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Abstract

In statistical modeling, an overparameterized model leads to poor generalization on unseen

data points. This issue requires a model selection technique that appropriately chooses the

form, the parameters of the proposed model and the independent variables retained for

the modeling. Model selection is particularly important for linear and nonlinear statistical

models, which can be easily overfitted.

Recently, support vector machines (SVMs), also known as kernel-based methods, have

drawn much attention as the next generation of nonlinear modeling techniques. The model

selection issues for SVMs include the selection of the kernel, the corresponding parameters

and the optimal subset of independent variables. In the current literature, k-fold cross-

validation is the widely utilized model selection method for SVMs by the machine learning

researchers. However, cross-validation is computationally intensive since one has to fit the

model k times.

This dissertation introduces the use of a model selection criterion based on informa-

tion complexity (ICOMP) measure for kernel-based regression analysis and its applications.

ICOMP penalizes both the lack-of-fit and the complexity of the model to choose the optimal

model with good generalization properties. ICOMP provides a simple index for each model

and does not require any validation data. It is computationally efficient and it has been

successfully applied to various linear model selection problems. In this dissertation, we in-

troduce ICOMP to the nonlinear kernel-based modeling areas. Specifically, this dissertation

proposes ICOMP and its various forms in the area of kernel ridge regression; kernel partial

least squares regression; kernel principal component analysis; kernel principal component
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regression; relevance vector regression; relevance vector logistic regression and classification

problems. The model selection tasks achieved by our proposed criterion include choosing

the form of the kernel function, the parameters of the kernel function, the ridge parameter,

the number of latent variables, the number of principal components and the optimal subset

of input variables in a simultaneous fashion for intelligent data mining.

The performance of the proposed model selection method is tested on simulation bench-

mark data sets as well as real data sets. The predictive performance of the proposed model

selection criteria are comparable to and even better than cross-validation, which is too

costly to compute and not efficient.

This dissertation combines the Genetic Algorithm with ICOMP in variable subsetting,

which significantly decreases the computational time as compared to the exhaustive search

of all possible subsets. GA procedure is shown to be robust and performs well in our

repeated simulation examples.

Therefore, this dissertation provides researchers an alternative computationally efficient

model selection approach for data analysis using kernel methods.
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Chapter 1

Introduction

1.1 Background

This research proposes a novel model selection criterion for support vector machines (SVMs)

models (Vapnik, 1995). SVMs, also known as the kernel-based methods (Shawe-Taylor and

Cristianini, 2004), are a set of nonlinear statistical learning techniques that have drawn

much attention since the mid 1990s. SVMs were developed at AT&T Bell Laboratories by

Vapnik and his co-workers (Vapnik, 1995). Kernel-based methods (KMs) have been widely

used in different nonlinear modeling areas including regression (Rosipal and Trejo, 2001;

Tipping, 2001), principal component analysis (Schölkopf et al., 1998), canonical correlation

analysis (Akaho, 2001; Shawe-Taylor and Cristianini, 2004), discriminant analysis (Mika

et al., 1999), clustering and classification.

The basic idea of KMs is to nonlinearly map the independent variables to a high-

dimensional or even infinite-dimensional Hilbert space (Hilbert, 1927). This transformed

space is generally called feature space in machine learning language. After the transfor-

mation, the traditional linear learning techniques are applied to the feature space. Such

nonlinear transformation is conducted through the ‘kernel tricks’ (Aizermann et al., 1964).

Using the kernel matrix, it is not necessary to know the explicit form of the feature space.

One just needs to select the appropriate kernel function and ‘tune’ its parameters to prevent
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the overfitting problem in KMs. KMs have become the next generation of nonlinear ma-

chine learning techniques that took the place of neural networks (NNs) due to the following

advantages:

1. The kernel-based models are simple. In NNs, one has to conduct preliminary trials to

design the number of layers, the number of neurons in each layer and the optimization

methods.

2. Training NNs is slow since it requires the gradient-search type nonlinear optimization.

Many KMs do not require iterative procedures.

3. KMs are more efficient when the number of independent variables is bigger than the

number of training observations.

4. Training NNs models may suffer from falling into the local minimum which depends

on the initialization methods. KMs do not suffer from this limitation.

1.2 Statement of Problem

Model selection is one of the open questions of KMs. First, one must use the appropriate

kernel function. For instance, the Gaussian Radial Basis Function (RBF) kernel is the most

popular kernel that can provide a complicated nonlinearity while the polynomial kernel is

simple but can only provide limited nonlinearity. Second, the scale parameter of the kernel

function needs to be ”tuned” to achieve good generalization. For the Gaussian RBF kernel,

a large scale parameter will lead to underfitting and a small scale parameter will lead to

overfitting. Increasing the order of the polynomial kernel provides higher nonlinearity.

In addition, the parameters of the modeling methods must be appropriately selected to

prevent overfitting. Such model selection issues that will be discussed in this dissertation

include choosing the ridge parameter, choosing the number of latent variables and choosing

the number of principal components.

2



When multiple independent variables are involved, statisticians would be interested in

knowing which variables are critical and which variables are nuisance. This will lead to

an important model selection topic - subset variable selection. The KMs literature in this

area is limited since the machine learning researchers are generally focused on tuning the

kernel parameters. Our numerical experiments indicate that including nuisance variables

may lead to a poor predictive ability for future observations. From a statistician’s point

of view, selecting the appropriate subset of variables also provides a good interpretation of

the fitted model.

Currently in the literature, error of the validation data is used to evaluate the generaliza-

tion of the fitted model. When the number of observations is large, one can use the hold-out

sample to evaluate the fitted model. For relative small data sets, the k-fold cross-validation

is superior (Goutte, 1997). It estimates the generalization error based on re-sampling. In

k-fold cross-validation, one divide the data into k groups of equal size. The model is fit k

times. In each fit, one group is excluded during the training and the fitted model is used

to compute the error of the omitted group. If k is equal to the sample size, this is called

leave-one-out cross-validation (LOOCV). A value of 10 for k is popular for estimating gen-

eralization error. The drawback of k-fold cross-validation is in its computational intensity,

especially for the LOOCV approach. LOOCV also suffers from the continuity, which means

a small variance in the data can lead to a large change in the selected model (Breiman,

1996).

An intuitive thinking based on the above shortcomings is that it is computationally

efficient to utilize a model selection criterion which does not require extra validation data.

One of such criteria is Akaike information criterion (AIC) (Akaike, 1973). AIC is consisted

of two parts, a function of the maximum likelihood to measure the lack-of-fit of the model

and a penalty term to measure the complexity of the model. In AIC, the penalty term is

two times the number of estimated parameter. The optimal model is the minimizer of AIC

that provides good generalization as well as good fit. However, it is questioned (Rissanen,

1976; Bozdogan, 1988) that counting the number of parameters in AIC and its variants do

3



not provide sufficient penalty. Inspired by AIC, Bozdogan (1988) proposed the information

complexity (ICOMP) measure. Instead of penalizing the number of estimated parameters,

ICOMP penalizes the interdependency among the estimated parameters. This criterion

provides a more judicious penalty term than AIC and other AIC-type criteria. It has been

successfully utilized in different linear modeling applications. This dissertation extends the

use of ICOMP to the kernel-based methods based on the fact that linear model methods

are utilized in the feature space.

1.3 Contributions

This dissertation contributes to the existing machine learning literature by utilizing ICOMP

and its variants as the alternative model selection criteria for various kernel-based regression

analysis problems without using validation data.

This dissertation provides ICOMP forms to be used for the kernel ridge regression, kernel

least squares regression, kernel principal component analysis, kernel principal component

regression, relevance vector regression and relevance vector logistic regression respectively.

The proposed model selection method is used to choose the optimal parameters of a kernel

function and compare between different kernel functions for the above regression analysis

applications.

Given a fixed kernel function, this dissertation uses ICOMP to choose the optimal ridge

parameter of the kernel ridge regression, the optimal number of latent variables of kernel

least squares regressions or the optimal number of kernel principal components.

This dissertation also utilizes ICOMP as the criterion to choose the optimal subset

of independent variables in the kernel-based methods listed above. When the number of

total independent variables are large, genetic algorithm is used to search the optimal subset

efficiently using a function of ICOMP as the measure of fitness.

Last, this dissertation derives the point and interval estimates of the weighted kernel

ridge regression to solve the heteroscedasticity problem.
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1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 is an introduction to kernel-

based methods. Chapter 3 describes the information measure approach to model selection

based on the work of Bozdogan(1988; 1990; 1998; 2004a). The forms of ICOMP for differ-

ent kernel-based methods will be detailed in the subsequent individual chapters. Chapter

4 briefly describes genetic algorithm that is used for subset model selection. Chapter 5

to Chapter 8 present the ICOMP-based model selection approaches for kernel ridge re-

gression, kernel partial least squares regressions, kernel principal component analysis and

regression and relevance vector machines respectively. Chapter 9 concludes the dissertation

and suggests possible future work and improvements in this area of research.

5



Chapter 2

Overview of Kernel-based Methods

2.1 Introduction of Kernel-based Methods

Kernel-based methods (KMs) are a set of nonlinear statistical modeling techniques that have

received much attention recently from the machine learning literature. KMs first appeared

and became popular in the form of support vector machines (SVMs), originally proposed

by Vapnik (1995). The basic idea of kernel-based algorithms is to first nonlinearly map

the original data space X ⊆ Rp, called input space, to a high-dimensional feature space

Φ(X) ⊆ Rk. Then, the traditional linear learning algorithms are applied on the feature

space.

Instead of giving the exact form of the high-dimensional Φ(X) in the feature space

directly, KMs use the kernel trick, first introduced by Aizermann, Bravermann and Rozoener

(1964) on the method of potential functions to avoid the “curse of high dimensionality”.

The kernel trick uses kernel functions to perform the nonlinear transformation and the

explicit dimension and form of the feature space is unnecessary to be known. A kernel is a

function k that for any two observations x and z of X, satisfies

k(x, z) =< Φ(x),Φ(z) > (2.1)
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where Φ(·) represents the mapping from the input space X to the feature space. According

to the geometric meaning of inner product, a kernel function is actually calculating the

squared distance of two observations in the feature space. Therefore, the kernel function is

a measure of similarity in the feature space.

A kernel matrix K, also called gram matrix, derived from the p-dimensional training

data X ⊆ Rp with n observations is a n × n finitely positive semi-definite matrix whose

ijth element kij is the inner product of the ith feature space observation Φ(xi) and the jth

feature space observation Φ(xj). That is,

kij =< Φ(xi),Φ(xj) >= k(xi,xj). (2.2)

The kernel matrices in KMs are equivalent to the covariance matrices in the original data

space. They contains all the information needed for modeling purposes. They also can

be thought of as the training data matrix, like X from the input space, when the linear

learning is conducted in the feature space. A separable and complete inner product space

is called a Hilbert space (Hilbert, 1927), a generalization of the vector space that is not

restricted to finite dimensions. Since the kernel function k(x, z) defined in (2.1) is finitely

positive semi-definite (Shawe-Taylor and Cristianini, 2004), the corresponding feature space

is referred as Reproducing Kernel Hilbert Space (RKHS).

We further define an m × n matrix Knew which involves both the training data X

and the m new observations Xnew. The ijth element of Knew is the inner product of the

feature space mapping the ith observation of Xnew and the feature space mapping of the

jth observation of X. That is,

knew(ij) =< Φ(xnew(i)),Φ(xj) >= k(xnew(i),xj). (2.3)
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2.2 Selected Kernel Functions

Different applications may require different kernel functions for the appropriate similarity

measure. Once the kernel function is decided, one must choose the appropriate parameters

to achieve the good generalization. Mercer’s theorem (Mercer, 1909) is usually used to

construct a feature space for a valid kernel (Shawe-Taylor and Cristianini, 2004).

In this section, we list some widely used kernel functions that will be compared in this

research. Assume x ∈ Rp and z ∈ Rp are both p-dimensional observation vectors.

1. Polynomial Kernel Function is defined by

k(x, z) = (< x, z > +a)b, (2.4)

where a and b are the bias parameter and the polynomial order respectively. Increasing

the order b will increase the nonlinearity (or decrease the smoothness) of the resulting

model. For a p-dimensional input space, the dimension of the feature space for the

polynomial kernel is 


p + b

b


 .

A polynomial kernel function with a = 0 and b = 1 is called the linear kernel function,

which results pure linear models or working with the original data.

2. Gaussian Radial Basis Function (RBF) is defined by

k(x, z) = exp
[
−‖x− z‖2

2a2

]
, (2.5)

where a is the bandwidth (or scale) parameter that controls the smoothness of the

nonlinear mapping.

3. Exponential RBF Kernel is defined by
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k(x, z) = exp
[
−‖x− z‖

2a2

]
, (2.6)

where a is the scale parameter.

4. Linear Spline is defined by

k(x, z) =
p∏

i=1

[
1 + xz +

1
2
xzmin(x, z)− 1

6
min(x, z)3

]
, (2.7)

where p is the dimension of x or z. Both xz and min(x, z) are the pairwise operation

instead of the matrix operation.

5. Cauchy Kernel is defined by

k(x, z) =
1

1 + ‖xa−za‖2
a

, (2.8)

where a is the scale parameter.

6. Sigmoid (Multi-Layer Perceptron) is defined by

k(x, z) = tanh(a < x, z > +b), (2.9)

where a is the scale parameter and b is the bias parameter.

7. Thin-plate Spline is defined by

k(x, z) =
1
2
η log(η + b), (2.10)

where η = a‖x− z‖2 and

b =





0, η 6= 0 ;

1, else.
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8. Cubic kernel is defined by

k(x, z) = a
3
2 ‖x− z‖3, (2.11)

where a is the scale parameter.

9. Neighborhood Indicator (Bubble) kernel is defined by

k(x, z) = a‖x− z‖2 < 1, (2.12)

where a is the scale parameter. This kernel gives a logical value which indicates if two

observations are neighbors (1) or not (0).

10. B-spline is defined by

k(x, z) = B2N+1(x− z). (2.13)

11. ANOVA Spline is defined by

k(x, z) =
p∏

i=1

1 + xizi + xizi min(xi, zi)− xi + zi

2

[
min(xi, zi)2 +

1
3

min(xi, zi)
]3

,

(2.14)

where p is the dimension of the observations.

12. ANOVA B-Spine is defined by

k(x, z) =
p∏

i=1

(1 + ai), (2.15)

where

ai =
2(N+1)∑

j=0

(−1)j




2(N + 1)

j


 [max(0, xi − zi + N + 1− j)](2N+1) . (2.16)

The plots of these kernel functions are shown in Figure 2.1.
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Figure 2.1: Plots of Kernel Functions (a) Polynomial (b) Guassian RBF (c) Exponential
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2.3 Some Implementation Issues in the Feature Space

2.3.1 Centering in the Feature Space

Before specifying the specific kernel functions, since the exact form of Φ(X) is not known,

centering can not be performed directly on the data matrix of the feature space F . However,

only the kernel matrix is needed for the training purpose and the kernel matrix K(c) based

on the centered Φ(X) can be obtained as a function of K. K(c) in terms of Φ(X) is shown

as:

K(c) =
[
Φ(X)− Φ(X)

] [
Φ(X)− Φ(X)

]T

=
[
Φ(X)− 1

n
JΦ(X)

] [
Φ(X)− 1

n
JΦ(X)

]T

= Φ(X)Φ(X)T − 1
n

Φ(X)Φ(X)TJ− 1
n
JΦ(X)Φ(X)T +

1
n2

JΦ(X)Φ(X)TJ

= K− 1
n
KJ− 1

n
JK +

1
n2

JKJ, (2.17)

where J is the n×n square matrix of 1s. If the independent variables of the training data are

centered, the new observations of independent variables Φ(Xnew) needs to be centered using

the mean vector of the training data Φ(X) before being used for the prediction. Similarly,

Knew needs to be transformed to Knew(c), which is based on the centered training data

and new data in the feature space as shown below:

Knew(c) =
[
Φ(Xnew)− Φ(X)

] [
Φ(X)− Φ(X)

]T

=
[
Φ(Xnew)− 1

n
JnewΦ(X)

] [
Φ(X)− 1

n
JT Φ(X)

]T

= Φ(Xnew)Φ(X)T − 1
n
JnewΦ(X)Φ(X)T

− 1
n

Φ(Xnew)Φ(X)TJT +
1
n2

JnewΦ(X)Φ(X)TJT

= Knew − 1
n
JnewK− 1

n
KnewJ +

1
n2

JnewKJ, (2.18)

where Jnew is a m× n matrix of 1s.
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2.3.2 Adding a Constant Term to the Regression Problems

If the variables are not centered, the following two methods can be used:

1. Add 1 to each element of the original kernel matrix. This is equivalent as adding a

column of 1s to Φ(X) in the feature space and defining the kernel matrix as:

kij =< [1 Φ(x)], [1 Φ(z)]) > . (2.19)

2. Add a column of 1s to the kernel matrix.
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Chapter 3

Information Complexity Criteria

3.1 Introduction

The information complexity (ICOMP) measure is a statistical model evaluation criterion

originally proposed by Bozdogan (1988). The development of ICOMP was inspired by

Akaike’s information criterion (AIC) (Akaike, 1973, 1974), which evaluates both the good-

ness of a model’s fit to the sample data and the complexity of the model. In general AIC

is defined by

AIC = −2logL(θ̂) + 2p, (3.1)

where L(θ̂) is the maximized likelihood function in which θ̂ is the maximum likelihood esti-

mate of the parameter (or parameters) θ, and p is the number of independent parameters of

the model. In AIC, the compromise takes place between −2logL(θ̂), the measure of the lack-

of-fit, and 2p, the complexity of the model. The optimal model is chosen as the minimizer

of AIC. AIC is an unbiased estimator of minus twice the expected log likelihood (Akaike,

1987; Bozdogan, 2000). ICOMP uses the same lack-of-fit measurement as AIC does, but

the complexity measure of a model is based on a generalization of the covariance complexity

index originally introduced by van Emden (1971). It measures the degree of the interaction

or the dependency between the components of a model (Bozdogan, 2004a). The general
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form of ICOMP for a specific model is defined by

ICOMP = −2logL(θ̂) + 2C[Ĉov(θ̂)], (3.2)

where C[·] represents a real-valued measure of complexity of the model, and Ĉov(θ̂) repre-

sents the estimated covariance matrix of the parameter vector of the model.

To derive the complexity, we consider a continuous p-variate distribution with the joint

density function f(X) = f(x1,x2, ...,xp) and marginal density functions f i(xi), i = 1,2, ...,p.

The informational measure of dependence between p random variables is defined by (Boz-

dogan, 2004a)

I(X) = I(x1,x2, ...,xp)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1,x2, . . . ,xp)log

f(x1,x2, . . . ,xp)
f1(x1)f2(x2) · · · fp(xp)

dx1 · · · dxp, (3.3)

where I(X) ≥ 0 is known as the Kullback-Leibler (K-L) (1951) information against in-

dependence. The K-L information quantifies the meaning of “information” related to

Fisher’s concept of sufficient statistics. It’s earlier roots can be traced back to the famous

Boltzmann’s concept of entropy (Boltzmann, 1877) in thermodynamics. I(X) = 0, when

f(x1,x2, . . . ,xp) = f1(x1)f2(x2) · · · fp(xp), if and only if the p random variables are mu-

tually independent. If I(X) > 0, this implies at least one variable is correlated with one or

multiple of the other variables. Equation (3.3) can be written in terms of Shannon’s (1948)

entropy given by

I(X) ≡ I(x1,x2, . . . ,xp) =
p∑

i=1

H(xi)−H(x1,x2, . . . ,xp), (3.4)

where H(xi) is the marginal entropy and H(x1,x2, . . . ,xp) is the global or join entropy.

Watanabe (1985) calls (3.4) the strength of structure and a measure of interdependence.

The desirable model should have relatively smaller complexity or information entropy such
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that the variables or the components of the model are less dependent to each other thus

have less redundant information.

Assuming the p variables follow a multivariate normal distribution, i.e. X ∼ N(µ, Σ),

with the corresponding density function

f(X) = (2π)−
p
2 |Σ| exp{−1

2
(x− µ)TΣ−1(x− µ)} (3.5)

Van Emden (1971) first defined the information complexity of a covariance matrix Σ for

the multivariate normal distribution as:

I(X) =
p∑

i=1

H(xi)−H(x1,x2, . . . ,xp)

=
p∑

i=1

[
1
2
log(2π) +

1
2
log(σii) +

1
2

]
− p

2
log(2π)− 1

2
log |Σ| − p

2
, (3.6)

which can be simplified to:

C0(Σ) =
1
2

p∑

i=1

log(σii)− 1
2
log |Σ| , (3.7)

where σii ≡ σ2
i is the ith diagonal element of Σ, that is, the variance of the ith random

variable. C0(Σ) = 0 when all variables are linearly independent. C0(Σ) is infinite (|Σ|=0)

if Σ is not of full rank, that is, at least one variable is the linear combination of the others.

The two drawbacks of C0(Σ) pointed out by van Emden (1971) are:

• C0(Σ) depends on the marginal and the joint distributions of the random variables

and

• C0(Σ) is coordinate dependent because
∑p

i=1 log(σii) would change under orthonormal

transformations.

Because of this, Bozdogan (1990) proposed a maximal covariance complexity measure of a

multivariate normal distribution:
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C1(Σ) =
p

2
log

[
tr(Σ)

p

]
− 1

2
log |Σ| = 1

2
log

(
tr(Σ)

p

)p

|Σ| . (3.8)

Note that C1(Σ) is an upper bound to C0(Σ) and is independent of the coordinate system

by considering the contribution of covariances as well as variances in Σ. C1(Σ) combines

the geometric mean of the average total variation and the generalized variance into one

index. In general, large complexity indicates a high dependency among the variables and a

low complexity value indicates less dependency among the variables. If we let λ1, λ2, . . . , λp

be the eigenvalues of Σ, then the complexity of Σ can be written as

C1(Σ) =
p

2
log

(
λ̄a

λ̄g

)
, (3.9)

where λ̄a =
∑p

i=1 λi/p is the arithmetic mean of the eigenvalues of Σ and λ̄g = (
∏p

i=1 λi)
1
p

is the geometric mean of the eigenvalues.

Under some regularity conditions, the maximum likelihood estimator (MLE) is asymp-

totically (for large samples) normally distributed. The mean is equal to θ and the covariance

matrix is equal to the inverse of Fisher information (FIM). Note that the (i, j)th element of

the Fisher information matrix is defined by

F(θ)ij = −E

[
∂2L

∂θiθj

]
. (3.10)

Therefore, F−1 is another way to calculate the covariance matrix of the estimated param-

eters used in the information measure.

3.2 ICOMP Criteria for Multiple Regression Models

Bozdogan (1998) proposed a general form of ICOMP based on the inverse Fisher information

(IFIM) for a statistical model given by

ICOMP(IFIM) = −2logL(θ̂) + 2C1(F̂−1(θ̂)), (3.11)
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where θ̂ represents the MLE of the model and F̂−1(θ̂) represents the estimated IFIM of the

parameter manifold of the model. We consider a multiple regression model given by

y = Xβ + ε, (3.12)

where

ε ∼ N(0, σ2I).

Under the normality assumption, the probability density of the reponse is defined as:

f(yi|xi, β, σ2) = (2πσ2)−
1
2 exp

[
−(yi − xiβ)2

2σ2

]
. (3.13)

The log-likelihood function of a random sample of size n is:

l(β, σ2) = logL(β, σ2)

= −n

2
log(2π)− n

2
logσ2 − (y −Xβ)T (y −Xβ)

2σ2
(3.14)

The maximum likelihood estimates of β and σ2 are given by:

β̂ = (XTX)−1XTy (3.15)

σ̂2 =
Sum of Squared Residuals

n
=

(y −Xβ̂)T (y −Xβ̂)
n

(3.16)

The covariances of the estimated regression coefficients are

Cov(β̂) = Cov((XTX)−1XTy)

= (XTX)−1XTCov(y)X(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1, (3.17)

where σ2 can be estimated by (3.16).
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Using the estimated covariance of the regression coefficients, ICOMP for a multiple

regression model can be defined as:

ICOMP(Ĉov(β̂))Reg = −2logL(β̂, σ̂2) + 2C1(Ĉov(β̂))

= nlog(2π) + nlog(σ̂2) + n

+2

[
p

2
log

(
tr(Ĉov(β̂))

p

)
− 1

2
log

∣∣∣Ĉov(β̂)
∣∣∣
]

= nlog(2π) + nlog(σ̂2) + n + p·log
(

λa

λg

)
(3.18)

Under the large sample assumption, we may use IFIM to estimate the covariance of the

estimated model parameters given by

Ĉov(β̂, σ̂2) = F̂−1 =




Ĉov(β̂) Ĉov(β̂, σ̂2)

Ĉov(σ̂2, β̂) V̂ar(σ̂2)


 . (3.19)

To derive the above equation, the first and the second partial derivatives of the log-likelihood

function defined in (3.14) are as follows.

∂l(β, σ2)
∂β

=
(y −Xβ)TX

σ2
(3.20)

∂l(β, σ2)
∂(σ2)

= − n

2σ2
+

(y −Xβ)T(y −Xβ)
2σ4

(3.21)

∂2l(β, σ2)
∂β2 = −XTX

σ2
(3.22)

∂2l(β, σ2)
∂(σ2)2

=
n

2σ4
− (y −Xβ)T(y −Xβ)

σ6
(3.23)

∂2l(β, σ2)
∂(σ2)∂β

=
[
∂2l(β, σ2)
∂β∂(σ2)

]T

= −(y −Xβ)TX
σ4

(3.24)

The corresponding negative expected values of the second derivatives are:
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−E
[
∂2l(β, σ2)

∂β2

]
=

XTX
σ2

−E
[
∂2l(β, σ2)

∂(σ2)2

]
= − n

2σ4
+

E
[
(y −Xβ)T(y −Xβ)

]

σ6

= − n

2σ4
+

nσ2

σ6

=
n

2σ4

−E
[
∂2l(β, σ2)
∂(σ2)∂β

]
= −E

[
∂2l(β, σ2)
∂β∂(σ2)

]T

= −E
[
(y −Xβ)T

]
X

σ4
= 01×p

Therefore, the Fisher information matrix for the regression is given by

F =




XTX
σ2 0p×1

01×p
n

2σ4


 . (3.25)

The estimated inverse Fisher information (IFIM) in (3.19) is defined as:

Ĉov(β̂, σ̂2) = F̂−1 =




σ̂2(XTX)−1 0p×1

01×p
2σ̂4

n


 , (3.26)

where σ̂2 is given in (3.16).

Using IFIM, the ICOMP for a multiple regression model has the form of:

ICOMP (IFIM)Reg = −2logL(β̂, σ̂2) + 2C1

(
Σ̂(θ̂)

)

= nlog(2π) + nlog(σ̂2) + n + 2C1

(
F̂−1(θ̂)

)
, (3.27)

where

C1

(
F̂−1(θ̂)

)
=

1
2
(p + 1)log

[
tr

(
σ̂2(XTX)−1

)
+ 2σ̂4

n

p + 1

]

−1
2
log

∣∣σ̂2(XTX)−1
∣∣− 1

2
log

(
2σ̂4

n

)
, (3.28)
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and where p + 1 is the total number of the estimated independent model parameters.

Van Emden (1971) suggested a second measure of complexity of a covariance matrix

based on the Frobenious norm given by

CF (Ĉov(θ̂)) =
1
s
‖Ĉov(θ̂)‖2 −

(
tr(Ĉov(θ̂))

s

)2

, (3.29)

where ‖Ĉov(θ̂)‖2 = tr(Ĉov(θ̂)T Ĉov(θ̂)), the square of the Frobenious norm of Ĉov(θ̂), and

s is the number of estimated independent model parameters, that is, the rank of Ĉov(θ̂).

CF (Ĉov(θ̂)) is a non-negative index with CF (Ĉov(θ̂)) = 0 when all the eigenvalues are the

same. In terms of the eigenvalues, CF (Ĉov(θ̂)) can be written as

CF (Ĉov(θ̂)) =
1
s

s∑

i=1

(λi − λa)2. (3.30)

Bozdogan (Bozdogan, 2003; Bao and Bozdogan, 2004) related C1(Ĉov(θ̂)) to CF (Ĉov(θ̂))

and provided a new complexity measure called C1F (·) given by

C1F (Ĉov(θ̂)) =
s

4
CF (Ĉov(θ̂))
(

tr(dCov(θ̂))
s

)2

=
s

4

1
s tr(Ĉov(θ̂)T Ĉov(θ̂))−

(
tr(dCov(θ̂))

s

)2

(
tr(dCov(θ̂))

s

)2 (3.31)

=
1

4λ
2
a

s∑

i=1

(λi − λa)2. (3.32)

C1F (Ĉov(θ̂)) is scale-invariant and is a second order equivalent measure of complexity to the

original C1(Ĉov(θ̂)) measure. Because it can be expressed by eigenvalues of the covariance

matrix, it is ideal for the statistical models with orthogonal (uncorrelated) variables which

are eigen-problems, including partial least squares regression, principal component analysis,

principal component regression, Fisher’s discriminant analysis and canonical correlation

analysis.
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3.3 ICOMP Criteria for Multivariate Regression Models

The above results on ICOMP in the usual multiple regression case can be easily extended

to the multivariate regression. Consider the multivariate regression model given by

Y = XB + E (3.33)

where the n×q matrix Y represents q response variables, the n×p matrix X represents the

p-dimensional independent variables with n sample observations, the p× q matrix B stands

for the regression coefficient, and the n× q random errors E have the mean vector of zero

and the constant covariance Σ. Assuming that the random error ei(1 × q vector) follows

a multivariate normal distribution with the mean vector of zero, the probability density

function of ei is given by

f(ei) =
1

2π
q
2 |Σ| 12

exp
(
−1

2
eiΣ−1eT

i

)
. (3.34)

AIC for the multivariate regression model is defined by

AIC(Multivar Reg) = nqlog(2π) + nlog|Σ̂|+ nq + 2
[
pq +

q(q + 1)
2

]
. (3.35)

The corresponding ICOMP(IFIM) derived by Bozdogan (1998) has the form:

ICOMP(IFIM)Multivar Reg = nqlog(2π) + nlog|Σ̂|+ nq + 2C1(F̂−1(θ̂)), (3.36)

where the maximum likelihood estimate of the error covariance matrix is given by

Σ̂ =
(Y −XB̂)T(Y −XB̂)

n
, (3.37)

and the estimated IFIM, F̂−1(θ̂), is given by
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F̂−1(θ̂) =




Σ̂⊗ (XTX)−1 0pq× 1
2
q(q+1)

0 1
2
q(q+1)×pq

2
nD+

q (Σ̂⊗ Σ̂)D+T
q .


 , (3.38)

In (3.36), D+
q is the Moore-Penrose of the q2 × q(q+1)

2 duplication matrix Dq (Magnus

and Neudecker, 1988), and ⊗ represents the Kronecker tensor product. Given the above

definition of F̂−1(θ̂), the complexity then becomes

C1(F̂−1(θ̂)) =
q(q + p)

2
log


 tr(Σ̂)tr(XTX)−1 + 1

2n

[
tr(Σ̂2) + tr2(Σ̂) + 2

∑q
i=1 σ̂2

ii

]

q(q + p)




−1
2
(p + q + 1)log|Σ̂| − q

2
log

∣∣∣(XTX)
−1

∣∣∣− q

2
log(2). (3.39)

In PCA, PCR, PLS, FDA and CCA, the modeling components are orthogonal and

C1(·) goes to negative infinity. We use C1F (·) to compute the complexity as we do for the

univariate models. In this case, ICOMP is given by

ICOMP(Ĉov(θ̂))Multivar reg = nqlog(2π) + nlog|Σ̂|+ nq + 2C1F (Ĉov(θ̂)), (3.40)

where C1F (Ĉov(θ̂)) is given in (3.32).

We assume Gaussian noise through out this dissertation in kernel-based methods. It is

also possible that the noise distribution may not be normal. Our future work will be focused

on applying the misspecification form of ICOMP (Bozdogan, 2004a,b, 2005) to explore its

ability to guard against the non-normal noise in modeling of kernelized data.

3.4 ICOMP Criteria for Kernel Methods

It has been shown that ICOMP criteria have been successfully applied in many linear re-

gression applications including ridge regression, multiple and multivariate regression, partial

least squares regression, mixture models, principal component analysis, and Fisher’s dis-

criminant analysis. The purpose of this research is to extend these successful applications
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of ICOMP to the kernel-based nonlinear modeling techniques, since after the “kernel trick”

the modeling techniques become simply linear procedures, and we can carry out the model

selection enterprise on the kernelized data as we would have done on the original data.
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Chapter 4

Genetic Algorithms

4.1 Introduction

Genetic Algorithms (GAs), are searching techniques inspired by the natural selection of

evolutionary biology. It was originally developed by John Holland, his colleagues and stu-

dents in the early 1970s. GAs can be applied to find the optimal solutions to optimization

problems when the exhaustive searching of all the possible solutions is impossible or not

efficient to implement. GAs starts with a random sample (the first generation) of all the

solutions. A fitness function is used to evaluate each solution and the better fitted solutions

are retained to generate the next generation. In GAs, each solution is expressed by a binary

string called chromosome. This will allow inheritance, mutation and recombination (also

called crossover) to prevent from the local minimum. The retained good solutions then

will mate and generate the next generation of solutions. This procedure is repeated until a

certain convergence criterion is reached or the optimal solutions are found.

Efficiency is the major advantage of using GAs. The purpose of this chapter is not a

thorough coverage of Genetic Algorithms but a brief introduction of the GA procedure which

will be used for searching optimal subset models in this research. The interested readers

may find the comprehensive coverage of GAs given in (Goldberg, 1989) and (Michalewicz,

1992).
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In the regression analysis, choosing the optimal subset models for the best generalization

and interpretation is often of interest. The traditional variable selection approaches include

Backward and Forward stepwise selection. The well known shortcomings of these pocedures

are that the order which a variable “enters” or “leaves” the model will affect the variable

selection results (Boyce et al., 1974; Wilkinson, 1989). Also, there is no theoretical justifi-

cation of such procedures. In addition, the probability (threshold) for entering and leaving

the model is an arbitrary choice. Stepwise searching can hardly find the global best subset

model or even the best subset of a particular size. This has been criticized in (Hocking,

1976, 1983; Mose, 1986; Mantel, 1970).

If practically feasible, all-possible-subset selection would be the best approach to subset

selection. However, the ”curse of dimensionality” (Bellman, 1961) makes it practically

impossible to evaluate all the subsets. For instance, for 30 independent variables, we will

have 230 − 1 = 1, 073, 741, 823 subsets models to evaluate. In this research, we bring in

the capability of GA to reduce the computational burden tremendously but still find the

optimal subset models.

4.2 The Procedure of GAs

4.2.1 Representation

GAs perform selection, partition, combination and modification of the chromosomes, ex-

pressed as binary strings. Therefore, the first step is to represent the domain of a numerical

optimization problem using the corresponding chromosomes. For instance, suppose x is

the independent variable and the optimization is performed in the x domain of [−1, 1]. If

the precision requires 100000 equal width intervals within the range, which means 100001

values, this will requires 17 bits since

65536 = 216 < 100001 < 217 = 131072
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If “00000000000000001” represents “-1”, then “11000011010100001” is the expression of “1”

the 100001st value. If there are multiple independent variables, one may connect the binary

strings of the individual independent variables to a single long binary string.

In the subset selection problem of a regression analysis, representation is even simpler.

Suppose there are 20 independent variables in the saturated model. We use a binary string

of 20 bits to code the subset model. If a variable is included, the corresponding bit is “1”,

otherwise, “0”. For instance,

10110000000000000000

stands for the subset model [x1, x3, x4]. We lay out the bits from left to right to be consistent

with the way that we write the regression formula. This is the inverse order of the tradition

expression of a binary number. The following discussion is focused on the subset model

selection using GA.

The subset models are evaluated by a fitness function. In this research, ICOMP is the

subset model selection criterion. Higher values are better for the fitness but the lower values

are better for ICOMP. The fitness function is defined as follows:

∆ICOMPi = max(ICOMP)− ICOMPi (4.1)

Fitnessi = ∆ICOMPi/∆ICOMPi (4.2)

Our GA procedure starts with a random sample of subsets. The subsets with relative

high fitness will be selected to reproduce the springs to the next generation. We applied

a natural selection mechanism. We sort the fitness of the models in ascending order such

that the model with the lowest fitness is ranked as 1 while the highest fitness is ranked as

m. We then create a “weighted roulette wheel” with m bins, one for each subset, where the

bin width for the subset with rank i is

i

m(m + 1)/2
(4.3)
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We then randomly shoot the bins by drawing a uniform random numbers from [0,1]. The

chosen model is included in a mating pool for the reproduction. The fitter model has wider

bin thus better chance to be selected.

4.2.2 Reproduction

After coding all the subsets to the binary chromosomes, we start with taking a random

sample from all the subsets as the first generation. The population size npop (also the

sample size for the first generation) of each generation is an arbitrary choice as long as it

converges. We used 20 to 50 in our numerical experiments. The subsets in the population

are evaluated using the fitness function (4.2).

Only the subsets with relative high fitness will be selected to the mating pool to repro-

duce the next generation. In our research, “relative high” is defined as follows. Let

ζi =
Fitnessi

Mean(Fitness)
(4.4)

We select the subsets whose fitness ratio ζi > 0.5 to the mating pool. The subsets in the

mating pool are randomly paired to produce a pair of springs. Mating is performed as

a crossover process. There are different ways to crossover the parents genes to the next

generation. We utilized the following three types.

Single point crossover - One breakup point is randomly selected. Each of the two chil-

dren’s chromosomes is consisted of the first part of one parent and the second part of

another parent. For instance, if the 4th bit is chosen:

ParentA ParentB

1101 · 01 0011 · 00

Child1 Child2

110100 001101
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Two point crossover - Two breakup points are randomly decided for both parents. A

child’s chromosome is consisted of the first part and the last part of one parent’s

chromosome and the middle part of another parent’s chromosome. For instance, if

the breakup points are after the second and the fourth bits:

ParentA ParentB

11 · 01 · 01 00 · 11 · 00

Child1 Child2

111101 000100

Uniform crossover - Bits are randomly copied from the first or the second parent. For

instance:
ParentA ParentB

11001011 11011101

Child1

11011111

By doing crossover, we keep the variables (genes) in the ”Good” subsets to the future

generations. A probability of the crossover is defined. Generally, this probability is relative

large, for instance, 0.7. If the crossover does not happen, the parents will become the

offsprings for the next generation without any change. One may also force to keep the best

subset to the next generation without any crossover.

4.2.3 Mutation

Mutation is to randomly change a bit of the chromosome from 0 to 1 or from 1 to 0.

A low probability Pmutation is assigned to the happening of mutation. Mutation allows

the searching jumping out of the current searching area to avoid sticking with the local

minimum.
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Table 4.1: GA Parameters
ngen Number of Generations
npop Population size of each generation
Pcross Probability of crossover
Pmutation Probability of notation
Elitism Keep the best subset or not
Type of crossover Single/Two/Uniform

4.2.4 Other Configuration

The above steps are repeated to reproduce future generation until a certain stop condition is

satisfied. The stop condition could be the maximum number of iterations, a certain fitness

value is reached, all the chromosomes are the same. The some searching parameter must

be configured as shown in Table 4.1 before starting the iteration.

4.3 A Numerical Demonstration

In this section, we use a simple two-dimensional numerical example to demonstrate search-

ing optimal solutions using GA. The target function is a mixture of 3 bivariate Gaussian

probability density (Figure 4.1):

z =
1
3

[f(x, y|µ1, Σ1) + f(x, y|µ2, Σ2) + f(x, y|µ3, Σ3)] + 5 (4.5)

where

µ1 =
[

0 0

]
µ2 =

[
2 −1.5

]
µ3 =

[
−2 −3

]

Σ1 =




1 0

0 3


 Σ2 =




5 1

1 2


 Σ3 =




3 0

0 3




Argument x and y are both defined in the range [-4, 4] with the interval of 0.1. There are 81

values for each argument thus 6561 different combinations of x and y. The target function
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Figure 4.1: Surface Plot of the Target Function

z is maximized at 5.03216 when x = 0 and y = −0.2. There are also two local maximums

(Figure 4.1).

Suppose we want to find the global maximum of z using GA. The function defined by

(4.5) is the fitness. The GA parameters used in this example is listed in Table 4.2. GA

starts from a random sample of 50 points as the initial population (Figure 4.2(a)). The

fittest point (z = 5.0178) in this population is around a local maximum. After 5 generations,

the fittest point (z = 5.0282) jumps to the ridge with the global maximum (Figure 4.2(b)).

The population are concentrated in a small area around the global maximum after some

generations (Figure 4.2(c)). At the 175th generation, all the population have the same

chromosome (Figure 4.2(d)), that is the same point. This point (x=0.1, y = -0.2) gives a z

value of 5.0320, which is very close to the true maximum.

31



Table 4.2: GA Example Parameters
ngen 200
npop 50
Pcross 0.9
Pmutation 0.01
Elitism YES
Type of crossover Single
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Figure 4.2: GA Searching Example. (a) Initial Generation (b) 5th Generation (c) 42nd

Generation (d) 175th Generation
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Chapter 5

Kernel Ridge Regression

5.1 Introduction of Ridge Regression

Ridge regression, also known as Tikhanov regularization, is one of the most commonly used

regularization methods for ill-posed problems. It was originally proposed by Hoerl and

Kennard (1970b; 1970a). Consider the multiple regression model defined by

y = Xβ + ε (5.1)

where the n × 1 vector y represents a dependent variable with n observations, the n × p

matrix X represents the p independent variables, β is a vector of p regression coefficients

and ε is the independent and identically distributed (i.i.d.) random error with mean of zero

and constant variance σ2. The ridge estimator of the regression coefficients is the minimizer

of

f(βr) = λβr
Tβr + (y −Xβr)T(y −Xβr) (5.2)

The first derivative of f(βr) with respect to βr is

df(βr)
dβr

= 2λβr
T − 2(y −Xβr)TX. (5.3)
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The estimated ridge coefficients β̂r is the value of βr that makes the above derivative equal

to zero, i.e. the solution to

(XTX + λI)β̂r = XTy, (5.4)

i.e.

β̂r = (XTX + λI)−1XTy, (5.5)

where λ ≥ 0 is a predetermined constant which controlls the bias. When λ = 0, the ridge

estimator is the least-squares estimator. The covariance of the ridge estimator is defined by

Cov(β̂r) = Cov[(XTX + λI)−1XTy]

= (XTX + λI)−1XT VAR(y)X(XTX + λI)−1

= σ2(XTX + λI)−1XTX(XTX + λI)−1. (5.6)

The bias in β̂r increases with λ. However, the covariances decreases as λ increases.

There is an alternative expression for the ridge estimator which serves an important role

in kernel ridge regression described in the next section. Equation (5.4) can be rewritten as

β̂r = XT 1
λ

(y −Xβ̂r) = XTW, (5.7)

where W = 1
λ(Y −Xβ̂r). W is solved using the following steps:

Wλ = y −Xβ̂r = y −XXTW

⇒ (XXT + λI)W = y

⇒ W = (XXT + λI)−1y (5.8)

Substituting the result in Equation (5.8) back to (5.7), the alternative expression of the

ridge estimator is defined as:

β̂r = XT (XXT + λI)−1y. (5.9)
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The above expression is called the dual representation (Shawe-Taylor and Cristianini, 2004).

5.2 Kernel Ridge Regression

In kernel ridge regression (KRR), the original p-dimensional data matrix X is nonlinearly

transformed to Φ(X) in the feature space. The multiple linear regression model using Φ(X)

as the independent variables can be defined by

y = Φ(X)βr + ε. (5.10)

The ridge estimator of the regression coefficients is the solution to

[
Φ(X)T Φ(X) + λI

]
β̂r = Φ(X)Ty.

Using the result in Equation (5.5), the kernel ridge estimator is expressed as

β̂r =
[
Φ(X)T Φ(X) + λI

]−1
Φ(X)Ty (5.11)

Since the explicit form of Φ(X) is unknown in kernel methods, the above expression can not

lead to an explicit estimation of y, the response. However, using the dual representation

from Equation (5.9), the kernel ridge estimator (Shawe-Taylor and Cristianini, 2004) is

defined by

β̂r = Φ(X)T [K + λI]−1 y, (5.12)

where K = Φ(X)Φ(X)T is the kernel matrix. Although the explicit expression of β̂r is not

available, the prediction of the observation can be obtained through kernel functions. The

point estimate of the training observations can be obtained by

ŷ = Φ(X)β̂rΦ(X)Φ(X)T [K + λI]−1 y = K [K + λI]−1 y.
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Similarly, the point estimate of the testing observations or new observations can be obtained

by

ŷNew = Φ(XNew)β̂r

= Φ(XNew)Φ(X)T [K + λI]−1 y

= KNew [K + λI]−1 y. (5.13)

The covariance of β̂r defined in (5.12) is given by

Cov(β̂r) = Cov(Φ(X)T [K + λI]−1 y)

= Φ(X)T [K + λI]−1 VAR(y) [K + λI]−1 Φ(X)

= σ2Φ(X)T [K + λI]−1 [K + λI]−1 Φ(X). (5.14)

Since Φ(X) has no explicit form, the exact form of Cov(β̂r) is unknown. This problem brings

troubles to the model selection techniques proposed later as Cov(β̂r) is the important part

in the complexity measure. To solve this problem we look at the kernel ridge regression

model in a different way in this dissertation. We treat K and KNew as the training data

and new observations of the independent variables respectively. The kernel ridge regression

model can be redefined by

y = Kβ∗r + ε. (5.15)

The ridge estimator defined in (5.12) is modified to

β̂
∗
r = [K + λI]−1 y. (5.16)

The predicted response given the training data X is

ŷ = Kβ̂
∗
r = K [K + λI]−1 y. (5.17)
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The predicted response given the new observations XNew is

ŷ = KNewβ̂
∗
r = KNew [K + λI]−1 y. (5.18)

We see that this alternative expression does not change the model assumptions or the

estimated kernel ridge regression model. The benefit of using this expression is that the

covariance of the ridge estimator β̂
∗
r has the explicit form defined by

Cov(β̂∗
r) = Cov([K + λI]−1 y)

= [K + λI]−1 VAR(y) [K + λI]−1

= σ2 [K + λI]−2 . (5.19)

5.3 Weighted Kernel Ridge Regression

One of the assumptions of the ridge regression is constance variance. That is, there is

V ar(ε) = σ2I. Sometimes, this assumption is violated such that Var(ε) = σ2A, where

A 6= I is an n× n matrix. This is also called heteroscedasticity. A special scenario is that

A is a diagonal matrix with unequal diagonal elements in which we assume the random

errors are uncorrelated but with unequal variances. A is a non-singular positive definite

matrix since σ2A is the covariance matrix of the random errors. We use C to denote the

squared root of A. Then, C is a nonsingular symmetric matrix such that CTC = CC = A.

Left-Multiplying the both sides of

y = Xβ + ε

by C−1, a new regression model can be defined by

y∗ = X∗β + ε∗, (5.20)

where y∗ = C−1y, X∗ = C−1X and ε∗ = C−1ε.
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There are E(ε∗) = C−1E(ε∗) = 0 and V ar(ε∗) = σ2I since

V ar(ε∗) = [ε∗ −E(ε∗)][ε∗ − E(ε∗)]′

= E(ε∗ε∗T )

= E(C−1εεTC−1)

= C−1E(εεT)C−1

= σ2C−1AC−1

= σ2C−1CCC−1

= σ2I.

The generalized least squares estimator of β is

β̂ = (XTC−1C−1X)−1XTC−1C−1y

= (XTA−1X)−1XTA−1y

and the predicted y∗ is

ŷ∗ = X∗β̂ = C−1X(XTA−1X)−1XTA−1y.

Therefore, the original response y can be estimated by

ŷ = Cŷ∗ = X(XTA−1X)−1XTA−1y.

The covariance of β̂ is

Cov(β̂) = σ2(X∗TX∗)−1 = σ2(X′A−1X)−1.

When the errors are uncorrelated, matrix A is a diagonal matrix. If we use the weight

matrix W = A−1, then
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β̂w = (XTWX)−1XTWy

is generally called the weighted least squares estimator (Montgomery, 2001).

Similarly, the weighted ridge estimator of the linear regression coefficients is given by

β̂wr = (XTWX + λI)−1XTWy. (5.21)

This dissertation extends the weighted ridge estimator to the feature space when het-

eroscedasticity exists. Given a kernel ridge regression model in the feature space defined

by

y = Φ(X)β + ε

with E(ε) = σ2A, the transformation is given by

C−1y = C−1Φ(X)β + ε.

Regress C−1y on C−1Φ(X), the generalized kernel ridge estimator of βr is

β̂ = Φ(X)TC−1(C−1Φ(X)Φ(X)TC−1 + λI)−1C−1y

= Φ(X)TC−1(C−1KC−1 + λI)−1C−1y.

The estimated C−1y is defined by

Ĉ−1y = C−1Φ(X)Φ(X)TC−1(C−1KC−1 + λI)−1C−1y

= C−1KC−1(C−1KC−1 + λI)−1C−1y.

Solving ŷ of the above equation, there is

ŷ = KC−1(C−1KC−1 + λI)−1C−1y.
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Let the weight matrix W = A−1, there is C−1 = A−1
2 = W

1
2 . The weighted kernel ridge

estimate has the form of

ŷ = KW
1
2 (W

1
2KW

1
2 + λI)−1W

1
2y. (5.22)

The new observations can be predicted as:

ŷnew = KnewW
1
2 (W

1
2KW

1
2 + λI)−1W

1
2y. (5.23)

The covariance matrix of the estimated coefficients has to be defined in a different way

since Φ(X) is unknown. Using the kernel ridge regression model redefined in (5.15) and the

covariance matrix form given by (5.19), the weighted kernel ridge estimator is redefined by

β̂∗
wr = W

1
2

[
W

1
2KW

1
2 + λI

]−1
W

1
2y. (5.24)

The covariance of β̂∗
wr has the explicit form defined as:

Cov(β̂
∗
wr) = σ2

{
W

1
2

[
W

1
2KW

1
2 + λI

]−1
W

1
2

}2

, (5.25)

where the estimated σ2 is given by

σ̂2 =
(y − ŷ)T(y − ŷ)

n− trace(H)
,

and where H = KW
1
2 (W

1
2KW

1
2 + λI)−1W

1
2 is the hat matrix of the weighted kernel

ridge regression.

The prior information about the weights has to be known or the weights can be estimated

as a function of the residuals or regressors (Montgomery, 2001). For instance, the moving

averages of the squared residuals of the un-weighted kernel ridge regression (Silverman,

1985) can be used to estimate the weights. The results of our numerical experiments indicate

that the optimal ridge parameter of the weighted kernel ridge regression is generally different
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from the chosen one for the regular kernel ridge regression. Therefore, it is required to search

the optimal ridge parameter for the weighted kernel ridge regression.

5.4 Interval Estimates for Kernel Ridge Regression

This dissertation also derives the interval estimates for kernel ridge regression following

the interval estimates of a linear ridge regression problem (Montgomery, 2001). To give a

confidence interval estimate of µy|x0 , we define the standard error of µ̂y|x0 as:

se(µ̂y|x0) =
√

V ar(ŷ|x0)

=
√

σ2k(x0,X)W
1
2 (W

1
2KW

1
2 + λI)−2W

1
2k(X,x0). (5.26)

Under the large sample assumption and applying the Central Limit Theorem (CLT), we

have

µ̂y|x0 ∼ N
(
µy|x0 , se

2(µ̂y|x0)
)
.

Consequently, a 100(1− α)% confidence interval on µy|x0 is defined by

µ̂y|x0 ± zα/2se(µ̂y|x0), (5.27)

where µ̂y|x0 = ŷ|x0 and se(µ̂y|x0) is defined in (5.26).

Similarly, to compute the prediction interval for a future observation y0|x0 , we use the

standard error of τ = y0|x0 − ŷ0|x0 to find the margin of error (Montgomery, 2001). Since

y0|x0 is independent of ŷ0|x0 , this standard error can be defined as:

se(τ) =
√

V ar(y0|x0) + V ar(ŷ0|x0)

=
√

σ2
1
w0

+ σ2k(x0,X)W
1
2 (W

1
2KW

1
2 + λI)−2W

1
2k(X,x0)

=

√
σ2

[
1
w0

+ k(x0,X)W
1
2 (W

1
2KW

1
2 + λI)−2W

1
2k(X,x0)

]
, (5.28)
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where w0 is the weight corresponding to y0|x0 . If x0 is not an observation from the training

data, one must estimate w0. The estimated w0 may not be reliable given an x0 that is

far beyond the span of the training data. Since the point estimate of y|x0 is also ŷ|x0 , a

100(1− α)% prediction interval on y|x0 is defined as:

ŷ|x0 ± zα/2se(τ). (5.29)

5.5 Choosing Optimal Kernel Ridge Parameter

The ridge parameter λ prevents from collinearity problems and controls the generalization

of the ridge regression model. In the literature of the linear ridge regression, there is massive

and controversial discussion regarding the techniques of choosing the ridge parameter. There

is no single ridge parameter estimator which is proven to be the best overall (Montgomery,

2001).

Some techniques (Engle et al., 2000; Morozov, 1984) require the knowledge of the noise

level, which is not possible in many cases. The most widely-used visual tool in machine

learning is the L-curve (Hansen, 1998) in which the residual norm is plotted against the norm

of the estimated ridge regression coefficients at the different values of the ridge constant.

The optimal ridge constant is found at the corner of the “L” curve where both the residual

norm and the coefficient norm are relative small. The advantage of this method is that the

researchers do not need the knowledge about the noise level. However, the L-curve method

has been proven to be nonconvergent (Vogel, 1996; Leonov and Yagola, 1997). Either the

corner of the L-curve could be difficult to locate or there exits multiple corners. A similar

visual way suggested by Hoerl and Kennard is to inspect the ridge trace (Marquardt, 1975).

The ridge trace is a plot of the estimated coefficients β̂i
r versus λ. For the regression

applications with collinearity problems, the magnitudes of the least squares estimators are

relative big. The magnitudes of the estimated coefficients decrease and tend to stabilize

with the increasing of λ. The objective of observing ridge trace is to select a reasonably
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small λ value at which the coefficients β̂i
r are stable. However, it is subjective to locate the

“stable” point. These two methods can not be applied in a model selection procedure since

neither of them is an automatic ridge parameter finder.

Hoerl, Kennard, and Baldwin (Hoerl et al., 1975) proposed an choice of λ defined by

λHKB =
pσ̂2

β̂
T
β̂

, (5.30)

where p is the number of estimated regression coefficients, β̂ is the no-constant-term or-

dinary least-squares (OLS) estimator, and σ̂2 is the estimated response variance in a OLS

regression. Hoerl and Kennard (Hoerl and Kennard, 1976) further proposed an iterative

estimation based on (5.30). Several authors interpreted that the ridge regression is closely

related to Bayesian estimation. The method of ordinary least-squares (OLS) can be viewed

as a Bayes estimator using an unbounded uniform prior distribution when estimating the

coefficients. The ridge estimator is the result based on a prior distribution. Theil and

Goldberger(1961) have introduced a procedure called mixed estimation which can be nu-

merically equivalent as the ridge regression. Following Sclove(Sclove, 1973), suppose the

prior distribution of βr is

βr ∼ N(0, σ2I) (5.31)

and independent from the random error ε. The ridge constant can be estimated as

λBayes =
σ̂2

σ̂2
βr

, (5.32)

where σ2 is the error variance estimated by OLS and σ̂2
βr

is defined by

σ̂2
βr

=
yTy − nσ̂2

tr(XTX)
.

However, the above two analytic methods require the estimate of the error variance using

the OLS solution. In the kernel case, the so called OLS solution leads to the zero lack-of-fit.

Therefore, we are not able to imbed these two methods to the kernel ridge regression.

43



Some techniques perform grid searching in the range of [0, 1]. Generalized cross-validation

(GCV), proposed by Wahba (Wahba et al., 1979), is a widely used stochastic method to

search the optimal ridge constant. Using GCV, the optimal ridge constant is the minimizer

of the statistic defined as:

GCV =

∑n
i=1 e2

i,k

{n− [1 + tr(Hr)]}2
, (5.33)

where Hr = X(XTX + λI)−1XT is equivalent to the hat matrix in ordinary least squares.

In kernel ridge regression the equivalent hat matrix is K(K + λI)−1. The assumption of

using GCV is the white (independent) Gaussian noise. Also base on the white Gaussian

noise assumption, Mallows (1973) proposed the CL statistic defined by

CL =
SSRes(λ)

σ̂2
− n + 2 + 2tr(Hr(λ)). (5.34)

The optimal λ value is the minimizer of CL. Leave-one-out cross validation (LOOCV) is a

widely used criterion to search the optimal ridge parameter since it has a close form (Wahba,

1990) which avoids the heavy computation. The squared error is defined by

‖[diag(I−H)]−1(I−H)y‖2

n
, (5.35)

where n is the number of training observations, H = K(K + λI)−1 is the hat matrix of

KRR, and diag(I−H) is a diagonal matrix whose diagonal elements are the same as those

of I−H. Recently, Bozdogan’s information measure approach has been successfully used for

power plant data to choose the optimal ridge constant of a linear ridge regression model (Ur-

manov, 2002). We derive its ICOMP extension to the feature space in the next section and

compare its performance with GCV and LOOCV using the benchmark data sets.

5.6 Model Selection Using ICOMP

For a kernel ridge regression model, the form of the kernel function, the parameters of

the kernel function and the ridge parameter affect the model generalization as well as
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the goodness-of-fit. This dissertation uses ICOMP as the criterion to conduct the model

selection for KRR applications. In addition, this dissertation uses ICOMP to choose the

best subset of independent variables given the selected kernel function. The subset selection

can further decrease the model complexity, increase the model generalization and provide

better interpretation to the model applied. In this section details the ICOMP form which

scores the candidate models.

Recall that the general form of ICOMP(C1F ) or ICOMP(C1) for the multiple regression

model is defined by

ICOMP( ̂Cov(β̂, σ̂2))Reg = −2logL(β̂, σ̂2) + 2C1F ( ̂Cov(β̂, σ̂2))

or

ICOMP( ̂Cov(β̂, σ̂2))Reg = −2logL(β̂, σ̂2) + 2C1(
̂Cov(β̂, σ̂2)).

In the linear ridge regression model, a penalized log-likelihood (PLL) function defined by

PLL(β, σ2) = L(β, σ2)− λ · Penalty(β) (5.36)

is applied for the maximum likelihood estimate. The quadratic penalty term, first proposed

in (Good and Gaskins, 1971), is defined as:

Penalty(β) =
βT β

2σ2
. (5.37)

Under the normal random error assumption, the penalized log-likelihood function of a linear

ridge regression model is defined by

PLL(β, σ2) = −n

2
log(2π)− n

2
log(σ2)− (y −Xβ)T(y −Xβ)

2σ2
− λ

βT β

2σ2
. (5.38)
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Let the first derivatives of PLL(β, σ2), with respect to β and σ2 respectively, be equal to

zeros, the maximum likelihood estimates (MLEs) of the parameters are defined as:

β̂ = (XTX + λI)−1XTy

σ̂2 =
(y −Xβ)T(y −Xβ) + λβT β

n
.

The intuitive thinking is to embed PLL(β, σ2) to the feature space for the kernel ridge

regression replacing X by Φ(X). However, a little modification is needed since Φ(X) is

implicit. We apply the alternative kernel ridge regression defined as y = Kβ + ε in (5.15),

where the kernel matrix K is treated as the regressors. The penalized log-likelihood function

of the kernel ridge regression is proposed as

PLL(β, σ2)KRR = −n

2
log(2π)− n

2
log(σ2)− (y −Kβ)T(y −Kβ)

2σ2
− λ

βT Kβ

2σ2
, (5.39)

where βT Kβ
2σ2 is the penalty term for KRR. The first derivatives of PLL(β, σ2)KRR are

defined by

∂PLL

∂β
=

(y −Kβ)TK
σ2

− λβTK
σ2

∂PLL

∂σ2
= − n

2σ2
+

(y −Kβ)T(y −Kβ)
2σ4

+
λβT Kβ

2σ4
.

Let ∂PLL
∂β = ∂PLL

∂σ2 = 0, the MLEs of the parameters are given by

β̂ = (K + λI)−1y (5.40)

σ̂2 =
(y −Kβ)T(y −Kβ) + λβT Kβ

n
(5.41)

The above MLE β̂ is the same as the least squares estimate. The second derivatives of PLL

are defined as

46



∂2PLL

∂β2 = −K2 + λK
σ2

(5.42)

∂2PLL

∂(σ2)2
=

n

2σ4
− (y −Kβ)T(y −Kβ)

σ6
− λβT Kβ

σ6
(5.43)

∂2PLL

∂β∂σ2
=

[
∂2PLL

∂σ2∂βT

]T

=
−(y −Kβ)TK + λβT K

σ4
. (5.44)

The β̂ and σ̂2 are MLEs indeed since

∂2PLL

∂β2 < 0 and
∂2PLL

∂(σ2)2
< 0.

The Fisher’s Information Matrix (FIM) is defined as

F =



−E

(
∂2PLL

∂β2

)
−E

(
∂2PLL
∂σ2∂βT

)

−E
(

∂2PLL
∂β∂σ2

)
−E

(
∂2PLL
∂(σ2)2

)



bβ,cσ2

=




K2+λK
σ̂2

λKβ
σ̂4

λβT K
σ̂4

n
2σ̂4 + λβT Kβ

σ̂6


 . (5.45)

Given the above derivation, assuming normal random error, ICOMP (C1F ) for the univari-

ate KRR can be defined as

ICOMP(
̂

Cov(β̂, σ̂2))KRR = −2PLL(β̂, σ̂2)KRR + 2C1F (
̂

Cov(β̂, σ̂2))

= n log(2π) + n log(σ̂2) + n + 2C1F (
̂

Cov(β̂, σ̂2)) (5.46)

where β̂ and σ̂2 are defined in (5.40) and (5.41) respectively. Under the large sample as-

sumption,
̂

Cov(β̂, σ̂2) can be calculated using the inverse fisher information matrix (IFIM)

F−1. ICOMP(C1) can be defined similarly.

Alternatively, we may score the complexity of the exact covariance of β̂ defined previ-

ously (5.19), which is
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Cov(β̂) = σ2(K + λI)−2.

5.7 Numerical Results

5.7.1 Simulated Sinc Function Data

This section demonstrates the model selection results using ICOMP as the criterion to

choose the appropriate kernel function and ridge parameter λ. Like many other machine

learning researchers, we use the popular sinc function function defined by

y = sinc(x) =
sin(πx)

πx
. (5.47)

We generated 121 uniformly spaced observations of x in the range of [-6, 6] and calculated

the corresponding values of sinc(x). To show if the Gaussian RBF kernel is a good candidate

to model this nonlinear function, we applied the Gaussian RBF kernel with a = 1 to the

noise-free sinc function. It is shown that good fitting can be achieved when λ is equal to

0.01 or less (goodness-of-fit is less sensitive to λ in this range). Note, it is possible that

there exist other combinations of a and λ which can lead to the similar good fitting since

this is a nonlinear modeling procedure.

We add i.i.d. normal random noise to the sinc function. Two noise levels were tested.

N(0, 0.042) is corresponding to the noise-signal-ratio of 15% and N(0, 0.142) is correspond-

ing to the noise-signal-ratio of 51%. To understand the influence of the training sample size,

we uses 121 training observations and 50 training observations respectively. 80 additional

noisy observations (different from the training observations) are generated in the same x

range to be used as the testing data.

ICOMP and the leave-one-out cross validation (LOOCV) are compared in selecting the

optimal ridge parameter and kernel function. To select the optimal form of ICOMP for

KRR, the simulation is repeated 100 times using the Gaussian RBF kernel function under
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the two different noise levels and two different training sample sizes. In each simulation, dif-

ferent random errors are generated for the training and testing data. The ridge parameters

λ are selected from

[10−7, 10−6, 10−5, . . . , 0.1, 0.2, 0.3, . . . , 0.9, 1].

One of the critical issues is choosing the range of the candidate scale parameters a. The

Gaussian RBF kernel is a function of the squared distance (‖x− z‖2) of two observations in

the input space. In other words, the Gaussian RBF kernel is a similarity measurement. For

the Gaussian RBF kernel, 0 ≤ k(x, z) ≤ 1 with k(x, z) = 1 for two identical observations.

We now consider the following two extreme cases:

• When a is very small, k(xi,xj) −→ 0. The Gaussian RBF kernel tends to be an

identity matrix, which indicates that all the observations are different to each other.

KRR tries to fit each observation perfectly and tends to overfit the data under this

circumstance (Figure 5.1(a));

• When a is very big, k(xi,xj) −→ 1. The kernel matrix tends to be a matrix with all

1s, which indicates that all the observations are the same. Since there is no variation

information provided, KRR tends to underfit the data in this case (Figure 5.1(c)).

Sorting the training observations x in ascending order, it is easier to demonstrate these two

kinds of high-dimensional kernel matrices with square images in which the color code of

a patch is corresponding to the element value in the matrix. The optimal kernel function

should be like Figure 5.1 (b) whose adjacent observations are similar and far way obser-

vations are less relevant. To select the range of a, we plot the logirthm of the condition

number of the kernel matrix versus the different values of a (Figure 5.2). It can be observed

that there is a steep drop in condition number when a is smaller than 0.3. The condition

numbers of K are 1× 1018, 1.76× 108 and 69 for a = 0.3, a = 0.2 and a = 0.1 respectively.

The significant decreasing of the condition number is due to the limitation of the computer

precision. It is more appropriate to let a ≥ 0.3. For the sinc function, the scale parameters
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Figure 5.1: Image Demonstration of different Gaussian RBF kerenel matrices. (a) Overfit-
ting (a = 0.1). (b) Good Generalization (a = 1). (c) Underfitting (a = 100.)
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Figure 5.3: Complexity versus Ridge Parameter and Scale Parameter

a are selected from the range of [0.3, 5]. Beyond this range, the Gaussian RBF kernel will

either seriously underfit or overfit the data.

We first use the sinc function to demonstrate the trend of ICOMP, lack-of-fit and the

complexity with the changing of ridge parameters (0.00001 to 1) and the scale parame-

ters ([0.5, 2, 5]) of the Gaussian RBF kernel. The chosen three scale parameters lead to

overfitting, appropriate fitting and underfitting respectively. We see that the complexity

of the model decreases as the ridge parameter increases and the complexity of the model

decreases as the scale parameter increases, which tends to underfit (Figure 5.3) the data.

The lack-of-fit changes adversely (Figure 5.4). ICOMP finds the balance point (Figure 5.5)

and the resulting model has good generalization as well as good fit.

Four forms of the complexity measure are compared. They are:

a. ICOMP1 – Score the exact form of Cov(β̂) using C1(·);

b. ICOMP2 – Score the exact form of Cov(β̂) using C1F (·);

c. ICOMP3 – Score C1(F−1), which applies the asymptotic covariance of all the estimated

parameters;
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Figure 5.4: Lack-of-fit versus Ridge Parameter and Scale Parameter
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Figure 5.5: ICOMP versus Ridge Parameter and Scale Parameter
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d. ICOMP4 – Score C1F (F−1).

The simulation results are summarized in Table 5.1 to Table 5.4 with different noise (N)

and signal (S) ratios and sample sizes. A good model selection criterion should find the

models with low average and low standard deviation of MSE for the testing data out of 100

simulations. It is obvious that ICOMP1 outperforms the other forms in all noise levels and

sample sizes. And, the performance of ICOMP1 is similar to LOOCV. If we use MSE of

the training data as the estimate of the real noise variance σ2, both ICOMP1 and LOOCV

have the similar performance whose estimates are close to the real number of 0.0016. It

is also observed (Figure 5.6) that the models selected by ICOMP1 are more consistent

compared with those chosen by LOOCV, which measures the generalization error only. In

the following analysis, we use ICOMP1 to choose the optimal kernel functions and their

parameters.

We will apply ICOMP1 to different kernel functions to demonstrate its ability to choose

kernel functions. We do the comparison simply from the statistical point of view, an appli-

cation may require a specific kernel function based on the inside knowledge of the area.

In a single simulation, the predictive performance of the different kernel functions are

compared and summarized in Table 5.5 and Table 5.6. The optimal parameter(s) of a

kernel function is/are the minimizer of ICOMP1. By comparing ICOMP, the first order

B-spline is the best kernel and the Gaussian RBF kernel is the second best one when the

noise level is 15%. Both models have high predictive ability in terms of MSEtest. However,

B-spline is much more computationally intensive than the Gaussian RBF kernel. Therefore,

we will use the Gaussian RBF Kernel which is almost as good as the 1st order B-spline. At

the 51% noise level, the B-spline with zero order outperforms the other kernels in terms of

the smallest ICOMP1. However, due to its computational intensity, Sigmoid and Gaussian

RBF kernels are both good second choices.

We further test the combination of LOOCV with ICOMP. That is, we use LOOCV to

estimate σ2 for ICOMP. We use the Wilcoxon Sign-Rank test to compare the matched pairs
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Table 5.1: Prediction Performance of Five Criteria (N/S = 15%, 100 observations)
Criterion Ave. MSEtrain Ave. MSEtest Std. MSEtrain Std. MSEtest
ICOMP1 0.001357 0.001824 0.0001944 0.0003091
ICOMP2 0.000828 0.002297 0.0002583 0.0004528
ICOMP3 0.002110 0.002537 0.0047652 0.0052156
ICOMP4 0.001211 0.001965 0.0002481 0.0003900
LOOCV 0.001357 0.001826 0.0002072 0.0003059

Table 5.2: Prediction Performance of Five Criteria (N/S = 15% 50 observations)
Criterion Ave. MSEtrain Ave. MSEtest Std. MSEtrain Std. MSEtest
ICOMP1 0.00105 0.0023 0.00024 0.00046
ICOMP2 0.00070 0.0046 0.00028 0.00512
ICOMP3 0.06000 0.0538 0.01307 0.01137
ICOMP4 0.00072 0.0097 0.00028 0.05649
LOOCV 0.00101 0.0023 0.00029 0.00064

Table 5.3: Prediction Performance of Five Criteria (N/S = 51%, 100 observations)
Criterion Ave. MSEtrain Ave. MSEtest Std. MSEtrain Std. MSEtest
ICOMP1 0.0172 0.0222 0.0025 0.0037
ICOMP2 0.0130 0.0256 0.0023 0.0045
ICOMP3 0.0678 0.0711 0.0071 0.0087
ICOMP4 0.0177 0.0250 0.0084 0.0089
LOOCV 0.0169 0.0220 0.0025 0.0038

Table 5.4: Prediction Performance of Five Criteria (N/S = 51%, 50 observations)
Criterion Ave. MSEtrain Ave. MSEtest Std. MSEtrain Std. MSEtest
ICOMP1 0.0146 0.0258 0.0038 0.0050
ICOMP2 0.0086 0.0565 0.0035 0.0638
ICOMP3 0.0777 0.0765 0.0112 0.0087
ICOMP4 0.0099 0.0507 0.0063 0.0395
LOOCV 0.0133 0.0264 0.0036 0.0062

Table 5.5: Comparing Kernel Functions (N/S = 15%, 100 observations)
Kernel λ ICOMP MSEtrain MSEtest
Polynomial: (< x, z > +1) 1 56.45 0.07766 0.0789

Gaussian RBF: exp
[
−‖x−z‖2

2×0.72

]
0.1 -246.89 0.00168 0.00201

Cauchy: 1

1+
‖x0.6−z0.6‖2

0.6

0.01 -240.59 0.00154 0.00215

Sigmoid: tanh(< x, z > +1) 0.01 -224.39 0.00346 0.00443
Fourier: 1 667.62 0.00037 0.4823
Spline: 0.01 -185.92 0.00159 0.00206
B-spline: B2×1+1(x− z) 0.5 -249.73 0.00161 0.00202
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Figure 5.6: Simulated Sinc Data: Consistency of the Selected Models

Table 5.6: Comparing Kernel Functions (N/S = 51%, 100 observations)
Kernel λ ICOMP MSEtrain MSEtest
Polynomial: (< x, z > +1) 1 80.72 0.0949 0.09087

Gaussian RBF: exp
[
−‖x−z‖2

2×0.62

]
0.4 -66.72 0.0135 0.0196

Cauchy: 1

1+
‖x2−z2‖2

2

0.6 -66.33 0.0120 0.0226

Sigmoid: tanh(0.8 < x, z > +1) 0.2 -80.23 0.0178 0.0236
Fourier: 1 484.94 0.0001 0.4160
Spline: 0.01 -3.61 0.0113 0.0206
B-spline: B2×0+1(x− z) 0.6 -74.14 0.0108 0.0210
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Figure 5.7: Motorcycle Benchmark Data

of the testing data MSE. The results of 100 simulation indicates that this combination is

significantly better than using LOOCV alone at the significance level of 0.02.

5.7.2 Motorcycle Benchmark Data

We now apply the model selection criterion to the motorcycle benchmark data (Schmidt

et al., 1981). This simple data set consists of a sequence of acceleration reading taken

through time (in microseconds) for an experiment to determine the efficacy of crash helmets

(Figure 5.7). Since there is only one independent variable in this data, it is obvious that

the collinearity problem does not exist in the linear regression case. However, the kernel

ridge regression builds high-dimensional variables in the feature space. The collinearity

problem exists in the feature space, where the ridge parameter plays the regularization role.

Therefore, both the kernel function and the ridge parameter control the overfitting of the

fitted model. However, the impact of the ridge parameter is influenced by the parameter of

the kernel function as well. For examples, for the Gaussian RBF kernel, when the the scale

parameter a is relative small, the smaller ridge parameter has the effect of generating more

local ridgeness (Figure 5.8). When the scale parameter is relative big, which tends to make
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Figure 5.8: Motorcycle Benchmark Data: Impact of Ridge Parameter Bandwidth = 2

the model smoother (or simpler), smaller ridge parameters still generate more ridgeness.

But the ridgeness tends to be smoother (Figure 5.9).

According the current literature (Cawley, 2002), we first use the Gaussian RBF kernel.

Actually, the lower order polynomial kernel can not map this strong nonlinearity and the

higher order polynomial kernel’s collinearity problem can not be solved given λ ≤ 1. For this

data set, we applied another widely used generalization error measurement, GCV (Wahba

et al., 1979), to find the optimal λ. ICOMP1 is used to compare different kernel functions

given the λ values selected by GCV. It is also shown that one may use ICOMP1 as the

criterion to search the optimal λ and the scale parameter of the Gaussian RBF kernel

simultaneously.

The experiments are set up as follows. One hundred observations are randomly chosen to

be the training data and the rest 33 observations are serving as the testing data. Different

combinations of ridge parameters and the scale parameters are tested. Since the ridge

parameter in a kernel ridge regression can not be zero, we choose a small value λ = 10−5 as
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Figure 5.9: Motorcycle Benchmark Data: Impact of Ridge Parameter Bandwidth = 7

the start point. Twenty-six logarithm spaced λ values in the range of [10−5, 1] are selected.

The chosen scale parameters are from 0.001 to 20.

We first use ICOMP1 as the criterion to choose the best combination of λ and scale

parameter a simultaneously. The optimal model is chosen as the minimizer of ICOMP1

where a = 7 and λ = 0.0398 (Figure 5.10). Alternatively, we may use the GCV method to

choose the optimal ridge parameter given the kernel function. Then, we use ICOMP as the

model selection criterion to find the optimal kernel parameter (Figure 5.11). The selected

optimal model has a different combination of a and λ. However, when comparing this model

with the previous model in the sample plot, one can not tell the difference by eyeballing.

We also compare this model with the optimal model found by the cross-validation method,

which minimizes the mean squared error of the testing data (Figure 5.12). It is shown that

two optimal models are similar though the cross-validation model uses a different pair of

the kernel parameter and the ridge parameter, λ = 0.6310 and a = 5.
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Figure 5.10: Motorcycle Data: Best Model Chosen by ICOMP

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
Training Data
Testing Data
Predicted ICOMPmin
Predicted GCV & ICOMPmin

Bandwidth = 6
λ = 0.1585
MSE = 440.8
MSE

test
 = 583.1

ICOMP = 1206.9
 

Figure 5.11: Motorcycle Data: Using GCV to choose lambda
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Figure 5.12: Motorcycle Data: Comparing Three Methods (Single Run)

To compare the ICOMP method with the cross-validation method thoroughly, we split

the 133 observations into three groups, 100 training observations, 20 validation observations

(for cross-validation) and 13 test observations (for evaluating the fitted models). One hun-

dred runs are conducted. The observations are randomly assigned to the three groups for

each run. Cross-validation, ICOMP and GCV-ICOMP hybrid are the three model selection

criteria being compared.

In an experiment of 100 runs, it is indicated from Table 5.7 that ICOMP and GCV-

ICOMP hybrid outperformed cross-validation in terms of average MSE of the test data. All

three methods have similar standard deviations of MSE for the test data.

Based on this finding, we use all the 133 observations as the training data to build a

KRR model and give the interval estimates as well as point estimates. Using ICOMP, the

selected optimal scale parameter is 7 and the ridge parameter is 0.0398. One difficulty
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Table 5.7: Motorcycle Data: Comparing Model Selection Methods (100 runs)
Method Ave. MSE Ave. MSEval Ave. MSEtest

1. ICOMP 457.1 543.1 573.7
2. GCV & ICOMP 458.9 542.5 573.1
3. CV 466.5 556.3 580.9

Std. MSE Std. MSEval Std. MSEtest

1. ICOMP 42.0 216.6 236.8
2. GCV & ICOMP 41.8 215.4 236.4
3. CV 42.7 212.6 237.0

about this Motor cycle data is the heteroscedasticity. One may observe this fact from the

residual plot (Figure 5.13). If one would like to give the interval estimates of the acceleration

assuming constant variance, it would overestimate or underestimate the uncertainty of some

predicted response values (Figure 5.14).

It is obvious that the residual is a function of Time. We therefore define a diagonal

weight matrix W such that its ith diagonal element wi is the moving average of the squared

residuals of the regular kernel ridge regression (Silverman, 1985) defined as

wi =
ci − di + 1∑ci

j=di
e2
j

(5.48)

where

di = max(1, i− k) and ci = min(n, i + k)

k is a constant which defines the span of the moving average. k varies for different data

sets. k = 5 is used for the motorcycle data. It is observed from our numerical results,

that the ridge parameter used for the regular KRR is not applicable to WKRR. Assuming

a = 7 of the Gaussian RBF kernel is still appropriate, the optimal ridge parameter chosen

by ICOMP is λ = 0.00012 (Figure 5.15). It can be observed that the non-constant variance

problem has been significantly improved (Figure 5.16).
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Figure 5.13: Motorcycle Data: Residual Plot of Kernel Ridge Regression
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Figure 5.14: Motorcycle Data: Interval Estimates of Kernel Ridge Regression (λ = 0.0398,
a = 7)
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Figure 5.15: Motorcycle Data: Weighted Kernel Ridge Regression (λ = 0.00012, a = 7)
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5.7.3 Friedman’s Data

We now apply ICOMP to the multiple regression applications and search for the optimal

subset variables as well as the kernel function and the ridge parameter. The Friedman’s data

(Appendix A2) is demonstrated in this experiment. We utilize the widely used Gaussian

RBF kernel. First, all the 10 regressors are included (saturated model). ICOMP is utilized

to choose the optimal scale parameter of the Gaussian RBF kernel function and the ridge

parameter (Figure 5.17). Then, we compare all the 210−1 = 1023 subset models (including

at least one regressor) in terms of the ICOMP score given the selected optimal kernel. The

optimal subset model is the minimizer of ICOMP. We hoped the selected model excludes

x6 − x10.

We first use KRR to the saturated model. In 100 simulations, the average testing data

MSE is 3.78 with the standard deviation of 0.39. This is comparable with the results using

LOOCV (The average testing MSE is 3.56 and the standard deviation is 0.36.). In a single

simulation, the optimal scale parameter (γ) chosen by ICOMP is 5 and the corresponding

ridge parameter is 0.0001. We use these chosen parameters to all the subsets.
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Table 5.8: GA Parameters for Friedman Data
ngen 50
npop 50
Pcross 0.7
Pmutation 0.01
Elitism YES
Type of Crossover Uniform

The saturated model gives a testing error of 3.45. Its ICOMP value is 989.7. After

performing the all-possible-subset-selection (APSS), it is found out that {x1, x2, x3, x4, x5}
is the best subset, as expected, with the testing error of 2.47. Its ICOMP value is 935.7. We

perform APSS to 100 simulated Friedman data sets, the same best model is chosen every

time.

We can also use GA to find the optimal subset which is especially useful when the

number of variables are large. The parameters of the GA procedure are configured as

follows in Table 5.8. We repeat the GA procedure 100 times. A random initial population

is chosen for each run. The result shows that all 100 runs found the best subset, which

contains only the first 5 variables.
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Chapter 6

Kernel Partial Least Squares

Regression

6.1 Introduction

The Partial Least Squares (PLS) algorithm deals with the multicollinearity problem when

multiple correlated variables are involved in the regression analysis. It sequentially extracts

orthogonal components whose variances are in a descending order. The resulting model is

regularized by retaining a small amount of important components. The PLS algorithm was

first introduced by the Swedish statistician Herman Wold (1966) in the field of econometrics.

The PLS algorithm became popular first in the field of chemometrics. The pioneers include

Kowalski (1982), S. Wold and Martens (1983). PLS now is a widely applied techniques in

many areas including psychology, economics, chemical engineering, pharmaceutical science,

machine learning and image processing.

PLS is more famous for its regression application - PLS regression (PLSR). PLSR is

similar to principal component regression (PCR). However, in stead of extracting the com-

ponents from the covariance matrix XTX of the independent variables as PCR does, PLSR

extracts components from the covariance matrix between the independent variables and the

dependent variables XTY. In chemometrics, the univariate PLSR is generally referred as
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PLS1 algorithm while the multivariate PLSR is called PLS2 algorithm (Gil and Romera,

1998). The interested readers may find the detailed and easy-to-understand description of

the PLS algorithm given by Manne (1987), Geladi and Kowalski (1986b; 1986a). This chap-

ter briefly addresses the standard algorithm of univariate PLSR (UPLSR) and multivariate

PLSR (MPLSR) and their kernel extensions. Then, an information theoretic measure ap-

proach will be used to choose the number of retained components, kernel function and the

optimal subset of the independent variables. Numerical results of the simulation data and

benchmark data sets will be presented.

6.2 Linear Partial Least Squares Regression

The standard algorithm for computing partial least squares regression components is non-

linear iterative partial least squares (NIPALS) (Wold, 1966). Wold et al. (1984) utilized the

NIPLS algorithm to PLSR. There also exist several variants (de Jong, 1993; Helland, 1988;

Martens and Naes, 1989; Manne, 1987) of the PLSR algorithm in which certain vectors are

normalized or not normalized. This chapter first introduces the most popular and efficient

NIPALS PLSR then a variant that is convenient for the kernel extension.

6.2.1 Wold’s NIPLS PLSR

Let an n × p matrix X ∈ Rp represent the sample data with p independent variables and

n observations. Let an n × q vector Y represent the corresponding dependent variables.

We assume X and Y are both mean-centered such that the first extracted component

reflects the covariance information instead of the mean information. The NIPALS algorithm

sequentially extracts orthogonal additive components from X such that

X =
r∑

i=1

tipT
i + E, (6.1)

where the unit vector pi, called input loading vector, indicates the direction of the ith

component, the latent variable (also called score variable) ti is the projection of X on the
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direction of the ith components and E is the residual matrix of X, which contains the noise

information. And, r is the number of the retained components. The dependent variable Y

can be decomposed to the same number of additive components:

y =
r∑

i=1

Ŷi + F (6.2)

where ŷi is estimated by ti and F is the residual matrix of Y. Both (6.1) and (6.2) can be

expressed in matrix forms:

X = TPT + E Y = Ŷ + F, (6.3)

where the columns of T and P are latent variables and loading vectors respectively.

To achieve the good model generalization, researchers usually retain the first r com-

ponents, where r is decided by a model selection criterion. The detailed PLSR procedure

using the NIPALS algorithm can be described as follows.

1. Begin to extract the ith components. Randomly initialize u1. For instance, u1 can be

the first response of Y.

2. Calculate the normalized covariance vector wi between X and u:

wi = XTui wi =
wi

‖wi‖

3. Calculate the latent variable: ti = Xwi

4. qi = YTt/tTt qi = qi/‖qi‖

5. Update ui: ui = Yqi

6. Check convergence for MPLSR: Repeat step 2 to 5 until the updated ti and the

preceding ti is within a certain error. If UPLS is conducted, initialize ui using y and

omit step 4 to 5.
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7. Find the loading vector: pi = XTti/tTi ti

8. Normalize the loading vector: pi = pi/‖pi‖

9. In the linear regression case, regress ui on ti:

ûi = tib̂i where b̂i = (tTi ti)−1tTi ui

10. Deflate X: X = X− tipT
i

11. Deflate Y: Y = Y − ûiqi = Y − tib̂iqi, where qi = 1 for UPLSR.

12. i = i + 1. Repeat step 1 to step 12 until all the pre-determined number of components

are extracted.

To predict the response given the new observations Xnew(centered or normalized), the

above input loading vectors pi, the normalized covariance vectors wi and the regression

coefficients β̂i are used as the model parameters. The detailed procedure is shown below.

1. i = 1. Initialize the predicted response:

ŷnew = 0

2. Calculate the ith score variable of the new observations:

tnew(i) = Xnewwi

3. Update the predicted response:

ŷnew = ŷnew + tnew(i)β̂i

4. Deflate Xnew:

Xnew = Xnew − tnew(i)pi

5. i = i + 1. Repeat Step 2 - 4 until all k components are used.
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6.2.2 Lew’s PLS Edition

Lewi’s edition of NIPALS (Lewi, 1995) normalizes the score variable ti instead of the co-

variance vector (called weight in some literature) wi, making it easy to be extended to the

kernel space. Lewi’s NIPALS algorithm is as follows.

1. Start from i = 1.

2. wi = XTy

3. ti = Xwi/‖Xwi‖

4. pi = XTti since ‖ti‖ = 1

5. β̂i = tTi y

6. X = X− tipT
i = X− titTi X = (I− titTi )X

7. y = y − tiβ̂i = y − titTi y = (I− titTi )y

8. i = i + 1, Repeat Step 2 - 7.

To estimate the response given the new observations Xnew, one may use the following steps.

1. Start from i = 1. ŷnew = 0

2. tnew(i) = Xnewwi/‖Xnewwi‖

3. ŷnew = ŷnew + tnew(i)β̂i

4. Xnew = Xnew − tnew(i)pT
i = Xnew − tnew(i)tTi X

5. Repeat Step 2 - 4 until all k components are used.

6.3 Univariate Kernel Partial Least Squares Regression

To capture the nonlinear relationship between X and y, one can replace the linear regression

procedure between ti and yi by a nonlinear modeling technique. Wold (1989) proposed a
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quadratic PLS modeling method to extend the PLS method to the data with relative simpler

nonlinearity. To capture more complicate nonlinear relationships, Qin and McAvoy (1992)

proposed a neural network PLS method, in which a series (one for each component) of single-

input-single-output(SISO) feedforward neural networks are employed to model the nonlinear

pattern. However, designing the neural network structure is a complicate procedure and the

neural network training could be time consuming. Rosipal (2001) proposed the kernel PLS

(KPLS) regression, in which the linear PLS regression is conducted between the dependent

variable y and Φ(X), the nonlinear mapping of the independent variables X on the feature

space. Lewi (1995) proposed a modified NIPALS algorithm using the crossproduct matrix

XXT. KPLS is based on this crossproduct version of PLS since the explicit form of Φ(X) is

unknown but Φ(X)Φ(X)T = K can be obtained. The detailed procedure of Lewi’s modified

NIPALS is shown below (Note: yi must be saved for the prediction purpose).

1. Start from i = 1. yi = y.

2. wi = XXTyi

3. ti = wi/‖wi‖

4. pi = XTti

5. β̂i = tTi yi

6. Deflate XXT

XXT = (X− tipT
i )(X− tipT

i )T

= (X− titTi X)(X− titTi X)T

= (I− titTi )XXT(I− titTi )

= XXT −XXTtitTi − titTi XXT + titTi XXTtitTi

7. yi+1 = yi − tiβ̂i = yi − titTi yi = (I− titTi )yi
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8. i = i + 1, Repeat Step 2 - 7 until k components are extracted.

The following steps are for predicting the response given the new observations Xnew.

1. Start from i = 1. ŷnew = 0

2. wnew(i) = XnewXTyi

3. tnew(i) = wnew(i)/‖wnew(i)‖

4. ŷnew = ŷnew + tnew(i)β̂i

5. Deflate XnewXT

XnewXT = (Xnew − tnew(i)p
T
i )(X− tnew(i)p

T
i )T

= (Xnew − tnew(i)t
T
i X)(X− tnew(i)t

T
i X)T

= XnewXT −XnewXTtitTnew(i) − tnew(i)t
T
i XXT

+tnew(i)t
T
i XXTtitTnew(i)

To extend the above results to the kernel space, simply replace X with Φ(X) and apply

the kernel trick as shown below.

1. Start from i = 1, yi = y

2. wi = Φ(X)Φ(X)Tyi = Kyi.

3. ti = wi/‖wi‖

4. pi = Φ(X)Tti

5. β̂i = tTi yi

6. Deflate Φ(X)Φ(X)T
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Φ(X)Φ(X)T =
[
Φ(X)− titTi Φ(X)

] [
Φ(X)− titTi Φ(X)

]T

= (I− titTi )Φ(X)Φ(X)T(I− titTi )

⇒ K = (I− titTi )K(I− titTi )

7. yi+1 = yi − titTi yi = (I− titTi )yi

8. i = i + 1, Repeat Step 2 - 7 until k components are extracted.

where K = Φ(X)Φ(X)T is the kernel matrix defined in Chapter 2.

To estimate the response given the new observations Xnew one may use the following

steps.

1. Start from i = 1.

ŷnew = 0

2. wnew(i) = Φ(X)newΦ(X)Tyi = Knewyi

3. tnew(i) = wnew(i)/‖wnew(i)‖

4. ŷnew = ŷnew + tnew(i)β̂i

5. Deflate Φ(X)newΦ(X)T.

Φ(X)newΦ(X)T = Knew

=
[
Φ(X)new − tnew(i)p

T
i

] [
Φ(X)− tnew(i)p

T
i

]T

=
[
Φ(X)new − tnew(i)t

T
i Φ(X)

] [
Φ(X)− tnew(i)t

T
i Φ(X)

]T

= Φ(X)newΦ(X)T −Φ(X)newΦ(X)TtitTnew(i)

−tnew(i)t
T
i Φ(X)Φ(X)T + tnew(i)t

T
i Φ(X)Φ(X)TtitTnew(i)

= Knew −KnewtitTnew(i) − tnew(i)t
T
i K + tnew(i)t

T
i KtitTnew(i)

= (Knew − tnew(i)t
T
i K)(I− titTnew(i))
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6. Repeat Step 2 - 5 until all k components are used.

So far, we assume the KPLS regression is based on the original un-centered Φ(X). Centering

of Φ(X) is not directly available since the explicit form of Φ(X) is unknown. However,

the modeling procedure requires the kernel matrix K or/and Knew only. As discussed in

Chapter 2, one may use Kc (Equation 2.17) and Knew(c)(Equation 2.18) to replace K and

Knew respectively if the mean-centered Φ(X) is used.

The PLS regression model can be expressed in a matrix form (Manne, 1987). Similarly,

the KPLS regression can be expressed in a matrix form (Rosipal and Trejo, 2001) as follows.

For a multivariate regression model in the feature space defined as:

Y = Φ(X)B + E, (6.4)

where E is the multivariate i.i.d. random noise. It’s KPLS estimator of the regression

coefficients B is given by

B̂ = Φ(X)TU(TTKU)−1TTY. (6.5)

To make prediction on the training data, there is

Ŷ = Φ(X)B̂ = KU(TTKU)−1TTY = TTTY, (6.6)

where T = KU(TTKU)−1T (de Jong, 1993). It can be shown (Höskuldsson, 1988) that

t′iYi is the same as t′iY. Therefore, the last equality can be written as:

Ŷ = TTTYi = Tβ̂, (6.7)

where Yi stands for the deflated Y after extracting the first i− 1 LVs and β̂ contains the

coefficients of regression Yi on ti, the project on the ith LV. This is the underlying regression
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part of KPLS. It will be used to define the covariance matrix of the estimated parameters

in the next section.

The predicted new observations is defined by

Ŷnew = Φ(Xnew)B̂ = KnewU(TTKU)−1TTY = Tnewβ̂, (6.8)

where Knew = Φ(Xnew)Φ(X)T. We have assumed that the data in the feature space is

centered. Centering Φ(X) and Φ(Xnew) in the feature space is conducted through the

kernel function using (2.17) and (2.18).

6.4 ICOMP for KPLSR

In KPLSR, the good generalization properties can be achieved by the appropriate selection

of

1. the form of kernel function and the corresponding parameters,

2. the number of retained latent vectors,

3. and the subset of the independent variables.

These model selection problems are still open to researchers. Currently the computation-

ally intensive cross-validation is the widely used method for comparing the kernel func-

tions (Rosipal and Trejo, 2001) and selecting the subset variables (Han et al., 2006; Mehdi

and Kyani, 2007). In this chapter, we use the information complexity (ICOMP) measure

technique to choose kernel functions and subset models.

We consider the univariate KPLSR model where the estimate of the response is given

by:

ŷ = TTTy = Tb̂. (6.9)

Assuming the random noise follows an i.i.d. normal distribution N(0, σ2), the general

ICOMP form for UKPLS can be defined by
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ICOMP (Cov(b̂, σ̂2))UKPLS = −2 log L(b̂, σ̂2)) + 2C(Cov(b̂, σ̂2))

= n log(2π) + n log(σ̂2) + n + 2C(Cov(b̂, σ̂2)), (6.10)

where C(·) can be either C1(·) defined in (3.9) or the quadratic measure C1F (·) defined

in (3.32). Assuming, b̂ is uncorrelated with σ̂, the covariance matrix of the estimated

parameters is defined as:

Cov(b̂, σ̂2) =




Cov(b̂) 0k×1

01×k
2σ̂4

n


 (6.11)

where k is the number of retained components and Cov(b̂) is a diagonal matrix whose

ith diagonal element is the variance of the deflated y (or the residuals) when the first i

latent vectors have been extracted.

The PEU version of ICOMP for UKPLSR can be defined as

ICOMPPEUUKPLS = −2 log L(b̂, σ̂2) + k + 2C(Cov(b̂, σ̂2)) (6.12)

= n log(2π) + n log(σ̂2) + n + k + 2C(Cov(b̂, σ̂2)) (6.13)

where k is added as the extra penalty to the model complexity. Inspired by SBC (Schwarz,

1978), the constant “2” of the complexity term can be replaced by log(n), which leads to

the modified ICOMPPEU:

ICOMPPEU∗
UKPLS = n log(2π) + n log(σ̂2) + n (6.14)

+k + log(n)C(Cov(b̂, σ̂2)) (6.15)

For the fixed kernel function and parameters, when the number of LVs increases, LOF

decreases and the model complexity increases. The penalty terms of ICOMP measure the

complexity increasing.
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We further propose a regularization method to give a more reasonable estimate of σ2.

In the linear regression model, we regularize the covariance matrix X′X. In the ridge

regression, we resolve the singularity by adding the bias, that is, X′X + λI. In KRR, the

kernel matrix K is playing the role of the covariance matrix. The training data response is

predicted as:

ŷ = K(K + λI)−1y (6.16)

Inspired by this idea, we want to perform the regularization to KPLSR in the same man-

ner. However, we could not find such symmetrical covariance in the KPLSR model since

the components are sequentially extracted. By comparing (6.6) with (6.16), we found

M = U(T′KU)−1T′ is the counter part that plays role of (K + λI)−1 though the former

one is not symmetrical. Therefore, we decided to regularize M for KPLSR. As discussed

in Chapter 5, there are many different methods to find the appropriate ridge parameter λ.

However, there is no method that always outperforms the other. This research utilizes the

maximum likelihood/empirical Bayes (MLE/EB) covariance matrix estimator (Bozdogan,

2007):

λ =
k − 1

n · trace(Σ̂)
, (6.17)

where k is the number of estimated parameters and n is the number of training observations.

In KPLSR, the above estimator is modified to

λ =
n− 1

n · trace(M̂)
, (6.18)

where n is the number of observations, that is, the dimension of M. When the scale

parameter is small, the magnitude of Trace(M) is low, which leads to big regularization.

When the scale parameter is high, the magnitude of Trace(M) is high and the effect of the
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Figure 6.1: Selecting Number of LVs Using ICOMPPEUC1F

regularization is negligible. The regularized matrix M is given by

Mr = M + λI, (6.19)

where λ is given by (6.18).

6.5 Numerical Results

6.5.1 Sinc Function

We first demonstrate the results using the popular sinc function data (Appendix A1), which

contains one independent variable and one response.

First, the scale parameter of the Gaussian RBF kernel is fixed and different criteria are

used to select the number of LVs. We use γ = 4 in the light of some preliminary trials.

Using the PEU form of ICOMPC1F, it can be observed that LOF keeps decreasing as

the number of LVs increases while the penalty (2C1F + k) increases as the number of LVs

increases (Figure 6.1). The balanced choice is using 5 LVs, which minimizes ICOMP.
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Table 6.1: KPLS: Selecting the Number of LVs for KPLSR
# LVs MSEtest HO AIC SBC ICOMPC1F ICOMPPEUC1F

1 0.11026 0.11058 73.4 78.6 65.6 67.6
2 0.04633 0.04582 -13.1 -5.3 -24.5 -21.5
3 0.02265 0.02331 -84.0 -73.6 -98.5 -94.5
4 0.01736 0.01838 -112.5 -99.5 -129.3 -124.3
5 0.01082 0.01035 -156.5 -140.9 -175.7 -169.7
6 0.01084 0.01036 -154.3 -136.1 -174.8 -167.8
7 0.01077 0.01024 -152.1 -131.2 -173.8 -165.8
8 0.01092 0.01029 -149.9 -126.5 -172.9 -163.9
9 0.01102 0.01041 -147.9 -121.8 -172.0 -162.0
10 0.01110 0.01058 -146.5 -117.9 -171.8 -160.8
11 0.01122 0.01082 -145.6 -114.3 -172.0 -160.0
12 0.01127 0.01086 -143.6 -109.8 -171.1 -158.1
13 0.01148 0.01102 -142.8 -106.3 -171.4 -157.4
14 0.01163 0.01111 -142.3 -103.2 -172.0 -157.0
15 0.01172 0.01128 -141.5 -99.8 -172.3 -156.3
16 0.01176 0.01131 -139.7 -95.4 -171.6 -154.6
17 0.01177 0.01135 -138.0 -91.1 -171.0 -153.0
18 0.01180 0.01144 -136.3 -86.8 -170.5 -151.5
19 0.01182 0.01150 -134.7 -82.6 -170.0 -150.0
20 0.01190 0.01178 -135.5 -80.8 -171.9 -150.9

We compared five criteria including hold-out validation, AIC, SBC, ICOMPC1F and

ICOMPPEUC1F in this example (Table 6.1). The criteria based on information measure

agree that using 5 LVs is the optimal choice. The hold-out validation prefers 7 LVs. How-

ever, the testing data MSEs are similar.

To test the robustness of the model selection criteria, we repeat the simulation 100 times.

Four different criteria are compared in terms of the average and the variation of the testing

data MSE. Since 1000 hold-out observations almost represent the whole population, it is not

surprised that the hold-out cross-validation is doing the best overall (Figure 6.2). However,

without using the additional data, ICOMPPEUC1F, AIC and SBC are all giving similar

predictive performance (Table 6.2) while ICOMPPEUC1F is slightly better compared with

AIC and SBC. This is a very exciting result.
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Figure 6.2: Sinc: Comparing Model Selection Criteria in 100 simulations

Table 6.2: Sinc: Comparing Model Selection Criteria
Criterion Ave. MSEtest Std. MSEtest # LVs
ICOMPC1F 0.0115 0.00092 10.5
ICOMPPEUC1F 0.0111 0.00074 5.7
Hold-out 0.0107 0.00064 5.7
AIC 0.0112 0.00069 6.3
SBC 0.0112 0.00073 5.0
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Table 6.3: Friedman: Comparing Model Selection Criteria
Criterion Ave. MSEtest Std. MSEtest Ave. #LVs
ICOMPPEUC1F 3.96 0.37 22
Hold-out 3.58 0.29 17
AIC 4.30 0.43 40
SBC 4.29 0.43 39

6.5.2 Friedman’s Data

We now apply ICOMP to the multiple regression applications and search for the optimal

subset variables as well as the kernel function and the number of RVs. The Friedman’s data

(Appendix A2) is used for the demonstration in this experiment. We utilize the widely used

Gaussian RBF kernel. First, all the 10 regressors are included (saturated model). ICOMP is

utilized to choose the optimal scale parameter of the Gaussian RBF kernel function and the

number of LVs retained. Then, we compare all the 210− 1 = 1023 subset models (including

at least one regressor) in terms of the ICOMP score given the selected optimal kernel. The

optimal subset model is the minimizer of ICOMP. We hoped the selected model excludes

x6 − x10.

We compare different criteria to choose the scale parameter including ICOMPC1F,

ICOMPPEUC1F, Hold-out method, AIC and SBC. It is concluded (Table 6.3) that AIC

and SBC tends to under-penalize the number of LVs. The results of ICOMPPEUC1F are

closest to the results of the hold-out method. Combining the results of the sinc data and the

Friedman’s data, we decide to use ICOMPPEUC1F as the criterion to choose the optimal

subset model.

We now perform the subset selection given the selected Gaussian RBF kernel with the

scale parmaeter γ = 5. ICOMPC1FPEU is used as the model selection criterion. There

are only 210 − 1 = 1023 subsets for this data. One may conduct the all-possible-subset-

selection (APSS). Our APSS results show that the best model is {x1, x2, x3, x4, x5} which is

the expected true model. The testing data MSE of this model is 1.626. It is a tremendous

improvement compared with 3.96 of the saturated model. If the number of variables are
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Table 6.4: GA Parameters for Friedman Data
ngen 50
npop 50
Pcross 0.7
Pmutation 0.01
Elitism YES
Type of crossover Uniform

Table 6.5: Summary of GA for Friedman Data KPLS
Generation Best Subset ICOMP # LVs MSEtest
1-4 1 2 3 4 5 7 8 829.08 23 2.239
5-8 1 2 3 4 5 8 802.34 21 1.991
9-41 1 2 3 4 5 7 796.54 21 1.871
42-100 1 2 3 4 5 780.41 19 1.626

large, it is more efficient to use GA to find the optimal model. We use Friedman’s data to

demonstrate the GA procedure though it is not really necessary here.

The parameter of GA are configured as shown in Table 6.4. In a single run of the above

GA procedure, the best subset of the initial population is {x1, x2, x3, x4, x5, x7, x8} (Table

6.5). The true subset is found in the 42th generation.

To confirm the robustness of the GA procedure. We run the same GA 100 times with

random initial population for each run. It is concluded that the true model is selected

99 times. The missing one selected a “good” model {x1, x2, x3, x4, x5, x7}, which is also

acceptable. One may argue that using popsize = 50 and generation = 50 are not efficient for

10 variables. Our experiments show that using the appropriate population size and number

of generations are required for this 1023-subset case to find the best model. However,

when the number of subsets is huge, for instance, in millions, it is not necessary to further

increase the generations and population size for searching the optimal model, which means

that using GA is efficient.
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Chapter 7

Kernel PCA/PCR

7.1 Introduction

Principal component analysis (PCA) is a widely used statistical data preprocessing tech-

nique for dimensionality reduction and denoising. PCA is also called the (discrete) Karhunen-

Love transform (KLT), named after Kari Karhunen and Michel Love, or the Hotelling (1933)

transform, in honor of Harold Hotelling. It has been applied in various areas including but

not limited to applications in image processing, agriculture, biology, chemistry, climatol-

ogy, demography, genetics, psychology and industrial process control. The origin of PCA

is difficult to trace. Interested reader may find a brief historical review of PCA in Jolliffe’s

book (2002).

The geometric idea of principal component analysis (PCA) is to project a data set

with a large number of interrelated variables to a set of orthogonal axes such that the

projected variables, called principal components (PCs) are uncorrelated. The variances of

the resulting PCs are in descending order such that the first principal component (PC) has

the highest variance among all the PCs.

Given a p-variable data matrix X ∈ Rp, the first principal component is found such

that the projection of X in its direction has the maximum variance. The next principal

component must be on a direction that is orthogonal to the first PC. Among these possible
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orthogonal directions, the second PC is found such that the projection of X in its direction

has the maximum variance. Based on the same logic, the kth PC must be orthogonal to

all the previous PCs and in a direction that the variance of the projected X is maximized.

The maximum number of PCs can be found is equal to the rank of X. Dimensionality re-

duction and signal denoising can be achieved by retaining only a subset of all PCs, which is

believed to be crucial to represent the most information needed for a statistical model. The

traditional criteria are majorally focused on the variances of PCs. PCs with relative small

variances are assumed to contain nuisance information and need to be dropped. However,

in some circumstances, the highest-variance PC is not equivalent as the most useful PC.

Jolliffe (2002) gives a typical illustration of such situation in the application of discrimi-

nant analysis. The orthogonal property of PCs can be used in regression models to treat

collinearity problems when the nuisance PCs are truncated.

7.2 Methodology of Linear PCA

Let an n× p matrix X ∈ Rp stands for a p-variate data set with n observations. Generally,

X needs to be centered such that each variable (column) has a mean of zero. Otherwise, the

first PC represents the average of each variable instead of the the variability information.

We assume X is zero-centered in the following part of this chapter.

The principal component scores, the projections of X on the direction of the PCs, can

be found by multiplying the centered data matrix X by a q × q orthonormal matrix A,

where q is the rank of X. It can be expressed in a matrix form as shown below:

Z = XA, (7.1)

where the ith column of Z is the projection of X on the ith PC, A is the orthonormal matrix

whose ith columns is the ith normalized eigenvector of XTX/(n− 1), the sample covariance

matrix.
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7.3 Kernel Principal Component Analysis

In kernel PCA, the original p-variable data X ∈ Rp will be nonlinearly transformed to

Φ(X) in a feature space F . This is to be done by the kernel trick. Then, the regular linear

PCA is conducted on the transformed data Φ(X) in the feature space. The kernel principal

components are to be found by

Z = Φ(X)A, (7.2)

where the n × p matrix Z contains kernel PCs in columns, the ith column of A is the

normalized eigenvector corresponding to the ith largest eigenvalues of Σ, the covariance

matrix of Φ(X). When Σ is unknown, it can be estimated by the sample covariance matrix

defined as:

S =
1

n− 1
Φ(X)T Φ(X). (7.3)

However, in the kernel methods, the dimension and the explicit expression of Φ(X) are un-

known. Fortunately, KPCA can be performed through the kernel matrix K = Φ(X)Φ(X)T .

Let vi denote the ith normalized eigenvector of S defined in Equation 7.3 and λi denote the

corresponding ith largest eigenvalue. There is

Svi = λivi,

i.e.,
1

n− 1
Φ(X)T Φ(X)vi = λivi. (7.4)

Multiplying on the left of both sides by Φ(X), we have:

1
n− 1

Φ(X)Φ(X)T Φ(X)vi = λiΦ(X)vi

1
n− 1

KΦ(X)vi = λiΦ(X)vi.

Let Φ(X)vi = u∗i , we see u∗i is simply the eigenvector of K/(n − 1) corresponding to the

eigenvalue λi. The normalized eigenvector ui can be calculated by:
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ui =
u∗i
‖u∗i ‖

=
u∗i√
u∗i

Tu∗i
=

u∗i√
vT

i Φ(X)T Φ(X)vi

Multiplying on the left of both sides of Equation 7.4 by vT
i , there is:

1
n− 1

vT
i Φ(X)T Φ(X)vi = vT

i λivi = λi (7.5)

Therefore, there is

ui =
u∗i√

(n− 1)λi

. (7.6)

Let U denote the normalized eigenvector matrix whose ith column is ui, U∗ denote the

eigenvector matrix whose ith column is u∗i and Λ denote the diagonal matrix whose ith

diagonal element is (n− 1)λi, the ith largest eigenvalue of K, it can be written that

UΛ
1
2 = U∗ = Φ(X)A, (7.7)

where A was defined in Equation 7.2 and the ith column of A is vi. It can be written that

Z = Φ(X)A = UΛ
1
2 . (7.8)

The variance of each kernel PC is equal to the corresponding eigenvalue of K/(n − 1) or

1/(n− 1) eigenvalue of K. Using the fact that the positive eigenvalues of Φ(X)T Φ(X) and

Φ(X)Φ(X)T are the same and the corresponding eigenvector matrices are both A, there is

Φ(X)T Φ(X)A = AΛ.

Move Λ to the other side, there is

A = Φ(X)T Φ(X)AΛ−1 = Φ(X)TUΛ−
1
2 .
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Using the above result, kernel PCs can be found by

Z = Φ(X)A = Φ(X)Φ(X)TUΛ− 1
2 = KUΛ− 1

2 . (7.9)

This alternative expression using kernel matrix is very useful for finding the projection

of the testing data on the axes of PCs. Given the test data or new data Xnew with m

observations, the projection of m points on the axes of kernel PCs, defined by the training

data X, can be found using

Znew = Φ(Xnew)A = Φ(Xnew)Φ(X)TUΛ− 1
2 = KnewUΛ− 1

2 , (7.10)

where

Knew = Φ(Xnew)Φ(X)T . (7.11)

7.4 Reconstruction of Kernel PCA

7.4.1 Reconstruction of Linear PCA

In linear PCA, the original data matrix is decomposed as:

X =
p∑

j=1

zjaT
j , (7.12)

where zj and aj are the jth PC score (the projection of X on the jth principal component)

and eigenvector respectively. In (7.12), X is fully reconstructed by using all the PCs. X

is generally reconstructed using a subsets of principal components for dimension reduction,

de-noising or missing value imputation. The retained principle components are assumed to

keep the important signal information such that the reconstructed X has little difference

from the real X. We assume the difference is due to the random error, which is contained

in the ignored PCs. Since the variances of the principal components are in a descending

order, the subset selection problem is simplified to a problem of selecting number of PCs.
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That is, we assume the statistical model defined by

X = Xr + Random Error =
k∑

j=1

zjaT
j +

p∑

j=k+1

zjaT
j , (7.13)

where k is the number of the retained PCs. The methods of choosing k will be introduced

in the next section.

7.4.2 Difficulties in Reconstructing Kernel PCA

In KPCA, the reconstructed Φ(X) does not have the explicit form as one can see from

Φ(X)r = ZkAT
k

= KUkΛk
− 1

2

[
Φ(X)TUkΛk

− 1
2

]T

= KUkΛk
−1UT

k Φ(X), (7.14)

where the subscript k stands for retaining the first k PCs. Actually, the reconstruction of

Φ(X) in the feature space is not a researcher’s direct interest since X in the original space

is the data that the researcher tries to reconstruct. Such reconstructed X is generally called

pre-image in the image processing applications.

Let Φ(x)r stand for the reconstruction of the observation Φ(x) in the feature space,

Mika (1998) claimed that its corresponding reconstructed observation xr in the original

space does not always exist and need not be unique if it exists. If xr does not exist, Mika

proposed a nonlinear optimization approximation defined by

x̂r = argmin.
{‖Φ(xr)− Φ(x)r‖2

}
(7.15)

= argmin.
{‖Φ(xr)‖2 − 2[Φ(x)rΦ(xr)T ] + ‖Φ(x)r‖2

}
(7.16)

= argmin.
{

k(xr,xr)− 2zkΛk
− 1

2 UT
k k(X,xr)

}
+ ‖Φ(x)r‖2, (7.17)
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where zk stands for the projection of an observation in the feature space on the first k

PCs and ‖Φ(x)r‖2 is independent of xr. According to (7.17), x̂r has an explicit form. For

the Gaussian kernel of the form k(x, z) = exp(‖x− z‖2/a), this optimization problem can

be solved by a fixed-point iteration method. However, as mentioned by Mika (1998), this

nonlinear optimization solution suffers from the local minimum problem and could be very

time consuming.

7.4.3 Estimating Pre-Image Non-Iteratively

Kwok and Tsang (2003) proposed a non-iterative method to approximate xr in the original

space based on the distance constraints in the feature space. We will utilize this method to

save the computational time. Williams (2002) claimed, for many kernel functions, there is a

simple linear relationship between the Euclidean distance of two observations xi and xj and

the Euclidean distance of their mappings, Φ(xi) and Φ(xj) in the feature space. Kwok and

Tsang’s method is based on this idea. In the feature space, the squared Euclidean distance

between the reconstructed observation Φ(x)r and the mapping of a training observation

Φ(xi) can be calculated as

d2[Φ(x)r, Φ(xi)]f = ‖Φ(x)r‖2 + ‖Φ(xi)‖2 − 2Φ(x)rΦ(xi)T , (7.18)

where

‖Φ(x)r‖2 = Φ(x)rΦ(x)T
r

=
[
zkΛk

− 1
2 UT

k Φ(X)
] [

zkΛk
− 1

2 UT
k Φ(X)

]T

= zkΛk
− 1

2 UT
k KUkΛk

− 1
2 zT

k (7.19)

‖Φ(xi)‖2 = Φ(xi)Φ(xi)T

= k(xi,xi) (7.20)

2Φ(x)rΦ(xi)T = 2zkΛk
− 1

2 UT
k Φ(X)Φ(xi)T

= 2zkΛk
− 1

2 UT
k k(X,xi).
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We can see for some kernel functions, the corresponding squared Euclidean distance

d2(xr,xi) in the original data space can be calculated using d2[Φ(x)r, Φ(xi)]f . Considering

a isotropic kernel

k(xr,xi) = f(‖xr − xi‖2), (7.21)

in which the kernel function is a function of the squared Euclidean distance ‖xr − xi‖2

There is

d2[Φ(x)r, Φ(xi)]f = ‖Φ(x)r‖2 + ‖Φ(xi)‖2 − 2Φ(x)rΦ(xi)T

= ‖Φ(x)r‖2 + k(xi,xi)− 2f(‖xr − xi‖2)

= ‖Φ(x)r‖2 + k(xi,xi)− 2f(d2(xr,xi)). (7.22)

Therefore,

f(d2(xr,xi)) =
1
2
{‖Φ(x)r‖2 + k(xi,xi)− d2[Φ(x)r, Φ(xi)]f}. (7.23)

For the Gaussian kernel with the form

k(xi,xj) = exp
[
−‖xi − xj‖2

2a2

]
= exp

[
−d2(xi,xj)

2a2

]
,

the squared Euclidean distance in the original data space is given by

d2(xr,xi) = −2a2log
{

1
2
{‖Φ(x)r‖2 + k(xi,xi)− d2[Φ(x)r, Φ(xi)]f}

}
. (7.24)

Similarly, for the exponential radial basis function (ERBF) kernel defined as

k(xi,xj) = exp
[
−‖xi − xj‖

2a2

]
= exp

[
−

√
d2(xi,xj)

2a2

]
,

the squared Euclidean distance between xr and xi is given by

d2(xr,xi) =
{
−2a2log

{
1
2
{‖Φ(x)r‖2 + k(xi,xi)− d2[Φ(x)r, Φ(xi)]f}

}}2

. (7.25)

90



Consider the odd order polynomial kernel with the form

k(xi,xj) = (xixT
j + a)b,

where b stands for the odd positive integra, the squared distance between two points in the

original space can be expressed by kernel functions. The derivation is given by

d2(xr,xi) = ‖xr − xi‖2 = ‖xr‖2 + ‖xi‖2 − 2xrxT
i

= xrxT
r + xixT

i − 2xrxT
i

= (xrxT
r + a) + (xixT

i + a)− 2(xrxT
i + a)

= [k(xr,xr)]
1
b + [k(xi,xi)]

1
b − 2[k(xr,xi)]

1
b

= [Φ(x)rΦ(x)T
r ]

1
b + [k(xi,xi)]

1
b − 2[Φ(x)rΦ(xi)T ]

1
b . (7.26)

For the sigmoid kernel defined as

k(xi,xj) = tanh(a · xixT
j + b),

the inner dot product can be expressed as

xixT
j =

tanh−1(k(xi,xj))− b

a
.

The squared Euclidean distance between xr and xi is can be calculated as:

91



d2(xr,xi) = ‖xr − xi‖2 = ‖xr‖2 + ‖xi‖2 − 2xrxT
i

= xrxT
r + xixT

i − 2xrxT
i

=
tanh−1(k(xr,xr))− b

a
+

tanh−1(k(xi,xi))− b

a

−2
tanh−1(k(xr,xi))− b

a

=
tanh−1(Φ(x)rΦ(x)T

r )− b

a
+

tanh−1(k(xi,xi))− b

a

−2
tanh−1(Φ(x)rΦ(xi)T )− b

a
. (7.27)

Now, we know the distance between the reconstructed observation xr and each train-

ing observation and the distance between Φ(xr) and each feature mapping of the training

observations. The distances with the neighbors are the most important in determining the

location of xr (Kwok and Tsang, 2003). For the Gaussian kernel function, the contribu-

tion of xi drops exponentially with the increasing distance from xr. Follows (Kwok and

Tsang, 2003), we choose the m nearest neighbors of Φ(xr) in the feature space and identify

the corresponding neighbors of xr in the original data space. As claimed by Kwok, one

can use the m nearest neighbors of xr directly. Let an m × p matrix Xnb stand for the

neighborhood data whose each row stands for a specific p-dimensional neighbor of xr. As

discussed above, we are able to obtain the distances between xr and its neighbors. Let

an m × 1 vector d2 stand for the m squared distances from xr, our goal is to find the

coordinates of xr to preserve the distances in d2 as much as possible. Follows (Gower,

1968), knowing the coordinates of orthogonal axes of the neighbor points and the distances

between an unknown point and these neighbor points, the coordinates of the unknown point

can be estimated using a least-squares method. Already knowing the coordinates Xnb, its

corresponding coordinates in an orthogonal space can be obtained by performing singular

value decomposition (SVD). Xnb is first centered by its mean x̄nb. SVD of the centered

coordinates XT
nb(c) with rank of q is defined as
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XT
nb(c) = USVT = UZ, (7.28)

where U is a p×q matrix whose columns are orthonormal eigenvectors and the q×m matrix

Z is the projection of the m points (observations) on the q principal components. Let the

row vector zi stand for the projection of the ith point. Since XT
nb(c) is centered by its mean

vector, ‖zi‖2 is the squared Euclidean distance from x̄nb. Let an m× 1 vector d2
0 stand for

the m squared distances between m neighbor points and their center x̄nb. The projection

of xr on the q principal components can be estimated by

ẑr = −1
2
(ZZT)−1Z(d2 − d2

0) = −1
2
Λ−1VT(d2 − d2

0). (7.29)

The corresponding coordinates in the original space can be obtained by

x̂r = (Uẑr)T + x̄nb. (7.30)

The only parameter that a research has to configure is the number of neighbors. Following

Kwok’s work, 10 is the default number of neighbors.

7.5 Kernel Principal Components Regression

Principal components regression (PCR) can be used to deal with collinearity problems in

regression using orthogonal PCs as the regressors. The PCs with very small variances will be

drop to prevent from overfitting (Jolliffe, 2002). Similar as the standard multiple regression

model, the univariate PCR can be expressed as:

y = Zβ + ε, (7.31)

where the n×1 vector y represents dependent variable with n observations, the n×k matrix

Z represents the retained k PC scores, β is a column vector of k regression coefficients and
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ε is the independent and identically distributed (i.i.d.) random error with mean of zero and

constant variance σ2. The estimated regression coefficients are

β̂ = (ZTZ)−1ZTy. (7.32)

Using the complexity measure defined in (3.32) for orthogonal components, the ICOMP for

the univariate PCR can be defined as

ICOMP(C1F) = n log(2π) + n log(σ̂2) + n + 2C1F(Ĉov(P̂C)), (7.33)

where

σ̂2 =
(y − Zβ̂)T(y − Zβ̂)

n

is the estimated variance of the random error and

Ĉov(P̂C) =
Λk

n− 1

for kernel PCA, in which Λk is the diagonal matrix whose k diagonal elements are the first

k eigenvalues of the kernel matrix.

Using the model selection criterion ICOMP, one can choose the number of principal

components, the kernel functions and/or the subset variables of X which contribute to the

response prediction the most.

7.6 Model Selection Using ICOMP

7.6.1 Choosing Number of Retained Kernel PCs

A decision must be made on how many principal components should be retained in order

to find a balance point between the good generalization and the low reconstruction error.

Some non-statistical guidelines include:
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1. Retain components to account for a specified high percentage of the total variance,

say 90%.

2. Retain the components whose eigenvalues are greater than the average of all the

eigenvalues.

3. Observe the scree graph (Cattell, 1966), the plot of eigenvalues versus the indices of

the eigenvalues and look for the natural cut-off point.

4. Use the Kaiser’s rule (Kaiser, 1960). That is, for the PCA based on the correlation

matrix, ignore the PCs whose variances are smaller than 1. However, it can be argued

that this method retains too few variables.

5. Cross-validation is currently the most widely used method to decide the number of

retained PCs. However, the computational intensity is the major drawback.

The above techniques for choosing the optimal number of PCs are either subjective or lack

of statistical foundation or computationally expensive. There exists a statistical method

that decides the number of PCs known as Bartlett’s test. It is to test if the last eigenvalues

are all equal versus at least two of the last eigenvalues are different. The test statistic of

this hypothesis test approximately follows a χ2 distribution. In practice, when the variables

are fairly highly correlated, Bartlett’s test will often indicate more than enough number of

components.

In this chapter, we use an information measure approach to decide the number of PCs

retained. We assume the random error of the general multivariate PCA model defined in

(7.13) follows a multivariate normal distribution N(0,Σ). Using the complexity C1F (·) for

the orthogonal components defined in (3.32), the ICOMP form for PCA or Kernel PCA can

be defined as:
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ICOMP(Ĉov(PC))Multivar. = Lack of Fit + 2C1F (Ĉov(PC))

= nplog(2π) + nlog|Σ̂|+ np + 2C1F (Ĉov(PC)) (7.34)

= nplog(2π) + nlog|Σ̂|+ np + 2
1

4λ
2
a

s∑

i=1

(λi − λa)2,(7.35)

where

p represents the number of the variables of X,

Σ̂ is a p×p matrix, which is the likelihood estimate of the covariance of the random errors

given by

Σ̂ =
(X−Xr)T(X−Xr)

n
(7.36)

Ĉov(PC) is a diagonal matrix , since PCs are orthogonal, whose diagonal elements are

the variances of the retained PCs.

The information measure approach finds the balance point between the small reconstruction

error and the complexity of the PCs retained. As one can observe from the above equation,

the complexity increases as the spread of the variances of the PCs increases. C1F (·) is a

monotonously increasing function of the number of PCs. The optimal number of PCs is

the minimizer of ICOMP. Furthermore, we can using ICOMP to choose the optimal kernel

function and its appropriate parameter without using validation data. The results of the

numerical experiments will be summarized in the next section.

7.7 Numerical Examples

7.7.1 Simulated Toy Example

We first use the two-dimensional three-cluster toy example illustrated by Schölkopf (1998).

The centers of the three clusters are (−0.5,−0.2), (0, 0.6) and (0.5, 0) respectively. The
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Figure 7.1: Scatter Plot of the 2D 3-Cluster Toy Example

Gaussian noise of N(0, 0.12) is added to generate 30 training points around each cluster

center. 225 testing points are spread evenly in the span of the train points (Figure 7.1).

The first advantage of using kernel PCA is that it allows more components to be ex-

tracted to ensure both small reconstruction error and high generalization. If we use linear

PCA, only two nonzero principal components can be extracted and they explained about

64% and 36% of the total variance respectively. Keeping both components will fail to do

de-noising or reduce collinearity and retaining the first PC will lose 36% of the total vari-

ance. The second advantage is that kernel PCA describes the nonlinear pattern of the data

better than linear PCA. As one can observe from (Figure 7.2), linear PCA can not express

the pattern of 3 clusters. By using the Gaussian RBF kernel with a2 = 0.05 suggested by

Schölkopf (1998), we see that the first two PCs separate three clusters and the rest PCs

further separate the points inside the clusters (Figure 7.3).

We can use the ICOMP form for KPCA defined by (7.35) to choose the optimal number

of PCs to retain given a specific kernel function. Using 25 neighbors to estimate the pre-

image (reconstructed observation), the optimal number of PCs retained is 8 according to

the minimized ICOMP. The first 8 PCs explained 92.8% of the total variance and the rest
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Figure 7.2: Toy Example: PC Plots Using Linear Kernel
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Figure 7.3: Toy Example: PC Plots Using Gaussian RBF Kernel(a2 = 0.05)
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Figure 7.4: Toy Example: ICOMP vs. Number of PCs. Gaussian RBF Kernel(a2 = 0.05)

nuisance PCs can be ignored without losing the important information (Figure 7.4). The

Mean Squared Error (MSE) of the reconstruction is 1.6995 × 10−3 for the x coordinates

and 1.6893 × 10−3 for the y coordinates (Figure 7.5). Adding more PCs does not yield

significantly smaller MSE for either x or y. Furthermore, we can use ICOMP as a model

selection criterion to choose the appropriate parameters of the kernel function as well as the

number of optimal PCs given the kernel function. We first compare different parameters of

the Gaussian RBF kernel function. Given the difference scale parameters between 0.01 and

1, the optimal parameter for Gaussian RBF kernel is 0.06 where the number of retained

PCs is 8 (Figure 7.6). We can even compare different kernels functions using ICOMP. In

Table 7.1, we compared the polynomial kernels with the optimal Gaussian RBF kernel, the

optimal exponential RBF kernel and the optimal Sigmoid kernel. The comparison result

shows the Gaussian RBF kernel with a2 = 0.06 is the most appropriate kernel function for

the given toy example.
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Figure 7.5: Toy Example: MSE vs. Number of PCs. Gaussian RBF Kernel(a2 = 0.05)
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Figure 7.6: Toy Example: Parameters of Gaussian RBF Kernel vs. ICOMP

Table 7.1: Toy Example: Comparing Kernel Functions
Kernel Function # PCs ICOMP VAR
Polynomial Kernel (< x, z > +1)3 4 -418.3247 98.6%
Polynomial Kernel (< x, z > +1)5 5 -476.0168 98.4%
Polynomial Kernel (< x, z > +1)7 5 -412.0198 97.1%
Polynomial Kernel (< x, z > +1)9 6 -340.6103 97.7%
Gaussian Kernel exp(−‖x−z‖2

2×0.06 ) 8 −643.4035 94.5%
Exponential RBF Kernel exp(− ‖x−z‖

2×0.03) 58 -495.3857 88.9%
Sigmoid Kernel tanh(0.04 < x, z > +2) 2 −479.5337 99.9%
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7.7.2 Corn Data

This data set, originally taken at Cargill, consists of 80 samples of corn measured on 3

different near-infra-red (NIR) spectrometers. The wavelength range is 1100-2498nm at 2nm

intervals, which makes the number of variables be 700 (channels). These 700 variables (re-

gressors) are highly correlated since the first PC represents the 99.5% of the total variance.

The moisture, oil, protein and starch values represent four response variables. This is a

typical data set for the kernel method. It is more computational efficient to work with the

80 × 80 kernel matrix in the kernel PCR than work with the 700× 700 covariance matrix

in the linear PCR. Following Rosipal’s (2001) works, instead of modeling the real responses

mentioned above, four simulated responses are used since using the nonlinear PCR does not

yield significantly better results than the linear PCR does. The generated responses are

y1i = exp
(

xixT
i

2c1

)
(7.37)

y2i = exp
(

xiA−1xT
i

2c2

)
(7.38)

y3i =
(

xixT
i

c1

)3

y1i (7.39)

y4i = 0.3y1i + 0.25y2i − 0.7y3i, (7.40)

where

c1 =
80∑

i=1

xixT
i

c2 =
80∑

i=1

xiA−1xT
i ,

and where A is a symmetric matrix with off-diagonal elements set to 0.8 and diagonal

elements set to 1.0. We use the first 60 observations as the training data and the remaining

20 observations as the testing data. Independent Gaussian noise is added to each one of

the four simulated responses. The noise level in this experiment is defined as σnoise/σy.
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Figure 7.7: Corn Example: Order of Polynomial Kernel vs. ICOMP

In stead of using the leave-one-out cross validation applied by Rosipal (2001), we use

ICOMP as the model selection criterion to choose the optimal number of principal compo-

nents retained, which is more computationally efficient.

Compared with y3 and y4, y1 and y2 have relative weaker nonlinear relationships with

the regressors, the principal component scores. To model y1, for instance, different orders

of polynomial kernel functions are compared. The optimal polynomial kernel function for

modeling y1 is the 3rd order polynomial kernel (Figure 7.7) and the number of PC retained

is 3 (Figure 7.8).

We compare the optimal polynomial kernel with the selected Gaussian RBF kernel,

exponential RBF kernel and sigmoid kernel in this research (Table 7.2). The interested

readers may use ICOMP to evaluate any other kernel functions if needed. The selected

model is the minimizer of ICOMP. We use R2 and MSE of the test data to validate the

models selected by ICOMP. It is shown that the models selected by ICOMP also have the

smallest testing error or their testing errors are close to the smallest ones.

Since the 700 variables (channels) in this data set is highly correlated, an intuitive

thinking is that not all the 700 variables are needed for the modeling. Again, ICOMP can

be used as the criterion to chose the best subset of the 700 variables with good prediction
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Figure 7.8: Corn Example: Number of PCs vs. ICOMP (Polynomial kernel order 3)

Table 7.2: Corn Data: Univariate KPCR
Kernel Function # PCs ICOMP R2

test MSEtest

y1

Polynomial Kernel (< x, z > +1)3 3 −301.8560 0.97 3.6× 10−4

Gaussian Kernel exp(−‖x−z‖2
2×4 ) 4 −299.1085 0.96 1.1× 10−3

Exponential RBF Kernel exp(−‖x−z‖
2×30 ) 3 -301.3357 0.84 4.5× 10−3

Sigmoid Kernel tanh(0.04 < x, z > +1) 1 -80.3423 0.45 1.5× 10−2

y2

Polynomial Kernel (< x, z > +1)3 3 -301.8490 0.96 3.9× 10−4

Gaussian Kernel exp(−‖x−z‖2
2×3 ) 3 −316.8399 0.95 5.5× 10−4

Exponential RBF Kernel exp(−‖x−z‖
2×10 ) 12 -303.4989 0.92 7.7× 10−4

Sigmoid Kernel tanh(0.04 < x, z > +1) 2 -106.1552 0.62 3.8× 10−3

y3

Polynomial Kernel (< x, z > +1)7 1 -36.3522 0.98 7.4× 10−2

Gaussian Kernel exp(−‖x−z‖2
2×2 ) 3 −38.6037 0.91 0.30

Exponential RBF Kernel exp(−‖x−z‖
2×10 ) 8 -38.2194 0.77 0.78

Sigmoid Kernel tanh(0.0001 < x, z > +1) 1 41.5229 0.77 0.79
y4

Polynomial Kernel (< x, z > +1)8 1 −66.8598 0.98 0.02
Gaussian Kernel exp(−‖x−z‖2

2×10 ) 2 -56.2145 0.95 0.07
Exponential RBF Kernel exp(−‖x−z‖

2×2 ) 8 -65.5052 0.75 0.34
Sigmoid Kernel tanh(0.0001 < x, z > +1) 1 0.4988 0.77 0.32
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ability and small model complexity. However, there are 2700 − 1 possible subset models.

All possible subsets selection is not a reasonable choice. We use GA to search the optimal

subset models. The configuration of GA options are given as follows (Table 7.3). Given

the chosen optimal kernel functions when all the 700 variables are used, the optimal subset

variables chosen by GA using ICOMP as the fitness function is summarized in Table 7.4.

7.7.3 KPCR: Sinc Function

Again, we apply the popular sinc function to test our model selection criterion for KPCR

models. In this numerical example, we demonstrate how ICOMP chooses the optimal kernel

function and the corresponding parameters.

We start with the widely used Gaussian RBF kernel. Given a fixed scale parameter

γ = 3, as the number of PCs retained increases, the lack-of-fit decreases while the complexity

of the model increases (Table 7.5). ICOMP finds the balance point where 6 PCs are retained

(Figure 7.9). This is also the optimal choice where the testing data MSE is around the

minimum. Using the 1000 holdout observations, 9 PCs are retained. Its resulting testing

data MSE is a little higher.

ICOMP is also capable of choosing the optimal scale parameter. However, the range of

the scale parameters must be selected carefully. It is observed that when the scale parameter

of the Gaussian RBF is too small (leading to serious overfitting), the kernel matrix becomes

inaccurate. It is because the small elements of the kernel matrix are treated as zero due to

the limited precision that a computer may achieve. When selecting the range of the scale

Table 7.3: GA Options for KPCR
Number of Generations 30
Population Size 30
Type of Crossover Uniform
Probability of Crossover 0.7
Probability of Mutation 0.01
Keep the Best Model from the Previous Generation Yes
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Table 7.4: Corn Data: Searching Subset Variables using GA
Kernel Function # PCs ICOMP R2

test MSEtest

y1

Polynomial Kernel (< x, z > +1)3 1 -300.7565 0.95 0.00137
Variable ID: 597, 601, 603, 629, 648
y2

Gaussian Kernel exp(−‖x−z‖2
2×3 ) 4 -299.7381 0.94 6.2× 10−4

Variable ID:
647, 649, 651, 654, 656, 658, 659, 661, 662, 663,
664, 665, 668, 669, 670, 671, 672, 673, 674, 675,
677, 679, 680, 682, 683, 688, 689, 692, 694, 696, 697, 699
y3

Gaussian Kernel exp(−‖x−z‖2
2×2 ) 5 -29.6022 0.93 0.22

Variable ID:
647, 648, 655, 656, 659, 660, 661, 664, 665,
668, 674, 675, 678, 679, 680, 684, 685, 690,
y4

Polynomial Kernel (< x, z > +1)8 4 -67.8688 0.94 0.082
Variable ID:
607, 656

Table 7.5: Selecting the Number of PCs using ICOMP
γ ICOMPC1F LOF Complexity MSEho MSEtest
1 80.0 79.0 1.0 0.13413 0.13501
2 19.3 17.3 2.0 0.07229 0.07233
3 21.4 18.3 3.1 0.07229 0.07233
4 -80.0 -84.2 4.2 0.03023 0.02803
5 -77.8 -83.2 5.5 0.03025 0.02810
6 -156.5 -163.4 6.9 0.01113 0.01046
7 -153.9 -162.5 8.6 0.01116 0.01050
8 -151.7 -162.2 10.5 0.01094 0.01046
9 -148.9 -161.5 12.6 0.01102 0.01051

10 -145.9 -160.9 15.0 0.01105 0.01058
11 -142.9 -160.4 17.5 0.01106 0.01071
12 -143.6 -163.9 20.3 0.01124 0.01109
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Figure 7.9: Sinc Function: Selecting Number of PCs using ICOMP

parameter candidates, one should avoid this area. Otherwise, the covariance matrix for

ICOMP may be biased. For the sinc function, one may plot the nature log of the condition

number of the kernel matrix against the scale parameter (Figure 7.10). It can be shown

that the kernel matrix becomes inaccurate when the scale parameter γ is smaller than 1.

Therefore, we decide to choose the optimal scale parameter from the range of [2, 10].

In an experiment of 100 simulations, the most chosen scale parameters are 3 or 4, where

the number of retained PCs is most likely around 6. Using ICOMP to choose the kernel

parameter and the number of PCs, the predictive performance is similar to that where the

1000 holdout observations are used (Table 7.6).

We now compare three popular kernels, including the polynomial kernel, Gaussian kernel

and cubic kernel, using ICOMP as the model selection criterion. The simulation are repeated

100 times. In each simulation, different random errors are generated. It is concluded that

the Gaussian kernel is chosen 75 times, the cubic kernel is chosen 25 times while polynomial

kernel is not good enough to build a model that generalizes well (Table 7.7).
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Figure 7.10: Finding the Range of the Scale Parameters

Table 7.6: Sinc Function: Selecting Scale Parameters (100 runs)
Method Ave. MSEtest Std. MSEtest Ave. # PCs
ICOMPC1F 0.01095 0.00069 6.3
AIC 0.01093 0.00070 6.3
BIC 0.01086 0.00069 6.0
Holdout 0.01081 0.00066 7.2

Table 7.7: Sinc Function: Comparing Kernels (100 runs)
Kernel Ave. MSEtest Std. MSEtest Ave. # PCs Chosen Freq.
Polynomial 0.07674 0.00169 3 0
Gaussian RBF 0.01095 0.00069 6.3 75
Cubic 0.01085 0.00065 5.2 25
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Chapter 8

Relevance Vector Machine

8.1 Introduction

The support vector machines (SVMs), also known as the kernel-based methods (Shawe-

Taylor and Cristianini, 2004), are a set of nonlinear statistical learning techniques that

have drawn much attention since mid-90s. SVM was developed at AT&T Bell Laboratories

by Vapnik and his co-workers (Vapnik, 1995). First appears as a nonlinear binary classifier,

SVM has been widely used in different nonlinear modeling areas including regression, prin-

cipal component analysis, canonical correlation analysis, discriminant analysis, clustering

and classification. The relevance vector Machine (RVM), first proposed by Tipping (2001),

is an improvement of SVM from the Baysian learning perspective. It offers a number of

advantages over the traditional SVM. High sparsity of the kernel matrix is one of the major

highlights of RVM.

An open question left for RVM is the model selection method. The model selection is-

sues of RVM include choosing the form of the kernel function, the parameters of the kernel

function and subset regressors. Currently in the literature, the widely utilized model selec-

tion method for RVM is still the cross-validation (Tipping, 2001). However, the increased

computational intensity is the major drawback. In this chapter, we use an information com-

plexity (ICOMP) (Bozdogan, 1988, 2004a) measure of the RVM model as a novel model
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selection criterion for RVM. ICOMP provides a simple real valued index for each model,

which measures both the lack-of-fit (LOF) and the complexity. The complexity of the model

is controlled to prevent from the overfitting. The optimal RVM model is chosen as the mini-

mizer of ICOMP without using the validation data. We also apply Genetic Algorithm (GA)

to be efficient when searching the optimal subset variables

In the next section, we briefly introduce SVM. The procedure of RVM for the regression

and the logistic regression will be detailed in the sections followed. We then derive the form

of ICOMP for RVM. Some benchmark examples are used for the demonstration including

sinc function, Friedman’s data, Boston’s housing data and Ripley’s data.

8.2 Support Vector Machine

In SVMs, the original p-dimensional training data (in the input space) X ⊆ Rp is nonlinearly

transformed to a high-dimensional feature space through Φ. The traditional linear statistical

learning techniques then are performed on Φ(X), the nonlinear projection of X in the feature

space. The mapping from X to Φ(X) is conducted through the kernel function efficiently.

The kernel function k(xi,xj) is the inner product of two observations in the feature space:

k(xi,xj) =< Φ(xi),Φ(xj) > . (8.1)

Using kernel functions, the explicit form of Φ(X) is not needed. The kernel matrix K,

sometimes called the gram matrix, is a finitely positive semi-definite symmetrical matrix

with elements Kij = k(xi,xj). The kernel matrix is similar as the covariance matrix in the

original data space, which contains the information for the learning. If the dimension of the

input space is higher than the number of training observations, applying the kernel matrix

is more efficient in computation.

Consider the SVM model for the multiple regression in the feature space defined by

y = w0 + Φ(x)w. (8.2)
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The idea of SVM is to find the coefficients w that minimize

1
2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗i ) (8.3)

subject to 



yi − Φ(xi)w − w0 ≤ ε + ξi

Φ(xi)w + w0 − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(8.4)

The collinearity problem is controlled by trying to minimize the norm of the coefficients,

‖w‖. The smaller ‖w‖ will lead to a simpler model, thus better generalization. Minimizing

the second term of (8.3) controls the modeling error, however, will require more compli-

cate model, thus be less general. The constant C > 0 controls the trade off between the

model generalization and the goodness-of-fit. ε is an insensitive parameter which defines a

margin such that the prediction error will be penalized only when it is beyond ε. This is

corresponding to an “ε-insensitive loss function” defined by

|ξ|ε :=





0 if |ξ| ≤ ε;

|ξ| − ε, otherwise.
(8.5)

Since the explicit form of Φ(X) is unknown, SVM is conducted using its dual form through

the kernel function. That is

y(x) = w0 +
n∑

i=1

K(x,xi)wi. (8.6)

Tipping (2001) pointed out several disadvantages of SVM despite its big success in the

machine learning:

1. Cross-validation is needed to estimate the insensitive parameter ε and the trade off

parameter C. This procedure will be either time consuming or wasting of data.
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2. Predictions are not probabilistic. Therefore, the uncertain measurement of the pre-

diction is not possible.

3. The number of coefficients grows steeply with the size of the training observations.

4. The kernel function must satisfy Mercer’s condition.

RVM is a Bayesian treatment of SVM that does not suffer from any of the above lim-

itations. We describe the details of RVM for regression and logistic regression in the next

section.

8.3 Methodology of RVMs

8.3.1 Relevance Vector Regression

Given the observation xi and the response yi, the relevance vector regression (RVR) model

is defined by

yi = f(xi) + εi i = 1, 2, 3, ..., n, (8.7)

where εi ∼ N(0, σ2) are i.i.d. random errors. Using the Bayesian inference notes, there is

p(yi|xi) = N(yi|f(xi), σ2), where f(xi) is defined by

f(xi) = [ 1 K(xi,X) ]w = ψ(xi)w, (8.8)

where K(xi,X) = [k(xi,x1) k(xi,x2) . . . k(xi,xn)] is the 1×n kernel function

row vector and w = [w0, w1, . . . , wn]T contains the regression coefficients. Assume the

response yi are independent to each other, the likelihood function of the n observations can

be defined by

p(y|w, σ2) = (2πσ2)−
n
2 exp

[‖y −Ψw‖2

2σ2

]
, (8.9)

where Ψ = [ ψ(x1) ψ(x2) . . . ψ(xn) ]T is an n× (n + 1) matrix.
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To avoid the overfitting when estimating the parameters w and σ2, one may impose the

constraint to the model. SVM applies the soft margin (Vapnik, 1995) and KRR (Shawe-

Taylor and Cristianini, 2004) includes the ridge parameter as the added bias. From the

Bayesian perspective, the constraint can be imposed using a prior probability distribution.

Tipping (2001) proposed a Gaussian prior over w with zero-mean:

p(w|q) =
n∏

i=0

N(wi|0,
1
qi

), (8.10)

where each qi is a hyperparameter associated with wi. These hyperparameters have the key

contribution to the sparsity of RVM. The Gamma priors (Berger, 1985) are used over the

parameters q and σ2 since they can be treated as the scale parameters:

p(q) =
n∏

i=0

Gamma(qi|a, b), (8.11)

p(β) = Gamma(β|c, d), (8.12)

where β = σ−2 and

Gamma(qi|a, b) = Γ(a)−1baqa−1
i e−bqi . (8.13)

In the following analysis, we let a = b = c = d = 0 such that the above scale priors will be

uniform, thus non-informative. The detailed discussion of the more general priors is covered

in (Tipping, 2001).

Given the priors defined above, the posterior over the unknown parameters is given by

p(w,q, σ2|y) =
p(y|w,q, σ2)p(w,q, σ2)

p(y)
. (8.14)

Given the observed y, the unknown new observation ỹ can be estimated from the same

process. The distribution of ỹ, called the posterior predictive distribution, has the form

of (Gelman et al., 2003):
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p(ỹ|y) =
∫

p(ỹ|w,q,σ2)p(w,q,σ2|y)dwdqdσ2. (8.15)

The posterior p(w,q, σ2|y) can not be computed analytically. However, it can be de-

composed into

p(w,q, σ2|y) = p(w|t,q,σ2)p(q, σ2|y), (8.16)

in which the posterior of the weights has the form defined as

p(w|y,q, σ2) =
p(y|w,σ2)p(w|q)

p(y|q,σ2)
(8.17)

= (2π)−
(n + 1)

2
|Σ|−0.5 exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
, (8.18)

whose mean and covariance are given by

ΣW = (σ−2ΨT Ψ + Q)−1 (8.19)

µW = σ−2ΣΨT y (8.20)

respectively, where Q = diag(q). The marginal likelihood, also known as the ”evidence for

the hyperparameters” (MacKay, 1992a), has the form of

p(y|q, σ2) =
∫

p(y|w, σ2)p(w|q)dw (8.21)

= (2π)−
n
2 |σ2I + ΨQ−1ΨT |− 1

2 exp
{
−1

2
yT (σ2I + ΨQ−1ΨT )−1y

}
.(8.22)

The values of the parameters q and σ2 that maximize the above marginal likelihood can

not be found analytically. The expectation-maximization (EM) algorithm (Hartley, 1958;

Dempster et al., 1977) is applied to estimate the parameters iteratively, treating w as the

hidden variables (or called latent variables). In the expectation step of the jth iteration, the

mean and the covariance of the weights w can be computed (or initialized if j = 1) from

(8.20) and (8.19) using Q and σ2 estimated from the previous iteration. In the maximization
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step of the jth iteration, following MacKay’s work (MacKay, 1992a), let the first derivative

of (8.22) respecting to q be equal to zero. There is

q
(j+1)
i =

γ
(j)
i

µ
2(j)
i

, (8.23)

where µi is the ith posterior mean weight given by (8.20) and γ
(j)
i ∈ [0, 1] is defined as

γ
(j)
i = 1− q

(j)
i Σ(j)

ii , (8.24)

where Σ(j)
ii is the ith diagonal element of Σ(j), the covariance of the posterior w. γi is

interpreted as how well the weight wi fits the data (MacKay, 1992a). Similarly, let the first

derivative with respect to σ2 to be zero. This leads to

(σ2)(j+1) =
‖y −Ψµ(j)‖2

n− Σn
i=0γ

(j)
i

. (8.25)

At the convergence of the EM algorithm, the final estimates q∗, (σ2)∗ and the corresponding

Σ∗, µ∗ can be used for the prediction of the future observation ỹ since

p(ỹ|y,q∗, (σ2)∗) = N(ỹ|µỹ, σ
2
ỹ), (8.26)

where

µỹ = (µ∗)T ψ(x̃) (8.27)

σ2
ỹ = (σ2)∗ + ψ(x̃)TΣ∗ψ(x̃), (8.28)

and where the first term of σ2
ỹ is the estimated noise of the data and the second term is the

uncertainty due to the estimate of w.

In practice, many hyperparameters qi tend to be infinity, which leads to zero weights

wi. The resulting model will only need a few “relevance vectors”, or training observations.

The sparsity of RVM is realized because of this.
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8.3.2 RVM for Logistic Regression

The above procedure for RVM can be easily extended to the logistic regression for the

two-class classification applications. In the logistic regression, the response yi, which is a

Bernoulli random variable, takes the value of 0 or 1, each of which stands for a group label.

The general form of the logistic regression model is

yi = E(yi) + εi. (8.29)

where the expectation E(yi) = πi is the probability that an observation belongs to Group

“1”. The purpose of the modeling is to predict the posterior probability of π. The proba-

bility of observing a specific observation yi is

fi(yi) = πyi
i (1− πi)1−yi . (8.30)

Therefore, the likelihood function is given by

P (y|w) =
n∏

i=1

πyi
i (1− πi)1−yi . (8.31)

The logistic response function is applied to relate π with ψ(xi). It has the form of

E(yi) = πi =
1

1 + exp(−ψ(xi)w)
. (8.32)

Let ηi = ψ(xi)w, then

ηi = ln
πi

1− πi
(8.33)

is called the logistic link function.

The weights w can not be integrated out or calculated analytically to obtain the marginal

likelihood p(y|q). Therefore, the Laplace’s method shown below is utilized to approximate

w iteratively (MacKay, 1992b).

115



1. Given the estimated hyperparameters q from the last iteration, find the ‘most proba-

ble’ weights wMP , which gives the mode of the posterior distribution p(w|y,q). This

is equivalent to finding the w that maximize the following penalized logistic model

since p(w|y,q) ∝ p(t|w)p(w|q):

log {p(t|w)p(w|q)} =
n∑

i=1

[yi log πi + (1− yi) log(1− πi)]− 1
2
wTQw (8.34)

The iteratively reweighted least squares (IRLS) method (Nabney, 1999) is applied for

the efficient optimization.

2. Using the Laplace’s method as the quadratic approximation to the log-posterior at its

mode. The second derivative of (8.34), respecting to w at its mode, is given by

∂2 log p(w|y,q)
∂w2

|wMP = −(ΨTBΨ + Q) (8.35)

where B is a diagonal matrix with bi = πi(1− πi).

3. The posterior p(w|y,q) is approximated by N(wMP ,Σ), where

ΣMP = (ΨTBΨ + Q)−1 (8.36)

wMP = ΣMPΨTBy (8.37)

These two statistics then are used to update the hyperparameter q according to (8.23).

The iteration is repeated until the convergence criterion is satisfied.

After estimating the weights w, (8.32) is used for the prediction of the response.
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8.4 Model Selection Using ICOMP

In the previous discussion, we have assumed a fixed kernel function. When fitting a RVR

model to the data, one must choose an appropriate kernel function and its corresponding pa-

rameters to provide the good model generalization. Furthermore, selecting the appropriate

subset of the independent variables improves both the predictive performance and the gen-

eralization. Currently, cross-validation is the widely used model selection criterion. In this

chapter, we use ICOMP as an alternative model selection criterion when the computational

resources or the number of training observations are limited.

The general form of ICOMP for a univariate model is defined by

ICOMP = −2logL(θ̂) + 2C[Ĉov(θ̂)], (8.38)

where C[·] represents a real-valued complexity of the model and Ĉov(θ̂) represents the

estimated covariance matrix of the parameter estimators of the model. In RVM models,

Ĉov(θ̂) is given by (8.19), the covariances of w. We use the marginal likelihood (8.22)

as the measure of the fitting. There are several variants of ICOMP applied in different

applications, which use different multipliers to the complexity terms or add extra penalty

term (Bozdogan, 2007). In this chapter, we use the posterior expected utility (PEU) version

of ICOMP Bozdogan (2006, 2007) defined by

ICOMPPEU = −2 log
[
p(y|q, σ2)

]
+ k + 2C(Σw), (8.39)

where k is the number of non-zero coefficients wi. Two forms of complexity measures are

compared in this paper. The original complexity measure C1 (Bozdogan, 1990) is defined

by

C1(ΣW) =
k

2
log

(
λ̄a

λ̄g

)
, (8.40)

where λ̄a and λ̄g are the arithmetic mean and the geometric mean of the eigenvalues of ΣW.

A quadratic equivalent measure of complexity using the Frobenius norm is given by (Bao
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and Bozdogan, 2004)

C1F(ΣW) =
1

4λ̄2
a

k∑

i=1

(λi − λ̄a)2, (8.41)

where λi stands for the ith eigenvalues of ΣW.

The above ICOMP forms are used as the universal criteria to select the kernel function

and the subset model. ICOMP is also used to compute the fitness function in GA when per-

forming the subset selection. The interested readers may find the more detailed information

of ICOMP from (Bozdogan, 2004a).

8.5 Numerical Results

In this section, we first use the sinc function to demonstrate the selection of kernel func-

tion and parameters using ICOMP. Then, we demonstrate the subset selection using the

simulated Friedman’s multiple-regressor data. We also apply our subset selection technique

to the famous benchmark data - Boston Housing data. We apply ICOMP to the Ripley’s

binary classification application in our last demonstration.

8.5.1 Relevence Vector Regression: the ‘sinc’ function

The popular sinc function has been widely used as the simulation data in the nonlinear

machine learning area. The sinc function is defined as:

y = sinc(x) =
sin(x)

x
. (8.42)

100 observations were generated within the x range of [-10, 10] as the training data. The

Gaussian noise N(0, 0.12) has been added to the response. Additional 1000 noisy observa-

tions are generated as the testing data. ICOMP is used as the model selection criterion to

choose the optimal kernel function and its corresponding parameters. The mean squared

error (MSE) of the testing data is calculated to evaluate the predictive ability of the selected

RVR model.
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Table 8.1: RVR Sinc Function: Gaussian RBF Kernel
γ CV AIC ICOMPC1 ICOMPC1F MSEtrain MSEtest # RVs
0.1 0.02195 -55.9 -86.9 1095.6 0.00000 0.02262 100
0.2 0.02017 -127.6 -127.6 225.2 0.00000 0.02064 99
0.3 0.02053 79.7 420.1 1688.2 0.00000 0.02097 100
0.4 0.01495 -276.3 -289.5 -264.3 0.00509 0.01471 26
0.5 0.01449 -280.1 -294.1 -288.0 0.00661 0.01402 23
0.6 0.01361 -293.4 -307.1 -306.4 0.00730 0.01300 17
0.7 0.01325 -299.8 -309.6 -305.0 0.00778 0.01265 15
0.8 0.01300 -302.1 -306.6 -286.9 0.00793 0.01261 15
0.9 0.01272 -306.9 -310.0 -305.6 0.00824 0.01250 13
1 0.01243 -305.5 -309.2 -295.3 0.00831 0.01230 12
2 0.01121 -319.5 -324.2 -324.2 0.00970 0.01101 6
3 0.01190 -312.9 -316.0 -316.1 0.01069 0.01106 5
4 0.01176 -298.6 -291.8 -294.2 0.01067 0.01103 6
5 0.01167 -274.1 -255.2 -264.2 0.01080 0.01126 7
6 0.01276 -254.7 -223.0 -241.9 0.01173 0.01255 7

We first use the popular Gaussian RBF kernel to illustrate how ICOMP chooses the

parameters of a kernel function. According to the definition k(x, z) = exp(−γ−2‖x− z‖2),

γ is a scale parameter that controls the model generalization. The optimal γ value is chosen

from the range of [0.1, 6]. The results of a single simulation have been summarized in

Table 8.1. Four parameter selection criteria are compared including cross-validation (1000

validation observations), AIC, ICOMP(C1) and ICOMP(C1F ). In a single simulation, all

four criteria chose γ = 2 as the optimal parameter with only 6 RVs needed (Figure 8.1). In

this simulation, γ = 2 is also corresponding to the minimum testing error of 0.01101. We are

not surprised that cross-validation provides the good generalization because 1000 validation

observations almost represent the whole population. It is glad to see that ICOMP gave the

same result without using any validation data.

Next, we compare different kernel functions assuming we do not know that Gaussian

RBF kernel is the appropriate kernel function. Again, ICOMP is applied as the model

selection criterion to choose kernel functions as well as the parameters for the given kernel

function. The model selection results of a single simulation are summarized in Table 8.2
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Figure 8.1: Simulated Sinc Data: RVM using Gaussian RBF Kernel

and Table 8.3. Both ICOMP forms chose the Gaussian RBF kernel as the optimal kernel

function. The testing data MSE of 0.01101 is low enough since the estimated noise standard

deviation is 0.102, which is very close to the true value of 0.01. The normal probability

plot also confirms the normality of the estimated noise (Figure 8.2). Now, we repeat the

simulation 100 times. At each simulation, ICOMP is used as the model selection criterion

to choose the parameters given the kernel function. The testing errors of the different

kernel functions are summarized in Table 8.4 and Table 8.5. In addition, we summarized

the frequency of being the best kernel (selected using ICOMP) for each kernel out of the

100 simulations. We see the Gaussian RBF kernel has been chosen 70% of the time and

is the most preferred kernel by both ICOMP forms. The average testing data MSE of

the Gaussian RBF kernel is also among the lowest. The side-by-side boxplots (Figure 8.3)

indicate that the Gaussian RBF kernel is consistently better in terms of the testing data

MSE. Therefore, we conclude that both ICOMPC1 and ICOMPC1F work well on choosing

the appropriate kernel function and parameters for the sinc function data.
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Table 8.2: RVR Sinc Function: Comparing Kernel Functions (single run, ICOMPC1)
Kernel Parameter ICOMPC1 MSEtrain MSEtest Est. σ Vectors
Linear Kernel < x, z > -101.4 0.12675 0.13444 0.358 1
Gaussian RBF γ = 2 -324.2 0.00970 0.01101 0.102 6
Linear Spline -230.8 0.01015 0.01027 0.105 8
Exp RBF a = 0.3 -139.5 2.67e-16 0.01913 0.000 100
Cauchy a = 0.9 -322.2 0.00846 0.01243 0.096 8

Sigmoid
a = 0.06
b = 1

-290.6 0.01200 0.01212 0.112 5

TP Spline a = 0.002 -273.0 0.00929 0.01108 0.100 8
Cubic a = 0.03 -250.2 0.01041 0.01097 0.105 6
Bubble a = 0.3 -291.8 0.00283 0.01698 0.063 36
B-Spline N = 1 -307.8 0.00845 0.01329 0.097 13
ANOVA Spline 1 -230.8 0.01015 0.01073 0.105 8
ANOVA B-Spline N = 2 -319.1 0.00856 0.01259 0.097 10

Table 8.3: RVR Sinc Function: Comparing Kernel Functions (single run, ICOMPC1F )
Kernel Parameter ICOMPC1F MSEtrain MSEtest Est. σ Vectors
Linear Kernel < x, z > -101.4 0.12675 0.13444 0.358 1
Gaussian RBF γ = 2 -324.2 0.00970 0.01101 0.102 6
Linear Spline -260.2 0.01015 0.01027 0.105 8
Exp RBF a = 0.7 -218.2 2.97e-11 0.01819 0.000 100
Cauchy a = 0.9 -321.4 0.00846 0.01243 0.096 8

Sigmoid
a = 0.06
b = 1

-294.9 0.01200 0.01212 0.112 5

TP Spline a = 0.002 -289.7 0.00929 0.01108 0.100 8
Cubic a = 0.08 -270.3 0.01035 0.01104 0.105 7
Bubble a = 0.01 -260.9 4.41e-8 0.02163 0.002 99
B-Spline N = 1 -304.4 0.00845 0.01329 0.097 13
ANOVA Spline 1 -260.2 0.01015 0.01073 0.105 8
ANOVA B-Spline N = 2 -316.6 0.00856 0.01259 0.097 10
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Figure 8.2: Simulated Sinc Data: Normal Probability Plot

Table 8.4: RVR Sinc Function: Comparing Kernel Functions (100 runs, ICOMPC1)
Kernel Ave. MSEtest Std. MSEtest Ave. # Vectors Freq.
Linear Kernel 0.13416 0.0023 1 0
Gaussian RBF 0.01160 0.0010 7.4 70
Linear Spine 0.01122 0.0007 7.3 0
Exp RBF 0.01654 0.0015 93.7 0
Cauchy 0.01208 0.0008 10.0 4
Sigmoid 0.01261 0.0019 7.2 0
TP Spline 0.01152 0.0008 8 0
Cubic 0.01125 0.0007 6.4 0
Bubble 0.01596 0.0019 31 3
B-Spline 0.01203 0.0009 10.3 10
ANOVA Spline 0.01122 0.0007 7.3 0
ANOVA B-Spline 0.01195 0.0009 10.0 13
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Table 8.5: RVR Sinc Function: Comparing Kernel Functions (100 runs, ICOMPC1F )
Kernel Ave. MSEtest Std. MSEtest Ave. # Vectors Freq.
Linear Kernel 0.13416 0.0023 1 0
Gaussian RBF 0.01160 0.0010 7.4 70
Linear Spine 0.01122 0.0007 7.3 0
Exp RBF 0.01603 0.0009 93.7 0
Cauchy 0.01209 0.0008 10.1 4
Sigmoid 0.01191 0.0013 6.5 0
TP Spline 0.01152 0.0008 8 0
Cubic 0.01123 0.0007 6.8 0
Bubble 0.01607 0.0019 31.9 3
B-Spline 0.01204 0.0009 10.4 10
ANOVA Spline 0.01122 0.0007 7.3 0
ANOVA B-Spline 0.01199 0.0009 10.1 13
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Figure 8.3: Compare Kernel Functions using ICOMP (a) ICOMPC1 (b) ICOMPC1F
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Table 8.6: RVR Friedman: Gaussian RBF (100 runs)
ICOMP Ave. MSEtest Std. MSEtest Ave. # Vectors
ICOMP(C1) 3.06 0.50 44.9
ICOMP(C1F ) 3.21 0.50 41.1

8.5.2 RVR: Friedman

We now move to the regression problems with multiple regressors. Generally, not all the

regressors are independent to each other. Besides choosing the optimal kernel function and

parameters, one might be interested in choosing the best subset regressors. The subset

regressor selection will help with the model generalization and the practical interpretation.

In this numerical experiment, we applied Friedman’s (Friedman, 1991; Tipping, 2001)

simulation function. The true function is defined as:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +
10∑

i=6

0× xi. (8.43)

The 10 independent variables x1 − x10 are randomly generated from the unit hypercube.

Variable x6 − x10 have no contribution to the response y. The Gaussian noise N(0, 12)

is added to the response. We applied the widely used Gaussian RBF kernel to this data.

ICOMP is utilized to choose the optimal scale parameter of the kernel function. We first

include all the 10 regressors. The average MSE for the test data is around 3 (Table 8.6).

Then, we compare all the 210 − 1 = 1023 subset models (include at least one regressor) in

terms of the ICOMP score given the selected optimal kernel. The optimal subset model is

the minimizer of ICOMP. We hope the selected model excludes x6 − x10.

The result of the simulation (Table 8.7) indicates the optimal subsets contain x1 − x5

and the best subset model selected by ICOMP contains x1−x5 only. The nuisance variables

x6− x10, as expected, are not included. The testing error of this subset model is 0.38. It is

a tremendous improvement compared with 2.86 of the saturated model. Only 30 RVs are

needed in stead of 50 for the saturated model, which leads to the better sparsity. This result

124



Table 8.7: RVR Friedman: Subset Selection (1 run) Gaussian RBF Kernel γ = 2
Full Model ICOMPC1 MSEtrain MSEtest #Vectors
12345678910 -392.0492 1.01 2.86 55
Best Subsets ICOMPC1 MSEtrain MSEtest #Vectors
12345 -559.3 0.25 0.38 30
1234569 -541.3 0.79 1.93 31
123459 -510.2 0.43 0.85 33
12345689 -503.8 0.91 2.42 34
Full Model ICOMPC1F MSEtrain MSEtest #Vectors
12345678910 -429.4 1.01 2.86 55
Best Subsets ICOMPC1F MSEtrain MSEtest # Vectors
12345 -650.5 0.25 0.38 30
1234569 -564.9 0.79 1.93 31
123459 -553.2 0.43 0.85 33
123457 -534.8 0.48 0.85 34
123456 -529.5 0.39 0.82 33
1234510 -527.9 0.42 0.77 37

is also comparable to Tipping’s η-RVM (Tipping, 2001). The η-RVM algorithm improves

RVM by assigning and estimating additional parameters ηi to each variables respectively.

However, as commented by Tipping, estimating ηi is conducted by a gradient-based method.

The computational intensity of the estimation is the major disadvantage of η-RVM. Apply-

ing the subset selection overcomes this problem. Even if the number of variables is relative

big, where the all-possible-subset-selection (APSS) is practically impossible or inefficient,

GA can be applied to find the optimal subsets and save the computation time dramatically.

It may not be necessary to apply GA for this 10-variable subset selection problem

since there are only 1023 subsets. However, we apply the GA subset selection for the

demonstration purpose. The GA parameters configured for this example is summarized in

Table 8.8. We force the best subset of the current generation goes to the next generation

without crossover or mutation. The best subset of the initial population is {x2, x4, x5, x10}.
GA found the best subset since the 5th generation (Table 8.9). In this experiment, only 500

subsets (not distinct) are evaluated. Practically, one may want to use more generations (for

instance 100) to reach the convergence. One may argue that will require more computation
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Table 8.8: GA Parameters for Friedman Data
ngen 10
npop 50
Pcross 0.9
Pmutation 0.01
Elitism YES
Type of crossover Uniform

Table 8.9: RVR Friedman Data: GA for Subset Selection
Generation Best Subset ICOMPC1

1 2 4 5 10 -415.8
2 2 4 5 -415.9
3 1 2 4 5 6 9 -438.8
4 1 2 4 5 6 9 -438.8
5 1 2 3 4 5 -559.3
6 1 2 3 4 5 -559.3
7 1 2 3 4 5 -559.3
8 1 2 3 4 5 -559.3
9 1 2 3 4 5 -559.3

10 1 2 3 4 5 -559.3

then APSS. It is true for this 10-variable model. However, when the number of variables

increases, the total number of subsets increases very fast. When using GA, it is not necessary

to further increase the population size or the generation number. From this point of view,

GA is efficient for the scenarios with large number of variables. To confirm the robustness of

the GA solutions, we repeat the GA procedure 100 times with a random initial population

for each run. It is concluded that the true model is selected 56 times. There are 38 times

that the selected models include the true model and 2 to 3 nuisance variables. We think

this result is acceptable.
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Table 8.10: RVR Bonston Housing: Gaussian RBF Kerenel (1 run)
γ ICOMPC1 LOF 2C1 MSEtrain MSEvali MSEtest #W
0.1 -374.7 -1074.3 298.7 1.57E-16 79.7223916 70.39 401
0.2 171.8 -1236.8 1007.6 1.56E-14 59.8575188 35.63 401
0.3 951.2 -1272.6 1822.8 1.00E-11 44.5588249 19.63 401
0.4 1715.6 -1093.0 2409.7 5.39E-07 37.6876285 23.51 399
0.5 -702.0 -1322.7 439.7 0.93 21.9008714 5.32 181
0.6 -627.5 -1284.6 500.1 1.23 14.8489666 6.31 157
0.7 -648.0 -1302.5 505.5 1.20 11.8526334 6.36 149
0.8 -685.2 -1275.1 456.8 1.36 9.71695417 5.06 133
0.9 -626.8 -1266.0 521.1 1.69 8.97113256 4.54 118
1 -609.7 -1253.6 533.9 1.78 8.44486925 3.96 110
2 -525.1 -1097.3 494.2 2.67 10.5143119 3.22 78
3 4103.5 -919.1 4630.6 2.71 10.4656171 3.82 392
4 -900.9 -1060.6 130.6 7.48 12.6226372 8.19 29
5 -898.7 -1053.9 129.2 7.68 14.1614114 9.17 26
6 1717.1 -1022.3 2565.3 7.38 13.6352305 8.31 174

8.5.3 RVR: Boston Housing Data

In this experiment, we apply RVR to the popular benchmark - Boston Housing. Originally

published by Harrison and Rubinfeld (Harrison and Rubinfeld, 1978), the Boston Housing

data set includes 13 environmental and social factors that are believed to be relevant to the

median value of owner-occupied homes (Appendix A). In stead of transforming the original

variables as done by Harrison, a nonlinear modeling technique can be applied on the original

variables. Therefore, the Boston Housing data set has been widely used as the benchmark

of the kernel-based methods.

The total of 506 observations were randomly split into 406 training observations, 80

validation observations and 25 testing observations. The validation data is needed only

when the 2-fold cross-validation is utilized to choose the optimal kernel function. All the 14

variables are linearly scaled to [−1, 1]. Following the current literature, the Gaussian RBF

kernel is applied. Again, ICOMP is utilized to choose the optimal scale parameter of the

saturated model. The average MSE and the standard deviation of MSE of the testing data

are evaluated.
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Figure 8.4: Boston Housing: 100 Simulations

In a single simulation (Table 8.10), ICOMPC1 chose γ = 4 as the optimal scale para-

meter corresponding to the testing error of 8.19. If the cross-validation method was used,

one should have chosen γ = 1, which is the minimizer of the validation data error. The

testing data MSE of this model is 3.96 with 110 RVs. However, one can see this is not likely

to be the optimal model because the average number of RVs is 39 and the average testing

data error is 7.46 based on the 5-fold cross-validation results (Tipping, 2001). This implies

that this model happened to be good for the given testing data and may not be general

enough for the other data. ICOMPC1 did not choose γ = 1, 2 or 3 where the testing errors

are tremendously smaller because those models have much higher complexity due to the

redundant RVs.

We repeat the simulation 100 times (Figure 8.4). It is shown that ICOMPC1F give the

comparable testing testing data MSE.

Besides selecting the right scale parameter of the Gaussian RBF kernel, one may be

interested in finding the factors, among the 13 potential factors, that have crucial contri-

bution to the median housing price. We may conduct the all possible subset (8191 subsets)
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Table 8.11: RVR Boston Housing: All-Possible-Subset Selection
Model ICOMPC1 MSEtrain MSEtest # w

Best 1 5 6 7 9 11 12 13 -971.3 9.43 12.55 16
13 vars. 1 2 3 4 5 6 7 8 9 10 11 12 13 -900.9 7.48 8.19 29
12 vars. 1 2 3 4 5 6 7 8 10 11 12 13 -889.5 7.63 8.16 30
11 vars. 1 2 4 5 6 7 8 9 11 12 13 -912.8 8.34 9.52 25
10 vars. 1 2 5 6 7 8 9 11 12 13 -953.7 8.56 10.32 22
9 vars. 1 5 6 7 8 9 11 12 13 -955.2 8.63 10.14 20
8 vars. 1 5 6 7 9 11 12 13 -971.3 9.43 12.55 16
7 vars. 1 5 6 7 9 11 13 -966.3 9.89 13.17 14
6 vars. 5 6 7 9 11 13 -950.7 10.73 13.99 13
5 vars. 5 6 9 11 13 -944.9 11.21 19.10 11
4 vars. 6 11 12 13 -895.6 14.19 23.67 8
3 vars. 5 6 11 -822.0 19.10 47.15 6
2 vars. 6 7 -689.6 27.69 40.33 4
1 vars. 10 -418.3 61.81 80.06 2

selection using ICOMP as the model evaluation criterion. Alternative, one may use the ge-

netic algorithm (GA) to find the optimal (may not be the best) subset more efficiently. We

will demonstrate both to the Boston Housing data. GA is extremely useful if the number

of variables is relative big.

The results of the all-possible-subset selection using ICOMPC1 as the criterion are

summarized in Table 8.11. The best subset model excludes ZN, INDUS, CHAS, DIS and

TAX. It offers the better sparsity (16 RVs) but relative higher testing error (12.55) compared

with the saturated model. We see that the 12-variable-model or the 13-variable-model is

the best in terms of the predictive performance for the 25 testing observations in this

experiment. However, there are correlated variables that bring the redundant information.

That is the reason that ICOMP did not choose these two complex models. We believe

that variable selection will help us understand the contribution of individual variables thus

give us better practical interpretation. Therefore, we also present the best subset for each

particular size.

In the 12-variable-model, RAD is excluded. RAD is an accessability variable that should

have positive impact on the housing values. It is shown that RAD and TAX have very high
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positive correlation (r = 0.91). RAD also has relative high positive correlation with other

variables including CRIM, INDUS, NOX and DIS. For instance, DIS, also a accessibility

variable, can reflect the nearnesss to workplace which RAD can explain. Therefore, RAD is

not necessary to be included since its contribution can be provided by some other variables.

As we can see, the 12-variable-model actually has slightly smaller testing error. The 11-

variable-model further dropped INDUS, the negative environmental influence due to the

industry. INDUS is highly correlated (r=0.76) with the accessibility variable DIC and the

air pollution variable NOX. Therefore, we are not surprised that INDUS is not in the model.

The increasing of the testing error (9.52) is still acceptable. We can compare the variable

selection results with some works in the literature. In Fukumizu (2004) and Breiman’s

(1985) work, RM, LSTAT, PTRATIO and TAX are selected as the variables with the most

important contribution. However, the air pollution variable NOX is excluded from their

models. Breiman claimed that the convex pattern between NOX (actually NOX2 in his

model) and MV (the median housing value) is difficult for the linear model to pick up.

Both Breiman (1985) and Harrison (1978) agreed that NOX has marginal contribution to

MV. Our best 5-variable-model includes NOX, RM, RAD, PTRATIO and LSTAT, which

agrees well with the previous work. TAX is not included in our model. However, TAX has

0.91 correlation with RAD and 0.66 correlation with NOX. We have reason to believe its

contribution has been explained by the other variables in the model.

8.5.4 RVLR: Ripley’s Data

The well-known Ripley data set problem consists of two classes where the two-dimensional

data for each class have been generated by a mixture of two Gaussian distributions.

In RVLR, we define p as the probability that an observation belongs to Class “1”.

The classification is done by comparing the probabilities (or the membership). If p > 0.5,

assign the observation to Class “1”, otherwise, to Class “0”. 100 training observations are

randomly selected from the original Ripley’s 250 training data. The testing data includes

1000 observations.
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Table 8.12: RVR Ripley’s Data: Gaussian RBF Kernel (1 run)
γ ICOMPC1 ICOMPC1F Error-train% Error-test% #w

0.1 113.7 135.2 6 14 22
0.2 40.1 40.0 9 8.7 7
0.3 22.5 21.6 8 8.1 4
0.4 21.6 21.6 10 8.1 4
0.5 21.4 20.5 11 8.6 4
0.6 22.7 21.5 11 9 4
0.7 26.6 24.6 11 8.8 4
0.8 29.4 26.8 12 9 4
0.9 28.9 26.2 13 9.3 4

1 25.2 23.5 15 9.9 4
2 23.2 18.7 12 10.5 2
3 26.4 20.4 12 10.4 2
4 28.8 21.5 12 10.4 2

We utilize the popular Gaussian RBF kernel. Different scale parameters γ have been

compared (Table 8.12). The optimal scale parameter is the minimizer of ICOMP. The

optimal scale parameter selected by ICOMP(C1) is γ = 0.5, corresponding to the test

classification error of 8.6%. Only 4 RVs are needed (Figure 8.5).

We now repeat the simulation 100 times. In each simulation, a random sample of 100

training observations are selected from the original 250 observations. This experiment leads

to the average testing data classification error of 9.8% when using ICOMP as the model

selection criterion. If we fix the scale parameter to 0.5, as Tipping illustrated in his work

Tipping (2001), the average classification error is 9.6%. We would say the performance of

both ways are similar.

8.5.5 RVLR: Heart Data

The nuclear magnetic resonance (NMR) imaging has been used to identify fatty tissues in

the arteries in order to early detect the cause of heart attack. NMR shows blood flow as

well details of the aorta and heart valves. The NMR aorta data applied in this research

was collected by Dr. Pearlman (1988) at the Medical School of the University of Virginia.

131



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

RVM Classification of Ripley’s synthetic data
Class 1
Class 2
Decision boundary
p=0.25/0.75
RVs

Figure 8.5: Ripley’s Data: RVM Classification Using Gaussian RBF Kernel

Data is pooled from 418 patients. There are total of 20 variables including radius, angle,

and 16 different image acquisitions variables. The first 194 patients belonged to the class

of early atheroma. 20% of the observations in each class are used as the training data. The

rest 80% are used as the testing data.

All 20 variables are used first. Different kernel functions, including Linear, Guassian

RBF, Cauchy and Cubic, are compared using ICOMPPEUC1F (Table 8.13). It can be

concluded that the linear kernel is the optimal with in terms of the ICOMP values. Actually,

this data can be easily separated (Figure 8.6). It is not surprised that only two RVs are

necessary for the training. A linear classifier is good enough using just Variable 1 and

Variable 2. Including all 20 variables may even decrease the classification rate besides

increasing the model complexity. We now conduct the subset selection to decide which

variables are critical for the classification. The number of subsets is 220 − 1 = 1, 048, 575.
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Table 8.13: RVRLR: Aorta Data Compare Kernels (Saturated Model)
Kernel Parameter ICOMPPEUC1F # RVs Training Error Testing Error
Linear 5.23 2 0 0
Polynomial Order = 3 7.74 2 0 0
Cubic a = 0.09 11.81 2 0 0.60
Gaussian γ = 2 13.59 3 0 1.50
Cauchy a = 1.1 14.05 3 0 0.30
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Figure 8.6: Aorta Data: RVM Classification Using Linear Kernel
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Table 8.14: RVRLR: Aorta Data Subset Selection
Kernel Model ICOMP # RVs Train Test
Linear 1 2 3 5 7 8 10 11 12 13 14 16 17 18 19 20 4.76 2 0 0
Polynomial3 1 2 4 5 9 13 14 17 18 20 6.54 2 0 0
Cubic 1 2 6 7 10 13 17 7.40 2 0 0
Gaussian 2 3 5 9 10 11 12 13 15 17 18 19 7.93 2 46.43 46.41
Cauchy 1 2 6 7 12 19 9.68 2 0 0

Therefore, we perform a GA procedure to find the optimal subsets efficiently. We use

50 generations for each search with the population size of 50. It can be concluded the

best subset still comes from the linear kernel (Table 8.14). The Gaussian RBF kernel is

not appropriate for this data whose best subset leads to about 46% classification error.

The other kernel functions also have subsets with zero classification error. However, their

complexity are higher. The best subsets of the Linear, Polynomial, Cubic and Cauchy

kernel all include the first two variables, which can separate two classes easily (Figure 8.6).
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Chapter 9

Conclusions and Recommendations

of Future Work

9.1 Conclusions

This dissertation extends the using of ICOMP as the model selection criterion to kernel-

based regression analysis. This model selection criterion utilizes a simple real-valued information-

theoretic measure of complexity to evaluate the goodness-of-fit and the generalization of each

candidate model without using the validation data. It is used to choose kernel functions, the

parameters of the kernel function, parameters of the regression models, and the best subset

of the input variables. Under the circumstance where the number of input variables is large,

ICOMP and the Genetic Algorithm are combined to find the optimal subsets efficiently. The

regression analysis applications that have been discussed in this dissertation include kernel

ridge regression, kernel partial least squares regression, kernel principal component anal-

ysis, kernel principal regression, relevance vector machine regression and relevance vector

machine logistic regression. Our numerical results indicate that kernel models selected by

ICOMP have comparable (sometimes better) predictive performance as those chosen by

using cross-validation. However, the decreasing of the computational time is tremendous

when ICOMP is used.

135



For the kernel ridge regression, ICOMP is capable of choosing the ridge parameter,

comparing the kernel functions, choosing the kernel parameters given the form of the kernel

function, and choosing the optimal subset of independent variables. This dissertation pro-

vides the ICOMP forms for KRR using the exact covariance and the asymptotic covariance

(using inverse Fisher’s information). This dissertation also derives the interval estimates

of the kernel ridge regression and the weighted kernel ridge regression. We compared four

forms of ICOMP with cross-validation using the simulated sinc function. It is concluded

that ICOMPC1, which scores the exact covariances of the estimated regression coefficients,

outperforms the others and gives the similar results as LOOCV does. In the repeated sim-

ulation experiments, the models chosen by LOOCV is quite different due to the randomly

selected validation data for each run. The models selected by ICOMP are more consistent

and are generally among a small group of similar candidates. Using ICOMP as the model

selection criterion, KRR successfully picked the desired variables of the Friedman’s data

with 100% correct rate. It is also illustrated using Friedman’s data that applying Genetic

Algorithm has the similar performance without conducting the all possible subset selection.

Applying the PEU version of ICOMP to KPLS, it is observed that ICOMP successfully

chooses the optimal number of latent variables. This dissertation also proposes a regular-

ization method to provide a better estimate of the error variance, which is used in ICOMP

to compare different kernel functions. The numerical experiments indicate that ICOMP’s

performance is very close to that of the cross-validation method. ICOMP also outperforms

AIC and SBC in 100 simulations. For the Friedman’s data, combining ICOMP and GA, the

proposed model selection criterion chooses the desired subset of the independent variables

99% of the time.

Using the multivariate form of ICOMP to KPCA, it is illustrated using the toy example

that ICOMP chooses the Gaussian RBF kernel as the optimal kernel function among four

candidates with 8 PCs retained which reflects 95% of the total variance. When the Gaussian

RBF kernel is utilized, the optimal scale parameter selected by ICOMP is similar as the one
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selected by the cross-validation method. This dissertation also demonstrates that ICOMP

can be used to choose the kernel function and the number of PCs for KPCR.

This dissertation uses ICOMP as the model selection criterion to compare different

kernel functions and choose the optimal subset of the independent variables. The numer-

ical results indicate that ICOMP is as good as the cross-validation method in finding the

optimal kernel parameters. ICOMP is computationally more efficient compared with cross-

validation. Therefore, it is more efficient to use ICOMP to select kernel functions besides

selecting the parameters given the form of a kernel function. The proposed method is suc-

cessfully applied to both the relevance vector regression and the relevance vector logistic

regression for the classification. It is also demonstrated that variable subsetting may in-

crease the predictive ability of the model tremendously. In the current literature, η-RVM is

used for the Friedman’s data to achieve smaller prediction error. It is very time consuming

because η-RVM uses a nonlinear gradient search procedure. This dissertation uses ICOMP

as the model selection criterion and GA as the searching technique to choose the optimal

subset of the independent variables. The selected model has a comparable prediction error

and the searching procedure is very efficient.

9.2 Recommendations of Future Work

The model selection criterion used in this dissertation for the univariate kernel-based re-

gression analysis applications can be extended to the multivariate applications following

Bozdogan’s ICOMP forms for the linear multivariate regression (Bozdogan, 1990, 2004a).

The ICOMP form for KPCA used in this dissertation depends on the technique of ap-

proximating pre-images. The pre-image approximation method applied in this dissertation

uses different formulas for different kernel functions. Furthermore, the pre-images of some

kernel functions are not available using this approximating method. We hope to develop

a measure of lack-of-fit (for computing ICOMP) in the future that does not require the

approximating of pre-images.
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The Gaussian noise has been assumed in this dissertation. It can be generalized to

the non-normal distributions such as Power Exponential (PE) and family of elliptically

contoured (EC) error distributions (Liu, 2006).
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Appendix

A1 Description of Sinc Function

The sinc function has been widely used as the simulation data in the nonlinear machine

learning area. The sinc function is defined as

y = sinc(x) =
sin(x)

x
(A1.1)

In each simulation, 100 observations were generated within the x range of [-10, 10] as the

training data. The Gaussian noise N(0, 0.12) has been added to the response. Additional

1000 noisy observations were generate as the testing data. This testing data is treated as

the validation data when cross-validation is used for the model selection.

A2 Description of Friedman’s Data

The true function of the Friedman’s function Friedman (1991); Tipping (2001) is defined as

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +
10∑

i=6

0× xi (A2.2)

The 10 independent variables x1 − x10 are randomly generated from the unit hypercube.

Variables x6 through x10 have no contribution to the response y. The Gaussian noise

N(0, 12) is added to the response.
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A3 Description of Boston Housing Dataset

Source: StatLib library, Carnegie Mellon University

Original Publication: Harrison, D. and Rubinfeld, D.L. “Hedonic prices and the demand

for clean air”, J. Environ. Economics & Management, vol.5, 81-102, 1978.

Data Description: Concerns housing values in suburbs of Boston.

Number of Observations: 506

Number of Independent Variables: 13 continuous variables (including ”class” attribute

”MEDV”), 1 binary variable (CHAS).

Response: MEDV: Median value of owner-occupied homes in 1000’s

Independent Variable Description:

1. CRIM: per capita crime rate by town

2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

3. INDUS: proportion of non-retail business acres per town

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

5. NOX: nitric oxides concentration (parts per 10 million)

6. RM: average number of rooms per dwelling

7. AGE: proportion of owner-occupied units built prior to 1940

8. DIS: weighted distances to five Boston employment centers

9. RAD: index of accessibility to radial highways

10. TAX: full-value property-tax rate per 10, 000

11. PTRATIO: pupil-teacher ratio by town

12. B: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

13. LSTAT: lower status of the population

Missing Values: None.
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