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Abstract

In this study, we develop algorithms to solve the Multi-Sample Cluster

Analysis (MSCA) problem. This problem arises when we have multiple sam-

ples and we need to �nd the statistical model that best �ts the cluster structure

of these samples. One important area among others in which our algorithms

can be used is international market segmentation. In this area, samples about

customers�preferences and characteristics are collected from di¤erent regions

in the market. The goal in this case is to join the regions with similar cus-

tomers�characteristics in clusters (segments).

We develop branch and bound algorithms and a genetic algorithm. In

these algorithms, any of the available information criteria (AIC, CAIC, SBC,

and ICOMP) can be used as the objective function to be optimized. Our

algorithms use the Clique Partitioning Problem (CPP) formulation. They are

the �rst algorithms to use information criteria with the CPP formulation.

When the branch and bound algorithms are allowed to run to completion,

they converge to the optimal MSCA alternative. These methods also proved to

�nd good solutions when they were stopped short of convergence. In particu-

lar, we develop a branching strategy which uses a "look-ahead" technique. We

refer to this strategy as the complete adaptive branching strategy. This strat-

egy makes the branch and bound algorithm quickly search for the optimal

solution in multiple branches of the enumeration tree before using a depth-

�rst branching strategy. In computational tests, this method�s performance

was superior to other branching methods as well as to the genetic algorithm.
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Chapter 1

Introduction

Cluster analysis is the assignment of a number of objects into homogenous

and mutually exclusive subsets, known as clusters, such that both the degree

of similarity of the objects within each subset and the degree of dissimilar-

ity between all subsets is at the maximum level possible. Because cluster

analysis methods have been used in a wide variety of areas, including biology,

psychology, medicine, arti�cial intelligence, pattern recognition, computer sci-

ence, and market segmentation, it is almost impossible to survey all that has

been written on this subject. However, here we are considering the Multi-

Sample Cluster Analysis (MSCA) problem, which was originally introduced

by Bozdogan (1981, 1986). This problem is described in detail in Section 1.1.

Many other sources of general information on clustering individuals are also

available, see, e.g., Everitt (1993) and others.

Cluster analysis requires having a speci�c mathematical objective func-

tion, which needs to be maximized or minimized in order to determine the

best clustering alternative. Many kinds of objective functions have been used.
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The type of objective function used depends on the area of study it is being ap-

plied in and the purpose of the study. The objective functions used include the

Within Groups Sum of Squares (WGSS), the maximum cluster diameter, sum

of binary relations, classical hypothesis testing, and functions of the determi-

nant and/or trace of the within and/or between sum of squares and products

matrices (Rao 1971; Marriott 1982; Grotschel and Wakabayashi 1989). In this

study, we consider all of the available general statistical information criteria.

These information criteria are described in Section 1.2.

As previously noted, the MSCA problem arises in many areas of applica-

tions, including biology and remote sensing. However, the area of application

we are mainly interested in for this study is the area of international market

segmentation. International market segmentation has gained growing atten-

tion recently due to the increasing pressures of globalization and competition

(Steenkamp and Hofstede 2002). An overview of this area of application is

presented in Section 1.3.

The clustering of individuals problem has a combinatorial nature, and

many combinatorial algorithms have been developed to solve it. The clus-

tering problem has been formulated as an Uncapacitated Facility Location

problem or as a Set Partitioning problem, depending on the speci�c prob-

lem under consideration. Because these problems are well-known NP-hard

problems (Wolsey 1998), an "e¢ cient" algorithm is not likely to be found. Ef-

�cient here means that the time required to solve the problem is a polynomial

function of the size of the problem (Wolsey 1998). Most of the algorithms

used for the clustering of individuals problem have been of the heuristic kind,

like hierarchical and k-means clustering algorithms, which does not guarantee

2



�nding the optimal clustering alternative. However, many other approaches

proved practical for speci�c problems. Details of this topic are surveyed by

Mulvey and Crowder (1979). In this research, we look at the MSCA prob-

lem from a mathematical programming point of view, consider three available

formulations, and choose one of these formulations�the Clique Partitioning

Problem formulation (CPP)� in Chapter 2. We also provide a variation of

the CPP formulation. Branch and bound algorithms, which use the chosen

formulation, and their performance results in many experiments are presented

in Chapter 3. In Chapter 4, an adaptive clustering genetic algorithm (GA)

with re-initialization, which also uses the CPP formulation as its encoding

scheme, is presented. The GA�s performance is discussed and compared to the

performance of the branch and bound algorithms.

1.1 Multi-Sample Cluster Analysis (MSCA)

This subsection is an overview of Bozdogan�s original work (1981, 1986). Boz-

dogan uses Model-Selection criteria to introduce Multi-Sample Cluster Analy-

sis (MSCA), the act of clustering samples, as an alternative to Multiple Com-

parison Procedures (MCPs) in multi-sample data analysis.

In classical statistics, the Analysis of Variance (ANOVA) is used for com-

paring two or more univariate samples, and the Multivariate Analysis of Vari-

ance (MANOVA) is used for comparing multivariate samples. MCPs are based

on these analyses. However, Bozdogan argued that the ANOVA andMANOVA

analyses are not informative. Hence, he introduced MSCA as a useful proce-

dure to compare all possible clustering alternatives using e¢ cient combinato-

3



rial algorithms rather than making an arbitrary choice among the clustering

alternatives.

One of the most controversial aspects of the classical statistics approach

is to arbitrarily �x the level of signi�cance � at 1%; 5%; or 10% prior to the

test. Another problem in classical statistics is performing many pair-wise

tests, which increases the probability of rejecting at least one null hypothesis

when it is actually true. Many scholars tried to solve this multiplicity problem

by using various methods to adjust the signi�cance level. However, it is still

unclear which of these methods works best. To determine the required number

of pair-wise tests, let K be the number of samples. In MCPs,
�
K
2

�
= K(K�1)

2

tests are required to perform all pair-wise comparisons among the K groups.

However, MCPs can not handle hypothesis testing for more than two samples

and must be modi�ed accordingly. Despite all of these problems, MCPs are

the second most frequently applied type of statistical methods (Mead and Pike

1975). These and other problems with MCPs caused Hsu to write, "If they

rank second in frequency of use, they rank perhaps �rst in frequency of abuse"

(Hsu 1996).

The problem that MCPs try to solve can be looked at as clustering means,

groups, samples, or treatments. Plackett, in his discussion of the review paper

by O�Neill and Wetherill, was the �rst to suggest the use of cluster analysis in

place of an MCP (O�Neill and Wetherill 1971). Later, others attempted to use

cluster analysis in similar applications. However, MSCA, which is also called

K-Group Classi�cation or K-Sample Cluster Analysis, is new and di¤erent

radical approach. In this new approach model selection criteria is used to

choose the best clustering alternative. The model selection criteria do not

4



include any arbitrary choice. Instead, they achieve parameter parsimony by

adapting themselves to the number of parameters estimated in the model and

adjusting the level of signi�cance accordingly. These criteria are described in

detail in Section 1.2.

In MSCA a collection of groups, samples, pro�les, or treatments are

clustered into homogeneous subsets. This problem is more complicated than

clustering individuals or objects in single-sample cases.

Following Bozdogan (1981, 1986), suppose each object or observation has

p response measures (dependent variables) in all K groups, samples, or factor

levels. Let

D(n� p) =

266666664

D1

D2

:

DK

377777775

(n1 � p)

(n2 � p)

:

(nK � p)

(1.1)

be a data matrix of K groups or samples, where Dg(ng � p) is the matrix of

the gth group�s observations, g = 1; 2; ::; K, and n =
PK

g=1 ng. In MSCA, we

try to partition the K samples into k homogeneous clusters where k � K is

to be determined. Researchers try to choose the smallest possible k that is

consistent with the data because this choice will give a robust test statistic,

will achieve the desired parsimonious grouping of samples, and will reduce the

dimensionality of the multi-sample data set.

The �rst step in MSCA is to generate all possible clustering alternatives

using e¢ cient combinatorial algorithms. Next, an information criterion is

computed for all di¤erent groupings without making an arbitrary choice among

5



the clustering alternatives. Then, the clustering alternative with the minimum

information criterion value is chosen.

Duran and Odell (1974) found the following formula to determine the

number of ways to cluster K samples into k clusters where k � K such that

none of the k clusters is empty. This is given by

kX
g=0

(�1)g
�
k
g

�
(k � g)K : (1.2)

However, the order of the k clusters is irrelevant. Hence, the total number of

clustering alternatives of K samples into k clusters, which is called the Stirling

Number of the Second Kind, is

w = S(K; k) =
1

k!

kX
g=0

(�1)g
�
k
g

�
(k � g)K : (1.3)

On the other hand, if the number of clusters k is unknown, then the total

number of clustering alternatives is

KX
k=1

S(K; k): (1.4)

To show the di¢ culty of the MSCA problem, we include Table 1.1 which

shows the total number of clustering alternatives for a number of K values

along with 2K (exponential expression of K). This table shows that for a

large number of samples, it is prohibitive to try to enumerate all possible

solutions. In Chapter 2, we show how some researchers have tried to use

practical algorithms to �nd the best solution without enumerating all possible

solutions. In Chapters 3 and 4, we present algorithms speci�cally for MSCA

6



Table 1.1: The size of the MSCA problem.
K Exponential Stirling
1 2 1
2 4 2
3 8 5
4 16 15
5 32 52
6 64 203
7 128 877
8 256 4140
9 512 21147
10 1024 115980
11 2048 678570
12 4096 4213600
13 8192 27644000
14 16384 1:91� 108
15 32768 1:38� 109
16 65536 1:05� 1010
17 131072 8:29� 1010
18 262144 6:82� 1011
19 524288 5:83� 1012
20 1048576 5:17� 1013
40 1:09951� 1012 1:5745� 1035
60 1:15292� 1018 9:77� 1059

using information criteria and the CPP formulation.

1.2 Information Criteria

The information criteria optimization approach for statistical model selection

was �rst introduced by Akaike (1973). This pioneering work joined likelihood

theory and information theory to produce a signi�cant and straightforward

approach for statistical model selection. Later, many other information cri-

teria were introduced, including CAIC, SBC, and ICOMP. Each information

7



criterion has its own advocates. However, comparing or recommending any of

these information criteria is beyond the scope of this study. Nevertheless, we

will provide the users of these information criteria with algorithms to solve the

MSCA problem e¢ ciently.

1.2.1 General Structure

The general structure of any information criterion consists of two parts as

follows:

Information Criterion (Model) = Lack of Fit term+ Penalty term. (1.5)

The input to the information criterion is the statistical model considered. The

lack of �t term�s value shows how well the model �ts the data. This term is

negative two times the log of the maximized likelihood function, as follows:

Lack of Fit term = � 2� log(Maximized Likelihood Function):

This expression must be derived for each model. The expressions for the MSCA

problem were derived by Bozdogan (1981, 1986, 2004) and are presented in

Subsections 1.2.6 and 1.2.7.

All information criteria have the same lack of �t term. The penalty term

expression depends on the selected information criterion and is presented in

Subsections 1.2.2-1.2.5. Complex models, which have an unnecessarily large

8



number of parameters, will have large values for the penalty term and hence

are less likely to be selected by the information criterion.

1.2.2 AIC

The Akaike Information Criterion, or simply AIC, is the �rst information

criterion (Akaike 1973). AIC estimates the entropy or the Kullback-Liebler

information asymptotically. This criterion adds negative two times the log of

the maximized likelihood function and positive two times the dimension of the

model considered. It is de�ned as

AIC = �2 log(Maximized Likelihood) + 2m: (1.6)

Hence, AIC penalizes only the number of the parameters in the model under

consideration. However, AIC does not consider other complexity factors like

the collinearity between the parameters in the model such as in the regression

case.

1.2.3 CAIC

The Consistent Akaike Information Criterion, or CAIC, improves upon AIC

by including the e¤ect of the sample size (Bozdogan 1987). CAIC is derived

in the same way as AIC. However, it was extended to make the criterion

consistent (i.e., to asymptotically choose the correct model as the sample size

n!1). Therefore, CAIC multiplies the number of parameters by the log of

9



the sample size plus one as follows:

CAIC = �2 log(Maximized Likelihood) + (log(n) + 1)m: (1.7)

Because CAIC has a generally larger penalty term, it is expected to choose

lower dimensional models than AIC does.

1.2.4 SBC

Surprisingly, if we use a di¤erent approach, we can derive a criterion that is

very similar to CAIC. Schwarz (1978) followed the Bayesian approach to sta-

tistical analysis to derive the Schwarz Bayesian Criterion, or SBC. However,

this approach leads to the same lack of �t term as in AIC and CAIC but to

a slightly di¤erent penalty term than in CAIC, as follows:

SBC = �2 log(Maximized Likelihood) + log(n)m: (1.8)

This criterion leads asymptotically to simpler models than AIC. However,

CAIC has a greater penalty term and is expected to choose simpler models

than SBC does.

1.2.5 ICOMP

Bozdogan (1988, 1990, 1994, 2004) introduced the Information Complexity in-

formation criterion (ICOMP). This criterion introduces the information com-

plexity theory (van Emden 1971) into the statistical model selection criterion.

ICOMP takes into consideration many important factors in statistical model

10



selection, which have not been considered by previous information criteria, in-

cluding the important interaction (collinearity) between the model parameters.

The general structure of ICOMP is as follows:

ICOMP (Model) = Lack of Fit+Lack of Parsimony+Profusion of Complexity.

The �rst two terms in this structure are the same terms as in the previous

criteria. Lack of Parsimony is the same penalty term as in the previously de-

scribed criteria. It penalizes the number of parameters in the model. Profusion

of Complexity term is the new addition to the �eld of information criteria. It

extends the penalty term beyond just the number of parameters to also con-

sider the correlations between the parameters estimates. This extension gives

more value to the penalty term. The general expression of ICOMP is as

follows.

ICOMP = �2 log(Maximized Likelihood) + 2C1( bF�1); (1.9)

where

C1( bF�1) = s

2
log(

tr( bF�1)
s

)� 1
2
log
��� bF�1���

is the entropic complexity of the estimated inverse Fisher information matrixbF�1 (IFIM) (also known as the Cramer-Rao lower bound matrix), and where
s is the rank of IFIM, and tr(�) and j�j mean the trace and the determinant of

IFIM, respectively.
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For a detailed description of this criterion, see Bozdogan (1988, 1990, 1994,

2004).

1.2.6 MANOVA Model

Two models can be used in MSCA: the varying means and common covariances

model, also called the MANOVA model, and the varying means and varying

covariances model, thereafter called the varying model. In this study, we

compute the information criterion values for these two models and choose the

one with the minimum value in our algorithms as the best choice.

Here, we present the expressions of AIC and ICOMP for the MANOVA

model. The AIC (from Bozdogan (1986)) and ICOMP (from Bozdogan (2004))

formulas for this model are as follows:

AIC(f�g;�g) = np log(2�) + n log
��n�1W ��+ np+ 2 �kp+ p(p+ 1)

2

�
; (1.10)

where W is the within-groups sum of squares and products (SSP) matrix, and

p is the number of variables, and where

W =

kX
g=1

Ag;

Ag =

ngX
i=1

(dgi � dg)(dgi � dg)0:
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ICOMP (f�g;�g) = np log(2�) + n log
��n�1W ��+ np+ 2C1( bF�1); (1.11)

where

C1( bF�1) =
kp+ p(p+1)

2

2
log

"
tr(Q�1)tr(b�) + 1

2
tr(b�2) + 1

2
(tr(b�))2 +Pj b�2jj

kp+ p(p+1)
2

#

�p
2
log
��Q�1��� (k + p+ 1

2
) log

���b����� p(p� 1)
4

log(2)

, and

Q =

266666664

n1
n

0 :: 0

0 n2
n

:

: : 0

0 0 :: nk
n

377777775
;

b� = 1

n
W:

However, the simpli�ed lack of �t term, after dropping all constants, as in

Bozdogan (1986) is as follows:

n log jW j :
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1.2.7 Varying Means and Varying Covariances Model

Here, we present the AIC and ICOMP expressions for the varying means and

varying covariances model (Bozdogan 1986 and 2004).

AIC(f�g;�gg) = np log(2�)+
Xk

g=1
ng log

��n�1g Ag��+np+2 �kp+ kp(p+ 1)2

�
:

ICOMP (f�g;�gg) = np log(2�) +
Xk

g=1
ng log

��n�1g Ag��+ np+ 2C1( bF�1);
where

C1( bF�1) =
kp+ kp(p+1)

2

2
�

log

264
Xk

g=1

�
tr(Q�1)tr(b�g) + 1

2
tr(c�g2) + 1

2
(tr(c�g))2 +Pj b�g2jj�

kp+ Kp(p+1)
2

375
�p
2
log
��Q�1��� (k + p+ 1

2
)
Xk

g=1
log
���c�g���� p(p� 1)

4
log(2);

and where

c�g = 1

ng
Ag:

However, the simpli�ed lack of �t term as in Bozdogan (1986) is:
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Xk

g=1
ng log jAgj :

1.2.8 The Monotonic Conditions

An important property of the information criteria is that they consist of two

parts: the lack of �t part and the penalty part. These two parts have opposite

monotonic proportion with the number of parameters in the statistical model

(Bao, Bozdogan, Chatpattananan, and Gilbert 2005). As the number of para-

meters is increased the lack of �t part�s value decreases and the penalty part�s

value increases. In the context of the MSCA problem, this means that when

the number of clusters increases the lack of �t part�s value decreases and the

penalty part�s value increases. This important property is exploited in our

branch and bound algorithms as will be shown in Chapter 3.

The lack of �t part�s value for the MSCA problem by de�nition decreases

with the increase in the number of clusters. The penalty part�s value of AIC,

CAIC, and SBC increases linearly with the increase in the number of clusters.

The monotonic condition of the penalty part of ICOMP is shown in Boz-

dogan and Haughton (1998). Even if the monotonic condition does not hold

for the penalty part of an information criterion for the MSCA problem we can

assume that the monotonic condition holds and use the branch and bound al-

gorithms as heuristics that do not guarantee �nding the optimal solution. We

also develop a genetic algorithm that can solve the MSCA problem without

requiring any restriction, like the monotonic conditions, on the information

criteria as will be discussed in Chapter 4.
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1.3 International Market Segmentation

The concept of market segmentation has been described by many researchers,

including Lilien and Rangaswamy (1998). Consumers in any market di¤er in

their needs, preferences, and many other characteristics. In light of this fact,

it is ine¤ective for businesses to use the same marketing strategies to appeal to

all consumers. On the other hand, developing a speci�c marketing strategies

for every consumer is ine¢ cient. A more reasonable option is to do market

segmentation. In market segmentation studies, the market is divided into a

�nite number of groups or segments of consumers. The consumers within

each segment should be as homogeneous (alike) as possible with respect to the

considered characteristics. In contrast, the segments themselves should be as

heterogenous (di¤erent) as possible.

Market segmentation is generally followed by the targeting step. In this

step, the segment or segments that are more likely to be more pro�table to the

business �rm are identi�ed and called the target market. All marketing e¤orts

are then designed to appeal to this target market. This approach should be

the most e¢ cient for any business �rm. For a review of this area, see Beane

and Ennis (1987). Cluster analysis has been widely used to perform market

segmentation (Punj and Stewart 1983).

One of the most important applications of Multi-Sample Cluster Analy-

sis is the area of international (or global) market segmentation. In this area,

marketing researchers help international �rms try to divide the international

market into meaningful segments to help them understand the market, de-

sign the best marketing e¤orts, target promising segments, and position their
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products and/or services accordingly.

A detailed review of this area of research and the related articles was done

by Steenkamp and Hofstede (2002). Recently, this area of research has received

more attention. The developments that led to the phenomenon of globalization

have forced companies to need international market segmentation. Though

segmentation can be done on the individual consumer level, this strategy is

not cost e¤ective (Steenkamp and Hofstede 2002). Another extreme option

is to do segmentation at the country-level. Although this approach is widely

used, it ignores di¤erences that are present within each country. A possible

reason for using this approach is the ease of getting published macroeconomic

data. However, macroeconomic data includes only the averages of individuals�

data and ignores the variances. A better approach is to use samples taken

from regions within the countries as the objects to be segmented (Steenkamp

and Hofstede 2002).

Madsen and Askegaard (1998) provide a direct example of international

market segmentation. In their article, 79 regions in 15 European countries

are classi�ed into 12 clusters based on a sample of 20; 000 observations on

138 questions related to food culture. These questions were collapsed into 41

variables. The goal was to develop a map of the European food culture. Un-

fortunately, the authors used only the averages of the 79 samples in the SPSS

hierarchical cluster analysis methods. They admit that using only the averages

is an important limitation. MSCA would have considered the whole samples.

Unfortunately, there are currently no algorithms that can solve this problem

using the MSCA. This could be one of the reasons that led the researchers to

use their approach.
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A recent example of international market segmentation studies is the work

of Bijmolt et al. (2004). These authors used a new approach to simultaneously

�nd the consumer-level and the country-level segments for an international �-

nancial services market. They had a sample of 1; 000 observations on the

ownership of 8 �nancial products from each of 15 European countries. Their

approach involved a sophisticated mixture model and an adaptive version of

the EM algorithm which is a heuristic and does not guarantee �nding the

optimal solution. They had to repeat the algorithm for 10 di¤erent random

initialization to �nd the best possible solution. They repeated their approach

for all possible numbers of clusters and scored CAIC for the �nal results.

Another possible approach would be to apply the MSCA directly to the 15

samples. This approach would use CAIC directly to �nd the optimal cluster-

ing alternative. Unfortunately, there are currently no algorithms that use this

approach, which could be one of the reasons for using the EM algorithm by

these researchers.

A similar problem to the MSCA problem is the Multi-Sample Cluster-Wise

Regression problem. In the Multi-Sample Cluster-Wise Regression problem,

the samples that give similar regression coe¢ cients to the variables are joined

together. In this problem, all of the variables are used, and no subset selec-

tion is done. An example of this type of research is the study by Hofstede

et al. (2002). In this work, the authors used a Bayesian approach [Markov

Chain Monte Carlo (MCMC) and Gibbs sampling] to segment samples from

120 regions in 7 European countries. They compared four models, including

the spatial independent model, which is exactly the same as Multi-Sample

Cluster-Wise Regression model. They had to repeat the same procedure for
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each possible number of clusters and choose the model with the maximum

Bayes factor. We can use MSCA with the information criteria expression for

the regression case to do the same task. Again, no algorithms are currently

available to solve this problem by using the MSCA. This could also be one of

the reasons that led the researchers to use the Bayesian approach.

There are a lot of other examples of opportunities to apply the MSCA

in international market segmentation (Ronen and Kraut 1977; Hofstede 1976;

Sirota and Greenwood 1971; Cui and Liu 2000; Kahle 1986). Some examples

of country-level segmentation on averages of individual data are by Ronen

and Shenkar (1985), Kale (1995), Kumar et al. (1994), Steenkamp (2001),

and Vandermerwe and L�Huillier (1989). Other Multi-Sample Cluster-Wise

Regression examples include Hofstede, Frenkel Ter et al. (1999) and Mittal

et al. (2004). Some surveys of cluster analysis in marketing are by Green,

Paul E. et al. (1967) and Punj and Stewart (1983).
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Chapter 2

MSCA Formulations and

Approaches

The general approach to solve any problem involves building a model that

represents this problem. All three models that have been developed for the

cluster analysis problems are mathematical models. All of the research we

read on mathematically modeling cluster analysis problems was on clustering

single observations. Here, we adapt these mathematical models for the MSCA

problem and discuss the related work on branch and bound algorithms. Here,

we review only the branch and bound algorithms because this is the approach

we used to solve the MSCA problem in Chapter 3. We discuss the Clique

Partitioning Problem, CPP, formulation for the MSCA problem. For detailed

surveys of all formulations and algorithms, see Rao (1971), Hansen and Jau-

mard (1997), and Xu and Wunsch (2005).
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2.1 Uncapacitated Facility Location Formula-

tion

In the Uncapacitated Facility Location (UFL) problem, we have a number

of potential facility locations and a number of customer regions. We need

to decide which locations to open and which customer regions to assign to

each open location. There is no capacity limit on the number of customer

regions that we can assign to each location. The original UFL problem had a

linear objective function and is considered an NP-hard problem (Wolsey 1998).

This problem has been solved by many approaches including the cutting planes

approach (Wolsey 1998). Here, we present the same formulation for the MSCA

problem using the information criteria as the objective function.

2.1.1 Formulation

Let

xij =

8><>: 1 if the ith sample is assigned to the jth cluster.

0 otherwise.

9>=>; 1 � i; j � K;
yj =

8><>: 1 if the jth cluster is created.

0 otherwise.

9>=>; 1 � j � K:
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The following is the formula for the matrix of total sums of squares and prod-

ucts for a speci�c clustering alternative:

W =

KX
j=1

KX
i=1

xij

niX
l=1

(dil � dj)(dil � dj)0 =
KX
j=1

Aj: (2.1)

The following is the formula for the mean of each cluster, assuming it is zero

for empty clusters:

dj =

PK
i=1 xij

Pni
l=1 dilPK

i=1 xijni
: (2.2)

Now we present the formulation for the MSCA problem, under the MANOVA

model, using AIC as the objective function but excluding the constants.

min n log jW j+ 2pk

s:t:

1.
PK

j=1 xij = 1;8i = 1; ::; K

2.
PK

i=1 xij � Kyj;8j = 1; ::; K

3.
PK

i=1 yj � k = 0

where K is the number of samples, k is the number of clusters of samples or

groups, p is the dimension of the observations, and n is the total number of

observations. This formulation has K2 +K + 1 decision variables and 2K + 1

constraints.

This is the basic formulation, and researchers have developed several vari-

ations of it to deal with many di¤erent issues. The most important issue in the

UFL formulation is the redundancy problem, meaning that the same cluster-

ing alternative has more than one representation. The reason for this problem
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Figure 2.1: Two redundant alternatives that join the same objects together.

is that we can interchange the labels of the clusters (j) and still get the same

clustering alternative and the same value for the objective function. A simple

example that illustrates this problem is in Figure 2.1.

2.1.2 Algorithms

The UFL formulation was �rst suggested for cluster analysis by Vinod (1969).

Since then this formulation has been used in many algorithms. All of the

algorithms that use this formulation �x the number of clusters and use an

objective function that allows this restriction.

The �rst branch and bound algorithm to solve the cluster analysis problem

was developed by Koontz et al. (1975). These authors used basic branching by

the best assignment of a free object to a cluster and basic bounding using the

properties of theWGSS, which include the recursion property. However, their
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algorithm does not deal with the redundancy problem. Diehr (1985) improves

on this algorithm by starting with a heuristic and avoiding the redundancy

problem by assigning objects to the empty cluster with the lowest index.

Klein and Aronson (1991) used the linear sum of dissimilarity measures

between objects as the objective function. This objective function will al-

ways lead to the maximum allowed number of clusters as the optimal solu-

tion. Therefore, they used the UFL formulation to �x the number of clusters.

However, the CPP variables were used to linearize the objective function. Un-

fortunately, their way of handling the redundancy problem were incomplete.

The branch and bound algorithm was preceded by a heuristic to get a good

initial upper bound. The branching strategies were sequential. The bounding

strategies depended on the linear objective function.

The most sophisticated approach for solving the cluster analysis problem

was by du Merle et al. (2000). These authors were the �rst to show that the

Lagrangian relaxation of the UFL formulation is equivalent to the linear re-

laxation of the Set Partitioning formulation. They used the branch and bound

approach within a collection of di¤erent techniques. These techniques included

the Lagrangian relaxation, cutting planes, the neighborhood search heuristic,

and quadratic programming. These techniques were needed because the au-

thors used the WGSS objective function, which is fractional and quadratic.

The authors claim that their work was the �rst to �nd the optimal solution for

the IRIS benchmark data set (Fisher 1936). Unfortunately, their approach had

the limitation of �xing the number of clusters, and hence, it must be repeated

for every possible number of clusters.

A heuristic-based branch and bound algorithm was developed by Brusco
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(2003). This algorithm used Klein�s (1991) formulation and the same linear

sum of pair-wise distances as the objective function. Improved bounds were

used, but they still depended on the linear objective function. He used the

exchange heuristic, which is a neighborhood search heuristic in which objects

are moved or exchanged between clusters. He also developed another branch

and bound algorithm that uses the WGSS as the objective function (Brusco

2006). This algorithm is applied to a subset of the objects and then repeated

each time a new object is added. In addition, the algorithm begins with

a heuristic that reorders the objects by placing the closest neighbors at the

opposite ends of the list. This will ensure that the algorithm will run smoothly

when new objects are added and that it will not need to change the original

solution signi�cantly. The bounds used in this algorithm are extensions of the

work of Koontz et al. (1975).

2.2 Set Partitioning Formulation

The Set Partitioning problem involves dividing a set of objects into mutually

exclusive subsets. This problem is a special case of the set covering problem,

which is a well known NP-hard problem (Wolsey 1998). The Set Partitioning

formulation was �rst applied to the cluster analysis problems by Rao (1971).

This author suggested solving the cluster analysis problems using the gen-

eral approaches used to solve the Set Partitioning problem, as described by

Gar�nkel, R. S. and Nemhauser, G. L. (1969).
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2.2.1 Formulation

The number of possible assignments to a single cluster isN =
PK

i=0

�
K
i

�
. yj is a

binary variable that equals 1 if a cluster is assigned the jth possible assignment

alternative. Aj is the matrix of the sums of squares and products of the jth

possible assignment alternative for a cluster. The following is our formulation:

min AIC = n log(
���PN

j=1Ajyj = A1y1 + A2y2 + ::+ ANyN

���) + 2pk
s.t.

1.
PN

j=1 yj � k = 0, number of clusters constraint.

2. By = 1, partitioning constraints.

B is a K �N matrix where each column Bj of B represents a possible assign-

ment to a cluster (i.e., bij = 1 if sample i is in the assignment j and bij = 0

otherwise).

Example: K = 3

min n log(jA1y1 + A2y2 + A3y3 + A4y4 + A5y5 + A6y6 + A7y7 + A8y8j)+2pk

s.t.

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 = k
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266664
0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

377775

2666666666666666666664

y1

y2

y3

y4

y5

y6

y7

y8

3777777777777777777775

=

266664
1

1

1

377775 :

This formulation has many more variables,
PK

i=0

�
K
i

�
+ 1, but less con-

straints, K + 1, than the UFL formulation. For example, for K = 10, we will

have 1025 decision variables while using the UFL formulation we will have

only 112 decision variables.

2.2.2 Algorithms

The work on the Set Partitioning formulation involved using the decomposi-

tion and column generation approaches (Johnson, Mehrotra, and Nemhauser

1993; Mehrotra and Trick 1998). No branch and bound algorithms used this

formulation for the cluster analysis problem.

2.3 The Clique Partitioning Problem (CPP)

Formulation

The Clique Partitioning Problem formulation was introduced by Wakabayashi

(1986). This problem is to partition a complete graph of nodes, where all
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nodes are connected to each other by edges, into subgraphs with the minimum

linear sum of the edges�weights within each subgraph. This problem is exactly

the same as the cluster analysis problem, with the nodes being the objects to

be clustered and the edges being the pair-wise dissimilarity measures.

2.3.1 Formulation

The problem is formulated as follows.

Let

xij =

8><>: 1 if nodes i and j are in the same partition.

0 otherwise.

9>=>; ;
1 � i < j � K;

where K is the number of nodes in the graph. The number of decision

variables is

�
K

2

�
=
K(K � 1)

2
:

These decision variables can be represented by a half a matrix as

x =

266666664

x12 x13 :: x1K

x23 :: x2K

:: :

x(K�1)K

377777775
:
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Figure 2.2: Triangle Constraint: Node 2 is connected to nodes 1 and 3, which
forces nodes 1 and 3 to be connected to each other.

The only constraints are the triangle constraints for all 1 � i < j < h � K:

xij + xjh � 1 + xih

xij + xih � 1 + xjh

xih + xjh � 1 + xij:

These constraints require that if a node is connected by edges to two di¤erent

nodes then these two nodes must be connected by an edge (belong to the

same subgraph). A simple example that shows how these constraints work is

presented in Figure 2.2.

The number of constraints is:
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3

�
K

3

�
= 3

K!

3!(K � 3)! =
1

2
K(K � 1)(K � 2):

Hence, the CPP formulation has fewer variables but more constraints than

the Uncapacitated Facility Location and the Set Partitioning formulations.

The objective function to be minimized is
PK�1

i=1

PK
j=i+1 !ijxij. If the

edges�weights are all positive or all negative, �nding the optimal solution

is trivial. That is, depending on whether the the weights are all positive

or all negative, respectively, each node is either in its own cluster (all x�s

are zeros) or all nodes are in one cluster (all x�s are ones). However, if the

weights include positive and negative values then the problem is NP-hard

(Wakabayashi 1986). Wakabayashi proved this fact by transforming the well-

known NP-hard Maximum Cut problem to the CPP problem.

We chose to use the CPP formulation to solve the MSCA problem because

it does not have the redundancy problem, unlike the UFL formulation, and it

has a few number of variables, unlike the Set Partitioning formulation. The

large number of constraints in the CPP formulation can be handled smoothly

in the branch and bound algorithms as we will show in Chapter 3. In the

following, we present the MSCA objective function using the CPP variables.

The Mean of a Cluster

We need the mean of each cluster for the computation of the W matrix. The

formula of the mean of each cluster in terms of the binary decision variables
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is as follows:

di =

�Pni
l=1 dil +

PK
j=i+1 xij

Pnj
l=1 djl

�Yi�1

p=1
(1� xpi)

ni +
PK

j=i+1 xijnj
; i = 1; ::; K: (2.3)

This expression is nonzero for the clusters that are not empty. The clusters are

ordered by the smallest sample index they contain. We use xij to determine

if two samples are in the same cluster. If a sample is in the same cluster as a

sample with a smaller index,
Yi�1

p=1
(1� xpi) is used to skip this sample row in

the decision variables�half matrix . Now we use di to compute the matrix W .

The Matrix of Sum of Squares and Products

Using the binary decision variables and the mean of each cluster, we can

compute the matrix W as follows:

W =
KX
i=1

Yi�1

p=1
(1�xpi)

 
niX
l=1

(dil � di)(dil � di)0 +
KX

j=i+1

xij

njX
l=1

(djl � di)(djl � di)0
!
:

(2.4)

This expression reuses xij and
Yi�1

p=1
(1 � xpi) as previously described in this

subsection for the mean expression. The only extra term needed to evaluate

AIC is the number of clusters in a clustering alternative.
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Number of Clusters

To �nd the number of clusters k in a clustering alternative, we use the decision

variables�values as:

k = K �
K�1X
i=1

Yi�1

p=1
(1� xpi)

KX
j=i+1

xij: (2.5)

This expression is equal to the maximum possible number of clusters K minus

the number of times we join a sample to an already formed cluster. We useYi�1

p=1
(1�xpi) to skip the decision variables that have been set to 1 by a triangle

constraint with a lower index sample. This is a non-linear formulation. We

present a linear formulation in Subsection 2.3.3.

2.3.2 Algorithms

The CPP problemwas solved mostly by cutting plane algorithms (Wakabayashi

1986; Grotschel and Wakabayashi 1989). These approaches solve the Linear

Programming (LP) relaxation of the problem, where the xij variables can as-

sume continuous values between 0 and 1, without the triangle constraints. If

the LP relaxation solution has xij values that are not 0 or 1 (not integral), they

add a subset of the triangle constraints and other facet-de�ning inequalities.

Since this work, there have been only two attempts to use the branch and

bound approach to solve the CPP with the linear objective function. Dorndorf

and Pesch (1994) developed a heuristic-based branch and bound algorithm. In

their work, the problem is �rst solved by the Ejection Chain heuristic, which

is an advanced Tabu search algorithm that saves the best sequences of moves

to reuse them to get out of any local optimum. Then, the branch and bound
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algorithm starts by branching on the best xij variables among all free xij

variables according to the solution from the Ejection Chain algorithms. The

bounds are based on the linear objective function and the negative and positive

dissimilarity coe¢ cients. We need to note that searching among all free xij

variables, which is already a lot of work, includes the xij variables that join

the free samples to the same clusters, which is redundant.

The second work was by Palubeckis (1997), who developed another heuristic-

based branch and bound algorithm. However, this algorithm uses some poly-

hedral results. This approach starts by using agglomerative clustering and

then iterative clustering (like K-means) heuristic methods. However, it allows

for deleting or creating clusters. The bounding strategy is based on a trans-

formation of the heuristics solution. The branching strategy chooses a node

rather than a variable xij to branch on. This branching strategy is based on

the linear objective function, facet computations, and the heuristics solution.

However, in only two of the problems that were tested with this approach, the

heuristics methods were not enough to �nd the optimal solution and use of

the branch and bound algorithm was required.

2.3.3 Linear Formulation for the Number of Clusters

Many researchers have used the Uncapacitated Facility Location formulation

that �xes the number of clusters. However, this formulation includes the

misleading notion of labeling the clusters and, hence, admits redundancy unless

more constraints and/or methodological techniques are considered as discussed

in Section 2.1. A number of researchers studied variations of the CPP problem
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by introducing upper and lower limits on the number of objects within each

cluster. These limits indirectly control the number of clusters.

Here, we introduce a linear formulation to �x or �nd the number of clusters

in a clustering alternative using the CPP variables. The number of clusters in

a clustering alternative is required to compute AIC, CAIC, and SBC. As far

as we know, no one has used the CPP xij variables to �x the number of clusters.

This restriction �xes the number of clusters to a given number k. Only one

previous work introduced a lower limit to the number of clusters. However,

it used the spanning tree de�nition and not the CPP variables (Chopra and

Rao 1993). Our approach does not use the de�nition of the spanning tree

and involves the CPP variables, plus additional variables and constraints, as

follows:

Let

tijh =

8><>: 1 if the three nodes i; j; and h are in the same cluster

0 otherwise

9>=>;
1 � i < j < h � K

be the triangle variables and

yjh =

8>>>>>>><>>>>>>>:

1 if xjh is set to 1 by a triangle constraint with

a lower index node i where i < j < h

0 otherwise

9>>>>>>>=>>>>>>>;
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be the redundancy variables.

Then, the CPP constraints will be as follows:

A) For all i < j < h

1. xij + xjh � 1 + xih

2. xij + xih � 1 + xjh

3. xij + xjh � 1 + xih

4. tijh � xij

5. tijh � xih

6. xij + xih � 1 + tijh

7. tijh � yjh

B) yjh �
Pj�1

i=1 tijh, for 81 < j < h

C) k = K �
PK�1

i=1

PK
j=i+1 xij +

PK�1
j=2

PK
h=j+1 yjh:

In Group A, there are seven constraints. Constraints A1-A3 are the same

triangle constraints as in the original CPP formulation.

Constraint A6 forces the triangle variable tijh to be set to 1 if the two

variables xij and xih are set to 1. Constraints A4 and A5 force this triangle

variable to be set to 0 if any of these two variables is set to 0. Therefore, tijh

is set to 1 when there is an active triangle relationship between i, j, and h

(i.e., xij = xih = xjh = 1). This is realized when only two of them is set to 1

because the third one will be set to 1 by the triangle constraints.
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Constraint A7 forces the redundancy variable yjh to be 1 if the triangle

variable tijh is set to 1. Therefore, we will count only the ones in the row of

the decision variables half matrix of the lowest index i in the triangle relation-

ships. Hence, we will not count any variable that was set to 1 by a triangle

relationship with a lower index variable.

Constraint B forces the redundancy variable yjh to be set to 0 when all

the triangle variables tijh are set to 0 (i.e., the variable xjh value is not forced

to be set to 1 by a triangle constraint with a lower index variable).

Constraint C is the expression for the number of clusters. This expression

subtracts the sum of the xij variables from the maximum number of clustersK

and then adds the sum of the redundancy variables. The sum of the xij vari-

ables counts the number of times two samples are joined together. However,

this sum includes the xij variables that were set to 1 by a triangle constraint

with a lower index node. Therefore, these are added back by the sum of the

redundancy variables.

A simple example that shows how this model works is in the following half

matrix of decision variables:

x =

2666666666666664

[1] 1 1 1 0 0

[2] 1 1 0 0

[3] 1 0 0

[4] 0 0

[5] 1

[6]

3777777777777775
:

The numbers in brackets shows the node number in the diagonal of the
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matrix. This matrix shows two clusters. The �rst cluster includes nodes 1, 2,

3, and 4. The second cluster includes nodes 5 and 6. The underlined ones are

not counted in the model because they are set by a triangle relationship with

node 1. There are 4 active triangle relationships:

t1;2;3 = t1;2;4 = t1;3;4 = t2;3;4 = 1:

Hence, there are 3 redundant ones:

y2;3 = y2;4 = y3;4 = 1:

Therefore, the model will calculate the number of clusters as follows:

k = K �
K�1X
i=1

KX
j=i+1

xij +
K�1X
j=2

KX
h=j+1

yjh

= 6� 7 + 3 = 2 clusters.

This variation of the CPP problem involved more variables and con-

straints. We may expect the linear case of the problem to be di¢ cult. However,

Grotschel and Wakabayashi (1989) solved the original linear CPP mostly by

adding only a subset of the violated triangle constraints. We expect that the

same approach could be used for this variation of the problem. However, be-

cause the MSCA problem involves a nonlinear objective function, this direction

of research is beyond the scope of our study.
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Chapter 3

MSCA Branch and Bound

Algorithms Using the CPP

Formulation

3.1 Introduction

Branch and bound algorithms enumerate all possible solutions to a problem

either implicitly or explicitly and at the end �nd the optimal solution. The

explicit enumeration of possible solutions in these algorithms is done through

the branching strategies by actually evaluating the objective function values

of these solutions. The implicit enumeration of possible solutions is done by

bounding strategies on partial solutions that lead to these possible solutions.

If a lower bound on the objective function of the completions of a partial so-

lution exceeds the objective function value of some known solution, then it is

unnecessary to explicitly enumerate any of the solutions that are completions
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……..
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(1,0,0)

[1]

Figure 3.1: A simple branch and bound example.

of this partial solution. Hence these complete solutions should not be enumer-

ated. The �rst branch and bound algorithm was developed by Trotter and

Shetty (1974).

A simple hypothetical example of a branch and bound enumeration tree

is presented in Figure 3.1. In this example, we enumerate 3 binary variables

x1, x2, and x3, which take the value 0 or 1. Node 1 have been pruned because

it meets the bounding conditions. For a detailed description of general branch

and bound algorithms, please see Wolsey (1998).

The MSCA problem uses the information criteria as the objective func-

tion. Although the information criteria is a nonlinear objective function, they

have special properties that enable the development of branching and bound-

ing strategies (Bao, Bozdogan, Chatpattananan, and Gilbert 2005). This is

one of the reasons we chose the branch and bound approach. In this chapter,

we �rst present a description of all the considered branching and bounding
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strategies. These strategies include a heuristic version of some bounds and

a saving technique that aims to save computation time. Then, we develop a

complete enumeration algorithm for the MSCA problem. Later, we present a

sequence of branch and bound algorithms. Each branch and bound algorithm

is an improvement on the previous one by including more branching and/or

bounding strategies. Next, we present the performance results of these algo-

rithms and strategies and recommend the use of the best ones. Finally, we

discuss some computational remarks, conclusions, and future research.

3.2 Branching Strategies

The branching strategies state how the algorithm progresses through a series

of partial solutions to reach complete solutions. We present the following four

branching strategies that will be used in our algorithms:

3.2.1 Sequential Branching

The sequential branching strategy changes the values of the xij variables be-

tween 0 and 1 in sequence. It starts by assigning 0 or 1 to all xij variables

and then interchanging the values sequentially to check all possible combina-

tions. It also assigns values implicitly by the triangle constraints. Although

this strategy looks naive, it is useful in understanding the MSCA problem.

3.2.2 Adaptive Branching

In any branching strategy, we can choose the decision variable xij and the

value to branch on (0 or 1) by two intelligent steps rather than by sequential
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order. The �rst step is to select a sample from the set of all free samples,

which have not been clustered yet. This �rst step will be explained in the next

branching strategy, reordering. The second step is either to choose an already

formed partial cluster that the selected free sample will join or to let this free

sample start a new partial cluster.

In the adaptive branching strategy, the algorithm branches on the samples

sequentially through the indexes of the xij variables. In the beginning, the �rst

sample always starts a partial cluster. Then, the second sample is either joined

to the �rst sample partial cluster or left to start a new partial cluster. The

next samples are then either joined to one of the already formed partial clusters

or left to start their own partial clusters. The decision to join a sample to a

formed partial cluster or to start a new partial cluster is taken to achieve the

minimum information criterion value (i.e., a greedy branching). Whenever

we reach a complete solution or prune a partial solution, we backtrack to

the immediate parent partial solution (parent node). Figure 3.2 shows the

adaptive branching complete tree, where (i; j) means that samples i and j are

in the same cluster.

This strategy involves a lot fewer computations than the agglomerative

hierarchical method and is expected, when tested later on, to �nd better so-

lutions.

3.2.3 Reordering

In the adaptive branching strategy, the samples are considered in the order

they are stored in the data matrix D. However, the order in which the samples
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Free
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Figure 3.2: Adaptive branching complete tree.

are considered can a¤ect the performance of the algorithm. If the samples that

are very similar or very dissimilar are consecutive in consideration, this can

quickly lead to the optimal solution. But if the order is not like this, the

algorithm can proceed to a solution that is far from the optimal solution. The

idea of reordering objects for cluster analysis problems is not new (Brusco

2006). However, here we use the information criteria to reorder the samples.

The reordering strategy should precede the adaptive branching strategy

to change the order in which the samples are joined. Though, we discuss many

reordering strategies in this subsection, we will implement only the �rst one.

An extensive testing of these methods is the only way to show the superiority

of one reordering strategy over the other.

The following is a list of possible reordering methods:

1. Put all samples in one cluster and take one sample out at a time (af-
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ter returning the previous sample) and score AIC. Pick the sample with

the minimum/maximum AIC score (farthest from/closest to the mean).

Based on the choice of picking the sample with the minimum or max-

imum AIC score we name this reordering strategy as the ascending or

descending strategy respectively. This reordering strategy should be per-

formed before running the branch and bound algorithm. There are two

advantages to this approach over the next approaches: We pick the sam-

ple that is the farthest from/closest to the mean. We save computation

time because this reordering strategy is done only once before running

the branch and bound algorithm.

2. At each branching step, put the remaining free samples in one cluster and

take one free sample at a time and put it in its own cluster and score

AIC. We can then pick the free sample with the minimum/maximum

AIC value (the farthest from or closest to the mean of the remaining free

samples). The farthest choice may lead us to choose an initial sequence

of samples that are away from each other and, therefore, form the most

clear clusters from the beginning. The closest choice may lead us to

forming a cluster in the center of all samples which may be an incorrect

cluster.

3. At each branching step, put each of the remaining free samples in its

own cluster and all clustered samples in one cluster. Then join one free

sample at a time to the cluster of clustered samples and score AIC. We

can pick the free sample with the minimum/maximum AIC (the farthest

from or closest to the mean of clustered samples). This strategy has
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almost the opposite e¤ect of the previous strategy.

4. At each branching step, put the remaining free samples in one cluster

and all clustered samples in one cluster. Then take one free sample

at a time from the cluster of free samples and join it to the cluster of

clustered samples and score AIC. We can pick the free sample with the

minimum/maximum AIC value. This strategy shares some aspects of

both of the previous two strategies and, therefore, has unclear e¤ects.

3.2.4 Complete Adaptive Branching

In the adaptive branching strategy, we backtrack to the best unchecked sibling

node, according to the bounding strategies, in the enumeration tree or to the

parent node if no unchecked sibling node is available. Unfortunately, this

strategy could trap us in a branch of the enumeration tree that is far from the

optimal solution. This can happen because the early branching decisions were

not optimal. To avoid this situation, we propose a new branching strategy,

which we call the complete adaptive branching strategy. In this strategy,

we backtrack to the best node, according to the bounding strategies, in the

complete formed tree as long as we do not exceed a given limit on the size

of the formed tree. This limit depends on the memory of the computer used.

The complete adaptive strategy will lead the enumeration process back to

branch from higher-level nodes and, hopefully, will lead to di¤erent parts of

the enumeration tree that could have the optimal solution. Figure 3.3 shows

the di¤erence in the expected performance between the adaptive and complete

adaptive branching strategies.
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Figure 3.3: Expected performance of adaptive and complete adaptive branch-
ing strategies.

3.3 Bounding Strategies

When developing the following bounding strategies we assume we are using the

adaptive branching strategy. At any point in the adaptive branching strategy

we have k formed partial clusters and f free samples.

3.3.1 Upper Bound

The upper bound is the minimum objective function value of all of the complete

solutions that have been found. In all branching and bounding calculations,

we update this upper bound whenever possible, especially when computing

the lower bounds, as we will discuss in the next subsections.
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3.3.2 Extension of Bao et al (2005) Lower Bounds

The following are extensions of the bounds by Bao et al. (2005):

First Lower Bound

A lower bound on any partial solution can be obtained by adding the smallest

possible values of the lack of �t part and the penalty part for the complete so-

lutions of this partial solution. These values are found by using the monotonic

conditions as follows. The lowest possible value of the lack of �t part is the

lack of �t part value after assigning all free samples to their own clusters (i.e.,

having the maximum number of clusters, k+ f ). The lowest possible value of

the penalty part is the penalty part value of keeping only the already-formed

k cluster (i.e., assuming the free samples are assigned to these clusters). Fol-

lowing are the computational steps to get this �rst lower bound:

1. Assign all f free samples to their own clusters to have k + f clusters.

Score the lack of �t part for this case.

2. Score the penalty term for the minimum of k clusters.

3. Add the lack of �t part and the penalty part values to get the �rst lower

bound.

Second Lower Bound

The second lower bound is the same as the �rst lower bound with one excep-

tion. In this bound, we use the next lowest value of the lack of �t part. This

value is obtained by having k + f � 1 clusters (i.e., joining two free samples
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together or joining a free sample to an already-formed cluster). We still have

to use the penalty part of k clusters because the free samples can always be

joined to the already-formed clusters. Following are the computational steps

to get this second lower bound:

1. Find the minimum lack of �t part of k + f � 1 complete solutions by

� Joining each free sample one at a time to each formed cluster (This

involves checking f � k complete solutions).

� Joining every free sample to every other free sample one at a time

(This involves checking
�
f
2

�
complete solutions).

2. Use the same penalty part of k clusters.

3. Add the lack of �t term and the penalty term values to get the second

lower bound.

Expensive Third Lower Bound

We can get a third lower bound by following the same approach as in the �rst

and second lower bounds. However, this approach is prohibitively expensive

because getting the lowest lack of �t part value for k+ f � 2 clusters, requires

checking (
�
f
2

�
� k2) + (

�
f
3

�
) complete solutions.

3.3.3 New Upper and Lower Bounds

Local Upper Bound

The motivation behind developing the local upper bound is to try to know, as

quickly as possible in the branch and bound algorithm, if a free sample can
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never join a partial cluster in an optimal solution. A possible condition for

this situation to occur is when there is a great increase in the lack of �t term�s

value when this free sample joins this partial cluster. If we know that this

situation will occur, we will be able to prune all partial solutions that join the

considered free sample and partial cluster. This strategy is expected to save

a lot of time. The local upper bound requires that the penalty term of the

information criterion to be linearly dependent on the number of clusters in the

clustering alternative as it is the case for AIC, CAIC, and SBC. However, to

derive the local upper bound we need to present some de�nitions, notations,

and two assumptions.

We will need to use the following de�nitions and notations:

1. (::; h; ::) represents a cluster that contains the samples whose indexes are

included between the parentheses.

2. Aic is the matrix of sums of squares and products (SSP) of a sample or

partial cluster i when it is included in the cluster c:

Aic =

niX
j=1

(dij � dc)(dij � dc)0:

Hence, the SSP matrix of cluster c is the sum of SSP matrices of all the

samples or partial clusters that cluster c contains:

Acc =
Pkc

i=1A
i
c;

where kc is the number of samples or partial clusters included in cluster

c.
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Figure 3.4: The log graph.

3. We will use the following simpli�ed lack of �t term expressions of the

MANOVA model and the varying model, respectively, as in Bozdogan

(1986):

n log jW j ;

Xk

g=1
ng log jAgj :

The Log E¤ect The simpli�ed expressions of the lack of �t term for both

the MANOVA model and the varying model involve using the log function.

The log(x) function is concave and increasing at a decreasing rate as shown in

Figure 3.4. The latter property of the log(x) function causes the same increase

in x to cause a lower increase in log(x) as we go up the curve as shown in Figure

3.5.

When developing the local upper bound condition we will control for this
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Figure 3.5: The log e¤ect.

e¤ect by making our comparisons at the highest possible point on the log

curve. However, we begin by de�ning the variation of the MANOVA model

and the varying model. As in Section 1.2 the simpli�ed lack of �t term for the

MANOVA model and the varying model are de�ned, respectively, as follows:

l(Ac1c1 ; ::; A
ck
ck
) = n log

��Ac1c1 + ::+ Ackck�� ;
l(Ac1c1 ; ::; A

ck
ck
) = nc1 log

��Ac1c1��+ ::+ nck log ��Ackck�� :
The variation of the MANOVA model and the varying model, respectively, is

de�ned as their lack of �t terms after dropping the log function and using the

log properties as follows:

v(Ac1c1 ; ::; A
ck
ck
) =

��Ac1c1 + ::+ Ackck��n ;
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v(Ac1c1 ; ::; A
ck
ck
) =

��Ac1c1��nc1 � ::� ��Ackck��nck :
The Contribution The variation of a clustering alternative includes the

contributions of all samples within the clusters. To discuss the local upper

bound, we need a de�nition of this contribution that isolates the e¤ect of a

single sample or a single partial cluster within a clustering alternative.

For a speci�c clustering alternative, we de�ne the contribution of a sample

or partial cluster i, which is contained in a cluster c, as the decrease in the

variation of this clustering alternative after taking this sample or partial cluster

completely out of the clustering alternative:

Cic = v(A;A
i
c)� v(B);

where A is the sum of the SSP matrices of all other samples and clusters

when i is in the parent cluster c, and B is the sum of the SSP matrices of all

other samples and clusters when i is taken completely out of the clustering

alternative.

As described in Subsection 1.2.8 and in Bao et al (2005), the monotonic

condition holds for the lack of �t term of the information criteria and, subse-

quently, for the variation expression (i.e., as the number of clusters increases,

the variation value decreases). This condition can be explained by the e¤ect

of the change in the average value used in Aic for some i and c: The minimum

contribution of a sample or partial cluster i is given when this sample or partial
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cluster is in a cluster by itself:

min
c
Cic = C

i
i :

Therefore, as a sample r is added to a sample or partial cluster i to create a

new cluster c, the average used for the SSP matrix of i changes. Hence, i�s

contribution is guaranteed to increase unless i and r already have the same

average when each is in a cluster by itself.

The Nesting Property To develop our local upper bound condition, we

need to make the �rst assumption, the nesting property. Although this as-

sumption seems intuitive, proving it is di¢ cult.

The nesting property states that if a sample i and a partial cluster c are

joined in one cluster c, then one of these two components, the sample or the

partial cluster, will account for at least half of the increase in the variation in

the clustering alternative. The other component, i or c, will account for the

rest of the increase in the variation.

The nesting property is important when more samples r are added to the

cluster c to make the new cluster c�. In this case, by the monotonic condition

the contribution of the original cluster c and the variation of the clustering

alternative will increase. By the nesting property, c, which contain i and c,

will account for some of this new increase in the variation. Therefore, i or c

will account for a portion of the total increase in the variation that is greater

than half of the original increase in the variation after joining i and c together.

Hence, when either i or c is taken out to form its own cluster, the variation will
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decrease in an amount that is greater than half of the original increase in the

variation when i and c were joined together. Using the MANOVA variation

expression, the nesting property is as follows:

��Ac;i;rc;i;r

��n � ��Acc + Ai;ri;r��n � 1

2

h��Ac;ic;i + Arr��n � ��Acc + Aii + Arr��ni ;
or��Ac;i;rc;i;r

��n � ��Aii + Ai;ri;r��n � 1

2

h��Ac;ic;i + Arr��n � ��Acc + Aii + Arr��ni :
By the monotonic condition, the contribution of cluster (i; r) will increase after

adding c to it. In the same way, the contribution of cluster (c; r) will increase

after adding i to it. This e¤ect will increase the di¤erence by an amount

greater than the original case of separating cluster (c; i) to c and i.

In the same way, for the varying model, the nesting property is as follows:

h��Ac;i;rc;i;r

��(nc+ni+nr) � �jAccjnc � ��Ai;ri;r��(ni+nr)�i �
1

2

h
(
��Ac;ic;i��(nc+ni) � jArrjnr)� �jAccjnc � ��Aii��ni � jArrjnr�i ;

or

h��Ac;i;rc;i;r

��(nc+ni+nr) � ���Aii��ni � ��Ac;rc;r��(nc+nr)�i �
1

2

h
(
��Ac;ic;i��(nc+ni) � jArrjnr)� �jAccjnc � ��Aii��ni � jArrjnr�i :
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The Extended Monotonic Condition The second assumption, which is

needed to develop the local upper bound condition, is the extended monotonic

condition. Again, this assumption is intuitive but is di¢ cult to prove.

The extended monotonic condition states that joining a free sample i and

a partial cluster c will cause the variation to increasemore when the other clus-

ters have a greater contribution. This condition is represented mathematically

under the MANOVA model as follows:

h���Ac;ic;i + A(c1;c2)(c1;c2)

���n � ���Acc + Aii + A(c1;c2)(c1;c2)

���ni �h��Ac;ic;i + Ac1c1 + Ac2c2��n � ��Acc + Aii + Ac1c1 + Ac2c2��ni :
This condition is valid because its violation may lead to a violation of the

original monotonic condition:

���Ac;ic;i + A(c1;c2)(c1;c2)

���n < ��Ac;ic;i + Ac1c1 + Ac2c2��n :
Under the varying model, this condition is represented mathematically as

follows:

���Ac;ic;i��(nc+ni) � ���A(c1;c2)(c1;c2)

���(nc1+nc2 ) � jAccjnc � ��Aii��ni � ���A(c1;c2)(c1;c2)

���(nc1+nc2 )� �h��Ac;ic;i��(nc+ni) � ��Ac1c1��nc1 � ��Ac2c2��nc2 � jAccjnc � ��Aii��ni � ��Ac1c1��nc1 � ��Ac2c2��nc2i :
Like in the MANOVA model, this condition is valid because its violation may
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lead to a violation of the original monotonic condition:

��Ac;ic;i��(nc+ni) � ���A(c1;c2)(c1;c2)

���(nc1+nc2 ) < ��Ac;ic;i��(nc+ni) � ��Ac1c1��nc1 � ��Ac2c2��nc2 :
The General Local Upper Bound Condition In stating the general

local upper bound condition we will assume that we are controlling for the log

e¤ect. We will explain how this is done in the subsequent subsections. The

general local upper bound condition is as follows: when joining a free sample i

with a partial cluster c, if the increase in the lack of �t term�s value of the �rst

lower bound (i.e., after assigning all other free samples to their own clusters) is

greater than the penalty of adding 2 clusters (2T ), then the optimal clustering

alternative will not include this free sample and this partial cluster in one

cluster.

This conclusion is made because the nesting property states that if this

free sample is joined to this partial cluster in one new partial cluster, then at

the optimal completion of this new partial cluster, after adding r more samples,

the separating of either the original free sample or the original partial cluster

will reduce the lack of �t term value more than the penalty of adding 1 cluster.

Next, we will derive the speci�c local upper bound condition for the

MANOVA model and the varying model.

The MANOVA Model Local Upper Bound Condition We will start

by stating the local upper bound condition for the variation term of the

MANOVA model, and then show how it is valid. Next, we will derive the
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local upper bound condition for the lack of �t term after controlling for the

log e¤ect.

The variation expression under the MANOVA model is as follows:

��Ac1c1 + ::+ Ackck��n ;
where k is the number of clusters in the considered clustering alternative.

Assume that at an adaptive branching step, the considered partial solution

has k partial clusters, including c, and f free samples, including i. The free

samples will be called a1 ; ::; af . Assume that r of the f free samples, called

a1; ::; ar, are joined to the (i; c) partial cluster at the optimal completion of the

considered partial solution. The local upper bound condition in terms of the

variation expression states that if joining i and c increases the variation term�s

value of the �rst lower bound by at least the value of the penalty of adding 2

clusters (2T ), then the optimal solution will not join i and c in one cluster:

���A(c;i)(c;i) + A
c1
c1
+ :::+ Ack�1ck�1

+ Aa1a1 + ::+ A
af�1
af�1

���n
�
���Acc + Aii + Ac1c1 + :::+ Ack�1ck�1

+ Aa1a1 + ::+ A
af�1
af�1

���n � 2T:
We will consider the di¤erence between the solution that joins i and c in

one cluster and the solution that separates c in its own cluster. The conclusion

will not depend on whether i or c is separated in its own cluster. The best

solution�s variation value where i and c are joined in one cluster is as follows:

���Ac(c;i;r) + Ai;r(c;i;r) + Ac1c1 + :::+ Ack��1ck��1

���n ;
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where k� is the number of clusters in this solution. The solution�s variation

value after separating c in its own cluster is as follows:

���Acc + Ai;r(i;r) + Ac1c1 + :::+ Ack��1ck��1

���n :
Hence, the di¤erence between these two expressions is as follows:

�������
E1z }| {

Ac(c;i;r) + A
i;r
(c;i;r) +

E2z }| {
Ac1c1 + :::+ A

ck��1
ck��1

�������
n

�

�������
E3z }| {

Acc + A
i;r
(i;r) +

E2z }| {
Ac1c1 + :::+ A

ck��1
ck��1

�������
n

� T:

By the nesting property in terms E1 and E3, c accounts for an increase in the

variation�s value by an amount greater than the penalty of 1 cluster. Therefore,

if the rest of the terms in this di¤erence does not o¤set this increase, separating

c in its own cluster will decrease the variation value by more than the penalty

of 1 cluster (i.e., will give a better solution).

Term E2 is in both sides of the subtraction but is unknown. This term

represents the SSP matrices of the other clusters that contain the rest of the

free samples that are not joined to (c; i). By the extended monotonic condition,

we assume that this term will increase the di¤erence more than it did at

the adaptive branching step because it has more contribution than it had at

the adaptive branching step. This assumption is valid because otherwise the

original monotonic condition can be violated between the complete solution

that is used in the branching step and the optimal solution.

57



However, to take into account the e¤ect of the log function, we will add

the largest value possible in all possible solutions to the arguments of the log

functions in the local upper condition. This change will give us the minimum

di¤erence possible at the highest point in the log function curve. The largest

value possible is the determinant of the SSP matrixW of the cluster that joins

all K samples in one cluster. Hence, the local upper bound condition under

the MANOVA model is:

log
h
jW jn +

���A(c;i)(c;i) + A
c1
c1
+ :::+ Ack�1ck�1

+ Aa1a1 + ::+ A
af�1
af�1

���ni
� log

h
jW jn +

���Acc + Aii + Ac1c1 + :::+ Ack�1ck�1
+ Aa1a1 + ::+ A

af�1
af�1

���ni � 2T: (3.1)
The Varying Model Local Upper Bound Condition We develop the

local upper bound conditions for the varying model in the same way as we

did for the MANOVA model. However, in the varying model the e¤ects of the

clusters on the lack of �t term value are independent. This fact can be realized

by looking at the simpli�ed expression of the varying model�s lack of �t term

as in Bozdogan (1986):

Xk

g=1
ng log jAgj = n1 log jA1j+ ::+ nk log jAkj :

The e¤ects of the clusters are added together. The variation expression under

the varying model is as follows:

jA1jn1 � ::� jAkjnk ;
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where k is the number of clusters in the clustering alternative considered.

Following the same notation as in the MANOVA case, the local upper

bound condition in terms of the variation expression states that if joining i

and c increases the variation�s value of the �rst lower bound by at least the

value of the penalty of adding 2 clusters (2T ), then the optimal solution will

not join i and c in one cluster:

����A(c;i)(c;i)

���(nc+ni) � ��Ac1c1��nc1 � ::� ���Ack�1ck�1

���nck�1 � ��Aa1a1��na1 � ::� ��Aaf�1af�1

��naf�1�
�
h
jAccj

nc �
��Aii��ni � ��Ac1c1��nc1 � ::� ���Ack�1ck�1

���nck�1 � ��Aa1a1��na1 � ::� ��Aaf�1af�1

��naf�1i
� 2T:

By the nesting property and the monotonic condition, either i or c will always

account for an increase in the variation value by an amount greater than the

penalty of 1 cluster (T ). We will assume that c is the component that will

be separated in its own cluster. However, the conclusion will not depend on

whether i or c is separated in its own cluster.

To derive this fact, we will consider the di¤erence between the best solution

that joins i and c in one cluster and the solution that separates c in its own

cluster. The best solution�s variation value when joining i and c is as follows:

���Ac(c;i;r) + A(i;r)(c;i;r)

���(nc+ni+nr) � ��Ac1c1��nc1 � ::� ��Ack��1ck��1

��nck��1 :
The solution�s variation value after separating c in its own cluster is as follows:

jAccj
nc �

���A(i;r)(i;r)

���(ni+nr) � ��Ac1c1��nc1 � ::� ��Ack��1ck��1

��nck��1 :
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Hence, the di¤erence between these two expressions is as follows:

E1z }| {���Ac(c;i;r) + A(i;r)(c;i;r)

���(nc+ni+nr) � E2z }| {��Ac1c1��nc1 � ::� ��Ack��1ck��1

��nck��1
�

E3z }| {
jAccj

nc �
���A(i;r)(i;r)

���(ni+nr) � E2z }| {��Ac1c1��nc1 � ::� ��Ack��1ck��1

��nck��1 � T:
By the nesting property in terms E1 and E3, we know that c accounts for

an increase in the variation value by an amount greater than the penalty of 1

cluster (T ). The rest of the two terms, E2, are identical, which represents the

SSP matrices of the other clusters that contain the rest of the free samples that

are not joined to (c; i). By the extended monotonic condition, we assume that

this term will increase the di¤erence between the variations of these optimal

solutions by more than it did at the adaptive branching step because it has

more contribution than it had at the adaptive branching step. This assumption

is valid because otherwise the original monotonic condition can be violated

between the complete solution that was used in the branching step and the

optimal solution. Therefore, separating c in its own cluster will decrease the

variation by an amount greater than the penalty of 1 cluster.

Again, to take into account the e¤ect of the log function, we will add

the largest value possible in all possible solutions to the arguments of the log

functions in the local upper condition. This change will give us the minimum

di¤erence possible at the highest point in the log function curve. The largest

value possible is the determinant of the SSP matrix Wv of the cluster that

joins c, i, and all the f free samples in one cluster. Hence, the local upper
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bound condition under the varying model is:

log

�
jWvjnv +

���A(c;i)(c;i)

���(nc+ni)�� log �jWvjnv + jAccj
nc �

��Aii��ni� � 2T: (3.2)

Saving Technique We use a technique, thereafter called the saving tech-

nique, that is expected to save a great amount of computations. This technique

takes advantage of the independence of the local upper bound condition under

the varying model, for a partial cluster and a free sample, from the way the

previous samples are clustered. From Equation 3.2 we see that the rest of the

partial clusters have no e¤ect on the local upper bound condition, not like

under the MANOVA model as in Equation 3.1. Therefore, once a local upper

bound condition is met for a partial cluster and a free sample we save the

indexes of the samples in the partial cluster and the index of the free sample

in a list of inequalities. Then at each branching step we check the list of in-

equalities to avoid recalculating the values required for the local upper bound

condition when we already know that a free sample will never join a partial

cluster from a previous encounter.

A heuristic From the local upper bound condition, we can develop a heuris-

tic, thereafter called the heuristic local upper bound condition. After experi-

mentation with a number of data sets, we found that the local upper bound

condition is too conservative and can be relaxed to a good heuristic. First, the

act of controlling for the log e¤ect can be eliminated because it has a minor

e¤ect on the experiments we ran. Second, comparing the increase in the value
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Figure 3.6: The heuristic local upper bound idea.

of the lack of �t term after joining a free sample and a partial cluster to the

penalty of 2 clusters is too conservative. We can compare this increase only to

the penalty of 1 cluster. The logic behind this approach is explained in Figure

3.6. In this �gure, case 1 represents the comparison at the branching step

and case 2 represents the comparison at the best completion after joining the

partial cluster c and the free sample i. If the increase in the value of the lack

of �t term after joining c and i is more than the penalty of 1 cluster, then it is

very likely that we can decrease the value of the lack of �t term by more than

the penalty of 1 cluster by splitting the cluster that joins c and i, including

the other joined samples r, into two clusters that separate c and i and split

r into r�1 and r
�
2 optimally. This action will decrease the overall information

criterion value.

Therefore, the heuristic local upper bound condition states that if the

increase in the value of the lack of �t term of the �rst lower bound after joining
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a free sample and a partial cluster is greater than or equal to the penalty of 1

cluster, then this free sample and this partial cluster should not be joined in

one cluster.

New Lower Bound

If the assignment of at least one free sample to every formed partial cluster

meets the local upper bound condition, then we can use the penalty term of k+

1 clusters for the lower bound of this partial solution. This is possible because

this free sample must create a new cluster no matter what the completion of

this partial solution is.

More New Lower Bounds

If more than one free sample meets the new lower bound condition, then we

can apply the local upper bound condition between each two of these free

samples. If at least one of these free samples meets the local upper bound

condition with every other sample of these free samples then we can use the

penalty term of k+2 clusters for the lower bound on this partial solution. This

new lower bound is possible because the free sample that meets its condition

must create a new cluster without including any of the other free samples that

met the earlier condition.

This lower bound procedure can apply repeatedly to the free samples that

meet the previous conditions.
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Remark

Because the number of clusters in a node is the same as or greater than the

number of clusters in its parent node, the penalty part value of the lower

bound for any node should be either this node�s penalty part value or its

parent node�s penalty part value, whichever is greater. This fact is important

because the results of the computations of the new lower bounds for a parent

node can be reused for all of its child nodes without the need for any additional

computations.

3.4 Complete Enumeration Algorithm

The variables used in the complete enumeration algorithm are de�ned as fol-

lows:

xij =

8>>>><>>>>:
0 if samples i and j are not in the same cluster.

1 if samples i and j are in the same cluster.

2 if not decided.

9>>>>=>>>>;
; 1 � i < j � K;
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pij =

8>>>>>>><>>>>>>>:

1 if the xij value has been set by one of

the constraints.

0 otherwise.

9>>>>>>>=>>>>>>>;
; 1 � i < j � K:

The complete enumeration algorithm begins by assigning 0 to all decision

variables xij and then uses sequential branching to join the samples sequen-

tially by changing the decision variables�values from 0 to 1. The complete

enumeration algorithm is presented in Algorithm 3.1. This algorithm has 4

steps: Set, Check, Lower Level, and Backtrack steps. The Set step changes

the values of the decision variables in order to enumerate all possible cluster-

ing alternatives. The Check step evaluates the objective function value for

each feasible solution. The Lower Level and Backtrack steps perform the se-

quential branching strategy. The Set and Free by Constraint functions, which

are used in the complete enumeration algorithm, are presented in Algorithm

3.2. These functions implicitly set or free the decision variables by the triangle

constraints.
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Initialization: xij := 2 8i; j , pij := 0 8i; j , i := 1; j := 2
Set: if (i = 1, j = 2, and x12 = 1), Stop

if (xij = 2), xij := 0, Set By Constraint(x; 0; i; j; p), go to Check
if (xij = 0), xij := 1, Set By Constraint(x; 1; i; j; p), go to Check
if (xij = 1), go to Backtrack

Check: if (xfg 6= 2) 8f; g,
Evaluate Feasible Solution Objective Value(x)
go to Set

else go to Lower Level
Lower Level: if (j < K), j := j + 1

else i := i+ 1 and j := i+ 1
if (pij = 1) go to lower level
else go to Set

Backtrack: if (i = 1 and j = 2) , go to Set
if (pij = 0) , Free by Constraints(x; i; j; p)
if (j > (i+ 1)); j := j � 1
else i := i� 1 and j := K
if (pij = 1) go to Backtrack
else go to Set

Algorithm 3.1: Complete enumeration algorithm.

3.5 Sequential Branch and Bound Algorithm

3.5.1 Introduction

The sequential branch and bound algorithm, like the complete enumeration

algorithm, branches on the decision variables sequentially. However, for each

partial solution, the upper and lower bounds are evaluated. Then, if the lower

bound value exceeds the upper bound value, the algorithm prunes this partial

solution and goes to the next value of the considered decision variable. In this

algorithm, we use only the �rst lower bound and the general upper bound.

There are two ways to apply the sequential branch and bound algorithm:

the agglomerative and the divisive ways. In the agglomerative way, we begin by

assigning 0 to all decision variables and then joining the samples sequentially
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Set by Constraint(x,0 or 1,i,j,p)
There are two 2 cases:

xij:2! 0
for f = i+ 1 to j � 1

if (xif = 1) then
xfj := 0
pfj := 1

xij:0! 1
for f = i+ 1 to j � 1

if (xif = 1)
xfj := 1
pfj := 1

else if (xif = 0 and pif = 0)
xfj := 0
pfj := 1

Free by Constraint(x,i,j,p)
for f = i+ 1 to j � 1

if (xif = 1)
xfj := 2
pfj := 0

else if (xif = 0 and pif = 0)
xfj := 2
pfj := 0

Algorithm 3.2: Set and free by constraint functions.

by changing the decision variables values from 0 to 1. In the divisive way, we

begin by assigning 1 to all decision variables and then dividing the samples

sequentially by changing the decision variables values from 1 to 0. The rest of

the algorithm is the same for both ways except for the constraint functions,

as will be shown subsequently. The agglomerative way will be used when we

expect the population to have many clusters, and the divisive way will be used

when we expect the population to have few clusters. This strategy will make

the algorithm starts searching from the extreme that is more likely to be closer

to the optimal solution.
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3.5.2 Agglomerative Sequential Branch and Bound Al-

gorithm

The agglomerative sequential branch and bound algorithm is presented in Al-

gorithm 3.3. The agglomerative sequential branch and bound algorithm uses

the same steps of the complete enumeration algorithm except for the Check

step. In this step, the bounds are checked and the �ow of the algorithm is

directed according to the results of the bounding strategies. This algorithm

uses the same functions in Algorithm 3.2.

Initialization: xij := 2 8i; j; pij := 0 8i; j; i := 1; j := 2; Upper
Bound= +1
Set: if (i = 1, j = 2, and x12 = 1), Stop

if (xij = 2), xij := 0, Set By Constraint(x; 0; i; j; p), go to Check
if (xij = 0), xij := 1, Set By Constraint(x; 1; i; j; p), go to Check
if (xij = 1), go to Back Track

Check: if (xfg 6= 2 8f; g),
Evaluate Feasible Solution Objective Value(x)
if Solution Objective Value < Upper Bound,

Upper Bound := Solution Objective Value
go to Set

else
evaluate Partial Solution First Lower Bound(x)

if (Partial Solution Lower Bound > (Local) Upper Bound), go to Set
else go to Lower Level

Lower Level: if (j < K), j = j + 1
else i := i+ 1 and j := i+ 1
if (pij = 1); go to Lower Level
else go to Set

Back Track: if (i = 1 and j = 2); go to Set
if (pij = 0); Free by Constraints(x; i; j; p)
if (j > (i+ 1)); j := j � 1
else i := i� 1 and j := K
if (pij = 1); go to Backtrack
else go to Set

Algorithm 3.3: Agglomerative sequential branch and bound algorithm.
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Initialization: xij := 2 8i; j; pij := 0 8i; j; i := 1; j := 2;
Upper Bound := +1

Set: if (i = 1, j = 2, and x12 = 0), Stop
if (xij = 2), xij := 1, Set By Constraint(x; 1; i; j; p), go to Check
if (xij = 1), xij := 0, Set By Constraint(x; 0; i; j; p), go to Check
if xij = 0, go to Backtrack
Algorithm 3.4: Divisive sequential branch and bound algorithm.

3.5.3 Divisive Sequential Branch and Bound Algorithm

Only the parts of the divisive sequential branch and bound algorithm that

are di¤erent from the agglomerative algorithm are presented in Algorithm 3.4.

These parts are the Initialization and the Set steps where the order of the

assignment of 0 or 1 is reversed. The Set and Free by Constraint functions

for the divisive algorithm are presented in Algorithm 3.5. These functions

perform the same task as in the complete enumeration algorithm except for

the order of the assignment of 0 or 1.

3.6 Adaptive Branch and Bound Algorithm

In the adaptive branch and bound algorithm, we use the adaptive branching

strategy (Subsection 3.2.2), the �rst lower bound (Subsection 3.3.2), and the

general upper bound (Subsection 3.3.1). The variables of the adaptive branch

and bound algorithm are de�ned as follows:
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Set by Constraint(x,0 or 1,i,j,p)
There are two 2 cases:

xij:2! 1
for f = i+ 1 to j � 1

if (xif = 1)
xfj := 1
pfj := 1

else if (xif = 0 and pif = 0)
xfj := 0
pfj := 1

xij:1! 0
for f = i+ 1 to j � 1

if (xif = 1)
xfj := 0
pfj := 1

else if (xif = 0 and pif = 0)
xfj := 2
pfj := 0

Free by Constraint(x,i,j,p)
for f = i+ 1 to j � 1

if (xif = 1)
xfj := 2
pfj := 0

Algorithm 3.5: Set and free by constraint functions for the divisive sequential
branch and bound algorithm.
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xij =

8><>: 1 if samples i and j are in the same cluster.

0 if samples i and j are not in the same cluster.

9>=>;
; 1 � i < j � K

pi =

8>>>><>>>>:
0 if sample i is free.

1 if sample i is a sample that started a new cluster.

2 if sample i is joined to an already established cluster.

9>>>>=>>>>;
; i = 1; ::; K

sij =

8><>: 1 if the algorithm has enumerated the value 1 for xij.

0 otherwise.

9>=>;
; 1 � i < j � K:

When using xij or sij, we will always assume i and j are in the right order

(i.e., i < j).
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sii =

8>>>>>>><>>>>>>>:

1 if the value 0 has been enumerated at the same

time for all xij with the already established clusters.

0 otherwise.

9>>>>>>>=>>>>>>>;
; 1 � i � K

clusterorder = [] (clusterorder is a multi-dimensional matrix holding the

lower bound and AIC values for all branches of each free sample in the order

they are selected.)

current = 1; ::; K (current is the index of the currently considered free

sample.)

The adaptive branch and bound algorithm is presented in Algorithm 3.6.

This algorithm has only three steps: Set, Lower Level, and Backtracking. The

xij and sij variables are used to enumerate either implicitly or explicitly all

possible clustering alternatives. sij keeps track of the xij values that has been

already enumerated and hence the algorithm will not enumerate them again.

The Set step evaluates either the AIC value of a complete solution or the lower

bound of a partial solution. The Lower Level step picks the next unchecked

partial solution to branch on. The Backtrack step shifts the branching to the

closest unchecked parent partial solution. The functions used in this algorithm

are presented in Algorithm 3.7. These functions are the Update, Order, and

Free functions. The Update function updates the xij and sij values as the

algorithm progresses. The Order function evaluates the lower bounds and
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orders them in the clusterorder matrix. The Free function frees the xij, pi,

and sij values when the algorithm backtracks to the closest unchecked parent

partial solution.

Initialization: xij := 0 8i; j; pi := 0 8i; sij := 0 8i; j; clusterorder is
empty; current := 1; pcurrent := 1; current := 2

Set: if (current = 2 and s2;1 = 1 and s2;2 = 1); Stop
if (current = K);
pick minimum AIC for all possible values of xi;current where pi = 1:AICmin

if (AICmin is at all xi;current = 0); imin := current
else imin := i where xi;current = 1 gives AICmin
Update(x; imin; current; s)
if (AICmin < Upper Bound); Upper Bound := AICmin; x� := x
go to Backtrack

else
if (pcurrent = 0)

8i where pi = 1 �nd lower bound AIC for all possible values of xi;current
Order(clusterorder; AIC values,current,s,Upper Bound)

if (lowest lower bound � Upper Bound); go to Backtrack
else go to Lower Level

Lower Level: Pick minimum lower bound in clusterorder where si;current = 0
or scurrent;current = 0 : imin; Update(x; imin; current; s)
if (imin = current); pcurrent := 1
else pcurrent := 2; current := current+ 1; go to Set

Backtrack: if (current = 2); go to Set
Free( x; s; current); current := current� 1

if (8i where pi = 1 : si;current = 1 and scurrent;current = 1); go toBacktrack
else go to Lower Level

Algorithm 3.6: Adaptive branch and bound algorithm.
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Update(x; imin; current; s)
if (imin 6= current);

ximin;current := 1
simin;current := 1
for (j = 1 : K=fimin; currentg)

if (ximin;j = 1)
xcurrent;j := 1

else scurrent;current := 1
Order(clusterorder; AIC values,current; s, Upper Bound)

Order the indexes i where pi = 1 and current (starts a new cluster)
according

to their AIC lower bound values.
Store the ordered AIC lower bound values in clusterorder(current)
8i where pi = 1 and lower boundi � Upper Bound, si;current := 1

Free(x; s; current)
8i where pi = 1

si;current := 0 (free current)
scurrent;current := 0
pcurrent := 0

for (f = 1 : K=current)
xf;current := 0

Algorithm 3.7: Functions of the adaptive branch and bound algorithm.
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Sample Order(D; pickorder)
Put all samples in one cluster.
Take one sample at a time out of this cluster (after returning the previous
sample)
Score lack of �t part for each case
Order samples in pickorder vector according to lack of �t values in
ascending order

Algorithm 3.8: Sample order function.

3.7 Adaptive Branch and Bound Algorithm

With Reordering

The adaptive branch and bound algorithm with reordering is the same as the

adaptive branch and bound algorithm with the exception that this algorithm

is preceded by a function that reorders the way in which the free samples are

considered.

We use a new variable, pickorder = [], which is an array holding the

indexes of the free samples in the order they are selected. Before beginning the

algorithm, the Sample Order function, as shown in Algorithm 3.8, is run. This

function orders the samples according to the �rst reordering strategy discussed

in Subsection 3.2.3. The rest of the algorithm is the same as in the original

adaptive algorithm except that all appearances of the current variable as a

subscript are replaced with pickorder(current) (i.e., we use xi;pickorder(current),

ppickorder(current), and si;pickorder(current)).
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3.8 Complete Adaptive Branch and Bound Al-

gorithm With Reordering

The complete adaptive branch and bound algorithm with reordering is the

same as the adaptive branch and bound algorithm with reordering with the

exception of using the complete adaptive branching strategy as discussed in

Subsection 3.2.4. The complete adaptive branch and bound algorithm with

reordering has the same variables as the adaptive branch and bound algorithm

with reordering for each saved branch except for the pickorder matrix. These

variables are de�ned as follows:

t is the index of the saved branches.

max t is the largest number of branches that can be saved.

lastt is the last node explored in branch t.

parentt is the parent node for each saved branch.

xtij =

8><>: 1 if samples i and j are in the same cluster.

0 if samples i and j are not in the same cluster.

9>=>;
; 1 � i < j � K
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pti =

8>>>><>>>>:
0 if sample i is free.

1 if sample i is a sample that started a new cluster.

2 if sample i joined an already established cluster.

9>>>>=>>>>;
; i = 1; ::; K

stij =

8><>: 1 if the algorithm has enumerated the value 1 for xij.

0 otherwise.

9>=>;
; 1 � i < j � K

When using xtij or s
t
ij, we will always assume i and j are in the right order

(i.e., i < j).

stii =

8>>>>>>><>>>>>>>:

1 if the the value 0 has been enumerated at the same

time for all xij with the already established clusters.

0 otherwise.

9>>>>>>>=>>>>>>>;
; 1 � i � K

pickorder = [] (pickorder is an array holding the indexes of the free sam-

ples in the order they are selected, as in Algorithm 3.8).

clusterordert = [] (clusterordert is a multi-dimensional matrix holding
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the current information for all levels in branch t for each free sample in the

order it is selected.)

clusterorder = [] (clusterorder is a multi-dimensional matrix holding all

clusterordert matrices.)

currentt = 1; ::; K (currentt is the index of the current free sample con-

sidered in pickorder.)

The complete adaptive branch and bound algorithm is preceded by the

same Sample Order function in Algorithm 3.8. We present only the steps of

the complete adaptive branch and bound algorithm with reordering that are

di¤erent from the adaptive branch and bound algorithm with reordering in

Algorithm 3.9. These steps include the Backtracking step. In this step, the

algorithm chooses between starting a new branch, backtracking to a parent

branch, or backtracking to a parent partial solution. The rest of the steps are

the same as in the adaptive branch and bound algorithmwith reordering except

for using the superscript t. The functions used in the complete adaptive branch

and bound algorithm with reordering are the same functions in Algorithm 3.7.

3.9 The Lower Bounds Modules

Here, we present the bounds modules for the adaptive and the complete adap-

tive branching strategies. These bounds modules are used in the previous

algorithms but are presented here in greater detail.

The number of partial clusters k in a partial solution is the number of pi�s

that are equal to 1. The number of free samples f in a partial solution is the

number of pi�s that are equal to 0.
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Initialization: t := 1; xtij := 0 8i; j; pti := 0 8i; stij := 0 8i; j; clusterorder is
empty,
currentt := 1; ppickorder(currentt) := 1; current

t := 2, tmax := 0,
Backtrack: if (currentt = 2); go to Set

Free( xt; st; currentt); currentt := currentt � 1
if (tmax < max t)

t := t+ 1; tmax := t
clusterorder := [clusterorder clusterordert]
pick minimum lower bound in clusterorder for all t:
tmin; currentmin; jmin where s

tmin
pickorder(currentmin);jmin

= 0

currentt := currentmin; parentt := currentt

xt := xtmin ; st := stmin ; pt := ptmin ; stminpickorder(currentmin);jmin
:= 1

for (f = currenttmin : currentt)
Free(xt; st; f)

go to Lower Level
else if (currentt = parentt)

t := t� 1
go to Lower Level

else
if (8i where pti = 1 : sti;pickorder(currentt) = 1 and
stpickorder(currentt);pickorder(currentt) = 1)
go to Backtrack

else go to Lower Level
Algorithm 3.9: Complete adaptive branch and bound algorithm with re-
ordering.
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First Lower Bound(xb; p; sb; current):
8i where pi = 1 leave all xbi;current := 0 (start a new cluster)
part1 :
Compute Lack of Fit part for x (free samples in own cluster xbij = 0).
part2 :
Compute AIC Penalty for k + 1 clusters (add one for this new cluster).
lower boundcurrent := part1 + part2
For each i where pi = 1

Set xbi;currrent := 1, update(xb; i; current; sb)
part1 :
Compute Lack of Fit for xb (free samples in own cluster xbij := 0).
part2 :
Compute AIC Penalty for k clusters.
lower boundi := part1 + part2

Second Lower Bound(xb; pb; sb):
For each i where pbi = 0 and each j where pbj = 1

Set xbi;j = 1; update(xb; i; j; sb)
Compute lack of �t for xb (for all other i where pbi = 0 set xbij = 0)

For each two i and j where pbi = 0 and pbj = 0
Set xbi;j = 1
Compute lack of �t for xb (for all other i where pbi = 0 set xbij = 0)

Pick the minimum of these Lack of Fit parts: Part1
Compute AIC Penalty for k clusters: part2
lower boundi = part1 + part2
Algorithm 3.10: Functions of the �rst and second lower bounds.

3.9.1 The Modules

The functions of the �rst and second lower bounds are presented in Algorithm

3.10. The new bounds can be implemented as discussed in Subsection 3.3.3.

3.9.2 Computational Remarks

The computational results for the lower bounds can be reused in the adaptive

and complete adaptive branching strategies for all lower-level free samples

except for the clusters that have changed their content.
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3.10 Experimental Results

We conducted a series of experiments in order to �nd the branch and bound

strategies that are more likely to perform well on any given data set. First,

we conducted preliminary experiments using few branch and bound strategies

in order to show the di¢ culty of the MSCA problem. Then, we tested all

the branch and bound strategies in stages on a selected data set to verify the

best performing strategies. Finally, we tested the best performing strategies

on other data sets.

All strategies were coded using MATLAB Version 7.0 and were run on

a computer with a CPU speed of 2.8 GHz. We used AIC as the objective

function in all experiments. All considered data sets required using the varying

model.

3.10.1 Preliminary Experiments

We coded only the complete enumeration and the sequential branch and bound

algorithms to understand the di¢ culty of the MSCA problem and evaluate the

performance of the �rst lower bound and the general upper bound.

We used two real data sets and two simulated data sets. Table 3.1 is a

summary of the results of these experiments.

IRIS Data Set

The IRIS data set was used �rst by Fisher (1936) and was then used widely by

many researchers in developing algorithms for observation-wise cluster analy-

sis. This data set consists of 150 observations on 4 variables. It�s known that
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Table 3.1: Results of the preliminary experiments.
Data Set K ni n p Algorithm Time (sec.) Checked
IRIS 15 30 150 4 Complete 20; 000� 1; 000; 000
IRIS 15 30 150 4 Sequential 12; 599 1762
Bank Cus-
tomers

15 100 1500 9 Sequential 84; 400� -

Simulated
(Well
Separated)

15 100 1500 9 Sequential 166 18

Simulated
(Poorly
Separated)

15 100 1500 9 Sequential 237 393

*did not converge

this data set comes from three groups (Fisher 1936). Because we are devel-

oping algorithms for Multi-Sample Cluster Analysis, we need to group these

150 observations in a certain way in order to apply our algorithms and allow

others in the future to use this same benchmark data set to compare their

algorithms to ours. We decided to group the 150 observations into 15 groups

of 10 observations each in the order they appear in the data set. This grouping

divides each of the known three groups of 50 observations into 5 subgroups.

Complete Enumeration We ran the complete enumeration algorithm for

20; 000 seconds (about 5 hours and 30 minutes). In this time, the algorithm

checked a little more than 1 million complete solutions, less than 0:1% of all

possible solutions. These results mean that we need 5; 500 hours (about 229

days) to �nd the optimal solution.

Sequential Branch and Bound Because we know that the optimal solu-

tion of the grouped IRIS data set is not close to the two extremes (1 or 15
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clusters), running the sequential branch and bound algorithm with no initial

upper bound will require a lot of time. We decided to run the sequential

branch and bound algorithm with the upper bound equal to the optimal AIC

value. This run will test the performance of the �rst lower bound.

The algorithm converged after about 12; 000 seconds (about 3 hours and 20

minutes). The algorithm checked only 1; 762 complete solutions. The optimal

solution value is 119:47. This performance tells us that the �rst lower bound is

good but not good enough. We expect that with the addition of the branching

strategies and the other bounding strategies, we will be able to improve this

performance.

SPSS Bank Customers Data Set

This data set consists of 1; 500 observations with 9 variables. These obser-

vations are divided into 15 samples of 100 observations each. Each sample

represents customers of one of the 15 branches of this bank.

Because we have no information about the optimal solution, we ran the

sequential branch and bound algorithm with no initial upper bound. The

algorithm ran for more than 24 hours and did not converge. We expect that

with the branching strategies and other bounding strategies, we will be able

to improve this performance.

Simulated Data Sets (Separability Factor)

An important factor that may a¤ect the performance of any algorithm that

tries to solve any cluster analysis problem, is the degree to which the samples,

objects, or clusters are separated. This is known as the separability factor
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(Koontz, Narendra, and Fukunaga 1975; Diehr 1985; Brusco 2006). A good

separation means that the structure of the populations involved is clear (i.e.,

the clusters�boundaries are obvious). A bad separation means that there is no

clear cluster structure and that the samples or objects can be joined in many

good ways. We expect this factor to play an important role in the performance

of our algorithms.

Therefore, we simulated two data sets with the same characteristics as

the Bank Customers data set (i.e., K = 15; ni = 100; n = 1500; p = 9). The

�rst simulated data set had strongly separated clusters and the second one had

slightly separated clusters. We ran the sequential branch and bound algorithm

for both simulated data sets. The algorithm converged in about 166 seconds

and checked only 18 complete solutions for the data set with the well-separated

clusters. On the other hand, it converged in about 237 seconds and checked

393 complete solutions for the data set with the slightly separated clusters.

This shows the e¤ect of the actual structure of the data set. However, if a real

population is slightly separated, �nding the optimal solution is not important

because there are a lot of good solutions close in information criterion value to

the optimal solution. In this case, a good heuristic can e¢ ciently �nd a good

enough solution.

3.10.2 Evaluation of Strategies Using the IRIS Data Set

We selected the IRIS data set for testing the branch and bound strategies

because it is a well known bench-mark data set. Table 3.2 shows the results of

6 experiments which use the branch and bound strategies that performed well
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Table 3.2: Branch and bound strategies that performed well on the IRIS data
set.
# Branch. Reorder Bounds Time

(Error)
Nodes Solutions Opt.

1 Seq. - First 12,599 376,782 1,762 Given
2 Adap. Desc. First 2,877 27,289 811 3
3 Adap. Asc. First 652 6,474 559 262
4 Adap. Asc. +Local 529 4,790 559 262
5 Adap. Asc. +Save 529 4,790 559 262
6 Adap. Asc. +Heuristic 146

(0.04%)
1,138 284 6

Optimal Clustering Alternative: (1,2,3,4,5)(6,7,8,9)(10)(11,12,13,14)(15)

(a row for each experiment). The last row shows the actual optimal clustering

alternative selected by AIC. This solution includes three big clusters and two

small clusters that contain only one sample each. The big three clusters are

consistent with the known real structure of the IRIS data set which has only

three clusters. The two small clusters are a result of the low penalty value that

AIC applies to the increase in the number of clusters. We expect that other

information criteria with bigger penalty part, like CAIC, SBC, or ICOMP ,

will choose the right clustering alternative that has three clusters only.

In this table the �rst column shows the branching strategy used in each

experiment (Sequential or Adaptive). The �rst experiment is a repetition of the

second experiment in Table 3.1. In this experiment only the �rst lower bound

and the general upper bound were used. In addition, in the �rst experiment the

optimal solution value was used as the initial upper bound. The second column

in Table 3.2 speci�es which reordering strategy is being used (the ascending or

the descending reordering strategy). The third column speci�es the bounding

strategies used (�rst lower bound, local upper bound, saving technique, and/or
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the heuristic local upper bound). The last four columns report the performance

measures on the algorithms in each experiment: execution time in seconds,

number of enumerated nodes (or number of enumerated partial solutions),

number of complete solutions checked, and the order in which the optimal

solution was found among the complete solutions checked.

We see that the adaptive branching with descending reordering in the sec-

ond experiment outperforms the sequential branching in the �rst experiment

on all measures and �nds the optimal solution early among the complete solu-

tions checked. When only the reordering strategy is changed to the ascending

reordering strategy in the third experiment, the performance of the branch

and bound algorithm improves signi�cantly on all measures except for the last

column. The ascending reordering strategy �nds the optimal solution later, in

the execution, than the descending reordering strategy does. We can see here

a trade-o¤ between the speed of convergence and the speed of �nding the op-

timal solution in the execution. The descending reordering strategy �nds the

optimal solution quickly but is slow in convergence. The ascending reordering

strategy has the opposite performance. The speed of convergence is important

because we need fast algorithms. A fast convergence means that the algorithm

is good at pruning more partial solutions. The speed of �nding the optimal

solution is also important because some problems require a very long execu-

tion time. In this case if the algorithm is fast at �nding the optimal solution,

then even if we stop the algorithm before convergence, we are more likely to

have found the optimal solution. We will see in the next subsections how the

complete adaptive branching strategy can solve this problem and achieve a

good performance on both of these measures.
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The fourth experiment adds the local upper bound strategy. In this exper-

iment we see that this strategy reduces the time and the number of enumerated

nodes but keeps the other two performance measures the same. This perfor-

mance tells us that this strategy prunes the bad branches of the enumeration

tree earlier in the process but still enumerates the same complete solutions.

However, this improvement is acceptable.

The saving technique is added in the �fth experiment. The saving tech-

nique, as explained in Subsection 3.3.3, tries to save computations by storing

the pruning decisions of the local upper bound. We see that this technique

did not change the performance at all. This result can be viewed as a good

performance because it shows that the time required to check the list of saved

decisions is equal to the time required to recalculate the local upper bound

condition. For di¤erent data sets we expect that this strategy will save time,

especially when there are more pruning decisions.

The sixth experiment shows the performance after adding the heuristic

version of the local upper bound, as explained in Subsection 3.3.3, along with

the �rst lower bound and saving technique. This heuristic has a superior per-

formance on all measures except that it �nds a suboptimal solution. However,

this suboptimal solution has only an error of 0:04% compared to the optimal

solution found by the other strategies.

Table 3.3 summarizes the results of the experiments on the branch and

bound strategies that did not perform well. This table follows the same format

as Table 3.2. The �rst experiment is a repetition of the experiment that used

the adaptive branch and bound algorithm with the �rst lower bound and the

local upper bound as in Table 3.2. The second experiment adds the second
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Table 3.3: Branch and bound strategies that did not perform well on the IRIS
data set.
# Branch. Reorder. Bounding Time Nodes Solutions Opt.
1 Adap. Asc. First,Local 529 4,790 559 262
2 Adap. Asc. First,Local,Sec. 2,594 3,103 544 247
3 Adap. Asc. First,Local,New 1,344 4,790 559 262

lower bound as explained in Subsection 3.3.2. In this experiment, although the

number of enumerated nodes decreases, the execution time increases dramati-

cally. The reason for this is that the added bound does not make enough extra

pruning decisions while requiring many more computations. Although some

of these computations can be avoided by saving their results as we did in the

saving technique, any technique to save all of the computations will require

other extra computations. Hence, we do not expect that this technique will

o¤set the huge increase in execution time.

The third experiment adds the new lower bound, as explained in Subsec-

tion 3.3.3, to the �rst lower bound and the local upper bound. This added

bound did not prune any extra nodes but required an increase in time. This

performance can be due to the fact that there is a small chance of �nding a

sample that can not join any of the already formed partial clusters as required

by this bound.

The results of the experiments that use the complete adaptive branching

strategies are shown in Table 3.4. All of these experiments use the �rst lower

bound, the local upper bound, and the saving technique. The �rst experiment

uses the adaptive branching strategy with descending reordering. The second

experiment uses the adaptive branching strategy but with ascending reorder-

ing. Again, we can see, from these two experiments, the trade-o¤ between fast
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Table 3.4: The complete adaptive branching performace on the IRIS data set.
# Branch. Reorder. Time Nodes Solutions Optimal
1 Adap. Desc. 2,328 20,188 811 3
2 Adap. Asc. 529 4,790 559 262
3 Comp. t=2 Asc. 529 4,797 559 465
4 Comp. t=3 Asc. 531 4,787 559 19
5 Comp. t=4 Asc. 533 4,787 559 19
6 Comp. t=5 Asc. 534 4,787 559 19
7 Comp. t=10 Asc. 534 4,787 559 19
8 Comp. t=50 Asc. 540 4,787 559 19

convergence and fast �nding of the optimal solution. The third experiment

starts the use of the complete adaptive branching strategy with ascending re-

ordering but only saves two branches. We can see that saving two branches

does not change any of the performance measures except that the optimal so-

lution is found later in the execution which is the opposite of the goal of using

this branching strategy.

However, the fourth and later experiments increase the number of branches

saved gradually and show a great improvement in the speed of �nding the

optimal solution. In these experiments the optimal solution is found much

earlier than in the second and third experiments. We can see also that the

time shows a very small increase with the increase of the number of branches

saved in the complete adaptive branching strategy. Hence, we can increase the

number of branches saved as much as the computer memory allows. Therefore,

with the complete adaptive branching strategy we achieved the qualities of the

ascending and descending reordering strategies simultaneously: we �nd the

optimal solution early in the execution of the algorithm without a¤ecting the

speed of convergence.
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Based on this performance we recommend using one of two algorithms.

The �rst algorithm, called the complete algorithm, uses the complete adaptive

branching strategy, the ascending reordering strategy, the �rst lower upper

bound, the local upper bound, and the saving technique. The second algo-

rithm, called the heuristic algorithm, is exactly the same as the �rst algorithm

except that it uses the heuristic local upper bound. The �rst algorithm guar-

antees to �nd the optimal solution but can take a longer time. The second

algorithm requires less time and �nds a near optimal solution or the actual

optimal solution.

3.10.3 Other Data Sets

We applied the two algorithms chosen in the previous subsection to other

data sets. Table 3.5 shows the results of these experiments. The �rst two

experiments on the IRIS data set are repeated from the previous subsection.

These experiments show how the heuristic algorithm outperforms the complete

algorithm in all measures except that it �nds a slightly suboptimal solution.

The next two experiments are on the SPSS Bank data set which is de-

scribed in Subsection 3.10.1. We saved 65 branches in the complete algorithm.

This number of branches was enough to �nd the optimal solution as fast as

possible. Because the heuristic algorithm performed very well on the IRIS

data set without saving any branches, we did not save any branches in the

heuristic algorithm on the Bank data set. These two experiments show the

superior performance of the heuristic algorithm over the complete algorithm

on all performance measures. The heuristic algorithm reduces the time from
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Table 3.5: Branch and bound algorithms�results on other data sets.
Data Set Algorithm Time

(Error)
Nodes Solutions Optimal

IRIS K=15 Comp. t=50 540 4,787 559 19
Heuristic 146

(0.04%)
1,138 284 6

Banks
K=15

Comp. t=65 21,808 81,936 5,319 92

Heuristic 72.26 147 978 33
Banks
K=30

Comp. t=100 30,600*
(0.02%)

41,916 40 10

Heuristic t=100 28,800* 30,411 1,103 559
*did not converge

about 6 hours for the complete algorithm to only 1:2 minutes and �nds the

optimal solution (i.e., there is no error). We must note that this performance

must be due to the match between the heuristic local upper bound condition

and the real cluster structure of this data set. This data set must have a clus-

ter structure in which the clusters are separated in a way that satis�es the 1

cluster penalty condition of the heuristic local upper bound. We expect this

algorithm to have the same performance for all data sets that have a similar

cluster structure.

Because getting real current data sets is di¢ cult, to test our algorithms

on data sets that have a large number of samples we divided the observations

in each sample in the Bank data set sequentially into two samples to get a

data set of K = 30 samples. The last two experiments in Table 3.5 use this

data set. Because preliminary experiments showed the di¢ culty of this data

set, we saved 100 branches in both algorithms. Neither of the two algorithms

converged and we had to stop their execution. This performance can be due to
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the increase in the number of samples and the reduction in the separability of

the real cluster structure of the data set because of the division of the samples.

Although the heuristic algorithm was run for a shorter time, it found a better

solution than the complete algorithm, which had an error of 0:02% compared

to the heuristic algorithm solution. This performance can be explained by

the fact that the heuristic algorithm pruned many branches that the complete

algorithm had to enumerate and hence the complete algorithm did not have

enough time to reach a better solution.

The last two experiments of Table 3.5 show that the branch and bound

algorithms can not �nd the optimal solution for all kinds of data sets in a

reasonable amount of time, although it performed very well for certain types

of data sets. Therefore, in the next chapter we try to test how a genetic

algorithm performs on all of the tested data sets.

3.10.4 Upper Bound Improvement Charts

Figures 3.7-3.12 show how the general upper bound value improves over time

for each of the experiments in Table 3.5. These �gures show that in a few sec-

onds all algorithms �nd a solution with an objective function value that is very

close to the best found solution�s objective function value (the optimal value

in case of convergence). This performance is due to the adaptive branching

and to the fact of having many solutions close in objective function value to

the optimal solution.
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Figure 3.7: Upper bound improvement using the complete algorithm on the
IRIS data set.
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Figure 3.8: Upper bound improvement using the heuristic algorithm on the
IRIS data set.
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Figure 3.9: Upper bound improvement using the complete algorithm on the
Bank (15 samples) data set.
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Figure 3.10: Upper bound improvement using the heuristic algorithm on the
Bank (15 samples) data set.
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Figure 3.11: Upper bound improvement using the complete algorithm on the
Bank (30 samples) data set.
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Figure 3.12: Upper bound improvement using the heuristic algorithm on the
Bank (30 samples) data set.
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3.11 Computational Remarks

We have presented a number of bounding and branching strategies and their

expected and real performances. Here we consider some pure computational

aspects of the algorithms that can a¤ect their performance but are not based

on any kind of theoretical analysis.

3.11.1 Sequential Branching

After we perform several steps of the adaptive branching strategy, we can

branch sequentially and evaluate the bounds after a reasonable number, there-

after called the saving number, of steps of sequential branching. Depending

on the performance of the bounding strategies, we can decrease or increase

the saving number. This strategy will save a lot of computations because the

bounding computations that are more likely not to lead to a pruning decision

will not be carried out. If a better upper bound (feasible or complete solution)

has been found, we can reactivate the adaptive branching strategies for a few

steps. The use of this strategy is motivated by the fact that there are a much

greater number of partial solutions than complete solutions to be evaluated.

Therefore, using the sequential branching strategy until enough assignments

have been made before trying to prune is a valid approach.

3.11.2 The A Matrices

The information criteria requires the computation of a number of matrices

and a number of determinants. The determinants�computation is the most

expensive type of computation and its cost depends on the dimensions of the
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problem. We can save the A matrix or its determinant for each partial cluster

and update it only when the content of this partial cluster changes. This

technique is similar to the saving technique and is expected to improve the

times of execution of the algorithms.

3.12 Conclusions and Future Work

We developed and tested a series of branch and bound strategies and algo-

rithms that improve on each other. We showed how the complete adaptive

branching strategy, with the ascending reordering strategy, outperforms the

adaptive and sequential branching strategies by achieving the advantages of

both the ascending and descending reordering strategies: fast convergence and

fast �nding of the optimal solution. The complete adaptive branching strategy

does not require any extra computations because it only saves the enumerated

branches of the enumeration tree to explore the next most promising branches

of the tree.

We also showed the good performance of the �rst lower bound and the local

upper bound. These bounds use the properties of the information criteria to

prune the partial solutions. The second lower bound and the new lower bound

did not perform as well and were dropped from the algorithms.

A heuristic was derived from the local upper bound that showed a superior

performance. The heuristic local upper bound condition relaxes the local upper

bound condition but does not guarantee �nding an optimal solution. In most

of the experiments conducted, this heuristic makes the algorithm converges in

a fraction of the time required by the local upper bound. This performance
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depends highly on the real cluster structure of the considered data set.

Some data sets that have a very large number of samples and/or poorly

separated clusters can cause the complete and the heuristic algorithms to re-

quire a very long time to converge. However, using the complete adaptive

branching strategy with a large number of saved branches will give us a high

opportunity of �nding the optimal or near optimal solution even in the case of

stopping the algorithm before convergence. In many cases of poorly separated

clusters there are many good clustering alternatives that have an information

criterion value that is very close to the optimal solution information criterion

value and using any of these solutions is widely acceptable.

In the complete adaptive branching strategy, after saving the allowed num-

ber of branches, the algorithm backtracks sequentially to the previously cre-

ated branch when the current branch is completely enumerated. A possible

improvement is to backtrack to the most promising branch rather than back-

tracking sequentially. A promising branch can be the one that has the complete

solution with the minimum information criterion value among the remaining

branches. This improvement will make it more likely to �nd the optimal so-

lution faster than backtracking sequentially because of two possible reasons.

First, we might have missed the branch leading to the optimal solution by

making a suboptimal branching decision at a lower-level node in the �rst enu-

merated branch. Second, we might have created all of the saved branches from

higher-level nodes in the enumeration tree that have the minimum �rst lower

bound but do not contain the optimal solution.

We saw that the heuristic local upper bound can make the algorithm �nd

a near optimal or the optimal solution a lot faster than the local upper bound.
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This means that the local upper bound is too conservative and enumerates

many bad solutions. This also means that the heuristic local upper bound can

converge to a solution that is suboptimal. Future research can look into the

possibility of �nding a bound that is less conservative than the local upper

bound and more accurate than the heuristic local upper bound. A possible

consideration is to compare the increase in the value of the lack of �t term

after joining a partial cluster and a free sample to the penalty of 1 cluster

multiplied by a factor between 1 and 2 but closer to 1. This strategy can still

prune almost the same number of partial solutions as the heuristic local upper

bound does but is more likely to �nd the optimal solution.

The saving technique can be extended to include the negative outcome of

the local upper bound condition. This extended saving technique can work

as follows: If the local upper bound condition for a partial cluster and a free

sample is not met then we can save the indexes of the free sample and the

samples in the partial cluster in a list of inequalities. When the branch and

bound algorithm reaches another node it checks if the considered free sample

and partial cluster are already in the list of inequalities. If this is the case,

the algorithm does not have to evaluate the local upper bound condition again

and proceeds to branch on this node. However, because the original saving

technique did not improve the performance of the branch and bound, we may

expect that this extended saving technique can cause a weaker performance.

This can be due to the fact that we have a very long list of inequalities to

check and then it may require less computation time to evaluate the local

upper bound condition rather than searching through the list of inequalities.

Cluster analysis branch and bound algorithms in general are very suitable
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for parallel computing techniques. Parallel computers can enumerate di¤erent

branches of the enumeration tree and share the best upper bound found and

the pruning decisions. This strategy is expected to save a lot of time.

Reducing the number of variables and scaling the variables is an essential

part in many cluster analysis studies. We can use Factor Analysis to reduce

the number of variables. This reduction in the number of variables will con-

sequently reduce the computations required by reducing the sizes of the A

matrices and the determinant computations. We can also scale the categori-

cal variables because they are more likely to create poorly separated clusters.

The choice of the method of scaling may depend on the user�s assigned value

for each categorical variable. Methods that perform scaling include Principal

Component, Factor Analysis, and optimal scaling.

In the next chapter we explore the performance of a specialized genetic

algorithm on the same set of MSCA problems
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Chapter 4

Adaptive Clustering Genetic

Algorithm With

Re-initialization

4.1 Introduction

Because MSCA is an NP-hard problem and branch and bound algorithms may

take a long time to guarantee �nding an optimal solution for large problems,

we considered developing a heuristic that can �nd a good solution quickly.

Genetic algorithms (GAs) have been widely used for solving cluster analysis

problems. A possible reason for using genetic algorithms for solving cluster

analysis problems is that these problems are naturally structured in a genetic

form. The good clustering alternatives (chromosomes) share some of the same

good clusters (genes) of samples (objects). If a good cluster is added to a

clustering alternative, the clustering alternative objective function value will
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improve. Aminor change in a clustering alternative (chromosome), like moving

an object to a di¤erent cluster, can improve the clustering alternative.

Genetic algorithms use the principles of natural evolution and genetics to

search for a good solution of the considered problem. They improve a group,

or a population, of possible solutions, or chromosomes, of the problem by an

evolution process that moves from one generation to the next. GAs are more

valuable when the considered problem has many local optimal solutions and we

need to search for the global optimal solution among these many solutions. In

addition, GAs have the advantage of searching in multiple areas of the solution

search space simultaneously and are not limited to one local search at a time.

These algorithms are mostly used when analytical optimization methods fail

to �nd the global optimal solution in a reasonable amount of time. Another

advantage of using GAs is that they do not require any restrictions, like the

monotonic conditions described in Subsection 1.2.8, on the objective function

of the considered problem. There are two general objectives of the GA process.

The �rst objective is the exploitation of the current good areas of the search

space where a local or global optimum is possibly to be found. The second

objective is the exploration of di¤erent areas of the search space other than

the current ones. GAs generally start with a random generation of the �rst

population of chromosomes. Then the evolution process proceeds by repeating

4 important steps:

1. Evaluation: evaluate the �tness of each member of the current population

according to the selected objective function to identify the best solutions.

2. Selection: select the members, which will survive to the next generation,
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of the population according to the �tness values. This step will make

the best solutions survive to the next generation. Some of the methods

of selection are the roulette wheel and tournament selection.

3. Crossover: A number of pairs of chromosomes are selected and combined

in a certain way to produce a new chromosome or an o¤-spring. The

objective of this operator is to join the good parts of the chromosomes

into one chromosome to make a better solution. It resembles the natural

mating of individuals of any population.

4. Mutation: Some of the members of the population are changed in a

random way to produce the next population. The goal of this operator

is to move the search out of the area where the current local optimal

solution was found in order to search for a better local optimal solution

or the global optimal solution in other areas.

This process is repeated for a certain number of times which is decided

based on the performance of the genetic algorithm. There are a number of

parameters that must be decided within each genetic algorithm based on their

performance: evaluation criterion, selection criterion, crossover method, and

mutation method. For more information on GAs and recommended parame-

ters values, please see Wolsey (1998), Reeves and Rowe (2003), or Haupt and

Haupt (2004).

All of the early research on clustering genetic algorithms use the UFL

representation, as described in Subsection 2.1, or the permutation representa-

tion of the cluster analysis problem. All of these encoding schemes have the
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redundancy problem, as described in Subsection 2.1.1, unless a renumbering

algorithm is used (Cole 1998; Jones and Beltramo 1991).

Another problem with early clustering genetic algorithms is that they

use the standard crossover and mutation operators (Falkenauer 1993). These

operators do not consider the special structure of the cluster analysis problem.

A good clustering alternative, solution, or chromosome must have good clusters

that join similar objects. A standard crossover or mutation operator will most

likely disrupt the formed good clusters because it is not context sensitive.

Special types of GA operators must be designed to utilize the structure of the

cluster analysis problem.

There has been many attempts to modify and improve the standard GA.

Michalewicz (1992) pointed out that in many studies the practitioners modify

the problem to �t the standard GA process by applying the standard binary

representation and the standard crossover and mutation operators. The right

course of action instead is to modify the GA to �t the problem. Cluster

analysis problems have a special structure that need to be taken into account

when designing the GA.

Falkenauer (1993) was the �rst to introduce a special GA, called Grouping

Genetic Algorithm or GGA, that considers the context of the cluster analysis

problem. In this algorithm, the crossover and mutation operators are applied

to the clusters instead of the objects. The crossover operator copies the clusters

from the parents to the o¤-springs. Shared objects between two clusters are

taken out of their old clusters and joined to the new injected clusters. The

mutation operator either creates or deletes a cluster randomly. However, GGA

still uses a modi�ed UFL representation which has the problems of redundancy

104



and variable length chromosome. Hruschka and Ebecken (2003) solved the

variable length chromosome problem in the GGA with another modi�ed UFL

representation and avoided the redundancy problem by using a renumbering

algorithm.

A new attempt to avoid the redundancy problem used the linked-list en-

coding scheme (Du, Korkmaz, Alhajj, and Barker 2005). In this scheme each

object is represented by a node that holds an integer value which is the index

of the next higher index object in the same cluster. The last object�s node

in a cluster holds its own index. However, only the standard crossover and

mutation operators were used on this encoding scheme.

Another problem in standard genetic algorithms is the use of static para-

meters�values (Pal and Wang 1996). A number of modi�cations are possible

to link the parameters�values to how the GA process is performing in pre-

vious generations. For example, the mutation probability could be changed

dynamically to get a balance between the exploitation and exploration objec-

tives of the GA at di¤erent stages of the GA process. A possible modi�cation

to standard GA is to make the mutation probability depend on the current

generation performance.

We did not �nd any genetic algorithm developed speci�cally for solving the

MSCA problem using information criteria. In addition, the Clique Partitioning

Problem (CPP) formulation was not used in any of the GA algorithms that we

surveyed. In the next section we present a genetic algorithm that joins many

nice features to solve the MSCA problem using both the information criteria

and the CPP formulation.
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4.2 The Genetic Algorithm

4.2.1 Overview

The GA we are proposing includes many special features that are expected to

improve the performance of the GA in solving the MSCA problem. Our algo-

rithm is called an adaptive clustering genetic algorithm with re-initialization,

also can be called a repetitive adaptive clustering GA. We use the information

criteria (derived by Bozdogan (1981, 1986)) as the objective function to �nd

the best clustering alternative of the samples. The number of clusters is not

�xed as it is in many clustering GAs. The GA we are proposing uses, for the

�rst time, the Clique Partitioning Problem (CPP) formulation as its encoding

scheme to avoid the problems faced by previously used representations. We

use the pair-wise closeness of the samples as found by the information criteria

to guide the random initialization process to �nd good initial solutions. We

also utilize crossover and mutation operators that are specially designed for

clustering problems. The mutation probability is not static but adapts to the

current performance of the GA process. We also use the elitism technique

to insure that the best solution among the current generation survives to the

next generation. Finally, we use a re-initialization step when all the previous

steps fail to move the search out of a local optimum.

We explain each step of the GA fully in the following subsections. We

recommend certain values for the parameters needed in each step in the GA

in the last subsection.
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4.2.2 Encoding

We use the CPP formulation, as explained in Subsection 2.3, as the encoding

scheme of our GA. This encoding scheme does not have the redundancy prob-

lem and hence does not require a renumbering algorithm as do most encoding

schemes (e.g., the UFL as explained in Subsection 2.1). Therefore, each clus-

tering alternative has exactly one representation in this encoding scheme. This

feature reduces the search space for the GA tremendously. The CPP encoding

scheme also easily allows the use of context-sensitive crossover and mutation

operators as will be explained later. It also easily allows for the guided random

initialization of the GA as we compare the pair-wise closeness of the samples,

which will be explained in the next subsection.

4.2.3 Guided Random Initialization

The GA begins by generating an initial population with a given population size

np. The initialization process begins by assigning to each decision variable xij

of the CPP formulation a decision probability sij at which this decision variable

is assigned a value of 1 (i.e., the samples i and j are joined in one cluster).

These probabilities are developed in a way to guide the random initialization

to �nd good initial solutions. Each sij probability is the sum of a given �xed

probability pf and a multiplication of a pair-wise cumulative probability pcij

and a given �xed extra probability pe,

sij = pf + (pcij � pe):
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The pair-wise cumulative probability is calculated by a modi�ed roulette wheel

method. First, we develop the pair-wise clustering alternatives by joining every

two samples at a time and leaving each of the other samples in its own cluster

(i.e., we set each xij = 1 at a time and leave the other decision variables equal

to 0). Then, we compute the value of the lack of �t term for each of the pair-

wise clustering alternatives. We subtract each of the lack of �t values from a

very large positive number to get a �tness value fij. This step is done to avoid

the possibility of having negative values. We use these �tness values to �nd

the density probability of each pair of samples pij by dividing the pair-wise

�tness value by the sum of the �tness values,

pij =
fijPK�1

h=1

PK
g=h+1 fhg

:

Then we reorder these probabilities in an ascending order t and calculate the

pair-wise cumulative probabilities by summing all previous probabilities in this

order,

pcij = p
t
ij +

t�1X
u=1

puhg:

This method will make the xij with the largest pair-wise lack of �t value

(well separated samples) have the smallest pair-wise cumulative probability

pcij and the smallest decision probability sij. It will also make the xij with

the smallest pair-wise lack of �t value (closest two samples) have the largest

pair-wise cumulative probability pcij = 1 and the largest decision probability

sij = pf + pe.

For each chromosome of the initial population we randomly set its xij�s
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values to 1 or 0 using the decision probabilities sij�s. Some of these random

assignments will violate the transitive property or the triangle constraints of

the CPP formulation. A recovery process is required to �x this problem. We

randomly select a sample and �x its cluster as given by the random assignments

by taking out its cluster members from other clusters. Then we repeatedly go

randomly to another un�xed sample and �x its cluster in the same way until

each sample is assigned to exactly one cluster.

There is a trade-o¤ in selecting the size of the population. A large popu-

lation size enables the GA to search in many areas in the search space which

increases the probability of �nding better solutions. However, a large pop-

ulation size also increases the computation time. Recommending a certain

population size depends on the required performance and the allowed time.

4.2.4 Roulette Wheel Selection

We use the roulette wheel selection method. This method works as follows:

We evaluate the �tness function of each chromosome in the current popula-

tion as we did in the initialization process. We also calculate the cumulative

probability of each solution as we did in the initialization process but using

the information criteria and not the lack of �t term alone. We do not perform

the reordering step used in the initialization process. Then we generate a ran-

dom number np times. Each random number will fall between the cumulative

probabilities of two solutions. We select the solution, which will survive to the

next generation, that has the largest cumulative probability among these two

solutions.
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4.2.5 Crossover

Our crossover operator is specially designed for clustering problems. It closely

follows Falkenauer�s (1993) crossover operator but is essentially di¤erent by

giving the user the ability to manipulate the result of the crossover to produce

fewer or more clusters. The crossover probability pc speci�es how many of the

solutions in the current population will go through the crossover operation.

For each chromosome of the population we generate a random number. If this

random number is less than or equal to pc, then this chromosome is selected

for crossover. If the number of selected chromosomes is odd, we disregard the

last selected chromosome to get an even number of selected chromosomes. We

randomly join the selected chromosomes in pairs. Each pair of chromosomes

generates two o¤-springs. For each pair a random number r between 0 and 1 is

generated and converted to a percentage. In the beginning, the �rst o¤-spring

will be a copy of the second parent whole chromosome and the second o¤-spring

will be a copy of �rst parent whole chromosome. Then the �rst r of the clusters

of the �rst parent are copied to the �rst o¤-spring and the last 1 � r of the

clusters of the second parent are copied to the second o¤-spring. The clusters

in any chromosome are ordered according to the lowest sample index that each

cluster contains. The o¤-springs will replace the selected chromosomes in the

population.

When copying a cluster to an o¤-spring there are two choices. The �rst

choice is to split the objects of the copied cluster from the o¤-spring�s clusters

and join them in one cluster (i.e., force the exact cluster into the o¤-spring).

Hence, the o¤-spring will have the same or a greater number of clusters. The
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Figure 4.1: An example of a split and a join crossovers.

second choice is to join the clusters in the o¤-spring that contain the objects

of the copied cluster. Hence, the o¤-spring will have the same or a smaller

number of clusters.

These two choices are explained in Figure 4.1. In this �gure the split

choice forced the (1; 2) cluster into the o¤-spring by taking them out of their

clusters while the join choice joined the clusters of samples 1 and 2 into one

cluster (1; 2; 3; 4).

We de�ne the split probability ps in which the user speci�es the probability

of using the split choice, and consequently the join choice, for each crossover.

This parameter is used to guide the GA to produce the good solutions that

have few or many clusters as desired. However, both of the split and join

choices can produce better clusters but only experimentation can show the

superiority of using one over the other.
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4.2.6 Adaptive Mutation

We use a di¤erent mutation operator than the one used by Falkenauer (1993).

Falkenauer�s (1993) mutation operator is applied directly to the clusters by

deleting or creating a cluster. This kind of mutation operator can disrupt

good clusters completely. Our mutation operator is applied to the clusters

through the samples. According to a mutation probability, we move a sample

to another cluster or a new cluster. This way we do not dramatically disrupt

the content of any cluster and achieve the basic goal of the mutation operator

of a random minimal change in the chromosome.

Adaptive mutation is not a new technique (Pal and Wang 1996). How-

ever, we link the value of the mutation probability to the improvement in the

information criterion value across consecutive generations. In the beginning

we specify a small mutation probability pml. This small probability will avoid

losing good clusters quickly in the early generations and give time for the se-

lection and crossover operators to �nd and exploit these good clusters. After a

certain number, called the convergence number C, of consecutive generations

pass without improvement in the best solution information criterion value, we

use a very high mutation probability value pmh for one generation and then

reuse the small mutation probability value pml. The goal of the one generation

use of a high mutation probability is to try to force the GA to move out of a

local optimum in order to �nd better solutions.
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4.2.7 Elitism

We use the elitism technique. This technique copies the best chromosome

found so far in the GA process to the next generation regardless of the outcome

of the selection, crossover, mutation, and other operators. This technique

insures the survival of the best solution and the use of its good clusters to �nd

better solutions.

4.2.8 Re-initialization

The idea of re-initializing the population during a GA execution has been

used previously, and it has been shown that this strategy improves the GA

performance (Koumousis and Katsaras 2006). However, we link the use of

the re-initialization step with the improvement of the best solution value in

the same way we did in the adaptive mutation operator. After C consecutive

generations pass without improvement in the best solution value we use the

adaptive mutation step as described previously. When another C consecutive

generations pass without any improvement in the best solution value we re-

initialize the population in the same way we did in the beginning of the GA.

The best solution found so far is still copied to the next generation according

to the elitism technique. Afterwards, whenever C consecutive generations pass

without any improvement in the best solution value we alternate between the

adaptive mutation step and the re-initialization step.

The goal of the re-initialization step is to replace the exhausted population

with a fresh population that may contain better clusters that have not been

found by the GA operations on the previous population. Also, the guided
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random re-initialization may introduce new good solutions that will guide the

GA search to even better solutions.

A �ow chart that outlines the steps of our repetitive adaptive genetic

Algorithm is shown in Figure 4.2. This is close to a typical genetic algorithm

�ow chart with the exception of modifying the evaluation process to make the

decision of continuing with the low mutation probability, switching to the high

mutation probability for the next generation, or re-initializing the population.

4.2.9 Recommended Parameters�Values

GA performance depends on the values we use for all the parameters that con-

trol the GA operators: population size, probability of crossover, probability

of mutation, etc. It is di¢ cult to �nd the optimal GA parameters�values. In

fact, there may be di¤erent optimal parameters�values for di¤erent instances
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Table 4.1: Recommended values of GA parameters.
Parameter Value
np 150
pf 0:3
pe 0:4
pc 0:9
ps 0:9
pml

0:225
K

pmh 0:5
C 25

of the problem. However, after preliminary experimentation with many dif-

ferent combinations of the parameters�values, we recommend the use of the

parameters�values shown in Table 4.1.

The number of generations ng depends on the problem size, which is a

function of the number of samples, the number of observations per sample,

and the number of variables. However, we can always set the number of

generations to a high number and stop the GA when it takes a long time.

Then we can use the best solution that was found.

The relatively high population size of 150 is needed to allow the GA to �nd

good initial solutions and enough chromosomes to apply the GA operators to

�nd better solutions without taking too much time per generation. The �xed

initialization probability pf of 0:3 gives a chance for the xij of well separated

samples to have a value of 1 because there is always a possibility of having

a good cluster that combines these samples when they are close to the same

samples. The extra initialization probability pe of 0:4 gives the samples that

are close to each other up to 0:3+ 0:4 = 0:7 probability of being joined in one

cluster.
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The high crossover probability is recommended in the literature (Haupt

and Haupt 2004; Pal and Wang 1996) and has shown good performance in our

experiments. The high split probability shows the superiority of copying the

exact cluster in a crossover rather than joining the clusters that contain the

members of the copied cluster. Because the mutation operator is applied to

each sample, the initial low mutation probability is not �xed but is equal to

a low probability of 0:225 divided by the number of samples K. If the initial

low mutation probability was �xed and we have many samples, it will be

very likely that a good solution become highly disrupted. Therefore, dividing

this probability by the number of samples will avoid this situation. The high

adaptive mutation probability pmh serves the goal of adaptation, moving out

of a local optimum, by trying to �nd better clusters in the population through

many random movements of the samples to di¤erent or new clusters.

After experimentation we found that running the GA for 25 generations

will give a reasonable time for the GA operators to �nd the best solution of

a population and is the best time to use the adapted mutation probability or

the re-initialization step. Next, we will show the results of the experiments

where we used these parameters�values on problems of di¤erent sizes.

4.3 Experimental Results

As we did with the branch and bound algorithms, we �rst test the GA on the

well known IRIS bench mark data set to show the performance of some of the

important strategies. Then we test the best GA strategies on other data sets.
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Table 4.2: Results of experiments using GA strategies.
Algorithm Average Error Average Time (sec.)
Basic Clustering GA 14.5% 3,050
Adaptive Clustering GA 12% 3,266
Repetitive Adaptive Clustering GA 5.4% 3,183

4.3.1 IRIS Data Set

Because the IRIS data set has a small total number of observations of 150,

each generation of the GA will not need a long execution time. Therefore, we

used a high number of generations of 350. We made three experiments. In the

�rst experiment we used the basic GA without the adaptive mutation or the

re-initialization steps. However, we use the �xed small mutation probability in

the basic GA. Then, only the adaptive mutation step was used in the second

experiment. Finally, both of the adaptive mutation and re-initialization steps

were used, as described in the previous subsection, in the third experiment.

For each experiment we ran the GA 10 times to avoid the e¤ect of the random

initialization.

The results of the experiments are shown in Table 4.2. There is a row

for each experiment. The �rst column speci�es the algorithm used in the

experiment. The second column shows the average relative error of the 10 runs

of the experiment between the best solution value found by the GA and the

optimal solution value found by the branch and bound algorithms presented

in Chapter 3. The last column reports the average execution time, in seconds,

of the 10 runs of the experiment.

In the �rst experiment we ran the basic GA without the adaptive mutation

and the re-initialization steps but with the initial low mutation probability.
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The basic GA has a relatively high average error rate and execution time.

The high error rate can be due to the low mutation probability of 0:225
15

=

0:015. This probability may not allow the GA to search in many areas of the

search space. The high execution time can be due to the fact of having a

relatively high population size, high crossover probability, and high number of

generations.

In the second experiment only the adaptive mutation step is added. We see

that the average error rate decreased by a higher percentage than the increase

in the average execution time. This improvement can be due to the fact that

we did not increase the mutation probability for all generations and hence the

execution time did not increase by much. Also, we periodically allowed for

a high mutation probability to �nd better search areas and give the GA the

time to search in these areas.

The last experiment shows the large improvement in the average error rate

after using both the adaptive mutation and the re-initialization steps. This

improvement is achieved without an increase in the average execution time.

In fact the execution time actually decreases. The decrease in the average

error rate is due to the ability of the re-initialization step to �nd more good

clusters. The decrease in the average execution time can be due to the fact

that the adaptive mutation step can sometimes require more time than the

re-initialization step and that the re-initialization step can reduce the number

of times the adaptive mutation and the re-initialization steps are used by

�nding better solutions more often. The adaptive mutation step, as explained

in Subsection 4.2.6, involves the search for the original cluster of the sample to

be moved and the clusters that this sample can move to and then a recovery
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process after moving this sample. The re-initialization step, as explained in

Subsection 4.2.3, involves a straightforward formation of the clusters of each

solution according to the initialization probabilities. Therefore, we recommend

the use of the repetitive adaptive GA in the next experiments on other data

sets.

We also include a graph of the improvement in the best solution value

over the generations for one of the runs of the repetitive adaptive algorithm

and the basic algorithm in Figure 4.3 and Figure 4.4 respectively. We choose

the best repetitive adaptive GA run in order to make the di¤erence obvious.

We choose the basic GA run in which the value of the best solution in the �rst

generation is closest to the value of the best solution in the �rst generation

of the chosen repetitive adaptive GA run. Both graphs show how the best

solution value improves very quickly in the �rst few generations of the GA.

We can also see that the very long periods of no or minimal improvement start

much later in the repetitive adaptive GA run than in the basic GA run.

4.3.2 Other Data Sets

We applied the repetitive adaptive clustering GA to two data sets: the Bank

data set with K = 15, described in Subsection 3.10.1, and to the Bank data

set with K = 30, described in Subsection 3.10.3. Because of the large number

of observations in the case of the �rst data set and the large number of samples

in the second data set we limited the number of generations to 250 to make the

execution time reasonable. We made 10 runs for each data set. The errors in

these experiments are computed in comparison to the optimal or best solutions

119



0

50

100

150

200

250

300

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346

Generation

In
fo

rm
at

io
n 

C
rit

er
io

n'
s 

Va
lu

e

Figure 4.3: One run of the repetitive adaptive GA.
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Figure 4.4: One run of the basic GA.
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Table 4.3: Results of experiments on other data sets using the repetitive adap-
tive clustering GA.

Data Set ng Average Error Average Time (sec.)
IRIS 350 5.4% 3,183
Bank K = 15 250 0.028% 3,456
Bank K = 30 250 0.26% 8,681

found by the branch and bound algorithms in the experiments presented in

Subsection 3.10.3. The results of these experiments are shown in Table 4.3.

We see that for both data sets the error is less than 1%. However, the

execution times increased in comparison to the IRIS data set experiment.

For the bank data set with 15 samples the execution time slightly increased

because of the large number of observations (1500). For the bank data set

with 30 samples the execution time increased a lot. This huge increase shows

that one of the major factors in increasing the clustering GA execution time

is the number of samples.

We see that even though the GA combines many of the best features in

the GA �eld it needs a long time to �nd a solution that is close to the solution

found by the complete adaptive branch and bound algorithm. However, we can

always run the GA for few generations in few minutes and get a good enough

solution as shown in the graphs of the best runs for these two experiments

in Figure 4.5 and Figure 4.6. These �gures again show that the best solution

value decreases very quickly in the �rst few generations and then has periods

of no improvement of increasing length.

For these two data sets we can see that there are a lot of solutions that

have close information criterion values to the best found solution value. This

tell us that there are a lot of good solutions that are close to the optimal
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Figure 4.5: Best repetitive adaptive clustering GA run on the Bank data set
(15 samples).
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Figure 4.6: Best repetitive adaptive clustering GA run on the Bank data set
(30 samples).
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solution in the information criterion value. If a good solution is acceptable, we

can stop the GA algorithm after fewer generations than we did in these two

experiments and get a good enough solution.

4.3.3 Simulation Experiment

Here, we use the branch and bound algorithms and the genetic algorithm to

cluster a simulated data set. The simulated data set has the same dimensions

as the IRIS data set (150 observations and 4 variables). We chose to create

a simulated data set with moderately separated clusters. The real cluster

structure of the simulated data set consists of 3 groups of 50 observations

each. We divided each of the 3 groups into 5 samples of 10 observations each

to get a total of 15 samples. The mean and the variance-covariance matrix of

each of the 3 groups are as follows.

�1 =

266666664

1

1

1

1

377777775
;�1 =

266666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377777775
;

�2 =

266666664

4

4

4

4

377777775
;�2 =

266666664

3 0:5 0:5 0:5

0:5 3 0:5 0:5

0:5 0:5 3 0:5

0:5 0:5 0:5 3

377777775
;
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Table 4.4: Branch and bound algorithms�results on the simulated data set.
Data Set Algorithm Time

(Error)
Nodes Solutions Optimal

Simulated Comp. t=50 502 5,395 100 8
Heuristic t=50 380 4,157 100 8

Optimal Clustering Alternative (1,2,4,5)(3)(6,7,8,9,10)(11,12,13,14,15)

�3 =

266666664

10

10

10

10

377777775
;�3 =

266666664

5 1 1 1

1 5 1 1

1 1 5 1

1 1 1 5

377777775
:

Figures 4.7-4.9 and Tables 4.4-4.5 show the results of the simulation ex-

periment. The complete branch and bound algorithm performed well. The

heuristic algorithm improved performance but not as good as it did on the

IRIS data set. Both algorithms found the optimal solution, which consists of 4

clusters, and has an information criterion value of 2,197. The optimal solution

assigns sample 3 to a cluster by itself. The real clustering alternative, which

consists of 3 clusters, has an information criterion value of 2,200, which is very

close to the optimal value. As shown in the upper bound improvement charts,

these algorithms �nd solutions with an information criterion values that are

close to the optimal value in a few seconds. The genetic algorithm on the sim-

ulated data set has a good performance. The best found information criterion

value improves quickly in the �rst few generations of the GA. Then, the GA

takes a long time to �nd a better value.
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Figure 4.7: Upper bound improvement using the complete algorithm on the
simulated data set.
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Figure 4.8: Upper bound improvement using the heuristic algorithm on the
simulated data set.
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Table 4.5: Results of the experiment on the simulated data set using the
repetitive adaptive clustering GA

Data Set Average Error Average Time (sec.)
Simulated 0.59% 2,907

2050

2100

2150

2200

2250

2300

2350

2400

2450

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349

Generation

In
fo

rm
at

io
n 

C
rit

er
io

n

Figure 4.9: Best repetitive adaptive clustering GA run on the simulated data
set.
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4.4 Conclusions and Future Work

The adaptive clustering GA with re-initialization showed an improved per-

formance over the basic GA. The CPP encoding has avoided the redundancy

problem faced by most of the encoding schemes used previously for cluster

analysis problems. It also enabled the use of the crossover and mutation oper-

ators that are specially designed for cluster analysis problems. The adaptive

mutation operator has moved the GA more towards the balance between the

exploitation and exploration goals. This has been done by using a low initial

mutation probability that allowed the GA to exploit the good search areas

found and then by using a one generation very high mutation probability to

move the GA to di¤erent areas of the search space. The re-initialization step

is more e¤ective in doing the same job of the adaptive mutation operator be-

cause it uses the guided re-initialization process. The adaptive mutation and

re-initialization steps combined with the CPP encoding and the clustering

crossover and mutation operators contributed to this improvement in perfor-

mance. The improved performance is evident by the very low error rates of

the solutions found by this GA.

However, the GA takes a long time to �nd very good solutions. We found

out that the complete adaptive branch and bound algorithm, either with the

local upper bound or with the heuristic version of this bound, will �nd better

solutions than this GA in the �rst few solutions found by the branch and bound

algorithm. We can run the complete adaptive branch and bound algorithm and

the GA for the same short time and the complete adaptive branch and bound

algorithm will �nd a superior solution. This fact is easily explained by the
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bounding and branching strategies used by the branch and bound algorithm

to quickly sift through the most promising solutions according to the proper-

ties of the information criterion to �nd the optimal or near optimal solution.

This sophisticated GA has helped us to verify the superiority of the complete

adaptive branch and bound algorithm and can always be used to verify the

superiority of the solution found by the branch and bound algorithm.

We recommend the use of the complete adaptive branch and bound al-

gorithm to solve MSCA problems. The number of branches to save in this

algorithm depends only on the memory limit of the computer used. We can

use as many saved branches as long as we do not exceed the memory limit

of the computer. The use of the heuristic version of the local upper bound

depends on the user�s acceptance of a near optimal solution in return for a

shorter convergence time. Even when this algorithm is stopped before conver-

gence it will �nd a near optimal solution, if not the optimal solution, as shown

in the results of the experiments that we conducted.

The re-initialization step of the GA can be performed in di¤erent ways

that may improve the performance of the GA. A possible way is not to copy

only the single best solution found to the re-initialized population but to keep

many of the best solutions found by the GA and re-initialize only a part of the

population. This way, more good solutions are mixed with random solutions.

This mix is more likely to �nd better solutions than having only the best found

solution with a re-initialized population.

In the case of selecting an odd number of chromosomes to go through the

crossover operation, we disregard the last selected chromosome. This tech-

nique can be improved by randomly deleting one of the selected chromosomes
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to avoid disregarding always the chromosomes at the end of the population.

However, the last selected chromosome was selected randomly and hence this

random deletion technique may not improve the performance.

A possible direction of research is to combine the branch and bound algo-

rithm with the GA to improve performance. A direct way of this hybridization

is to start with a run of the GA and use the best solution objective function

value found by the GA as the initial upper bound in the branch and bound

algorithm. Another way is to start with the branch and bound algorithm and,

if it does not converge in a short time, we can stop it and use the best so-

lutions found as part of the initial population of the GA. However, because

the complete adaptive branch and bound algorithm �nds the optimal or near

optimal solution much faster than the GA does, starting with the GA to �nd

good initial solution is not expected to improve performance. In addition,

because the complete adaptive branch and bound algorithm �nds the optimal

or near optimal solution, using the GA afterwards is not likely to �nd better

solutions quickly. We can make this conclusion because our experiments show

that after �nding a very good solution, the GA needs a very long time to �nd

a better solution. Therefore, a more sophisticated way of hybridization needs

to be found in order to improve the performance of the branch and bound and

the genetic algorithms.

A more promising direction of hybridization is to follow a few generations

of the GA with a local search algorithm (Reeves and Rowe 2003). We need

to develop a local search algorithm that is specially designed for the MSCA

problem. The GA is very good in �nding the most promising areas in the

search space that may contain the global optimum. After �nding these areas
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the GA may not be the best way to �nd the optimal solution. A local search

algorithm that uses the properties of the information criterion can quickly �nd

the optimal solution starting from the best solutions found by the GA. This

algorithm may try single movements of the samples, in the best solution found

by the GA, to di¤erent or new clusters in order to improve this solution. It

can also use the pair-wise closeness, used in the guided initialization in the

GA, to develop these movements.

We need to test the developed algorithms and new ideas using di¤erent

data sets. Every data set has its special real cluster structure. We need to �nd

in what kinds of data sets a speci�c algorithm works best and in what kinds it

needs improvements. More testing of the algorithms can also bring new ideas

for better algorithms that can work for most of the problems. This testing can

identify better combinations of the GA parameters�values that can improve

the performance of the GA on speci�c kinds of the problem. We also need to

adapt our algorithms to Multi-Sample Cluster-Wise Regression problems as

described in 1.3.
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