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ABSTRACT 
 

A fault diagnostic and reconfiguration system in a multilevel inverter drive (MLID) 

using artificial intelligent based techniques is developed in this dissertation. Output 

phase voltages of a MLID can be used as valuable information to diagnose faults 

and their locations. It is difficult to diagnose a MLID system using a mathematical 

model because MLID systems consist of many switching devices and their system 

complexity has a nonlinear factor. Therefore, a neural network (NN) classification is 

applied to the fault diagnosis of a MLID system. Multilayer perceptron (MLP) 

networks are used to identify the type and location of occurring faults. The principal 

component analysis (PCA) is utilized in the feature extraction process to reduce the 

NN input size. A lower dimensional input space will also usually reduce the time 

necessary to train a NN, and the reduced noise may improve the mapping 

performance. The genetic algorithm is also applied to select the valuable principal 

components. The comparison among MLP neural network (NN), principal 

component neural network (PC-NN), and genetic algorithm based selective 

principal component neural network (PC-GA-NN) are performed.  

 

Proposed neural networks are evaluated with simulation test set and experimental 

test set. The PC-NN has improved overall classification performance from NN by 

about 5% points, whereas PC-GA-NN has better overall classification performance 

from NN by about 7.5% points. Therefore, the application of a genetic algorithm 
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improves the classification from PC-NN by about 2.5% point. The overall 

classification performance of the proposed networks is more than 90%.  

 

A reconfiguration technique is also developed. The effects of using the developed 

reconfiguration technique at high modulation index are addressed. The developed 

fault diagnostic system is validated with experimental results. The developed fault 

diagnostic system requires about 6 cycles at 60 Hz to clear an open circuit and about 

9 cycles at 60 Hz to clear a short circuit fault. The experimental results show that 

the developed system performs satisfactorily to detect the fault type, fault location, 

and reconfiguration. 
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1. INTRODUCTION 

 

 

 

1.1 Background 

  

In recent years, industry has begun to demand higher power ratings. Some medium 

voltage motor drives and utility applications require medium voltage and megawatt 

power level.  An inverter drive in megawatt level is normally interfaced with a medium 

voltage network.  For a medium voltage grid, it is troublesome to connect only one power 

semiconductor switch directly. As a result, a multilevel power converter structure has 

been introduced as an alternative in high power and medium voltage situations, and also 

multilevel inverter drive (MLID) systems have become a solution for high power drive 

applications. Two topologies of multilevel inverters for electric drive application have 

been discussed in [1]. A cascade MLID is a general fit for large automotive all-electric 

drives because of the high VA rating possible and because it uses several dc voltage 

sources which would be available from batteries or fuel cells [1]. A multilevel inverter 

not only achieves high power ratings, but also enables the use of renewable energy 

sources such as photovoltaic, wind, and fuel cells that can be easily interfaced to a 

multilevel converter system for a high power application [1, 2].  
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The concept of multilevel converters has been introduced since 1975 [3]. Despite that 

plentiful multilevel converter topologies have been developed during the last two 

decades, the elementary concept of a multilevel converter to achieve higher power is to 

use a series of power semiconductor switches with several lower voltage dc sources to 

perform the power conversion by synthesizing a staircase voltage waveform. Capacitors, 

batteries, and renewable energy voltage sources can be used as the multiple dc voltage 

sources. The commutation of the power switches aggregate these multiple dc sources in 

order to achieve high voltage at the output; however,  the rated voltage of the power 

semiconductor switches depends only upon the rating of the dc voltage sources to which 

they are connected.  

 

The main disadvantage of multilevel inverters is that they use a high number of power 

semiconductors; for this reason, multilevel inverters may be considered less reliable.  

Also, multilevel inverter systems are utilized in high power applications; thereupon, the 

reliability of the power electronics equipment is very important. For example, industrial 

applications such as industrial manufacturing are dependent upon induction motors and 

their inverter systems for process control. Generally, the conventional protection systems 

are passive devices such as fuses, overload relays, and circuit breakers to protect the 

inverter systems and the induction motors. The protection devices will disconnect the 

power sources from the multilevel inverter system whenever a fault occurs, stopping the 

operated process.  Downtime of manufacturing equipment can add up to be thousands or 

hundreds of thousands of dollars per hour; therefore, fault detection and diagnosis is vital 

to a company’s bottom line.   
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Multilevel inverters provide more possibilities in the power circuit to operate under faulty 

conditions; however, faults should be detected as soon as possible after they occur, 

because if a motor drive runs continuously under abnormal conditions, the drive or motor 

may quickly fail. Thus, knowledge of fault behaviors, fault prediction, and fault diagnosis 

are necessary.    

 

1.2 Multilevel inverter drives (MLIDs)  

 

Power electronics technologies have provided an important improvement of electric 

vehicles; also, hybrid-electric vehicles that use large electric drives will require high 

power inverters (>50 kW). Therefore, multilevel inverters are suitable for this application 

because a multilevel inverter can possibly provide the high voltampere ratings. For a 

traction drive application, a cascaded H-bridge multilevel inverter can be applied to drive 

the traction motor from a group of batteries or fuel cells. In another way, if a generated ac 

voltage source is available such as from an alternator or generator, a back-to- back diode-

clamped converter can convert this source to variable-frequency ac voltage source to 

drive the traction motor [1].       

  

Most inverter drives employ conventional inverter drives (CID) consisting of six power 

switches with two-level sinusoidal pulse width modulation (SPWM).    The disadvantage 

of conventional converters has degraded voltage and current waveform qualities. To 

improve the waveform quality, the switching frequency needs to be high; this causes 

higher switching losses. Moreover, harmonic voltages could cause additional loss in a 
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traction motor. The additional core losses in an induction motor due to harmonic voltage 

have been studied in [4-5]. Additionally, the dc utilization of a conventional inverter is 

quite low even with the advent of PWM techniques such as third harmonic injection and 

space vector PWM; the maximum of dc utilization is about 86%.  The dc utilization is 

particularly important factor for traction drive application in order to achieve wide speed 

range operation.  

 

Significantly, the use of CIDs might cause motor damage and failure because some CIDs 

have high-voltage change rates (dv/dt), which generate a common mode voltage across 

the motor windings.    High-frequency switching can aggravate this problem because of 

the frequent times this common mode voltage is impressed upon the motor each interval.  

The major problems reported have been motor bearing failure and motor insulation 

breakdown because of dielectric stresses, circulating currents, voltage surge, and corona 

discharge [1, 6].    Moreover, CIDs with fast switching (1 µs) at high voltage level (600 

V) of power semiconductors can produce broadband electromagnetic interference (EMI). 

 

A multilevel inverter has several advantages over a conventional two-level inverter that 

uses high switching frequency pulse width modulation (PWM). The attractive features of 

a multilevel inverter can be briefly summarized as follows: 

• Staircase waveform quality: Multilevel inverters not only can generate the output 

voltages with very low distortion, but also can reduce the dv/dt stresses; therefore 

electromagnetic compatibility (EMC) problems can be reduced;  
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• Common-mode (CM) voltage: Multilevel inverters produce smaller CM voltage; 

therefore, the stress in the bearings of a motor connected to a multilevel motor 

drive can be reduced. Furthermore, CM voltage can be eliminated by using 

advanced modulation strategies such as that proposed in [7];    

• Input current: Multilevel inverters can draw input current with low distortion; 

• Switching frequency: Multilevel inverters can operate at both fundamental 

switching frequency and high switching frequency PWM. It should be noted that 

lower switching frequency usually means lower switching loss and higher 

efficiency. 

 

Unfortunately, multilevel inverters do have some disadvantages.   One particular 

disadvantage is the greater number of power semiconductor switches needed. Although 

lower voltage rated switches can be utilized in a multilevel inverter, each switch requires 

a related gate drive circuit. This may cause the overall system to be more expensive and 

complex. 

 

Three different major multilevel converter structures have been reported in the literature: 

cascaded H-bridges converter with separate dc sources (SDCS), diode clamped (neutral-

clamped), and flying capacitors (capacitor clamped).  Two topologies of multilevel 

inverters for electric drive application have been discussed in [1]. First, the cascade 

MLID is a general fit for large automotive all-electric drives because of the high VA 

rating possible and because it uses several level dc voltage sources which would be 

available from batteries or fuel cells. Second, the back-to-back diode-clamped converter 
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is ideal where a source of ac voltage is available, such as in a hybrid electric vehicle.  The 

cascaded MLID is the focus of this dissertation. 

 1.2.1 Cascaded H- bridge multilevel inverter drives  

A single-phase structure of an m-level cascaded inverter is illustrated in Figure 1.1.  Each 

separate dc source (SDCS) is connected to a single-phase full-bridge, or H-bridge, 

inverter.  Each inverter level can generate three different voltage outputs, +Vdc, 0, and  

–Vdc by connecting the dc source to the ac output by different combinations of the four 

switches, S1, S2, S3, and S4.  To obtain +Vdc, switches S1 and S4 are turned on, whereas 

–Vdc can be obtained by turning on switches S2 and S3.  By turning on S1 and S2 or S3 and 

S4, the output voltage is 0.  The ac outputs of each of the different full-bridge inverter 

levels are connected in series such that the synthesized voltage waveform is the sum of 

the inverter outputs.  The number of output phase voltage levels m in a cascade inverter is 

defined by m = 2s+1, where s is the number of separate dc sources. 

Cascaded inverters have also been proposed for use as the main traction drive in electric 

vehicles, where several batteries or ultracapacitors are well suited to serve as SDCSs [1].  

The cascaded inverter could also serve as a rectifier/charger for the batteries of an electric 

vehicle while the vehicle was connected to an ac supply as shown in Figure 1.2. 

Additionally, the cascade inverter can act as a rectifier in a vehicle that uses regenerative 

braking.  

 

The main advantages and disadvantages of multilevel cascaded H-bridge converters are 

as follows [1]. 
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Advantages: 

• The number of possible output voltage levels is more than twice the number of dc 

sources (m = 2s + 1); 

• The series of H-bridges makes for modularized layout and packaging.  This will 

enable the manufacturing process to be done more quickly and cheaply. 

Disadvantages: 

• Separate dc sources are required for each of the H-bridges.  This will limit its 

application to products that already have SDCSs readily available. 
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Figure 1.1.  Single-phase structure of a multilevel cascaded H-bridges inverter. 

 



 8

 

Motor

To 
Charger

Charge/ Drive 
Switch

N
H - Bridge Inverter Cell

Cell A1

48 V

DC

+

-

Cell A2

Cell A3

Cell A4

Cell A5 Cell B5

Cell B4

Cell B3

Cell B2

Cell B1

Cell C5

Cell C4

Cell C3

Cell C2

Cell C1

A
B
C

 

Figure 1.2.  Three-phase wye-connection structure for electric vehicle motor drive and battery 
charging. 

 

 

1.3 Faults and their consequences  

 

Before continuing discussion in this research, it should be noted that the word fault is 

used to refer to a semiconductor power switch used in the MLID that fails to operate 

when provided gate drive signals and includes faults such as short circuit or open circuit. 

One particular effect on a faulty switch is unbalance output voltage of a MLID. In a 

balanced MLID system, the three line to neutral output voltages are equal in magnitude 

and are phase displaced from each other by 120 degree as illustrated in Figure 1.3[8-9].  
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Figure 1.3.  Balanced output voltage available for 5 cells per phase. 

 

 

On the other hand, if a fault occurs at a semiconductor power switch in a cell, it will 

cause an unbalanced output voltage; for instance, the MLID system as shown in Figure 

1.2 has fault (open or short circuit) on cell 5 at phase B, then the magnitude of line to 

neutral output voltages of phase B (VBN) are not equal with other phases. This causes the 

line to line output voltages to also be unbalanced as shown in Figure 1.4 [9].    
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Figure 1.4.  Unbalanced output voltage on VBC when a faulty cell occurs on phase B. 

 

 

Voltage unbalance also has an impact on a conventional inverter drive system where the 

front end consists of three-phase rectifier systems. The triplen harmonic line currents 

which are uncharacteristic to these rectifier systems can exist in these situations leading 

to unexpected harmonic problems [8].  

 

An excessive level of unbalanced output voltage can have serious impacts on mains 

connected to an induction motor. The level of an unbalanced current may have several 
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times the level of an unbalanced voltage. The unbalanced current in a line current can 

lead to disproportionate losses in the rotor and stator of the induction motor. Some 

induction motors are designed to tolerate a small level of unbalanced voltages and 

currents; however, they have to be derated if the unbalance is excessive. An induction 

motor that operates at its nameplate rated capacity without derating even though required 

load is not at rated capacity because of the unbalance voltages from a MLID will result in 

the useful lifetime of such an induction motor to be quite short. If the induction motor 

operates at full load all the time, the stator windings and the rotor may carry more current 

than that is permitted: this situation can lead to a reduction in induction motor efficiency 

and can reduce the insulation life caused by overheating.  The average expected life of 

insulation halves for every 10o C of temperature increase as reported in [8].  Moreover, 

an induction motor operating under unbalanced voltage condition will be noisy in its 

operation caused by torque and speed pulsation. Obviously, in such situations the 

effective torque and speed will be less then normal.  

 

1.4 Reliability considerations of MLIDs  

 

Since multilevel inverters contain several semiconductors connected in series to achieve 

medium voltage and high power demand, one might consider that multilevel inverters are 

less reliable. In contrast, multilevel cascaded H- bridge inverters using modular series-

cells with separated dc sources as depicted in Figure 1.2 could improve reliability if the 

MLID has the ability to detect and bypass the faulty cell. If one of the power cells fails, it 

can be bypassed and operation can continue at reduced voltage capacity. The amount of 
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reduction in capacity that can be tolerated depends upon the application; however, in 

most cases a reduction in capacity is more preferable than a complete shutdown.   

 

The reliability of a multilevel inverter having the bypass function in each cell has been 

described in [9].  The article explains how the bypass function improves the drive 

reliability.  The major idea to improve reliability is to bypass the damaged cells by using 

a magnetic contactor. The proposed solution in [9, 11] protects the failure of all 

components in the faulty cells, rather than the damage to some power switches. The 

definition of reliability given by [10] is "the probability of a device performing its 

purpose adequately for the period of time intended under the operating condition 

encountered".   The word adequately permits some application at reduced capacity to be 

included in the probability calculations [9].   

 

The engineering reliability analysis in a system is usually concerned with the reliability R 

and/or the probability of failure P. As a system is considered reliable unless it fails, the 

reliability and probability of failure sum to unity as explained in equation (1.1) [10].  
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                                                     (1.1) 

where  P(t) is probability of a system will fail by time t , 

 R(t) is probability of a system will still be operational by time t. Therefore, (1.1) 

can be applied in MLID system reliability analysis. Suppose that the cascaded H-bridge 

MLID system as shown in Figure 1.2 contains N cells and can not tolerate any failures; 
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then, if the probability of a single cell will function properly during a time interval is R, 

so that the probability all N cells will function properly during the same time interval is 

RN because the MLID system is considered as series system in this case.  P(t) and R(t) 

can be defined as the point density functions; then, 
)(
)(

td
tPdP =  and 

)(
)(

td
tRdR = . Next, if 

the MLID has a cell which can tolerate failures, the MLID reliability will become RN
 + 

[N × R (N-1) × (1- R)] instead of RN.  It is obvious that the MLID with a tolerated failure 

cell has a higher reliability than the one without tolerance for failures. A numerical 

reliability example of a MLID can be illustrated in Table 1.1.  Assume that the MLID in 

Table 1.1 has a cell reliability R of 99% and it contains totally 15 cells. As can be seen, 

with one extra cell in each phase, the reliability of the MLID can increase from 86% to 

99.0%; therefore, a fault diagnostic and fault reconfiguration (bypass) system can 

improve the reliability of the MLID system. In addition, for the case of m tolerated cells, 

the reliability function can be written as  
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where m  is number of tolerated cells, 

 N is number of cells in MLIDs, 

 Rm is total reliability of the system. 
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Table 1.1. Numerical example of 15 cells MLID with 99% reliability (R) in each power cell. 

  Number of 
 tolerated cell 

faults 
Reliability Function Reliability 

 (Percentage)

0 R0 = RN 86.006% 

1 R1 = R0 + [N × R (N-1)× (1- R)] 99.037% 

2 R2  = R1  + [(N× (N-1) × (R(N-2)) × (0.5× (1-R)2)] 99.958% 

3 R3 = R2 + [(N× (N-1) × (N-2) × (R(N-3)) × (0.1667× (1-R)3)] 99.999% 

 

 

 

1.5 AI applications in condition monitoring and diagnosis  

 

The application of artificial intelligent (AI) in inverter drives is mostly based on speed or 

position controller applications. Fuzzy-logic (FL) and neuron network (NN) are mostly 

applied to such applications. Genetic algorithm is also applied on PI controller tuning and 

parameter estimation problems. The AI-based controllers could lead to improved 

performance, enhanced tuning and adaptive capabilities; however, there are additional 

possibilities in other aspects of AI-based applications in inverter drives or other power 

electronic areas.  
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It is possible that AI-based technique can be applied in condition monitoring and 

diagnosis. By using condition monitoring, vast savings may be made through improved 

maintenance procedures and policies. AI-based condition monitoring and diagnosis have 

several advantages; for instance, AI-based techniques do not require any mathematical 

models, therefore the engineering time and development time could be significantly 

reduced.  AI-based techniques utilize the data sets of the system or expert knowledge. 

Moreover, the reliability of the system can also improve by using diagnosis; for example, 

in MLID applications, several types of signals such as voltage, current, noise, vibration, 

temperature, and flux signals which can convey valuable information for diagnosis on the 

electrical and mechanical state of a MLID system including motor, multilevel inverter 

and controller. The voltage and/or current signals could be used to diagnose a drift of 

power semiconductor switches in the multilevel inverter which contains numerous 

semiconductor switches. 

 

AI-based fault diagnostic areas should include two different types of main tasks as 

follows: 

• Fault classification (detection): The purpose of this task is to detect any 

selected signals (electrical or mechanical) in the system. This could permit the 

system to be scheduled maintenance and might also prevent incipient system fault 

and would allow improving safety and reliability of the system; 

• Fault localization:  The purpose of this task is to identify the location of 

occurring faults.    This specifies the cause of the detected abnormal behaviors.   
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AI-based techniques can be applied to both diagnostic tasks. Fault classification is a part 

of a protection paradigm and can also be considered as pattern recognition problems or 

non-linear problems [12]. Therefore, artificial neuron network (ANN) can be used to 

perform the fault classification. ANN techniques permit input/output mapping with a 

nonlinear relationship between nodes; also, ANN techniques provide the ability to 

recognize anomalous situations because of their intrinsic capacity to classify and 

generalize. Especially, the sensitivity and response time of the original procedure 

presented for the on-line analysis of fault set repetition enable on-line fault location 

techniques to be developed [13]. The normal and abnormal data or signals can be used to 

train the ANN, so that the ANN can have ability to classify the difference between 

normal and abnormal condition of the system.  

 

1.6 Main contribution of the dissertation  

 

The main contribution of this dissertation proposal is to propose the fault diagnostic, fault 

detection, and fault reconfiguration paradigm for the cascaded H-Bridge multilevel 

inverter drive by applying artificial intelligent based techniques. In this dissertation, an 

attempt to diagnose the fault locations in a MLID from its output voltage waveforms is 

considered. MLID open circuit and short circuit faults at each switch are considered. An 

example of a MLID open circuit fault at switch SA+ is represented in Figure 1.5.  SA+ fault 

will cause unbalanced voltage and current output, while the induction motor is operating.  
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Figure 1.5.  H-Bridge 2 Switch SA+ open circuit fault at second level of single-phase multilevel-
inverter. 

 

 

This unbalanced voltage and current may result in vital damage to the induction motor if 

the induction motor is run like this for a long time. The unbalanced condition from fault 

SA+ can be solved if the fault location is correctly identified.  Switching patterns and the 

modulation index of other active switches in the MLID can be adjusted to maintain 

output voltage and current in a balanced condition. Therefore, the MLID can operate in a 

balanced condition at reduced power while the fault occurs until the operator knows and 

repairs the inactive switch.  
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All occurring fault features can be classified based on their effects of the output voltages; 

for that reason, one can use the output voltage signals as learning/training data to a neural 

network. A neural network has the ability to recognize anomalous situations because of 

their intrinsic capacity to classify and generalize. Genetic algorithm and principal 

component analysis can also be applied in feature extraction process in order to rate 

signals as an important feature. Thus, by applying the proposed AI-based techniques in a 

fault diagnostic system, a better understanding on fault behaviors, detections, and 

reconfigurations of a multilevel inverter drive system can be accomplished. 

 

1.7 Organization of the dissertation  

 

Chapter 2 provides a survey of previous works. Several approaches from previous 

research related in fault diagnosis, detection, and reconfiguration methods are 

investigated in this chapter. The proposed fault diagnostic and detection techniques for a 

multilevel inverter by using a neural network are described in chapter 3. Chapter 3 also 

provides the procedure of how to apply the AI techniques to fault diagnosis and 

detection. Reconfiguration techniques are introduced and examined in chapter 4. Chapter 

5 illustrates the software and hardware implementation of an experiment test rig to 

validate the proposed fault diagnosis system.  Finally, conclusions and recommendations 

for future work are discussed in chapter 6.  
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2. SURVEY OF PREVIOUS WORKS 

 

 

 

2.1 Introduction 

 

This chapter is intended as an overview of previous research in fault diagnosis, detection, 

and reconfiguration. The review particularly focuses on power electronic applications and 

drives. The organization of this chapter begins with a diagnostic system on conventional 

inverter drives (CID) because the knowledge of fault diagnosis in CIDs can be used to 

apply in other inverter drive topologies; therefore, several techniques of fault diagnosis 

and reconfiguration in CIDs are addressed. Subsequently, fault diagnostic and 

reconfiguration techniques for multilevel inverter drives are surveyed. Finally, promising 

technologies which are available in industry are also assessed.     

 

2.2 A general protection used in a CID system 

 

A conventional (voltage-fed) inverter drive has become one of the major applications in 

industry. Since a CID is used in various industrial applications, the reliability of the 

power electronic system of a CID is of paramount importance.  
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An example of an open loop volts/Hz speed control of a CID is shown in Figure 2.1; as 

can be seen, a CID usually consists of six diodes on the input side, dc link voltage, and 

six semiconductor power switches on the output side. Figure 2.1 shows that faults can 

occur in the motor, the rectifier, or the inverter.  The conventional protection system used 

in a CID is mostly passive devices such as fuses, circuit breakers (CBs), and overload 

relays as illustrated in Figure 2.2. This protection system can protect against ground 

faults, dc link overvoltage and undervoltage, and inverter overcurrent. For instance, the 

input circuit breaker will trip for steady overcurrent to the inverter, and the input fuses 

will blow for short circuit fault of a diode in rectifier or a dc link capacitor. The inverter 

input fuse at dc link will protect the rectifier and filter capacitor from a shoot-through 

fault in the inverter. The metal oxide varistors at the input side will protect against 

overvoltage. The overtemperature of a motor will be protected by circuit breaker 

activated by thermal relay.  

 

The protection system in Figure 2.2 is normally designed to shut down the inverter drive 

to protect the power circuit, overlooking the consequence of such accidental shut down. 

For instance, in the case of an inverter fault such as open or short circuit in a power 

switch, the fuse in dc link will blow when the current reaches to the safety limit, 

disconnecting the dc voltage supply. This may cause vitally consequent damages in the 

motor if the motor is running at base speed with rated load. Therefore, the passive 

protection system may not be adequate if the application of a CID needs a continuous 

operation or the motor is connected with a large load such as conveyer or hybrid/electric 
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vehicle. It would be better if one can isolate the fault and continue to operate the motor 

with a single phase mode with degraded motor performance.  

 

The new generation of power semiconductor switches for a CID is mostly designed as 

modular package known as intelligent power module (IPM). An IPM usually combines a 

single phase or three phase rectifier and three phase inverter, gate drive circuit and 

protection circuit as one package as depicted in Figure 2.3. Generally, the protection 

system in Figure 2.2 is included in an IPM except an overload relay at the output side. An 

IPM provides a smaller size of a CID and more convenient interface with the control unit. 

However, the protection system of CID will normally turn off all gate drive signals as 

soon as a fault is detected; as a result, the inverter drive will stop operation. 
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Figure 2.1.  Conventional voltage-fed PWM inverter drives. 
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Figure 2.2.  A typical protection of a conventional voltage-fed inverter drive. 
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Several research papers on fault detection and reconfiguration for a CID have been 

elucidated in the last decade of the twentieth century. To begin with, Kastha and Bose 

[14] have investigated the possible fault modes of a voltage-fed inverter for induction 

motor drive. The method is based on mathematical model of possible faults and their 

consequences. The major fault modes based on mathematical models has been analyzed; 

specifically, input supply single line to ground faults, rectifier diode short circuit, inverter 

transistor base drive open circuit and inverter switch short circuit conditions. Although 

the research did not contribute a fault detection method, it provided an extensive study to 

design the zone of operation safely in a degraded mode of CID, which is important in 

high reliability applications. In addition, the research conveyed the available signals 

which can be used to detect particular faults as follows:  

• input rectifier current for detecting input supply single line to ground faults; 

• dc-link current and voltage for monitoring rectifier diode short circuit fault and 

over/under voltage; 

• input motor current for sensing inverter transistor base drive open circuit and 

inverter switch short circuit fault. 

Kastha [15, 16] also provided a single phase operation technique for a CID when a fault 

occurs in a leg of a CID; particularly, base drive open circuit and device short circuit. 

Assuming that the fault could correctly be detected and isolated, a CID could operate 

with a single-phase mode. The technique is based on torque compensation at an induction 

motor by injecting odd harmonic voltages at appropriate phase angles. In the next section, 

fault detection in an inverter of a CID system is described.  
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2.3 Fault diagnosis in an inverter of a CID system  

 

A CID system usually consists of three cascaded subsystems: a rectifier, an inverter, and 

a motor. A review of fault detection techniques in an inverter is focused in this section. 

As previously mentioned, input motor supply current signals could be used to detect 

switch base drive open circuit and inverter switch short circuit fault. Two techniques are 

primarily applied in fault detection and diagnosis: model based technique and model-less 

based technique.  

 

A model-based technique principally depends upon a mathematical model; for instance, 

analytical redundancy method and parameter estimation method. A model based 

technique is valuable if an accurate model of faults can be obtained. However, in the case 

of a CID, an accurate model representing all of the possible fault cases is difficult to 

obtain. A model based technique has some disadvantages as follows: 

• expensive in engineering time to develop model; 

• model may not be robust to nonlinear problems; 

• model may not be robust to seasonal changes or plant degradation. 

 

A model-less based technique is based upon expert-knowledge or artificial intelligent 

system; namely, a fuzzy logic, a neural network, and a statistical technique.  An 

implementation of a model-less technique may be more expensive than a model based 

technique; however, the technology promise of very large scale integration (VLSI) 
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technology would reduce the implemented cost. Some advantages of a model-less based 

technique are as follows: 

• model-less techniques are mostly non-linear; 

• model-less techniques have input-output mapping and adaptivity: the model can 

be trained to perform a desired mapping;  

• model-less techniques have fault tolerance capability: the failure of single neuron 

will only partially degrade performance; 

• model-less techniques can be implemented as VLSI and parallel configuration. 

 

  2.3.1 Park’s vector approach   

A well-known Park’s transform or Park’s vector approach can be used to perform fault 

detection in a CID. The interaction between the rotor currents and the flux wave relating 

with stator currents can be written in primarily mathematical transformation called Clark- 

transform and Park-transform.   A Clark-transform is a signal transformation method to 

transform the original three-phase signals (for example current signals: ia,ib,ic) into two-

phase signals in a new space (iα, iβ) with an orthogonal basis (iα is perpendicular with iβ).  

The iα and iβ in the stationary frame can be transformed to the current components in the 

reference or d-q frame (isd, isq) with Park transform.  The isd, isq together with 

instantaneous flux angle (φ), calculated by the motor flux model can be used to estimate 

the electric torque of an induction motor.   The transformation using Clark transform to 

modify a three-phase system to a two-phase orthogonal alpha (α) and beta (β) system is 

shown in (2.1): 
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where  iα and iβ  are components in an orthogonal space, 

            io is a homopolar component of the system, 

            ia,ib,and ic are components in original space.  

Assuming that the CID has a balanced load: ia+ib +ic = 0, iα and iβ can be rewritten as: 
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The transformation from a two-phase orthogonal α, β space to a three-phase stationary 

component is performed by  
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The components of two-phase orthogonal α, β space can be fed to a vector rotation block 

where it rotates over an angle (θ ) to follow the frame d, q attached to the rotor flux by 

using Park transform:  
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The vector in the d-q frame can also be transformed to α- β frame by  
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A graphical relationship of current vector among original stator components (ia,ib,ic ), 

two-phase components in stationary space (iα, iβ), and two-phase components in reference 

space (isd, isq) is depicted in Figure 2.4. 
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Figure 2.4. Current vector relationship among a-b-c, α- β, and d-q space. 
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Mendes introduced a monitoring technique for fault diagnosis in a CID based on Park’ 

vector approach [17, 18], namely average Park’s vector. Peuget also proposed a fault 

detection and isolation on a CID [19], called current-vector trajectory. Basically, Mendes 

and Peuget used input motor currents as diagnostic signals and modified the original 

Clark and Park transform method as fault feature extraction to rate input motor current 

signals as an important characteristic in order to classify a fault location in an inverter. 

The difference between Mendes’s work and Peuget’s work is the diagnostic paradigm to 

indicate fault locations (power switch of an inverter).   

 

First, Mendes used average current Park’s vector ( Ia,av , Ib,av , and Ic,av ) to detect a fault. 

The corresponding Park’s vector can be expressed as follows:   
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The input motor currents are average value over one period. The magnitude and phase 

angle of the average vector (Id,av , Iq,av) can be calculated in the complex coordinate. 

Obviously, the average current vector in orthogonal space runs in a circuit will be zero 

for a normal condition of a CID. In contrast, the magnitude of the vector will not be zero 

if a fault occurs; normally, the magnitude will exceed some threshold value. The average 

phase angle can be used to identify a fault location.  Trajectories of Park’s vector 

corresponding with the inverter switch locations (Figure 2.3) are illustrated in Figure 2.5. 
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Figure 2.5. Current-vector trajectories in open circuit fault mode: 
(a) S1 , (b) S4 , (c) S2 , (d) S5 , (e) S3 , and (f) S6 [19]. 
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The magnitude can be used to determine the fault types (open or short circuit) by setting 

the threshold value: threshold values are usually based on experiment or simulation. The 

average angle can be used to identify a fault location as shown in Table 2.1.   

 

Second, Peuget used the slope of trajectory in the orthogonal space to identify fault 

locations. The trajectory of input motor current is transformed by modifying (2.2) and 

(2.3). It should be noted that (2.3) assumes a balanced load. Equations (2.2) and (2.3) can 

be rewritten in terms of line currents as: 
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Table 2.1.  Interval of avθ  to identify fault locations 

Switch locations Open circuit fault Short circuit fault 

S1 150o < avθ  < 210o 330o < avθ  < 30o 

S2 210o < avθ  < 270o 30o < avθ  < 90o 

S3 270o < avθ  < 330o   90o < avθ  < 150o 

S4    330o < avθ  < 30o 150o < avθ  < 210o 

S5  30o < avθ  < 90o 210o < avθ  < 270o 

S6    90o < avθ  < 150o 270o < avθ  < 330o 
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As can be seen in Figure 2.5, the trajectories consist of a non-linear part (semicircle) and 

a linear part (line). The slope (m) of the linear part can be found by: 

.
α

β

i
i

m
∆
∆

=                                                           (2.8) 

One can see in Figure 2.5 that the slope is related with an inverter phase leg; for example, 

if a switch in phase b has an open circuit fault, the current ib is zero, then the slope of this 

trajectory is
3

1 . The same topology can be applied to other phases of a CID as follows: 

• fault at phase a, ia is zero: then, the slope of the trajectory (m) is infinite ( ∞ ); 

• fault at phase b, ib is zero: then, the slope of the trajectory (m) is 
3

1 ; 

• fault at phase c, ic is zero: then, the slope the trajectory (m) is 
3

1− . 

The currents in the faulty phase can be used to determine the faulty switch in the faulty 

phase leg. If the current has negative direction, the switch connected with the positive dc 

link has a fault. Conversely, if the current has positive direction, the switch connected 

with negative dc link has a fault. A  Schmitt-trigger circuit can be used to monitor the 

direction of currents: a hysteresis loop of a Schmitt-trigger can be set to observe current 

polarity for the slope method.             

 

The Park’s transform approaches are simulated by using PSIM from Powersim and 

MATLAB from Mathworks. PSIM is used to simulate the power circuit of a CID 

consisting of a rectifier, an inverter and a motor; then, the current signals are sent to 

perform Park’s vector in MATLAB as illustrated in Figure 2.6. To create an open gate 
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drive fault, the drive signal for a particular switch is bypassed to ground (0); for instance, 

if switch S1 has open gate drive fault, the gate drive signal of the switch S1 is controlled to 

zero. Current signals after simulation are sent to Matlab and transformed to orthogonal 

space. The results of current trajectories in orthogonal space are shown in Figure 2.7. 
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Figure 2.6.  Power circuit of a CID simulated by PSIM with current trajectory at normal condition. 
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Figure 2.7. Simulation results of current trajectories on open circuit faults: 
(a) S1 , (b) S4 , (c) S2 , (d) S5 , (e) S3 , and (f) S6. 
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Figure 2.8. Line currents during open circuit faults at S1. 

 

Figure 2.8 shows the plot of line currents during open circuit at switch S1. Obviously, the 

currents in orthogonal space are related with the switch locations as shown in Figure 2.7. 

The several locus curves at the same plot of each current trajectory are the current cycles 

of the motor. Obviously, slope detection and Park’s average vector method may have a 

problem to detect the faults when the CID is running at light load or at low modulation 

index. As represented in Figure 2.7, the vector angle in orthogonal space is dependent 

with the load currents; for instance, if the fault occurs at S6 during light load operation, 

the vector angle of  S3 and  S6 is located at the same interval as depicted in Figure 2.7 (d) 

and (f). Also, the switch S3 and S6 are placed in different inverter legs so that the 

detection system using slope detection and Park’s average vector method would be 

incorrectly detected. 
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 2.3.2 Control signal observer approach   
 

Kral [20] introduced a monitoring method in a feedback CID by using the deviation 

between the reference current signal and the actual current signal as a diagnostic signal.  

The actual motor line currents can not track the reference current of the control unit when 

the faults occur. The detection technique is based on the observation of amplitude and 

phase of the deviation current.  The DFT (discrete Fourier transform) is utilized for 

feature extraction; subsequently, the ratio of a fundamental component and a dc 

component is the fault indicator (find) to determine faults. Also, the angle of the fault 

indicator (
indfθ ) can be used to identify fault locations as shown in Table 2.2. The 

threshold value of fault indicator is 0.5: this value is derived from several simulation 

results [20]. If the fault indicator is more than 0.5, the CID has an open circuit fault. The 

mathematical expression of this approach is explained as:   

( ) ( )

{ }
{ } ,

Im
Rearctan

,

,1

,

,5.0

,5.00

1

21

0
,

22
,

2
,

22
,

2
,,,









=





=

∆=

−+−=−=∆

>

<

−

=
∑

ind

ind
f

faultthenindfif

faultnothenindfifind

N
mkjN

k
ks

m

actqrefqactdrefdactsrefss

f
f

C
Cf

ei
N

C

IIIIiii

ind
θ

π

                             (2.8) 

where N is the total number of points per period, 

            k is 0,1,2…N-1. 
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Table 2.2. Location of the faulty switch 

Switch locations Fault indicator Condition 

S1 |
indfθ  |< 30o 

S2 30o < 
indfθ < 90o 

S3 -150o < 
indfθ  < -90o 

S4 |
indfθ  |> 150o 

S5 90o < 
indfθ  < 150o 

S6 

> 0.5 

-90o < 
indfθ < -30o 

 

 

The advantage of this approach is that fault detection algorithm can be integrated in the 

control unit with a single digital signal processor (DSP), and also the extra measurements 

are not required. However, the subroutine software of the DSP must be modified, and this 

might degrade the execution speed of the main software in the DSP.  

 2.3.3 Normalized dc current approach   

Abramik [21] proposed a diagnostic method for a CID, namely the normalized dc current 

method. The concept of the method is to use normalized dc current instead of the currents 

transformed to orthogonal space. The normalized dc current is the ratio between the dc 

component and the fundamental component. The fault observer is based upon the 

relationship of normalized dc current in each phase. To illustrate this, for instance, the 

current spectrums (ia and ib) of the open circuit fault at switch S1 are shown in Figure 2.9.  
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Figure 2.9. Current spectrum of ia and ib  during normal and open circuit fault at S1: 
(a) line current at phase A (ia), and  (b) line current at phase B (ib). 
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Obviously, the dc component of the currents in both phases is not zero during faults as 

shown in Figure 2.9, and the fundamental component of a faulty phase (phase A) is 

smaller then a fundamental component of related phase (phase B); hence, the properties 

of current spectrums can be applied to detect the faults and localize the faulty switch of a 

CID. To achieve this, the recursive DFT algorithm is applied to calculate fundamental 

component and dc components of three-phase line currents. The threshold value of 0.45 

is used as fault indicator; this threshold is derived from experience [21]. A fault is 

detected when the threshold is exceeded (> 0.45) in one phase, whereas the other phases 

are below the threshold value (< 0.45) and have the reverse polarities with respect to the 

faulty phase. The decision making rules using binary codes to detect and localize the 

faults are illustrated in Table 2.3.       

  

Table 2.3. Diagnostic rules for open circuit faults. 
 

Binary codes for fault diagnosis 
Switch locations 

A

Aav

I
I

,1

,  
B

Bav

I
I

,1

,  
C

Cav

I
I

,1

,  

S1 1              0 0              1 0              1 

S2 0              0 0              0 1              1 

S3 0              1 1              0 0              1 

S4 1              1 0              0 0              0 

S5 0              1 0              1 1              0 

S6 0              0 1              1 0              0 
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As can be seen, two binary bits are used in each phase; the left hand side bit and the right 

hand side bit. First, the left hand side bit is used to indicate when a normalized dc current 

exceeded the threshold or not; “0” is the normalized dc current lower than the threshold, 

whereas “1” is the normalized dc current more than the threshold. Second, the right hand 

side bit is used to determine the polarity of currents; “0” is negative current, while “1” is 

positive current.  The mathematical expression of recursive DFT is represented as 

follows:  
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where N is a total number of points per period, 

            k is 0,1,2…N-1, 

           τ is a sampling period (
N
T ).  

The advantage of the normalized dc current method is that the diagnostic variables 

(normalized dc currents) are independent with motor load; whereas, average Park’s 

vector approach is dependent with motor load. The current components in an orthogonal 

space will be small when the motor is running at light load; this might cause an incorrect 

identification of the fault location.       
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Rothenhagen also proposed the diagnostic method, namely modified normalized dc 

current [22]. This method basically uses the same algorithm as the normalized dc current; 

however, a less restrictive way to locate a faulty switch is conducted. The performance of 

previously discussed diagnosis for open circuit faults in voltage source inverter has been 

investigated by Rothenhagen in [22] for active rectifier application and [23] for drive 

application. The report of Rothenhagen’s works can be summarized in Table 2.4.  “Y” 

means the fault is detected, “N” means the fault can not be detected, and “(Y)” means the 

fault detection is ambiguous (sometime the fault can be detected and sometime the fault 

can not be detected).    

 

Table 2.4. Performance of diagnostic methods reported by Rothenhagen. 

Active rectifier Conventional  Inverter drive 

Current (A) Current (A) 
Diagnostic 

method Frequency 
(Hz) 30 6 1.2 

Frequency 
(Hz) 6.8 3.4 0.7 

Park’s vector Y Y (Y)
50 
25 
10 

Y 
Y  
Y 

Y 
Y 
Y 

Y 
N 
N 

Slope detection Y Y N 
50 
25 
10 

Y 
Y 
Y 

N 
(Y) 
Y 

N 
N 
N 

Control signal 
observer Y Y (Y)

50 
25 
10 

No Report 

Normalized dc 
current  Y Y N 

50 
25 
10 

Y 
Y 
N 

Y 
Y 
Y 

N 
N 
N 

Modified 
normalized dc 

current 

50  

Y Y Y 
50 
25 
10 

Y 
Y 
Y 

Y 
Y 
Y 

Y 
Y 
N 
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As illustrated in Table 2.4, most diagnostic methods have problems to detect the faulty 

switches at low current in both applications; more specifically, at low speed for drive 

application, most methods have poor performance. This result suggests that normalized 

dc current using recursive DFT algorithm as feature extraction would be a more reliable 

approach for fault diagnosis in a CID system.  

 

Rothenhagen also reported a consumed detection time of the diagnostic methods as 

summarized in Table 2.5. The fastest method is normalized dc current method for active 

rectifier application, whereas the slowest method is control signal observer. For drive 

application, one can see that the diagnostic system consumes more detection time at low 

speed operation than high speed operation. A study shows that the detection time may be 

different at different operating points.       

          

Table 2.5. Consumed detection time of diagnostic methods reported by Rothenhagen. 

Active rectifier Conventional  Inverter drive 

Detection time (ms) 
Diagnostic 

method Operating 
point 

Detection 
time (ms) 

Operating 
point Average Min Max 

Park’s vector 5  

Slope detection 10 
Control signal 

observer 20 

Normalized dc 
current  3 

No Report 

Modified 
normalized dc 

current 

6 A, 50 Hz 

5 
7 A, 50 Hz 
7 A, 25 Hz 
7 A, 10 Hz 

15.90 
25.85 
61.56 

6.6 
9 
17 

25 
42 
111 
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 2.3.4 Artificial Intelligent based approach 

Thus far, one can observe that a diagnostic procedure can be divided into three major 

steps: feature extraction, fault identification, and corrective action taken. Feature 

extraction is a process performing the diagnostic signal transformation, with rated signal 

values as important features; for instance, Park’s vector and normalized dc. Input motor 

current signals are mostly utilized in a CID system. Then, fault identification process 

performs the rule or decision making to identify fault types and their location; for 

example, slope detection, angle of current components in orthogonal space, and 

knowledge-based (threshold set-up ) with observation of the current direction. The 

principal of a corrective action taken process is to clear the fault (bypass a faulty inverter 

leg) and derating operation (two-phase operation). A comparison of features, cost, and 

limitations of corrective action topologies in a CID system is investigated in [24]. The 

input motor current signals in time-domain are mostly used to detect faults from previous 

research; this is because the magnetizing and torque-producing components are related 

with the stator currents; therefore, the currents in time domain could identify intermittent 

faults faster. Smith [25] suggested that fault detection methods based on frequency 

domain signals are not suitable for condition monitoring with the system required fast 

response.           

 

Since the recent development of computer program simulations such as Pspice, Matlab, 

and Psim, the fault behaviors can conveniently be simulated instead of complicated 

mathematic equations. Moreover, the simulation results can be analyzed to find an 

appropriate diagnostic signal and can be used as information for knowledge–based 
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system or training a neural network.     Therefore, it is possible that artificial intelligence 

(AI)-based techniques can be applied in a diagnostic system; especially, in a fault 

identification process. AI-based techniques would give more degrees of freedom to 

classify the faults than the rules-based (IF, THEN or hard limit) technique. There are 

several types of AI-techniques: neural network, fuzzy logic and other statistical 

techniques such as polynomial and regression. Fuzzy logic might be considered a 

knowledge-based technique. The essence of a knowledge-based technique is the ability to 

use experience or knowledge to make the rules representing the physical system as a 

model; whereas, the neural network and other statistical methods are naturally nonlinear 

function approximation by using a nonlinear relationship between inputs and outputs 

(supervised learning) or relationship only inputs (unsupervised learning).  

 

Fillippetti [26] presented a general review of recent developments in the field of AI-based 

diagnostic systems in machine drives. The application of AI-based techniques for 

monitoring and diagnosis is mostly in a motor. A review of machine signature analysis 

for fault diagnosis and condition monitoring has been reported in [27, 28]. Basically, 

electrical, mechanical, and chemical signals can be applied to indicate machine faults 

such as broken rotor bar, shorted rotor field winding, bearing fault, and stator winding 

faults; to name a few. Various types of faults and their detection techniques have been 

proposed from numerous researchers [29]; however, only limited research on fault 

diagnosis in an inverter drive based on AI- techniques have been published. It is possible 

that the machine diagnostic system can be combined with the fault possibilities of the 

converter if the machine is supplied by a CID.  Input inverter current, a dc link current or 
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voltage, and input motor currents would be used as diagnostic signals to detect and 

identify the faults.  

 

Curea [29-31] anticipated a diagnostic system based on AI-technique: polynomial and 

neural network approach. Curea reported that output voltages and currents of a converter 

can be used as diagnostic signals. Also, phasor diagram, Fourier transform, and complex 

power can be used as a signature extraction. The results of Curea’s works show that a 

neural network provides a better characterization of the involved complex and nonlinear 

behavior than a polynomial method; however, the polynomial method uses a short 

computation time and requires less memory and CPU speed.  

 

Diallo [32] proposed a fault diagnostic system for an induction machine drive with a 

pattern recognition approach. Diallo’s method also uses input motor currents signal in 

orthogonal frame to diagnose the faults and their localization for open circuit faults; 

however, a probabilistic approach is also applied in the feature extraction process. This 

increases the robustness of the method against the uncertainties due to measurements of 

PWM signals. The radial basis function (RBF) neural network architecture is used to 

classify a normal and abnormal condition by building the healthy boundary of operation 

area; then a probability of each sector in orthogonal space is calculated by step of 60o so 

that the sector having highest probability identifies the fault locations. Diallo also 

reported that the average Park’s current vector reveals lack of reliability under faulty 

condition during light load operation.  
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Murphy [33] presented a fault diagnostic system in electric drives using machine learning 

for detecting and locating multiple classes of faults.  The open circuit fault is focused in 

this work because the authors assume that a short circuit fault will eventually burn out 

and become permanently open circuit.  The main point of this research is to propose the 

machine learning algorithm in training paradigm to find more representative data. A 

neural network based diagnostic system trained on more representative data is more 

likely to perform a better diagnosis.  

 

Machine learning can be regarded as a subset of AI-based techniques concerned with the 

development of algorithms and techniques permitting a computer to learn. The proposed 

machine learning algorithm can automatically select a set of representative operating 

points of electric drive system to generate signals for training a neural network. Two 

voltage and current output inverter signals are used as diagnostic signals; then the 

diagnostic signals are divided into segments. Descriptive statistics of the diagnostic 

signals in each segment are calculated; descriptive statistics include maximum and 

minimum magnitude of signals, median and mean values of signals, standard deviation of 

signals, and dc component of power spectrum. The descriptive statistics of the diagnostic 

signals in each segment are utilized as a feature extraction. The advantage of using the 

proposed machine learning algorithm is the diagnostic system can automatically select 

the control parameters related with the faults to generate signals to train the network with 

only simulation signals by using Matlab-Simulink. Murphy also reported that the 

proposed diagnostic system effectively detected multiple classes of faults. The prediction 

accuracy is close to 98% in detecting different classes of faults [33].         
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2.4 Fault diagnosis in an inverter of a MLID system  

 

As previously mentioned, three different major multilevel converter structures have been 

reported in the literature: cascaded H-bridges converter with separate dc sources (SDCS), 

diode clamped (neutral-clamped), and flying capacitors (capacitor clamped). The 

diagnostic methods applied in a CID can also be used in MLID; however, different 

multilevel converter structures may need different fault diagnostic and reconfiguration 

methods. A fundamental concept of multilevel inverter operation will not be provided 

here; however, a distinguished introduction and application of multilevel inverter has 

been provided by [34].  

 2.4.1 Diode clamped MLID 

Diode clamped MLID is also known as neutral-point clamped (NPC) MLID. Park [35] 

proposed the control method of NPC inverter for continuous operation under one phase 

faults. The possible schematic of three-phase NPC inverter is shown in Figure 2.10. 

Three triacs are placed between the diode-clamped center tap and the phase output 

terminal; these triacs allow the current to flow from neutral point to the load during the 

faults. Thus, with bypassing the faulty leg, NPC can continuously operate under fault 

conditions. Park also provided the neutral point voltage control method based on space 

vector pulse width modulation to control the balance voltage at neutral point. The fault 

detection based on Park’s vector approach for NPC-MLID has been proposed in [36]. 

The simulation of open circuit faults is represented in Figure 2.11. As can be seen, the 

method may incorrectly detect a fault at light load operation due to current dependence. 
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Figure 2.10. Schematic of three-phase diode clamped MLID with fault tolerance. 
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Figure 2.11. Input motor currents during open circuit faults: 
(a) Currents of open circuit fault at S2 of phase A, (b) Currents in orthogonal space for each switch. 
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 2.4.2 Flying capacitor MLID 

Kou and Corzine [37] presented a unique fault tolerant design for flying capacitor 

multilevel inverter. The proposed schematic of flying capacitor with fault tolerance is 

illustrated in Figure 2.12. Additional SCRs in parallel to power switches can bypass the 

faulty devices, when faults occur whether open or short circuit faults. Also, two more 

switches are added to the dc branch in each phase in order to disconnect the related dc 

branch during a fault. For example, if S1 has an open circuit fault, S1 will be bypassed as 

soon as the fault is detected, then S6 is forced to be turned on and T1 is needed to be 

turned off. The advantage of this scheme is that it can provide the same number of 

converting voltage levels if a single switch is failed per phase.  Thus far, fault diagnosis 

and fault detection of flying capacitor MLID have not been reported in literatures. 
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Figure 2.12. Three-phase four level flying capacitor MLID with fault tolerance. 
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 2.4.3 Cascaded H-bridges MLID 

Fault diagnostic method for cascaded H-bridges MLIDs to detect switch fault and 

location have not been reported in literature so far; however, the fault detection for a 

faulty power cell using fiber optic has been reported in [9].   The cascaded H-bridge 

MILD has been installed for fluidized-bed catalytic cracking unit (FCCU), which use 

5,000 hp motor. This MLID has a bypass-contractor in each power cell to bypass during 

cell failure as depicted in Figure 2.13. Figure 2.13 shows that if faulty power cells are 

correctly detected, the bypass-contractor will turn on to bypass the power cell. As 

previously mentioned, a failure in a power cell causes unbalanced voltages. To solve 

unbalanced voltages, one possible method is to bypass an equal power cell in all three 

phases although power cells of other phases may not have malfunction. This method 

could solve unbalanced problems, but the method sacrifices possible voltage capability.  

 

Hammond [38] proposed a corrective action taken to balancing output voltages for MLID 

called neutral shift (NS). The NS permits the extra power cell in one phase to partially 

compensate for a failure from other phases. The essence of NS is the adjustment angle of 

neutral point of three phase wye-connection system as shown in Figure 2.14. Obviously, 

the phase-voltages (VAN,VBN,VCN) are not out of phase with each other by 120o
 as usual; 

however, the line-voltages (VAB,VBC,VCA) are balanced even though two power cells on 

phase C and one power cell on phase A are malfunctioning. The neutral shift provides 

more voltage available after faulty cells than an equal bypass method. The calculation of 

the reference signal to adjust neutral point angle is provided in [11], and the comparison 

of control schemes for cascaded MLID with faulty cell has been investigated in [39]. 
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Figure 2.13. A typical power cell with bypassed ability. 
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Figure 2.14. Rebalanced output voltage by adjusting phase angle of neutral point. 
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2.5 A promising support for AI-based fault protection in MLID  

 

Since the objectives of this dissertation is for a diagnostic system for a MLID based-on 

AI-based technique, the survey of available manufacturing supports to implement the 

proposed method should be scrutinized. Two promising technologies are focused in the 

section: power switch devices and AI-based implementation.  

 

 2.5.1 Modular power switch for a MLID 

The new generation of power semiconductor switches for a CID is mostly designed as 

modular package known as intelligent power module (IPM). Besides, the promising 

power switch used for a MLID should also be modular package. CT-concept technology 

Ltd provides a unique power switch module for diode-clamped MLID as shown in Figure 

2.15. Figure 2.15(a) is the intelligent gate drive of the 1SD210F2 SCALE series (6.5 kV, 

600 A) including a mounting protection and gate drive circuits. The external mounting 

board consists of the gate drive and protection circuit; the gate drive signals transmit via 

fiber optic interface and a VCE voltage monitoring is depicted in Figure 2.15 (b). This 

power module is a “plug and play” solution meaning the users can select how many 

levels to use for the MLID application by selecting a jumper on the mounting board. 

However, the protection method of this power module is based on turning off gate drive 

signals, so the MLID must be stopped as soon as the fault is detected even though one 

switch is failed; hence, it would be better if the power module would have a function to 

reconfigure the MLID after the faults and their locations are detected.         
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Figure 2.15. Modular power switch for a MLID 600 A/6500 V of CT-concept technology Ltd: 
(a) Product photo [40], (b) Voltage VCE monitoring circuit. 

 

 

It is possible that the function of fault detection, diagnosis, and reconfiguration can be 

integrated with the intelligent power module as a mounting board in Figure 2.15(a).  

Although the illustrated power module is used for diode clamped MLID, one would 

expect that the cascaded H-bridge module should be the same direction. The H-bridge 

power module may consist of four switches as a cell; as a result, the replacement of a 

failed power cell is convenient, and the bypass ability of a failed power cell is available.  

 

The output phase-voltage signals can be detected by using a simple voltage divider 

technique as shown in Figure 2.15 (b); however, the percent error of resistors should be 

extremely small (0.1 %) with high frequency response since the output voltages are PWM 
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waveforms.  It is evident that the use of voltage divider method can provide a small size 

of the mounting board as shown in Figure 2.15 (b); also, the signals from VCE monitoring 

circuit mounting with power module can be used to calculate the output phase-voltage 

signals. In addition, International Rectifier also provides an integrated circuit (IC) for 

voltage sensor and short circuit protection for a CID [41].   Thus far, the promising power 

module and a voltage sensor are commercially available; therefore, it is optimistic that a 

fault diagnostic technique can use the output voltages of MLID to be diagnostic signals.  

 

 2.5.2 Hardware Implementation of AI-based diagnosis 

One controversy of using neural networks or other AI-based diagnostic techniques is how 

to do a hardware implementation with a complicated activation function used in a neuron 

(sigmoid). As known, the neural network can be coded to training the network via 

software, such as Matlab, C language, Basic language, and Excel. After one finishes the 

training process, the final weight and bias matrices are parameterized to perform an 

input/output mapping; therefore, these weight and bias matrices would need to be 

implemented in the hardware. It is optimistic that the weight and bias matrices can be 

implemented in hardware for any “analog or digital solutions”.   

 

Analog solutions are based on a saturated operational amplifier (OP-AMP) for linear 

activation function and push-pull OP-AMP for sigmoid activation function. Vas [12] 

provided an example of analog hardware implementation as illustrated in Figure 2.16.  
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Figure 2.16. Neural network implementation using a saturated OP-AMP: 
(a) multiple input neurons, (b) an example of two input neurons ([w1,w2]T = [-0.8, 0.7]T). 

 

 

As depicted in Figure 2.16 (a), the negative weights ( −
iw ) is )().( −

− −=−
i

F
iF R

RGR , where i is 

1,2,3,…,n , G is conductance, and n is the number of negative weights. The positive 

weights ( +
kw ) is 



















+
∑

∑
∑

=

+

=

+

=

−
p

j
j

p

k
kn

j
jF

G

G
GR

1

1

1

}.1{ , where k is 1,2,3,…,p, j is 0,1,2,…,p, and p is a 

number of positive weights. Since the activation function (Sact) 

becomes [ ] [ ] [ ] [ ]++−− + xwxw TT .. , the output (y) is a function of activation function (f (Sact)). 



 55

Figure 2.16 (b) shows an example of the weight matrix of two input neurons of [w1,w2]T 

= [-0.8, 0.7]T . By selecting RF and R0 =1 kΩ, the positive and negative resistors can be 

calculated as shown in Figure 2.16 (b). This example is evident that a neural network can 

be implemented in hardware based on simple analog circuits; however, the analog circuit 

will become more complicated in multiple input neurons and multiple neural network 

layers.  

 

Recently, the development of a digital signal processing (DSP) and a field programmable 

gate array (FPGA) provides the possibility to implement the neural network in digital 

solution as a single chip. One can imagine that the several OP-AMPs from an analog 

circuit can be integrated into a single chip. Additionally, Matlab-Simulink also developed 

a toolbox based on graphic user interface (GUI) [42]. This toolbox conveys a convenient 

way to develop the neural network from training process to implementation process; the 

final weight and bias matrices can convert to be a C++ code, and then this C++
 code can be 

directly download to the DSP by embedded development tool from DSP or FPGA 

companies such as Texas Instrument and Traquair. Also, much research has focused to 

develop the hardware of neural network in adaptive training function, meaning that the 

neural network card can perform training online by the card itself. Zhang and Li [43] 

proposed a feed-forward neural network based on FPGA applied for variable-speed wind 

turbine system. They suggest that FPGA are more suitable than DSP because a FPGA can 

parallelly execute commands, whereas DSP is naturally series execution.  
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Thus far, it is optimistic that the fault diagnostic system based on neural network or AI-

based techniques can be conveniently implemented as a single chip. The training process 

could be both off-line and on-line training. In this dissertation, the Opal-RT system will 

be used to implement the proposed fault diagnostic system. The Opal-RT basically 

consists of several DSPs in the same board including analog/digital inputs and outputs.  

The neural network development process will be performed based on Matlab-Simulink 

until the final weight and bias matrices are achieved. More detail on hardware validation 

will be clarified in Chapter 5.   

 

2.6 Summary  

 

This chapter has provided the survey of previous research and promising technology of 

AI-based techniques. It is obvious that numerous fault diagnostic techniques are available 

for a conventional inverter drive (CID); however, only limited research on multilevel 

inverter drives (MLID) has been conducted. Most research in a CID used input motor 

current signals as diagnostic signals. The major difficulty of using current signals is load 

dependent so that the diagnostic system may have a problem with light load operation 

because the decision making rules are usually designed at the rated load. It would be 

better to use a signal which is independent from the load.  A fault diagnostic system in 

cascaded MLIDs by using output voltage signals will be shown in the following chapters 

 

The survey suggests that the design of fault diagnosis consists of three important steps: 

feature extraction, fault identification, and corrective action taken. The AI-based 
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technique methodology of fault diagnostic system for a cascaded MLID using output 

phase-voltage signals are presented in Chapter 3.   
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3. AI-BASED MLID FAULT DIAGNOSIS  

 

 

 

3.1 Introduction 

 

This chapter presents the methodology of the proposed AI-based fault diagnostic system 

in a cascaded multilevel inverter drive (MLID). Three important steps of the proposed 

design of fault diagnosis consist of: feature extraction, fault identification, and corrective 

action taken are clearly illustrated. To expediently understand, a two separated dc sources 

(SDCS) cascaded MLID (or five levels output phase-voltage MLID) is used as an 

example in a design process. Also, open circuit faults at each switch are considered, and 

for illustrative purposes, one level of a multilevel inverter is the focus of this chapter. 

Although the MLID system usually consists of three phases of H-bridge inverters and can 

also have short circuit faults, the fault diagnostic system will be the same topology as a 

single phase and open circuit case. In this research, the fault location in a MLID will be 

attempted to diagnose from its output voltage waveforms because the output voltages are 

normally independent from the load and correspond with fault types and locations.  
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3.2 Structure of fault diagnostic system  

 

The structure for a fault diagnostic system is illustrated in Figure 3.1. The system is 

composed of three major states: feature extraction, fault identification (neural network 

classification and fault diagnosis), and corrective action taken (switching pattern 

calculation with gate signal output). The feature extraction, neural classification, and fault 

diagnosis are the focus of this chapter. The feature extraction performs the voltage input 

signal transformation, with rated signal values as important features, and the output of the 

transformed signal is transferred to the neural network classification. The networks are 

trained with both normal and abnormal data for the MLID; thus, the output of this 

network is nearly 0 and 1 as binary code. The binary code is sent to the fault diagnosis to 

decode the fault type and its location. Then, the switching pattern is calculated to 

reconfigure the MLID to bypass and compensate the failed cell. 

 

3.3 Diagnostic signals 

 

The multilevel carrier-based sinusoidal PWM is used for controlling gate drive signals for 

the cascaded MLID as shown in Figure 3.2. It should be noted that other modulation 

strategies can be used to control a cascaded MLID as well; one unique method to balance 

a switching loss of other levels, particularly at low modulation index, has been proposed 

by Tolbert [44]. Figure 3.2 shows that the output voltages can be controlled by 

controlling the modulation index.  
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Figure 3.1. Structure of fault diagnosis system. 
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Figure 3.2. Multilevel carrier-based sinusoidal PWM showing carrier bands, modulation waveform, 
and inverter output waveform (ma = 0.8/1.0). 
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The modulation index (ma) is the ratio between an amplitude modulation waveform and 

an amplitude combination of carrier bands; for instance, the 0.8 out of 1.0 ma is 

represented in Figure 3.2. The number of carrier bands depends upon the number of 

SDCS; the two SDCS cascaded MLID requires two carrier bands on positive side and 

two carrier bands on negative side and each band has equal amplitude.  

 

The selection of diagnostic signals is very important because the neural network could 

learn from unrelated data to classify faults which would result in improper classification. 

Simulation results of input motor current waveforms during an open circuit fault at 

different locations of a MLID (shown in Figure 1.5) are illustrated in Figure 3.3 and 

Figure 3.4. 

 

 

Figure 3.3. Input motor currents during open circuit fault at switch SA+ of H-bridge 2. 



 62

 
(a) 

 

(b) 

 
Figure 3.4. Input motor currents during open circuit fault at H-bridge 1: 

(a) switch SA+  ,  (b) switch SB+.  
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The simulation model is illustrated in Figure 3.5; Power simulation (PSIM) from 

Powersim Inc is used as power circuit of a MLID and Matlab-Simulink from Matworks is 

used to generate gate drive signals. As can be seen in Figure 3.3 and 3.4, the input motor 

currents can classify open circuit faults at the same power cell by tracking current 

polarity (see Figure 3.4); however, it is difficult to classify the faults at different power 

cells; the current waveform for a fault of SA+ in H-bridge 2 (Figure 3.3) looks identical to 

that for a fault of SA+ in H-bridge 1 (Figure 3.4 (a)). As a result, the detection of fault 

locations could not be achieved with only using input motor current signals. Also, the 

current signal is load dependent; the load variation may lead to misclassification; for 

instance, light load operation as reported in a CID case in chapter 2. Auspiciously, Figure 

3.2 indicates that an output phase PWM voltage is related to turn-on and turn-off time of 

associated switches; hence, a faulty switch can not generate a desired output voltage; The 

output voltage for a particular switch is zero if the switch has a short circuit fault, 

whereas the output voltage is about Vdc of SDCS if the switch has an open circuit fault. 

For this reason, the output phase voltage can convey valuable information to diagnose the 

faults and their locations.       

 

The simulation results of output voltages are shown for an MLID with open circuit faults 

and short circuit faults in Figure 3.6. One can see that all fault features in both open 

circuit and short circuit cases could be visually distinguished. Also, experimental results 

of output voltage signals of open circuit faults in each location of two 12 V separate dc 

source (SDCS) MLID as shown in Figure 1.5 with multilevel carrier-based sinusoidal 

PWM gate drive signals are shown in Figure 3.7 and Figure 3.8. 
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Figure 3.5. Simulation model using Psim and Matlab-Simulink. 
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Figure 3.6. Simulation of output voltages signals showing fault features at SA+, SA-, SB+, and SB- of  
H-bridge 2 with modulation index = 0.8 out of 1.0.: 

(a) open circuit faults, (b) short circuit faults.  
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(a)

(b) (c)

(d) (e)

 

Figure 3.7. Experiment of open circuit fault of H-bridge 1 with modulation index = 0.8 out of 1.0: 
(a) normal,  (b) SA+ fault, (c) SA- fault,  (d) SB+ fault, and  (e) SB- fault 
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(a) (b)

(c) (d)

 

Figure 3.8. Experiment of open circuit fault of H-bridge 2 with modulation index = 0.8 out of 1.0: 
(a) SA+ fault, (b) SA- fault, (c) SB+ fault, and (d) SB- fault. 
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Obviously, the results show that the output phase voltage signals are related to the fault 

locations and fault types (open circuit and short circuit). One can see that all fault features 

can be visually distinguished in both fault types and fault locations via the output phase 

voltage signals; however, the computation unit cannot directly visualize as a human does.  

 

A neural network is one suitable AI-based technique which can be applied to classify the 

fault features. Besides, a classification technique using a neural network offers an extra 

degree of freedom to solve a nonlinear problem; the failure of a single neuron will only 

partially degrade performance. If an input neuron fails, the network can still make a 

decision by using the remaining neurons.  

 

In contrast, if only a single input, for instance the dc offset of signals, is used as the input 

data to classify the faults, the diagnosis system may not perform classification when the 

input data has drifted or the single sensor has failed.  Furthermore, a neural network also 

permits parallel configuration and seasonal changes. Additional H-bridges and fault 

features (short circuit) can be conveniently extended into the system with more training 

data and parallel configuration. Therefore, the fault types and fault locations in a 

cascaded MLID will be attempted to diagnose from its output voltage waveform. 

 

 

 

 



 69

3.4 Feature extraction system 

 

Simulated and experimental output voltages of a MLID are illustrated in Figures 3.6, 3.7, 

and 3.8.  As can be seen, the signals are difficult to rate as an important characteristic for 

classifying a fault hypothesis, and they have high correlation with each other; hence, a 

signal transformation technique is required. An appropriate selection of the feature 

extractor is to provide the neural network with adequate yet significant details in the 

pattern set so that the highest degree of accuracy in the neural network performance can 

be obtained.  

 

The comparison of signal transformation suitable to training a neural network for fault 

diagnosis tools is elucidated in [46], and one possible technique for hardware 

implementation with a digital signal processing microchip is fast Fourier transform 

(FFT).  

 

An FFT is the development version of discrete Fourier transform (DFT).  Beginning with 

the DFT in (3.1), and then the FFT using the decimation in time decomposition algorithm 

is illustrated in (3.2).   Together, the computational savings of the FFT becomes N 

logarithmic time [O (Nlog2N)] compared to quadratic time [O (N2)] for the DFT. This 

means that if N is 16, the FFT will execute only 64 times, whereas the DFT will run 256 

times.    Therefore, the signal transformation using FFT is naturally faster than the DFT. 

Other popular signal transformation techniques such as Hartley and Wavelet are 

explained in [46]. 
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In this dissertation, the FFT is used to transform the output phase-voltage signals, and the 

transformed signals of both simulation and experiment are represented in Figure 3.9.  
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Figure 3.9.Signal transformation of output voltages on open circuit faults at H-bridge 2: 

(a) simulation (Figure 3.6 (a)) , (b) experiment (Figure 3.8) by using FFT with ma = 0.8 out of 1.0. 
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Obviously, the results are nearly identical fault features. The FFT technique has a good 

identical feature to classify normal and abnormal features; as a result, FFT can be used to 

transform voltage output signals in order to rate signal value for important features so that 

the features for a fault hypothesis can be classified. It should be noted that PWM signals 

have relationship with carrier frequency (switching frequency) known as modulation 

frequency (mf), so if one use harmonic order as variables to train the neural network, a 

range of harmonic order should cover from 0 to at least equal to the PWM switching 

frequency. In this case, the switching frequency is 2 kHz; accordingly, the harmonic 

order should be more than 34 orders. One can see that many neurons are required as 

inputs to train the neural network (i.e. one neuron for each harmonic order). 

Consequently, a huge input matrix will lead to a long time to train the neural network, 

and the high harmonic order may contain noise; this noise data can cause poor 

classification performance.  Thus, one would prefer to reduce the dimension of the input 

matrix, but the question is which harmonic orders should be kept to train the network? 

One possible technique is a principal component analysis (PCA).               

 

PCA is a method used to reduce the dimensionality of an input space without losing a 

significant amount of information (variability) [47].  The method also makes the 

transformed vectors orthogonal and uncorrelated. A lower dimensional input space will 

also usually reduce the time necessary to train a neural network, and the reduced noise 

(by keeping only valuable PCs) may improve the mapping performance. PCA is used to 

reduce the number of input neurons as illustrated in Figure 3.10.  
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Figure 3.10. Principle Component Neural Network. 

 

 

 

3.5 Principal component analysis 

 

Basically, PCA is a statistical technique used to transform a set of correlated variables to 

a new lower dimensional set of variables which are uncorrelated or orthogonal with each 

other. A distinguished introduction and application of PCA has been provided by [48]. 

Also, PCA technique is possible to implement on floating point DSP for real-time 

applications as proposed in [49]. The discussion of PCA presented in this section will be 

brief, providing only indispensable equations to elucidate the fundamental PCA approach 

applied to a fault diagnosis system in MLID. The fundamental PCA used in a linear 

transformation is illustrated in (3.5). The original data matrix, X of n variables (harmonic 

orders) and m observations (different modulation indices of output voltage of MLID) is 

transformed to a new set of orthogonal principal components (PC), T, of equivalent 

dimension (m×k) as represented in (3.6). The transformation is performed such that the 

direction of first PC is identified to capture the maximum variation of the original data 
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set. The subsequent PCs are associated with the variance of original data set in order; for 

instance, second PC indicates the second highest variance of the original data set, and 

likewise. 

 

PXT •= ,                                             (3.5) 

 

where T is the m×k score matrix (transformed data): m = the number of observations,  

k = dimensionality of the PC space; 

 X is the m×n data matrix: m = the number of observations, n = dimensionality of 

original space;  

 P is the n×k loadings matrix (PC coordinates): n = dimensionality of original space, 

k = number of the PCs kept in the model. 

 

)()()(

21

22221

11211

21

22221

11211

21

22221

11211

knnmkm

ppp

ppp

ppp

xxx

xxx

xxx

ttt

ttt

ttt

nknn

k

k

mnmm

n

n

mkmm

k

k

×•×=×























•























=























l

mmmm

l

l

l

mmmm

l

l

l

mmmm

l

l

                         (3.6) 

 

[ ] [ ]

)()1()1(

21

22221

11211

2121

knnk

ppp

ppp

ppp

xxxttt

nknn

k

k

nk

×•×=×























•=

l

mmmm

l

l

ll                        (3.7) 

 



 75

Selecting a reduced subset (PCs kept in the model) of PC space results in a reduced 

dimension structure with respect to the important information available as shown in (3.7). 

The objective of PC selection is not only to reduce the dimension structure, but also to 

keep the valuable components. Normally, high variance components could contain 

related information, whereas small variance components that are not retained are 

expected to contain unrelated information; for instance, measurement noise. It should be 

noted that the high variance components may not contain the useful information for a 

classification problem.  

 

 3.5.1 Data analysis using PCA 

The objective of this section is to illustrate how the input dimension matrix can be 

reduced; therefore, an example of data analysis using PCA is provided. The open circuit 

faults at H-bridge 2 at different switches are used. All possible open circuit faults at  

H-bridge 2 are simulated using a model as shown in Figure 3.5 at different operation 

points. The set of original input data at each MLID operation contains 5 classes: a normal 

data (normal condition) and four abnormal data (Fault A+, A-, B+, and B-). The MLID 

operation will be changed with desired load, so modulation index (ma) must be changed. 

In this particular example, modulation indices are varied from 0.6 to 1 with 0.05 

intervals. Thus, the original data contains 45 observers covering all possible operations.  

 

The data from the FFT are transformed to principle component space by using MATLAB 

statistic toolbox function, [PC, Latent, Explained]=PCACOV(XC); PC is the principal 
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component loading matrix, Latent is the eigenvalues of the covariance matrix of the 

original input data (XC), and Explained is the vector of variance in each PC. The 

relationship of principal components and their cumulative percentage variance explained 

are illustrated in Figure 3.11. As can be seen, the summation of the first 15 PCs contains 

about 90% of the data. However, the eigenvalues of the 14th, 15th and other PCs are less 

than 1; this means the PCs have less variance than the original data which might contain 

measurement noise or uncorrelated information.  One can see from the plot in Figure 3.11 

that the break is between 5 and 8 PCs; therefore, a study suggests that 5 or 8 PCs should 

be the optimum model.   
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Figure 3.11. The plot of principal components versus eigenvalues.  
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The collected data from both simulation and experiment are analyzed to select valuable 

PCs for fault classification. The transformation matrix (Loading) for important PCs and 

the scores of samples of PCs are shown in Figure 3.12. The first 5 samples are normal 

condition, the next 5 samples are Fault A+, the next 5 samples are Fault A-, the next 5 

samples are Fault B+, and the next 5 samples are Fault B-. The next 25 samples are 

unknown samples for testing the proposed neural networks. Clearly, the first PC can be 

used to distinguish between normal and fault conditions. One can see that the first 5 

samples have positive scores, whereas the next 15 samples have mostly negative scores. 

As can also be seen, the first PCs are weighted negatively toward most of the samples. 

Also, the 4th PC can be used to classify the different features between Fault A+ and A- 

and Fault B+ and B-. However, the 3rd PC may not be useful because the 3rd PC could not 

reveal any classification information as shown in Figure 3.12 (c), although it contains 

more information and variance (Eigenvalue) than the 4th. Therefore, in this particular 

example, the combination of 1, 2, 4, 6 and 8 principal components are selected to perform 

the neural network classifications.  

 

The 3-D plots of PC scores are shown in Figure 3.13. One can see that the classification 

between normal and faults could be a linear problem, whereas the classification among 

faults is a nonlinear problem. That is why the neural network is applied to solve this 

problem.  By using PCA, the size of input neurons can be reduced from 40 nodes to 5 

nodes (i.e. 5 harmonics instead of 40 harmonic components). 
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Figure 3.12. The selected plot of principal components score and loading: 

(a) first PC, (b) fourth PC, and (c) third PC. 
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Figure 3.13. The 3-D plots of PC scores: (a) score on PC 6, 8, 1, (b) score on PC 2, 6, 1. 



 80

 3.5.2 Principal component selection 

The selection of principal component (PC) is very significant because input selected PCs 

can cause uncertainty results; additionally, unneeded input PCs to the neural network can 

increase the solution variance; also, absent necessary input PCs can increase bias. 

Usually, there are three methods to select a valuable PC: observed eigenvalue method, 

correlated method, and trial and error method. First, the observed eigenvalues method 

will choose PCs that contain most of the information (variability of original data set). 

This method is good for function approximation problems; however, it may not be useful 

for classification problems. Second, the correlated method will select PCs that are well 

correlated with the response variable. The correlated method is superior in both function 

approximation and classification problems; nevertheless, the method may not be an 

optimized solution and may consume a lot of time. Third, the trial and error method will 

pick the combination of PCs that provides minimum error; for instance, the 

misclassification error of the neural network. The trial and error method can offer a 

minimum error of the neural network, but the method requires a lot of time to search for 

the optimum combination of PCs for the model.  One possible tool to search for the 

optimized combination of PCs is a genetic algorithm.      

 

 3.5.3 Genetic algorithm 

Genetic algorithm (GA) is an optimization and search approach based on genetics and 

natural selection [50]. GA is not a function approximation technique; however, it has 

simple and powerful general purpose stochastic optimization methods [51]. GA permits a 
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population created from multiple individuals to evolve under specific fitness function 

which can be maximization or minimization problems. The advantage of using GA is that 

GA utilizes hypothetical operators instead of assigned rules to search for a solution. In 

addition, a GA contemplates multiple points in the search space at the same time, not a 

single point; therefore, it reduces an option to converge in local minima. Thus, with GA, 

the global minima of the problem statement could be found with high possibility. GA can 

possibly search multiple points in parallel because the evaluation of each point requires 

an independent computation. The data processed by the algorithm is a population (set) of 

chromosomes (bit strings), which represent multiple points in the search space. Because 

of GAs robustness, speed, efficiency and flexibility, GAs have been applied in various 

engineering and business problems [12]. Basically, GAs have three fundamental 

processes: selection, crossover and mutation. Selection process is a method to select the 

individuals called parents, which contribute to the population at the next generation. 

Crossover is a process which combines two parents to create children for the next 

generation. Mutation process is a method to apply random changes to individual parents 

to form children.   

 

Recently, Matlab provides the genetic algorithm and direct search toolbox for Matlab 

users [52]. This toolbox offers a graphical user interface which enables to use a GA 

without working at the command line, called gatool. The use of gatool requires fitness 

function, number of variables, and GA options as clearly explained in [52].  One can see 

that GAs would become a popular optimization technique. In this research, gatool is 

utilized to perform GA processes which will be explained in the following section.     
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 3.5.4 PC selection by genetic algorithm 

From section 3.5.1, the 1,2,4,6 and 8 PCs are selected by correlated method (The PCs are 

correlated with respond variables). In this section, the GA is used to perform the PCs 

selection as illustrated in Figure 3.14. The result of PC selection by GA will be compared 

with the result from the correlated method. One can see from the flow chart in Figure 

3.14 that the discrete GA (DGA) or binary GA can be applied to selecting PC. The idea is 

to randomly pass the PCs into the neural network and then a GA is utilized to search for 

the best combination of input PCs. The steps of GA process can be explained as follows: 
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Figure 3.14. The flowchart of applied GA technique for PC selection. 
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• Encoded input PCs: the PCs to be optimized are represented by chromosomes in 

which each PC is encoded as a binary string known as a gene. Therefore, a chromosome 

consists of multiple genes as PCs to be selected. A population, consisting of a provided 

number of chromosomes is initially generated by haphazardly assigning “1” and “0” to 

all genes except for one chromosome which assigns to use all PCs. The binary string of 

the chromosomes has the same size as PCs to select from, whereby the presence of a PC 

is coded as “1”, whereas the nonappearance of a PC is coded as “0”. Accordingly, the 

binary string of a gene consists of only one single bit. The example of encoded input PCs 

is illustrated in Figure 3.14 on the right hand side. One can see that the bit “0” will be not 

used to train the network, whereas others will be used to train the network.  

 

• Fitness function: The best chromosomes have the highest probability to 

survive as evaluated by the fitness function. An important point in applying GA is the 

design of the fitness function. A fitness function determines what a GA should optimize. 

In this research, the goal is to find the combination of selective PCs for fault 

classification which provides the minimum classification error. In this case, the 

classification is based on neural networks for modeling the relationship between input 

variables (PCs scores) and the responses (fault classes). Therefore, the evaluation of the 

fitness function begins with the encoding of the chromosomes into neural networks. 

Then, the networks are trained with a training set; and after that, the test set is examined. 

It should be noted that the test set in this research consists of simulation test set and 

experiment test set. Finally, the fitness function is evaluated by using (3.8) and (3.9). The 

fitness function is divided into two parts: sum of square error (SSE) of simulation set and 
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SSE of experiment test set. In this research, the experiment test set is weighted higher 

than the simulation test set as shown:  

 

 setExpsetSim SSESSEf ,, 8.02.0 += ,                            (3.8) 

( )∑
=

−=
n

i
iyySSE

1

2
 ,                                            (3.9) 

where         y    is the output target binary codes, 

       iy    is output of training data, 

                  n     is the number of training data. 

 

• GA parameter selection: As previously mentioned, the gatool is used to set 

the GA options as shown in Figure 3.14 on the right hand side. The GA parameters can 

be conveniently selected by gatool [52]. It should be noted that different GA parameters 

could give the different results. For this particular example, the number of variables is 40, 

the population size is 20, and the fitness scaling is by rank. 

 

After evolving the fitness function of the population as shown in Figure 3.14, the 

individuals are selected by using a roulette wheel; this can be directly set in gatool as 

“Roulette” in “selection” toolbar.  Thereby, the chromosomes are allocated space on a 

roulette wheel proportional to their fitness value, and thus the more fit individuals are 

more likely selected.  The next step is the mating process; a single point crossover 

technique is utilized. A crossover process will create offspring chromosomes which 
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randomly selects a crossover point within the chromosome. Then, two parent 

chromosomes are interchanged at this point to generate two new offspring. After that, the 

chromosomes are mutated with a probability of 0.05 (mutation rate) per gene by 

erratically changing genes from 0 to 1 and vice versa. The mutation prevents the GA 

from converging too quickly in a small area of search space [53].  Again, it should be 

noted that different GA parameters may give different results. Therefore, the GA 

parameter selection might need some experiences in a particular application.  

 

• Stopping Criteria: The evaluation and reproduction steps are repeated until a 

certain number of generations, a defined fitness or a convergence criterion of the 

population are reached. In this research, the maximum number of generations is 100. 

Ideally, all chromosomes of the last generation should have the same genes 

corresponding to the optimal solution. 

 

 3.5.5 Data analysis using GA and PCA 

By using the same original data set represented in section 3.5.1, the best result from 

gatool after several attempts is shown in Table 3.1. The final point shows that the 8 PCs 

are selected by GA consisting of 1,2,3,5,7,8,13 and 14 with a minimum SSE 0.205. The 

PCs selected by correlated method (Section 3.5.1) are 1,2,4,6 and 8. This GA result is 

interesting because one know that both 13 and 14 PCs contain small variance of the 

information as shown in Figure 3.11; however, one can see from the plot of the score on 

PC14 in Figure 3.15 that PC 14 can be used to categorize between Fault A+ and A-; also 
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PC 14 can be used to classify between Fault A+, Fault A- and Fault B+ and Fault B-. 

Meanwhile, the loading plot on PC 13 that the sampling from 16 to 20 has mostly 

positive eigenvalue, whereas the sampling from 21 to 25 has mostly negative eigenvalue. 

This shows that PC 13 can be utilized to classify between Fault B+ and Fault B-. 

 

The 3-D plots of combination of PCs are illustrated in Figure 3.16. One can see that the 

combination of 5, 13, and 14 provides a bigger gap among faults A+, A-, B+, B- than the 

combination of 1, 2 and 6 PCs as represented in Figure 3.13(b). This result suggests that 

the neural network could perform a better classification performance with additional PC 

13 and PC 14. 

 

 

Table 3.1.  The output final solution from GA using gatool. 

Description Outputs from gatool 

Final point 

1      2    3     4     5     6     7     8     9    10   11   12   13   14 
 

1     1     1     0     1     0     1     1     0     0     0     0     1     1     
 

PC 15-40 are all 0 
 

0     0     0     0     0     0     0     0     0     0     0     0     0     0     
0     0     0     0     0     0     0     0     0     0     0     0 

Fval 0.205 
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Figure 3.15. The plot of principal component loading and score of 13 and 14 PC. 
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Figure 3.16. The 3-D plot of the combination PCs from GA results. 
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3.6 Neural network classification 

 

All fault features, as previously discussed, can be classified based upon their effects upon 

the output phase-voltages. The transformation of output voltage signals is achieved by 

using FFT, PCA, and GA as illustrated in section 3.5.1 and 3.5.5. As mentioned before, 

the systematic mathematical technique may be complicated to implement in a practical 

real time control system; therefore, a feedforward neural network technique permitting 

input/output mapping with a nonlinear relationship between nodes will be utilized [54]. 

Neural networks provide the ability to recognize anomalous situations because of their 

intrinsic capacity to classify and generalize. Especially, the sensitivity and response time 

of the original procedure presented for the on-line analysis of fault set repetition enable 

on-line fault location techniques to be developed [55]. The stages of neural network fault 

classification are explained in the following sections. 

 

 3.6.1 Neural network architecture design 

The fundamental architecture of the multilayer feedforward network or MLP is illustrated 

in Figure 3.17. The MLP is used in this research because the input data contain 

continuous features. The number of hidden layer and number of neurons depend upon the 

complexity of the problems; the more complicated problems may require more neurons 

or hidden layers. However, too many neurons could lead to overfitting problems (neural 

network learns noisy data). The proposed fault diagnostic neural network architecture 

utilizes one hidden layer network with multiple hidden neurons as shown in Figure 3.18.  
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Figure 3.17. Multilayer feedforward network architecture. 
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Figure 3.18. Proposed neural network architecture. 
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As a comparison among transformation methods, FFT, PCA and GA-PCA will be 

performed, and three different neural network (NN) architectures are used. The first NN 

architecture has one hidden layer with 40 input nodes, 4 hidden nodes, and 3 output 

nodes. The original data from the feature extraction system (FFT) is used in this network.  

 

The second NN architecture has one hidden layer with 5 input nodes, 3 hidden nodes, and 

3 output nodes. The PCA is applied in this network to reduce the number of input 

neurons as discussed in section 3.5.1. The combination of 1, 2, 4, 6 and 8 principal 

components will be used to perform the neural network classifications.  

 

The third NN architecture is based on GA selection as discussed in section 3.5.5 because 

the input neurons depend on how many PCs selected by GA. However, the one hidden 

layer with 3 hidden nodes and 3 output nodes are used since the comparison among 

proposed NN will be performed so that the NNs should have the same complexity and 

degree of freedom. The first network requires more neurons because the network has 

more input neurons.    

 

The sigmoid activation function is used: tansig for hidden nodes and logsig for an output 

node. A logsig activation function is used for an output node because the target output is 

between 0 and 1. It should be noted that the number of nodes for the input and output 

layers depends on the specific application. The selection of number and dimension in the 

hidden layer is based on neural network accuracy in preliminary tests. Indeed, 
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optimization of the network architecture is a significant topic in a study of artificial 

intelligence aspects [54]. 

 

 3.6.2 Input/output data  

The set of original input data at each MLID operation contains 5 classes: a normal data 

(normal condition) and four abnormal data (Fault A+, A-, B+, and B-). The MLID 

operation will be changed with desired load, so modulation index must be changed. In 

this research, modulation indices are varied from 0.6 to 1 with 0.05 intervals. Therefore, 

the original data contains 45 observers covering all possible operations.     The output 

target nodes are coded with a binary code as shown in the Table 3.2. The round ( ) 

function is used to make the binary code outputs for the test sets. 

 

 3.6.3 Training paradigm 

The Levenberg Marquardt training paradigm, trainlm [42] is utilized for all NNs in this 

research because trainlm not only performs very fast training time but also has inherent 

regularization properties [54]. Regularization is a technique which adds constraints so 

that the results are more consistent. The 1% misclassification and 1% input data error rate 

are chosen to calculate a sum of square error goal, SSE; therefore, a SSE < 0.025 goal is 

used to train the network by calculating from (3.9). The training process will be finished 

when the SSE goal is met.  However, in the GA implementation case the training process 

will be finished either when SSE goal is met or when the maximum epoch is reached as 

shown in Figure 3.19. The maximum epoch for each iteration step of GA is 50.  
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Table 3.2. Target and classification data. 

Classification Target neurons 
[Y1  Y2  Y3] 

Normal [1     1     1] 

Fault at SA+ [0     0     1] 
Fault at SA- [0     1     0] 
Fault at SB+ [1     0     1] 
Fault at SB- [1     1     0] 
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Figure 3. 19. A flowchart for multilayer feedforward training paradigm. 
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 3.6.4 Training and testing data set selection  
 

The training data set should also cover the operating region, thus the training set is 

generated from simulation with various operation points (different modulation indices 

such as 0.6, 0.7, 0.8, 0.9 and 1). The testing sets have two different sources; first, the test 

set is generated from simulation with modulation indices, 0.65, 0.75, 0.85, and 0.95. as 

shown in Figure 3.6 (a).  Second, the test set is measured from experiment at different 

modulation indices of 0.7, 0.8, 0.9, and 1 as shown in Figure 3.8. Training and testing 

sets have 200 kHz sampling frequency. Both data sets are transformed by FFT from 0 to 

39 harmonic orders as shown in Figure 3.9. Zero harmonic order means the dc 

component of the signals. Again, it should be noted that each modulation index has 5 

classes: normal, Fault A+, A-, B+, and B-. The test sets are used to examine the neural 

network classification performance.   

 

The input training data are scaled by using the mean center and unit variance method (Z-

score scaling). The scaling data will avoid premature saturation of sigmoidal units and 

also allow the use of a specific output neuron [54]. The scaling parameters; the mean 

value (XM) and the standard deviation value (XS) are saved with the same data file as 

weights and biases. The testing data set will be scaled with the same scaling parameters 

as the training data set when the network is examined. 

 3.6.5 Neural network testing 

The networks are examined with the test sets when the proposed networks are trained to 

meet the SSE goal. The Matlab function, yp=simuff(xtest,W1,B1,'tansig',W2,B2,'logsig') 
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[42],  is used to simulate the target variables. Testing the network involves presenting the 

test set to the network and calculating the error.  The target variable is compared with the 

actual variables (yt); then, the correct classification rate is calculated as a percentage 

based upon the number of correct classifications out of the total number of tests in each 

set. 

 

3.7 Classification performance of proposed neural networks 

 

In this section, the performance of proposed neural networks will be compared consisting 

of NN, PC-NN, and PC-GA-NN; the NN is the network that used original data from only 

FFT, the PC-NN is the network that used the PCA to reduce the original data dimension 

by the correlated method, and the PC-GA-NN is the network that used the PCA to reduce 

the original data dimension by trial and error (GA) method. The performances of the 

proposed networks are tested in two categories. First, the networks are tested with the 

simulation test sets as previously mentioned. Second, the networks are evaluated with the 

experimental test set.  The tested results along with the testing data sets are illustrated in 

Table 3.3. Clearly, in the simulation test set, all proposed networks have a good 

classification performance (about 95%); therefore, the classification performance of the 

networks is quite satisfactory. The misclassification samples are the same operation point 

and class which are 0.65 modulation index and fault B-. This result suggests that both 

networks have confusion between Fault A- and Fault B- at low modulation index. 
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Table 3.3. Confusion table. 

 

 

 

 

Actual Output % Classification 
Testing set Target 

      NN       PC-NN    PC-GA-NN       NN        PC-NN       PC-GA-NN 

Normal 
[1  1  1] 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

 100%        100%            100% 

Fault A+ 
[0  0  1] 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

 100%        100%            100% 

Fault A- 
[0  1  0] 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

 100%         100%            100% 

Fault B+ 
[1  0  1] 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

 100%          100%            100% 

Simulation test set 

Fault B- 
[1  1  0] 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

   75%            75%              75% 

% Classification performance in simulation test set 95%            95%              95% 

Normal 
[1  1  1] 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

1     1     1 
1     1     1 
1     1     1 
1     1      1 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

100%         100%             100% 

Fault A+ 
[0  0  1] 

0     1     1 
0     1     1 
0     1     1 
0     1     0 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

 75%           100%              100% 

Fault A- 
[0  1  0] 

0     1     0 
0     1     0 
0     1     0 
0     0     1 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

 75%            100%             100% 

Fault B+ 
[1  0  1] 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

 100%          100%             100% 

Experiment test 
set 

Fault B- 
[1  1  0] 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
1     1     0 

75%            75%                100% 

%Classification performance in experimental test set   85%            95%             100% 

Total %Classification performance   90%           95%            97.5% 
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The second category of testing results is also illustrated in Table 3.3. Obviously, the 

classification performance of PC-GA-NN is better than NN by 15% points and PC-NN 

by 5%. The NN has 85 % classification performance, and PC-NN has 95% classification, 

whereas PC-GA-NN has 100% classification performance. As expected, PCA conveys 

lower dimensional input space, reducing the time necessary to train a neural network. 

Also, the reduced noise could improve the mapping performance which leads to the 

improvement of total classification performance. GA offers the multivariable search of 

the minimum misclassification error providing the better neural network performance. 

Obviously, PC-GA-NN has a better overall classification performance of about 2.5% and 

7.5 % points compared with PC-NN and NN, respectively. The results show that the 

application of GA and PCA can improve the classification performance of the neural 

networks. One know that the higher classification performance of the proposed neural 

networks could give higher reliability of fault diagnosis system in MLID. 

 

3.8 Summary 

 

The methodology of the proposed AI-based fault diagnostic system in a cascaded 

multilevel inverter drive (MLID) has been presented in this chapter. As can be seen, a 

genetic-algorithm-based selective principal component neural network method can be 

applied to a fault diagnostic system in a cascaded multilevel inverter. The GA-PC-NN 

performs very well with both simulation and experimental testing data set. The total 

classification performance is very good by about 97.5% points. Obviously, the results 

show that the PC-GA-NN has a better overall classification performance than PC-NN by 
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about 2.5% points. PCA conveys lower dimensional input space and reduces the time 

necessary to train a neural network. Also, the reduced noise may improve the mapping 

performance. In addition, GA offers multivariable optimized search so that the best 

combination of PCs or the minimum misclassification rating could be found, which leads 

to the improvement of total classification performance of the neural networks. 

Consequently, by utilizing PCA and GA, the reliability of fault diagnosis system in 

MILD can be improved. In the next chapter, the proposed reconfiguration technique will 

be presented.   
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4. RECONFIGURATION TECHNIQUE  

 

 

 

4.1 Introduction 

 

Fault diagnostic or monitoring system should consist of four major functions: fault 

detection, diagnostic fault effects, reconfiguration, and shutdown in emergency action. 

Fault detection and diagnosis are discussed in chapter 3. After the classification result 

provided by the output of the neural network is received, the corrective action taken is 

required to reconfigure the MLID from malfunction. Therefore, a reconfiguration 

technique for multilevel inverters incorporating a diagnostic system based on neural 

network is proposed in this chapter. The basic principal of the reconfiguration method is 

to bypass the faulty cell (H-bridge); then, other cells in the MLID are used to compensate 

for the faulty cell. The proposed reconfiguration technique is very simple to implement 

because the proposed technique is based on digital logic gate; a simple AND gate and OR 

gate can be implemented for this reconfiguration method. In addition, the effects of using 

the proposed reconfiguration technique at high modulation index are addressed.   
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4.2 Corrective action taken 

 

The basic principal of the reconfiguration method is to bypass the faulty cell (H-bridge); 

then, other cells in the MLID are used to compensate for the faulty cell.   For instance, if 

cell 2 of MLID in Figure 1.5 has an open circuit fault at SA+; accordingly, SA- and SB- 

need to be turned on (1), whereas SB+ needs to be turned off (0) to bypass cell 2.  The 

corrective actions taken for other fault locations are shown in Table 4.1. As can be seen, 

the corrective action would be the same for cases that have similar voltage waveforms 

during their faulted mode (for instance, see Figure 3.6 for a short circuit fault in SA+ and 

open circuit fault in SA-). Therefore, even if the fault may be misclassified (an actual short 

circuit fault at SA+ is misclassified as an open circuit fault at SA- or vice versa), the 

corrective action taken would still solve the problem. 

 

Table 4.1. Gate drive signals of corrective action taken. 

Fault types Locations Signal SA+ Signal SA- Signal SB+ Signal SB- 

SA+ 0 1 0 1 

SA- 1 0 1 0 

SB+ 0 1 0 1 
Open circuit 

SB- 1 0 1 0 

SA+ 1 0 1 0 

SA- 0 1 0 1 

SB+ 1 0 1 0 
Short circuit 

SB- 0 1 0 1 
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4.3 Reconfiguration method 

 

The reconfiguration diagram for an 11-level MLID with 5 SDCS is illustrated in Figure 

4.1. It should be noted that multilevel carrier-based sinusoidal PWM is used as shown in 

Figure 4.2. The basic principle of the reconfiguration method is to use other cells (H-

bridge) to compensate for the faulty cell. As known, the turn-on intervals of each cell are 

not equal with multilevel carrier-based sinusoidal PWM; cell 1 has the longest turn-on 

interval, then the turn-on interval decreases from cell 2 to cell 5 as staircase PWM 

waveform. The desired output voltage of a MLID can be achieved by controlling 

modulation index (ma). For instance, suppose cell 2 has an open circuit fault at S1 while 

the MLID operates at ma = 0.8/1.0 (MLID is operated with four cells (cell 1-4)). One can 

see from Figure 4.1 (b) that S3 and S4 need to be turned on, then the gate signal of cell 2 

will be shifted up to control cell 3, then the gate signal of cell 3 will shift to cell 4, and 

the gate signal of cell 4 will shift to cell 5 respectively. This reconfiguration also applies 

to other phases of MLID in order to maintain balanced output voltage.  By using this 

method, the operation of MLID from 0.0 to 0.8 (out of 1) can be compensated such that 

the inverter will continue to function like normal operation; however, if MLID operates at 

ma > 0.8 and has a fault, the lower order harmonics will occur in the output voltage since 

the MLID will operate at overmodulation region in order to try to continue to output the 

full requested voltage as illustrated in Figure. 4.3. To solve this problem, space vector, 

and third harmonic injection PWM schemes may be used. Also, a redundant cell can be 

added into the MLID, but the additional part count should be considered. Therefore, if the 

fault types and location can be detected, the continuous operation can be achieved. 
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Figure 4.1. Reconfiguration diagram for MLID with five SDCS: 
(a) Reconfiguration diagram, (b) H-Bridge 2 Switch S1 open circuit fault at second level of single-

phase multilevel-inverter with 5 SDCS. 
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Figure 4.2. Multilevel carrier-based sinusoidal PWM with 2 kHz switching frequency for 5 SDCS 
MLID showing carrier bands, modulation waveform, and inverter output waveform (ma = 0.9/1.0). 
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Figure 4.3. Multilevel carrier-based sinusoidal PWM with 2 kHz switching frequency for 5 SDCS 
MLID showing carrier bands, modulation waveform, and inverter output waveform (ma = 1.2/1.0) 

 

 

As previously mentioned, the operation under faulty condition requires the compensation 

gains during the MLID operating at ma > 0.8 to keep the full requested output voltage. 

The compensated gain of the MLID operating at ma > 0.8 is shown in Figure 4.4 This 

compensated gain can also be written as a function of ma by using polynomial curve 

fitting. The fitting function can predict the compensated gain with a norm of residuals 

less than 0.09.  One can see that the lower harmonic orders due to operating in 

overmodulation region will occur when the MLID operates at ma > 0.825.  

 

The compensated gain in the function of ma can be conveniently implemented in the 

Simulink model. Figure 4.4 shows that the coefficient of polynomial curve fitting is high; 

this may lead to higher compensated errors due to noisy signal. However, in this 

particular case, the modulation signal is a constant value varying from 0.0 to 1.0. 
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Figure 4.4. Compensated gain of the MLID operating at ma > 0.8. 

 

  

4.4 Reconfiguration effects and limitations 

 

The proposed reconfiguration technique is simple to implement because the proposed 

technique is based on digital logic gate; a simple AND gate and OR gate can be 

implemented to this reconfiguration method. Unfortunately, the reconfiguration method 

has a limitation. Table 4.2 represents the maximum output phase voltage available of a 

MLID with 5 SDCS of 24 V/cell. As can be seen, the MLID can only operate at 50% of 

maximum ma (1.0) if the MLID has two faulty cells. This means that MLID can drive the 
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traction motor only at half load condition, although the MLID operates in staircase mode. 

Nevertheless, the MLID can drive at full load condition in staircase mode if the MLID 

has only one faulty cell. The amount of reduction in capacity that can be tolerated 

depends upon the application; however, in most cases a reduction in capacity is more 

preferable than a complete shutdown. 

 

As previously mentioned, if the MLID operates at ma > 0.9, the output voltage harmonic 

distortion (THDV) is higher because of additional lower harmonics when the converter is 

operated in overmodulation after reconfiguration. The MLID will operate at over 

modulation region or staircase mode because the compensated gain is needed to keep the 

full requested output voltage. Table 4.3 shows the comparison between normal and faulty 

operation of the MLID. One can see that the THDV increases more than 4 times of normal 

operation at ma = 1.0, whereas the THDV slightly increases (about 1%) when MLID 

operates at ma = 0.9.  

 

The reconfiguration effects on THDV are also shown in Figure 4.5. As can be seen, the 

lower order harmonics increase for both operating points, whereas the higher order 

harmonics, particularly at 34th-38th orders, decrease because of 2 kHz switching 

frequency. 
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Table 4.2. Maximum output phase voltage available of a MLID with 5 SDCS of 24V/cell. 

Number of 
faulty cells 

Maximum ma can be 
compensated 

Fundamental component of 
output phase voltage 
available, Van,1 (rms) 

1 1.0144 85.98 V 

2 0.7624 64.42 V 

3 0.5062 42.92 V 

4 0.2525 21.40 V 

 

 

 

 

Table 4.3. Comparison between normal and faulty operation of a MLID with 5 SDCS of 24 V/Cell. 

Modulation index 
at an operating 

point 

Operating 
condition 

Fundamental 
component of 
output phase 
voltage, Van,1 

(rms) 

Compensated 
gain THDV  (%) 

Normal 76.28 V 1 11.39% 
0.9/1.0 

One faulty 
cell 76.28 V 1.12 12.43% 

Normal 84.88 V 1 9.26% 
1.0/1.0 One faulty 

cell 84.88 V 2.47 31.97% 
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Figure 4.5. Reconfiguration effects at overmodulation index (a) normal operation ma = 0.9/1.0,  
(b) normal operation ma = 1.0/1.0. 
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The reconfiguration effect of increased THDv under one faulty cell condition at ma > 0.8 

is shown in Figure 4.6. Again, the THDv have more distortion if the MLID is operating at 

high modulation indices (ma > 0.925).  This harmonic voltage behavior is related to 

motor additional harmonic losses; the additional copper losses will increase, whereas the 

additional core losses will decrease as investigated in [5]. These additional losses can 

cause increased heating in the motor; also, increased harmonics can cause pulsating 

torque due to negative sequence currents. Also, an unbalanced output voltages effect of 

faulty MLID (See figure 1.2 with 24 V SDCS) is shown in Figure 4.7; the power cell 1 on 

phase B and power cell 1 and 2 on phase C are bypassed.   
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Figure 4.6. Total harmonic voltage distortion at different modulation indices under one faulty cell 

operation with their compensated gain. 
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Figure 4.7. Output phase voltages (a) and line voltages (b) of malfunctioning MLID: bypassing cell 1 

on phase B, cell 1 and 2 on phase C with 2 kHz switching frequency and 60 Hz fundamental 
frequency. 
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It is possible that the hybrid reconfiguration technique can be applied to reduce the 

harmonic effects and to avoid operation in the overmodulation region. If the 

malfunctioning MLID is running at ma =1, the ma should be maintained at unity after the 

MLID is reconfigured by the proposed method; then, the neutral shift technique proposed 

by [38] is performed. This hybrid reconfiguration method can provide a boost to the line 

voltage as shown in Table 4.4. One can see that the additional line voltages increase 

about 54 % with the hybrid reconfiguration when compared to the shifted gate signal if 

the MLID has three faulty cells; however, if MLID has only one faulty cell, the line 

voltage increase is about 6%. A study suggests that the hybrid reconfiguration technique 

can significantly improve available output voltages from the shifted gate signal technique 

when MLID has more than three faulty cells.   

 

 

Table 4.4. Comparison line output voltages between a hybrid reconfiguration method and a shifted 
gate signal method. 

 

 

Fundamental component of 
line-voltage available by  

proposed hybrid method 

Fundamental component of 
phase-voltage available by 

shifted gate signal method 
Number of faulty cells 
can be compensated at  

ma =1 
 Vab,1 , Vbc,1 and 

Vca,1 (rms) Van,1 (rms) Vab,1 , Vbc,1 and 
Vca,1 (rms) Van,1 (rms)

139.50 75.87 131.41 75.87 

126.71 60.54 104.86 60.54 

112.15 41.98   72.71 41.98 

1 

2 

3 

4   97.51 21.45   37.15 21.45 
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4.5 Summary 

 

The reconfiguration technique for multilevel inverters incorporating a diagnostic system 

based on neural network has been proposed in this chapter. The basic principal of the 

reconfiguration method is to bypass the faulty cell (H-bridge); then, other cells in the 

MLID are used to compensate for the faulty cell. The proposed reconfiguration technique 

is simple to implement because the proposed technique is based on digital logic gate; a 

simple AND gate and OR gate can be implemented to this reconfiguration method. In 

addition, the effects of using the proposed reconfiguration technique at high modulation 

index have been discussed.  
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5. SIMULATION AND EXPERIMENT 
VALIDATION 

 

 

 

 

5.1 Introduction 

 

The simulation and experiment validation of the proposed fault diagnostic paradigm are 

presented in this chapter. In the simulation validation, two simulation programs are used. 

Matlab-Simulink is used to implement the neural network fault classification, and PSIM 

is used to implement the MLID power circuit. The reason of using PSIM is that the PSIM 

is a circuit-based simulation and conveniently interfaces with Matlab-Simulink via the 

toolbox called Simcouple. PSIM is also a simulation package especially designed for 

power electronics and motor controls; this would give us more options to perform the 

change of parameters and more realistic with practical circuits. After that, in the 

experimental validation, the Opal-RT-based platform is used to perform the Matlab-

Simulink model; the same Simulink model used in the simulation will be converted into 

C code via Opal-RT software tool [56]. The Opal-RT will perform fault classification and 

generate gate drive signals; then, the gate drive signals interface with the hardware of five 

24V-SDCS multilevel inverter. The results of simulation and experiment are also 

discussed.     



 113

5.2 Fault Diagnostic technique for 11-level MLID with 5 SDCS 

 

Before continuing discussion, it should be mentioned that the methodology of fault 

diagnosis presented in Chapter 3 can be applied to any other cascaded H-bridges MLID. 

However, some minor processes are different such as neural network structure, 

input/output data set, and principal component (PC) selection. Since the simulation and 

experiment validation will be performed with 11-level MLID, the fault diagnostic 

processes for the 11-level MLID are explained as follows.  

 5.2.1 Neural network structure   

The fault diagnostic diagram for an 11-level MLID with 5 SDCS is depicted in Figure 

5.1. As can be seen, the neural network (NN) classification process consists of two 

networks: open circuit network and short circuit network.  The training time and required 

memory for implementation are reduced with segregated NN as reported in [57-58]. 

Moreover, in this particular case, the short circuit data set includes the loss of separate dc 

source (SDCS) condition due to fuse protection because the fuse may blow before the 

fault is detected; therefore, the short circuit NN may contain more complexity than the 

open circuit neural network. Also, the NNs may be assigned to have the ability to provide 

“do not know” conditions. The multilayer feedforward networks (MLP) are used in both 

open circuit and short circuit NN. The NN architecture is based upon GA selection as 

discussed in section 3.5.4. The input neurons depend on how many PCs selected by GA; 

however, the hidden and output layer can be assigned. Therefore, the one hidden layer 

with 4 hidden nodes and 6 output nodes neural network architecture are used.    
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Figure 5.1. Fault diagnostic diagram for 11-level MLID with 5 SDCS. 

 

 

 5.2.2 Input/Output data   

The input/output data set diagram for 11-level MLID is illustrated in Figure 5.2. One can 

see that the set of original input data set at each MLID operation point (modulation 

index) contains five fault classes: normal, Fault A+, A-, B+, and B-. Modulation indices 

(ma) are observations changing with desired load. In this particular case, ma is varied from 

0.6 to 1.0 with 0.05 intervals. The original data are divided into two subsets: Open circuit 

and short circuit. Also, each subset is separated into one training set and two testing sets 

as shown in Figure 5.2.  Both open circuit and short circuit neural networks are trained 

with both open and short circuit training set. However, the open circuit neural network 
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will be trained with short circuit training set and “do not know” target binary and vice 

versa with the short circuit neural network as depicted in Figure 5.2.   

 

Target binary variables are also illustrated in Table 5.1. Six binary bits are used to code 

the input/output mapping. The first three bits (bit 5th, 4th, and 3rd) are used to code the 

faulty cells, the 2nd bit is used to code the fault types, and the next two bits (1st and 0) are 

utilized to code the faulty switches. Also, the code [1 1 1 1 1 1] is used to represent the 

normal condition, whereas the code [0 0 0 0 0 0] is used to characterize the “do not 

know” condition. Therefore, the six output neurons are used for particular 11-level 

MLID. For instance, if the neural network provides [ 0 1 1 0 0 1] as the outputs, one can 

decode the fault type and location as cell 3 is faulty with open circuit fault at switch SA-.  

This decoder paradigm can be implemented in a Simulink model by using 2-D dimension  

look-up table which is explained later in this chapter.   

 

The output binaries provided by both neural networks are also required to give the same 

classification results for two times with the same input voltage signal. If the network 

provides different classification results, the reconfiguration process will not perform, and 

then a new cycle of the voltage signal is required for another classification process. The 

objective of this process is to provide more confidence in the classification result before 

taking action. Also, the detection process will allow the diagnostic system to acquire the 

output voltage signal only 2 times for short circuit cases and 3 times for open circuit 

cases. This means if the detection process can not give repeatable results, an operator will 

be notified, and then emergency action will be performed.  
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Figure 5.2. Training and testing data set diagram. 

 

Table 5.1. Target binary codes for 11-level MLID. 

Number of binary bits and their description 
Faulty cell Fault type Faulty switch Condition 

5 4 3 2 1 0 
Normal 1 1 1 1 1 1 

1 0 0 1 - - - 
2 0 1 0 - - - 
3 0 1 1 - - - 
4 1 0 0 - - - 

Faulty 
cells 

5 1 0 1 - - - 
open - - - 0 - - Fault 

types short - - - 1 - - 
Fault A+ - - - - 0 0 
Fault A- - - - - 0 1 
Fault B+ - - - - 1 0 

Faulty 
switches 

Fault B- - - - - 1 1 
“Do not know” 0 0 0 0 0 0 
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 5.2.3 Principal component selection   

By using the methodology proposed in section 3.5.5, the principal components (PCs) 

selected by the genetic algorithm (GA) are represented in Table 5.2. As can be seen, 8 

PCs are selected for open circuit neural network, whereas 11 PCs are chosen for the short 

circuit neural network. Also, the same PCs (1, 2, 3, 5, 7, 8, 13, and 14) as presented in 

section 3.5.5 are selected for open circuit fault neural network. Conversely, the GA 

chooses different PCs (2, 3, 4, 5, 7, 8, 9, 11, 12, 13, and 14) for the short circuit neural 

network. It should be noted that the training data for short circuit neural network also 

includes the short circuit fault for loss of SDCS conditions. Interestingly, as previously 

known in chapter 3, PC 1 corresponds with the dc component of MLID’s output voltages 

and this dc component will naturally increase during faulty conditions as explained in 

section 3.3. However, the GA did not select PC 1 for shot circuit neural network. This 

result suggests that the PC 1 is not so important for short circuit neural network including 

training data of short circuit fault during loss of SDCS conditions.  Therefore, the neural 

network architecture for open circuit neural network has 8 input neurons, 4 hidden 

neurons and 6 output neurons, whereas the short circuit neural network architecture has 

11 input neurons, 4 hidden neurons and 6 output neurons.  
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Table 5.2. Principal component selected by GA for 11-level MLID. 
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5.3 Simulation validation 

 

Several Simulink subsystems are involved in the simulation tasks based on the Simulink 

model. The main Simulink model can be divided into three main subsystems: feature 

extraction, neural network classification, and reconfiguration. 

 

 5.3.1 Feature extraction subsystem  

The feature extraction subsystem consists of two sub-functions: FFT and PCA. The 

signal processing toolbox [59] provided by Mathworks can be applied to perform FFT 

and PCA. The FFT subsystem interfaced with the Simulink model is illustrated in Figure 

5.3. As can be seen, the output phase-voltage signals from the sensors are transferred to 

the FFT subsystem to perform signal transformation. At this state, it is necessary to point 

out that the one cycle delay of the phase-voltage signals is required before the FFT 

subsystem performs the signals’ transformation. As previously mentioned in section 3.4, 

the default window of FFT requires one cycle to capture a signal; however, the FFT can 

be performed by a hardware card; one commercially available is FFT dual channel model 

2080-2014 provided by DRS technology Inc [60].  It should be noted that a cycle delay is 

related with the fundamental frequency of output phase-voltage signals; for instance, a 60 

Hz signal is 16.66 ms for a cycle. 1-39 order harmonics including a dc component are 

used in this particular simulation since a 2 kHz switching frequency is used. The FFT 

subsystem output size [1×40] matrix is passed to the PCA subsystem.   
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Figure 5.3. The FFT subsystem interfaced with a Simulink model. 
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The principal component analysis (PCA) is also performed by using the signal processing 

toolbox as illustrated in Figure 5.4. The transformed signals from the output of the FFT 

subsystem are sent to the PCA subsystem to transform the original data into PCA space. 

It should be noted that the valuable principal components (PC) selected by a genetic 

algorithm are performed “off line” meaning that wanted PCs are known a priori which 

PCs  are required to keep in the model for the neural network classification as previously 

discussed in section 3.5. The outputs of the PCA subsystem are passed to the neural 

network classification subsystem. 
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Figure 5.4.  PCA subsystem performing data transformation into PCA space. 
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 5.3.2 Neural network classification subsystem 

The neural network classification subsystem can also be performed in the Simulink 

model using the neural network toolbox [42]. It should be noted that the creating and 

training process of the neural network are also performed off-line as previously 

demonstrated in section 3.6. Then, the neural network can be easily incorporated into a 

Simulink model by using the command, gensim [42]; a gensim command will 

automatically generate network simulation blocks for use with Simulink as shown in 

Figure 5.5; this feature also makes it possible to view the networks graphically. The 

outputs of the neural network classification subsystem are binary codes as shown in the 

scope in Figure 5.5. These outputs are transferred to the reconfiguration subsystem.  

 

 5.3.3 Reconfiguration subsystem 

The reconfiguration subsystem consists of two functions: binary decoder and 

reconfiguration methods. It should be noted that the outputs from the neural network are 

not binary codes, so the round command is used to make the outputs to be binary codes.  

The output binary codes from the neural network are decoded into a fault hypothesis by 

using a 2-D look-up table as shown in Figure 5.6 (a). After the fault hypothesis is known, 

the reconfiguration method as discussed in section 4.3 is performed.  Figure 5.6 

represents the simple logic gate implemented in a Simulink-based model.  

 

The interface between the fault diagnostic system in Simulink and PSIM is illustrated in 

Figure 5.5. The fault diagnostic model can be interfaced with PSIM via the Simcouple.  
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Figure 5.7. The fault diagnostic system interfaced with PSIM performing power circuit of a MLID. 
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5.4 Experiment validation 

 

The experiment setup is represented in Figure 5.8. A three-phase wye-connected 

cascaded multilevel inverter using 100 V, 70 A MOSFETs as the switching devices is 

used to produce the output voltage signals. The MLID supplies an induction motor (1/3 

hp) coupled with a dc generator (1/3 hp) as a load of the induction motor. The Opal RT-

Lab system as shown in Figure 5.9 is utilized to generate gate drive signals and interfaces 

with the gate drive board. The switching angles are calculated by using Simulink based 

on multilevel carrier-based sinusoidal PWM. A separate individual 24-volt SDCS is 

supplied to each cell of the MLID, consisting of 5 cells per phase as shown in Figure 

5.10. Open and short circuit fault occurrence are created by physically controlling the 

switches in the fault creating circuit. A Yokogawa DL 1540c is used to measure output 

voltage signals as ASCII files.  The measured signals are set to N =10032; sampling 

frequency is 200 kHz. Voltage spectrum is calculated and transferred to the Opal-RT 

target machine. 
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Figure 5.8. Experiment setup. 
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Figure 5.9.  Hardware component for Opal RT-LAB configuration. 
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Figure 5.10. Three-phase wye-connection structure for electric vehicle motor drive. 

 

 

 

5.5 Simulation and experiment results 

 

An open circuit and short circuit fault in a power semiconductor switch are reported in 

this section.  Before continuing discussion, the denotation of “open circuit fault” and 

“short circuit fault” used in this simulation and experiment validation should be clarified. 

The normal operation of an 11-level MLID at normal operation with 0.8/1.0 modulation 

index (ma) is depicted in Figure 5.11. The open circuit fault, in this particular validation, 

consists of two cases: real open circuit case (both switch and its anti-parallel diode are 

disconnected) as shown in Figure 5.12 and loss of gate drive case as shown in  
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Figure 5.13. Obviously, the loss of gate drive case have different current waveforms 

compared to a real open circuit case during fault interval; also, output voltage signal of 

loss of gate drive case has lower spike than real open circuit fault when the fault occurs.  

This is because the anti-parallel diode at a faulty switch still connects in the cell in loss of 

gate drive case, so the line current can flow through the diode.  The neural network may 

have difficulty to classify the faults because of spike of output voltage during the fault. 

However, the principal component analysis has inherited the ability to filter unwanted 

components (spike) for the neural network, and also both open circuit fault cases (loss of 

gate drive and switch failure) have the exact corrective action taken; therefore, the 

problems could be solved.     

 

 

 

Figure 5.11. 11-level MLID operating at normal condition with 0.8/1.0 ma. 
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Figure 5.12. 11-level MLID operating at real open circuit fault at cell 3 switch SA+ with 0.8/1.0 ma. 
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Figure 5.13. 11-level MLID operating at loss of gate drive fault at cell 3 switch SA+ with 0.8/1.0 ma. 
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For the short circuit validation, the short circuit fault in loss of SDCS case due to fuse 

blown condition is also reported as shown in Figure 5.14. One can see that the fuse 

disconnects the faulty cell from separate dc source (SDCS). This could lead to the 

complexity to classify the faulty switches in the faulty cell. 

 

The simulation is performed based on the model represented in Figure 5.7. The 

experiment is performed based on the diagram shown in Figure 5.8, 5.9, and 5.10. The 

multi-carrier based sinusoidal modulation as shown in Figure 4.2 is used. 

 

 

SDCS

+

-

 

Figure 5.14. 11-level MLID operating at short circuit fault in loss of SDCS condition at cell 3 switch 
SA+ with 0.8/1.0 ma. 
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 5.5.1 Open circuit fault 

The simulation of real open circuit fault occurrences is created by using a faulty power 

cell as shown in Figure 5.15. The auxiliary switches (F1 and F2) are normally closed type; 

then, the faulty cell will be simulated by disconnecting switch SA+ at time T commanded 

by a unit step from Simulink. This faulty power cell is placed at cell 2 on phase A (see 

Figure 5.10), and the multilevel inverter drive is operating at 0.8/1.0 modulation index 

before the fault occurs. In the experiment, an open circuit fault occurrence is created by 

physically controlling the switches in the fault creating circuit. The simulation and 

experiment results of an open circuit fault at cell 2 switch SA+ are represented in Figure 

5.16 and Figure 5.17. 
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Figure 5.15. Open circuit faulty power cell at SA+. 
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Figure 5.16. Simulation results of the open circuit fault at SA+, cell 2 of the MLID during operated at 

ma = 0.8/1.0 :( a) output voltage phase A, and (b) magnified view on current. 
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Figure 5.17. Experimental results of the open circuit fault at SA+, cell 2 of the MLID at ma = 0.8/1.0  
(a) Output phase voltages and line current (ia), (b) line current (ia) showing starting current, fault 

interval, and fault clear. 
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As can be seen, the simulation and experiment results agree with each other. The fault 

diagnostic system requires about 6 cycles (~100 ms at 60 Hz) to clear the real open circuit 

fault as shown in Figure 5.16 (b) and Figure 5.17 (b). Obviously, the output voltage (Van) 

of the MLID is unbalanced during the fault interval, and the average current on phase A 

(ia) is negative polarity during the fault interval.  

 

The open circuit fault in loss of gate drive case is also performed. Figure 5.18 shows the 

simulation and experiment results. Again, the simulation and experiment results also 

agree with each other. The proposed diagnostic and reconfiguration system also requires 

about 6 cycles to clear loss of gate drive faults. The results suggest that the output voltage 

signals of a MLID can be used as diagnostic signals to detect the open circuit faults with 

both real open circuit and loss of gate drive signal cases as shown in Figure 5.19.  

 

The clearing time can be shorter than this if the proposed system is implemented as a 

single chip using an FPGA or DSP. The Opal-RT system needs a few cycles to load the 

output voltage signals from the target machine to the console PC machine via Ethernet. In 

addition, the window of FFT function requires at least a cycle to perform signal 

transformation. However, if the cascaded MLID can tolerate a few cycles of an open 

circuit fault, the proposed system can detect the fault and can correctly reconfigure the 

MLID; therefore, the results are satisfactory. 
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Figure 5.18. Experimental results of the loss of gate drive fault at SA+, cell 2 of the MLID at  
ma = 0.8/1.0  (a) Simulation result of line current (ia), (b)  Experiment result line current (ia) showing 

starting current, fault interval, and fault clear. 
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Figure 5.19. Experimental results of line current (ia) on open circuit faults showing both loss of gate 
drive and real open circuit cases at SA+, cell 2 of the MLID at ma = 0.8/1.0. 

 

 

 5.5.2 Short circuit fault 

The simulation of short circuit fault occurrences is created by using a faulty power cell as 

shown in Figure 5.20. The auxiliary switches are normally open type; then, the faulty cell 

will be simulated by closing switch F1 at time T commanded by a unit step from 

Simulink. This faulty power cell is placed at power cell 3 on phase A (see Figure 5.10), 

and the multilevel inverter drive is operating at 0.8/1.0 modulation index before the fault 

occurs.  
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Figure 5.20. Short circuit faulty power cell at SA+. 

 

The simulation results of a short circuit fault at cell 3 switch SA+ are represented in Figure 

5.21. The fault diagnostic system also requires about 6 cycles to clear the short circuit 

fault. Obviously, the output voltage (Van) of the MLID is unbalanced during the fault 

interval (lost negative voltage at phase A), and the average current on phase A (Ia) is 

positive polarity during the fault interval. The peak of the fault current increases about 

1.5 times compared with the normal operation.   It should be noted that practically, the 

fuse protecting the SDCS may blow (disconnect the SDCS from a MLID) before the 

diagnostic system performs fault clearing so that the output phase-voltage will be zero. 

This behavior of output phase-voltage signals should be taken into account for training 

the neural network; that is why two different neural networks are used in training process. 
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Figure 5.21. Simulation results of the short circuit fault at SA+, cell 3 of the MLID operated at  
ma = 0.8/1.0 :( a) output voltage phase A and (b) magnified view on current. 
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The proposed diagnostic system can also detect a short fault under loss of SDCS at the 

faulty cell condition as shown in Figure 5.22. The clearing time for this particular case is 

about 9 cycles. Also, the neural network can detect which cell has a fault and whether the 

switch was connected to the positive bus (SA+ and SB+) or the negative bus (SA- and SB-). 

However, the neural network could not determine which specific switch (SA+ or SB+) or 

(SA- or SB-) had failed. Nevertheless, the proposed corrective action taken would still solve 

this problem.  

 

The clearing time of short circuit fault under loss of SDCS at faulty cell condition is 

longer than the open circuit and short circuit fault by about 3 cycles. This result suggests 

that using only output voltage signals in the loss of SDCS case may not adequately 

provide unique feature to detect the faults. Therefore, the current signals may be required 

to additionally train the neural network because Figure 3.4 shows that the current polarity 

of the faulty cell can be used to classify the faults at positive or negative dc bus.  

 

5.6 Performance investigation 

 

The performance investigation of the proposed diagnostic and reconfiguration system is 

evaluated in this section. The objective of this performance investigation is to evaluate 

the fault clearing times. The procedure used in particular investigation is that the MLID 

will operate at different load and fault conditions and each condition will be performed 5 

times. Then, the average, maximum, and minimum clearing time consumed by the 

proposed system will be reported in tubular form.  
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Figure 5.22. Results of the short circuit fault at SA+, cell 3 under loss of SDCS condition at the faulty 
cell of the MLID operated at ma = 0.8/1.0 :( a) Simulation, (b) Experiment showing line current (ia) at 

the faulty phase. 
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Yokogawa DL1540c digital oscilloscope is used to capture the faulty current signal by 

using zoom function. Resistor bank is used as a load of a dc permanent magnet generator 

coupled with an induction motor.  The 150 MHz voltage probe of Yokogawa (Model 

700998) is utilized as a voltage sensor.  

 

Three fault types will be validated: open circuit fault at switch SB+ of cell 3, loss of gate 

drive fault at switch SA+ of cell 3, and short circuit at switch SA- cell 2. It should be noted 

that a traction motor requires to keep a ratio of voltage and frequency constant (V/f) 

during changing fundamental frequency of voltage supply in order to maintain air gap 

flux of the motor constant for constant torque operation. Thereupon, four different 

modulation indices (ma) and fundamental frequencies (f1) will be investigated: 0.6/1.0 ma 

at 15 Hz, 0.8/1.0 ma at 30 Hz, 0.9/1.0 ma at 60 Hz, and 1.0/1.0 ma at 80 Hz. The 

performance validation results of the proposed diagnostic and reconfiguration system at 

different load conditions are illustrated in Table 5.3.   

 

As can be seen, the proposed system can detect and reconfigure for different fault types 

and loads. The current waveforms of the MLID operating under several faulty conditions 

are illustrated in Figure 5.23 and 5.24. One can also see that the fault clearing time may 

not be equal in every attempt because, in some cases, the diagnostic system could not 

detect the fault at the first cycle required by the algorithm as explained in section 5.2. The 

consumed time of classification and reconfiguration algorithm can be estimated by 

subtracting the one cycle delay time required by FFT function. As shown in Table 5.3, 

the average consumed time of classification and reconfiguration is about 84 ms. 
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Table 5.3. Performance investigation of the proposed diagnostic and reconfiguration system. 
 

 

 

As previously mentioned in chapter 2, the voltage signal is naturally independent with 

load unlike using current signal; therefore, the proposed system did not have any 

detection problems at low frequency operation as reported in [22, 23]. Figure 5.25 shows 

that the current waveforms may not be useful information to detect the fault at low 

frequency operation. However, the current waveform could be useful in short circuit with 

loss of SDCS case for detecting the current polarity. The polarity of fault current can be 

used to determine the difference between fault SA+ and SB+ but the detection system may 

require more time to execute. As known, the cascaded MLID can tolerate a few cycles of 

faults; therefore, the detection and reconfiguration system may not need to have fast 

execution. It should be noted that this proposed system was implemented in Opal-RT. 

Multilevel inverter drive at different operating points 

Fault clearing time (ms) Fault Types 
Current 

(A) 
Modulation 

indices Frequency Average 
of 5 

attempts 
Min  Max 

Open circuit fault 
at  Switch SB+ of 

Cell 3  

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

95.8 
100 

117.2 
150 

87.5 
83.3 
100 

133.3 

112.5 
133.3 
166.6 
200 

Loss of gate drive 
fault at  Switch SA+ 

of Cell 3 

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

96.25 
100 

126.7 
166.6 

87.5 
83.3 
100 

133.3 

112.5 
116.6 
166.6 
266.6 

Short circuit at 
switch SA- of Cell 2 

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

145.8 
150 

166.7 
200 

137.5 
133.3 
133.3 
133.3 

162.5 
166.7 
200 

333.3 
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Figure 5.23. Experimental results of open circuit fault condition at different frequencies showing 
phase voltage (Van) for 15 Hz and line current (ia) for all frequencies. 
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Figure 5.24. Experimental results of different fault types at 60 Hz showing line current (ia). 

 

 



 146

Normal condition

VanVbnVcn

ia

 

(a) 

Faulty condition

ia
Van

VbnVcn

 

(b) 

Figure 5.25.  Operation of the MLID at 0.6/1.0 ma of 15 Hz: (a) normal condition and (b) open circuit 
fault at switch SA+ of cell 3. 
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The Opal-RT system needs a few cycles to load the output voltage signals from the target 

machine to the console PC machine via Ethernet. In addition, the window of FFT 

function requires at least a cycle to perform signal transformation. The clearing time can 

be shorter than this if the proposed system is implemented as a single chip using an 

FPGA or DSP. However, the proposed system can detect the fault and can correctly 

reconfigure the malfunction MLID; this shows that the proposed diagnostic and 

reconfiguration paradigm can be applied to MLID applications. Also, by using the 

proposed system, the reliability of the MLID system can be increased.  

 

 
5.7 Summary 

 

The proposed fault diagnostic paradigm has been validated in both simulation and 

experiment. The results show that the proposed fault diagnostic technique performs quite 

satisfactory. The fault diagnostic system requires about 6 cycles (~100 ms at 60 Hz) to 

clear the open circuit fault and about 9 cycles (~150 ms at 60 Hz) to clear short circuit 

fault with loss of SDCS. The experiment and simulation results in both open circuit fault 

and short circuit fault with loss of SDCS are in good agreement with each other.  

 

In the short circuit fault case, the diagnostic system requires a longer time than the fuse 

protecting a short circuit fault at SDCS. Also, the neural network can detect which cell 

has a fault and whether the switch was connected to the positive bus (SA+ and SB+) or the 

negative bus (SA- and SB-). However, the neural network could not determine which 
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specific switch (SA+ or SB+) or (SA- or SB-) had failed. Nevertheless, the proposed 

corrective action taken would still solve this problem. The current signals can be used to 

classify the fault at SA+ and SB+ because Figure 3.4 shows that the current polarity of the 

faulty cell can be used to classify the faults at positive or negative dc bus 

 

The performance validation is also performed, and the proposed system can also detect 

and reconfiguration with different load conditions. The average consumed time of 

classification and reconfiguration of algorithm is about 84 ms.  

 

The overall clearing time can be shorter than this if the proposed system is implemented 

as a single chip using an FPGA or DSP. However, the proposed system can detect the 

fault and can correctly reconfigure the malfunction MLID; this shows that the proposed 

diagnostic and reconfiguration paradigm can be applied to MLID applications. Also, by 

using the proposed system, the reliability of the MLID system can be increased. 
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6. CONCLUSIONS AND 
RECOMMENDATIONS  

 

 

 

6.1 Conclusions 

 

The cascaded H-bridge multilevel inverter is one of optimistic solutions for high power 

drives or large traction drives. The series of H-bridges makes for modularized layout and 

packaging; as a result, this will enable the manufacturing process to be done more 

quickly and cheaply. Also, the reliability analysis reported in chapter 2 indicates that the 

fault-tolerance of cascaded H-bridge multilevel inverter (MLID) had the best life cycle 

cost and MLID using modular series-cells with separated dc sources could improve 

reliability if the MLID has the ability to detect and bypass the faulty cell. If one of the 

power cells fails, it can be bypassed and operation can continue at reduced voltage 

capacity. However, if a fault (open or short circuit) occurs at a semiconductor power 

switch in a cell, it will cause an unbalanced output voltage and current, while the traction 

motor is operating. The unbalanced voltage and current may result in vital damage to the 

traction motor if the traction motor is run in this state for a long time.  

 

Although a cascaded MLID has the ability to tolerate a fault for some cycles, it would be 

better if one can detect the fault and its location; then, switching patterns and the 
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modulation index of other active cells of the MLID can be adjusted to maintain the 

operation under balanced load condition.  Of course, the MLID can not be operated at full 

rated power. The amount of reduction of the rated power that can be tolerated depends 

upon the MLID application; nevertheless, in most cases a reduction of the rated power is 

more preferable than a complete shutdown. 

 

It is possible that AI-based technique can be applied in condition monitoring and 

diagnosis. By using condition monitoring, vast savings may be made through improved 

maintenance procedures and policies. AI-based condition monitoring and diagnosis have 

several advantages; for instance, AI-based techniques do not require any mathematical 

models, therefore the engineering time and development time could be significantly 

reduced.  Moreover, the reliability of the system can also improve by using diagnosis; for 

example, in MLID applications, several types of signals such as voltage, current, noise, 

vibration, temperature, and flux signals which can convey valuable information for 

diagnosis on the electrical and mechanical state of a MLID system including motor, 

multilevel inverter and controller. The voltage and/or current signals could be used to 

diagnose a drift of power semiconductor switches in the multilevel inverter which 

contains numerous semiconductor switches. 

 

Therefore, the fault diagnostic system for cascaded H-bridge multilevel inverter based on 

artificial intelligent approaches incorporating a reconfiguration technique has been 

proposed in this dissertation. The fault diagnostic paradigm has been presented in chapter 

3. The output phase voltage can be used as a diagnostic signal to detect the faults and 
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their locations. Also, a genetic algorithm (GA) based selective principal component (PC) 

neural network (NN) method can be applied to fault diagnostic system in a MLID. The 

GA-PC-NN performs very well with both simulation and experimental testing data set. 

The total classification performance is very good by about 97.5% points. Obviously, the 

results have shown that the PC-GA-NN has a better overall classification performance 

than PC-NN by about 2.5% points. Principal component analysis (PCA) conveys lower 

dimensional input space and reduces the time necessary to train a neural network. Also, 

the reduced noise may improve the mapping performance. In addition, GA offers 

multivariable optimized search so that the best combination of PCs or the minimum 

misclassification rating could be found, which leads to the improvement of total 

classification performance of the neural networks. Consequently, by utilizing PCA and 

GA, the reliability of fault diagnostic system in MILD can be improved.  

 

The reconfiguration technique for multilevel inverters incorporating a diagnostic system 

based on neural network has been discussed in chapter 4. The basic principal of the 

reconfiguration method is to bypass the faulty cell (H-bridge); then, other available cells 

in the MLID are used to compensate for the faulty cell. The proposed reconfiguration 

technique is simple to implement because the proposed technique is based on digital logic 

gate; a simple AND gate and OR gate can be implemented to this reconfiguration 

method. In addition, the effects of using the proposed reconfiguration technique at high 

modulation index have been addressed.  
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The proposed fault diagnostic paradigm has been validated in both simulation and 

experiment in chapter 5. The results have shown that the proposed fault diagnostic 

technique performs quite satisfactory. The fault diagnostic system requires about 6 cycles 

(~100 ms at 60 Hz) to clear the open circuit fault and about 9 cycles (~150 ms at 60 Hz) 

to clear short circuit fault with loss of SDCS. The experiment and simulation results in 

both open circuit fault and short circuit fault with loss of SDCS are in good agreement 

with each other.  Also, the performance validation was also performed and the proposed 

system can also detect and reconfigure with different load conditions. The average 

consumed time of classification and reconfiguration of algorithm is about 84 ms.  

 

The overall clearing time can be shorter than this if the proposed system is implemented 

as a single chip using an FPGA or DSP. However, the proposed system can detect the 

fault and can correctly reconfigure the malfunctioning MLID; this shows that the 

proposed diagnostic and reconfiguration paradigm can be applied to MLID applications. 

Also, by using the proposed system, the reliability of the MLID system can be increased. 
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6.2 Contributions  

 

This dissertation has contributed to the existing body of knowledge as follows:  

• The fault diagnostic and reconfiguration system for cascaded H-bridge multilevel 

inverter drives based on artificial intelligent (AI) approaches by using output phase 

voltages (Vl-n) as diagnostic signals has been developed; 

• The developed system can locate which of 60 switches in an 11-level 3-phases 

inverter has failed either open circuit fault or short circuit fault by using only three 

voltage sensors; 

• The methodology of proposed diagnostic and reconfiguration system using AI-based 

techniques has been explained;  

• The reconfiguration technique is also proposed. Also, the effects of using the 

proposed reconfiguration technique at high modulation index are addressed; 

• Fault diagnostic processes for the 11-level MLID has been clearly explained; 

• The proposed fault diagnostic and reconfiguration paradigm has been validated in 

both simulation and experiment and the results have illustrated that the simulation and 

experiment in both open circuit fault and short circuit fault with loss of SDCS are in 

good agreement with each other; 

• The proposed diagnostic and reconfiguration paradigm can be applied to MLID 

applications. Also, the reliability of the MLID system can be increased by using this 

proposed system. 
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6.3 Recommendations for future work 

 

This section contains recommendations for future investigations on fault diagnostic and 

reconfiguration techniques of cascaded H-bridge multilevel inverter drives. 

 

The major disadvantage of this proposed algorithm is the fault clearing time. Therefore, 

research on decreasing fault clearing time would be attractive. There are two possible 

processes to reduce the fault clearing time: single chip implementation and feature 

extraction. As previously concluded, the overall clearing time can be shorter than this if 

the proposed system is implemented as a single chip using an FPGA or DSP. It should be 

noted that this proposed method was implemented in an Opal-RT system. The Opal-RT 

system needs a few cycles to load the output voltage signals from the target machine to 

the console PC machine. Also, the window of FFT function requires at least a cycle to 

perform signal transformation so that the proposed system requires longer clearing time 

at low frequency operation. Recursive DFT [21] and short FFT [46] or feature extraction 

in time domain [25] may be used; however, some fast transformation methods may be 

performed under hypotheses such as the MLID is running at balanced load condition 

and/or the signal is even/odd quarter waveforms. It should be mentioned that diagnostic 

signals of fault occurrences may not be possible under these hypotheses.  

 

The results on short circuit fault case have shown that the current waveforms may be 

useful for additional diagnostic signals. The polarity of faulty current can be used to 

determine the difference between faulty switch in positive or negative bus. A possible 
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technique for tracking the current polarity is Schmitt-trigger as studied in [23]. The 

reason to use an external circuit is to reduce training time and complexity of the 

classification problem of a neural network. With an external circuit, the training time and 

complexity of the neural network would be decreased because the classification process 

requires detecting only a faulty power cell; then the positive and negative switch can be 

determined using the Schmitt-trigger circuit. 

 

The proposed diagnostic and reconfiguration method can be extended to other multilevel 

inverter applications such as static synchronous compensator (STACOM). The proposed 

topology utilizes the output voltage signals to diagnose the faults; therefore, the proposed 

method is independent with loads. It should be noted that this method requires only three 

voltage sensors. 

 

Other neural network architectures and training paradigms can also be applied in fault 

diagnostic applications.  A radial basis function (RBF) neural network is also possible to 

use in the applications. An RBF network constructs a local approximation to non-linear 

input/output mapping, whereas a multilayer feedforward perceptron (MLP) neural 

network is a global approximation. This may result in fast learning and reduced 

sensitivity to the order of presentation of the input data.  

 

It is also optimistic that the proposed method can be implemented in a power switch 

module with a single chip. Recently, International Rectifier (IR) introduces the integrated 

control circuit based on DSP and power module for embedded motion control 
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(IRMCT3UF1) [61]. This power module allows the users to interface with the DSP via 

RS232; therefore, the users can import/setup their own parameters and control techniques 

based on embedded Simulink toolbox. It is possible that the proposed fault diagnostic and 

reconfiguration algorithm can be implemented based on this power module technology; 

as a result, the reliability of multilevel inverter applications can be increased.   

 

6.4 Publications 
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• S. Khomfoi, L. M. Tolbert, "Fault Diagnostic System for a Multilevel Inverter Using 
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• S. Khomfoi, L. M. Tolbert, “Multilevel Power Converters,” Power Electronics 

Handbook, 2nd Edition, Elsevier, 2007, ISBN 978-0-12-088479-7, Chapter 17, pp. 

451-482. 

• S. Khomfoi, L. M. Tolbert, “Fault Diagnosis System for a Multilevel Inverter Using a 

Neural Network,” IEEE Industrial Electronics Conference, November 6-10, 2005, pp. 

1455-1460; 

• S. Khomfoi, L. M. Tolbert, “Fault Diagnosis System for a Multilevel Inverters Using 

a Principal Component Neural Network,” 37th IEEE Power Electronic Specialists 

Conference, June 18-22, 2006, pp. 3121-3127; 
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