constant (Figure 2.1). Usually, the induced stress ( )tσ  for a viscoelastic 

material to keep the constant strain is a monotonously decreasing function of time (Figure 

2.1).  

Thus, the strain can be expressed as: 

( ) )(0 tHt εε =                                                                                           (2.12) 

where  

)(tH  = Heaviside step function, i.e., 

             ( )
⎩
⎨
⎧

<
>

=
0       0
0       1

t
t

tH                                                                              (2.13) 

Laplace transformation of Eq. (2.12) gives 

 

t 

t 

ε0 = constant 

ε 

σ 

σ(t) 

0 

0  

Figure 2.1 Stress and Strain in a Relaxation Test 
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( )
s

s 0ε
ε =                                                                                                (2.14) 

Substituting Eq.(2.14) into Eq.(2.7), we obtain 

( ) ( )
0εσ

s
sQs =                                                                                        (2.15) 

The inverse Laplace transformation of Eq.(2.15) gives 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
= −

s
sQLt 1

0εσ                                                                                 (2.16) 

where  

L−1 = inverse Laplace transformation. 

Thus, we get 

( ) ( ) ( )tEt
s
sQL ==⎥

⎦

⎤
⎢
⎣

⎡−

0

1

ε
σ                                                                          (2.17) 

where  

( )tE  = relaxation modulus. 

From Eq.(2.17), we obtain 

( ) ( )
s
sQsE =                                                                                             (2.18) 

and 

( ) ( )sEssQ =                                                                                          (2.19) 

where  

( )sE  = Laplace transform of relaxation modulus ( )tE , i.e.,  

                     ( ) ( ) dtetEsE st−∞

∫=
0

                                                                                (2.20) 
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In a creep test, a constant stress 0ε  is applied to a specimen and the induced strain 

is measured. Usually, the induced strain ( )tε  for a viscoelastic material under constant 

stress is a monotonously increasing function of time (Figure 2.2). 

In a similar manner, we can obtain 

( ) ( )
s
sUsJ =                                                                                             (2.21) 

and 

  ( ) ( )sJssU =                                                                                          (2.22) 

where  

( )sJ =  Laplace transform of creep compliance ( )tJ , i.e., 

 

t 

t 

σ0 = constant 

ε 

 

ε(t) 

0 

0 

σ 

 

Figure 2.2 Stress and Strain in a Creep Test 
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( ) ( )
0σ

ε ttJ =                                                                                              (2.23) 

and  

                     ( ) ( ) dtetJsJ st−∞

∫=
0

                                                                                 (2.24) 

The Hooke’s law in the Laplace-transformed domain, Eqs. (2.7) and (2.8), can 

then be rewritten as: 

( ) ( ) ( ) ( ) ( )ssEssEss εεσ ~==                                                                   (2.25) 

and  

( ) ( ) ( ) ( ) ( )ssJssJss σσε ~==                                                                 (2.26) 

where  

( )sE~  = s-multiplied Laplace transform or Carson transform of ( )tE , i.e., 

              ( ) ( )sEssE =~                                                                                           (2.27) 

( )sJ~  = s-multiplied Laplace transform or Carson transform of ( )tJ , i.e., 

( ) ( )sJssJ =~                                                                                           (2.28) 

Besides the relaxation and creep tests, a dynamic modulus test is often used to 

obtain the viscoelastic properties of a material. In the dynamic modulus test, a sinusoidal 

strain is applied to a specimen and a sinusoidal steady-state stress is induced, or vice 

versa. Due to the viscoelastic effect, the stress always leads the strain, or the strain always 

lags the stress (Figure 2.3) (Tschoegl 1989; Ferry 1980). 

The dynamic modulus is defined as the ratio of the axial stress amplitude to the 

axial strain amplitude: 
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t

 φ

σ 0ε 0 ε=ε 0sinω t σ=σ 0sin(ω t+ φ )

0

 

Figure 2.3 Stress and Strain in a Dynamic Modulus Test 

 

0

0*
ε
σ

=E                                                                                              (2.29) 

where  

*E  = dynamic modulus;  

0σ  = axial stress amplitude; and 

0ε  = axial strain amplitude. 

In the complex form, the applied sinusoidal strain ( )tε  can be expressed as: 

( ) ( ) tietitt ωεωωεε 00 sincos =+=                                                             (2.30) 

where  

ω = radian frequency; and  

i = 1− . 

The Laplace transformation of Eq. (2.30) gives 

( )
ω

εε
is

s
−

= 0                                                                                           (2.31) 
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Substituting Eq.(2.31) into Eq.(2.7), we get 

( ) ( )
ω

ε
σ

is
sQ

s
−

= 0                                                                                        (2.32) 

Thus, we have 

( ) ( ) ( )
( ) ( )suis

sq
is
sQs

ωωε
σ

−
=

−
=

0

                                                                 (2.33) 

Since the total stress response resulting from the sinusoidal strain excitation 

includes two parts: a period function of time representing the steady-state response, and a 

non-periodic function of time representing the transient response, Eq.(2.33) can be 

decomposed into two partial fractions (Tschoegl 1989):  

( ) ( )
( )su
sB

is
As

+
−

=
ωε

σ

0

                                                                              (2.34) 

where  

A = constant; and 

B(s) =  polynomial in s of degree one less than the degree of ( )su . 

The constant A can be determined using the residue theorem 

( ) ( ) ( ) ( ) ( )ωωω
ω

ω
ω

iEiiQ
is
sQisA

is
==

−
−=

→
lim                                        (2.35) 

For the steady state stress response, therefore, we have 

( ) ( )
ω

ω
ε

σ
is

iQsss

−
=

0

                                                                                      (2.36) 

where  

( )sssσ  = Laplace transform of the steady state stress response ( )tssσ .  

The inverse Laplace transformation of Eq.(2.36) gives 
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( ) ( ) ( ) ( )tiQeiQt ti
ss εωεωσ ω == 0                                                          (2.37) 

The complex modulus is defined as: 

( )
( ) ( ) ( ) ( ) ( )ωωωω

ε
σ

iEiiEiQ
t
t

E ss ==== ~*                                                (2.38) 

Since *E  is a complex quantity, it can be written as: 

( ) φφφ ieEiEEiEE *sincos** =+=′′+′=                                  (2.39) 

where  

E′  = storage modulus;  

E ′′ = loss modulus; and  

φ = phase angle. 

From Eq.(2.39), we have 

            ( ) ( )[ ] ( )[ ]22* ωωω EEE ′′+′=                                                               (2.40) 

and  

( )
( )ω
ωφ

E
E

′
′′

= −1tan                                                                                      (2.41) 

Substitution of Eq.(2.39) into Eq. (2.37) leads to 

( ) ( )φωωφ εεσ +== titii
ss eEeeEt 00 **                                                        (2.42) 

 

Let  

00* σε =E                                                                                            (2.43) 

Therefore, we prove 

0

0*
ε
σ

=E                                                                                                (2.44) 
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If we use the sinusoidal stress as the excitation in dynamic modulus test, in a 

similar manner we can also obtain 

    
0

0*
σ
ε

=J                                                                                             (2.45) 

( )
( ) ( ) ( ) ( ) ( )ωωωω

σ
ε iJiiJiU

t
tJ ==== ~*                                                  (2.46) 

( ) ( )[ ] φφφ ieJiJJiJJ −=−+−=′′−′= *sincos**                                  (2.47) 

( )
( )ω
ωφ

J
J

′
′′

= −1tan                                                                                      (2.48) 

where  

*J  = dynamic compliance;  

*J  = complex compliance;  

J ′  = storage compliance; and 

J ′′  = losse compliance. 

From Eqs.(2.11), (2.38) and (2.46), the following relationship holds between the 

complex modulus and compliance: 

1** =JE                                                                                        (2.49) 

Elastic-Viscoelastic Correspondence Principle 

To obtain the viscoelastic properties of a composite material, the elastic-

viscoelastic correspondence principle can be employed to convert the effective elastic 

properties derived from the PFC micromechanical models to the viscoelastic counterparts 

(Tschoegl 1989; Ferry 1980; Park and Schapery 1999; Kim and Little 2004).  
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The correspondence principle states that the viscoelastic solution in the Laplace-

transformed domain can be obtained by replacing the elastic material properties in the 

elastic solution by the Carson-transformed material properties. It can also state that the 

complex moduli can be obtained by replacing the elastic moduli with the corresponding 

complex moduli (Tschoegl 1989; Ferry 1980; Park and Schapery 1999; Kim and Little 

2004). 

For example, if it is assumed that the property of aggregate in HMA mixtures is 

elastic and that of asphalt cement binder viscoelastic, then the effective shear modulus 

from the Hashin’s composite spheres model, Eq. (1.6), can be converted to the Carson-

transformed shear modulus by replacing mG  with ( )sGm
~  as follows: 

( )
( )
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( ) ( ) ⎥
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⎦
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⎢
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1~~54257

1~115
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                    (2.50) 

where  

( )sGc
~  = s-multiplied Laplace transform or Carson transform of ( )tGc ; 

( )tGc  = relaxation shear modulus of composite (HMA mixture); 

( )sGm
~  = s-multiplied Laplace transform or Carson transform of ( )tGm ; and 

( )tGm  = relaxation shear modulus of matrix (asphalt binder). 

The inverse Laplace transformation of Eq.(2.50) gives the relaxation shear 

modulus of HMA mixtures as follows: 
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In the similar manner, the complex shear modulus of HMA mixtures using the 

Hashin’s composite spheres model can be obtained as follows by replacing mG  with 

( )ω*
mG : 

                        ( ) ( ) ( ) ( )[ ]
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where  

( )ω*
cG  = complex shear modulus of composite (HMA mixtures); and 

( )ω*
mG  = complex shear modulus of matrix (asphalt binder). 

Prony Series Representation 

To predict the dynamic modulus of asphalt mastics and mixtures using the PFC 

models developed in this study, the linear viscoelastic material properties (dynamic 

modulus and phase angle) of asphalt binder or mastic were obtained through the 

laboratory testing and used as input parameters in the predictive equations. It is desirable 

to fit certain rheological models to the laboratory measured data so that mathematical 

expression of the viscoelastic material properties can be obtained. There are many 
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rheological models available to describe the viscoelastic properties of materials (Tschoegl 

1989; Ferry 1980). Table 2.1 presents four basic viscoelastic elements and the relaxation 

modulus and creep compliance associated with them. Using the interrelationship between 

different viscoelastic material properties, the complex modulus can also be obtained for 

these viscoelastic elements. 

However, these viscoelastic models cannot cover the wide range of the transition 

zone in the master curve of dynamic modulus of HMA mixtures (Park and Kim 2001). To 

describe the broad band data in the measured dynamic modulus, the generalized Maxwell 

model (Figure 2.4) and the generalized Kelvin (or Voigt) model (Figure 2.5) are widely 

used. Another reason for the popularity of these two models is due to the remarkable 

mathematical efficiency associated with their exponential basis functions (Park and 

Schapery 1999; Park and Kim 2001). 

 

Table 2.1 Four Basic Viscoelastic Elements 

Element 
type Schematic σ − ε relationship

Relaxation  
modulus ( )tE  

Creep 
compliance ( )tJ

Elastic 
E  

εσ E=  E  
E
1  

Viscous 
η

 
εησ &=  ( )tηδ  

η
t  

Maxwell E η η
σσε +=

E
&

&  tE

Ee η
−

 η
t

E
+

1  

Kelvin  
(or Voigt) 

E

η  

εηεσ &+= E  ( )tE ηδ+  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

− tE

e
E

η11  
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The mathematical expressions for the generalized Maxwell and Kelvin models are 

commonly referred to as “Prony” or “Dirichlet” series. The Prony series expression of the 

relaxation modulus in the uniaxial loading for the generalized Maxwell model in terms of 

iE  (Figure 2.4) can be represented as (Park and Schapery 1999; Park and Kim 2001): 

∑
=

−

+=
m

i

t

ie
ieEEtE

1
)( ρ                                                                          (2.53) 

where  

Ee = long-time equilibrium modulus;  

Ei = regression constants;  

ρi = relaxation time, 
i

i
i E

η
ρ = ; and  

m = number of dashpots in the model. 

From Eq.(2.53), the storage and loss modulus can then be expressed as 

( ) ∑
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+=′
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i i

ii
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EEE
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1ρω
ρωω                                                                               (2.54) 
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Figure 2.4 Generalized Maxwell Model 
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( ) ∑
= +

=′′
m

i i

ii EE
1

22 1ρω
ωρω                                                                                      (2.55) 

The Prony series expression of the creep compliance in the uniaxial loading for 

the generalized Kelvin model in terms of jD  (Figure 2.5) can be written as (Park and 

Schapery 1999; Park and Kim 2001): 

∑
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−+=
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jeDDtJ
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where  

Dg = glassy compliance, 
g

g E
D 1

= ;  

Dj = regression constants, 
j

j E
D 1

=  ;  

τj = retardation time, 
j

j
j E

η
τ = ;  

n = number of dashpots in the model. 

From Eq.(2.56), the storage and loss compliance can then be expressed as 

( ) ∑
= +

+=′
n

j j

j
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D
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1
22 1τω

ω                                                                       (2.57) 

( ) ∑
= +

=′′
n

j j

jj DJ
1

22 1τω
ωτ

ω                                                                              (2.58) 

Construction of Master Curve 

The master curve of different viscoelastic material properties as a function of time 

or frequency can be constructed by using the time-temperature superposition (Ferry 
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Figure 2.5 Generalized Kelvin (or Voigt) Model 
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1980). Test data measured at other temperatures are shifted horizontally along the time or 

frequency axis so that all curves form a single master curve at a reference test 

temperature. If the reference temperature is chosen to be in the middle of all test 

temperatures, then the test data measured at lower temperatures are shifted to the right, 

i.e. to higher frequencies until the ends of adjacent temperature curves just meet or 

partially overlap. In a similar manner, the test data measured at higher temperatures are 

shifted to the left, i.e. to low frequencies. This constructed master curve covers a much 

wider range of frequency than the actual experimental data. Figure 2.6 shows an example 

of the constructed dynamic modulus master curve of HMA mixture. 

The horizontal shift factor, Ta , a constant which defines the required horizontal 

shift from an arbitrary test temperature, T, to the reference temperature of master curve, 

T0, can be expressed as: 
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Figure 2.6 Construction of Master Curve of Dynamic Modulus 
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0TTT faf =                                                                                           (2.59) 

where 

Ta  = horizontal shift factor;  

Tf  = frequency at a freely chosen temperature T; and 

0Tf  = frequency at the reference temperature T0. 
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CHAPTER 3 DEVELOPMENT OF THREE-DIMENSIONAL TWO-LAYERED 

MODEL FOR HMA MIXTURES 

Modeling of Three-Dimensional Two-Layered Elastic HMA Mixtures 

Micromechanical Model 

As previously mentioned, HMA mixtures can be regarded as a composite material 

with aggregate particles dispersed in the asphalt mastic matrix. The same concept of 

equivalent medium as used by Eshelby (1957) and Christensen (1979) was employed in 

this study. Figure 3.1 presents the schematic drawings of the geometric model of a three-

dimensional two-layered HMA mixture composite. The model consists of asphalt mastic-

coated spherical aggregate particles embedded in the equivalent medium of HMA 

mixture with unknown effective modulus (Air voids are temporarily neglected here and 

will be considered later in this chapter). Thus, the micromechanically inhomogeneous 

HMA can now be treated as a macromechanically homogeneous composite material. 

In Figure 3.1, a is the radius of aggregate, b-a is the thickness of asphalt mastic 

film, c-b is the thickness of the surrounding equivalent medium of HMA mixture, and c is 

the radius of the equivalent medium. Unlike an infinite equivalent medium in GSCM 

(Christensen and Lo 1979), a finite equivalent medium is used in the model. A uniformly 

distributed radial stress p is applied at the boundary r = c. p1, p2 are the induced radial 

stresses at the interfaces r = b, r = a, respectively. The same loading condition was used 

by Li et al. (1999) and it is easy to obtain the analytical solution to the modulus of HMA 

mixtures. For the effect of different loading mode on dynamic modulus of HMA  
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Figure 3.1 Three-Dimensional Two-Layered Model for HMA Mixtures 
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mixtures, readers are referred to References, such as Papazian (1962), Witczak and Root 

(1974), Khanal and Mamlouk (1995), etc. It is assumed now that both the constituents 

and the equivalent medium are elastic. E2, v2; E1, v1; E0(a), v0 represent the elastic moduli 

and Poisson’s ratios of aggregate, asphalt mastic, and the equivalent HMA medium, 

respectively. It should be pointed out that the elastic modulus of the equivalent medium is 

denoted as E0(a) instead of E0 to emphasize the fact that the elastic modulus of the 

equivalent HMA medium is directly related to aggregate size and aggregate gradation. 

Formulation Development 

Based on the general assumptions of elastic bodies (isotropic and linear elasticity) 

for each layer, perfect bonding between neighboring layers, and uniform distribution of p 

at the boundary r = c, the radial displacements u0c at the boundary r = c, u0b and u1b at the 

boundary r = b, u1a and u2a at the boundary r = a can be obtained by applying the theory 

of elasticity (Timoshenko and Goodier 1970) as follows: 
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Applying the continuity conditions at the interfaces r = b and r = a, one obtains  

bb uu 10 =                                                                                                    (3.6) 

aa uu 21 =                                                                                                   (3.7) 

Because the whole equivalent HMA mixture can be treated as a macroscopically 

homogeneous medium, the displacement at the boundary r = c can be obtained in another 

form as follows: 

( ) pa
aE
v

uc
0

021−
=                                                                                         (3.8) 

For compatibility of macroscopic and microscopic treatments, the strain energy 

stored in the area r ≤ c should be the same for both cases, which is either treated as a 

microscopic inhomogeneous material or a macroscopic homogeneous material. 

According to Christensen and Lo (1979), the following relationship holds: 

macmic UU =                                                                                               (3.9) 

where  

Umic = strain energy when HMA is considered as a microscopically inhomogeneous 

material; and  

Umac = corresponding energy when HMA is considered as a macroscopically 

homogeneous material. 

According to the theory of elasticity, the strain energy stored in the area r ≤ c is  

dlpuU
L ccmi ∫=

2
1                                                                                    (3.10) 

dlpuU
L ccma ∫= 02

1                                                                                 (3.11) 
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where  

L = boundary at r = c. 

By solving Eqs (3.1) - (3.11) simultaneously, the following relationships can be 

obtained: 

pp =1                                                                                                    (3.12) 

 12 pp α=                                                                                                 (3.13) 

and further, the overall elastic modulus of HMA mixture E0(a) can be expressed as  
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3

3

b
an =                                                                                                   (3.23) 

Substituting Eqs (3.15) ~ (3.23) into Eq. (3.14), E0(a) can be written as 
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where 

( ) ( )111 211
2
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( ) ( )nvvx 112 211
2
1

−++=                                                                      (3.26) 

From Eq. (3.24) it can be seen that the elastic modulus of the equivalent HMA 

composite depends not only on the elastic properties, Ei and vi (i = 1, 2), of individual 

constituents, but also on aggregate size, a, and the film thickness of asphalt mastic, b-a. 

E0(a) can be obtained once all the variables have been determined. The values of Ei and vi 

(i = 1, 2) can be acquired after the selection of raw materials (aggregates and asphalt 

binder) of HMA mixtures. Since the Poisson’s ratio has minor effect on the predicted 

values (Kim and Little 2004), constant value was used in the present study for Poisson’s 

ratio.  

In order to acquire the thicknesses of asphalt mastic, b–a, a simplified method is 

usually used. In this method, it is assumed every aggregate is coated with the same 
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thickness of asphalt binder, regardless of the size distribution of aggregates (Li et al. 

1999). Thus, the following equation can be obtained (Li et al. 1999)  

( ) ( )∑
+

= +

+

+
−

=− 1

1 1

1
2

1

12
N

i ii

ii

aa
aPaP

f

fab                                                               (3.27) 

where  

f1 = volume fraction of asphalt binder in HMA mixture;  

f2 = volume fraction of aggregate in HMA mixture; 

ai = radius of the opening size of the No. i sieve when aggregates are divided into N 

grades by sieving;  

ai+1 = radius of the opening size of the No. (i+1) sieve;  

P(ai) = volume fraction of aggregates passing through the No. i sieve; and 

P(ai+1) = volume fraction of aggregates passing the No. (i+1) sieve. 

For f1, f2, and the volume fraction of air voids in HMA mixture f3, the following 

relationship holds 

1321 =++ fff                                                                                       (3.28) 

For most mix designs of dense-graded HMA mixtures, f3 = 0.04 (Roberts et al. 

1996). 

It should be noted that P(a) is initially the weight fraction of aggregates with 

radius less than a. In this study, P(a) is used as an approximate volume fraction of 

aggregates with the particle size below a. It describes the grain size distribution of 

aggregate used in HMA mixtures. For instance, for continuously graded aggregates, P(a) 

can be represented by the following equation (Roberts et al. 1996) 
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where 

amax = maximum aggregate radius.  

A more accurate thickness of asphalt binder b-a can be obtained by solving the 

following equation 
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From Eq. (3.24) a predicted value of elastic modulus can be obtained 

corresponding to a specific single size, a, of aggregate particle. However, HMA mixtures 

always use different particle sizes to acquire the desirable aggregate gradation. Every 

aggregate of specified size makes its contribution to the elastic modulus of the equivalent 

HMA composite. In order to account for the size distribution of aggregate gradation, the 

elastic modulus of the equivalent HMA mixtures is expressed as follows: 

( ) ( )adPaEE
a

a∫= max

min
00                                                                               (3.31) 

where 

 amin = minimum aggregate radius. 

Integrating Eq. (3.31) is very hard, if not impossible, due to the complex 

expressions E0(a) and P(a). Instead, Eq. (3.31) can be approximated by a numerical 

summation as follows 
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where  
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( )iaE0  = elastic moduli corresponding to aggregate radius ai; and 

( )10 +iaE  = elastic moduli corresponding to aggregate radius ai+1. 

Complex Modulus Converted from Elastic Modulus 

The complex modulus of the equivalent HMA mixtures can be obtained based on 

the elastic-viscoelastic correspondence principle by replacing the elastic modulus of 

asphalt mastic with its complex modulus. Therefore, Eq. (3.24) can be expressed in the 

frequency domain as follows: 
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where  

( )ω*
1E  = complex modulus of asphalt mastic. 

Considering aggregate gradation, the complex modulus of HMA mixtures can be 

expressed as follows: 
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where  

( )iaE ,*
0 ω  = complex modulus corresponding to aggregate radius ai; and 

( )1
*
0 , +iaE ω  = complex modulus corresponding to aggregate radius ai+1. 

Consideration of Air Voids Effect 

Air voids play a significant role in the determination of dynamic modulus. It is 

evident that mixtures with low air void content have higher moduli than mixtures with 
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high air voids. To better reflect the HMA mixture, it should be noted that not only the air 

void content, but also the air void distribution have an important influence on the 

mechanical properties of HMA mixtures. Unfortunately, most existing models so far do 

not consider air voids in their equations. The ones that do consider air voids fail to look 

into the air void distributions. To better characterize the HMA mixture, both air void 

content and air void size distribution should be incorporated in the prediction model. 

Figure 3.2 presents a typical air void size distribution in conventional dense-graded HMA 

mixtures obtained from Castelblanco et al. (2005).  

To incorporate air voids into the proposed model, the above-mentioned 

equivalence process can be employed for the second time (Figure 3.3). The air void 

bubbles entrapped in HMA mixtures can be assumed to be a series of empty spheres of 

different sizes covered by same thickness of the first-time equivalent HMA medium. The 

first-time equivalent HMA medium-coated air bubbles are then embedded in the second-

time equivalent medium.  

Let 02 =E  in the previous equations, the elastic and complex moduli for HMA 

mixtures with the consideration of air voids can be obtained. The predictive equation of 

the elastic modulus for the three-dimensional micromechanical model can be expressed 

as follows:  

( ) ( )( )
( ) ( )11

01
0 2121

2112
vvn
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−++
−−

=                                                                   (3.35) 

The mathematical expressions for the other equations in the model should also 

be changed accordingly.  
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Figure 3.2 Air Void Size Distribution in HMA Mixture 
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Figure 3.3 Incorporation of Air Voids in Equivalent HMA mixtures 
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CHAPTER 4 DEVELOPMENT OF FORMULATIONS FOR PFC MODELS 

USING DIFFERENTIAL METHOD 

Introduction 

Among various PFC micromechanical models developed to predict the modulus 

of composites, many can give satisfactory predictions at low to moderate volume 

concentrations of inclusions when the constituent materials do not differ very much in 

stiffness.  At high concentrations, however, the predicted moduli have been observed to 

deviate increasingly farther from the measured values with the increase in the volume 

fraction of inclusion, especially when the component materials are highly different in 

stiffness (Pal 2005a, 2005b).  The differential method used for development of PFC 

models shows a potential capability of accurately predicting the modulus of composites 

even at high volume concentrations and when there is a large mis-match in stiffness of 

the constituent materials (Pal 2005a, 2005b; Christensen 1990).  Pal (2005a, 2005b) 

presented the predictive equations from the differential method for composites composed 

of incompressible inclusions (vi = 0.5) embedded in incompressible matrix (vm = 0.5). In 

this chapter, more general predictive equations from the differential method are given and 

then used to predict the dynamic modulus of HMA mixtures in the later part of this 

dissertation. 

For the convenience and conciseness of derivation, the subscript “c” for 

composite is ignored and E, G, and K are used for elastic, shear, and bulk modulus of 

composite throughout this chapter. 
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Formulation Development for Elastic and Complex Modulus Predictions  

The differential method starts with the predictive equations for the effective shear 

and bulk moduli, G and K, for an infinitely dilute suspension containing non-interacting 

spherical inclusions: 
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For elastic, homogeneous, and isotropic materials, the following theoretical 

relationships hold between elastic modulus, E, shear modulus, G, bulk modulus, K, and 

Poisson’s ratio, v: 
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Substituting Eq.(4.3) into Eq.(4.1), one obtains 
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Similarly, substitution of Eq.(4.4) into Eq.(4.2) gives 
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In the linear elasticity, the following relationship holds 
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Substitution of Eqs.(4.5) and (4.6) into Eq.(4.7) leads to  
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Eq.(4.8) can be further rewritten as 

( ) ( )
( )
( )

( ) ( )
( )
( )

( )( ) ( )
( )
( )

( )( ) ( )
( )
( ) ⎪

⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
−

+
+
−

⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

−−

+

−
+

+

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−+

+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
−

+
+
−

⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

−

+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−
+

+

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−

+

=

mi

im

m

m

mim

i
mm

im

mi

mim

i
mm

mi

im

m

m

mim

i
m

im

mi

mim

i
m

m

Ev
Ev

v
v

vvE
E

vv

vE
vE

vvE
E

vv
c

Ev
Ev

v
v

c
vvE

E
v

vE
vE

c
vvE

E
v

E
E

1
542

1
57

1
1

1
2115

21
1

2

21
1

21
112

1

1
542

1
57

1
1

1
115

1

21
1

2

21
1

21
13

1

                  (4.9) 



 55

Using the relationship ( )cOx
x

+−=
+

1
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1  ( 0<<x ), Eq.(4.9) can be expressed 

as 
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Neglecting the infinitesimal term of higher orders, ( )cO , Eq.(4.10) can be 

rewritten as 
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Thus, the predictive equation has been developed for the effective elastic 

modulus of an infinitely dilute suspension containing non-interacting spherical 

inclusions in terms of the properties of individual constituents ( mE , mv , iE , and iv ) and 

the volume concentration of inclusion in composite (c). 

In the differential method, the composite material can be viewed as a sequence 

of dilute suspensions into which an increment of inclusions is added. The incremental 

increase in the elastic modulus, dE, resulting from the addition of the new particles can 

be calculated using Eq.(4.20) by treating the composite into which the new inclusions 

are added as an equivalent medium with elastic modulus E (Christensen 1990; Pal 

2005a, 2005b). The process is continued until the finite volume concentration or fraction 

of inclusion is reached. 

Thus from Eq.(4.20), one obtains 
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Eq.(4.21) can be further written as 
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and 
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The denominator of the partial fraction on the left-hand side of Eq.(4.23) can be 

further expressed as 

( )( ) ( )( )[ ]EEEEEEEEE iiii 852824367271 αααααααααααα −+++−  

( ) ( ) ( )[ ]2
83271853284272761

2
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where 

( )85427620 αααααααβ +−=                                                              (4.25) 
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x1 and x2 are the roots of the following equation 

021
2 =++ ββ xx                                                                                  (4.28) 

and thus they can be expressed as 

2
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The numerator of the partial fraction in the left-hand side of Eq.(4.23) can be 

further expressed as 
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where  
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Substituting Eqs.(4.24) and (4.30) into Eq.(4.23), one obtains 
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The partial fraction of the left-hand side of Eq.(4.34) can be decomposed into 

three parts. The decomposition leads to 
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Integration of Eq.(4.35) with the limits mEE →  at 0→c  gives 
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Eq.(4.39) can be further written as 
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If the properties of the component materials (Em, vm, Ei, and vi) and the volume 

fraction of inclusion (c) are already known, Eq.(4.40) can be solved using various 

numerical methods to obtain the elastic modulus of a composite material.  

For HMA mixtures, it is reasonable to assume that the properties of aggregate 

are elastic and those of asphalt binder viscoelastic. Using the elastic-viscoelastic 

correspondence principle, Eq.(4.40) can be converted to the frequency domain to predict 

the effective complex modulus of HMA mixtures  
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However, difficulty arises regarding solving Eq.(4.41) with numerical methods. 

Because the effective complex modulus ( )ω*E  is expressed implicitly in Eq. (4.41) and 

the exponents A, B, and C are generally fractions, it is very hard to get the solution even 

using numerical methods. To facilitate the solution of Eq.(4.41), two special cases are 

considered in this study.  

For the first case, the composites composed of incompressible inclusions (vi = 

0.5) embedded in incompressible matrix (vm = 0.5) are considered. Then Eq.(4.41) can 

be reduced to 
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Eq.(4.42) is the same as the one given by Pal (2005a). 

For the second case, the Poisson’s ratios vi = 0.2 and vm = 0.2 are used. Thus, 

Eq.(4.41) can be reduced to 
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To consider air voids effect on the effective modulus of composite, let 0=iE , 

from Eq. (4.11) one obtains 
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The incremental change in the effective elastic modulus of the composite due to 

the incorporation of an infinitely small number of new air bubbles is 
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On integration, one obtains 
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or 

( ) 61 βcEE m −=                                                                                    (4.47) 
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For the effective complex modulus of a viscoelastic material containing air 

voids, Eq.(4.47) becomes 

( ) 61** βcEE m −=                                                                                 (4.49) 

Formulation Development for Shear and Complex Shear Modulus Predictions 

The effective shear modulus of a composite material can be derived using the 

differential method in a similar manner.  

The incremental increase in the effective shear modulus, dG, resulting from the 

incremental increase in the volume fraction of inclusion, dc, due to the addition of the 

new inclusion particles can be calculated from Eq.(4.1) as 
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Eq.(4.50) can be further written as 
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Integration of Eq.(4.51) with the limits mGG →  at 0→c  gives 
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Eq.(4.52) can be further written as 
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Using the elastic-viscoelastic correspondence principle, Eq.(4.53) can be 

converted to the frequency domain to predict the effective complex shear modulus of a 

viscoelastic composite material as follows  
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To get the numerical solution of Eq.(4.54), special cases were also considered. 

For the special cases 5.0=mv  and 2.0=mv , Eq.(4.54) becomes 
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and  
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To consider air voids effect on the effective shear modulus of a composite 

material, let 0=iG , from Eq. (4.53) one obtains 
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Eq.(4.57) can be further rewritten as 

( ) 71 βcGG m −=                                                                                     (4.58) 
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For the effective complex shear modulus of a viscoelastic material containing air 

voids, Eq.(4.58) becomes 

( ) 71** βcGG m −=                                                                                  (4.60) 

Formulation Development for Bulk and Complex Bulk Modulus Predictions 

In a similar manner, the effective bulk modulus of a composite material can also 

be obtained from the differential method.  

The incremental increase in the effective bulk modulus, dK, resulting from the 

incremental increase in the volume fraction of inclusion, dc, due to the addition of the 

new particles can be calculated from Eq.(4.2) as follows 
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Eq.(4.61) can be further written as 
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Integration of Eq.(4.62) with the limits mKK →  at 0→c  gives 
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Eq.(4.63) can be further written as 
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Based on the elastic-viscoelastic correspondence principle, to obtain the complex 

bulk modulus of a viscoelastic composite material, Eq.(4.64) can be converted to  
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For the special cases 5.0=mv  and 2.0=mv , Eq.(4.65) becomes 
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and  

( ) 2
2

*

*

*

*

1 −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
c

KK
KK

K
K

i

mi

m

                                                            (4.67) 

It is interesting to note that from Eq.(4.66) one can get 
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which is equivalent to the series model. 

To consider air voids effect on the effective shear modulus of a composite, let 

0=iK , from Eq. (4.64) one obtains 
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Eq.(4.69) can be further rewritten as 

( ) 81 βcKK m −=                                                                                   (4.70) 

where 

m

m

v
v

42
33

8 −
−

=β                                                                                      (4.71) 



 66

For the effective complex bulk modulus of a viscoelastic material containing air 

voids, Eq.(4.70) becomes 

( ) 81** βcKK m −=                                                                                 (4.72) 
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CHAPTER 5 LABORATORY EXPERIMENTS 

Introduction 

In this study, laboratory experiments were conducted to evaluate the newly 

developed and modified existing PFC micromechanical models. Firstly, asphalt binder 

and mastic were tested to obtain their dynamic (complex) shear moduli. Then HMA 

mixture specimens were tested for their dynamic (complex) moduli. In the prediction of 

dynamic shear modulus of asphalt cement mastic with the PFC models described later in 

Chapter 6, the measured dynamic shear modulus and phase angle of asphalt binder were 

used as input parameters in the predictive equations and the predicted values of dynamic 

shear modulus of asphalt mastic were compared with the laboratory measured data. In the 

prediction of dynamic modulus of HMA mixture described later in Chapter 7, the 

measured complex shear moduli of asphalt binder and mastic were used as input 

parameters in the predictive equations and the predicted values of dynamic modulus of 

HMA mixtures were compared to the measured data. Through the comparison between 

the predicted and measured data, the PFC models and the predictive equations from them 

can then be evaluated to determine if they are suitable for asphalt mastics and mixtures.  

Asphalt Binder and Mastic Tests 

Materials 

One type of conventional asphalt binder, PG 64-22, which is widely used in the 

state of Tennessee, was selected for asphalt binder, mastic, and mixture tests. Its 

properties are presented in Table 5.1 (Huang et al. 2005). 
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Table 5.1 Asphalt Binder Properties 

Binder Status Binder Test Test Results Specification 

Rotational viscosity at 135°C, Pa*s 0.52 3 Pa*s max 
70°C 0.78 

Original 
binder DSR, G*/sinδ, kPa 64°C 1.63 1.00 kPa min 

70°C 1.66 RTFO aged 
binder DSR, G*/sinδ, kPa 64°C 3.54 2.20 kPa min 

DSR, G*sinδ, MPa, 25°C 3725 5000 kPa max 
BBR creep stiffness S, MPa 238 300.0 MPa max PAV aged 

binder 
BBR creep slope, m value 0.310 0.300 min 

PG grading 64-22  
Note: RTFO = rolling thin-film oven; PAV = pressure aging vessel; DSR = dynamic 

shear rheometer; BBR = bending beam rheometer. 
 

The mineral filler (aggregate fraction passing No. 200 sieve) used in this study 

was obtained by sieving the aggregate blend used for HMA mixture. The specific gravity 

of the mineral filler was 2.72 and its particle size distribution is presented in Figure 5.1. 

A microscopic picture indicated that mineral filler had spherical particles and smooth 

texture (Figure 5.2). 

Sample Fabrication 

To prepare the mastic samples for dynamic shear modulus testing, asphalt binder 

and mineral filler were preheated in an oven to 165°C. Then, they were hand-mixed in a 

container heated on an electric hot-plate set to a temperature of approximately 165°C. 

The asphalt binder and mastic were aged using the rolling thin-film oven (RTFO) aging 

procedure before they were poured into a silicone mold to produce the samples for the 

dynamic shear modulus testing. Test samples with the sizes of 1 mm thick by 25 mm in 

diameter or 2 mm thick by 8 mm in diameter were fabricated from the aged binder and  
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Figure 5.1 Particle Size Distribution of Mineral Filler 

 

 

Figure 5.2 Microscopic Picture of Mineral Filler (400X) 
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mastic (Figure 5.3). Asphalt mastic samples were made at three volume concentrations of 

20%, 35%, and 50%. 

Dynamic Shear Rheometer (DSR) Testing 

In this study, DSR test was performed on asphalt binder and mastic specimens to 

obtain the values of dynamic shear modulus and phase angle. Figure 5.4 shows a 

schematic of the dynamic shear rheometer (Roberts et al. 1996). 

In the DSR testing, a sinusoidal shear stress or strain is applied to specimens 

sandwiched between a fixed plate and a plate that oscillates back and forth as shown in 

Figure 5.4. After some period of time, a steady state sinusoidal strain or stress response 

occurs. Due to the viscoelastic nature of asphalt binder, the shear strain always lags the 

shear stress. 

 

 

Figure 5.3 Asphalt Binder or Mastic Samples 
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Figure 5.4 Schematic of Dynamic Shear %Rheometer (Roberts et al. 1994) 

 

The dynamic shear modulus is defined as (Roberts et al. 1996) 

max

max*
γ
τ

=G                                                                                              (5.1) 

where   

*G  = dynamic shear modulus; 

maxτ  = maximum shear stress; 

maxγ  = maximum shear strain. 

and the lag in the phase between shear stress and strain is the phase angleφ. 

The Anton Paar Physica MCR 501 Rheometer manufactured by the Anton Paar 

Germany GmbH was used to test the asphalt binder and mastic (Figure 5.5). The whole 

testing procedures can be automatically finished with the Physica Rheoplus Software. In 

this study, the DSR testing was conducted at the temperatures of 15°C, 25°C, and 35°C 

and at the frequencies from 0.03Hz to 25Hz. The master curves of complex shear 
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modulus of asphalt binder and mastic at 25°C were then constructed with the Physica 

Rheoplus Software. Figure 5.6 shows the interface of the Physica Rheoplus Software. 

After the DSR testing, the Prony series were fitted to the measured data of 

complex shear modulus of asphalt binder and mastic. The Prony series representations 

were then obtained for relaxation shear modulus of asphalt binder and mastic. In the 

prediction of mastic modulus, the Prony series representation for relaxation shear 

modulus of asphalt binder was used as one of input parameters in the predictive equations 

acquired from different PFC models. In the prediction of HMA mixture modulus, the 

Prony series representations for asphalt binder and mastic were used as input parameters 

in the predictive equations. They are discussed in more detail in the later part of this 

dissertation. 

 

 

Figure 5.5 Anton Paar Physica MCR 501 Rheometer 
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Figure 5.6 Physica Rheoplus Software 

HMA Mixture Test 

Materials 

The same asphalt binder (PG 64-22) used in asphalt mastic test was employed in 

HMA mixture test. Its properties are presented in Table 5.1 (Huang et al. 2005). 

The coarse aggregates used in HMA mixture test were crushed limestone with 

nominal maximum size of 12.5 mm. The fine aggregates consisted of the No.10 

screenings, natural sand, and manufactured sand. Their gradations and other properties 

are presented in Table 5.2. The aggregate gradation is also shown in Figure 5.7. 
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Table 5.2 Properties of Aggregates 
 
Sieve size Limestone D-Rock No.10 Screening Natural Sand Manufactured Sand 

5/8” 100% 100% 100% 100% 
½” 97% 100% 100% 100% 

3/8” 70% 100% 100% 100% 
#4 21% 92% 98% 99% 
#8 7% 61% 93% 82% 
#30 4% 29% 63% 28% 
#50 3% 21% 13% 17% 
#100 2.0% 20.0% 2.0% 9.0% 
#200 1.8% 16.0% 1.0% 5.0% 
Gsb 2.524 2.424 2.501 2.476 

Note: Gsb = bulk specific gravity of aggregate. 
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Figure 5.7 Aggregate Gradation in HMA Mixture 
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Mixture Design 

The Marshall mix design procedure was employed to design HMA mixture. 50% 

limestone D-rock, 15% No.10 screenings, 25% natural sand, and 10% manufactured sand 

were selected for HMA mixture (Table 5.2). The optimum asphalt content was 5.0 

percent. The volumetric properties of HMA mixture are listed in Table 5.3. 

Sample Fabrication 

The loose asphalt mixture was short-term oven aged for 4 hours at 135°C and 

compacted to cylindrical specimens 150 mm high by 170 mm in diameter using the 

Superpave Gyratory Compactor (SGC). Then, the specimens were cored in the center to a 

100 mm diameter and sawed at both ends to a final height of 150 mm with smooth 

parallel cut faces.  Figure 5.8 shows the HMA specimens at different stages. The target 

air voids for the control mixture were 4.0 ± 0.5%. To investigate the air voids effect on 

dynamic modulus of HMA mixture, test specimens with air voids about 3%, 6%, and 8% 

were also fabricated. 

 

Table 5.3 Volumetric Properties of HMA Mixture 

AC (%) Gmm Gmb Air Voids VMA Stability (kN) Flow (mm) 

5.0 2.456 2.356 4.0 16 11.6 2.77 

Note: AC = asphalt content; Gmm = maximum theoretical specific gravity of loose 

mixture; Gmb = bulk specific gravity of compacted mixture; VMA = voids in 

mineral aggregate. 
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(a) SGC-compacted specimen 

 

(b) Center-cored specimen 

 

(c) Final specimen 

Figure 5.8   HMA Specimens for Dynamic Modulus Test 
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Dynamic Modulus Testing 

The Simple Performance Tester (SPT) manufactured by IPC global was used to 

run the dynamic modulus test. During the dynamic modulus testing, a cylindrical 

specimen is subjected to a constant lateral confining pressure and a sinusoidal vertical 

pressure that varies over a range of frequencies.  Three linear variable differential 

transducers (LVDTs) mounted on studs attached to the sides of the specimen are usually 

used to measure the axial strain at the middle part of the specimen (Figure 5.9). In this 

study, the gauge length between the stud centers was 70 mm.  

Test specimens were placed in an environmental chamber and allowed to 

equilibrate to the specified testing temperature. Prior to testing, two latex membranes 

were placed between the specimen ends and loading platens to reduce the end friction. 

In the present study, the test was conducted under no confining pressure at three 

temperatures of 10°C, 25°C, and 40°C and at the frequencies from 0.01Hz to 25Hz. A 

contact load equal to 5 percent of the dynamic load was first applied to the specimen. A 

sinusoidal dynamic load was then applied to the specimen so that the induced axial strain 

was controlled between 75 and 125 microstrains. The dynamic load was variable from 

mixture to mixture depending on HMA mixture stiffness, testing temperature, and 

loading frequency. For each combination of testing temperature and frequency, 10 

conditioning and 10 testing cycles were applied. The data from conditioning cycles were 

used to adjust the amount of dynamic load and those from testing cycles to calculate the 

values of dynamic modulus and phase angle. Figure 5.10 shows the typical axial stress 

and strains from the testing cycles. 
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(a) Studs attached to specimen  

(b) Specimen placed in the confining 
pressure chamber 

 
(c) Simple Performance Tester (SPT) 

Figure 5.9   Dynamic Modulus Test Setup 
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Figure 5.10   Axial Stress and Strains in Dynamic Modulus Test 
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The loading stress was calculated using the following equation 

A
P

=0σ                                                                                                   (5.2) 

where  

0σ  = loading stress amplitude;  

P  = average loading amplitude (from best-fit sinusoid function); and 

A = cross sectional area of specimen. 

The recoverable axial strain was calculated as 

GL
∆

=0ε                                                                                                    (5.3) 

where  

0ε  =  axial strain amplitude;  

∆  = average deformation amplitude (from best-fit sinusoid function) calculated after 

removal of the underlying baseline drift deformation; and 

GL = gauge length. 

The dynamic modulus, *E , was then computed as 

0

0*
ε
σ

=E                                                                                                 (5.4) 

The phase angle, φ , was calculated using the following equation 

360×=
p

i

t
t

φ                                                                                              (5.5) 

where  

φ =  phase angle (in degrees);  
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ti = average time lag between the peak stress and the peak strain in seconds, calculated as 

the difference between the best fit load and deformation sinusoid functions; and 

tp  = average time for a loading cycle in seconds. 
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CHAPTER 6 PREDICTION OF DYNAMIC SHEAR MODULUS                          

OF ASPHALT MASTIC 

Introduction 

In this and the following chapters, the newly developed PFC models are used to 

predict dynamic modulus of asphalt mastic and mixture. The predicted dynamic modulus 

values obtained from these models are compared to the laboratory measured test results 

and also to the predicted values from widely used micromechanical models, such as the 

Hashin’s composite spheres model and the Christensen and Lo’s generalized self-

consistent model.  

There are basically two methods of applying the predictive equations from PFC 

models: 

1. Elastic prediction method 

In this method, the dynamic modulus (absolute value of complex modulus) is 

treated as an elastic property and used in the predictive equations. This method is 

relatively simple and avoids the use of the elastic-viscoelastic correspondence principle. 

It is also commonly used by other researchers, such as Buttlar et al. (1999). However, this 

method cannot predict the phase angle due to its elastic nature. 

2. Viscoelastic prediction method 

In this method, the complex modulus is used in the predictive equations as a real 

viscoelastic term. Difficulties may arise regarding solving the equations in the complex 

domain. In this study, special cases were considered to facilitate the solution of the 

equations in the complex domain. The viscoelastic method has the capability of 
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predicting the phase angle of viscoelastic materials because of the use of true complex 

terms. 

Both elastic and viscoelastic methods are used to evaluate the newly proposed 

PFC models in this study. 

Determination of Input Parameter Values 

Before predicting dynamic shear modulus of asphalt mastic using the predictive 

equations from PFC models, the values of input parameters should be determined, such 

as elastic moduli and Poisson’s ratios of aggregate and mineral filler, complex shear 

modulus and Poisson’s ratio of asphalt binder. Based on the parameter values and ranges 

found in the literature (Huang et al. 2005; Zhou et al. 1995; Hirsch 1962; Kim and Little 

2004), an elastic modulus of 50 GPa was selected for mineral filler and aggregate. Since 

Poisson’s ratios of the constituents do not vary significantly, constant values of 0.2, 0.25, 

0.3, and 0.4 were selected for the Poisson’s ratios of aggregate, HMA mixture, asphalt 

mastic, and asphalt binder, respectively. Table 6.1 summarizes the input parameter values 

used for the modulus prediction. 

 

Table 6.1 Values of Input Parameter in Predictive Equations 

Material Elastic (dynamic) modulus Poisson’s ratio 

Aggregate 50 GPa 0.2 

Asphalt binder Measured 0.4 

Asphalt mastic Measured 0.3 

HMA mixture To be predicted 0.25 
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The complex shear modulus of asphalt binder was tested in the laboratory as an 

input parameter. The measured complex shear moduli are presented in Figure 6.1 

together with the curves fitted with the Prony series representation. Table 6.2 presents the 

fitted coefficients for the Prony series representation in terms of iG . 

Elastic Prediction 

Flow Chart 

As mentioned previously in this chapter, the elastic prediction method used the 

dynamic shear modulus of asphalt binder as an elastic input parameter in the predictive  
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Figure 6.1 Master Curves for Complex Shear Moduli of Asphalt Binder (25°C) 
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Table 6.2 Prony Series Constants for Relaxation Shear Modulus of Asphalt Binder 

i iρ  (sec) iG (MPa) 
1 1E-04 7.601E+01 
2 1E-03 2.276E+01 
3 1E-02 8.418E+00 
4 1E-01 1.689E+00 
5 1E+00 2.752E-01 
6 1E+01 1.891E-02 
7 1E+02 4.451E-04 
 eG  = 1.000E-03 

 

equations to predict dynamic shear modulus of asphalt mastic. Figure 6.2 presents the 

flow chart for the elastic prediction of dynamic shear modulus of asphalt mastic. To 

facilitate the prediction process, the dynamic (shear) moduli of asphalt mastic and 

mixture were calculated using the computer program developed with the Maple software 

(Waterloo 2006). 

PFC model 

Elastic solution G = f(xi)

Binder test data 

Prony series G(t)

Curvefitting 

Binder G*(ω) 

Binder ⎥G*⎢ 

Predicted mastic ⎥G*⎢ Mastic test data 

Compare 

 

Figure 6.2 Flow Chart for Elastic Prediction of Dynamic Shear Modulus  

of Asphalt Mastic 
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Predictive Models  

 To evaluate the feasibility and accuracy of the new PFC models developed in the 

previous chapters for asphalt mastic and mixture, different forms of the predictive 

equations from these models were used. The newly proposed PFC models were also 

compared to the widely used PFC models, such as the Hashin’s composite spheres model 

and the Christensen and Lo’s generalized self-consistent model. For convenience, the 

predictive models for asphalt mastic are summarized in Table 6.3.  

Prediction Results and Analyses 

Figures 6.3 ~ 6.9 present the predicted dynamic shear modulus values of asphalt 

mastic along with the measured test data. 

It was observed that all the predicted values of dynamic shear modulus of asphalt 

mastic with the PFC models summarized in Table 6.3 were generally very close to the 

measured test data. No significant difference in the predicted dynamic shear moduli was 

observed between different models. 

However, it can be seen from Figure 6.3 through 6.9 that different models still 

gave different accuracy in predicting dynamic shear modulus of asphalt mastic at 

different volume concentration of mineral filler in asphalt binder. Figures 6.3, 6.6, and 

6.7 showed that Models 1, 4, and 5 gave the best prediction at mineral filler concentration 

of 35%. For these three predictive models, the predicted dynamic shear moduli were 

higher than measured values at lower concentration and lower than measured values at 

higher concentration. 
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Table 6.3 PFC Models Used for Elastic Prediction of Asphalt Mastic 

Model 
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Predictive equation 

Equation No. 
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Note: 1. The first four predictive models were developed in this study. The last three 

models were given by Hashin (1962) and Christensen and Lo (1979). 

           2. The final predicted results were converted to dynamic shear modulus if the 

models are not expressed in terms of dynamic shear modulus. 
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(b) Predicted vs. measured modulus 

Figure 6.3 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 1) 
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Predicted vs. measured modulus 

Figure 6.4 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 2) 
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(b) Predicted vs. measured modulus 

Figure 6.5 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 3) 
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(b) Predicted vs. measured modulus 

Figure 6.6 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 4) 
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(b) Predicted vs. measured modulus 

Figure 6.7 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 5) 
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Figure 6.8 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 6) 
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(b) Predicted vs. measured modulus 

Figure 6.9 Predicted vs. Measured Dynamic Shear Modulus of Asphalt Mastic (Model 7) 
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From Figures 6.4, 6.5, 6.8, and 6.9 it was seen that Models 2, 3, 6, and 7 generally 

slightly under-predicted the dynamic shear modulus of asphalt mastic, regardless of 

mineral filler concentration. But, the predicted dynamic shear moduli with Models 6 and 

7 deviated farther away from measured data than with Models 2 and 3. 

Error Analyses 

The prediction accuracy of different PFC models can be evaluated through error 

analysis. The relative error in the prediction of dynamic shear modulus of asphalt mastic 

was calculated in percent using the following equation: 

100
*

**
Error

measured

measuredpredicted ×
−

=
G

GG
                                                      (6.1) 

where 

Error = relative error, %; 

predicted
*G  = predicted dynamic shear modulus; and 

measured
*G  = measured dynamic shear modulus. 

Figure 6.10 presents the plots of prediction error vs. frequency for different PFC 

models. Generally, almost all the prediction errors were within the range of ± 60%. For 

the models developed in this study (Models 1 through 4), most of the prediction errors 

were within the range of ± 40% (Figure 6.10a), while the predictive equations from the 

Hashin model and the Christensen and Lo’s GSCM model (Models 5 through 7) gave a 

larger prediction error scatter (Figure 6.10b). 
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(b) Currently existing models 

Figure 6.10 Errors in Elastic Prediction of Dynamic Shear Modulus of Asphalt Mastic 
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Viscoelastic Prediction 

Flow Chart 

In the viscoelastic prediction of dynamic shear modulus of asphalt mastic, the 

complex shear modulus of asphalt binder was used in the form of true complex term as an 

input parameter in the predictive equations so that the complex shear modulus of asphalt 

mastic could be calculated and both dynamic shear modulus and phase angle could be 

predicted. Figure 6.11 presents the flow chart for the viscoelastic prediction of dynamic 

shear modulus of asphalt mastic. 

Predictive Models  

As mentioned previously in Chapter 4, to numerically solve the predictive 

equations from the differential method, special cases of 5.0== im vv  and 

2.0== im vv were considered for the viscoelastic prediction ( mv = Poisson ratio of 

asphalt binder, iv = Poisson ratio of aggregate). Totally, there were 10 predictive models 

used for the viscoelastic prediction of asphalt mastic, as summarized in Table 6.4. 

PFC model 

Elastic solution G = f(xi)

Binder test data 

Prony series G(t)

Curvefitting 

Binder G*(ω) 

Predicted mastic ⎥G*⎢, φ Mastic test data 
Compare 

VE solution G* = f(xi
*) 

 

Figure 6.11 Flow Chart for Viscoelastic Prediction of Asphalt Mastic 
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Table 6.4 Models Used for Viscoelastic Prediction of Asphalt Mastic 
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No. Predictive Equation Equation No. 
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Note: 1. The first seven predictive equations were developed in this study (Model 2-1 
was also given in Pal (2005a). The last three equations were given by the 
Hashin model and the Christensen and Lo model. 

           2. All the final prediction results were converted to dynamic shear modulus and 
phase angle of asphalt mastic. 
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Prediction Results and Analyses 

Figures 6.12 ~ 6.21 present the predicted values for dynamic shear modulus and 

phase angle of asphalt mastic along with the measured test data. 

As in the elastic prediction, different models provided different accuracy in 

predicting dynamic shear modulus of asphalt mastic using the viscoelastic method. It was 

observed that among all the models, Model 4-2 was the only one that slightly over-

predicted dynamic shear modulus at all three volume concentrations (Figure 6.18). 

Predicted dynamic shear moduli from Models 1, 4-1, 5 were higher than measured data at 

lower concentration of mineral filler and lower than measured data at high concentration 

(Figures 12, 17, and 19).   Models 2-1 and 3-1 gave very good predictions at all three 

volume concentrations of mineral filler (Figures 13 and 15), while Models 2-2, 3-2, 6, 

and 7 slightly under-predicted the dynamic shear modulus of asphalt mastic, regardless of 

the volume concentration of mineral filler (Figures 14, 16, 20, and 21). 

As for the predicted values of phase angle, it was observed that all the models 

gave almost same plots of predicted phase angle vs. frequency at all three mineral filler 

concentrations. This was verified by the fact that no significant difference in the 

measured phase angle was observed between mastics with different mineral filler 

concentrations. 

Error Analyses 

Figures 6.22 and 23 present the prediction errors for dynamic shear modulus and 

phase angle in the viscoelastic analysis. It was observed that the prediction errors for 

dynamic shear modulus were mostly within the range between − 40% and 80%. For the 
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(b) Phase angle vs. frequency 

Figure 6.12 Predicted vs. Measured Values of Asphalt Mastic (Model 1) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.12 Predicted vs. Measured Values of Asphalt Mastic (Model 1) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.13 Predicted vs. Measured Values of Asphalt Mastic (Model 2-1) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.13 Predicted vs. Measured Values of Asphalt Mastic (Model 2-1) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.14 Predicted vs. Measured Values of Asphalt Mastic (Model 2-2) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.14 Predicted vs. Measured Values of Asphalt Mastic (Model 2-2) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.15 Predicted vs. Measured Values of Asphalt Mastic (Model 3-1) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.15 Predicted vs. Measured Values of Asphalt Mastic (Model 3-1) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.16 Predicted vs. Measured Values of Asphalt Mastic (Model 3-2) 
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(c) Predicted vs. measured modulus 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80

Measured (degree)

Pr
ed

ic
te

d 
(d

eg
re

e)

20%
35%
50%

 

(d) Predicted vs. measured phase angle 

Figure 6.16 Predicted vs. Measured Values of Asphalt Mastic (Model 3-2) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.17 Predicted vs. Measured Values of Asphalt Mastic (Model 4-1) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.17 Predicted vs. Measured Values of Asphalt Mastic (Model 4-1) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.18 Predicted vs. Measured Values of Asphalt Mastic (Model 4-2) 
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(d) Predicted vs. measured phase angle 

Figure 6.18 Predicted vs. Measured Values of Asphalt Mastic (Model 4-2) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.19 Predicted vs. Measured Values of Asphalt Mastic (Model 5) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.19 Predicted vs. Measured Values of Asphalt Mastic (Model 5) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.20 Predicted vs. Measured Values of Asphalt Mastic (Model 6) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.20 Predicted vs. Measured Values of Asphalt Mastic (Model 6) (Contd.) 
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(b) Phase angle vs. frequency 

Figure 6.21 Predicted vs. Measured Values of Asphalt Mastic (Model 7) 
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(c) Predicted vs. measured modulus 
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(d) Predicted vs. measured phase angle 

Figure 6.21 Predicted vs. Measured Values of Asphalt Mastic (Model 7) (Contd.) 
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(a) Models developed in this study 
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(b) Currently existing models 

Figure 6.22 Errors for Dynamic Shear Modulus in Viscoelastic Prediction 
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(b) Currently available models 

Figure 6.23 Errors for Phase Angle in Viscoelastic Prediction 
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models developed in this study, more than half of the prediction errors were distributed 

within the range between − 40% and 20%. For the predictive equations from the Hasin 

model and the Christensen and Lo’s GSCM model, the prediction errors were mainly 

within the range between − 60% and 20%. 

For phase angle, different models gave similar prediction errors, as presented in 

Figure 6.23. The prediction errors were mostly within the range of ± 10%, especially at 

low to intermediate frequencies. No significant difference in the predicted phase angle 

was observed between different PFC models. 

Comparison between Elastic and Viscoelastic Predictions 

To evaluate the difference in the predicted dynamic shear modulus between 

elastic and viscoelastic prediction methods and potential of replacing viscoelastic with 

elastic method in predicting the dynamic (shear) modulus of asphalt mastic and mixture, 

the predicted results from these two methods are compared. The difference in the 

predicted moduli from these two methods was evaluated using the following equation: 

100
*

**
Error

icviscoelast

icviscoelastelastic ×
−

=
G

GG
                                                   (6.2) 

where 

Error = relative error, %; 

elastic
*G  = predicted dynamic shear modulus from elastic prediction method; and 

icviscoelast
*G  = predicted dynamic shear modulus from viscoelastic prediction method. 
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Figure 6.24 presents the predicted errors in dynamic shear modulus of asphalt 

mastics at three different concentrations (20%, 35% and 50%) caused by using elastic 

prediction methods. It should be noted that Poisson’s ratios of 0.5 and 0.2 were used for 

both methods so that the error caused by different value of Poisson ratio could be 

eliminated. It was observed that at the three volume concentrations used in this study 

(20%, 35% and 50%), the error due to the use of elastic method was really small. All the 

prediction errors were within the range between – 1% and 4%. Among all the models 

used in this study, Model 4-1 gave the largest prediction scatter and it also showed the 

trend that prediction error increased with the increase in the volume concentration of 

mineral filler in asphalt mastic.  

Figure 6.25 presents the plots of prediction errors vs. frequency for Model 4-1 at 

different volume concentrations. It can be seen that even at the mineral filler volume 

concentration of up to 70%, the prediction error caused by the use of elastic method was 

still below 10%. This indicated that at low to mediate volume concentrations, it was 

possible to use elastic method instead of viscoelastic method to predict dynamic shear 

modulus of asphalt mastic. The prediction error due to the replacement of viscoelastic 

with elastic model was pretty small. Large prediction errors were only observed at very 

high volume concentrations and high frequencies. 
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Figure 6.24 Errors Caused by Elastic Prediction Method 
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Figure 6.25 Errors Caused by Elastic Prediction Method for Model 4-1 
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CHAPTER 7 PREDICTION OF DYNAMIC MODULUS OF HMA MIXTURE 

Introduction 

This chapter presents the application of various PFC models developed in this 

study to predicting the dynamic modulus of HMA mixtures. The prediction accuracy of 

the PFC models in predicting the dynamic modulus was evaluated through the 

comparison between the predicted results and the measured test data. 

In order to simulate the microstructure of the asphalt-aggregate composite system 

of HMA mixtures, two different methods were used in this study. In the first method, 

HMA was regarded as a composite material with aggregate particles and mineral fillers 

dispersed in the asphalt cement binder matrix (Figure 7.1).  This method was named 

“binder-aggregate system” method in this study. In this method, mineral filler particles 

were treated as aggregate, no matter how small they are. Because it is impossible to 

obtain the whole aggregate particle size distribution over the range from the minimum 

mineral filler (nearly zero) to the maximum aggregate size, this method could not 

consider the aggregate gradation and its effect on the viscoelastic properties of HMA 

mixtures. The volumetric property of HMA mixtures used in this method was the volume 

concentration of inclusion (aggregate) in the matrix, as in the prediction of asphalt mastic 

modulus.  In the second method, HMA was considered as a mixture of aggregate particles 

bonded with asphalt mastic. The asphalt mastic was then made of asphalt binder and 

mineral filler. Each aggregate particle, regardless of its size, was coated with an asphalt 

mastic film of same thickness (Figure 7.2). Therefore, the second method was named 

“mastic-aggregate system” method in this study. Since the aggregate particle size 
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distribution can be readily acquired, this method has the capability of taking into account 

aggregate gradation in the prediction and evaluating its effect on the properties of HMA 

mixtures.  Both methods were employed to predict the viscoelastic properties of HMA 

mixtures and to evaluate their applicability to HMA mixtures. 

 

Asphalt binder

Aggregate

Air voids

 

Figure 7.1 Schematic for Binder-Aggregate System of HMA Mixtures 

 

Asphalt mastic

Aggregate

Asphalt mastic film

Air voids

 

Figure 7.2 Schematic for Mastic-Aggregate System of HMA Mixtures 
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Input Parameter Values 

Part of the input parameter values necessary for both the binder-aggregate system 

and mastic-aggregate system methods are presented in Table 6.1 in Chapter 6. To employ 

the mastic-aggregate system method, the complex (shear) modulus of asphalt mastic was 

also needed as an input parameter in the predictive models and should be determined 

before the prediction.  

The complex (shear) modulus of asphalt mastic in laboratory-prepared HMA 

mixtures can be determined using the following procedures. From the aggregate 

gradation and the asphalt cement content used in the laboratory-prepared HMA mixture 

(Table 5.2), the volume concentration of mineral filler in asphalt mastic was determined 

to be 25%. From the test data of asphalt mastic at 20% and 35% volume concentrations, 

the complex shear modulus values of asphalt mastic were determined at 25% volume 

concentration using the interpolation method. The interpolated complex shear moduli of 

asphalt mastic at the volume concentration of 25% are presented in Figure 7.3 along with 

the curves fitted with the Prony series representation. Table 7.1 presents the fitted 

coefficients for the Prony series representation in terms of iG . 

Binder-Aggregate System Prediction 

Flow Chart 

Figure 7.4 presents the flow chart for the prediction of dynamic modulus and 

phase angle of HMA mixtures using the binder-aggregate system method. 
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Figure 7.3 Master Curves of Complex Shear Moduli of Asphalt Mastic at 25 v.% (25°C) 

 

Table 7.1 Prony series constants for relaxation shear modulus of asphalt mastic at 25 v.% 

i iρ  (sec) iG (MPa) 

1 1E-04 1.718E+02 

2 1E-03 5.881E+01 

3 1E-02 2.088E+01 

4 1E-01 3.991E+00 

5 1E+00 6.338E-01 

6 1E+01 4.114E-02 

7 1E+02 3.565E-03 

 eG  = 1.667E-03 
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Figure 7.4 Flow Chart for Binder-Aggregate System Prediction 

 

It should be noted that in the predicting process, two-step method was used to 

take into account air voids effect on HMA mixtures, as described in Chapter 3. In the first 

step, HMA was assumed to a mixture without air voids in it. The predicted viscoelastic 

properties were for HMA mixture containing no air voids. In the second step, the effect 

of air voids on the properties of HMA mixtures was investigated by treating air voids as a 

series of air bubbles with zero modulus. With more air voids entrapped in HMA 

mixtures, larger reduction was observed in the predicted dynamic modulus of asphalt 

mastic and mixtures. In order to characterize the effect of air voids on the modulus of 

HMA mixtures, the retaining ratio was defined as follows 

air voids no

air voids

*
*

E
E

R =                                                                                        (7.1) 
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where 

R = retaining ratio due to the incorporation of air voids in HMA mixtures, 1~0=R ; 

air voids
*E  = predicted dynamic modulus of HMA mixtures with air voids entrapped in 

them; and 

air voids no
*E  = predicted dynamic modulus of HMA mixtures without air voids. 

Figure 7.5 presents the plots of retaining ratio vs. air voids content for Model 1 

through Model 7 (Table 6.3). It can be seen that Model 6 (the Hashin model) had the 

highest retaining ratio among all the models used in this study. In other words, the Hashin 

model gave the smallest reduction due to incorporation of air voids in HMA mixtures. 

Model 4 showed the lowest retaining ratio, which indicated that the predicted modulus 

from Model 4 was the smallest among all the predicted modulus values. Other models 

showed moderate decrease in modulus caused by air voids. 
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Figure 7.5 Relationship between Retaining Ratio and Air Voids Content 
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Prediction Results and Analyses 

Figures 7.6 ~ 7.16 show the predicted dynamic moduli of HMA mixture from the 

predictive models presented in Table 6.4. The measured dynamic moduli were also 

included in these figures in comparison to the predicted values.  

From Figures 7.6 through 7.16, it was observed that the predicted values followed 

the general pattern of dynamic modulus of HMA mixtures, i.e., the higher the frequency, 

the higher the dynamic modulus value. All the plots of predicted modulus vs. frequency 

exhibited the sigmoidal shape, which could be attributed to the viscoelastic nature of 

HMA mixtures. 

However, when compared to the measured dynamic moduli, the predicted values 

from all the models were unfavorably lower, which indicated that all the models under-

predicted dynamic modulus of HMA mixtures. This under-prediction phenomenon of 

PFC models in estimating the modulus of asphalt mastic and mixtures was also observed 

in studies by other researchers (Buttlar and Roque 1996; Buttlar et al. 1999; Li and 

Metcalf 2005). 

Different PFC models gave different prediction errors in estimating the dynamic 

modulus of HMA mixtures. Among all the models, Model 2-1 gave the highest predicted 

dynamic moduli, which were closest to the measured values. Model 6 (the Hashin model) 

gave the lowest prediction results, deviating farthest from the measured data. From these 

figures, it was observed that with the increase in the loading frequency, the predicted 

dynamic moduli approached the measured values increasingly closer. The predicted 

dynamic moduli were much closer to the measured values at higher frequencies than at 

low frequencies. This phenomenon can be attributed to the fact that with the increase in  



 131

 

0.01

0.1

1

10

100

1000

10000

100000

0.00001 0.001 0.1 10 1000 100000

Frequency (Hz)

⎥E
* ⎢ 

(M
Pa

)
Measured
Model 1
Model 2-1
Model 2-2
Model 3-1
Model 3-2
Model 4-1
Model 4-2
Model 5
Model 6
Model 7

 
(a) Dynamic modulus *E  

 
 

0

10

20

30

40

50

60

70

80

90

0.00001 0.001 0.1 10 1000 100000

Frequency (Hz)

φ 
(°)

Measured
Model 1
Model 2-1
Model 2-2
Model 3-1
Model 3-2
Model 4-1
Model 4-2
Model 5
Model 6
Model 7

 
(b) Phase angle φ  

 
Figure 7.6 Predicted vs. measured *E  and φ  of HMA mixture 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  

Figure 7.7 Predicted vs. measured *E  and φ  of HMA mixture (Model 1) 
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(b) Predicted vs. measured phase angle  
Figure 7.8 Predicted vs. measured *E  and φ  of HMA mixture (Model 2-1) 
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(b) Predicted vs. measured phase angle  

Figure 7.9 Predicted vs. measured *E  and φ  of HMA mixture (Model 2-2) 
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(b) Predicted vs. measured phase angle  
Figure 7.10 Predicted vs. measured *E  and φ  of HMA mixture (Model 3-1) 
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(b) Predicted vs. measured phase angle  

Figure 7.11 Predicted vs. measured *E  and φ  of HMA mixture (Model 3-2) 
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(b) Predicted vs. measured phase angle  
Figure 7.12 Predicted vs. measured *E  and φ  of HMA mixture (Model 4-1) 
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(b) Predicted vs. measured phase angle  
Figure 7.13 Predicted vs. measured *E  and φ  of HMA mixture (Model 4-2) 
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(b) Predicted vs. measured phase angle  
Figure 7.14 Predicted vs. measured *E  and φ  of HMA mixture (Model 5) 
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(b) Predicted vs. measured phase angle  

Figure 7.15 Predicted vs. measured *E  and φ  of HMA mixture (Model 6) 
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(b) Predicted vs. measured phase angle  
Figure 7.16 Predicted vs. measured *E  and φ  of HMA mixture (Model 7) 
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the loading frequency, dynamic modulus of asphalt binder increased and subsequently the 

difference in modulus between asphalt binder and aggregate decreased. The reduced 

mismatch in the properties of different constituents in a composite material helps the PFC 

models give better and closer predictions. 

From Figures 7.6 through 7.16, it can be seen that the predicted phase angle 

values were lower than the measured data. The predicted phase angles were roughly half 

the predicted values, depending on predictive model and loading frequency. 

When compared to the prediction results for asphalt mastic from these models, it 

can be seen that the prediction errors increased dramatically for HMA mixtures. This 

indicated that HMA mixtures are much more complicated than asphalt mastic due to the 

addition of aggregate particles of different sizes. More work need to be done to obtain 

better prediction results from PFC models for HMA mixtures. 

Mastic-Aggregate System Prediction 

Flow Chart 

Since all the HMA mixtures use aggregates of different particle sizes to obtain the 

desirable aggregate gradation and stable aggregate structure under traffic loading, each 

portion of aggregate with specified size makes its own contribution to the dynamic 

modulus of HMA mixtures. It is very important to take into account the aggregate 

gradation used in HMA mixtures. The under-prediction of the binder-aggregate system 

method is due in part to its inability to incorporate the aggregate gradation of HMA 

mixtures in its predicting procedures.  
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In the mastic-aggregate system prediction, the aggregate particle size distribution 

was considered in the predictive procedures as described in Chapter 3. It should be 

pointed out that this method used to consider the aggregate gradation in HMA mixture 

was not limited to the three-dimensional two-layered HMA model developed in Chapter 

3, the procedures for the incorporation of aggregate gradation and air voids can be 

employed in all the PFC models in this study. Figure 7.17 presents the flow chart for the 

prediction of dynamic modulus and phase angle of HMA mixtures using the mastic-

aggregate system method. As shown in Figure 7.17, aggregate gradation was considered 

in the first prediction process. In the second prediction process, air voids content and its  
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Figure 7.17 Flow Chart for Mastic-Aggregate System Prediction 
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size distribution were taken into account in the same manner as the one used for 

aggregate gradation. The detailed predicting procedures and the associated equations can 

be found in Chapter 3. 

Prediction Results and Analyses 

Figures 7.18 ~ 7.28 present the predicted dynamic modulus and phase angle 

values of HMA mixture using the mastic-aggregate system method along with the 

measured results.   

The prediction shown in Figures 7.18 through 7.28 suggests that the mastic-

aggregate system produces better results for dynamic modulus and phase angle values 

than the binder-aggregate system method (Figures 6 to 16). The mastic-aggregate system 

method obviously improved the predicted results for all the PFC models due to the  

consideration of aggregate gradation in the predicting procedures, although the plot of 

dynamic modulus vs. frequency followed the similar sigmoidal shape. 

 Among all the models, Model 2-1 gave the highest predicted dynamic moduli as 

in the binder-aggregate system prediction. However, Model 2-1 slightly over-predicted 

the dynamic modulus in the mastic-aggregate system method, compared to the under-

prediction in the binder-aggregate system prediction. The three-dimensional two-layered 

model (Model 1 developed in Chapter 3) gave the lowest of the predicted dynamic 

modulus values from all the models, deviating farthest from the measured data. 

Among the models used in this study, three models, Models 2-2, 3-2, and 4-2, 

gave the best prediction results of dynamic modulus, especially at higher frequencies. 

Figure 7.29 presents the prediction errors for these three models in the mastic-aggregate  
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Figure 7.18 Predicted vs. Measured *E  and φ  of HMA Mixture 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.19 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 1) 
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(a) Predicted vs. measured dynamic modulus  

 

0

10

20
30

40

50

60
70

80

90

0 10 20 30 40 50 60 70 80 90

Measured φ (°)

Pr
ed

ic
te

d 
 φ 

(°)

 
 

(b) Predicted vs. measured phase angle  
Figure 7.20 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 2-1) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.21 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 2-2) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  

Figure 7.22 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 3-1) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.23 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 3-2) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.24 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 4-1) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.25 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 4-2) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  
Figure 7.26 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 5) 
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(b) Predicted vs. measured phase angle  

Figure 7.27 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 6) 
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(a) Predicted vs. measured dynamic modulus  
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(b) Predicted vs. measured phase angle  

Figure 7.28 Predicted vs. Measured *E  and φ  of HMA Mixture (Model 7) 
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Figure 7.29 Prediction Errors in Mastic-Aggregate System Prediction 

 

system prediction. It can be seen that most of the prediction errors lied within the range 

between − 80 % and + 80 %, while Model 4-2 could give prediction with errors within 

the range between -20 % and + 20 % over the frequency range from 0.1 Hz to 1000 Hz. 

The predicted phase angle values from the mastic-aggregate system method also 

showed difference from those obtained from the binder-aggregate system method. It was 

observed that Models 2-1, 2-2, 3-1, 3-2 and 4-2 predicted phase angle values lower than 

measured results at low frequencies, but higher than measured ones at higher frequencies. 

The remaining other models still over-predicted the phase angle values over the whole 

frequency range, as in the prediction of binder-aggregate system. 
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Analysis on Possible Reasons for Under-prediction of Dynamic Modulus 

In general, most of the PFC models used in this study under-predicted the 

dynamic modulus of HMA mixtures, whether using the binder-aggregate system method 

or the mastic-aggregate system method. The reasons for under-prediction could be 

attributed to the discrepancy between these PFC models and real HMA mixtures. First of 

all, the real aggregates are composed of particles with various shapes rather than the 

spherical shape used for all the PFC models in this study. The assumption of spherical 

particles lowered the total surface area of aggregate and subsequently increased the 

calculated film thickness of asphalt mastic around aggregate particles. This eventually 

resulted in the lower predicted dynamic modulus of HMA mixtures. Another issue 

associated with aggregate shape is the interlocking between coarse aggregate particles. 

Aggregate interlocking plays an important role in the reinforcement mechanisms of HMA 

mixtures. It is critical for aggregates to develop and sustain a stable structure and 

withstand traffic loading. However, spherical shape does not provide any interlocking at 

all. Aggregate particles with spherical shape are liable to the shear deformation under 

traffic loading. The lack of consideration of interlocking between large aggregate 

particles could further lower the value of dynamic modulus of HMA mixtures, as 

suggested by some researchers (such as Buttlar and Roque 1996). However, it has been 

shown that there is literally no direct contact between large aggregates in a typical dense-

graded HMA mixture (Roberts et al. 1996). Li and Metcalf (2005) argued that large 

aggregates mainly float in and interact with the surrounding mastic, and the direct 

aggregate interaction or interlocking effect does not exist in dense-graded HMA 

mixtures.  
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From Figures 7.6(a) and 7.18(a), it was observed that the under-predictive models 

gave closer prediction results at high frequencies than at low frequencies, which meant 

frequency (namely the loading rate) had different effect on the measured dynamic 

modulus than on the predicted dynamic modulus. This indicated that the viscoelastic 

properties of asphalt mastic in HMA mixtures were somewhat changed when coarse 

aggregates were introduced into the asphalt mastic matrix. This property change of 

asphalt mastic should be attributed to the physico-chemical effect between asphalt mastic 

matrix and coarse aggregate inclusion (Buttlar et al. 1999). The physico-chemical effect 

could stiffen the composite system by interfacial effects between mastic matrix and 

coarse aggregate particles, including absorption, adsorption, and selective sorption, and 

thus lower the frequency dependency of HMA mixtures. 

Sensitivity Analysis 

To gain better understanding of the effects of different factors on the dynamic 

modulus of HMA mixtures, the following sensitivity analysis was performed by changing 

one of the parameters and keeping others constant. 

In order to investigate the effect of aggregate gradation on dynamic modulus of 

HMA mixtures, three more aggregate gradations were employed in the sensitivity 

analysis in addition to the aggregate gradation used in HMA mixture for the laboratory 

testing. These three aggregate gradations can be represented by Eq.(3.29) and maximum 

aggregate sizes of 192 max =a , 9.5, and 4.75 mm (namely 5.9max =a , 4.75, and 2.38 mm) 

were used in Eq.(3.29) to examine the effect of aggregate gradation. The aggregate 
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gradations are shown in Figure 7.30 along with the aggregate gradation used in the 

laboratory testing.  

Two air voids distributions were used to analyze the effect of air voids on 

dynamic modulus of HMA mixtures (Figure 7.31). Distribution 1 was calculated from 

Castelblanco et al. (2005) and represents the general air voids size distribution in 

conventional dense-graded HMA mixtures. Distribution 2 is an arbitrary coarse air voids 

size distribution and was used in this study to investigate the effect of coarse distribution 

on the dynamic modulus. 

The input parameters evaluated and their values used in the sensitivity analysis 

are summarized in Table 7.2. In Table 7.2, the entry “varying range” means the range in 

which the input parameter varies in order to evaluate its effect and “fixed value” means to 

keep the value fixed during the evaluation of other input parameters. 
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Figure 7.30 Aggregate Gradations 
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Figure 7.31 Air Voids Size Distribution for Sensitivity Analysis 

 

Table 7.2 Input Parameters and Their Values for Sensitivity Analysis 

Parameter Unit Varying Range Fixed Value 

Aggregate gradation N/A 
( )

45.0

max
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a
aaP  

(amax = 9.5, 4.75, and 2.36 mm) 

and laboratory gradation 

laboratory gradation 

Air voids distribution N/A Distributions 1 and 2 Distribution 1 

Aggregate modulus MPa 10 ~ 1000000 50000 

Asphalt content wt.% 2 ~ 10 5 

Air voids content v.% 0 ~ 20 4 
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Since Model 4-2 was one of the best models that can accurately predict the 

dynamic modulus of HMA mixtures, it was chosen for the sensitivity analysis. 

Effect of Aggregate Gradation 

Figure 7.32 presents the effect of aggregate gradation on the dynamic modulus of 

HMA mixtures. It was observed that the aggregate gradation with maximum particle size 

19 mm exhibited the highest dynamic modulus, while the aggregate gradation with  

maximum particle size 4.75 mm gave the lowest value of dynamic modulus at the given 

frequency. This indicated that use of coarse aggregate gradation would increase the 

dynamic modulus of dense-graded HMA mixture. To produce high modulus asphalt 

mixture, one of the feasible options was to select coarse aggregate gradation. 
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Figure 7.32 Effect of Aggregate Gradation 
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Effect of Aggregate Modulus 

The influence of aggregate modulus on the dynamic modulus value of HMA 

mixtures is shown in Figure 7.33. In Figure 7.33 the dynamic modulus of HMA mixtures 

increased with the increase in aggregate modulus. However, at low frequency (such as 

0.1 Hz) the magnitude of the increase in dynamic modulus was comparably small after 

aggregate modulus reached certain value.  This meant that the contribution of aggregate 

to dynamic modulus improvement is limited at low frequency, given the fixed portion of 

aggregate. The reason for this phenomenon is that the dynamic modulus of asphalt 

mixture is usually controlled by the softest constituent (asphalt binder), not by aggregate. 

In practice, use of stiffer aggregate may not effectively increase the dynamic modulus of 

HMA mixtures. 
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Figure 7.33 Effect of Aggregate Modulus 
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Effect of Asphalt Content 

Asphalt content plays an important role in the dynamic modulus of HMA 

mixtures. Figure 7.34 shows that higher asphalt content would result in a lower dynamic 

modulus of HMA mixtures. On the other hand, too much asphalt would overlubricate the 

HMA mixture and subsequently increase the permanent deformation of flexible 

pavements. One effective way to obtain a higher dynamic modulus would be to keep 

asphalt content at low level. 

 

 

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

Asphalt content (wt.%)

Pr
ed

ic
te

d ⎥
E*

⎢ (
M

Pa
)

10 Hz
1 Hz
0.1 Hz

 

Figure 7.34 Effect of Asphalt Content 
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Effect of Air Voids 

As previously mentioned, air voids content, as well as air voids size distribution, 

plays an important role in the dynamic modulus of HMA mixtures. The effects of air 

voids content and size distribution are shown in Figure 7.35. It was obvious from Figure 

7.35(a) that higher air voids content resulted in lower dynamic modulus of HMA 

mixtures. Since Distribution 2 is more coarse than Distribution 1 (Figure 7.31), Figure 

7.35(b) showed that HMA mixture with coarser air voids size distribution exhibited a 

lower dynamic modulus than with fine distribution. In other words, larger air bubbles 

entrapped in asphalt mixtures did more harm to dynamic modulus than smaller bubbles. 

Gaining better control of air void content and air voids size distribution provides another 

effective way to improve the dynamic modulus of HMA mixtures. 
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Figure 7.35 Effect of Air Voids 
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CHAPTER 8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

Research Objectives 

The primary objective of this study was to develop and apply PFC models to 

predict the dynamic modulus of HMA mixtures. This included: 

• To develop new PFC micromechanical models and modify existing PFC models 

for predicting the dynamic modulus of asphalt mastic and mixtures;  

• To evaluate the newly developed and modified PFC models for HMA mixtures 

through the comparison between the predicted dynamic moduli with the 

laboratory measured data; 

• To investigate the effects of different factors (such as properties and volumetric 

fractions of individual constituents) on the dynamic modulus of HMA mixtures. 

Development of PFC Models 

• Based on the two-dimensional two-layer built-in micromechanical model 

developed by Li et al. (1999), a three-dimensional two-layered model was 

developed and closed-form equations were derived to predict dynamic modulus of 

HMA mixtures. 

• Using the differential method, three predictive equations were derived to predict 

the elastic, shear, and bulk modulus of asphalt mixtures. To convert these three 

equations for complex (shear or bulk) modulus prediction, special cases were 
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considered for Poisson’s ratios of 0.5 and 0.2. This resulted in totally six 

predictive models. 

• Three representative currently existing PFC models from the Hashin’s composite 

spheres model and Christensen and Lo’s generalized self-consistent model, one 

for bulk modulus and two for shear modulus, were modified and extended to be 

suitable for predicting dynamic modulus of HMA mixtures. 

New Features of Proposed Models 

The proposed PFC models in this study, including the newly developed and those 

modified ones, had the capability of taking into account the particular characteristics of 

HMA mixtures, i.e., the viscoelastic nature, aggregate gradation, and air voids: 

• Using the elastic-viscoelastic correspondence principle, the elastic solution 

obtained from these models for elastic modulus prediction were converted into the 

complex domain to predict the dynamic modulus and phase angle of HMA 

mixtures. 

• Using the aggregate gradation to approximately represent the volume fraction 

distribution of aggregate, the dynamic modulus of HMA mixtures could be 

calculated by summing the modulus contribution from each portion of aggregate 

over the whole aggregate gradation. 

• Assuming air voids entrapped in HMA mixtures to be a series of spherical air 

bubbles with different sizes, the effect of air voids content and size distribution 

were investigated in a manner similar to the one used for aggregate gradation. To 

obtain the dynamic modulus of HMA mixtures containing air voids, two-step 
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method was employed. In the first step, the dynamic modulus of HMA mixture 

with no air voids was predicted with the consideration of aggregate gradation. In 

the second step, dynamic modulus of HMA mixture containing air voids was 

calculated with the account of air voids content and size distribution. 

Laboratory Testing 

Laboratory tests were performed on asphalt binder, mastic, and mixture to acquire 

the values for input parameters and to obtain the measured dynamic moduli, to which the 

predicted dynamic modulus and phase angle values of asphalt mastic and mixture from 

PFC models were compared. 

• Asphalt mastic was produced in the laboratory by mixing asphalt binder (PG 64-

22) with mineral filler at three volume concentrations (20%, 35%, and 50%). DSR 

testing was performed on samples from short-term aged asphalt binder and mastic 

at three temperatures (15°C, 25°C, and 35°C) and at the loading frequency range 

from 0.01 to 25 Hz to obtain their dynamic shear modulus and phase angle values 

using the Anton Paar Physica MCR 501 Rheometer. The master curves of 

dynamic shear modulus at 25°C for asphalt binder and mastic were constructed 

using the Physica Rheoplus Software. 

• HMA mixture samples for dynamic modulus test were cored and cut from SGC-

compacted specimens. The test was conducted under no confining pressure at 

three temperatures of 10°C, 25°C, and 40°C and at the loading frequencies 

ranging from 0.01Hz to 25Hz using the Simple Performance Tester (SPT). The 
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master curve of dynamic modulus of HMA mixture at 25°C was constructed 

manually. 

Evaluation of Proposed Models 

The applicability of the proposed PFC models to asphalt mastic and HMA 

mixtures was evaluated by comparing the predicted dynamic modulus and phase angle 

values with the measured results. 

Conclusions 

Based on this study, the following conclusions can be drawn: 

• Totally, seven new PFC models were developed and three currently available 

models were modified to predict the dynamic modulus and phase angle of HMA 

mixtures. Closed-form predictive equations were formulated for these models. 

These models were capable of taking into account the particular characteristics of 

HMA mixtures: viscoelastic nature, aggregate gradation, and air voids. 

• The procedures developed to incorporate viscoelastic nature, aggregate gradation, 

and air voids were not limited to these proposed models in this study. They could 

be used in other PFC models so that these models could be modified to be suitable 

for prediction of dynamic modulus of HMA mixtures. 

• When used to predict the dynamic shear modulus of asphalt mastic, all the models 

gave reasonable prediction results, using either elastic or viscoelastic method. The 

prediction results from these two methods did not show much difference in the 

dynamic shear modulus of asphalt mastic. In practice, the errors caused by use of 
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elastic instead of viscoelastic model were small for the prediction of dynamic 

shear modulus of asphalt mastic. 

• The predicted dynamic shear moduli of asphalt mastic from all the models were 

also close to the measured results. 

• When used to predict the dynamic modulus of HMA mixtures, the proposed 

models showed different accuracy in the prediction, regardless of the binder-

aggregate system prediction or the mastic-aggregate system prediction used in this 

study. The difference in the prediction error between the applications of these 

models to asphalt mastic and HMA mixtures indicated that HMA mixture was a 

much more complicated composite material than asphalt mastic due to the 

addition of large aggregate particles. 

• In the binder-aggregate system prediction method for HMA mixtures, all the 

models under-predicted dynamic modulus and over-predicted phase angle to 

varying degrees. Model 2-1 (the predictive equation for dynamic modulus from 

the differential method with the assumption of )5.0== im vv  gave the highest 

predicted dynamic moduli, which were closest to the measured values. Model 6 

(the Hashin’s composite spheres model for shear modulus) gave the lowest 

prediction results, deviating farthest from the measured results. 

• Due to the incorporation of aggregate gradation, the mastic-aggregate system 

method gave improved prediction results for dynamic modulus and phase angle 

than the binder-aggregate system method. Model 2-1 still gave the highest 

predicted values and slightly over-predicted the dynamic moduli. Model 1 (the 
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three-dimensional two-layered model) gave the lowest of the predicted dynamic 

modulus values, deviating farthest from the measured data. Among all the models, 

Models 2-2, 3-2, and 4.3, gave the best prediction results of dynamic modulus, 

especially at higher frequencies.  

• In the mastic-aggregate system prediction, Models 2-1, 2-2, 3-1, 3-2 and 4-2 

predicted phase angle values lower than measured results at low frequencies, but 

predicted phase angles higher than measured ones at higher frequencies. The 

remaining other models over-predicted the phase angle values over the whole 

frequency range. 

• The possible reasons for the under-prediction of dynamic modulus of HMA 

mixtures by PFC models were explored. The major reason for the discrepancy 

between predicted and measured results is due to the assumption of spherical 

shape for aggregate particles. The spherical shape lowered the total surface area 

and increased the calculated film thickness of asphalt mastic coated around 

aggregate particles, thus decreasing the dynamic modulus of HMA mixtures. The 

spherical shape could not provide any aggregate interlocking at all, which was 

believed to be an important factor affecting the stability of aggregate structure. 

However, some researchers argued that interlocking does not exist in dense-

graded HMA mixtures. The change in the viscoelastic properties of asphalt mastic 

due to the physico-chemical effect caused by the addition of large aggregates may 

also be responsible for the discrepancy. 
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• The sensitivity analysis was performed by changing one of input parameters and 

keeping others constant. From the sensitivity analysis, the following conclusions 

can be obtained: 

o Coarse aggregate gradation resulted in high dynamic modulus for dense-

graded HMA mixtures. 

o Use of stiff aggregate resulted in high dynamic modulus of HMA 

mixtures. However, increasing aggregate modulus may not be an effective 

way to increase the dynamic modulus of HMA mixtures. 

o Use of too much asphalt binder contributed to low dynamic modulus of 

HMA mixtures. Keeping asphalt content at low level was effective in 

obtaining high modulus HMA. 

o Both air voids content and air voids size distribution had influence on 

dynamic modulus of HMA mixtures. Too much air voids and too large air 

cavity would result in reduced dynamic modulus of HMA mixtures. 

Recommendations 

This study focuses on developing new and modifying currently existing PFC 

models so that they can be used to predict the dynamic modulus and phase angle of HMA 

mixtures. Limited laboratory experiments were performed to evaluate the feasibility of 

these PFC models to HMA mixtures. Future research work was recommended as follows: 

• In general, the prediction results from the PFC models are much better for asphalt 

mastics than for HMA mixtures. This implies that HMA mixture is far more 

complicated than asphalt mastic and there are still some more factors that need to 
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be identified and incorporated in the PFC models. All these models need to be 

further refined and verified before they can be put into practical use. 

• These PFC models have to be evaluated with many more measured dynamic 

modulus data from various HMA mixtures before they can be put into practical 

use. Different sources and types of asphalt binder, aggregate should be used to 

produce HMA mixtures. Different mixing process and compaction type should 

also be included in future study. 

• Although all the PFC micromechanical models are fundamental in characterizing 

the effective properties of HMA mixtures and they do not need any calibration for 

the predictive equations, the question still exists as to which model is best suitable 

for which type of HMA mixture due to the difference in the microstructure of 

HMA mixtures and the assumptions used in each PFC model. 

• The input parameter values for the PFC models need to be refined. The influence 

and interaction between the constituents of HMA mixtures need to further 

investigated. The effect of this interaction on the properties of asphalt should be 

examined. The real material properties of asphalt binder or mastic and the detailed 

microstructure should be accurately determined to improve the prediction results. 

• This study focuses on the analytical approach to the dynamic modulus prediction 

of HMA mixtures. With the recent advance in digital image processing technique, 

the numerical modeling method (such as finite element method and discrete 

element method) provides another promising tool in better understanding and 

modeling HMA mixtures  with the help of digital image process in determining 
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the internal structure of HMA mixtures. Much research work can be done using 

the numerical modeling techniques. 
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c = 0 

Temperature Frequency Phase Angle Dynamic Modulus Storage Modulus Loss Modulus 
[°C] [Hz] [°] [Pa] [Pa] [Pa] 

25 0.00170 79.8 8.55E+03 1.52E+03 8.42E+03 
25 0.00221 79.0 1.10E+04 2.09E+03 1.08E+04 
25 0.00288 78.2 1.41E+04 2.87E+03 1.38E+04 
25 0.00375 77.4 1.80E+04 3.92E+03 1.76E+04 
25 0.00488 76.6 2.30E+04 5.33E+03 2.24E+04 
25 0.00635 75.8 2.93E+04 7.19E+03 2.84E+04 
25 0.00827 75.0 3.72E+04 9.66E+03 3.59E+04 
25 0.0108 74.1 4.73E+04 1.29E+04 4.55E+04 
25 0.0140 73.3 5.99E+04 1.72E+04 5.74E+04 
25 0.0183 72.5 7.58E+04 2.28E+04 7.22E+04 
25 0.0238 72.6 1.04E+05 3.11E+04 9.89E+04 
25 0.0310 70.9 1.20E+05 3.91E+04 1.13E+05 
25 0.0404 71.3 1.60E+05 5.13E+04 1.51E+05 
25 0.0526 69.5 1.86E+05 6.53E+04 1.75E+05 
25 0.0685 69.9 2.43E+05 8.33E+04 2.28E+05 
25 0.0892 68.1 2.85E+05 1.06E+05 2.65E+05 
25 0.116 68.6 3.65E+05 1.33E+05 3.40E+05 
25 0.151 66.7 4.30E+05 1.70E+05 3.95E+05 
25 0.197 67.3 5.39E+05 2.08E+05 4.97E+05 
25 0.257 65.1 6.40E+05 2.69E+05 5.80E+05 
25 0.334 62.9 7.72E+05 3.52E+05 6.87E+05 
25 0.435 63.6 9.39E+05 4.18E+05 8.41E+05 
25 0.567 61.1 1.14E+06 5.50E+05 9.97E+05 
25 0.739 62.0 1.45E+06 6.82E+05 1.28E+06 
25 0.962 58.6 1.66E+06 8.63E+05 1.41E+06 
25 1.25 60.3 2.05E+06 1.02E+06 1.78E+06 
25 1.63 56.3 2.38E+06 1.32E+06 1.98E+06 
25 2.12 58.9 2.84E+06 1.47E+06 2.43E+06 
25 2.77 58.5 3.26E+06 1.70E+06 2.78E+06 
25 3.60 57.6 3.85E+06 2.06E+06 3.25E+06 
25 4.69 56.6 4.47E+06 2.46E+06 3.73E+06 
25 6.11 55.3 5.33E+06 3.03E+06 4.38E+06 
25 7.96 54.6 6.07E+06 3.52E+06 4.94E+06 
25 10.4 53.3 7.24E+06 4.33E+06 5.81E+06 
25 13.5 52.5 8.15E+06 4.96E+06 6.47E+06 
25 17.6 51.4 9.71E+06 6.05E+06 7.59E+06 
25 22.9 50.5 1.08E+07 6.89E+06 8.34E+06 
25 29.8 49.0 1.29E+07 8.48E+06 9.74E+06 
25 38.9 48.3 1.42E+07 9.45E+06 1.06E+07 
25 50.6 47.3 1.62E+07 1.10E+07 1.19E+07 
25 65.9 46.3 1.85E+07 1.28E+07 1.34E+07 
25 85.8 45.2 2.11E+07 1.48E+07 1.50E+07 
25 112 44.2 2.39E+07 1.72E+07 1.67E+07 
25 146 43.1 2.71E+07 1.98E+07 1.85E+07 
25 190 42.1 3.06E+07 2.27E+07 2.05E+07 
25 247 41.0 3.45E+07 2.60E+07 2.26E+07 
25 322 39.9 3.88E+07 2.98E+07 2.49E+07 
25 419 38.8 4.36E+07 3.40E+07 2.73E+07 
25 546 37.6 4.90E+07 3.88E+07 2.99E+07 
25 711 36.4 5.49E+07 4.42E+07 3.26E+07 
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c = 20% 

Temperature Frequency Phase Angle Dynamic Modulus Storage Modulus Loss Modulus 
[°C] [Hz] [°] [Pa] [Pa] [Pa] 

25 0.00182 80.1 1.80E+04 3.10E+03 1.77E+04 
25 0.00236 79.3 2.28E+04 4.23E+03 2.24E+04 
25 0.00307 78.5 2.90E+04 5.77E+03 2.84E+04 
25 0.00399 77.7 3.68E+04 7.83E+03 3.60E+04 
25 0.00518 76.9 4.68E+04 1.06E+04 4.55E+04 
25 0.00672 76.1 5.91E+04 1.42E+04 5.74E+04 
25 0.00873 75.3 7.46E+04 1.89E+04 7.22E+04 
25 0.0113 74.5 9.41E+04 2.51E+04 9.07E+04 
25 0.0147 73.8 1.18E+05 3.31E+04 1.14E+05 
25 0.0191 73.0 1.48E+05 4.35E+04 1.42E+05 
25 0.0248 72.8 2.01E+05 5.97E+04 1.92E+05 
25 0.0322 71.5 2.35E+05 7.44E+04 2.23E+05 
25 0.0418 71.4 3.10E+05 9.90E+04 2.94E+05 
25 0.0543 69.9 3.58E+05 1.23E+05 3.36E+05 
25 0.0705 70.1 4.69E+05 1.60E+05 4.41E+05 
25 0.0916 68.5 5.45E+05 1.99E+05 5.07E+05 
25 0.119 68.8 6.98E+05 2.53E+05 6.51E+05 
25 0.154 67.0 8.20E+05 3.20E+05 7.55E+05 
25 0.201 67.4 1.03E+06 3.96E+05 9.52E+05 
25 0.260 65.5 1.22E+06 5.07E+05 1.11E+06 
25 0.338 65.3 1.50E+06 6.26E+05 1.36E+06 
25 0.439 63.8 1.79E+06 7.93E+05 1.61E+06 
25 0.570 61.8 2.17E+06 1.03E+06 1.91E+06 
25 0.740 62.4 2.77E+06 1.28E+06 2.45E+06 
25 0.961 58.5 3.16E+06 1.65E+06 2.70E+06 
25 1.25 60.9 3.89E+06 1.89E+06 3.40E+06 
25 1.62 55.8 4.58E+06 2.57E+06 3.78E+06 
25 2.10 59.4 5.37E+06 2.74E+06 4.62E+06 
25 2.73 58.4 6.24E+06 3.27E+06 5.32E+06 
25 3.55 57.3 7.36E+06 3.97E+06 6.20E+06 
25 4.61 56.4 8.58E+06 4.75E+06 7.14E+06 
25 5.98 55.2 1.01E+07 5.79E+06 8.31E+06 
25 7.77 54.3 1.16E+07 6.78E+06 9.43E+06 
25 10.1 53.0 1.38E+07 8.29E+06 1.10E+07 
25 13.1 52.1 1.56E+07 9.59E+06 1.23E+07 
25 17.0 50.7 1.84E+07 1.17E+07 1.43E+07 
25 22.1 49.8 2.07E+07 1.34E+07 1.58E+07 
25 28.7 48.3 2.44E+07 1.62E+07 1.82E+07 
25 37.3 47.5 2.71E+07 1.83E+07 2.00E+07 
25 48.4 46.5 3.09E+07 2.13E+07 2.24E+07 
25 62.8 45.4 3.52E+07 2.47E+07 2.51E+07 
25 81.6 44.3 3.99E+07 2.86E+07 2.79E+07 
25 106 43.1 4.52E+07 3.30E+07 3.09E+07 
25 138 42.0 5.10E+07 3.79E+07 3.42E+07 
25 179 40.9 5.74E+07 4.34E+07 3.76E+07 
25 232 39.8 6.45E+07 4.95E+07 4.13E+07 
25 301 38.7 7.21E+07 5.63E+07 4.50E+07 
25 391 37.5 8.06E+07 6.39E+07 4.91E+07 
25 508 36.4 8.97E+07 7.22E+07 5.32E+07 
25 659 35.2 9.97E+07 8.15E+07 5.76E+07 
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c = 35% 

Temperature Frequency Phase Angle Dynamic Modulus Storage Modulus Loss Modulus 
[°C] [Hz] [°] [Pa] [Pa] [Pa] 

25 0.00207 80.8 3.39E+04 5.42E+03 3.35E+04 
25 0.00268 80.2 4.29E+04 7.29E+03 4.23E+04 
25 0.00348 79.6 5.44E+04 9.81E+03 5.35E+04 
25 0.00452 79.0 6.91E+04 1.32E+04 6.78E+04 
25 0.00587 78.3 8.77E+04 1.77E+04 8.58E+04 
25 0.00762 77.6 1.11E+05 2.37E+04 1.08E+05 
25 0.0099 76.9 1.40E+05 3.16E+04 1.36E+05 
25 0.0128 76.2 1.76E+05 4.20E+04 1.71E+05 
25 0.0167 75.5 2.22E+05 5.54E+04 2.15E+05 
25 0.0217 74.8 2.78E+05 7.30E+04 2.69E+05 
25 0.0281 74.2 3.93E+05 1.07E+05 3.78E+05 
25 0.0365 73.3 4.38E+05 1.26E+05 4.19E+05 
25 0.0474 73.0 6.07E+05 1.78E+05 5.81E+05 
25 0.0616 71.9 6.78E+05 2.11E+05 6.45E+05 
25 0.0799 71.6 9.03E+05 2.85E+05 8.57E+05 
25 0.104 70.4 1.05E+06 3.50E+05 9.86E+05 
25 0.135 70.0 1.32E+06 4.53E+05 1.24E+06 
25 0.175 69.0 1.58E+06 5.66E+05 1.47E+06 
25 0.227 68.2 1.94E+06 7.21E+05 1.80E+06 
25 0.295 67.5 2.35E+06 9.01E+05 2.17E+06 
25 0.383 66.1 2.87E+06 1.16E+06 2.62E+06 
25 0.497 65.9 3.46E+06 1.41E+06 3.16E+06 
25 0.646 63.5 4.24E+06 1.89E+06 3.79E+06 
25 0.838 64.3 5.01E+06 2.17E+06 4.52E+06 
25 1.09 61.0 6.19E+06 3.00E+06 5.41E+06 
25 1.41 62.7 7.23E+06 3.32E+06 6.42E+06 
25 1.83 58.7 8.89E+06 4.62E+06 7.59E+06 
25 2.38 60.7 1.04E+07 5.11E+06 9.10E+06 
25 3.09 59.5 1.22E+07 6.17E+06 1.05E+07 
25 4.02 58.7 1.43E+07 7.43E+06 1.22E+07 
25 5.22 57.3 1.68E+07 9.08E+06 1.41E+07 
25 6.77 56.4 1.96E+07 1.09E+07 1.64E+07 
25 8.79 54.8 2.31E+07 1.33E+07 1.89E+07 
25 11.4 53.9 2.68E+07 1.58E+07 2.16E+07 
25 14.8 52.1 3.15E+07 1.93E+07 2.48E+07 
25 19.2 51.2 3.62E+07 2.27E+07 2.82E+07 
25 25.0 49.1 4.25E+07 2.79E+07 3.21E+07 
25 32.4 49.2 4.76E+07 3.11E+07 3.60E+07 
25 42.1 47.9 5.47E+07 3.67E+07 4.06E+07 
25 54.7 46.6 6.25E+07 4.30E+07 4.54E+07 
25 71.0 45.2 7.14E+07 5.02E+07 5.07E+07 
25 92.2 43.9 8.10E+07 5.83E+07 5.62E+07 
25 120 42.6 9.17E+07 6.75E+07 6.20E+07 
25 155 41.2 1.03E+08 7.78E+07 6.81E+07 
25 202 39.8 1.16E+08 8.93E+07 7.45E+07 
25 262 38.5 1.30E+08 1.02E+08 8.11E+07 
25 340 37.1 1.46E+08 1.16E+08 8.78E+07 
25 442 35.7 1.62E+08 1.32E+08 9.48E+07 
25 574 34.3 1.80E+08 1.49E+08 1.01E+08 
25 745 32.9 2.00E+08 1.68E+08 1.08E+08 
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c = 50% 

Temperature Frequency Phase Angle Complex Modulus Storage Modulus Loss Modulus 
[°C] [Hz] [°] [Pa] [Pa] [Pa] 

25 0.00161 80.0 4.92E+04 8.51E+03 4.85E+04 
25 0.00210 79.9 6.19E+04 1.09E+04 6.09E+04 
25 0.00274 79.7 7.79E+04 1.40E+04 7.66E+04 
25 0.00357 79.4 9.81E+04 1.81E+04 9.64E+04 
25 0.00466 79.0 1.24E+05 2.36E+04 1.21E+05 
25 0.00607 78.6 1.56E+05 3.09E+04 1.53E+05 
25 0.00792 78.1 1.97E+05 4.06E+04 1.93E+05 
25 0.0103 77.6 2.49E+05 5.35E+04 2.44E+05 
25 0.0135 77.0 3.14E+05 7.05E+04 3.06E+05 
25 0.0176 76.4 3.96E+05 9.28E+04 3.85E+05 
25 0.0229 75.8 4.97E+05 1.22E+05 4.82E+05 
25 0.0299 74.8 6.96E+05 1.82E+05 6.72E+05 
25 0.0390 74.3 8.19E+05 2.22E+05 7.88E+05 
25 0.0509 73.7 1.06E+06 2.98E+05 1.02E+06 
25 0.0664 73.0 1.25E+06 3.64E+05 1.19E+06 
25 0.0865 72.6 1.58E+06 4.72E+05 1.51E+06 
25 0.113 71.7 1.89E+06 5.95E+05 1.80E+06 
25 0.147 71.3 2.37E+06 7.57E+05 2.24E+06 
25 0.192 70.1 2.88E+06 9.80E+05 2.70E+06 
25 0.251 69.8 3.54E+06 1.22E+06 3.32E+06 
25 0.327 69.2 4.31E+06 1.53E+06 4.03E+06 
25 0.426 68.0 5.30E+06 1.99E+06 4.91E+06 
25 0.556 67.8 6.37E+06 2.40E+06 5.89E+06 
25 0.725 65.9 7.88E+06 3.21E+06 7.19E+06 
25 0.946 65.5 1.01E+07 4.17E+06 9.14E+06 
25 1.23 63.7 1.18E+07 5.21E+06 1.06E+07 
25 1.61 64.1 1.40E+07 6.13E+06 1.26E+07 
25 2.10 63.1 1.64E+07 7.44E+06 1.46E+07 
25 2.74 62.0 1.99E+07 9.33E+06 1.76E+07 
25 3.57 60.7 2.34E+07 1.14E+07 2.04E+07 
25 4.66 59.6 2.80E+07 1.42E+07 2.42E+07 
25 6.07 58.9 3.32E+07 1.71E+07 2.84E+07 
25 7.92 56.9 3.91E+07 2.14E+07 3.27E+07 
25 10.3 56.1 4.60E+07 2.57E+07 3.82E+07 
25 13.5 53.6 5.42E+07 3.21E+07 4.36E+07 
25 17.6 52.7 6.32E+07 3.83E+07 5.02E+07 
25 22.9 49.8 7.45E+07 4.81E+07 5.68E+07 
25 29.9 50.4 8.47E+07 5.40E+07 6.52E+07 
25 39.0 48.9 9.80E+07 6.44E+07 7.39E+07 
25 50.9 47.3 1.13E+08 7.63E+07 8.29E+07 
25 66.4 45.8 1.30E+08 9.03E+07 9.28E+07 
25 86.6 44.1 1.48E+08 1.06E+08 1.03E+08 
25 113 42.4 1.68E+08 1.24E+08 1.13E+08 
25 147 40.6 1.91E+08 1.45E+08 1.24E+08 
25 192 38.9 2.15E+08 1.67E+08 1.35E+08 
25 251 37.1 2.42E+08 1.93E+08 1.46E+08 
25 327 35.3 2.70E+08 2.20E+08 1.56E+08 
25 426 33.5 3.01E+08 2.51E+08 1.66E+08 
25 556 31.7 3.34E+08 2.84E+08 1.75E+08 
25 725 29.9 3.69E+08 3.20E+08 1.84E+08 
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APPENDIX B  TEST DATA FOR MASTER CURVE OF HMA MIXTURE 
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Air voids = 2.78% 

Temperature Frequency Phase Angle Dynamic Modulus
[°C] [Hz] [°] [Pa] 

25 2500 10.7 1.76E+10
25 2000 11.1 1.71E+10
25 1000 12.3 1.57E+10
25 500 13.6 1.42E+10
25 200 15.5 1.24E+10
25 100 17.1 1.10E+10
25 50 18.9 9.70E+09
25 25 22.0 8.63E+09
25 20 21.3 8.05E+09
25 20 22.5 8.23E+09
25 10 23.1 6.94E+09
25 10 24.4 7.01E+09
25 5 26.4 5.90E+09
25 2 29.0 4.57E+09
25 1 29.3 3.88E+09
25 1 30.9 3.67E+09
25 0.5 32.5 2.88E+09
25 0.4625 29.9 3.18E+09
25 0.37 30.7 2.88E+09
25 0.2 34.2 2.02E+09
25 0.185 32.0 2.18E+09
25 0.1 35.0 1.52E+09
25 0.0925 33.3 1.60E+09
25 0.037 34.8 1.01E+09
25 0.0185 35.9 6.83E+08
25 0.01 35.5 5.55E+08
25 0.00925 36.2 4.79E+08
25 0.0037 36.4 2.95E+08
25 0.00185 36.4 2.06E+08
25 0.000185 33.9 7.51E+07
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Air voids = 3.91% 

Temperature Frequency Phase Angle Dynamic Modulus
[°C] [Hz] [°] [Pa] 

25 500 14.3 1.26E+10
25 400 14.8 1.22E+10
25 200 16.3 1.09E+10
25 100 17.8 9.70E+09
25 40 20.0 8.15E+09
25 25 22.3 7.55E+09
25 20 21.8 7.08E+09
25 20 22.9 7.19E+09
25 10 23.5 6.06E+09
25 10 24.8 6.11E+09
25 5 26.7 5.10E+09
25 4 25.9 4.83E+09
25 2 27.5 4.01E+09
25 2 29.3 3.94E+09
25 1.625 31.1 4.03E+09
25 1.3 31.4 3.77E+09
25 1 31.0 3.17E+09
25 0.65 32.9 3.02E+09
25 0.5 32.5 2.52E+09
25 0.325 34.2 2.34E+09
25 0.2 32.7 1.87E+09
25 0.2 34.2 1.79E+09
25 0.13 35.6 1.60E+09
25 0.1 35.1 1.36E+09
25 0.065 36.7 1.16E+09
25 0.0325 36.8 8.35E+08
25 0.013 36.8 5.31E+08
25 0.01 36.5 4.87E+08
25 0.0065 36.6 3.74E+08
25 0.00065 33.5 1.32E+08
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Air voids = 5.74% 

Temperature Frequency Phase Angle Dynamic Modulus
[°C] [Hz] [°] [Pa] 

25 875 12.7 1.18E+10
25 700 13.1 1.14E+10
25 350 14.6 1.03E+10
25 175 16.1 9.28E+09
25 70 18.4 7.92E+09
25 35 20.4 6.92E+09
25 25 23.5 6.58E+09
25 20 24.1 6.27E+09
25 17.5 22.4 5.98E+09
25 10 26.1 5.29E+09
25 7 25.2 4.82E+09
25 5 28.1 4.40E+09
25 3.5 27.2 4.05E+09
25 2 30.6 3.33E+09
25 1 32.4 2.63E+09
25 0.5 33.8 2.04E+09
25 0.5 35.3 2.29E+09
25 0.4 36.5 2.04E+09
25 0.35 33.8 1.88E+09
25 0.2 35.3 1.41E+09
25 0.2 37.2 1.53E+09
25 0.1 36.1 1.05E+09
25 0.1 38.1 1.09E+09
25 0.04 38.7 6.95E+08
25 0.02 39.5 4.69E+08
25 0.01 36.4 3.63E+08
25 0.01 39.1 3.29E+08
25 0.004 38.9 2.00E+08
25 0.002 38.9 1.37E+08
25 0.0002 35.7 4.74E+07
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Air voids = 7.91% 

Temperature Frequency Phase Angle Dynamic Modulus
[°C] [Hz] [°] [Pa] 

25 1250 14.7 9.57E+09
25 1000 15.1 9.23E+09
25 500 16.6 8.26E+09
25 250 18.4 7.32E+09
25 100 20.9 6.14E+09
25 50 22.8 5.30E+09
25 25 24.8 4.51E+09
25 25 25.4 4.59E+09
25 20 26.1 4.33E+09
25 10 27.4 3.57E+09
25 10 28.0 3.59E+09
25 5 29.2 2.95E+09
25 5 30.1 2.94E+09
25 2 32.5 2.19E+09
25 1 34.0 1.71E+09
25 0.5 35.1 1.35E+09
25 0.5 35.1 1.32E+09
25 0.5 36.0 1.53E+09
25 0.4 37.5 1.35E+09
25 0.2 35.9 9.14E+08
25 0.2 37.5 1.01E+09
25 0.1 36.1 6.87E+08
25 0.1 37.6 7.33E+08
25 0.04 37.9 4.66E+08
25 0.02 38.0 3.25E+08
25 0.01 35.7 2.50E+08
25 0.01 37.4 2.32E+08
25 0.004 37.3 1.45E+08
25 0.002 39.7 9.97E+07
25 0.0002 24.9 4.18E+07
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APPENDIX C  EXAMPLES OF COMPUTER PROGRAM FOR PREDICTION 

OF DYNAMIC (SHEAR) MODULI OF ASPHALT MASTIC AND HMA 

MIXTURE 
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Computer Program Example 1: Model 1 for prediction of dynamic shear modulus 
of asphalt mastic with the viscoelastic method 
 
#Define the coefficients of Prony Series  
rou:=Array([0.0001,0.001,0.01,0.1,1,10,100]): 
E:=Array([76008149,22764192,8418004,1688698,275211.7,18910.2,445.1214]): 
Ee:=1000: 
#Define the Carson Transform 
fEstar:=s−>Ee+(s*rou[1]*E[1])/(s*rou[1]+1)+(s*rou[2]*E[2])/(s*rou[2]+1)+(s*rou[3]*E
[3])/(s*rou[3]+1)+(s*rou[4]*E[4])/(s*rou[4]+1)+(s*rou[5]*E[5])/(s*rou[5]+1)+(s*rou[6]
*E[6])/(s*rou[6]+1)+(s*rou[7]*E[7])/(s*rou[7]+1): 
 
Fmax:=31:  #Number of loading frequencies 
Freq:=Array([0.00001,0.00002,0.00005,0.0001,0.0002,0.0005,0.001,0.002,0.005,0.01,0.0
2,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,10000
0]): 
 
E2:=50000:         #Modulus of aggregate, in MPa 
V1:=0.4:           #Poisson's ratio of pure asphalt cement,  
V2:=0.2:           #Poisson's ratio of mineral filler, 
V0:=0.3:           #Poisson's ratio of asphalt mastic, 
 
# Define the complex shear modulus of pure asphalt binder 
for i from 1 to Fmax do 
Estar_as[i]:=evalf(fEstar(2*Pi*Freq[i]*I)/10^6): #10^6,Unit Changed to MPa 
end do: 
 
# Convert from G to E for pure binder 
for i from 1 to Fmax do 
Estar_as[i]:=Estar_as[i]*2*(1+V1):  
end do: 
 
# Calculate the complex shear modulus of mastic 
ETA:=0.50:     #ETA = n = volume concentration 
x1:=0.5*ETA*(1+V1)+(1-2*V1): 
x2:=0.5*(1+V1)+ETA*(1-2*V1): 
 
for i from 1 to Fmax do 
E0[i]:=evalf(Estar_as[i]*(1-ETA)*(1-2*V0)/(x1-9*E2*ETA*(1-V1)*(1-
V1)/(Estar_as[i]*(1-ETA)*(4-8*V2)+4*E2*x2))): 
end do: 
 
# Convert from E to G for mastic 
for i from 1 to Fmax do 
E0[i]:=E0[i]/2/(1+V0): 
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end do: 
 
# Print the complex G of mastic 
for i from 1 to Fmax do 
xmod[i]:=Re(E0[i]): 
ymod[i]:=Im(E0[i]): 
rmod[i]:=abs(E0[i]): 
end do: 
for i from 1 to Fmax do 
xmod[i]; 
end do; 
for i from 1 to Fmax do 
ymod[i]; 
end do; 
for i from 1 to Fmax do 
rmod[i]; 
end do; 
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Computer Program Example 2: Model 1 for prediction of dynamic modulus of 
HMA mixture with mastic-aggregate system method 
 
#First Time Equivalence 
#Define aggregate gradation 
No_of_sieve:=9:            #Number of Sieves 
Size_of_sieve:=Array([16,12.5,9.5,4.75,2.36,0.6,0.3,0.15,0.075]): 
Percent_passing_sieve:=Array([100,98.5,85,58.85,42.45,19.65,10.2,6.45,4.65]): 
 
#Number of division btw neighboring sieve or size for refinery of gradation of aggregate 
and air void distribution 
Nmax:=10:     
 
#Refine the aggregate gradation 
  for i from 1 to No_of_sieve-1 do 
    Size1[i][Nmax+1]:=Size_of_sieve[i]: 
    Size1[i][1]:=Size_of_sieve[i+1]: 
    Percent1[i][Nmax+1]:=Percent_passing_sieve[i]: 
    Percent1[i][1]:=Percent_passing_sieve[i+1]: 
  end do: 
  for i from 1 to No_of_sieve-1 do 
    delta_size:=(Size1[i][Nmax+1]-Size1[i][1])/Nmax: 
    delta_percent:=(Percent1[i][Nmax+1]-Percent1[i][1])/Nmax: 
      for j from 2 to Nmax do 
        Size1[i][j]:=Size1[i][1]+(j-1)*delta_size: 
        Percent1[i][j]:=Percent1[i][1]+(j-1)*delta_percent: 
      end do: 
    end do: 
 
#Input the volume fractions of different phases 
f3_in:=0.04:           #Air voids 
f1_in:=0.12:           #Volume fraction of asphalt 
f2_in:=1-f3_in-f1_in:  #volume fraction of aggregate 
 
#Recalcualte the volume fractions of different phases              
f3:=f3_in:                                   #Volume fraction of air voids 
f1:=f1_in+f2_in*Percent_passing_sieve[No_of_sieve]/100:  #Volume fraction of mastic 
f2:=1-f3-f1:                                  #volume fraction of aggregate 
 
#Define function calculating asphalt film thickness 
a0:=0: 
a1:=0: 
a2:=0: 
a3:=0: 
for i from 1 to No_of_sieve-1 do 
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  for j from 1 to Nmax do 
    a0:=a0+(Percent1[i][j+1]-Percent1[i][j]): 
    a1:=a1+3*(Percent1[i][j+1]-Percent1[i][j])/(Size1[i][j]/4+Size1[i][j+1]/4): 
    a2:=a2+3*(Percent1[i][j+1]-Percent1[i][j])/(Size1[i][j]/4+Size1[i][j+1]/4)^2: 
    a3:=a3+(Percent1[i][j+1]-Percent1[i][j])/(Size1[i][j]/4+Size1[i][j+1]/4)^3:   
  end do: 
end do: 
#Function calculating exact thickness 
g1:=x->(a0+a1*x+a2*x^2+a3*x^3)/(100-Percent_passing_sieve[No_of_sieve])-
(f1+f2)/f2;   
sol1:={solve(g1(x)=0,x)};         # Exact thickness 
if type(sol1[1],nonreal) then 
    if type(sol1[2],nonreal) then 
       thickness1:=sol1[3]:      # Exact thickness: thickness1          
    else  
       thickness1:=sol1[2]:    
    end if; 
else  
    thickness1:=sol1[1]: 
end if:  
thickness1:=thickness1; 
 
#Calculate the modulus corresponding to individual size particle 
#Define the coefficients of Prony Series  
rou:=Array([0.0001,0.001,0.01,0.1,1,10,100]): 
E:=Array([171755261,58814471,20880482,3990591.3,633802.82,41138.916,3565.1405]
): 
Ee:=1667: 
#Define the Carson Transform 
fEstar:=s−>Ee+(s*rou[1]*E[1])/(s*rou[1]+1)+(s*rou[2]*E[2])/(s*rou[2]+1)+(s*rou[3]*E
[3])/(s*rou[3]+1)+(s*rou[4]*E[4])/(s*rou[4]+1)+(s*rou[5]*E[5])/(s*rou[5]+1)+(s*rou[6]
*E[6])/(s*rou[6]+1)+(s*rou[7]*E[7])/(s*rou[7]+1): 
 
Fmax:=31:  #Number of frequencies 
Freq:=Array([0.00001,0.00002,0.00005,0.0001,0.0002,0.0005,0.001,0.002,0.005,0.01,0.0
2,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,10000
0]): 
 
E2:=50000:         #Modulus of aggregate, in MPa 
V1:=0.3:           #Poisson's ratio of asphalt mastic,  
V2:=0.2:           #Poisson's ratio of aggregate, 
V0:=0.25:          #Poisson's ratio of Equivalent HMA mixture, 
 
for i from 1 to Fmax do 
Estar_as[i]:=evalf(fEstar(2*Pi*Freq[i]*I)/10^6): #10^6,Unit Changed to MPa 
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end do: 
for k from 1 to Fmax do 
  for i from 1 to No_of_sieve-1 do 
      for j from 1 to Nmax+1 do 
        ETA:=(Size1[i][j]/2)^3/(Size1[i][j]/2+thickness1)^3:  #radius: diameter divided by 2 
       x1:=0.5*ETA*(1+V1)+(1-2*V1):        # ETA = n in paper 
       x2:=0.5*(1+V1)+ETA*(1-2*V1): 
       E0[i][j][k]:=evalf(Estar_as[k]*(1-ETA)*(1-2*V0)/(x1-9*E2*ETA*(1-V1)*(1-
V1)/(Estar_as[k]*(1-ETA)*(4-8*V2)+4*E2*x2))): 
      end do: 
    end do: 
total:=0: 
  for i from 1 to No_of_sieve-1 do 
    for j from 1 to Nmax do 
total:=total+evalf((Percent1[i][j+1]-Percent1[i][j])*(E0[i][j][k]+E0[i][j+1][k])/2): 
    end do: 
  end do: 
  Modulus1[k]:=evalf(total/(100-Percent_passing_sieve[No_of_sieve])): 
end do; 
 
#Second Time Equivalence 
#Air void distribution 
No_of_voids:=11: 
Size_of_voids:=Array([6,5,4,3.2,2,1.5,1,0.64,0.384,0.256,0.128]): 
Percent_passing_voids:=Array([100,99.76,99,96.65,87,76,58,38.4,23.7,15.35,8.74]): 
 
#Refine air void distribution 
  for i from 1 to No_of_voids-1 do 
    Size2[i][Nmax+1]:=Size_of_voids[i]: 
    Size2[i][1]:=Size_of_voids[i+1]: 
    Percent2[i][Nmax+1]:=Percent_passing_voids[i]: 
    Percent2[i][1]:=Percent_passing_voids[i+1]: 
  end do: 
  for i from 1 to No_of_voids-1 do 
    delta_size:=(Size2[i][Nmax+1]-Size2[i][1])/Nmax: 
    delta_percent:=(Percent2[i][Nmax+1]-Percent2[i][1])/Nmax: 
      for j from 2 to Nmax do 
        Size2[i][j]:=Size2[i][1]+(j-1)*delta_size: 
        Percent2[i][j]:=Percent2[i][1]+(j-1)*delta_percent: 
      end do: 
    end do: 
 
#Calculate the equivalent thickness around air bubble 
F1:=f1+f2:  #Volume fraction of equivalent medium    #Uppercase letter for the second 
part calc 
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F2:=f3:     #volume fraction of air voids 
total:=0: 
  for i from 1 to No_of_voids-1 do 
      for j from 1 to Nmax do 
        total:=total+(Percent2[i][j+1]-Percent2[i][j])/(Size2[i][j]+Size2[i][j+1]): 
      end do: 
    end do: 
total:=total/(100-Percent_passing_voids[No_of_voids]): 
thickness_2:=F1/(12*F2*total);       #Thickness of equivalent medium 
 
#Define function calculating exact thickness around air bubble 
a0:=0: 
a1:=0: 
a2:=0: 
a3:=0: 
for i from 1 to No_of_voids-1 do 
  for j from 1 to Nmax do 
    a0:=a0+(Percent2[i][j+1]-Percent2[i][j]): 
    a1:=a1+3*(Percent2[i][j+1]-Percent2[i][j])/(Size2[i][j]/4+Size2[i][j+1]/4): 
    a2:=a2+3*(Percent2[i][j+1]-Percent2[i][j])/(Size2[i][j]/4+Size2[i][j+1]/4)^2: 
    a3:=a3+(Percent2[i][j+1]-Percent2[i][j])/(Size2[i][j]/4+Size2[i][j+1]/4)^3:   
  end do: 
end do: 
g2:=x->(a0+a1*x+a2*x^2+a3*x^3)/(100-Percent_passing_voids[No_of_voids])-
(F1+F2)/F2;   
   #Function calculating exact thickness 
sol2:={solve(g2(x)=0,x)};        # Exact thickness 
if type(sol2[1],nonreal) then 
    if type(sol2[2],nonreal) then 
       thickness2:=sol2[3]: 
    else  
       thickness2:=sol2[2]:    
    end if; 
else  
    thickness2:=sol2[1]: 
end if:  
thickness2:=thickness2; 
 
#Calculate the modulus corresponding to individual air bubble 
V1:=0.25: #Poisson's ratio for 1st time equivalent HMA mixture, 
V0:=0.25: #Poisson's ratio for 2nd time equivalent HMA mixture, 
for k from 1 to Fmax do 
  for i from 1 to No_of_voids-1 do 
    for j from 1 to Nmax+1 do 
ETA:=(Size2[i][j]/2)^3/(Size2[i][j]/2+thickness2)^3: 
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x1:=0.5*ETA*(1+V1)+(1-2*V1):        # ETA = n in paper 
E0[i][j][k]:=evalf(Modulus1[k]*(1-ETA)*(1-2*V0)/x1): 
    end do: 
  end do: 
total:=0: 
  for i from 1 to No_of_voids-1 do 
    for j from 1 to Nmax do 
total:=total+evalf((Percent2[i][j+1]-Percent2[i][j])*(E0[i][j][k]+E0[i][j+1][k])/2): 
    end do: 
  end do: 
Modulus2[k]:=evalf(total/(100-Percent_passing_voids[No_of_voids])): 
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