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Abstract 

Commercial expansion beyond Earth orbit demands efficient, low cost and 

regular access to space that is not given by current launch systems.  An alternative to 

rocketry has been proposed in the use of tethers as a method of in-space propulsion. One 

possible implementation of tether propulsion involves the use of a long, vertically 

oriented tether orbiting the Earth.  A suborbital launch vehicle will deliver a payload to 

the tether’s lower tip, which will then be carried up its length by an elevator car to the 

upper tip, where the payload is released on a transfer orbit.  The orbiting space elevator 

represents a reusable second stage of a launch system designed to place payloads in high 

Earth orbit or trans-lunar trajectories. 

This study investigates several dynamics problems encountered in an Earth 

orbiting tether propulsion system.  In addition to calculating the structural requirements 

for the tether to safely bear the payload mass, several analytical estimation methods of 

the tether’s orbital response to loading have been developed and compared to previous 

studies.  A detailed mathematical simulation of the tether’s orbital stability has been 

created, accounting for natural perturbations to the tether’s orbit.  With the dynamic 

simulation of the elevator’s orbit, predictions of the total tether mass required to handle a 

payload with out degrading its orbit have been quantified. 

The performance required by the suborbital launch vehicle’s operation has also 

been examined.  Minimum propellant trajectories to the elevator’s lower tip are found 

using a Hamiltonian based trajectory optimization routine.  The launch vehicle 

maneuvering requirements needed for rendezvous with the orbiting elevator have also 
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been explored.  The margins of performance needed for a launch vehicle to deliver a 

payload to the elevator lower tip have been calculated to be roughly equivalent to a single 

stage to orbit mission profile. 

The usefulness of the tether within the context of a trans-lunar transportation 

system has also been investigated.  It has been shown that elevator-based transit to the 

Moon offers significant savings in ∆v over a traditional rocket-based transportation 

scheme. 
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Chapter 1  

Introduction 

1.1 The Need for a Frontier 

Throughout the history of the space age, humanity has possessed grandiose 

dreams of expanding beyond the Earth.  The father of modern rocketry, Konstantin 

Tsiolkovsky, applying the theories he developed on the use of liquid rockets for space 

propulsion, outlined a sixteen step strategy in his 1926 work “Plan of Space Exploration”  

to expand the human presence into the solar system and beyond [1].  The first several 

steps of his plan are mainly demonstrations of space-related technologies that have 

already been accomplished, such as rocket powered aircraft, orbital space flight, and 

space suits enabling extravehicular activity.  The use of solar radiation to grow plants in 

space to provide both food and artificial atmosphere, steps nine and eleven, have yet to be 

proven on a large scale; however, the idea of utilizing space-based resources has been 

since considered an integral enabling technology for long duration human presence in 

space independent of the Earth [2].  Interestingly, step fourteen of his plan, “Achievement 

of individual and social perfection”, comes after steps calling for the colonization of the 

asteroid belt and the outer solar system, illustrating that Tsiolkovsky obviously would not 

agree with the popular modern idea of “Why spend money on space when we have 

enough problems here on Earth?”  Rather, the careful ordering of his plan shows that the 

frontier represented by space, and the innovation and fortitude needed to face its 

challenges, can also provide the impetus for creative solutions to humanity’s troubles and 

avoid the stagnation of society.  Just as the New World offered the opportunity for 
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political experimentation free from the interference of stagnant European monarchies so 

will the frontier of space give us a venue to explore technologies that have the capability 

to reinvigorate our society.  This more, than scientific knowledge or national prestige, is 

the true value of expanding civilization beyond the closed system of the Earth. 

Access to space offers a solution to one particular problem facing the Earth today 

in the form of limited sources of energy.  Energy usage is the most basic measurement of 

a civilization, and correlates directly to the wealth and welfare of its populace.  A rise in 

the cost of energy, caused by a dwindling supply, has a negative impact throughout all 

levels of society.  Increases in energy prices will drive up the cost of transportation, in 

turn raising the consumer prices of manufactured goods and food products.  Forced to 

rebudget their limited income, consumers’ spending will stagnate.  An upwardly spiraling 

energy cost will eventually grind economic growth to a halt. 

The largest single source of energy in the world is from fossil fuel combustion, in 

the form of coal, crude oil, and natural gas.  While fossil fuels are widespread throughout 

the Earth, in most cases, such as oil shale, it is not economically feasible to extract them.  

In many situations, the energy required to process the diffuse deposits of fossil fuels is 

greater than the energy output of the recovered fuel.  The majority of the world’s energy 

comes from the crude oil reserves of the Middle East, with secondary sources in North 

America, Russia, and Venezuela, where the density of the fossil fuel deposits makes 

extraction economically feasible.  

There is some degree of disagreement over how long the resources of crude oil 

will last, largely because of the different accounting methods used in determining the 

actual amount of available oil.  For example, in 2004, the Saudi Aramco oil company 
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predicted that their total reserve of oil amounted to 900 billion barrels.  Out of this total 

200 billion barrels are unsubstantiated and unexplored.  Their addition to the estimated 

reserve is based on an optimistic fact that the previous 20 years of exploration had 

increased Saudi Arabia’s oil reserves by 17%, and that a similar increase could be 

expected in the next 20 years [3].  Another optimistic outlook on the supply of oil comes 

from the United States Geological Survey, who in a study performed in 2000, estimate a 

mean value of 3,021 billion barrels of oil in the world, including probable deposits not 

yet explored [4].  At a projected world daily use rate of 100 million barrels a day this 

supply will be totally exhausted in just under 84 years.  Before the supply is totally 

exhausted the Hubbert Peak, the point where oil production reaches its maximum value, 

will occur, with predictions placing this event anywhere from the present day to two 

decades hence.  Upon reaching the Hubbert Peak increased oil usage will drive the price 

of the dwindling supply upwards, beginning the deceleration of economic growth.  

It has been pointed out that coal and natural gas reserves could be used in place of 

oil.  Economically exploitable reserves around the world could last up to 300 years at 

current rates of use.  Coal can be converted to liquid fuel by several different methods.  

An example of this is the Fischer-Tropsch process, used by Germany and Japan, two 

historically petroleum poor countries, with some success during World War II to convert 

their coal reserves into synthetic petroleum [5].  There are several drawbacks to using 

coal as an oil substitute.  While the effect of humanity’s actions on the environment is a 

matter of great debate between environmentalists, private industry, and government, the 

mechanism by which the introduction of carbon dioxide into the atmosphere raises global 

temperatures is well understood and production of carbon dioxide, inherent in the 
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combustion of fossil fuels, should be limited as much as possible.  Coal fired power 

plants are the largest producer of carbon dioxide, due to the high carbon content of coal.  

Besides, the supply of coal, like petroleum, is a limited resource, and would be consumed 

at a far greater rate than it is replenished.  Because of their non-renewability fossil fuels 

represent an economic dead end, and an alternative to their use should be sought.  

In the 1970s a movement began, which direly predicted the reverse of societal 

growth based on the consumption of limited natural resources.  Led by the Club of Rome 

and publicized in the book “The Limits to Growth”, this movement used computer 

models, based on resource consumption and population growth, to predict a pessimistic 

view of the 21st century, marked by a decline in the Earth’s resources, industrial output 

and food production, and a leveling of population growth. The solution presented in “The 

Limits to Growth” to the problem of limited resources is simple retrenchment, to reduce 

economic growth in the future until a state of static equilibrium is reached.  Despite 

having used an analysis method based on computer simulation the book shuns 

technology-based solutions as a distraction from the all overriding problem of growth in a 

finite system [6].  Considering the Earth as a closed system and dismissing technology as 

a solution are two flaws that limit the usefulness of their analysis.  Fossil fuels, the 

decayed remains of biologic matter of past ages, are properly viewed as the converted 

form of energy originating from the source of all energy on Earth, the Sun.  A possible 

solution to the dwindling supply of fossil fuels lies in finding methods of utilizing the 

energy output of the Sun directly. 

In the late 1970s the work of Gerard O’Neill and the L5 Society revitalized the 

old ideas of Tsiolkovsky’s space colonization and cast it in the form of a possible 
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solution to the energy shortage problems facing the Earth.  O’Neill envisioned large 

cylindrical space stations in Earth orbit, 2 miles in radius and 20 miles long, rotating to 

provide artificial gravity to the inhabitants living on the inner surface of the cylinder.  

Each space colony would be self-sufficient with the enclosed agricultural environments 

supporting the inhabitants and manufacturing facilities providing for the industrial needs 

of the colony [7].  O’Neill’s colonies would be economically sustained by the 

manufacture and operation of Solar Power Satellites (SPS) from materials mined on the 

Moon.  As detailed in a 1979 study, these satellites would be large in size, using five to 

ten square kilometers of collecting area to harvest approximately five gigawatts of solar 

energy, which would be beamed via microwaves back to the surface of the Earth [8].  At 

O’Neill’s estimate of the SPS massing ten kilograms per kilowatt of power generated, 

this would lead to a total mass of 50,000 tonnes, obviously too large to be launched from 

the Earth, justifying O’Neill’s ideas regarding manufacture from material in space [9].  A 

more modern estimate of SPS mass per energy is one kilogram per kilowatt, based on 

improved efficiency of solar cells.  This produces a total system mass of 5,000 tonnes, 

representing the payload capacity of over 200 flights of the Space Shuttle, and is still 

beyond our current launch capabilities [10].  The high cost of launching payloads to 

space is a damning criticism against a project as ambitious as the SPS, which would not 

become economical until launch prices are lowered to the order of $100 per pound [11].  

While not technically feasible in the forseeable future O’Neill’s work on space 

colonization and solar power generation, developed as a counter to the Malthusian 

predictions of that period, represents the idea that the future of humanity on Earth lies 

with its ability to exploit resources off of the planet Earth. 
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A less ambitious solution to energy shortages lies in combining Earth based 

energy production with resources culled from space.  In his 2003 State of the Union 

Address, President George W. Bush announced the government’s Hydrogen Fuel 

Initiative, couched in geopolitical terms as a tool to lessen our dependence on foreign 

sources of oil.  Key to this plan was the development of fuel cells for mobile uses such as 

personal transportation.  Fuel cells are an alternative to combustion engines, and function 

on the principle of electrolysis.  The polymer electrolyte fuel cell has been identified as 

the best for small applications like automobiles.  It functions with the introduction of 

hydrogen fuel through a platinum anode, which acts as a catalyst, stripping the electrons 

from the hydrogen.  The positively charged proton continues through an electrolyte 

membrane to the cathode, where it combines with oxygen to form water.  The electrons 

stripped in the anode flow through an electrical circuit to the cathode outside of the 

electrolyte membrane, generating a voltage.  Not being a combustion based process, fuel 

cells are not bound by the Carnot cycle efficiency limits and can generate efficiencies 

around 50%, compared to approximately 30% for gasoline fueled internal combustion 

engines.  With water and unused oxygen as the only byproducts of the reaction fuel cells 

are also much cleaner than internal combustion engines. 

Fuel cells are a proven technology, having first been constructed in 1839 by the 

English scientist Sir William Grove.  Polymer exchange membranes fuel cells have 

already been used in American manned spacecraft since the Gemini program of the 1960s 

[12].  Despite their feasibility, there are drawbacks to the widespread use of fuel cells for 

transportation needs, first and foremost being the need for the platinum catalyst.  

Platinum is one of the rarest of the precious metals and its current rates of supply just 
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barely exceed the yearly demand [13].  Providing platinum catalysts for the millions of 

automobiles will far exceed the projected world reserve of platinum.  An alternative 

source of platinum may exist on the Moon.  In 1963, the geologist Robert Dietz put forth 

evidence that the Sudbury Basin in Canada, with its rich platinum deposits, was the 

product of a meteoric collision [14], and the platinum located there were in fact carried 

here to the Earth on a colliding meteorite.  Following this logic, it has been postulated 

that with no environmental erosion or tectonic activity to disturb lunar impact sites, and 

no oxidation to degrade the metallic ores, platinum deposits on the Moon may be more 

easily recovered than on Earth [15].  An additional benefit of mining lunar platinum is the 

negligible environmental effects.  On Earth, platinum deposits are widely dispersed, with 

a few grams recovered for every ton of rock processed, and processing the ore produces 

much waste.  Moving platinum production facilities to the lifeless, sterile Moon would 

eliminate the pollution on Earth by the increased mining needed to support fuel cell 

manufacturing.  

 In addition to the lack of platinum, another weakness of the plan to adapt 

widespread use of fuel cells is the means of production of the hydrogen fuel.  The most 

economical means of hydrogen production is steam reformation of natural gas, performed 

at high temperatures in excess of 700° C and represented by the chemical reactions 

 224 H3COOHCH +→+  (1. 1) 

 222 HCOOHCO +→+  (1. 2) 

The end result of the process is the desired hydrogen fuel, along with the 

production of CO2, a greenhouse gas.  It has been estimated that to produce the required 
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hydrogen to power all the vehicles in the United States would create more greenhouse 

gases than continuing to run them on their original internal combustion engines [16].   

 An alternative to producing hydrogen by steam reformation is offered through the 

use of electrolysis to separate water into hydrogen and oxygen.  Again, this is an energy 

intensive process and the electrical energy needed to convert enough hydrogen to power 

all the vehicles in the United States would currently be more than the nations total 

electrical power consumption [16].  An increase in fission nuclear reactors could meet the 

power requirements for hydrogen production, but suffers from political drawbacks due to 

public perceptions of nuclear power.  There is currently enough uranium to power the 

world’s total energy needs for 46 years using current light water reactors.  A more 

efficient method would be the use of breeder reactors, which in addition to generating 

energy also produce plutonium which can be refined and used in a nuclear reactor to 

produce further power.  With breeder reactors the current uranium supply would 

adequately power the world for over 2,000 years; but breeder reactors are an even more 

politically untenable solution, due to the use of plutonium in nuclear weapons.  In order 

for hydrogen to be practical, a vast new source of energy must be developed.   

A possible solution to this problem is offered by recent advances in nuclear fusion 

research. Of particular interest is the fusion reaction between deuterium and helium-3 as 

reactants, shown by the chemical equation 

  (1. 3) MeV 4.18pHeHeD 43 ++→+

The appeal to this reaction, in comparison to other fusion reactions involving 

deuterium and tritium, is that no neutrons are produced and the reactor chamber is not 

rendered radioactive.  The energetic protons can be directly converted to energy via 
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electrostatic fields, bypassing the steam cycle and its associated inefficiencies required in 

other power plants.  The drawback to helium-3 fusion is its relative scarcity, naturally 

occurring on Earth only in miniscule amounts through the radioactive decay of tritium. 

 Again, as in the shortage of platinum, a possible source of helium-3 is offered by 

the Moon.  In samples returned by the Apollo missions, minute concentrations of the 

isotope helium-3 have been found in the lunar soil, embedded there by the solar wind.  

Helium-3 represents a form of energy coming directly from the Sun.  While its 

concentration is thinly dispersed, on the order of a few parts per billion, its relative value 

in the energy market could make its extraction economically feasible.  One kilogram of 

helium-3 contains the energy equivalent of 157,480 barrels of oil.  At current oil prices 

around $60 per barrel, the kilogram of helium-3 has an economic worth of $9,448,800. 

Researchers at the University of Wisconsin have designed a machine to mine 

helium-3 on the Moon.  Their Mark II Miner is an 18 ton crawler mounting a bucket 

conveyor system that scoops up the first three meters of lunar regolith.  A solar 

concentrator dish mounted on the miner is used to heat the soil until the gases in it boil 

off and are collected.  The crawler moves forward a leisurely 23 meters per hour, 

processing 1258 tonnes of regolith in that time [17].  Accounting for the fact that half of 

every 27.3 days is spent in lunar night, the Mark II Miner will excavate an area of 1 

square kilometer in a year, producing the resources outlined in Table 1.1 [18]. 

There are many useful byproducts produced by Mark II Miner.  The hydrogen and 

methane collected represent more than enough rocket propellant required to return the 

helium-3 to Earth.  The water produced would be key to supporting the human presence 

on the Moon required to maintain the fleet of mining machinery.  While the 33 kilograms  
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Table 1.1:  Yearly Production of the Mark II Miner 

Product Mass

Hydrogen 201 tonnes
Water 109 tonnes
Helium 102 tonnes
Carbon Monoxide 63 tonnes
Carbon Dioxide 56 tonnes
Methane 53 tonnes
Nitrogen 16 tonnes
Helium-3 33 kg  
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of helium-3 mined in one year may seem miniscule, it has the energy equivalent of 

5,196,840 barrels of oil.  To supply the world’s electrical energy needs alone would 

require approximately 100 tonnes of helium-3 per year, requiring over 3000 miners.  

These miners represent 54,000 tonnes of equipment that need to be lifted to the moon, 

requiring heavy lift boosters to place them in Earth orbit.  Space stations in Earth orbit 

and lunar orbit are needed as way stations, with orbital transfer vehicle plying the space 

between them.  Transit between the lunar space station and the surface of the Moon 

would require a reusable lunar lander vehicle.  Bases on the moon would house the 

human presence required to maintain the fleet of miners.  It has been estimated that the 

total infrastructure cost to deliver the mining equipment and crews to the Moon and 

return the helium-3 to Earth would run a cost of $1 trillion [19]. 

1.2 Economics of Spaceflight 

This extensive idea of space development falls short of reality when confronted 

with the hard realities of economics.  The main bottleneck to expansion into and 

exploitation of outer space is the high costs involved in launching payloads to orbit.  

Table 1.2 gives the low Earth orbit (LEO) payload and launch prices for current launch 

vehicles, with launch costs normalized to dollars for the year 2000 [20 & 21]. The Saturn 

V, having last been used in 1973, is included in this data only for the purposes of 

comparison. 

Prices increase even more for destinations beyond Earth orbit (BEO).  Table 1.3 

shows the payload capacity and price per kilogram to launch payloads on a geostationary 

transfer orbit (GTO) for several different launch vehicles, again normalized to the value 

of the dollar in the year 2000 [20 & 21].  It should be noted that the useful payload  
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Table 1.2:  LEO Launch Costs 

Launch Vehicle LEO Payload (kg) Launch Cost ($M) Cost per kg  ($K)

Saturn V 118,000 2000 16.95
Space Shuttle 24,400 350 14.34
Ariane IV (44L) 10,200 120 11.76
Ariane V 16,000 180 11.25
Atlas IIIA 8,640 110 12.73
Atlas V 401 12,500 125 10.00
Delta III 8,292 93 11.22
Delta IV Medium 11,700 125 10.68
Delta IV Heavy 25,800 230 8.91
Titan IV 17,700 270 15.25
Proton 19,760 75 3.80
Soyuz 7,200 27 3.75
Pegasus XL 460 13 28.26
Taurus 1,363 22 16.14
Zenit 3SL 13,740 90 6.55  
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Table 1.3:  GTO Launch Costs 

Launch Vehicle GTO Payload (kg) Cost per kg ($K)

Space Shuttle 5,900 67.80
Ariane IV (44L) 4,520 26.55
Ariane V 6,800 26.47
Atlas IIIA 4,055 27.13
Atlas V 401 5,000 25.00
Delta III 3,810 24.41
Delta IV Medium 5,300 23.58
Delta IV Heavy 10,843 24.90
Titan IV 8,620 31.32
Taurus 430 51.16
Zenit 3SL 5,250 17.14  
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arriving at geostationary orbit (GEO) will be even less, as an orbit circularization 

maneuver is required at the apogee of the GTO. 

The science fiction author Robert Heinlein had been quoted as saying “Once you 

get to Earth Orbit, you’re halfway to anywhere in the solar system.”  This statement may 

be seen as a description of the engineering difficulties involved in accelerating a payload 

from standstill to 7.78 kilometers per second, but it is not an accurate description of the 

economics involved in current launch vehicles.  It can be seen from the data in the Tables 

1.2 and 1.3 that the ratio of GEO to LEO prices for a particular launch vehicle is on the 

average 2.6, with a low value of 2.05 for the Titan IV, and as high as 4.13 for the Space 

Shuttle.  As the usable payload for each launch vehicle decreases for destinations beyond 

GEO, the prices are driven even higher.  For example, the Saturn V can launch a 47,000 

tonne payload on a trans-lunar trajectory, for a price of approximately $42,500 per 

kilogram.  As a point of comparison, current plans to mine lunar helium-3 require a 

payload cost to the Moon of around $3000 per kilogram to be economically feasible [22]. 

It can be shown from the cost data that the relationship between payload capacity 

and the launch cost also scales poorly for different vehicles.  It is expected that for a 

small vehicle like the Pegasus rocket prices to LEO will be high at $28,260 per kilogram.  

Proponents of the “big dumb booster” concept may point to the savings afforded by the 

Delta IV Heavy, with a relatively low cost to LEO of $8,910 per kilogram, but a similarly 

large vehicle like the Titan IV has a cost to LEO of $15,250 per kilogram. 

The majority of current launch systems have been derived from vehicles that were 

designed as military missiles. The development process of these vehicles was dominated 

more by matters of national security than by economic concerns.  In their militaristic 
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incarnation, these vehicles were viewed as being analogous to rounds of ammunition, 

whose sole purpose was to be expended in combat.  This expendability and the 

prioritizing of mission over economics means that military missiles translate poorly as a 

means of mass transportation.  By simple analogy, the economic value of an automobile 

or an airliner increases as its operational lifetime lengthens.  The average age of an 

aircraft in the five largest US passenger carriers is 11.5 years and is 19.7 years for the 

cargo carrier Federal Express [23].  These aircraft are maintained in good condition 

precisely because a long service life will defray their large initial costs.  In order for a 

space launch system to be economical, it must break away from the “artillery-round” 

archetype by being both reusable and able to perform on a regular schedule.   

1.2.1 The Space Shuttle  

 Reusable launch systems offer the chance to lower the cost of placing objects in 

orbit, but require a regularity of flight rate that has not yet been approached.  The only 

reusable space launch system to date is the space shuttle, which while technically 

impressive, fails to provide cheap access to space, primarily because of economic and 

technical compromises made in its design process.   

 As originally envisioned by the National Aeronautics and Space Administration 

(NASA) in the late 1960s, the space shuttle was only one component of a comprehensive 

Space Transportation System (STS), which also consisted of a space station, nuclear 

powered orbital transfer vehicles or “space tugs”.  With the shuttle’s role of surface to 

orbit transportation combined with the space station and the orbital construction 

capability of the space tugs, these three components were to form the foundational 

infrastructure for an eventual manned mission to Mars scheduled for the 1980s.  This 
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expansive program quickly died with cuts to NASA’s 1971 budget, the shuttle being the 

only surviving component [24]. 

 To justify the shuttle’s development, advocates began to promote it as a manned 

space vehicle not only for NASA, but also a launch vehicle for the Air Force and the 

commercial satellite market.  It was hoped that the large costs associated with shuttle 

development in the 1970s would be defrayed by the benefits of regular cheap access to 

space in the 1980s.  This argument was key to the economic justification for the space 

shuttle. At the heart of this contention was the issue of shuttle launch frequency.  In a 

1970 cost benefit study comparing the space shuttle against an existing launch vehicle, 

the Titan III, the shuttle represented a savings of only $500 million for a projected flight 

rate of 28 flights a year.  Savings would grow to six billion dollars when the flight rate 

was increased to 55 flights per year.  A further study by an independent corporation 

found that the launch savings afforded by the space shuttle would pay for itself with 506 

flights in the period of 1978-1990, for an average of 39 flights per year [25].  For 

comparison, the highest actual rate of shuttle flights in one year has been nine launches in 

1985 [26].   

 NASA’s original vision of the space shuttle was a fully reusable two stage system, 

consisting of a large manned first stage which would fly back to the launch site, and a 

smaller orbital vehicle with its own propulsion and fuel tanks.  With meager funding to 

develop a fully reusable space launch system, design compromises quickly eliminated the 

fly-back booster, replacing it with a large expendable fuel tank and solid rocket boosters. 

On each flight, the shuttle hauls the reusable orbiter and its associated weight to orbit and 

back.  A more economical launch system would reuse the first stage, the stage that 
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operates in the Earth’s atmosphere, and have an expendable upper stage.  The weight 

saved in heat shielding for the re-entry and wings for atmospheric maneuvering required 

by the orbiter could be applied to payload delivered to orbit.  The reusability of the final 

stage represents the backward design of the shuttle [27]. 

 An additional compromise stemming from the shuttle’s perceived role was made 

in the configuration of the orbiter, which was originally designed with straight stubby 

wings and would act as a blunt body during reentry, allowing for a limited glide path in 

the Earth’s atmosphere after reentry.  The Air Force’s requirement of the orbiter to have a 

large cross range maneuverability, based on their desire to use the shuttle in polar orbital 

operations, led to the large delta wings on the shuttle.  With the improved lift from the 

large delta wing, the cross range requirements of the Air Force could be met by the 

shuttle by gliding during the hypersonic phase of atmospheric reentry, leading to higher 

vehicle temperatures for longer periods of time, necessitating the design of heavy and 

complex thermal protection systems for the orbiter.  

As a result of the compromises made in its design, the space shuttle is not capable 

of a turn around time of less than several months.  As can be seen in the Table 1.2, the 

shuttle has ended up as one of the more expensive launch systems, with its launch cost 

based on a 1988 cost estimate, normalized to year 2000 dollars, which assumes an 

average of six flights per year.  The actual price of a shuttle launch is highly dependent 

on its flight rate, because in addition to defraying the original development cost, part of 

the launch cost includes a portion of the yearly large fixed expenditure for upkeep of the 

launch and processing facilities.  In the late 1990s, the U.S. General Accounting Office 

assigned a nominal value of $400 million per flight, which would correspond to a LEO 
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payload cost of about $16,400 per kilogram [20].  This value is also misleading in regard 

to the shuttle’s current primary mission, which is to support operations aboard the 

International Space Station (ISS).  Because the ISS in a 51.6° inclined orbit, in order to 

accommodate the Russian launch complex at Baikonur cosmodrome, the shuttle’s useful 

payload to this orbit is only 12,500 kilograms, driving the LEO payload price up to 

$28,000 per kilogram (by 1988 estimate) or $32,000 per kilogram (by GAO estimate).  

These prices of course disregard the shuttle’s sporadic flight rate in the wake of the 

February 2003 Columbia accident.   

The space shuttle, while technically impressive, fails to live up to its design 

purpose of providing low cost, regular access to space.  Conflicts in its development led 

to a murky definition of its purpose, resulting in a vehicle that could do every technical 

task it was designed to do, but not for an economical price.  Technological challenges and 

economic limitations similar to those experienced by the shuttle in its development 

process, has caused the cancellation of further projects promising cheap access to space, 

such as the Single Stage to Orbit (SSTO) National Aerospace Plane and the X-

33/VentureStar. 

1.3 Alternatives to Rocketry 

 For as long as rockets have been considered as the practical method to go into 

space, a theoretical alternative has existed in the form of the space elevator.  One of the 

space elevator’s earliest incarnations was visualized by the father of modern rocketry, 

Konstantin Tsiolkovsky.  At a radial distance of 42,164 kilometers, an object in a circular 

orbit around the Earth will have the same orbital period as the sidereal rotation period of 

the Earth and is said to be in a geosynchronous orbit (GSO).  In an equatorial orbit this 
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object will appear fixed over a point on the Earth’s surface and is said to be in a 

geostationary orbit.  Tsiolkovsky observed that a cable reaching down from a satellite in 

GEO to the surface of the Earth would allow the trip into space to be made solely by 

elevator car, at the expense of electrical energy only.   

In order for the entire system to be balanced around its center of gravity, a similar 

cable would extend outwards from the cable center at GEO and would in effect, because 

of centrifugal acceleration, be hanging away from the Earth. Objects released from the 

cable at GEO altitude would remain in the same orbit.  Payloads traversing the cable 

beyond GEO orbit would not require any energy to be lifted beyond the cable’s center of 

gravity.  Because of the centrifugal acceleration outwards, they would be effectively 

“lowered” away from the Earth.  Payloads released along the upper cable length would be 

placed either in a high Earth elliptical orbit or, for altitudes greater than 47,000 

kilometers, on an Earth-escape trajectory.  The space elevator allows for the placement of 

payloads into high orbit without the use of chemical rocket engines, eliminating gravity 

losses and aerodynamic drag losses.  With mass as the dominating concern of space 

travel, a space elevator would eliminate the vast quantities of fuel needed to achieve 

orbit, and would literally be a bridge to orbit, making cheap access to space a reality.  The 

energy required to move a payload from the Earth’s surface to GEO would be 14.8 

kilowatt-hours per kilogram.  With an energy cost of $0.10 per kilogram, a payload could 

be lifted to GEO for only $1.48 per kilogram.  While this price only includes the energy 

cost and disregards the cost involved in development and construction, it should be noted 

that most mass transportation systems operate today at only a fraction above their energy 

cost [28].  One optimistic estimate provides a total development cost for the space 
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elevator a low value of $6.2 billion, providing the system with the economic potential of 

lowering the cost of placing payloads in GEO to as low as $100 per kilogram [29]. 

Despite the attractiveness of this prospect, there are daunting physical problems 

involved with such a huge structure.  The first and foremost of these problems is the 

material used to construct the elevator.  The structural demands are far beyond the 

capabilities of the strongest and lightest materials currently in use.  Using graphite epoxy 

composites, a GEO space elevator would weigh in excess of 65x1020 tonnes and would 

be over two kilometers thick at the GEO center.  The GEO space elevator does not 

become a feasible construction project without the use of ultra high strength materials, 

such as carbon nanotubes, which are not currently produced in industrial quantities. 

 An additional problem is the near Earth space environment.  Atomic oxygen 

present in the thin upper atmosphere will quickly erode carbon materials.  This effect 

could be mitigated with metallic coating of the elevator, where the oxygen would form a 

protective oxide layer on certain metals.  Ultraviolet radiation would also slowly degrade 

the integrity of the elevator structural materials.  Also protection must be provided for the 

length of elevator and any payload that traverses the region of the Van Allen Belts.  

In addition to the natural effects of the space environment, the large 

preponderance of objects currently in orbit around the Earth must be accounted for.  The 

United States Air Force currently tracks over 8,000 objects ten centimeters or larger in 

size in orbit around the Earth, representing a total estimated mass of 2,000,000 kilograms.  

The vast majority of these objects are not active satellites, but debris from expended 

launchers, anti-satellite weapons tests, and non-functional spacecraft.  For untracked 

objects smaller than ten centimeters, the estimated population is in the tens of millions.  
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Thankfully, the lifetime of these objects in low orbits are brief and are measured in 

months.  For debris in GEO altitudes, the orbital lifetime can last millions of years.  In 

addition to man-made orbital debris, micrometeoroids pose a threat to the space elevator.  

An estimated 40,000 tonnes of micrometeoroids enter the Earth’s atmosphere each year, 

moving at an average velocity of ten kilometers per second [30].  Both the man-made 

debris and the naturally occurring micrometeoroids pose a significant hazard to a GEO 

elevator. 

Due to these problems, the space elevator remains for the time being confined to 

the dreams of visionaries and the pages of science fiction.  There is another alternative to 

the problem of cheap access to space, an interim concept between rocketry and the space 

elevator.  Launching payloads to space may be achieved through the use of a two stage 

system, consisting of a suborbital launch vehicle that will rendezvous with a vertically 

oriented, gravitational gradient stabilized, orbiting tether.  The tether center of gravity 

acts as the orbital center of the system.  The lower end of the tether travels, with respect 

to the Earth, at a velocity lower than circular orbit velocity for its altitude.  Similarly the 

upper end of the tether is traveling at greater than circular orbit velocity for its altitude.  

The basic configuration of this system is shown in Figure 1.1.    

After launch of the suborbital transfer vehicle, near the apex of its trajectory, it 

performs a rendezvous with the tether’s lower end.  When the position and velocity of the 

launch vehicle and the tether end are matched, the payload will be handed off to the 

tether.  The payload then travels up the tether by elevator car, being released at a point 

along the upper length of the tether.  Similar to the GEO elevator, lifting the payload 

beyond the tether’s center of gravity actually involves lowering it away from the Earth,  

 21



 

 

Elevator car 

Suborbital vehicle trajectory 

Payload receiving station 
200 km altitude     5.41 km/s velocity 
 

Center of gravity and reboost module 
2000 km altitude     6.89 km/s velocity 

Payload release station 
3860 km altitude     8.43 km/s velocity 

 

Figure 1.1:  Earth Orbiting Space Elevator 
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due to the centrifugal acceleration.  Since the payload is traveling at greater than circular 

orbit velocity at its altitude, when released it will travel in an elliptical orbit with its 

perigee at the release point.  The overall effect of this is to place the payload into a higher 

orbit, while only expending enough fuel to reach a suborbital trajectory.  With tether 

lengths of 2,700 kilometers, payloads which are released from the upper tip of the tether 

will be on a geostationary transfer trajectory, and possess over 90% of escape velocity at 

the upper tip altitude.  The tether will have its orbit lowered by handling the payload, 

according to conservation principles.  It can be reboosted into its initial orbit by an 

appropriate high efficiency system such as ion propulsion or electrodynamic tether 

propulsion.  Electrodynamic propulsion is an especially attractive solution to this 

problem, as it taps the Earth’s magnetic field to provide thrust to the tether through the 

Lorentz force.  This method requires no propellant mass to be expended, only that an 

electrical current be run along the tether. 

The Earth orbiting tether and sub-orbital launch vehicle offer several advantages 

over both conventional rocketry and the full ground to orbit space elevator.  The required 

launch vehicle performance is only approximately 60% to 75% of that required for 

launch to orbit.  This allows a vehicle to be built similar in size to past designs for an 

SSTO vehicle, and still be able to carry a useful payload at a reasonable mass fraction.  

The simplicity of the single stage design will increase the frequency of its flight rate, 

positively affecting its operational cost. 

The orbiting tether itself is much shorter and much less massive than the GEO 

elevator, and its structural requirements allow it to be built from commercially available 

materials.  The tether’s shorter length significantly reduces the probabilities of contact 
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with space debris when compared to the space elevator.  Unlike the full space elevator, 

which was limited to equatorial placement, the orbiting tether can be placed in an 

inclined orbit to allow it to deploy payload on lunar or ecliptic plane trajectories.  More 

importantly, the freedom of its orbital placement can allow the tether to be placed in a 

resonant orbit that will have it pass over a launch site on a regular schedule.   

Passage to the Moon, identified earlier in this chapter as the likely first goal in the 

utilization of space-based resources, could be greatly facilitated by an orbiting tether.  

Launch to Earth orbit and lunar transfer by rocket alone cost approximately 17,000 

kilometers per second of ∆v.  For an Earth orbiting tether of length greater than 4,000 

kilometers, the payload released at its upper end will already be on a translunar trajectory.  

The net effect of the tether and launch vehicle is to launch a payload to the Moon for 

approximately half the ∆v required by pure rocketry.  

The orbiting tether and suborbital launch vehicle have the potential to offer 

significant savings in launch cost.  It represents a two stage system to high Earth orbit 

and beyond in which both stages are fully reusable.  The propellant mass required for the 

second stage can be as low as zero with the use of electrodynamic reboost.  The launch 

vehicle has the potential to be a much simpler vehicle to operate than the space shuttle.  

With these benefits, it is estimated that the Earth orbiting tether could lower costs of 

payload to high earth orbit to the order of $1,000 per kilogram. 

 This study will address several problems related to the Earth orbiting tether 

propulsion system. The design challenges examined in this study are primarily of a 

dynamical nature with some attention paid to the material structure of the tether.  The 

initial problem addressed in this study is general structural design: determining the 
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interrelationships between the tether’s baseline dimensions, mass, length, and payload 

size.  Once in place, the tether’s orbital position and stability will be under constant 

assault from disturbances.  These perturbing factors may be operational, such as the 

addition of cargo at the lower end of the tether, or natural, such as atmospheric drag and 

Earth oblateness effects.  Conservation principles can lead to estimates and guidelines of 

the tether’s response to perturbation, but a dynamic model is needed to accurately 

describe its behavior.  

 In addition to suggesting a tether design, the suborbital launch vehicle will also be 

addressed in some detail. The tether’s lower end will be moving at approximately 70% of 

orbital speed at an altitude of several hundred kilometers above the Earth, requiring a 

vehicle with similar performance to rendezvous with it.  Due to the ballistic trajectory of 

the launch vehicle, the rendezvous must occur within a constrained time window.  Times 

and maneuvers required for a rendezvous between the launch vehicle and the tether will 

be quantified through the study of their relative motion.  Finally, the system’s usefulness 

in a lunar transportation system will be assessed through a study of elevator launched 

trajectories.
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Chapter 2  

History of Space Tether Propulsion 

 The idea of a structure reaching from the surface of the Earth to the sky is one of 

human race’s oldest ambitions.  It has been recorded in different forms in some of the 

earliest know writings, which center upon a structure called the Tower of Babel, built 

around 2000 BC in ancient Mesopotamia.  Recorded in the eleventh chapter of Genesis, 

the story of the tower of Babel borrows elements from an older Sumerian myth.   The 

Sumerian myth is thought to have been based upon an incomplete ziggurat dedicated to 

the god Marduk, located in the city of Babylon, abandoned because of damage caused by 

earthquakes and lightning.  When rebuilt by King Nebuchadnezzar around 560 B.C., it 

reached a height of approximately 100 meters, lending a sense of scale to the ambitions 

of the ancients.  Both the Biblical and Sumerian versions of the tower story are 

cautionary tales warning of the dangers of hubris, sharing a common plot point of 

humanity’s different languages being a punishment for its godlike aspirations.   

The first modern technical description of a structure reaching the heavens was 

born from the same mind that formulated the first academic theories on the use of 

rocketry for space exploration.  Konstantin Tsiolkovsky first wrote about a tower that 

extended from the Earth’s surface to a “celestial castle” above geostationary orbit in a 

work entitled “Speculations about Earth and Sky on Vesta” written in 1895.  Tsiolkovsky 

determined that his “orbital tower” would be in overall tension, with Earth’s gravity 

pulling the section of the tower below geostationary altitude downward, while centrifugal 

force would pull the section of the tower above geostationary altitude upwards [31].   
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In unpublished work performed in the early 1950s, Dr. John McCarthy studied the 

idea of a cable extendeding in both directions from a satellite in geostationary orbit.  The 

cable length extending upwards from the satellite was sized to balance the center of 

gravity of the whole system around the satellite.  McCarthy realized that the cross section 

of the cable would have to increase as it rose higher from the surface of the Earth, in 

order to support the weight of the cable carried below it.  This led him to posit the idea of  

a “taper ratio”, describing the cable cross sectional area in relation to its radial position.   

The taper ratio is derived from a material’s self support length which is equal to 

its tensile strength divided by its density.  For the strongest available material at the time 

of McCarthy’s study, steel wire, the support length is 53.8 kilometers.  To support the 

weight of the cable extending beyond 58.3 kilometers would require a gradual increase in 

the cross sectional area of the cable.  The cable would start at the ground with a slender 

cross section, thickening as it approached geostationary altitude, and growing thinner as 

the cable extended out beyond its balance point.  Working with steel wire McCarthy’s 

interest in the problem ended when he calculated that at geostationary altitude, the cable 

would be 1x1050 times as thick as the diameter of the base [19]. 

Working from the basis of Tsiolkovsky’s theories and independent of McCarthy’s 

work, Russian engineer Yuri Artsutanov also discovered the idea of taper ratio.  He is 

also the first to address the practical considerations of constructing such a massive 

structure.  Artsutanov’s suggestion was to use geostationary orbit as a construction base, 

building the cable lengths out in upwards and downwards directions to keep the entire 

structure balanced in its orbit [32].  He also devised what has come to be known as the 

“bootstrap” method of construction, whereby an initial cable is extended with a low 
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design payload weight.  The addition of parallel cables gradually strengthen the design.  

Artsutanov is also responsible for the first exposure to the public of the idea of a space 

elevator, when he wrote a charmingly titled article “Into the Cosmos by Electric 

Locomotive” for the magazine supplement of Pravda in 1960.  This article described the 

salient points of the Earth-based space elevator in layman’s terms, describing the basic 

physics involved, its construction techniques, and its use, coupled with a Moon-based 

elevator, as a trans-lunar transportation system.  While noting that no material currently 

existed to make the construction practical, the article ended on the hopeful note that 

“science and technology are swiftly moving ahead” [33]. 

Several American oceanographers working at the Woods Hole Institute in the 

early 1960s, without knowledge of Artsutanov or McCarthy’s earlier work, independently 

derived the taper ratio for a third time.  They noted that while a payload would have to be 

raised to the geostationary point of the cable, traversing the cable beyond the 

geostationary point involved lowering a payload away from the Earth.  They described 

that the energy imparted to the payload would have to be taken, by conservation 

principles, away from the rotational rate of the Earth [34].  

In 1975, Jerome Pearson published an article in the journal Acta Astronautica in 

which he reworked McCarthy’s concepts using graphite whiskers as the construction 

material.  Pearson was also the first to address the issue of vibrations in the cable caused 

by payload movement and tidal forces from the Moon.  He found critical velocities at 

which cargo traversing the cable would excite resonant buildup.  He also studied using 

the extension of the cable above geostationary altitude as a method of launching payloads 

on Earth-escape trajectories.  Realizing the orbital elevator cable built of currently 
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available materials would have a mass measured in the billions of kilograms, Pearson 

concluded it would require over 24,000 flights of the space shuttle to construct [35]. 

The geostationary space elevator received its first widespread exposure in the 

West by way of Arthur C. Clarkes novel, “The Fountains of Paradise”, published in 1979.  

In Clarke’s tale of the construction of a space elevator, he describes it being built from 

diamond crystal filaments [36].  Clarke has further shown to be a proponent of the idea in 

an article published in Advanced Earth Oriented Applications of Space Technology.  The 

nonfiction article reviews the work of previous engineers and scientists, with particular 

credit given to the work of Artsutanov [37].  

 There has been, in recent years, a blossoming interest in the full ground to orbit 

elevator, stimulated mainly by recent advances in the manufacture of high strength 

materials.  Following a 2000 workshop on the idea of space tether propulsion NASA 

published the report “Space Elevators:  An Advanced Earth-Space Infrastructure for the 

New Millenium”.  This work outlined the status and limitations of technologies involved 

with building a space elevator.  Several near term paths of technological development are 

suggested, most importantly for this study the use of smaller orbiting tethers.  Particular 

attention was given to several objections against building a space elevator, including the 

idea that long term project planning fails to incorporate technological advancements 

made in the interim [28]. 

 Despite the cautious tone of the NASA report, work on the ground to orbit space 

elevator has continued, spurred on by the discovery of carbon nanotubes in 1991, 

cylindrical carbon molecules with a tensile strength two orders of magnitude better than 

currently available commercial materials.  In his 2000 work on the space elevator, 
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Bradley Edwards outlines the feasibility of constructing an orbital elevator from carbon 

nanotube material.  With its high strength to weight ratio, carbon nanotubes allow for the 

total tether mass to be measured in the hundreds of tonnes, rather than the thousands 

calculated by Pearson.  Edwards goes into detail on the deployment, operation and design 

of a space elevator, addressing problems such as weather effects, space environment 

effects, and impact damage [38].   

 One company, LiftPort Group of Bremerton Washington, has optimistically 

announced their intention to build a space elevator by 2018, and are performing serious 

work in producing industrial scale quantities of carbon nanotube [39].  NASA, in 

conjunction with private companies, has sponsored X-Prize style competitions in 2005 

and 2006 involving tether materials strength and elevator climber vehicle design. 

 Despite this newfound interest in the full ground to orbit elevator, several more 

near term applications of space tether propulsion exist involving tethers of much lesser 

length than the ground to geostationary space elevator.  Scaling back from the massive 

geostationary cable, Hans Moravec, a colleague of John McCarthy’s, published an article 

in 1977, involving a satellite in low earth orbit with two cables extending outward.  This 

satellite would rotate in its orbital plane at a rate at which when the cable lower tip 

contacted the surface of the Earth, their relative velocities would be momentarily zero, 

allowing payload to be transferred to the cable.  This rolling skyhook system would be 

much less massive than the ground to orbit elevator.  Moravec’s study neglected drag and 

aerodynamic heating caused by the tether moving through the Earth’s atmosphere, which 

makes such a system impossible for use on the Earth, but a potential application exists on 

the airless Moon [40].   
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 The rolling skyhook idea was modified later to have the tether end reach just 

above the earth’s atmosphere, where cargo would be transferred to it by a high altitude, 

hypersonic aircraft.  Work has continued on this configuration in a study conducted by 

Boeing along with Tethers Unlimited, Inc., called the Hypersonic Airplane Space Tether 

Orbital Launch system (HASTOL), addressing both the problems of tether design and 

also launch vehicle rendezvous with the spinning tether [41].  The rendezvous represents 

one of the most daunting problems involved with the spinning tether; a carefully timed 

arrangement is required between the tether’s orbital position, its rotational position, and 

the hypersonic aircraft to allow the transfer of cargo.  The dynamics of the system 

combine to force the transfer of payload to occur in a space of a few seconds [42] .  

Similarly to the rendezvous, the periods at which a payload could be released at the upper 

end of the tether’s spin were limited, restricting its usefulness as a method to launch 

payload beyond LEO.  Further study of the orbital response of handling a payload drove 

the system mass upwards towards several thousand tonnes for a spinning tether of length 

600 kilometers, on the same order of magnitude of the non-spinning tethers addressed in 

this study [43].  

 Another application of tethers as an in-space propulsion system is currently being 

pursued in a joint study being conducted by NASA along with Lockheed Martin and 

Tethers Unlimited.  This project, the Momentum eXchange Electrodynamic Reboost 

(MXER), is somewhat more modest than HASTOL, consisting of a 100 kilometer long 

spinning tether.  This tether is in a 400 kilometer by 8000 kilometer elliptical orbit.  The 

tether’s spin rate and length are configured in such a manner that at its perigee point, the 
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lower tip will be traveling at the equivalent circular orbit velocity for its altitude, shown 

in Figure 2.1. 

 This system has difficulties similar to HASTOL in the short rendezvous time 

between the payload and the tether, but creative efforts have led to the design of a large 

deployable net used to capture the payload in its original orbit [44].  Having picked up its 

payload from LEO, the tether proceeds in its orbit towards the apogee point, where the 

payload is released when the it is on the upward side of the tether’s spin, imparting to the 

payload not only the tether’s orbital velocity but also its rotational velocity.  The payload 

at release is on a geostationary transfer orbit.  Momentum lost in raising the orbit of the 

tether is regained by electrodynamic means, whereby a current applied through the tether 

interacts with the Earth’s magnetic field to regain orbital velocity.  Work on the MXER 

has identified electrodynamic propulsion utilizing the Earth’s magnetic field to be a key 

factor that makes tether based space propulsion attractive in the LEO environment, as 

well as addressed the dangers posed by orbital debris by suggesting the use of redundant 

lines separated by several meters [45].  Work on MXER had been proceeding with the 

goal of flying related experiments as technology demonstrators on the space shuttle, but 

the 2003 Columbia accident has postponed this schedule. 

 Actual flight experience with tethers has been very limited.  A tether experiment 

was conducted between the Gemini IX spacecraft and its Agena docking target in 1966, 

when the two were linked by a 36 meter long Dacron tether.  The Gemini IX experiments 

attempted to study both gravitational gradient stabilized and spinning tether dynamics.  

Data was inconclusive on the gravitational gradient and while the artificial gravity  
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Figure 2.1:  Momentum eXchange Electrodynamic Reboost System 
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generated in spin mode was too low to be felt by the crew, experiments confirmed its 

existence [46]. 

 Several tether experiments have been conducted on board the space shuttle.  In 

1992 on STS-46, and in 1996, on STS-75, the Tethered Satellite System (TSS) was 

flown, successfully demonstrating the use of long gravitationally stabilized tethers and 

the generation of electrical current from the Earth’s ionosphere.  On its second flight, the 

TSS was deployed to a length of 19.7 kilometers, making it the longest electrodynamic 

structure ever built.  For a period of five hours, the tethered satellite collected data on the 

extraction of current from the Earth’s ionosphere before the tether broke.  Despite its loss, 

the TSS did much to influence design and planning of further electrodynamic tether 

systems [47].   

One of the earliest applications for non-spinning, gravitationally stabilized tether 

was first put forth by two engineers, A.R. Collar and J.W. Flower, in the Journal of the 

British Interplanetary Society in 1969.  Their study concerned a twin satellite system, 

with one satellite in GEO while a long lightweight tether extended downwards 

approximately 35,000 kilometers to a satellite at a lower altitude.  This system was 

proposed not as a propulsion device, but as a benefit to the communications industry.  

The low altitude 24 hour satellite system combined the advantage of geostationary 

altitude, primarily remaining fixed with respect to a point on the Earth’s surface , with the 

lower signal strength needed to contact a satellite in LEO.  Collar and Flower’s study 

addressed similar concepts as the early work done on the full space elevator, and 

expanded work done on the orbital stability of the system [48]. 
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 The first mention of the orbiting space elevator came in 1994 when Eagle 

Sarmont published a paper on a concept that combined the concepts of the rotating 

skyhook and the orbital tower.  Sarmont claims to have invented the concept in 1988 

while working at Lockheed Missile and Space Corporation, and was promptly told by his 

manager he “was never to waste another moment of company time on the idea by even so 

much as mentioning it again” [49].  Sarmont’s structure was a tether that would be in a 

low Earth Orbit about its center of gravity, with the lower end at an altitude just above the 

atmosphere, around 150 kilometers.  It would be held vertical to the horizon by gravity 

gradient forces and payload would be transferred to it by a suborbital launch vehicle.  

Reboosting the system due to energy losses was accomplished by a high efficiency ion 

propulsion system.  Sarmont’s paper was primarily a cost balance study between using 

the Earth orbiting tether versus traditional rocketry and showed the potential of such a 

system to lower launch costs to several hundred dollars per pound [50].   

 A similar idea was put forward by Robert Zubrin in 1995.  Calling his system the 

Hypersonic Skyhook, Zubrin paid particular attention to the materials strength required 

for such a system, developing an equation for the taper ratio of an orbiting elevator.  He 

also estimated the drop in the tether’s orbit, caused by handling a payload, by employing 

a momentum conservation routine, and outlined the use of electrodynamic systems to 

reboost the skyhook.  Noting previous idea’s originating with Artsutanov, he put forth the 

bootstrap method of construction as a way to eventually strengthen and lengthen the 

skyhook until payload deliveries could be made to the skyhook lower tip by hypersonic 

air breathing vehicles [51].   
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 The Earth orbiting elevator was studied in one final incarnation by Lockheed 

Martin on a project they named the “Bridge to Space” during the period from of 1999 to 

2001.  A 3,200 kilometer long tether was used as the baseline model studied, allowing 

objects to be launched from the tether with 95% of escape velocity.  The Lockheed study 

contained a serious effort to quantify the dangers posed by orbital debris, and found that 

redundant cables significantly extend the lifetime of the tether in the face of small scale 

space debris.  Modeling the tether’s interaction with larger tracked particles found that 

the frequency of encounters between the tether and other objects in orbit would be of the 

order of several per year [52].  An economic model was developed which predicted that 

once the system was running at full capacity costs to place payloads in GEO could be as 

low as $100 per pound.  Although none of the technical aspects of the Bridge to Space 

were viewed as ahead of its time, the economic predictions were largely met with 

incredulity [53].  The perceived lack of interest in the concept led to work on it stopping 

in 2001. 
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Chapter 3  

Elevator Sizing 

3.1 Stepwise Integration Method 

 The primary design variables involved in sizing an Earth orbiting space elevator 

are the material used to construct the tether, the altitude of the tether’s center of gravity, 

and the payload it is designed to carry.  From these three choices, the length and overall 

mass of the tether are found.  The length of the tether determines its usefulness as a 

payload launching system, while its mass is a measure of the investment required in its 

construction and placement in Earth orbit. 

 The selection of material balances three factors: its density, its tensile strength, 

and its tensile modulus.  The density and tensile strength primarily affect the overall final 

mass of the tether, while its tensile modulus is important in determining its behavior 

when loaded.  Table 3.1 lists the main materials considered for space tether applications 

with their respective material properties.  Carbon nanotubes have been included in this 

list only for purposes of comparison, as production levels have not yet reached industrial 

quantities needed for a space tether system.  Their tensile strength listed here is a 

theoretical maximum, and differs from what is observed in laboratory tensile tests.  

Experimental methods of measuring the tensile strength of carbon nanotube strands have 

yielded values ranging 1 to 63 gigapascals [54].  T-650/35 carbon fiber was used in 

Lockheed Martin’s Bridge to Space study as the main structural material, with redundant 

lines made of Vectran and Kevlar.  Spectra 2000 was the material proposed for use in the 

HASTOL study.  Although Spectra has a good strength to weight ratio, its suffers  

 37



 

Table 3.1:  Tether Material Properties 

Material Density (kg/m3) Tensile Strength (Pa) Tensile Modulus (Pa)

T-650/35 Carbon 1770 4.55E+09 2.55E+11

Spectra 2000 970 3.50E+09 1.13E+11

Zylon HM 1560 5.80E+09 2.80E+11

Vectran 1440 3.02E+09 6.90E+10

Kevlar 1440 3.60E+09 8.30E+10

Carbon Nanotube 1300 1.30E+11 1.00E+12  
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problems with creep when undergoing long term loading [53].  For the purposes of this 

study, Zylon, with its high tensile strength and modulus, will be the material proposed for 

the construction of the Earth orbiting space elevator.  Regardless of material choice, the 

actual tether will require some treatment and or coating to deal with the monatomic 

oxygen and ultraviolet radiation present in the LEO environment. 

 A program has been written for this study that, given a specific center of gravity 

altitude, tether material and payload mass, calculates the overall length and mass of the 

tether.  This is achieved through breaking the tether into discrete segments of equal 

length.  Starting with the lowest segment, an iterative process is used to calculate the 

required cross sectional area needed to support the mass of the tether and payload 

hanging beneath each segment.  A similar method has been developed to calculate the 

size of a full ground to geostationary orbit space elevator [55]. 

The first step in this program is to calculate the downward acceleration at each 

segment of the tether.  The acceleration is made up of two components, a downward 

component caused by the attraction to the Earth, and an upward centrifugal component 

caused by the rotation of the tether expressed as 

 2
T j2

j

E
j ωr

r
GM

a −=  (3. 1) 

A lower tip altitude of 250 kilometers has been selected for this portion of the 

study.  This number was chosen to place the end of the tether above the denser portions 

of the Earth’s upper atmosphere in order to minimize the effects of atmospheric drag and 

heating on the tether’s lower end.   
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The angular velocity of the tether, ω, is found from the chosen value of the 

tether’s center of gravity.  The selection of tether’s center of gravity determines its orbital 

speed, according to the equation 

 
cg

E
cg r

GM
v =  (3. 2) 

The tether, being in a circular orbit, moves at a constant velocity.  The orbital 

speed of the center of gravity is equal to the angular velocity of the tether multiplied by 

the radial distance of the center of gravity 

 cgTcg r ωv =  (3. 3) 

The relation between the tether’s angular velocity and the radius of the center of 

gravity is found to be 

 3
cg

E
T r

GMω =  (3. 4) 

By plugging the value for the tether angular velocity back into the gravity 

equation, it can be shown that for a tether segment at the center of gravity the 

acceleration is zero.  This supports the assumption that the tether can be treated as a 

satellite in free fall with cable lengths “hanging” from the center of gravity in both 

upwards and downwards directions [56]. 

The tension in the lowermost segment of the tether, caused by the attachment of 

the payload, is calculated by multiplying the payload mass by the gravitational and 

centrifugal acceleration at the tether’s lower tip, by the equation 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Tle2
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E
p1 Ten ωr

r
GMmF  (3. 5) 
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From the tension, the cross sectional area of the lowermost tether segment can be 

found to be 

 
σ

f F
A s1 Ten

1x =  (3. 6) 

The mass of the lowermost cable segment is calculated by multiplying the density 

of the tether material by the volume of the lower segment 

 1xsegT1 A l ρm =  (3. 7) 

 This process is repeated for the next segment, where the tension is found to be the 

sum of the tension in the previous segment plus the mass of the previous segment times 

its acceleration.  For a general segment j, this takes the form  
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 The cross section and mass of the general segment j is calculated exactly as the 

first segment was, according to the equations 

 
σ

f F
A sj Ten

jx =  (3. 9) 

 jxsegTj A l ρm =  (3. 10) 

 This stepwise integration goes on for n number of iterations.  As each step is 

added to the length of the tether, the center of gravity is computed according to the 

equation 

 ∑
=

=
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r a m
r  (3. 11) 
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When the calculated value of the radius of the center of gravity equals the design 

value chosen at the start of the program, the process stops.  The total length of the tether 

is calculated by the number of iterations times the individual segment length.  The total 

mass of the tether is the sum of the mass of each segment shown by 

  (3. 12) ∑
=

=
n

1j
jxsegTT A l ρm

From the total length of the tether, the upper and lower velocities can be 

calculated by the equations 

 leTle r ωv =  (3. 13) 

 ueTue r ωv =  (3. 14) 

These tether tip velocity values are critical to sizing the suborbital launch vehicle 

and determining elevator launched trajectories.  Figure 3.1 shows the upper and lower tip 

velocities, expressed as percentages of the escape velocity and the circular orbit velocity 

at their respective altitudes.   

Tether lengths of interest to this study lie in the range of 2,700 to 4,300 

kilometers.  At the lower end of this range, a 2,700 kilometer long tether allows an object 

released from its upper end to be placed in a Hohmann trajectory with an apogee at the 

altitude required for geosynchronous orbit.  This example illustrates the usefulness of the 

Earth orbiting tether system as a tool for launching payload beyond LEO.  For tethers of 

2,700 kilometers of length the lower tip will only be traveling at approximately 76% of 

circular orbit velocity at that altitude.  This allows a payload to be placed on a 

geosynchronous transfer orbit for a ∆v of only 76% of that required to reach LEO.  

Similarly, tether lengths of approximately 4,050 kilometers allow objects released from  
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Figure 3.1:  Tether Upper and Lower Tip Velocities 
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the upper tip to be placed in a Hohmann trajectory which will take them to an apogee of 

384,400 kilometers, the orbital altitude of the moon.  This allows a payload to be placed 

on a minimum energy lunar transfer orbit for the ∆v expenditure of only 68% of that 

required to reach LEO.  Finally for lengths of approximately 4,300 kilometers an object 

released from the tether’s upper tip is traveling at greater than escape speed at that 

altitude, while only requiring the ∆v equal to 66% of orbital velocity to reach the lower 

tip. 

3.2 Alternate Method of Determining Elevator Cross Sectional Area 

In place of the stepwise integration method detailed above, an explicit equation 

describing the cross sectional area at any point along the tether can be derived.  This is 

accomplished by integrating the forces on a tether over its entire length [35].  This 

process begins by summing the forces on a differential element of the tether, according to 

the equation 

 Tencg FFF0F ++==∑  (3. 15) 

where the forces involved are gravity caused by attraction to the Earth, centrifugal force 

caused by the tether rotation, and tension in the tether.  The gravitational acceleration 

caused by the Earth is found by the equation 

 2
E

g r
GMa −=  (3. 16) 

while the centrifugal acceleration term is expressed as the radial position multiplied by 

the rotation rate of the tether, according to the equation 

  (3. 17) 2
Tc ωr  a =
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The tension force in the tether is expressed as the tensile strength of the tether 

material multiplied by the cross sectional area, divided by the design factor of safety, as 

shown in the equation 

 
s

x
Ten f

A σF −=  (3. 18) 

By multiplying the gravitational and centrifugal accelerations by the mass of the 

element dm their respective forces can be inserted into the force summation equation.   

Also by noting that the tension force is acting on the differential element with cross 

sectional area dAx, the force summation equation can be written in the following form 

 dr
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In order to produce an expression in terms of the cross sectional area, the 

differential element mass can be expressed as the product of the tether material density 

multiplied by the cross sectional area multiplied by the differential length of the element, 

shown by the expression 

 dr A ρdm xT=  (3. 20) 

Inserting this back into the force summation equation and combining the gravity 

and centrifugal terms allows it to take the form 
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Terms containing the cross sectional area are gathered together producing the 

following equation 
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Both sides of this equation can be integrated, the left with respect to cross 

sectional area, while the right with respect to the differential radial position dr, according 

to 

 dr rω
r

GM A 
σ
ρ f

A
dA 2

2
E

x
Ts

x

x ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +−=  (3. 23) 

Integrating this expression produces the natural logarithm of the cross sectional 

area of the tether in terms of its radial position, shown by  
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By taking the exponential function of both sides of the equation, the cross 

sectional area of the tether can be expressed as a function of the radial position 
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The constant of integration, K1, can be solved for by evaluating the equation at the 

tether’s lower end.  The cross sectional area of the tether’s lower tip is a function of the 

material tensile strength, the design payload mass, the design factor of safety, and the 

acceleration felt at the lower tip of the tether, shown by the equation  

 
σ
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A slep

le x =  (3. 26) 

where the downward acceleration felt at the lower tip is a combination of gravitational 

attraction from the Earth and the outward centrifugal component induced by the tether’s 

rotation, shown by the relation  
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Inserting this expression for the lower tip cross sectional area back into the 

integrated force summation equation, evaluated at the tether’s lower tip, produces the 

equation 

 ( ) ( )1
2

T
2

le
le

ETs
lex

2
Tle2

le

Esp Kexpωr
2
1

r
GM 

σ
ρ fexprAωr

r
 MG

σ
f m

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−  (3. 28) 

This equation can be rearranged to isolate the exponential function of the constant 

of integration, allowing it to be expressed as 
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This value of the integration constant is then inserted into the general expression 

of cross sectional area as a function of radial position producing the equation 
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This equation allows for the calculation of the cross sectional area at any point 

along the length of a tether, given its rotational rate, found from the design center of 

gravity altitude, its material properties, its lower tip altitude, and its design payload.  

Figure 3.2 shows typical cross sectional area profiles along several tethers of varying  
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Figure 3.2:  Tether Cross Sectional Area versus Length  
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length.  Each tether shown in this figure is made of Zylon HM and designed to carry 10 

tonnes with a safety factor of 1.5 and a lower tip altitude of 250 kilometers. 

3.3 Previous Methods of Determining Response to Loading 

Functioning as a free flying object in orbit around the Earth and used to impart 

energy to a payload, the Earth-orbiting tether will loose orbital speed and altitude each 

time it handles a payload.  The stability of the Earth orbiting space elevator remains one 

of the most serious uncertainties regarding its feasibility [28].  Quantifying this loss of 

altitude and velocity has been attempted in previous studies by several different methods.  

Previous work done on this problem relies upon one of two physical schemes, the 

conservation of momentum, and the calculation of the tether center of mass.  Both 

methods involve simplifications and assumptions that ignore certain aspects of the tether-

payload behavior. 

In the case of Dr. Robert Zubrin’s Hypersonic Skyhook, the effect of handling a 

payload was modeled as a momentum exchange.  In Zubrin’s analysis, it was assumed 

that the launch vehicle had successfully transferred its payload to the tether’s lower tip.  

At that instant, the payload angular momentum was calculated to be the product of the 

payload mass multiplied by the radius and velocity of the tether’s lower tip, according to 

the equation 

 lelepp vrmh =  (3. 31) 

By raising the payload to the tether’s upper end, its angular momentum will be 

increased by the value 

 lelepueuepp vrmvrmh −=∆  (3. 32) 
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The principle of conservation of momentum dictates that this increase in the 

angular momentum of the payload must be taken from the angular momentum of the 

tether, resulting in a loss of tether velocity.  Zubrin’s analysis treats the tether as a point 

mass at its center of gravity.  The tether’s original angular momentum is calculated by the 

equation 

 0 cgcgT0 T vrmh =  (3. 33) 

From this total, the angular momentum that had been imparted to the payload is 

subtracted, calculating the corrected tether angular momentum according to the 

expression 

 p0 Tf T hhh ∆−=  (3. 34) 

The final velocity of the tether center of gravity can be calculated by the 

expression 

 
( )

( ) cgstatT

lelepueuepcgcgstatT
f cg r mm

vrmvrmvr mm
v

+

+−+
=  (3. 35) 

The ∆v needed to sustain the tether in its original altitude is the difference 

between its original and final velocities.  Because this analysis treats the momentum lost 

from the tether as a gradual process dependent on the payload climbing speed along the 

tether, the speed of elevator cars along the tether could be tailored to keep the whole 

system from lowering its altitude so much that it entered the upper portions of the Earth’s 

atmosphere.  Zubrin concludes his analysis by outlining the specifics of a 20 tonne tether, 

of approximately 3,450 kilometers length handling a 1.5 tonne payload.  Raising a 

payload to the tether center of mass will cause the tether to loose 134 meters per second 
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of velocity.  A 30 kilowatt electrodynamic reboost system will produce approximately 2.1 

Newtons of force, allowing the tether to be reboosted to its original orbit in 15 days [51].  

Zubrin’s analysis does not take into account the drop experienced by the tether caused by 

the addition of payload weight.  In his analysis, any drop in tether orbital altitude is 

caused by the raising of the payload along the tether.  Implicit in this analysis is the idea 

that a payload added to the tether’s lower end will not cause a drop in orbital altitude 

unless it is carried up the elevator car, an assumption that defies physical reasoning. 

Using Zubrin’s method for a tether made of Zylon HM material carrying a 

payload of 1.5 tonnes, the required total tether mass required can be calculated for 

varying tether lengths.  In Zubrin’s initial analysis no mention was made of the mass 

required for the reboost propulsion system.  A 100 tonne reboost system has been added 

at the central station, providing the total system masses seen in Figure 3.3. 

A similar method of elevator sizing based on momentum conservation principles 

was also used in the Lockheed Martin Bridge to Space project.  Again, the tether was 

treated as a point mass at its center of gravity. A velocity deficit was computed from the 

difference between the angular momentum for the tether alone and the angular 

momentum of the combined tether and payload.  In this method, it should be noted that 

movement of payload up the tether does not cause any drop in the tether’s orbit.  Any 

change in the system is caused by the addition of payload at the tether’s lower end.  This 

method also ignores any shift in the center of gravity of the tether payload system.  All 

analysis has been performed treating the system as a point mass at the original unloaded 

tether center of gravity.  The Bridge to Space project was based on a tether made of 

carbon fiber designed to carry a 10,000 kilogram payload.  Using this conservation   
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Figure 3.3:  Tether Mass versus Length (Zubrin) 
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momentum procedure on a tether massing 500 tonnes, a modest drop of only 16 

kilometers in the tether’s orbital altitude was observed when the payload was added [53].  

Figure 3.4 shows the required tether mass for varying lengths using this momentum 

conservation sizing methods [57]. 

 A third method of determining the required mass of a tether was outlined in Eagle 

Sarmont’s work on his Earth orbiting tether.  This method, based on the shifting of the 

center of gravity that occurs with the addition of the payload, is relatively straightforward 

but mechanically complex.  Utilizing the stepwise integration method, a tether model is 

developed.  The center of gravity of the loaded tether is found by the equation 

 ∑
= +

+
=

1

nj lepjj

lelepjjj
cgL a ma m

r a mr a m
r  (3. 36) 

The velocity of the new tether-payload center of gravity is calculated by 

multiplying the loaded center of gravity by the angular rotation rate of the tether, shown 

by the expression 

 cgLTcgL r ωv =  (3. 37) 

 The velocity of the loaded center of gravity is less than the circular orbit velocity 

at its altitude, so the tether center of gravity is treated as being at the apogee of an 

elliptical orbit.  Starting from the velocity and radial position of the loaded center of 

gravity, the parameters of its new elliptical orbit are calculated.   

Sarmont’s tether system differed in design from the others in that it carried a large 

40 tonne manned space station on its lower tip.  At the lower tip, the Earth’s gravity and 

the centrifugal acceleration combine to produce an acceleration of 3.1 meters per second 

in the downward direction.  While this is attractive from the point of view of space  
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Figure 3.4:  Tether Mass versus Length (Bridge to Space) 
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biology, it requires the tether to be strengthened to permanently bear the weight of this 

heavy station.  With the payload added to the lower end, Sarmont’s Earth orbiting tether 

then undergoes several actions to minimize the shift in the center of gravity of the tether 

payload system. The first step taken to decrease the center of gravity shift is to quickly 

reel in the lower length of the tether, raising the altitude of the lower manned station and 

the payload.  He speculates that by also reeling in the upper end of the tether and by 

lowering the central power station along the tether length, the center of gravity can be 

controlled to a degree that the tether payload system will end up in a circular orbit 30 to 

60 kilometers lower in altitude than when it started.  Accounting for the mechanical 

adjustments made to the tether, Sarmont calculates that for a tether of length of 2,188 

kilometers and lower tip altitude of 150 kilometers, which requires the launch vehicle to 

achieve 80% of orbital velocity and payloads to be released with 87.274% of escape 

velocity, the total mass of the system would be 825,000 kilograms [50]. 

3.4 New Methods of Estimating Orbital Response to Loading 

 For this study two new methods have been used to determine the tether’s orbital 

response at the moment the payload is attached.  Both of these involve measuring the 

shift in the center of gravity of the payload-tether system when the payload is added.  For 

the first the new orbit is simply calculated from the velocity of the new center of gravity, 

while in the second the total angular momentum is used to calculate the altered trajectory 

of the tether-payload system. 

3.4.1 Shifting Center of Gravity Method 

If the moveable masses along the tether length employed by Sarmont are 

disregarded, a simplified method of studying shifts in the center of gravity of the tether-
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payload system can be used to estimate the required mass of the tether.  The center of 

gravity of the tether-payload system is again calculated according to the equation 

 ∑
= +

+
=

1

nj lepjj

lelepjjj
cgL a ma m

r a mr a m
r  (3. 38) 

The velocity of the new tether-payload center of gravity is calculated by the 

expression 

 cgLTcgL r ωv =  (3. 39) 

This velocity will be less than the circular orbit velocity at the loaded center of 

gravity, so the tether-payload is treated as being at the apogee of a new elliptical orbit.  

The parameters of this new elliptical orbit are calculated, using a series of common 

relations from orbital mechanics [58].   

This process begins with the calculation of the Kepler area constant of the new 

orbit, by the equation 

 cgLcgLcgL r vC =  (3. 40) 

The orbital energy constant of the loaded center of gravity’s orbit is found by the 

expression 

  
r
GM 2vECO

cgL

E2
cgLcgL −=  (3. 41) 

From the values of the Kepler area constant and the orbital energy constant, the 

eccentricity of the tether’s loaded center of gravity is found according to the equation 

  ECO
GM

C
1e cgL2

E

2
cgL

cgL +=  (3. 42) 
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The parameter of the orbit of the tether’s loaded center of gravity is found from 

the relation 

  
GM
C

op
E

2
cgL

cgL =  (3. 43) 

From the eccentricity and the orbit parameter, the perigee altitude of the tether’s 

loaded center of gravity is found by the expression 

  
e1

po
r

cgL

cgL
cgL peri +

=  (3. 44) 

 The distance between the tether’s lower tip and the loaded center of gravity is 

subtracted from the perigee radius to find the radial position of the lower tip at perigee.  

In order to minimize the drag and heating effects of entering the Earth’s atmosphere, it is 

desired to keep the tether’s lower end from descending below an altitude of 100 

kilometers.  Rather than use a complex set of movable masses and extendable tethers that 

Sarmont employs, it has been observed that the shift can be minimized by increasing the 

tether’s overall mass.  This is achieved in the analysis by increasing the factor of safety in 

the stepwise integration process, thus increasing the cross sectional area throughout the 

tether length.  The higher safety factor, while increasing the total mass of the system, has 

several practical advantages.  If the tether structure is made up of multiple lines, the 

higher factor of safety allows for the redundant lines of the tether to absorb some damage 

from small scale orbital debris and still retain its original payload capability.  Figure 3.5 

shows the tether mass, for varying lengths, calculated using the method of shifting center 

of gravity.  These calculations involve a tether made of Zylon, with a starting lower tip  
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Figure 3.5:  Tether Mass versus Length (CG Shift) 

 58



 

altitude of 250 kilometers, a payload of 10,000 kilograms and a central reboost station 

mass of 100 tonnes. 

 It can be observed that while the methods used in Zubrin’s and Lockheed 

Martin’s analysis produced an exponential growth in tether mass as the length increased, 

by the method of shifting center of gravity the relation between length and mass is more 

linear.  The drawback to this method is that the response of the tether to loading is 

entirely independent of the mass of the central station, where the tether propulsion system 

is located.  Because of its location at the center of gravity where the centrifugal and 

gravitational forces cancel each other out, the mass of the central station contributes 

nothing to the calculation of the loaded center of gravity.  Because of the central station’s  

nonexistent role in determining the tether’s orbital response by center of gravity analysis, 

an additional estimation method based on momentum conservation was investigated. 

3.4.2 CG Shift with Momentum Conservation Method 

 For this study, a fourth method of estimating the effect of payload addition on the 

tether’s orbit has been developed, combining elements of the center of gravity shift 

employed by Sarmont with the conservation principles that are used by Zubrin and the 

Lockheed Martin Bridge to Space study.  This allows for the accounting of the central 

reboost propulsion module mass to enter in the analysis. 

This method shares a common trait with all of the others, in that the tether is 

treated as a point mass at its center of gravity.  This new center of gravity is calculated by 

the equation  

 ∑
= +

+
=

1

nj lepjj

lelepjjj
cgL a ma m

 r a mr a m
r  (3. 45) 
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The total angular momentum of the tether, with the mass of the reboost propulsion 

station included is calculated by the equation 

 ( ) cgcgTstatT vrmmh +=  (3. 46) 

The total angular momentum of the payload-tether orbit is calculated by adding to 

this the angular momentum of the payload , shown by 

 ( ) lelepcgcgTstattotal vrmvrmmh ++=  (3. 47) 

The velocity of the new loaded center of gravity is found by dividing the product 

of the total angular momentum of the system by the product of the total mass, including 

tether, reboost station and payload, and the radius of the loaded center of gravity, as 

detailed in the expression 

 ( ) cgLpstatt

total
cgL r mmm

h
v

++
=  (3. 48)  

With the value of the new velocity of the loaded tether-payload system center of 

gravity obtained, the orbit is calculated with the standard orbital mechanics equations 

similar to the method employed above in the shifted center of gravity analysis.  Also, as 

in the center of gravity shift analysis, the tether’s lower tip is prevented from entering the 

Earth’s atmosphere by increasing the total mass of the tether, again accomplished by 

increasing its factor safety.  Figure 3.6 represents the tether length plotted against its total 

mass, for a tether with an initial lower tip altitude of 250 kilometers, a payload mass of 

10 tonnes and a reboost module weight of 100 tonnes. 

3.5 Elevator Sizing Results 

 A comparison can be made of the five different methods of elevator sizing 

explained in this chapter:  Zubrin, Bridge to Space, Sarmont, CG shift and CG  
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Figure 3.6:  Tether Mass versus Length (CG Shift with Momentum Conservation) 
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Momentum Conservation.  Instead of comparing the total system mass for each method, 

the mass ratio, equal to the total tether and reboost station mass divided by the payload 

mass, is used to normalize the data.  Also, instead of plotting for varying tether lengths, 

the data is plotted for varying values of the lower tip velocity, the velocity at which the 

launch vehicle hands off its payload to the tether, recasting the results in terms of the 

required launch vehicle performance.  With orbital velocity at the lower tip altitude of 

250 kilometers equal to 7.75 kilometers per second, the lower tip velocity gives some 

measure as to the relaxed performance requirements of the suborbital launch vehicle, as 

afforded by the tether.  Figure 3.7 shows the mass ratios calculated by the four detailed 

orbital response methods for varying handoff velocities, along with the single data point 

generated in Sarmont’s writings.   

The technique of center of gravity shift developed for this study produces the largest 

required mass ratios, while the method of center of gravity shift with momentum 

conservation scheme is the lowest.  For tethers with a handoff velocity of approximately 

5.25 kilometers per second, the upper tip velocity is fast enough to allow payloads to be 

released on a Hohmann trajectory to the Moon.  Figure 3.8 disregards the high values 

provided by the shifted center of gravity analysis and provides a more detailed view of 

the mass ratios generated by methods of Zubrin, Lockheed Martin, and the CG shift with 

momentum conservation. 

It should be noted that the methods of Zubrin and Bridge to Space and the method 

of center of gravity shift with momentum conservation are somewhat in agreement for 

handoff velocities of less than 6 kilometers per second, corresponding to tether lengths of 

around approximately 2,600 kilometers in length, depending upon material properties.   
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Figure 3.7:  Mass Ratio versus Handoff Velocity for All Estimation Methods 
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Figure 3.8:  Mass Ratio versus Handoff Velocity 
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Lunar transport tethers are approximately 4,000 kilometers long, corresponding to a 

handoff velocity of 5.25 kilometers per second, while escape trajectory tethers are around 

4,300 kilometers in length and correspond to a handoff velocity of 5.17 kilometers per 

second.  Both of these lengths fall in the range where the results of the various methods 

begin to deviate from each other.  Because of the divergent results of the different 

methods, these techniques should only be seen as an approximation of the behavior of the 

tether while bearing the payload.  To truly understand the behavior of the tether-payload 

system, it is necessary to devise an accurate dynamic simulation of its behavior.   
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Chapter 4  

Dynamic Tether Simulation 

4.1 Previous Efforts 

In order to understand the dynamics involved with loading the orbiting elevator 

with a payload, a detailed mathematical model of the system must be developed.  Past 

efforts to model the behavior of tethered satellite systems have used various methods.  

The simplest models involve the tether being treated as a massless and rigid rod 

connecting two end masses in a dumbbell configuration [59].  This approach is attractive 

because in treating the tether satellite system as a dumbbell structure, it simplifies the 

equations of motion to describing the movement of the two end masses with 3 degrees of 

freedom each.  The drawback to this approach is that it neglects any strain deformation 

experienced by the tether and yields a simplified model of any pendular motion 

experienced by the tether.  The tether has also been modeled as a continuum, allowing for 

the coupling of the orbital and pendular motion of the tether [60].  This analysis is 

appealing in that the tether is not simplified by assumptions of being massless, however 

this method has only been used to study tethers of constant cross section and relatively 

short length. 

Both the dumbbell and the continuum models have been used primarily to 

simulate the motion of a small satellite tethered to a relatively larger end mass, in most 

cases a tethered satellite operating from the space shuttle.  The tether lengths in these 

studies are typically on the order of ten kilometers, far short of the lengths needed for an 

orbiting space elevator.  The dumbbell approach has in the past been used in a limited 
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number of cases to study the behavior of larger tethers and it has been shown that such a 

system is not stable in the radial direction when the length of the tether approaches the 

same order of magnitude of the orbital radius of the satellite [61].  Further studies using 

energy momentum techniques applied to a continuous string have shown that a full 

ground to geosynchronous space elevator made of carbon nanotubes is stable when a 

mass of approximately 6,000 kilograms is added to the geosynchronous point [62]. 

Another method developed to simulate the motion of a tether in space is to treat 

the tether as a collection of point masses connected by springs.  Individual equations of 

motion for each point mass are derived and integrated through time to provide a 

description of the tether’s motion.  Such an approach lends itself to the pursuit of a 

numerical solution to the problem of tether orbital dynamics.  A program named 

BeadSim was written by Joseph Carroll of Tether Applications, Inc. in the late 1980s that 

used the point mass collection method to describe the tether’s orbital motion.  This 

program was a simplified two dimensional representation of the mechanical motion of a 

tether in a central gravity field with some account given to atmospheric drag.   

4.2 Problem Description 

This study will pursue the point mass and springs approach to describe the tether 

orbital motion.  In addition to the central gravity force exerted by the Earth that 

dominates the tether’s motion, the perturbing forces caused by atmospheric drag, Earth 

oblateness and electrodynamic propulsion will be included in this study.  The tether is 

divided into one hundred equidistant segments.   Each segment is treated as a point mass 

occupying the midpoint of each segment length.  All forces acting on an individual tether 

segment are assumed to act on the segment’s point mass.  The collection of point masses 
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are connected by massless springs which are mathematically modeled to simulate the 

elasticity of the material comprising the tether.  The payload is also modeled as a point 

mass, attached by a spring to the lowest tether segment point mass.  The mass of each 

segment point mass is calculated by the product of the tether material density, the cross 

sectional area at the position of the point mass, calculated by the equation derived in 

Chapter 3, and the segment length, according to the equation 

  segjxTj l A ρm =  (4. 1) 

At the segment occupying the tether center of gravity, an additional mass of 100 

tonnes has been added to simulate the tether power supply and the mass of any equipment 

used in the maintenance of the tether. 

4.2.1 Definition of Coordinate Systems 

Spherical polar coordinates with their origin at the Earth’s center are used in the 

derivation of the equations of motion for each tether segment point mass.  Spherical 

coordinates are useful because they accurately describe the motion of the orbiting tether, 

with r and θ coordinates lying in the original orbital plane of the tether, and φ describing 

angular position inclined to the orbital plane.  In addition to the spherical polar 

coordinates used in the equations of motion, several other coordinate systems are used to 

describe the various forces acting on the tether.  The first coordinate system, A,B,C, 

shown in Figure 4.1, is centered on the Earth with A and B axes in the Earth’s equatorial 

plane and Z axis pointing north along the Earth’s polar axis.  The second coordinate 

system, X,Y,Z, also shown in Figure 4.1, is centered on the Earth with X axis lying along 

the intersection of the tether’s orbital plane with the Earth’s equatorial plane, coinciding  
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Figure 4.1:  Earth Centric Cartesian Coordinate Systems  

 68



 

with the A axis, the Z axis perpendicular to the tether’s orbital plane and Y axis 

orthogonal to the other two.  Converting from spherical polar coordinates to Earth 

centered orbital plane coordinate system is accomplished by the set of equations 
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 (4. 2) 

as can be seen from Figure 4.2. 

A third coordinate system, x,y,z, shown in Figure 4.3, is centered on a particular 

tether segment point mass j with the x axis lying along the outward radial direction, the y 

axis in the direction of orbital motion and z axis perpendicular to the orbital plane with 

northwards being positive.  This allows distances and accelerations in the tether segment 

centered coordinate system to be easily transferred to the spherical polar coordinates in 

which the equations of motion are written in.  The segment centered x direction 

corresponds to the spherical polar r direction, while the y axis is pointing in the positive θ 

direction, and the z axis is in the positive φ direction. 

4.3 Tether Segment Equations of Motion  

 The first step in this analysis is to develop equations of motion for each tether 

segment.  This is accomplished through the use of Lagrange’s equation for non-

conservative forces, expressed as 

 j
ii

Q
q
T

q
T

dt
d

=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
&

 (4. 3) 

where T is the total kinetic energy of all the tether segments, Q is the set of generalized 

forces acting on the tether segment, and q is the set of generalized coordinates describing  
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the segment’s motion.  The kinetic energy of the tether is described by summing the 

products of the mass of each segment multiplied by its respective velocity, shown by the 

equation 

 ( ) ( )[ ]∑
=

++=
n

1j

2
jj

2
jj

2
jj φrθrr m

2
1T &&&  (4. 4) 

For a specific segment, the equation of motion corresponding to the radial 

coordinate can be found by the equation 
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 (4. 5) 

The partial derivative of the tether segment kinetic energy with respect to the 

radial velocity is expressed as 

 j j
j

rm
r
T

&
&

=
∂
∂  (4. 6) 

while the partial derivative of the tether kinetic energy with respect to radial position is  

 2
j j j

j

θrm
r
T &=

∂
∂  (4. 7) 

Inserting these relations back into LaGrange’s equation produces the radial 

coordinate equation of motion for a specific tether segment, shown by 

 
j

jr 2
jjj m

Q
θrr =− &&&  (4. 8) 

Rearranging the equation produces an expression for acceleration in the radial 

direction, shown by 

 
j

jr 2
jj

jr 

m
Q

θr
dt

dv
+= &  (4. 9) 

 71



 

The equation of motion in the θ direction can also be derived through Lagrange’s 

equation starting with the expression 

 jj θ
jj

r Q
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 (4. 10) 

where the term on the right hand side of the equation, Qθ j  rj, is a generalized torque 

expressed as the product of the generalized force and the radial position of the point 

mass.  The partial derivative of the tether kinetic energy with respect to angular velocity 

in the θ direction is 

 j
2

j j
j

θrm
θ
T &
&

=
∂
∂  (4. 11) 

while the partial derivative of the tether kinetic energy with respect to the θ coordinate is 

zero, shown by 

 0
θ
T

j

=
∂
∂  (4. 12) 

By noting that the velocity of the tether segment in the θ direction is equal to the 

product of the radius of the segment with its tangential velocity, the partial derivative of 

the tether kinetic energy can be rewritten in the form of 

 j θ j j
j

vrm
θ
T

=
∂
∂
&

 (4. 13) 

Inserting this expression back into Lagrange’s equation produces the expression 

 ( )   r 
m
Q

vr
dt
d

j
j

j θ
j θ j =  (4. 14) 
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By evaluating the derivative on the left hand side according to the chain rule, the 

Lagrange equation can be rearranged to produce an expression for acceleration in the θ 

direction, shown by 
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 (4. 15) 

The same process can be used to derive the equation for acceleration in the φ 

direction, producing the expression 
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 (4. 16) 

4.4 Forces Acting Upon the Tether 

The major force acting on a tether in orbit of the Earth is internal tension, 

generated by gravitational attraction between the Earth and the tether.  The smaller 

perturbing forces acting on the tether fall into four separate categories.  The first of these 

are gravitational perturbations caused by Earth oblateness, lunar gravitation, solar 

gravitation, and relativistic effects.  This study accounts for the Earth oblateness effects 

but disregards the third body attraction of the Sun and Moon and relativistic effects, 

which are extremely small, on the order of 10-8 when compared to the internal tension 

force in the tether [61]. 

 The second group of perturbing forces are generated by the material structure and 

properties of the tether material.  These perturbing forces can be created by the bending 

stiffness of the material, residual stresses in the material if it has been stored in a spooled 

configuration for long periods of time, and internal friction of the material fibers.  These 
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forces are all typically small, on the order of 10-9 when compared to the internal tether 

tension, and are disregarded in this study [61].   

The third set of perturbing forces are related to the Earth’s magnetic field and its 

interaction with the tether.  The collision between an orbiting tether and the ion in the 

upper atmosphere will induce a small plasma drag, typically on the order of 2x10-4 

Newtons.  For a conducting tether with no applied current, electrostatic charge will 

produce a Lorentz force that will slowly decelerate the tether.  With a current applied 

across the tether from an external force, the direction of this Lorentz force can be 

reversed and consequently will increase the speed of the tether.  The use of 

electrodynamic reboosting of the tether is modeled in this study. 

The fourth and final set of perturbations are caused by the upper atmospheric 

environment in which the tether resides.  These perturbations are caused by atmospheric 

drag, solar pressure on the tether, and meteor impacts.  Atmospheric drag has been 

modeled in this simulation of tether behavior.  Solar pressure is relatively small, on the 

order of 10-4 Newtons, and is disregarded in this study, as are the effects of meteor 

impacts, with an even smaller typical force of 10-7 Newtons [61]. 

4.4.1 Earth’s Gravity  

With the use of polar spherical coordinates, the gravitational attraction of the 

Earth acts only in the radial direction.  The acceleration due to Earth’s gravity felt by the 

tether segment is calculated by the expression 

 2
j

j g r
GMa −=  (4. 17) 
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where GM is the gravitational constant of the Earth, assumed to have the value of 

398,601 km3/s2.  The value of the acceleration is negative because it acts against the 

positive radial outward direction. 

4.4.2 Tension 

With the treatment of the tether as a collection of point masses connected by 

springs, accounting must be made for the accelerations felt by each point mass caused by 

the springs.   For this study, the springs are assumed to behave linearly, allowing the 

formulation of the spring forces to be based on based on Hooke’s law, which states that 

the strain experienced by a material body is linearly related to the stress causing the 

deformation, shown by the expression 

 εE=σ  (4. 18) 

 where E is the Young’s modulus of the tether material.  By noting that the stress of the 

spring is equal to the loading force over the cross sectional area and that the strain is 

equal to the change in length of the spring divided by the natural length of the spring, 

Hooke’s law can be written as 
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Rearranging the expression to solve for the tension force provides the expression 

 ( nat
nat

x
Ten ll

l
A EF −= ) (4. 20) 

The value of the Young’s modulus multiplied by the cross sectional area divided 

by the natural length of the spring can be viewed as the spring constant, producing the 

alternate formulation of Hooke’s law 
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 ( )lkFTen ∆=  (4. 21) 

which states that the change in the spring’s length is linearly proportional to the tension 

force.   

 For this study it should be carefully noted that the natural length of the springs 

between each tether segment are not simply equal to the distance between point masses.  

When the tether is in its orbit and is not loaded with a payload, it is still stretched by the 

combination of Earth’s gravity and centrifugal forces.  Because the tether cross sectional 

area changes with radial position the natural lengths of each spring are not equal, and it is 

necessary to calculate the natural length of the each springs between every tether 

segment.   

The tether cross sectional area was derived in Chapter 3 to allow for constant 

stress in the tether when loaded with its design payload.  This assumption forms the basis 

of the derivation of each spring’s natural length.  The constant stress experienced at a 

generalized point along the tether when loaded with the payload is the sum of the stress in 

the unloaded tether and the additional stress caused by the payload shown by the 

expression 

 
x

pp

A
gm

+= ULL σσ  (4. 22) 

where mp is the mass of the payload and gp is the gravitational acceleration at the tether 

lower tip where the payload is attached.  The numerical value for the loaded stress in the 

tether is the value of the material’s tensile strength divided by the design factor of safety, 

shown by the equation 
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The formulation of Hooke’s law for the unloaded tether is expressed as 
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where lseg is the distance between each tether segment point mass.  By noting that the 

unloaded stress is the difference between the loaded stress and the stress caused by the 

payload the expression can be rewritten as 
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This can be solved to produce an equation for the natural length of the tether, 

shown by the expression 
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The equation can be generalized to express the natural length of any spring along 

the segmented tether of this study, shown by the equation 
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which corresponds to the spring between tether point mass j and point mass j+1.   

 With the natural length of each spring known, the tension forces and accelerations 

acting on each segment can be calculated according to the equation 
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For a general tether segment point mass j, the acceleration caused by the spring 

between point mass j and point mass j+1, is shown by the equation 
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It can be observed that the tension acceleration experienced by a point mass is 

dependent upon the position of the adjacent point masses.  This dependency couples the 

equations of motion of a point mass to that of its adjacent point masses.  By noting that 

the mass of the tether segment is the product of the material density, the segment cross 

sectional area, and the segment length, the tension acceleration can be written as 

 ( )
( ) ( )

j,nat

j,nat1j,j

 segjxT

1jxjx
1jj,Ten, l

lDist
l A ρ 2

AA E
a

−+
= ++

+  (4. 30) 

Similarly, the tension acceleration acting on point mass j caused by the spring in 

between point mass j and point mass j-1 can be written as 
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The tension acting on the payload attached at the tether lower tip caused by the 

spring between the first point mass and the payload is calculated by the equation 
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while the tension acting on the first tether segment caused by the spring between it and 

the payload is written as  
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 Each of these equations depends on the distance between a segment point mass 

and the point mass adjacent to it on the tether.  This distance is calculated by converting 

the values of their position in the Earth-centered r,θ, ϕ coordinate frame to the Earth-

centered X,Y,Z orbital plane coordinate system, shown by Figure 4.4.  Once converted 

into the Cartesian planetocentric coordinates the distance between two segment centers is 

found by the equation 
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In order to insert the tension acceleration into the individual segments’ equations 

of motion it is necessary to break the tension acceleration into x,y,z components of the 

segment-centric coordinate system.  The first step is to calculate the distance between a 

segment point mass and its adjacent point mass in separate coordinates.  This is 

accomplished by performing a coordinate rotation on the Earth-centric distance 

coordinates.  For example, the coordinates of segment j+1 in the segment j-centric 

coordinate system is found by the following coordinate transfer 
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The directional cosines of segment j+1 in the segment j centered coordinate system can 

then be expressed by the set of ratios 
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Figure 4.4:  Relation Between Earth-Centric and Segment-Centric Coordinate Systems 
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With the directional cosines calculated the tension acceleration can be written in 

components of the point mass centered coordinate system, allowing for their inclusion in 

the r,θ,φ equations of motion.  For example, the tension acceleration acting on point mass 

j caused by the spring between point mass j and j+1 is written in the x,y,z coordinate 

system as 
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Similarly, the tension acceleration acting on point mass j caused by the spring 

between point mass j and j-1 is expressed in point mass centered coordinates x,y,z as 

 ( )
( ) ( )

1j,j

1j,j

1j,nat

1j,nat1j,j

 segjxT

1jxjx
x,1jj,Ten, Dist

x
l

lDist
l A ρ 2

AA E
a

−

−

−

−−−
−

−+
=  (4. 42) 

 ( )
( ) ( )

1j,j

1j,j

1j,nat

1j,nat1j,j

 segjxT

1jxjx
y,1jj,Ten, Dist

y
l

lDist
l A ρ 2

AA E
a

−

−

−

−−−
−

−+
=  (4. 43) 

 81



 

 ( )
( ) ( )

1j,j

1j,j

1j,nat

1j,nat1j,j

 segjxT

1jxjx
z,1jj,Ten, Dist

z
l

lDist
l A ρ 2

AA E
a

−

−

−

−−−
−

−+
=  (4. 44) 

4.4.3 Atmospheric Drag 

The lower length of the tether will undergo a small deceleration due to 

aerodynamic drag caused by the upper reaches of the Earth’s atmosphere.  This drag 

force is calculated by the equation 

 fD
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atmD A C  vρ
2
1F =  (4. 45) 

where v is the velocity of the tether, CD is its coefficient of drag and Af is the surface area 

of the tether exposed to the direction of travel.  The velocities of the tether segments in 

the radial direction are on the order of a few meters per second, while in the θ direction 

velocity at the tether lower tip is approximately 5 kilometers per second, depending on 

the tether overall length.  Because of the tether’s limited radial velocity, atmospheric drag 

on the segment point mass in the radial direction is not calculated for this study.  For a 

particular segment point mass, the exposed surface area in the θ or φ direction is 

dependent upon the cross sectional area of the segment, which is calculated by the 

equation derived in Chapter 3.  The cross sectional area of the segment is related to its 

thickness by the expression 

  (4. 46)  rad  πA 2
x =

assuming that the tether’s cross sectional shape is circular.  The diameter of an individual 

line in the tether segment is calculated by the equation 
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where n is the number of lines making up the multiple line tether.  The exposed surface 

area for a particular segment is then calculated by the product of the individual line 

diameter, the segment length, and the number of lines, and is written as 
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The drag equation requires the total velocity of the particular tether segment, 

which is expressed as the sum of its components by the equation 

 ( ) ( )222 φr θr rv &&& ++=  (4. 49) 

The atmospheric density is calculated for the radial position of each tether 

segment point mass.  A simplified model is used that separates the atmosphere into three 

zones, each governed by a different relation between atmospheric density and altitude 

[63].  The first zone is valid for altitudes between 70 and 118 kilometers; within this zone 

the atmospheric density decays exponentially with increasing altitude according to the 

relation 

 6-Alt
atm e 11ρ =  (4. 50) 

The second region of the atmosphere is between 118 and 200 kilometers, where 

the atmospheric density is governed by the expression 
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The third zone of the atmosphere is above altitudes of 200 kilometers, where the 

atmospheric density is dependent on both the altitude and the temperature of the 

exosphere, shown by the equation 
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Figure 4.5 shows the atmospheric density versus altitude for several different 

values of exosphere temperature.  The actual temperature of the exosphere is highly 

dependent upon solar activity levels and can vary between 600 K and 2000 K, depending 

upon the particular time within the solar cycle.  For this study an average value of 1100 K 

has been used in the computer model. 

The drag force can be broken into y and z components of the segment point mass 

centered coordinate system, corresponding to the θ and φ directions, respectively, by 

using the velocity directional cosines, which are 

 ŷ
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For a general tether segment point mass j, the y and z component drag 

accelerations are calculated by dividing the drag force equation by the mass of the 

particular segment, and are written as 
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These expressions can be algebraically simplified and expressed in terms of the r, 

θ and φ coordinates of the tether segment, resulting in the final form 
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Figure 4.5:  Atmospheric Density versus Altitude  
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4.4.4 Earth Oblateness 

The oblateness of the Earth produces a harmonic perturbation to the tether’s orbit.  

Expressions for this small acceleration are derived using potential theory.  The radial and 

tangential equations of motion for an object in orbit are expressed in terms of the Earth’s 

gravitational potential as 
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where the potential function for a perfectly spherical gravity field is 

 
r

GME=Φ  (4. 61) 

In order to account for the oblateness of the Earth an additional term must be 

added to the potential function, producing the form 
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where J2 is the oblateness harmonic coefficient with a value of 1082.630x10-6 and u is the 

argument of the latitude, the tangential position of the tether segment with respect to the 

Earth’s equatorial plane [64].  For the equation of motion corresponding to radial 
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position, the partial derivative of the new potential function with respect to radial position 

is calculated to be 
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The partial derivative of the potential function with respect to tangential position, 

needed for the second orbital equation of motion is computed to be 
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The out-of-plane acceleration in the φ direction caused by oblateness is found by 

taking the partial derivative of the potential function with respect to the orbital 

inclination, divided by the product of the radial position and the sine of the argument of 

the latitude, shown by 
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The derived accelerations in the radial, tangential, and out-of-plane directions 

correspond, respectively, to the x, y and z directions in the segment-centric coordinate 

system.  It is also noted that for an object in a circular orbit, the argument of the latitude 

can be equal to the true anomaly, if the origin of the true anomaly measurement occurs at 

the intersection of the orbital plane with the Earth’s equatorial plane..  This allows the 

oblateness perturbing accelerations on a general tether segment point mass j to be written 

in terms of the angular position of the segment, shown by the expressions 
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4.4.5 Electrodynamic Propulsion 

 In order to compensate for the drop in tether orbital altitude caused by the 

handling of payloads, it is necessary to apply a thrust force to raise the orbital altitude of 

the tether.  Adjustments to the tether’s orbital velocity can be accomplished through the 

use of a high efficiency, low thrust propulsion system, such as electric propulsion.  For 

this study, an electrodynamic tether propulsion system is used for orbital maneuvering of 

the tether.  Such a system has the benefit of requiring no fuel to be expended; rather the 

particles comprising the Earth’s magnetosphere act as the reaction mass.  When a current 

is applied to the tether, it acts as a wire in the presence of a magnetic field, producing a 

Lorentz force on the tether by the equation [65] 

 ( )∫ ×= BldIFED  (4. 69) 

For this study, the Earth’s magnetic field is able to be modeled as a dipole 

magnetic field, running along the geographic polar axis of the Earth [66].  In reality, the 

Earth’s magnetic axis is tilted with respect to the geographical polar axis by 

approximately 11.3°.  The geographical polar axis was chosen as the magnetic axis in this 

study to allow the magnetic field to be time independent, and not contingent upon the 

hourly position of the Earth, as the Earth’s true magnetic field is.  This produces a 

calculated difference in the magnetic field intensity that varies between 0% and 10%, 

depending upon the latitude position at which the measurement is taken.  As the actual 
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electrodynamic force is a small acceleration acting over a long time, and the time spent at 

the actual extreme latitudes was small for an orbiting object, this assumption was 

considered acceptable for this study.  The equation for the magnetic field intensity for a 

dipole field in polar spherical coordinates is 

 ( )( mrrmB −⋅= ˆˆ3 )
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where r̂  is the unit vector in the radial position.  In the Earth-centric, equatorial 

coordinate system, the z axis points towards the geographic north pole.  In this coordinate 

system the vector expression of the magnetic dipole moment of the earth is  
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This vector is transferred to the Earth-centric, tether orbital plane coordinate 

system through a rotation about the A axis by the inclination angle of the tether orbit, 

shown in the equations 
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The dot product between the magnetic dipole moment vector and the unit vector 

of the tether segment point mass is expressed in the segment polar spherical coordinates 

as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )φsin 101.8 icosφsinθcos 101.8 isinˆ 2222 ×+×−=⋅rm  (4. 73) 

With these expressions the magnetic field intensity can be written in vector 

components within the Earth-centric, tether orbital plane coordinate system as 
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The values for magnetic field intensity at a specific tether segment are then 

transferred into the point mass-centric coordinate system by two successive coordinate 

rotations dependent upon the point mass’ tangential and out of plane coordinates θ and φ, 

represented by the matrix expression 
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The cross product between the individual tether segment length and the local 

magnetic field intensity is dependent upon the orientation of the tether length, which is 

calculated to be equal to one half the distance from the segment point mass to either of its 

adjacent point masses, expressed in the vector equation 
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This expression is expanded to the form 
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In this study several small angle assumptions were used to simplify the 

calculation of the field intensity cross product.  In initial executions of the program, the 

angular difference in positions between a point mass and its adjacent point mass was 

never observed to go above 1x10-4 radians.  This allows a small angle assumption to be 

applied, stating that the major difference in position between adjacent point masses is 

solely in the radial direction, allowing the cross product of segment length and field 

intensity to be written as 

 ( )
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For the supply of current in the tether, it is assumed that a power supply is located 

at the central station of the tether.  The power supplied is assumed to be constant over 

time, requiring the power supply to be either a combination of solar and battery power, or 

nuclear in nature.  With power supplied from one location, it should be noted that the 

current, required by the equation dictating electrodynamic force, is not constant 

throughout its length.  The current in the conducting line will decrease as the distance 

from the power station increases.  Based upon the basic design parameter of the reactor 

design, namely power supplied,  the current at each tether segment is calculated.  This 

process starts with the equation describing the relationship between power, current and 

voltage, written as 

 V I P =  (4. 79) 

By noting Kirchoff’s law, the relation between voltage, current, and resistance, 

written as 
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 R I V =  (4. 80) 

the power expression can be rewritten in terms of the power supplied, producing the 

equation 

 RIP 2=  (4. 81) 

which can be solved for the current, producing the expression 

 
R
P I =  (4. 82) 

The resistance in the line is dependent upon several factors, namely the resistance 

of the material conducting the current, the cross sectional area of the conducting line, and 

the distance measured from the power supply, written as 

 
conx 

elec

A
ρDist 

 R =  (4. 83) 

This expression can be placed back into the current equation, producing a relation 

for current at each segment point mass, written as 

 
elecstatj

conx 
j ρ rr 

A P
 I

−
=  (4. 84) 

For this study a power station producing 50 kilowatts was selected.  This level of 

power is of the same order as supplied by the solar arrays of the International Space 

Station.  A platinum conductor of 1 square millimeter with resistivity of 10.6x10-8 Ohm 

meters was assumed to be part of the multiline tether system.  This allows the 

components of the electrodynamic acceleration upon a tether segment point mass to be 

written in the segment centric coordinate system as 

 0a   xj ED =  (4. 85) 
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4.5 Method of Solution 

 With the derivation of the forces acting on each tether segment, a solution can be 

sought to their equations of motion.  Due to the very limited out-of-plane angular 

displacement between adjacent segment point masses observed in the initial numerical 

simulations, the full program with all perturbing forces included is run in only two 

dimensions, radial position r and in-plane angular position θ.  Out of plane positions, 

which were typically on the order of 1x10-4 radians, were disregarded in further iterations 

of the program.  This led to the tether segment point mass equations of motion to be 

written as 

 ( ) ( )   xj Obx,1jj,Ten,x,1jj,Ten,j g
2

jj
jr aaaaθr

dt
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&
 (4. 89) 

The computer program integrates each of the equations of motion for all one 

hundred of the point masses and the payload point mass simultaneously using a fourth 

order Runge Kutta routine.  This requires expanding the equations of motion into a 

collection of first order differential equations.  For a general point mass j, the set of 

expanded first order equations are written fully as 
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The four initial conditions needed for each generalized segment point mass are its 

radial position and velocity, and tangential position and velocity.  The initial radial 

velocity is set to zero, as well as the initial tangential position.  This simulates the tether 

“hanging” in orbit perpendicular to the Earth’s local horizon with no vertical speed.  The 

radial position of a generalized segment is based on the number and length of segments 
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used in the program.  The initial tangential velocity is calculated by the product of the 

initial radial position and the tether angular velocity, as shown by 

  (4. 94) T
o
j

o
jr ωrv =

4.6 Dynamic Tether Simulation Results 

Numerical simulations were run for a tether made of Zylon with a 100 tonne 

reboost module, which produces 50,000 watts of energy for the electrodynamic reboost 

system.  The elevator is assumed to be composed of four independent lines with a 

platinum conductor one square millimeter in cross sectional area built into its structure.   

The program was run for varying altitudes of the tether’s center of gravity and for 

different values of lower tip altitudes, where the payload handoff between the launch 

vehicle and the tether occurs.  The mass of the tether was adjusted for each run of the 

program by altering the structural factor of safety, in order to produce a lower tip perigee 

altitude of 100 kilometers.  Figure 4.6 shows the total tether mass versus center of gravity 

altitude for tethers with handoff altitudes at 200, 300 and 400 kilometers.  As can be seen 

in the graph, the tether mass increases in a manner approximating a shallow exponential 

growth.  The higher handoff altitudes of 300 and 400 kilometers produce lower overall 

elevator masses than the 200 kilometer handoff altitude tether.  The savings in total 

system mass have to be weighed against the increased launch vehicle performance 

needed to reach these higher altitudes. 

Three elevators of particular interest have been identified in this study.  Each has 

a center of gravity altitude of 2,000 kilometers and a handoff altitude of 200, 300 and 400 

kilometers, respectively.  The center of gravity altitude is chosen to be 2,000 kilometers  
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Figure 4.6: Elevator Mass versus Center of Gravity Altitude 
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because it leads to upper tip velocities that are approximately 95% of the required 

velocity for a trans-lunar trajectory.  Each of the three tethers has an orbital period of 

2.119 hours.  Table 4.1 gives a comparison of these three tethers with their pertinent 

characteristics.  Table 4.2 shows the comparison of the required elevator masses 

calculated by the three methods developed in this study:  the estimation methods 

explained in Chapter 3, composed of the center of gravity shift and center of gravity shift 

with momentum conservation, and the dynamic simulation developed in this chapter.   

 As can be seen from Table 4.2, the shifting center of gravity method with 

momentum conservation provided masses that were much lower than those found in  

dynamic simulation.  The required elevator masses generated by the numerical program 

at least approach the same order of magnitude as those calculated by the shifting center of 

gravity method.  There are still large differences between the data yielded by the 

numerical program and that from the center of gravity shift method, which can at best be 

viewed as a very rough estimate of required elevator mass. 

The required masses of the three selected elevators, as found by dynamic 

simulation, are significantly larger than the International Space Station, which at 195 

tonnes is the largest structure constructed in space [67].  The use of modular multiple line 

structures means that much of the elevator’s mass is composed of identical tether 

segments, which will significantly ease development costs.  Nevertheless, the large 

masses required for the elevator still represents a sizeable investment in placing the tether 

components in orbit.  

In order to find the orbital response of the tether to being loaded with the payload, 

the equations of motion for each tether segment and the payload attached at the lower end  

 97



 

Table 4.1: Characteristics of Three Selected Elevators with 2000 km Center of Gravity 

Altitude 

Handoff Altitude (km) 200 300 400

Handoff Velocity (km/s) 5.415 5.498 5.580

As % of Orbital Velocity 69.57% 71.16% 72.76%

As % of Orbital Energy 51.54% 55.06% 58.48%

Elevator mass (tonnes) 5725.047 1307.625 582.390

Safety Factor 4.00 3.10 2.63

Tether Length (km) 3558 3468 3300

Upper Tip Altitude (km) 3758 3768 3700

Upper Tip Velocity (km/s) 8.344 8.352 8.296

As % of Escape Velocity 94.10% 94.23% 93.28%

As % of Lunar Velocity 95.33% 95.46% 94.49%  

 

 

Table 4.2:  Tether Mass Comparison 

Handoff Altitude (km) 200 300 400

CG Shift 4711.873 2024.197 1198.178

CG Shift with Momentum Conservation 256.839 190.629 165.585

Dynamic Simulation 5725.047 1307.625 582.390  
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are integrated over time for each of the three selected tethers.  Figures 4.7, 4.8 and 4.9 

show the time history of the altitude of the tether lower tip for the first 12 hours after 

payload transfer for each of the three selected tethers, respectively. 

For each case, it can be observed that the attachment of the payload causes the 

tether to enter into an elliptical orbit, with the payload and lower tip altitude varying 

between its initial altitude and the 100 kilometers deemed necessary to avoid atmospheric 

heating and drag.  With each orbital revolution, an increase in lower tip altitude over time 

can be observed.  This increase is due to the thrust applied by the electrodynamic reboost 

system and is more pronounced in the lighter tethers with higher lower tip altitudes.  The 

tether with the 200 kilometer handoff altitude underwent an average 1.8 kilometers 

increase in perigee altitude with each revolution.  The tether with the 300 kilometer 

handoff altitude experienced a 7.1 kilometer average increase in perigee altitude with 

each orbital revolution, while the tether with the 400 kilometer handoff altitude 

experienced an average perigee altitude increase of 16.5 kilometers per revolution.  The 

increase in orbital speed applied by the electrodynamic reboost system also has the effect 

of shortening the elevator’s orbital period by approximately 1.1 minutes for each orbital 

revolution.  To effectively return the elevator to its initial circular orbit would require the 

development of a control law for the electrodynamic reboost system.  This control law 

would dictate its operation only during certain portions of the elevator’s orbit, 

specifically during the half of the orbit centered around the apogee of the tether.  This 

would keep the tether at its original orbital altitude at apogee while decreasing the perigee 

altitude with each successive revolution.  In the absence of  deriving this control law the  
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Figure 4.7: Lower Tip Altitude versus Time for 200 km Handoff Altitude 
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Figure 4.8: Lower Tip Altitude versus Time for 300 km Handoff Altitude 
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Figure 4.9: Lower Tip Altitude versus Time for 400 km Handoff Altitude 

 101



 

numerical simulation performed proves that it is possible to “fly” the tether it its orbit 

solely by electrodynamic means, with no expenditure of propellant. 

 In order for the launch vehicle to rendezvous with the tether and transfer its 

payload, it is necessary to define the pendular motion of the lower tip of the tether.  To 

achieve this, the equations of motion are run for the tether alone, with no payload 

attached and the electrodynamic reboost system turned off.  This is done to represent the 

motion of the tether in a stable circular orbit prior to payload handoff.  The y coordinate 

position of the lower tip in the coordinate system attached to tether’s center of gravity 

segment is recorded.  This produces the amount of distance in the tether’s orbital plane by 

which the lower tip either leads ahead of or follows behind the line between the Earth and 

the tether’s center of gravity.  Figures 4.10, 4.11 and 4.12 show the lower tip relative 

position plotted over two hours, approximately one orbital revolution, for the three 

selected tethers in this study. 

 It can be seen for each of the tethers that the lower tip position relative to the 

elevator’s center of gravity is roughly sinusoidal, varying between approximately eight 

kilometers ahead of or behind the line between the tether’s center of gravity and the 

Earth.  For each of the three selected elevators, the relative velocity of the lower tip in the 

y direction of the coordinate system attached to the tether center of gravity was never 

observed to exceed 11 meters per second.  This value is relatively small compared to the 

lower tip velocity of approximately 5.4 kilometers per second.  The slow relative speed 

between the tether lower tip and the local vertical allows for the assumption made in the 

rendezvous portion of the study to represent the lower tip as a stationary point hanging 

straight down from the elevator’s center of gravity. 
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Figure 4.10: Lower Tip Relative Position versus Time for 200 km Handoff Altitude 

 

 

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

0 20 40 60 80 100 120

Time (minutes)

Po
si

tio
n 

(m
et

er
s)

 

Figure 4.11: Lower Tip Relative Position versus Time for 300 km Handoff Altitude 
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Figure 4.12: Lower Tip Relative Position Versus Time for 400 km Handoff Altitude 
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Chapter 5  

Launch Vehicle Ascent Analysis 

5.1 Suborbital Ascent Requirements 
 
 In order for the payload to be transferred from the launch vehicle to the elevator’s 

lower tip, a rendezvous must occur between the two.  The launch vehicle must be on a 

trajectory that will place it in the location of the tether’s lower tip altitude with matching 

velocity.  For a tether moving in a circular orbit this requires the launch vehicle, at the 

apogee of its ballistic trajectory, to possess no radial velocity and a ground track velocity 

matching the tether lower tip, according to the equation 

 leTapo LV r ωv =  (5. 1) 

Because the tether’s lower tip travels at a velocity less than the circular orbit 

velocity at the corresponding altitude, the ∆v requirements for the launch vehicle are 

much less stringent than those of a vehicle achieving orbit.  The savings in launch vehicle 

performance are impressive when cast in terms of required energy.  For example, an 

object launched into a circular orbit of 250 kilometers altitude has a kinetic energy of 

30.069 megajoules per kilogram and a potential energy of 2.45 megajoules per kilogram, 

for a total of 32.519 megajoules per kilogram.  For a tether with its center of gravity at 

2,000 kilometers altitude, its lower tip at 250 kilometers altitude will be traveling at 5.456 

kilometers per second.  A vehicle that will rendezvous with the lower tip, matching its 

position and velocity, will have a kinetic energy of 14.889 megajoules per kilogram and a 

potential energy of 2.45 megajoules per kilogram, for a total energy imparted to the 

launch vehicle of 17.339 megajoules per kilogram.  This means a payload launched to 
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rendezvous with the tether will only possess 53.317% of the energy needed to place it in 

a low earth orbit.  Figure 5.1 shows the required launch vehicle velocity and energy 

expressed as a percentage of the circular orbit velocity and energy for varying lengths of 

tether. 

For this study it has been assumed that the launch vehicle will be a vertical take-

off vehicle powered by conventional rockets.  No aerodynamic lifting will be used in the 

ascent phase.  The trajectory of the launch vehicle has been studied by modeling its 

equations of motion and applying a Hamiltonian-based optimization scheme.   

5.2 History of Trajectory Optimization 

The problem of trajectory optimization was first identified with the introduction 

of the guided missile as a weapon of war.  The earliest numerical solutions to the problem 

of powered ascent grew out of the V-2 rocket program undertaken by the Germans during 

World War II.  As the ranges of early guided missiles were relatively small, these 

calculations were in a Cartesian format with corrections for the earth’s curvature inserted 

into longer range trajectories.   

These earliest methods of range optimization involved establishing conditions for 

the vehicle’s position and velocity at the end of its vertical climb.  These predetermined 

flight conditions at the end of the climb formed the initial values to be inserted into the 

non-controlled equations of motion for the vehicle.  This method therefore is not a 

continuously controlled system, as control forces were exerted on the vehicle only at the 

end point of the vertical climb when pitchover occurred.  Once it entered its post-climb 

attitude, the equations of motion were integrated through time to determine its final 

position at the end of its trajectory. 
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Figure 5.1:  Launch Vehicle Velocity and Energy versus Tether Length  
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A graphical method, accounting for the vector changes of velocity caused by 

vehicle thrust, aerodynamic forces, and gravitational losses, can be used to calculate the 

optimum continuously controlled pitch program for an ascending space vehicle.  Such a 

method can be easily used to determine a controlled trajectory for a vehicle ascending 

into orbit, but this analysis is again performed in Cartesian format, necessitating the 

addition of correction factors for the curvature of the earth.  This method grew out of the 

work originally performed for the V-2 program and remained in use in missile range 

calculations during the 1950s [68]. 

An analytic solution can be found to the optimal ascent problem if several 

assumptions are made. The first of these assumptions states that the thrust of the 

ascending vehicle, and thus its mass flow rate, must be constant.  The second assumption 

states that the gravity acting on the vehicle is a linear function of its radial position.  

These assumptions reduce the representation of the problem to that of a harmonic 

oscillator with a forcing function.  A solution can therefore be found through the method 

of variation of parameters [69].  

A solution to a continuously controlled trajectory problem can be sought through 

the method of calculus of variations.  In this approach a particular performance parameter 

of a vehicle is minimized by enforcing the Euler-Lagrange condition.  This generally 

reduces the trajectory problem to a two point boundary value problem, which can be 

solved by several numerical techniques, including steepest ascent and the Newton-

Raphson method [70].  

The Euler-Lagrange condition, which is the basis of the calculus of variations 

approach, becomes inconvenient as the number of parameters in the problem increase.  
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The cases when these equations can be integrated in closed form are limited [71].  An 

alternative to the calculus of variations method lies in the study of the Hamiltonian of a 

dynamic system.  Hamiltonian-based optimization techniques, an example of which is the 

Pontryagin maximum principle used in this study, have been utilized for trajectory 

calculations on the upper stages of Saturn boosters in the 1960s and early space shuttle 

trajectory studies since the 1970s [72]. 

5.3 Equations of Motion for an Ascending Spacecraft 

 The equations of motion for a powered ascent vehicle can be derived by the use of 

Lagrange’s equation for non-conservative forces, 

 i
ii

Q
q
T

q
T

dt
d

=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
&

 (5. 2) 

where T is the kinetic energy of the spacecraft, q is an appropriate set of generalized 

coordinates and Qi is the generalized force on the spacecraft.  The equations of motion for 

this problem will be derived for polar coordinates with the origin located at the center of 

the planet.  This is done to eliminate any correcting terms for trajectory curvature that are 

inherent to rectangular derivation of the equations [73].  Expressing the equations of 

motion in polar coordinates is also beneficial in that they take the form of the equations 

of orbital motion with the addition of a thrusting force.  The coordinate system and a free 

body diagram of the forces on the vehicle are illustrated in Figure 5.2.  

The generalized coordinates for the problem are radial and angular position of the 

spacecraft with respect to the center of the Earth.  For this study it is assumed that the 

thrust vector always passes through the vehicle’s center of gravity.  For a vehicle with a 

gimballing engine, this assumes the pitching moments produced by the gimballed engine  
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Figure 5.2:  Free Body Diagram of an Ascending Spacecraft  
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are small.  For a vehicle without engine gimballing ability, this assumption reflects 

reality, as steering changes are made by maneuvering the entire vehicle at a desired angle 

to its velocity vector.  This study also neglects the aerodynamic effects of lift on the 

vehicle and only accounts for the drag as it ascends through the atmosphere. 

   The first step in using Lagrange’s equations is to express the kinetic energy of the 

launch vehicle as 

 ( )[ ]22  θr r m
2
1T && +=  (5. 3) 

Lagrange’s equation for the first generalized coordinate, radial position, is 
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The generalized force in the radial direction is made up of the radial components 

of gravity, engine thrust, and aerodynamic drag and is expressed as 
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The partial derivatives of the kinetic energy expression with respect to radial 

position and time rate of change of radial position are 

 rm
r
T

&
&

=
∂
∂  (5. 6) 

 2θmr
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The above expressions are inserted into Lagrange’s equation and the common 

mass variable present in each term can be divided out, producing the following relation 
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m
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Since the tangential component of velocity is the product of the radius and the 

angular rate of change, the differential equation for the radial rate of change can be 

expressed as 

 ( ) )βsin(
m
Fαβsin

m
F

r
GM

r
v

dt
dv DTh

2
E

2
θr −++−=  (5. 9) 

Lagrange’s equation for the second of the two generalized coordinates, angular 

position, is 
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 (5. 10) 

The generalized torque in the angular direction is made up only of the angular 

component of engine thrust and aerodynamic drag, since gravity is only active in the 

radial direction, and is expressed as 

 ( ) ( ) rβcos  F r  αβcos  FQ DThθ ⋅−⋅+=  (5. 11) 

The partial derivatives of the kinetic energy with respect to angular position and 

time rate of change of angular position are 

 θmr
θ
T 2 &
&

=
∂
∂  (5. 12) 
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By again noting that the tangential velocity is equal to the product of the radial 

position and the rate of change of angular position, the partial derivative of the kinetic 

energy with respect to rate of change of angular position can be expressed as 

 θmrv
θ
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 (5. 14) 
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These expressions are inserted into Lagrange’s equation and the common mass 

variable present in each term can be divided out, producing the following equation 

 ( ) ( ) ( ) rβcos  
m
F r  αβcos

m
Frv

dt
d DTh

θ ⋅−⋅+⋅=  (5. 15) 

By expanding the time derivative in the above equation the differential equation 

for the tangential velocity can be written as 

 ( ) ( )βcos  
m
F   αβcos
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dt
dv DThθrθ −++−=  (5. 16) 

In order to perform Runge-Kutta integration upon the two derived equations, we 

must have a set of two differential equations to describe the radial and angular position, 

so that the total set can be treated as four first order differential equations.  This produces 

the set of equations as follows 

 rv
dt
dr

=  (5. 17) 
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 ( ) ( )βcos  
m
F    αβcos

m
F

r
vv

dt
dv DThθrθ −++−=  (5. 20) 

It should also be noted that the aerodynamic drag on the vehicle is calculated 

according to the following equation 

 f

2

atmDD A 
2

v ρ CF =  (5. 21) 
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The density of the air is calculated by modeling the atmosphere in three zones, the 

troposphere, the lower stratosphere and the upper stratosphere.  The first zone 

encountered by the launch vehicle, the troposphere, is applied at altitudes ranging from 

sea level to 11,000 meters.  In the troposphere the air temperature decreases linearly and 

the pressure decreases exponentially.  The curve fit equations for the temperature and 

pressure in the troposphere are  

 ( )alt 0.0064915.04Temp ⋅−=  (5. 22) 

 
256.5

288.08
273.1Temp29.101p ⎟

⎠
⎞

⎜
⎝
⎛ +

⋅=  (5. 23) 

where the temperature is given in degrees Celsius, the pressure in kilopascals, and alt is 

the altitude of the launch vehicle in meters. 

 The second atmosphere zone, the lower stratosphere, extends from altitudes of 

11,000 meters up to 25,000 meters.  In the lower stratosphere the air temperature is 

constant and the pressure decreases exponentially.  The curve fit equations for the lower 

stratosphere are 

 46.56Temp −=  (5. 24) 

 ( )alt0.000157-1.73exp65.22p ⋅⋅=  (5. 25) 

The final atmosphere zone is used for altitudes greater than 25,000 meters and is 

valid up to LEO altitudes.  In this zone the temperature increases slightly and the pressure 

decreases exponentially with altitude.  The curve fit equations for the upper stratosphere 

are 

 ( )alt 0.0029921.131Temp ⋅+−=  (5. 26) 
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⋅=  (5. 27) 

The density of the air in each zone, measured in kilograms per cubic meter, is 

found by the equation of state, written as 

 ( )273.1Temp0.2869
pρatm +⋅

=  (5. 28) 

In order to carry out a numerical solution to the problem, while minimizing 

calculation times, it is useful to cast the equations in non-dimensional form.  This would 

reduce the time taken for a computer to complete the numerical calculation.  The non-

dimensional values for velocity, length, and time can be calculated from the set of 

relations 

 
E

*

r
rr =  (5. 29) 

 

E

E
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r
GM
vv =  (5. 30) 

 

E

3
E

*

GM
r

tt =  (5. 31) 

where the asterisk superscript denotes the dimensional variable.  The scaling variable for 

radial position is the equatorial radius of the Earth, rE.  The circular orbit speed at the 

surface of the Earth is the velocity scaling variable.  A time scaling variable is derived 

from dividing the distance scaling variable by the velocity scaling variable.  The set of 

dimensionless equations of motion for an ascending launch vehicle is written as 
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Simplification of the above equations, and the dropping of the asterisk for clarity, 

as it is no longer needed, produces the dimensionless state equations in their final form 
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dt
dr

=  (5. 36) 
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where gE is the gravitational acceleration on the surface of the Earth.  It is this set of 

equations to which the Pontryagin maximum principle will be applied in order to 

optimize the ascent trajectory for minimum fuel expenditure.  

5.4 Pontryagin Maximum Principle 

 Considering a problem with an n-dimensional state vector x and state equations 

defined as 

 ( )ux,fx ii =&           i = 1, 2, …, n (5. 40) 

where u is a control vector.  A transfer is sought from an initial state x0 at time zero to a 

final desired state xf at some unspecified time tf.  There exists a control as a function of 

time, u(t), that will accomplish this transfer while minimizing a cost function 

  (5. 41) ( )dt ,fJ
f

0

 t

 t 0∫= ux

where f0(x, u) is a state equation relatedg to an additional state variable x0 by the equation 

 ( )ux  ,fx 0 =&  (5. 42) 

Added to the previous state vector x this additional state variable forms the state 

vector x with dimension n+1 and corresponding state equations ˆ

 ( )ux,f̂x̂ ii =&           i = 0, 1, 2,…, n (5. 43) 

 From the extended state vector the Hamiltonian of the system, a function of the 

state variable, the costate variable, and the control, can be defined as 

           i = 0, 1, 2,…, n (5. 44) ∑
=

==
n

0i
ii

T fzˆˆH xz &

where  represents an extended co-state vector with n+1 dimensions.  The equations for 

both the state and costate variables can be defined by the equations 

ẑ
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H

dt
dx

∂
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=           i = 1, 2,…, n (5. 45) 

 
i

i

x
H

dt
dz

∂
∂

−=           i = 1, 2,…, n (5. 46) 

Since the value of the Hamiltonian does not depend on the additional state 

variable x0, the equation for its corresponding costate variable is  

 0z 0 =&  (5. 47) 

 Having stated the problem in terms of its Hamiltonian, with accompanying state 

and costate variables, the PMP can be applied to the problem.  The four basic conditions 

of the PMP are as follows [74]: 

1. The Pontryagin maximum principle states that an arbitrary value of 

negative one is assigned to z0.  This leads to the modified expression of 

the Hamiltonian as 

           i = 1, 2,…, n (5. 48) ∑
=

+−=
n

0i
ii0 fzfH

2. The optimum control function, according to the Pontryagin maximum 

principle, will maximize the Hamiltonian to a value greater than or equal 

to zero for all time during an optimal trajectory.  The equation for the 

optimum control function is obtained using the following equation, 

 0
u
H

=
∂
∂  (5. 49) 

3. There exists a set of initial values for the costate vector and state vector 

that will transfer the values of the state vector from their initial state to a 

desired final state. 
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4. Along an optimal trajectory the Hamiltonian exhibits a constant value.  

This constant value is positive if the final time is fixed and is zero if the 

final time is free.   

The problem as stated now consists of 2n + 2 state and costate equations.  These 

equations are solved by the n known initial and final values, the initial value of x0, and 

the value of z0.  For problems with an unspecified final time, such as the one in this 

study, the unknown final time requires an additional known final condition.  This 

condition is supplied by the fourth condition of the PMP.   

5.5 Trajectory Optimization 

The task of the launch vehicle is to ascend on a trajectory allowing it to 

rendezvous with the tether lower tip to facilitate a transfer of the payload.  The problem 

undertaken in this study is to achieve a rendezvous trajectory while burning a minimum 

amount of propellant.  The cost function for this problem is then stated as 

  (5. 50) ( )dt mJ ft

0∫= &

For this study, the launch vehicle propulsion system is assumed to have a constant 

mass flow rate.  This allows us to treat the optimization of the trajectory as a minimum 

time problem, simplifying the cost function to the form 

  (5. 51) dt 1J ft

0∫=

The state vector of the ascent vehicle is composed of the radial and tangential 

components of its position and velocity, a total of four state variables.  It is observed that 

none of the state equations are dependent on the angular position of the launch vehicle, θ, 

nor is angular position a specified value in the desired final state of the system.  The 
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angular position is therefore unimportant in terms of trajectory optimization and can be 

overlooked in the optimization process [75].  Disregarding the angular position of the 

launch vehicle allows the number of state equations to be reduced from four to three. The 

value of the angular position of the ascending launch vehicle will be of interest, however, 

in calculating the downrange distance covered by the launch vehicle and in timing the 

rendezvous.  The corresponding state equations are written as 

 r1 v
dt
drf ==  (5. 52) 
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Optimization of the trajectory by the PMP is based upon maximizing the 

Hamiltonian of the system.  The Hamiltonian of the ascent vehicle can be expressed as 
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 (5. 55) 

The set of costate differential equations are derived from the partial derivatives of 

the Hamiltonian with respect to each state variable and are written as 

 ⎟
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 (5. 56) 
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 (5. 58) 

The above equations contain derivatives of the sine and cosine of angle β, the 

angle between the launch vehicle’s velocity vector and the local horizontal, and 

derivatives of the launch vehicles velocity.  This angle can be expressed in terms of the 

radial and tangential components of the vehicle velocity by the relation 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

θ

r1

v
v

tanβ  (5. 59) 

The magnitude of the velocity vector can also be expressed in terms of the 

components of velocity by the following equation 

 2
θ

2
r vvv +=  (5. 60) 

The partial derivatives of the trigonometric functions of the control angle and 

angle to local horizon can be written in the form 
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It should also be noted that the aerodynamic drag on the vehicle is dependent on 

the vehicle velocity, according to the equation 
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v ρ CF =  (5. 65) 

Inserting this into the drag term and again noting that the velocity can be 

expressed in its radial and tangential components leads to the derivatives of the drag term 

being written as 
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The equation for the optimal control of the steering angle is found by setting the 

partial derivative of the Hamiltonian with respect to the control equal to zero, yielding the 

expression 
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The partial derivatives of the sine and cosine of α, the angle between the velocity 

vector and the thrust vector of the launch vehicle, are expressed as 
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Inserting these into the partial derivative of the Hamiltonian with respect to the 

control angle leads to the expression 
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Simplifying the above equation yields a relation between the thrust control angle, 

the flight path angle, and the costate variables corresponding to velocity, and is written as 
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Solving the above expression for α yields an expression for the control law of the 

thrust angle of the launch vehicle, as shown by 
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This expression for the engine control angle is inserted back into the equations of 

motion for the state and costate variables, resulting in the set of six differential equations, 

written as 
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This set of equations is treated as a boundary value problem and solved by fourth 

order Runge-Kutta integration.  In order to solve the boundary value problem, the number 

of known final conditions must equal the number of unknown initial conditions.  A list of 

the known and unknown conditions in this problem appears in Table 5.1.  The three 

unknown initial values of the costate variables and the final time in which the ascent is 

performed are the four unknown initial values.  The program written to solve this  
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Table 5.1:  Boundary Value Conditions for Ascent Trajectory Optimization 

Variable Initial Condition Final Condition

Radial position known known

Radial velocity known known

Tangential velocity known known

Radial position costate unknown unknown

Radial velocity costate unknown unknown

Tangential velocity costate unknown unknown

Hamiltonian known known

Time known unknown  
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problem analyzes the equations and provides a set of initial costate variables for each 

successive time step.  This method eliminates time as an unknown and requires the 

specification of only three known final conditions.  The three conditions that must be 

specified within the program are the final radial position, the final radial velocity, and the 

final value of the Hamiltonian, which is zero, according to the PMP.  An algorithm, based 

on Newton’s method, will produce guesses for the values of the unknown initial 

conditions for the costate vector that will, when the equations are integrated over time, 

generate the desired final conditions of radial position and velocity and Hamiltonian.  As 

the program converges on the desired Hamiltonian, radial position and velocity 

requirements, the selection of final time, and its accompanying set of initial costate 

variables, is then made by choosing the time step at which the tangential velocity of the 

launch vehicle is equal to the tangential velocity calculated for the desired final trajectory 

of the vehicle. 

 The trajectory optimization was run using a vehicle based on the McDonnell 

Douglas Delta Clipper DC-I single stage to orbit vehicle.  The DC-I was the larger 

production version of a concept demonstrated by the DC-X vehicle which flew from 

1993 to 1995.  The Delta Clipper was chosen for this study because it was designed to  

deliver a payload of 9,000 kilograms, similar to the 10,000 kilogram payload used in this 

study, to a 200 kilometer circular orbit.  The DC-I was designed to be  9.15 meters in 

diameter and 38.72 meters tall.  The dry mass of the vehicle was 36,000 kilograms and it 

carried 424,000 kilograms of propellant.  The initial design was powered by a single plug 

nozzle variant of the J-2 rocket engine burning liquid oxygen and liquid hydrogen.  This 

engine produces 6,864,600 Newtons of thrust in vacuum with an specific impulse of 425  
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seconds.  At sea level, the engine produces 5,330,100 Newtons of force with an specific 

impulse of 330 seconds.  At full throttle the engine consumes 1,646 kilograms per second 

of propellant. 

The trajectory analysis program developed for this study is set up so that the 

launch vehicle is constrained to climb vertically to an altitude of one kilometer.  At this 

point, pitchover occurs and the program begins to solve for a optimal powered trajectory 

with engine cutoff at a specified altitude.  After engine cutoff the launch vehicle will 

coast on a ballistic trajectory to the tether lower tip.  The desired conditions at engine 

cutoff are found from the apogee radius and velocity of the non-powered ballistic portion 

of the launch vehicle trajectory.  The radius and velocity of the launch vehicle’s apogee 

corresponds to the radial position and velocity of the elevator’s lower tip.  Defining the 

engine cutoff conditions begins with the calculation of the unpowered trajectory’s Kepler 

Area Constant, according to the equation 

 leleLV  vrC =  (5. 82) 

The orbital energy constant of the unpowered trajectory is also found by the 

values of the tether lower tip radius and velocity, according to the expression 

 
le

E2
leLV r

GM 2 vOEC −=  (5. 83) 

From the values of the Kepler area constant and the orbital energy constant, the 

eccentricity of the ballistic trajectory is found through the equation 

 
2

E

LV
LVLV GM

C
OEC1e ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=  (5. 84) 
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With the eccentricity of the launch vehicle trajectory known the semimajor axis 

can be found, as shown by 

 
LV

le
LV e1

r
a

+
=  (5. 85) 

With these orbital parameters defined the velocity at the specified engine cutoff 

altitude can be found by the relation 

 
LV

cut

cut

E
cut a

r
2

r
GM

v −=  (5. 86) 

For the purposes of this study, a cutoff altitude of 100 kilometers has been chosen 

to allow the launch vehicle to be powered to an altitude above which atmospheric drag 

during the ballistic climb can be disregarded. 

5.6 Ascent Results 

The program was run for each of the three tethers identified in Chapter 4, with 

launch vehicle apogee at 200, 300, and 400 kilometers.  In addition the ascent to an 

circular orbit of 200 kilometers altitude was also calculated.  This was accomplished by 

placing the launch vehicle, at the time of engine cutoff, on a ballistic trajectory with an 

apogee at 200 kilometers.  At apogee, an impulsive maneuver of 100 meters per second 

was needed to circularize its orbit.  This orbital trajectory approached the limit of the 

launch vehicle capability as defined in this study.  Table 5.2 shows a comparison of 

several properties associated with the orbital and elevator bound trajectories.  The first 

column of data corresponds to the orbital ascent trajectory, while the second, third and 

fourth represent suborbital tether bound trajectories to varying lower tip altitudes. 
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Table 5.2:  Comparison of Different Launch Trajectories 

Apogee Altitude (km) 200 200 300 400

Apogee Velocity (km/s) 7.684 5.415 5.498 5.580

Time of Engine Cutoff (s) 339 310 315 318

Velocity at Cutoff (km/s) 7.805 5.585 5.823 6.048

Radial Velocity at Cutoff (km/s) 0.183 0.978 1.338 1.580

Tangential Velocity at Cutoff (km/s) 7.803 5.499 5.668 5.838

Flight Path Angle at Cutoff (degrees) 1.347 10.093 13.283 15.140

Time from Cutoff to Apogee (s) 971 205 300 382

Propellant Remaining (kg) 4571 40187 34957 30225

∆v Remaining (km/s) 0.295 2.617 2.356 2.105

Peak Acceleration (g's) 10.337 6.089 6.482 6.885  
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Figure 5.3 shows a plot of the powered trajectory for an ascent to a 200 kilometer 

circular orbit with the origin at the launch site.  The apparent drop in altitude, observed 

towards the end of the trajectory, is actually caused by the curvature of the Earth.   

Throughout the powered portion of the trajectory the launch vehicle is constantly 

climbing in altitude.  As noted in Table 5.2, the ascent to a 200 kilometer altitude orbital 

trajectory requires a much larger cutoff velocity than trajectories bound for the elevator’s 

lower tip.  For an orbital trajectory, the flight path angle between the vehicle’s velocity 

vector and the local horizontal is much smaller than that of the elevator bound 

trajectories.  These two factors, the larger cutoff velocity and the smaller flight path 

angle, require that the launch vehicle powered trajectory must last 339 seconds to place it 

on its shallow high speed trajectory at cutoff.  This value is somewhat larger than the 

burn times required for elevator bound trajectories, and leaves the launch vehicle with 

much less ∆v remaining after engine shutdown.  The low flight path angle also causes the 

launch vehicle to having a relatively long coasting time of 971 seconds until apogee is 

reached and the orbit is circularized. 

 Figures 5.4, 5.5, and 5.6 show the launch vehicle powered trajectories for an 

ascent to an elevator with a lower tip altitude, of 200, 300, and 400 kilometers, 

respectively.  The launch vehicle’s flight path angle with respect to the local horizontal is 

much higher than that involved with the orbital ascent.  For an elevator bound trajectory, 

the launch vehicle at engine cutoff is in a much steeper ballistic climb than the shallow 

orbital trajectory.  The steepness of the trajectory is more pronounced as the lower tip 

altitude is increased.  The increased steepness of the elevator bound trajectories requires 

less time to “turn” the launch vehicle from its initial vertical climb.  Combined with the  
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Figure 5.3: Powered Trajectory for Launch to 200 km Circular Orbit 
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Figure 5.4:  Powered Trajectory for Launch to 200 km Apogee Altitude 
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Figure 5.5: Powered Trajectory for Launch to 300 km Apogee Altitude  
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Figure 5.6:  Powered Trajectory for Launch to 400 km Apogee Altitude  
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lower tangential velocity requirements this leads to shorter burn times for the elevator 

bound trajectories.  Elevator bound launch vehicles are left with much more ∆v available 

after engine cutoff. 

Figures 5.7, 5.8, 5.9 and 5.10 show the time history of the engine control angle for 

the ascent to a 200 kilometer orbit, and to an elevator lower tip of 200, 300 and 400 

kilometers, respectively.  Each of these plots have a value of zero control angle for the 

first 37 seconds of ascent.  This represents the constrained vertical climb held until the 

launch vehicle reaches one kilometer of altitude.  At the point of pitchover the engine 

control angle jumps to a large negative value.  This maneuver is dictated by the optimal 

control law to initially turn the vehicle from its vertical climb.  Following the pitchover 

maneuver, the engine control angle quickly increases, reaching a maximum value 

between 30 and 40 degrees approximately 90 seconds after liftoff.  This angle is 

somewhat high, and could not be accomplished through the use of a gimballing engine 

alone without producing large moments on the launch vehicle.  The entire vehicle will 

have to be steered relative to its velocity vector, supporting the assumption made in the 

derivation of the vehicle equations of motion that the engine thrust always acts through 

the launch vehicle’s center of gravity.  After reaching its peak value at approximately 90 

seconds into the flight, the engine control angle gradually decreases as the flight 

progresses.  The negative values of engine control angle observed at the end of the orbital 

ascent occur during the portion of the ascent when the launch vehicle is flying nearly 

horizontally in a shallow climb, and building up the required 7.803 kilometers per second 

of tangential velocity at engine cutoff.  The negative angle represents thrust directed 

down towards the Earth needed to hold the launch vehicle in its shallow climb.  Negative  
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Figure 5.7: Control Angle History for Launch to 200 km Circular Orbit 
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Figure 5.8: Control Angle History for Launch to 200 km Apogee Altitude 
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Figure 5.9: Control Angle History for Launch to 300 km Apogee Altitude  

 

 

-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250 300 350

Time (s)

E
ng

in
e 

C
on

tr
ol

 A
ng

le
 (d

eg
re

es
)

  

Figure 5.10: Control Angle History for Launch to 400 km Apogee Altitude  
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values of engine control angle are not observed in the elevator bound trajectories because 

the launch vehicle at engine shutdown was flying at a much steeper angle to the horizon 

and did not require the thrust to be directed downwards to support near horizontal flight.
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Chapter 6  

Rendezvous Analysis 

6.1 Equations of Relative Motion 

At the apex of its ballistic trajectory, the launch vehicle must rendezvous with the 

lower tip of the tether, allowing the transfer of the payload.  Rendezvous between the 

launch vehicle and the lower tip is accomplished through matching the velocity and 

position of the two vehicles.  This is performed through several maneuvers, the first of 

which takes the launch vehicle to the vicinity of the lower tip and the second of which 

nulls the relative velocity between the two.  Additionally, some maneuvering capability is 

required of the launch vehicle to stay in formation with the elevator lower tip in order to 

allow the transfer of the payload.  Determining the ∆v needed to perform each of these 

maneuvers is achieved by a study of the relative motions of the two vehicles.   

The first step in the analysis is to determine the relative position of the two 

spacecraft.  A moving coordinate frame is attached to the tether center of gravity, which 

rotates at an angular rate equal to the tether’s orbital angular rate.  The coordinate frame 

originating at the center of the Earth is assumed to be inertial.  It should be noted that the 

tether coordinate frame is attached to the center of gravity of the tether.  This is done 

because the tether’s center of gravity is moving in an orbital manner; the actual 

rendezvous target, the lower tip of the tether is traveling in a circular trajectory around 

the Earth, but is moving at less than orbital velocity.  Figure 6.1 shows a diagram of the 

coordinate system used in the derivation of the equations of relative motion between the 

two spacecraft. 
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Figure 6.1:  Rendezvous Coordinate System Diagram 
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The relative position of the launch vehicle to the elevator’s center of gravity is 

represented by the vector equation 

 lRecgLV rrr +=  (6. 1) 

where rLV and rT are the vector positions of the launch vehicle and the tether center of 

gravity in relation to the center of the Earth.  This equation is differentiated with respect 

to the inertial coordinate system attached to the Earth, yielding the expression [64] 

 ( ) lReTTlReTlReTlRecgLV  2 rωωrωrωrrr ××+×+×++= &&&&&&&&  (6. 2) 

where LVr&&  is the inertial acceleration of the launch vehicle, Tr&&  is the inertial acceleration 

of the tether lower tip, Relr&&  is the acceleration of the launch vehicle relative to the tether 

center of gravity, ( )lReT 2 rω &×  is the Coriolis acceleration, lReT rω ×&  is the Euler 

acceleration and ( RelTT rωω ×× ) is the centripetal acceleration. 

By neglecting the small gravitational acceleration between the launch vehicle and 

the tether, the inertial acceleration of the launch vehicle can be viewed as the sum of the 

gravitational acceleration caused by the Earth and the applied accelerations caused by 

powered maneuvers, shown in the expression  

 LVLVLV agr +=&&  (6. 3) 

Inserting this relation into the inertial acceleration equation, resolving it into x, y, 

and z coordinates yields the set of equations 

  (6. 4) xωyωy2ωxag 2
TTTxLV −−−=+− &&&&

 yωxωx2ωgya
r

ry
g 2

TTTTy
LV

cg
LV −++−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
− &&&&  (6. 5) 
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Solving for the relative accelerations between the launch vehicle and the tether 

allows the equations to be written as 

 xωyωy2ωa
r
xgx 2

TTTx
LV

LV ++++⎟⎟
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The gravitational acceleration felt by the launch vehicle can be expressed as 

 2
LV

E
LV r

GMg =  (6. 10) 

It also should be noted that the tether is assumed to be in a circular or near 

circular orbit, allowing the terms containing angular acceleration to be neglected.  

This allows the relative acceleration equation to be simplified to the form 

Tω&

 xωy2ωa
r

 xGMx 2
TTx3

LV

E +++−= &&&  (6. 11) 

 
( )

yωx2ωa
r

ry GM
y 2

TTy3
LV

cgE +−+
+

−= &&&  (6. 12) 

 z3
LV

E a
r

z GMz +−=&&  (6. 13) 

The equations in their above form have been widely used for rendezvous 

applications in Earth orbit, as most spacecraft rendezvous occur in circular or nearly 
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circular orbits [76].  A simple solution can be sought to these equations through a 

harmonic oscillator approach [77].  This type of solution is useful in tracking relative 

drift between two closely flying satellite in similar orbits. The problem of rendezvous 

between the launch vehicle and the tether’s lower end is complicated by the fact that the 

two objects are on very different trajectories.  The launch vehicle is on a ballistic 

trajectory that will return it to the Earth if a rendezvous is not achieved.  The rendezvous 

target, the tether lower tip, is moving in a non-orbital fashion on a circular trajectory at 

significantly lower speeds than the circular orbit velocity for its altitude.  For these 

reasons, a numerical method presents itself as an alternative to seeking a solution to the 

rendezvous equations. 

6.2 Solution Method  

The equations for relative acceleration are second order derivatives, but they can be 

solved by Runge-Kutta integration by treating them as a set of six first order differential 

equations.  The equations of relative motion are written as first order equations in the 

form of 

 x
dt
dx

&=  (6. 14) 

 xωy2ωa
r

 xGM
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xd 2

TTx3
LV

E +++−= &
&

 (6. 15) 

 y
dt
dy

&=  (6. 16) 
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 z
dt
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&=  (6. 18) 
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There are a total of six equations governing the spacecraft relative positions and 

velocities in three dimensions.  This set of equations can be used to explore three 

different facets of rendezvous between the launch vehicle and the tether.  

The first problem is to define the unconstrained relative motion between the 

launch vehicle and its target.  For this case, the initial position and velocities are inputted 

for an ideal case in which the launch vehicle will pass by the tether lower end at the apex 

of its trajectory.  This is useful in that it shows how much time the two spacecraft will be 

in relative position without any active maneuvering on the part of the launch vehicle.  

The amount of time spent in formation is a critical factor in determining the ease of 

payload transfer between the launch vehicle and the elevator. 

The second problem addresses how much maneuvering capability will be needed 

by the launch vehicle to hover in the vicinity of the tether’s lower end for a 

predetermined amount of time.  It can be assumed that the transfer of payload from the 

launch vehicle to the elevator will not be instantaneous.  By quantifying the constant 

thrust applied to the launch vehicle to hold it at the tether’s lower end a better 

understanding is gained of its required maneuvering capability.  Starting with zero 

relative distance and velocity between the elevator’s lower tip and the launch vehicle, an 

unknown constant thrust is applied to the launch vehicle to hold it at the elevator’s lower 

tip for a specified amount of time.  The unknown applied thrust is found from solving the 
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equations of relative motion using the final conditions of zero distance between the lower 

tip and the launch vehicle.  The ∆v required to hold the launch vehicle at the tether lower 

tip is found by multiplying the constant acceleration by the desired time needed to 

transfer the payload from the launch vehicle to the tether. 

The third and final problem studied is terminal rendezvous between the launch 

vehicle and the tether lower tip.  The launch vehicle may reach the apogee of its 

trajectory at some moment before or after the tether end will travel by it.  This can be 

caused by errors in guidance during the powered ascent or by issues involving the launch 

window of the vehicle.  For this case it is assumed that the launch vehicle is on a 

trajectory that, with the absence of any active maneuvering, will not arrive at the elevator 

lower end at the apex of its ballistic trajectory, but will miss it by some measured amount 

of time.  The data gained from this case is useful in sizing of the maneuvering capability 

required by the launch vehicle to affect a rendezvous under less than ideal conditions.  

For this case the positions of the launch vehicle and lower tip form the known initial 

condition of the problem.  The required initial relative velocity to bring the two together 

to a rendezvous is unknown.  The solution to this boundary value problem requires three 

known final conditions, which exist in the form of the x, y, and z coordinates of the 

desired final relative position between the two vehicles.  Table 6.1 contains a list of the 

boundary value conditions for the terminal rendezvous problem.   

  These desired final distances between the launch vehicle and the tether are zero in 

the x and z directions.  In the y direction, the desired final distance is equal to the length 

of the tether between its center of gravity and its lower end.  These unknown initial  
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Table 6.1:  Boundary Value Conditions for Rendezvous Problem 

Variable Initial Condition Final Condition

Relative position x known known

Relative position y known known

Relative position z known known

Relative velocity x unknown unknown

Relative velocity y unknown unknown

Relative velocity z unknown unknown  
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conditions are solved for using a three dimensional shooting method, with the desired 

zero distance between the two forming the known final condition. 

6.3 Rendezvous Analysis Results 

6.3.1 Launch Vehicle Relative Motion 

 Figures 6.2, 6.3 and 6.4 show the relative motion of the launch vehicle with 

respect to the elevator’s lower tip for a handoff altitude of 200, 300, and 400 kilometers, 

respectively.  The relative motion shown in these graphs represents the ideal rendezvous 

condition, where the apex of the launch vehicle trajectory will meet with the lower tip of 

the elevator at the same point in space simultaneously.  The trajectory for the launch 

vehicle is assumed to be coplanar with the orbit of the elevator.  On each graph, the 

origin is at the elevator lower tip and each tick mark along the path of the launch 

vehicle’s motion represents five seconds of elapsed time.  As can be seen from these 

graphs of the relative motion, most of the movement between the launch vehicle and the 

tether’s lower tip is in the vertical direction.  The tangential velocity of the launch vehicle 

is closely matched with the tangential velocity of the tether lower tip, producing a 

relatively small lateral relative motion between them.  The launch vehicle rapidly rises up 

to the apogee of its ballistic trajectory and very quickly descends away.  For each of the 

handoff altitudes studied, the launch vehicle is within a range of 50 meters of the elevator 

lower tip for a period of time less than ten seconds.  This short time would require a near 

instantaneous transfer of the payload from launch vehicle to elevator, which is 

impractical.  To achieve a payload transfer, the launch vehicle must suspend itself along 

its trajectory and hover at the elevator lower tip for some specified period of time. 
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Figure 6.2:  Relative Motion Between the Launch Vehicle and 200 km Lower Tip  
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Figure 6.3:  Relative Motion Between the Launch Vehicle and 300 km Lower Tip 
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Figure 6.4:  Relative Motion Between the Launch Vehicle and 400 km Lower Tip 
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6.3.2 Launch Vehicle Hovering 

 Figures 6.5, 6.6 and 6.7 show the required ∆v needed to hold the launch vehicle at 

the elevator’s lower tip for a handoff altitude of 200, 300, and 400 kilometers, 

respectively.  For a launch vehicle trajectory that is coplanar with the elevator orbit, the 

hovering requirement is easily calculated by measuring the acceleration at the elevator’s 

lower tip, which is composed of the gravitational attraction of the Earth and the 

centrifugal acceleration caused by the tether orbital rotation, as shown by the equation 

 2
Tle2

le

E
g ω r

r
GMa −=  (6. 20) 

This equation produces a value of 4.753 meters per second of acceleration 

experienced at the handoff point for a tether with a lower tip of 200 kilometers.  The 

acceleration felt at the handoff point is 4.411 meters per second and 4.082 meters per 

second for Elevator’s with lower ends at 300 and 400 kilometers of altitude, respectively.  

These values are confirmed with the numerical program used in this study.  For the non-

coplanar cases, it can be seen from Figures 6.5, 6.6 and 6.7 that as the inclination 

between the launch vehicle trajectory and the tether orbital plane increases, the ∆v 

required for hovering rapidly grows larger.  For each handoff altitudes studied, a 10° 

inclination between the launch vehicle trajectory and the tether orbit leads to a required 

∆v of approximately 2,000 meters per second, with the value growing larger as the 

required hovering time increased.  From Chapter 5 it has been shown that the launch 

vehicle retains enough propellant after the powered ascent to a 200 kilometer apogee to 

provide for 2,617 meters per second of ∆v.  Similarly, the propellant remaining on the 

launch vehicle launch vehicle allows for 2,356 meters per second and 2,105 meters per  
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Figure 6.5:  ∆v versus Time for Launch Vehicle Hovering at the 200 km Lower Tip  
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Figure 6.6:  ∆v versus Time for Launch Vehicle Hovering at the 300 km Lower Tip 
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Figure 6.7:  ∆v versus Time for Launch Vehicle Hovering at the 400 km Lower Tip  
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second of ∆v after the powered ascent to an apogee of 300 and 400 kilometers, 

respectively.  The requirements for hovering at a tether inclined 10° to the launch vehicle 

trajectory represent a large portion of the ∆v available after powered ascent, and would 

require near perfect timing of the terminal rendezvous between the two. 

6.3.3 Terminal Rendezvous 

 Figure 6.8 shows a typical plot of the required ∆v needed to achieve a terminal 

rendezvous between the launch vehicle and an elevator with a 200 kilometer lower tip 

altitude.  For the particular case illustrated in this graph, the launch vehicle’s unaltered 

trajectory places it at apogee 45 seconds before the tether is in position for rendezvous, 

with the launch vehicle trajectory on a coplanar trajectory with the tether orbit.  For this 

case, the terminal rendezvous requiring the minimum ∆v occurs at approximately 256 

seconds after the engine cutoff, when 978.333 meters per second of maneuvering is 

required to place the launch vehicle at the elevator lower tip. 

Multiple cases are run with varying rendezvous error times and the minimum ∆v 

required for terminal rendezvous is determined for each case.  Figures 6.9, 6.10 and 6.11 

represent the minimal ∆v calculated for each different rendezvous error time for handoff 

altitudes of 200, 300, and 400 kilometers, respectively.  On these plots, the error time 

represents the number of seconds by which the launch vehicle misses the rendezvous 

point.  For example, a value of negative 60 seconds means the launch vehicle is a minute 

late in reaching the handoff point.  In other words, upon reaching its apogee the launch 

vehicle is a minute behind the actual position of the tether’s lower tip.  Conversely, a 

positive rendezvous error time corresponds to the launch vehicle reaching the handoff 

point before the tether lower tip has arrived.  For each of the three elevators selected in  
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Figure 6.8:  ∆v versus Time Until Rendezvous at the 200 km Lower Tip 
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Figure 6.9:  Minimum ∆v versus Rendezvous Error Time at the 200 km Lower Tip
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Figure 6.10:  Minimum ∆v versus Rendezvous Error Time at the 300 km Lower Tip  
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Figure 6.11:  Minimum ∆v versus Rendezvous Error Time at the 400 km Lower Tip  
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this study, these cases are run for 0°, 5°, and 10° of inclination between the launch 

vehicle trajectory and the orbital plane of the elevator.  From each of the plots, it can be 

observed that the ideal case of no rendezvous time error and 0° of inclination produces a 

value of zero meters per second of ∆v.  The launch vehicle passes by the elevator’s lower 

tip as the two meet at the launch vehicle apogee.  As the rendezvous error times increase 

the required ∆v also grows.  In all cases the values for negative rendezvous error time are 

somewhat less than those with corresponding positive rendezvous time.  In general, it can 

be observed that less ∆v is required for the launch vehicle to catch up to a tether that is 

ahead of it in orbital position at the time of rendezvous than for the launch vehicle to 

slow down to meet a tether that is behind it in orbital position. 

6.3.4 Total Rendezvous Requirements 

 By combining the required ∆v needed for terminal rendezvous along with that 

needed for hovering at the tether’s lower tip, the total required ∆v for the entire 

rendezvous maneuver can be calculated.  Figure 6.12 shows the minimum ∆v required for 

the total rendezvous maneuver versus rendezvous error time between a launch vehicle on 

a coplanar trajectory with a tether at a handoff altitude of 200 kilometers, plotted with 

varying amounts of hover time.  As the maximum value on the plot corresponds to the 

2,617 meters per second of ∆v left after powered ascent, this graph represents the 

window of rendezvous performance that the launch vehicle is capable of after powered 

ascent. 

Figure 6.13 shows the minimum ∆v required for the total rendezvous maneuver 

versus rendezvous error time for a launch vehicle on a trajectory inclined at 5° with the 

tether at a handoff altitude of 200 kilometers.  Again the maximum plotted value of ∆v is  
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Figure 6.12:  Total ∆v versus Rendezvous Error Time at the 200 km Lower Tip at 0° 

Inclination 
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Figure 6.13:  Total ∆v versus Rendezvous Error Time at the 200 km Lower Tip at 5° 

Inclination 
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2,617 meters per second, representing the window of rendezvous performance within the 

capabilities of the launch vehicle.  For each of the three tethers included in this study, the 

total ∆v required to achieve rendezvous between the launch vehicle and an elevator at a 

relative inclination of 10° exceeds the maneuvering capability remaining with the launch 

vehicle after the completion of the powered ascent. 

 Figures 6.14 and 6.15 show the minimum ∆v required for the total rendezvous 

maneuver versus rendezvous error time between a launch vehicle and the elevator at a 

handoff altitude of 300 kilometers, for inclinations of 0° and 5°, respectively.  The 

maximum plotted value of these graphs corresponds to the 2,356 meters per second of ∆v 

left with the launch vehicle following powered ascent. 

Figures 6.16 and 6.17 show the minimum ∆v required for the total rendezvous 

maneuver versus rendezvous error time between a launch vehicle and the elevator at a 

handoff altitude of 400 kilometers, for inclinations of 0° and 5°, respectively.  The 

maximum plotted value of these graphs corresponds to the 2,105 meters per second of ∆v 

left with the launch vehicle following powered ascent.  It should be noted that for an 

inclination of 5°, a hover time of five minutes produces a minimum total ∆v of 2,318 

meters per second, outside of the launch vehicle capability. 

From each of these graphs it can be seen that the required rendezvous 

performance is somewhat similar irregardless of the particular handoff altitude.  For 

coplanar trajectories the minimum ∆v curves are more shallow as the handoff altitude is 

increased.  For example, a coplanar rendezvous at an altitude of 200 kilometers altitude 

with –60 seconds of rendezvous error time and one minute of hovering requires 1,979 

meters per second ∆v, while the corresponding case at 400 kilometers of altitude only 
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Figure 6.14:  Total ∆v versus Rendezvous Error Time at the 300 km Lower Tip at 0° 

Inclination  
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Figure 6.15:  Total ∆v versus Rendezvous Error Time at the 300 km Lower Tip at 5° 

Inclination 
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Figure 6.16:  Total ∆v versus Rendezvous Error Time at the 400 km Lower Tip at 0° 

Inclination 
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Figure 6.17:  Total ∆v versus Rendezvous Error Time at the 400 km Lower Tip at 5° 

Inclination 

 158



 

requires 1,420 meters per second of ∆v.  In conclusion, it has been shown that a vehicle 

designed for a single stage to orbit mission has enough performance to achieve a 

rendezvous with the orbiting space elevator in a reasonably sized window of time when 

launched on a coplanar or nearly coplanar trajectory. 
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Chapter 7   

Elevator Launched Trajectories 

7.1 Lunar Destination 

 The orbiting space elevator primarily serves as a system to launch payloads into 

high Earth orbit, or on trans-lunar and interplanetary trajectories.  In Chapter 1, the Moon 

is identified as a location of particular interest in future space development, due to its 

possession of platinum and helium-3.  Both of these materials could offer possible 

solutions to energy shortages in the future.  This section will analyze trans-lunar 

trajectories originating from the upper end of the orbiting space elevator.   

The Moon orbits around the Earth with a period of 27.321 days, an eccentricity of 

0.0554, and a semi-major axis of 384,400 kilometers.  The lunar orbital plane’s 

inclination to the Earth’s equatorial plane varies between 28.6° and 18.4° over a period of 

18.6 years  [78].  For the purposes of this study, the Moon is assumed to be in a circular 

orbit with a radius of 384,400 kilometers with the lunar orbital plane’s inclination to the 

Earth at an average value of 23.5°.  The Earth orbiting elevator is assumed to be in an 

orbital inclination of 35° with respect to the Earth’s equatorial plane.  This value is 

chosen to allow access to the elevator from launch sites in approximately the lower third 

of the continental United States. 

The three types of trajectories included in this study will be classified by their 

destination: lunar orbit, the L1 Lagrange point, and a lunar elevator.  The trajectory 

analysis for a destination in lunar orbit is accomplished through the use of the patched 

conic method.  This approximation treats a spacecraft as being in orbit around a single 
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central body, either the Earth or the Moon, when it lies within that body’s sphere of 

influence.  The radius of the lunar sphere of influence is calculated from the values of the 

radius of its orbit around the Earth and the ratio of the masses of the Moon and Earth, by 

the equation 
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mrr ⎟⎟
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⎝
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=  (7. 1) 

This equation yields a value of 66,183.7 kilometers for the radius of the lunar 

sphere of influence, within which the Moon’s gravity dominates the motion of a space 

craft.  

The Apollo missions to the Moon will serve as a reference against which the 

elevator launched trajectories will be compared.  An Apollo mission to the Moon begins 

with a launch from Cape Canaveral to a parking orbit in LEO.  To depart from LEO, a 

trans-lunar injection (TLI) maneuver is made to place the spacecraft on a trajectory to 

intersect the Moon after approximately three days of travel.  During the coasting phase 

after TLI, while the spacecraft is on a lunar-transfer orbit, several small mid-course 

corrections could be made to fine tune its arrival at the Moon.  Entry into the lunar sphere 

of influence places the Apollo spacecraft on a trajectory that took it around the Moon and 

back out of its sphere of influence, unless a maneuver is made at the time of close lunar 

approach.  This Lunar Orbit Insertion (LOI) maneuver decelerates the spacecraft enough 

to allow it to enter into a low lunar orbit, from which a descent could be made.  Typical 

values for these maneuvers are shown in Table 7.1, which contains the ∆v budget for the 

Apollo 16 mission flown in April of 1972. 
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Table 7.1:  Apollo 16 ∆v Budget  

Maneuver ∆v (m/s)

Launch to LEO 11,600
TLI 3,050
Midcourse Correction 0
LOI 940
Descent 2,040
Total 17,630  
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Launch opportunities for the Apollo spacecraft occur twice per day, when the 

launch site, and consequently the low Earth parking orbit, is within the plane of the lunar 

transfer orbit.  In actual practice, the launch window for an Apollo mission is further 

limited to one opportunity every 28 days, once per lunar “day”, due to mission constraints 

of lighting conditions at the landing site. 

7.2 Trajectories to Lunar Orbit 

 Of the three trajectory types included in this study, an elevator-launched trajectory 

to lunar orbit is the most similar to the Apollo mission.  However, trajectories bound for 

lunar orbit differ from Apollo in several important respects.  With the orbiting space 

elevator, the ∆v required to launch a payload to orbit is reduced, due to the lower velocity 

of the tether’s bottom tip.  Because the tether’s upper tip possesses a large tangential 

velocity approximately 95% of that required to reach the Moon, the TLI maneuver can be 

achieved with limited expenditure of propellant.  With the minimum ∆v applied to the 

spacecraft at release, an elevator launched spacecraft would have a flight path angle of 0° 

relative to the local Earth horizontal and would be on a Hohmann trajectory to the Moon, 

arriving in approximately five days.  While this prospect is attractive, it limits the 

available launch opportunities to only two per every 28 days, when the Moon crosses the 

plane of the elevator’s orbit.  This also requires careful timing of the elevator’s position 

in its orbit to allow it to be at the proper insertion point for trans-lunar trajectory.  If some 

additional maneuvering capability is provided to the spacecraft at the time of launch from 

the elevator, the spacecraft could be launched with some inclination to the original 

elevator orbit and at flight path angles other than 0°.  This allows the launch window 
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constraints on orbital inclination and elevator positioning to be relaxed, and facilitate 

quicker flight times to the Moon. 

7.2.1 Patched Conic Approximation 

Figure 7.1 shows a diagram of the patched conic trajectory used in this study to 

analyze trajectories bound for lunar orbit.  The first step in the patched conic approach is 

to specify the departure velocity, radius, and flight path angle.  The departure radius of 

the elevator launched spacecraft is equal to the radius of the upper tip of the orbiting 

space elevator.  Because the upper tip of the elevator travels with only 95% of the 

velocity required for a Hohmann transfer to the Moon, the departure velocity must be 

specified to be a value greater than the upper tip velocity.  The ∆v required at departure is 

calculated by the law of cosines relation between the tether’s upper tip velocity, the 

departure velocity, and the departure flight path angle, according to the equation  

 ( )0ue0
2

ue
2

00 βcos v  v2vvv −+=∆  (7. 2) 

The departure flight path angle was held to be zero in this study, in order to take 

full advantage of the tangential velocity imparted to the spacecraft by the Earth orbiting 

tether.  If, at the point of departure from the elevator, a maneuver is made to match the 

inclination of the departing spacecraft with the lunar orbital plane, the ∆v equation must 

include a second term to account for the difference in inclination between the two, and 

would then take the form 
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From the departure conditions at the elevator’s upper tip, several characteristics of 

the elevator launched spacecraft’s transfer orbit can be calculated, which will be useful  
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Figure 7.1: Trans-lunar Patched Conic Trajectory 
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later in computing the flight time involved in the lunar transfer.  The value of the 

departure trajectory’s orbital energy constant is given by the relation 
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The Kepler area constant of the transfer orbit is found by the equation 

 ( )00ueE βcos  vrC =  (7. 5) 

while the parameter of the transfer orbit is found to be the ratio of the Kepler area 

constant and the gravitational parameter of the Earth, as shown by the equation 
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With the orbital energy constant and the Kepler area constant known, the 

eccentricity of the transfer orbit is calculated according to the expression 
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and the semimajor axis of the transfer orbit is described by the equation 

 
E
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In addition to the departure conditions, another variable must be specified, the 

angle λ1, which is the angle between the Earth-Moon line and the point of entry into the 

lunar sphere of influence, with the Moon at the vertex of the angle.  By varying the value 

of the angle λ1 the altitude of closest lunar approach can be controlled.  Figure 7.2 shows 

the diagram of the transfer trajectory at the point of entry into the lunar sphere of 

influence.  The radial position of the spacecraft, with relation to the Earth, at the point of  
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Figure 7.2:  Entry Point into the Lunar Sphere of Influence  
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entry into the lunar sphere of influence is calculated by the law of cosines relation 

between the radius of the Moon’s orbit, the radius of the lunar sphere of influence, and 

the angle between the point of entry and the Earth-Moon line, shown by the equation 

 ( )1SOImo
2

SOI
2

mo1 λcos r r 2rrr −+=  (7. 9) 

The spacecraft’s velocity with respect to the Earth at the point of entry is 

calculated by the expression 
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 If the maneuver to match the inclination between the transfer orbit and the lunar 

orbital plane is made at the point of entry into the lunar sphere of influence, then the 

magnitude of that maneuver can found from the expression 
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 The flight path angle of the spacecraft with respect to the Earth is found by the 

relation 
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The angle between the Earth-Moon line and the point of entry into the lunar 

sphere of influence with the Earth at the vertex, γ1, is calculated from the expression  
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The spacecraft’s velocity at the point of entry into the lunar sphere of influence, 

with respect to the Moon, is found by the law of cosines relation between the Moon’s 

 168



 

orbital velocity, the spacecraft’s Earth-centric velocity and the difference between the 

Earth-centric flight path angle and the entry point phase angle, shown by 

 ( )11m1
2

m
2

12 γβcos v v 2vvv −−+=  (7. 14) 

With the lunar-centric velocity at the entry point known, the orbital characteristics 

of the spacecraft trajectory within the lunar sphere of influence can be calculated.  The 

orbital energy constant of the lunar-centric trajectory is found by the equation 
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while the Kepler area constant of the lunar-centric trajectory is found by the product of 

the velocity and radius at the entry point, and the sine of the lunar-centric flight path 

angle, shown by the expression 

 ( )22SOIm δsin  vrC =  (7. 16) 

where the lunar-centric flight path angle is calculated by the trigonometric relation 
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The orbital parameter and eccentricity of the spacecraft’s lunar-centric trajectory 

are found by equations similar to that of the Earth-centric trajectory, shown as 

 
m

m
m GM

Cpo =  (7. 18) 

 
2

m

m
mm GM

COEC1e ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  (7. 19) 

The radius and velocity of the spacecraft at the point of closest approach to the 

Moon are found by the equations 
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with careful attention being paid to make sure that the perilune radius is greater than 

1,738 kilometers, the surface radius of the Moon.  For this study, a final lunar orbit 

altitude of 100 kilometers has been used.  The ∆v required to circularize the spacecraft’s 

orbit around the Moon is calculated by the difference between its velocity at perilune and 

the circular orbit velocity corresponding to the perilune radius, shown by 
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With the trajectory characteristics calculated, the transfer time from release at the 

elevator’s upper tip and entry into the lunar sphere of influence is found according to 

Kepler’s law.  The first step is to calculate the true anomaly of the spacecraft at the 

departure point and at the point of entry into the lunar sphere of influence by the 

expressions 
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The values for the eccentric anomaly at the departure and entry points are found 

by the relations 
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with the total travel time between the two points found by the equation 
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Because the upper tip of the elevator is traveling with a high percentage of escape 

velocity, the addition of enough ∆v to the spacecraft will propel it on an escape trajectory 

with respect to the Earth.  This requires the use of a slightly different form of Kepler’s 

law, formulated specifically for hyperbolic trajectories.  The hyperbolic eccentric 

anomalies for the departure and entry points are calculated by the expressions 
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and the travel time between departure and entry into the lunar sphere of influence is 

found according to the equation 
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Travel times between the point of entry into the lunar sphere of influence and the 

perilune point are found by a similar application of Kelper’s law.  
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7.3 Trajectories to L1 Point 

 Located between the Earth and the Moon at a radial distance of 57,900 kilometers 

from the Moon, the L1 point is one of five Lagrangian points of equilibrium in the Earth-

Moon System.  The L1 point is attractive as a staging area for a trans-lunar transportation 

system, because the entire lunar surface is accessible from L1 without timing constraints.  

Additionally, the ∆v requirements to de-orbit and land from L1 are independent of the 

landing site’s location on the Moon, and are equal to approximately 2.5 kilometers per 

second.   Rendezvous with the L1 point can be achieved by the use of an elliptical orbit 

that passes through Lagrange point’s 362,500 kilometer radial distance, as measured from 

the Earth.  The L1 moves in the Earth-Moon system with the same angular velocity of the 

Moon.  For the assumption used in this study that the Moon is in a constant circular orbit 

the velocity of the L1 can be calculated to have a value of 868.061 meters per second 

with respect to the Earth, by the equation 

 1LML1 rωv =  (7. 31) 

where ωM is the angular velocity of the Moon’s assumed circular orbit around the Earth, 

with a value of 2.658x10-6 radians per second.  The ∆v required to rendezvous with the 

L1 point can be found by the expression 
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in which the first term calculates the ∆v required to match the radial and tangential 

components of the spacecraft with that of the L1 point, and the second term matches the 

orbital inclination between the two.   
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7.4 Trajectories to Lunar Elevator 

The third lunar transport strategy analyzed in this study involves a lunar elevator, 

that stretches from the Moon’s surface towards the Earth.  The lunar elevator extends past 

the L1 point, which acts as its center of balance, before it is ended with an appropriately 

sized counterweight.  The advantages of a combined system of Earth and Moon based 

tethers was identified in Artsutanov’s early writings on the space elevator [33].  Due to 

the Moon’s weaker gravity, a full elevator stretching from the ground to beyond the L1 

point is possible with current material.  The benefit of the lunar elevator is that there is no 

expenditure of propellant for landing on the surface of the Moon, as the descent is made 

along the elevator.  At lunar altitudes lower than the L1 point, no actual power has to be 

supplied to move the payload along the lunar elevator.  Lunar gravitation will pull the 

payload down and the only input needed would be braking to control the speed of its 

descent.  The drawback is that the only “landing site” accessible is the lower tip of the 

elevator.  For this study, a lunar elevator length of 100,000 kilometers is assumed.  The 

tip of the elevator is at a radial distance of 284,400 kilometers from the Earth.  

Rendezvous calculations with the lunar elevator are made using the same method as that 

used with the L1 point, but with the radius of the lunar elevator’s upper tip replacing the 

L1 radius. 

7.5 Trajectory Results 

7.5.1 Lunar Orbit Results 

 The three tethers selected in Chapter 4 possess upper tip velocities that are each 

approximately 95% of the velocity required for a minimum energy transfer Hohmann 

velocity to the altitude of the Moon’s orbit.  Table 7.2 shows the upper tip velocity and  
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Table 7.2:  Selected Tether Trajectory Data for Lunar Orbit 

Destination

Handoff Altitude (km) 200 300 400

Upper Tip Altitude (km) 3758 3768 3700

Upper Tip Velocity (km/s) 8.344 8.352 8.296

Moon Bound Hohmann Velocity (km/s) 8.754 8.750 8.780

Minimum Departure ∆v (km/s) 0.410 0.398 0.484

Flight time (hrs) 79.130 79.128 79.138

Lunar Orbit Circularization ∆v (km/s) 0.780 0.780 0.780  
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the required minimum ∆v needed for a Hohmann transfer to a Lunar orbit of 100 

kilometers. 

The values in Table 7.2 assume that the inclination change between the departure 

orbit and the Moon’s orbit around the Earth is not made at the point of departure.  This is 

more economical, as inclination changes are proportional to the spacecraft’s current 

velocity, according to the equation 
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By postponing the inclination maneuver to a point higher out on the transfer orbit, 

where the spacecraft’s velocity is lower, significant savings can be made in the ∆v 

required for departure.  For each of the three tethers, an inclination change made at the 

point of departure would cost approximately 1.755 kilometers per second.  By performing 

the inclination change at the point of entry into the lunar sphere of influence, the 

inclination change maneuver is only 0.097 kilometers per second.   

By applying modest amounts of ∆v to increase the departure velocity, the trip 

time to lunar orbit can be lowered significantly.  Figure 7.3 shows the decrease in flight 

time to lunar orbit for increasing values of departure ∆v for the three selected tethers. 

A tradeoff must be made in increasing the departure velocity with the goal of 

diminishing flight time.  The higher release velocities at the elevator’s upper tip lead to 

the spacecraft possessing a higher velocity at the entry into the lunar sphere of influence 

than that experienced in the minimum energy orbit.  Because inclination changes are 

proportional to a spacecraft’s current velocity, the faster transfer orbits lead to a higher 

required inclination change maneuver.  The quicker transfer orbit also causes the 
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Figure 7.3:  Flight Time versus Departure ∆v for Lunar Orbit Trajectories 
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 spacecraft to posses a higher velocity at the point of perilune, necessitating a larger orbit 

circularization maneuver. Figures 7.4 and 7.5 show the values of the inclination change 

and orbit circularization maneuvers plotted against differing values of departure ∆v. 

7.5.2 L1 Results 

 Table 7.3 shows the upper tip velocity and the required minimum ∆v needed for 

departure on a Hohmann transfer to a rendezvous at the L1 point.  The departure velocity 

requirements for reaching the L1 point are an average of 20 meters per second less than 

that needed for lunar orbit.  The flight time is somewhat larger for L1 trajectories than for 

lunar orbit trajectories.  The reason for this is that the final phase of lunar orbit 

trajectories are falling rapidly towards the Moon on a hyperbolic trajectory, while an L1 

bound trajectory just skims the surface of the lunar sphere of influence. 

 As in the case of trajectories bound for lunar orbit, increasing the departure 

velocity produces quicker flight times to the L1 point.  These quicker transit times must 

be balanced against the ∆v required to rendezvous with the L1 point.  Higher departure 

velocities cause the tether launched spacecraft to arrive at the L1 point with significant 

radial velocity, which must be cancelled to enter the L1 point’s circular motion around 

the Earth.  Figures 7.6 and 7.7 show the values of flight time and rendezvous ∆v for 

increasing values of departure ∆v. 

7.5.3 Lunar Elevator Results 

 Table 7.4 shows the upper tip velocity and the required minimum ∆v needed for 

departure on a Hohmann transfer to a rendezvous with a lunar elevator of 100,000 

kilometers in length.  The departure velocity requirements to reach a lunar elevator are 20 

meters per second less than that for an L1 trajectory for each of the three selected tethers. 
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Figure 7.4:  Inclination Change ∆v versus Departure ∆v for Lunar Orbit Trajectories 
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Figure 7.5:  Lunar Orbit Circularization ∆v versus Departure ∆v 
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Table 7.3:  Selected Tether Trajectory Data for L1 Destination 

Handoff Altitude (km) 200 300 400

Upper Tip Altitude (km) 3758 3768 3700

Upper Tip Velocity (km/s) 8.344 8.352 8.296

L1 Bound Hohmann Velocity (km/s) 8.734 8.730 8.760

Minimum Departure ∆v (km/s) 0.390 0.378 0.464

Flight Time (hours) 95.449 95.453 95.424

L1 Rendezvous ∆v (km/s) 0.771 0.771 0.772  
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Figure 7.6:  Flight Time versus Departure ∆v for L1 Trajectories 
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Figure 7.7:  L1 Rendezvous ∆v versus Departure ∆v  

 

 

Table 7.4:  Selected Tether Trajectory Data for Lunar Elevator Destination 

Handoff Altitude (km) 200 300 400

Upper Tip Altitude (km) 3758 3768 3700

Upper Tip Velocity (km/s) 8.344 8.352 8.296

Lunar Elevator Bound Hohmann Velocity (km/s) 8.715 8.710 8.740

Minimum Departure ∆v Required (km/s) 0.371 0.358 0.444

Flight Time (hours) 78.116 78.119 78.092

Lunar Elevator ∆v (km/s) 0.597 0.597 0.598  
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The flight time to the Lunar elevator is an average of 17.333 hours shorter than that to the 

L1 point, and an average of 1.023 hours shorter than a trajectory bound for lunar orbit. 

Figure 7.8 shows the decrease in flight time afforded by adding departure ∆v.  As 

in the case of trajectories bound for the L1 point, increasing the departure ∆v causes the 

rendezvous requirements at the Lunar Elevator to go up.  The magnitudes of the 

rendezvous maneuver with the lunar elevator are very close in value to those of L1 

rendezvous, and are shown in Figure 7.9. 

7.5.4 Comparison of Trajectory Results 

Table 7.5 gives the total minimum ∆v required to reach the lunar surface for the  

three different transfer scenarios for each of the three selected tether lengths.  Table 7.6 

gives the corresponding total flight time from release at the lunar elevator until the 

payload reaches the lunar surface.  Descent from lunar orbit is assumed to happen in just 

under one hour, while descent from the L1 point is assumed to take 72 hours and requires 

2.5 kilometers per second of ∆v.   Descent along the lunar elevator includes a large block 

of time spent traveling down from its upper tip, which is assumed to be accomplished at 

an average speed of 44.704 meters per second and takes 621.371 hours. 

 As can be seen in Table 7.5, the ∆v required for transfer from the Earth orbiting 

tether to the lunar surface is much lower for each of the elevator assisted scenarios than 

the 6.03 kilometers per second of ∆v called for in the Apollo style mission.  The flight 

time for direct elevator launched trajectories to lunar orbit is comparable to that of the 

Apollo missions, which involve a three day period between departure from the Earth until 

arrival at the Moon.  The L1 trajectories offer a less attractive option compared to lunar 

orbit trajectories in terms of flight time and ∆v; the flight times are over double that 
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Figure 7.8:  Flight Time versus Departure ∆v for Lunar Elevator Trajectories 
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Figure 7.9:  Lunar Elevator Rendezvous ∆v versus Departure ∆v 
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Table 7.5:  Minimum Total ∆v to the Lunar Surface for Selected Tethers 

Handoff Altitude (km) 200 300 400

Lunar Orbit ∆v (km/s) 3.230 3.218 3.304

L1 Point ∆v (km/s) 3.661 3.649 3.736

Lunar Elevator ∆v (km/s) 0.968 0.955 1.042  

 

 

Table 7.6:  Maximum Total Flight Time from Departure to the Lunar Surface for 

Selected Tethers 

Handoff Altitude (km) 200 300 400

Lunar Orbit Flight Time (hours) 80.107 79.54 80.015

L1 Point Flight Time (hours) 167.449 167.453 167.424

Lunar Elevator Flight Time (hours) 699.487 699.49 699.463  
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required for an elevator launch to lunar orbit and come at a cost of slightly more total ∆v.  

The lunar elevator trajectories involve the longest flight times, most of which are spent in 

descending along the lunar elevator, but these come with dramatically reduced ∆v, an 

average of only 16% the ∆v required by the Apollo mission.  Each of the three transfer 

scenarios illustrates the value of the tether as a method to launch payloads beyond Earth 

orbit.
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 Chapter 8  

Summary and Recommendations for Further Study 

 In this study, an effort was made to predict the sizing requirements of an orbiting 

space elevator, and its orbital stability with the handling of a payload.  Additionally, the 

performance required for a launch vehicle to transfer a payload from Earth to a 

rendezvous with the tether has been quantified.  Finally, the savings afforded by an Earth 

orbiting space elevator in the context of a lunar transportation system have been 

investigated.  These problems were solved by modeling several different phases of 

operation of the space elevator, starting with its structural requirements.  In Chapter 3, an 

expression was derived for the required elevator cross-sectional area to support an 

attached payload as a function of its radial position.  Further efforts to predict the orbital 

motion of the elevator after payload attachment were outlined.  Two estimation methods 

were developed to predict the required elevator mass to avoid having the structure re-

enter the Earth’s atmosphere after the payload had been attached.  Values were found for 

tethers of varying lengths, which were compared against previous work done in the field.  

The first of these techniques was a simple routine of predicting a loaded elevator’s orbital 

change based on the shift in the elevator-payload system’s center of gravity.  A more 

detailed scheme was developed which predicted the loaded elevator-payload orbital 

motion based on the principle of conservation of angular velocity.  The estimation 

process involving conservation principles was found to produce elevator masses of the 

same order of magnitude as developed in previous work involving the orbiting space 

elevator.  The method involving center of gravity shift produced required elevator masses 
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that were much larger than the momentum conservation scheme and any of the 

previously developed methods employed in other studies. 

Because of the divergent results of the loaded tether’s orbital response afforded by 

estimation methods, efforts were made to develop a dynamic simulation of the elevator’s 

motion in orbit, as described in Chapter 4.  A detailed model of the tether was created by 

breaking it into discrete segments and modeling the forces acting on each segment.  The 

forces acting on the tether included the gravitational attraction of the Earth, tension in the 

tether with the addition of the payload, the aerodynamic drag caused by the Earth’s 

atmosphere, minor accelerations caused by the Earth’s oblateness, and electrodynamic 

interaction with the Earth’s magnetic field.  These perturbations were modeled because of 

their relative magnitude compared to the internal tension in the tether, and taken together, 

it was felt they would produce a relatively accurate description of the tether’s motion. 

  It should be noted that the gravitational attraction of the Sun and Moon, the solar 

pressure on the tether, and the acceleration imparted by micrometeroid impacts were 

disregarded because of the relative small scale of these perturbations.  Structural 

perturbations caused by the residual material stresses and internal fiber friction were also 

disregarded.  There were two reasons for their exclusion: first, because of their relatively 

small magnitude, and second, because of their dependence on factors involving the 

construction of the tether, an issue which lay outside the scope of this study.  A more 

detailed mathematical model of these perturbations should be included in future efforts 

made at studying the elevator’s orbital motion. 

In addition to the effect of micrometeroids on the tether’s orbit, the threat they 

pose to the survivability of an Earth orbiting elevator was not accounted for in this study.  
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Natural and man made space debris is a serious hazard to any object in the low Earth 

orbit environment.  Although this study accounts for a multiple line tether in the dynamic 

model, further investigation is needed in determining the interaction between the tether 

and small scale space debris.  This problem has to be accounted for before any further 

judgement on the feasibility of an orbiting space elevator is made. 

With the dynamic model developed in Chapter 4, values of tether mass were 

calculated with the goal of avoiding orbital decay with the addition of payload.  Three 

tethers were identified for further investigation, with lower tip altitudes of 200, 300, and 

400 kilometers.  The mathematical model developed in Chapter 4 produces tether masses 

that varied significantly from those predicted by the estimation methods in Chapter 3; this 

places the value of their accuracy in further question.  The masses required by the 

dynamic simulation were quite large, and varied between the 582 tonnes to over 5700 

tonnes, depending upon the lower tip altitude.   The relatively large mass of the elevator, 

and the requirement to construct it in orbit, could be seen as a strike against the economic 

feasibility of the concept.  The elevator would have to handle payloads on a regular basis 

in order to defray the large investment costs in construction and transportation of the 

material to Earth orbit.  For each of the three tethers, it was found that an approximately 

sized power system could influence the tether’s orbit through electrodynamic interaction 

with the Earth’s magnetic field. 

 The dynamic model developed in Chapter 4 could be further refined by 

accounting for the motion of payloads being raised along the length of the tether.  

Payload motion up the tether would produce a Coriolis acceleration that would slow the 

tether’s orbital speed, causing it to drop in altitude.  Because the deceleration would be 
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proportional to the speed that the payload is raised, it could be controlled by limiting the 

velocity at which payloads are moved along the tether.  In view of these factors, the 

interaction between payload handling motion and tether orbital decay merits further 

study. 

 The launch vehicle performance required to deliver a payload to the tether was 

explored in Chapter 5.  A dynamic model of the launch vehicle’s suborbital trajectory 

was developed and optimized through the use of the Pontryagin maximum principle.  In 

Chapter 6, rendezvous between the launch vehicle and the elevator’s lower tip was 

investigated.  The relative motion between the launch vehicle and the elevator’s lower tip 

was described.  The required performance of the launch vehicle to rendezvous with the 

elevator under less than ideal conditions was quantified.  The amount of maneuvering 

required to allow a reasonable time to transfer the payload from the launch vehicle to the 

lower tip was also found.  The requirements of rendezvous timing and hovering were 

calculated to be well within the operational capability of a vehicle originally designed for 

a single stage to orbit mission. 

In Chapter 7, several different lunar transportation scenarios were examined using 

the Earth orbiting elevator and compared against the Apollo launch system.  The three 

schemes examined were a direct transfer from the elevator’s upper tip to lunar orbit, an 

elevator-launched transfer to the L1 staging point, and a trajectory from the Earth orbiting 

elevator to a corresponding lunar elevator.  Each scenario involved a series of maneuvers:  

the first made at the upper tip of the Earth orbiting elevator to place it on an appropriate 

departure trajectory, a second made to match the departure orbital plane with the lunar 

orbital plane, and the third maneuver made to stabilize the trajectory upon arrival in the 
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vicinity of the Moon.  For each of the scenarios it is found that tether assisted trajectories 

offer significant savings in ∆v compared to an Apollo style mission to the Moon, but as 

some cost to the total flight time spent in transit. 

When the data obtained in Chapter 7 is combined with that found in the 

investigations of the launch and rendezvous, contained in Chapters 5 and 6, a total 

account of the savings afforded by the tether can be formed.  Table 8.1 gives a total ∆v 

budget for an elevator launched mission to the Moon, via lunar orbit, compared to the 

Apollo 16 reference mission.  The elevator assisted maneuvers included in Table 8.1 are 

for a tether with a handoff altitude of 400 kilometers.  This particular tether was chosen 

because of its relatively low total mass of 582 tonnes led to its construction being judged 

the most feasible of the three.  The ∆v for rendezvous in Table 8.1 is for an ideal case of 

coplanar launch and tether trajectories, with an assumed hovering time of one minute 

needed to transfer the payload.  From Table 8.1 the savings offered by the tether can be 

seen clearly in both the launch and trans-lunar injection phases of the mission. 

 Table 8.2 gives a total flight time for an elevator launched trajectory to lunar orbit 

compared to the Apollo reference mission.  For this case, it can be seen that the Apollo 

style mission will place a payload on the Moon over twice as fast as a tether launched 

payload, but at a total cost of 1.58 times as much ∆v. 
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Table 8.1: ∆v Budget for a Tether Assisted Mission to Lunar Orbit Compared to the 

Apollo Reference Mission  

Maneuver Elevator Apollo

Launch (km/s) 7.518 11.600

Elevator Rendezvous (km/s) 0.245 0

TLI (km/s) 0.484 3.050

LOI (km/s) 0.877 0.940

Descent (km/s) 2.040 2.040

Total (km/s) 11.164 17.630  

 

 

Table 8.2: Flight Time for a Tether Assisted Mission to Lunar Orbit Compared to the 

Apollo Reference Mission  

Maneuver Elevator Apollo

Launch (hours) 0.105 0.192

Elevator Ascent (hours) 91.667 0

Trans Lunar Coast (hours) 79.138 72.000

Descent (hours) 0.877 0.877

Total (km/s) 171.787 73.069  
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Appendix A:  Dynamic Tether Simulation Code 

{-----------------------------------------------------------------------------------------------------} 
program Propagation;     
{Goal: Calculates the orbital propagation of the tether  
Assumptions: Payload attached at lower end 
    Tether initially in circular orbit 
    Tether made of Zylon HM 
    Forces calculated on each segment: 
     Tension, Gravity, Electrodynamic, Earth  

Oblateness,Atmosphereic Drag  
{-----------------------------------------------------------------------------------------------------} 
USES SIOUX; 
Type  vec = array[1..650] of extended; 
  mat = array[1..600,1..600] of extended; 
Var x,z,w,dw, {Segment specific values} 
 R  {Tether radial position}: vec; 
OutputFile  : TEXT;  
 GM,   {Gravitational parameter of the Earth} 
 Pi,   {Pi are round} 
 rEarth,   {Radius of the Earth} 
 magang,  {Angle between magnetic and geographic north pole} 
 MuNought,  {Permeability of free space} 
 M,   {Magnitude of Earth's magnetic dipole moment} 
 Tex,   {Temperature of the exosphere} 
 Tincl,   {angle of tether orbital inclination} 
 CGalt,    {Intitial CG altitude of tether} 
 TethLength,  {Total length of tether} 
 aLowPt,  {Altitude of tether lower pt} 
 aHighPt,  {Altitude of tether higher pt} 
 Vcg,   {design cg initial velocity} 
 angvelCG,  {design angular velocity of the tether CG} 
 massPLdes,  {design mass of attached payload} 
 massPLact,  {actual mass of attached payload} 
 massStation,  {mass of the tether central station} 

NoLines,  {Number of Tether lines} 
 YoungMod,  {Tether spring constant} 
 rho,   {Tether material density} 
 sigma,   {Tether material Tensile Strength} 
 FacSaf,  {Tether Structural Factor of Safety} 
 Power,   {Tether Power station output} 
 diaCon,  {diameter of conducting wire} 
 Resistivity,  {Resisitvity of conducting wire} 
 Cd,   {Tether Coefficient of Drag} 
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 NoLines,  {Number of multiple lines in tether} 
 Ao,   {X sec area of tether lower end} 
 AreaConst,  {Constant used in determining X-sec area of each segment} 
 natleng0,  {natural length of tether lower end}  
 correction,  {Tangential speed correction factor} 
 NoSegments,  {Number of tether segments} 
 SegLength,  {Length of each segment} 
 StationSeg,  {Segment which contains the power station}  
 Mx,   {Magnetic dipole moment x component in tether orbital  

plane coord system} 
My,   {Magnetic dipole moment y component in tether orbital  

plane coord system} 
Mz,   {Magnetic dipole moment z component in tether orbital  

plane coord system} 
t,   {time in runge kutta} 

 Time   {time in solution time step} 
 :extended; 
{---------------------------------------------------------------------------------------------------} 
function arctan2(r,s : extended) : extended; 
var q: extended; 
begin 
 if s= 0.0 then 
  if r>0 then q:=3.141592653589793238462643/2  

else q:=-3.141592653589793238462643/2 
else 
q:= arctan(r/s); 
if s<0.0 then  
 if r<0.0 then q:=q-3.141592653589793238462643  

else q:= q+3.141592653589793238462643; 
if r=0.0 then q:= 0.0; 
arctan2:= q; 

end;   
{---------------------------------------------------------------------------------------------------}  
function arcsin(r : extended) : extended; 
 var q: extended; 

begin 
 if r= 0.0 then q:=0.0 
 else 
  if r = 1.0 then q:=3.141592653589793238462643/2 
  else 
  if r =-1.0 then q:=-3.141592653589793238462643/2  
  else q:= arctan(r/sqrt (1-(r*r))); 
 arcsin:= q; 
end;  

{---------------------------------------------------------------------------------------------------} 
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function xsecArea(r : extended) : extended; 
var q: extended; 
begin 
 q:=AreaConst*exp((-rho*FacSaf*1000.0*1000.0*((GM/r) +  

(0.5*r*r*angvelCG*angvelCG)))/sigma); 
xsecArea:= q; 

end; 
{---------------------------------------------------------------------------------------------------} 
function Dist(a,b,c,d : extended) : extended; 
{This function calculates the distance between two segment points along the tether} 

var q: extended; 
begin 

  q:=sqrt( (((a*cos(b))-(c*cos(d)))*((a*cos(b))-(c*cos(d)))) + (((a*sin(b))- 
(c*sin(d)))*((a*sin(b))-(c*sin(d))))); 

  Dist:= q; 
 end;   
{---------------------------------------------------------------------------------------------------} 
function XPTcen(a,b,c,d : extended) : extended; 
{This function calculates the radial coord of pt c,d (r, theta) in a coord system centered on 
a,b (r, theta)}  

var q: extended; 
 begin 
  q:=(cos(b)*((c*cos(d))-(a*cos(b)))) + (sin(b)*((c*sin(d))-(a*sin(b)))); 
  XPTcen:= q; 
 end;     
{---------------------------------------------------------------------------------------------------}  
function YPTcen(a,b,c,d : extended) : extended; 
{This function calculates the tangential coord of pt c,d in a coord system centered on a,b}  

var q: extended; 
 begin 
  q:=(cos(b)*((c*sin(d))-(a*sin(b)))) - (sin(b)*((c*cos(d))-(a*cos(b)))); 
  YPTcen:= q; 
 end;     
{---------------------------------------------------------------------------------------------------} 
function natLength(a: extended): extended; 
{This function calculates the natural length of an unloaded tether segment in meters for 
an inputted radius in km} 

var q : extended; 
 begin 
  q:=YoungMod*1000.0*SegLength/(YoungMod+(sigma/FacSaf)- 

(massPLdes*1000.0*((GM/((rEarth+aLowPt)*(rEarth+aLowPt)))-
(angvelCG*angvelCG*(rEarth+aLowPt)))/xsecArea(a+(SegLength/2.0)))); 
 natLength:= q; 
end;  
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{---------------------------------------------------------------------------------------------------} 
function aTenRadUp(a,b,c,d,e : extended) : extended; 
{This function calculates the acceleration due to tension between two segment points 
along the tether in the radial direction of pt a,b 
a,b are radial and tangential positions of the segment under acceleration, c,d are radial 
and tangential positions of the upper segment, e is the segment number} 
 var q: extended; 
 begin 
  if Dist(a,b,c,d) < natLength(e) then q:=0.0 
  else q:= (YoungMod*xsecArea(e+(SegLength/2.0))*(Dist(a,b,c,d)- 

(natLength(e)))/(rho*xsecArea(e)*SegLength*1000.0*natLength(e))) * 
 XPTcen(a,b,c,d)/Dist(a,b,c,d); 

 aTenRadUp:= q; 
end; 

{------------------------------------------------------------------------------------} 
function aTenRadDown(a,b,c,d,e : extended) : extended; 
{This function calculates the downward acceleration due to tension between two segment 
points along the tether in the radial direction of pt a,b 
a,b are radial and tangential positions of the segment under acceleration, c,d are radial 
and tangential positions of the lower segment, e is the segment number} 
 var q: extended; 
 begin 
  if Dist(a,b,c,d) < natLength(e) then q:=0.0 
  else q:= (YoungMod*xsecArea(e-(SegLength/2.0))*(Dist(a,b,c,d)- 

(natLength(e-SegLength)))/(rho*xsecArea(e)*SegLength*1000.0* 
natLength(e-SegLength)))* XPTcen(a,b,c,d)/Dist(a,b,c,d); 

 aTenRadDown:= q; 
end; 

{------------------------------------------------------------------------------------} 
function aTenTangUp(a,b,c,d,e : extended) : extended; 
{This function calculates the upward acceleration due to tension between two segment 
points along the tether in the tangential direction of pt a,b 
a,b are radial and tangential positions of the segment under acceleration, c,d are radial 
and tangential positions of the upper segment, e is the segment number} 
 var q: extended; 
 begin 
  if Dist(a,b,c,d) < natLength(e) then q:=0.0 
  else q:= (YoungMod*xsecArea(e+(SegLength/2.0))*(Dist(a,b,c,d)- 

(natLength(e)))/(rho*xsecArea(e)*SegLength*1000.0*natLength(e)))  
* YPTcen(a,b,c,d)/Dist(a,b,c,d); 

  aTenTangUp:= q; 
 end; 
{------------------------------------------------------------------------------------} 
function aTenTangDown(a,b,c,d,e : extended) : extended; 
{This function calculates the downward acceleration due to tension between two segment 
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points along the tether in the tangential direction of pt a,b 
a,b are radial and tangential positions of the segment under acceleration, c,d are  
radial and tangential positions of the lower segment, e is the segment number} 

var q: extended; 
 begin 
  if Dist(a,b,c,d) < natLength(e) then q:=0.0 
  else q:= (YoungMod*xsecArea(e-(SegLength/2.0))*(Dist(a,b,c,d)- 

(natLength(e-SegLength)))/(rho*xsecArea(e)*SegLength*1000.0* 
  natLength(e-SegLength)))* YPTcen(a,b,c,d)/Dist(a,b,c,d); 
  aTenTangDown:= q; 
 end; 
{------------------------------------------------------------------------------------} 
function payloadTension(a,b,c,d : extended) : extended; 
 var q: extended; 
 begin 
  if Dist(a,b,c,d) < ((SegLength*1000.0/2.0)) then q:=0.0 
  else q:= (YoungMod*Ao*(Dist(a,b,c,d)- 

(1000.0*SegLength/2.0))/(1000.0*SegLength/2.0)); 
 payloadTension:=q; 

 end; 
{------------------------------------------------------------------------------------} 
function Density(a : extended) : extended; 
{This function calculates the atmospheric density for a given radial position} 
 var q: extended; 
 begin 
  if a < ((rEarth+118.0)*1000.0) then q:=10000.0*11.0*exp(-(a- 

6378000.0)/6000.0); 
if a > ((rEarth+118.0)*1000.0) then q:=10000.0*(exp(-3.0*ln(((a- 
6378000.0)/1000.0)-95.0))) / 2600.0; 
if a > ((rEarth+200.0)*1000.0) then q:=10000.0*1.47e-16*Tex*(3000.0-
Tex)/(exp(10.0*ln( 1.0 + ((2.9*(((a-6378000.0)/1000.0)-200))/Tex)))); 
if a > ((rEarth+1200.0)*1000.0) then q:= 0.0; 
Density:=q; 

end; 
{------------------------------------------------------------------------------------} 
function aDragTang(a,b,c,d : extended) : extended; 
{This function calculates the tangential acceleration due to aerodynamic drag 
a is radial position, b is radial velocity, c is tangential velocity d is segment number} 
 var q: extended; 
 begin 
 q:=0.5*Density(a)*Cd*c*sqrt(4.0*NoLines*((b*b)+(c*c))/(Pi*xsecArea(d)))/ 

(10000.0*rho); 
  aDragTang:=q; 
 end; 
{------------------------------------------------------------------------------------} 
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function aOblRad(a,b: extended) : extended; 
{This function calculates the radial acceleration due to earth oblateness 
 a is radial position,  
 b is tangential position} 
 var q: extended; 
 begin 
  q:=(-1.5*GM*1000.0*1000.0*1000.0*0.00108263*1000.0*rEarth*1000.0 

*rEarth/(a*a*a*a))*(1.0-(1.5*sin(Tincl)*sin(Tincl)*(1.0-cos(2.0*b)))); 
 aOblRad:=q; 
end; 

{------------------------------------------------------------------------------------} 
function aOblTang(a,b: extended) : extended; 
{This function calculates the tangential acceleration due to earth oblateness 
a is radial position, b is tangential position} 
 var q: extended; 
 begin 
  q:=(-1.5*GM*1000.0*1000.0*1000.0*0.00108263*1000.0*rEarth*1000.0 

*rEarth/(a*a*a*a))*(sin(Tincl)*sin(Tincl)*sin(2.0*b)); 
 aOblTang:=q; 
end; 
{------------------------------------------------------------------------------------} 

function aEdtTang(a,b: extended) : extended; 
{This function calculates the tangential acceleration due to electrodynamic tether effects 
a is radial position, b is the segment number} 
 var q: extended; 

begin 
  if b = StationSeg then  

  q:=(sqrt(Power/(Resistivity*1000.0*(0.2*SegLength))))*Pi* 
diaCon*MuNought*M*cos(Tincl)/(rho*xsecArea(b)*8.0*a*a*a) 

else q:=(sqrt(Power/(Resistivity*1000.0*(abs(b-StationSeg)))))*Pi* 
diaCon*MuNought*M*cos(Tincl)/(rho*xsecArea(b)*8.0*a*a*a); 
aEdtTang:=q; 

end; 
{------------------------------------------------------------------------------------} 
function aTotRad(a,b,c,d,e,f,g: extended) : extended; 
{This function calculates the sum of Radial accelerations due to tension up and tension 
down, and electrodynamic tether effects 
a is radial position of the segment, b is tangential position of the segment, c is radial 
position of the next lower segment, d is tangential position of the next lower segment, e is 
radial position of the next upper segment, f is tangential position of the next upper 
segment, g is the segment number } 
 var q: extended; 
 begin 
  if g = StationSeg then q:=((aTenRadUp(a,b,e,f,g) +  

aTenRadDown(a,b,c,d,g))*rho*SegLength*1000.0*xsecArea(g)/ 
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(massStation+(rho*SegLength*1000.0*xsecArea(g))))+aOblRad(a,b) 
 else q:=aTenRadUp(a,b,e,f,g) + aTenRadDown(a,b,c,d,g) + aOblRad(a,b); 
 aTotRad:=q; 
end; 

{------------------------------------------------------------------------------------} 
function aTotTang(a,b,c,d,e,f,g,h,i: extended) : extended; 
{This function calculates the sum of Radial accelerations due to tension up and tension 
down, and electrodynamic tether effects 
a is radial position of the segment, b is tangential position of the segment, c is radial 
position of the next lower segment, d is tangential position of the next lower segment, e is 
radial position of the next upper segment, f is tangential position of the next upper 
segment, g is the segment number, h is the radial velocity,i is the tangential velocity} 
 var q: extended; 
 begin 
  if g= StationSeg then q:=((aTenTangUp(a,b,e,f,g)+ 

aTenTangDown(a,b,c,d,g) + aEdtTang(a,g) - 
aDragTang(a,h,i,g))*rho*SegLength*1000.0*xsecArea(g)/(massStation+(r
ho*SegLength*1000.0*xsecArea(g))))+ aOblTang(a,b) 
else q:=aTenTangUp(a,b,e,f,g) + aTenTangDown(a,b,c,d,g) + 
aEdtTang(a,g) - aDragTang(a,h,i,g) + aOblTang(a,b); 
aTotTang:=q; 

end; 
{------------------------------------------------------------------------------------}   
Procedure Parameters; 
 begin 
 SIOUXSettings.tabspaces := 0; 
 Pi := 3.141592653589793238462643; 
 GM := 398601.0;     {Gravitational Parameter (Earth), km3/s2} 
 rEarth := 6378.0;   {Radius of Earth, km} 
 magang := 11.3*Pi/180.0;  {radians} 
 M:= 8.1E22;    {Amp m^2} 
 MuNought:=0.00000125663706144; {Hentry/meter}     
 Tex:=1100.0;    {K}  
 {Tether Characteristics} 
 Tincl:= 35.0*Pi/180.0;   {radians} 
 CGalt:=2100.0;    {km} 
 TethLength:= 3838.0;  {km} 
 aLowPt:=200.0;   {km} 
 aHighPt:=aLowPt+TethLength; {km} 
 Vcg:=sqrt(GM/(CGalt+rEarth)); {km/s} 
 angvelCG:=Vcg/(CGalt+rEarth); {radians/s} 
 massPLdes:= 10000.0;  {kg} 
 massPLact:= 10000.0;  {kg} 
 massStation:= 50000.0;  {kg} 
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NoLines:= 4.0;   {number of tether lines} 
 {Material Properties} 
 YoungMod:= 180.0E9;  {Pa, N/M^2} 
 rho:=  1560.0;  {kg/m^3} 
 sigma:= 5.80E9;  {Pa, N/m^2} 
 FacSaf:= 3.5;   {Factor of Safety} 
 Cd:=  2.2;   {Coefficient of drag} 
 {Electrodynamic power generation properties} 
 Power:= 75000.0;  {Watts} 
 diaCon:= 0.001;   {meters} 
 Resistivity:= 0.0000000159; {Ohm meters, resistivity of Silver} 
  
 Ao:= massPLdes*FacSaf*1000.0*((GM/((rEarth+aLowPt)*(rEarth+aLowPt)))- 

(angvelCG*angvelCG*(rEarth+aLowPt)))/sigma;   
 AreaConst:= Ao/exp(-rho*FacSaf*1000.0*1000.0*((GM/(rEarth+aLowPt)) +  

(0.5*(rEarth+aLowPt)*(rEarth+aLowPt)*angvelCG*angvelCG))/sigma); 
 natleng0:= Ao*YoungMod*(1000.0*SegLength/2.0)/((massPLdes*1000.0* 

((GM/((rEarth+aLowPt)*(rEarth+aLowPt)))-(
 angvelCG*angvelCG*(rEarth+aLowPt)))) 

+(Ao*YoungMod)); 
 correction:= 1.000;   {tangential speed correction factor} 
 end; 
{---------------------------------------------------------------------------------} 
Procedure Segment;  {Segment definitions} 
 begin 
 NoSegments:= 100.0; {Number of tether segments} 
 SegLength:=TethLength/NoSegments; 
 R[1]:=rEarth+aLowPt+(SegLength/2.0);   {km} 
 R[2]:=rEarth+aLowPt+(3.0*SegLength/2.0); {km} 
 R[3]:=rEarth+aLowPt+(5.0*SegLength/2.0); {km} 
 R[4]:=rEarth+aLowPt+(7.0*SegLength/2.0); {km} 
 R[5]:=rEarth+aLowPt+(9.0*SegLength/2.0); {km} 
 R[6]:=rEarth+aLowPt+(11.0*SegLength/2.0);{km} 
 R[7]:=rEarth+aLowPt+(13.0*SegLength/2.0);{km} 
 R[8]:=rEarth+aLowPt+(15.0*SegLength/2.0);{km} 
 R[9]:=rEarth+aLowPt+(17.0*SegLength/2.0);{km} 
 R[10]:=rEarth+aLowPt+(19.0*SegLength/2.0);{km}  
 R[11]:=rEarth+aLowPt+(21.0*SegLength/2.0); {km} 
 R[12]:=rEarth+aLowPt+(23.0*SegLength/2.0);{km} 
 R[13]:=rEarth+aLowPt+(25.0*SegLength/2.0);{km} 
 R[14]:=rEarth+aLowPt+(27.0*SegLength/2.0);{km} 
 R[15]:=rEarth+aLowPt+(29.0*SegLength/2.0);{km} 
 R[16]:=rEarth+aLowPt+(31.0*SegLength/2.0);{km} 
 R[17]:=rEarth+aLowPt+(33.0*SegLength/2.0);{km} 
 R[18]:=rEarth+aLowPt+(35.0*SegLength/2.0);{km} 
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 R[19]:=rEarth+aLowPt+(37.0*SegLength/2.0);{km} 
 R[20]:=rEarth+aLowPt+(39.0*SegLength/2.0);{km} 
 R[21]:=rEarth+aLowPt+(41.0*SegLength/2.0);{km} 
 R[22]:=rEarth+aLowPt+(43.0*SegLength/2.0);{km} 
 R[23]:=rEarth+aLowPt+(45.0*SegLength/2.0);{km} 
 R[24]:=rEarth+aLowPt+(47.0*SegLength/2.0);{km} 
 R[25]:=rEarth+aLowPt+(49.0*SegLength/2.0);{km} 
 R[26]:=rEarth+aLowPt+(51.0*SegLength/2.0);{km} 
 R[27]:=rEarth+aLowPt+(53.0*SegLength/2.0);{km} 
 R[28]:=rEarth+aLowPt+(55.0*SegLength/2.0);{km} 
 R[29]:=rEarth+aLowPt+(57.0*SegLength/2.0);{km} 
 R[30]:=rEarth+aLowPt+(59.0*SegLength/2.0);{km} 
 R[31]:=rEarth+aLowPt+(61.0*SegLength/2.0);{km} 
 R[32]:=rEarth+aLowPt+(63.0*SegLength/2.0);{km} 
 R[33]:=rEarth+aLowPt+(65.0*SegLength/2.0);{km} 
 R[34]:=rEarth+aLowPt+(67.0*SegLength/2.0);{km} 
 R[35]:=rEarth+aLowPt+(69.0*SegLength/2.0);{km} 
 R[36]:=rEarth+aLowPt+(71.0*SegLength/2.0);{km} 
 R[37]:=rEarth+aLowPt+(73.0*SegLength/2.0);{km} 
 R[38]:=rEarth+aLowPt+(75.0*SegLength/2.0);{km} 
 R[39]:=rEarth+aLowPt+(77.0*SegLength/2.0);{km} 
 R[40]:=rEarth+aLowPt+(79.0*SegLength/2.0);{km} 
 R[41]:=rEarth+aLowPt+(81.0*SegLength/2.0);{km} 
 R[42]:=rEarth+aLowPt+(83.0*SegLength/2.0);{km} 
 R[43]:=rEarth+aLowPt+(85.0*SegLength/2.0);{km} 
 R[44]:=rEarth+aLowPt+(87.0*SegLength/2.0);{km} 
 R[45]:=rEarth+aLowPt+(89.0*SegLength/2.0);{km} 
 R[46]:=rEarth+aLowPt+(91.0*SegLength/2.0);{km} 
 R[47]:=rEarth+aLowPt+(93.0*SegLength/2.0);{km} 
 R[48]:=rEarth+aLowPt+(95.0*SegLength/2.0);{km} 
 R[49]:=rEarth+aLowPt+(97.0*SegLength/2.0);{km} 
 R[50]:=rEarth+aLowPt+(99.0*SegLength/2.0);{km} 
 R[51]:=rEarth+aLowPt+(101.0*SegLength/2.0);{km} 
 R[52]:=rEarth+aLowPt+(103.0*SegLength/2.0);{km} 
 R[53]:=rEarth+aLowPt+(105.0*SegLength/2.0);{km} 
 R[54]:=rEarth+aLowPt+(107.0*SegLength/2.0);{km} 
 R[55]:=rEarth+aLowPt+(109.0*SegLength/2.0);{km}  
 R[56]:=rEarth+aLowPt+(111.0*SegLength/2.0);{km}  
 R[57]:=rEarth+aLowPt+(113.0*SegLength/2.0);{km} 
 R[58]:=rEarth+aLowPt+(115.0*SegLength/2.0);{km} 
 R[59]:=rEarth+aLowPt+(117.0*SegLength/2.0);{km} 
 R[60]:=rEarth+aLowPt+(119.0*SegLength/2.0);{km} 
 R[61]:=rEarth+aLowPt+(121.0*SegLength/2.0);{km} 
 R[62]:=rEarth+aLowPt+(123.0*SegLength/2.0);{km} 
 R[63]:=rEarth+aLowPt+(125.0*SegLength/2.0);{km} 
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 R[64]:=rEarth+aLowPt+(127.0*SegLength/2.0);{km} 
 R[65]:=rEarth+aLowPt+(129.0*SegLength/2.0);{km} 
 R[66]:=rEarth+aLowPt+(131.0*SegLength/2.0);{km} 
 R[67]:=rEarth+aLowPt+(133.0*SegLength/2.0);{km} 
 R[68]:=rEarth+aLowPt+(135.0*SegLength/2.0);{km} 
 R[69]:=rEarth+aLowPt+(137.0*SegLength/2.0);{km} 
 R[70]:=rEarth+aLowPt+(139.0*SegLength/2.0);{km} 
 R[71]:=rEarth+aLowPt+(141.0*SegLength/2.0);{km} 
 R[72]:=rEarth+aLowPt+(143.0*SegLength/2.0);{km} 
 R[73]:=rEarth+aLowPt+(145.0*SegLength/2.0);{km} 
 R[74]:=rEarth+aLowPt+(147.0*SegLength/2.0);{km} 
 R[75]:=rEarth+aLowPt+(149.0*SegLength/2.0);{km} 
 R[76]:=rEarth+aLowPt+(151.0*SegLength/2.0);{km} 
 R[77]:=rEarth+aLowPt+(153.0*SegLength/2.0);{km} 
 R[78]:=rEarth+aLowPt+(155.0*SegLength/2.0);{km} 
 R[79]:=rEarth+aLowPt+(157.0*SegLength/2.0);{km} 
 R[80]:=rEarth+aLowPt+(159.0*SegLength/2.0);{km} 
 R[81]:=rEarth+aLowPt+(161.0*SegLength/2.0);{km} 
 R[82]:=rEarth+aLowPt+(163.0*SegLength/2.0);{km} 
 R[83]:=rEarth+aLowPt+(165.0*SegLength/2.0);{km} 
 R[84]:=rEarth+aLowPt+(167.0*SegLength/2.0);{km} 
 R[85]:=rEarth+aLowPt+(169.0*SegLength/2.0);{km} 
 R[86]:=rEarth+aLowPt+(171.0*SegLength/2.0);{km} 
 R[87]:=rEarth+aLowPt+(173.0*SegLength/2.0);{km} 
 R[88]:=rEarth+aLowPt+(175.0*SegLength/2.0);{km} 
 R[89]:=rEarth+aLowPt+(177.0*SegLength/2.0);{km} 
 R[90]:=rEarth+aLowPt+(179.0*SegLength/2.0);{km} 
 R[91]:=rEarth+aLowPt+(181.0*SegLength/2.0);{km} 
 R[92]:=rEarth+aLowPt+(183.0*SegLength/2.0);{km} 
 R[93]:=rEarth+aLowPt+(185.0*SegLength/2.0);{km} 
 R[94]:=rEarth+aLowPt+(187.0*SegLength/2.0);{km} 
 R[95]:=rEarth+aLowPt+(189.0*SegLength/2.0);{km} 
 R[96]:=rEarth+aLowPt+(191.0*SegLength/2.0);{km} 
 R[97]:=rEarth+aLowPt+(193.0*SegLength/2.0);{km} 
 R[98]:=rEarth+aLowPt+(195.0*SegLength/2.0);{km} 
 R[99]:=rEarth+aLowPt+(197.0*SegLength/2.0);{km} 
 R[100]:=rEarth+aLowPt+(199.0*SegLength/2.0);{km} 
 StationSeg:=R[50];  
 end; 
{---------------------------------------------------------------------------------} 
procedure Runge( procedure de(t:extended; var y,dy:vec); n :integer; h :extended; 
     var t :extended; var y :vec ); 
 var y1,f1,f2,f3,f4 :vec; 
  i : integer; 
  h2 : extended; 
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 begin  
  h2:= h/2;   
  de( t,y,f1 ); 
  for i:=1 to n do y1[i]:= y[i] + h2*f1[i]; 
  t:=t + h2;   
  de( t,y1,f2 ); 
  for i:=1 to n do y1[i]:= y[i] + h2*f2[i];   
  de( t,y1,f3 ); 
  for i:=1 to n do y1[i]:= y[i] + h *f3[i]; 
  t:=t + h2;   
  de( t,y1,f4 ); 
  for i:=1 to n do y[i]:= y[i] + h/6*(f1[i]+2*(f2[i]+f3[i])+f4[i]); 
 end; 
{----------------------------------------------------------------------------} 
Procedure Equations( y:extended; var w,dw :vec ); 
begin 
{Payload Equations} 
dw[1] := w[3];   dw[2] := w[4]/w[1];  
dw[3] := (w[4]*w[4]/w[1]) - (GM*1000.0*1000.0*1000.0/(w[1]*w[1])) +  

aOblRad(w[1],w[2]) + (payloadTension(w[1],w[2],w[5],w[6])* 
(XPTcen(w[1],w[2],w[5],w[6]))/(massPLact*Dist(w[1],w[2],w[5],w[6])));  

dw[4] := aOblTang(w[1],w[2]) + (payloadTension(w[1],w[2],w[5],w[6])* 
(YPTcen(w[1],w[2],w[5],w[6]))/(massPLact*Dist(w[1],w[2],w[5],w[6]))) –  
(w[3]*w[4]/w[1]);   

{Segment 1 Equations} 
dw[5] := w[7];   dw[6] := w[8]/w[5];  
dw[7] := (w[8]*w[8]/w[5]) - (GM*1000.0*1000.0*1000.0/(w[5]*w[5])) +  

aOblRad(w[5],w[6]) + (aTenRadUp(w[5],w[6],w[9],w[10],R[1])) +  
(payloadTension(w[5],w[6],w[1],w[2])*(XPTcen(w[5],w[6],w[1],w[2]))/(rho* 
xsecArea(R[1])*SegLength*1000.0*Dist(w[5],w[6],w[1],w[2]))); 

dw[8] := aOblTang(w[5],w[6]) + (aTenTangUp(w[5],w[6],w[9],w[10],R[1])) –  
(w[7]*w[8]/w[5]) + aEdtTang(w[5],R[1]) +payloadTension(w[5],w[6],w[1],w[2]) 
*(YPTcen(w[5],w[6],w[1],w[2]))/(rho*xsecArea(R[1])*SegLength*1000.0*Dist( 
w[5],w[6],w[1],w[2]))) - aDragTang(w[5],w[7],w[8],R[1]) ; 

{Segment 2 Equations}  
dw[9] := w[11];   dw[10] := w[12]/w[9];  
dw[11] := (w[12]*w[12]/w[9]) - (GM*1000.0*1000.0*1000.0/(w[9]*w[9])) +  

aTotRad(w[9],w[10],w[5],w[6],w[13],w[14],R[2]); 
dw[12] := aTotTang(w[9],w[10],w[5],w[6],w[13],w[14],R[2],w[11],w[12]) –  

(w[11]*w[12]/w[9]);  
{Segment 3 Equations} 
dw[13] := w[15];  dw[14] := w[16]/w[13];  
dw[15] := (w[16]*w[16]/w[13]) - (GM*1000.0*1000.0*1000.0/(w[13]*w[13])) +  

aTotRad(w[13],w[14],w[9],w[10],w[17],w[18],R[3]);  
dw[16] := aTotTang(w[13],w[14],w[9],w[10],w[17],w[18],R[3],w[15],w[16]) –  
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(w[15]*w[16]/w[13]);  
{Segment 4 Equations} 
dw[17] := w[19];   dw[18] := w[20]/w[17];  
dw[19] := (w[20]*w[20]/w[17]) - (GM*1000.0*1000.0*1000.0/(w[17]*w[17])) +  

aTotRad(w[17],w[18],w[13],w[14],w[21],w[22],R[4]);  
dw[20] := aTotTang(w[17],w[18],w[13],w[14],w[21],w[22],R[4],w[19],w[20]) –  

(w[19]*w[20]/w[17]); 
{Segment 5 Equations} 
dw[21] := w[23];   dw[22] := w[24]/w[21];  
dw[23] := (w[24]*w[24]/w[21]) - (GM*1000.0*1000.0*1000.0/(w[21]*w[21])) +  

aTotRad(w[21],w[22],w[17],w[18],w[25],w[26],R[5]);  
dw[24] := aTotTang(w[21],w[22],w[17],w[18],w[25],w[26],R[5],w[23],w[24]) –  

(w[23]*w[24]/w[21]);  
{Segment 6 Equations} 
dw[25] := w[27];   dw[26] := w[28]/w[25];  
dw[27] := (w[28]*w[28]/w[25]) - (GM*1000.0*1000.0*1000.0/(w[25]*w[25])) +  

aTotRad(w[25],w[26],w[21],w[22],w[29],w[30],R[6]); 
dw[28] := aTotTang(w[25],w[26],w[21],w[22],w[29],w[30],R[6],w[27],w[28]) –  

(w[27]*w[28]/w[25]);  
{Segment 7 Equations} 
dw[29] := w[31];   dw[30] := w[32]/w[29];  
dw[31] := (w[32]*w[32]/w[29]) - (GM*1000.0*1000.0*1000.0/(w[29]*w[29])) +  

aTotRad(w[29],w[30],w[25],w[26],w[33],w[34],R[7]);  
dw[32] := aTotTang(w[29],w[30],w[25],w[26],w[33],w[34],R[7],w[31],w[32]) –  

(w[31]*w[32]/w[29]);  
{Segment 8 Equations} 
dw[33] := w[35];   dw[34] := w[36]/w[33];  
dw[35] := (w[36]*w[36]/w[33]) - (GM*1000.0*1000.0*1000.0/(w[33]*w[33])) + 
aTotRad(w[33],w[34],w[29],w[30],w[37],w[38],R[8]);  
dw[36] := aTotTang(w[33],w[34],w[29],w[30],w[37],w[38],R[8],w[35],w[36]) - 
(w[35]*w[36]/w[33]);  
{Segment 9 Equations} 
dw[37] := w[39];   dw[38] := w[40]/w[37];  
dw[39] := (w[40]*w[40]/w[37]) - (GM*1000.0*1000.0*1000.0/(w[37]*w[37])) + 
aTotRad(w[37],w[38],w[33],w[34],w[41],w[42],R[9]);  
dw[40] := aTotTang(w[37],w[38],w[33],w[34],w[41],w[42],R[9],w[39],w[40]) –  

(w[39]*w[40]/w[37]);  
{Segment 10 Equations} 
dw[41] := w[43];   dw[42] := w[44]/w[41];  
dw[43] := (w[44]*w[44]/w[41]) - (GM*1000.0*1000.0*1000.0/(w[41]*w[41])) +  

aTotRad(w[41],w[42],w[37],w[38],w[45],w[46],R[10]);  
dw[44] := aTotTang(w[41],w[42],w[37],w[38],w[45],w[46],R[10],w[43],w[44]) –  

(w[43]*w[44]/w[41]);  
{Segment 11 Equations} 
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dw[45] := w[47];   dw[46] := w[48]/w[45];  
dw[47] := (w[48]*w[48]/w[45]) - (GM*1000.0*1000.0*1000.0/(w[45]*w[45])) +  

aTotRad(w[45],w[46],w[41],w[42],w[49],w[50],R[11]);  
dw[48] := aTotTang(w[45],w[46],w[42],w[41],w[49],w[50],R[11],w[47],w[48]) –  

(w[47]*w[48]/w[45]);  
{Segment 12 Equations} 
dw[49] := w[51];   dw[50] := w[52]/w[49];  
dw[51] := (w[52]*w[52]/w[49]) - (GM*1000.0*1000.0*1000.0/(w[49]*w[49])) +  

aTotRad(w[49],w[50],w[45],w[46],w[53],w[54],R[12]);  
dw[52] := aTotTang(w[49],w[50],w[45],w[46],w[53],w[54],R[12],w[51],w[52]) –  

(w[51]*w[52]/w[49]);  
{Segment 13 Equations} 
dw[53] := w[55];   dw[54] := w[56]/w[53];  
dw[55] := (w[56]*w[56]/w[53]) - (GM*1000.0*1000.0*1000.0/(w[53]*w[53])) +  

aTotRad(w[53],w[54],w[49],w[50],w[57],w[58],R[13]);  
dw[56] := aTotTang(w[53],w[54],w[49],w[50],w[57],w[58],R[13],w[55],w[56]) –  

(w[55]*w[56]/w[53]);  
{Segment 14 Equations} 
dw[57] := w[59];   dw[58] := w[60]/w[57];  
dw[59] := (w[60]*w[60]/w[57]) - (GM*1000.0*1000.0*1000.0/(w[57]*w[57])) +  

aTotRad(w[57],w[58],w[53],w[54],w[61],w[62],R[14]);  
dw[60] := aTotTang(w[57],w[58],w[53],w[54],w[61],w[62],R[14],w[59],w[60]) –  

(w[59]*w[60]/w[57]);  
{Segment 15 Equations} 
dw[61] := w[63];   dw[62] := w[64]/w[61];  
dw[63] := (w[64]*w[64]/w[61]) - (GM*1000.0*1000.0*1000.0/(w[61]*w[61])) +  

aTotRad(w[61],w[62],w[57],w[58],w[65],w[66],R[15]);  
dw[64] := aTotTang(w[61],w[62],w[57],w[58],w[65],w[66],R[15],w[63],w[64]) –  

(w[63]*w[64]/w[61]);  
{Segment 16 Equations} 
dw[65] := w[67];   dw[66] := w[68]/w[65];  
dw[67] := (w[68]*w[68]/w[65]) - (GM*1000.0*1000.0*1000.0/(w[65]*w[65])) +  

aTotRad(w[65],w[66],w[61],w[62],w[69],w[70],R[16]);  
dw[68] := aTotTang(w[65],w[66],w[61],w[62],w[69],w[70],R[16],w[67],w[68]) –  

(w[67]*w[68]/w[65]);   
{Segment 17 Equations} 
dw[69] := w[71];   dw[70] := w[72]/w[69];  
dw[71] := (w[72]*w[72]/w[69]) - (GM*1000.0*1000.0*1000.0/(w[69]*w[69])) +  

aTotRad(w[69],w[70],w[65],w[66],w[73],w[74],R[17]);  
dw[72] := aTotTang(w[69],w[70],w[65],w[66],w[73],w[74],R[17],w[71],w[72]) – 

(w[71]*w[72]/w[69]);  
{Segment 18 Equations} 
dw[73] := w[75];   dw[74] := w[76]/w[73];  
dw[75] := (w[76]*w[76]/w[73]) - (GM*1000.0*1000.0*1000.0/(w[73]*w[73])) +  

aTotRad(w[73],w[74],w[69],w[70],w[77],w[78],R[18]);  
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dw[76] := aTotTang(w[73],w[74],w[69],w[70],w[77],w[78],R[18],w[75],w[76]) –  
(w[75]*w[76]/w[73]);  

{Segment 19 Equations} 
dw[77] := w[79];   dw[78] := w[80]/w[77];  
dw[79] := (w[80]*w[80]/w[77]) - (GM*1000.0*1000.0*1000.0/(w[77]*w[77])) +  

aTotRad(w[77],w[78],w[73],w[74],w[81],w[82],R[19]);  
dw[80] := aTotTang(w[77],w[78],w[73],w[74],w[81],w[82],R[19],w[79],w[80]) –  

(w[79]*w[80]/w[77]);  
{Segment 20 Equations} 
dw[81] := w[83];   dw[82] := w[84]/w[81];  
dw[83] := (w[84]*w[84]/w[81]) - (GM*1000.0*1000.0*1000.0/(w[81]*w[81])) +  

aTotRad(w[81],w[82],w[77],w[78],w[85],w[86],R[20]);  
dw[84] := aTotTang(w[81],w[82],w[77],w[78],w[85],w[86],R[20],w[83],w[84]) –  

(w[83]*w[84]/w[81]);  
{Segment 21 Equations} 
dw[85] := w[87];   dw[86] := w[88]/w[85];  
dw[87] := (w[88]*w[88]/w[85]) - (GM*1000.0*1000.0*1000.0/(w[85]*w[85])) +  

aTotRad(w[85],w[86],w[81],w[82],w[89],w[90],R[21]);  
dw[88] := aTotTang(w[85],w[86],w[81],w[82],w[89],w[90],R[21],w[87],w[88]) –  

(w[87]*w[88]/w[85]);  
{Segment 22 Equations} 
dw[89] := w[91];   dw[90] := w[92]/w[89];  
dw[91] := (w[92]*w[92]/w[89]) - (GM*1000.0*1000.0*1000.0/(w[89]*w[89])) +  

aTotRad(w[89],w[90],w[85],w[86],w[93],w[94],R[22]);  
dw[92] := aTotTang(w[89],w[90],w[85],w[86],w[93],w[94],R[22],w[91],w[92]) –  

(w[91]*w[92]/w[89]);  
{Segment 23 Equations} 
dw[93] := w[95];   dw[94] := w[96]/w[93];  
dw[95] := (w[96]*w[96]/w[93]) - (GM*1000.0*1000.0*1000.0/(w[93]*w[93])) +  

aTotRad(w[93],w[94],w[89],w[90],w[97],w[98],R[23]);  
dw[96] := aTotTang(w[93],w[94],w[89],w[90],w[97],w[98],R[23],w[95],w[96]) –  

(w[95]*w[96]/w[93]);  
{Segment 24 Equations} 
dw[97] := w[99];   dw[98] := w[100]/w[97];  
dw[99] := (w[100]*w[100]/w[97]) - (GM*1000.0*1000.0*1000.0/(w[97]*w[97])) +  

aTotRad(w[97],w[98],w[93],w[94],w[101],w[102],R[24]);  
dw[100] := aTotTang(w[97],w[98],w[93],w[94],w[101],w[102],R[24],w[99],w[100]) –  

(w[99]*w[100]/w[97]);  
{Segment 25 Equations} 
dw[101] := w[103];   dw[102] := w[104]/w[101];  
dw[103] := (w[104]*w[104]/w[101]) - (GM*1000.0*1000.0*1000.0/(w[101]*w[101])) +  

aTotRad(w[101],w[102],w[97],w[98],w[105],w[106],R[25]);  
dw[104] := aTotTang(w[101],w[102],w[97],w[98],w[105],w[106],R[25],w[103],w[104])  

- (w[103]*w[104]/w[101]);  
{Segment 26 Equations} 
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dw[105] := w[107];   dw[106] := w[108]/w[105];  
dw[107] := (w[108]*w[108]/w[105]) - (GM*1000.0*1000.0*1000.0/(w[105]*w[105])) +  

aTotRad(w[105],w[106],w[101],w[102],w[109],w[110],R[26]);  
dw[108] := aTotTang(w[105],w[106],w[101],w[102],w[109],w[110],R[26], w[107],  

w[108]) – (w[107]*w[108]/w[105]);  
{Segment 27 Equations} 
dw[109] := w[111];   dw[110] := w[112]/w[109];  
dw[111] := (w[112]*w[112]/w[109]) - (GM*1000.0*1000.0*1000.0/(w[109]*w[109])) +  

aTotRad(w[109],w[110],w[105],w[106],w[113],w[114],R[27]); 
dw[112] := aTotTang(w[109],w[110],w[105],w[106],w[113],w[114],R[27],w[111],  

w[112]) – (w[111]*w[112]/w[109]);  
{Segment 28 Equations} 
dw[113] := w[115];   dw[114] := w[116]/w[113];  
dw[115] := (w[116]*w[116]/w[113]) - (GM*1000.0*1000.0*1000.0/(w[113]*w[113])) +  

aTotRad(w[113],w[114],w[109],w[110],w[117],w[118],R[28]);  
dw[116] := aTotTang(w[113],w[114],w[109],w[110],w[117],w[118],R[28], w[115],  

w[116]) - (w[115]*w[116]/w[113]);  
{Segment 29 Equations} 
dw[117] := w[119];   dw[118] := w[120]/w[117];  
dw[119] := (w[120]*w[120]/w[117]) - (GM*1000.0*1000.0*1000.0/(w[117]*w[117])) +  

aTotRad(w[117],w[118],w[113],w[114],w[121],w[122],R[29]);  
dw[120] := aTotTang(w[117],w[118],w[113],w[114],w[121],w[122],R[29],  

w[119],w[120]) - (w[119]*w[120]/w[117]);  
{Segment 30 Equations} 
dw[121] := w[123];   dw[122] := w[124]/w[121];  
dw[123] := (w[124]*w[124]/w[121]) - (GM*1000.0*1000.0*1000.0/(w[121]*w[121])) +  

aTotRad(w[121],w[122],w[117],w[118],w[125],w[126],R[30]);  
dw[124] := aTotTang(w[121],w[122],w[117],w[118],w[125],w[126],R[30], 

w[123],w[124]) - (w[123]*w[124]/w[121]);  
{Segment 31 Equations} 
dw[125] := w[127];   dw[126] := w[128]/w[125];  
dw[127] := (w[128]*w[128]/w[125]) - (GM*1000.0*1000.0*1000.0/(w[125]*w[125])) +  

aTotRad(w[125],w[126],w[121],w[122],w[129],w[130],R[31]);  
dw[128] := aTotTang(w[125],w[126],w[121],w[122],w[129],w[130],R[31], 

w[127],w[128]) - (w[127]*w[128]/w[125]);  
{Segment 32 Equations} 
dw[129] := w[131];   dw[130] := w[132]/w[129];  
dw[131] := (w[132]*w[132]/w[129]) - (GM*1000.0*1000.0*1000.0/(w[129]*w[129])) +  
aTotRad(w[129],w[130],w[125],w[126],w[133],w[134],R[32]);  
dw[132] := aTotTang(w[129],w[130],w[125],w[126],w[133],w[134],R[32], 

w[131],w[132]) - (w[131]*w[132]/w[129]);  
{Segment 33 Equations} 
dw[133] := w[135];   dw[134] := w[136]/w[133];  
dw[135] := (w[136]*w[136]/w[133]) - (GM*1000.0*1000.0*1000.0/(w[133]*w[133])) +  
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aTotRad(w[133],w[134],w[129],w[130],w[137],w[138],R[33]);  
dw[136] := aTotTang(w[133],w[134],w[129],w[130],w[137],w[138],R[33], 

w[135],w[136]) - (w[135]*w[136]/w[133]);  
{Segment 34 Equations} 
dw[137] := w[139];   dw[138] := w[140]/w[137];  
dw[139] := (w[140]*w[140]/w[137]) - (GM*1000.0*1000.0*1000.0/(w[137]*w[137])) +  

aTotRad(w[137],w[138],w[133],w[134],w[141],w[142],R[34]);  
dw[140] := aTotTang(w[137],w[138],w[133],w[134],w[141],w[142],R[34], 

w[139],w[140]) - (w[139]*w[140]/w[137]);  
{Segment 35 Equations} 
dw[141] := w[143];   dw[142] := w[144]/w[141];  
dw[143] := (w[144]*w[144]/w[141]) - (GM*1000.0*1000.0*1000.0/(w[141]*w[141])) +  

aTotRad(w[141],w[142],w[137],w[138],w[145],w[146],R[35]);  
dw[144] := aTotTang(w[141],w[142],w[137],w[138],w[145],w[146],R[35], 

w[143],w[144]) - (w[143]*w[144]/w[141]);  
{Segment 36 Equations} 
dw[145] := w[147];   dw[146] := w[148]/w[145];  
dw[147] := (w[148]*w[148]/w[145]) - (GM*1000.0*1000.0*1000.0/(w[145]*w[145])) +  

aTotRad(w[145],w[146],w[141],w[142],w[149],w[150],R[36]);  
dw[148] := aTotTang(w[145],w[146],w[141],w[142],w[149],w[150],R[36], 

w[147],w[148]) - (w[147]*w[148]/w[145]);  
{Segment 37 Equations} 
dw[149] := w[151];   dw[150] := w[152]/w[149];  
dw[151] := (w[152]*w[152]/w[149]) - (GM*1000.0*1000.0*1000.0/(w[149]*w[149])) +  

aTotRad(w[149],w[150],w[145],w[146],w[153],w[154],R[37]);  
dw[152] := aTotTang(w[149],w[150],w[145],w[146],w[153],w[154],R[37], 

w[151],w[152]) - (w[151]*w[152]/w[149]);  
{Segment 38 Equations} 
dw[153] := w[155];   dw[154] := w[156]/w[153];  
dw[155] := (w[156]*w[156]/w[153]) - (GM*1000.0*1000.0*1000.0/(w[153]*w[153])) +  

aTotRad(w[153],w[154],w[149],w[150],w[157],w[158],R[38]);  
dw[156] := aTotTang(w[153],w[154],w[149],w[150],w[157],w[158],R[38], 

w[155],w[156]) - (w[155]*w[156]/w[153]);  
{Segment 39 Equations} 
dw[157] := w[159];   dw[158] := w[160]/w[157];  
dw[159] := (w[160]*w[160]/w[157]) - (GM*1000.0*1000.0*1000.0/(w[157]*w[157])) + 
aTotRad(w[157],w[158],w[153],w[154],w[161],w[162],R[39]);  
dw[160] := aTotTang(w[157],w[158],w[153],w[154],w[161],w[162],R[39], 

w[159],w[160]) - (w[159]*w[160]/w[157]);  
{Segment 40 Equations} 
dw[161] := w[163];   dw[162] := w[164]/w[161];  
dw[163] := (w[164]*w[164]/w[161]) - (GM*1000.0*1000.0*1000.0/(w[161]*w[161])) + 
aTotRad(w[161],w[162],w[157],w[158],w[165],w[166],R[40]);  
dw[164] := aTotTang(w[161],w[162],w[157],w[158],w[165],w[166],R[40], {tangential 
acceleration equation} 
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{Segment 41 Equations} 
dw[165] := w[167];   dw[166] := w[168]/w[165];  
dw[167] := (w[168]*w[168]/w[165]) - (GM*1000.0*1000.0*1000.0/(w[165]*w[165])) +  

aTotRad(w[165],w[166],w[161],w[162],w[169],w[170],R[41]);  
dw[168] := aTotTang(w[165],w[166],w[161],w[162],w[169],w[170],R[41], 

w[167],w[168]) - (w[167]*w[168]/w[165]);  
{Segment 42 Equations} 
dw[169] := w[171];   dw[170] := w[172]/w[169];  
dw[171] := (w[172]*w[172]/w[169]) - (GM*1000.0*1000.0*1000.0/(w[169]*w[169])) +  

aTotRad(w[169],w[170],w[165],w[166],w[173],w[174],R[42]);  
dw[172] := aTotTang(w[169],w[170],w[165],w[166],w[173],w[174],R[42], 

w[171],w[172]) - (w[171]*w[172]/w[169]);   
{Segment 43 Equations} 
dw[173] := w[175];   dw[174] := w[176]/w[173];  
dw[175] := (w[176]*w[176]/w[173]) - (GM*1000.0*1000.0*1000.0/(w[173]*w[173])) +  

aTotRad(w[173],w[174],w[169],w[170],w[177],w[178],R[43]);  
dw[176] := aTotTang(w[173],w[174],w[169],w[170],w[177],w[178],R[43], 

w[175],w[176]) - (w[175]*w[176]/w[173]);  
{Segment 44 Equations} 
dw[177] := w[179];   dw[178] := w[180]/w[177];  
dw[179] := (w[180]*w[180]/w[177]) - (GM*1000.0*1000.0*1000.0/(w[177]*w[177])) +  

aTotRad(w[177],w[178],w[173],w[174],w[181],w[182],R[44]);  
dw[180] := aTotTang(w[177],w[178],w[173],w[174],w[181],w[182],R[44], 

w[179],w[180]) - (w[179]*w[180]/w[177]);  
{Segment 45 Equations} 
dw[181] := w[183];   dw[182] := w[184]/w[181];  

dw[183] := (w[184]*w[184]/w[181]) - 
(GM*1000.0*1000.0*1000.0/(w[181]*w[181]))+  

aTotRad(w[181],w[182],w[177],w[178],w[185],w[186],R[45]);  
dw[184] := aTotTang(w[181],w[182],w[177],w[178],w[185],w[186],R[45], 

w[183],w[184]) - (w[183]*w[184]/w[181]);  
{Segment 46 Equations} 
dw[185] := w[187];   dw[186] := w[188]/w[185];  
dw[187] := (w[188]*w[188]/w[185]) - (GM*1000.0*1000.0*1000.0/(w[185]*w[185])) +  

aTotRad(w[185],w[186],w[181],w[182],w[189],w[190],R[46]);  
dw[188] := aTotTang(w[185],w[186],w[181],w[182],w[189],w[190],R[46], 

w[187],w[188]) - (w[187]*w[188]/w[185]);  
{Segment 47 Equations} 
dw[189] := w[191];   dw[190] := w[192]/w[189];  
dw[191] := (w[192]*w[192]/w[189]) - (GM*1000.0*1000.0*1000.0/(w[189]*w[189])) +  

aTotRad(w[189],w[190],w[185],w[186],w[193],w[194],R[47]);  
dw[192] := aTotTang(w[189],w[190],w[185],w[186],w[193],w[194],R[47], 

w[191],w[192]) - (w[191]*w[192]/w[189]);  
{Segment 48 Equations} 
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dw[193] := w[195];   dw[194] := w[196]/w[193];  
dw[195] := (w[196]*w[196]/w[193]) - (GM*1000.0*1000.0*1000.0/(w[193]*w[193])) +  

aTotRad(w[193],w[194],w[189],w[190],w[197],w[198],R[48]);  
dw[196] := aTotTang(w[193],w[194],w[189],w[190],w[197],w[198],R[48], 

w[195],w[196]) - (w[195]*w[196]/w[193]);  
{Segment 49 Equations} 
dw[197] := w[199];   dw[198] := w[200]/w[197];  
dw[199] := (w[200]*w[200]/w[197]) - (GM*1000.0*1000.0*1000.0/(w[197]*w[197])) +  

aTotRad(w[197],w[198],w[193],w[194],w[201],w[202],R[49]);  
dw[200] := aTotTang(w[197],w[198],w[193],w[194],w[201],w[202],R[49],  

w[199],w[200]) - (w[199]*w[200]/w[197]);  
{Segment 50 Equations} 
dw[201] := w[203];   dw[202] := w[204]/w[201];  
dw[203] := (w[204]*w[204]/w[201]) - (GM*1000.0*1000.0*1000.0/(w[201]*w[201])) +  

aTotRad(w[201],w[202],w[197],w[198],w[205],w[206],R[50]);  
dw[204] := aTotTang(w[201],w[202],w[197],w[198],w[205],w[206],R[50], 

w[203],w[204]) - (w[203]*w[204]/w[201]);  
{Segment 51 Equations} 
dw[205] := w[207];   dw[206] := w[208]/w[205];  
dw[207] := (w[208]*w[208]/w[205]) - (GM*1000.0*1000.0*1000.0/(w[205]*w[205])) +  

aTotRad(w[205],w[206],w[201],w[202],w[209],w[210],R[51]);  
dw[208] := aTotTang(w[205],w[206],w[201],w[202],w[209],w[210],R[51], 

w[207],w[208]) - (w[207]*w[208]/w[205]);  
{Segment 52 Equations} 
dw[209] := w[211];   dw[210] := w[212]/w[209];  
dw[211] := (w[212]*w[212]/w[209]) - (GM*1000.0*1000.0*1000.0/(w[209]*w[209])) +  

aTotRad(w[209],w[210],w[205],w[206],w[213],w[214],R[52]);  
dw[212] := aTotTang(w[209],w[210],w[205],w[206],w[213],w[214],R[52], 

w[211],w[212]) - (w[211]*w[212]/w[209]);  
{Segment 53 Equations} 
dw[213] := w[215];   dw[214] := w[216]/w[213];  
dw[215] := (w[216]*w[216]/w[213]) - (GM*1000.0*1000.0*1000.0/(w[213]*w[213])) +  

aTotRad(w[213],w[214],w[209],w[210],w[217],w[218],R[53]); 
 dw[216] := 
aTotTang(w[213],w[214],w[209],w[210],w[217],w[218],R[53],w[215],w[216]) - 
(w[215]*w[216]/w[213]);  
{Segment 54 Equations} 
dw[217] := w[219];   dw[218] := w[220]/w[217];  
dw[219] := (w[220]*w[220]/w[217]) - (GM*1000.0*1000.0*1000.0/(w[217]*w[217])) +  

aTotRad(w[217],w[218],w[213],w[214],w[221],w[222],R[54]);  
dw[220] := aTotTang(w[217],w[218],w[213],w[214],w[221],w[222],R[54], 

w[219],w[220]) - (w[219]*w[220]/w[217]);  
{Segment 55 Equations} 
dw[221] := w[223];   dw[222] := w[224]/w[221];  
dw[223] := (w[224]*w[224]/w[221]) - (GM*1000.0*1000.0*1000.0/(w[221]*w[221])) +  

 216



 

aTotRad(w[221],w[222],w[217],w[218],w[225],w[226],R[55]);  
dw[224] := aTotTang(w[221],w[222],w[217],w[218],w[225],w[226],R[55], 

w[223],w[224]) - (w[223]*w[224]/w[221]);  
{Segment 56 Equations} 
dw[225] := w[227];   dw[226] := w[228]/w[225];  
dw[227] := (w[228]*w[228]/w[225]) - (GM*1000.0*1000.0*1000.0/(w[225]*w[225])) +  

aTotRad(w[225],w[226],w[221],w[222],w[229],w[230],R[56]);  
dw[228] := aTotTang(w[225],w[226],w[221],w[222],w[229],w[230],R[56], 

w[227],w[228]) - (w[227]*w[228]/w[225]);  
{Segment 57 Equations} 
dw[229] := w[231];   dw[230] := w[232]/w[229];  
dw[231] := (w[232]*w[232]/w[229]) - (GM*1000.0*1000.0*1000.0/(w[229]*w[229])) + 
aTotRad(w[229],w[230],w[225],w[226],w[233],w[234],R[57]);  
dw[232] := aTotTang(w[229],w[230],w[225],w[226],w[233],w[234],R[57], 

w[231],w[232]) - (w[231]*w[232]/w[229]);  
{Segment 58 Equations} 
dw[233] := w[235];   dw[234] := w[236]/w[233];   
dw[235] := (w[236]*w[236]/w[233]) - (GM*1000.0*1000.0*1000.0/(w[233]*w[233])) +  

aTotRad(w[233],w[234],w[229],w[230],w[237],w[238],R[58]);  
dw[236] := aTotTang(w[233],w[234],w[229],w[230],w[237],w[238],R[58], 

w[235],w[236]) - (w[235]*w[236]/w[233]);  
{Segment 59 Equations} 
dw[237] := w[239];   dw[238] := w[240]/w[237];  
dw[239] := (w[240]*w[240]/w[237]) - (GM*1000.0*1000.0*1000.0/(w[237]*w[237])) +  

aTotRad(w[237],w[238],w[233],w[234],w[241],w[242],R[59]);  
dw[240] := aTotTang(w[237],w[238],w[233],w[234],w[241],w[242],R[59],  

w[239],w[240]) - (w[239]*w[240]/w[237]);  
{Segment 60 Equations} 
dw[241] := w[243];   dw[242] := w[244]/w[241];  
dw[243] := (w[244]*w[244]/w[241]) - (GM*1000.0*1000.0*1000.0/(w[241]*w[241])) +  

aTotRad(w[241],w[242],w[237],w[238],w[245],w[246],R[60]);  
dw[244] := aTotTang(w[241],w[242],w[237],w[238],w[245],w[246],R[60], 

w[243],w[244]) - (w[243]*w[244]/w[241]);  
{Segment 61 Equations} 
dw[245] := w[247];   dw[246] := w[248]/w[245];  
dw[247] := (w[248]*w[248]/w[245]) - (GM*1000.0*1000.0*1000.0/(w[245]*w[245])) +  

aTotRad(w[245],w[246],w[241],w[242],w[249],w[250],R[61]);  
dw[248] := aTotTang(w[245],w[246],w[241],w[242],w[249],w[250],R[61], 

w[247],w[248]) - (w[247]*w[248]/w[245]); 
{Segment 62 Equations} 
dw[249] := w[251];   dw[250] := w[252]/w[249];  
dw[251] := (w[252]*w[252]/w[249]) - (GM*1000.0*1000.0*1000.0/(w[249]*w[249])) +  

aTotRad(w[249],w[250],w[245],w[246],w[253],w[254],R[62]);  
 dw[252] := aTotTang(w[249],w[250],w[245],w[246],w[253],w[254],R[62], 
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w[251],w[252]) - (w[251]*w[252]/w[249]);  
{Segment 63 Equations} 
dw[253] := w[255];   dw[254] := w[256]/w[253];  
dw[255] := (w[256]*w[256]/w[253]) - (GM*1000.0*1000.0*1000.0/(w[253]*w[253])) +  

aTotRad(w[253],w[254],w[249],w[250],w[257],w[258],R[63]);  
dw[256] := aTotTang(w[253],w[254],w[249],w[250],w[257],w[258],R[63], 

w[255],w[256]) - (w[255]*w[256]/w[253]);  
{Segment 64 Equations} 
dw[257] := w[259];   dw[258] := w[260]/w[257];  
dw[259] := (w[260]*w[260]/w[257]) - (GM*1000.0*1000.0*1000.0/(w[257]*w[257])) +  

aTotRad(w[257],w[258],w[253],w[254],w[261],w[262],R[64]);  
dw[260] := aTotTang(w[257],w[258],w[253],w[254],w[261],w[262],R[64], 

w[259],w[260]) - (w[259]*w[260]/w[257]);  
{Segment 65 Equations} 
dw[261] := w[263];   dw[262] := w[264]/w[261];  
dw[263] := (w[264]*w[264]/w[261]) - (GM*1000.0*1000.0*1000.0/(w[261]*w[261])) +  

aTotRad(w[261],w[262],w[257],w[258],w[265],w[266],R[65]);  
dw[264] := aTotTang(w[261],w[262],w[257],w[258],w[265],w[266],R[65], 

w[263],w[264]) - (w[263]*w[264]/w[261]);  
{Segment 66 Equations} 
dw[265] := w[267];   dw[266] := w[268]/w[265];  
dw[267] := (w[268]*w[268]/w[265]) - (GM*1000.0*1000.0*1000.0/(w[265]*w[265])) +  

aTotRad(w[265],w[266],w[261],w[262],w[269],w[270],R[66]);  
dw[268] := aTotTang(w[265],w[266],w[261],w[262],w[269],w[270],R[66], 

w[267],w[268]) - (w[267]*w[268]/w[265]);  
{Segment 67 Equations} 
dw[269] := w[271];   dw[270] := w[272]/w[269];  
dw[271] := (w[272]*w[272]/w[269]) - (GM*1000.0*1000.0*1000.0/(w[269]*w[269])) +  

aTotRad(w[269],w[270],w[265],w[266],w[273],w[274],R[67]);  
dw[272] := aTotTang(w[269],w[270],w[265],w[266],w[273],w[274],R[67], 

w[271],w[272]) - (w[271]*w[272]/w[269]);  
{Segment 68 Equations} 
dw[273] := w[275];   dw[274] := w[276]/w[273];  
dw[275] := (w[276]*w[276]/w[273]) - (GM*1000.0*1000.0*1000.0/(w[273]*w[273])) +  

aTotRad(w[273],w[274],w[269],w[270],w[277],w[278],R[68]);  
dw[276] := aTotTang(w[273],w[274],w[269],w[270],w[277],w[278],R[68], 

w[275],w[276]) - (w[275]*w[276]/w[273]);  
{Segment 69 Equations} 
dw[277] := w[279];   dw[278] := w[280]/w[277];  
dw[279] := (w[280]*w[280]/w[277]) - (GM*1000.0*1000.0*1000.0/(w[277]*w[277])) + 
aTotRad(w[277],w[278],w[273],w[274],w[281],w[282],R[69]);  
dw[280] := aTotTang(w[277],w[278],w[273],w[274],w[281],w[282],R[69], 

w[279],w[280]) - (w[279]*w[280]/w[277]);  
{Segment 70 Equations} 
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dw[281] := w[283];   dw[282] := w[284]/w[281];  
dw[283] := (w[284]*w[284]/w[281]) - (GM*1000.0*1000.0*1000.0/(w[281]*w[281])) +  

aTotRad(w[281],w[282],w[277],w[278],w[285],w[286],R[70]);  
dw[284] := aTotTang(w[281],w[282],w[277],w[278],w[285],w[286],R[70], 

w[283],w[284]) - (w[283]*w[284]/w[281]);  
{Segment 71 Equations} 
dw[285] := w[287];   dw[286] := w[288]/w[285];  
dw[287] := (w[288]*w[288]/w[285]) - (GM*1000.0*1000.0*1000.0/(w[285]*w[285])) +  

aTotRad(w[285],w[286],w[281],w[282],w[289],w[290],R[71]);  
dw[288] := aTotTang(w[285],w[286],w[281],w[282],w[289],w[290],R[71], 

w[287],w[288]) - (w[287]*w[288]/w[285]);  
{Segment 72 Equations} 
dw[289] := w[291];   dw[290] := w[292]/w[289];  
dw[291] := (w[292]*w[292]/w[289]) - (GM*1000.0*1000.0*1000.0/(w[289]*w[289])) +  

aTotRad(w[289],w[290],w[285],w[286],w[293],w[294],R[72]);  
dw[292] := aTotTang(w[289],w[290],w[285],w[286],w[293],w[294],R[72], 

w[291],w[292]) - (w[291]*w[292]/w[289]); {tangential acceleration equation} 
{Segment 73 Equations} 
dw[293] := w[295];   dw[294] := w[296]/w[293];  
dw[295] := (w[296]*w[296]/w[293]) - (GM*1000.0*1000.0*1000.0/(w[293]*w[293])) +  

aTotRad(w[293],w[294],w[289],w[290],w[297],w[298],R[73]);  
dw[296] := aTotTang(w[293],w[294],w[289],w[290],w[297],w[298],R[73], 

w[295],w[296]) - (w[295]*w[296]/w[293]);  
{Segment 74 Equations} 
dw[297] := w[299];   dw[298] := w[300]/w[297];  
dw[299] := (w[300]*w[300]/w[297]) - (GM*1000.0*1000.0*1000.0/(w[297]*w[297])) +  

aTotRad(w[297],w[298],w[293],w[294],w[301],w[302],R[74]);  
dw[300] := aTotTang(w[297],w[298],w[293],w[294],w[301],w[302],R[74], 

w[299],w[300]) - (w[299]*w[300]/w[297]);  
{Segment 75 Equations} 
dw[301] := w[303];   dw[302] := w[304]/w[301];  
dw[303] := (w[304]*w[304]/w[301]) - (GM*1000.0*1000.0*1000.0/(w[301]*w[301])) +  

aTotRad(w[301],w[302],w[297],w[298],w[305],w[306],R[75]);  
dw[304] := aTotTang(w[301],w[302],w[297],w[298],w[305],w[306],R[75], 

w[303],w[304]) - (w[303]*w[304]/w[301]);  
{Segment 76 Equations} 
dw[305] := w[307];   dw[306] := w[308]/w[305];  
dw[307] := (w[308]*w[308]/w[305]) - (GM*1000.0*1000.0*1000.0/(w[305]*w[305])) +  

aTotRad(w[305],w[306],w[301],w[302],w[309],w[310],R[76]);  
dw[308] := aTotTang(w[305],w[306],w[301],w[302],w[309],w[310],R[76], 

w[307],w[308]) - (w[307]*w[308]/w[305]);  
{Segment 77 Equations} 
dw[309] := w[311];   dw[310] := w[312]/w[309];  
dw[311] := (w[312]*w[312]/w[309]) - (GM*1000.0*1000.0*1000.0/(w[309]*w[309])) +  

aTotRad(w[309],w[310],w[305],w[306],w[313],w[314],R[77]);  
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dw[312] := aTotTang(w[309],w[310],w[305],w[306],w[313],w[314],R[77], 
w[311],w[312]) - (w[311]*w[312]/w[309]);  

{Segment 78 Equations} 
dw[313] := w[315];   dw[314] := w[316]/w[313];  
dw[315] := (w[316]*w[316]/w[313]) - (GM*1000.0*1000.0*1000.0/(w[313]*w[313])) +  

aTotRad(w[313],w[314],w[309],w[310],w[317],w[318],R[78]);  
dw[316] := aTotTang(w[313],w[314],w[309],w[310],w[317],w[318],R[78], 

w[315],w[316]) - (w[315]*w[316]/w[313]);  
{Segment 79 Equations} 
dw[317] := w[319];   dw[318] := w[320]/w[317];  
dw[319] := (w[320]*w[320]/w[317]) - (GM*1000.0*1000.0*1000.0/(w[317]*w[317])) +  

aTotRad(w[317],w[318],w[313],w[314],w[321],w[322],R[79]);  
dw[320] := aTotTang(w[317],w[318],w[313],w[314],w[321],w[322],R[79], 

w[319],w[320]) - (w[319]*w[320]/w[317]);  
{Segment 80 Equations} 
dw[321] := w[323];   dw[322] := w[324]/w[321];  
dw[323] := (w[324]*w[324]/w[321]) - (GM*1000.0*1000.0*1000.0/(w[321]*w[321])) +  

aTotRad(w[321],w[322],w[317],w[318],w[325],w[326],R[80]);  
dw[324] := aTotTang(w[321],w[322],w[317],w[318],w[325],w[326],R[80], 

w[323],w[324]) - (w[323]*w[324]/w[321]);  
{Segment 81 Equations} 
dw[325] := w[327];   dw[326] := w[328]/w[325];  
dw[327] := (w[328]*w[328]/w[325]) - (GM*1000.0*1000.0*1000.0/(w[325]*w[325])) +  

aTotRad(w[325],w[326],w[321],w[322],w[329],w[330],R[81]);  
dw[328] := aTotTang(w[325],w[326],w[321],w[322],w[329],w[330],R[81], 

w[327],w[328]) - (w[327]*w[328]/w[325]);  
{Segment 82 Equations} 
dw[329] := w[331];   dw[330] := w[332]/w[329];  
dw[331] := (w[332]*w[332]/w[329]) - (GM*1000.0*1000.0*1000.0/(w[329]*w[329])) +  

aTotRad(w[329],w[330],w[325],w[326],w[333],w[334],R[82]);  
dw[332] := aTotTang(w[329],w[330],w[325],w[326],w[333],w[334],R[82], 

w[331],w[332]) - (w[331]*w[332]/w[329]);  
{Segment 83 Equations} 
dw[333] := w[335];   dw[334] := w[336]/w[333];  
dw[335] := (w[336]*w[336]/w[333]) - (GM*1000.0*1000.0*1000.0/(w[333]*w[333])) +  

aTotRad(w[333],w[334],w[329],w[330],w[337],w[338],R[83]);  
dw[336] := aTotTang(w[333],w[334],w[329],w[330],w[337],w[338],R[83], 

w[335],w[336]) - (w[335]*w[336]/w[333]);  
{Segment 84 Equations} 
dw[337] := w[339];   dw[338] := w[340]/w[337];  
dw[339] := (w[340]*w[340]/w[337]) - (GM*1000.0*1000.0*1000.0/(w[337]*w[337])) +  

aTotRad(w[337],w[338],w[333],w[334],w[341],w[342],R[84]);  
dw[340] := aTotTang(w[337],w[338],w[333],w[334],w[341],w[342],R[84], 

w[339],w[340]) - (w[339]*w[340]/w[337]);  
{Segment 85 Equations} 
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dw[341] := w[343];   dw[342] := w[344]/w[341];  
dw[343] := (w[344]*w[344]/w[341]) - (GM*1000.0*1000.0*1000.0/(w[341]*w[341])) +  

aTotRad(w[341],w[342],w[337],w[338],w[345],w[346],R[85]);  
dw[344] := aTotTang(w[341],w[342],w[337],w[338],w[345],w[346],R[85], 

w[343],w[344]) - (w[343]*w[344]/w[341]);   
{Segment 86 Equations} 
dw[345] := w[347];   dw[346] := w[348]/w[345];  
dw[347] := (w[348]*w[348]/w[345]) - (GM*1000.0*1000.0*1000.0/(w[345]*w[345])) +  

aTotRad(w[345],w[346],w[341],w[342],w[349],w[350],R[86]);  
dw[348] := aTotTang(w[345],w[346],w[341],w[342],w[349],w[350],R[86], 

w[347],w[348]) - (w[347]*w[348]/w[345]);  
{Segment 87 Equations} 
dw[349] := w[351];   dw[350] := w[352]/w[349];  
dw[351] := (w[352]*w[352]/w[349]) - (GM*1000.0*1000.0*1000.0/(w[349]*w[349])) +  

aTotRad(w[349],w[350],w[345],w[346],w[353],w[354],R[87]);  
dw[352] := aTotTang(w[349],w[350],w[345],w[346],w[353],w[354],R[87], 

w[351],w[352]) - (w[351]*w[352]/w[349]);  
{Segment 88 Equations} 
dw[353] := w[355];   dw[354] := w[356]/w[353];  
dw[355] := (w[356]*w[356]/w[353]) - (GM*1000.0*1000.0*1000.0/(w[353]*w[353])) +  

aTotRad(w[353],w[354],w[349],w[350],w[357],w[358],R[88]);  
dw[356] := aTotTang(w[353],w[354],w[349],w[350],w[357],w[358],R[88], 

w[355],w[356]) - (w[355]*w[356]/w[353]);  
{Segment 89 Equations} 
dw[357] := w[359];   dw[358] := w[360]/w[357];  
dw[359] := (w[360]*w[360]/w[357]) - (GM*1000.0*1000.0*1000.0/(w[357]*w[357])) +  

aTotRad(w[357],w[358],w[353],w[354],w[361],w[362],R[89]);  
dw[360] := aTotTang(w[357],w[358],w[353],w[354],w[361],w[362],R[89], 

w[359],w[360]) - (w[359]*w[360]/w[357]);  
{Segment 90 Equations} 
dw[361] := w[363];   dw[362] := w[364]/w[361];  
dw[363] := (w[364]*w[364]/w[361]) - (GM*1000.0*1000.0*1000.0/(w[361]*w[361])) +  

aTotRad(w[361],w[362],w[357],w[358],w[365],w[366],R[90]);   
dw[364] := aTotTang(w[361],w[362],w[357],w[358],w[365],w[366],R[90], 

w[363],w[364]) - (w[363]*w[364]/w[361]);  
{Segment 91 Equations} 
dw[365] := w[367];   dw[366] := w[368]/w[365];  
dw[367] := (w[368]*w[368]/w[365]) - (GM*1000.0*1000.0*1000.0/(w[365]*w[365])) +  

aTotRad(w[365],w[366],w[361],w[362],w[369],w[370],R[91]);  
dw[368] := aTotTang(w[365],w[366],w[361],w[362],w[369],w[370],R[91], 

w[367],w[368]) - (w[367]*w[368]/w[365]);  
{Segment 92 Equations} 
dw[369] := w[371];   dw[370] := w[372]/w[369];  
dw[371] := (w[372]*w[372]/w[369]) - (GM*1000.0*1000.0*1000.0/(w[369]*w[369])) +  

aTotRad(w[369],w[370],w[365],w[366],w[373],w[374],R[92]); 
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dw[372] := aTotTang(w[369],w[370],w[365],w[366],w[373],w[374],R[92], 
w[371],w[372]) - (w[371]*w[372]/w[369]);  

{Segment 93 Equations} 
dw[373] := w[375];   dw[374] := w[376]/w[373];  
dw[375] := (w[376]*w[376]/w[373]) - (GM*1000.0*1000.0*1000.0/(w[373]*w[373])) +  

aTotRad(w[373],w[374],w[369],w[370],w[377],w[378],R[93]);  
dw[376] := aTotTang(w[373],w[374],w[369],w[370],w[377],w[378],R[93], 

w[375],w[376]) - (w[375]*w[376]/w[373]);  
{Segment 94 Equations} 
dw[377] := w[379];   dw[378] := w[380]/w[377];  
dw[379] := (w[380]*w[380]/w[377]) - (GM*1000.0*1000.0*1000.0/(w[377]*w[377])) +  

aTotRad(w[377],w[378],w[373],w[374],w[381],w[382],R[94]);  
dw[380] := aTotTang(w[377],w[378],w[373],w[374],w[381],w[382],R[94], 

w[379],w[380]) - (w[379]*w[380]/w[377]);  
{Segment 95 Equations} 
dw[381] := w[383];   dw[382] := w[384]/w[381];  
dw[383] := (w[384]*w[384]/w[381]) - (GM*1000.0*1000.0*1000.0/(w[381]*w[381]))+  

aTotRad(w[381],w[382],w[377],w[378],w[385],w[386],R[95]);  
dw[384] := aTotTang(w[381],w[382],w[377],w[378],w[385],w[386],R[95], 

w[383],w[384]) - (w[383]*w[384]/w[381]);  
{Segment 96 Equations} 
dw[385] := w[387];   dw[386] := w[388]/w[385];  
dw[387] := (w[388]*w[388]/w[385]) - (GM*1000.0*1000.0*1000.0/(w[385]*w[385])) +  

aTotRad(w[385],w[386],w[381],w[382],w[389],w[390],R[96]);  
dw[388] := aTotTang(w[385],w[386],w[381],w[382],w[389],w[390],R[96], 

w[387],w[388]) - (w[387]*w[388]/w[385]);  
{Segment 97 Equations} 
dw[389] := w[391];   dw[390] := w[392]/w[389];  
dw[391] := (w[392]*w[392]/w[389]) - (GM*1000.0*1000.0*1000.0/(w[389]*w[389])) +  

aTotRad(w[389],w[390],w[385],w[386],w[393],w[394],R[97]);  
dw[392] := aTotTang(w[389],w[390],w[385],w[386],w[393],w[394],R[97], 

w[391],w[392]) - (w[391]*w[392]/w[389]);  
{Segment 98 Equations} 
dw[393] := w[395];   dw[394] := w[396]/w[393];  
dw[395] := (w[396]*w[396]/w[393]) - (GM*1000.0*1000.0*1000.0/(w[393]*w[393])) +  

aTotRad(w[393],w[394],w[389],w[390],w[397],w[398],R[98]);  
dw[396] := aTotTang(w[393],w[394],w[389],w[390],w[397],w[398],R[98], 

w[395],w[396]) - (w[395]*w[396]/w[393]);  
{Segment 99 Equations} 
dw[397] := w[399];   dw[398] := w[400]/w[397];  
dw[399] := (w[400]*w[400]/w[397]) - (GM*1000.0*1000.0*1000.0/(w[397]*w[397])) +  

aTotRad(w[397],w[398],w[393],w[394],w[401],w[402],R[99]);  
dw[400] := aTotTang(w[397],w[398],w[393],w[394],w[401],w[402],R[99], 

w[399],w[400]) - (w[399]*w[400]/w[397]);  
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{Segment 100 Equations} 
dw[401] := w[403];   dw[402] := w[404]/w[401];  
dw[403] := (w[404]*w[404]/w[401]) - (GM*1000.0*1000.0*1000.0/(w[401]*w[401])) +  

(aTenRadDown(w[401],w[402],w[397],w[398],R[100])) +  
aOblRad(w[401],w[402]); 

dw[404] := (aTenTangDown(w[401],w[402],w[397],w[398],R[100]))  -  
(w[403]*w[404]/w[401]) + aEdtTang(w[401],R[100]) +  
aOblTang(w[401],w[402]);  

 end; 
{---------------------------------------------------------------------------------}   
Procedure Conditions; 
Var a0,a1,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,Dr,Di,xi,theta,D:    extended; 
begin 
w[1]:=1000.0*(rEarth+aLowPt); w[2]:=0.0;     
w[3]:=0.0;    w[4]:=1000.0*(rEarth+aLowPt)*angvelCG;  
{Segment 1 Conditions} 
w[5]:=R[1]*1000.0;   w[6]:=0.0; 
w[7]:=0.0;    w[8]:=1000.0*R[1]*angvelCG;  
{Segment 2 Conditions} 
w[9]:=R[2]*1000.0;   w[10]:=0.0;  
w[11]:=0.0;    w[12]:=1000.0*R[2]*angvelCG;  
{Segment 3 Conditions} 
w[13]:=R[3]*1000.0;   w[14]:=0.0; 
w[15]:=0.0;    w[16]:=1000.0*R[3]*angvelCG;  
{Segment 4 Conditions} 
w[17]:=R[4]*1000.0;   w[18]:=0.0;     
w[19]:=0.0;    w[20]:=1000.0*R[4]*angvelCG;  
{Segment 5 Conditions} 
w[21]:=R[5]*1000.0;   w[22]:=0.0;  
w[23]:=0.0;    w[24]:=1000.0*R[5]*angvelCG;  
{Segment 6 Conditions} 
w[25]:=R[6]*1000.0;   w[26]:=0.0; 
w[27]:=0.0;    w[28]:=1000.0*R[6]*angvelCG;  
{Segment 7 Conditions} 
w[29]:=R[7]*1000.0;   w[30]:=0.0; 
w[31]:=0.0;    w[32]:=1000.0*R[7]*angvelCG;  
{Segment 8 Conditions} 
w[33]:=R[8]*1000.0;   w[34]:=0.0; 
w[35]:=0.0;    w[36]:=1000.0*R[8]*angvelCG; 
{Segment 9 Conditions} 
w[37]:=R[9]*1000.0;   w[38]:=0.0; 
w[39]:=0.0;    w[40]:=1000.0*R[9]*angvelCG;  
{Segment 10 Conditions} 
w[41]:=R[10]*1000.0;  w[42]:=0.0;     
w[43]:=0.0;    w[44]:=1000.0*R[10]*angvelCG;  
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{Segment 11 Conditions} 
w[45]:=R[11]*1000.0;  w[46]:=0.0; 
w[47]:=0.0;    w[48]:=1000.0*R[11]*angvelCG; 
{Segment 12 Conditions} 
w[49]:=R[12]*1000.0;  w[50]:=0.0; 
w[51]:=0.0;    w[52]:=1000.0*R[12]*angvelCG; 
{Segment 13 Conditions} 
w[53]:=R[13]*1000.0;  w[54]:=0.0; 
w[55]:=0.0;    w[56]:=1000.0*R[13]*angvelCG;  
{Segment 14 Conditions} 
w[57]:=R[14]*1000.0;  w[58]:=0.0; 
w[59]:=0.0;    w[60]:=1000.0*R[14]*angvelCG;  
w[61]:=R[15]*1000.0;  w[62]:=0.0;     
w[63]:=0.0;    w[64]:=1000.0*R[15]*angvelCG;  
{Segment 16 Conditions} 
w[65]:=R[16]*1000.0;  w[66]:=0.0;     
w[67]:=0.0;    w[68]:=1000.0*R[16]*angvelCG;  
{Segment 17 Conditions} 
w[69]:=R[17]*1000.0;  w[70]:=0.0;     
w[71]:=0.0;    w[72]:=1000.0*R[17]*angvelCG;  
{Segment 18 Conditions} 
w[73]:=R[18]*1000.0;  w[74]:=0.0;     
w[75]:=0.0;    w[76]:=1000.0*R[18]*angvelCG;  
{Segment 19 Conditions} 
w[77]:=R[19]*1000.0;  w[78]:=0.0;  
w[79]:=0.0;    w[80]:=1000.0*R[19]*angvelCG;  
{Segment 20 Conditions} 
w[81]:=R[20]*1000.0;  w[82]:=0.0;     
w[83]:=0.0;    w[84]:=1000.0*R[20]*angvelCG;  
{Segment 21 Conditions} 
w[85]:=R[21]*1000.0;  w[86]:=0.0;     
w[87]:=0.0;    w[88]:=1000.0*R[21]*angvelCG;  
{Segment 22 Conditions} 
w[89]:=R[22]*1000.0;  w[90]:=0.0;     
w[91]:=0.0;    w[92]:=1000.0*R[22]*angvelCG;  
{Segment 23 Conditions} 
w[93]:=R[23]*1000.0;  w[94]:=0.0;     
w[95]:=0.0;    w[96]:=1000.0*R[23]*angvelCG;  
{Segment 24 Conditions} 
w[97]:=R[24]*1000.0;  w[98]:=0.0;     
w[99]:=0.0;    w[100]:=1000.0*R[24]*angvelCG;  
{Segment 25 Conditions} 
w[101]:=R[25]*1000.0;  w[102]:=0.0;     
w[103]:=0.0;    w[104]:=1000.0*R[25]*angvelCG;  
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{Segment 26 Conditions} 
w[105]:=R[26]*1000.0;  w[106]:=0.0;     
w[107]:=0.0;    w[108]:=1000.0*R[26]*angvelCG;  
{Segment 27 Conditions} 
w[109]:=R[27]*1000.0;  w[110]:=0.0;     
w[111]:=0.0;    w[112]:=1000.0*R[27]*angvelCG;  
{Segment 28 Conditions} 
w[113]:=R[28]*1000.0;  w[114]:=0.0;     
w[115]:=0.0;    w[116]:=1000.0*R[28]*angvelCG;  
{Segment 29 Conditions} 
w[117]:=R[29]*1000.0;  w[118]:=0.0;     
w[119]:=0.0;    w[120]:=1000.0*R[29]*angvelCG;  
{Segment 30 Conditions} 
w[121]:=R[30]*1000.0;  w[122]:=0.0;     
w[123]:=0.0;    w[124]:=1000.0*R[30]*angvelCG;  
{Segment 31 Conditions} 
w[125]:=R[31]*1000.0;  w[126]:=0.0;     
w[127]:=0.0;    w[128]:=1000.0*R[31]*angvelCG;  
{Segment 32 Conditions} 
w[129]:=R[32]*1000.0;  w[130]:=0.0;     
w[131]:=0.0;    w[132]:=1000.0*R[32]*angvelCG;  
{Segment 33 Conditions} 
w[133]:=R[33]*1000.0;  w[134]:=0.0;   
w[135]:=0.0;    w[136]:=1000.0*R[33]*angvelCG;  
{Segment 34 Conditions} 
w[137]:=R[34]*1000.0;  w[138]:=0.0;     
w[139]:=0.0;    w[140]:=1000.0*R[34]*angvelCG;  
{Segment 35 Conditions}  
w[141]:=R[35]*1000.0;  w[142]:=0.0;     
w[143]:=0.0;    w[144]:=1000.0*R[35]*angvelCG; 
{Segment 36 Conditions} 
w[145]:=R[36]*1000.0;  w[146]:=0.0;     
w[147]:=0.0;    w[148]:=1000.0*R[36]*angvelCG;  
{Segment 37 Conditions} 
w[149]:=R[37]*1000.0;  w[150]:=0.0;  
w[151]:=0.0;    w[152]:=1000.0*R[37]*angvelCG;  
{Segment 38 Conditions} 
w[153]:=R[38]*1000.0;  w[154]:=0.0;     
w[155]:=0.0;    w[156]:=1000.0*R[38]*angvelCG;  
{Segment 39 Conditions} 
w[157]:=R[39]*1000.0;  w[158]:=0.0;  
w[159]:=0.0;    w[160]:=1000.0*R[39]*angvelCG;  
{Segment 40 Conditions} 
w[161]:=R[40]*1000.0;  w[162]:=0.0;     
w[163]:=0.0;    w[164]:=1000.0*R[40]*angvelCG;  
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{Segment 41 Conditions} 
w[165]:=R[41]*1000.0;  w[166]:=0.0;     
w[167]:=0.0;    w[168]:=1000.0*R[41]*angvelCG;  
{Segment 42 Conditions} 
w[169]:=R[42]*1000.0;  w[170]:=0.0;     
w[171]:=0.0;    w[172]:=1000.0*R[42]*angvelCG;  
{Segment 43 Conditions} 
w[173]:=R[43]*1000.0;  w[174]:=0.0;     
w[175]:=0.0;    w[176]:=1000.0*R[43]*angvelCG;  
{Segment 44 Conditions} 
w[177]:=R[44]*1000.0;  w[178]:=0.0;     
w[179]:=0.0;    w[180]:=1000.0*R[44]*angvelCG;  
{Segment 45 Conditions} 
w[181]:=R[45]*1000.0;  w[182]:=0.0;  
w[183]:=0.0;    w[184]:=1000.0*R[45]*angvelCG;  
{Segment 46 Conditions} 
w[185]:=R[46]*1000.0;  w[186]:=0.0;  
w[187]:=0.0;    w[188]:=1000.0*R[46]*angvelCG;  
{Segment 47 Conditions} 
w[189]:=R[47]*1000.0;  w[190]:=0.0;     
w[191]:=0.0;    w[192]:=1000.0*R[47]*angvelCG;  
{Segment 48 Conditions} 
w[193]:=R[48]*1000.0;  w[194]:=0.0;     
w[195]:=0.0;    w[196]:=1000.0*R[48]*angvelCG;  
{Segment 49 Conditions} 
w[197]:=R[49]*1000.0;  w[198]:=0.0;     
w[199]:=0.0;    w[200]:=1000.0*R[49]*angvelCG;  
{Segment 50 Conditions} 
w[201]:=R[50]*1000.0;  w[202]:=0.0;  
w[203]:=0.0;    w[204]:=1000.0*R[50]*angvelCG;  
{Segment 51 Conditions} 
w[205]:=R[51]*1000.0;  w[206]:=0.0;  
w[207]:=0.0;    w[208]:=1000.0*R[51]*angvelCG;  
{Segment 52 Conditions} 
w[209]:=R[52]*1000.0;  w[210]:=0.0;     
w[211]:=0.0;    w[212]:=1000.0*R[52]*angvelCG;  
{Segment 53 Conditions} 
w[213]:=R[53]*1000.0;  w[214]:=0.0;     
w[215]:=0.0;    w[216]:=1000.0*R[53]*angvelCG;  
{Segment 54 Conditions} 
w[217]:=R[54]*1000.0;  w[218]:=0.0;     
w[219]:=0.0;    m/s}w[220]:=1000.0*R[54]*angvelCG; 
{Segment 55 Conditions} 
w[221]:=R[55]*1000.0;  w[222]:=0.0;     
w[223]:=0.0;    w[224]:=1000.0*R[55]*angvelCG;  
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{Segment 56 Conditions} 
w[225]:=R[56]*1000.0;  w[226]:=0.0;    
w[227]:=0.0;    w[228]:=1000.0*R[56]*angvelCG; 
{Segment 57 Conditions} 
w[229]:=R[57]*1000.0;  w[230]:=0.0;    
w[231]:=0.0;    w[232]:=1000.0*R[57]*angvelCG;  
{Segment 58 Conditions} 
w[233]:=R[58]*1000.0;  w[234]:=0.0;     
w[235]:=0.0;    w[236]:=1000.0*R[58]*angvelCG;  
{Segment 59 Conditions} 
w[237]:=R[59]*1000.0;  w[238]:=0.0;     
w[239]:=0.0;    w[240]:=1000.0*R[59]*angvelCG;  
{Segment 60 Conditions} 
w[241]:=R[60]*1000.0;  w[242]:=0.0;     
w[243]:=0.0;    w[244]:=1000.0*R[60]*angvelCG;  
{Segment 61 Conditions} 
w[245]:=R[61]*1000.0;  w[246]:=0.0;     
w[247]:=0.0;    w[248]:=1000.0*R[61]*angvelCG;  
{Segment 62 Conditions} 
w[249]:=R[62]*1000.0;  w[250]:=0.0;     
w[251]:=0.0;    w[252]:=1000.0*R[62]*angvelCG;  
{Segment 63 Conditions} 
w[253]:=R[63]*1000.0;  w[254]:=0.0;     
w[255]:=0.0;    w[256]:=1000.0*R[63]*angvelCG;  
{Segment 64 Conditions} 
w[257]:=R[64]*1000.0;  w[258]:=0.0;     
w[259]:=0.0;    w[260]:=1000.0*R[64]*angvelCG;  
{Segment 65 Conditions} 
w[261]:=R[65]*1000.0;  w[262]:=0.0;     
w[263]:=0.0;    w[264]:=1000.0*R[65]*angvelCG;  
{Segment 66 Conditions} 
w[265]:=R[66]*1000.0;  w[266]:=0.0;     
w[267]:=0.0;     w[268]:=1000.0*R[66]*angvelCG;  
{Segment 67 Conditions} 
w[269]:=R[67]*1000.0;  w[270]:=0.0;   
w[271]:=0.0;    w[272]:=1000.0*R[67]*angvelCG;  
{Segment 68 Conditions} 
w[273]:=R[68]*1000.0;  w[274]:=0.0;     
w[275]:=0.0;    w[276]:=1000.0*R[68]*angvelCG;  
{Segment 69 Conditions} 
w[277]:=R[69]*1000.0;  w[278]:=0.0;     
w[279]:=0.0;    w[280]:=1000.0*R[69]*angvelCG;  
{Segment 70 Conditions} 
w[281]:=R[70]*1000.0;  w[282]:=0.0;  
w[283]:=0.0;    w[284]:=1000.0*R[70]*angvelCG;  
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{Segment 71 Conditions} 
w[285]:=R[71]*1000.0;  w[286]:=0.0;     
w[287]:=0.0;    w[288]:=1000.0*R[71]*angvelCG;  
{Segment 72 Conditions} 
w[289]:=R[72]*1000.0;  w[290]:=0.0;     
w[291]:=0.0;    w[292]:=1000.0*R[72]*angvelCG;  
{Segment 73 Conditions} 
w[293]:=R[73]*1000.0;  w[294]:=0.0;     
w[295]:=0.0;    w[296]:=1000.0*R[73]*angvelCG;  
{Segment 74 Conditions} 
w[297]:=R[74]*1000.0;  w[298]:=0.0;     
w[299]:=0.0;    w[300]:=1000.0*R[74]*angvelCG;  
{Segment 75 Conditions} 
w[301]:=R[75]*1000.0;  w[302]:=0.0;     
w[303]:=0.0;    w[304]:=1000.0*R[75]*angvelCG;  
{Segment 76 Conditions} 
w[305]:=R[76]*1000.0;  w[306]:=0.0;     
w[307]:=0.0;    w[308]:=1000.0*R[76]*angvelCG;  
{Segment 77 Conditions} 
w[309]:=R[77]*1000.0;  w[310]:=0.0;     
w[311]:=0.0;    w[312]:=1000.0*R[77]*angvelCG;  
{Segment 78 Conditions} 
w[313]:=R[78]*1000.0;  w[314]:=0.0;     
w[315]:=0.0;    w[316]:=1000.0*R[78]*angvelCG;  
{Segment 79 Conditions} 
w[317]:=R[79]*1000.0;  w[318]:=0.0;     
w[319]:=0.0;    w[320]:=1000.0*R[79]*angvelCG;  
{Segment 80 Conditions} 
w[321]:=R[80]*1000.0;  w[322]:=0.0;     
w[323]:=0.0;    w[324]:=1000.0*R[80]*angvelCG;  
{Segment 81 Conditions} 
w[325]:=R[81]*1000.0;  w[326]:=0.0;     
w[327]:=0.0;    w[328]:=1000.0*R[81]*angvelCG;  
{Segment 82 Conditions} 
w[329]:=R[82]*1000.0;  w[330]:=0.0;     
w[331]:=0.0;    w[332]:=1000.0*R[82]*angvelCG;  
{Segment 83 Conditions} 
w[333]:=R[83]*1000.0;  w[334]:=0.0;     
w[335]:=0.0;    w[336]:=1000.0*R[83]*angvelCG;  
{Segment 84 Conditions} 
w[337]:=R[84]*1000.0;  w[338]:=0.0;     
w[339]:=0.0;    w[340]:=1000.0*R[84]*angvelCG;  
{Segment 85 Conditions} 
w[341]:=R[85]*1000.0;  w[342]:=0.0;  
w[343]:=0.0;    w[344]:=1000.0*R[85]*angvelCG;  
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{Segment 86 Conditions} 
w[345]:=R[86]*1000.0;  w[346]:=0.0;     
w[347]:=0.0;    w[348]:=1000.0*R[86]*angvelCG;  
{Segment 87 Conditions} 
w[349]:=R[87]*1000.0;  w[350]:=0.0;     
w[351]:=0.0;    w[352]:=1000.0*R[87]*angvelCG;  
{Segment 88 Conditions} 
w[353]:=R[88]*1000.0;  w[354]:=0.0;     
w[355]:=0.0;    w[356]:=1000.0*R[88]*angvelCG;  
{Segment 89 Conditions} 
w[357]:=R[89]*1000.0;  w[358]:=0.0;     
w[359]:=0.0;    w[360]:=1000.0*R[89]*angvelCG;  
{Segment 90 Conditions} 
w[361]:=R[90]*1000.0;  w[362]:=0.0;     
w[363]:=0.0;    w[364]:=1000.0*R[90]*angvelCG;  
{Segment 91 Conditions} 
w[365]:=R[91]*1000.0;  w[366]:=0.0;     
w[367]:=0.0;    w[368]:=1000.0*R[91]*angvelCG;  
{Segment 92 Conditions} 
w[369]:=R[92]*1000.0;  w[370]:=0.0;     
w[371]:=0.0;    w[372]:=1000.0*R[92]*angvelCG;  
{Segment 93 Conditions} 
w[373]:=R[93]*1000.0;  w[374]:=0.0;     
w[375]:=0.0;    w[376]:=1000.0*R[93]*angvelCG;   
{Segment 94 Conditions} 
w[377]:=R[94]*1000.0;  w[378]:=0.0;     
w[379]:=0.0;    w[380]:=1000.0*R[94]*angvelCG;  
{Segment 95 Conditions} 
w[381]:=R[95]*1000.0;  w[382]:=0.0;     
w[383]:=0.0;    w[384]:=1000.0*R[95]*angvelCG;  
{Segment 96 Conditions} 
w[385]:=R[96]*1000.0;  w[386]:=0.0;     
w[387]:=0.0;    w[388]:=1000.0*R[96]*angvelCG;  
{Segment 97 Conditions} 
w[389]:=R[97]*1000.0;  w[390]:=0.0;     
w[391]:=0.0;    w[392]:=1000.0*R[97]*angvelCG;  
{Segment 98 Conditions} 
w[393]:=R[98]*1000.0;  w[394]:=0.0;     
w[395]:=0.0;    w[396]:=1000.0*R[98]*angvelCG;  
{Segment 99 Conditions} 
w[397]:=R[99]*1000.0;  w[398]:=0.0;     
w[399]:=0.0;    w[400]:=1000.0*R[99]*angvelCG;  
{Segment 100 Conditions} 
w[401]:=R[100]*1000.0;  w[402]:=0.0;  
w[403]:=0.0;    w[404]:=1000.0*R[100]*angvelCG;  
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 t := 0.0;   
 end; 
{----------------------------    MAIN    ------------------------------------} 
begin 
Parameters; 
Segment; 
Conditions; 
Time:=0.0; 
  repeat; 
   Runge(Equations,404,0.05,t,w); 
  until t>Time; 
   
 writeln(t/60.0:15:10,chr(9),((w[1]/1000.0)- 

6378.0):15:10,chr(9),w[2]/(2*Pi):15:10,chr(9),w[3]:15:10,chr(9), 
w[4]:15:10,chr(9));    

    
 Time:=Time+60.0; {second number is seconds} 
  until Time>2.1*60.0*60.0; {hours*60 min*60 sec}   
end. 
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Appendix B:  Ascent Optimization Code 

{-----------------------------------------------------------------------------------}  
program Ascent ;    {ascent problem with no throttling Aerodynamics included} 
   {Assumes an engine cutoff at specified altitude with a  
   ballistic coast to the tether lower tip altitude 
   Assumes a vertical ascent to a specified altitude less than 11 km}  
     
{-----------------------------------------------------------------------------------} 
USES SIOUX; 
Type  vec = array[1..20] of extended; 
  mat = array[1..20,1..20] of extended; 
Var  x,z,w,dw,q,dq    : vec; 
  OutputFile  : TEXT;  
  i,j,ghost    :integer; 
   
  Pi,  {Pi r not squared, Pi r round} 
  GM,  {gravitational parameter for Earth} 
  rE,  {Radius of Earth's surface 6378.135 km} 
  gE,  {gravitational acceleration of the earth} 
  gamma, {specific heat of air} 
  Dia,  {Vehicle Diameter} 
  Area,  {Vehicle x-sectional area} 
  mpl,  {mass of vehicle payload, samples and crew} 
  ms,  {mass of empty spacecraft structure} 
  mf,  {mass of fuel} 
  m0,  {initial total mass of the vehicle} 
  numeng, {number of engines on vehicle} 
  throttle, {percent of engine thrust} 
  mdot,  {mass flow rate of engines} 
  Isp,  {specific impulse} 
  timeempty, {time at which fuel tank is empty}  
  aT,  {Altitude of tether cg at perigee} 
  Alowpt, {Altidude of tether lower tip at perigee} 
  rT,  {Radius of tether Cg} 
  cg2lowpt, {Length of tether from cg to lower tip} 
  vT,  {Velocity of tether orbit} 
  angvelT, {Angular velocity of tether orbit} 
  rLowpt, {radius of tether lower point, apogee radius Vehicle} 
  vLowpt, {velocity at tether lower tip} 
  rstar,  {distance scaling variable} 
  vstar,  {velocity scaling variable} 
  tstar,  {time scaling variable} 
  pitch,  {altitude at which controlled flight begins} 
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  rcut,  {desired engine cutoff radius} 
  deltaV,  {Apogee manuever used to "fine tune" LV tajectory}  
  oec,  {orbital energy constant} 
  KAC,  {Kepler Area Constant}  
  eccen,  {eccentricity of the orbit prior to circularization} 
  rp,  {perigee radius of trajectory (prior to circularization)} 
  a,  {semimajor axis of trajectory (prior to circularization)} 
  vcut,  {path velocity at engine cutoff} 
  vthetacut, {tangential velocity at engine cutoff} 
  vrcut,  {radial velocity at engine cutoff} 
  altClimb, {instantaneous Launch vehicle altitude during vertical  

climb in meters} 
  TClimb, {Air temperature during vertical climb} 
  PClimb, {Air pressure during vertical climb} 
  RhoClimb, {Air density during vertical climb} 
  MClimb, {Vehicle Mach Number during climb} 
  CdClimb, {Vehicle Coefficient of Drag during climb} 
  DragClimb, {Drag force on the vehicle during vertical climb} 
  ThrustClimb, {Thrust force during climb} 
  vmagsq, {square of the magnitude of velocity} 
  phi,  {angle of flight path to local horizontal} 
  alfa,  {angle of thrust vector to flight path}   
  csphal,  {cosine of phi plus alpha} 
  snphal,  {sine of phi plus alpha} 
  csphi,  {cosine of phi} 
  snphi,  {sine of phi} 
  altCon,  { Launch Vehicle Altitude during controlled flight} 
  TempCon, {Air temperature during controlled flight} 
  PCon,  {Air pressure during controlled flight} 
  RhoCon, {Air density during controlled flight} 
  MCon,  {Vehicle Mach Number during controlled flight} 
  CdCon, {Vehicle Coefficient of Drag during controlled flight} 
  DragCon, {Drag force on the vehicle during controlled flight} 
  ThrustCon, {Thrust force during controlled flight} 
  DragConND, {Non Dimensional Drag force on the vehicle during  

controlled flight} 
  ThrustConND,{Non Dimensional Thrust force during controlled flight} 
  accel,  {acceleration of the vehicle in g's } 
  mprop,  {mass of propellant consumed during ascent} 
  rfinal,  {radius at engine cutoff} 
  vrfinal,  {radial velocity at engine cutoff} 
  vthetafinal,{tangential velocity at engine cutoff}    
  phicut,  {angle to local horizontal at engine cutoff}   
  time,  {time during controlled flight} 
  t,  {time during vertically constrained flight} 
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  H,  {Hamiltonian of the system}   
  za,  {costate variable for radius} 
  zb,  {costate variable for radial velocity} 
  zc,  {costate variable for tangential velocity}   
  treal,  {unscaled time}   
  tcon  {time during controlled flight} 
  :extended; 
   
{------------------------------------------------------------------------------------}  
Procedure Parameters; 
 begin 
 SIOUXSettings.tabspaces := 0; 
 {CONSTANTS} 
 Pi:= 3.141592653589793238462643; 
 GM:=3.98601e14;  {Grav Parameter of Earth, m3/s2} 
 rE := 6378000.0;   {m, radius of Earth} 
 gE:= 9.81; {m/s^2} 
 gamma:= 1.4;  {Air gamma}  
  
 {VEHICLE CONFGURATION  PLEASE SPECIFY} 
 {Based on DC-Y vehicle with 1 J-2 engines} 
  
 Dia:= 9.15;    {Vehicle Diameter in meters}  
 Area:= Pi*(Dia/2)*(Dia/2); {Vehicle x-sectional Area in meters} 
 mpl:= 10000.0;    {kg mass payload crew and samples} 
 ms:= 36000.0;    {kg mass structure} 
 mf:= 470000.0;    {kg of fuel initial} 
 m0 := mpl+mf+ms;   {46681 kg initial mass of vehicle} 
 numeng:=1.0; 
 throttle:=0.75;  
 mdot :=1646.0*numeng*throttle; {kg/s} 
 Isp:= 425.0;   {ISP of Engine} 
 timeempty:=mf/mdot; 
  
 {TETHER CONFIGURATION  PLEASE SPECIFY} 
 aT := 2000000.0;   {m} 
 Alowpt := 200000.0;   {m} 
 cg2lowpt := aT - Alowpt; {m} 
 rT:= aT + rE;    {m} 
 vT:=sqrt(GM/rT);   {m/s} 
 angvelT:= vT/rT;   {radians/second} 
 rLowpt:= rE + Alowpt;  {m} 
 vLowpt:= angvelT*rLowpt;  {m/s} 
 {For SSTO set aT to same value as Alowpt and specify an Apogee orbit  

adjustment delta V to circularize the orbit} 
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 {SCALING VARIABLES}  
 rstar:=rE; 
 vstar:=sqrt(GM/rE); 
 tstar:=sqrt(rE*rE*rE/GM); 
  
 {FLIGHT VARIABLES} 
 pitch:= 1000.0;    {pitchover altitude in meters} 
 rcut:= rE + 100000.0;  {engine cutoff radius  m}  
 deltaV:= 0.0;    {Apogee orbit adjustment m/s} 
  {Must be set to a value >0.0 for SSTO} 
 oec:= ((vLowpt-deltaV)*(vLowpt-deltaV)) - (2.0*GM/rLowpt); 
 KAC:= (vLowpt-deltaV)*rLowpt; 
 eccen:=sqrt(1.0 + (KAC*KAC*oec/(GM*GM))); 
 rp:=rLowpt*(1.0-eccen)/(1.0+eccen); 
 a:=(rLowpt+rp)/2.0; 
 vcut:=sqrt(GM/rcut)*sqrt(2.0-(rcut/a)); 
 vthetacut:=rLowpt*(vLowpt-deltaV)/rcut;{rapogee*vapogee/r} 
 vrcut:= sqrt((vcut*vcut) - (vthetacut*vthetacut));  
 end; 
{-----------------------------------------------------------------------} 
{    NUMERICAL ROUTINES   } 
{-----------------------------------------------------------------------} 
function arctan2(r,s : extended) : extended; 
 var q: extended; 
 begin 
  if s= 0.0 then 
   if r>0 then q:=Pi/2 else q:=-Pi/2 
  else 
   q:= arctan(r/s); 
  if s<0.0 then  
   if r<0.0 then q:=q-Pi else q:= q+Pi; 
  if r=0.0 then q:= 0.0; 
  arctan2:= q; 
 end; 
{-----------------------------------------------------------------------} 
procedure Runge( procedure de(t:extended; var y,dy:vec); n :integer; h :extended; 
     var t :extended; var y :vec ); 
 var y1,f1,f2,f3,f4 :vec; 
  i : integer; 
  h2 : extended; 
 begin  
  h2:= h/2; 
 
  de( t,y,f1 ); 

 234



 

  for i:=1 to n do y1[i]:= y[i] + h2*f1[i]; 
  t:=t + h2; 
  
  de( t,y1,f2 ); 
  for i:=1 to n do y1[i]:= y[i] + h2*f2[i]; 
  
  de( t,y1,f3 ); 
  for i:=1 to n do y1[i]:= y[i] + h *f3[i]; 
  t:=t + h2; 
  
  de( t,y1,f4 ); 
  for i:=1 to n do y[i]:= y[i] + h/6*(f1[i]+2*(f2[i]+f3[i])+f4[i]); 
 end; 
{----------------------------------------------------------------------------} 
Procedure Vecroot( procedure Vector(var x,y :vec); var x,ybase :vec; 
     ndim :integer; delx :extended ); 
 type mat = array[1..20,1..20] of extended; 
 var y,x1   :vec; 
  jacob   :mat; 
  errlast,err,det :extended; 
  i,j,k   :integer; 
   
 procedure System(n :integer; var a :mat; var b,x :vec; var det :extended); 
  var i,j,m:  integer; 
   k:   extended; 
  begin 
   det := 1.0; 
   for m := 1 to n-1 do begin 
    det := det*a[m,m]; 
    for i := m+1 to n do begin 
     k := a[i,m]/a[m,m]; 
     for j := m+1 to n do a[i,j] := a[i,j] - k * a[m,j]; 
     b[i] := b[i] - k*b[m]; 
    end; 
   end; 
   det := det * a[n,n]; 
   for m := n downto 1 do begin 
    x[m] := b[m]/a[m,m]; 
    for i := 1 to m -1 do b[i] := b[i] - x[m]*a[i,m]; 
   end; 
  end; 
 begin 
  errlast:= inf; 
  for k:= 1 to 25 do begin 
   Vector( x,ybase ); 
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   err:= 0; 
   for i:= 1 to ndim do err:= err + sqr(ybase[i]); 
   err:= sqrt(err); 
   {writeln('Vecroot : ', err);} 
   if (err<10) and (k>3) and (err>=errlast) then exit(Vecroot); 
   errlast:= err; 
    
   { Calculate Jacobian } 
   for j:= 1 to ndim do begin 
    x[j]:= x[j] + delx; 
    Vector( x,y ); 
    for i:= 1 to ndim do jacob[i,j]:= (y[i]-ybase[i]) / delx; 
    x[j]:= x[j] - delx 
   end; 
    
   { Solve for correction vector and correct x } 
   System( ndim,jacob,ybase,x1,det ); 
   for i:= 1 to ndim do x[i]:= x[i] - x1[i]; 
  end; 
  {writeln('Solution not found in "Vecroot"')} 
 end; 
{-------------------------------------------------------------------------------} 
Procedure Climbeqs (y:extended; var q,dq :vec); 
begin 
 
{atmosphere calculations} 
 altClimb:=(q[2]*rstar)-rstar; {altitude} 
 TClimb:=15.04-(0.00649*altClimb); 
 PClimb:=101.29*(exp(5.256*ln((TClimb+273.1)/288.08))); 
 RhoClimb:=PClimb/(0.2869*(TClimb+273.1)); 
  
 {Mach Number Calculation} 
 MClimb:=q[4]/sqrt(gamma*RhoClimb*TClimb); 
  
 {Ceoefficient of drag} 
 If MClimb < 1.0 Then CdClimb:= 0.075; 
 If MClimb > 1.0 Then CdClimb:= 0.20; 
 If MClimb > 1.4 Then CdClimb:= 0.18; 
 If MClimb > 2.0 Then CdClimb:= 0.14; 
 If MClimb > 3.0 Then CdClimb:= 0.135; 
 If MClimb > 4.0 Then CdClimb:= 0.12; 
 If MClimb > 5.0 Then CdClimb:= 0.11; 
 If MClimb > 6.0 Then CdClimb:= 0.10; 
 If MClimb > 7.0 Then CdClimb:= 0.095; 
 If MClimb > 8.0 Then CdClimb:= 0.090; 
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 DragClimb:=CdClimb*RhoClimb*q[4]*q[4]*Area/2.0; 
 ThrustClimb:=mdot*gE*Isp;  {N} 
  
 dq[1] := -mdot*tstar/m0;    {mdot} 
 dq[2] := q[4];       {rdot} 
 dq[3] := q[5]/q[2];  {thetadot} 
 dq[4] := (q[5]*q[5]/q[2]) + (-1.0/(q[2]*q[2])) + ThrustClimb/(q[1]*m0*gE) –  

DragClimb/(q[1]*m0*gE);{vrdot} 
 dq[5] := 0.0;   {vthetadot} 
end; 
{-------------------------------------------------------------------------------} 
Procedure Climb; 
begin 
 q[1] := 1.0; {mass0} 
 q[2] := 1.0; {r0} 
 q[3] := 0.0; {theta0} 
 q[4] := 0.0; {vr0} 
 q[5] := 0.0; {vtheta0} 
  
  
t := 0.0; 
 repeat 
    
  Runge( Climbeqs, 5, 0.001, t, q ); 
  writeln(t*tstar:10:5,chr(9), q[1]*m0:10:5,chr(9), (q[2]-1.0)*rstar:10:5, 

 chr(9) ,q[4]*vstar:10:5,chr(9)); 
   
 until q[2] >  (rE+pitch)/rstar; 
writeln(t:10:5,chr(9),q[1]:10:5,chr(9),q[2]:10:5,chr(9),q[3]:10:5,chr(9),q[4]:10:5,chr(9), 
q[5]:10:5,chr(9)); 
end; 
{---------------------------------------------------------------------------------} 
Procedure Equations( y:extended; var w,dw :vec ); 
  
 begin 
  
 vmagsq:= (w[5]*w[5]) + (w[4]*w[4]); {magnitude velocity squared} 
 phi:= arctan2(w[4],w[5]);   {angle to local horizon} 
 alfa:= arctan2(w[7],w[8])-phi;  {control law} 
 csphal:= cos(alfa + phi); 
 snphal:= sin(alfa + phi); 
 csphi:=cos(phi); 
 snphi:=sin(phi); 
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 {atmosphere calculations} 
 altCon:=(w[2]*rstar)-rstar; {altitude} 
  
 If altCon < 11000.0 Then begin 
 TempCon:=15.04-(0.00649*altCon); 
 PCon:=101.29*(exp(5.256*ln((TempCon+273.1)/288.08))); 
 end; 
  
 If altCon > 11000.0 then begin 
 TempCon:=-56.46; 
 PCon:=22.65*(exp(1.73 - (0.000157*altCon))); 
 end; 
  
 If altCon > 25000.0 then begin 
 TempCon:=(0.00299*altCon) - 131.21; 
 PCon:=2.488*(exp(-11.388*ln((TempCon+273.1)/216.6))); 
 end; 
  
 {Density and Mach Number Calculation} 
 RhoCon:=PCon/(0.2869*(TempCon+273.1)); 
 MCon:=sqrt(vmagsq)/sqrt(gamma*RhoCon*TempCon); 
  
 {Ceoefficient of drag} 
 If MCon < 1.0 Then CdCon:= 0.075; 
 If MCon > 1.0 Then CdCon:= 0.20; 
 If MCon > 1.4 Then CdCon:= 0.18; 
 If MCon > 2.0 Then CdCon:= 0.14; 
 If MCon > 3.0 Then CdCon:= 0.135; 
 If MCon > 4.0 Then CdCon:= 0.12; 
 If MCon > 5.0 Then CdCon:= 0.11; 
 If MCon > 6.0 Then CdCon:= 0.10; 
 If MCon > 7.0 Then CdCon:= 0.095; 
 If MCon > 8.0 Then CdCon:= 0.090; 
  
 DragCon:=CdCon*RhoCon*vmagsq*Area/2.0; 
 ThrustCon:=mdot*gE*Isp; 
 ThrustConND:=ThrustCon/(w[1]*m0*gE); 
 DragConND:=DragCon/(w[1]*m0*gE); 
  
 accel:= (ThrustCon-DragCon)/(w[1]*m0*gE);   {F/m*go} 
  
  
 dw[1] := -mdot*tstar/m0;  {mdot} 
 dw[2] := w[4];    {rdot} 

dw[3] := w[5]/w[2];   {thetadot}  
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 dw[4] := (w[5]*w[5]/w[2]) - (1.0/(w[2]*w[2])) + (ThrustConND*snphal) –  
(DragConND*snphi);   {vrdot} 

 dw[5] := (-w[4]*w[5]/w[2]) + (ThrustConND*csphal) - (DragConND*csphi); 
 {vthetadot} 
 dw[6] := (w[7]*( (w[5]*w[5]/(w[2]*w[2])) - (2.0/(w[2]*w[2]*w[2])) )) + w[8]*(  

-w[4]*w[5]/(w[2]*w[2]) );    {zrdot} 
 dw[7] := -w[6] + (w[7]*((-ThrustConND*csphal*w[5]/vmagsq) +  

(CdCon*RhoCon*Area*((2.0*w[4]*snphi)+(w[5]*csphi))/ 
(2.0*w[1]*m0*gE)))) + (w[8]*( (w[5]/w[2]) + 
(ThrustConND*snphal*w[5]/vmagsq) + (CdCon*RhoCon*Area* 
((2.0*w[4]*csphi)-(w[5]*snphi))/(2.0*w[1]*m0*gE)))); 
 {zvrdot} 

 dw[8] := (w[7]*( (-2.0*w[5]/w[2]) + (ThrustConND*csphal*w[4]/vmagsq) +  
(CdCon*RhoCon*Area*((2.0*w[5]*snphi)-(w[4]*csphi))/ 
(2.0*w[1]*m0*gE)))) + (w[8]*( (w[4]/w[2]) – (ThrustConND*snphal* 
w[4] / vmagsq) +(CdCon*RhoCon*Area*((2.0*w[5]*csphi) 
+(w[4]*snphi))/(2.0*w[1]*m0*gE)))); {zvthetadot} 

  
 end; 
{---------------------------------------------------------------------------------} 
Procedure Solve; 
Var a0,a1,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,Dr,Di,xi,theta,D:    extended; 
 begin 
  
 {Initial Conditions} 
 w[1] := q[1]; {mass0} 
 w[2] := q[2]; {r0} 
 w[3] := q[3]; {Theta0} 
 w[4] := q[4]; {vr0} 
 w[5] := q[5]; {vtheta0} 
 w[6] := x[1]; 
 w[7] := x[2]; 
 w[8] := x[3]; 
   
 tcon := t; 
  
 repeat 
  Runge( Equations, 8, 0.001, tcon, w ); 
   
 until tcon > time; 
  
  
H:= -1.0 + (w[6]*w[4]) + (w[7]*( (w[5]*w[5]/w[2]) - (1.0/(w[2]*w[2])) + 
(ThrustConND*snphal) - (DragConND*snphi) ) ) + (w[8]*( (-w[4]*w[5]/w[2]) + 
(ThrustConND*csphal) - (DragConND*csphi) ) ); 
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end; 
{----------------------------------------------------------------------------------} 
procedure Vecset( var x,z :vec); 
 begin 
  Solve; 
  z[1]:= H;  
  z[2]:= (w[2]*rstar) - rcut; 
  z[3]:= (w[4]*vstar) - vrcut; 
 end; 
{-------------------------------------------------------}  
Procedure Search; 
 begin    
  x[1] := 0.5;  {guess conditions of costate vector} 
  x[2] := 0.5; 
  x[3] := 0.5; 
  
  Vecroot(Vecset, x,z,3,1e-5); 
 end;   
{----------------------------    MAIN    ------------------------------------} 
begin 
Parameters; 
 Climb; 
time:=(timeempty-50.0)/tstar; {t} 
Repeat 
  Search; 
  treal:=tcon*tstar; 
  mprop := m0*(w[1]);   
  rfinal := (w[2]*rstar)-rE;  
  vrfinal := w[4]*vstar;  
  vthetafinal := w[5]*vstar; 
  za:= x[1];  
  zb:= x[2];  
  zc:= x[3]; 
  phicut:=arctan2(vrcut,vthetacut); 
   
writeln( treal:15:5, chr(9), (w[1]*m0)-(ms+mpl):15:10, chr(9), vrfinal:15:10, chr(9),  

vthetafinal:15:10, chr(9), H:15:5, chr(9), phi:15:10, chr(9), accel:15:10, chr(9)); 
writeln(  vcut:15:10, chr(9), rcut-rE:15:10, chr(9), vrcut:15:10,chr(9), vthetacut:15:10,  

chr(9), H:15:5,chr(9), phicut:15:10, chr(9)); 
writeln( za:15:5,chr(9),zb:15:10,chr(9),zc:15:10,chr(9)); 
  
time := time + 0.001; 
 until time >timeempty/tstar;   
end. 
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Appendix C:  Rendezvous Code 

{-----------------------------------------------------------------------------------}  
program rend3;     
{Goal: Calculates first and second delta V need to effect rendezvous if the launch  
vehicle arrives at apogee at a different time then the tether 
 
Assumptions: Tether vertically oriented in an circular orbit 
  Launch vehicle on ballistic trajectory 
  Rendezvous should occur at launch vehicle apogee 
  Noncoplanar orbits 
  Intersection of orbital planes occuring at the rendezvous point 
  Analysis starts with Launchvehicle at 9 degrees of true anomaly before  
  rendezvous (appox 100 km altitude) 
{-----------------------------------------------------------------------------------} 
 
USES SIOUX; 
Type  vec = array[1..20] of extended; 
  mat = array[1..20,1..20] of extended; 
Var 
  x,z,w,dw    : vec; 
  OutputFile  : TEXT;  
  {Tether coordinate system centered on tether Cg} 
  GM,  {Gravitational parameter of the Earth} 
  Pi,  {Pi are round} 
  rEarth,  {Radius of the Earth} 
  aT,  {Altitude of tether cg at perigee} 
  Alowpt, {Altidude of tether lower tip at perigee} 
  rT,  {Radius of tether Cg} 
  error,  {Amount of true anomaly that the tether is off by at  

point of rendezvous} 
  nuT,  {Initial tether cg true anomaly} 
  cg2lowpt, {Length of tether from cg to lower tip} 
  vT,  {Velocity of tether orbit} 
  angvelT, {Angular velocity of tether orbit}  
  gT,  {Gravity at tether center}  
  rTtime,  {time varying tether radius} 
  nuTdoubdot, {time varying tether nu double dot} 
  incLV,  {Rocket trajectory inclination relative to tether orbit} 
  nuLV,  {initial true anomaly of Launch Vehicle} 
  raLV,  {Apogee radius of Launch Vehicle} 
  vaLV,  {Apogee velocity of Launch Vehicle} 
  CLV,  {Kepler Area constant of Launch Vehicle Trajectory} 
  hLV,  {Orbital energy constant of Launch Vehicle Trajectory} 
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  pLV,  {Parameter of Launch Vehicle Trajectory} 
  eLV,  {Eccentricity of Launch Vehicle Trajectory} 
  aLV,  {Semimajor axis of Launch Vehicle Trajectory} 
  rLV,  {Launch Vehicle initial radial position} 
  gLV,  {gravity at Launch Vehicle altitude} 
  nudotLV, {Initial Launch Vehicle true anomaly rate of change} 
  pathangLV, {Initial Launch Vehicle Path angle} 
  vLV,  {Initial Launch Vehicle Velocity} 
  EaLV,  {Launch Vehicle Eccentric anomaly at start of analysis} 
  Tstarttoapogee,{Time from start of analysis to Launch vehicle apogee} 
  x0, {x coordinate initial relative distance in tether coord system} 
  y0, {y coordinate initial relative distance in tether coord system} 
  z0, {z coordinate initial relative distance in tether coord system} 
  dist, {distance from launch vehicle to tether end} 
  fx, {x coordinate external acceleration applied to launch vehicle in  

tether coordinate system} 
  fy, {y coordinate external acceleration applied to launch vehicle in  

tether coordinate system} 
  fz, {x coordinate external acceleration applied to launch vehicle in  

tether coordinate system} 
  xTpc,  {Tether cg x coordinate in planetocentric coord system} 
  yTpc,  {Tether cg y coordinate in planetocentric coord system} 
  zTpc,  {Tether cg z coordinate in planetocentric coord system} 
  xLVpc,{Launch Vehicle x coordinate in planetocentric coord system} 
  yLVpc,{Launch Vehicle y coordinate in planetocentric coord system} 
  zLVpc, {Launch Vehicle z coordinate in planetocentric coord system} 
  xdot0, {initial x relative volcity coordinate in tether coordinate system} 
  ydot0, {initial y relative volcity coordinate in tether coordinate system} 
  zdot0, {initial z relative volcity coordinate in tether coordinate system} 
  vTx, {Tether velocity x coordinate in tether coord system} 
  vTy, {Tether velocity y coordinate in tether coord system} 
  vTz, {Tether velocity z coordinate in tether coord system} 
  vLVx, {Launch Vehicle x velocity in LV frame} 
  vLVy, {Launch Vehicle y velocity in LV frame}   
  vLVxPCLV, {Launch Vehicle x velocity in PC frame aligned to LV  

orbital plane} 
  vLVyPCLV, {Launch Vehicle y velocity in PC frame aligned to LV  

orbital plane} 
  vLVzPCLV, {Launch Vehicle z velocity in PC frame aligned to LV  

orbital plane} 
  vLVxPC, {Launch Vehicle velocity x coordinate in planetocentric  

coord system aligned to Tether orbital plane} 
  vLVyPC, {Launch Vehicle velocity y coordinate in planetocentric  

coord system aligned to Tether orbital plane} 
  vLVzPC, {Launch Vehicle velocity z coordinate in planetocentric  
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coord system aligned to Tether orbital plane} 
  vLVxTC,{Launch Vehicle velocity x coordinate in tether coord system} 
  vLVyTC,{Launch Vehicle velocity y coordinate in tether coord system} 
  vLVzTC,{Launch Vehicle velocity z coordinate in tether coord system} 
  relvelx, {Relative velocity x component in tether coord system} 
  relvely, {Relative velocity y component in tether coord system} 
  relvelz,  {Relative velocity z component in tether coord system} 
  DelVx1, {Required x Delta V for maneuver 1} 
  DelVy1, {Required y Delta V for maneuver 1} 
  DelVz1, {Required z Delta V for maneuver 1} 
  DelV1,  {Total required delta V for maneuver 1} 
  DelVx2, {Required x Delta V for maneuver 2} 
  DelVy2, {Required y Delta V for maneuver 2} 
  DelVz2, {Required z Delta V for maneuver 2} 
  DelV2,  {Total required delta V for maneuver 2} 
  test, 
  rtime,  {time varying radius} 
  t,  {time in R-K interation} 
  Time, 
  rho,  {Time varying magnitude of distance vector from tether cg  

to launch vehicle} 
  phi,  {Angle between y axis and rho vector} 
  rLVtime {Time varying Launch vehicle radius }   
  :extended; 
{-----------------------------------------------------------------------} 
function arctan2(r,s : extended) : extended; 
 var q: extended; 
 begin 
  if s= 0.0 then 
   if r>0 then q:=3.141592653589793238462643/2  

else q:=-3.141592653589793238462643/2 
  else 
   q:= arctan(r/s); 
  if s<0.0 then  
   if r<0.0 then q:=q-3.141592653589793238462643  

else q:= q+3.141592653589793238462643; 
  if r=0.0 then q:= 0.0; 
  arctan2:= q; 
 end; 
{------------------------------------------------------------------------------------}  
function arcsin(r : extended) : extended; 
 var q: extended; 
 begin 
  if r= 0.0 then q:=0.0 
  else 
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   if r = 1.0 then q:=3.141592653589793238462643/2 
   else 
   if r =-1.0 then q:=-3.141592653589793238462643/2  
   else q:= arctan(r/sqrt (1-(r*r))); 
  if r=0.0 then q:= 0.0; 
  arcsin:= q; 
 end; 
{------------------------------------------------------------------------------------}  
Procedure Parameters; 
 begin 
 SIOUXSettings.tabspaces := 0; 
 Pi := 3.141592653589793238462643; 
 GM := 398601.0;  {Gravitational Parameter (Earth), km3/s2} 
 rEarth := 6378.0; {Radius of Earth, km} 
 {Tether Cg Orbital characteristics} 
 {SPECIFY} 
 aT := 2100.0;   {km} 
 Alowpt := 200.0;  {km} 
 error:= 0.1;{degrees of true anomaly that the tether end misses the rendezvous} 
 {Positive degrees means the tether end is behind the LV at apogee} 
 {Negative degrees means the tether end is ahead of the LV at apogee} 
  
 cg2lowpt := aT - Alowpt; {km} 
 rT:= aT + rEarth; {km} 
 vT:=sqrt(GM/rT);  {km/s} 
 angvelT:= vT/rT;  {radians/second} 
  
 {Launch Vehicle Trajectory Charachteristics} 
 {SPECIFY} 
 incLV:= 0.0*Pi/180.0;  {radians} 
 {positive angle means launch takes place south of orbital plane of tether 
  negative angle means launch takes place north of orbital plane of tether} 
 nuLV:= 171.0*Pi/180.0;  {radians} 
  
 raLV:=rEarth+Alowpt;  {km} 
 vaLV:=angvelT*raLV;   {km/s} 
 CLV:=raLV*vaLV;    {km^2/s} 
 hLV:=(vaLV*vaLV)-(2*GM/raLV); {(km/s)^2)} 
 pLV:=CLV*CLV/GM;   {km} 
 eLV:=sqrt(1+(CLV*CLV*hLV/(GM*GM))); 
 aLV:=GM/abs(hLV);   {km} 
 rLV:=pLV/(1+(eLV*cos(nuLV)));{km} 
 nudotLV:=CLV/(rLV*rLV);  {Radians per second} 
  
 {Kepler equation analysis to calculate initial true anamaly of tether} 
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 EaLV:=(Pi/2.0)-arcsin((aLV-rLV)/(aLV*eLV)); 
 Tstarttoapogee:= (Pi-EaLV-(eLV*-sin(EaLV)))/(sqrt(GM/(aLV*aLV*aLV))); 
 nuT:= Pi-(Tstarttoapogee*angvelT)-(error*Pi/180.0);  
 {Calculate initial relative distances} 
 {Tether coord in planetocentric coord sys} 
 xTpc:= rT*sin(Pi-nuT);     {km} 
 yTpc:= rT*cos(Pi-nuT);     {km} 
 zTpc:= 0.0;       {km} 
 {Launch Vehicle coord in planetocentric coord sys} 
 xLVpc:= rLV*sin(Pi-nuLV)*cos(incLV); {km} 
 yLVpc:= rLV*cos(Pi-nuLV); {km} 
 zLVpc:= rLV*sin(Pi-nuLV)*-sin(incLV);    
 {wrong km} 
 {Relative Distance in Tether coordinate system centered on tether end} 
 x0:= ((xLVpc-xTpc)*cos(Pi-nuT))-((yLVpc-yTpc)*sin(Pi-nuT));  
 {km} 
 y0:= ((xLVpc-xTpc)*sin(Pi-nuT))+((yLVpc-yTpc)*cos(Pi-nuT));   {km} 
 z0:= zLVpc-zTpc; {km} 
 dist:=sqrt((x0*x0)+(y0*y0)+(z0*z0)); 
  
 {CALCULATE INITIAL RELATIVE VELOCITIES} 
 vTx:=-vT; 
 vTy:=0.0; 
 vTz:=0.0; 
   
 pathangLV:=arctan2(eLV*sin(nuLV),(1+(eLV*cos(nuLV)))); 
 vLV:=sqrt((GM*2.0/rLV)-(GM/aLV)); 
 vLVx:=-vLV*cos(pathangLV); 
 vLVy:=vLV*sin(pathangLV); 
  
 vLVxPCLV:=(vLVx*cos(Pi-nuLV))+(vLVy*sin(Pi-nuLV)); 
 vLVyPCLV:=(vLVy*cos(Pi-nuLV))-(vLVx*sin(Pi-nuLV)); 
 vLVzPCLV:= 0.0; 
  
 vLVxPC:=cos(incLV)*vLVxPCLV; 
 vLVyPC:=vLVyPCLV; 
 vLVzPC:=-sin(incLV)*vLVxPCLV; 
  
 vLVxTC:=(vLVxPC*cos(Pi-nuT))-(vLVyPC*sin(pi-nuT)); 
 vLVyTC:=(vLVyPC*cos(Pi-nuT))+(vLVxPC*sin(pi-nuT)); 
 vLVzTC:=vLVzPC; 
  
 relvelx:=vLVxTC-vTx+(angvelT*y0); 
 relvely:=vLVyTC-vTy-(angvelT*x0); 
 relvelz:=vLVzTC-vTz; 
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 end; 
{-----------------------------------------------------------------------} 
procedure Vecroot( procedure Vector(var x,y :vec); var x,ybase :vec; 
     ndim :integer; delx :extended ); 
 type mat = array[1..20,1..20] of extended; 
 var y,x1   :vec; 
  jacob   :mat; 
  errlast,err,det :extended; 
  i,j,k   :integer; 
   
 procedure System(n :integer; var a :mat; var b,x :vec; var det :extended); 
  var i,j,m:  integer; 
   k:   extended; 
  begin 
   det := 1.0; 
   for m := 1 to n-1 do begin 
    det := det*a[m,m]; 
    for i := m+1 to n do begin 
     k := a[i,m]/a[m,m]; 
     for j := m+1 to n do a[i,j] := a[i,j] - k * a[m,j]; 
     b[i] := b[i] - k*b[m]; 
    end; 
   end; 
   det := det * a[n,n]; 
   for m := n downto 1 do begin 
    x[m] := b[m]/a[m,m]; 
    for i := 1 to m -1 do b[i] := b[i] - x[m]*a[i,m]; 
   end; 
  end; 
  
 begin 
  errlast:= inf; 
  for k:= 1 to 25 do begin 
   Vector( x,ybase ); 
   err:= 0; 
   for i:= 1 to ndim do err:= err + sqr(ybase[i]); 
   err:= sqrt(err); 
   {writeln('Vecroot : ', err);} 
   if (err<10) and (k>3) and (err>=errlast) then exit(Vecroot); 
   errlast:= err; 
    
   { Calculate Jacobian } 
   for j:= 1 to ndim do begin 
    x[j]:= x[j] + delx; 
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    Vector( x,y ); 
    for i:= 1 to ndim do jacob[i,j]:= (y[i]-ybase[i]) / delx; 
    x[j]:= x[j] - delx 
   end; 
    
   { Solve for correction vector and correct x } 
   System( ndim,jacob,ybase,x1,det ); 
   for i:= 1 to ndim do x[i]:= x[i] - x1[i]; 
  end; 
  writeln('Solution not found in "Vecroot"') 
 end; 
{---------------------------------------------------------------------------------} 
procedure Runge( procedure de(t:extended; var y,dy:vec); n :integer; h :extended; 
     var t :extended; var y :vec ); 
 var y1,f1,f2,f3,f4 :vec; 
  i : integer; 
  h2 : extended; 
 begin  
  h2:= h/2; 
 
  de( t,y,f1 ); 
  for i:=1 to n do y1[i]:= y[i] + h2*f1[i]; 
  t:=t + h2; 
  
  de( t,y1,f2 ); 
  for i:=1 to n do y1[i]:= y[i] + h2*f2[i]; 
  
  de( t,y1,f3 ); 
  for i:=1 to n do y1[i]:= y[i] + h *f3[i]; 
  t:=t + h2; 
  
  de( t,y1,f4 ); 
  for i:=1 to n do y[i]:= y[i] + h/6*(f1[i]+2*(f2[i]+f3[i])+f4[i]); 
 end; 
{----------------------------------------------------------------------------} 
Procedure Equations( y:extended; var w,dw :vec ); 
 
 begin 
   
 gT:=GM/(rT*rT);   {km/s^2} 
 rho:= sqrt((w[1]*w[1])+(w[3]*w[3])+(w[5]*w[5])); 
 phi:= (Pi/2.0)-arcsin(-w[3]/rho); 
 rLVtime:=sqrt((rT*rT)+(rho*rho)-(2.0*rT*rho*cos(phi))); 
 gLV:=GM/((rLVtime)*(rLVtime));  {km/s^2} 
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 dw[1] := w[2];   {x dot equation} 
 dw[2] := (-gLV*w[1]/(rLVtime)) + fx + (2.0*angvelT*w[4]) +  

(angvelT*angvelT*w[3]);  {x double dot equation} 
 dw[3] := w[4];   {y dot equation} 
 dw[4] := (-gLV*(w[3]+rT)/(rLVtime)) + fy + gT - (2.0*angvelT*w[2]) +  

(angvelT*angvelT*w[3]); {y double dot equation} 
 dw[5] := w[6];   {z dot equation} 
 dw[6] := (-gLV*w[5]/(rLVtime)) + fz; {z double dot equation} 
  
 end; 
{---------------------------------------------------------------------------------}   
Procedure Solve; 
Var a0,a1,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,Dr,Di,xi,theta,D:    extended; 
 begin 
 w[1]:=x0;    {x distance} 
 w[2]:=x[1];    {x velocity} 
 w[3]:=y0;    {y distance} 
 w[4]:=x[2];    {y velocity} 
 w[5]:=z0;    {z distance} 
 w[6]:=x[3];    {z velocity} 
  
 t := 0.0;   
   
 repeat  
  Runge( Equations, 6, 0.01, t, w ); 
 {writeln(t:15:10,chr(9),w[1]:15:10,chr(9),w[2]:15:10,chr(9),w[3]:15:10,chr(9), 

w[4]:15:10,chr(9),w[5]:15:10,chr(9),w[6]:15:10,chr(9));}  
 until t > Time; 
 
end; 
{----------------------------------------------} 
procedure Vecset( var x,z :vec); 
 begin 
  Solve; 
   z[1]:= w[1];          
   z[2]:= w[3] + cg2lowpt; {Equal to zero at final time}  
   z[3]:= w[5]; 
 end; 
{-------------------------------------------------------}  
Procedure Search; 
 begin 
  x[1] := 0.0; 
  x[2] := 0.5; {Initial Guess} 
  x[3] := 0.0; 
  Vecroot(Vecset, x,z,3,1e-5); 
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end;  
{----------------------------    MAIN    ------------------------------------} 
begin 
 
Parameters; 
writeln(Tstarttoapogee:15:10,chr(9)); 
 
writeln(relvelx:15:10,chr(9),relvely:15:10,chr(9),relvelz:15:10,chr(9)); 
writeln(x0:15:10,chr(9),y0:15:10,chr(9),z0:15:10,chr(9)); 
 
Time:=100.0; 
 Repeat 
  Search; 
  xdot0:=x[1]; 
  ydot0:=x[2]; 
  zdot0:=x[3]; 
   
  {CALCULATE INITIAL RELATIVE VELOCITIES} 
  DelVx1:=xdot0-relvelx; 
  DelVy1:=ydot0-relvely; 
  DelVz1:=zdot0-relvelz; 
  DelV1:=sqrt((DelVx1*DelVx1)+(DelVy1*DelVy1)+(DelVz1*DelVz1)); 
   
  DelVx2:=w[2];{Why do this need to come out} 
  DelVy2:=w[4]; 
  DelVz2:=w[6]; 
  DelV2:=sqrt((DelVx1*DelVx1)+(DelVy1*DelVy1)+(DelVz1*DelVz1)); 
 
 writeln(t:15:10,chr(9),w[1]:15:10,chr(9),w[3]:15:10,chr(9),w[5]:15:10,chr(9)); 
 {distances} 
 writeln(t:15:10,chr(9),DelVx1:15:10,chr(9),DelVy1:15:10,chr(9), 

DelVz1:15:10,chr(9));  
 writeln(t:15:10,chr(9),DelVx2:15:10,chr(9),DelVy2:15:10,chr(9), 

DelVz2:15:10,chr(9)); 
 {writeln(t:15:10,chr(9),relvelx:15:10,chr(9),relvely:15:10,chr(9), 

relvelz:15:10,chr(9));} 
      
  Time:=Time+10.0; {time step in 10 seconds} 
 until Time>200.0; 
 
end. 
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