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Abstract

A surface-treatment process, surface-severe-plastic deformation (S2PD), is de-
veloped and applied on both crystalline and amorphous materials to introduce the
plastic deformation in the near-surface layer. A S2PD-processed crystalline compo-
nent is expected to have enhanced fatigue properties because the refined grains in the
near-surface layer and the coarse grains in the interior have good resistance to the
crack initiation and propagation, respectively.

The near-surface structures of the processed specimens were characterized by
means of the optical microscopy, scanning-electron microscopy (SEM), X-ray diffrac-
tion (XRD), and transmission-electron microscopy (TEM). Mechanical properties,
such as the microhardness, yield strength, and four-point-bend fatigue, were sys-
tematically investigated. It is shown that the S2PD process has the capability of
simultaneously creating (a) a work-hardened surface layer, (b) a nanocrystalline (nc)
surface layer, (c) a surface region with compressive-residual stresses, and (d) a grain-
size gradient with a nc surface and a coarse-grained interior for the polycrystalline
superalloy. Improved fatigue properties were found after the process. However, ex-
cessive treatments deteriorate the fatigue properties, and the possible reasons are
discussed.

For the amorphous material, thermal properties of the processed near-surface
layer were characterized by means of the differential-scanning calorimetry (DSC).
Effects of the treatment on the microhardness were studied by the nanoindentation.
After the treatment, the plastic-flow deformation in the unconstrained sample edge
was observed. In the sub-surface layer, the impact-induced shear-band operations
generate the extrusion and intrusion marks on the side face. DSC shows that the free
volumes of the deformed BMG have increased, and possible crystallization may occur
during the process. XRD and high-energy synchrotron diffraction techniques were
used to inspect the possible crystalline phase. A nanoindentation test shows that on
the side surface, the hardness increases and, then, decreases with the distance from the
processed surface. Four-point-bending-fatigue behavior has been studied and related
to the modified surface structure and the compressive-residual stress induced by the
process.
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CHAPTER 1

Introduction

1.1 Background of Fatigue

The fatigue life, Nf , is defined by the American Society for Testing and

Materials (ASTM) as the number of stress cycles of a specified character that a

specimen sustains before the failure of a specified nature occurs [1]. When a cyclic

loading, with the stress amplitude much lower than the yield strength of the material,

is applied on a component, the damage can be accumulated gradually and finally

causes the catastrophic failure, which is referred as fatigue fracture. The fatigue

fracture can usually be divided into two consecutive processes, crack initiation (or

nucleation) and crack growth (or propagation). Both of them are closely related

to the microstructural characteristics of the component, such as defects, grain sizes,

strength particles, etc.

The fatigue fracture of engineering components has been found as early as in

1837 by Wilhelm Albert, though the earliest systematic fatigue studies were performed

by Sir William Fairbairn and August Wöhler in 1860 [2, 3]. Wöhler stated the

stress amplitude to be the most important parameter for the fatigue life. When the

stress decreases to a certain level, the fatigue life tends to approach the infinity. The

maximum stress under which the material will not fail regardless of the fatigue cycles

is usually referred as the fatigue strength. In high-cycle fatigue situations (where the

fatigue life is between 103 to 108 cycles), fatigue behavior is usually characterized

by an S-N curve (i.e., stress vs. number of cycles to failure), which is also known as

a Wöhler curve. In this curve, the abscissa is the number of cycles to failure on a

logarithmic scale, and the ordinate is the stress. In many cases, an S-N curve can

be analyzed using a linear-regression technique because of the probabilistic nature of

fatigue (i.e., fatigue data are usually quite scattered even in controlled environments).
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Two of the most important empirical equations, which are frequently used

to describe the fatigue behavior of a component, are the Miner’s rule and the Paris’

law. A fatigue experiment is often conducted in a constant loading or constant strain

condition, both of which belong to a simple loading mode. However, in reality, the

loading mode could be complex, i.e., the load can be a function of the time rather than

a constant. In this situation, the Miner’s rule, also called the Palmgren-Miner linear-

damage hypothesis, states that where there are k different stress magnitudes, each

contributing ni cycles, then if Ni is the number of cycles to failure of the corresponding

stress magnitude, failure occurs when:

k
∑

i=1

ni

Ni

= C (1.1)

C is experimentally found to be between 0.7 and 2.2. Usually for design purposes, C is

assumed to be 1. This equation can be thought of as assessing what proportion of the

life is consumed by the stress at each magnitude, then forming a linear combination

of their aggregate. It can also be used to estimate the fatigue life of a component

when various stress magnitudes are applied.

Different from the Miner’s rule, the Paris’ law concerns only the fatigue-crack-

growth rate rather than the fatigue life. More specifically, it relates the crack-growth

rate, da/dN , to the stress-intensity factor and material constants. i.e.,

da

dN
= c(∆K)m (1.2)

where m is an empirical material constant, c ≈ σUKIC is a function of the ultimate

tensile stress, σU , and the fracture toughness, KIC . ∆K is the stress-intensity-factor

range and is a function of the cyclic loading, crack length, and sample geometry [4, 5].

Although the stress level is the most intuitionistic parameter in affecting the

fatigue life, many other factors actually play more realistic roles when the purpose is

to improve the fatigue performance under a desired stress level. For example, surface

notches may easily cause stress concentration and, thus, crack initiation. Therefore,

a notched sample usually has a lower fatigue strength than an unnotched one. It

2



can be deduced from this result that the fatigue property should be sensitive to the

surface roughness. A polished sample may have a higher fatigue strength than an

unpolished one, which actually has been confirmed by the experiments [6].

Other factors, such as the material type, internal defects, residual stress,

grain size, environment, temperature, etc., also affect the crack initiation and crack

propagation in different ways, and each of them has been systematically discussed

in many fatigue books [4, 7]. Among those parameters, three of the most important

ones are the yield strength (or hardness), the surface quality (roughness, defects,

etc.), and the residual stresses. So far, many different processes have been developed

to optimize those factors so as to improve the fatigue property of the component.

The yield strength is affected not only by the material type, but also by

the microstructures, such as the grain size. The Hall-Petch equation described the

relation between the yield strength and the grain size as shown below:

σy = σ0 +
ky√
d

(1.3)

where ky is the strengthening coefficient (a constant unique to each material), σ0

is a material constant for the starting stress for the dislocation movement (or the

resistance of the lattice to the dislocation motion), d is the grain diameter, and σy

is the yield stress. Since crack initiation usually begins with dislocation movements,

any strength mechanism, which can inhibit the dislocation movement, may also be

helpful to improve the fatigue strength. In this study, we are trying to refine the

grain size in the near-surface layer of the sample to improve its fatigue resistance.

Since any surface defects could become the potential sources of crack-initiation

sites because of the stress-concentration effect, the surface quality is very important

to fatigue properties in a high-cycle-fatigue range. Because in this range, the fatigue

crack almost always initiates from the sample surface. Actually, this trend is true

even for a well-polished sample, since the surface itself sometimes is also considered

as a defect.

3



Residual stresses affect the fatigue performance in a quite straightforward

way. That is, the compressive-residual stress could counteract part of the exerted

loading stress so as to increase the fatigue strength, while the tensile-residual stress

will do the contrary. A component with residual stresses can be considered as a

pre-deformed material. When the applied stress is on the same direction of the

pre-deformation (a tensile-residual-stress situation), the material is easy to deform,

and the component has a low strength. When the applied stress is on the reversed

direction of the pre-deformation (a compressive-residual-stress situation), the material

is difficult to deform, and the component has a high strength [7].

1.2 Improvement of Fatigue Behavior

As stated in the first section, there are many different ways to improve the fa-

tigue performance of a component. Improving the yield strength by a grain-refinement

process seems to be a simple and effective method. A nano-structured material, how-

ever, does not necessarily have a good fatigue performance. Because the fatigue

properties are affected by both the yield strength and the grain size of the materials.

Though high yield strength enhances the fatigue-crack-initiation threshold, the small

grain size may accerelate the crack-growth rate.

To be more specific, the fatigue strength is not a monotonic function of the

grain size. It is known that small grains could effectively increase the yield strength

so as to enhance the fatigue-crack-initiation threshold. Meanwhile, a small grain

size has an adverse effect on the resistance to the fatigue-crack growth, since cracks

can easily propagate along grain boundaries. On the contrary, coarse grains may

deflect the propagation paths of fatigue cracks by grain boundaries, thus introducing

crack closure and decreasing the rate of crack growth. However, coarse grains are not

effective in preventing the initiation of the fatigue crack [8].

Figure 1.1 shows a schematic illustration that crack propagation can be de-

flected by large grains but not by small ones. Because of the co-existed competitive

effects, it is not surprising to found that in the literature there are no good agreements
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Figure 1.1: A fatigue crack propagates along the grain boundaries. The figure
shows that coarse grains can deflect the propagation path more effec-
tively than fine grains do.

on the relationships between the fatigue properties and grain sizes. For example, in

Vinogradov et al.’s [9] investigation of an ultra-fine grained titanium obtained by the

severe-plastic deformation through equal-channel-angular pressing (ECAP), it was

shown that when the grain size changed from 100, 32, to 9 µm, the fatigue strength

pronouncedly increased accordingly. However, in the ultra-fine crystalline 6061 Al al-

loys subjected to the equal-channel-angular pressing, though significant improvement

in the fatigue strength was found after one ECAP pass, no improvement was observed

at all after further grain refinement [10].

Theoretical explanations for the effects of grain sizes on crack growth can be

found in Eq. (1.2), where the grain size hides its effects within the material constant,

c (which is a function of the ultimate tensile stress). Large grains may deflect the

crack-propagation path and, thus, prolong the crack-growth time. When the crack

initiates along a slip band, the effect of grain size can be revealed by the following

equation [11]:

Nf =
8µWs

(∆τ − 2k)2πd
(1.4)

where Nf is the number of cycles to failure (failure can be defined as the final fricture

or crack growing to a certain crack length), µ is the shear modulus, Ws is the specific

fracture energy per unit area along the slip band, ∆τ is the shear-stress range, k is

the fraction stress of dislocation, and d is the grain size. From this equation, it can

be clearly seen that small grain sizes can prolong the dislocation dipole-accumulation
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process, i.e., the crack-initiation process, so as to improve the fatigue life of a com-

ponent.

Based upon the above-mentioned information, it is believed that a component

with a nano-grained surface and a coarse-grained interior should have a good fatigue

resistance, because (1) in the surface, the small grains can effectively resist the fatigue-

crack initiation, and (2) in the interior, the large grains can deflect the fatigue-crack-

propagation path and, thus, increase the fatigue life [12].

Introducing compressive-residual stresses and improving the surface quality

are also typical methods, which can be used to enhance the fatigue strength. Shot

peening is an excellent and mature process in industry, which can combine these two

effects together and remarkably improve the fatigue property of engineer component

[12]. Shot peening is a cold-working process that hardens the surface of a metallic

component by bombarding it with a stream of small particles called shots. The conse-

quences of a shot-peening process include the roughening of the surface, the increased

near-surface dislocation density (strain hardening), and the development of a char-

acteristic profile of residual stresses. For the casted component, the bombardment

of shots may also eliminate some of the surface casting defects so as to decrease the

stress-concentration effect.

A surface-severe-plastic-deformation (S2PD) process is a recently-developed

process, which is based upon the shot-peening process but using balls with much

higher kinetic energy to bombard the sample surface. The most predominant advan-

tage of a S2PD process lies in the fact that it not only keeps the advantages of the

shot-peening process, but introduces a nano-structured near-surface layer at the same

time. Specifically, the S2PD process has been shown to be capable of creating simul-

taneously (a) a work-hardened surface layer, (b) a nanocrystalline (nc) surface layer,

(c) a surface region with compressive residual stresses, and (d) a grain-size gradient

with a nc surface and a coarse-grained interior. Engineering components possessing

these features are expected to have superior fatigue resistance because the nanograins
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at the surface will suppress the formation of fatigue cracks, and the coarse-grained

interior will retard the fatigue-crack growth.

The overall goal of this dissertation is to develop a fundamental understanding

of the microstructural evolution and the mechanisms controlling the fatigue behavior

of a Ni-based polycrystalline superalloy after a S2PD process, and apply the process

on a Zr-based bulk-metallic-glass component.

1.3 Surface Treatment on Bulk-Metallic Glass

Unlike conventional crystalline materials, metallic glasses have a disordered

atomic-scale structure and are usually produced directly from the liquid state during

cooling without crystal nucleations. In recently years, a number of alloys with critical

cooling rates low enough to allow the formation of amorphous structures in thick

layers (over 1 mm) had been produced, which are known as bulk-metallic glasses

(BMG). With no crystal defects, the BMG materials have some unique properties,

such as high strength (twice of that of stainless steels, but lighter), high hardness (for

surface coating), high toughness (more fracture resistant than ceramics), and great

elasticity [13].

Though the BMG materials have been shown to have good overall mechan-

ical properties, one of the greatest problems, which inhibit the wide applications

of BMGs, is their low ductility compared with the conventional metals. Since the

potential application of BMG is so closely dependent on their plasticity that exten-

sive research has been conducted to investigate their plastic-deformation performance

at room temperature. Some popular experimental setups, such as the indentation,

compression, bending, etc., are widely used to exert different loading modes on the

amorphous material to generate plastic deformation. According to the results of those

studies, it has been established that the inhomogeneous shear-band operation is the

characteristic of the deformation in the BMGs at room temperature [14, 15].

In order to improve the ductility of BMGs, both extrinsic and intrinsic meth-

ods have been proposed to suppress the propagation of shear bands in recent years.
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An example of the former method is to optimize the geometry of the sample so that

shear bands would not propagate to the free surface [15, 16], while that of the latter

is to introduce reinforcements into the material so as to retard the propagation of

the shear band [17, 18]. However, the continuous emergence of papers regarding the

plastic deformation of BMGs indicates that this issue is far from clear.

Partially due to the fact that BMGs are easy to fracture before enough plastic

deformation could be accumulated within the material, there are few studies on the

effects of the plastic deformation on the mechanical properties of BMGs. As seen

in the previous section of this chapter, it seems that shot peening is an effective

method to introduce plastic deformation into a crystalline specimen. It is of great

interest to study the effects of this surface-treatment process on the microstructures

and mechanical properties, such as the hardness, ductility, and fatigue strength, of

an amorphous material.

1.4 Summary

Improving the fatigue performance of an engineering component through a

shot-peening process has been widely used in industry. With the development of

nanotechnology, nano-structured materials have shown super global mechanical prop-

erties. In order to utilize the advanced properties of the nanomaterials to improve

the fatigue performance of a component, a modified shot-peening process, called a

surface-severe-plastic-deformation (S2PD) process, will be developed in this work.

Using the S2PD process, a nano-structured near-surface layer will be introduced into

the component, while in the interior of the component, the grain size remains coarse.

A component processed with the S2PD process is expected to have good fatigue re-

sistance.

The surface treatment on the BMG materials is a relative new field in the

BMG research. In this study, we are trying to introduce plastic deformation in the

surface of a Zr-based BMG by the S2PD process. After the treatment, both mi-

crostructures and the mechanical properties of the materials will be investigated. We
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are especially interested in the mechanism of the deformation-induced microstructure

changes, such as the crystallization. The fatigue behavior of the processed samples

will be studied as well.

9



CHAPTER 2

Literature Review

2.1 Shot Peening

2.1.1 Overview

Shot peening, originally called “shot blasting” by Zimmerli and later termed

as “shot peening” by Almen, is a process, which is used to introduce compressive

residual stresses in the near-surface layer of metal components [19]. It is used mainly

to increase the resistance of metal parts against fatigue, fretting fatigue, stress corro-

sion, and corrosion fatigue. It is also used to produce a desired surface topography,

to harden surfaces, to close pores, and to test bonds [19].

The application of the procedure of shot peening was first mentioned in 1924

[20]. In 1929, Röchling Stahlwerke received a patent on the procedure of shot peening.

However, at that time, it was already used at the automobile factories in the USA

[20]. Presently, a typical shot-peening process uses small spherical media called shots

(which could be cast-steel shots, cut-wire shots, glass, or ceramic beads) to create

small dents in the surface, which are very beneficial in preventing the formation of

fatigue cracks. The area below each dent called the plastic zone, typically only 0.5-

mm deep, is highly compressed, and this action tends to keep cracks from opening in

the surface.

Shot peening is now widely used in automotive and aerospace industries to im-

prove the fatigue strength or working life for many components, including but not lim-

ited to transmission gears, axles, turbine-engine disks, and springs, etc. While many

of the approaches have been highly empirical and dependent upon large databases,
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some optimization procedures based upon a scientific understanding of the process pa-

rameters have also been developed [7]. For example, Rodopoulos et al. [21] proposed

a fatigue optimisation methodology where the residual-stress profiles, work-hardening

profiles, and the surface roughness were treated as the major parameters, which con-

trol the final fatigue-life improvements. It is also pointed out that work hardening is

expected to increase the flow resistance of the material and, thus, reduce the crack-

tip plasticity, while the residual stresses can act as (a) mean-stress modulators −
in the case of the onset of crack propagation or (b) closure stresses in the case of

crack growth. However, the effect of the surface roughness on the fatigue properties

of a component varies with the mechanical properties and the microstructure of the

material [21, 22].

In this section, the main features, i.e., the residual-stress profile, work-hardening

profile, and the surface roughness induced by a shot-peening process will be reviewed,

and the effects of each feature on the fatigue properties will be demonstrated as well.

2.1.2 Residual stresses

Origin of residual stresses

Residual stresses are usually defined as stress fields that exist in the absence

of any external loads. Any mechanical processes, which can cause deformation, may

lead to residual stresses, and unbalanced thermal deformation may also cause residual

stresses. Therefore, the state of a residual stress depends on both the prior processes

it has undergone, and the material properties that relate the current mechanical

process/environment to deformation [23].

Residual stresses originate from misfits between different regions within a

component. In the shot-peening case, these misfits span large distances, and this

type of residual stresses is called macrostresses, or type I residual stresses. This is in

contrast to residual stresses that vary over the grain scale (type II or intergranular

stresses) or the atomic scale (type III). In these cases, the misfitting regions span
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Figure 2.1: Residual stresses arise from misfits between different regions during
a shot peening process [24].

microscopic or submicroscopic dimensions [24]. Because type II or type III stresses

almost alway exists in polycrystalline materials due to the different grain orientation,

in this dissertation, residual stresses always refer to macro-residual stresses except for

otherwise explanation.

The formation of compressive-residual stresses during a shot-peening process

can be illustrated as follows: Suppose that the peened sample is made up of many thin

plate layers, which are stacked together, and there are no friction between adjacent

layers. When the very first plate was bombarded by the shots, it will extend in the

planar direction but shrink in the thickness direction, since there are no constraints

from the adjacent layer. The second layer may extend and shrink the same way but

with less degree because the impact intensity is lower here than in the first layer. Now

if we do consider the constraints from the bottom layers, these top two layers actually

could not extend that much, and compressive-residual stresses, thus, can generate in

the surface.

Withers and Bhadeshia [24] use Fig. 2.1 to illustrate the formation of the

compressive-residual stress during a shot-peening process. It is easy to understand

that in the interior of the component, the residual stress becomes a tensile stress since

the overall force within the body needs to maintain an equilibrium. Residual stresses

generated by shot peening were investigated by many researchers [25–30]. Though the

amplitude and distribution of the residual stress are dependent on the shot-peening
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parameters and materials, there is a common accepted overall trend of the residual-

stress distribution beneath the shot-peened surface. That is, from the very peened

surface to unpeened interior, compressive-residual stresses first increase to a maximum

and, then, decrease to 0. As the depth continues to increase, they become tensile

stresses, as shown in the right plot of Fig. 2.1. Though there are arguments whether

the tensile residual stress is constant inside the component or not, the compressive-

residual-stress profiles were confirmed by many experiments. For example, Fuchs [25]

summarized 15 different residual-stress-distribution profiles, which were measured on

different materials with various shot-peening-process parameters, and it is found that

all profiles have similar trends in the near-surface layer.

Measurements of residual stress

Many different techniques, including the curvature measurement [31], hole

drilling [32], slitting method [23], X-ray diffraction [33], neutron diffraction [34, 35],

magnetic and electrical techniques, ultrasonics, thermoelastic methods, etc., could be

used to characterize the residual-stress distributions. Withers et al. [24] briefly sum-

marized those methods and their respective fundamental mechanisms. Among those

methods, diffraction, i.e., electron diffraction, conventional X-ray diffraction, hard

X-ray diffraction, and neutron diffraction, are the most commonly-used techniques.

As mentioned above, the type I residual stress comes from the misfit between

different regions, which means that the lattice is distorted if residual stresses are

introduced into the material. When an X-ray beam with a wavelength, λ, incidents

upon a crystalline material with a lattice spacing, d, a diffraction pattern with sharp

maxima is produced. The positions of the diffracted x-ray will be given by the Bragg’s

law [36]:

2d sin θ = nλ (2.1)

where 2θ is the diffraction angle, n = 1, 2, · · ·, is a integer representing different

diffraction levels.

13



For the specimen free of stresses, the lattice spacing is fixed, so as the diffrac-

tion angle. However, a small change in the lattice parameter, ∆d, will result in a

change of ∆θ in the Bragg angle so that the lattice elastic strain in the direction of

the scattering vector, Q, is given by [28]:

ε =
∆d

d
= −∆θ · cot θ (2.2)

Typically in order to obtain a resolution in a strain of 104 (corresponding to a stress

of about 20 MPa in most engineering materials), it is necessary to measure peak

shifts to an accuracy of 0.005◦. In general, to completely define the stress tensor

at a point, measurements of strains in six orientations are required. However, when

the principal directions are known, three orientations will suffice [28]. When these

orientations coincide with the coordinate directions x, y and z, the principal stresses

are given by

σx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + ν(εy + εz)] (2.3)

with corresponding expressions for σy and σz. In this equation, E is the elastic

modulus, and ν is the Poisson’s ratio, respectively. The values of those parameters

appropriate to the specific (hkl) crystallographic plane on which the strain is being

measured are used [37, 38].

The above-mentioned method is applied to materials with any crystallo-

graphic structures. In this thesis work, since the material used is a face-centered

cubic (fcc) superalloy, another method, which only applied to the fcc material and

has a high accuracy, is presented below.

It is well established that twins broaden the X-ray diffraction (XRD) peaks of

fcc materials asymmetrically [39, 40]. Thus, in principle, it is possible to calculate twin

probabilities (γ) from either the peak-broadening or asymmetry. However, the peak-

broadening approach has met with the limited popularity because, apart from twins,

the peak-broadening may also be induced by faults, grain-size refinement, dislocation

polygonization, crystal-lattice microstrains, and instrumental causes [41, 42]. This

phenomenon makes it very difficult to evaluate γ from the peak-broadening, especially
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for materials processed via shot peening. This problem becomes more tractable in the

peak-asymmetry approach, since the contribution from twins can be isolated more

easily. In this context, γ can be readily evaluated from the lower limit of the Fourier

sine coefficients (Bn with n being the ordinal of the Fourier coefficients) of the XRD

peaks after excluding the instrumental broadening, that is, through the following

relation [36]:

γ = Ct

√
3(Bn)n→0 (2.4)

where the constant, Ct, adopts the value 4/3,−1, 2, 0,−4/3, and 1 for the 111, 200,

220, 311, 222, and 400 peaks, respectively.

However, to avoid the calculation of Bn in practice, γ is simply estimated

directly from the residual asymmetry of the 200 peak through the following relation

[36]:

γ =

√
3π2θr(I2θl − I2θr)

2β

(

1 +

[

λ

4πDeff,200(sin θr − sin θB,200)

]2
)

(2.5)

where λ is the radiation wavelength, β and θB,200 are the integrated intensity, and the

Bragg angle of the 200 peak, respectively, Deff,200 is the effective crystallite size along

the 200 crystallographic direction, 2θr is any diffraction angle on the high-angle tail

of the 200 peak, I2θr is the intensity at 2θr, and I2θl is the intensity at the equidistant

position of 2θB,200 with respect to 2θr at the low-angle tail of the 200 peak.

It is well recognized that faults broaden and shift the XRD peaks of the fcc

materials [39, 40]. Thus, in principle, it is feasible to calculate fault probabilities (α)

from either the peak-broadening or shifting. Similar to the γ case, α is not easily

evaluated from the peak-broadening either, and is typically calculated from the peak

shifting. It has been demonstrated that faults shift the peaks from the theoretical

positions dictated by the unit-cell dimensions according to the following [36]:

∆f(2θ) = 2θ0 − 2θB =
90
√

3Cf tan θ0

π2
α (2.6)

where 2θB and 2θ0 are the peak positions in the absence and presence of faults,

respectively, and the constant, Cf , adopts the value of 1/4,−1/2, 1/4,−1/11,−1/8
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and 1/4 for the 111, 200, 220, 311, 222, and 400 peaks, respectively. Equation 2.6 can,

thus, be used to evaluate α directly if there are no other sources of peak shifting,

which seldom happens in practice. However, this obstacle can be circumvented by

examining the shiftings of the neighboring peak pairs with an opposite sign for the

constant, Cf . Hence, α can be calculated readily with the aid of the following relation

[36]:

α =
π2[∆f (2θ1 − 2θ2)]

90
√

3(Cf,1 tan θ1 − Cf,2 tan θ2)
(2.7)

where the subscripts 1 and 2 are used to distinguish between the two peaks forming

the pair.

It is a well-known phenomenon that the unit-cell dimensions dictate the Bragg

positions of the XRD peaks [43]. Thus, in the absence of the instrumental peak shift-

ing, the lattice parameter (a) of a fcc material is determined from the experimentally-

measured peak positions (2θ0) using the Bragg law coupled with the plane-spacing

equation for the cubic crystal system [43]:

a =
λ
√

h2 + k2 + l2

2 sin(θ0 − ∆f (2θ)

2
)

(2.8)

where h, k, and l are the Miller indices of the XRD peaks, and λ is the radiation

wavelength. The term, ∆f(2θ)/2, in Eq. 2.8 is included to correct the 2θ0 peak

positions for the possible fault-induced peak shifting, and is calculated from Eq. 2.6.

It has been demonstrated that the set of plane spacings of a distorted crystal

structure (d0), and, therefore, its corresponding set of peak positions in the XRD

pattern, change with respect to the distortion-free reference condition (dR
0 ) [41, 43, 44].

In this way, the peak positions also contain the information of the elastic strain of

crystallites, which can be calculated for each hkl lattice plane through the following

relation [43, 44]:

ε =
d0 − dR

0

dR
0

=
sin θR

0 − sin(θ0 − ∆f (2θ)/2)

sin(θ0 − ∆f (2θ)/2)
(2.9)

where 2θ0 and 2θR
0 are the peak positions with and without the elastic strain, respec-

tively, and ∆f (2θ)/2 has been defined before. If the cause for such elastic strains
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is the existence of macroscopic residual stresses acting on the crystallites, Hooke’s

law can be used to connect both magnitudes. For the rotationally-symmetric biaxial

state of stresses, typical of the surface region of the material subjected to shot-peening

processing, the stress perpendicular to the impacted surface is zero (σ33 = σ⊥ = 0),

whereas the stresses parallel to the impacted surface are both non-zero and equal

(σ11 = σ22 = σ‖ 6= 0). The following relation can be derived for such a scenario

[43, 44]:

σ‖ = − E

2ν
ε (2.10)

where E and ν are the Young’s modulus and Poisson’s ratio of the workpiece, respec-

tively, and ε can be found from Eq. 2.9.

Equations 2.4 to 2.10 provide another method to characterize the residual

stress in the fcc-structured material. It should be pointed out that the residual stress

measured according to the above-mentioned two methods is an average value if the

diffraction is conducted on the sample surface. However, in a shot-peened sample, it is

known that the residual stresses are not evenly distributed along the depth. Therefore,

to obtained a residual-stress profile along the depth, some other techniques will be

mentioned and used in the next chapter.

Effects of residual stresses

The data available on fatigue as influenced by shot peening provides a great

deal of evidence that the major reason for the increase in the fatigue strength lies in

the layer of compressive stresses at the surface of the part. In general, fatigue failures

are due to a repeated change of the stress in which the maximum stress is tension or

involves a tension component. Rarely, if ever, do fatigue failures occur as the result

of compressive stresses. This means that the compressive stress at the surface is all

to the good [45].

An intuitionistic explanation for the improvement of fatigue by compressive-

residual stresses is as follows: The induced compressive-residual stress reduces the
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Figure 2.2: Schematic illustration of the effects of compressive-residual stresses
on the actually stress amplitude in a bending test

applied stress field near the surface, which results in a reduced stress range, thereby,

extending the fatigue life [46]. It should be noted here that the improvement effect of

the residual stress is only pronounced when the applied stress amplitude is moderate.

When the external applied stress is high, the cyclic-plastic strains introduced may

be sufficient to cause the plastic deformation and stress redistribution at the crack

tip, which may eliminate the effects of the original compressive-residual-stress field.

Furthermore, it has been shown that the relaxation pattern of the residual stress is

faster and more severe at high stress levels than in low stress levels [21].

Figure 2.2 schematically shows the stress state of a shot-peened bar under a

bending load. This figure is modified based upon Grover’s paper [26] for a simpler

understanding. In this figure, the top surface was subjected to the shot-peening

process, and compressive-residual stresses were introduced. The stress state has been

simplified to a uniaxial-longitude stress. The load stress is the external stress applied

on the bar sample, and the resultant stress is the actual stress when the external

stress was partially counteracted by the residual stress. It is shown that under a

bending load (this is also the load mode under a bending-fatigue test), the near-surface

compressive-residual stress could effectively reduce the tensile-stress amplitude, thus,

inhibit or retard the crack initiation and propagation.
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Figure 2.3: Schematic illustration of the effects of mean and alternating stresses
on the fatigue limits represented by the Goodman’s relation [47].

It is well known that Goodman diagram represents an empirical equation,

which relates the mean stress (σm) and the alternating stress (σa) with the fatigue

limits. As shown in Fig. 2.3, any combination of mean and alternating stresses that

lie on or below the Goodman interaction line will have an infinite life. The Soderberg

interaction line and the Gerber interaction line have a similar trend as the Goodman

line. However, because they are based upon different assumptions, the line shapes

have some minor differences. For a modified Goodman equation, the line is supposed

to never exceed the yield line. That is, the Goodman line located outside the yield

line should be replaced by the yield stress line [47].

For the specimen with compressive residual stresses, as shown in Fig. 2.2,

it is noted that at the near-surface layer, the amplitude of the applied stress was

reduced by whatever the compressive-residual-stress amplitude is, but the alternating

stress amplitude does not change. Suppose that the maximum and minimum applied

stresses are σmax and σmin, respectively, and the residual stress is σr. Then the actual
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alternating stress, σa,actual, and actual mean stress, σm,actual, should be represented as

σa,actual =
(σmax − σr) − (σmin − σr)

2
=

σmax − σmin

2
(2.11)

σm,actual =
(σmax − σr) + (σmin − σr)

2
=

σmax + σmin

2
− σr (2.12)

Surely, it can be concluded from the above equations that the alternating

stress amplitude does not change but the mean stress is reduce by σr when residual

stress is introduced into the specimen. According to Goodman’s relation shown in

Fig. 2.3, the effect of the compressive residual stress is moving a point horizontally

to the left. Since inside the Goodman’s line is “fatigue-free” zone, introduction of

compressive residual stress will increase the fatigue strength (or fatigue limit) of the

specimen. Actually, residual stresses are dealt with in the same way as mean stresses

when its effects on the fatigue is considered [48].

Many theoretical models [21, 22, 46, 49–51] have been developed to predict

the fatigue life of the specimen with residual stresses. Newman et al. [50] reviewed

the capabilities of a plasticity-induced crack-closure model, life-prediction code, FAS-

TRAN, to correlate and to predict small- and large-crack growth rate behavior in

several aluminum and titanium alloys under various load histories. A constraint

factor, which accounts for three-dimensional state-of-stress effects, was used in deter-

mining the effective stress intensity factor range against rate relations. It is found

that the predicted results were well within a factor of two of the test data.

Moshier et al. [46] use a probabilistic approach to predict the distribution of

fatigue lives of the sing-edge notch tension specimen with compressive residual stress.

The fatigue lives were predicted by a modified version of FASTRAN II and conditional

probability. It is concluded that compressive residual stresses act as an external

closing mechanism, taken into account by breaking the closure mechanism into two

part, and the closure mechanism was modelled as the total of a reduced opening

stress and the compressive residual stress. The modification to the deterministic life
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prediction model to account for the presence of compressive residual stresses were

found effective in predicting the variability in the experimental fatigue lives.

Kumar [51] attempted to detect crack initiation and measure crack growth

in the heavily deformed surface layers of several aluminum alloys subjected to the

shot-peening process using several measurement techniques. Using the closure model

and some microstructural features, such as inclusion-particle sizes and cladding-layer

thickness, a total fatigue-life prediction method was demonstrated. The results in-

dicate that the effects of peening did not sufficiently retard crack growth for the

specimen geometry chosen.

A typical crack-growth rate, da/dN , vs. the stress-intensity-factor range, ∆K,

curve is shown in Fig. 2.4 [28]. In the figure, regions A and C are very sensitive to the

mean stress, i.e., the fatigue-growth rate is easily affected by the mean stress. Region

B is a steady region, where the mean stress shows little influence on the crack-growth

rate. It is pointed out that an increase in the load ratio, R(= Kmin/Kmax) has the

effect of moving regions A and C to lower ∆K values. The presence of residual stress

can alter both R and ∆K over which the crack remains open. i.e.,

Reff =
Kmin + Kres

Kmax + Kres
(2.13)

where Kres is the stress-intensity factor due to the residual-stress distribution alone

[28]. In a compressive-residual stress case, because Reff is smaller than R, ∆K will

be moved to the left accordingly, thus the crack-growth rate will be reduced.

In summary, the effect of compressive residual stresses on the fatigue strength

of a shot-peened sample can be illustrated by Fig. 2.5. As the compressive-residual

stress in the near-surface layer increases, the fatigue strength of the sample decreases

accordingly.
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Figure 2.4: Representative fatigue-rack-growth curve [28].

Figure 2.5: Improvement in fatigue strength due to near-surface compression in-
duced by shot peening [28].
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Figure 2.6: Hardness profile of the AISI 1045 and 316L steels subjected to shot
peening. Note that the different process parameters are used for these
two samples [52].

2.1.3 Work hardening

Work hardening is defined as when a material deforms beyond its yield point,

an increasing stress is required to produce additional plastic deformation, and the

metal apparently becomes stronger and more difficult to deform. During a shot peen-

ing process, due to the high-intensity bombardment of the shots, plastic deformation

usually occurs within the surface layer of the component, and, thus, work hardening

was introduced in some work-hardenable materials.

Work hardening caused by the shot-peening process was found in many in-

dustrial materials, such as medium carbon steels, AISI 1045 and 316L [52], aluminium

2024-T351 alloy [22], cast iron [12], SAE 3415 ductile steel [53], and so on. Though

the hardness distribution of a shot-peened component is highly affected by the ma-

terial and peening parameters, such as pressure, shot size, nozzle distance, etc. [52],

the hardness profiles on the side surface have similar trends, as shown in Fig. 2.6.

e.g., from the surface to the interior, the hardness decreases gradually until reaching

the unaffected hardness value.
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Similar to residual stresses, work hardening also plays an important role in

affecting the fatigue behavior of a shot-peened specimen. It is believed that work

hardening of the peened layer affects the spread of plasticity at the crack tip (a

barrier strength) [22, 53], i.e., the plastically-deformed region around the crack tip

becomes stronger and its resistance to further plastic deformation was improved by

the work-hardening effects.

Actually, in Pariente et al.’s work [54], it is even proposed that work hardening

plays a more important role than compressive-residual stresses do in affecting the

fatigue resistance. It is found that the fatigue-strength improvement induced by shot

peening is mainly related to the hardening of the surface layer of a material and not

to the residual-stress field induced, and compared with the residual stresses, work

hardening is more stable during the fatigue test. In Rios et al.’s another paper [55], it

is also stated that a short crack is not able to produce closure, and the improvement

in the crack-growth resistance is assumed due to the distortion and work hardening

of the peened layer.

Theoretically, Pariente et al. [54] proposed a model, which combines the

work hardening and residual stress, to predict the fatigue stress-intensity-factor-range

threshold, ∆Kth, as follows:

∆Kth = 3.3 × 10−3(HV + 120)(
√

area)1/3

(

1 − R∆K

2

)(

FWHMNSP

FWHMN

)

(2.14)

where HV is the Vicker’s hardness value,
√

area is the projected shape of the initial

defect, R∆K is the load ratio, which corresponds to the ratio of the minimum load to

the maximum load, with the residual stresses taken into account. FWHM is the full

width at half maximum of the diffraction peak, and its subscripts corresponding to

materials treated with series of nitrided and shot peening (NSP) and series of nitrided

specimens. The last term is included for the purpose of considering the distortion

caused by the shot-peening process.

Equation 2.14 clearly shows that as the increase of hardness, ∆Kth increases

accordingly. Since a crack usually initiates from the sample surface during fatigue,
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the work-hardened surface layer can obviously increase the fatigue strength based on

this equation. Actually, it is shown that it works pretty well in their experiment [54].

Therefore, it can be concluded that when work hardening occurs during a

shot-peening process, as the surface hardness increases, the threshold of the stress-

intensity-factor range needed for crack growth increases accordingly, and the fatigue

strength is, thus, improved.

2.1.4 Surface roughness

One of the interesting features of the shot-peening process is that the fatigue

improvement is more pronounced for a component with a rough surface than for one

with a smooth surface. In other words, it is more likely to see an improvement in the

fatigue strength in a component with a great amount of surface defects, but it may

not so obvious in a sample with a well-polished surface. To explain this phenomenon,

the effects of shot peening on the sample-surface quality must first be clarified.

Since the shot-peening process is conducted through the repeated bombard-

ment of small shots on the sample surface, the impact may cause plastic deformation

when the impact energy is high enough (which is true in most cases). Therefore, a

small indent might be left on the sample surface when the shot bounces back. After

numerous bombardments, a uniform but not smooth surface might be formed, and

this is usually referred as the surface roughening effects of a shot-peening process

[52, 56].

The above mentioned phenomenon is true when the original sample surface

is smooth. However, for a sample with a rough original surface , the situation is

different. During a peening process, the impact not only has the effect of introducing

small indents (thus roughening the surface), but also has the capability to remove

high surface peaks through deformation-caused materials flows. From this point of

view, it could actually “smoothen” the surface.
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Figure 2.7: Surface roughness could increase or decrease depending on the original
surface quality

The above-mentioned statements could be illustrated through Fig. 2.7. As-

suming that after the shot-peening process, the surface roughness can always reach a

saturation point, i.e., a stable peak-valley distance value can be obtained. Then for

an original smooth surface, roughness goes up; while for an original rough surface,

surface roughness goes down after the shot-peening process.

It can be concluded from the above illustration that whether the surface

becomes more rough or more smooth after the shot-peening process depends on the

original surface quality. In terms of fatigue damage, surface roughening will accelerate

the nucleation and early propagation of cracks [53, 57]. This is usually because that

the uneven surface provides many potential crack-initiation sites due to the stress-

concentration effect. In this case, effects of surface roughness can be considered as

effects of surface notches, which have been extensively explored in many textbooks

[7, 47].
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Figure 2.8: Yield-strength changes with grain sizes of pure copper with different
synthesis methods. It is shown that the Hall-Petch relation does not
hold when the grain size smaller than about 25 nm [8].

2.2 Mechanical Properties of Nanocrystalline Ma-

terials

2.2.1 Overview

As is known that a fine-grained material usually has better mechanical prop-

erties, which have been widely investigated especially on the constitutive response

and the fundamental physical mechanism in the past twenty years [58–66]. The Hall-

Petch relation indicates that the yield strength could be improved by decreasing the

grain size, which is confirmed in most of the polycrystalline materials and in a wide

range of grain sizes. When the grain size decreases to about 25 nm, the yield strength

of the material was found to decrease as the grain size decreases. However, reducing

the grain size to 250 − 1, 000 nm (an ultra-fine grain size) or 1 − 250 nm (a nano

grain size) through a grain-refinement process is still an effective method to improve

the overall properties of the materials [8]. Figure 2.8 shows the relationship between

the yield strength and grain size of pure copper from different resources. It is shown

that the simple linear relation (determined by the Hall-Petch equation) does not hold

when d−1/2 decrease to 0.2 − 0.3 nm−1/2, i.e., d ≈ 25 − 10 nm.
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Meyers et al. [8] reviewed the main synthesis methods and the mechanical

properties of fine-grained or nanocrystalline materials. The basic idea behind the

synthesis methodology is breaking the large grain size down (a top-down method) or

consolidating small clusters up (a bottom-up method). One typical example of the

former method is the severe-plastic deformation process, such as the equal-channel-

angular pressing (ECAP) [67, 68] and high-pressure torsion (HPT) [8, 69], while many

other methods, such as the gas condensation, mechanical alloying, chemical/physical

vapor deposition, etc., belong to the latter category. It is also pointed out that

one shortcoming of the bottom-up strategy is the possibility of the porosity and

incomplete bonding among the grains [8].

2.2.2 Mechanical properties

Mechanical properties, in particular, the yield strength, of conventional poly-

crystalline materials, are pronouncedly affected by the grain size no matter which

synthesis strategy is used. Weertman et al. [70] found that in the nanocrystalline

Cu and Pd samples synthesized by the inert gas condensation, a great enhancement

was observed in their yield strength and hardness. Valiev [61, 71] also reported a

high yield strength in the ultrafine-grained Cu sample prepared by the severe-plastic

deformation.

Besides the high yield strength, nanocrystalline materials exhibit many other

good mechanical properties, such as the good ductility, good corrosion resistance,

improved toughness and wear resistance, and enhanced diffusivity [8]. Kumar et

al. [62] summarized the mechanical behavior of nanocrystalline alloys and metals, and

pointed out that the dislocation motion, void formation/growth at grain boundaries

and triple junctions, and the interaction of these features are the main reasons for the

improvements. The improved mechanical properties of the nanocrystalline materials

are usually attributed to the large volume fraction of grain boundaries and/or twin

boundaries, which act as barriers so as to restrict the motions of dislocations. A

simple estimation shows that the volume fraction of the interface can reach as high
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as 50% for 5-nm grains, and decreases to 30% for 10-nm grains, and about 3% for

100-nm grains [72].

However, as one of the most important mechanical properties of the engi-

neering components, fatigue strength does not obviously benefit as much from the

nanocrystallization process as other properties, such as the yield strength does [73].

Actually, it is found that bulk nanocrystallization is not an effective, or at least not

an economic process to improve the fatigue property of a component. The reason is

that the fatigue strength is not a monotonic function of the grain size. It is known

that small grains could effectively increase the yield strength so as to enhance the

fatigue crack-initiation threshold [8, 74–76]. Meanwhile, a small grain size also has

an adverse effect on the resistance to the fatigue-crack growth, since cracks can easily

propagate along grain boundaries.

A comparison plot of the crack-growth rate among components with different

grain sizes is shown in Fig. 2.9. It can be seen that when the stress-intensity-factor

range, ∆K, is relatively small, the crack-growth rate of a component with 30-nm

grains can be 10 times faster than that with 300-nm grains. On the contrary, coarse

grains may deflect the propagation paths of fatigue cracks by grain boundaries, thus

introducing crack closure and decreasing the rate of crack growth. However, coarse

grains are not effective in preventing the initiation of the fatigue crack [8]. As shown in

Fig. 1.1 in Chapter 1, crack propagation can be effectively deflected by large grains but

not by small ones. Because of the co-existed competitive effects, it is not surprising

to found in the literature reports that there are no good agreements among different

sources.

For example, in Vinogradov’s [9] investigation of an ultra-fine grained tita-

nium obtained by the severe-plastic deformation through equal-channel-angular press-

ing (ECAP), it was shown that when the grain size changed from 100, 32, to 9 µm,

the fatigue strength pronouncedly increased. In the ultra-fine crystalline 6061 Al al-

loys subjected to the equal-channel-angular pressing, significant improvement in the

fatigue strength was found after one ECAP pass while no improvement was observed
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Figure 2.9: Crack-propagation rate, da/dN, changes with the stress-intensity-
factor range, ∆K. It is shown that a small-grain sample has a much
faster crack-propagation rate than a coarse-grain one especially when
∆K is low [77].

at all after further deformation, though from the point of view of the grain size, in

the latter case the grain size is much smaller than the former [10].

Therefore, it is believed that a component with a nano-grained surface and

a coarse-grained interior should have a good fatigue resistance, because (1) on the

surface, the small grains can effectively resist the fatigue-crack initiation, and (2)

in the interior, the large grains can deflect the fatigue-crack propagation and, thus,

increase the fatigue life.

2.3 Surface-Severe-Plastic-Deformation Process

2.3.1 Overview

To obtained a component with a nano-grained surface and a coarse-grained

interior as stated in the previous section, a modified shot-peening process, which

uses a higher bombardment energy than that in a conventional shot peening during

the process, was developed recently. The modified shot-peening process could be

referred as the surface-severe-plastic-deformation (S2PD) process. Variants of the
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S2PD process include the surface-mechanical-attrition treatment (SMAT) [78–81],

ultrasonic shot peening (USSP) [82–84], high-energy shot peening (HESP) [85], air

blast shot peening [86], and surface nanocrystallization and hardening (SNH) [87–89],

etc.

The basic ideas behind those different processes are the same: using high-

energy balls to impact the sample surface so as to introduce compressive-residual

stresses as well as modify the near-surface microstructures. These S2PD-based tech-

niques have been shown to improve tensile strengths [85], microhardness [87], and wear

resistances [84, 90] of the materials. Clearly, these results demonstrate that surface

S2PD-based techniques are alternative approaches to enhance the surface properties

and upgrade the global properties of engineering materials without the change of

chemical composition, as the physical-vapor-deposition (PVD) and chemical-vapor-

deposition (CVD) processes have.

The S2PD process has been successfully applied on many materials, includ-

ing metals, steels, and alloys [78, 79, 82, 83, 85]. In those materials, near-surface

nanocrystalline layers were observed after the process, and the grain-refinement mech-

anism has been extensively discussed. However, compared with the grain refinement,

or nanocrystallization, mechanism, only a few studies have focused on the effects of

the near-surface nanocrystalline layer on the mechanical properties of the component

[85, 87, 90].

2.3.2 Comparison with shot peening

It is clear that the S2PD process is based upon the traditional shot peening

process, and both of them can alter the residual stress, work hardening, and surface

roughness of the near-surface region of a component. However, the significant differ-

ence is the near-surface nanocrystalline formed during a S2PD process, which may

pronouncedly affect the mechanical properties of the material. A detailed comparison

in terms of the impact energy simulated by finite-element modeling between the two
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processes can be found in the literature [89]. It is shown that a higher impacting

energy is more effective in introducing nanocrystlline, and if the impacting energies

are the same, small size balls are more favorable for the formation of nanocrystalline

layers.

Basically, the main feature for an S2PD process is the high-energy impact of

the work-piece surface by high-velocity balls. The high velocity of balls is typically

generated through collision between balls and a vibrating chamber driven by an ultra-

sonic generator or mechanical vibration, as illustrated in the SMAT, USSP, or SNH

process, etc. In some other cases, the velocity of balls can also be generated through

a high pressure light-gas gun, which accelerates particles to a desired impact velocity,

named as the particle impact processing (PIP) [91]. These S2PD-based processes

can result in a nanocrystalline surface layer up to about 50-µm thick, and have been

shown to improve the tensile strength, microhardness, wear resistance, and fatigue

strength of materials [89].

Kinetic energies, Ek, of the impacting balls and shots can be estimated

through the equation, Ek = mv2/2, where m is the mass of the ball or shot, v is

the velocity. Assuming that WC/Co balls are used in the all the process, according

to the estimated impacting velocity, the typical kinetic energies of different variants

of S2PD processes and the SP process are summarized in Table 2.1. It can be seen

that PIP has the highest kinetic energy, followed by SNH and SMAT, and then HESP.

Though there are some differences among different S2PD processes, the overall kinetic

energies of those S2PD process are obviously higher than that of the SP process. i.e.,

SP has the lowest kinetic energy which may overlap with the kinetic energy of USSP,

depending on the diameter and velocity of balls and shots used. The simulation

results also indicate that the SNH process has a higher kinetic energy, produces a

thicker work-hardened layer and a thicker surface region with larger residual com-

pressive stresses, and generates higher effective plastic strains than the SP process

[89].
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Table 2.1: Typical parameters of balls and shots used in SP and various S2PD
processes

Process Ball Diameter (mm) Velocity (m/s) Kinetic Energy (J) ∗

SP 0.25 − 1.0 20 − 150 9.2 × 10−6 − 0.01

USSP 0.4 − 3.0 < 20 0.0001 − 0.02

SMAT 2.0 − 10 2 − 5 < 0.2

HESP 4.0 − 8.0 2 − 3 < 0.018

SNH 4.0 − 8.0 5 − 15 0.0063 − 0.43

PIP 4.0 120 1.88

*Kinetic energy is also dependent of the density of the ball and shot used. It is
assumed that WC balls and shots are used in all of these processes.

It is shown that compared to a typical SP process, the S2PD process has a

much higher kinetic energy. Thus, it may produce a thicker work-hardened layer and

a thicker surface region with larger residual compressive stresses, and generate higher

effective plastic strains. Consequently, the thickness of the nanocrystalline surface

layer formed during the process should also be much thicker in the S2PD process than

in the SP process. Therefore, the formation of the near-surface nanocrystalline layer

is deduced to be positively related to the high impact energy, and the factors, which

relate to the impact energy and formation of nanocrystallites, should be essential to

the process.

2.3.3 Grain refinement

Grain-size measurement

To investigate the plastic-deformation-induced grain-refinement mechanism,

it is necessary first to review the grain-size-measurement methods. Though the high-

resolution transmission-electron microscopy (HRTEM) is probably one of the most

accurate technique in characterizing the grain size of single nanocrystallite, it is surely

not the most convenient way in estimating the overall grain size in a component
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due to the expensive equipment and the complex sample preparation. In macro-

grain-size range, an automatic image-analysis methodology has been applied in many

commercial instruments. However, when the grain size goes down to nanometer scale,

X-ray diffraction (XRD), on the other hand, is a more simple and common method,

which can be used to achieve the goal.

It is a well-known fact that the crystallite smallness and/or the crystal lattice

microstrain cause peak-broadening [41, 42, 92, 93]. Thus, the width, integral breadth,

variance, and in general any other shape parameters of the peaks carry the direct

information of the crystallite dimensions and the abundance of lattice defects. The

method of estimating the grain size by XRD through the full width at half maximum

(FWHM) is presented below.

When the XRD test is conducted on the deformed sample surface, based on

the absorption coefficient of Ni [43], it is estimated that 90% of the XRD signals are

from the top 100-m surface layer, which varies slightly with the reflection angle. For

a plastically-deformed sample, peak broadening will occur in all the diffraction angel

range. It is well known that the peak broadening can be induced by nano-grains,

internal strains, and instrumental broadening [36]. The FWHM of the sample peak,

βg(2θ), which excludes instrumental broadening, can be calculated with the following

equation [36]

β2
g (2θ) = β2

h(2θ) − β2
f(2θ) (2.15)

if it is assumed that the instrumental and the sample peak functions are both Gaussian

in nature. The βh(2θ) in Eq. 2.15 is the FWHM measured from the sample with the

SNH treatment, βh(2θ) is the one from the standard, and θ is the Bragg angle. The

FWHM of the untreated sample can be used as the standard in this method. Once

βg(2θ) of the low-angle reflections is found from Eq. 2.15, it can be employed to

estimate the average grain size, D, of the Ni surface with the aid of the Scherrer

formula [94]

βg(2θ) =
0.9λ

D cos(θ)
(2.16)

where λ is the wave length of the X-ray radiation.
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The FWHM of high-angle reflections computed from Eq. 2.15 can even be

utilized to estimate the effective internal strain, 2ξ, within the face-centered cubic Ni

crystal, using the Stokes and Wilson formula [36]

βg(2θ) = 2ξ tan θ (2.17)

The estimation of grain sizes and effective internal strains of severely-plastically

deformed samples using Eqs. 2.16 and 2.17 can give fairly good approximations, be-

cause the broadening at low-angle reflections mainly relates to the grain size, and

the broadening at high-angle reflections is predominately determined by the internal

strain [95, 96]. Recently, a detailed XRD analysis [97], using the Rietveld method in

conjunction with the Levenberg-Marguardt non-linear least-square fit (LM-fit) and

line-broadening analysis, demonstrates that this is indeed the case for nanocrystalline

Al alloys that have been subjected to severe plastic deformation.

A second method to estimate the grain size is based upon the equations shown

in Section 2.1.1, where XRD is used to characterize the residual stress. Actually, it

has been theoretically demonstrated that the average values of the surface-weighted

effective crystallite size (Deff) and root-mean-square lattice microstrain (eRMS) along

each crystallographic direction can be calculated in the framework of the variance

method with the aid of the following relations [98]:

Deff =
90KKλ

π(βL − βR
L ) cos θ0

(2.18)

eRMS =
π

360
√

2 tan θ0

(

β2
G − (βR

G)2 − 2(βL − βR
L )2

π

(

1 − K2
T

K2
K

))1/2

(2.19)

where KK and KT are the variance-slope and variance-intercept Scherrer constants

[99], respectively, βL and βG are the integral breadths of the Lorentz and Gauss

components of the peaks, respectively, and the rest of parameters have been defined

above. The superscript, R, refers to the reference material with only instrumental

broadening.
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It is well recognized that the effective crystallite size reflects the nano-grain

size if the grains are single crystals separated by large-angle boundaries, and the sub-

grain structure if the grains are polycrystals with cell blocks in their interior separated

by small-angle boundaries [100]. In the case that the cell blocks are mainly fault or

twin grids originated from fault-fault or twin-twin intersections, respectively, then the

true nano-grain size (D) is given by the following relation [36]:

D =
KKDeffa

KKa − (1.5α + γ)CDDeff
(2.20)

where the constant, CD, adopts the values of
√

3/4, 1, 1/
√

2, 3
√

11/2,
√

3/4, and 1

for the 111, 200, 220, 311, 222, and 400 peaks, respectively, and the rest of parameters

have the same meaning as defined before.

Mechanism

Similar to the bulk severe-plastic-deformation processes, such as ECAP [67]

and high pressure torsion (HPT) [69], the S2PD process may also refine the grains in

the near-surface layer due to the plastic deformation. Furthermore, since from the

surface to the interior, the degree of plastic deformation decreases gradually, a grain-

size gradient from a nano-scale to normal coarse-scale is expected. As pointed out

in Chapter 1, a component with a nano-grained surface and a coarse-grained interior

should have a good fatigue resistance, because (1) on the surface, the small grains can

effectively resist the fatigue-crack initiation, and (2) in the interior, the large grains

can deflect the fatigue-crack propagation and, thus, increase the fatigue life.

During a S2PD process, regardless of the difference in materials or the detailed

experimental setups, the formation of nanocrystalites is a process where coarse grains

were broken down to small ones through the severe plastic deformation. This is the

so-called “top-down” method, and ECAP, HPT and S2PD processes are the typical

examples of this method.
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However, compared with the ECAP and HPT processes, S2PD has its ad-

vantages. Firstly, because only the sample surface is subjected to the deformation,

the energy needed to conduct the experiment is much less in the S2PD process; Sec-

ondly, the experimental equipment is much simpler for a S2PD process; and thirdly,

in terms of improving the fatigue behavior of the component, the S2PD process is

more effective than the other two at least in theory.

Lu et al. [59, 78–80, 101] did a large amount of work regarding the naoncrys-

tallization mechanism of a modified shot-peening process, which were given different

names, such as SMAT [78, 79], USSP [82, 83], HESP [85], etc. according to the pro-

cess characteristics. However, as mentioned above, the grain-refinement mechanism

by those processes are very similar.

Tao et al. [82] observed the formation of nanocrystallites in a pure Fe sample

processed by the USSP process, and the refine mechanism of the nanocrystals was

analogous to the mechanism proposed in the ball-milling process. i.e., the surface

treatment provides repeated multi-dimensional mechanical loads at high speeds onto

the material surface and generate dislocations and/or shear bands. The shear bands

were shown to consist of high-density dislocation arrays. Repeated shot peening

creates more dislocations which will be annihilated or recombined (rearranged) to

form small-angle grain boundaries separating individual grains. Further treatments

may induce changes in the orientation of the grains with respect to their neighboring

grains, forming crystallites with a completely random orientation.

Wu et al. [83] have successfully introduced a 62-m thick ultrafine near-surface

layer in a Al-alloy through the USSP process. It is shown that with increasing strains,

the various microstructural features, e.g., the dislocation emission source, elongated

microbands, dislocation cells, dislocation-cell blocks, equiaxed submicro-, and nano-

crystal grains etc., were successively produced. It is concluded that during plastic

straining, the formation of subgrains through grain subdivision occurs in order to

accommodate the strain. The highly-misoriented boundaries are generated by the

subgrain rotation for accommodating further deformation.
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Figure 2.10: Schematic illustration of the main steps of the grain refinement in
the S2PD process. Dislocation tangles (DTs) or dense dislocation
walls (DDWs) were first generated by the surface treatment, and
then gradually evolves to sub-grain boundaries and grain bound-
aries. (letter-indicated process B1 to BB4 is corresponding to evo-
lution process of DTs, A1 to AA4 is corresponding to evolution
process of DDWs). In the refined grains, this process continues and
the grain size then becomes smaller and smaller. As the increase in
the processing time and accumulation in the strain, this evolution
process also advances from the surface to the interior, and finally a
near-surface nanocrystalline layer was formed [80].

In short, it is believed that in the pure Fe and Al-alloy samples, the mechanism

of the formation of nanocrystallites has three main steps: (1) the formation of planar

dislocation arrays and twins; (2) the grain subdivision and martensite transformation

(if any), and (3) the formation of nanocrystallites [78, 79]. Figure 2.10 schematically

shows the mains steps of the grain-refinement mechanism. In the figure, due to

the different stacking-fault energy, dislocations generated by the impact may form

dislocation tangles (DT) or dense dislocation walls (DDT). As the further deformation

goes on, the DTs or DDWs can evolve to sub-grain boundaries and grain boundaries

gradually, and finally form the nanograins [80].

The stacking-fault energy is one of the most extensively-discussed factors,

which affect the grain-refinement mechanism during an S2PD process. Balogh et

al. [102] compared the microstructures of three metal/alloys with different stacking-

fault energy subjected to a HPT process. It is shown that negligible twinning in
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pure Cu was identitied but the densities of dislocations and twins increased with

increasing Zn content. Since the addition of Zn can decrease the stackin-fault energy

of the material, it is concluded that for a material with lower stacking-fault energy,

twinning or dislocations are easier to be generated in a plastic-deformation process.

Actually, based upon different stacking-fault energies, Lu et al. proposed dif-

ferent nanocrystallization mechanisms for the S2PD process [80]. The main difference

is that the formation mechanism of the grain boundaries. For the high stacking-fault

energy Fe, subboundaries were evolved from dense dislocation walls or dislocation tan-

gles, while for the low stacking-fault energy AISI 304 stainless steel, the subboundaries

were mainly evolved from planar dislocation arrays and twins. Compareing Balogh’s

with Lu’s conclusions, it seems that there is some discrepancy, though for the latter,

the stacking-fault energy spreads in a much wider range than the former.

2.4 Bulk-Metallic Glass

2.4.1 Overview

Metallic glasses usually refer to the specific kind of material, which lacks long-

range-order structures on an atomic scale. The first metallic glass of Au75Si25 was

discovered in 1960 by Duwez at Caltech [103]. At that time, the melting mixture of

metal elements must be cooled extremely rapidly (on the order of one megakelvin per

second, 106 K/s) to avoid the crystallization. Therefore, the first stage of the research

on the bulk-metallic glass (BMG) mainly focused on developing new metallic-glass

materials with low critical cooling rates and large critical sizes (i.e., good glass-forming

ability). When arbitrarily defining the millimeter scale as “bulk”, the metallic glass

has a millimeter scale in size is often called BMG [104]. Ever since the first bulk

PdCuSi-metallic system was prepared by Chen in 1974 [105], BMGs have attracted

extensive interests in recent years due to their unique microstructures [106–108], and

outstanding mechanical properties, such as high strengths and toughness [14, 109],

super hardness [110], and good fatigue strengths [6, 111].
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Figure 2.11: Critical casting thickness for glass formation as a function of the
year the corresponding alloy has been discovered.

Löffler [112] reviewed the recent research progress on BMG compositions

and critical casting thicknesses, and the results were summarized in a plot, which

is reprinted below as Fig. 2.11. It is pointed out that the critical-casting thickness

tends to increase by one order of magnitude approximately every 12 years. So far, the

metallic system, which has the highest glass-forming ability, is the PdCuNiP family.

A critical casting thickness of 72 mm was developed in Inoue group in 1997 [112, 113].

In recent years, a considerable amount of theoretical work has been conducted

on the microstructures and glass formability for BMG materials. Typical fields include

(1) atomistic theory of metallic glasses. e.g., using the atomic pair-density-correlation

function (PDF) or free-volume theory to describe the microstructure of the amorphous

glasses [111, 114]; (2) atomistic simulations of the microstructures [111, 115]. In con-

trast, numerous publications have focused on the mechanical properties of the BMGs.

Some interesting issues in this field include deformation/crystallization mechanisms,

ductility improvement, effects of the residual stresses, and work hardening/softening,

etc. Some of the main attractive features of the BMG materials are:
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� High strength : > 2000 MPa� High hardness: 600-1,300 DPH� High fracture toughness: > 70 MPa·m1/2� High elastic strain: ∼ 2% elastic strain� Good castability and formability: >1000% elongation� Superior aqueous corrosion resistance� Good wear resistance� Excellent soft magnetic properties: Fe-based BMGs� Other interesting optical and physical properties

In this study, ductility-improvement efforts will be made through the S2PD

process, and the microstructural changes induced by this process will also be inves-

tigated. Some important issues regarding the plastic deformation of BMGs will first

be reviewed in this section.

2.4.2 Plastic deformation and crystallization

Deformation mechanisms of the BMG materials are distinctly different from

that of the conventional crystal materials because of their unique “shapeless” struc-

ture. In BMGs, since there are no grain boundaries or dislocations, the traditional dis-

location theory cannot be used to explain their plastic-deformation behavior. Rather,

the deformation of BMGs at room temperature is through the formation of localized

shear bands, followed by the rapid propagation of these bands and sudden fracture

[111, 116]. After a large amount of work, the inhomogeneous shear-band operation

theory has been established and accepted by most researchers [14, 15, 116].

The formation of shear bands has been observed in many deformation pro-

cesses, such as bending [117], nanoindentation [118, 119], compression [15], and fatigue
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Figure 2.12: Plastic zone and shear-band pattern underneath a Vickers indenter
(load = 2000 g) [120]. Plot on the right-hand side is a schematic
illustration of the load-displacement curve of a BMG under different
load rates.

tests [6]. Figure 2.12 shows the typical shear-band patterns induced by an indenta-

tion. It is shown that the shear-band spacing is highly affected by the loading rate,

and shear bands are temporally intermittent at the lower strain rate and successive

at the higher strain rate. i.e., a low loading rate is corresponding to a smaller shear-

band spacing [120]. During the indentation testing, a rate-dependent serrated loading

curve is discovered by many researchers, which is also believed to be related to the

inhomogeneous shear-band operation [116, 121].

Jiang et al. [120] explained the rate-dependent shear-band behavior in their

work, i.e., at the lower strain rate, temporally intermittent shear-banding operations

produce a spatially discrete configuration of a few large shear bands, and each shear

band may correspond to simultaneous operations of many fine shear bands. However,

at the higher strain rate, temporally successive shear-banding operates in front of the

plastic zone. A spatially-dense distribution of many fine shear bands takes the place

of repeated operations of shear bands at the pre-existing position.
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The rate dependence suggests shear banding is a thermally-activated process.

Therefore, the formation of shear bands should consist of two consecutive steps: shear-

band nucleation and propagation. Schuh et al. [119] proposed that the formation of

the shear bands includes the following four steps: (1) activation of single shear-

transformation zone (STZ); (2) formation of STZ clusters; (3) shear-band nucleation

(nucleus formation); and (4) shear-band propagation.

Detailed TEM observations within the shear bands reveal that during the

plastic deformation, the atoms may rearrange themselves and form the ordered nanos-

tructures. For example, Chen et al. and Jiang et al. [122, 123] both observed the

crystallization a Al-Fe-Gd system after a bending test, Kim et al. [118] observed

nanocrystallites after a nanoindentation test in a Zr-Al-Ti-Cu-Ni system, Chen et

al. [124] also reported the crystallization in shear bands in a ZrCu system. It can,,

thus, be concluded that in BMGs, one of the consequences of the plastic deformation

is nanocrystallization, at least in the systems mentioned above.

However, the operations (including initiation and propagation) of shear bands

are usually accompanied by the rise of temperature, which may greatly affect and

contribute to the nanocrystallization process. Kim et al. [118] pointed out that very

high atomic mobility is required in order to generate nanocrystalines particles within

about 10 seconds of indentation. They proposed three possible mechanisms for this

transformation, i.e., 1) exchange of atomic positions within shear bands during the

large deformation; 2) large rise in the local temperature up to hundreds of degrees;

and 3) dynamic flow dilatation (free volumes) in the actively deforming bands atten-

dant dramatic enhancement in the atomic-diffusional mobility. Nevertheless, none of

these hypothesis have been confirmed so far, and whether the nanocrystallization is

mechanically or thermally induced is still of great interest.

Actually, even for the deformation-induced temperature rise itself (or the tem-

perature within the shear bands), some controversial results were reported. For ex-

ample, Kim et al. [118] estimated that the temperature is about 0.05 K. Lewandowski

et al. [125] believed that the temperature at the center of the shear band is between
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3,400 to 8,300 K if the shear band operations are perfectly adiabatic (which can never

be the case). Other studies [126–129] reveal that the temperature rise could be be-

tween 25 K to 3,175 K. Some authors even asserted that the crystallization process

may not be related to the temperature at all. The crystallization in a metallic glass

is attributed to the viscous flow rather than the local heating effect [130].

In summary, it seems that only the temperature rise is apparently not enough

to cause the nanocrystallization within a very short-time scale (< 0.02 s) determined

by a rapid stress drop in serrations. Other factors, such as high shear strains, ultra-

high shear strain rates, and excessive free volumes produced by deformation along the

shear bands, may also play important roles in the in-situ nanocrystallization [131].

Work hardening and work softening

For crystalline materials, work hardening (or strain hardening) is the strength-

ening mechanism of a material by plastic deformation, such as tension or cold rolling.

From the perspective of microstructures, the plastic deformation has the effect of

increasing the dislocation density. The interaction between a large amount of dislo-

cations may, thus, becomes the resistance to the initiation of new dislocations. This

resistance to the dislocation formation manifests itself as a resistance to further plas-

tic deformation. In terms of the strength, the materials become stronger after the

plastic deformation.

Work softening, on the other hand, occurs under some special conditions:

namely, when the plastic deformation in metals or alloys increases to some extent,

the strength of the materials no longer increases or even decreases. Since the 1970s,

investigations on the mechanisms of work softening of metals and alloys have been

reported, and it is believed that the work softening was mainly related to the poly-

gonization recovery at room temperature in a Al-based alloy [132].

For BMG materials, although there are no dislocations, it is interesting to find

that work hardening and work softening still exist, i.e., after the plastic deformation,
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such as the indentation or compression, it is found that the hardness of the BMG

component may increase or decrease. For example, Das et al. [110] developed a new

class of metallic glasses, which exhibits a high strength of up to 2,265 MPa together

with extensive work hardening and large ductility of 18%, and the work hardening

is attributed to the unique structure correlated with the atomic-scale inhomogeneity,

leading to an inherent capability of extensive shear-band formations, interactions,

and multiplications of shear bands.

Yang et al. [133] also observed the strain hardening and recovery phenomenon

in a Zr-Cu-Ni-Al-Ti glassy alloy using a controlled instrumented nanoindentation

technique. Within loading rates between 200 and 20,000 µN/s, this phenomenon

appears to be independent of the loading rate (or strain rate). Work hardening was

explained by the free-volume accumulation and annihilation in amorphous structures.

However, some researchers argued that work hardening of metallic glasses

should be interpreted with care, because they actually found that after the plastic de-

formation, the hardness of the BMG component decreases rather than increases [134].

In Zhang et al.’s [134] work, after a shot-peening process, the hardness along the cross

section near the processed surface was found to be decreased, which was attributed to

the residual stress. Bei et al. [16] measured the hardness on BMG specimens subjected

to different degrees of plastic deformation (in compression tests), it is noted that a

systematic strain-induced softening was observed, which contrasts sharply with the

hardening typically observed in crystalline metals. A function between the hardness

and shear-band spacing is established. Deformation-induced softening leads naturally

to the shear localization and brittle fracture.

Work softening was also attributed by some authors to the thermal softening

and free-volume-creation softening [135]. It is demonstrated that the free-volume

creation and thermal softening can jointly promote the formation of shear bands in

BMGs, and the observed post-mortem shear-band width looks more like that governed

by the free-volume creation. Figure 2.13 shows the examples of work hardening (left)

and work softening (right) in different BMGs from literature.
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Figure 2.13: Examples of work hardening (left) of Cu47.5Zr47.5Al5 BMG [110] and
strain softening (right) of Zr52.5Cu17.9Ni14.6Al10Ti5 BMG [16].

An interesting result is that both work hardening and work softening were

observed on the same material. Chen et al. [136] claimed that the nominal hardness

could decrease with the pre-existing tensile stress and increase with the pre-existing

compressive stress. In other words, the hardness is highly dependent on the status

of the residual stress. The finite-element analysis indicates that the strong hardness

dependence on the stress results from the large elastic limit of BMGs.

In summary, both work-hardening and work-softening phenomena were ob-

served in metallic-glass components, and preliminary theories have been developed

to explain them [136]. For work hardening, the deformation-induced nanocrystals

prevent the shear-softening, leading to the arrest of shear bands. To sustain a plastic-

deformation rate in a specimen during mechanical testing, new shear bands need to

be formed when an active shear band is blocked due to the in-situ nanocrystallization.

The nucleation of shear bands prefers to initiate at the weakest sites, such as cast-

ing defects (porosities and inclusions) and surface flaws, where highly-concentrated

stresses are easily generated. The critical stresses to drive the formation of new shear

bands will gradually increase from easy to difficult nucleation sites [131]. For work

softening, it is believed that the shear-induced local dilatation may be the source of

the observed deformation-induced softening. Due to the coalescence of the excessive

free volume, nano-voids may be formed and, in turn, lower the stress required for the
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plastic deformation through shear bands, which leads to the observation of reduced

hardness [137].

2.4.3 Surface-severe-plastic deformation

Unlike the metals, metallic glasses are usually very brittle, which means that

they are easy to fracture before enough plastic deformation could be accumulated.

Therefore, there are not many studies, which have focused on the effects of the plastic

deformation on the mechanical properties of BMGs. Before the problem can be solved,

plastic deformation must be introduced into the BMG component without a fracture

failure.

Surface-severe-plastic deformation, such as shot peening, provided an applied

way to tackle this problem. A recent work by Zhang et al. [134] showed that the shot-

peening process can be successfully applied on a brittle Zr-based BMG component.

This surface treatment has been shown to introduce a compressive residual stress into

the near-surface layer of the sample, and a decreased hardness on the cross section

perpendicular to the processed surface was observed. It is also shown that on the

cross section, the residual stress profile and the hardness profile are consistent with

each other very well, indicating that the change of hardness might be due to the

residual stress.

Raghavan et al. [138] investigated the fatigue behavior of a Zr-based BMG in

the as-cast and shot-peened conditions. It is shown that shot peening does not cause a

significant enhancement of the fatigue performance of the BMG. Cracks were observed

to nucleate in subsurface regions. This trend was attributed to the domination of the

compressive residual stress field on the surface over the deformation-induced plastic

flow softening that otherwise leads to the easy nucleation of shear bands, which act

like microcracks.

Yamamoto et al. [139] conducted the shot-peening treatment on the as-cast

Zr55Al10Ni5Cu30 metallic-glass plates for more than 600 s, but no structural evolutions
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were induced in the plates according to XRD and TEM experiments. However, a

recent work by Méar et al. [140] showed that the shot-peening process may partially

relax the structure of the glass, and the peening also increases the atomic mobility.

As a traditional surface-treatment process, shot peening has been developed

and applied in industry for over 50 years. However, not many reports have been found

regarding the application of this process on the metallic-glasses components. In this

thesis work, we are trying to systematically investigate the effects of the surface-

severe-plastic-deformation process on the microstructures, thermal properties, and

the mechanical properties of a Zr-based BMG component.
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CHAPTER 3

Experimental Techniques

3.1 Materials and Equipment

The material used in this work was a Ni-based HASTELLOYr C-2000r su-

peralloy, which was developed to optimize a material for broad applicability. It began

with the conceptual idea of adding copper to the well established nickel-chromium-

molybdenum (Ni-Cr-Mo) family of alloys. Since its introduction in late 1995, it has

gained, and continues to gain, dramatic market acceptance owing to its inherent

versatility.

This new material was designed to resist an extensive range of corrosive chem-

icals, including sulfuric, hydrochloric, and hydrofluoric acids. From an engineering

viewpoint, the C-2000 alloy offers significant potential toward the production im-

provement in plant operations. When used in place of the established Ni-Cr-Mo

alloys, the enhanced resistance to corrosion in certain media results in a longer equip-

ment life (for a given thickness of the material), while providing a greater degree of

safety during an upset condition.

The main characteristics of the alloy are: (1) tremendous potential indus-

trial applications in automotive, structural, aviation, and storage components; (2)

good tensile and fatigue properties compared to stainless steels; (3) a homogeneous

face-centered cubic structure with no phase transformation during deformation; (4)

outstanding corrosion resistance to many acids (sulfuric acid, hydrochloric acid, hy-

drofluoric acid, etc.); and (5) low stacking-fault energy, which also means less dislo-

cation mobility.

In this study, the C-2000 alloy was selected because it is expected that the

fatigue performance of the material can be improved through the S2PD process, thus
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Table 3.1: Nominal composition of the Hastelloy C-2000 alloy

Nominal chemistry Ni Cr Mo Cu C Si

Weight Percent (wt.%) balance 23 16 1.6 0.01 Max 0.08 Max

extending its application in a condition where both corrosion and fatigue strength

are required. For example, when working as a structure component in the ocean

platform, both high corrosion resistance and fatigue resistance of the component are

necessary. Another important reason is that this is an alloy with a single-phased

face-centered cubic (fcc) structure, and there are no phase transformations during

the plastic deformation. Therefore, not like in Lu et al. work [78–80], the effects

of new phases introduced by the process can be eliminated and the analysis can be

facilitated.

The nominal chemical composition of this alloy is shown in Table 3.1. With

the yield strength about 350 ∼ 400 MPa, elongation around 60 to 70%, and density

about 8.5 g/cm3, the material was supplied by the Haynes International Inc. in the

form of a 3.22-mm-thick sheet (an as-received sheet), which was cold-rolled to the

final thickness and followed by annealing at 1,120 ◦C for a complete recrystallization.

The equipment used to perform the S2PD process is a dual-clamp 8000D

Mixer/Mill, as shown in Fig. 3.1. Round disc samples were used as a cover of the

cylindrical container, which seals the WC/Co balls inside. The shaking action of a

SPEX SamplePrep Mixer/Mill is both complex and forceful. As the vial is swung

back and forth in a shallow arc, its ends are displaced laterally in a “figure-8”; this

arrangement distributes the ball impact over wide areas of the samples. Because the

SPEX SamplePrep Mixer/Mill clamp movement is extremely rapid, the balls develop

high G-forces, which, thus, cause high strains and high strain rates in a short time

on the near-surface layer of the sample.

The as-received plate was first cut as round discs with a diameter of 50

mm. Before the S2PD process, the discs were first cleaned with acetone and then

ethanol. After cleaning, the discs were treated with the S2PD process under an argon
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Figure 3.1: SPEX SamplePrep Mixer/Mill was is used to perform the S2PD pro-
cess, the right-hand side is the cylindrical container, where the round
sample is used as a cover to receive the bombardment of the balls.

atmosphere using a Spex 8000 mill. The disc was held in place via mechanical locking

at one end of the cylindrical steel container of the Spex mill and five WC/Co balls

(with a composition of 94 wt.% WC + 6 wt.% Co) either 4.9 mm or 7.9 mm in

diameter were used to provide the desired impact on the surface of the C-2000 plate.

The impact velocity of WC/Co balls induced by shaking the steel container of the

Spex mill was about 5 m/s. The processing parameters of the S2PD treatment are

summarized in Table 3.2. During the process, in order to limit the overall temperature

of the sample, the bombardment were intermitted every 15 minutes on purpose to

cool down the bombardment system.

The second part of this work is to apply the same process on a BMG mate-

rial. The material selected was a Zr-based Zr50Cu40Al10 (in atomic percent) BMG.

This is one of the earliest developed BMGs with mechanical and thermal properties

being almost thoroughly investigated. The basic properties are: a glass-transition

temperature of Tg = 706 K, crystallization temperature of Tx = 792 K, and liquidus

temperature of Tl = 1,092 K, yield strength of σy =1.86 GPa, Modulus of E = 88

GPa, and Elongation of e = 2.1%.
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As shown above, the BMG material has shown super mechanical properties,

such as high yield strength, high toughness, and high hardness. However, the ductility

of BMGs is not so good, compared to industrial specifications. In this experiment,

we are trying to introduce plastic deformation into this brittle material, and seek

the possibility of improving the ductility and fatigue behavior of the BMG. The

material used in this work is a Zr-based Zr50Cu40Al10 BMG, which was prepared by

arc-melting mixtures of pure Zr, Cu, and Al metals in an argon atmosphere. A low-

oxygen-concentration Zr (< 0.05 at.% oxygen) rod was used to minimize the oxygen

content in the alloy. A tilt-casting method was implemented to cast the alloy to its

final rod shape of 60 mm in length and 8 mm in diameter [141].

Although the process is the same for both the crystalline and the amorphous

specimens, there are some minor differences in details. Firstly, unlike crystalline

materials, the BMG sample has a size limit. For example, for the Zr50Cu40Al10

sample, the maximum diameter is around 14 mm. Therefore, it is impossible to

fabricate the sample disc with a diameter of 50 mm, as does for the C-2000 plate.

Secondly, the BMG is much more brittle than the C-2000 alloy, which means it is easy

to break the sample if the impact impulse is too high. Therefore, the processing energy

must be tuned carefully. Thirdly, since the structure of BMGs is very sensitive to

the temperature, controlling the temperature rise during the impact process is much

more important for BMG samples than for crystalline samples.

Due to the difficulties mentioned above, an alternative of the sample process

design was proposed and successfully applied on the BMG samples. The schematic

illustration of the sample fixture is shown in Fig. 3.2. On the original cover of the

container, a secondary cover with a rectangle dent is attached mechanically. Five

BMG bars, each with dimension of 3×3×25 mm3, were put inside the dent, and the

BMG bars are fixed by two fasten screws which could push the bars together. The

height of the bars is exactly the depth of the dent, and, therefore, the whole surface

is still flat.
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Table 3.2: Processing parameters for the S2PD process

Sample ID Ball Material Number Diameter (mm) Time (min)

L30 WC/Co 5 7.9 30

L60 WC/Co 5 7.9 60

L90 WC/Co 5 7.9 90

L120 WC/Co 5 7.9 120

L180 WC/Co 5 7.9 180

M30 WC/Co 5 4.9 30

M60 WC/Co 5 4.9 60

M90 WC/Co 5 4.9 90

M120 WC/Co 5 4.9 120

M180 WC/Co 5 4.9 180

S30 WC/Co 20 1.6 30

S60 WC/Co 20 1.6 60

S180 WC/Co 20 1.6 180

Figure 3.2: Experiment setups for the BMG samples. The BMG bars are fas-
tened together by the screws and the whole surface is flat, so that the
WC/Co balls could impact the surface evenly.
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3.2 Experimental Procedures

3.2.1 Microstructures and fractography

Grinding and polishing

Before the S2PD process, both the C-2000 (cut to round discs with a diameter

of 50 mm) and the Zr50Cu40Al10 BMG (cut to rectangular bars with a dimension of 3×
3×25 mm3) samples were subjected to the grinding and polishing process, which was

conducted on a Buehler Eomet Variable-Speed Grinder-Polisher. The samples were

first ground using 180, 240, 360, 400, 600, 1,200, and 2,400 grit papers in succession.

Between each step, the sample was rotated 90◦ to remove the previous scratches.

Polishing was performed in two consecutive steps, first using a 6-µm diamond paste

on a nylon cloth and, then, a 0.05-µm alumina paste on a micro-cloth.

OM, SEM and TEM

The microstructures of the as-treated surface and fatigue-fracture cross-section

were characterized by the optical microscopy (OM), scanning-electron microscopy

(SEM), X-ray diffraction (XRD), and transmission-electron microscopy (TEM). TEM

samples at certain depths away from the specimen surface were obtained by: (1) first

mechanically polishing on two sides until the sample reached a 20-µm thickness, and

(2) finally thinning by a two-side jet with a solution of the 5% perchloric acid and

95% ethanol (in vol.%, volume percent) at 10 ◦C. X-ray diffraction experiments were

implemented on a Philips X’pert Diffractometer and Cu Kα (λKα1
= 0.154056 nm

and λKα2
= 0.154439 nm) radiation was used. The as-treated samples were cut to a

20×20 mm2 square shape, and the surfaces were scanned with a continuous-scanning

mode at a rate of 1.5◦/min.

To measure the residual stress caused by the S2PD process in the C-2000

sample, a layer-by-layer electro-polishing process was used to remove the sample
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Figure 3.3: Illustration of the electro-polishing process.

surface layer by layer. A schematic illustration of the equipment used in this study

is shown in Fig. 3.3. The solution, which has a composition of 7.8% Perchloric Acid,

10% Butyl cellosolve, 73.0 % Ethanol, and 9.2% Distilled water, in volume percent,

is ejected out and contacts the sample surface by the rotation of the turbine inside

the container. Positive and negative electrodes are connected to the sample and the

container wall, respectively. The plastic plate, with a round hole in the center to let

out the solutions, were used to support the sample. The whole plate, thus, has a

relatively homogeneous polishing rate except for the sample corners. However, since

the sample has a dimension of 20 × 20 mm2, which is large enough for an XRD

experiment, only the center part of the sample will be subjected to the scan, and the

effects of the unpolished corners will be ignored in this study.

Synchrotron

A synchrotron high-energy X-ray diffraction experiment was conducted at the

11-ID-C beamline of the Advanced Photon Source (APS), Argonne National Labora-

tory, for inspecting the minor crystal phase contained in the samples. The beam size

used is 400 µm (parallel to the treated surface) × 20 µm (along the normal direction
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Figure 3.4: Schematic illustration of the synchrotron diffraction, the left-most 3-
D image is a typical result from a synchrotron X-ray diffraction, where
the height of the peaks is corresponding to the diffraction intensity at
that X-Y position, and the colors are arbitrarily selected to represent
different intensity ranges.

of the treated surface), and the wavelength is 0.107560 Å. A two-dimensional (2-D)

image plate, Mar345, was used as the area detector for collecting the diffraction pat-

terns. The synchrotron sample was cut from the processed bar and had a geometry of

2×2×1.5 mm3, with the thickness, 1.5 mm, along the longitude direction of the bar.

Diffraction data from the treated surface to the less-affected interior are collected and

compared. It should be noted that the high-energy X-ray diffraction technique used

in the present investigation provides a very powerful and sensitive tool for charac-

terizing a tiny volume of the crystalline phase among the amorphous matrix, due to

the high flux and high resolution of the high-energy X-ray beam produced by a syn-

chrotron source and the 2-D area detector used in the present technique, respectively.

A schematic illustration of the synchrotron-diffraction experiment setup is shown in

Fig. 3.4.

DSC

For the BMG sample, differential-scanning calorimetry (DSC) is an important

method to characterize the thermal property of the material. Sample pieces with a

dimension of 2 × 2 mm2 and thickness 0.3 mm, which were cut from the treated
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Figure 3.5: Pictures of the four-point-bending-fatigue test equipment and
schematic illustration of the four-point-bending test.

surface and carefully polished to its final shape, were used to measure the thermal

properties of the deformed specimens in a Perkin-Elmer Diamond DSC at a heating

rate of 30 K/min under a constant flow of high-purity argon. XRD analyses were

conducted using a Philips’s X’pert diffractometer to characterize the near-surface

structure of the specimen before and after the S2PD process.

3.2.2 Mechanical properties

Four-point-bending fatigue

The fatigue behavior of the samples is studied by the four-point-bending test.

In this loading mode, the sample surface (bending side) between the two inner pins

is subjected to the maximum and constant bending moment, and the fatigue crack

usually initiates on this region. Therefore, this test is suitable for testing the surface-

crack-initiation resistance. The test equipment and the geometry of the fixture are

shown in Fig. 3.5. The distances of the inner and the outer pins are 10 mm and 20 mm,

respectively. The specification of the four-point-bending fatigue test can be found on

the American Society for Testing and Materials (ASTM) C 1211-92 Standard Test

Method for Flexural Strength of Advanced Ceramic at Elevated Temperature [142].
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Four-point-bending-fatigue experiments were conducted on a computer-controlled

Msterial Test System (MTS) servohydraulic testing machine with a fixed R ratio

(where R = σmin/σmax = 0.1, where σmin and σmax are the applied minimum and

maximum stresses, respectively ) and different stress levels. Using a load-controlled

bending-fatigue test, the nominal stress, σnom, has the following relationship with the

applied load:

σnom =
3P (L − t)

2Wh2
(3.1)

where σnom is the nominal stress, P is the total load applied, L and t are the distance

between two outer and two inner pins, respectively; while W and h are the width and

height of the rectangular samples, respectively.

Surface roughness

The NewView 5000 was employed to measure the surface roughness. It is

based on the scanning white-light interferometry, an innovative technique, in which a

pattern of bright and dark lines (fringes) results from an optical-path difference be-

tween a reference and a sample beam. Incoming light is split inside an interferometer,

one beam going to an internal reference surface and the other to the sample. After

the reflection, the beams recombine inside the interferometer, undergoing constructive

and destructive interference and producing the light and dark fringe pattern. A pre-

cision vertical scanning transducer and camera together generate a three-dimensional

(3-D) interferogram of the surface, processed by the computer and transformed by

frequency-domain analyses, resulting in a quantitative 3-D image of fracture-surface

roughness [143].

Microhardness and nanoindentation

Samples for microhardness measurements were first ground using SiC grit

papers. Then, polishing was performed in two consecutive steps, first using a 6-µm
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diamond paste on a nylon cloth, and, then, a 0.05-µm alumina paste on a micro-

cloth. A Buehler Vickers-hardness tester was used to measure the microhardness

distribution along the cross sections from the surfaces to the interiors of the samples.

The applied force was 300 gf (i.e., 2.94 N ), or 100 gf (i.e., 0.98 N) in some cases. The

distance between successive indents was 30 µm.

For the BMG material, a nanoindentation test was conducted to investigate

the deformation performance of the processed sample. The tests were conducted on

both the processed surface and the side surface. Therefore a hardness profile from

the deformed surface to the unaffected interior can be established. The nanoindenta-

tion was conducted in a load-controlled mode employing a computer-controlled Nano

Indenterr XP system equipped with a Berkovich indenter. Data acquisitions and

analyses were done in TestWorksr 4 Software for Nanoindentation Systems (MTS

Systems Corporation). The calibration to a polished, single-crystal aluminum stan-

dard was performed prior to the measurements. A 10-gf (i.e., 0.098 N) load was

applied in each test, and the measurement was along multiple lines beginning ap-

proximately 10 µm from the processed surface and extending approximately 1 mm

into the center of the material. Additional indents were made in the near-surface

region. The average indent depth was approximately 900 nm.

Tensile property

The S2PD-processed plates were cut into dogbone tensile specimens with a

rectangular cross-section (3.3 mm × 3.2 mm) and a gage length 12.7 mm. Tensile

tests were conducted on an MTS 810 test machine with a displacement control, and

an extensometer was used in all the tensile tests to measure the strain. The exten-

someter was installed after the tensile specimen was pre-loaded with a 10 lb force (i.e.,

44.48N). After the installation of the extensometer, the sample was deformed at a

starting strain rate of 0.05 /min. The geometry of the tensile sample is schematically

illustrated in Fig. 3.6. It should be pointed out that in this study, both sides of the
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Figure 3.6: Geometry of the tensile sample, please note that in this study, both
sides of the sample have been subjected to the S2PD process.

plate (therefore both sides of the processed tensile samples) were subjected to the

S2PD process.

3.3 Summary

In this chapter, the sample compositions, preparation methods, and the S2PD

process were introduced briefly. The investigation techniques, which were utilized in

characterizing the microstructures and the mechanical properties of the specimens,

are also described. For the mechanical properties, the study focused on the micro-

hardness, tensile behavior, and fatigue performance. Due to the importance of the

residual stress in affecting the mechanical properties, the characterization method of

residual stress is presented in detail.
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CHAPTER 4

Dependence of Microstructures of a
C-2000 Superalloy on the Processing

Condition of the S2PD Process

4.1 Introduction

Nanocrystalline (nc) and ultrafine-grained (UFG) materials have drawn con-

siderable attentions and great interests in recent years because of their superior

mechanical properties, such as high strengths and hardness, remarkable superplas-

ticity, and excellent resistances to wear and fatigue-crack initiation, compared to

their coarse-grained counterparts [62, 77, 144, 145]. However, an effective fabrication

method of ideal bulk nano-structured materials is still a challenge because of the con-

tamination and porosity issues [62, 77, 144–146]. Since most failures of components,

including fatigue fractures, fretting fatigue, and wear failures, are very sensitive to

the structures and properties of their surfaces, the surface-nanocrystallization pro-

cess provides a feasible approach to improve the performance of the material and to

investigate the formation mechanism of nano-grains near the surface.

Surface-severe-plastic deformation (S2PD) is an important surface-nanocrystallization

process that has recently been developed to introduce nano-grains and grain-size gra-

dients in the surface layer of bulk materials. There are several variants of such S2PD-

based techniques, including the ultrasonic shot peening (USSP) [82, 83], high energy

shot peening (HESP) [85], surface mechanical attrition (SMA), or surface mechan-

ical attrition treatment (SMAT) [78, 147, 148], and surface nanocrystallization and

hardening (SNH) [87, 149–151]. These S2PD-based techniques have been shown to

improve the tensile strength [85], microhardness [149], and wear resistance [84, 90] of

materials. Recently, improvements in the fatigue resistance have been demonstrated
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using the SNH process [88]. These results unambiguously indicate that S2PD-based

techniques are alternative approaches to enhance the surface properties and upgrade

the global properties of engineering materials with no changes in chemical composi-

tions, as the physical-vapor-deposition (PVD), chemical-vapor- deposition (CVD), or

other coating processes do.

In the present research, the fatigue behavior of the HASTELLOY C-2000®∗

alloy processed under different SNH conditions is investigated in order to find out

how sensitive the fatigue resistance of the C-2000® alloy is response to the SNH

process. The alternation of the fatigue resistance as a function of the SNH processing

condition has been related to the changes in work hardening, nano-grain formation,

residual-compressive stresses, surface roughness, and surface contamination. Based

on these results, the implications of this study and future work are discussed. The

details of this study are presented below.

4.2 Experimental Procedures

4.2.1 Surface-treatment process

The material used in this work was a Ni-based HASTELLOY C-2000® su-

peralloy (cold-rolled and fully annealed at 1,120 ◦C) with a nominal chemical com-

position (in weight percent) of 23Cr, 16Mo, 1.6Cu, 0.01C, 0.08Si, and balanced Ni.

After cleaning with the acetone and, then, ethanol, the as-received sample disc with a

thickness of 3.2 mm and a diameter of 50 mm was held via mechanical locking at one

end of a cylindrical steel container of the Spex mill. Five WC/Co balls, which have

a composition (in weight percent) of 94% WC and 6% Co, were subsequently put

into the steel container to provide the desired impacts on the surface of the sample.

The diameter of the WC/Co balls used in this experiment is either 4.9 mm or 7.9

mm. The impact velocity of WC/Co balls induced by shaking the steel container

was about 5 m/s. The processing periods were 30, 60 and 180 min, and 4.9 mm

balls were used to treat the 60-min sample while 7.9-mm balls were used for the 30-

∗HASTELLOY and C-2000 are registered trademarks of Haynes International, Inc.

62



and 180-min samples. The samples were, then, given the ID number as L30, L180,

and M60, respectively, where L represents “large”, and M represents “medium”. The

whole process was conducted in an argon atmosphere.

4.2.2 Structure characterizations

The energy-dispersive X-ray spectrum (EDS) spectra and EDS mapping were

employed to study the distribution of the contaminant, tungsten carbide, induced by

the impacts of WC balls on the processed surface. A Philips X’Pert X-ray Diffrac-

tometer with a Cu Kα (λKα1
= 0.154056 nm and λKα2

= 0.154439 nm) radiation was

used to determine the phase constitution on the surface region. Meanwhile, the values

of the full width at the half maximum (FWHM) obtained from the X-ray diffraction

(XRD) were used to estimate the grain size and micro-strains on the surface of the

SNH-processed sample. Specifically, the peak broadening was attributed to nano-

grains, internal strains, and instrumental broadening [36]. The FWHM of the sample

peak, βg(2θ), which excludes instrumental broadening, can be calculated with the

following equation [36]

β2
g (2θ) = β2

h(2θ) − β2
f(2θ) (4.1)

if it is assumed that the instrumental and the sample peak functions are both Gaussian

in nature. The βh(2θ) in Eq. 4.1 is the FWHM measured from the sample with the

SNH treatment, βh(2θ) is the one from the standard, and θ is the Bragg angle. The

FWHM of the untreated sample can be used as the standard in this method. Once

βg(2θ) of the low-angle reflections is found from Eq. 4.1, it can be employed to estimate

the average grain size, D, of the Ni surface with the aid of the Scherrer formula [94]

βg(2θ) =
0.9λ

D cos(θ)
(4.2)

where λ is the wave length of the X-ray radiation.

Similarly, the FWHM of high-angle reflections computed from Eq. 4.1 was

utilized to estimate the effective internal strain, 2ξ, within the face-centered cubic Ni
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crystal, using the Stokes and Wilson formula [36]

βg(2θ) = 2ξ tan θ (4.3)

The estimation of grain sizes and effective internal strains of severely-plastically

deformed samples using Eqs. 4.2 and 4.3 can give fairly good approximations, be-

cause the broadening at low-angle reflections mainly relates to the grain size, and

the broadening at high-angle reflections is predominately determined by the internal

strain [95, 96]. Recently, a detailed XRD analysis [97], using the Rietveld method in

conjunction with the Levenberg-Marguardt non-linear least-square fit (LM-fit) and

line-broadening analysis, demonstrates that this is indeed the case for nanocrystalline

Al alloys that have been subjected to severe-plastic deformation.

A NewView 5000 interferometer was employed to measure the surface rough-

ness of the samples. It utilized the scanning white-light interferometry, an innovative

technique, in which a pattern of bright and dark lines (fringes) results from an optical-

path difference between a reference and a sample beam. The incoming light was split

inside an interferometer, one beam going to an internal reference surface and the

other to the sample. After the reflection, the beams recombined inside the interfer-

ometer, undergoing the constructive and destructive interference and producing the

light and dark fringe pattern. A precision vertical scanning transducer and camera

together generated a three-dimensional (3-D) interferogram of the surface, which was

processed by the computer and transformed by frequency-domain analyses, resulting

in a quantitative 3-D image of the fracture-surface roughness.

In the characterization methods mentioned above, Ra represents the arithmetic-

mean value, which is the average value of the departure of the profile from the center

line throughout the sampling length. It should be pointed out that the Ra value

over one sampling length represents the average roughness. Therefore, the effect of

a single spurious non-typical peak or valley within the profiles trace will be aver-

aged out and, as such, has only a small influence on the Ra value. Ra also offers

no distinctions between peaks and valleys on the surface trace. On the other hand,

64



the root-mean square (rms) is another method, which uses the statistical method to

calculate the average roughness. The rms can be obtained by squaring each value,

then taking the square root of the mean. When compared to the arithmetic average,

rms has the effect of giving extra weight to higher values. The PV value represents

the average peak-to-valley height (maximum roughness ), which does not consider

the overall profile changes, i.e., there is no center line. A detailed descriptions of the

roughness can be found in literature [152], and the equation used for the calculation

of the roughness is presented here:

Ra =
1

lm

∫ x=lm

x=0

|Z(x)| dx (4.4)

rms =

√

1

lm

∫ x=lm

x=0

Z2(x)dx (4.5)

PV =
1

n
(Z1 + Z2 + Z3 + · + Zn) (4.6)

where lm is the length that measured for roughness, Zx is the height of a certain point

on the surface to the reference point, and n is the number of peak-valley pairs in the

indicated length, lm.

Microstructures of the as-received and processed samples were investigated,

using Optical Microscopy (OM), scanning-electron microscopy (SEM), and trans-

mission electron microscopy (TEM). The cross-sectional OM specimens were first

mechanically ground and polished, and, then, electrolytically etched at room temper-

ature in a solution composed of 5 g oxalic acid and 95 ml hydrochloric acid with a d.c.

voltage of 6 V. TEM samples at different depths away from the surface were obtained

by: (1) first mechanically polishing on one or two sides of the sample until the sample

reached a 20-m thickness, and (2) finally thinning using a two-side jet with a solution

of the 5% perchloric acid and 95% ethanol (in volume percent) at 10 ◦C.
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4.2.3 Characterization of macroscopic residual stresses and
mechanical properties

The sign of macroscopic residual in-plane stresses parallel to the plane of the

C-2000 plate was qualitatively determined via the bending direction of the plate after

the SNH process. To achieve this, only one side of the plate was SNH-processed. Af-

ter processing, the processed plate was unclamped from the Spex mill, and its radius

of curvature was measured using a Gage Master Series Twenty optical comparator

coupled with a Gage Master GMX electronic processing unit (Gage Master Corpo-

ration, Rancho California, CA). This instrument projects the silhouette of the plate

onto a screen along with a coordinate system that permits the measurement of (x, y)

points along that silhouette. The radius of curvature of the SNH-processed plate was

calculated by fitting the (x, y) points to a circle. Three such estimates were made for

the specimen by rotating the plate about its symmetry axis with a 60-degree incre-

ment between two adjacent measurements. The average of these three estimates was

reported as the radius of curvature.

A Buehler Vickers-hardness tester was used to determine the microhardness

distribution along the polished cross sections from the surfaces to the interiors of the

samples. The distance between two successive indents was 30 µm, and the applied

force was 300 g with a dwell time of 15 seconds. Each microhardness value reported

was the average of 5 indentations. The C-2000 plates with the SNH treatment on

both sides of the plates were used for the measurement of the fatigue resistance. The

dimensions of the fatigue samples were 25 × 3.2 × 3.2mm3 so as to conform to the

American Society for Testing and Materials (ASTM) C1211-92 Standard Test Method

for Flexural Strength of Advanced Ceramics at Elevated Temperature.

Four-point-bend fatigue experiments were conducted on an MTS 810 electro-

hydraulic machine at room temperature. The distance between the two inner pins and

two outer pins are 10 and 20 mm, respectively. The tests were performed with a fixed

R ratio (where R = σmin/σmax = 0.1, σmin and σmax are the applied minimum and

maximum stresses, respectively ) and different stress levels. Using a load-controlled
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bending-fatigue test, the nominal stress, σnom, has the following relationship with the

applied load:

σnom =
3P (L − t)

2Wh2
(4.7)

where σnom is the nominal stress , P is the total load applied, L and t are the distances

between two outer and two inner pins, respectively; while W and h are the width and

height of the rectangular sample, respectively. The fatigue test was terminated if the

sample survived 5 × 106 cycles, and the corresponding maximum stress was taken as

the fatigue strength.

4.3 Results

4.3.1 Surface contamination and surface roughness

Figure 4.1 shows the XRD spectra of the as-received and SNH-treated spec-

imens. On the spectrum of the as-received sample, there are no other peaks except

those of the Ni alloy itself, since no treatments were carried out. While on the surfaces

of the treated samples, some diffraction peaks other than face-centered-cubic (fcc) Ni

alloy appear, which are shown to belong to the hexagonal-structured tungsten car-

bide (WC). Furthermore, with the increase of the treatment time and/or ball size, the

intensities of these peaks increase evidently. This result illustrates that the surface

WC contamination becomes severe with the increase of the process time and/or ball

size. Therefore, it can be deduced that during the SNH treatment, cold welding and

fretting fracture between the sample surface and the WC balls occurred. When the

balls bounced away from the surface, some of the material on the ball surface was

left on the sample surface. A larger ball size and a longer treatment time made this

effect more pronounced.

The surface morphology and element constitutions measured by the SEM/EDS

mapping, and EDS spectra are shown in Fig. 4.2. Obviously, the S2PD process

roughed the polished surfaces regardless of the process time. From the SEM picture

of Fig. 4.2(a), it can be seen that the surface of the as-received sample is relatively

smooth and clean (although there are still some small dents caused by the polishing
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Figure 4.1: XRD spectra show the contamination of the processed sample surface.

SiC particles), but those of the SNH-treated samples are quite rough, as shown in

Figs. 4.2(b), (c), and (d) for samples treated 30 (sample L30) and 180 min (sample

L180) with 7.9-mm balls, and 60 min with 4.9-mm balls (sample M60), respectively.

An interesting result here is that it is noted that L30 [Fig. 4.2(b)] shows the most

rough surface, not the other two. A quantitative analysis, which will be shown later,

confirms that this observation is really the case. Therefore, we can conclude that

the roughness increases with the processing time first, and, then, decreases when the

processing time further increases. The possible reason will be discussed later.

From Fig. 4.2, it is noted that in the processed surface, it seems that materials

pieces in some region do not seem to be consistent with others in the processed

samples, as indicated by the arrows. EDS-mapping experiments were, thus, done to

investigate the composition of the sample surface. The results are shown in Fig. 4.3.

Here only the mapping of the processed samples are shown. In Fig. 4.3, the green

color represents the Ni distribution on the surface, while the red color stands for the
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Figure 4.2: SEM observations of the sample surfaces show that surface roughness
has changed by the S2PD process, while the as-received sample (a) is
flat and smooth, the 30 min (b), 180 min (c) with 7.9-mm balls and
60 min (d) with 4.9 mm balls samples are relatively rough, and the
30-min sample shows the highest roughness.
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Figure 4.3: EDP mappings of the processed samples. It is shown that sample L30
(a), L180 (b), and M60 (c) were contaminated by the WC during the
bombardments, and L180 has the largest amount of W contamina-
tions.

tungsten distribution from the fragments of the WC, which is believed to be from the

WC/Co balls during the bombardment. Figs. 4.3(a), (b) and (c) represent specimen,

L30, L180, and M60, respectively.

Apparently, on the surface of sample L180 as shown in Fig. 4.3(b), the WC

fragments almost covered the entire surface, since it a large portion of red color can

be seen. It is not surprising to observe that the longer processing time generates more

WC contamination when the ball sizes are the same. For samples L30 and M60, the

amount of WC is obviously less than that of L180. Comparing samples L30 with M60,

less WC is presented in the latter. Note that the L30 is processed with 7.9-mm balls,

while M60 was processed with 4.9-mm balls, thus, the ball size has larger influence

on the cold welding and fretting fracture between the sample and the balls than the

processing time.

In order to inspect the composition of the contamination on the surface, EDS

scanning was performed on the sample surfaces, and resulted spectra are shown in

Fig. 4.4. It can be noted that the surface of the as-received sample does not contain

any tungsten, while the other three treated samples do. This result is consistent with

the observed mapping results. The new information here is that the contamination is

not only W, but also caused by Fe, which is believed to be from the steel contain. As

the processing time increases, the contamination problem becomes more severe and

obvious.
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Figure 4.4: EDS scanning spectra of the sample surfaces. The as-received sample
(a) shows no sign of contamination, while L30 (b), L180 (c) and M60
(d) were contaminated during bombardment, it is also shown that Fe
was introduced in the surface layer.
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Table 4.1: Quantitative roughness values

Sample ID PV (µm) rms (µm) Ra (µm)

As-Received 7.98 0.52 0.41

L30 39.78 6.84 5.50

L180 37.86 4.69 3.64

M60 36.73 5.51 4.42

Actually, the composition of the elements on the surface can be quantified

by the EDS. It is shown that the sample treated 180 min has the highest tungsten

content (average 15.91 at.%, atom percent), while the sample treated 60 min has

the lowest tungsten contamination (1.99 at.%). The sample treated for 30 min has

an intermediate tungsten content (5.05 at.%) [143]. These quantitative results are

consistent with the qualitative observation of EDS mapping which shows that the

whole surface of the sample treated 180 min is almost covered by WC fragments,

whereas the sample treated 60 min has the least coverage of WC fragments.

The quantitative surface roughness of the specimens was obtained using the 3-

D non-contact profilometry, as shown in Fig. 4.5. As presented in the oblique plots of

this figure, the surface of the as-received sample is smoother than those of the treated

ones. The histogram plot of the former is also much narrower than that of the latter,

and the average value is very close to 0. In terms of the peak-to-valley (PV), the

root-mean-square average (rms), or the arithmetic-mean (Ra) values, the values of

the treated samples are higher than those of the as-received sample. However, there is

only slight difference among the treated samples. The sample treated 180 min shows

somewhat lower surface roughness than the one treated 30 min. This difference comes

from the fact that a long time of repeated bombardments can reduce part of the peak

height [87, 151]. As a result, the PV value, rms, and Ra decrease slightly and, then,

stabilize after long SNH treatment (> 60 min)[151]. Roughness in terms of PV, rms,

and Ra are summarized in Table 4.1

Table 4.1 clearly shows that the roughness measured by all the three methods

are consistent with each other. By the difference caught by each different method
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Figure 4.5: Surface roughness of as-received and processed samples measured by
a 3-D non-contact profilometry in terms of PV, rms, and Ra.
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mentioned above, we can know that (1) after processing, the surface is relatively

uniform, since rms is sensitive to extremely high or low values, and here it does

not show any abnormal values; (2) the overall surface does not present an obvious

curvature, this conclusion is made due to the results that the curvature-sensitive

methods, Ra (or rms), and the curvature-insensitive method, PV, do not show any

inconsistency. The reason that no curvature difference is detected is because that the

measurement is confined within a small area (about 0.6 mm × 0.9 mm).

4.3.2 Microstructures

Shown in Fig. 4.6 are the full width at half maximum (FWHM) of the X-ray

peaks of Ni (111), (200), (220) and (311) crystallographic planes for the four different

samples investigated in this study. Note that the XRD signals are measured from the

surface of the samples. Based on the absorption coefficient of Ni [43], it is estimated

that 90% of the XRD signals are from the top 10-µm surface layer, which varies

slightly with the reflection angle.

Using Eq. 4.1 with the FWHM of the Ni (111) reflection, the average crys-

tallite sizes at the surface layers of the Ni samples with different SNH treatment

conditions have been estimated and listed in Table 4.2. It can be seen from Table 4.2

that the average crystallite size at the surface layer is in the nanometer regime and

decreases with increasing the processing time and the size of balls.

Another interesting phenomenon observed in this study is the change of effec-

tive internal strains with S2PD processing conditions. Using Eq. 4.3 with the FWHM

of the Ni (311) reflection, the internal strains in the nickel crystallite have been cal-

culated and included in Table 4.2. It is very interesting to note that the sample L30

has the largest internal strains, while the sample L180 possesses the smallest internal

strains among the three treated samples. It is well known that the internal strains

are reflections of the lattice micro-strains and mainly induced by defects, such as

dislocations. Thus, the estimation of the internal strains suggests that the sample
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Figure 4.6: Full Width at Half Maximum (FWHM) of the diffraction peaks from
the specimen surfaces.

Table 4.2: The grain sizes and internal strains estimated by XRD

Sample ID Grain Size (µm) Internal Strain (µm)

L30 17.8 1.0%

L180 14.7 0.6%

M60 20.4 0.8%

treated 180 min has the lowest dislocation density. One possible explanation for this

trend is that the dense dislocations generated in the early stage of the SNH treatment

rearrange themselves and evolve into grain boundaries, leading to the formation of

nano-grains containing few dislocations in the sample treated 180 min. Therefore, the

lattice micro-strains in the samples treated 30 and 60 min are larger than that in the

sample treated 180 min. Although this explanation appears to be very reasonable, it

remains to be confirmed by the detailed TEM investigation.

The formation of nano-grains is confirmed with the TEM analysis. As shown

in the TEM bright-field image in Fig. 4.7, 10 to 30 nm grains are present in the

surface layer of the sample L180. The previous TEM study has shown that the grain
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Figure 4.7: Nano-grains in the surface of the sample treated 180 min with 7.9-mm
balls shown by the TEM bright-field image.

size in the surface layer of the sample L30 is in the range of 20 nm. Therefore, the

estimation of grain sizes in the surface layer based on XRD is corroborated by the

TEM analysis.

The general view of the cross-sectional microstructure of the as-received and

treated samples is presented in Fig. 4.8. The grain size of the as-received sample is

relatively uniform, about 80 to 100 µm in diameter with some visible annealing twins.

The surface layer of the sample L30 [Fig. 4.8(b)] clearly shows deformed grains. The

thickness of the surface layer with deformed grains becomes thicker as the treatment

time increases to 180 min [Fig. 4.8(c)]. Moreover, the grain boundaries at the very

surface layer have become hardly discernable. In contrast, the sample M60 has less

deformation evidence [Fig. 4.8(d)]. Thus, based on Fig. 4.8, and the assumption that

the thickness of the surface nanocrystalline layer is proportional to the depth of the

deformation zone, it can be concluded that the thickness of the nano-surface layer

increases from the samples M60 to L30 and, then, to L180. A detailed TEM study

[153] has indeed confirmed such a relationship between the thickness of the surface

nanocrystalline layer and the depth of the deformation zone, and revealed that the

sample treated 180 min has a surface nanocrystalline layer of 50 µm in thickness,

76



whereas the surface nanocrystalline layer for the sample treated 30 min is thinner

than 5 µm.

Based on these results, a comparison between Fig. 4.8 and Table 4.2 indicates

that the sample treated 60 min has the thinnest nano-surface layer and largest grain

size, whereas the sample treated 180 min has the thickest nano-surface layer and

smallest grain size. Such a phenomenon is consistent with the decrease in the kinetic

energy of WC balls and, thus, the degree of plastic deformation in the C-2000 alloy

when the ball size changes from 7.9 (for the 30 and 180 min samples) to 4.9 mm (for

the 60-min sample).

4.3.3 Microhardness profiles and macroscopic residual stresses

Figure 4.9 shows that the surface hardness of all the samples increases after

the SNH process, regardless of the process times or ball sizes. It is interesting to

find that the samples treated 180 and 30 min exhibit similar micro- hardness profiles.

This trend may indicate that strengthening has reached the saturation point after

30 min of processing, even though the microstructure has continued to evolve, and

the thickness of the nano-grain layer continues to extend. Another possible reason is

that the total contribution of the refined grains and work hardening to the hardness

improvement in these two samples is similar to each other. For the sample M60, it

has a lower hardness than the others, since small balls have a lower kinetic energy

and, thus, induce less plastic deformation as well as a shallower deformation zone in

the workpiece than the large balls do. Indeed, as shown in Fig. 4.9, the thickness

of the work-hardened layer for the sample M60 is about 220 µm, whereas the work-

hardened layer for samples L30 and L180 is thicker than 350 µm. The previous study

[88] shows that the 30-min treatment with 7.9-mm balls results in a work-hardened

layer of about 800 µm.

Macroscopic-residual stresses are usually considered as one of the most impor-

tant factors affecting the fatigue strengths of engineering components. Many studies
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Figure 4.8: Optical images of the cross-sectional microstructures of Ni-based C-
2000 samples: (a) as-received, (b) L30, (c) L180, and (d) M60. 1 is
the near-surface zone, and 2 is the interior.
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Figure 4.9: Microhardness profiles along the cross sections of the as-received and
the processed samples.
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Figure 4.10: The bending direction of the C-2000 plates after S2PD processing
on one side of the plate and their radii of curvature, R, as a function
of the S2PD-processing condition.

have shown that residual compressive stresses at the surface region can effectively in-

hibit the initiation and propagation of fatigue cracks, and, thus, improve the fatigue

resistance. In this study, the sign of residual in-plane stresses parallel to the plane of

the C-2000 plate was qualitatively determined via the bending direction of the plate

after the SNH process. Shown in Fig. 4.10 are the bending direction of the C-2000

plates after the S2PD process and their radii of curvatures, R, as a function of the

S2PD-processing condition. Based on the bending direction and the R values mea-

sured, it can be concluded that the sample treated 180 min has the highest residual

compressive in-plane stresses, which is followed by the sample treated 30 min and

then the sample treated 60 min.

4.3.4 Fatigue behavior and fractography

The applied stress versus fatigue-cycle-life (S-N) curves are presented in

Fig. 4.11. The results showed that the fatigue properties of the 180-min sample
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Figure 4.11: Fatigue results of the as-received and S2PD-treated samples.

is severely deteriorated, while those of the 30- and 60-min treated samples are evi-

dently improved when compared to the as-received one. Recall that the fatigue test

was terminated for all of the samples that survived 5×106 cycles, and the correspond-

ing maximum stress was taken as the fatigue strength in this study. Based on the

fatigue strengths so determined, it can also be stated that L30 has the highest fatigue

strength, which is 600 MPa, while the fatigue strength for L180 is only 350 MPa. The

sample M60, which was processed with 4.9 mm balls for 60 min, has an intermediate

fatigue strength (550 MPa) among the three samples treated. In addition, it is noted

that at higher stress level of about 660 to 700 MPa, all the samples exhibit similar

fatigue behaviors except for L180.

The fatigue-fracture surfaces and EDS spectra of the defects near the fatigue-

crack-initiation sites are presented in Fig. 4.12. From Fig. 4.12(a), it can be seen that

the fatigue-crack-initiation site of the as-received sample is right below the surface,
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and there are no discernable defects near the crack-initiation site. From the fatigue-

fracture surface of the sample treated 30 min shown in Fig. 4.12(b), it can be noted

that the fatigue crack initiates from a defect, which shows a different microstructure,

relative to the surrounding materials. The EDS spectrum of the defect indicates that

it has a high content (5.26 at.%) of tungsten, which is similar to the surface tungsten

content (5.05 at.%) of this sample. Fig. 4.12(c) exhibits the fatigue-fracture surface of

the sample treated 180 min. It can also be found that the fatigue crack of this sample

initiates from an adhesion-fracture defect (i.e., WC fragments). By EDS, this defect

shows a tungsten content as high as 32.14 at.%, which is much higher than the average

value of the whole surface. Thus, the crack can initiate from the WC fragment, as

shown in Fig. 4.12(c). This trend significantly degrades the fatigue strength in the

sample L180 (Fig. 4.11), because a large amount of WC fragments were found to be

present in these samples.

4.4 Discussion

The present set of experiments clearly shows that the S2PD process has in-

duced many changes to the C-2000 plates. These changes include (a) the formation of

a nanocrystalline surface layer (Fig. 4.7 and Table 4.2), (b) the surface work harden-

ing (Fig. 4.9), (c) the presence of residual compressive in-plane stresses at the surface

layer (Fig. 4.10), (d) the increased surface roughness (Fig. 4.5), and (e) the surface

contamination due to the material transfer between balls and the plate (Fig. 4.3).

Changes (a) to (c) are beneficial for fatigue properties, whereas changes (d) and (e)

are detrimental.

A comparison among the characteristics shown in Figs. 4.12(a) to (d) reveals

the following phenomena. First, both samples have a similar work hardening profile,

as shown in Fig. 4.9. Second, the sample treated 180 min has a slightly lower surface

roughness, which is expected to benefit the fatigue resistance because of the poten-

tial notch effect of surface roughness for fatigue crack initiation. Third, the sample

treated 180 min has a thicker nano-grained surface layer (Fig. 4.8) and finer grain

sizes (Table 4.2), both of which are expected to enhance the fatigue resistance because
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Figure 4.12: Fractography of the fatigue failure samples of As-received (a), L30
(b), L180 (c) and M60 (d). It is shown that crack initiated from
the subsurface of the samples where contamination concentration is
high, i.e, WC contamination is easy to become the initiation site, an
EDS analysis indeed shows that those initiation sites have high W
content.
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of the increased strength. Fourth, the sample treated 180 min has a higher residual

compressive stress (Fig. 4.10), which will also improve the fatigue resistance. Thus,

based on the consideration of Changes (a) to (d) only, the sample treated 180 min

should exhibit a better fatigue strength. However, the reality is that the sample L180

has a lower fatigue strength than the sample L30. The reason for this is that the L180

has a worse surface contamination than L30. The surface contamination by heteroge-

neous WC fragments has behaved as the crack-initiation site, as shown in Fig. 4.12.

Thus, the severe surface contamination in the sample L180 has outweighed all of

the benefits derived from the formation of nano-grains, work hardening, and resid-

ual compressive stresses. As a result, L180 has a lower fatigue resistance than L30.

In fact, the fatigue resistance of the sample L180 is even lower than the as-received

sample, indicating the potent effect of surface defects and the possible deterioration

induced by improper S2PD processing.

When the negative impact of surface contamination is avoided or minimized,

significant improvements in the fatigue resistance can be achieved via the S2PD treat-

ment. This conclusion can be drawn from the comparison between the as-received

sample and L30 and M60. Both processed samples exhibit better fatigue resistances

than the as-received sample with about 50% and 37% improvements, respectively.

The improvements are clearly due to a combined effect of the formation of a surface

nanocrystalline layer, a work-hardened surface region, and the presence of residual

compressive stresses. There is no doubt that these three beneficial changes induced

by the S2PD process have outweighed the negative impacts of surface roughness and

surface contamination for the samples, L30 and M60.

Comparisons between L30 and M60 can offer additional insights into the ef-

fects of Changes (a) to (e). Recall that L30 was processed with 7.9-mm balls, whereas

M60 processed with 4.9-mm balls. Different processing conditions have resulted in dif-

ferent outcomes in Changes (a) to (e). Specifically, L30 has a thicker work-hardened

layer (Fig. 4.9), higher hardness at the surface region (Fig. 4.9), finer grain sizes (Ta-

ble 4.2), a thicker surface nanocrystalline layer (Fig. 4.8), higher residual-compressive

stresses (Fig. 4.10), a rougher surface (Fig. 4.5), and more surface contaminations
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(Fig. 4.3) than sample M60. It is interesting to note that the beneficial effects from

the formation of surface nano-grains, a work-hardened surface region, and the pres-

ence of residual compressive stresses dominate the fatigue behavior of both samples

treated 30 and 60 min. As a result, L30 possesses a better fatigue resistance than

M60, even though L30 has a rougher surface and more surface contaminations.

It is noted that the as-received sample and the samples L30 and M60 exhibit

similar fatigue resistances in the low-cycle fatigue regime. This is most likely related

to the macroscopic plastic deformation of the samples. The yield strength at 0.2%

offset of the C-2000 alloy at the as-received condition is 400 MPa. After S2PD pro-

cessing, the yield strength at the the 0.2% offset at the surface region would be about

600 MPa, if the yield-strength improvement is proportional to the microhardness im-

provement (which shows 50% enhancements). Thus, at the low-cycle fatigue regime

where the maximum stress applied is at or higher than 650 MPa, the macroscopic

plastic deformation of the entire sample is likely to occur during fatigue cycles, regard-

less of the sample condition with or without S2PD processing. Based on this trend,

it is proposed that the similar fatigue resistances in the low-cycle fatigue regime are

likely related to the low ductility of the surface nanocrystalline layer and fading of

the residual-compressive stresses, both of which can promote the formation of fatigue

cracks at the surface of smooth specimens. the yield-strength improvement caused

by the treatment process will be discussed later.

The present set of experiments unequivocally indicates that the fatigue re-

sistance of the Ni-based C-2000 alloy can be substantially improved by the S2PD

process. Furthermore, to fully utilize the S2PD process, the processing condition

should be designed to enhance the formation of a surface nanocrystalline layer, a

surface work-hardened region, and the presence of residual-compressive stresses at

the surface layer, and to minimize surface roughness and surface contamination at

the same time. The process optimization to fully utilize the S2PD process is clearly

an area of future studies. Finally, it should be pointed out that the quantitative

contribution of each of Changes (a) to (e) to the fatigue resistance should also be

investigated in the future. It is expected that in order to accomplish this goal, a large
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number of experiments need to be designed so as to separate the individual effect of

Changes (a) to (e).

4.5 Conclusions

Based on the results and discussions above, the following conclusions are

reached:

1. The S2PD processing of the Ni-based HASTELLOY C-2000 superalloy has led

to the following five changes simultaneously: (a) the formation of a surface

nanocrystalline layer; (b) the surface work hardening; (c) the presence of resid-

ual compressive in-plane stresses at the surface layer; (d) the increased surface

roughness; and (e) the surface contamination due to the material transfer be-

tween balls and the plate.

2. Larger balls in the S2PD process have higher efficiency in introducing a surface

work-hardened region, a surface nanocrystalline layer, and residual compressive

stresses at the surface than small balls. However, large balls also introduce a

greater amount of surface contaminations and result in rougher surfaces.

3. A longer S2PD-processing time can lead to finer grain sizes at the surface, a

thicker work-hardened layer, and larger residual-compressive stresses. However,

the strengthening saturation is observed when the processing time is longer

than a critical value (which is 30 min for 7.9-mm balls). A longer processing

time also results in more surface contaminations, which are detrimental to the

fatigue resistance.

4. The fatigue resistance of the Ni-based C-2000 alloy can be substantially im-

proved when the alloy is processed for 30 min with 7.9-mm balls or 60 min

with 4.9-mm balls. Under these processing conditions, the formation of a sur-

face nanocrystalline layer, a surface work-hardened region, and the presence

of residual-compressive stresses at the surface layer can be enhanced, while the

detrimental effects of the increased surface roughness and surface contamination

can be minimized.
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5. When a surface contamination is not minimized, such as in the case of 180 min

processing with 7.9-mm balls, the fatigue resistance can be decreased rather

than increased. This is because the severe-surface contamination can outweigh

all of the benefits derived from the formation of nanograins, work hardening,

and residual-compressive stresses.
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CHAPTER 5

Effects of Nanostructured Surface Layers
on Fatigue Behavior of a C-2000

Superalloy

5.1 Introduction

Materials with a nanostructured surface and coarse-grained interior have

drawn increasing attentions because of their highly-improved mechanical properties,

such as the yield strength, hardness, increased wear resistance, etc. [61, 62, 145].

The terminology of the surface nanocrystallization is usually used to refer to the pro-

cesses by which nanostructured surface layers could be introduced into the materials

without changing their compositions. Presently, most of these processes, such as the

surface-mechanical attrition [85, 147], wire-brushing [154], and surface nanocrystal-

lization and hardening (SNH) [87, 149], are based on the severe plastic-deformation

(SPD) methods, that is, utilizing mechanical impacts to introduce a large amount

of dislocations or deformation twins in a short time (high strain and/or strain rate)

so as to obtain refined grains. Because of the plastic-deformation process, a surface-

nanocrystallized structure is usually accompanied by significant compressive stresses.

It is well known that fatigue properties of materials are highly sensitive to

both the grain sizes and residual stresses. A small grain size could effectively in-

crease the yield strength so as to enhance the fatigue-crack-initiation threshold [77].

Meanwhile, a small grain size also has an adverse effect on the resistance to the

fatigue-crack growth, since cracks can easily propagate along grain boundaries. On

the contrary, coarse grains may deflect the propagation paths of fatigue cracks by

grain boundaries, thus introducing crack closure and decreasing the rate of crack

growth. However, coarse grains are not effective in preventing the initiation of the
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fatigue crack [77]. Since most fatigue cracks initiate from the surface and propagate

to the interior, a component with a nanostructured surface layer and coarse-grained

interior could be expected to have highly improved fatigue properties because both

fatigue-crack initiation and propagation are inhibited by fine grains near the surface

and coarse grains in the interior, respectively.

Moreover, the residual-compressive stresses introduced during the severe plastic-

deformation process can also effectively stop the initiation and propagation of fatigue

cracks. This trend is true especially when the applied stresses are relatively low, that

is, in the fatigue-life range with a longer life (> 106 cycles), since under this condi-

tion, the external stresses may be overweighed by the residual-compressive stresses.

Structures with surface compressive stresses have been shown to have superior fatigue

properties in some materials [12]. In the fatigue-life range with a shorter life (< 106

cycles), since the applied stresses exceed the residual-compressive stresses, the latter,

thus, become a less critical factor, which gives way to some other features of the

material, such as the stress concentration and surface roughness.

The nickel-based HASTELLOY C-2000 superalloy∗ is a typical room-temperature

corrosion-resistance superalloy with a single-phased fcc structure. This material is

selected due to the reasons that it may facilitate the analysis of the formation mech-

anism of nanostructures during the severe-plastic-deformation process, as well as the

investigation of the effects of the process parameters and the nano-layer on the fatigue

properties of the alloy. It has been demonstrated in a previous study [88] that the C-

2000 specimens treated with the SNH process for 30 min has indeed exhibited a 50%

enhancement in the fatigue resistance, when compared with the counterpart without

the treatment. The enhancement has been attributed to the formation of nano-grains

at the surface, a surface work-hardened layer, and the presence of residual-compressive

stresses in the surface region [88]. It should be noted that the main difference between

the current SNH process and a traditional shot peening process includes the thickness

of the work-hardening-affected zone and the nano-layer, as well as the compressive

stresses, which are investigated in another related study [155].

∗HASTELLOY and C-2000 are registered trademarks of Haynes International, Inc.
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A recent work has further revealed that not all of the C-2000 alloys after SNH

processing exhibit the improved fatigue resistance. Instead, improper SNH processing

can result in the degradation of the fatigue resistance. In the present study, additional

SNH-processing conditions were investigated in order to identify the domain(s) of the

proper SNH processing window for improving the fatigue resistance of the C-2000

superalloy and to further understand the factors that lead to the degradation of the

fatigue resistance.

5.2 Experimental Procedures

The material used in this work was a Ni-based HASTELLOY C-2000 superal-

loy (cold-rolled and fully annealed at 1,120 ◦C) with a nominal chemical composition

(in wt.%) of 23Cr, 16Mo, 1.6Cu, 0.01C, 0.08Si, and balance Ni. The diameter of

the as-received specimen is 50 mm,and the thickness is 3.22 mm. Five tungsten car-

bide and cobalt (94%WC+ 6%Co, in wt.%) balls with a diameter of 7.9 mm were

used to treat the as-received sample, and the duration times are 30, 60, 90, and 180

min, respectively. After the SNH treatment (both sides of the samples are processed

with the equal time), which was described in detail in Chapter 2, the samples were,

then, cut to small bars with a dimension of 3.2 × 3.2 × 25 mm3 and subjected to

the load-controlled four-point-bend fatigue tests on an MTS 810 electrohydraulic test

machine. The distance between the two inner and two outer pins were 10 and 20 mm,

respectively. The stress ratio, R [the ratio of σmin (the minimum stress) to σmax (the

maximum stress) in one cycle of loading], was 0.1, and the applied frequency was 10

Hz.

The microstructures of the as-treated surface and fatigue-fracture cross sec-

tions were characterized by the scanning-electron microscopy (SEM), X-ray diffrac-

tion (XRD), and transmission-electron microscopy (TEM). TEM samples at certain

depths away from the specimen surface were obtained by: (1) first mechanically pol-

ishing on two sides until the sample reached a 20-m thickness, and (2) finally thinning

by a two-side jet with a solution of the 5% perchloric acid and 95% ethanol (in vol.%)

at 10 ◦C. Hardness tests were conducted on a Buehler Vicker’s hardness tester, and
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the applied load was 300 gf (2.94N). The interference between indentations was elimi-

nated in the measurement. This trend was done by keeping the distance between two

successive indentations at about 10 times the size of the impressions. We did this by

moving both the x- and y-positions of the indenter, that is, from the surface to inte-

rior, the alignment of the indentations is an oblique rather than a perpendicular line

to the surface. X-ray diffraction experiments were implemented on a Philips X’pert

Diffractometer, and Cu Kα (λKα1
= 0.154056 nm and λKα2

= 0.154439 nm) radiation

was used. The as-treated samples were cut to a 12 × 12 mm2 square shape, and the

surfaces were scanned with a continuous-scanning mode at a rate of 1.5◦/min.

5.3 Results and Discussion

The cross-sectional microstructure of the as-received and the 180-min SNH-

treated sample is shown in Fig. 5.1. It can be seen from Fig. 5.1(b) that the near-

surface structure has been modified greatly after the treatment. The near-surface

grain boundaries and twin boundaries, which are easy to observe in the as-received

sample [Fig. 5.1(a)], are difficult to distinguish by the optical microscope on the

surface of the 180-min SNH-treated sample. From the surface to interior, the grain-

size distribution exhibits a gradient change as expected. Within the grains somewhat

far away from the surface, it can be seen that a large amount of cross-linked lines

are presented, which are unquestionably caused by the plastic-deformation. These

cross-linked lines are confined within individual grains, and have been identified as

deformation twins rather than deformation bands or shear bands in previous studies

[88].

Figure 5.2 shows a TEM bright-field image and the corresponding selected-

area-diffraction (SAD) pattern obtained from the position 50 µm away from the sur-

face of the C-2000 sample SNH-treated for 180 min. It is noticed that the grain

size is in the range of 30 to 70 nm. Furthermore, the SAD pattern is composed

of partially continuous diffraction rings, which confirms that the as-received large

crystalline grains (in the order of 50 µm) have been broken down to nano-grains in

this region, and many of these nanograins have high-angle grain boundaries among
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Figure 5.1: Optical microscopic images of the: (a) as-received and (b) 180-min
SNH treated samples.

themselves. Figure 5.2(b) shows a TEM bright-field image, and the corresponding

selected-area diffraction pattern obtained at the impacted surface from the same sam-

ple as in Fig. 5.2(a). The diffraction pattern of continuous rings at this location clearly

indicates that the nano-grains at the impacted surface have completely random ori-

entations with high-angle grain boundaries. Furthermore, the grain size has reduced

to 10 to 30 nm. Therefore, based on Figs. 5.1 and 5.2, it can be known that after the

SNH process, a nanostructured surface layer was formed in the 180-min SNH-treated

sample. This nanostructured layer has a grain-size gradient changing from 10 to 70

nm as the locations moves from the impacted surface to a depth of 50 µm.

Figure 5.3 exhibits the microhardness distribution along the depth of the

samples. Because of the SNH process, work hardening occurs in these samples. The

hardness of the near-surface layer of the as-received and the treated samples are about

250 and 470 Hv, respectively. Compared with the as-received sample, the hardness

of the treated sample has been increased substantially, but the hardness profile does

not change much with the processing time. Since work hardening is a consequence of

the severe plastic-deformation process, it can be seen that after the surface treatment

for 30 min, the depth of the deformation-affected zone changed only slightly. In other

words, because the intensity of the impact of the balls does not change, the plastic-

deformation zone remains nearly constant, although it has already been known that

the surface nano-layer could continue to extend with the processing time.
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Figure 5.2: TEM bright-filed image and SAD patterns of the 180 min SNH-
treated sample with: (a) at 50 µm away from the surface, showing the
formation of 30 - 70 nm nanograins, one of which is pointed out using
the arrow, and (b) at the impacted surface, showing the formation of
10 - 30 nm nanograins.

Figure 5.3: Vicker’s Hardness profile of the specimens.
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Four-point-bend fatigue tests were conducted on the as-received and SNH-

treated samples, and the resulted stress versus the number of cycles to failure (SN)

curves are shown in Fig. 5.4. The oblique lines are drawn according to the linear

regression principle while the horizontal lines with arrows indicate that at these points

(usually the cycle number is 5 × 106, a larger limit, say, 107 cycles may be very

time-consuming for a 10 Hz fatigue test), the sample actually not failed and it is

considered under this circumstance the sample will not fail and the corresponding

stress is considered as the fatigue strength. One obvious result is that the SNH

process indeed affects the fatigue behaviors of this alloy. For the 30-min treated

sample, the high-cycle fatigue-endurance limit has improved from 400 to 600 MPa,

but for the 60- and 90-min-treated samples, it does not change much. For the 180-

min-treated sample, the fatigue strength was even lower than that of the as-received

sample, decreasing from 400 to 350 MPa. However, when the applied stress exceeds

700 MPa, it appears that the fatigue lifetimes of all the treated samples are lower

than that of the as-received one. The longer the processing time, the lower the fatigue

lifetimes in the fatigue-life range smaller than 106 cycles. One of the possible reasons

for this phenomenon is that when the applied stress is relatively high, most of the

benefits that a nanostructured surface layer can contribute to the fatigue strength

will be counteracted by the external stresses. For the SNH-treated samples, a large

amount of surface contaminations and damages are introduced during the process.

These flaws are potential stress-concentration sites during the fatigue test. Therefore,

fatigue cracks may easily initiate and propagate from the surface at high-stress levels.

Theoretically, a component with a nanostructured surface layer could have

a superior fatigue property compared with its coarse-grained counterpart, as we dis-

cussed in Chapter 1 and found in the previous study [88]. However, it is noted

that this trend is not always the case; the 180-min SNH-treated sample shows a

severely deteriorated fatigue behavior. Besides the contamination issue, the root of

the matter may originate from the severe-plastic-deformation process itself. During

any SPD-based processes, from the surface-mechanical-attrition treatment (SMAT)

[78, 85, 147] to wire-brushing [154], the equal-channel-angular pressing (ECAP) [156],

94



Figure 5.4: Stress - Fatigue lifetime (S-N) curves of the as-reveived and the SNH-
processed samples. It is shown that longer processing time decreases
the fatigue life in both the low-stress and the high-stress levels.
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and SNH [87, 149], a large amount of lattice defects, i.e., high-density dislocations, are

generated in the material in a very short time, and the near-surface microstructure of

the material is drastically changed. The high-density dislocation clusters or tangled

dislocations generated in the SPD process can accumulate further in the subsequent

fatigue loading, and form micro-damages, such as voids and microcracks. Since usu-

ally no follow-up recovery processes, i.e., annealing, are applied after the SPD process,

the lattice defects or sometimes micro-damages are present in the SPD-processed ma-

terial. Therefore, for those properties, which are sensitive to the micro-damages, such

as fatigue, the existence of these defects may severely affect the behavior of the ma-

terial. For example, in an ECAP-treated AlMg specimen, it was reported that the

fatigue strength has indeed remained unchanged even though the yield strength was

improved greatly due to the grain refinement [156]. On the other hand, for those

properties, which are not sensitive to the micro-damages, such as hardness and yield

strength, they will not be affected much by these defects.

It is known that during a fatigue test, the stress-intensity-factor range ∆K

(∆K = Kmax −Kmin, where Kmax and Kmin are the maximum and minimum stress-

intensity factors, respectively) is a function of both the crack size, a (for an internal

crack, the size is 2a, but for a surface crack, the size is a) and the applied stress

range, ∆σ (∆σ = σmax − σmin), i.e., ∆K = Y ∆σ(πa)1/2, where Y is the correction

factor, usually of the order of unity. When ∆K is smaller than the threshold-stress-

intensity-factor range, ∆Kth, the crack practically should not grow. That is, under

certain external stress amplitudes, ∆σ, the macrocrack initiation does not take place

if the sizes of microcracks are sufficiently small; or, for a given microcrack size, a,

the macrocrack should not propagate, if the external stress magnitude is sufficiently

small. During the SNH process, as the processing time increases, both the number

and size of the micro-damages and surface contaminations could increase, which may,

thus, increase the probability of the macrocrack initiation. The probability, Q(N),

that at least one macrocrack initiates at a cycle number, N , is presented as [4]

Q(N) = 1 − exp{−f [ω(N)]} (5.1)
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where ω(N) is the measure of the local damage of the cycle number, N , and 0 ≤ ω ≤
1. ω = 0 for a non-damaged material; ω = 1 for a completely damaged material;

µ(N) = f [ω(N)] represents the mean number of macrocracks initiated at the cycle

number, N ; the function, f(), is differentiable and satisfies the conditions, f ′() > 0,

f(0) = 0, and f(1) = 1. In this case, due to the surface contamination and micro-

damages caused by the impact, the equation, ω(N = 0) > 0, will be satisfied, and its

value increases with the processing time. Thus, from Eq. 5.1, it can be known that the

increase in the number of microcracks could evidently increase the probability of the

macrocrack initiation if no other effects are considered. This conclusion could be used

to explain that the SNH or other SPD-based processes could cause the decrease in the

fatigue strength, and a longer time treatment makes this effect more pronounced than

a shorter time treatment. In short, the fatigue behavior depends on the competition

between the positive factors (such as compressive residual stresses, a nanostructured

surface layer, a grain-size gradient, work hardening, etc.) and the adverse factors

(such as the surface contamination and micro-damages).

The cross-sectional SEM observations of the fatigue-fractured specimens were

shown in Figs. 5.5 and 5.6. In Fig. 5.5, the crack-initiation sites of the as-received

and the processed samples are compared. It can be seen that all the initiation sites

were located beside some defects. For the as-received sample, this defect was an

inclusion inside the specimen; while for the treated samples, the defects were WC

contaminations at their surfaces. This observation is confirmed by the energy dis-

persive X-ray spectroscopy (EDX) , as shown in Fig. 5.5(d). It is found that at this

initiation site, the contents of the W, C, and Co are much higher than those at other

positions, which indicates the presence of an adhesion-fractured defect. That is, when

the WC/Co balls bounced back from the surface, materials from the ball were left on

the sample surface, and the contamination problems is, thus, generated. Figure 5.6

shows the crack-propagation area of the as-received and the 60-min processed sam-

ples. A typical intergranular propagation mode was found for the as-received sample,

and the average fatigue striation width is about 2.4 µm, as shown in the figure. Some

evident crystallographic facets (indicated with a arrow) with width about 15 µm can
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Figure 5.5: Crack-initiation-site comparisons of the: (a) as-received, 500 MPa,
(b) 30-min SNH-treated, 700 MPa, (c) 60-min SNH-treated, 550 MPa
samples, and (d) EDX spectrum of the selected area in (c).

be seen in Fig. 5.6, which are caused by the cyclic loading and corresponds to the

loading stresses; while for the 60 min SNH-treated sample, a large amount of deforma-

tion twins are found, it is hard to detect the fatigue striations, although the distance

between two adjacent crystallographic facets can be easily measured as about 10 µm

or less. Because of the plastic-deformation, the propagation of the fatigue cracks have

been confined within the deformation twins as it is observed that the crystallographic

facets have so many different orientations.

5.4 Conclusions

Using the SNH process, a C-2000 alloy with a nanostructured surface layer

was obtained, and the fatigue behaviors of the specimens were investigated. It is

shown that the severe plastic-deformation-based surface-nanocrystallization process

could affect the fatigue behaviors of the material in two ways. The nanostructured

surface layer, work-hardened region, and residual-compressive stress could enhance

the fatigue strength especially in the high-cycle fatigue range (> 106 cycles), while
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Figure 5.6: Crack-propagation comparison of the: (a) as-received, 700 MPa, and
(b) the 60-min SNH-treated, 550 MPa samples.

the surface contamination and micro-damages caused by the SNH process could dete-

riorate the fatigue strength. Using five WC/Co balls 7.9 mm in diameter, the 30-min

treatment results in the best improvement in the fatigue resistance, while prolonged

treatments (60, 90, and 180 min) either lead to no improvements or even decreases

in the fatigue resistance. In the shorter cycle fatigue range (< 106 cycles), the fa-

tigue lifetimes of all the treated samples except the 30-min-treated sample are lower

than those of the as-received one. The longer the processing time, the lower the

fatigue lifetimes in the shorter-cycle-fatigue range. Thus, to fully utilize the SNH

process to improve the fatigue behavior of the material with a nanostructured surface

layer, processing conditions need to be optimized, at least in terms of processing-time

periods.
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CHAPTER 6

On the Ductility of a
Surface-Severely-Plastically Deformed

Nickel Alloy

6.1 Introduction

Surface-severe-plastic deformation (S2PD) processes [157, 158] have been

recently developed to introduce nano-grains and grain-size gradients into the sur-

face region of bulk materials. There are several variants of S2PD-based processes

[157, 158] among which S2PD with high-velocity ball impacts has received most of

the attention because of its versatility in processing complex-shaped parts [78, 81–

83, 85, 88, 90, 91, 147, 148, 150, 151, 159, 160]. S2PD with high-velocity ball impacts

is similar to conventional shot peening (SP) because both processes entail impacting

the workpiece surface using balls and shots. However, the kinetic energy of balls in

S2PD is 150 to 1,000 times larger than that in SP [89]. As a result of this high ki-

netic energy, S2PD can produce a thicker nanocrystalline (nc) surface layer, a deeper

work-hardened region, and a thicker surface zone with residual-compressive stresses

[89].

The nc surface layer combined with the work-hardened region and residual-

compressive stresses has imparted the S2PD-processed materials with superior me-

chanical properties. It has been demonstrated that the fatigue-endurance limit of

a nickel-based alloy can be improved by 50% via S2PD, as shown in the previous

chapter. The improvement in the fatigue resistance has also been demonstrated for

a 316L stainless steel [81]. Other mechanical properties, such as the tensile strength

and wear resistance, have all been enhanced by S2PD [85, 90]. However, it is also

noted that the ductility of the material normally decreases after S2PD processing. For
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example, a recent study [75] reveals that the 0.2% offset yield strength of a nickel-

based alloy is increased by 65 to 85%, depending on the S2PD processing condition.

This improvement in the yield strength is, however, accompanied by a reduction in

the tensile elongation from 80 to 40 or 50% [75]. For steels, the 35% enhancement in

the tensile yield strength is accompanied by a 4% reduction in the elongation [85]. In

spite of the observed reduction in ductility, no studies have been performed so far to

investigate the mechanism responsible for the reduced ductility.

The motivation of the present study is to identify the factors, which could

affect the ductility of a component subjected to the S2PD process. Since S2PD can

induce multiple changes in the material properties simultaneously as pointed out

above, it is important to correctly correlate the decreased ductility to the corre-

sponding factor(s). The specific questions that are of interest may include whether

the reduced ductility is caused by the surface roughness or is due to the formation

of nano-grains at the surface. What is the role of other factors, such as the presence

of a work-hardened surface layer and residual-compressive stresses? The answers to

these questions will greatly help us clarify the mechanism responsible for the reduced

ductility in S2PD-processed materials. The fundamental understanding, if developed,

can, then, be used as a guideline for optimizing the S2PD process to minimize the

reduction in the ductility.

6.2 Experimental Procedures

The material used in this work was an annealed Ni-based HASTELLOY C-

2000 superalloy plate (cold-rolled and fully annealed at 1,120 ◦C) with a 3.2-mm

in thickness. It was a single-phase alloy with the face-centered-cubic (fcc) crystal

structure and a nominal chemical composition (in weight percent) of 23Cr, 16Mo,

1.6Cu, 0.01C, 0.08Si, and balance Ni. Discs with 49 mm in diameter were cut out

from the as-received plates. After cleaning, the disc was loaded to the cylindrical

steel container of a Spex mill (SPEX/8000D Mill) and held in place via mechanical

locking at one end of the container. The loading was performed in a glovebox filled

with argon of purity 99.9%. Five WC/Co balls 7.9 mm in diameter were used to
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provide the desired impact on the surface of the C-2000 plate. The impact velocity

of WC/Co balls induced by shaking the steel container of the Spex mill was about

5 m/s. The S2PD treatment was conducted under the stationary argon atmosphere

and lasted for 30 or 180 min for both sides of the plate.

The processed plates were cut into dog-bone tensile specimens with a rectan-

gular cross-section (3.3 × 3.2 mm2) and a gage length 12.7 mm. Tensile tests were

conducted on an MTS 810 test machine with a displacement control, and an exten-

someter was used in all the tensile tests to measure the strain. The extensometer

was installed after the tensile specimen was pre-loaded with a 10 lb force (i.e., 44.48

N). After installation of the extensometer the sample was, then, deformed at a start-

ing strain rate of 0.05 min−1. The fracture surface analysis of tensile specimens was

performed using a scanning electron microscope (SEM, JEOL 6335SF FESEM).

The microstructures of the C-2000 alloy before and after the S2PD treatment

were examined using both SEM and TEM (EOL 2010 FASTEM). For the TEM

analysis, two orientations of samples were prepared, one being the plane-view, which

has the TEM foil parallel with the impacted surface and the other the cross-sectional

view with the TEM foil perpendicular to the impacted surface. The former allowed for

the study of the microstructure of the impacted surface, whereas the latter permitted

the investigation of the microstructural evolution from the impacted surface to the

interior of the specimen.

The work-hardened profile of the specimen as a function of the depth mea-

sured from the impacted surface was determined using nanoindentation, which was

conducted in a displacement-controlled mode employing a computer-controlled Nano

Indenter XP System equipped with a Berkovich indenter. Data acquisitions and anal-

yses were done in TestWorks 4 Software for Nanoindentation Systems (MTS Systems

Corporation). The calibration to a polished, single-crystal aluminum standard was

performed prior to the measurement. The displacement-controlled condition selected

in the nanoindentation measurement gave the indent size of ∼ 2 µm along one of the
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Berkovich triangle edge and ∼ 0.26 µm in depth. The surface roughness of samples be-

fore and after S2PD processing was measured using a noncontact, three-dimensional,

scanning white-light interferometer (NewView 5000), which can generate a 3D image

of the surface contour for quantitative analyses of surface roughness. The macro-

scopic residual stresses in the S2PD-processed samples were determined using X-ray

diffraction (XRD).

6.3 Results and Discussion

6.3.1 Microstructures revealed by OM and TEM

Figure 6.1 shows cross-sectional images of the C-2000 specimens processed for

0, 30, and 180 min. The starting material at the annealed condition has an average

grain size of 50 µm and contains a large number of annealing twins, suggesting that

this material has a low stacking-fault energy. Many deformation markings are present

in the 30- and 180-min processed samples. Furthermore, these deformation markings

are confined within individual grains and become richer as the position moves closer

to the impacted surface. Due to the low stacking-fault energy and the fcc structure,

the deformation markings were identified as deformation twins. Note that for the 30-

min processed sample, grain boundaries are visible everywhere except the impacted

surface. In contrast, plastic deformation in the 180-min processed sample is so severe

that grain boundaries and deformation markings become un-resolvable up to about

100 µm beneath the impacted surface.

Figure 6.2 presents TEM dark-field images and the corresponding selected-

area diffraction (SAD) patterns of the specimens after 30- and 180-min processing.

These images are taken from the very impacted surface, and reveal that nano-grains

have been formed via the surface-severe-plastic deformation. The average grain sizes

are 10 and 20 nm at the very impacted surface for 180- and 30-min processing,

respectively. The SAD patterns indicate that these nano-grains, generated from one

large grain, are polycrystalline in nature with high-angle grain boundaries between
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Figure 6.1: Optical images of the cross-sectional view of the C-2000 alloy (a) at
the annealed condition, (b) after S2PD processing for 30 min, and (c)
after S2PD processing for 180 min.
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Figure 6.2: TEM dark-field images from the very impacted surface with the cor-
responding selected-area diffraction (SAD) patterns taken from the
entire region shown in the corresponding dark-field images: (a) after
S2PD processing for 30 min and (b) after S2PD processing for 180
min. Note that fcc polycrystalline rings are present in both SAD
patterns.

themselves. The thickness of the nanocrystalline surface layer is about 50 µm for 180-

min-processed samples, whereas it is less than 5 µm for 30-min processed samples, as

shown in Chapter 3.

Figure 6.3 shows the residual in-plane stress distribution in the C-2000 sample

after 30-min processing. The stress profile was obtained by a layer-by-layer removal

followed by a X-ray diffraction scanning. Note that the residual stress distribution as

a function of the position is very similar to that generated from shot peening with the

peak residual compressive stress appearing at a sub-surface region. Such a similarity

is not a surprise because both shot peening and the S2PD process used in this study

rely on repeated impacts of shots and balls. The difference between shot peening and

S2PD processes is that balls in S2PD are much larger than those in shot peening. As

a result, S2PD processes have higher kinetic energies, and can produce a thicker work-

hardened region, a thicker nano-grained surface layer, and larger compressive-residual

stresses than shot peening.
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Figure 6.3: The residual in-plane stress profile of the sample with S2PD pro-
cessing for 30 min as a function of the position measured from the
impacted surface.

Specifically, the residual in-plane compressive stress at the impacted surface of

the 30-min processed sample is approximately 500 MPa, whereas the peak compressive

residual stress of about 1,200 MPa appears at the sub-surface (∼ 150 µm away from

the impacted surface). Residual stresses in the 180-min processed sample have not

been measured yet. However, it is expected that the magnitude of the compressive

residual stresses in the 180-min processed sample is higher than that in the 30-min

processed sample because the former exhibits more bending than the latter when

only one side of the plate was S2PD-processed. Note that the radius of the bending

curvature has long being used to estimate the magnitude of compressive-residual

stresses produced from shot peening on one side of the plate. However, the detailed

stress profile cannot be derived from the radius of curvature, because different residual

stress profiles can lead to the same radius of curvature.

6.3.2 Stress-strain behavior

The tensile stress vs. strain curves of C-2000 specimens are shown in Fig. 6.4.

Note that both the 0.2% offset yield strength and ultimate tensile strength have
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Figure 6.4: Tensile stress-strain behavior of various samples with and without
S2PD processing as indicated: (a) overall stress-strain curves and
(b) the blow-up of the stress-strain behavior at the early stage of
deformation. The origins of the tensile stress-strain curves in (b)
have been shifted slightly to facilitate the observation of the slopes of
the stress-strain curves.

been improved via S2PD processing. Specifically, the 0.2% offset yield strength has

been increased by ∼ 65% and ∼ 84% for the 30- and 180-min processed samples,

respectively, over the annealed sample. The tensile elongation, however, decreases

from about 60% for the annealed sample to 40% and 30% for the samples with 30- and

180-min processing, respectively. Additionally, it is noted that the elastic modulus

of the specimen, as gauged from the slope of the stress-strain curve at the elastic

deformation range, has decreased after S2PD processing (Fig. 6.4b). This change in

the elastic modulus (to be discussed more below) has resulted in some difficulty in

determining the 0.2% offset yield strength precisely. Nevertheless, the 0.2% offset

yield strength was estimated using the elastic portion of the stress-strain curve in

Fig. 6.4(a) (i.e., the low stress portion of the stress-strain curve) to construct a line

with a 0.2% strain offset from the origin, and defining the yield strength based on the

intersection of the line with the stress-strain curve.

With a simple equation, εtrue = ln (1 + εengineer), the engineering strain,

εengineer, can be converted to the true strain, εtrue. Further, the true strain to frac-

ture, εtrue(total), can be further divided into two sub-strains, the uniform true strain

before necking, εtrue(unit), and the true strain after the onset of necking, εtrue(neck). As
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summarized in Table 6.1, the uniform true strain before necking decreases from 0.52

for the annealed sample to 0.35 and 0.28 for the 30- and 80-min processed samples,

respectively. However, the true strain after the onset of necking changes little with

the processing condition.

Table 6.1: Ductility parameters of C-2000 alloy

Sample ID Engineering
strain

Total
true strain

Uniform
true strain

Necking
true strain

Reduction
of area (%)

As-Received 0.79 0.58 0.52 0.06 73.9

L30 0.54 0.43 0.35 0.08 57.3

L180 0.41 0.34 0.28 0.06 54.2

It is found that the true stress-strain curves (from the onset of yielding to

the maximum load) of all samples can be approximately described by Hollomons

relation, σ = Kεn, where σ and ε are the true stress and true strain, respectively, K

is a material constant, and n is called the strain-hardening coefficient. In this study,

n is found to be 0.47 for the as-annealed sample, whereas the corresponding values for

the samples with S2PD processing for 30 and 180 min are 0.31 and 0.24, respectively.

According to Considère’s criterion [161], the uniform true strain is numerically equal

to the strain-hardening coefficient for a material exhibiting Hollomons relationship.

However, the strain-hardening coefficients obtained from the C-2000 alloy are lower

than the corresponding uniform true strains (i.e., 0.52 vs. 0.47, 0.35 vs. 0.31, and

0.28 vs. 0.24). Since the discrepancy between the strain-hardening coefficient and the

uniform true strain is also present in the annealed sample, this phenomenon suggests

the presence of the effect of the strain-rate sensitivity on the uniform true strain of

this alloy, based on Harts criterion [162].

However, it is noted that the discrepancy increases with the S2PD process-

ing time (i.e., the ratio of the strain-hardening coefficient to the uniform true strain

decreases from 0.90 for the annealed sample to 0.88 and 0.86 for the 30- and 80-min

processed samples, respectively). The fact that different samples display different

degrees of discrepancy, while they have a similar post-necking strain and, thus, a sim-

ilar strain-rate sensitivity indicates that the discrepancy between the strain-hardening
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coefficient and the uniform true strain in S2PD-processed samples must also be af-

fected by other factors. One additional source for the discrepancy in S2PD-processed

samples is the presence of different strain-hardening capabilities in the surface re-

gion of the sample. The strain-hardening coefficient of the S2PD-processed sample

is actually the average of the strain-hardening coefficients of different regions within

the sample. Previous studies [8] have shown that strain hardening of nc materials is

high. However, such high strain hardening is lost quickly on deformation owing to

their very low dislocation storage efficiency inside the tiny grains [163]. As a result,

the tensile ductility of nc materials is typically lower than that of the coarse-grained

counterparts [163]. On compression, however, nc materials can exhibit substantial

strains before fracture, even though the stain-hardening coefficient has decreased to

near zero after a small amount of plastic deformation.

Taking together all of these previous observations, it is proposed that the

lower strain-hardening coefficients of S2PD-processed samples in comparison with

that of the annealed sample is partially due to the quick loss of the strain-hardening

capability of the nc surface layer in S2PD-processed samples. Such a quick loss in

the strain-hardening capability also contributes to the large discrepancy between the

strain-hardening coefficient and the uniform true strain observed with the S2PD-

processed samples. Additionally, the presence of a work-hardened surface region in

S2PD-processed samples also contributes to their lower strain-hardening coefficients.

This conclusion is consistent with the fact that a material that exhibits Hollomons

relation would display a lower strain-hardening coefficient after some prior plastic

deformation.

The above proposition can also offer a consistent explanation for a continuous

decrease in the strain-hardening coefficient and the increased discrepancy between the

strain-hardening coefficient and the uniform true strain, as the S2PD-processing time

increases. The TEM results have already shown that the nc surface layer in the

30- min processed sample is very thin (less than 5 µm), whereas the thickness of

the nc surface layer in the 180-min processed sample is about 50 µm. Thus, the
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decreased strain-hardening coefficient and increased discrepancy between the strain-

hardening coefficient and the uniform true strain in the 30-min processed sample is

mainly attributed to the presence of the work-hardened surface region. However,

the further decreased strain-hardening coefficient and further increased discrepancy

between the strain-hardening coefficient and the uniform true strain in the 180-min

processed sample is due to the combined effect of a nc surface layer and the work-

hardened surface region. This statement is supported by similar microhardness values

of the surface regions for 30- and 180-min processed samples. Therefore, the additional

decrease in the strain-hardening coefficient and further increased discrepancy between

the strain-hardening coefficient and the uniform true strain in the 180-min processed

sample must be related to the presence of the nc surface layer. The reduced strain-

hardening coefficients, in turn, result in lower uniform true strains and, thus, less

ductility in S2PD-processed samples. The macroscopic residual stresses and high

surface roughness induced by S2PD, however, appear to have little influence on the

uniform true strain, as will be discussed in the next several sections.

6.3.3 Overall fracture morphology and fractography

The overall fracture morphologies of the tensile specimens are presented in

Fig. 6.5. Note that the annealed sample exhibits a cup-and-cone fracture, a typical

fracture behavior of ductile materials under tension. However, the overall fracture

morphology has changed from the cup-and-cone fracture to a shear fracture after

S2PD processing. Necking is still very obvious in the S2PD-processed samples. How-

ever, the degree of necking has decreased in comparison with the annealed sample.

As summarized in Table 6.1, the reduction of area has decreased from 74% for the

annealed sample to 57% for the 30-min processed sample and to 54% for the 180-

min-processed sample.

Accompanied with the changes in the tensile elongation, the reduction of

area, the uniform true strain, the strain-hardening coefficient, and the overall frac-

ture morphology, the fracture surface morphology has also been altered dramatically
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Figure 6.5: Macroscopic fracture morphology viewed in two orientations of the
tensile-tested specimens with three conditions: (i) as-received (in an
annealed condition), (ii) S2PD processed for 30 min, and (iii) S2PD
processed for 180 min.

by S2PD processing. Shown in Fig. 6.6 are the fracture surfaces of the annealed

sample at the central and edge regions. Being consistent with the cup-and-cone frac-

ture morphology, the central region [Fig. 6.6(a)] exhibits extensive equiaxed dimples.

The depth of some dimples reaches about 10 µm, indicating substantial plastic de-

formation of the boundaries between micro-voids before local separation of the void

boundaries. At the edge region where oblique shear rupture occurs at the cone por-

tion of the fracture, slightly elongated dimples with a much reduced depth are present

[Fig. 6.6(b)]. Such a change in the dimple morphology is consistent with the detailed

study by Beachem [164] who has revealed that dimples on the shear-rupture surface

are elongated, pointing in the direction of the relative shear motion for that half of

the specimen. Figure 6.7 presents the fracture surfaces of S2PD-processed samples,

showing substantial changes in the dimple morphology at the central region of the

specimen in comparison with the annealed sample. For the sample S2PD-processed

for 30 min, elongated dimples are present at the central region [Fig. 6.7(a)]. This

trend is entirely consistent with the shear fracture mode found in Fig. 6.5. The sam-

ple with 180-min of S2PD processing exhibits further changes in the central region,

showing dimples with a shallow depth [Fig. 6.7(b)]. The decreased depth of dimples

from 30- to 180-min processed samples is a reflection of the decreased plastic defor-

mation of the boundaries between micro-voids before the local separation of the void
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Figure 6.6: Fracture surfaces of the annealed sample with (a) from the center and
(b) from the edge of the specimen.

boundaries. Such a change in the fracture-surface morphology is in good accordance

with the measured tensile ductility and the reduction of area (Fig. 6.4 and Table 6.1).

The fracture surfaces at the edge regions for 30- and 180-min-processed samples are

similar, showing slightly elongated dimples with very shallow depth [Fig. 6.7(c)].

The change in the fracture-surface morphology from more ductile to less duc-

tile manner as the S2PD-processing time increases may be explained by a recently-

proposed-unified-tensile fracture criterion [165]. This new criterion states that the

fracture modes of all materials can be related to an α factor defined as α = τ0/σ0,

where τ0 and σ0 are the critical normal and shear fracture stresses, respectively. The

annealed C-2000 sample is a typical coarse-grained metal and, thus, has a very low

value of α, (α ≪ 0.3) [165], which leads to a substantial shear fracture in both the

center and edge of the specimen. In contrast, the S2PD-processed samples have a nc

surface layer which would have a high value of (0.3 < α < 0.6) [165]. As a result, the

degree of shear fracture, manifested as the depth of dimples, is decreased at the edge

of the S2PD-processed samples. The change from the equiaxed dimple to elongated

dimple in the center of S2PD-processed samples is presumably due to the crack ini-

tiation at the surface region and subsequent propagation through the central region

to the other side of the specimen by shear fracture. The crack initiation site change

from the center for the annealed sample to the surface for the S2PD-processed sample
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Figure 6.7: Fracture surfaces of S2PD-processed samples with (a) from the center
of the 30-min processed sample, (b) from the center of the 180-min
processed sample, and (c) from the edge of the 180-min processed
sample.
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is supported by the presence of many corner cracks in the S2PD-processed samples

near the necking region, and attributed to the lower ductility of the nc surface layer.

6.4 Summary

The reduced tensile ductility of a Ni-based C-2000 alloy induced by S2PD

has been investigated via systematic experiments. In particular, effects of the macro-

scopic residual stress, work-hardened region, nc surface layer, and surface roughness

present in S2PD-processed samples have been studied. Based on this investigation,

the following conclusions can be offered.

1. S2PD processing decreases the tensile ductility of the C-2000 alloy. The longer

the S2PD processing time, the more reduction in the ductility. However, the

remaining ductility after reduction (40%) is still more than sufficient for engi-

neering applications.

2. S2PD processing leads to decreases in the strain-hardening coefficient, the uni-

form true strain, and the reduction of area.

3. The overall fracture morphology of tensile specimens has been changed from

the cup-and-cone fracture for the annealed sample to the shear fracture for

S2PD-processed samples.

4. The reduced uniform true strain is mainly related to the decreased strain-

hardening coefficient, which, in turn, is caused by the presence of the nano-

grained surface and the work-hardened surface region created via S2PD.

5. The nano-grained surface and the work-hardened surface region created via

S2PD also result in higher tensile stresses at the surface region than those at

the central region of the specimen. These high surface tensile stresses, in turn,

lead to the formation of the fatal crack at the surface of the S2PD-processed

specimen, thereby changing the cup-and-cone fracture for the annealed sample

to the shear fracture for S2PD-processed samples.
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6. The residual compressive stresses created via S2PD have little influence on the

ductility of the specimen. Instead, these compressive stresses only extend the

apparent elastic strain of S2PD-processed samples.

7. The high surface roughness of S2PD-processed samples does not have much

influence on the ductility. However, surface roughness may play a role in chang-

ing the cup-and-cone fracture for the annealed sample to the shear fracture for

S2PD-processed samples.
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CHAPTER 7

A Study on the
Surface-Severe-Plastic-Deformation

Behavior of a Zr-based Bulk-Metallic
Glass (BMG)

7.1 Introduction

The potential application of bulk-metallic glasses (BMGs) is so closely depen-

dent on their plasticity that extensive research has been conducted to investigate their

plastic-deformation performance at room temperature [14, 15, 111, 137, 166–170].

Some popular experimental setups, such as the indentation, compression, bending,

etc., are widely used to exert different loading modes on the amorphous material to

generate the plastic deformation. According to the results of those studies, it has been

established that the inhomogeneous shear-band operation is the characteristic of the

deformation in the BMGs at room temperature [14–16]. In order to improve the duc-

tility of BMGs, both extrinsic and intrinsic methods have been proposed to suppress

the propagation of shear bands in recent years. An example of the former method is

to optimize the geometry of the sample so that shear bands would not propagate to

the free surface [15, 16], while that of the latter is to introduce reinforcements into

the material so as to retard the propagation of the shear band [17, 18]. However, the

continuous emergence of papers regarding the plastic deformation of BMGs indicates

that this issue is far from clear.

Partially due to the fact that BMGs are easy to fracture before enough plas-

tic deformation could be accumulated within the material, there are few studies on

the effects of the plastic deformation on the mechanical properties of BMGs. A re-

cent work by Zhang et al. showed that the shot-peening process would decrease the
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hardness of a Zr-based BMG in a certain thickness of the surface layer [134]. Similar

results were also reported by Bei et al. in a compression test [16]. However, in some

other studies, both work hardening [110, 133] and flow softening [137] were reported

under deformation caused by nanoindentation. It is also noted that those studies

were based on a moderate localized plastic deformation, e.g., the deformation zone is

limited to a small region or a very shallow layer. The evolution of the microstructures

under further deformation and its effects on the material properties are still of great

interest.

In the present study, a surface-severe-plastic-deformation (S2PD) process,

which has been successfully applied on a Ni-based polycrystalline alloy to form surface

plastic deformation [74, 76, 87, 88, 149, 159], is modified and utilized on a Zr-based

BMG to generate a severe plastically-deformed near-surface layer in the material, and

the effects of the deformation layer on the microstructures and mechanical properties

of the materials are investigated.

7.2 Experimental Procedures

The material used in this work is a Zr-based Zr50Cu40Al10 (in atomic percent)

BMG, which was prepared by arc-melting mixtures of pure Zr, Cu, and Al metals

in an argon atmosphere. A low-oxygen-concentration Zr (< 0.05 at.% oxygen) rod

was used to minimize the oxygen content in the alloy. A tilt-casting method was

implemented to cast the alloy to its final rod shape of 60 mm and diameter of 8 mm

[141].

The rod samples were cut to rectangular bars with a geometry of 3.0×3.0×25

mm3. After polished using the 2,400-grit grinding paper, the bars were mechanically

attached to the cover of a cylindrical container. Twenty WC/Co (with 5% Co in

weight percent, wt.%) balls with a diameter of 1.6 mm each were put into the con-

tainer, which was, then, sealed with the cover in an pure argon atmosphere. Finally,

the container was clamped into the Spex 8000 miller and subjected to back-and-forth

vibration movements with a frequency of 60 Hz. Figure 7.1 shows the equipment used

117



Figure 7.1: Equipment used to introduce severe-plastic deformation in the near-
surface layer of the BMG samples.

in this study. Note that in order to minimize the overall temperature rising, the pro-

cess is stopped every 15 min to fully dissipate the generated heat. With these setups,

the balls would impact the sample surface with an average energy much higher than

that of the shots, which were used in a shot-peening process [135], thus generate a

severely-deformed near-surface layer in the BMG at room temperature. The bom-

bardment process was lasted for 60 and 180 min, respectively, to obtain two different

specimens, each with the S2PD treatment on one surface.

Sample pieces with a dimension of 2 × 2 mm2 and thickness 0.3 mm, which

were cut from the treated surface and carefully polished to its final shape, were used

to measure the thermal properties of the deformed specimens in a Perkin-Elmer Dia-

mond Differential-scanning-calorimeter (DSC) at a heating rate of 30 K/min under a

constant flow of high-purity argon. X-ray diffraction (XRD) analyses were conducted

using a Philips’s X’pert diffractometer to characterize the near-surface structure of

the specimen before and after the S2PD process.

A synchrotron high-energy X-ray diffraction experiment was conducted at

the 11-ID-C beamline at the Advanced Photon Source (APS), Argonne National

Laboratory, for inspecting the minor crystal phase contained in the samples. The

beam size used is 400 µm (parallel to the treated surface) × 20 µm (along the normal

direction of the treated surface), and the wave length is 0.107560 Å. A two-dimension

(2-D) Image plate, Mar345, was used as the area detector for collecting the diffraction
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patterns. The synchrotron sample was cut from the processed bar and had a geometry

of 2 × 2 × 1.5 mm3, with the thickness, 1.5 mm, along the longitude direction of

the bar. Diffraction data from the treated surface to the less-affected interior are

collected and compared. It should be noted that the high-energy X-ray diffraction

technique used in the present investigation provides a very powerful and sensitive tool

for characterizing a tiny volume of crystalline phases among the amorphous matrix,

due to the high flux and high resolution of the high-energy X-ray beam produced

by the synchrotron source and the 2-D area detector used in the present technique,

respectively.

Nanoindentation was conducted in a load-controlled mode employing a computer-

controlled Nano Indenter XP system equipped with a Berkovich indenter. Data acqui-

sitions and analyses were done in TestWorks 4 Software for Nanoindentation Systems

(MTS Systems Corporation). The calibration to a polished, single-crystal aluminum

standard was performed prior to the measurements. A 10-gf (i.e., 0.098 N) load was

applied in each test, and the measurement was along multiple lines beginning approx-

imately 10 µm from the processed surface and extending approximately 1 mm into

the center of the material. Additional indents were made in the near-surface region.

The average indent depth was approximately 900 nm.

Four-point-bending-fatigue test were preformed in a computer-controlled Mste-

rial Test System (MTS) servohydraulic testing machine with a fixed R ratio (where

R = σmin/σmax = 0.1, σmin and σmax are the applied minimum and maximum stresses,

respectively ) and different stress levels. Using a load-controlled bending-fatigue test,

the nominal stress, σnom, has the following relationship with the applied load on each

pin:

σnom =
3P (L − t)

2Wh2
(7.1)

where P is the force applied, L and t are the distances between two outer and two

inner pins, respectively. While W and h are the width and height of the rectangular

sample, respectively. The fractography of the fatigue samples were examined using a

Leo 1526 scanning-electron microscope to study fatigue and fracture mechanisms.
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7.3 Results and Discussion

Figure 7.2 shows the SEM observations of the side surface of the sample

treated with 180 min. It is shown that layer-by-layer features in the near-surface

region is formed by the flow-out material during the process, since at the edge, there

is little constraint. This is a good illustration that this BMG material can undergo

severe-plastic deformation without brittle fracture at room temperature under certain

conditions. A similar confirmed result is that during a compression test, a huge

amount of plastic deformation can be accumulated before the final fracture when the

aspect ratio of the sample is very small [15, 16]. Below the flow-out layer, a large

amount of deformation boundaries can be observed, where each extrusion and/or

intrusion line is believed to be composed of numerous fine shear bands. It can also

be estimated from the figure that the plastic deformation can reach at least 120 µm

from the processed surface, which is deep enough to affect the overall mechanical

properties of the material.

The amorphous phase of the as-casted specimen is confirmed by the X-ray

diffraction spectrum shown in Fig. 7.3. It is noted that for both of the two plastically-

deformed samples, crystalline diffraction peaks are superimposed on the broad amor-

phous peak, indicating the presence of crystal phases in these samples. It is believed

that the crystalline particles are some ZrCu phase though further experiment is

needed to confirm the detailed composition [171]. The 2-D synchrotron-diffraction

patterns of the 180-min processed sample are shown in Fig. 7.4. Those diffractions

are taken at different positions, i.e., 60, 100 and 460 µm, away from the processed

surface. Obviously, the bright spots (corresponding to a high intensity) should come

from the crystal phase rather than amorphous phase. It is noted that lesser and

lesser crystalline diffractions are detected by the 2-D detector from the surface to

interior, which shows that more crystalline phases were contained in the near-surface

layer but less in the interior. The diffraction patterns at those letter-indicated posi-

tions are shown in Fig. 7.5, which was obtained by caking the 2-D diffraction pattern

within a small angle (∼ 0.6◦) around the letter-indicated positions. From Fig. 7.5, it
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Figure 7.2: SEM observations on the side surface of the BMG subjected to the
surface-severe-plastic deformation (a). The image shows two distinct
layers: flow-out surface layer (b) and sub-layer with deformed marks
(c).
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Figure 7.3: XRD spectra of the as-casted and the S2PD-processed BMG sam-
ple. Note that only the processed samples have the crystal diffraction
peaks.

is known that the white spots in Fig. 7.4 indeed represent the crystal phase in the

material. Though there might be a few high intensity spots, which could be argued to

be crystalline phase formed initially during the casting process, we can still make the

conclusion that crystallization occurs during the process due to: (1) the beam size

(400 µm × 20 µm) is large enough to make the results statistically meaningful; (2) the

diffraction patterns are compared under exactly the same conditions (i.e., the same

contrast and brightness) and the trend remains the same no matter how we transform

the patterns; (3) the crystallization did occur under some other severe-plastic defor-

mation processes. e.g., nanoindentation [118, 172]; and (4) the conventional XRD

and synchrotron high-energy XRD diffraction give the consistent results.

The thermal behaviors of the as-casted and the severe-plastic-deformed BMG

samples are compared through the DSC curves as shown in Fig. 7.6. It is known that

the heat absorbed during the relaxation period is an indication of the change of

free volumes. i.e., the integrated area under the exothermic peak is proportional to

the free volume in the material [173]. With this principle, it is noted that extra
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Figure 7.4: Two dimensional (2-D) synchrotron-diffraction patterns with the in-
tensity higher than 3,930 at different positions (60, 100, and 460 µm)
from the surface, respectively. The white spots represent high diffrac-
tion intensities. Point A is believed to be a crystal-diffraction peak,
point B is an arbitrarily selected point without a white spot, and
point C is the highest intensity point in the as-cast sample. Note
that only the first diffraction rings are shown here, and crystal peaks
may also appear in the (unshown) second diffraction rings.

Figure 7.5: The 1-D diffraction patterns corresponding to point A, B and C. It is
shown that there exhibits an obvious crystal diffraction peak at point
A.
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Figure 7.6: DSC curves of the as-casted and the S2PD processed BMG samples.

free volumes are generated during the S2PD process. However, compared with the

60-min-processed sample, the free volume in the 180-min-processed-sample actually

decreases. This trend might be due to the reason that a long processing time gives

the atoms enough time to (1) to rearrange themselves to corresponding preferred

positions so as to generate some nanometer-scale voids [174, 175]; and (2) to form

nanocrystallines, as shown in the above-mentioned results.

Some other thermal features of the specimens are summarized in Table 7.1,

from which it is known that the glass-transition temperature, Tg, and the crystalliza-

tion temperature, Tx, did not change much with the deformation process. Therefore,

Tg and Tx might not be sensitive to the severe plastic deformation in this case. On the

other hand, the heat absorbed (indicated as ∆H2) during the crystallization period,

i.e., the integrated area under the crystallization peak, has pronouncedly decreased

as the processing time increases. One possible explanation for this change is that the

partial crystallization and atom rearrangement have occurred during the deformation
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Table 7.1: Thermal properties of the Zr50Cu40Al10 BMG subjected to the surface-
severe-plastic-deformation process

Sample Tg(�) Tx(�) ∆H1(J/g) ∆H2(J/g)

As-Cast 422.8 501.9 4.41 45.9

60 min 421.7 502.3 3.04 42.7

180 min 420.5 504.0 2.75 36.4

process for the treated samples. Therefore, the energy needed to crystallize unit mass

glasses decreases.

A microhardness profile of the samples measured by the nanoindentation

is shown in Fig. 7.7. The hardness for the interior of the glass is 6.6 GPa. The

maximum hardness measured for the 180-min-processed sample is 7.6 GPa, whereas

the corresponding value for the 60-min-processed sample is 7.3 GPa. It is interesting

to find that both work hardening and work softening were observed in this case. In

general, the nano-hardness gradually increases as the position changes from 1,000

to 100 µm measured from the processed surface. However, when the position is

approaching the very impacted surface (i.e., about 100 µm or less from the impacted

surface), the hardness appears to decrease. Note that edge rounding in the near-

surface region may have an effect on the exact hardness values in the extreme near-

surface region, as the indent-contact area may not be computed precisely because

of the slightly elongated triangles. Nevertheless, there is no doubt that the overall

trends for both samples are similar, i.e., exhibiting softening in the very impacted

layer.

Zhang et al. [134] found a softened near-surface layer in a shot-peened BMG

and attributed the change of hardness to the residual stress, which is also applicable

to this study. However, since the impact energy in this investigation is tens of times

higher, and the processing times are more than 100 times longer than those in the

shot-peening process (A detailed comparison about these two processes can be found
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Figure 7.7: Hardness profiles of the 60-min (a) and 180-min (b) S2PD-processed
Zr50Cu40Al10 BMG.

elsewhere [135]), it is believed that other effects, such as the free volume and forma-

tion of nanocrystallites, may also increase the resistance to the indentation, so as to

improve the hardness. Therefore, the different hardness profiles between the current

study and Zhang et al.’s result might be attributed to the different degrees of the

plastic deformation. A systematic study on the hardness profile is in active progress.

The high-cycle fatigue properties of the specimens before and after the sur-

face treatment are shown in Fig. 7.8. In the low-cycle-fatigue range (the fatigue

life lower than 105 cycles), there is no detectable difference in the fatigue behaviors

between the as-casted and the processed samples, i.e., all the data points are dis-

tributed around the same line. However, in the high-cycle-fatigue range (the fatigue

life higher than 105 cycles), it is found that the fatigue strength has pronouncedly

decreased from 500 MPa to below 400 MPa after 180 min of the surface treatment.

Thus, this surface treatment is not an effective process to improve the fatigue strength
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Figure 7.8: S-N curves of the as-cast and S2PD-processed Zr50Cu40Al10 BMG
obtained through four-point-bending fatigue experiments.

of the BMG material, though it works well on a Ni-based superalloy [88]. In Refer-

ence [74], it is noted that the bombardment may cause surface contaminations and

damages in the sample-surface layer, which may have a detrimental effect on the fa-

tigue properties. The similar trend was also observed in an LM-001 (commercially

known as Zr21.5Ti42Cu15.5Ni14.5Be3.5Al3) BMG. It is found that the shot-peening pro-

cess does not cause a significant enhancement of the fatigue performance due to the

deformation-induced plastic-flow softening [138].

A detailed analysis of the fractography of the fatigue specimens is presented

as follows. Since the fatigue life depends on both the crack-initiation and the crack-

propagation cycles, it is important to investigate how the S2PD process will affect

these two stages before we can fully understand the effects of the severely-plastically-

deformed surface layer on the fatigue behavior of the BMGs. Figure 7.9 shows the

fractography of the 60-min-processed sample with the fatigue life of 7,633 cycles. It is

shown in Fig. 7.9(a) that the crack actually initiated from the corner of the rectangular

sample, which is also true for most of the other processed samples. In Fig. 7.9(b),

we did find that the surface treatment has an effect on the fatigue propagation: the
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elliptically radial fatigue striations were retarded when they propagated close to the

processed surface. The near-surface compressive-residual stress and/or the structural

change caused by the process might be the reasons for this phenomenon. Some simple

measurements shown in Figs. 7.9(c) and (d) indicate that in this sample, there are

only approximately 440 striations. Noted that the total fatigue cycles to failure is

7,633. Therefore, the crack propagation only contributed about 5% to the total fatigue

lifetime, if we assumed that one striation is formed during one fatigue cycle. In some

other studies [6], about 10 finer striations were observed within each striation defined

here, and each fine striation was assumed to be corresponding to one fatigue cycle. If

this is the case, the crack propagation still contributes around half of the total life.

Based on the above observation, it can be concluded that the surface treat-

ment does has an effect to retard the fatigue-crack propagation, but the damages

that it causes may accelerate the crack initiation especially in the high-cycle-fatigue

range. On the other hand, the fatigue life of this material mainly depends on the

crack-initiation cycle because most of the total cycles are contributed by the crack

initiation. Therefore, it is not surprising to find that the fatigue-life time decreases

especially in a high-cycle fatigue range after the surface treatment.

7.4 Conclusions

The surface-severe-plastic-deformation behavior of a Zr-based BMG has been

investigated in the present work. It is shown that both the microstructures and the

mechanical properties have been affected by the treatment process. To be specific:

1. The surface of the BMG has been subjected to the severe-plastic deformation at

room temperature without the occurrence of brittle fracture, which shows the

good ductility of the material if the propagation of shear bands can be inhibited;

2. During the severe-plastic-deformation process, crystallization is observed in the

near-surface layer, and the amount of crystal phases decreases as the position

goes from the treated surface to the interior;
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Figure 7.9: Fractography of the fatigue samples shows that the crack initiated
from the corner (a), the propagation path was retarded by the pro-
cessed surface (b), a measurement of the width of each fatigue stria-
tion (c), and the total length of the propagation path (d).
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3. Work softening was observed in the very impact surface, but the maximal hard-

ness, which is higher than that of the unaffected interior, was observed at about

100 µm from the treated surface;

4. The fatigue strength of this BMG did not benefit from the S2PD process as it

did for a crystal material. The possible surface damages introduced during the

bombardment might be the main reason.
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CHAPTER 8

Conclusions

In this work, a surface severe-plastic-deformation process (S2PD) was suc-

cessfully developed and applied on a Ni-based C-2000 superalloy and a Zr-based bulk

metallic glass. It uses the WC/Co hard balls with diammters varying from 1.6 mm

to 7.9 mm, a velocity of about 5 m/s to impact the sample surface in a controlled

argon atmosphere. Because of the near-surface plastic deformtion produced by the

process, it is shown that the S2PD process has the capability of simultaneously cre-

ating (a) a work-hardened surface layer, (b) a nanocrystalline (nc) surface layer, (c)

a surface region with compressive residual stresses, and (d) a grain-size gradient with

a nc surface and a coarse-grained interior for the polycrystalline superalloy. For the

amorphous Zr-based bulk metallic glass, it is shown that the process may also alter

the near-surface microstructures, such as introducing nanocrystallization, and, thus,

changing the overall mechanical properties of the component. To be specific, the

conclusions obtained through this thesis work are:� The S2PD process, (or a surface nanocrystallization and hardening (SNH) pro-

cess as called at the begining of the thesis work), has been successfully developed

and utilized on a commercialized Ni-based C-2000 superalloy. With different

setups of the easy-to-change parameters, such as impacting time periods, ball

number, ball sizes, etc., both the microstructures and the mechanical proper-

ties have shown different characteristics. However, the following five changes

are basically the same regardless of the processing conditions. They are: (a)

the formation of a surface-nanocrystalline layer; (b) surface work hardening; (c)

the presence of residual compressive in-plane stresses at the surface layer; (d)

the increased surface roughness; and (e) the surface contamination due to the

material transfer between balls and the plate.
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� It is shown that larger balls in the S2PD process have higher efficiency in in-

troducing a surface work-hardened region, a surface nanocrystalline layer, and

residual compressive stresses at the surface than small balls. However, large

balls also introduce a greater amount of surface contamination and result in

a rougher surface. The surface hardness of the specimen was increased about

90% and 70% after being treated with 7.9 mm and 4.9 mm balls, respectively.

However, the hardness profileon the cross section did not change much with the

processing time. The surface-WC contamination was found to be more severe

in the large-ball-processed samples than in the small-ball-processed samples.� A longer SNH-processing time can lead to finer grain sizes at the surface, a

thicker work-hardened layer, and larger residual compressive stresses. However,

the strengthening saturation is observed when the processing time is longer than

a critical value (which is 30 min for 7.9-mm balls). For example, in the studied

C-2000 samples with 180-min surface treatment, a nano-structured near surface

layer (grain sizes about 10 - 20 nm) with a thickness of around 50 - 100 µm was

observed, while that of the 30-min treated sample is less than 5 µm. A longer

processing time also results in more surface contamination. With the 180-min

treatment, the contamination can reach as deep as 20 microns into the surface.� Through the comprehensive and exhaustive XRD analysis, it is confirmed that

the S2PD process has resulted in: (i) the formation of nanograins, grain-size

gradients, deformation twins, and deformation faults, (ii) the introduction of

macroscopic residual stresses, lattice microstrains, and crystallographic tex-

ture, and (iii) the alternation in the dislocation density and in-plane lattice

parameters of the crystal lattices. The impacted surface with 30-min process-

ing exhibits polycrystalline nano-grains with sizes predominately 10 to 20 nm

and containing few dislocations and twins and, thus, very low lattice strains.

The sub-surface region right below the impacted surface (about 5 to 10 µm

from the impacted surface) has the highest dislocation, twin, and fault densi-

ties and the highest internal strain in the entire Ni-alloy sample. The profile of
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macroscopic residual stresses induced by S2PD is qualitatively similar to that

generated via shot peening.� The tensile ductility of the C-2000 alloy was reduced by the S2PD processing.

The overall fracture morphology of tensile specimens has been changed from the

cup-and-cone fracture for the annealed sample to the shear fracture for S2PD-

processed samples. The longer the S2PD processing time, the more reduction

in the ductility. However, the remaining ductility after the reduction (∼ 40%)

is still more than sufficient for engineering applications. The strain-hardening

coefficient, the uniform true strain, and the reduction of area also decreased

after the treatment. The reduced uniform true strain is mainly related to the

decreased strain-hardening coefficient, which, in turn, is caused by the presence

of the nano-grained surface and the work hardened surface region.� The nano-grained surface and the work-hardened surface regions created via

S2PD also result in higher tensile stresses in the surface region than those at

the central region of the specimen. These high surface-tensile stresses, in turn,

lead to the formation of the fatal crack at the surface of the S2PD-processed

specimen, thereby changing the cup-and-cone fracture for the annealed sam-

ple to the shear fracture for S2PD-processed samples. It is also shown that

the residual compressive stresses created via S2PD have little influence on the

ductility of the specimen. Instead, these compressive stresses only extend the

apparent elastic strains of S2PD-processed samples.� The high surface roughness of S2PD-processed samples does not have much

influence on the ductility. However, surface roughness may play a role in chang-

ing the cup-and-cone fracture for the annealed sample to the shear fracture for

S2PD-processed samples.� It is shown that the severe-plastic-deformation-based surface-nanocrystallization

process could affect the fatigue behaviors of the material in two ways. The

nanostructured surface layer, work-hardened region, and residual-compressive

stress could enhance the fatigue strength especially in the high-cycle fatigue
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range (> 106 cycles), while the surface contamination and micro-damages caused

by the S2PD process could deteriorate the fatigue strength. Using five WC/Co

balls 7.9 mm in diameter, the 30 min treatment results in the best improvement

in the fatigue resistance, while prolonged treatments (60, 90, and 180 min) ei-

ther lead to no improvements or even decreases in the fatigue resistance. In

the shorter cycle-fatigue range (< 106 cycles), the fatigue lifetimes of all the

treated samples except the 30-min treated sample are lower than those of the

as received one. The longer the processing time, the lower the fatigue lifetimes

in the shorter cycle-fatigue range. Thus, to fully utilize the S2PD process to im-

prove the fatigue behavior of the material with a nanostructrued surface layer,

processing conditions need to be optimized, at least in terms of processing-

time periods. In this study, the optimized fatigue property was obtained in the

sample of a 30-min treatment with five WC/Co balls with diameter of 7.9 mm.� When the surface contamination is not minimized, such as in the case of 180-

min processing with 7.9-mm balls, the fatigue resistance can be decreased rather

than increased. This is because the severe-surface contamination can outweigh

all of the benefits derived from the formation of nano-grains, work hardening,

and residual-compressive stresses.� The surface of the BMG has been subjected to the severe-plastic deformation at

room temperature without the occurrence of a brittle fracture, which shows the

good ductility of the material if the propagation of shear bands can be inhib-

ited. During the severe-plastic-deformation process, crystallization is observed

through the high-sentivity synchrotron diffraction in the near-surface layer, and

the amount of crystal phases decreases as the position goes from the treated

surface to the interior. Work softening was observed in the very impact surface,

but the maximal hardness, which is higher than that of the unaffected interior,

was observed at about 100 µm from the treated surface.� The fatigue strength of this BMG did not benefit from the S2PD process as it did

for a crystal material component. The fatigue fractography showed that the sur-

face damages or contaminations may accelerate the crack initiation, though the

134



near-surface compressive-residual stress could actually retard the crack propa-

gation. Since the propagation cycles does not predominate in the entire fatigue

life, the overall effect of the treatment on the fatigue-property improvement is

not significant.
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Future Work

The surface-treatment processes on BMGs have attracted attentions only in

recent years. Therefore, some interesting issues are still under active investigations.

For example, what is the temperature of the shear band during plastic deforma-

tion? What is the mechanism for the plastic-deformation-induced crystallization? Is

it possible to improve the mechanical properties of the BMGs through the surface

treatments? Based upon the work done in this thesis, the following future work are

proposed:� For the C-2000 alloy, the effects of nanograin, work hardening, and residual

stress on the mechanical properties may be separated by annealing the pro-

cessed sample at an appropriate temperature range. For example, selecting a

temperature where the nano-grain will not grow, but the residual stress can be

eliminated. Hence, the effects of residual stress can be identified.� For the BMG, further parameter-optimizing work can be done so that the dam-

ages and contaminations induced on the sample surface can be minimized, and,

therefore, the fatigue properties can be improved. The effects of the impact

energy, in terms of the ball sizes and bombardment durations, should be sys-

tematically studied.� The BMG-treatment process can be conducted in a more controllable envi-

ronment, especially with a controlled temperature. Since the crystallization

process is very sensitive to the temperature, conducting the treatment process

at a low temperature may inhibit the thermal-induced crystallization. Thus,

the deformation-induced crystallization effects could be separated.� Fatigue behavior of the BMG specimens under different processing times and

load conditions can be further investigated in terms of fatigue initiation and
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propagation. The results obtained in this work show that the fatigue propaga-

tion was retarded by the treatment, but it does not account for a large portion

in the total fatigue life. Further studies are needed to confirm this result.

137



REFERENCES

138



References

[1] Ralph I. Stephens, Ali Fatemi, Robert R. Stephens, and Henry O. Fuchs, Metal
Fatigue in Engineering. John Wiley & Sons, Inc., 2001.

[2] W. Schutz, “A history of fatigue”, Engineering Fracture Mechanics, vol. 54,
pp. 263–300, 1996.

[3] See: http://en.wikipedia.org/wiki/Fatigue (material).

[4] V.V. Bolotin, Mechanics of Fatigue. CRC Press, 1999.

[5] P.K. Liaw, C.Y. Yang, S.S. Palusamy, and W. Ren, “Fatigue crack initiation
and propagation behavior of pressure vessel steels”, Engineering Fracture Me-
chanics, vol. 57, pp. 85–104, 1997.

[6] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A.
Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward,
R.A. Buchanan, C.T. Liu, and C.R. Brooks, “Fatigue behavior of bulk metallic
glasses”, Intermetallics, vol. 12, pp. 885–892, 2004.

[7] T. Nicholas, High Cycle Fatigue. Elsevier, 2006.

[8] M.A. Meyers, A. Mishra, and D.J. Benson, “Mechanical properties of nanocrys-
talline materials”, Progress in Materials Science, vol. 51, pp. 527–556, 2006.

[9] A.Y. Vinogradov, V.V. Stolyarov, S. Hashimoto, and R.Z. Valiev, “Cyclic be-
havior of ultrafine-grain titanium produced by severe plastic deformation”, Ma-
terials Science and Engineering A, vol. 318, pp. 163–173, 2001.

[10] C.S. Chung, J.K. Kim, H.K. Kim, and W.J. Kim, “Improvement of high-cycle
fatigue life in a 6061 Al alloy produced by equal channel angular pressing”,
Materials Science and Engineering A, vol. 337, pp. 39–44, 2002.

[11] K.S. Chan, “A microstructure-based fatigue-crack-initiation model”, Metallur-
gical and Materials Transactions A, vol. 34, pp. 43–58, 2003.

[12] Y. Ochi, K. Masaki, T. Matsumura, and T. Sekino, “Effect of shot-peening
treatment on high-cycle fatigue properties of ductile cast iron”, International
Journal of Fatigue, vol. 23, pp. 441–448, 2001.

[13] M. Telford, “The case for bulk metallic glass”, Materialstoday, vol. 7, pp. 36–43,
2004.

[14] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”,
Materials Transactions JIM, vol. 36, pp. 866–875, 1995.

139



[15] W.H. Jiang, G.J. Fan, H. Choo, and P.K. Liaw, “Ductility of a Zr-based bulk-
metallic glass with different specimen’s geometries”, Materials Letters, vol. 60,
pp. 3537–3540, 2006.

[16] H. Bei, S. Xie, and E.P. George, “Softening caused by profuse shear banding in
a bulk metallic glass”, Applied Physics Letters, vol. 96, p. 105503, 2006.

[17] C.C. Hays, C.P. Kim, and W.L. Johnson, “Microstructure controlled shear band
pattern formation and enhanced plasticity of bulk metallic glasses containing in
situ formed ductile phase dendrite dispersions”, Physical Review Letters, vol. 84,
pp. 2901–2904, 2000.

[18] Y. Zeng, D.V. Louzguine-Luzgin, N. Nishiyama, and A. Inoue, “Role of
nanocrystals in ductile Ni-Pd-P metallic glass”, Journal of Alloys and Com-
pounds, vol. 441, pp. 131–134, 2007.

[19] H.O. Fuchs, Mechanical Engineers’ Handbook. Metal Improvement Company,
1986.

[20] S. Ya. Yarema, “Formation of the science of fatigue of metals 1840-1940”, Ma-
terials Science, vol. 43, pp. 869–885, 2007.

[21] C.A. Rodopoulos, S.A. Curtis, E.R. de los Rios, and J. SolisRomero, “Optimisa-
tion of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot
peeningmethodology, results and analysis”, International Journal of Fatigue,
vol. 26, pp. 849–856, 2004.

[22] E.R. de los Rios, M. Trull, and A. Levers, “Modelling fatigue crack growth
in shot peened components of 2024-T351”, Fatigue & Fracture of Engineering
Materials & Structures, vol. 23, pp. 709–716, 2000.

[23] W. Cheng and I. Finnie, Residual Stress Measurement and the Slitting Method.
Springer, 2007.

[24] P.J. Withers and H.K.D.H. Bhadeshia, “Residual stress: Part 1 - Measurement
techniques”, Materials Science and Technology, vol. 17, pp. 355–364, 2001.

[25] H.O. Fuchs, “Shot peening stress profiles”, tech. rep., Metal Improvement Com-
pany, 1986.

[26] H.J. Grover, “Factors by which shot peening influences the fatigue strength of
parts”, The shot peener, vol. 12, pp. 5–9, 1998.

[27] M. Kobayashi, T. Matsui, and Y. Murakami, “Mechanism of creation of com-
pressive residual stress by shot peening”, International Journal of Fatigue,
vol. 20, pp. 351–357, 1998.

[28] G.A. Webster and A.N. Ezeilo, “Residual stress distributions and their influence
on fatigue lifetimes”, International Journal of Fatigue, vol. 23, pp. 357–383,
2001.

140



[29] M. Meo and R. Vignjevic, “Finite element analysis of residual stress induced by
shot peening process”, Advances in Engineering Software, vol. 34, pp. 569–575,
2003.

[30] T. Hong, J.Y. Ooi, and B. Shaw, “A numerical simulation to relate the shot
peening parameters to the induced residual stresses”, Engineering Failure Anal-
ysis, vol. 15, pp. 1097–1110, 2008.

[31] T.W. Clyne and S.C. Gill, “Residual stresses in thermal spray coatings and their
effect on interfacial adhesion: A review of recent work”, Journal of Thermal
Spray Technology, vol. 4, pp. 401–418, 1996.

[32] K. Sasaki, M. Kishida, and T. Itoh, “The accuracy of residual stress measure-
ment by the hole-drilling method”, Experimental Mechanics, vol. 37, pp. 250–
257, 1997.

[33] V.K. Sinha and V.S. Godaba, “Residual stress measurement in worked and heat
treated steel by X-ray diffractometry”, Materials Science and Engineering A,
vol. 488, pp. 491–495, 2008.

[34] R.A. Owen, R.V. Preston, P.J. Withers, H.R. Shercliff, and P.J. Webster, “Neu-
tron and synchrotron measurements of residual strain in TIG welded aluminium
alloy 2024”, Materials Science and Engineering A, vol. 346, pp. 159–167, 2003.

[35] Y.N. Sun, H. Choo, P.K. Liaw, Y.L. Lu, B. Yang, D.W. Brown, and M.A.M.
Bourke, “Neutron diffraction studies on lattice strain evolution around a crack-
tip during tensile loading and unloading cycles”, Scripta Materialia, vol. 53,
pp. 971–975, 2005.

[36] B.E. Warren, X-ray Diffraction. Dover, 1990.

[37] M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, and
T. Lorentzen, “Use of Rietveld refinement for elastic macrostrain determination
and for evaluation of plastic strain history from diffraction spectra”, Journal of
Applied Physics, vol. 82, pp. 1554–1562, 1997.

[38] A.N. Ezeilo, G.A. Webster, P.J. Withers, and X. Wang, “Characterisation of
elastic and plastic deformation in a nickel superalloy using pulsed neutrons”,
Physica B, vol. 180-181, pp. 1044–1046, 1992.

[39] C.N.J. Wagner, “Stacking faults by low-temperature cold work in copper and
alpha brass”, Acta Metallurgica, vol. 5, pp. 427–434, 1957.

[40] C.N.J. Wagner, “X-ray study of low-temperature cold work in silver and alu-
minum”, Acta Metallurgica, vol. 5, pp. 477–482, 1957.

[41] R.L. Snyder, J. Fiala, and H.J. Bunge, eds., Defect and Microstructure Analysis
by Diffraction. Oxford University Press, 1999.

141



[42] J.I. Langford, Diffraction Analysis of the Microstructure of Materials. Springer,
2004.

[43] B.D. Cullity, Elements of X-ray Diffraction. Addison-Wesley, 1978.

[44] U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer,
“Stress analysis of polycrystalline thin films and surface regions by X-ray diffrac-
tion”, Journal of Applied Crystallography, vol. 38, pp. 1–29, 2005.

[45] J. Straub, “Shot peening - theory”, tech. rep., AMGA meeting, 1962.

[46] M.A. Moshier and B.M. Hillberry, “The inclusion of compressive residual stress
effects in crack growth modelling”, Fatigue & Fracture of Engineering Materials
& Structures, vol. 22, pp. 519–526, 1999.

[47] J. Shigley, C. Mischke, and R. Budynas, Mechanical Engineering Design.
McGraw-Hill, 2003.

[48] SAE fatigue design handbook, 3rd ed., 1997.

[49] Y. Mutoh, G.H. Fair, B. Nobel, and R.B. Waterhouse, “The effect of resid-
ual stresses induced by shot-peening on fatigue crack propagation in two high
strength aluminium alloys”, Fatigue & Fracture of Engineering Materials &
Structures, vol. 10, pp. 261–272, 1987.

[50] J.C. Newman, “Fatigue-life prediction methodology using a crak-closure
model”, Journal of Engineering Materials and Technology, vol. 117, pp. 433–
439, 1995.

[51] B. Kumar, “Effects of residual stresses on crack growth in aluminum alloys”, in
Residual Stress and Its Effects on Fatigue and Fracture, 2006.

[52] S.B. Mahagaonkar, P.K. Brahmankar, and C.Y. Seemikeri, “Effect of shot peen-
ing parameters on microhardness of AISI 1045 and 316L material: an analysis
using design of experiment”, International Journal of Advanced Manufacturing
Technology, vol. 38, pp. 563–574, 2008.

[53] R. Fathallah, A. Laamouri, H. Sidhom, and C. Braham, “High cycle fatigue
behavior prediction of shot-peened parts”, International Journal of Fatigue,
vol. 26, pp. 1053–1067, 2004.

[54] I.F. Pariente and M Guagliano, “About the role of residual stresses and surface
work hardening on fatigue ∆Kth of a nitrided and shot peened low-alloy steel”,
Surface and Coating Technology, vol. 202, pp. 3072–3080, 2008.

[55] E.R. de los Rios, P. Mercier, and B.M. El-Sehily, “Short crack growth behavior
under variable amplitude loading of shot peened surfaces”, Fatigue & Fracture
of Engineering Materials & Structures, vol. 19, pp. 175–184, 1996.

142



[56] S. Curtis, E.R. de los Rios, C.A. Rodopoulos, and A. Levers, “Analysis of the
effects of controlled shot peening on fatigue damage of high strength aluminium
alloys”, International Journal of Fatigue, vol. 25, pp. 59–66, 2003.

[57] A. Turnball, E.R. de los Rios, R.B. Tait, C. Laurant, and J.S. Boabaid, “Im-
proving the fatigue crack resistance of Waspaloy by shot peening”, Fatigue &
Fracture of Engineering Materials & Structures, vol. 21, pp. 1513–1524, 1998.

[58] H. Gleiter, “Nanocrystalline materials”, Progress in Materials Science, vol. 33,
pp. 323–315, 1989.

[59] K. Lu, “Nanocrystalline metals crystallized from amorphous solids: nanocrys-
talline, strucure and properties”, Materials Science and Engineering R, vol. 16,
pp. 161–221, 1996.

[60] H. Gleiter, “Nanostructured materials:basic concepts and microstructure”, Acta
Materialia, vol. 48, pp. 1–29, 2000.

[61] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, “Bulk nanostructured ma-
terials from severe plastic deformation”, Progress in Materials Science, vol. 45,
pp. 103–189, 2000.

[62] K.S. Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of
nanocrystalline metals and alloys”, Acta Materialia, vol. 51, pp. 5743–5774,
2003.

[63] D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, and H. Gleiter, “Deforma-
tion of nanocrystalline materials by molecular-dynamics simulation: relation-
ship to experiments?”, Acta Materialia, vol. 53, pp. 1–40, 2005.

[64] G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia, “A model for the inverse Hall-
Petch relation of nanocrystalline materials”, Materials Science and Engineering
A, vol. 409, pp. 243–248, 2005.

[65] G.J. Fan, G.Y. Wang, H. Choo, P.K. Liaw, Y.S. Park, B.Q. Han, and E.J.
Lavernia, “Deformation behavior of an ultrafine-grained Al-Mg alloy at different
strain rates”, Scripta Materialia, vol. 52, pp. 929–933, 2005.

[66] G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, and N.D. Browning, “Grain
growth in a bulk nanocrystalline Co alloy during tensile plastic deformation”,
Scripta Materialia, vol. 54, pp. 2137–2141, 2006.

[67] R.Z. Valiev and T.G. Langdon, “Principles of equal-channel angular pressing as
a processing tool for grain refinement”, Progress in Materials Science, vol. 51,
pp. 881–981, 2006.

[68] Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, “The process of grain re-
finement in equal-channel angular pressing”, Acta Materialia, vol. 46, pp. 3317–
3331, 1998.

143



[69] A.P. Zhilyaev and T.G. Langdon, “Using high-pressure torsion for metal pro-
cessing:fundamentals and applications”, Progress in Materials Science, vol. 53,
pp. 893–979, 2008.

[70] J.R. Weertman, “Hall-Petch strengthening in nanocrystalline metals”, Materi-
als Science and Engineering A, vol. 166, pp. 161–167, 1993.

[71] R.Z. Valiev, “Structure and mechanical properties of ultrafine-grained metals”,
Materials Science and Engineering A, vol. 234-236, pp. 59–66, 1997.

[72] G. Palumbo, S.J. thorpe, and K.T. Aust, “On the contribution of triple junc-
tions to the structure and properties of nanocrystalline materials”, Scripta Met-
allurgica et Materialia, vol. 24, pp. 1347–1350, 1990.

[73] G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, “Me-
chanical behavior of a bulk nanocrystalline Ni-Fe alloy”, Journal of Alloys and
Compounds, vol. 434-435, pp. 298–300, 2007.

[74] J.W. Tian, J.C. Villegas, W. Yuan, D. Fielden, L. Shaw, P.K. Liaw, and D.L.
Klarstrom, “A study of the effect of nanostructured surface layers on the fa-
tigue behaviors of a C-2000 superalloy”, Materials Science and Engineering A,
vol. 468-470, pp. 164–170, 2007.

[75] J.W. Tian, K. Dai, J.C. Villegas, L. Shaw, P.K. Liaw, D.L. Klarstrom, and
A.L. Ortiz, “Tensile properties of a nickel-base alloy subjected to surface severe
plastic deformation”, Materials Science and Engineering A, vol. 493, pp. 176–
183, 2008. Materials Science and Engineering A, 2008, available online at
doi:10.1016/j.msea.2007.07.102.

[76] A.L. Ortiz, J.W. Tian, J.C. Villegas, L.L. Shaw, and P.K. Liaw, “Interrogation
of the microstructure and residual stress of a nickel-base alloy subjected to
surface severe plastic deformation”, Acta Materialia, vol. 56, pp. 413–426, 2008.

[77] T. Hanlon, Y.-N. Kwon, and S. Suresh, “Grain size effects on the fatigue re-
sponse of nanocrystalline metals”, Scripta Materialia, vol. 49, pp. 675–680,
2003.

[78] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu, “Formation of nanostructured
surface layer on AISI 304 stainless steel by means of surface mechanical attrition
treatment”, Acta Materialia, vol. 51, pp. 1871–1881, 2003.

[79] N.R. Tao, X.L. Wu, M.L. Sui, J. Lu, and K. Lu, “Grain refinement at the
nanoscale via mechanical twinning and dislocation interaction in a nickel-based
alloy”, Journal of Materials Research, vol. 19, pp. 1623–1629, 2004.

[80] K. Lu and J. Lu, “Nanostructured surface layer on metallic materials induced
by surface mechanical attrition treatment”, Materials Science and Engineering
A, vol. 375-377, pp. 38–45, 2004.

144



[81] T. Roland, D. Retraint, K. Lu, and J. Lu, “Fatigue life improvement through
surface nanostructuring of stainless steel by means of surface mechanical attri-
tion treatment”, Scripta Materialia, vol. 54, pp. 1949–1954, 2006.

[82] N.R. Tao, M.L. Sui, J. Lu, and K. Lu, “Surface nanocrystallization of iron
induced by ultrasonic shot peening”, Nanostructured Materials, vol. 11, pp. 433–
440, 1999.

[83] X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, “Microstructure and evo-
lution of mechanically induced ultrafine grain in surface layer of Al-Alloy sub-
jected to USSP”, Acta Materialia, vol. 50, pp. 2075–2084, 2002.

[84] G. Liu, J. Lu, and K. Lu, “Surface nanocrystallization of 316L stainless steel
induced by ultrasonic shot peening”, Materials Science and Engineering A,
vol. 286, pp. 91–95, 2000.

[85] G. Liu, S.C. Wang, X.F. Lou, J. Lu, and K. Lu, “Low carbon steel with nanos-
tructured surface layer induced by high-energy shot peening”, Scripta Materi-
alia, vol. 44, pp. 1791–1795, 2001.

[86] J.L. Liu, M. Umemoto, Y. Todaka, and K. Tsuchiya, “Formation of a nanocrys-
talline surface layer on steels by air blast shot peening”, Journal of Materials
Science, vol. 42, pp. 7716–7720, 2007.

[87] J. Villegas, K. Dai, and L. Shaw, “Experiments and modeling of the surface
nanocrystallization and hardening (SNH) process”, in Processing and Fabrica-
tion of Advanced Materials: XII (T. Srivatsan and R. Varin, eds.), (Materials
Park, OH), pp. 358–372, ASM International, 2003.

[88] J.C. Villegas, L.L. Shaw, K. Dai, W. Yuan, J. Tian, P.K. Liaw, and D.L.
Klarstrom, “Enhanced fatigue resistance of a nickel-based hastelloy induced by
a surface nanocrystallization and hardening process”, Philosophical Magazine
Letters, vol. 85, pp. 427–437, 2005.

[89] K. Dai and L. Shaw, “Comparison between shot peening and surface nanocrys-
tallization and hardening processes”, Materials Science and Engineering A,
vol. 463, pp. 46–53, 2007.

[90] Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, and K. Lu, “Effect of
surface nanocrystallization on friction and wear properties in low carbon steel”,
Materials Science and Engineering A, vol. 352, pp. 144–149, 2003.

[91] M. Umemoto, K. todaka, and K. Tsuchiya, “Formation of nanocrystalline struc-
ture in carbon steels by ball drop and particle impact technicues”, Materials
Science and Engineering A, vol. 375-377, pp. 899–904, 2004.

[92] H.P. Klug and L.E. Alexander, eds., X-ray Diffraction Procedures for Polycrys-
talline and Amorphous Materials. Wiley, 1974.

145



[93] T. Ungar, “Microstructural parameters from X-ray diffraction peak broaden-
ing”, Scripta Materialia, vol. 51, pp. 777–781, 2004.

[94] H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline
and Amorphous Materials. John Wiley & Sons, 1954.

[95] A.R. Stokes and A.J.C. Wilson, “The diffraction of X-rays by distorted crystal
aggregates -I”, in Proceedings of Physics Society, 1944.

[96] L. Shaw, J. Villegas, H. Luo, and M. Miracle, “Thermal stability of nanostruc-
tured Al93Fe3Ti2Cr2 alloys prepared via mechanical alloying”, Acta Materialia,
vol. 51, pp. 2647–2663, 2003.

[97] A.L. Ortiz and L. Shaw, “X-ray diffraction analysis of a severely plastically
deformed aluminum alloy”, Acta Materialia, vol. 52, pp. 2185–2197, 2004.

[98] F. Sanchez-Bajo, A.L.Ortiz, and F.L. Cumbrera, “Analytical formulation of
the variance method of line-broadening analysis for Voigtian X-ray diffraction
peaks”, Journal of Applied Crystallography, vol. 39, pp. 598–600, 2006.

[99] J.I. Langford and A.J.C. Wilson, “Scherrer after sixty years: A survey and
some new results in the determination of crystallite size”, Journal of Applied
Crystallography, vol. 11, pp. 102–113, 1978.

[100] T. Ungar, “Characterization of nanocrystalline materials by X-ray line profile
analysis”, Journal of Materials Science, vol. 42, pp. 1584–1593, 2007.

[101] T. Roland, D. Retraint, K. Lu, and J. Lu, “Enhanced mechanical behavior of
a nanocrystallized stainless steel and its thermal stability”, Materials Science
and Engineering A, vol. 445-446, pp. 281–288, 2007.

[102] L. Balogh, T. Ungar, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, and T.G. Lang-
don, “Influence of stacking-fault energy on microstructural characteristics of
ultrafine-grain copper and copper-zinc alloys”, Acta Materialia, vol. 56, pp. 809–
820, 2008.

[103] W. Klement, R.H. Willens, and P. Duwez, “Non-crystalline structure in solidi-
fied gold-silicon alloys”, Nature, vol. 187, p. 869, 1960.

[104] W.H. Wang, C. Dong, and C.H. Shek, “Bulk metallic glasses”, Materials Science
and Engineering R, vol. 44, pp. 45–89, 2004.

[105] H.S. Chen, “Thermodynamic considerations of the formation and stability of
metallic glasses”, Acta Metallurgica, vol. 22, pp. 1505–1511, 1974.

[106] A.L. Greer, “Through a glass, lightly”, Nature, vol. 402, pp. 132–133, 1999.

[107] D.B. Miracle, “A structural model for metallic glasses”, Nature Materials, vol. 3,
pp. 679–702, 2004.

146



[108] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, “Atomic packing
and short-to-medium-range order in metallic glasses”, Nature, vol. 439, pp. 419–
425, 2006.

[109] D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and
W.L. Johnson, “Designing metallic glass matrix composites with high toughness
and tensile ductility”, Nature, vol. 451, pp. 1085–1090, 2008.

[110] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and
J. Eckert, “Work-hardenable ductile bulk metallic glass”, Physical Review Let-
ters, vol. 94, p. 205502, 2005.

[111] Michael Miller and Peter K. Liaw, Bulk Metallic Glasses. Springer, 2008.

[112] J.F. Loffler, “Bulk metallic glasses”, Intermetallics, vol. 11, pp. 529–540, 2003.

[113] A. Inoue, N. Nishiyama, and H. Kimura, “Preparation and thermal stability
of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter”,
Materials Transactions JIM, vol. 38, pp. 179–183, 1997.

[114] T. Egami, “Formation and deformation of metallic glasses: Atomistic theory”,
Intermetallics, vol. 14, pp. 882–887, 2006.

[115] J.R. Morris, M. Xu, Y.Y. Ye, D.J. Sordelet, and M.J. Kramer, “Theoretical and
experimental studies of devitrification pathways in the Zr2Cu1 − xPdx metallic
glass system”, Acta Materialia, vol. 55, pp. 5901–5909, 2007.

[116] C.A. Schuh and T.G. Nieh, “A nanoindentation study of serrated flow in bulk
metallic glasses”, Acta Materialia, vol. 51, pp. 87–99, 2003.

[117] R.D. Conner, Y. Li, W.D. Nix, and W.L. Johnson, “Shear band spacing under
bending of Zr-based metallic glass plates”, Acta Materialia, vol. 52, pp. 2429–
2434, 2004.

[118] J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, “Nanoindentation of a bulk
amorphous metal alloy at room temperature”, Science, vol. 295, pp. 654–657,
2002.

[119] C.A. Schuh, A.C. Lund, and T.G. Nieh, “New regime of homogeneous flow in
the deformation map of metallic glasses: elevated temperature nanoindentation
experiments and mechanistic modeling”, Acta Materialia, vol. 52, pp. 5879–
5891, 2004.

[120] W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, and P.K. Liaw, “Spa-
tiotemporally inhomogeneous plastic flow of a bulk-metallic glass”, Interna-
tional Journal of Plasticity, vol. 24, pp. 1–16, 2008.

[121] F. Yang, K. Geng, P.K. Liaw, G.J. Fan, and H. Choo, “Deformation in a
Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation”, Acta Mate-
rialia, vol. 55, pp. 321–327, 2007.

147



[122] H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, “Deformation-induced nanocrystal
formation in shear bands of amorphous alloy”, Nature, vol. 367, pp. 541–543,
1994.

[123] W.H. jiang, F.E. Pinkerton, and M. Atzmon, “Deformation-induced nanocrys-
tallization in an Al-based amorphous alloy at a subambient temperature”,
Scripta Materialia, vol. 48, pp. 1195–1200, 2003.

[124] M. Chen, A. Inoue, W. Zhang, and T. Sakurai, “Extraordinary plasticity of
ductile bulk metallic glasses”, Physical Review Letters, vol. 96, p. 245502, 2006.

[125] J.J. Lewandowski and A.L. Greer, “Temperature rise at shear bands in metallic
glasses”, Nature Materials, vol. 5, pp. 15–18, 2006.

[126] C.T. Liu, L. heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H.
Chen, J.L. Wright, M.H. Yoo, and J.A. Horton andA. Inoue, “Test environments
and mechanical properties of Zr-base bulk amorphous alloys”, Metallurgical and
Materials Transactions A, vol. 29, pp. 1811–1820, 1998.

[127] C.J. Gilbert, J.W. Ager III, V. Schroeder, R.O. Ritchie, J.P. Lioyd, and J.R.
Graham, “Light emission during fracture of a ZrTiNiCuBe bulk metallic glass”,
Applied Physics Letters, vol. 74, pp. 3809–3811, 1999.

[128] W.J. Wright, R.B. Schwarz, and W.D. Nix, “Localized heating druing serrated
plastic flow in bulk metallic glasses”, Materials Science and Engineering A,
vol. 319-321, pp. 229–232, 2001.

[129] B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G.Y. Wang, C.T. Liu,
and M. Denda, “Dynamic evolution of nanoscale shear bands in a bulk-metallic
glass”, Applied Physics Letters, vol. 86, p. 141904, 2005.

[130] Z.J. Yan, J.F. Li, R.H. Zhou, and Y.Q. Wu, “Indentation-induced crystallization
in a metallic glass”, Acta Physica Sinica, vol. 56, pp. 999–1003, 2007. (In
Chinese).

[131] K. Wang, T. Fujita, Y.Q. Zeng, N. Nishiyama, A. Inoue, and M.W. Chen,
“Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a
large compression plasticity”, Acta Materialia, vol. 56, pp. 2834–2842, 2008.

[132] F.Z. Li, Z.-J. Liu, Q. Jin, Z.-M. Yu, and E. Liu, “Investigation on work soft-
ening behavior of Aluminum and its alloys with iron”, Journal of Materials
Engineering and Performance, vol. 6, pp. 172–176, 1997.

[133] B. Yang, L. Riester, and T.G. Nieh, “Strain hardening and recovery in a bulk
metallic glass under nanoindentation”, Scripta Materialia, vol. 54, pp. 1277–
1280, 2006.

[134] Y. Zhang, W.H. Wang, and A.L. Greer, “Making metallic glasses plastic by
control of residual stress”, Nature Materials, vol. 5, pp. 857–860, 2006.

148



[135] L.H. Dai and Y.L. Bai, “Basic mechanical behaviors and mechanics of shear
banding in BMGs”, International Journal of Impact Engineering, vol. 35,
pp. 704–716, 2008.

[136] L.Y. Chen, Q. Ge, S. Qu, and J.Z. Jiang, “Stress-induced softening and hard-
ening in a bulk metallic glass”, Acta Materialia, vol. 59, pp. 1210–1213, 2008.

[137] R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty, “Plastic
flow softening in a bulk metallic glass”, Acta Materialia, vol. 54, pp. 4221–4228,
2006.

[138] R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty, “Effect
of shot peening on the fatigue life of a Zr-based bulk metallic glass”, Scripta
Materialia, vol. 59, pp. 167–170, 2008.

[139] T. Yamamoto, T. Takahashi, H. Kimura, and A. Inoue, “Effect of ball-milling
and shot-peening on Zr55Al10Ni5Cu30 alloys”, Journal of Alloys and Compounds,
vol. 430, pp. 97–101, 2007.

[140] F.O. Mear, B. Lenk, Y. Zhang, and A.L. Greer, “Structural relaxation in a heav-
ily cold-worked metallic glass”, doi:10.1016/j.scriptamat.2008.08.023,
2008.

[141] Y. Yokoyama, H. Inoue, K. Fukaura, and A. Inoue, “Relationship between the
liquidus surface and structures of Zr-Cu-Al bulk amorphous alloys”, Materials
Transactions, JIM, vol. 43, pp. 575–579, 2002.

[142] ASTM C 1211-98a, “Standard Test Method for Flexural Strength of Advanced
Ceramics at Elevated Temperatures”, ASTM Standards, 1998.

[143] W. Yuan, “The Effects of the Surface-Nanocrystallization and Hardening (SNH)
Process on the Fatigue Resistance”, Master’s thesis, University of Tennessee,
2004.

[144] R.W. Cahn, “Materials science - nanastructured materials”, Nature, vol. 348,
pp. 389–390, 1990.

[145] J.S.C. Tang and C.C. Koch, “The Hall-Petch relationship in nanocrystalline
Iron produced by ball milling”, Scripta Metallurgica et Materiallia, vol. 24,
pp. 1599–1604, 1990.

[146] H.O. Fuchs and R.I. Stephens, Metal Fatigue in Engineering. John Wiley, New
York, 1980.

[147] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu, “An investigation
of surface nanocrystallization mechanism in Fe induced by surface mechanical
attrition treatment”, Acta Materialia, vol. 50, pp. 4603–4616, 2002.

[148] K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, “Nanostructure formation
mechanism of α-Titanium using SMAT”, Acta Materialia, vol. 52, pp. 4101–
4110, 2004.

149



[149] J. Villegas, K. Dai, L. Shaw, and P.K. Liaw, “Surface roughness evolution in
the surface nanocrystallization and hardening (SNH) process”, in Processing
and Properties of Structural Nanomaterials (L. Shaw, C. Suryanarayana, and
R. Mishra, eds.), (Warrendale, PA), pp. 61–68, TMS, 2003.

[150] K. Dai, J. Villegas, Z. Stone, and L. Shaw, “Finite element modeling of the sur-
face roughness of 5052 Al alloy subjected to a surface severe plastic deformation
process”, Acta Materialia, vol. 52, pp. 5771–5782, 2004.

[151] K. Dai, J. Villegas, and L. Shaw, “An analytical model of the surface roughness
of an aluminum alloy treated with a surface nanocrystallization and hardening
process”, Scripta Materialia, vol. 52, pp. 259–263, 2004.

[152] G.T. Smith, Industrial Metrology: Surfaces and roundness. Springer, 2002.

[153] J.C. Villegas, Investigation of the Effects of the Surface Nanocrystallization and
Hardening (SNH) Process on Bulk Metallic Components. PhD thesis, University
of Connecticut, 2005.

[154] M. Sato, N. Tsuji, Y. Minamino, and Y. Koizumi, “Formation of nanocrystalline
surface layers in various metallic materials by near surface severe plastic defor-
mation”, Science and Technology of Advanced Materials, vol. 5, pp. 145–152,
2004.

[155] K. Dai and L. Shaw, “Parametric studies of multi-material laser densification”,
Materials Science and Engineering A, vol. 430, pp. 221–229, 2006.

[156] A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, and M. Kawazoe11 (1999)
925934., “Fatigue properties of 5056 Al-Mg alloy produced by equal-channel
angular pressing”, Nanostructured Materials, vol. 11, pp. 925–934, 1999.

[157] K. Lu and J. Lu, “Surface nanocrystallization (SNC) of metallic materials-
presentation of the concept behind a new approach”, Journal of Materials Sci-
ence and Technology, vol. 15, pp. 193–197, 1999.

[158] L. Shaw and Y.T. Zhu, CRC Materials Processing Handbook. CRC Press, 2007.

[159] J.C. Villegas, K. Dai, L.L. Shaw, and P.K. Liaw, “Nanocrystallization of a
nickel alloy subjected to surface severe plastic deformation”, Materials Science
and Engineering A, vol. 410-411, pp. 257–260, 2005.

[160] K. Todaka, M. Umemoto, and K. Tsuchiya, “Comparison of nanocrystalline
surface layer in steels formed by air blast and ultrasonic shot peening”, Materials
Transactions, vol. 45, pp. 376–379, 2004.

[161] M.A. Meyers and K.K. Chawla, Mechanical Metallurgy: Principles and Appli-
cations. Prentice-Hall, Inc., 1984.

[162] E.W. Hart, “Theory of the tensile test”, Acta Metallurgica, vol. 15, pp. 351–355,
1967.

150



[163] C.C. Koch, “Structural nanocrystalline materials: an overview”, Journal of
Materials Science, vol. 42, pp. 1403–1414, 2007.

[164] C.D. Beachem, “An electron fractographic study of the influence of plastic
strain conditions upon ductile rupture processes in metals”, Transactions of
ASM, vol. 56, pp. 318–334, 1963.

[165] Z.F. Zhang and J. Eckert, “Unified tensile fracture criterion”, Physical Review
Letters, vol. 94, p. 09430194311, 2005.

[166] C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic
glasses at room temperature”, Applied Physics Letters, vol. 77, pp. 46–48, 2000.

[167] L.C. Zhang, B.C. Wei, D.M. Xing, T.H. Zhang, W.H. Li, and Y. Liu, “The
characterization of plastic deformation in Ce-based bulk metallic glasses”, In-
termetallics, vol. 15, pp. 791–795, 2007.

[168] S.B. Biner, “Ductility of bulk metallic glasses and their composites with ductile
reinforcement: A numerical study”, Acta Materialia, vol. 54, pp. 139–1150,
2006.

[169] F. Szuecs, C.P. Kim, and W.L. Johnson, “Mechanical properties of
Zr56.2T i13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass
composite”, Acta Materialia, vol. 49, pp. 1507–1513, 2001.

[170] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and
P.K. Liaw, “Two-glassy-phase bulk metallic glass with remarkable plasticity”,
Applied Physics Letters, vol. 91, p. 131901, 2007.

[171] W.J. Ma, Y.R. Wang, B.C. Wei, and Y.F. Sun, “Microstructure and mechan-
ical properties of Zr-Cu-Al bulk metallic glasses”, Transactions of Nonferrous
Metals Society of China, vol. 17, pp. 929–933, 2007.

[172] N.K. Mukhopadhyay, A. Belger, P. Paufler, and D.H. Kim, “Nanoindentation
studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses”, Materials Science and En-
gineering A, vol. 449-451, pp. 954–957, 2007.

[173] A.V.D. Beukel and J. Sietsma, “The Glass Transition as a Free Volume Related
kinetic phenomenon”, Acta Metallurgica et Materialia, vol. 38, pp. 383–389,
1990.

[174] K.M. Flores, D. Suh, P. Asoka-Kumar, P.A. Sterne, R.H. Howell, and R.H.
Dauskardt, “Characterization of free volume in a bulk metallic glass using
positron annihilation spectroscopy”, Journal of Materials Research, vol. 17,
pp. 1153–1161, 2002.

[175] Q.P. Cao, J.F. Li, Y.H. Zhou, A. Horsewell, and J.Z. Jiang, “Effect of rolling
deformation on the microstructure of bulk Cu60Zr20T i20 metallic glass and its
crystallization”, Acta Materialia, vol. 54, pp. 4373–4383, 2006.

151



Publications� J.W. Tian, J.C. Villegas, W. Yuan, et al , “A study of the effect of nanostruc-
tured surface layers on the fatigue behaviors of a C-2000 superalloy”, Materials
Science and Engineering: A, 468-470(11), 2007, pp.164-170� J.W. Tian, K. Dai, J.C. Villegas, et al, “Tensile properties of a nickel-base
alloy subjected to surface severe plastic deformation”, Materials Science and
Engineering: A, 493(1-2), 2008, pp.176-183� J.W. Tian, L. Shaw, P.K. Liaw, K. Dai, “On the ductility of a surface severely
plastically deformed nickel alloy”, Materials Science and Engineering: A, 498(1-
2), 2008, pp. 216-224� J.W. Tian, L.L. Shaw, Y.D. Wang, et al, “A Study on the Surface-Severe-Plastic
Deformation Behavior of a Zr-based Bulk-Metallic Glass (BMG)”, (Submitted
to Intermetallics)� A.L. Ortiz, J.W. Tian, J.C. Villegas, et al, “Interrogation of the microstructure
and residual stress of a nickel-base alloy subjected to surface severe plastic
deformation” Acta Materialia, 56(3), 2008, pp. 413-426� B. Winiarski, J.W. Tian, R.M. Langford, P.K. Liaw, P.J. Withers, “Residual-
stress measurements of amorphous materials using a focused ion beam”,(in
preparation)

152



Vita

Jiawan Tian was born in Xiaogan, Hubei Province, China, on March 26,
1976, the son of Huilan Qiu and Chuanbiao Tian. After graduating in 1995 from
Xiaogan No.1 high school, Hubei Province, he attended Shanghai Jiaotong University,
Shanghai, China, where he received both a Bachelor of Science degree in 1999 and
a Master of Science degree in 2002 from the department of materials science and
engineering. In the spring of 2002, Jiawan entered Shanghai Belling Corp., ltd, a
semiconductor manufacturing company, as a process engineer in Shanghai, China. In
January 2004, he again returned to the academic world as a doctoral student at the
University of Tennessee in materials science and engineering, where he worked as a
graduate research assistant. During his PhD studies in materials science, Jiawan also
finished the main courses in the department of statistics, and in 2008, he completed
his Doctor of Philosophy degree in materials science and Master of Science degree in
statistics.

153


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2008

	Mechanical Behavior of a Ni-based Crystalline and a Zr-based Amorphous Materials Subjected to Surface Severe Plastic Deformation
	Jiawan Tian
	Recommended Citation


	Introduction
	Background of Fatigue
	Improvement of Fatigue Behavior
	Surface Treatment on Bulk-Metallic Glass
	Summary

	Literature Review
	Shot Peening
	Overview
	Residual stresses
	Work hardening
	Surface roughness

	Mechanical Properties of Nanocrystalline Materials
	Overview
	Mechanical properties

	Surface-Severe-Plastic-Deformation Process
	Overview
	Comparison with shot peening
	Grain refinement

	Bulk-Metallic Glass
	Overview
	Plastic deformation and crystallization
	Surface-severe-plastic deformation


	Experimental Techniques
	Materials and Equipment
	Experimental Procedures
	Microstructures and fractography
	Mechanical properties

	Summary

	Dependence of Microstructures of a C-2000 Superalloy on the Processing Condition of the S2PD Process
	Introduction
	Experimental Procedures
	Surface-treatment process
	Structure characterizations
	Characterization of macroscopic residual stresses and mechanical properties

	Results
	Surface contamination and surface roughness
	Microstructures
	Microhardness profiles and macroscopic residual stresses
	Fatigue behavior and fractography

	Discussion
	Conclusions

	Effects of Nanostructured Surface Layers on Fatigue Behavior of a C-2000 Superalloy
	Introduction
	Experimental Procedures
	Results and Discussion
	Conclusions

	On the Ductility of a Surface-Severely-Plastically Deformed Nickel Alloy
	Introduction
	Experimental Procedures
	Results and Discussion
	Microstructures revealed by OM and TEM
	Stress-strain behavior
	Overall fracture morphology and fractography

	Summary

	A Study on the Surface-Severe-Plastic-Deformation Behavior of a Zr-based Bulk-Metallic Glass (BMG)
	Introduction
	Experimental Procedures
	Results and Discussion
	Conclusions

	Conclusions
	Future Work
	References
	Publications
	Vita

