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ABSTRACT 

 

The overall aim of the studies described herein was to evaluate bovine 

spermatogonial cell dynamics under various conditions. Results from these experiments 

will provide the basis for potential production of offspring following spermatogonial 

stem cell transfer. Experiment 1 evaluated gonadotropin administration effects at 

initiation of inhibin passive immunization in Jersey bull calves on testicular morphology 

and development. Primary treatments consisted of control (KLH) or immunization (INH) 

plus a combination of saline, FSH, or GnRH. Administration of FSH at the time of initial 

immunization against inhibin significantly increased number of germ cells (92.2 ± 9 x 106 

cells) compared to INH-Saline bulls (54.9 ± 10 x 106 cells) with INH-GnRH bulls being 

intermediate (64.5 ± 9 x 106 cells; P < 0.05). These results suggested that gonadotropin 

administration at time of inhibin immunization increases number of germ cells in the 

testis. Experiment 2 evaluated transiently induced ischemia in testes of Jersey calves on 

morphology and development. Treatments consisted of control or banding for 2 h, 4 h, 

and 8 h periods. Transiently induced ischemia significantly decreased number of germ 

cells in 8 h (12.6 ± 5 x 106 cells) compared to 0 (38.1 ± 6 x 106 cells), 2 (31.9 ± 6 x 106 

cells), and 4 h (33.4 ± 5 x 106 cells; P < 0.05). These results suggested that transiently-

induced ischemia significantly decreases number of germ, Sertoli and Leydig cells in the 

testis. Experiment 3 evaluated spermatogonial stem cells (SSC) proliferation, isolated 

from prepubertal and adult bulls, during short term in vitro culture. Spermatogonia were 

cultured in the presence or absence of a feeder monolayer (FL or NF), FBS type (FBS-S 

or FBS-SF), and media type (ELSC or RSC) treatment combinations. Viable type A 
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spermatogonia survived under in vitro conditions and were able to proliferate and form 

different types of colonies. Furthermore, co-culture spermatogonial cells with a feeder 

monolayer plus FBS-S enhanced colony number (may be due to increasing cell viability). 

At 15 days of culture, colonies from both types of bulls were positive to AP. Therefore, 

these finding provide the basis for potential production of offspring through in vitro 

genetic manipulation such as intracytoplasmic sperm injection (ICSI), round spermatid 

injection (ROSI), or following SSC transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

TABLE OF CONTENTS 

PAGE 

CHAPTER 1 - INTRODUCTION................................................................................... 1 
CHAPTER 2 - LITERATURE REVIEW....................................................................... 4 

1. Development and function of the testis ...................................................................... 5 
1.1. Fetal and prepubertal testis ................................................................................. 6 
1.2. Sertoli cell ............................................................................................................ 9 
1.1. Sertoli-germ cell interactions ............................................................................ 14 
1.4. Leydig cell .......................................................................................................... 17 
1.5. Structure and components of the testis at puberty ............................................. 20 
1.6. Process of spermatogenesis ............................................................................... 22 

2. Endocrine function associated with testicular function ............................................ 26 
2.1. Gonadotropin-releasing hormone and gonadotropins ...................................... 26 

2.1.1. Gonadotropin-releasing hormone .............................................................. 27 
2.1.2. Follicle-stimulating hormone...................................................................... 27 
2.1.3. Luteinizing hormone ................................................................................... 28 

2.2. Inhibin ................................................................................................................ 29 
2.3. Testosterone ....................................................................................................... 31 
2.4. Prolactin ............................................................................................................ 32 
2.5. Estradiol............................................................................................................. 33 
2.5. Thyroid hormones .............................................................................................. 34 
2.6. Additional hormones and factors regulating testicular function....................... 35 

3. Testicular germ cell transplantation.......................................................................... 36 
3.1. Male germ cell transplantation in different species .......................................... 37 

3.1.1. Initial transplantation experiments............................................................. 37 
3.1.2. Cross-species germ cell transfer................................................................. 39 
3.1.3. Transplantation experiments in livestock animals...................................... 40 

3.2. Technique to increase recipient colonization by donor cells............................. 44 
3.2.1. Selection and preparation of donor germ cells........................................... 44 
3.2.2. Preparation of recipient animals ................................................................ 52 

3.3. Cyopreservation of male germ cells .................................................................. 53 
3.4. Methods for germ cell transplantation .............................................................. 54 
3.5. Methods to isolate spermatogonia subpopulations............................................ 55 
3.6. Advances on bovine germ stem cell transplant.................................................. 59 
3.7. Potential applications of germ cell transplantation in livestock ....................... 60 

4. Summary and statement of the problem ................................................................... 61 
5. Literature Cited ......................................................................................................... 63 

Chapter 3 – CHANGES IN THE TESTIS SEMINIFEROUS TUBULES AND 
INTERSTITIUM IN PREPUBERTAL BULL CALVES IMMUNIZED AGAINST 
INHIBIN AT THE TIME OF GONADOTROPIN ADMINISTRATION ................ 81 

3.1. Acknowledgments.................................................................................................. 82 
3.2. Abstract .................................................................................................................. 82 
3.3. Introduction............................................................................................................ 83 



 viii

3.4. Materials and Methods........................................................................................... 85 
3.4.1. Animals and treatments................................................................................... 85 
3.4.2. Preparation of immunogen ............................................................................. 87 
3.4.3. Blood samples, body weight, and scrotal growth ........................................... 87 
3.4.4. Collection and processing of testis tissue ....................................................... 88 
3.4.5. Testis histology and morphometry .................................................................. 89 
3.4.6. Inhibin antibody titer determination ............................................................... 91 
3.4.7. Gonadotropin and steroid hormone RIA ........................................................ 93 
3.4.8. Statistical analyses.......................................................................................... 93 

3.5. Results.................................................................................................................... 94 
3.5.1. Hormones, body weight, scrotal growth, testicular weight, and inhibin 
antibody titers ........................................................................................................... 94 
3.5.2. Testicular components evaluation .................................................................. 95 

3.6. Discussion .............................................................................................................. 96 
3.7. References.............................................................................................................. 99 

Chapter 4 – RECIPIENT PREPARATION FOR SPERMATOGONIAL STEM 
CELL TRANSPLANTATION: ALTERATION IN TESTICULAR CELL 
COMPONENTS FOLLOWING TRANSIENTLY INDUCED ISCHEMIA IN 
BULLS ........................................................................................................................... 116 

4.1. Acknowledgments................................................................................................ 117 
4.2. Abstract ................................................................................................................ 117 
4.3. Introduction.......................................................................................................... 118 
4.4. Materials and methods ......................................................................................... 120 

4.4.1. Animals and treatments................................................................................. 120 
4.4.2. Bodyweight, scrotal growth, and scrotal temperature.................................. 121 
4.4.3. Collection and processing of testis tissue ..................................................... 121 
4.4.4. Testis histology and morphometry ................................................................ 123 
4.4.5. Statistical analyses........................................................................................ 125 

4.5. Results.................................................................................................................. 126 
4.5.1. Effects of treatments on testicular blood flow, scrotal growth, and scrotal 
temperature ............................................................................................................. 126 
4.5.2. Evaluation of testicular components............................................................. 126 

4.6. Discussion ............................................................................................................ 128 
4.7. References............................................................................................................ 131 

Chapter 5 – EFFECTS OF CULTURE ENVIRONMENT ON PROLIFERATION 
OF SPERMATOGONIA STEM CELLS FROM PREPUBERTAL AND ADULT 
BULLS ........................................................................................................................... 143 

5.1. Acknowledgments................................................................................................ 144 
5.2. Abstract ................................................................................................................ 145 
5.3. Introduction.......................................................................................................... 146 
5.4. Materials and methods ......................................................................................... 149 

5.4.1. Media preparation ........................................................................................ 150 
5.4.2. Collection and processing of testes............................................................... 151 
5.4.3. Spermatogonia stem cell isolation and purification ..................................... 152 
5.4.4. Determination of germ cell populations ....................................................... 155 



 ix

5.4.5. Cell culture and treatments........................................................................... 158 
5.4.6. In vitro proliferation of type A spermatogonia ............................................. 159 
5.4.7. Alkaline phosphatase activity ....................................................................... 160 
5.4.8. Evaluation of bovine spermatogonia in culture............................................ 161 
5.4.9. Statistical analyses........................................................................................ 162 

5.5. Results.................................................................................................................. 163 
5.7. References............................................................................................................ 180 

Chapter 6 - SUMMARY AND CONCLUSIONS....................................................... 202 
VITA............................................................................................................................... 207 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF FIGURES 

FIGURE                                                                                                                     PAGE 

CHAPTER 2 - LITERATURE REVIEW………………………………………………4 
Figure 1. Proliferation and differentiation of Leydig cell lineage (Extracted from 
Mendis-Handagama and Ariyaratne 2001)................................................................. 18 
Figure 2. Sequence of spermatogenesis in mice.. ....................................................... 24 
Figure 6. Schematic representation of bovine male germ cell transplantation.. ......... 43 

Chapter 3 – CHANGES IN THE TESTIS SEMINIFEROUS TUBULES AND 
INTERSTITIUM IN PREPUBERTAL BULL CALVES IMMUNIZED AGAINST 
INHIBIN AT THE TIME OF GONADOTROPIN ADMINISTRATION ................ 81 

Figure 1. Timeline of primary treatment assignment in Jersey bull calves immunized 
against INH or KLH plus gonadotropin sub-treatment administration. ................... 104 
Figure 2. A representative light micrograph of testis tissue of a 4 month old Jersey 
bull calf showing testicular components................................................................... 105 
Figure 3. Variation in serum anti-INH antibody titers in Jersey bull calves immunized 
against INH or KLH treatment groups...................................................................... 106 
Figure 4. Daily and weekly concentrations of LH (Mean ± SEM) in Jersey bull calves 
immunized against INH or KLH plus gonadotropin administration among treatment 
groups. Arrows indicate immunization days. ........................................................... 107 
Figure 5. Daily and weekly concentrations of testosterone (T; Mean ± SEM) in Jersey 
bull calves immunized against INH or KLH plus gonadotropin administration among 
treatment groups. Arrows indicate immunization days. ........................................... 108 
Figure 6. Overall daily and weekly concentrations of FSH (Mean ± SEM) in Jersey 
bull calves immunized against INH or KLH plus gonadotropin administration among 
treatment groups. Arrows indicate immunization days. ........................................... 109 
Figure 7. Daily and weekly concentrations of FSH (Mean ± SEM) in Jersey bull 
calves immunized against INH or KLH plus gonadotropin administration among 
treatment groups. Arrows indicate immunization days. ........................................... 110 

Chapter 4 – RECIPIENT PREPARATION FOR SPERMATOGONIAL STEM 
CELL TRANSPLANTATION: ALTERATION IN TESTICULAR CELL 
COMPONENTS FOLLOWING TRANSIENTLY INDUCED ISCHEMIA IN 
BULLS ........................................................................................................................... 116 

Figure 1. Assignment of transiently induced ischaemia treatment groups in Jersey bull 
calves......................................................................................................................... 134 
Figure 2. Transient changes on testicular temperature in prepubertal Jersey bull calves 
immediately before, during, and 1 h after transiently induced ischaemia treatments.
................................................................................................................................... 135 
Figure 3. Mean testis weight and percentage volume density of testicular Leygig, 
Sertoli, and germ cells in cross sections in bulls subjected to different transiently 
induced ischaemia treatments for depletion of endogenous germ cells.................... 136 
Figure 4. Mean cell number per testis in cross sections of bulls subjected to different 
transiently induced ischaemia periods. ..................................................................... 137 



 xi

Figure 5. Representative light micrographs of testicular tissue cross section in 2-mo 
of age Jersey bull calves subjected to different transiently induced ischaemia periods 
showing testicular components. ................................................................................ 138 

Chapter 5 – EFFECTS OF CULTURE ENVIRONMENT ON PROLIFERATION 
OF SPERMATOGONIA STEM CELLS FROM PREPUBERTAL AND ADULT 
BULLS……………………………………………………………………………….….143 

Figure 1: Representation of a discontinuous Percoll density gradient illustrating the 
position of each cell fraction and corresponding density marker beads after 
centrifugation………………………………………………………………………..186 
Figure 2: Representative images of bovine testicular components obtained before 
enzymatic digestion of seminiferous tubules…………………………………………187 
Figure 3: Immunolocalization of spermatogonial cells positive to PGP 9.5 in 
seminiferous tubules from prepubertal and adult bulls.................…………………..188 
Figure 4: Spermatogonial cell characterization in pools of cells and fractions (I and II) 
from prepubertal and adult bulls………………………………………………………190 
Figure 5: Morphological characteristics of spermatogonial cells before culture.…..191 
Figure 6: Schematic representation of experimental design…..…………………….193 
Figure 7: Representative Hoffman contrast images of colonies from prepubertal and 
adult bulls on day 15 of culture……………………………………………………..194 
Figure 8: Representative microphotographs showing different alkaline phosphatase 
(AP) reactivity on different types of spermatogonial colonies………..…………….195 

 
 

 

 

 

 

 

 



 xii

LIST OF TABLES 

TABLE                                                                                                                       PAGE 

 
CHAPTER 2 - LITERATURE REVIEW....................................................................... 4 
Table 1: Summary of proteins expressed by immature and mature Sertoli cells (from 
Petersen and Söder 2006).................................................................................................. 11 
Table 2. Different compounds secreted by Sertoli cells to the surrounding environment 
and their function. ............................................................................................................. 16 
Table 3. Sequential milestones in the development of mammalian male germ cell 
transplantation technique. ................................................................................................. 42 
Chapter 3 – CHANGES IN THE TESTIS SEMINIFEROUS TUBULES AND 
INTERSTITIUM IN PREPUBERTAL BULL CALVES IMMUNIZED AGAINST 
INHIBIN AT THE TIME OF GONADOTROPIN ADMINISTRATION ................ 81 
Table 1.Assignment of primary treatments in Jersey bull calves immunised against 
inhibin or keyhole limpet haemocyanin plus gonadotropin subtreatment administration.
......................................................................................................................................... 111 
Table 2. Mean testis volume, volume density of testicular components, and seminiferous 
tubule length.................................................................................................................... 112 
Table 3. Mean absolute volume of testicular components.............................................. 113 
Table 4. Mean cell number per testis and average volume of a Leydig, Sertoli, and germ 
cell................................................................................................................................... 114 
Chapter 4 – RECIPIENT PREPARATION FOR SPERMATOGONIAL STEM 
CELL TRANSPLANTATION: ALTERATION IN TESTICULAR CELL 
COMPONENTS FOLLOWING TRANSIENTLY INDUCED ISCHEMIA IN 
BULLS ........................................................................................................................... 116 
Table 1. Mean scrotal circumference (SC), SC growth, scrotal temperature, and single 
fresh testicular weight (TW) at castration....................................................................... 139 
Table 2. Mean seminiferous tubule diameter, length and volume density of testicular 
components. .................................................................................................................... 140 
Table 3. Mean absolute volume of testicular components.............................................. 141 
Table 4. Mean average volume of a Leydig, Sertoli, and germ cells. ............................ 142 
Chapter 5 – EFFECTS OF CULTURE ENVIRONMENT ON PROLIFERATION 
OF SPERMATOGONIA STEM CELLS FROM PREPUBERTAL AND ADULT 
BULLS……………………………………………………………………………….…143 
Table 1: Colony characteristics of type A spermatogonia cells on day 4 of culture....... 196 
Table 2: Colony characteristics of type A spermatogonia cells on day 7 of culture……197 
Table 3: Colony characteristics of type A spermatogonia cells on day 15 of culture…..198 
Table 4: Alkaline phosphatase characteristics on day 4 of culture of colonies derived 
from type A spermatogonia cells………………………………………………………..199 
Table 5: Alkaline phosphatase characteristics on day 7 of culture of colonies derived 
from type A spermatogonia cells………………………………………………………..200 
Table 6: Alkaline phosphatase characteristics on day 15 of culture of colonies derived 
from type A spermatogonia cells………………………………………………………..201 



 1

CHAPTER 1 - INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2

Spermatogonia stem cells (SSC) are specialized pluripotent cells that have unique 

capabilities including self-renewal and production of the end product, spermatozoa (de 

Rooij 2001). The ability to recover these cells from testes of donor animals, perform in 

vitro culture and modification, and transfer these cells to a host testis may provide a 

valuable tool to transfer economically favorable genes in livestock. Successful 

spermatogonial transplantation from donor to recipient animals is also a promising 

technique to preserve genetic material of valuable or endangered males. In the cattle 

industry, germ cell transfer could be used as an alternative to artificial insemination (AI) 

in tropical environments, where Bos indicus bulls disseminate Bos taurus genes. 

Male germ cell transplantation in livestock has progressed tremendously in the 

past few years (Honaramooz et al. 2003a, 2003b; Izadyar et al. 2003; Joerg et al. 2003; 

Hill et al. 2005). However, the efficiency of colonization in seminiferous tubules by 

transplanted germ cells is variable (Dobrinski et al. 2000; Nogano, et al. 2002; Izadyar et 

al. 2003; Joerg et al. 2003; Hill et al. 2005). Depletion of endogenous spermatogonial 

stem cells in recipient animals using busulfan (Brinster et al. 2003) or irradiation (Izadyar 

et al. 2003) have both been used in preparation of recipient animals prior to 

transplantation. However, both techniques are not without compromises (severe bone 

marrow depression or specialized radiotherapy equipment required).  

Before donor SSC can be transferred to a host testis, these cells must be isolated 

and maintained in vitro with high viability. The ability to culture these cells in vitro has 

the potential to investigate aspects concerning spermatogonial survival and differentiation 

in long-term cultures (reviewed by Sofikitis et al. 2005). The ideal in vitro system, one 

that supports self-renewal or the complete process of spermatogenesis from a population 
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of SSC, is the goal of several scientists (reviewed by Sofikitis et al. 2005). Furthermore, 

culture systems have been proposed to facilitate propagation of spermatogonia (Izadyar et 

al. 2003a; 2003b), which can then be transferred into recipient testes (Izadyar et al. 

2003b; Herried et al. 2006), genetically modified (Nagano et al. 2001), or cryopreserved 

for future interventions (Oatley et al. 2004). However, offspring were not always 

obtained which may be related to issues with culture systems utilized.   

The clinical application of culturing SSC is of great importance in livestock, 

wildlife, and humans. Animal models may provide new knowledge for therapeutic 

management in patients with oncological and infertility diseases. Preserving SSC have 

two advantages (proliferation by mitosis and differentiation to haploid cells by meiosis) 

as opposed to cryopreservation of spermatozoa (haploid cells cannot undergo mitosis). 

Therefore, large amounts of genetic material could be preserved through culture of SSC.    

Overall aims of studies presented herein focussed on the necessity to find 

practical protocols for: 1) stimulating transplanted germ cells to re-colonize recipient 

testis through an appropriate testicular environment, 2) depleting endogenous germ cells 

in recipient animals before transplant, and 3) harvesting and culturing viable SSC. 

Results from these experiments will provide the basis for potential production of 

offspring following spermatogonial stem cell transfer. 



 4

CHAPTER 2 - LITERATURE REVIEW 
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1. Development and function of the testis 

 
Early development of the pituitary and the male reproductive tract is a highly 

coordinated series of events that ends in formation of complete accessory glands and 

organs (Putney et al. 1984; Gorski 1985; reviewed by Ford and D’Occhio 1989). The 

male reproductive tract consists of two testes, two epididymides (each with its ducts 

deferens), accessory glands, and penis (Byskov and Hoyer 1994). The male reproductive 

system has two major functions: 1) exocrine: production of spermatozoa through the 

process of gametogenesis and fluid secretions from accessory glands, and 2) endocrine: 

secretion of hormones such as testosterone and inhibin (reviewed by Parker et al. 1999). 

The testicular parenchyma consists of seminiferous tubules compartment (Seminiferous 

epithelium: Sertoli cells, primordial and developing germ cells and peritubular cells) and 

interstitial compartment (Leydig cells, immune cells (i.e. macrophages), mesenchimal 

cells, nerves, blood and lymphatic vessels, and the extracellular matrix; Curtis and 

Amann 1981; Russell et al. 1990; Ariyaratne and Mendis-Handagama 2000). The 

epididymis provides the environment for final maturation of spermatozoa and serves as a 

storage organ for these cells (Amann and Almquist 1962; Igboeli and Foote 1968; 

reviewed by Varner and Johnson 2007). Accessory sex glands produce seminal plasma, 

and the penis is the copulatory organ (reviewed by Amann et al. 1993; Henault et al. 

1995).  
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1.1. Fetal and prepubertal testis 

 
Sex determination of offspring occurs at fertilization when the oocyte is 

penetrated by a sperm delivering either X (female) or Y (male) chromosome (Welshons 

and Russell 1959; George and Wilson 1994; reviewed by Parker et al. 1999). Sexual 

differentiation occurs during the first trimester of gestation in cattle (George and Wilson 

1994; reviewed by Dohle et al. 2003). A gene complex located on the short arm of the Y 

chromosome triggers sexual change in the gonads which then causes differentiation in the 

fetus (Welshons and Russell 1959; reviewed by Dohle et al. 2003). In early embryo 

development, testes are formed from primordial (primitive) germ cells, which migrate 

from the yolk sac to the genital ridge of the mesonephros, where they form the primary 

epithelial cords in association with somatic cells from the genital ridge (George and 

Wilson 1994; Albrecht and Eicher 2001). Male and female embryos have two sets of 

paired ducts during this undifferentiated stage: 1) the Müllerian (paramesonephric) ducts 

and 2) the Wolffian (mesonephric) ducts (reviewed by Jost et al. 1970; George and 

Wilson 1994). Even though the mesonephric and paramesonephric ducts are present, the 

embryo is in a sexually indifferent stage (reviewed by Jost et al. 1970; George and 

Wilson 1994). Histologically, both the ovaries and testes cell lineages are indifferent in 

the embryo; thus, termed as bipotential cell precursors (reviewed by Jost et al. 1970; 

Albrecht and Eicher 2001).  

In mammals, XY embryos develop testes under the influence of the testis 

determining gene SRY (sex-determining region), which is present on the Y chromosome 

(Sinclair et al. 1990; George and Wilson 1994; Albrecht and Eicher 2001). On the other 
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hand, XX embryos develop ovaries in the absence of the Y chromosome (George and 

Wilson 1994). The sex-determining region (SRY) regulates other genes involved in sex 

determination (Payen et al. 1996). Gonadal precursors present at genital ridges have the 

potential to further differentiate into testes or ovaries (George and Wilson 1994; Albrecht 

and Eicher 2001). Common precursors are composed of four bipotential cell lineages that 

form the gonad: germ cells, connective tissue cells, steroid-producing cells, and 

supporting cells (Albrecht and Eicher 2001). 

The Y chromosome in males influences production of specific hormones during 

early testes development that lead to male sexual differentiation (George and Wilson 

1994; reviewed by Parker et al. 1999). Critical hormonal mediators of male sexual 

differentiation are testosterone (produced by Leydig cells in the interstitial region) and 

anti-Müllerian hormone (AMH; also called Müllerian-inhibiting substance) produced by 

Sertoli cells within testicular cords (George and Wilson 1994; reviewed by Parker et al. 

1999). Testosterone induces Wolffian ducts to differentiate into seminal vesicles, 

epididymis, vas deferens and ejaculatory ducts (George and Wilson 1994; Drews 2000); 

whereas, Wolffian ducts regress in the absence of testosterone (George and Wilson 1994; 

reviewed by Parker et al. 1999). On the other hand, regression of Müllerian ducts is 

exerted by AMH (George and Wilson 1994; reviewed by Parker et al. 1999). In the 

absence of AMH, Müllerian ducts will persist and form the female reproductive tract 

consisting of oviducts, uterus and upper vagina (George and Wilson 1994; reviewed by 

Parker et al. 1999). 

After sex determination in mammals, the testes organize into two different 

compartments: 1) the testicular cords which are the precursor of the seminiferous tubules, 
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and 2) the interstitial tissue space (George and Wilson 1994; reviewed by Parker et al. 

1999). From outside the urogenital ridge originates Sertoli and primordial germ cell 

precursors which later are present within testicular cords (George and Wilson 1994; 

reviewed by Parker et al. 1999). Located in the interstitial region outside testicular cords 

are Leydig cells with steroidogenic activity, peritubular myoid cells, and endothelial cell 

precursors (de Krester and Kerr 1994; reviewed by Parker et al. 1999). 

The testes first become distinct histologically when the testis cords are formed, 

which are precursors to seminiferous tubules (George and Wilson 1994; reviewed by 

Wilhelm et al. 2007). In humans, this process begins by approximately the 7th wk of 

gestation (George and Wilson 1994; Drews 2000). In mice, testis cords are first apparent 

at embryonic day 12.5 (George and Wilson 1994; Drews 2000). In cattle, formation of 

the testes is distinct by day 45 of gestation and steroidogenesis activity initiated 

(Shemesh et al. 1978; reviewed by Ford and D’Occhio 1989). In sheep and swine, 

testicular function and morphology are initiated at 30 days of gestation (reviewed by Ford 

and D’Occhio 1989). Organization of cords is initiated by pre-Sertoli cells, which express 

SRY at approximately 6 wk of gestation in humans (George and Wilson 1994). 

Following onset of SRY expression, these cells undergo a rapid wave of proliferation and 

exhibit changes in gene expression that denote the onset of the testis pathway (Capel et 

al. 1999; reviewed by Wilhelm et al. 2007). Over the next several days, Sertoli cells lay 

down on the basal membrane that delineates the cords, which contain Sertoli cells and 

spermatogonia (Yu et al. 1998; reviewed by Wilhelm et al. 2007). These spermatogonia 

are germ cells arrested in G1 of the mitotic cycle, presumably due to indirect inhibitory 

effects of Sertoli cells (reviewed by Wilhelm et al. 2007).  
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Seminiferous cords contain precursors of Sertoli cells of mesenchymal origin 

(reviewed by Anniballo et al. 2000). Primordial germ cells (PGC) of yolk sac 

mesodermal origin, which will develop later into gonocytes, originate in a distant region 

from seminiferous cords (reviewed by Anniballo et al. 2000). They emerge from the yolk 

sac and migrate to the final location where seminiferous tubules are forming (McKay et 

al. 1953; reviewed by Parker et al. 1999). When embryonic gonocytes are migrating from 

the yolk sac to their final destination, they are dependent on other cells for a continuous 

supply of nutrients (Zamboni and Merchant, 1973; reviewed by Parker et al. 1999). When 

PGCs reach seminiferous cords, Sertoli cell precursors maintain them throughout their 

lifespan (Jost et al. 1974; reviewed by Parker et al. 1999).  

 

1.2. Sertoli cell 

 
Sertoli cells were first described by Enrico Sertoli (Sertoli 1865) and are the 

somatic components within the seminiferous epithelium that support developing germ 

cells throughout spermatogenesis (Wong and Russell, 1983; reviewed by Petersen and 

Söder 2006). During development of the fetal testis, Sertoli cell defines the initial stage of 

development in the forming gonad (George and Wilson 1994; reviewed by Petersen and 

Söder 2006). They express the SRY gene, thus determining sex of the gonad (reviewed 

by Petersen and Söder 2006). Sertoli cells are the source of anti-Müllerian hormone, 

responsible for suppressing development of the female reproductive tract (George and 

Wilson 1994; reviewed by Petersen and Söder 2006). These cells plus peritubular cells 

are essential during formation of testis cords (Griswold 1998; McLaren 2000). During 
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testis development, morphological and biochemical differences exist between immature 

and mature Sertoli cells, indicating that Sertoli cells have a broad spectrum of functions 

that are of great importance in the physiology of spermatogenesis (Sinowatz and 

Amselgruber 1986; reviewed by Petersen and Söder 2006). Immature Sertoli cells 

experience morphological differentiation to mature Sertoli cells during the first 28 wk of 

proliferative development in postnatal bulls (Sinowatz and Amselgruber 1986). In the 

bovine, a functional blood-testis barrier (BTB) can be expected at 24 wk of testis 

development (Sinowatz and Amselgruber 1986). The basal lamina is well developed 

during early postnatal life which correlates with high secretory activity by the rough 

endoplasmic reticulum and Golgi apparatus (Sinowatz and Amselgruber 1986; reviewed 

by Petersen and Söder 2006). Additionally, tight junctions formed by Sertoli cells create 

the BTB that divide the spermatic epithelium into basal and adluminal compartments 

(Amann 1983; de Krester and Kerr 1994). Tight junctions seal intercellular space and 

contribute to the permeability barrier across an epithelium or endothelium (Diamond 

1977; Powell 1981). Furthermore, these tight junctions are considered as a major site and 

platform for vesicle trafficking and signal transduction (Lui et al. 2003). 

During testicular cord formation, immature Sertoli cells divide constantly; 

however, this proliferative activity declines in association with onset of puberty 

(Steinberger and Steinberger 1971). Immediately before puberty, seminiferous fluid is 

produced by the Sertoli cell transforming the solid testis cords into seminiferous tubules 

with lumen (reviewed by Petersen and Söder 2006). Mature Sertoli cells produce 

transferrin (Skinner and Griswold 1980), plasminogen, (Lacroix et al. 1977; Skinner and 

Griswold, 1980) and the inflammatory cytokine IL-1  (Syed et al. 1988; Jonsson et al. 
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1999; Sultana et al. 2000; Wahab-Wahlgren et al. 2000) among other proteins (Table 1). 

The differentiation process from an immature to a mature Sertoli cell indicates the 

importance of the functional regulation of mature Sertoli cells during spermatogenesis 

(reviewed by Petersen and Söder 2006). In fact, the stem cell factor (SCF) produced by 

Sertoli cells in the tubule directly interact through the c-kit receptor expressed on 

developing spermatogonia (reviewed by Petersen and Söder 2006). Additionally, 

functional Sertoli cells have specific FSH receptors and will absorb testosterone secreted 

by Leydig cells (Silva et al. 2002). Androgen-binding protein (ABP), which binds to 

testosterone and dihydrotestosterone (DHT), are also a product of Sertoli cells (Skinner 

and Fritz 1985). Sertoli cells also produce inhibin that controls FSH secretion by the 

pituitary gland (Amann 1983). 

 
Table 1: Summary of proteins expressed by immature and mature Sertoli cells (from 

Petersen and Söder 2006)* 

 

Protein Immature cell (prior to 
puberty) 

Mature cell (from puberty 
onwards) 

Cytokeratin + - 

Transferrin - + 

Interleukin 1-α - + 

Androgen receptor + + 

Anti-Müllerian hormone + - 

Aromatase + - 

Inhibin β B-subunit + - 

*For additional information see (Andersson et al. 1998; Sharpe et al. 2003) 
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Sertoli cells play a key role in spermatogenesis, providing a unique environment 

for germ cell development into functioning sperm (Amann 1983; de Krester and Kerr 

1994). Sertoli cells are considered “nurse cells” for this reason and are the only cells 

inside seminiferous tubules derived from somatic cells of the gonadal ridge (Waites et al. 

1985; Griswold 1995). Over the course of development, postnatal Sertoli cells inside the 

testis cord undergo morphological and metabolic changes (Amann 1983; Brehm and 

Steger 2005). At 4 wk of age, the calf testis cord consists of undifferentiated Sertoli cells 

and some centrally prepubertal spermatogonia (Sinowatz and Amselgruber 1986). The 

nuclei of Sertoli cells at this time are round or oval (Sinowatz and Amselgruber 1986). At 

8 wk of life, seminiferous tubules have increased in diameter to about 70 µm due to 

mitotic activity of Sertoli cells (Sinowatz and Amselgruber 1986). A well-developed 

Golgi apparatus is present in many Sertoli cells at this time, which indicates high 

secretory activity (Sinowatz and Amselgruber 1986). The Sertoli cell has a more centrally 

located nucleolus and its ultrastructure has revealed it rests on the basal lamina; this is the 

identical placement for mature Sertoli cells in functioning testes (Sinowatz and 

Amselgruber 1986).  

The tubular diameter increases rapidly from 8 (60-80 µm)  to 20 wk  (100-140 

µm) of age in bulls due in part to mitotic division of Sertoli and spermatogonia cells 

(Sinowatz and Amselgruber 1986; Wrobel 2000). Seminiferous tubules are in close 

proximity with each other, exhibit a reduction in interstitum space, and tubules switch 

from solid to the presence of a small lumen (Sinowatz and Amselgruber 1986). During 

this time, Sertoli cells send out lateral processes containing rough endoplasmic reticulum 
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(RER) that surround spermatogonial cells in close proximity (Sinowatz and Amselgruber 

1986).  

At 24-30 wk of age, tubules continue to increase in size to 170 µm in diameter 

and primary spermatocytes in different stages of meiosis can be present (Sinowatz and 

Amselgruber 1986). At 40 wk of age, which is the approximate age of puberty in the bull, 

the average seminiferous tubule diameter has reached 190-200 µm (Amann 1983; Curtis 

and Amann 1981; Sinowatz and Amselgruber 1986). For the most part, Sertoli cells have 

become differentiated, well developed, and positioned in the basal part of the tubular 

epithelium with a nucleus of irregular shape (Sinowatz and Amselgruber 1986; Wrobel 

2000). At this point in development, Sertoli cells have formed the blood testis barrier, 

which divide the spermatic ephitelium into the basal compartment containing 

spermatogonia and adluminal compartment with more advanced stages of 

spermatogenesis (Sinowatz and Amselgruber 1986). Mitochondria are located in the 

basal region of the Sertoli cell as well as both smooth endoplasmic reticulum (SER) and 

RER located in the cytoplasm and in the basal lateral processes of the Sertoli cell 

(Sinowatz and Amselgruber 1986).  

Testicular size is regularly used as an indicator of Sertoli cell number and 

spermatogenesis (reviewed by Petersen and Söder 2006). Furthermore, daily sperm 

production (DSP) in bulls correlates with Sertoli cell number (Berndtson et al. 1987a; 

1987b). Additionally, DSP and testis weight in grams correlates positively to total Sertoli 

cells (Curtis and Amann 1981; Berndtson et al. 1987a). Therefore, factors that modify  

Sertoli cell number may influence potential sperm output (Curtis and Amann 1981; 

Berndtson et al. 1987a). 
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1.1. Sertoli-germ cell interactions 

 
During spermatogenesis, the spermatogonia translocation is facilitated by Sertoli 

cells, which participate in movement of developing germ cells from the basal to the 

adluminal compartment (de Krester and Kerr 1994; reviewed by Mruck and Cheng 

2004). Therefore, there is a close interaction between Sertoli cells and developing germ 

cells throughout the spermatogenesis process (Curtis and Amann 1981, Rusell et al., 

1990; reviewed by Mruk and Cheng 2004). The translocation movement of developing 

germ cells may be associated to Rho GTPase family members (Lau and Mruk 2003; Lui 

et al. 2003). Furthermore, translocation of elongating spermatids across the seminiferous 

epithelium is conferred by ectoplasmic specialization, a modified adherens junction type 

(de Kretser 1990; Vogl et al. 2000), microtubules, several motor proteins such as 

ATPases, GTPases (Lui et al. 2002), dynein (Gutmann et al. 2000), and myosin VIIa 

(Velichkova et al. 2002) present in the testis seminiferous epithelium. These ectoplasmic 

specializations allow translocation of spermatids and spermiation process, along with 

tight and desmosome-like junctions between Sertoli and germ cells (de Kretser and Kerr 

1994; reviewed by Vogl et al. 2000; reviewed by Mruck and Cheng 2004). Spermatic 

epithelium formed by Sertoli cells, developing germ cells, and extracellular matrix 

connections inside the tubuli constantly change during spermatogenesis (de Krester and 

Kerr 1994; reviewed by Mruk and Cheng 2004). However, the precise mechanisms that 

govern ectoplasmic specializations between Sertoli-germ cells interactions still need to be 

elucidated (reviewed by Mruk and Cheng 2004). 
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Sertoli cells have a fine developed cytoskeleton that supports the progressive 

spermatic epithelium during spermatogenesis (reviewed by Volg et al. 2000; reviewed by 

Mruk and Cheng 2004). Translocation of developing germ cells from the basal to the 

adluminal compartment of the seminiferous epithelium is assisted by Sertoli cells during 

spermatogenesis (reviewed by Mruk and Cheng 2004). Additionally, Sertoli cells actively 

participate in spermiation (release of mature spermatids to the lumen of the seminiferous 

epithelium) and phagocytosis of degenerated developing germ cells (reviewed by Mruk 

and Cheng 2004; Nakagawa et al. 2005). Sertoli cells secrete a variety of compounds 

such as proteases, proteases inhibitors, hormones, energy substrates, growth factors, and 

extracellular matrix components (Bardin et al. 1994; reviewed by Mruk and Cheng 

2004), with autocrine and paracrine effects within the seminiferous epithelium (Table 2). 

However, unanswered questions remain regarding the signal(s) that dictates the 

precise movement of spermatocytes across the spermatic epithelium during 

spermatogenesis (reviewed by Mruk and Cheng 2004). What is the mechanism(s) that 

triggers signaling to start selecting germ cells from the basement membrane and enter 

into epithelial cycle? How can some committed germ cells progress to spermatids while 

others remain undifferentiated at the basal compartment of the seminiferous epithelium? 

What is the signal(s) that triggers germ cells to be committed and start differentiating to 

become a specialized cell “spermatozoa”? 

Nutrients for spermatogonial, spermatocytes, and spermatids need to be 

synthesized in sufficient quantities and efficiently delivered by Sertoli cells (Bardin et al. 

1994; reviewed by Mruk and Cheng 2004). Additionally, a mature Sertoli cell has an 
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Table 2. Compounds secreted by Sertoli cells to the surrounding environment and their 

functions (from Bardin et al. 1994; reviewed by Mruk and Cheng 2004). 

Compounds secreted by 
Sertoli cells Compounds Functions 

Proteases 

Cathepsin D, L,  and S 
Plasminogen activator 
(PA) 

Tissue maintenance, 
repair, and growth, germ 
cell movement,  
and development 

Proteases inhibitors 

Cystatin C, Cathepsin L 
α2-macroglobulin 
Urokinase-type 
Plasminogen activator (u-
PA)  

germ cell 
movement 

Growth, autocrine, and 
paracrine factors 

Transforming growth 
factor-α  (TGF-α) 
TGF-β1, β-2, and -β3 
Stem cell factor (SCF) 
Tumor necrosis factor-α 
(TNF-α) 
Sertolin 

Proliferation of 
prepubertal Sertoli cells 
Cell division and prevent 
apoptosis 
Junction dynamic 

Extracellular matrix 
components 

Type IV collagen   
Heparan sulfate 
Proteoglycans 
Entactin 
Collagen 
Laminin 

Sertoli cell tight junctions 
integrity Structural 
integrity 
Blood-testis barriers 
integrity 

Hormones Inhibin 
Dihydrotestosterone 
Estradiol  
Androgen Binding Protein 

Negative feedback on 
FSH 
Enhance germ cell 
survival 

Energy  Lactate 
Pyruvate 
Carbohydrate 
Amino acids 
Lipids 

Enhance germ cell 
survival 

Others Vitamins 
Metal ions (transferrin) 

Enhance germ cell 
survival 
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extensive surface area in proximate contact with approximate 50 developing germ cells in 

mammals (Russell et al. 1990). These cellular structures give an idea of the enormous 

amount of energy needed during germ cell development and progression through the 

spermatogenesis cycle.  

Sertoli cells support germ cells throughout development as evident by supplying 

energy substrates such as glucose, lactate, and pyruvate (Setchell 1993; reviewed by 

Griswold 1995; Biellia 1997). Furthermore, it was suggested that germ cells use lactate as 

the primary source for energy production (Jutte et al. 1983; reviewed by Mruk and Cheng 

2004). Interestingly, Sertoli cells have aromatase and 5-α reductase enzymes responsible 

for conversion of testosterone secreted from Leydig cells to 17β-estradiol and 

dihydrotestosterone (reviewed by Silva et al. 2002; reviewed by Petersen and Söder 

2006).  

 

1.4. Leydig cell 

 
Originally discovered by Franz Leydig (1850), Leydig cells are found adjacent to 

seminiferous tubules in the testis. Differentiation of Leydig cells is a multi-step process 

that can be divided in fetal and postnatal development (reviewed by Mendis-Handagama 

and Ariyaratne 2001). In the fetal testis, it is proposed that these somatic cells originate 

from undifferentiated mesenchymal cells in the mesonephros (reviewed by Byskov 

1986). Postnatal differentiation of Leydig cells is crucial in male mammals to establish 

adult Leydig cell populations and development of male characteristics (reviewed by 

Dohle et al. 2003). Leydig cell proliferation is divided into several steps, from 
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mesenchymal cells (precursor cells) to mature Leydig cells ( Figure 1; reviewed by 

Mendis-Handagama and Ariyaratne 2001, Ge et al. 2006).  

During gestation, precursors of Leydig cells differentiate and develop to adult 

Leydig cells in the postnatal testis (reviewed by Byskov 1986; Mendis-Handagama  et al. 

1987; reviewed by Mendis-Handagama and Ariyaratne 2001). Mesenchymal cells are 

spindle-like shape, contain little cytoplasm, absent of steroidogenic activity, and lack LH 

receptors (Hardy et al. 1990; reviewed by Mendis-Handagama and Ariyaratne 2001; 

Teerds et al. 2007). Progenitor cells aquire steroidogenic enzymes, 3β-hydroxysteroid 

dehydrogenase (3β-HSD), 5-α reductase, cytochrome P450 cholesterol side-chain 

cleavage (P450scc), and the P450 17α-hydroxylase/C17-20 lyase (P450c17) needed for 

androgen production (Hardy et al. 1990; Haider and Servos 1998; Ariyaratne et al. 2000; 

Ge et al. 2005; Teerds et al. 2007). At the same time, LH receptors become functional 

 

 

Figure 1. Proliferation and differentiation of Leydig cell lineage (Extracted from Mendis-

Handagama and Ariyaratne 2001).  



 19

in these type of cells (Teerds et al. 2007). The final step in Leydig cell differentiation is 

disappearance of cytoplasmic lipids and a significant increase in average cell size 

(Mendis-Handagama et al. 1987; Ariyatatne et al. 2000).   

Fetal testes cells produce two major hormones: anti-müellerian hormone (AMH) 

and testosterone (de Kretser and Kerr 1994; reviewed by Dohle et al. 2003). Secretion of 

AMH causes regression of Müellerian ducts; thus, regressing the female reproductive 

tract (George and Wilson 1994). On the other hand, testosterone enhances the 

development of Wolffian ducts, which results in formation of the epididymis, vas 

deferens, and seminal vesicles (George and Wilson 1994). Additionally, testosterone can 

be converted by 5-α reductase to dihydrotestosterone (DHT), a more potent metabolite 

needed during spermatogenesis (Singh et al. 1996; reviewed by Dohle et al. 2003). 

Beside testosterone, Leydig cells produce 17β-estradiol (E2), dihydroepiandrosterone 

(DHEA), and androstenedione (Eckstein et al. 1987; reviewed by Payne and Youngblood 

1995). 

Leydig cells are found in the testicular interstitial space in proximity of 

seminiferous tubules (Ariyaratne and Mendis-Handagama 2000). Development of 

organelle components and LH receptors increases steroidogenic activity in adult Leydig 

cells; thus, testosterone biosynthesis (Eckstein et al. 1987; Hardy et al. 1989; Shan and 

Hardy 1992; Teerds et al. 2007). The increase of testosterone production leads to onset of 

puberty (Amann 1983; reviewed by Mendis-Handagama and Ariyaratne 2001).  
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1.5. Structure and components of the testis at puberty 

 

Puberty in male is generally defined as the age at which reproductive function, 

hormone levels, and presence of motile sperm are found in mammals in order to 

reproduce (Amann 1983). In terms of sperm output, puberty is defined as the age at 

which a bull is first able to produce an ejaculate containing 50 million sperm with a 

minimum of 10% motility (Wolf et al. 1965; Lunstra et al. 1978; Amann 1983). 

Testicular cell development, hormones (LH and testosterone), and sperm production of 

bulls at puberty is related to age, body weight (nutrition), breed, and testes weight 

(Lunstra et al. 1978; Curtis and Amann 1981; Pruitt and Corah 1985; Evans et al. 1995). 

The first sexual interest is exhibited approximately 3 wk prior to puberty and reach 

mating ability about 6 wk after puberty in bulls (Lunstra et al. 1978; Hamilton 2006). 

An increase in gonadotropin releasing hormone (GnRH) secretion is associated 

with the early rise in gonadotropins secretion (FSH and LH) in bull calves (Evans et al. 

1995). Additionally, the early rise in LH and FSH secretion is followed by proliferation 

and differentiation of Leydig and Sertoli cells in prepubertal calves (Curtis and Amann 

1981; Amann and Walker 1983; Amann et al. 1986; Evans et al. 1995). Furthermore, 

secretion of LH between 10 and 20 wk of age has been shown to stimulate development 

of testicular components in prepubertal bulls (Curtis and Amann 1981; Amann and 

Walker 1983; Evans et al. 1995). 

Based on histological evaluations, testis weight increases 10 fold and 

seminiferous tubules double their presence in the parenchyma from 12 to 32 wk of age in 

bulls (Curtis and Amann 1981). Sertoli cells differentiation starts at 20 wk and formation 
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of adult Sertoli cells was completed near 28 wk of age (Curtis and Amann 1981). 

Additionally, gonocytes are present at 12 wk and were replaced by prespermatogonia and 

A-spermatogonia at 20 wk of age, indicating a transition period when meiosis has begun 

(Curtis and Amann 1981). Furthermore, preleptotene to diplotene spermatocytes appear 

for the first time at 16 wk and their number increase through 32 wk of age when 

spermatids appear (Curtis and Amann 1981).  

A complete blood testis barrier appears only at puberty in which the primary 

function must be to allow for conditions favorable for meiosis and to allow secretion of 

fluid that transports spermatozoa out of seminiferous tubules (Setchell et al. 1969; 

Setchell 1980). Appearance of the tubule lumen indicates fluid secretion and completion 

of the blood testis barrier between 24 and 28 wk of age in bulls (Setchell 1980; Curtis and 

Amann 1981). Therefore, transformation from prepubertal to pubertal testis containing 

Sertoli cells, developing spermatogia, and spermatozoa occurred at approximately 16 wk 

in bulls (Curtis and Amann 1981). Functional normalization of the spermatic epithelium 

(Sertoli and germ cells) is a prolonged process that attains efficient sperm production 

approximately 6 mo after initiation of spermatogenesis (Amann 1983). 

Anatomically, the testicular parenchyma at puberty consists of: 1) seminiferous 

tubules compartment composed of Sertoli cells, developing germ cells, and peritubular 

cells; and 2) interstitial compartment composed of Leydig cells, immune cells (i.e. 

macrophages), mesenchymal cells, nerves, blood and lymphatic vessels, and connective 

tissue (Curtis and Amann 1981; Russell et al. 1990; Mullins and Saacke 2003). The 

mediastinum is the central connective tissue core of the testis that houses ducts called rete 

testis that connect seminiferous tubules and epididymal duct through the efferent ducts 
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(Mullins and Saacke 2003). These interconnected channels allow spermatozoa and fluid 

originating in the spermatic epithelium to move freely out of the testis (Mullins and 

Saacke 2003). Functions of the epididymis are to provide the environment for final 

maturation of spermatozoa resulting in acquisition of motility and potential fertility, and 

serve as the storage reservoir of spermatozoa (Amann 1987; reviewed by Amann et al. 

1993).   

  

1.6. Process of spermatogenesis  

 
Spermatogenesis is a progressive and complex multi-day process in mammals 

(Curtis and Amann 1981, Rusell et al. 1990). The Sertoli cell aids in developing germ 

cells from A spermatogonia to functioning sperm, a continuous process in the adult male 

(Amann, 1983; Rusell et al. 1990). Spermatogonial multiplication (spermatocytogenesis), 

meiosis (genetic material exchange and reduction division producing haploid spermatids), 

and spermiogenesis (differentiation process) are the three primary phases in 

spermatogenesis that occur inside the seminiferous tubule (Curtis and Amann 1981; 

Amann 1983; Russell et al. 1990; Johnson et al. 1997).  

To study molecular aspects of type AS spermatogonia, stem cells of 

spermatogenesis (Huckins 1971; de Rooij and Grootegoed 1998), in an active spermatic 

epithelium is difficult because the complexity of the seminiferous tubules (reviewed by 

de Rooij 2001). Purification of type AS spermatogonia cells is difficult in adult males; 

thus, prepubertal bulls (Izadyar et al. 2003a; Herrid et al. 2006), pigs (Luo et al. 2006), 

goats (Honaramooz et al. 2003a), or transgenic mice (Brinster and Zimmermann 1994) 
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are used in an attempt to isolate type AS spermatogonia cells. It is difficult to make 

comparison between studies because the pattern of type AS spermatogonia cells 

development is species-specific. For instance, spermatogenesis start immediately after 

birth in mice and is completed at 20 days of age (Baker and O’Shaughnessy 2001) while 

in bulls is delayed several months (Wrobel 2000; Aponte et al. 2005). Because is difficult 

to stablish the exact moment when germ stem cells start differentiating in vivo, the most 

effective way to isolate pure populations of spermatogonial stem cells is to collect all 

forms of type A spermatogonia (As, Apr, Aal, and A1-A4) from prepubertal males. 

To understand the process of spermatogenesis, the arrangement of developing 

type A spermatogonial cells (including stem cell, Type A-single; reviewed by de Rooij 

2001) and spermatocytes inside the seminiferous tubules needs to be described. 

Primordial germ cells from an early stage of seminiferous tubules formation differentiate 

and become gonocytes until birth when they differentiate to form type AS spermatogonia 

(reviewed by Parks et al. 2003). In non-primate mammals, A-single (AS) spermatogonia 

is the stem cell that undergo mitosis to ensure the continuous supply of stem cells 

throughout spermatogenesis (Huckins 1971; de Rooij and Grootegoed 1998). A-paired 

(Apr) spermatogonia divides into daughter cells and remain connected by an intercellular 

bridge that further develop into chains of four A-aligned (Aal) spermatogonia (Figure 2, 

Russell et al. 1990; reviewed by de Rooij 2001). The chains of Aal spermatogonia can  
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Figure 2. Sequence of spermatogenesis in mice. Spermatogonia (A1-A4, In and B) 

undergo a series of mitotic divisions before they enter meiosis. This series of mitotic 

divisions allows for continuous proliferation and replacement of spermatogonia stem 

cells (Extracted from de Rooij 2001). 
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divide further into chains of 8 and 16 cells (Figure 3). The spermatogenic cycle can be 

divided into 12 stages (I–XII) based on germ cell development (Curtis and Amann 1981). 

In the different stages of spermatogenesis, the As, Apr, and Aal spermatogonia progress 

and differentiate into A1, A2, A3, A4, In, B spermatogonia, and primary spermatocytes 

(Curtis and Amann 1981; reviewed by de Rooij 2001). The A1, A2, and A3 cell types 

have unique nuclei stereological characteristic from small-flattened nuclei to larger nuclei 

that contain only one large nucleolus or multiple large fragments of nucleoli (Curtis and 

Amann 1981; Russell et al. 1990; Johnson et al. 1997). The In and B spermatogonia have 

large oval to spherical nuclei that contain large chromatin flakes (Curtis and Amann 

1981; Russell et al. 1990).  

At the end of the proliferation phase, primary spermatocytes enter into the meiotic 

phase and give rise to secondary spermatocytes (Russell et al. 1990; Johnson et al. 1997). 

During this phase, genetic diversity is guaranteed by DNA recombination and four 

unique haploid spermatids are produced (Russell et al. 1990). The final phase of 

spermatogenesis is the differentiation phase, commonly referred to as spermiogenesis 

(Johnson et al. 1997). During this phase, the spherical spermatid undergo a remarkable 

morphological transformation that results in a fully differentiated highly specialized 

spermatozoon containing a head (nuclear material and acrosome), mid piece 

(mitochondrial helix), and tail (Russell et al. 1990; Johnson et al. 1997).   

Finally, spermiation is the process where spermatids are released as spermatozoa 

into the lumen of the seminiferous tubule (Johnson et al. 1997). The complete process of 

spermatogenesis from As-spermatogonia to the formation of fully differentiated 

spermatozoa takes 61 d in bulls (Amann 1983). In the bull, the spermatogenic cycle lasts 
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13.5 days, which originate from spermatogonia that differentiate 4.5 cycles earlier for a 

total of 61 d on average (Amann 1983; de Kretser and Kerr 1994). Sertoli cell plasticity 

supports and maintains the spermatogenesis process; thus, these cells are correlated 

positively to daily sperm production in bulls (Berndtson et al. 1987a; 1987b). 

Additionally, the process of spermatogenesis at puberty is associated with endocrine 

changes such as hypothalamic discharge of gonadotropin (GnRH), discharge of LH and 

FSH by the pituitary gland, and testosterone secretion by Leydig cells in response to LH 

secretion (Amann 1983; Amann and Walker 1983; Amann et al. 1986).   

 

 

2. Endocrine function associated with testicular function 

 

2.1. Gonadotropin-releasing hormone and gonadotropins 

 
Testicular development depends greatly upon maturation of the hypothalamus-

pituitary-testis axis. Gonadotropin-releasing hormone (GnRH) secreted by the 

hypothalamus and gonadotropins (FSH and LH) secreted by the anterior pituitary in 

response to GnRH dictate a unique pattern of testicular development and function before 

and after puberty in bulls.  
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2.1.1. Gonadotropin-releasing hormone 

 
One of the most important hormones to achieve proper testicular development is 

GnRH, a neuropeptide that originates in the hypothalamus (Silverman et al. 1994). The 

hypothalamo-hypophyseal-portal system allows minute quantities of GnRH to cause a 

release primarily of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

from the anterior pituitary gland (Amann 1983; Sharpe 1994). Before puberty in the 

male, GnRH neurons in the tonic center of the hypothalamus release low amplitude and 

low frequency pulses of GnRH (Foster 1994). The onset of puberty is due to a decreased 

hypothalamic sensitivity to the negative feedback to testosterone and estradiol (Amann 

1983; Amann et al. 1986). Therefore, more pituitary LH is secreted; thus, Leydig cells 

became more responsive and produce more testosterone until puberty is reached (Amann 

and Walker 1983; Amann et al. 1986).   

 

2.1.2. Follicle-stimulating hormone 

 

Follicle-stimulating hormone (FSH), a glycoprotein produced and secreted by the 

anterior pituitary, is the major endocrine hormone known to regulate Sertoli cell function 

(reviewed by Silva et al. 2002; reviewed by Petersen and Söder 2006). In prenatal and 

newborn animals, FSH plays an important role in controlling Sertoli cell proliferation 

(reviewed by Griswold 1998; reviewed by Silva et al. 2002). After birth (from 4 to 32 

wk), FSH remains relatively low (Amann and Walker 1983); then, a peak in FSH 



 28

concentration occurs that is believed to be related to cell proliferation and differentiation 

in the bull testis (Evans et al. 1993). After puberty, FSH regulates steroidogenesis 

(conversion of testosterone to estradiol by Sertoli cells) and gametogenesis (Sharpe 1994; 

reviewed by Silva et al. 2002). 

Sertoli cells respond through its receptor (G protein-coupled receptor) to FSH and 

stimulates production of inhibin, androgen receptor (AR), androgen binding protein, and 

transferrin (Verhoeven and Cailleau 1988). Continuous availability of FSH is essential 

during spermatogenesis (Amann 1983). It has been suggested that FSH and testosterone 

play an active role initiating and maintaining spermatogenesis (Sharpe 1994). The 

spermatogenic epithelium also depends on discharges of LH by the pituitary gland that 

stimulate Leydig cells to produce testosterone; thus, establishing a negative feedback on 

production of GnRH, FSH, and LH at the hypothalamus and pituitary gland (Amann 

1983; Sharpe 1994).  

 

2.1.3. Luteinizing hormone  

 

Luteinizing hormone (LH), a glycoprotein secreted by the anterior lobe of the 

pituitary in response to GnRH (Sharpe 1994), is the major hormone known to regulate 

steroidogenic function of Leydig cells (Hardy et al. 1989; Shan and Hardy 1992; 

reviewed by Mendis-Handagama and Ariyaratne 2001). In the bull, apparent circadian 

rhythm does not exist for the release of LH; however, it has been reported that episodic 

release does occur (Schanbacher and Echternkamp 1978; Amann 1983; Amann and 
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Walker 1983). Following release of LH, blood concentrations of testosterone increase 

through the steroidogenic response of Leydig cells (Schanbacher and Echternkamp 1978; 

Amann et al. 1986; Evans et al. 1993; Jimenez-Severiano et al. 2005). 

In postnatal bull calves, an early (between 6 and 24 wk of age) but transient 

increase in LH concentration occurs (Amann 1983; Evans et al. 1995; 1996; Rawlings 

and Evans 1995; Chandolia et al. 1997; Aravindakshan et al. 2000). The early increase in 

frequency of GnRH pulses during this prepubertal period may be associated with 

pulsatile discharges of LH, characteristic of the early prepubertal phase in bulls (Amann 

and Walker 1983; Evans et al. 1996; 1993). An early increase of LH occurs parallel to 

testicular growth and establishment of spermatogenesis (Amann 1983; Evans et al. 1996; 

Aravindakshan et al. 2000). The peripubertal period, from 25 wk of age until puberty, is 

characterized by rapid testicular growth and high levels of testosterone in bull calves 

(Lunstra et al. 1978; Evans et al. 1993; 1995). However, blood levels of testosterone 

increase to an amount that is capable of suppressing LH pulses immediately before 

puberty (Amann 1983; Coulter 1986; MacDonald et al. 1990; Evans et al. 1993), 

suggesting gonadotropin-independent mechanisms may contribute in regulating testicular 

development in bulls (Barth and Ominski 2000; Brito et al. 2007).  

 

2.2. Inhibin 

 
In the male, inhibin is produced by Sertoli cells (Cuevas et al. 1987; de Krester et 

al. 2000; Kaneko et al. 2003) under the control of FSH by cyclic adenosine 3’ and 5’-
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monophosphate pathways (de Kretser and Robertson 1989). Inhibin, a glycoprotein, is 

composed of α- and β-subunits (α-βA is inhibin-A or α-βB is inhibin-B) in the bovine 

(Sugino et al. 1992). Inhibin plays a physiological role on FSH secretion from infancy to 

puberty in bulls (Kaneko et al. 2001). Moreover, it was suggested that inhibin may have 

an inhibitory effect on spermatogenesis (Hakovirta et al. 1993; Kaneko et al. 2003). In 

general, the primary role of inhibin is an endocrine negative feedback hormone on FSH 

secretion at the pituitary gland (Franchimont et al. 1979; Ying 1987; Bame et al. 1999; 

Kaneko et al. 2001; Kaneko et al. 2003). Moreover, this negative feedback is disrupted in 

castrated bulls that exhibited low concentrations of inhibin and high concentrations of 

FSH (MacDonald et al. 1991). Additionally, an autocrine and paracrine role for inhibin in 

regulation of testis function has been suggested, reversing the inhibitory action of activin 

on testosterone production by Leydig cells in culture (Lin et al. 1989). It has been shown 

that inhibin-A and -B are found in the Sertoli cells of the prepubertal and postpubertal 

bulls and production of inhibin decreases as a bull ages (Kaneko et al. 2003). 

Administration of inhibin antiserum leads to an increase in serum levels of FSH 

without altering LH concentration in bulls (Kaneko et al. 2001). In males, mechanisms 

leading to sexual maturation may be related to a shift in the sensivity of the FSH-inhibin 

feedback system (Massicotte et al. 1984). It has also been suggested that inhibin may 

play a role in steroidogenesis through specific control of FSH and LH secretion at the 

pituitary gland (Massicotte et al. 1984; de Kretser and Robertson, 1989). Moreover, 

immunization against inhibin in bull calves increased FSH levels and subsequent sperm 

production (Martin et al. 1991; Bame et al. 1996; Bame et al. 1999).  
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2.3. Testosterone 

 

Testosterone, a steroid derived from cholesterol, is the major male hormone 

produced by interstitial Leydig cells in the testis in response to LH (Schanbacher and 

Echternkamp 1978; Amann 1983; Amann and Walker 1983; reviewed in Payne and 

Youngblood 1995). Biosynthesis of testosterone requires four enzymes: cholesterol side-

chain cleavage enzyme (P450scc), 3 β-hydroxysteroid dehydrogenase/delta 5-∆ 4 

isomerase (3-β HSD), 17 α- hydroxylase/C17-20 lyase (P45017-α), and 17-ketosteroid 

reductase (reviewed by Payne and Youngblood 1995; reviewed by Payne and Hales 

2004). Promotion and maintenance of spermatogenesis, anabolic-like growth, negative 

feedback at the hypothalamus and pituitary level on gonadotropins secretion, and 

stimulatory effects on accessory sex glands have been suggested as the primary actions of 

testosterone in bulls (Lunstra et al. 1978; Rawlings et al. 1978; Amann 1983; Amann et 

al. 1986; reviewed by Silva et al. 2002; Bagu et al. 2006).  

Serum concentrations of testosterone are low in the newborn bull and begin to 

increase to adult levels at approximately 15 to 20 wk of age (Lunstra et al. 1978; 

Rawlings et al. 1978; McCarthy et al. 1979; Evans et al. 1993; Evans et al. 1995). 

Testosterone and dihydrotestosterone (DHT) are required for germ cell development 

during spermiogenesis through the androgen receptor (AR) expressed on Sertoli cells 

(Kerr et al. 1993; Bremner et al. 1994; O'Donnell et al. 1994; McLachlan et al. 1996). 

Spermatogenesis depends upon the action of both FSH and testosterone (reviewed by 

Silva et al. 2002). After synthesis by Leydig cells, testosterone is delivered to Sertoli 
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cells and binds to androgen-binding protein (ABP); thus, maintaining a high 

concentration inside the seminiferous tubules (reviewed by Silva et al. 2002). 

 

2.4. Prolactin 

 

Prolactin (PRL), a protein hormone secreted by the anterior pituitary gland, is 

considered to be the principal lactogenic hormone (Denamur 1971; reviewed by Ostrom 

1990). The actions of PRL are mediated through a single-pass transmembrane receptor 

(Boutin et al. 1988). Prolaction concentrations in serum are correlated with the length of 

the photoperiod in bull calves (Bourne and Tucker 1975; Mayers and Swanson 1983). 

PRL regulates the population of testicular LH receptors in rodents, stimulates 

steroidogenesis in Leydig cells (Takase et al. 1990; Chandrashekar et al. 1994), and 

stimulates release of gonadotropins in rodents and rams (reviewed by Bartke 1978; 

Lincoln et al. 1996). Additionally, PRL acts as a pro-gonadal hormone that promotes 

testicular development and function in conjunction with LH and FSH (Barkey et al. 1987; 

Hair et al. 2002; Cavaco et al. 2003). Furthermore, PRL-receptors are expressed in 

Leydig cells, developing germ cells within the testis, and reproductive accessory glands 

(vas deferens, epididymis, prostate, and seminal vesicle) in rams and humans (Lincoln et 

al. 1996; Jabbour and Lincoln 1999; Hair et al. 2002). These findings demonstrate that 

PRL plays multiple roles on reproductive function of the male through acting on Leydig 

cells, developing spermatic epithelium, reproductive accessory glands, and as a pro-

gonadal gonadotropin like LH and FSH. 
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2.5. Estradiol 

 

The primary sites of production of estradiol-17β (estradiol) in the testis are 

Leydig cells (Purvis et al. 1981; reviewed by Payne and Youngblood 1995; Sneddon et 

al. 2005) and Sertoli cells (Dorrington and Armstrong 1975; Fujisawa 2001). 

Testosterone is metabolized to estrogens by aromatase cytochrome P450scc complex 

(Simpson and Davis 2001) and to dihydrotestosterone (DHT) by 5α-reductase (Viger and 

Robaire 1995). At the level of the hypothalamus and pituitary, both testosterone and 

estradiol exert a negative feedback on secretion of GnRH, LH, and FSH (Amann 1983; 

Amann et al. 1986; reviewed Payne and Youngblood 1995). In prepubertal bulls, serum 

concentrations of estradiol are low; however, after 40 wk of age significant increases in 

estradiol concentrations were observed in bulls (Evans et al. 1993). It was postulated that 

between 6 and 10 wk of age in bulls, removal of an estradiol-mediated block of GnRH 

occurs as well as an increase in pituitary GnRH receptors (Amann et al. 1986); thus, 

stimulating early pulses of LH in prepubertal bulls. Additionally, evidence exists that 

estradiol may modulate Sertoli cell function through its receptor and may support the 

process of spermatogenesis (reviewed by Hess 2003; Sneddon et al. 2005). On the other 

hand, chronic treatment with estradiol disrupted the spermatogenesis process in bulls 

(Schanbacher et al. 1982). 
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2.5. Thyroid hormones 

 

The hormones thyroxine (T4) and triiodothroxine (T3) are thyroxine-based 

hormones produced by the thyroid gland. Thyroid hormones influence steroidogenesis, 

Leydig cell differentiation, and spermatogenesis in the testis in rodents and small 

ruminats (Jana and Bhattacharya 1994; Ariyaratne et al. 2000; Kim et al. 2002; reviewed 

by Silva et al. 2002; reviewed by Todini 2007). Testicular targets for thyroid hormones 

are Sertoli and Leydig cells (Van Haaster et al. 1993), inducing proliferation, 

differentiation, and lumen formation around puberty (Van Haaster et al. 1993; Mendis-

Handagama et al. 1998; Manna et al. 1999; Ariyaratne et al. 2000; Silva et al. 2002; 

reviewed Mendis-Handagama and Ariyaratne 2004). In rams, testicular size and secretion 

of gonadotropins are decreased when the thyroid gland is removed (Parkinson et al. 

1995). Additionally, thyroid hormones increase glucose transport, production of γ-

glutamyl transpeptidase, androgen binding protein (ABP), insulin-like growth factor-I, 

inhibit aromatase activity, and affect testosterone metabolism in Sertoli cells (Jannini et 

al. 1995; reviewed by Silva et al. 2002). In Leydig cells, thyroid hormones directly 

stimulate expression of LH receptors and steroidogenic enzymes involved in cholesterol 

transport (Manna et al. 2001; reviewed by Mendis-Handagama and Ariyaratne 2004).  
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2.6. Additional hormones and factors regulating testicular function  

 

Proliferation and differentiation of type AS spermatogonia are tightly regulated by 

cellular components at testicular level (see Sertoli and Leydig cells) and endocrine-

autocrine mechanisms (see hormones associated to testicular development and function) 

in vivo. Isolation and culture of male germ stem cells allow characterization of molecular 

factors associated to proliferation and differentiation of type AS spermatogonia (reviewed 

by Parks et al. 2003). For instance, Sertoli cells secret stem cell factor, which through c-

kit receptor present on type A spermatogonial cells (presumably all type A 

spermatogonia) support proliferation and differentiation (Dirami et al. 1999). It was 

suggested that the process of self-renewal and differentiation in spermatogonial cells may 

be regulated by glial cell line-derived neurotrophic factor (GDNF) secreted by Sertoli 

cells (Meng et al. 2000). Additionally, retinoic acid and vitamin A (van Pelt and de Rooij 

1990a; van Pelt and de Rooij 1990b), stem cell factor (SCF; de Rooij et al. 1999)  and 

cycling D2 (Beumer et al. 2000) have been involved in preventing apoptosis and 

differentiation of stem cells into A1 spermatogonia in radent. Not only Sertoli cells play 

an important role in spermatogonial development, but also peritubular cells which secrete 

leukemia-inhibiting factor (LIF) essential for self-renewal and propagation of type AS 

spermatogonial cells in rodent (Piquet-Pellorce et al. 2000; reviewed by Smith 2001; 

reviewed by Parks et al. 2003). Additionally, gowth factors added to the culture medium 

such as transforming growth factor-α and -β (TGF-α and TGF-β, Creemers et al. 2002; 
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reviewed by Parks et al. 2003), epidermal growth factor (EGF), basic fibroblast growth 

factor (bFGF), GDNF, and LIF were suggested to support in vitro expansion of mice 

spermatogonia cells (Creemers et al. 2002; Kanatsu-Shinohara et al. 2003).  

In the mouse, adrenocorticotropic hormone (ACTH) can regulate testicular 

steroidogenesis during fetal development of the Leydig cell (O'Shaughnessy et al. 2003). 

Furthermore, endogenous metabolic hormones such as leptin, insulin, growth hormone 

(GH), and insulin growth factor-1 (IGF-I) are suggested to contribute directly in testicular 

development in prepubertal bulls (Brito et al. 2007). A recent study suggested that 

expression of insulin-like peptide 3 (INSL3) is associated with functional maturation of 

Leydig cells for androgen production (Mendis-Handagama et al. 2007). 

 

3. Testicular germ cell transplantation 

 

Male germ cell transplantation is a powerful approach to study spermatogenesis in 

a host testis or in vitro; and alternatively, to improve male fertility in livestock and 

humans by obtaining donor-derived spermatozoa capable of fertilizing an egg. Testicular 

germ cell transplantation is a technique where donor spermatogonial stem cells are 

transplanted into a recipient testis with the ultimate goal to colonize the tubuli, interact 

with endogenous environment cells, and re-initiate spermatogenesis.  
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3.1. Male germ cell transplantation in different species 

 

3.1.1. Initial transplantation experiments 

 

More than two decades ago, Brinster and Zimmerman (1994) reported their 

breakthrough findings in testicular tissue transplantation. In this study, spermatogonial 

cells isolated from two types of donor male mice (C57BL/6: color coat black and tan 

mutation and ZFlacZ: presence of the β-galactosidase transgene in donor cells) between 

postnatal days 4 and 12 colonized recipient seminiferous tubules (sterile mutant W/W and 

C57BL/6 x SJL mice) and restored spermatogenesis after transfer. Donor cells were 

directly microinjected immediately after collection into recipient seminiferous tubules 

using a glass pipette (1 mm outside diameter and 0.75 mm inside diameter with a sharp 

40 µm tip) connected to a pressure injector. Since the process of spermatogenesis in mice 

is about 35 days, transplanted mice were maintained for 48 to 230 days before testes 

anlaysis. Spermatogenesis was observed, either presence of an active spermatic 

epithelium or seminifoerous tubules stained blue following treatment with 5-bromo-4-

chloro-3-indole-β-D-galactosidase (X-Gal), in recipient mice. This methodology, 

spermatogonial stem cells transplant, has great potential in clinical applications into 

biomedical science and biotechnology. These remarkable findings demonstrated that 

spermatogonial stem cells interacted with the host environment, migrated from the 

adluminal compartment to the basement of the seminiferous tubule membrane through 
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Sertoli-Sertoli tight junctions (Griswold 2000), and re-initiated the spermatogenesis cycle 

(Brinster and Zimmermann 1994). 

At the same time, Brinster and Avarbock (1994) reported successful 

spermatogenesis from mice donor germ cells transplanted into recipient mice. In this 

study, donor cells were harvested from embryonic day 18 to postnatal day 28 in an 

attempt to evaluate whether the age of donor affect colonization. Additionally, recipient 

preparation and transplant technique were similar as described previously (Brinster and 

Zimmerman 1994). Cells derived from mice at postnatal day 5 and 15 resulted in greater 

colonization of seminiferous tubules compared to perinatal cells. Donor-derived 

spermatozoa generated offspring confirmed by haplotyping resulting progeny (Brinster 

and Avarbock 1994). These finding was confirmed testes of the progeny of male recipient 

mice that stained blue after incubating testes with X-Gal, indicating that donor cells were 

able to re-generate spermatogenesis and transmit the transgene (lacZ) to the progeny.  

Successful transplantation of mice testicular germ cells after cryopreservation for 

5 mo into the donor mice testis was first described by Avarbock et al. (1996). In this 

study, spermatogonial cells from prepubertal or adult donor mice carring a lacZ transgene 

(as genetic marker) were harvested and frozen. After transplantation of thawed donor 

cells, different stages of spermatogonia development that stained blue after incubation 

with X-Gal were noted in recipient testes. Subsequently, transgenic lacZ rat donor germ 

cells transplanted into mouse testis (xenogeneic) were able to produce differentiated 

spermatozoa (Clouthier et al. 1996). Nagano et al. (1998) then successfully cultured 

transgenic lacZ mice spermatogonial stem cell in vitro for up to 4 mo, followed by 

reconstitution of spermatogenesis (spermatozoa stained blue after incubation with X-Gal) 
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after transplantation into host mice reciepient. In this experiment, trangenic lacZ donor 

germ cells from 10 d to 7 wk of age were cultured in 24 well plates (approximately 105 to 

106 cells well-1) in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal 

bovine serum (FBS) in presence or absence of a feeder layer (STO) at 32 °C with 5% 

CO2 in air. Results from this study indicated that co-culture of donor germ cells, 

regardless of the age, on a feeder layer resulted in more viable cells and better 

colonization of seminiferous tubules after transplant. It is clear from this study that the 

presence of a feeder monolayer such as STO during culture is beneficial for 

spermatogonia stem cell survival and donor germ cell-derived spermatogenesis in the 

host testes after transplant. 

 

3.1.2. Cross-species germ cell transfer 

 

Spermatogonial stem cells from donor animals migrate to the basal compartment 

during the first month after transplantation and colonize the tubuli (Parreira et al. 1998; 

Nagano et al. 1999). Spermatogenesis appears to be more conserved and successful 

between the same species (allogeneic; may be due to species-specific factors such as 

immunoreaction) and disrupted when using cross-species transplantation (xenogeneic; 

differentiation and meiosis may not be supported; Hill and Dobrinski 2005). This 

incompatibility in cross-species could be overcome by co-transplantation of both germ 

and Sertoli cells from donor to recipient testis (Dobrinski et al. 2000; Honaramooz et al. 

2002b; Izadyar et al. 2002b; Shinohara et al. 2003). Cross-species transplantation studies 
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have demonstrated donor spermatogonial survival in host testis (Schlatt et al. 1999a; 

Schlatt et al. 1999b; Nagano et al. 2001a). Furthermore, transplantation of donor germ 

cells between mice and rat testes (Clouthier et al. 1996; Ogawa et al. 1999b; Zhang et al. 

2003) as well as from hamster into mouse testes (Ogawa et al. 1999a) have produced 

differentiated spermatozoa. Franca et al. (1998) suggested that control of the 

spermatogenesis process, in cross-species germ cell transplant, is primarily through 

spermatogonial cells rather than Sertoli cells. However, transplantation from non-rodent 

donors into rodent recipients resulted in seminiferous tubule colonization without 

complete spermatogenesis (Dobrinski et al. 1999; Dobrinski et al. 2000; Nagano et al. 

2001a; Nagano et al. 2002).    

Successful donor-derived spermatogenesis has been limited to species closely 

related. Spermatogonial transplatation between species with large phylogenetic distance 

may create incompatibilities between donor germ cell and the recipient testicular 

environment that prevent spermatogenesis. Therefore, transplantation from recipient to 

donor animals within the same species have shown the most promising success in term of 

donor cell colonization, differentiation, and completed spermatogenesis within the 

recipient testis environment. 

 

3.1.3. Transplantation experiments in livestock animals 

 
Spermatogonial cell transplantation techniques used in pigs and goats are now 

used in cattle (Table 3; Honaramooz et al. 2002b; Honaramooz et al. 2003a; Honaramooz 

et al. 2003b; Izadyar et al. 2003b; Jeong et al. 2003; Hill et al. 2005; Hill and Dobrinski 
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2005). A schematic summarizing male germ cell transfer approach in cattle is shown in 

Figure 3 (adapted from Hill and Dobrinski 2005). While allogeneic heterologous germ 

cell transplantation was successful in pigs and goats, autologous (Holstein-Friesian 

calves) transplantation of bovine spermatogonial stem cells resulted in a complete 

regeneration of spermatogenesis (Izadyar et al. 2003b). 



 42

Table 3. Sequential milestones in the development of mammalian male germ cell transplantation technique (from reviewed by 

Hill and Dobrinski 2005; reviewed by Sofikitis et al. 2005). 

Reference Report Animal 
Brinster and Zimmermann (1994) First report of successful donor mouse spermatogenesis  Mouse 
Brinster and Avarbock (1994) Germ-line transmission of door mouse haplotype in recipient mice Mouse  and Mice 
Jiang and Short (1995) Rat male germ cell transplantation in recipient rats Rat 
Clouthier et al. (1996) First report of xenogeneic germ cell transplantation from rat into mice Rat 
Avarbock et al. (1996) Transplantation of frozen/thawed mouse spermatogonia into recipient mice Mouse and Mice 
Ogawa et al. (1997) Detailed description of transplantation technique  
Tanaka et al. (1997) Successful colonization and differentiation of hamster germ cell into xenogeneic testis Hamster 
Franca et al. (1998) Control of spermatogenesis cell differentiation process in the rat Rat 
Nagano et al. (1998) Long-term culture of mouse spermatogonial cells  Mouse 
Ogawa et al. (1998) Leuprolide enhances recipient tubuli colonization after spermatogonial transplantation  
Ogawa et al. (1999b) Transplantation of donor germ cells from hamster to mouse testes Hamster and Mouse 
Schlatt et al. (1999a) First successful attempt of germ cell transfer into a primate testis Monkey 
Dobrinski et al. (1999) Transplantion of donr germ cells from rabbits and dogs into mice testes Rabbit, Dog, Mouse  
Nagano et al. (1999) Description of colonization process into recipient mice testis Mouse 
Shinohara et al. (1999) New markers for mice spermatogonial cells, β1- and α6-integrins Mouse 
Schlatt et al. (1999b) Magnetic cell sorting for enriching viable spermatogonia from rodent and primate Rodent and Monkey 
Ohta et al. (2000) Regulation of proliferation and differentiation of spermatogonial stem cells  
Reis et al. (2000) Attempts to xenogeneic transplantation of human spermatogonia Human and mouse 
Nagano et al. (2001a) Attempts to obtain spermatids after transplantation from a primate to mouse testes  Monkey and mouse 
Honaramooz et al. (2002a) First spermatogonial stem cell transplantation in a farm animal Pig 
Honaramooz et al. (2003b) First report of donor cell-derived sperm production and transmission of the donor haplotype to 

the next generation 
Goat 

Izadyar et al. (2003b) Successful autologous transplantation of bovine spermatogonial stem cells resulting in a 
complete regeneration of spermatogenesis 

Bovine 

Herrid et al. (2006) Successful heterologous transplantation between Bos taurus and Bos indicus cattle Bovine 
Honaramooz et al. (2008) Transmission of transgene through germ cell line in rodent and non-rodent species Mice and Goat 
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Additionally, a recent successful allogeneic heterologous transplantation occurred 

between Bos taurus donor and Bos indicus recipient cattle (Herrid et al. 2006).  

Although preliminary, these finding demonstrated that germ cell transplantation 

between different cattle breeds is possible. Although they have documented donor 

spermatzoa production (complete spermatogenesis) into the recipient testis, offspring 

derived from donor spermatozoa were not always obtained. 

 

Figure 3. Schematic representation of bovine male germ cell transplantation. 

Spermatogonial stem cells harvested from donor bulls are isolated by enzymatic 

digestion. Before transplantation, male germ cells can be maintained and cultured in vitro 

for further cell cryopreservation or genetic modification. Spermatogonial cells are 
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injected into the rete testis using needle guided-ultrasonography (adapted from Hill and 

Dobrinski 2005). 

 

3.2. Technique to increase recipient colonization by donor cells 

 

3.2.1. Selection and preparation of donor germ cells 

 

The transplantation process has been modified to improve outcomes since the first 

experiments by Brinster and Zimmerman (1994) were published. Changes that improve 

host colonization by donor spermatogonia include 1) enriching the quantity of 

spermatogonia stem cells in the solution to be transplanted (van Pelt et al. 1996; 

Shinohara et al. 200b; van der Wee et al. 2001), 2) altering the host environment to 

deplete endogenous spermatogonia of recipient (Honaramooz et al. 2005; Oatley et al. 

2005), and 3) making technical improvements in the transplantation procedure 

(Honaramooz et al. 2003b; Herrid et al. 2006). 

Positive identification of bovine type A spermatogonial cells is required to enrich 

germ stem cells in the solution to be transplanted. If stem cells can be identified and 

isolated correctly under culture conditions, then spermatogenesis in vitro could become a 

reality, which has major applications in livestock and human male fertility. However, it 

was reported that out of every 103 cells in the mouse testes, only one is a germ stem cell 

(Tegelenbosch and de Rooij 1993). Selection and preparation of donor spermatogonial 
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stem cells is a critical step to ensure proper colonization, and eventually, re-initiation of 

spermatogenesis into recipient testis. The population of spermatogonial stem cells 

obtained using different methodologies is highly variable; thus, the most effective stem 

cell-enrichment strategy has to be elucidated. Furthermore, improved culture conditions 

for male germ line stem cells that allow propagation of undifferentiated cells are still 

under intense study. Understanding the physical and molecular mechanisms controlling 

spermatogonial cell development in the testis will help in designing an appropriate 

microenvironment for in vitro culture.  

Selection of mouse testicular cells that express α1- and β1-integrin resulted in 

isolation of enriched germ stem cell population with the ability to colonize the recipient 

testes (Shinohara et al. 1999; Shinohara et al. 2000b). Subsequently, immunomagnetic 

isolation using magnetic beads plus antibodies that recognize the c-kit receptor or the 

homophilic adhesion molecule (Ep-CAM) demonstrated that type A spermatogonia are 

able to replicate the testis environment (van der Wee et al. 2001). Furthermore, positive 

c-kit type A spermatogonia from prepubertal bulls proliferated and developed to 

spermatids-ilike cells in culture (Izadyar et al. 2003a). Use of experimental cryptorchid-

produced mice provided a relatively high enriched source of spermatogonial stem cell for 

transplantation (Shinohara et al. 2000a; Shinohara and Brinster 2000; Shinohara et al. 

2000b). Furthermore, the successful use of in vitro fluorescence-activated cell sorting 

(FACS) based on α-6 integrin expression has been reported as a means to enrich 

spermatogonial stem cells (Shinohara et al. 2000b). Type A spermatogonia from 4- to 6-

monyh-old calves stained positive for DBA (Dolbichos bioflorus agglutinin) were able to 

form colonies by day 7 of culture and colonize seminiferous tubules of nude mice (nu/nu) 
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after transplant as confirmed by positive donor type A spermatogonia DBA staining 

(Aponte et al. 2006). Additionally, the use of transgenic mice such as Stra8-enhanced 

green fluorescence protein (EGFP) has been helpful in isolating pure populations of type 

AS spermatogonia (Nayernia et al. 2006). Moreover, other markers were expressed on the 

same EGFP type A spermatogonia in culture such as Rbm, Oct4, c-kit, Tex18, Stra8, 

Piwil2, Dazl, Hsp90α, β1- and α6- integrins, which were expressed in early stages of 

type A spermatogonial development (Saitou et al. 2002; Nayernia et al. 2006). 

Aditionally, fragilis, stella, mouse vasa homolog (Mvh), and Rnf17 genes were also 

expressed in transgenic EGFP type A spermatogonia (Saitou et al. 2002; Nayernia et al. 

2006). Furthermore, EGFP type A spermatogonia that proliferated in culture for 2 to 3 

wks were able to re-colonize recipient seminiferous tubules after transplant (Nayernia et 

al. 2006).  

In a recent study, positive protein gene product 9.5 antigen (PGP 9.5) isolated 

donor type A spermatogonia from calves and prepubertal rams and were able to colonize 

seminiferous tubules of recipient animals (Herrid et al. 2006; Rodriguez-Sosa et al. 

2006). Moreover, identification of porcine spermatogonia using expression of PGP 9.5 as 

a specific marker was reported (Luo et al. 2006). These findings suggest that cells 

staining for PGP 9.5 were likely SSC with the potential to form colonies (Luo et al. 2006) 

or re-colonize foreign seminiferous tubules (Herrid et al. 2006; Rodriguez-Sosa et al. 

2006). Prepubertal pigs type A spermatogonia cells expressed SSEA-1, a specific marker 

for embryonic stem cells, after 7 days of culture (Goel et al. 2007). Alkaline phosphatase 

(AP) reactivity is highly conserved in undifferentiated embryonic stem cells (Talbot et al. 

1993) and type A spermatogonia cells (Ginsberg et al. 1990). High levels of AP in 
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spermatogonial cells are related to the undifferentiated stage (Fujino et al. 2005). Isolated 

type A spermatogonia from transgenic mice that proliferate and form colonies after 2 to 3 

wks in culture have been stained positive for AP in culture (Jeong et al. 2003; Kubota et 

al. 2004; Nayernia et al. 2006). Additionally, neonatal testicular cross-section containing 

peritubular and spermatogonia cells stained both positively for AP (Goel et al. 2007). 

Seminal alkaline phosphatase (AP) activity has been used in clinical analysis of 

small and large animals to determine fertility potential of males before breeding. Assays 

for seminal alkaline phosphatase (AP) can be performed in dogs (reviewed by Johnston 

1991) and equine (Pesch et al. 2006) to assess semen quality (i.e. azoospermia: collected 

seminal fluid without spermatozoa) in collected seminal fluid; thus, fertility potential of 

the male can be determine before mating. In bovine, seminal plasma was negative for AP 

and sperm acrosome stained positive for AP (Melampy et al. 1952). Seminal alkaline 

phosphatase is produced from epididymal cells (Frenette et al. 1986) and is used as a 

marker of outflow obstruction of upper vas deferens or epididymides. Localization of the 

cause of azoospermia in dogs could be assessed by physical examination (presence of 

both testes) and measurement of AP level in seminal fluids (Johnston 2003). Seminal 

concentrations of AP are greater than 5000 IU L-1 in normospermic dogs (reviewed by 

Johnston 1991). Therefore, lower AP level (100 IU L-1) and absence of spermatozoa are 

indicative of a potential azoospermia condition. However, incomplete ejaculation 

containing a pre-sperm fraction (low spermatozoa counting) of semen from prostate 

gland can also have low levels of AP and dogs should be re-evaluated to discern between 

incomplete ejaculation and azoospermic problems. Additionally, in stallions, AP was 

correlated with sperm concentration and volume of collected ejaculate (Pesch et al. 
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2006). It was suggested that levels of AP present in seminal fluid can be used as markers 

for practitioners to predict the quality of semen samples (Kutzler et al. 2003; Pesch et al. 

2006).   

Spermatogonia cells have been cultured in different culture medium containing 

serum or serum-free in an attempt to study their dynamic of proliferation and 

differentiation. In general, culture conditions for the studies descrived herein range from 

32 °C to 37 °C with 5% CO2 in air. A potassium simplex optimized medium (KSOM) 

and minimal essential medium (MEM) without serum were used to culture type A 

spermatogonial cells isolated from adult mice (Creemers et al. 2002) and 3-7 month-old 

prepubertal bulls (Izadyar et al. 2003a). In culture, type A spermatogonia proliferated 

more in MEM than in KSOM media (data not shown) while more proliferation was 

observed at 37 °C than 32 °C (Izadyar et al. 2003a). Contrarialy, more eight days-old 

porcine type A spermatogonia cells suvived in KSOM medium than Dolbecco’s modified 

eagle’s medium (DMEM; Dirami et al. 1999). In these studies, the viability and 

proliferation of type A spermatogonia cells were decreased in a range of 80 to 90% after 

one week of culture. Additionally, proliferation of type A spermatogonia cells in vitro 

culture medium without serum or a feeder monolayer resulted in few cells surviving 

(Dirami et al. 1999; Izadyar et al. 2003a). However, when 2.5% fetal calf serum (FCS) 

was added to the medium (KSOM and MEM) proliferation and viability of type A 

spermatogonia were enhanced after one week of culture. Moreover, in MEM media 

containing 2.5% of FCS type A spermatogonia proliferated to form two distint types of 

colonies (round and radial) and some type A spermatogonia differentiated in cells with 

the structural appearance of spermatocytes and spermatids after 100 days of culture 
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(Izadyar et al. 2003a). Proliferation of type A spermatogonia in culture with colony cells 

c-kit positive (differentiated) and c-kit negative (presumably stem cells) were reported 

after a month of culture (Izadyar et al. 2003a). It was suggested that the addition of up to 

10% of FCS only enhanced somatic cells proliferation over spermatogonia; however, it 

was not clear how these two populations of cells was evaluated in culture (Izadyar et al. 

2003a). Isolated type A spermatogonia from prepubertal 2- and 10-weeks-old pigs were 

maintained and proliferated to form colonies in a simple culture medim (DMEM) plus 

5% FBS without addition of growth factors (Marret and Durand 2000; Luo et al. 2006) as 

well as transgenic mice type A spermatogonia in similar midium containing 10% fetal 

bovine serum (FBS), pyruvate, and lactate (Nagano et al. 1998; Goel et al. 2007).  

Alternatively, type A spermatogonia from newborn transgenic mice proliferated 

for 5 months in culture using StemPro-34 SFM medium (serum-free medium formulated 

for hematopoetic cells in culture) containing several growth factors (LIF, EGF, FGF, and 

GDNF) and 1% FCS and spermatogonial cells re-initiated spermatogenesis in infertile 

mutant mice after transplant (Kanatsu-Shinahara et al. 2003). Similarly, isolated type A 

spermatogonia cultured in DMEM containing 10% FBS and growth factors (LIF, FGF, 

IGF-I, and platelet-derived growth factor (PDGF)) resulted in more colonies than simple 

DMEM containing 10% FBS after 4 weeks of culture from transgenic (lacZ) adult mice 

(Jeong et al. 2003) or 6 days-old mice (Anjamrooz et al. 2006). All these growth factors 

mentioned above seemed to enhance, at least in part, spermatogonia cell survival and 

proliferation; however, it was suggested that GDNF favors type AS spermatogonia self-

renewal when added to serum-free medium in donor mice cells (Kubota et al. 2004), to 

MEM with 2.5% FCS in donor 4- to 6-month-old bovine (Aponte et al. 2006), ot to 
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DMEM with 10% FBS (Oatley et al. 2004). Supplementation of culture medium with 

exogenous glial cell line-derived neutrotrophic factor (GDNF), leukemia inhibitory factor 

(LIF), and epithermal growth factor (EGF) enhanced survival and proliferation of germ 

cells (Kanatsu-Shinohara et al. 2003; Oatley et al. 2004; Meng et al. 2000; Nagano et al. 

2003). It is known from these studies that the addition of serum (FBS, FCS, HS, or Nu 

serum) to the medium ehanced germ cells survival and proliferation in culture. 

Additionally, growth factors added to the medium in presence of serum also contributed 

in more type A spermatogonia proliferating. However, it is difficult to discern what 

component(s) present in serum are essential for self-renewal of type AS spermatogonial.  

Therefore, further studies are needed to discern what component(s) between serum types 

(i.e. lipidis, proteins, hormones, etc.) support self-renewal of male germ cells. 

The role of various types of feeder monolayers has been suggested to enhance 

maintenance and establishment of donor type AS spermatogonia in culture (reviewed by 

Sofikitis et al. 2005). Co-culture of type A spermatogonia cells from a 1- to 2-month-old 

bulls with a feeder cell monolayer such as bovine embryonic fibroblasts harvested from 

an embryo of 35 days enhanced maintenance and viability of germ cells (BEF, Oatley et 

al. 2004). In this study, added GDNF to the medium of expressed by the BEF cells was 

suggested to influence maintenance of type A spermatogonia. Moreover, type A 

spermatogonia from a six-day-old mice survived and proliferated in co-culture with 

immortalized mice Sertoli cells either SF7 or SG5-1.13 lines for 25 days (van der Wee et 

al. 2001). Furthermore, the addition of 5% Nu serum (low protein serum that allows 

controlled culture environment) resulted in more surviving spermatogonia than 5% FCS 

or 5% horse serum (HS) to the medium, suggesting that inhitiory substances were present 
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in FCS and HS (van der Wee et al. 2001). Moreover, type A spermatogonia from 5-7 

days of age mice cocultured for 7 days with SIM mouse embryo-derived Thioguanine- 

and Ouabain-resistant fibroblast (STO), OP9 (bone marrow stroma), or L (fibroblast 

origin) substantially enhanced germ cell survival by two fold (Nagano et al. 2001c; 

Nagano et al. 2003). Recently, a novel three-dimensional soft-agar culture-system that 

supports spermatogonia proliferation and differentiation (up to post-meiotic level) after 

15 days of culture was reported in mice (Stukenborg et al. 2008). It was suggested that 

this three-dimentional culture system mimic structural support of in vivo proliferation of 

type A spermatogonia supporting meiotic differentiation of donor germ cells without 

addition of any grwth factors (Stukenborg et al. 2008).  

It seemed reasonable to say that those commun morphological characteristics and 

no specific markers available to discern between type A (AS, Aal, Apr, and A1-A4) 

spermatogonia cells make difficult to correctly identify type AS spermatogonia cell 

(considered stem cell; reviewed by de Rooij 2001). Therefore, an alternative assay is to 

transfer those cells into recipient seminiferous tubules hoping to restore spermatogenesis 

as a successful outcome when evaluating presence of donor type AS spermatogonia in 

culture or donor-derived progeny (Kanatsu-Shinahara et al. 2003). Although this is a 

powerfull assay to confirm presence of donor-derived spermatogonial cells in recipient 

animals, the length in days of spermatogenesis or gestation is species-specific making 

rodents and small ruminants the animal model of election. Moreover, the majority of the 

data available today about isolation, culture, and transfer of type A spermatogonia are 

either in rodents or small ruminants, with a few exception to large animals such as bovine 

as mentioned above. Considerations on how to interprate or apply results from rodents to 
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large food animals such as bovine should be taken into account due to species-specific 

characteristics such as length of spermatogenesis. Therefore, field application of 

spermatogonial stem cell transplant in large food animal such as bovine requires further 

investigation not only in prepubertal animals but also in adult bulls.    

      

3.2.2. Preparation of recipient animals 

 

Colonization of seminiferous tubules in recipient animals by transplanted 

spermatogonial stem cells is more efficient when endogenous spermatogonia are depleted 

from recipient testes. Busulfan, a chemotherapeutic drug, is used widely in rodents to 

deplete endogenous spermatogonial cells before transplantation (Brinster and Avarvock 

1994; Brinster and Zimmerman 1994; Honaramooz et al. 2008). However, the dose of 

busulfan to deplete stem cells is highly toxic and immunosuppression occurs (Ogawa et 

al. 1999b; Brinster et al. 2003).  Furthermore, the use of busulfan in rams and pigs 

resulted in a significant depletion of spermatogonial cells; however, animals presented 

signs of toxicity (Ogawa et al. 1999a). In pigs and mice, in utero treatment with busulfan 

was an effective alternative to deplete endogenous germ cells (Brinster et al. 2003; 

Honaramooz et al. 2005). Additionally, cold ischemia (Yong et al. 1988) and 

hyperthermic treatment (McLean et al. 2002) of testes have been used in preparation of 

recipient testes. 

An alternative method, irradiation, has been used in recipient animals to abolish 

spermatogenesis in rodents (Creemers et al. 2002; Giuili et al. 2002), monkey (Schlatt et 
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al. 2002), rams (Oatley et al. 2005), and bulls (Izadyar et al. 2003b). This method 

requires costly specialized radiotherapy equipment making it impractical for field 

application. Another alternative, prolonged administration of the GnRH-agonist 

Leuprolide, inhibited secretion of LH and FSH followed by reduced testosterone 

production; thus, disrupting spermatogenesis (Ogawa et al. 1989). Additionally, 

efficiency of colonization recipient testes was markedly higher by donor cells using 

Leuprolide (Blanchard et al. 1998; Dobrinski et al. 2001).  

These inconsistent results in depletion of recipient germ cells emphasize the 

necessity to find more practical means of suppressing endogenous spermatogenesis in 

recipient bulls. Preparation of sound recipient animals will impact efficiency of 

colonization of seminiferous tubules by transplanted donor germ cells. 

 

3.3. Cyopreservation of male germ cells 

 

The era of successful embryo cryopreservation followed the discovery and 

development of chemical cryoprotectant compounds (reviewed by William 2007). In the 

early 1950's, Polge experimented with vitrification and dehydration at low tempartures 

using speramozoa (Polge et al. 1949; reviewed by William 2007). Years later, Wilmut 

(1972) and Whittingham (1971) had developed independent methods for reliably freezing 

mouse embryos in dimethylsulfoxide (DMSO). Currently, the most popular mouse and 

bovine embryo cryoprotectant solutions include DMSO, ethylene glycol, propylene 

glycol (1-2, propanediol), and glycerol (Leibo 1984; Kaidi et al. 2000).  
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Cryopreservation of germ cells has been demonstrated to produce live offspring 

after transplantation of frozen-thawed mouse germ cells (Avarbock et al. 1996; Izadyar et 

al. 2002a; Kanatsu-Shinohara et al. 2003; Nagano et al. 2003). These experiments used 

combinations of fetal calf serum (FCS), DMSO, glycerol, sucrose (sugar), and different 

cooling rates to evaluate long-term preservation of bovine testicular germ cells. Medium 

containing 10% FCS, 10% DMSO, and 0.07 M sucrose, using non-controlled rate 

freezing, showed acceptable viability post-thaw and spermatogonial cells were able to 

colonized recipient testes (Izadyar et al. 2002b; 2003b). The ability to freeze and thaw 

spermatogonial cells in livestock will facilitate in vitro culture and in vivo field 

application of the technique (Izadyar et al. 2003a). Therefore, potential donor animals 

could be selected at convenient times and testicular germ cells stored for long period of 

time for future in vitro and/or in vivo studies. Additionally, males from endangered 

species could be harvested and cryopreserved to protect them from extinction; thus, 

preserving genetic diversity.  

 

3.4. Methods for germ cell transplantation 

 

Microsurgical puncture directly into the seminiferous tubule was the initial 

approach to successfully transfer donor germ cells into recipient testes ( Brinster and 

Avarvock 1994; Brinster and Zimmermann 1994). Although this technique requires 

anesthetized animals, several straight length seminiferous tubules are microinjected under 

a dissecting microscope with trypan blue dye to monitor the flow of fluid into the tubules. 
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However, this approach is the most time consuming for large mammal testes such as bull, 

ram, pig, and goat in terms of infused volume into the testis. 

The introduction of donor germ cells into the recipient efferent ducts or rete testis 

was developed in mice (Ogawa et al. 1997). Injecting of donor cells into the efferent 

ducts or rete testis requires careful surgical dissection, with the rete testis being the less 

invasive and most rapid method. Rete testis is the simpliest technique for transferring 

donor cells without the need of a micromanipulator. In other species such as sheep, goat, 

and bovine, it is considerably more dificult to perform this procedure because the axial 

rete testis is located deep inside the testis (Ogawa et al. 1997).       

The ultrasound-guided cannulation (needle) of the rete testis in vivo showed to be 

successful in bull calves and rams (Honaramooz et al. 2003a; 2008; Izadyar et al. 2003b; 

Jeong et al. 2003; Hill et al. 2005). In order to perform this technique, animals are placed 

under general anaesthesia; thus, the solution can be injected into the rete testis. The 

spread of fluid into the rete testis can be confirmed by visualization of a characteristic 

ultrasonographic appearance (Honaramooz et al. 2003a; Izadyar et al. 2003b). 

Additionally, a commercially available ultrasound opaque fluid may be used to monitor 

the solution when injected into the rete testis and donor cell transfer can be assessed 

immediately (Izadyar et al. 2003b).  

 

3.5. Methods to isolate spermatogonia subpopulations 
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Procedures for isolation of spermatogonial germ cells using velocity 

sedimentation (Bellve et al. 1977; Dirami et al. 1999) or elutriation (Bucci et al. 1986) 

have been described. In these methods, a population of up to 90% spermatogonia can be 

harvested. Spermatogonia were selected base on their size and shape; thus, these methods 

can only be used in prepubertal animals in which the number of other developing germ 

cells are minimal (Meachem et al. 2001). Using a discontinuous Percoll gradient up to 

85% of rat spermatogonia from prepubertal testes (9 days of age) and vitamin A 

difiecient adult testes can be collected as decribed by Morena et al. (1996) and van Pelt et 

al. (1996) respectively. In both studies, cells collected were plated in lectin peanut 

agglutinin (PNA) pre-coated dishes for 1 hour to remove somatic components, then cells 

nonadhering to the lectin were subjected to a discontinuous Percoll gradient separation. 

Isolated population of type A spermatogonia were positive to c-kit marker (Morena et al. 

1996); however, it was suggested that c-kit may be present in both undifferentiated and 

differentiated type A spermatogonia. Viable type A spermatogonial cells recovered by 

this method were used in further in vitro experiments.  

Magnetic cell sorting can be used to isolate spermatogonia from testicular 

suspensions of various species (adult hamster, mice, and monkey) using the c-kit 

antibody to detect the c-kit receptor in the membrane of spermatogonia (Dym et al. 1995; 

von Schonfeldt et al. 1999). However, efforts to isolate large numbers of purified type A 

spermatogonia using the c-kit marker were not accompanied by purity (25-55%) in fully 

active testes (von Schonfeldt et al. 1999). Populations of Aal spermatogonia express c-kit; 

however, these cells are committed to differentiate into A1 spermatogonia (Schrans-

Stassen et al. 1999). Additionally, the immunomagnetic bead technique against c-kit to 
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isolate differentiating A spermatogonial has been used (van der Wee et al. 2001).  In a 

similar study, magnetic beads against the β1- and α6-integrins of spermatogonial stem 

cells resulted in population of cells able to colonize recipient testes after transplant 

(Shinohara et al. 1999). However, the authors did not report viability and proliferative 

ability under in vitro conditions of those sorted spermatogonial stem cells. Cell sorting 

analysis by fluorescence activation was reported in spermatogonial cells recovered from 

mouse cryptorchid testes (Shinohara et al. 2000a; Shinohara et al. 2000b).     

Furthermore, the successful use of an in vitro fluorescence-activated cell sorting 

(FACS) based on α-6 integrin expression has been reported as a means to enrich 

spermatogonial stem cells (Shinohara et al. 2000b). Additionally, enriched newborn and 

adult mouse type A spermatogonial populations were obtained through marker proteins 

suc as Thy-1, CD9, Egr3, or GFRA-1 expressed on type A (presumably AS) 

spermatogonial cells (Kubota et al. 2003; Kanatsu-Shinohara et al. 2004; Stukenborg et 

al. 2008). Alternatively, differential plating using adhesion molecules (lectin or laminin) 

to surface plastic and velocity sedimentation are useful to reduce the number of somatic 

cells harvested from rodents testes (van Pelt et al. 1996; Shinohara et al. 1999; Lou et al. 

2006).  

Harvesting bovine donor spermatogonia stem cells from animals before puberty, 

when the seminiferous tubules have higher proportion of undifferentiated germ cells, is 

the most recommended (Izadyar et al. 2002b; Izadyar et al. 2003a; Izadyar et al. 2003b; 

Herrid et al. 2006). In these studies, type A spermatogonia cells were isolated from 3-7 

month-old prepubertal bulls and characterized further by expression of markers such as c-

kit and lectin Dolichos biflorus agglutinin (DBA; Izadyar et al. 2002b; Izadyar et al. 
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2003a; Izadyar et al. 2003b) or protein gene product (PGP) 9.5 (Herrid et al. 2006). 

Immediatelly after cell collection, pools of type A spermatogonial and somatic cells were 

subjected to a Percoll gradient separation to further enrich type A spermatogonia (Izadyar 

et al. 2002b; Izadyar et al. 2003a; Izadyar et al. 2003b). The most effective way to isolate 

pure populations of spermatogonial stem cells is to collect all forms of type A 

spermatogonia (As, Apr, Aal, and A1-A4). Because the markers used in these studies may 

be expressed in all type A spermatogonia, the age of donors (prepubertal bulls) ensure, at 

least in part, that spermatogonial stem cells were likely present in the collected solution. 

On the other hand, isolation of type A spermatogonia from adult testes is more 

challenging due to the presence of many types of developing germ cells in the spermatic 

epithelium (reviewed by Meachem et al. 2001). In adult testes with similar morphological 

characteristic, spermatognial stem cells accounts for < 4% of all the spermatogenic cells 

(reviewed by Meachem et al. 2001). However, spermatogonial cells carring a lacZ 

transgene (marker) isolated from adult mice were able to colonize and re-initiate 

spermatogenesis in recipient mice testes after transplant (Avarbock et al. 1996). In this 

study, the identification of donor-derived spermatogonial stem cell progeny stained blue 

following incubation with X-Gal. Dobrinski et al. (2000) transferred a pool of isolated 

spermatogonial cells (presumable all types A spermatogonia and spermatocytes) from an 

adult bull to seminiferous tubules of recipient mice. It was suggested that bovine donor-

derived cells colonized seminiferous tubules of recipient mice but do not differentiate 

into spermatozoa. The species-specific polyclonal antibodies used in this study were 

generated by immunizing female rabbits with prepubertal testis cells (primarily myoid, 

germ and Sertoli cells). Therefore, evaluation of colonization after transplant was 
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performed not only for spermatogonial cells but also for Sertoli cells since antibodies 

recognized all donor cells inside of the seminifeorus tubules. Although a pool of 

testicular cells (all types A spermatogonial and spermatocytes) from adult bull have been 

transferred to mice without further differentiation, information on isolation and culture of 

adult bovine type A spermatogonia cells is lacking.    

 

3.6. Advances on bovine germ stem cell transplant 

 

The adaptation of the spermatogonial stem cell transplantation in livestock 

enables the preservation and dissemination of desirable genetics. Significant 

improvements have been made in donor cell isolation, purification, and recipient 

preparation in pigs (Luo et al. 2006), goats (Honaramooz et al. 2003a), and bovine 

(Izadyar et al. 2002a; 2003b; Herrid et al. 2006). Long-term and large scale culture 

systems of bovine germ cells have been reported (Izadyar et al. 2003a).  

As summary of the advances, the development of an optimal in vitro system that 

allows multiplication of undifferentiated germ cells is a long soughtafter goal. 

Proliferation of spermatogonial stem cells under in vitro culture will allow a continuous 

supply of cells to be transferred into multiple recipient animals. Additionally, a simple 

and costly effective method to identify unequivocal viable stem cells for culture is still 

under investigation. Donor spermatogonial stem cells can colonize the recipient 

seminiferous tubules more efficiently when the recipient testes present no endogenous 

spermatogonia. Depletion of donor endogenous germ stem cells has been studied using 
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irradiation, ischemia, hyperthermia, and chemotherapeutic drug (busulfan). However, a 

practical method that allows field application to abolish endogenous germ cells while 

minimizing negative side effects on the recipient animal still remains under investigation.   

 

3.7. Potential applications of germ cell transplantation in livestock  

 

Successful spermatogonial cells transplantation followed by colonization of the 

recipient seminiferous tubules in cattle and re-initiation of spermatogenesis by 

trasnplented donor cells requires sound recipient animals within the same specie 

(Honaramooz et al. 2002a; Honaramooz et al. 2003b; Izadyar et al. 2003a; Honaramooz 

et al. 2005; Herrid et al. 2006). Potetial clinical applications and benefits of this 

technique in livestock are as follow: 

a. Enhance dissemination of superior genetic animals: large-scale culture of 

spermatogonial stem cells will allow a constant supply for transplantation into 

less-valuable recipient animals. 

b. Cross-breeding in environments where artificial insemination is impractical 

(i.e. heat stress): Bos indicus bulls ejaculating Bos taurus sperm will enhance 

the value of the F1 calves in Bos indicus herds.   

c. Conservation of endangered species: spermatogonial stem cells can be 

preserved through transplantation into recipient animals. 
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d. Introduction of genetic modifications through spermatogonia stem cell line is 

a promising strategy to obtain transgenic animals used for the efficient 

production of biopharmaceutical proteins (i.e. insulin, EGF, etc.). 

 

4. Summary and statement of the problem 

 

Spermatogonia stem cells have unique capabilities including self-renewal and 

production of the end product, spermatozoa. The ability to recover these cells, maintain in 

vitro, and transfer them to another testis would provide a valuable technique to study the 

process of spermatogenesis. Furthermore, spermatogonial transplantation may be an 

alternative to transfer economically favorable genes through modification of germ cell 

lines. The clinical application of culturing SSCs is of great importance in livestock, 

wildlife, and humans. Animal models may provide adequate knowledge for therapeutic 

management in patients with oncological and infertility diseases. Preserving SSCs have 

two advantages (proliferation by mitosis and differentiation to haploid cells by meiosis) 

as opposed to cryopreservation of spermatozoa (haploid cells cannot undergo mitosis). 

Therefore, large amounts of the genetic materiel can be preserved through culture of 

SSCs. Isolation and culture of bovine type A spermatogonia has been performed in 

prepubertal bulls (Izadyar et al. 2002; 2003a) and very little is known on type A 

spermatogonia cultured from adult bulls. Moreover, male germ cells culture from large 

food animals such as bovine of known genetic merit is of paramount important for future 

studies aimed to transfer these valuable genes using recipient animals. The correct 
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identification and culture of type A spermatogonia will enable dissemination of desired 

genetic from donor animals through spermatogonial cells transfer. 

The present research aims were to: 1) evaluate potential protocols that favor germ 

stem cell proliferation through hormonal induction in recipient prepubertal bulls, 2) 

establish an alternative method to abolish endogenous germ stem cell through testicular 

transiently-induced ischemia in recipient animals, and 3) develop potential protocols for 

in vitro proliferation of undifferentiated spermatogonial stem cells under different culture 

conditions. Therefore, to accomplish the overall research goal, the following research 

objectives were pursued: 

a. Determine hormone profiles and population of Sertoli, germ, and Leydig cells 

following immunization against inhibin in Jersey bull calves: the working hypothesis is 

that immunization against inhibin will increases germ cell populations and FSH 

secretion needed during spermatogonia development. 

b. Determine population of Sertoli, germ, and Leydig cells after transiently-

induced testicular ischemia (hypoxia) in Jersey bull calves: the working hypothesis is that 

transiently-induced testicular ischemia in bull calves will abolish the germ cell 

epithelium maintaining Sertoli and Leydig cell populations in recipient bulls. 

c. Evaluate SSCs proliferation and differentiation under various culture 

conditions: the working hypothesis is that bovine spermatogonial stem cell harvested 

from prepubertal and adult bulls will proliferate and remain undifferentiated during 

short-term in vitro culture. 
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Chapter 3 – CHANGES IN THE TESTIS SEMINIFEROUS TUBULES AND 

INTERSTITIUM IN PREPUBERTAL BULL CALVES IMMUNIZED AGAINST 

INHIBIN AT THE TIME OF GONADOTROPIN ADMINISTRATION 
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This chapter is a paper by the same name published in the Journal Reproduction 

Fertility and Development in 2007 by Schuenemann, G.M., Mendis-Handagama, 

S.M.L.C., Hopkins, F.M., Kania, S.A., and Schrick, F.N. Changes in the testis 

seminiferous tubules and interstitium in prepubertal bull calves immunised against 

inhibin at the time of gonadotropin administration. Reprod. Fertil. Dev. 19, 840-849. 

 

My use of “we” in this chapter refers to my co-authors and myself. My primary 

contributions to this paper include (1) data analysis (2) identification of cell types, (3) 

collection and interpreting of the literature, (4) writing of this paper. 
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3.2. Abstract 

 
The objective of the current study was to evaluate gonadotropin administration at 

initiation of inhibin passive immunization in Jersey bull calves (age: 27 ± 5 d) on 

testicular morphology and development. Primary treatments consisted of control (KLH, n 

= 9) or immunization (INH, n = 9). Subsets of calves were randomly assigned within 

primary treatments (TRT) to receive saline (n = 3 / TRT), FSH (n = 3 / TRT), or GnRH 
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(n = 3 / TRT). The right testis was removed (age: 118 ± 5 d) to determine volumes of 

testicular components and cell numbers per testis using stereology. Data were analyzed 

using MIXED procedure of SAS. Antibody titers against inhibin were increased in INH 

bulls compared to KLH bulls (P < 0.05). In addition, a significant immunization x 

hormone treatment interaction was noted for number of germ cells. Administration of 

FSH at the time of initial immunization against inhibin significantly increased number of 

germ cells (92.2 ± 9 x 106 cells) compared to INH-Saline bulls (54.9 ± 10 x 106 cells) 

with INH-GnRH bulls being intermediate (64.5 ± 9 x 106 cells; P < 0.05). These results 

suggest that gonadotropin administration at time of inhibin immunization increases 

number of germ cells in the testis. 

 

Key words: Bull, inhibin, gonadotropin, testis development, germ cells. 

  

3.3. Introduction 

 

Spermatogenesis is a highly organized complex process that involves the 

coordinated interaction of both germ and somatic cell components. Three primary phases 

in spermatogenesis occur in the seminiferous tubule (Amann 1983), which include 

spermatogonial multiplication (mitosis), meiosis, and release of sperm to the lumen of the 

seminiferous tubule (spermiogenesis). Leydig cells are responsible for the synthesis of 

testosterone (Abraham 1991; Payne et al. 1995) while Sertoli cells are considered the 

“nurse cell” (Griswold 1995) and are located around the periphery of the seminiferous 

tubule. Functional Sertoli cells have specific FSH receptors and will absorb testosterone 
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secreted by Leydig cells (Silva et al. 2002). FSH is one of the primary hormones 

stimulating spermatogenesis (Kerr et al. 1992) and early secretion of FSH in bulls is 

thought to be dependent upon GnRH (Evans et al. 1993).  

Inhibin is a 31- to 34-kDa heterodimeric glycoprotein (α-βA is inhibin-A, -α-βB  is 

inhibin-B) with physiological important roles for regulation of testicular function (Ying 

1988; Mather et al. 1992). In the male, inhibin is produced by Sertoli cells (de Kretser et 

al. 1989) and the best-established role is an endocrine negative feedback on FSH release 

at the pituitary gland level (Ying 1988; Bame et al. 1999; Kaneko et al. 2001). Recent 

evidence also supports an autocrine or paracrine role for inhibin in regulation of testicular 

function (Ying 1988; Bardin et al. 1989; Mather et al. 1992). In support of the overall 

suppressive effect of inhibin on pituitary and testicular function, immunization against 

inhibin increases secretion of FSH in rams (Voglmayr et al. 1990), and daily sperm 

production and concentration of FSH secreted in bulls (Martin et al. 1991; Kaneko et al. 

1993; Bame et al. 1999; Kaneko et al. 2001).  

Male germ cell transplantation in livestock has progressed tremendously in the 

past few years (Honaramooz et al. 2003a, 2003b; Izadyar et al. 2003; Joerg et al. 2003; 

Hill et al. 2005). However, the efficiency of colonization of seminiferous tubules by the 

transplanted germ cells is low and variable (Dobrinski et al. 2000; Nogano, et al. 2002; 

Izadyar et al. 2003; Joerg et al. 2003; Hill et al. 2005). This emphasizes the necessity to 

find practical means of stimulating transplanted germ cell proliferation in recipient bulls 

that will result in adequate donor cell colonization without the need for further 

intervention. 
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Many reports are available on testicular components in the developing postnatal 

rat (Roosen-Runge et al. 1959; Mendis-Handagama et al. 1998), cat (França et al. 2003), 

bull (Curtis and Amann 1981), and other mammals (Russell et al. 1990). However, 

characterization of the testicular components of prepubertal bovine bulls immunized 

against inhibin is not available. Such data are important for understanding the dynamics 

of the cell-cell interaction, proliferation, and differentiation in the testis.  

Consequently, the primary objective of the current study was to evaluate effects 

of passive immunization against inhibin in young bull calves and the effectiveness of 

gonadotropin administration at initiation of inhibin immunization on the testicular cell 

components. Additionally, the end result would be aimed at developing a protocol that 

favors germ cells proliferation. 

 

3.4. Materials and Methods 

 

3.4.1. Animals and treatments 

 
Eighteen Jersey bull calves were paired by birth date (± 5 d) at 20 d of age. Bulls 

were born and raised exclusively at the Dairy Research and Education Center 

(Lewisburg, TN, USA). During the first month of life, animals were isolated from each 

other to reduce pathogen transmission. At birth, calves received colostrum in a bottle for 

the first 48 hours of life (1.2 liters / twice a day). During the initial 8 weeks of life, 

animals were fed whole waste milk (1.2 liters / twice a day) and offered a starter ration 

(Tennessee Farmers Cooperative, Lavergne, TN, USA) and a primer ration (Tennessee 
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Farmers Cooperative, Lavergne, TN, USA) ad libitum. Weaning occurred at 8 weeks of 

age with calves placed in group pens and fed only the primer ration ad libitum for the 

remainder of the experiment. 

Calves were randomly assigned into six (6) treatment groups (n = 3 calves / 

treatment) at 20 d of age. The study was performed using the inhibin peptide (bovine 

inhibin α1-26) conjugated to keyhole limpet hemocyanin (KLH). Primary treatments 

(Table 1; initial immunization at 27 ± 5 d of age; d 1 of the experimental period (All 

tables and figures in this chapter appear in the appendix)) consisted of control (KLH, 250 

µg, n = 9) or immunization (INH, 500 µg INH:250 µg KLH, n = 9) with both emulsified 

in 2 mL of Freund's Complete Adjuvant (FCA). Booster immunizations (identical 

preparation in Freund’s incomplete adjuvant, FICA) occurred every 21 d with the last 

administration on d 84 of the trial (a week before castration). All immunizations were 

administered into four sites (two in the neck and two behind the shoulder; 

subcutaneously; Bame et al. 1999). Subsets of calves were randomly assigned within 

primary treatments (TRT) to receive saline (1 mL, n = 3 / TRT), FSH (20 mg, n = 3 / 

TRT), or GnRH (50 µg, n = 3 / TRT) every 8 hours (0600, 1400, 2200 h) from D 1-3 of 

the study (Table 1). Each hormone injection consisted of 1 mL sterile saline (Abbott 

Laboratories, North Chicago, IL, USA), or 1 mL FSH injection at 20 mg mL–1 

(Folltropin-V, Bioniche Animal Health Canada Inc., Belleville, Ontario, Canada), or 1 

mL GnRH injection at 50 µg mL–1 (Cystorelin, Merial Limited, Iselin, NJ, USA). All 

experimental procedures were reviewed and approved by the Institutional Animal Care 

and Use Committee, University of Tennessee, Knoxville, USA. Pain and stress to animals 

were minimized throughout the experimental period. 
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3.4.2. Preparation of immunogen 

 

The sequence of bovine inhibin α1-26 (his-ala-val-gly-gly-phe-met-arg-arg-gly-

ser-glu-pro-glu-asp-gln-asp-val-ser-gln-ala-ile-leu-phe-pro-ala (Bame et al. 1999) was 

synthesized commercially (Bio-Synthesis, Lewisville, TX, USA). In a previous study, 

(Good et al. 1995) showed that antibodies that were generated against inhibin α bound to 

a carrier cross-reacted with at least eight different molecular variants of bovine inhibin 

dimmers and inhibin α subunits, but not with activin or the inhibin/activin serum-binding 

proteins, follistatin and α-macroglobulins. Unlike previous studies in which human alpha 

globulin (HAG) was utilized (Martin et al. 1991; Bame et al. 1999), the current 

experiment was performed using the inhibin peptide conjugated to keyhole limpet 

hemocyanin (KLH) 2 : 1 (60 mg peptide to 30 mg KLH). 

 

3.4.3. Blood samples, body weight, and scrotal growth 

 

Blood samples were obtained via jugular venipuncture at 1400 h daily from d 0-

14 and then weekly until testes collection (Fig. 1; d 91 of the trial). Blood samples were 

immediately centrifuged at 2000 x g for 15 minutes and serum stored at -20°C until 

assayed by RIA for FSH, LH, testosterone (T), and determination of inhibin antibody 

titers. Body weight and scrotal circumference (Good et al. 1995) were measured at each 
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immunization and before testes removal (Fig. 1; approximately 16 weeks of age). The 

right testis was weighed and used for absolute volume calculation of cell components per 

testis. The left testis was weighed, fixed in 2.5% glutaraldehyde, and stored.  

 

3.4.4. Collection and processing of testis tissue 

 

At day 91 d of the study, bulls were castrated and both testes were removed and 

weighed (fresh testicular weight). The right testis was perfused fixed by cannulation of 

the artery and used for microscopy evaluation and stereology. First, a solution (250 mL) 

of 0.9% NaCl was flushed through the tissue for approximately 10 minutes to allow 

blood to clear from testicular vessels. When the testis was clear of blood, a solution (250 

mL) containing 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) was 

administered through the cannula as described by Mendis-Handagama et al. (1988).  

After perfusion fixation was complete, testes were placed in a plastic container 

immersed into the same fixative solution for a week. Then testes tunica albuginea were 

nicked using a 10’ blade scalpel and placed back into the container for a week. The testis 

was weighed with the testicular capsule (tunica) and without the capsule prior to tissue 

processing for microscopy. From each fixed testicle, 10 tissue samples of approximately 

2-3 mm cubes were cut and was post fixed in a 1 : 1 mixture of 2% aqueous osmium 

tetroxide and 3% potassium ferrocyanide (Russell and Burguet 1977), then dehydrated in 

a series of graded ethanols and embedded in epon-araldite (Electron Microscopy 

Sciences, Hatfield, PA, USA) as described by Mendis-Handagama and Ewing (1990). 
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The polymerization of the tissue blocks took place in an oven at 60ºC for 48 h (Mendis- 

Handagama et al. 1990).  

 

3.4.5. Testis histology and morphometry 

 

From each polymerized tissue block (ten per testis), two 1-µm thick sections were 

made using a LKB IV ultramicrotome (Pharmacia LKB, Piscataway, NJ, USA) and glass 

knives. Sections were mounted on pre-cleaned glass slide (Superfrost Plus; Fisher 

Scientific, Pittsburgh, PA, USA), stained with methylene blue azure II, and cover-slipped 

under permount (Fisher Scientific, Pittsburgh, PA, USA). The different cell types in the 

testicular interstitium and inside the seminiferous tubules were identified by their 

morphological characteristics as previously described (Fig. 2; Curtis and Amann 1983; 

Berndtson et al. 1987a; 1987b; Mendis-Handagama et al. 1987; 1998; Ariyaratne et al. 

2000). A total of 20, 1-µm thick sections (two per block), per testis were used to evaluate 

testicular components using the point count method (Weibel 1980). 

Volume of components: The volume density (vv%) of testicular components 

(defined as the volume of a component per unit volume of testis tissue) was obtained by 

the point-counting method (Weibel 1980) using an ocular grid with 88 test points fitted to 

a color video monitor at x 400 magnification. To determine the volume density of 

components of the seminiferous tubules and the testis interstitium, 10 randomly selected 

ocular fields of each section were scored (10 fields section X 10 blocks testis X 88 points 

= 8800 points per testis per bull). The absolute volume (mm3) occupied by each testicular 



 90

component was calculated by multiplying the volume density of each component by the 

testis volume (without the capsule). Because the testis density is nearly 1.0 (range 1.03-

4), subsequent morphometric calculations of the testis weight was considered equal to 

testis volume.  

Average volume of a germ cell, and the nucleus of a Sertoli and Leydig cell: The 

germ cells, and the nuclei of Sertoli and Leydig cells in these tissue sections were 

reasonably circular to justify that they are spherical or close to spherical in configuration. 

Therefore, the following methodology was used to determine their average volume.  

Images of germ cells, Sertoli cells and Leydig cells in the methylene blue-stained testis 

tissue sections were brought up on a color video monitor using a color video camera 

(DXC-107A; Sony Corporation, Tokyo, Japan). The diameters of germ cells, and nuclei 

of Sertoli and Leydig cells were measured using ocular and slide micrometers (n = 50 per 

animal). The average volume (v) of  a germ cell, the nucleus of a Sertoli cell and the 

nucleus of a Leydig cell was calculated using the formula that determines the volume of a 

sphere, namely, v = 4 / 3 . π . r3, where r is cell diameter / 2 for germ cell or nuclear 

diameter / 2 for Leydig and Sertoli cells. Results are expressed in µm3. 

Number of germ, Sertoli and Leydig cells per testis: The absolute volumes of 

germ cells, and the nuclei of Sertoli and Leydig cells were determined similarly to the 

methodology described above. The number of germ cells per testis was calculated by 

dividing the absolute volume of germ cells per testis by the average volume of a germ 

cell. The numbers of Sertoli and Leydig cells per testis were calculated similarly by 

dividing the absolute volume of nuclei per testis of Sertoli and Leydig cells by the 

average volume of a nucleus of each cell type. As both Sertoli and Leydig cells contain 
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one nucleus per cell, number of nuclei per testis of each cell type is the same as the 

number of cells of each cell type per testis.  

Average volume of a Sertoli and Leydig cell: These were calculated by dividing 

the absolute volume of each cell type per testis by the number of each cell type per testis. 

Length of seminiferous tubules: Seminiferous tubules are cylindrical in shape and 

the formula for the volume of a cylinder (v) is v = π . r2 . h, where π . r2 is the area of the 

cross-section of the cylinder, r is radius (diameter / 2), and h is the height and/or length of 

the cylinder. Average diameter of the seminiferous tubules in each bull calf (n = 50 per 

animal) was determined by ocular and slide micrometers connected to an Olympus BH-2 

light microscope and the radius was calculated. Using the results of absolute volume of 

seminiferous tubules per testis (STv), the length of the seminiferous tubules per testis (h) 

was calculated as h = STv / (π . r2). The results were expressed as length (in meters) per 

testis and per g of testis. 

 

 3.4.6. Inhibin antibody titer determination  

 

Peptide ELISAs were performed as described by Kania et al. (1997). The volume 

of each reagent was 100 µL well–1. The optimal concentration of the peptide antigens, 

which was unconjugated inhibin, was determined over the range of two-fold, serial 

dilutions from 128 µL mL–1 to 1 µL mL–1 using negative and positive serum. A dilution 

of 1 µL mL–1 was found to be optimal for the peptide. Optimal concentrations of antigen 

were determined with bull sera diluted 1 : 100. Peptides at a concentration of 1 µg mL–1 
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in phosphate buffered saline (PBS) were bound to ELISA plates (Immulon 2HB 96 well 

plates; ThermoLab Systems, Franklin, MA, USA) overnight at 4ºC. The plates were 

washed 3 times with a plate washer (Elx405 AutoPlate Washer; Bio-Tek Instruments, 

Inc., Winooski, VT, USA) with PBS containing 0.05% polyoxyethylenesorbitan 

monolaurate (PBSTW) and soaked for 30 minutes at room temperature with PBSTW.  

Serum samples diluted 1 : 4,000 in PBSTW were incubated for 60 minutes at 37ºC. This 

serum concentration was determined to be optimal from a series of serum titrations over 

the range of 1 : 100 to 1 : 12,800 using negative and positive serum. After 3 washes with 

PBSTW, peroxidase-conjugated anti-bovine IgG (Bovine IgG no. A10-102P; Bethyl 

Laboratories Inc., Montgomery, TX, USA) diluted 1 : 10,000 in PBSTW, was added and 

incubated at 37ºC for 60 minutes. The plates were washed 3 times with PBSTW and then 

received 3,3’,5,5’-tetramethylbenzidine (TMB) substrate solution (100 µL well–1; TMB 

substrate no. N301; Pierce Biotechnology, Inc., Rockford, IL, USA). The substrate was 

allowed to incubate at room temperature for 8 minutes. The oxidation reaction was 

stopped by adding 100 µL of 0.18 M H2SO4 (sulfuric acid) to each well, which in turn 

changes the blue color to yellow. The optical density of the solution in each well was 

determined at 450 nm with a plate reader (Elx800 Universal Microplate Reader; Bio-Tek 

Instruments, Inc., Winooski, VT, USA). ELISA testing was performed on the following 

experiment days: 0, 7, 10, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, and 91 which 

represents an equal distribution of sampling points over the immunization period. 
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3.4.7. Gonadotropin and steroid hormone RIA 

 

Serum was removed from storage at -20°C and assays for LH, FSH, and T were 

performed. Radioimmunoassays (Coat-A-Count; Diagnostic Products, Los Angeles, CA, 

USA) were performed to determine the concentration of testosterone (Schuenemann et al. 

2005). Sensitivity of the assay for testosterone was 0.20 ng mL–1 with intra- and inter-

assay coefficients of variation (CV) of 10% and 2%, respectively. Concentrations of LH 

and FSH were performed as described by Moura and Erickson (1997). Sensitivity of the 

assay for LH was 0.031 ng mL–1 with an intra- and inter-assay CV of 10% and 15%, 

respectively. Sensitivity of the assay for FSH was 0.021 ng mL–1 with an intra- and inter-

assay CV of 14% and 16%, respectively. 

 

3.4.8. Statistical analyses 

 

Variation in BW, SC, LH, FSH, T, anti-inhibin antibody titers, and testicular cell 

types were evaluated in this study. Data were analyzed by analysis of variance using the 

MIXED procedure of SAS (SAS 2003). Body weight, SC, anti-inhibin antibody titers, 

and hormones were arranged in a completely randomized design with factorial and 

repeated measures. All testicular cell types were analyzed using a completely randomized 

design with factorial. A mixed model procedure that included vaccination treatment (INH 

or KLH) and hormonal treatment (Saline, FSH, or GnRH) was used to compare 

differences among treatments. Age of the calf at castration was used as covariate and calf 
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(treatment) was included as a random effect. Date of hormone analysis was included as 

repeated measures. Differences in individual least squares means were evaluated using 

Tukey-Kramer method. A P < 0.05 value was considered statistically significant.  

 

3.5. Results 

 

3.5.1. Hormones, body weight, scrotal growth, testicular weight, and inhibin antibody 

titers 

 
Body weight (89.8 ± 14.2 kg), SC (14.6 ± 1.3 cm), and single testicular weight 

(19.2 ± 6.2 g) recorded at the end of the experimental period did not differ among 

treatments. Serum diluted 1 : 4000 from INH-immunized bulls (1.4 ± 0.1 OD) differed 

from KLH-immunized bulls (0 ± 0.1 OD; P < 0.05) in anti-INH antibody titers in Jersey 

bull calves (Fig. 3). A significant immunization X date treatment interaction was noted 

the first 3 weeks of the experimental period in serum anti-inhibin antibody titers in Jersey 

bull calves (P < 0.05; Fig. 3). Additionally, neither serum concentrations of LH (Fig. 4) 

and T (Fig. 5) differed between any treatment groups (P < 0.05). Serum concentrations of 

FSH increased at the time of FSH administration in INH+FSH and KLH+FSH (0.47 ± 

0.04 and 0.48 ± 0.04 ng mL–1) compared to control groups INH+Saline and KLH+Saline 

(0.25 ± 0.04 and 0.26 ± 0.04 ng mL–1; P < 0.05; Fig. 6 and 7). However, concentration of 

FSH did not differ from the second anti-INH booster to the end of the experimental 

period for any treatment groups (P > 0.05; Fig. 6 and 7).  
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3.5.2. Testicular components evaluation 

 

Representative light micrographs of testicular components in Jersey bull calves 

are shown (Fig. 2). Testis volumes and seminiferous tubule length did not differ between 

treatment groups (P > 0.05; Table 2). The volume densities of germ cells, blood vessels, 

and blood vessel lumen differed between treatment groups (P < 0.05; Table 2). Bull 

calves immunized against INH plus the administration of either FSH (5.7 ± 0.8%) or 

GnRH (4.8 ± 0.8%) had the higher volume densities of germ cells compared to calves 

immunized against KLH (P < 0.05; Table 2). The remaining volume densities of 

testicular components were not different for any treatment groups (P > 0.05; Table 2). 

Reduced blood vessel volume densities (0.32 ± 0.1%) and blood vessel lumen diameter 

(0.08 ± 0.06%) were observed in animals immunized against INH and not administered 

gonadotropins (P < 0.05; Table 2). However, thickening of the walls of blood vessels was 

unchanged for any treatment groups (P > 0.05; Table 2).  

Increased absolute volume of germ cells per testis was observed in bull calves 

immunized against INH plus the administration of FSH (1220 ± 109 mm3) compared to 

other treatment groups (P < 0.05; Table 3). The remaining absolute volumes of testicular 

components per testis were unchanged for any treatment groups (P > 0.05; Table 3).  

A significant immunization x hormone treatment interaction was noted for 

average volume of germ cells per testis. Increased number of germ cells per testis was 

found in bull calves immunized against INH plus the administration of FSH (92.2 ± 9 x 

106 cells) compared to other treatment groups (P < 0.05; Table 4). Surprisingly, number 

of Sertoli cells per testis were decreased in bull calves immunized against INH plus the 
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administration of FSH (1534 ± 383 x 106 cells) compared to other treatment groups (P < 

0.05; Table 4). Additionally, animals immunized against INH plus the administration of 

FSH had the highest average volume of a germ cell (13311 ± 320 µm3), Sertoli cells 

nuclei (2066 ± 100 µm3), and Leydig cells nuclei (1630 ± 60 µm3; P < 0.05; Table 4). 

Administration of FSH at the time of initial immunization against inhibin significantly 

increased germ cells number compared to INH-Saline bulls with INH-GnRH bulls being 

intermediate (P < 0.05; Table 4). However, the average volume of a germ cell was 

increased in bull calves immunized against INH plus the administration of FSH (P < 

0.05; Table 4). This indicates that administration of FSH at the time of initial 

immunization against inhibin significantly increased the average volume of a germ cell 

and the number of germ cells. However, germ cells number and the average cell volume 

were not increased following hormone administration in KLH bulls (P < 0.05, Table 4).  

 

3.6. Discussion 

 

Early initiation of puberty in the bull calf has been a goal of animal scientists for 

many years. The main findings of this study demonstrated that 1) there was no direct 

relationship between plasma anti-inhibin antibody titer and FSH after 3 weeks of the 

experiment; 2) increased number of germ cells per testis were found exclusively in 

INH+FSH immunized bulls; and 3) the average volume of germ cells, Sertoli cell nuclei, 

and Leydig cell nuclei was increased in testes of bull calves immunized against inhibin.  

Concentrations of serum FSH are similar to results previously reported (Evans et 

al. 1993; Kaneko et al. 2001). Results from previous studies provide clear evidence that 
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inhibin has a physiological role in the regulation of FSH secretion during the early stages 

of development in bulls (Bame et al. 1999; Kaneko et al. 2001). However, the 

physiological role of FSH during prepubertal development of bulls is unclear. Early 

secretion of FSH in bulls is thought to be dependent upon GnRH secretion (Evans et al. 

1993). The FSH response to GnRH administration at 1 month of age is smaller than in 

other older animals (Schams et al. 1981). FSH is necessary to develop the androgen 

binding protein production by Sertoli cells and to develop the blood-testis barrier (an 

indirect effect on Sertoli cell function and proliferation). Previous studies on bulls have 

shown that immunization against inhibin in 3- to 13-mo old bulls increased daily sperm 

production and the amount of FSH secreted (Martin et al. 1991; Kaneko et al. 1993; 

Bame et al. 1999; Kaneko et al. 2001). In the present study, only administration of FSH 

(regardless of immunization treatment) resulted in increased FSH concentrations for brief 

period of time; thereafter, the amount of FSH remained unchanged to the end of the 

experimental period.  

The major production site of inhibin in the testis is Sertoli cells (Kaneko et al. 

2001). Inhibin secretion may have a direct effect on spermatogenesis by decreasing FSH 

secretion during early stage of testicular development. Inhibin participates in the 

regulation of FSH secretion during the early prepubertal stage in bulls (Kaneko et al. 

2001). Immunization against inhibin in bull calves increased anti-inhibin antibody during 

titers the first 3 weeks of the experiment and remained high to end of the experimental 

period. However, the amount of FSH remains unchanged after the second immunization 

booster among treatment groups for unknown reasons. The present immunization study 

(utilizing the same bovine inhibin α1-26 as previously reported (Bame et al. 1999) with a 
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different carrier, KLH) clearly indicates that FSH amount remained unchanged after the 

second immunization booster regardless of treatment combination as reported in previous 

studies (Evans et al. 1993; Bame et al. 1999; Kaneko et al. 2001). Testosterone 

concentrations increased at the end of the experimental period for all treatment groups. 

Leydig cells are responsible for the synthesis of testosterone (Abraham 1991; Payne et al. 

1995) in response to LH stimulation. In this study, amount of LH remained unchanged 

among treatments; however, the increased testosterone concentrations at the end of the 

experiment may be explained by an increase in LH pulse frequency (not determined in 

the present study).  

The most important finding of the present study is the increased germ cell number 

per testis in 4-mo old bull calves immunized against inhibin at the time of gonadotropin 

administration. Increased germ cell number per testis is likely responsible for the increase 

in daily sperm production after puberty as previously reported (Martin et al. 1991; 

Kaneko et al. 1993; Bame et al. 1999; Kaneko et al. 2001). The Sertoli cell is recognized 

for important contributions to the support of spermatogenesis, and studies with young 

beef bulls (Berndtson et al., 1987a) have revealed large, positive correlations between the 

total number of Sertoli cells and daily sperm production. Additionally, Berndtson et al. 

(1987b) suggested that total Sertoli cell number may be an important determinant of 

bull’s spermatogenic potential. In this study, Sertoli cell number was decreased in bull 

immunized against inhibin plus FSH administration. Interestingly, immunization against 

inhibin plus gonadotropin administration favors germ cell development and proliferation. 

This increased germ cell number per testis could be explained, in part at least, by the 

increased volume of Sertoli and Leydig cells per testis and the increase in size of each 
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cell type. Theoretically, increased absolute volume of Sertoli cells per testis is able to 

support more germ cells; therefore, this parameter may be more important for increased 

sperm production than the Sertoli cell number. The lower number of Sertoli cells per 

testis may be due to the possibility that Sertoli cells undergo an early maturation process 

in bulls immunized against inhibin plus FSH administration; thus losing the ability to 

proliferate and initiate functions that are essential for support of germ cells during 

spermatogenesis (Sharpe et al. 2003). The onset of puberty in bulls may be also 

associated with a dramatic increase in mean Sertoli and Leydig cell volume and a peak in 

the steroid-producing capacity per Leydig cell as shown in boars (Lunstra et al. 1986). 

In conclusion, these results suggest that gonadotropin administration at the time of 

inhibin immunization increases germ cell number and the absolute volume of Sertoli, 

Leydig, and germ cells per testis together with increase in size (average volume of a cell) 

of all three cell types. Furthermore, the present findings have the potential to develop an 

alternative therapy to benefit germ cell colonization after stem cell transplantation. 
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3.8. Appendix: Figures and Tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 104

 
 
 
 
 
Figure 1. Timeline of primary treatment assignment in Jersey bull calves immunized 

against INH or KLH plus gonadotropin sub-treatment administration.  
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Figure 2. A representative light micrograph of testis tissue of a 4 month old Jersey bull 

calf showing testicular components. In the seminiferous tubules (ST), germ cells (GC) are 

fewer in number compared to Sertoli cells (SC). At this stage, lumen is not seen. Leydig 

cells (LC), myoid cells (M), and blood vessel (BV) are present in the interstitial space (I) 

of the testis. Bar represent 40 µm. 
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Figure 3. Variation in serum anti-INH antibody titers in Jersey bull calves immunized 

against INH or KLH treatment groups. Values (mean ± SEM) differ from day 10 

throughout the experimental period (P < 0.05). 
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Figure 4. Daily and weekly concentrations of LH (mean ± SEM) in Jersey bull calves 

immunized against INH or KLH plus gonadotropin administration among treatment 

groups. Arrows indicate immunization days. 
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Figure 5. Daily and weekly concentrations of testosterone (T; mean ± SEM) in Jersey 

bull calves immunized against INH or KLH plus gonadotropin administration among 

treatment groups. Arrows indicate immunization days. 
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Figure 6. Overall daily and weekly concentrations of FSH (mean ± SEM) in Jersey bull 

calves immunized against INH or KLH plus gonadotropin administration among 

treatment groups. Arrows indicate immunization days. 
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Figure 7. Daily and weekly concentrations of FSH (mean ± SEM) in Jersey bull calves 

immunized against INH or KLH plus gonadotropin administration among treatment 

groups. Arrows indicate immunization days. *Asterisks are significantly different (P < 

0.05).  
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Tables 

Table 1. Assignment of primary treatments in Jersey bull calves immunised against inhibin or 
keyhole limpet haemocyanin plus gonadotropin subtreatment administration. 
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Table 2. Mean testis volume, volume density of testicular components, and seminiferous tubule 
length. In each row, values (mean±s.e.m.) with different superscript letters are significantly 
different (P<0.05).  
 

Treatment groups 
Parameter 

INH+Saline INH+FSH INH+GnRH KLH+Saline KLH+FSH KLH+GnR
H 

Testis volume (mm3) 21810.5± 
4827a 

23094.1± 
7482a 

17274± 
2191a  

21065± 
3925a  

16448.7± 
6031a 

15977.3± 
1720a 

Seminiferous tubules 
(%) 62.7±2.2a 61.8±2.2a 63.2±2.2a 62±2.2a 61.6±2.2a 57.6±2.2a 

Seminiferous tubule 
cells (%) 17.4±1.2a 19.4±1.2a 20.3±1.2a 17.9±1.2a 16.8±1.2a 16.6±1.2a 

Sertoli cells (%) 14.5±0.9a 13.6±0.9a 15.5±0.9a 13.9±0.9a 14.3±0.9a 14±0.9a 

Germ cells (%) 3.2±0.8b 5.7±0.8a 4.8±0.8a 3.8±0.8b 2.5±0.8b 2.7±0.8b 

Seminiferous tubule 
length per gram of 

testis (m) 
448±91a 398±91a 689±91a 422±91a 512±91a 423±91a 

Seminiferous tubule 
length per testis (m) 

10117± 
3730a 

10515± 
3728a 

12386± 
3729a 

9013± 
3729a 

11020± 
3729a 

7252± 
3729a 

 
INH+FSH, immunisation against inhibin (INH) plus follicle-stimulating hormone (FSH) 
administration; INH+GnRH, immunisation against INH plus gonadotrophin-releasing hormone 
(GnRH) administration; INH+saline, immunisation against INH plus saline administration; 
KLH+FSH, control conjugated to keyhole limpet haemocyanin (KLH) plus FSH administration; 
KLH+GnRH, control conjugated to KLH plus GnRH administration; KLH+saline, control 
conjugated to KLH plus saline administration. 
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Table 2, continued 
 

Parameter Treatment groups 

 INH+Saline INH+FSH INH+GnRH KLH+Saline KLH+FSH KLH+GnR
H 

Interstitial cells (%) 
(all cell types) 35.9±1.7a 36.3±1.5a 34.9±1.6a 36.7±1.6a 36.3±1.6a 38.6±1.6a 

Blood vessels (%) 0.32±0.1c 0.52±0.1bc 0.77±0.1ab 0.43±0.1bc 0.76±0.1abc 1.1±0.1a 

Blood vessels lumen 
(%) 0.08±0.06c 0.2±0.05abc 0.3±0.05a 0.1±0.05bc 0.3±0.06ab 0.3±0.05a 

Blood vessel wall (%) 0.2±0.1a 0.2±0.1a 0.3±0.1a 0.2±0.1a 0.4±0.1a 0.6±0.1a 

Leydig cells (%) 32.8±1.5a 32.8±1.3a 31.5±1.4a 33.4±1.4a 33.6±1.4a 35.5±1.4a 

Macrophages (%) 0.9±0.2a 1.2±0.2a 1±0.2a 1±0.2a 0.8±0.2a 0.8±0.2a 

Mesenchimal cells (%) 2.1±0.2a 2.2±0.2a 2.3±0.2a 2.2±0.2a 1.9±0.2a 2.3±0.2a 

 
INH+FSH, immunisation against inhibin (INH) plus follicle-stimulating hormone (FSH) 
administration; INH+GnRH, immunisation against INH plus gonadotrophin-releasing hormone 
(GnRH) administration; INH+saline, immunisation against INH plus saline administration; 
KLH+FSH, control conjugated to keyhole limpet haemocyanin (KLH) plus FSH administration; 
KLH+GnRH, control conjugated to KLH plus GnRH administration; KLH+saline, control 
conjugated to KLH plus saline administration. 
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Table 3. Mean absolute volume of testicular components. In each row, values (mean±s.e.m.) 
with different superscript letters are significantly different (P<0.05).  

 

INH+FSH, immunisation against inhibin (INH) plus follicle-stimulating hormone (FSH) 
administration; INH+GnRH, immunisation against INH plus gonadotrophin-releasing hormone 
(GnRH) administration; INH+saline, immunisation against INH plus saline administration; 
KLH+FSH, control conjugated to keyhole limpet haemocyanin (KLH) plus FSH administration; 
KLH+GnRH, control conjugated to KLH plus GnRH administration; KLH+saline, control 
conjugated to KLH plus saline administration. 
 
 

Treatment groups 
Parameter 

INH+Saline INH+FSH INH+GnRH KLH+Saline KLH+FSH KLH+GnR
H 

Seminiferous 
tubules 
(mm3) 

13149±1749a 14788±1744a 11187±1744a 12806±1744a 11857±1744a 9780±1744a 

Seminiferous 
tubule cells 

(mm3) 
3584±435a 4390±430a 3600±432a 3648±431a 3079±431a 2818±433a 

Sertoli cells 
(mm3) 2999±434a 3171±431a 2769±432a 2895±432a 2632±432a 2403±433a 

Germ cells 
(mm3) 641.3±117bc 1220±109a 839.6±112b 738.9±111bc 448.9±114c 454.5±113c 

Interstitial 
space (mm3) 7835±1191a 8937±1194a 6510±1187a 7962±1186a 6761±1188a 7016±1188a 

Interstitial 
cells (mm3) 7621±1141a 8488±1134a 6182±1133a 7622±1135a 6501±1138a 6433±1138a 

Blood 
vessels 
(mm3) 

68.2±34a 126±32a 136±33a 88.2±32a 135±33a 193.5±33a 

Blood 
vessels 
lumen 

21.4±18a 65±17a 72.6±17a 39.5±17a 52.8±18a 69±17a 

Blood vessel 
wall 46.9±25a 59.8±24a 65.6±24a 48.2±24a 83.2±24a 124.3±24a 

Leydig cells 7003±1055a 7652±1046a 5588±1049a 6936±1049a 6031±1051a 5928±1051a 

Macrophages 
(mm3) 187.3±46a 284.6±44a 178.5±45a 221.2±44a 137.4±45a 130.4±45a 

Mesenchimal 
cells (mm3) 442.9±71a 541±69a 413.4±70a 465.8±69a 332.5±70a 375.9±70a 
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Table 4. Mean cell number per testis and average volume of Leydig, Sertoli, and germ cells.  

 
Treatment groups 

Parameter 
INH+Saline INH+FSH INH+GnRH KLH+Saline KLH+FSH KLH+GnRH 

Leydig cell 
number (x 106) 5316±815a 4700±805a 5334±810a 5755±810a 5837±812a 5395±812a 

Sertoli cell  
number (x 106) 2432±386ab 1534±383b 3249±384a 2789±384a 2909±385a 2229±385ab 

Germ cell 
number (x 106) 54.9±10b 92.2±9a 64.5±9ab 66.5±9ab 50.3±9b 45±9b 

Average volume 
of a Leydig cell 

nuclei (µm3) 
1318±60ab 1630±60a 1048±60b 1204±60ab 1033±60b 1098±60b 

Average volume 
of a Sertoli cell 

nuclei (µm3) 
1238±120b 2066±100a 852±60c 1038±100bc 905±60c 1078±100bc 

Average volume 
of a germ cell 

(µm3) 
11999±440c 13311±320a 13042±370b 11013±340d 8995±380f 10083±370e 

 

In each row, values (mean±s.e.m.) with different superscript letters are significantly different 
(P<0.05). INH+FSH, immunisation against inhibin (INH) plus follicle-stimulating hormone 
(FSH) administration; INH+GnRH, immunisation against INH plus gonadotrophin-releasing 
hormone (GnRH) administration; INH+saline, immunisation against INH plus saline 
administration; KLH+FSH, control conjugated to keyhole limpet haemocyanin (KLH) plus FSH 
administration; KLH+GnRH, control conjugated to KLH plus GnRH administration; 
KLH+saline, control conjugated to KLH plus saline administration. 
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Chapter 4 – RECIPIENT PREPARATION FOR SPERMATOGONIAL STEM 

CELL TRANSPLANTATION: ALTERATION IN TESTICULAR CELL 

COMPONENTS FOLLOWING TRANSIENTLY INDUCED ISCHEMIA IN 

BULLS 
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This chapter is a revised version of a paper by the same name submitted for 

publication in the Journal Reproduction, Fertility, and Development in 2008 by Gustavo 

Schuenemann, Charmindrami Mendis-Handagama, Tulio Prado, and Neal Schrick. 

 

My use of “we” in this chapter refers to my co-authors and myself. My primary 

contributions to this paper include (1) aided in design of the experiment and data analysis 

(2) sample and tissue collection, (3) identification of cell types, (4) collection and 

interpreting of the literature, (5) writing of this paper. 
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4.2. Abstract 

 

The aim of the present study was to evaluate testicular transiently induced 

ischemia (using elastrator bands) in Jersey calves on testicular morphology and 

development. Treatments (at 27 ± 5 days of age) consisted of control (0, n = 4), banding 

for 2 h (2, n = 4), 4 h (4, n = 4), and 8 h (8, n = 4) periods. After castration (age: 60 ± 5 

days), the right testis was used for calculation of cell components per testis according to 

the point counting method. Data were analyzed using MIXED procedure of SAS 
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program. Bodyweight (59.8 ± 6.2 kg) and SC at banding (9.1 ± 0.2 cm) did not differ 

between treatments. Fresh testis weight (TW), scrotal temperature immediately before 

band removal (ST), and daily scrotal circumference growth (SC) were decreased (4 and 8 

h) in ischemic testes compared to controls (P < 0.05). In addition, Sertoli and Leydig 

cells were severely reduced in the 8 h ischemic treatment (P < 0.05). Transiently induced 

ischemia significantly decreased number of germ cells in 8 h (12.6 ± 5 x 106 cells) 

compared to 0 (38.1 ± 6 x 106 cells), 2 (31.9 ± 6 x 106 cells), and 4 h (33.4 ± 5 x 106 cells; 

P < 0.05). These results suggest that transiently induced ischemia significantly decreases 

number of germ, Sertoli and Leydig cells in the testis.  

 

Key words: germ cell, testis development, recipient animals, spermatogonial 

transplantation. 

  

 4.3. Introduction 

 

Spermatogenesis is a highly organized complex process that involves the 

production of spermatozoa through a continual supply of A-spermatogonia. There are 

three primary phases in spermatogenesis that occur in the seminiferous tubule (Amann 

1983) that include spermatogonial multiplication (mitosis), meiosis, and release of the 

sperms to the lumen of the seminiferous tubule (spermiogenesis). Spermatogenesis is 

supported by both spermatogonial stem cells and the somatic components of the testis 

(Amann 1983).  
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Male germ cells transplantation in livestock has progressed tremendously in the 

past few years (Honaramooz et al. 2003a, 2003b; Izadyar et al. 2003; Joerg et al. 2003; 

Hill and Dobrinski 2006). However, the efficiency of colonization of seminiferous 

tubules by the transplanted germ cells is low and variable (Dobrinski et al. 2000; Nogano, 

et al. 2002; Izadyar et al. 2003; Joerg et al. 2003; Hill et al. 2005). Depletion of 

endogenous spermatogonial stem cells using busulfan (Brinster et al. 2003) or irradiation 

(Izadyar et al. 2003) have both been used in preparation of recipient animals prior to 

transplantation; however, both techniques are not without problems (severe bone morrow 

depression or specialized radiotherapy equipment required). This emphasizes the 

necessity to find practical means for depleting endogenous germ cells in recipient animals 

that will result in adequate donor cell colonization environment without the need for 

further intervention (Hill and Dobrinski 2006).  

Many reports are available on testicular components in the developing postnatal 

rat (Roosen-Runge et al. 1959; Mendis-Handagama et al. 1998), cat (França and Godinho 

2003), bulls (Curtis and Amann 1981), and other mammals (Russell et al. 1990). 

However, characterization of the testicular components of prepubertal bovine bulls 

following transiently induced ischemia is not available. Induced testicular ischemia in 

rams altered spermatic epithelium with germ cell-depleted seminiferous tubules (Markey 

et al. 1994). These data are important for understanding the dynamics of the cell-cell 

interaction, proliferation, and differentiation in the testis.  

Consequently, the objective of the current study was to evaluate the effects of 

transiently induced ischemia on testicular components and depleting endogenous germ 

cells in the testes of prepubertal bull calves.  
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4.4. Materials and methods 

 

4.4.1. Animals and treatments 

 

Sixteen Jersey bull calves were paired by birth date at 27 ± 5 d of age. The bulls 

were born and raised exclusively at the Dairy Research and Education Center 

(Lewisburg, TN, USA). During the first month of life, animals were isolated from each 

other to reduce pathogen transmission. At birth, calves received colostrum in a bottle for 

the first 48 hours of life (1.2 liters / twice a day). During the initial 8 weeks of life, 

animals were fed whole waste milk (1.2 liters / twice a day) and offered a starter ration 

(Tennessee Farmers Cooperative, Lavergne, TN, USA) and a primer ration (Tennessee 

Farmers Cooperative, Lavergne, TN, USA) ad libitum. Weaning occurred at 8 weeks of 

age with calves placed in group pens and fed only the primer ration ad libitum for the 

remainder of the experiment. 

Calves were randomly assigned into four (4) treatment groups (n = 4 calves / 

treatment) at 27 days of age. The study was performed using the elastrator method to 

induce different periods of transiently induced ischemia by decreasing blood supply to 

the testes with a heavy green rubber band. Treatments (Fig. 1; initial banding at 27 ± 5 

days of age; Day 1 of the experimental period (All tables and figures in this chapter 

appear in the appendix)) consisted of control group (0, no band application, n = 4), 

banding for a period of 2 h (2, n = 4), 4 h (4, n = 4), and 8 h (8, n = 4). Bulls were 
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castrated at 30 days after banding and testes collected for further histological analysis. All 

experimental procedures were reviewed and approved by the Institutional Animal Care 

and Use Committee, University of Tennessee, Knoxville, USA (UT-IACUC no. 1324). 

 

4.4.2. Bodyweight, scrotal growth, and scrotal temperature 

 

Bodyweight (BW) and scrotal circumference (SC; Hahn et al., 1996) were 

measured at banding (approximately 1 month of age) and before testes removal (Table 1; 

approximately 2 month of age). The testes were weighed and used for absolute volume 

calculation of cell components per testis. Scrotal temperatures (ST; Schuenemann et al. 

2005) were determined immediately before banding, immediately before band removal, 

and 1 hour after band removal using an infrared thermography camera (eMerge Vision 

DTIS 500, eMerge International Inc., Sebastian, FL, USA). The camera had an opaque 

chopper and internal calibration that allowed determination of absolute temperatures. 

Recorded images (Fig. 2) were analyzed by EResearch software. In brief, images were 

imported into the software and a region of interest (ROI) was drawn on each testis. The 

same region was taken on each testis and each ROI contained the same number of pixels. 

This information allowed the program to calculate absolute temperature for each ROI. 

 

4.4.3. Collection and processing of testis tissue 
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At Day 30 of the study (approximately 2 month of age), bulls were castrated and 

both testes were removed and weighed (fresh testicular weight; TW). Immediately after 

castration, testicular cords were visually inspected at the banding site for abnormalities in 

the vascular plexus. The testes were perfusion fixed by cannulation of the artery. First, a 

solution (250 mL) of 0.9% NaCl was flushed through the tissue for about 10 minutes to 

allow blood to clear from testicular vessels. When the testis was clear of blood, a solution 

(250 mL) containing 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) was 

administered through the cannula as described by Mendis-Handagama et al. (1988) and 

Schuenemann et al. (2007).  

After perfusion fixation was completed, testes were placed in a plastic container 

immersed into the same fixative solution for 1 week. Then, the tunica albuginea was 

nicked using a #10 blade scalpel and placed back into the container for 1 week. Testes 

were weighed with and without the testicular capsule (tunica) before tissue processing for 

microscopy. From each fixed testicle, 10 tissue samples (approximately 2-3 mm cubes) 

were cut and post-fixed in a 1:1 mixture of 2% aqueous osmium tetroxide and 3% 

potassium ferrocyanide (Russell and Burguet 1977). Tissue samples were then 

dehydrated in a series of graded ethanols and embedded in epon-araldite (Electron 

Microscopy Sciences, Hatfield, PA, USA) as described by Mendis-Handagama and 

Ewing (1990). The polymerization of the tissue blocks took place in an oven at 60ºC for 

48 h (Mendis-Handagama and Ewing 1990).  
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4.4.4. Testis histology and morphometry 

 

From each polymerized tissue block (10 per testis), two 1-µm sections were cut 

using a LKB IV ultramicrotome (Pharmacia LKB, Piscataway, NJ, USA) and glass 

knives. Sections were mounted on pre-cleaned glass slide (Superfrost Plus; Fisher 

Scientific, Pittsburgh, PA, USA), stained with methylene Blue-Azure II and cover-

slipped under permount (Fisher Scientific, Pittsburgh, PA, USA). The different cell types 

in the testicular interstitium and inside the seminiferous tubules were identified by their 

morphological characteristics as described previously (Mendis-Handagama et al. 1987, 

1998; Ariyaratne et al. 2000). In total, 20 1-µm sections (two per block) per testis were 

used to evaluate testicular components using the point-counting method (Weibel 1980). 

Volume of components: The volume density of testicular components (defined as 

the volume of a component per unit volume of testis tissue) was obtained by the point-

counting method (Weibel 1980) using an ocular grid with 88 test points fitted to a color 

video monitor at x400 magnification. To determine the volume density of components of 

the seminiferous tubules and the testis interstitium, 10 randomly selected ocular fields of 

each section were scored (10 fields section X 10 blocks testis X 88 points = 8800 points 

per testis per bull). The absolute volume (mm3) occupied by each testicular component 

was calculated by multiplying the volume density of each component by the testis 

volume (without the capsule). Because the testis density is nearly 1.0 (range 1.03-4), 

subsequent morphometric calculations of the testis weight were considered equal to testis 

volume. 



 124

Average volume of a germ cell, and the nucleus of a Sertoli and Leydig cell: The 

germ cells, and the nuclei of Sertoli and Leydig cells in these tissue sections were 

reasonably circular to justify that they are spherical or close to spherical in configuration. 

Therefore, the following methodology was used to determine their average volume.  

Images of germ cells, Sertoli cells and Leydig cells in the methylene blue-stained tissue 

sections were displayed on a color video monitor using a color video camera (DXC-

107A; Sony Corporation, Tokyo, Japan). The diameters of germ cells, and nuclei of 

Sertoli and Leydig cells were measured using ocular and slide micrometers (n = 50 per 

animal). The average volume (v) of  a germ cell, the nucleus of a Sertoli cell and the 

nucleus of a Leydig cell was calculated using the formula that determines the volume of a 

sphere, v = 4 / 3 . π . r3, where r is cell diameter/2 for germ cell or nuclear cell diameter/2 

for Leydig and Sertoli cells. Results are expressed in µm3. 

Number of germ, Sertoli and Leydig cells per testis: The absolute volumes of 

germ cells, and the nuclei of Sertoli and Leydig cells were determined similar to the 

methodology described above. The number of germ cells per testis was calculated by 

dividing the absolute volume of germ cells per testis by the average volume of a germ 

cell. The numbers of Sertoli and Leydig cells per testis were calculated by dividing the 

absolute volume of nuclei per testis of Sertoli and Leydig cells by the average volume of 

a nucleus of each cell type. As both Sertoli and Leydig cells contain one nucleus per cell, 

number of nuclei per testis of each cell type is the same as the number of cells of each 

cell type per testis. 

Average volume of a Sertoli and Leydig cell: These were calculated by dividing 

the absolute volume of each cell type per testis by the number of each cell type per testis. 
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Length of seminiferous tubules: Seminiferous tubules are cylindrical in shape and 

the formula for the volume of a cylinder (v) is v = π . r2 . h, where π . r2 is the area of the 

cross-section of the cylinder, r is radius (diameter/2), and h is the height and/or length of 

the cylinder. Average diameter of the seminiferous tubules in each bull calf (n = 50 per 

animal) was determined by ocular and slide micrometers connected to an Olympus BH-2 

light microscope and the radius was calculated. Using the results of absolute volume of 

seminiferous tubules per testis (STv), the length of the seminiferous tubules per testis (h) 

was calculated as h = STv / (π . r2). The results were expressed as length (m) per testis 

and per g of testis. 

 

4.4.5. Statistical analyses 

 

Variation in BW, SC, ST, TW, regressed spermatic epithelium, and testicular cell 

types were evaluated in this study. Data were analyzed by ANOVA using the MIXED 

procedure of SAS program (SAS 2003). Bodyweight, SC, ST, TW, regressed spermatic 

epithelium, and testicular cell types were analyzed using a randomized block design with 

factorial. A mixed model procedure that included ischemia treatments (0, 2, 4, or 8 h) 

was used to compare differences among treatments. Age of the calf at castration was used 

as covariate and date of castration was included as a random effect. Differences in 

individual least squares means were evaluated using Tukey-Kramer method. A value of P 

< 0.05 was considered statistically significant. 
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4.5. Results 

 

4.5.1. Effects of treatments on testicular blood flow, scrotal growth, and scrotal 

temperature 

 

Body weight (59.8 ± 6.2 kg), SC at banding (9.1 ± 0.2 cm), and ST immediately 

before banding did not differ between treatments. However, single fresh testicular weight 

(6.6 ± 0.4 g; Fig. 3), SC growth (0.01 ± 0.007 cm d-1), and SC at the time of castration 

(9.5 ± 0.2 cm) were decreased in bull calves subjected to 8 h of transiently induced 

ischemia (P < 0.05; Table 1). Scrotal temperature immediately before band removal 

decreased in bull calves exposed to 4 h (28.9 ± 0.6oC) and 8 h (28.5 ± 0.6oC) of 

transiently induced ischemia treatments (P < 0.05; Table 1), suggesting a reduction of 

blood supply to the testes (Fig. 2). Conversely, increased temperatures were observed in 

bull calves subjected to 4 h (33.7 ± 0.4oC) and 8 h (34.2 ± 0.4oC) of transiently induced 

ischemia 1 h after band removal (P < 0.05; Table 1).  

 

4.5.2. Evaluation of testicular components 

 

Representative light micrographs of testicular tissue cross section in 2-month of 

age Jersey bull calves are shown in Fig. 5. Reduced testis volumes and seminiferous 

tubule cells and diameter were observed in prolonged (8 h) ischemic group (P < 0.05; 

Table 2). Seminiferous tubules, seminiferous tubule length, and macrophages did not 
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differ between treatment (P > 0.05; Table 2). However, the volume densities of germ 

cells, Sertoli cells, Leydig cells, and mesenchimal cells differed between treatment 

groups (P < 0.05; Table 2). Bull subjected to 8 h (0.7 ± 0.6%) of ischemia had the lowest 

volume densities of germ cells compared to control (2.7 ± 0.6%) bulls (P < 0.05; Table 

2). The same trend was observed for Leydig and Sertoli cells (P < 0.05; Table 2 and Fig. 

3). Increased blood vessel volume densities (1.4 ± 0.1%), blood vessel lumen diameter 

(0.78 ± 0.1%), and the thickening of the walls of blood vessels (0.61 ± 0.08%) were 

observed in 8 h ischemic group compared to control testes (P < 0.05; Table 2). 

  Decreased absolute volume of germ (48.2 ± 45 mm3), Sertoli (617±77 mm3), and 

Leydig (1224 ± 167 mm3) cells per testis were observed in 8 h bull calves compared with 

the other treatment groups (P < 0.05; Table 3). The same trend was observed for the 

remaining absolute volumes of testicular components per testis in 8 h ischemic group (P 

< 0.05; Table 3). Increased absolute volumes of blood vessel and blood vessel lumen 

were observed in bull subjected to prolonged ischemic period (P < 0.05; Table 3).  

Bull calves exposed to 8 h of transiently induced ischemia had the lowest number 

of germ, Sertoli, and Leydig cells per testis (P < 0.05; Fig. 4). Interestingly, the number 

of germ cells was reduced by approximately 80% in the 8 h ischemic group while Sertoli 

and Leydig cells were reduced approximately 50% (P < 0.05; Fig. 4). Furthermore, the 8 

h treatment resulted in the lowest average volume of Sertoli (915 ± 112 µm3) and Leydig 

(758 ± 50 µm3) cells nuclei while the average volume of germ cells remain unchanged in 

the same treatment group (4228 ± 975 µm3; P < 0.05; Fig. 4). This indicates that 8 h 

transiently induced ischemia at one month of age significantly reduced the number of 

germ cells per testis in Jersey bulls (P < 0.05; Table 4 and Fig. 4). However, similar 
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trends were observed in the number of Sertoli and Leydig cells and the average cell 

volume in 8 h group (P < 0.05; Table 4 and Fig. 4).    

The spermatic epithelium is composed primarily of Sertoli cells, germ cells, and 

an array of committed spermatocytes and spermatids. At two months of age (day of 

castration), the spermatic epithelium inside the seminiferous tubules (130 µm, average 

diameter) is formed by a single layer of rounded Sertoli cells nuclei (12 µm, average 

nuclei diameter) on the basement of the tubules and rounded scattered germ cells (19 µm, 

average cell diameter; Fig. 5). Bull calves subjected to 8 h of transiently induced 

ischemia had more than 80% of the spermatic epithelium (Sertoli plus germ cells 

combined) regressed compared to controls (P < 0.05; Fig. 4 and Fig. 5). This indicates 

that Sertoli and germ cells were the most sensitive cell types to the reduction in blood 

supply following the 8 h of ischemia compared to other treatment groups (Fig. 5).   

 

4.6. Discussion 

 

The necessity to find practical means for depleting endogenous germ cells in 

recipient animals that will result in sound recipient animals and adequate donor cell 

colonization environment without the need for further intervention is needed. The 

primary finding of the present study demonstrate that: (1) testicular transiently induced 

ischemia was confirmed by scrotal thermography temperatures; (2) germ cells population 

were the most sensitive cell type following prolonged ischemic treatment in bull calves; 

and (3) although testicular weight was significantly reduced, seminiferous tubules 

structure and interstitial cells were present after prolonged ischemia.   
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Transient occlusion of the blood supply to the testes exhibited focal damage of the 

spermatic epithelium with germ cell-depleted seminiferous tubules. Similar patterns of 

focal damage were observed in partial occlusion of the internal artery in rams (Markey et 

al. 1994). As this oxygen-dependent spermatic epithelium is in a state of near transient 

anoxia, such a decrease in blood flow may have profound effects on tissue morphology. 

The testis, specifically the seminiferous tubule cells, may be susceptible to oxidative 

damage, as the blood vessels supplying these tissues are interrupted. Macrophages and 

lymphocytes have been identified in the interstitial region of the testis (Miller et al. 1983; 

Schuenemann et al. 2007). Markey et al. (1994) reported that macrophages were laden 

with lipofuscin pigment, suggesting a role in phagocytosis of cellular debris that 

accumulated as a result of testis ischemic damage in rams. Testicular macrophages are 

known to generate high concentration of reactive oxygen species (Wei et al. 1988). Free 

radicals are powerful oxidizing agents and the combination of these with high 

concentrations of polyunsaturated fatty acids in ischemic testes provides an optimum 

environment for lipid peroxidation and formation of lipofuscin (Markey et al. 1994).  

Prepubertal bulls subjected to 8 h of transiently induced ischemia had a significant 

decrease in testis weight at castration compared to controls. This observation and 

partially depleted cells in seminiferous tubules observed in tissue cross sections suggest 

that testis cells are particularly sensitive to such oxidative processes; therefore, 

confirming the reduction of tubules cells. Blood flow to the testes correlates with scrotum 

temperature in bulls (Purohit et al. 1985; Schuenemann et al. 2005). Indeed, quantitation 

of scrotal thermography temperature in this study confirmed that testicular banding 

impaired blood supply to the testes, creating a transiently induced ischemia for each 
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banding periods. However, blood supply to the testes was restored as illustrated by 

scrotal temperatures following band removal.   

Histological cross sections of the seminiferous tubules revealed a significant 

reduction of spermatic epithelium (Sertoli plus germ cells) and interstitial cells in bulls 

subjected to prolonged ischemia as opposed to controls. Moreover, germ cells were the 

most sensitive cell type to vascular disturbance (approximately 70% depletion of germ 

cells), indicating that spermatogonial stem cells were destroyed inside of the tubules by 

transiently induced ischemia. The most significant finding of the prolonged 8 h ischemic 

testis was the partial depletion of the seminiferous tubule cells (Sertoli and germ cells) 

and decreased average volume of Sertoli and Leydig cells. This finding suggests that 

transient disturbance (8 h) of the blood supply to the testis is an aggressive insult with 

morphological consequences to the seminiferous tubules. Interestingly, while transiently 

ischemic treatments voided germ cell development and proliferation, other testicular 

components remain within the testes. 

Detrimental effects on testicular somatic cell viability and function must be 

avoided when preparing recipient animals before donor germ cell transplantation. In this 

study, the functionality in term of testosterone (Leydig) and inhibin or FSH (Sertoli) 

production in prepubertal bull calves at 1- and 2-mo of age was not evaluated. However, 

testicular cell components were present at castration in testes cross sections following 

ischemic treatments. This finding may indicate that testicular cells survive and were 

viable at castration; however, functionality of Sertoli and Leydig cells need to be 

elucidated.     
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In conclusion, these results suggest that transiently induced ischemia decreased 

the spermatic epithelium and germ cell populations while maintaining a number of Sertoli 

and Leydig cells per testis. Further studies are needed to evaluate the functionality of 

Sertoli and Leydig cells following testicular ischemia.  
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4.8. Appendix: Figures and Tables 
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Figure 1. Assignment of transiently induced ischemia treatment groups in Jersey bull 

calves. Treatment groups (TRT): intact Jersey bull calves (n = 16) at 27 ± 5 d of age (Day 

1 of the experiment) were randomly assigned to four transiently induced ischemia 

treatments, group 1 (control, n = 4), group 2 (2 h ischemia, n = 4), group 3 (4 h ischemia, 

n = 4), and group 4 (8 h ischemia, n = 4) by banding method. Scrotal thermography 

temperature (TT): testicular temperature in intact Jersey bull calves was recorded 

immediately before banding, 1 h after banding, and immediately before castration using a 

thermography camera. Banding (B): four transiently induced ischemia periods were 

induced by placing a rubber band on the neck of the scrotum in intact Jersey bull calves. 

Castration (C): testes were collected 1 mo after banding (approximately at 2 mo of age) 

by castration procedure for further histological analysis. 
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Figure 2. Transient changes on testicular temperature in prepubertal Jersey bull calves 

immediately before, during, and 1 h after transiently induced ischemia treatments. Panel 

A = thermography temperature before transiently induced ischemia in testes. Panel B = 

thermography temperature during transiently induced ischemia showing depleted blood 

flow into the testes (arrow indicates site of band on). Panel C = thermography 

temperature 1 h after transiently induced ischemia showing regained blood flow into the 

testes. Color pattern temperature range from warm (red) to cool (blue). 
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Figure 3. Mean testis weight and percentage volume density of testicular Leygig, Sertoli, 

and germ cells in bulls subjected to different transiently induced ischemia treatments for 

depletion of endogenous germ cells. 0 = untreated animals, 2 = animals exposed to 2 h of 

testicular transiently induced ischemia, 4 = animals exposed to 4 h of testicular 

transiently induced ischemia, and 8 = animals exposed to 8 h of testicular transiently 

induced ischemia. Same color bars with different letters differ, P < 0.05. Data are 

presented as the least squares means ± SEM. 

 
 

 
 
 
 
 

0

5

10

15

20

25

30

35

0 2 4 8

Transiently Induced Ischemia Periods (h)

V
ol

um
e 

D
en

sit
y 

of
 T

es
tic

ul
ar

 C
om

po
ne

nt
s

Testis weight (g)
Leydig cells (%)
Sertoli cells (%)
Germ cells (%)

a ab 

b 

c 

a a a 
b 

a a 
a 

b 
a b b c 



 137

 

 

Figure 4. Mean cell number per testis in cross sections of bulls subjected to different 

transiently induced ischemia periods. 0 = untreated animals, 2 = animals exposed to 2 h 

of testicular transiently induced ischemia, 4 = animals exposed to 4 h of testicular 

transiently induced ischemia, and 8 = animals exposed to 8 h of testicular transiently 

induced ischemia. Same color bars with different letters differ, P < 0.05. Data are 

presented as the least squares means ± SEM. 
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Figure 5. Representative light micrographs of testicular tissue cross section in 2-mo of 
age Jersey bull calves subjected to different transiently induced ischemia periods showing 
testicular components. Panel A= control bull testicular components. Panel B = testicular 
components in bulls exposed to 2 h of testicular transiently induced ischemia with 
regressed tubules (arrow head). Panel C = animals exposed to 4 h of testicular transiently 
induced ischemia containing germ cell depleted siminiferous tubules (arrow head). Panel 
D = animals exposed to 8 h of testicular transiently induced ischemia containing germ 
cell depleted siminiferous tubules (arrow head). In the seminiferous tubules (ST), germ 
cells (GC) are fewer in number compared with Sertoli cells (SC). At this stage the lumen 
is not seen. Leydig cells (LC), Myoid cells (MC), and blood vessel (BV) are present in 
the interstitial space (IS) of the testis. Scale bar = 100 µm. 
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Tables 

Table 1. Mean scrotal circumference (SC), SC growth, scrotal temperature, and single 

fresh testicular weight (TW) at castration.  

Treatment groups 
Parameter 

0 h 2 h 4 h 8 h 

SC at banding (cm) 8.98±0.2a 9.18±0.2a 9.1±0.2a 9±0.2a 

SC at castration (cm) 10.2±0.2a 10±0.2a 10.3±0.2a 9.5±0.2b 

SC growth (cm d-1) 0.04±0.007a 0.03±0.007a 0.04±0.007a 0.01±0.007b 

TW at castration (g)  7.8±0.4a 7.9±0.4a 7.3±0.4a 6.6±0.4b 

ST immediately 
before banding (oC) 31.7±0.7a 31.8±0.7a 30.3±0.7a 31.5±0.7a 

ST immediately 
before band removal 

(oC) 
30.7±0.6a 30.6±0.6a 28.9±0.6b 28.5±0.6b 

ST 1 h after band 
removal (oC) 30.5±0.4b 30.5±0.5b 33.7±0.4a 34.2±0.4a 

 

In each row, values (mean ± s.e.m.) with different superscript letters are significantly 

different (P < 0.05). 0 h, untreated animals; 2 h, animals subjected to 2 h of testicular 

transiently induced ischemia; 4 h, animals subjected to 4 h of testicular transiently 

induced ischemia; 8 h, animals subjected to 8 h of testicular transiently induced ischemia. 
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Table 2. Mean seminiferous tubule diameter, length and volume density of testicular 

components.  

Treatment groups 
Parameter 

0 h 2 h 4 h 8 h 

Seminiferous tubules 
(%) 54.3±2a 54.6±2.1a 49.7±1.9a 51.7±2.1a 

Seminiferous tubule 
cells (%) 15.8±1.6a 17.5±1.7a 15.6±1.6a 10±1.7b 

Seminiferous tubule 
diameter (µm) 138.6±6.3a 129±6.4ab 122.3±5.6b 115.8±6.4b 

Seminiferous tubule 
length per g of testis 

(m) 
325 ± 52a 424 ± 46a 438 ± 45a 389 ± 52a 

Seminiferous tubule 
length per testis (m) 2469 ± 733a 3628 ± 639a 4258 ± 633a 2588 ± 732a 

Interstitial space (%) 36.05±1.2a 38.4±1.3a 31.7±1.1b 36.1±1.3ab 

Interstitial cells (all 
cell types; %) 33.4±1.7a 33.1±1.7ab 28.8±1.6b 19.3±1.7c 

Blood vessels (%) 0.54±0.1b 0.97±0.1ab 0.84±0.1b 1.4±0.1a 

Blood vessels lumen 
(%) 0.19±0.1c 0.42±0.1bc 0.52±0.09ab 0.78±0.1a 

Blood vessel wall (%) 0.28±0.07b 0.4±0.08ab 0.36±0.06ab 0.61±0.08a 

Macrophages (%) 0.4±0.08a 0.4±0.08a 0.4±0.07a 0.3±0.08a 

Mesenchimal cells (%) 1.6±0.1a 1.6±0.1a 1.2±0.1ab 0.8±0.1b 

 
In each row, values (mean ± s.e.m.) with different superscripts are significantly different 

(P < 0.05). 0 h, untreated animals; 2 h, animals subjected to 2 h of testicular transiently 

induced ischemia; 4 h, animals subjected to 4 h of testicular transiently induced ischemia; 

8 h, animals subjected to 8 h of testicular transiently induced ischemia. 
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Table 3. Mean absolute volume of testicular components. In each row, values (mean ± 

s.e.m.) with different superscripts are significantly different (P < 0.05).  

Treatment groups 
Parameter 

0 h 2 h 4 h 8 h 

Seminiferous tubules 
(mm3) 4321±181a 4404±193a 4609±154a 3440±199b 

Seminiferous tubule 
cells (mm3) 1254±91a 1497±97a 1430±81a 680±97b 

Sertoli cells nuclei 
(mm3) 1138±70a 1228±75a 1282±60a 617±77b 

Germ cells (mm3) 243.4±45a 191.2±44ab 140.7±45b 48.2±45c 

Interstitial space (mm3) 2838±186a 3021±190a 2881±178a 2389±191b 

Interstitial cells (all cell 
types; mm3) 2663±159a 2638±165a 2659±147a 1297±166b 

Blood vessels (mm3) 42.9±13b 77.5±14ab 72.3±11ab 95.9±14a 

Blood vessels lumen 
(mm3) 17.7±8.3b 35.6±8.7ab 41.2±7.6a 52.4±8.4a 

Blood vessel wall 
(mm3) 23.9±6.3a 35.1±6.7a 29.2±5.4a 41.2±6.9a 

Leydig cells nuclei 
(mm3) 2494±161a 2461±167a 2499±150a 1224±167b 

Macrophages (mm3) 32.2±6.2ab 31.9±6.5ab 41.7±5.3a 18.1±6.5b 

Mesenchimal cells 
(mm3) 132.5±10a 131.3±11a 114.5±9a 55.5±11b 

 
0 h, untreated animals; 2 h, animals subjected to 2 h of testicular transiently induced 

ischemia; 4 h, animals subjected to 4 h of testicular transiently induced ischemia; 8 h, 

animals subjected to 8 h of testicular transiently induced ischemia. 
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Table 4. Average volume of a Leydig, Sertoli, and germ cells. In each row, values (mean 

± s.e.m.) with different superscripts are significantly different (P < 0.05).  

 
Treatment groups 

Parameter 
0 h 2 h 4 h 8 h 

Average volume of a 
Leydig cell nucleus 

(µm3) 
973±48a 825±50bc 922±44ab 758±50c 

Average volume of a 
Sertoli cell nucleus 

(µm3) 
1045±111ab 891±112b 1139±108a 915±112b 

Average volume of a 
germ cell (µm3) 6493±973a 5759±886a 5388±944a 4228±975a 

 
0 h, untreated animals; 2 h, animals subjected to 2 h of testicular transiently induced 

ischemia; 4 h, animals subjected to 4 h of testicular transiently induced ischemia; 8 h, 

animals subjected to 8 h of testicular transiently induced ischemia. 

 

 

 

 

 

 

 

 

 

 



 143

Chapter 5 – EFFECTS OF CULTURE ENVIRONMENT ON PROLIFERATION 

OF SPERMATOGONIA STEM CELLS FROM PREPUBERTAL AND ADULT 

BULLS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 144

This chapter is a manuscript by the same name which will be submitted for 

publication in the journal of Reproduction, Fertility, and Development in 2008 by 

Gustavo Schuenemann, Lannett Edwards, Arnold Saxton, Louisa Rispoli, and Neal 

Schrick. 

 

My use of “we” in this chapter refers to my co-authors and myself. My primary 

contributions to this paper include (1) aided in design of the experiment and data 

analysis, (2) tissue and sample collection, (3) cell isolations, (4) cell culture, (4) 

identification of cell and colony types, (5) collection and interpreting of the literature, and 

(6) writing of this paper.  
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5.2. Abstract 

 

The objective of the current study was to evaluate type A spermatogonial cell 

(SSC) proliferation and differentiation under various culture conditions. SSC were 

harvested from 3-4 mo-old prepubertal bulls (PB; Dairy) and adult bulls (AB; Beef). 

Spermatogonia according to origin (prepubertal or adult) were cultured on the presence or 

absence of a feeder monolayer (FL or NF) with either stem cell media (ELSC) or regular 

media (RSC) supplemented with either regular fetal bovine serum (FBS-S) or charcoal 

stripped (FBS-SF). Immediately after digestion and Percoll purification, cells from 

prepubertal bulls had higher viability than adult bulls (P < 0.0001). In both PB and AB, 

positive staining for protein gene product (PGP) 9.5 was scattered across seminiferous 

tubules and distributed randomly within somatic components of tubules. Following 

Percoll purification, the change in spermatogonial cells staining positive to PGP 9.5 

improved slightly in PB (1.3 ± 0.84%) and was reduced in AB (-2.2 ± 0.09%; P < 

0.0001). The number of colonies increased gradually from day 4 to 15 of culture and was 

not affected by bull type. Additionally, three types of colonies (round, radial, and 

irregular) were present in culture. Overall, radial colonies were the most predominant 

type of colony in culture (P < 0.0001). Furthermore, co-culture of spermatogonial cells 

with a defined FL yielded more colonies than without FL (P < 0.0001). In both PB and 

AB, co-culture of spermatogonial cells in the presence of FL, RSC media plus FBS-S or 

FBS-SF treatment combination resulted in more colonies at day 7 and 15 compared to NF 

monolayer (P < 0.0001). Furthermore, the maximum number and size of colonies were 

obtained in a FL with RSC media containing FBS-S in prepubertal and adult bulls (P < 
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0.0001). Furthermore, colonies stained positive for alkaline phosphatase (AP). These 

findings suggest that SSC were present in culture and capable of proliferating and 

forming colonies. These results, although preliminary, will provide the basis for potential 

production of offspring through in vitro manipulation or following SSC transfer. 

 

5.3. Introduction 

 

Spermatogenesis is a highly organized process that is maintained by continuous 

proliferation of stem cells (reviewed by de Rooij 2001). Over three decades ago, both 

Huckins (1971) and Oakberg (1971) proposed an accepted model of spermatogonial self-

renewal and differentiation. To begin, the As (A single) spermatogonia are the stem cells 

of spermatogenesis (Huckins 1971; de Rooij 2001). Divisions of type A spermatogonia 

give rise to intermediate (In) and B spermatogonia that become spermatids after the 

process of meiosis, and finally differentiate into mature spermatozoa (reviewed by de 

Rooij 2001). Currently, the molecular or cellular mechanisms controlling progression of 

spermatogonia to become specialized and differentiated remain unknown. 

Previous studies in spermatogonial stem cell transplantation in mice demonstrated 

that spermatogonial stem cells could be harvested from donor animals, maintained in 

vitro for a few hours, and re-initiate spermatogenesis in the host testis after 

transplantation with spermatozoa capable of fertilizing an oocyte resulting in offspring 

(Brinster and Avarbock 1994; Brinster and Zimmerman 1994). Subsequent studies have 

successfully adopted these procedures in other species such as rat (Clouthier et al. 1996), 

dog (Dobrisnki et al. 1999), pig (Honaramooz et al. 2002), ram (Rodriguez-Sosa et al. 



 147

2006), goat (Honaramooz et al. 2003), and bull (Izadyar et al. 2003b, Herrid et al. 2006). 

However, offspring were not always obtained which may be related to issues in the 

culture of type A spermatogonia cells following collection from donor testes.  

In vitro culture of type A spermatogonia cells (SSC; which include AS, Aal, Apr, 

and A1-A4) has the potential to provide a powerful tool to investigate spermatogonial 

proliferation and differentiation (reviewed by Sofikitis et al. 2005). The ideal in vitro 

system, one that supports self-renewal of type AS spermatogonia (presumably the stem 

cell; reviewed by de Rooij 2001) or complete the process of spermatogenesis from a 

population of SSC, would result in generation of germ cells capable of colonizing tubuli 

in recipient animals and producing spermatozoa (van der Wee et al. 2001; Izadyar et al. 

2003a; reviewed by Sofikitis et al. 2005). Culture systems for type A spermatogonia cells 

facilitate propagation of spermatogonia (Izadyar et al. 2003a; 2003b), which can then be 

transferred into recipient testes (Izadyar et al. 2003b; Herrid et al. 2006), genetically 

modified (Nagano et al. 2001), or cryopreserved for future interventions (Oatley et al. 

2004).  

Primarily, isolation and culture of bovine type A spermatogonia have been 

performed from prepubertal bulls (Izadyar et al. 2002; 2003a). However, very little is 

known on type A spermatogonia culture from adult bulls. Moreover, male germ cells 

cultured from large food animals such as bovine of known genetic merit is of paramount 

importance for future studies aimed at transferring this genetic potential using recipient 

animals. The correct identification and culture of type A spermatogonia will enable 

dissemination of desired genetic from donor animals through spermatogonial cells 

transfer. However, isolation and purification of type A (AS, Aal, Apr, and A1-A4) 
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spermatogonial cells are more difficult in adult than prepubertal mammals due to 

common morphological characteristics of developing germ cells (Dobrinski et al. 2000; 

Izadyar et al. 2002). Therefore, field application of spermatogonial stem cell transplant in 

large food animal such as bovine requires further investigation not only in prepubertal 

animals but also in adult bulls. 

 Furthermore, co-culture of germ cells (2-month-old bulls and 6-day-old mice) 

with a feeder cell monolayer such as bovine embryonic fibroblast (BEF; Oatley et al. 

2004), immortalized mice Sertoli cells (van der Wee et al. 2001) or SIM mouse embryo-

derived Thioguanine- and Ouabain-resistant fibroblast (STO; Nagano et al. 2001) 

substantially increased viability and proliferation (van der Wee et al. 2001). Proliferation 

of type A spermatogonial cells from 2-month-old porcine (Dirami et al. 1999) or 3-7-

month-old bovine (Izadyar et al. 2003a) in in vitro culture medium without serum or a 

feeder monolayer resulted in fewer cells surviving. Again, the focus of these studies 

investigating culture systems has been primarily aimed at prepubertal animals and not 

adult animals. 

Type A spermatogonial cells from a 5-month-old bull cultured in minimal 

essential medium supplemented with serum yielded more viable cells and proliferation 

compared to absence of serum (Izadyar et al. 2003a). Using the same media in long-term 

culture of bovine germ cells resulted in differentiated spermatogonia resembling 

spermatocytes and spermatids (Izadyar et al. 2003a). It was suggested that different levels 

of serum (ranging from 1 to 10%) such as Nu-serum (serum replacement with low 

proteins) or horse serum (HS; van der Wee et al. 2001), fetal calf serum (FCS; Aponte et 

al. 2006), or fetal bovine serum (FBS; Izadyar et al. 2003a) added to the medium 
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enhanced type A spermatogonia survival and proliferation. However, it is difficult to 

discern what component(s) present in serum (i.e. lipids, proteins, hormones, etc.) are 

essential for self-renewal of type AS spermatogonial.  

Difficulties arise when attempting to obtain a large number and pure population of 

viable SSC from donor testes. In part, methods of isolation, purification, and 

identification of SSC may contribute to the success in establishing lines of male germ 

cells (reviewed by Sofikitis et al. 2005). In a recent study in calves, isolated donor 

spermatogonia identified using protein gene product 9.5 antigen (PGP 9.5) were able to 

colonize seminiferous tubules of recipient animals (Herrid et al. 2006). Moreover, 

identification of porcine spermatogonia using expression of PGP 9.5 as a specific marker 

was reported (Luo et al. 2006). These findings suggest that cells staining for PGP 9.5 

were likely SSC with the potential to form colonies (Luo et al. 2006) or re-colonize 

foreign seminiferous tubules (Herrid et al. 2006). 

The objective of the current study was to evaluate spermatogonial stem cells, 

isolated from prepubertal and adult bulls, during short term in vitro culture under various 

conditions.  

 

5.4. Materials and methods 

 

All chemical were purchased from Sigma Chemical Company (Sigma, St. Louis, 

MO, USA) unless otherwise noted. 
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5.4.1. Media preparation 

 

Minimum essential medium (MEM; Sigma, St. Louis, MO, USA) was 

supplemented to contain 14 mM L-1 NaHCO3, 4 mM L-1 L-glutamine, 100 mg mL-1 

MEM non-essential amino acids, 15 mM L-1 Hepes (all from Sigma, St. Louis, MO, 

USA), 100 IU mL–1-100 mg mL-1 penicillin-streptomycin (Chemicon International Inc., 

Temecula, CA, USA), and 50 µg mL-1 gentamycin (Chemicon International Inc., 

Temecula, CA, USA). 

Enzymatic MEM as described above were supplemented with 1 mg mL-1 

hyaluronidase type II, 2 µg mL-1 DNase I (2000 units mg-1; Unit: 1 µg of plasmid DNA is 

digested to oligonucleotides in 10 min at 37 °C), 1 mg mL-1 collagenase type IA (all from 

Sigma, St. Louis, MO, USA), 0.5 mg mL-1 trypsin : 0.53 mM EDTA without Ca2+ and 

Mg2+ (Chemicon International Inc., Temecula, CA, USA), 100 IU mL–1-100 mg mL-1 

penicillin-streptomycin and 50 µg mL-1 gentamycin immediately before testes digestion. 

Embryonic-like stem cell culture medium (ELSC; Robertson 1987 with 

modifications) consisting of Dulbecco’s minimal essential medium (DMEM) containing 

low glucose (1000 mg L-1) but without phenol red was supplemented with 3500 mg L-1 L-

glucose, 14 mM L–1 NaHCO3, 4 mM L-1 L-glutamine, 100 mg mL-1 MEM non-essential 

amino acids (all from Sigma, St. Louis, MO, USA), 100 IU mL–1-100 mg mL-1 penicillin-

streptomycin, 50 µg mL-1 gentamicin, 1x nucleosides, 0.1 mM 2-mercaptoethanol 

(Sigma, St. Louis, MO, USA), and either 10% fetal bovine serum with steroids (FBS-S; 

BioWhittaker, MD, USA) or 10% FBS steroids free (FBS-SF; Hyclone, Logan, UT, 

USA). 
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Regular stem cell culture medium (RSC): DMEM low glucose (1000 mg L-1) 

without phenol red containing 14 mM L-1 NaHCO3 (Sigma, St. Louis, MO, USA), 100 

IU mL-1-100 mg mL-1 penicillin-streptomycin, 50 µg mL-1 gentamicin, and either 10% 

FBS-S or 10% FBS-SF.  

 

5.4.2. Collection and processing of testes 

 

Testes from 3 to 4-mo-old prepubertal Jersey (n = 2) and Holstein bull calves (n = 

1) and adult beef bulls (n = 3; Hereford, Charolais, and Angus) were collected by 

opportunistic retrieval of testes following castration (prepubertal; East Tennessee 

Research and Education Center, Knoxville, TN, USA and Dairy Research and Education 

Center, Lewisburg, TN, USA) or harvesting (adult; Brown Packing Inc., Gaffney, SC, 

USA). Testes were placed immediately on ice and transported to the laboratory for 

processing. 

Prepubertal: Testes from prepubertal bulls were placed in a glass container with 

approximately 100 mL MEM as described earlier supplemented with 100 IU mL-1 

penicillin, 100 µg mL-1 streptomycin, and 0.25 µg mL-1 amphotericin B (ABAM; Sigma, 

St. Louis, MO, USA) and transported to the laboratory on ice within 3 to 4 h. In the 

laboratory, testes were rinsed with water to remove blood and debris. Using a #10’ blade 

scalpel, removal of the tunica dartos, epidydimis, excess connective tissue, and testis cord 

was performed. A single testis was placed in a square 100 mm petri dish (Falcon, Becton 

Dickinson Labware, Franklin Lakes, NJ, USA) and weight recorded (with tunica 
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albuginea). Afterwards, a longitudinal incision to the testis was made in the tunica using a 

#10’ blade scalpel. Approximately 20 g of testicular tissue was removed using scissors 

and hemostats, then rinsed in sterile Dulbecco’s phosphate buffer saline without Ca2+ and 

Mg2+ (DPBS; Sigma, St. Louis, MO, USA) for cell isolation. An aliquot of testis tissue 

was pulled apart to visualize fragments of seminiferous tubules (without digestion), 

minced (using forceps and hemostats), and then resuspended in MEM to collect tubules 

using a mouth glass pipette (FisherBrand, Fisher Scientific, Pittsburgh, PA, USA) under 

stereo microscope (Nikon, Japan). Aspirated seminiferous tubules were fixed into a 2 mL 

dolphin nose cap tube with 3.7% formaldehyde (Sigma, St. Louis, MO, USA) for 

subsequent immunological and microscopic evaluation. The remaining of testicular tissue 

was used for isolation of type A spermatogonial cells by enzymatic digestion. 

Adult: Similar procedures were performed as described above with minor 

modifications. Testes from adult bulls were harvested at the abattoir and placed directly 

into a ziplock bag and transported to the laboratory on ice within 3 to 4 h after collection. 

Approximately 20 g of testis tissue were removed and dispersed in small fragments using 

a scalpel and scissors before digestion.  

 

5.4.3. Spermatogonia stem cell isolation and purification  

 

Prepubertal: After removing the tunica, the entire testes were minced (as 

described above) into small pieces and suspended in enzymatic MEM as described 

earlier. Testis tissue containing spermatogonia cells was dispersed by a two-step 
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enzymatic digestion described by van Pelt et al. (1996) and Izadyar et al. (2002) with 

minor modifications. In brief, minced testis pieces were suspended in enzymatic MEM 

and incubated at 37oC for approximately 45 min in a shaking water bath operated at 130 

cycles min-1. After the first digestion, debris and large fragments of undigested testis 

tissue were eliminated by filtration through a 55- to 77-µm nylon filter (Em-Con, 

Immuno Systems Inc., Spring Valley, WI, USA). Undigested fragments of seminiferous 

tubules that passed through the mesh filter were collected in a 50 mL conical blue cap 

tube (Falcon, Becton Dickinson Labware, Franklin Lakes, NJ, USA) and pelleted by 

centrifugation at 30 x g for 2 to 5 min at 9 °C. After centrifugation, the pellet composed 

primarily of fragments of seminiferous tubules was resuspended and incubated in 

enzymatic MEM for 45 min as described above. Free cells were separated from the 

remaining undigested tubule fragments by centrifugation at 30 x g for 2 to 5 min (if 

needed). The pool of cells in the supernatant was collected and transferred to a 15 mL 

conical blue cap tube (Falcon, Becton Dickinson Labware, Franklin Lakes, NJ, USA) for 

centrifugation at 3000 x g for 1 min at 9°C and then washed twice in sterile DPBS 

supplemented with 10% FBS to remove enzymes. Washing steps were performed without 

the addition of antibiotics (potential risk of contamination). 

Harvested pools of cells were incubated overnight as described by van Pelt et al. 

(1996) with minor modifications. Briefly, a 100 mm Falcon dish was pre-coated with 100 

µg mL-1 peanut agglutinin (PNA, Sigma, St. Louis, MO, USA) in 1 mL of DPBS for at 

least 1 h at 37.5oC, and then aspirated before plating pool of cells. Pools of cells in RSC 

with the addition of 10% FBS-S were then incubated overnight in pre-coated PNA dishes 
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in a humidified atmosphere at 37.5oC with 5% CO2 balance air in an attempt to eliminate 

somatic cell components (myoid, peritubular, and Sertoli cells; van Pelt et al. 1996).  

After attempted removal of somatic components, presumptive spermatogonia in 

suspension were collected and loaded onto a discontinuous Percoll density gradient for 

further cell purification as described by van Pelt et al. (1996) with minor modifications. 

Briefly, an iso-osmotic Percoll (Sigma, St. Louis, MO, USA) suspension containing 

82.2% Percoll in MEM supplemented with 6 mg mL-1 bovine serum albumin (BSA) and 

2 µg mL-1 DNase (all from Sigma, St. Louis, MO, USA) was prepared. This method 

selects type A spermatogonia cells on the basis of size, shape, and centrifugation forces 

(van Pelt et al. 1996). Later, a discontinuous density gradient was built by diluting the 

iso-osmotic Percoll suspension in MEM as described earlier supplemented with 7 mg mL-

1 BSA and 2 µg mL-1 DNase. Percentages of each 1 mL column were as follows: 20, 30, 

40, 50, and 65% of Percoll densities and later the interface between fractions referred to 

as fractions 1, 2, 3, and 4 respectively. The gradient was constructed in a sterile 

polypropylene tube (round bottom, 17 x 100 mm long and 15 mL; Evergreen Scientific, 

Los Angeles, CA, USA) using an automatic pipette (Accu-Jet, Sigma, St. Louis, MO, 

USA) to load 1 mL of each Percoll suspension. Each one mL of the Percoll suspension 

was layered slowly into the tube by starting with the most concentrated (65%) column on 

the bottom until the five fractions were placed into the tube and a visible interface line 

between fractions was confirmed.  

Finally, cell suspensions were layered on top of the gradient column in one mL 

RSC plus 10% FBS-S. The gradient was then centrifuged at 800 x g for 30 min at 9°C. 

Immediately after centrifugation, cells found in fraction 2 were collected in prepubertal 
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bulls (Izadyar et al. 2002) and fraction 1 for adult bulls (visible fraction; Figure 1 (All 

tables and figures in this chapter appear in the appendix)). Cell suspensions containing 

presumptive type A spermatogonia were washed 3 times in DPBS plus 10% FBS. Cells 

in collected fractions were counted using a hemacytometer (Fisher Scientific, Pittsburgh, 

PA, USA), viability determined by trypan blue (0.4%, Diagnostic Systems, Inc., Raritan, 

NJ, USA) exclusion method (membrane integrity) under microscopy at 200x (TE300, 

Nikon, Japan), and then plated in 24 well plates for culture. Aliquots of presumptive 

spermatogonia and somatic cells were placed in a 2 mL dolphin nose cap tube with 3.7% 

formaldehyde. Additionally, glass slide smears from freshly isolated cells were obtained 

and air dried at room temperature overnight. Fixed cells were used to determine 

proportion of type A spermatogonial cells present in fractions. 

 

5.4.4. Determination of germ cell populations 

 

To identify the presence of germ cells, enriched populations of type A 

spermatogonia cells and fragments of seminiferous tubules were fixed in 3.7% 

formaldehyde after tissue digestion and stained as described by Luo et al. (2006) with 

modifications. Briefly, cells and fragments of seminiferous tubules contained in 1.5 mL 

vials were permeabilized with 0.3% Triton-X100 in Tris Buffer Saline (TBS) overnight 

(∼ 16-18 h) at 4°C and then incubated for 1 h at room temperature in 5% mouse normal 

serum (MNS)/TBS (Immuno Pure, Rockford, IL, USA) followed by 15 min of Avidin 

and 15 min of Biotin blocking (Vector Laboratories, Burlingame, CA, USA). For 
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localization of PGP 9.5 in type A spermatogonia cells, rabbit anti-human PGP 9.5 (1° 

AB, Biogenesis Inc., Kingston, NH, USA) was diluted 1:200 in 5% MNS/TBS and 

incubated overnight at 4°C (∼ 16-18 h). Biotinylated goat anti-rabbit IgG (H+L) (Vector 

Laboratories, Burlingame, CA, USA) was diluted 1:100 in 5% MNS/TBS and incubated 

for 1 h at room temperature as the corresponding secondary antibody. Secondary 

biotynilated antibody was visualized by using conjugated steptavidin Cy3 diluted 1:200 

in TBS (Jackson ImmunoResearch Laboratory, Inc., West Grove, PA, USA) for 10 min. 

Cells and seminiferous tubules incubated without primary antibody were used as controls. 

Finally, cells and tubules were spread on glass slides and mounted in mounting medium 

containing 0.5 µg mL-1 Hoechst 33342 (Sigma, St. Louis, MO, USA) for nuclei staining. 

Somatic components were determined based on nuclei staining (blue) and spermatogonial 

cells staining positive to PGP 9.5 (red). 

Confirmation of PGP 9.5 staining was performed by identifying cells with 

morphological characteristics of germ cells (large round cells compared to somatic cells; 

Schuenemann et al. 2007) in prepubertal bulls (Figure 2). Furthermore, staining of 

seminiferous tubules was performed to identify the presence of SSC and provide 

confirmation of the staining procedure (Figure 3). To calculate percentage of 

spermatogonia in the initial pool of cells and after cell separation by a discontinuous 

Percoll density gradient (fraction II for prepubertal bulls and fraction I for adult bulls), 

four images were recorded (200x) for each fraction and pool of cells (Figure 4 and 5; Luo 

et al. 2006). Cells positive to PGP 9.5 were counted using computer software 

(Metamorph 6.3r2, Molecular Devices, Sunnyvale, CA, USA). The percentage of PGP 

9.5 cells (spermatogonia stem cells) and somatic components (Sertoli cells, peritubular 
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cells, etc.) was calculated in the pool of cells before Percoll and after Percoll in each 

fraction (I and II) used for culture. To assess the efficiency of spermatogonial purification 

by a discontinuous Percoll density gradient, the difference between spermatogonia cells 

(stained positive to PGP 9.5) in the pool of cells and fractions (I and II) was calculated as 

mentioned above. 

The discontinuous density gradient was validated using a Percoll density bead kit 

(Sigma, St. Louis, MO, USA). Prior to validation, one mL of DPBS was added to each 

vial of beads and allowed to equilibrate overnight. Density marker beads were used as a 

standard in a separate centrifuge tube in parallel to tubes containing experimental 

samples. Both standard and experimental tubes were loaded using the same Percoll 

suspensions as described above. The standard tube received 10 µL of each colored bead 

type and the experimental tube received the pool of cells (10-37 x106 cells mL-1). After 

centrifugation, colored beads were visualized easily within the standard tube in each 

Percoll suspension (Figure 1). Distribution of density marker beads was comparable to 

those described by van Pelt et al. (1996). This method selects spermatogonia on the basis 

of size, shape, and centrifugation forces using a Percoll density gradient. In a study using 

prepubertal bulls (5 to 7 month of age), the percentage of isolated type A spermatogonia 

after Percoll (van Pelt et al. 1996) was greater (Izadyar et al. 2002) in the same fraction 

used in this study. Although in this study only cells collected from fraction 1 (adult bulls) 

or 2 (prepubertal bulls) were evaluated, density marker beads illustrated that Percoll 

columns in this study were similar to the studies described above.  

Adult: Processing of testes was similar to methods described above with minor 

modifications. Tissue samples were removed from the equatorial region of testes and 



 158

minced into small pieces, digested once for 45 min in a shaking water bath, and filtered to 

remove debris and undigested large fragments of testis tissue. Pools of cells were 

collected into a 50 mL conical blue cap tube, pelleted at 3000 x g for 1 min at 9°C, and 

washed twice in DPBS plus 10% FBS to deactivate enzymes from media.   

 

5.4.5. Cell culture and treatments 

 

A monolayer of mitomycin C-treated (Sigma, St. Louis, MO, USA) male bovine 

fetal fibroblasts (BFF-8; kindly provided to Dr. Lannett Edwards by Ann Powell, USDA, 

Beltsville, MD, USA) was evaluated for use in culture of SSC. As described by 

Robertson (1987) and Skibinski et al. (2007) with minor modifications, BFF-8 cells 

(from passages 9 to 16) were seeded on a 24-well plate (alternating columns, one column 

with and one without feeder monolayer; Figure 6) at a concentration of 100 x 103 cells 

cm-2 (190 x 103 cells well-1) for 2 to 3 days in ELSC medium. When BFF-8 cells reached 

60-90% confluency, cells were inactivated mitotically using 10 µg mL-1 of mitomycin-C 

for 2-3 h, and then washed twice in DPBS plus 10% FBS-S before replacing with ELSC 

medium containing 10% FBS-S. 

Prior to initiation of the experimental procedures, effect of cell density on 

viability and concentration of type A spermatogonia cells to be used was determined. 

Three concentrations of cells (20, 50, and 75 x 103 cells well-1) were cultured in 24-well 

plates prior to initiation of the experiment. Cell confluency was evaluated at 2, 4 and 7 d 

of culture. Cells reached approximately 40% confluency after 2 d of culture and a 

complete cell monolayer was obtained after 4 to 7 d of culture using  approximately 50 
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x103 cells per well. Isolated cells from fraction II (prepubertal bulls) and fraction I (adult 

bulls) were cultured in 24-well plates (Costar, Corning Inc., Corning, NY, USA) during 

the experiment at a concentration of 100 x 103 viable cells mL-1 (0.5 mL well-1, 

approximately 50 x 103 cells well-1). Cells were incubated at 37.5oC in a humidified 

atmosphere with 5% CO2 balance air.  

At the onset of culture, type A spermatogonia cells isolated from prepubertal and 

adult bulls were seeded onto 24-well plates and remain in culture under various 

conditions for 15 days. Media treatments consisted of two media types (ESCL or RSC) 

supplemented with either steroids (FBS-S) or steroids low (FBS-SF) serum to evaluate 

proliferation of type A spermatogonia (Figure 6). Medium was changed every 2-3 d. 

Type A spermatogonia cells were cultured for 4, 7, and 15 d. At each time period, one 

24-well plate was removed from the incubator, fixed in 3.7% formaldehyde, and stored at 

4°C to evaluate spermatogonia proliferation. All culture experiments were replicated 

three times and each experiment comprised at least triplicate cultures. Type A 

spermatogonia proliferation and differentiation from two bull types (prepubertal and 

adult) were evaluated under presence or absence of a feeder monolayer with media types 

(ELSC or RSC) supplemented with 10% of serum (FBS-S or FBS-SF). 

 

5.4.6. In vitro proliferation of type A spermatogonia  

 

After fixation at 4, 7, and 15 d of culture, colonies in each treatment were 

counted, typed by shape (round, radial, and irregular; Figure 7; Izadyar et al. 2003a), and 
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measured for area (µm2) using a computer digital caliper (Metamorph 6.3r2, Molecular 

Devices, Sunnyvale, CA, USA) connected to an inverted light microscope (TE300; 

Nikon, Tokyo, Japan) equipped with Hoffmann modulation contrast at constant 

magnification (100 x). Additionally, cell morphology within and surrounding colonies 

was evaluated under inverted light microscope (TE300; Nikon, Tokyo, Japan) equipped 

with phase contrast and a digital camera connected to computer software (Qcapture, 

Qimaging, Surrey, BC, Canada) for capture of images. However, multilayer colonies 

prevented morphological characterization of cell type present within and surrounding 

colonies. 

 

5.4.7. Alkaline phosphatase activity 

 

After culture, colonies present in a subset of 8 wells ( 2 rows of 4 wells each from 

the outer part of the 24-well plates; Figure 6) containing all treatment combination were 

evaluated for expression of alkaline phosphatase (AP) as described by Talbot et al. 

(1993). Briefly, cells were fixed in situ with 3.7% formaldehyde and stored at 4°C as 

described previously. Fixative solution was removed from wells and then washed twice 

with ultrapure water (Milli-Q, Millipore, Bellerica, MA, USA). Fixed cultures were 

incubated for 15 min at room temperature in fresh distilled water containing 1 mg mL-1 

fast red TR salt and 40 µg mL-1 naphthol AS-MX phosphate (both from Sigma, St. Louis, 

MO, USA) at pH 8.4. After incubation, fixed cells were washed twice with ultrapure 

water to end the reaction and observed under an inverted light microscope (TE300; 
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Nikon, Tokyo, Japan) equipped with an epifluorescence mercury lamp with the 

rhodamine filter as described by Ziomek et al. (1990). Because colonies presented 

autofluorescence, data from rhodamine filter were not reported in this study. Therefore, 

classification of positive AP colonies was based on colorimetric evaluation under an 

inverted light microscope (TE300; Nikon, Tokyo, Japan) as described by Edwards et al. 

(2003). Based on the intensity of red color in each colony, a subjective four-increment 

intensity score (from 0 = no color, 1 = slight, 2 = mild, 3 = moderate; Figure 8) was 

assigned by an independent evaluator unaware of treatments to each individual colony.  

 

5.4.8. Evaluation of bovine spermatogonia in culture 

 

After each time period of culture (4, 7, and 15 d), type A spermatogonia cells 

present in colonies were evaluated using a dual immunoflourescence labeling for 

localization of PGP 9.5 in undifferentiated spermatogonial cells and c-kit in differentiated 

cells. Tissue samples contained in 24-well plates were fixed in 3.7% formaldehyde and 

stained for PGP 9.5 as described previously for immunolocalization in pools and cell 

fractions. Immediately after PGP 9.5 immunolabeling, the presence of c-kit, goat 

polyclonal antibody raised against the mouse c-kit receptor (Santa Cruz Biotechnology 

Inc., Santa Cruz, CA, USA) was evaluated on same cell tissue samples in wells following 

the same steps as described previously for PGP 9.5. Secondary rabbit biotinylated 

antibody (Vector Laboratories, Burlingame, CA, USA) was visualized by using 

conjugated Fluorescein Avidin DN diluted to 15 µg mL-1 in TBS (Vector Laboratories, 



 162

Burlingame, CA, USA) for 10 min. Finally, mounting medium (solution containing 50% 

Glycerol v/v final concentration in DPBS) containing 0.5 µg mL-1 Hoechst 33342 was 

added to cell tissue samples for nuclei staining. Somatic components were determined 

based on nuclei staining (blue). Additionally, type A spermatogonia cells staining 

positive to PGP 9.5 (red) or positive to c-kit (green) was determined. Due to 

autofluorescence in control colonies present in 24-well plate, results were not obtained.  

 

5.4.9. Statistical analyses 

 

Variables measured on bulls, fresh testis weight (FTW), spermatogonial cell 

viability (at collection, before and after Percoll), percentage of germ cells, and percentage 

of somatic cells present in fractions (I and II) and pool of cells (at collection and seeding) 

were tested in a completely randomized design. Fixed treatment was bull type (PB or 

AB).  

Laboratory data collected from plates were analyzed using a randomized block 

design with factorial treatment arrangement (Proc Mixed, SAS 2003). Quantitative end 

points were total number of colonies, size of colonies (µm2), total colonies positive to AP 

and size of AP reactivity on colonies (µm2), and percentage of PGP 9.5 and c-kit assigned 

to colonies. Fixed treatment effects were presence of a feeder monolayer (FL = presence 

or NF = absence), fetal bovine serum type (FBS-S or FBS-SF), media type (ELSC or 

RSC), bull type (PB or AB), day of culture (4, 7, and 15 d) and all interactions. 
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Percentage of cell viability at seeding and percentage of germ and somatic cells at 

seeding were used as covariates. Plate (bull type*day) were random blocking factors.  

Categorical data such as colony type (1 = round, 2 = radial, and 3 = irregular), 

colonies reactive to AP (presence or absence), intensity (0-3) of AP staining, colony type 

(1-3) reactive to AP, colonies positive to PGP 9.5 or c-kit markers (presence or absence) 

were analyzed by the GLIMMIX procedure (SAS 2006). Presence of a feeder monolayer 

(FL = presence or NF = absence), bull type (PB or AB), fetal bovine serum (FBS-S or 

FBS-SF), media type (ELSC or RSC), and interactions were used as fixed effects. 

Because irregular colonies were very few in number (n = 32) compared to round (n = 

852) or radial (n = 1182) colonies, the statistical model failed to provide information on 

irregular colonies. Therefore, only statistical information for radial and round colonies is 

presented.  

Differences were considered significant when the P value was < 0.05. For all 

analyses, least squares means were estimated and compared using Tukey mean 

separation, complex interactions were “sliced” (Littell et al. 2006) by day of culture to 

focus interpretation and comparisons of interest. 

 

5.5. Results 

 

Testicular components characteristics at collection and prior to culture 

 

Single fresh testes weight after harvesting differed between prepubertal (24.09 ± 

0.1 g) and adult bulls (399.03 ± 0.5 g; P < 0.0001). After testicular enzymatic digestion, 
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seminiferous tubules, fragments of seminiferous tubules, and pools of spermatogonial 

cells were obtained from prepubertal and adult bovine bulls (Figure 2). Immediately after 

digestion, cells from prepubertal bulls (92.0 ± 0.13%) had higher viability than adult bulls 

(84.9 ± 0.14%; P < 0.0001). Following culture overnight and immediately before Percoll 

separation, cell viability in adult bulls (61.8 ± 0.33%) was lower compared to prepubertal 

bull (91.0 ± 0.38%; P < 0.0001). Moreover, immediately after Percoll separation, cell 

viability in fraction II of prepubertal bulls (78.8 ± 0.20%) was higher compared to 

fraction I of adult bulls (44.9 ± 0.22%; P < 0.0001).  

To evaluate the susceptibility of these two pools of cells (from prepubertal and 

adult bulls) to handling and manipulation, the change (difference) in viability at 

collection and immediately before seeding (approximately 18 hours later) was assessed. 

After overnight culture and Percoll separation, the decline in cell viability was more 

pronounced in adult bulls (39.9 ± 0.21%) compared to prepubertal bulls (12.4 ± 0.20%; P 

< 0.0001). To further narrow possible causes affecting cell viability in pools of cells 

immediately before and in cell fractions immediately after Percoll, cell susceptibility to 

handling and manipulation was evaluated. Cells from adult bulls (17.2 ± 0.12%) were 

more susceptible (percent reduction in cell viability) to Percoll separation than 

prepubertal bulls (11.5 ± 0.11%; P < 0.0001). Based on these results, approximately 50% 

of reduced viability in adult bulls occurs during Percoll separation while almost the entire 

decrease in cell viability in prepubertal bulls was due to Percoll separation. 

 

Enrichment of spermatogonial cells by a discontinuous Percoll gradient 
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Type A spermatogonia within seminiferous tubules isolated from both prepubertal 

and adult bulls stained positive for PGP 9.5 (Figure 3). In prepubertal 3- to -4 month old 

bulls, positive staining to PGP 9.5 was scattered across the tubules (Figure 3) and was 

randomly distributed within the somatic components of the seminiferous tubules. In adult 

bulls, spermatogonia cells positive to PGP 9.5 were also randomly distributed within the 

active spermatic epithelium (Figure 3). Since immunolocalization for PGP 9.5 was 

performed on whole fragments of seminiferous tubules, the anatomical localization 

(lumen or basement) of positive PGP 9.5 type A spermatogonial cells within the 

seminiferous tubules could not be confirmed. In both types of bulls, cells in suspension 

and fragments of seminiferous tubules stained strongly for PGP 9.5, confirming the 

presence of spermatogonial cells (Figure 4). 

After cell collection, the percentage of spermatogonial cells positive to PGP 9.5 in 

prepubertal bulls (10.4 ± 0.14%) was lower than adult bulls (17.4 ± 0.15%; Figure 4; P < 

0.0001). Following cell purification by a discontinuous Percoll density gradient, 

percentage of spermatogonial cells positive to PGP 9.5 present in fraction II of 

prepubertal bulls (11.5 ± 0.17%) differed from fraction I adult bulls (15.5 ± 0.19%; 

Figure 4; P < 0.0001). The efficiency of a discontinuous Percoll density gradient as a 

means to enrich spermatogonial cell populations was assessed by calculating the 

difference between spermatogonial cells in suspension before (pool of cells) and after 

Percoll separation (fraction II of PB and fraction I of AB). The change in spermatogonial 

cells staining positive to PGP 9.5 following Percoll separation improved slightly in 

prepubertal bulls (1.3 ± 0.84%) and was reduced in adult bulls (-2.2 ± 0.09%; P < 
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0.0001); however, the overall spermatogonial cell enrichment in both cases was low 

(prepubertal bulls) or detrimental (adult bulls).  

On the other hand, testicular somatic components present in the pool of cells (90.0 

± 0.15%) and fraction II (88.4 ± 0.17%) in prepubertal bulls was higher than in the pool 

of cells of adult bulls (82.3 ± 0.16%) and fraction I (84.5 ±0.19%; P < 0.0001). 

Moreover, somatic components after cell enrichment by Percoll separation was reduced 

in prepubertal bulls (-1.3 ± 0.07%) or low in adult bulls (2.5 ± 0.08%; P < 0.0001).  

 

Effects of bull type and culture treatment on type A spermatogonia cells 

 

In general, low number of colonies was observed on day 4 of culture, however, 

number and size of colonies increased by day 15 of culture. Furthermore, the presence of 

a FL improved the establishment of colonies. The mixture of type A spermatogonial cells 

used in culture yielded three types of colonies (round, radial, and irregular) in this 

experiment. Overall, radial colonies were the most predominant type present in culture. 

Colony number: The number of colonies gradually increased from day 4 to 15 of 

culture (Tables 1-3). Low number of colonies per well were observed on day 4 compared 

to day 7 or 15 (Table 1-3) of culture. However, the number of colonies per well was not 

affected by bull type (PB or AB; P = 0.88), media type (ELC or RSC; P = 0.13), or serum 

type (FBS-S or FBS-SF; P = 0.16). The maximum number of colonies were observed at 

day 7 in prepubertal bulls and on day 15 in adult bulls (Table 1-3). Overall, the presence 

of a feeder monolayer yielded more colonies compared to absence of a feeder monolayer 

(Table 1-3). Numerically, co-culture type A spermatogonia with a feeder monolayer 
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resulted in more colonies per well at day 7 (prepubertal bulls; Table 2) and day 15 (adult 

bulls; Table 3) of culture; however, no significant differences were observed between 

bull type (Table 2 and 3). Moreover, this lower number of colonies on day 15 in 

prepubertal bulls was coincident with a large number of wells presenting a detached 

feeder monolayer at the time of colony evaluation. Regardless of bull type, presence of a 

FL and RSC media yielded more colonies on day 15 of culture (Table 3). Additionally, 

co-culture of type A spermatogonia in presence of a FL, RSC plus FBS-S resulted in 

maximum number of colonies at day 15 of culture from prepubertal and adult bulls 

(Table 3).  

Colony area: As expected, colonies formed by day 4 and 7 of culture were 

smaller in size compared to colonies at day 15 (Table 1-3). Colony size was not affected 

by bull type (PB or AB; P = 0.24) or media type (ELSC or RSC; P = 0.80). There was a 

bull type (PB or AB) x day of culture (4, 7, or 15) x feeder monolayer (FL or NF) x 

media type (ELSC or RSC) x FBS type (FBS-S or FBS-NF) interaction (five way 

interaction; Tables 1-3). The presence of a FL resulted in larger colonies regardless of 

bull type or media type (Table 1-3). Moreover, both media type supplemented with FBS-

S yielded larger colonies (Table 1-3). Furthermore, the maximum size of colonies was 

obtained in presence of a FL, RSC plus FBS-S (Table 3).  

Colony type: The type of colony observed in this study included round, radial, and 

irregular. Because most of the colony evaluation was performed using Hoffman contrast, 

it was difficult to discern between cell type within and surrounding colonies. Colonies 

were evaluated under phase contrast in an attempt to better describe the morphology of 

cells within colonies; however, due to the small diameter of the well (24-well plate), a 
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distortion of the phase contrast rings was produced. Only colonies present in the center of 

the well could be evaluated, and often times no colonies were present. Morphologically, 

round colonies had a well-defined rim between the edge of the colony and the feeder 

monolayer interaction (Figure 7). Round colonies were composed mostly of a 

homogeneous type of cells tightly interconnected. This type of colony appeared to have a 

cone-like pattern of cellular growth and was composed of several layers of cells. In 

contrast, radial colonies were formed by cells regularly seen to be interconnected (Figure 

7). Between the edge of the colony and the feeder monolayer, a transitional type of cell 

was characterized morphologically with finger-like cytoplasm protrusions present (Figure 

7). Cells within the colony were organized in a loose pattern as opposed to round colonies 

and single cells were observed often. Finally, irregular colonies (Figure 7) were 

composed of cells with similar morphology as round colonies but presented in an 

irregular shape, resembling different patterns of cellular growth.  

Because irregular colonies were very few in number (n = 32) compared to round 

(n = 852) or radial (n = 1182) colonies, the statistical model failed to provide information 

on irregular colonies. Therefore, only statistical information for radial and round colonies 

is reported. Overall, radial colonies were the most predominant type of colony in 

prepubertal and adult bulls (Table 1-3). However, type of colony was not affected by day 

of culture (4, 7, and 15; P = 0.99), bull type (PB or AB; P = 0.99), feeder monolayer (FL 

or NF; P = 0.99), media type (ELSC or RSC; P = 0.99), or serum type (FBS-S or FBS-

SF; P = 0.99). The establishment of type A spermatogonia colonies (round or radial) in 

presence of a NF was minimum in adult bulls (Table 1-3) compared to prepubertal bulls 

(Table 1-3) across the experimental period. Furthermore, co-culture of type A 
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spermatogonia in a FL, ELSC plus FBS-SF resulted in more round colonies in 

prepubertal (73 ± 5%) than adult bulls (39 ± 5%; Table 3) at day 15 of culture. On the 

other hand, the same treatment combination resulted in more radial colonies in adult (61 

± 5%) than prepubertal bulls (27 ± 5%; Table 3) at day 15 of culture.  

 

Alkaline Phosphatase reactivity 

 

Alkaline phosphatase (AP) staining was performed in an attempt to better 

describe cells present on colonies. The percentage of positive AP colonies was not 

affected by day of culture (4, 7, and 15; P = 0.21), bull type (PB or AB; P = 0.99), or 

feeder monolayer (FL or NF; P = 0.24). Additionally, there was a bull type (PB or AB) x 

day of culture (4, 7, or 15) x feeder monolayer (FL or NF) x media type (ELSC or RSC) 

x FBS type (FBS-S or FBS-NF) interaction (Tables 4-6). The percentage of the total 

colonies present at day 4 that stained positive for AP was greater compared to day 7 and 

15 of culture (Table 4-6). Furthermore, colonies on a FL were more reactive to AP than 

colonies without a feeder monolayer across the experimental period (Table 4-6). 

Additionally, co-culture of type A spermatogonia in a FL, ELSC or RSC plus the addition 

of FBS-S resulted in more positive AP colonies at day 15 of culture in prepubertal bulls 

(Table 6). 

The type of colony (round or radial) that stained for AP was affected by day of 

culture (4, 7, and 15; P < 0.016). The percentage of positive AP round (48 ± 10%) and 

radial (82 ± 6%) colonies was greater at 15 days of culture compared to round (18 ± 6%) 

and radial (52± 10%; P < 0.016) at day 7 of culture. The color intensity (0 = none, 1 = 
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slight, 2 = mild, and 3 = moderate) of positive AP colonies was evaluated. However, the 

intensity of positive AP colonies was not affected by day of culture (4, 7, and 15; P = 

0.23), media type (ELSC or RSC; P = 0.96), serum type (FBS-S or FBS-SF; P = 0.97), 

and interactions. For those colonies that stained positive, the proportion between the 

colony area and the area that stained red was determined. The total area of colonies that 

stained for AP was not affected by day of culture (4, 7, and 15; P = 0.95), bull type (PB 

or AB; P = 0.73), and feeder monolayer (FL or NF; P = 0.93), media type (ESLC or 

RSC; P = 0.37), or FBS type (FBS-S or FBS-SF; P = 0.14).  

 

Expression of PGP 9.5 and c-kit in proliferating spermatogonial cells in culture 

 

To evaluate differentiation of type A spermatogonial cells present in culture, 

immunolabeling with PGP 9.5 and c-kit positive cells were assessed at three time periods 

(4, 7, and 15 days of culture) under various conditions. Because autoflourescence was 

observed in control samples, it was difficult to discern between positive or false positive 

staining signal. Therefore, information regarding PGP 9.5 and c-kit was not presented. A 

colorimetric immunolabeling using PGP 9.5 and c-kit may be an alternative to avoid this 

problem.  

 

Discussion 

  

Type AS spermatogonial cells (SSC) have unique capabilities including self-

renewal and production of the end product, spermatozoa. The ability to recover these 
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cells from donor animals and perform in vitro culture may provide a valuable tool to 

study SSC proliferation and differentiation in vitro. Primary findings of this study 

demonstrate that: 1) viable type A spermatogonial cells can be harvested from 

prepubertal and adult bulls, 2) spermatogonia cells survived in vitro and were able to 

proliferate and form different types of colonies, 3) co-culture of spermatogonial cells 

with a defined feeder monolayer plus FBS-S enhanced colony number (may be due to 

increasing cell viability), and 4) different types of colonies stained positive for AP. 

Spermatogonial cells from prepubertal bulls used in this study (3.5 mo with 

scrotal circumference of 15 cm and single fresh testis weight of 24 g) were 

morphologically similar to previous reports in cattle (Izadyar et al. 2002; 2003a; Herrid et 

al. 2006). However, spermatogonia cells collected from adult bulls (testis weight of ∼400 

g) were morphologically different, with the entire array of developing germ cells plus 

spermatozoa obtained in the mixture (Figure 2). Although spermatogonial cell viability at 

collection differed between prepubertal (∼92%) and adult bulls (∼85%), they were in 

accordance with prior studies using calves (Izadyar et al. 2002; 2003a), goats 

(Honaramooz et al. 2003) and pigs (Honaramooz et al. 2002; Luo et al. 2006). 

Furthermore, it has been reported previously that spermatogonial cell viability was 

reduced after overnight culture (Luo et al. 2006) as seen in adult bulls in the current 

study.  

In this experiment, a discontinuous Percoll density gradient was examined as a 

procedure to enrich spermatogonial cells based on previous reports (van Pelt et al. 1996; 

Izadyar et al. 2002). This method selects spermatogonia on the basis of size, shape, and 

centrifugation forces. In an attempt to determine the susceptibility of spermatogonial cells 
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to a discontinuous Percoll gradient separation, cell viability was evaluated from 

collection to seeding. After overnight culture, the decline in cell viability was more 

pronounced in adult bulls (∼40%). However, cell viability in both bull types was affected 

by Percoll separation method, giving better viability in fraction II of prepubertal (∼79%) 

compared to fraction I of adult bulls (∼45%). Although spermatogonial cells were slightly 

higher after an enrichment method in prepubertal bulls, the efficiency was low or 

detrimental in terms of cell viability. While enrichment of cell populations seemed to 

work best in prepubertal bulls, the degree of enrichment was not comparable to those 

reported by Izadyar et al. (2002) using similar methodology and animals. In adult bulls, 

the combination of developing germ cells and spermatozoa appears to be more 

susceptible to handling and more challenging to purify. Despite low cell viability in adult 

bulls, spermatogonial cells were able to establish colonies in vitro. It has been suggested 

that the ability of germ cells to form colonies indicates that overall cellular health is not 

compromised (Izadyar et al. 2003a) or at least supported by the culture system.      

PGP 9.5 is a specific marker for type A spermatogonia cells in cattle (Wrobel 

2000; Herrid et al. 2006) and pigs (Luo et al. 2006). In this study, positive PGP 9.5 

spermatogonia cells followed the distribution pattern of gonocyte localization within 

seminiferous tubules as reported by Luo et al. (2006) in neonatal pigs and Herrid et al. 

(2006) in prepubertal bulls. In adult bulls, positive PGP 9.5 cells were also present within 

seminiferous tubules (Figure 3). Seminiferous tubules were 3 to 4 times larger in 

diameter than prepubertal bulls (Figure 3) and developing germ cells such as spermatids 

were visualized (Figure 3). For both types of bulls, PGP 9.5 was a reliable and strong 

marker for identification of spermatogonial cells in suspension; thus, making it an 
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excellent tool to identify spermatogonia during in vitro manipulation. To be able to 

maintain unequivocally type AS spermatogonia (considered stem cell; reviewed by de 

Rooij 2001) in culture for several weeks is a difficult task, but it is of paramount 

important for future studies aimed at manipulation of germ cell lines.  

The first step when culturing SSC is to confirm that spermatogonia are present in 

the culture system. Spermatogonial cells have the ability to self-replicate (Wrobel 2000; 

reviewed by Brinster 2002; Kubota et al. 2004) and to re-colonize recipient testis after 

transplantation (Dobrinski et al. 2000) or to form colonies in vitro (Izadyar et al. 2003a). 

In the current experiment, both prepubertal and adult bovine SSC were able to form 

colonies in vitro from day 4 of culture onward. Morphological characteristics of colonies 

present were in accordance with the pattern of SSC proliferation of in vitro produced 

colonies reported previously in prepubertal bulls (Izadyar et al. 2003a), neonatal and 

prepubertal pigs (Luo et al. 2006; Goel et al. 2007), and mice (Anjamrooz et al. 2006; 

Koruji et al. 2007). Additionally, SSC from adult bulls proliferated into pairs, chains of 

spermatogonia, and ultimately formed colonies in culture with similar morphological 

characteristics as prepubertal bulls (Figure 7). Although SSC from adult bulls have been 

isolated previously and proliferated for a few weeks in recipient mice testes after 

transplantation (Dobrinski et al. 2000), information regarding in vitro performance is 

lacking.  

In the current study, SSC from adult bulls were able to establish colonies in 

culture; thus, confirming that SSC retained stem cell capacity. In this study, type A 

spermatogonia from prepubertal and adult bulls were cultured along with testicular 

somatic components (i.e. Sertoli cells). It is known that Sertoli cells from prepubertal 
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bulls (3-7 month of age) are in the proliferative phase of development. Also, it was 

suggested that somatic component (myoid, Sertoli cells, etc.) can form a feeder 

monolayer in culture which eventually support spermatogonial proliferation (Izadyar et 

al. 2003a). On the other hand, adult somatic components (myoid, Sertoli cells, etc.) do 

not proliferate; therefore, no structural support exists for spermatogonial cells 

proliferation. In this study, type A spermatogonial colonies were observed in presence of 

a feeder monolayer (BFF-8) or without it in prepubertal bulls. However, most of the 

colonies from adult bulls were restricted to a presence of feeder monolayer (BFF-8). This 

finding may suggest that in fact type A spermatogonia cell were present in culture and 

formed colonies. While type A spermatogonia from prepubertal bulls formed colonies on 

either FL or NF, cells from adult bulls formed colonies on a FL. This finding suggested 

that type A spermatogonia in the current experiment proliferate and form colonies; thus, 

SSC were present in the cell suspension collected and in culture. Therefore, we suggest 

that SSC were present in the culture system and were able to proliferate and to form 

colonies (Figure 7) from prepubertal and adult bulls.  

After 15 days of in vitro culture, three types of colonies of spermatogonial cells 

were observed: round, radial and irregular. Izadyar et al. (2003a) reported in a similar 

study that in vitro culture of bovine SSC yielded more radial than round colonies while 

the latter were few in numbers. In the current experiment, radial colonies were 

morphologically similar to those reported by Izadyar et al. (2003a); however, in vitro 

culture in the present study yielded more round colonies of smaller size than previously 

reported (Izadyar et al. 2003a). Numerically, radial colonies were the most predominant 

type of colony followed by the appearance of round colonies. Morphologically, round 
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colonies were tightly organized and intercellular bridges between cells could not be 

confirmed. It appears that this type of colony grew following a cone-like pattern of 

cellular growth. However, radial colonies were formed from cells regularly seen to be 

interconnected for intercellular bridges. Between the edge of the colony and the feeder 

monolayer, a transitional type of cell morphologically characterized by finger-like 

cytoplasm protrusions was present. Cells within the radial colony were organized in a 

loose pattern as opposed to round colonies.  

During the differentiation process of single type A spermatogonia, formation of 

intercellular bridges occur (Wrobel 2000; Izadyar et al. 2003a). Although type AP and AC 

spermatogonia are considered differentiated cells, agreement exists that type AS has stem 

cell capacity (Wrobel 2000). Although PGP 9.5 and c-kit were used in attempts to 

confirm the presence of type A spermatogonia in culture, control and test colonies of 

spermatogonial cells stained positive to PGP 9.5 and c-kit. Immunolocalization of 

spermatogonial cells in culture was performed by immunofluorescence; however, both 

the sample to be tested (primary and secondary antibody) and negative control (without 

primary antibody) looked similar. At first, it appears that autofluorescence caused by 

either the 24-well plate (shape of the well) or plastic (reflecting light) may have interfered 

with the signal. In previous studies, detection of SSC in culture (against PGP 9.5 and c-

kit proteins) has been performed by immunlocalization either using fluorescence or 

colorimetric reagents (Izadyar et al. 2003a; Luo et al. 2006). The latter may be an 

alternative for future studies.  

Alkaline phosphatase (AP) reactivity is highly conserved in undifferentiated 

embryonic stem cells (Talbot et al. 1993) and type A spermatogonia cells (Ginsberg et al. 
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1990). High levels of AP in spermatogonial cells are related to the undifferentiated stage 

(Fujino et al. 2005). Therefore, AP activity was evaluated on SSC in culture as a means 

to detect presence of type A spermatogonia. Although the majority of the colonies stained 

negative for AP, colonies formed on FL showed more AP intensity (Figure 8). Therefore, 

this may indicates that FL supports proliferation and maintenance of type A 

spermatogonia in culture as previously reported (van de Wee et al. 2001).      

In the present study, several culture conditions were tested. Co-culture of SSC on 

a feeder monolayer resulted in more and larger colonies. Similar results were observed in 

mice spermatogonia co-cultured with a defined feeder monolayer of adult Sertoli cells, 

resulting in proliferation of undifferentiated SSC for up to 25 days (van de Wee et al. 

2001). In the current experiment, FL supported survival and proliferation of SSC in both 

type of animals as opposed to the absence of a feeder monolayer. Additionally, the 

presence of colonies on NF in prepubertal bulls could be explained, at least in part, since 

SSC were obtained from prepubertal calves, and somatic components (i.e. Sertoli cells) 

actively proliferate at this age, which in turn form a monolayer where SSC can proliferate 

and form colonies. Furthermore, approximately 85 to 89% of the cells present in fraction 

II (prepubertal bull) and I (adult bulls) at seeding were somatic components. On the other 

hand, colonies from adult bulls were fewer in number with NF, possibly due to adult 

Sertoli cells not proliferating as in prepubertal bulls; thus, less structural support exists 

for colony formation. The ability of type A spermatogonia from adult bulls to form 

colonies may be indicative, in part, that spermatogonia were present in our culture system 

as mentioned above. Adult Sertoli cells do not proliferate as prepubertal Sertoli cells, 
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indicating that isolated type A spermatogonia cells from adult bulls have the potential 

(stem cell) to form colonies in culture.   

The presence of a FL favors SSC proliferation in prepubertal and adult bulls; 

however, it seemed that SSC from adult bulls are more sensitive to the microenvironment 

(cell-cell interaction) since most of the colonies were observed in the presence of a FL. 

This finding highlights the importance of close contact between SSC and their cellular 

environment (intercellular communication) for spermatogonial proliferation as reported 

previously (van der Wee et al. 2001). In this study, the importance of structural support 

for spermatogonial survival and colony formation was evident primarily in adult bulls. 

The overall success of culture system could be attributed to the presence of a FL 

(prepubertal and adult bulls) and, at least in part, to actively proliferating Sertoli cells 

(present in the mixture) collected from prepubertal calves, which eventually formed a 

monolayer that supported SSC survival and proliferation. This is in agreement with 

results reported by Izadyar et al. (2003a), where SSC collected from prepubertal bulls 

(similar to the present study) formed colonies in vitro without using a defined FL.  

To be able to maintain undifferentiated SSC in culture is a valuable tool to 

understand proliferation mechanisms of this specialized cell. It was suggested that 

proliferation and differentiation of SSC are regulated by intrinsic factors associated to 

SSC and factors associated with their environment (Nagano et al. 2003). Maintenance of 

spermatogonial cells from prepubertal and adult mice was enhanced by the presence of a 

feeder monolayer and addition of GNDF factor (Nagano et al. 2003). In the current 

culture system, the presence of a FL definitely enhanced SSC proliferation, possibly 
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through close cell-cell interactions or some factor(s) secreted by cells forming the FL as 

reported above.  

Spermatogonial cells can be maintained and proliferated in culture; however, how 

hormones affect protein synthesis and proliferation of SSC in culture remains to be 

elucidated. In this study, two serum types were evaluated in order to discern whether the 

presence (FBS-S) or low absence (FBS-SF) of steroids may affect SSC survival and 

proliferation. Additionally, culture media (ELSC or RSC) consisted of free-phenol red (a 

pH indicator), a chemical known to have significant estrogenic like-activity on cells in 

culture (Berthois et al. 1986). It is known from these studies that the addition of serum 

such as FBS, FCS, HS, or Nu serum (low protein replacement of serum) to the medium 

enhanced type A spermatogonia cells survival and proliferation in culture (van der Wee 

et al. 2001; Izadyar et al. 2003a; Anjamrooz et al. 2006; Goel et al. 2007). Additionally, 

growth factors added to the medium in presence of serum also contributed in more type A 

spermatogonia proliferating. However, it is difficult to discern what component(s) present 

in serum are essential for self-renewal of type AS spermatogonial. Therefore, further 

studies are needed to discern what component(s) between serum types (i.e. lipids, 

proteins, hormones, etc.) support self-renewal of type AS spermatogonial. Furthermore, 

testosterone and dihydrotestosterone are required for germ cell development during 

spermiogenesis (Kerr et al. 1993; O'Donnell et al. 1994; McLachlan et al. 1996). 

Estrogens are known to stimulate diverse biosynthetic pathways in different target 

tissues, including Sertoli cells (reviewed by Hess 2003; Sneddon et al. 2005). In the 

present experiment, SSC co-cultured with a FL and a combination of RSC media plus 
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FBS-S resulted in more radial and round colonies at 15 days of culture regardless of bull 

type.  

Based on biochemical analysis of FBS-SF used in this experiment (a 

charcoal/dextran treated FBS) provided by the manufacturer, concentrations of the major 

steroid sex hormones were low (17 β-estradiol 1 pg mL-1; testosterone <3 ng mL-1; and 

progesterone <10 ng mL-1). This may explain, in part, that addition of FBS-S to the 

media (presumably with higher level of sex steroid hormones than FBS-SF) favors 

survival and proliferation of SSC in culture. Since phenol red was not present in the 

media, sex steroids hormones present in FBS-S may be responsible for the successful 

outcome in this experiment. In a recent study, the ability to form colonies in co-cultured 

mouse SSC exposed to different combinations of EGF, FSH, and testosterone was 

evaluated (Anjamrooz et al. 2006). It was concluded that addition of EGF to the media 

improved in vitro SSC proliferation. Moreover, media type (DMEM) and level of FBS 

(10%) in the study by Anjamrooz et al. (2006) was comparable to our in vitro media 

conditions. Therefore, we can support this finding by adding that FL and steroid 

hormones present in culture conditions improved SSC proliferation and colony 

formation. It appears reasonable to suggest that growth factor(s) present in media or 

secreted by FL aided in SSC proliferation. Furthermore, culture media used in the current 

experiment consisted of a widely used synthetic culture medium (DMEM) either low in 

glucose (RSC) or containing high glucose plus non-essential amino acids and nucleosides 

as described earlier (ELSC). Our results demonstrate that RSC media resulted in a greater 

number of colonies regardless of bull type. It seemed that addition of glucose, non-

essential amino acids and nucleosides to the media did not improve proliferation of SSC 
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in culture while low levels of glucose present in RSC media did. In recent studies, the use 

of comparable media (DMEM or MEM) plus serum resulted in successful spermatogonia 

survival and proliferation in bulls and pigs (Izadyar et al. 2003a; Luo et al. 2006). One 

reasonable explanation of the low success in ELSC media containing high level of 

glucose at 15 day of culture in prepubertal bulls may be related to large number of wells 

presenting detached feeder monolayer before day 15 of culture. Izadyar et al. (2003) 

reported that the addition of up to 10% of serum to a similar media (DMEM) favors only 

somatic components.      

In conclusion, viable bovine SSC from two types of bulls (PB and AB) were 

isolated successfully, maintained in vitro, and proliferated to form large colonies in a 

short-term culture system. Expression of PGP 9.5 was found to be a strong and reliable 

marker for bovine SSC. Positive AP colonies were present, suggesting that type A 

spermatogonia proliferated and was supported by culture conditions. Results provide the 

basis for future studies aimed at improving culture condition and ultimately modification 

of SSC before transplant and/or production of offspring by intracytoplasmatic sperm 

injection (ICSI). If stem cells can be identified and isolated correctly under culture 

conditions, then spermatogenesis in vitro could became a reality, which has major 

applications in livestock and human male fertility. 
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5.8. Appendix: Figures and Tables 
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Figure 1: Representation of a discontinuous Percoll density gradient illustrating the 
position of each cell fraction and corresponding density marker beads after 
centrifugation.  
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Figure 2: Representative images of bovine testicular components obtained before 
enzymatic digestion of seminiferous tubules. A) Fragment of seminiferous tubule from a 
prepubertal bull (100 x). Note that seminiferous tubule has little interstitial components 
associated with it. B) Smaller fragments of seminiferous tubules obtained after the first 
enzymatic digestion (200 x). Spermatogonia cells from these seminiferous tubules 
fragments were used in culture. C) Corresponding spermatogonial cells after the second 
enzymatic digestion of seminiferous tubule fragments (400 x). Note the homogeneous 
cells with one or two nuclei (arrows), morphologic characteristic of gonocytes at this 
stage of development in prepubertal bulls (∼ 3 mo of age). These cells represent the pool 
of cells used for Percoll separation. D) Representative Hoffman view of seminiferous 
tubules from adult bulls (200 x). Note the size of seminiferous tubules compared to 
prepubertal bulls. E) Corresponding spermatogonial cells after enzymatic digestion (400 
x). The entire array of developing cells, different in size (asterisks), was recovered from 
active spermatic epithelium. This pool of cells was obtained after the first enzymatic 
digestion and no fragments of seminiferous tubules were observed as in prepubertal bulls. 
Sperm present in the mixture of cells after digestion (arrows). A, B, and C) Bars = 100 
µm. C and E) Bars = 25 µm. 
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Figure 3: Immunolocalization of spermatogonial cells positive to PGP 9.5 in seminiferous 
tubules from prepubertal and adult bulls. A and D) Representative images from 
repubertal bull at 3 months of age (A, 100 x) and adult bull (D, 200 x). B and E) 
Immunolocalization of positive PGP 9.5 cells within the seminiferous tubules in 
prepubertal (B, 100 x) and adult bulls (E, 200 x). C) Representative images from 
prepubertal (200 x) and F) same image from prepubertal stained negatively for PGP 9.5 
(control; 200 x). Note that positive PGP 9.5 cells (red) are distributed randomly within 
the seminiferous tubules. Also note the somatic components (blue) in prepubertal and 
adult bull. Recognize that some of positive PGP 9.5 cells are single or interconnected by 
intercellular bridges, characteristic of developing A-pair spermatogonia. Bars = 100 µm.    
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Figure 4: Spermatogonial cell characterization in pools of cells and fractions (I and II) 

from prepubertal and adult bulls. A and C) Immunolocalization of positive PGP 9.5 cells 

in prepubertal and adult bulls (100 x). Type A spermatogonia are positively stained (red) 

for PGP 9.5 and somatic components stain blue. Note the strong and dense staining 

pattern of positive PGP 9.5 cells (A, prepubertal bull, and C, adult bull). B and D) Cells 

obtained following Percoll density gradient as fraction II in prepubertal (B, 100 x) and 

adult bull (D, 100 x). Bars = 25 µm. 
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Figure 5: Morphological characteristics of spermatogonial cells before and after culture. 
Representative micrographs showing positive PGP 9.5 cells from prepubertal and adult 
bulls. A-C and D-F) Micrographs correspond to spermatogonial and somatic components 
from prepubertal and bulls. A and D) A Hoffman view of nuclei, morphological 
characteristic of spermatogonial cells, present in prepubertal and adult bulls (arrows, 400 
x). Spermatogonia cells are rounded and large in size (arrows) compared to testicular 
somatic components (asterisk). B and E) Spermatogonia cells positive to PGP 9.5 stained 
intensively (red) and somatic components (blue, 400 x). C and F) Merged micrographs 
showing the exact location of positive PGP 9.5 spermatogonial cells (400 x). G and H) 
Immunolocalization of single PGP 9.5 cells after 15 days of culture (400 x). 
Microphotographs showing positive PGP 9.5 cells (G) and a Hoffman view of the same 
cells in culture layered on top of a feeder monolayer (H). Note that single cells are 
rounded and large in size (arrow) and present the nuclei, characteristic of spermatogonia 
cells. Bars = 25 µm. 
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Figure 6: Schematic representation of experimental design. At the onset of culture (day 
0), presumptive type A spermatogonia from two bull types (prepubertal and adult) were 
seeded into 24-well plates and remained in culture for 4, 7 and 15 d. Spermatogonia were 
cultured under the presence (FL) or absence (NF) of a feeder monolayer with two types 
of media (ESCL or RSC) supplemented with (FBS-S) or without (FBS-SF) steroids. At 
each time period, one 24-well plate was removed from the incubator and tissue was fixed 
in 3.7% formaldehyde.   
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Figure 7: Representative Hoffman contrast images of colonies from prepubertal and adult 
bulls on day 15 of culture. A) Round colony from prepubertal bull (100 x). B and C) 
Radial colonies from prepubertal bull (100 x). D) Irregular colonies from adult bull (200 
x). Bars = 100 µm. 
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Figure 8: Representative microphotographs showing different alkaline phosphatase (AP) 
reactivity on different types of spermatogonial colonies. A) A round colony that stained 
moderately for AP activity in cells from prepubertal bull (200 x). B) A bright field 
microphotograph showing a round colony with no staining for AP in cells from 
prepubertal bull (200 x). C) A radial colony stained mild for AP in cells from prepubertal 
bull (200 x). D) Radial colonies slightly stained for AP reactivity in cells from 
prepubertal bull (200 x). Bars = 100 µm. 
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Table 1: Colony characteristics of type A spermatogonia cells on day 4 of culture. Data are presented as least square means. 
 

Type of Colony (%) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS 
Type 

Total Colonies  Colonies per well Colony Area (µm2) 

Round Radial 
AB 4 FL ELSC S 3 0.33a 33341 ± 14354a 66 ± 2a 33 ± 2a 
AB 4 FL ELSC SF 3 0.33a 7008 ± 14354a 0.0 ± 0.0a 100 ± 0.0a 
AB 4 FL RSC S 9 1a 25016 ± 8287a 0.0 ± 0.0a 100 ± 0.0a 
AB 4 FL RSC SF 5 0.55a 6841 ± 11119a 0.0 ± 0.0a 100 ± 0.0a 
AB 4 NF ELSC S 0 - NA NA NA 
AB 4 NF ELSC SF 0 - NA NA NA 
AB 4 NF RSC S 0 - NA NA NA 
AB 4 NF RSC SF 0 - NA NA NA 

Pooled SE     3.21    
PB 4 FL ELSC S 24 1.60a 13636 ± 4875a 53 ± 8a 47 ± 8a 
PB 4 FL ELSC SF 13 0.86a 10741 ± 6895a 7.6 ± 7a 92.4 ± 7a 
PB 4 FL RSC S 9 0.60a 11662 ± 8287a 22 ± 13a 78 ± 13a 
PB 4 FL RSC SF 46 3.30a 12790 ± 3626a 39 ± 7a 61 ± 7a 
PB 4 NF ELSC S 0 - NA NA NA 
PB 4 NF ELSC SF 0 - NA NA NA 
PB 4 NF RSC S 0 - NA NA NA 
PB 4 NF RSC SF 0 - NA NA NA 

Pooled SE     2.49    
 

a Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder monolayer; ESCL = embryonic-like stem cell 
medium; RSC = regular stem cell medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum steroids reduced. 
PB = 15 wells total for treatment combination. AB = 9 wells total for treatment combination. 



 197

Table 2: Colony characteristics of type A spermatogonia cells on day 7 of culture. Data are presented as least square means. 
 

Type of Colony (%) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS 
Type 

Total Colonies Colonies per well Colony Area (µm2) 

Round Radial 
AB 7 FL ELSC S 32 3.55abc 19415 ± 4539ab 20 ± 7a 80 ± 7a 
AB 7 FL ELSC SF 24 2.66abc 14953 ± 5075ab 41 ± 10a 59 ± 10a 
AB 7 FL RSC S 38 4.22abc 14869 ± 4033ab 15 ± 5.9a 85 ± 5.9a 
AB 7 FL RSC SF 31 3.44abc 11127 ± 4465ab 19 ± 7a 81 ± 7a 
AB 7 NF ELSC S 1 0.11abc 4741 ± 24862ab 100 ± 0.0a 0.0 ± 0.0a 
AB 7 NF ELSC SF 0 - NA NA NA 
AB 7 NF RSC S 0 - NA NA NA 
AB 7 NF RSC SF 0 - NA NA NA 

Pooled SE    3.21    
PB 7 FL ELSC S 132 8.8a 22101 ± 2214a 26 ± 4a 74 ± 4a 
PB 7 FL ELSC SF 111 7.40ab 21172 ± 2437a 31 ± 5a 69 ± 5a 
PB 7 FL RSC S 150 10a 23201 ± 2079ab 36 ± 4a 64 ± 4a 
PB 7 FL RSC SF 145 9.66a 18973 ± 2086ab 32 ± 5a 68 ± 5a 
PB 7 NF ELSC S 13 0.86c 2683 ± 7177b 8 ± 7a 92 ± 7a 
PB 7 NF ELSC SF 62 4.36abc 4208 ± 8790b 87 ± 11a 13 ± 11a 
PB 7 NF RSC S 20 1.33bc 5009 ± 6030b 17 ± 9a 83 ± 7a 
PB 7 NF RSC SF 8 0.53c 5767 ± 8790ab 75 ± 15a 25 ± 15a 

Pooled SE     2.49    
 

a,b Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder monolayer; ESCL = embryonic-like stem cell 
medium; RSC = regular stem cell medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum steroids reduced. 
PB = 15 wells total for treatment combination. AB = 9 wells total for treatment combination. 
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Table 3: Colony characteristics of type A spermatogonia cells on day 15 of culture. Data are presented as least square means. 
 

Type of Colony (%) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS Type Total Colonies Colonies per well Colony Area (µm2) 
Round Radial 

AB 15 FL ELSC S 206 22.88abc 16012 ± 1736abc 40 ± 4bd 60 ± 4bd 
AB 15 FL ELSC SF 126 14bcde 10808 ± 2250bd 39 ± 5bd 61 ± 5bd 
AB 15 FL RSC S 278 30.88a 44179 ± 1491ac 53 ± 4abd 47 ± 4abd 
AB 15 FL RSC SF 232 25.77ab 14615 ± 1632bd 37 ± 4d 63 ± 4d 
AB 15 NF ELSC S 1 0.11fg 2330 ± 24862abc 0.0 ± 0.0abd 100 ± 0.0abd 
AB 15 NF ELSC SF 0 - NA NA NA 

AB 15 NF RSC S 3 0.33fg 4975 ± 14354abc 33 ± 27abd 67 ± 27abd 
AB 15 NF RSC SF 0 - NA NA NA 

Pooled SE    3.21    

PB 15 FL ELSC S 54 3.60cdef 10530 ± 3383abc 42 ± 7abd 58 ± 7abd 
PB 15 FL ELSC SF 64 4.26bcdef 16618 ± 3132abc 73 ± 5a 27 ± 5a 
PB 15 FL RSC S 152 10.13abcdf 33630 ± 2016ab 67 ± 4ac 33 ± 4ac 
PB 15 FL RSC SF 72 4.80bcdef 20152 ± 2930cd 68 ± 5ab 32 ± 5ab 
PB 15 NF ELSC S 6 0.40eg 16930 ± 10150abc 33 ± 19abd 67 ± 19abd 
PB 15 NF ELSC SF 7 0.46eg 19013 ± 9397abc 28 ± 10abd 72 ± 10abd 
PB 15 NF RSC S 22 1.46eg 39583 ± 5425abc 38 ± 10abd 62 ± 10abd 
PB 15 NF RSC SF 20 1.33def 35924 ± 5559abc 15 ± 8abd 75 ± 8abd 

Pooled SE     2.49    

 
a,b,c,d,e,f,g Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder monolayer; ESCL = embryonic-like stem cell 
medium; RSC = regular stem cell medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum steroids reduced. 
PB = 15 wells total for treatment combination. AB = 9 wells total for treatment combination. 
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Table 4: Alkaline phosphatase characteristics on day 4 of culture of colonies derived 
from type A spermatogonia cells. Data are presented as least square means ± SEM. 
 

Intensity (#) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS 
Type 

Total Colonies Percentage of 
Colonies 1 2 3 

AB 4 FL ELSC S 2 0.0 ± 0.17bde - - - 

AB 4 FL ELSC SF 1 0.0 ± 0.25bde - - - 

AB 4 FL RSC S 3 33.3 ± 25ac - - 1 

AB 4 FL RSC SF 0 NA - - - 

AB 4 NF ELSC S 0 NA - - - 

AB 4 NF ELSC SF 0 NA - - - 

AB 4 NF RSC S 0 NA - - - 

AB 4 NF RSC SF 0 NA - - - 

 

PB 4 FL ELSC S 12 50 ± 14ab 4 2 - 

PB 4 FL ELSC SF 4 0.0 ± 0.1abc - - - 

PB 4 FL RSC S 4 0.0 ± 0.1e - - - 

PB 4 FL RSC SF 16 50 ± 12cd 6 2 - 

PB 4 NF ELSC S 0 NA - - - 

PB 4 NF ELSC SF 0 NA - - - 

PB 4 NF RSC S 0 NA - - - 

PB 4 NF RSC SF 0 NA - - - 
 

a,b,c,d,e Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder 
monolayer; ESCL = embryonic-like stem cell medium; RSC = regular stem cell 
medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum 
steroids reduced. PB = 5 wells total for treatment combination. AB = 3 wells total for 
treatment combination. AP intensity staining (0 = no AP, 1 = slight, 2 = mild, 3 = 
moderate).  
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Table 5: Alkaline phosphatase characteristics on day 7 of culture of colonies derived 
from type A spermatogonia cells. Data are presented as least square means ± SEM.  
 

Intensity (#) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS 
Type 

Total Colonies Percentage of 
Colonies 1 2 3 

AB 7 FL ELSC S 21 4.7 ± 4.5abcde 1 - - 

AB 7 FL ELSC SF 10 20 ± 12abcde 1 1 - 

AB 7 FL RSC S 18 0.0 ± 0.0abcde - - - 

AB 7 FL RSC SF 14 7.1 ± 6.8abcde 1 - - 

AB 7 NF ELSC S 0 NA - - - 

AB 7 NF ELSC SF 0 NA - - - 

AB 7 NF RSC S 0 NA - - - 

AB 7 NF RSC SF 0 NA - - - 

 

PB 7 FL ELSC S 52 15.4 ± 4.5ab 7 1 - 

PB 7 FL ELSC SF 41 17 ± 5.8cd 7 - - 

PB 7 FL RSC S 46 10.9 ± 4.5b 3 1 1 

PB 7 FL RSC SF 55 32.7 ± 6.2a 14 4 - 

PB 7 NF ELSC S 5 NA - - - 

PB 7 NF ELSC SF 21 NA - - - 

PB 7 NF RSC S 7 NA - - - 

PB 7 NF RSC SF 3 NA - - - 

 

a,b,c,d,e Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder 
monolayer; ESCL = embryonic-like stem cell medium; RSC = regular stem cell 
medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum 
steroids reduced. PB = 5 wells total for treatment combination. AB = 3 wells total for 
treatment combination. AP intensity staining (0 = no AP, 1 = slight, 2 = mild, 3 = 
moderate).  
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Table 6: Alkaline phosphatase characteristics on day 15 of culture of colonies derived 
from type A spermatogonia cells. Data are presented as least square means ± SEM. 
 

Intensity (#) Bull 
Type 

Day of 
Culture 

Feeder 
Monolayer 

Media 
Type 

FBS 
Type 

Total 
Colonies 

Percentage of 
Colonies 1 2 3 

AB 15 FL ELSC S 69 0.0 ± 0.0abc - - - 

AB 15 FL ELSC SF 56 1.7 ± 1.7abc 1 - - 

AB 15 FL RSC S 117 2.5 ± 1.5abc 2 - 1 

AB 15 FL RSC SF 86 0.0 ± 0.0abc - - - 

AB 15 NF ELSC S 1 0.0 ± 0.0abc - - - 

AB 15 NF ELSC SF 0 NA - - - 

AB 15 NF RSC S 2 0.0 ± 0.0abc - - - 

AB 15 NF RSC SF 0 NA - - - 

 

PB 15 FL ELSC S 27 22.2 ± 8.1ab 4 2 - 

PB 15 FL ELSC SF 22 9 ± 6.1bc - 2 - 

PB 15 FL RSC S 92 16.3 ± 3.9a 7 6 2 

PB 15 FL RSC SF 17 0.0 ± 0.0c - - - 

PB 15 NF ELSC S 3 0.0 ± 0.0abc - - - 

PB 15 NF ELSC SF 3 0.0 ± 0.0abc - - - 

PB 15 NF RSC S 3 0.0 ± 0.0abc - - - 

PB 15 NF RSC SF 9 0.0 ± 0.0abc - - - 

 
a,b,c,d,e Least square means with different letters differ (P < 0.0001). NA = not applicable. 
AB = adult bull; PB = prepubertal bull; NF = non feeder monolayer; FL = feeder 
monolayer; ESCL = embryonic-like stem cell medium; RSC = regular stem cell 
medium; FBS-S = fetal bovine serum with steroids; FBS-SF = fetal bovine serum 
steroids reduced. PB = 5 wells total for treatment combination. AB = 3 wells total for 
treatment combination. AP intensity staining (0 = no AP, 1 = slight, 2 = mild, 3 = 
moderate).  
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Chapter 6 - SUMMARY AND CONCLUSIONS 
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Spermatogenesis is a highly organized process that is maintained by continuous 

proliferation of stem cells. Spermatogonia stem cells (SSC) have unique capabilities 

including self-renewal and production of the end product, spermatozoa. The ability to 

recover these cells from donor animals, perform in vitro culture and introduce genetic 

modification, and transfer back into a host testis would provide a valuable tool for 

transfering economically favorable genes in livestock. To this end spermatogonial stem 

cell isolation, culture, and transplantation procedure in livestock has progressed 

tremendously in the past few years (Honaramooz et al. 2003; Izadyar et al. 2003a). 

However, efficiency of cultured transplanted germ cells to colonize within seminiferous 

tubules is highly variable (Dobrinski et al. 2000; Nogano, et al. 2002; Izadyar et al. 

2003a). Depletion of endogenous SSC in recipient animals using busulfan, cold 

treatment, or irradiation has been used in preparation of recipient animals prior to 

transplantation. However, these techniques are not without compromise such as severe 

bone marrow depression and specialized radiotherapy equipment required.  

The clinical application of culturing SSC is of great importance in livestock, 

wildlife, and humans. Animal models may provide adequate knowledge for therapeutic 

management in patients with oncological and infertility diseases. Furthermore, the ability 

to maintain and proliferate undifferentiated SSC in culture will enable SSC 

transplantation, cryopreservation, and in vitro manipulation of these specialized cells.    

Characterization of testicular components of prepubertal bovine bulls is important 

for understanding the dynamics of early stages of cell-cell communication (primarily type 

A spermatogonia) and proliferation within the testis. As a first step, we evaluated 

gonadotropin administration (GnRH and FSH) at the time of inhibin immunization in 
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prepubertal bulls in an attempt to increase number of germ cells. Therefore, a successful 

protocol could be used as a mean to favor proliferation of transplanted spermatogonial 

cells into recipient testes. Our results confirmed that concentrations of serum FSH were 

similar to those reported previously (Evans et al. 1993; Kaneko et al. 2001). Furthermore, 

it is clear that inhibin played a crucial role in spermatogonial development before 

puberty. This is in accordance with results from previous studies that provide clear 

evidence that inhibin has a physiological role in the regulation of FSH secretion (negative 

feedback) during the early stages of development in bulls (Bame et al. 1999; Kaneko et 

al. 2001). The significance of these results suggested that gonadotropin administration at 

the time of inhibin immunization increases germ cell number and the absolute volume of 

Sertoli, Leydig, and germ cells per testis together with increase in size (average volume 

of a cell) of all these cell types. Furthermore, the present findings could be used to 

develop an alternative therapy that benefit type A spermatogonia cell colonization after 

germ cell transplant. 

 In order to elucidate alternative procedures to deplete endogenous 

spermatogonial cells in recipient animals, we explored the effects caused by transiently 

induced ischemia in prepubertal bulls in our second experiment. It is known that partial 

occlusion of the blood supply to the testes reduces the spermatic epithelium with germ 

cell-depleted seminiferous tubules in rams (Markey et al. 1994). In this experiment, we 

explored a simple method of inducing ischemia at the testes level, through elastrator 

bands, to induce different periods of transiently induced ischemia by decreasing blood 

supply to the testes. It was hypothesized that few cells would survive such insult to the 

testis. Although our results suggested that transiently induced ischemia decreased the 
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spermatic epithelium and germ cell populations, a number of Sertoli and Leydig cells per 

testis survived. One limitation from this experiment is that functionality in term of 

testosterone (Leydig), inhibin or FSH (Sertoli) production in prepubertal bull calves was 

not evaluated. However, it can be suggested that testicular cell components were present 

at castration in testes cross sections following prolonged (8 h) ischemic treatments, 

indicating that cells survived and some degree of cellular functionality still remained. The 

significance of the study revealed that transiently induced ischemia significantly 

decreased the number of germ, Sertoli and Leydig cells in the testis while maintaining 

structural components of the testis.  

In our final experiment, we explored the feasibility of isolating viable SSC from 

prepubertal and adult bulls and further propagate these cells in culture. Large numbers of 

viable SSC were isolated from prepubertal and adult bulls. Type A spermatogonia were 

present in solutions collected and stained positive to PGP 9.5 which showed to be a 

reliable and strong marker for spermatogonia cells in both bull type. Under in vitro 

conditions, SSC survived and were able to proliferate and form of colonies. Not only 

spermatogonial cells from prepubertal bulls but also from adult bulls formed colonies, 

showing that both populations of cells can be harvested and cultured. In this study, three 

types of colonies (round, radial, and irregular) were present. Overall, radial colonies were 

the most predominat type of colony in culture. Furthermore, co-culture of type A 

spermatogonia with a feeder monolayer resulted in more and larger colonies. Moreover, 

co-culture of spermatogonial cells with a feeder monolayer in a media containing FBS-S 

(with steroids) enhanced colony number. Lastly, colonies from both types of bulls stained 

positive for AP across the experimental period.  
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In conclusion, this research provides evidence that spermatogonial cell dynamics 

can be altered through in vivo and/or in vitro models. First, we were able to increase 

spermatogonial population in an attempt to favor in vivo germ cell proliferation important 

to develop alternative protocols that support survival of spermatogonia after transplant. 

Second, using similar animals (breed and age) spermatogonial cells were reduced in 

number through disturbance of the blood supply to the testis in prepubertal bulls while 

structural components of the testis remain. Lastly, viable SSC were isolated and different 

types of colonies were formed in culture from prepubertal and adult bulls. If stem cells 

can be identified and isolated correctly under culture conditions, then spermatogenesis in 

vitro could became a reality, which has major applications in livestock and human male 

fertility. Our results provide the basis for futures studies aimed at improving culture 

condition and ultimately modification of SSC before transplant and/or production of 

offspring by intracytoplasmatic sperm injection (ICSI). 
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