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Abstract 
 

 Epitaxial thin films and heterostructures based on perovskite oxides have 

attracted significant attention in physics since perovskites exhibit an enormous range of 

electrical, magnetic, and optical properties, making them exciting systems for studies of 

the fundamental physical mechanisms of interactions between electron, lattice, and spin 

degrees of freedom. This dissertation has been focused on ferroelectricity in low-

dimensional ferroelectric materials using ultra-thin ferroelectric epitaxial films (BaTiO3) 

with a metallic electrode (SrRuO3) by studying polarized ordering of the crystal structure 

and electronic transport through the films. High quality and highly oxidized epitaxial 

films are a prerequisite for the clear observation of physical properties such as 

ferroelectricity which depends on a sensitive balance of lattice structure, dynamics, and 

charge distribution. Measurements in low dimensional, ultra-thin films require a 

controlled surface status through in-situ characterization. As is demonstrated here, 

fundamental physical phenomena on surfaces and in ultra-thin films are easily modified 

due to reactivity in ambient air, even for oxide materials generally considered inert. This 

study is centered on in-situ low energy electron diffraction and scanning tunneling 

spectroscopy of BaTiO3 films grown on SrRuO3 electrodes on a SrTiO3 substrate.  

Results show out-of-plane polarized structure and polarization switching, which provide 

evidence of ferroelectricity in films down to 4 ML. Surface reconstruction in 1-2 ML 

thick BaTiO3 films is seriously affected by the interface between BaTiO3 films and 

SrRuO3 bottom electrode. Our observation in epitaxial BaTiO3 films indicates the 

existence of ferroelectricity with a lower limit (4 ML) for the minimum thickness than 
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theoretical expectation (6 ML), which results from the difference of film stress, 

termination on films, and depolarizing screening.
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Chapter 1  

Introduction 
 

 Transition metal oxides (TMOs) display diverse and fascinating properties 

covering a wide range of physics and materials properties. The nature of cation-oxygen 

bonding results in electronic properties that are described using covalent bonding for one 

system and highly ionic for the other, but often best understood by combining aspects of 

both approaches. This interplay in cation-oxygen bonding characteristics yields TMOs 

possessing a wide range of electronic properties, for example with electrical conductivity 

ranging from metals, and superconductors, to insulators, ferromagnets, and ferroelectrics. 

These properties can in many cases be tuned by electronic doping or by changing 

temperature, leading to phase transitions with an abrupt change in one or more physical 

properties, which can be interpreted by a symmetry-based analysis. For example, 

ferroelectric oxide materials exhibit phase transitions given by crystallographic structure 

change and cation-oxygen displacement related to symmetric breaking in crystals. 

Therefore, the phase transitions due to symmetric ordering exhibit different domain 

structures with characteristic physical properties in ferroelectric oxide materials. 

 In 1937, Landau [1] described the equilibrium behavior of a system near a phase 

transition based solely on symmetry considerations. This phase transition can be 

expressed in terms of an order parameter, a physical entity that is zero in the high-

symmetry (disordered) phase, and changes continuously to a finite value once the 

symmetry is lowered. For the case of a paraelectric-ferroelectric transition, the order 



 2

parameter is the polarization P. The phase transition in ferroelectric materials is related to 

symmetric changes by temperature-dependent structure deformation, which forms the 

spontaneous polarization P. For example, highly symmetrical ferroelectric materials can 

have a paraelectric cubic phase with no polarization P and lower symmetrical 

ferroelectric materials can have a tetragonal phase with polarization P due to cation-

oxygen displacement.  

 Ferroelectricity is a collective phenomenon, associated with the alignment of 

localized dipoles within a �correlation volume�, producing a polarization [2]. These 

dipoles spontaneously form from a �soft phonon� response of the atomic structure 

displacing the center of the ion cores and electrons. The strong, long range electrostatic 

interaction of the dipoles is responsible for the correlation of adjacent cells. This 

interaction is highly anisotropic and consists of short-range repulsion for parallel dipoles 

perpendicular to the polarization axis and long-range Coulomb attraction for parallel 

dipoles along the polarization axis. Ferroelectric phase transitions are highly dependent 

on the competition between short-range and long-range Coulomb forces. In bulk 

ferroelectrics, the long range attraction can always dominate, so that macroscopic 

domains can exist. 

 The properties of thin films often differ significantly from those of the bulk. One 

obvious source of difference is the magnitude of the strain resulting from lattice-

matching between the films and the substrate. In the case of ferroelectric thin films, there 

are convincing experimental evidences that the strain due to lattice and/or thermal 

expansion mismatch between a film and a substrate may result in dramatic increases in 

phase transition temperatures as well as large variations of domain structures. However, 
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very few materials have a small lattice mismatch between the film and substrate, which 

is required for fully strained epitaxial films. Practically, it is extremely difficult to grow 

highly oxidized and highly strained epitaxial thin films with relatively large lattice 

mismatch without lattice relaxation. Therefore, understanding the growth mechanism for 

high quality, highly oxidized, and highly strained epitaxial thin films is indispensable to 

study physics in low dimensions different from physical phenomena in bulk materials. 

 Even well grown ferroelectric films can show new behavior such as a size 

dependence of the paraelectric-to-ferroelectric �phase transition,� or �critical thickness,� 

below which the ferroelectric phase disappears.  This critical thickness can be due to the 

increased contribution of short-range repulsive forces relative to long-range attractive 

forces imposed by the geometry and by boundary conditions such as the depolarizing 

electrostatic field formed by the effective charge at the surface, which increasingly 

counters the polarization. However, such a critical thickness is not universally accepted 

[3,4].  Meyer and Vanderbilt [4] reported the absence of a critical size of ferroelectricity 

because the observed suppression of ferroelectricity in thin films is not a purely intrinsic 

effect caused solely by the presence of the surface, but is related to extrinsic factors like 

perturbations of the chemical composition of the surface, surface-induced strains, or 

variations in boundary conditions. For this reason, strong debate has recently erupted 

over the existence of a critical size for ferroelectricity [3,4,5,6,7,8,9,10,11,12,13]. 

 An additional novel feature of thin film ferroelectrics is the �ferroelectric 

tunneling effect,� which suggests that the electronic tunneling through a thin ferroelectric 

film should depend on the polarization direction.  If the thickness of a ferroelectric layer 

is small but above the critical thickness, polarization reversal in the ferroelectric barrier 
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may produce a change in the potential profile across the junction and lead to a 

polarization dependent resistance by the influence of both intrinsic and extrinsic effects 

such as the converse piezoelectric effect and the depolarizing field effect. There is 

currently little understanding of the relationship between transport properties and 

polarization effects due to a lack of valid experimental data and to the complex nature of 

the ferroelectric-electrical contact interaction. This latter can include electronic, phonon, 

and strain effects. The following fundamental questions remain: �Is the potential barrier 

to tunneling influenced by the polarization in a ferroelectric even without influence by 

boundary conditions? Is the tunneling altered by polarization switching?�. 

 These ferroelectric transitions and transport properties in ultra-thin films must be 

explored with in situ techniques highly sensitive to the surface after careful synthesis.  

The approach in this dissertation includes combining low energy electron diffraction 

(LEED) and scanning tunneling spectroscopy (STS) after in-situ synthesis by laser 

molecular beam epitaxy (MBE). To understand the growth mechanism for high quality of 

thin films, atomic force microscopy (AFM), x-ray diffraction (XRD), and transmission 

electron microscopy (TEM) are explored. Additionally, topographical images of scanning 

tunneling microscopy (STM) are studied to show atomic structure and electronic 

properties on the atomically flat surface of thin films, which are non-cleavable and non-

layered TMOs with a 113-perovskite structure. For the structure analysis of atomic 

positions in the surface unit cell, LEED-IV analysis can produce an accuracy of less than 

a few thousandths of a nanometer. For this reason, in-situ LEED-IV characterization of 

epitaxial ultra-thin ferroelectric films has been applied for the first time to explore the 

ferroelectric thickness limit by checking the cation-oxygen displacement and polar 
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ordering. Due to the unique abilities of STM to study low dimensional systems in real 

space, direct mapping of defect ordering and observation of reconstruction on the surface 

can be demonstrated.  Finally, only Scanning Tunneling Spectroscopy can provide 

information on ferroelectric tunneling junctions while avoiding the defect effects which 

dominate macroscopic measurements and thus distinguish intrinsic and extrinsic effects. 

 

1.1 Physics and properties of ferroelectric materials 

 

1.1.1 Background of ferroelectrics 

 

 Ferroelectricity is perhaps even today almost as much an art as it is a science. It 

is now some 85 years since the phenomenon known as ferroelectricity was first 

recognized in Rochelle salt [14]. However, the term ferroelectricity was not commonly in 

use much before the early 1940s, partly due to the fact that Rochelle salt remained the 

only known example of the phenomenon for over a decade after the initial discovery, but 

also because the full significance of the phenomenon in terms of a theoretical 

interpretation was not given until 1933 [15]. One of the major turning points in 

ferroelectricity came during the 1940s with the discovery of a number of simple mixed 

oxides that crystallize with the perovskite structure. Prior to the perovskite era, 

ferroelectricity was mostly a scientific curiosity unique to two rather friable water-

soluble crystals, Rochelle salt and KH2PO4 (KDP) and at that time was thought to be an 

order-disorder phenomenon associated with the hydrogen bonds. These compounds 
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contained hydrogen bonds led to the erroneous assumption that the existence of hydrogen 

bonding is a precondition for ferroelectricity and therefore the search for new 

ferroelectric materials performed over these two decades was limited to hydrogen-

containing compounds. 

 The situation changed in the early forties when the search for materials with high 

dielectric constants led to the discovery of ferroelectricity in the perovskite BaTiO3 

simultaneously in the USA, Russia, and Japan [16,17,18]. The discovery of 

ferroelectricity in BaTiO3 and related ferroelectric perovskites was extremely important, 

as it demonstrated for the first time that ferroelectricity could exist in simple oxide 

materials, and it was not always associated with hydrogen bonding. These materials 

rapidly became widespread due to high chemical stability, good mechanical properties, 

and ease of preparation. In addition, the relatively simple perovskite structure made 

ferroelectric perovskites more amenable for theoretical treatment originating a number of 

models ranging from the original �rattling atom� model to soft-mode based description 

of ferroelectricity and thermodynamic Ginzburg-Devonshire type models [19]. 

 Ferroelectricity is defined as a physical phenomenon in which a spontaneous 

electric dipole moment can be reoriented from one crystallographic direction to another 

by an applied electric field. Materials which show this ferroelectricity are called 

ferroelectrics. Among the different ferroelectrics, oxides showing a perovskite structure 

or a related structure are of particular importance. The ideal perovskite structure of the 

general formula ABO3 is cubic with the A and B cations situated at the corners and the 

center of the cube respectively, and the O2- anions at the centers of the faces. The BO6 

octahedra are corner-linked. In the cubic high temperature phase, this material does not 
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display any spontaneous polarization and, hence, the system is paraelectric. Upon 

cooling, a phase transition occurs during which the positive and negative metal ions 

displace with respect to each other, leading to a tetragonal deformation. Due to the 

asymmetry in this displacement, a spontaneous polarization in the direction of the 

tetragonal axis appears. Figure 1.1 schematically shows the displacement of the ions in 

an ABO3 perovskite structure due to an applied electric field. Ferroelectric materials 

exhibit an electric dipole moment, even in the absence of an external electric field [20]. 

Ferroelectrics possess at least two equilibrium orientations of the spontaneous 

polarization vector, Ps. The spontaneous polarization vector may be switched between 

those orientations by application of an oppositely oriented electric field [21]. 

 The key experiment for ferroelectricity is the existence of a hysteresis loop 

between polarization and electric field, analogous to the ferromagnetic hysteresis loop 

between magnetization and magnetic field. The characteristic hysteresis of the 

polarization P, as a function of the field E, is shown in Figure 1.2 for single-domain 

single crystals and poly-domain samples [22]. The polarization at zero field is called 

remanent polarization Pr. At zero field the electric displacement within a single domain 

has two values corresponding to the opposite orientations of the spontaneous polarization, 

which is reoriented when the electric field E applied opposite to the polarization exceeds 

the coercive field Ec leading to the unidirectional jumps in the P-E curve. In a multi-

domain crystal the average zero-field displacement can have any value between these 

two extremes.  

 As in ferromagnetic materials, ferroelectrics form domain structures. A domain 

is a region where there is a uniform direction for the spontaneous polarization. In the 
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Figure 1.2: Hysteresis of the polarization P as a function of the field E for ferroelectric.
(a) Single-domain. (b) Poly-domain materials. Figures adapted from [22]. 

Figure 1.1: Ideal perovskite structure for an ABO3 compound. The z-polarized soft-mode
atomic displacements are indicated by arrows. Figures adapted from [20]. 

(a) (b) 
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case of bulk BaTiO3, there are three phase transitions and four possible domain structures 

dependent on temperature. It undergoes a succession of phase transitions, from the high-

temperature high-symmetry cubic perovskite phase to slightly distorted ferroelectric 

structures with tetragonal, orthorhombic, and rhombohedral symmetry [Figure 1.3]. The 

different phases of BaTiO3 are a system with a degenerate order parameter; a single order 

parameter (essentially the displacement of the Ti from the centre of its octahedral 

coordination polyhedron) can initially act along one of three perpendicular directions. 

The subsequent phase transitions occur as the second and third components of the order 

parameter vector are activated.  

  

1.1.2 Theory of the ferroelectricity (Ginzburg-Landau theory) 

 

 In 1937 and 1945, Landau [1] and Ginzburg [23] expanded the thermodynamical 

potential in the vicinity of the phase transition temperature as a power series and 

introduced the spontaneous polarization as an order parameter where only symmetry-

compatible terms are retained.  This symmetry-based treatment of phase transition [1] 

was first applied to the case of ferroelectrics by Devonshire [19] with assumption of 

describing both ferroelectric and non-ferroelectric phases by the same polynomial with 

specific reference to BaTiO3. 

 In general, a fundamental postulate of thermodynamics applied to a ferroelectric 

is that its free energy F can be expressed as a function of several variables such as 

polarization, strain field, and temperature. However, in order to be more specific, we can 
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consider a simple example where we expand the free energy in terms of a single 

component of the polarization P. Close to the phase transition, the free energy can be 

written as a functional of powers of the order parameter P  

PEPgPgPgTPF
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4
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2
1),( 6

6
4

4
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2 −++= ,   (1.1) 

where the coefficients g2, g4, and g6 depend on the temperature and g2 and g6 are both 

positive in all known ferroelectrics [2]. In particular the coefficient g2 may be 

approximately by 
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2 cTTCg −= − ,    (1.2) 

resulting of a temperature expansion around Tc. The equilibrium configuration is 

determined by finding the minima of F with the electric field E = 0,  
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Figure 1.3: Various structure of barium titanate as a function of temperature. Figures 
adapted from [22]. 
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Paraelectric Phase 

 One of the solution for Equations (1.3) and (1.4) can be P = 0 with g2 > 0, which 

corresponds to the condition of the paraelectric phase. From Equation (1.2), g2 can be 

expressed by the susceptibility χ, for which a Curie-Weiss Law is found with a critical 

exponent γ = 1: 

1;)()( =−∝
−

= − γχ γ
c

c
TT

TT
CT .   (1.5) 

 

Ferroelectric Phases � Second order (continuous) Transition 

 If we take g4 > 0 and neglect the coefficient g6, then a continuous transition 

occurs at T = Tc and the free energy will evolve continuously as a function of decreasing 

temperature from upper curve (T > Tc) in Figure 1.4(a) to the lower curve (T < Tc), that 

has minima at finite polarizations P = ± Ps. Therefore, we can see that a spontaneous 

polarization Ps exits for T < Tc and increases with decreasing temperature from the point 

T = Tc, which is given by 

β)(
2/1

4
TT

Cg
TT

P c
c

s −∝






 −
=            (1.6) 

where the critical exponent β assumes the values 1/2. Figure 1.4(a) shows that the free 

energy is close to the second order phase transition for different temperatures as a 

function of the order parameter Ps
2. 

 The specific heat is obtained by the derivative of the entropy with respect to the 

temperature. This gives 

2

2

      where)()(
T
F
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∂

−≡=−==∆ −+  .     (1.7) 
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(a) (b) 

Figure 1.4: The free energy as a function of polarization for a ferroelectric. (a)
Continuous and (b) discontinuous phase transition as a function of temperature.
Spontaneous polarization Ps(T) as a function of temperature for (c) continuous and (d)
discontinuous transition. Figures adapted from [22]. 

(c) (d) 
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Then, we obtain  

2
42 Cg

T
C c

v =∆                           (1.8) 

for the Landau expression for this quantity. 

 

Ferroelectric Phases � Discontinuous Transition 

 If we choose g4 < 0 and g6 > 0, discontinuous phase transitions can occur, which 

means the paraelectric phase coexists with the ferroelectric phase in a certain regime of 

temperature. This is sketched in Figure 1.4(b, d). At the regime of T >> Tc and T < To, 

Figure 1.4(b) shows both stable paraelectric and ferroelectric phases, respectively. 

However, during cooling from stable paraelectric phase, secondary minima at finite 

polarizations become visible. In the regime of T > Tc, the paraelectric phase is stable 

whereas the ferroelectric phase is metastable. Similarly, in the regime between Tc and To, 

the metastable paraelectric phase coexists with the stable ferroelectric phase. Somewhere 

during cooling through this regime, the first order phase transition to the ferroelectric 

state will occur with a corresponding jump of the spontaneous polarization from zero to a 

finite value.  

 Most perovskites are materials with discontinuous phase transitions including 

PbZrxTi1-xO3 (x < 0.28) whereas the first known ferroelectric materials such as Rochelle 

salt as well as PbZrxTi1-xO3 (x > 0.28) undergo a continuous phase transition. [24]. 

However, it has been show that epitaxial films of PbTiO3 and BaTiO3, which will be 

discussed in detailed at section 1.2, change the phase transition from discontinuous in 

bulk to continuous in thin films [25]. 
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1.2 Heteroepitaxial oxide thin films 

 

1.2.1 Epitaxial growth 

  

 The study of film growth has been widely investigated by the application of 

surface science methods to understand growth at the atomic level. The mechanism of this 

film growth usually involves deposition of a controlled amount of atoms onto a well-

prepared crystalline substrate at a prescribed set of growth conditions. Vapor atoms and 

molecules that impinge onto the substrate surface are adsorbed to the surface, called 

adatoms. Small nuclei and individual clusters are formed from adatoms in the vapor 

phase on a substrate by a process of the nucleation and coalescence in the initial stage. 

Then, these islands merge and diffuse to the clusters or to a kink, and finally form a 

continuous film. The diffusion of an adatom on a flat surface is the most important 

kinetic and thermodynamic process in film growth. The growth mechanism is controlled 

by growth temperature and deposition rate, which together determine the surface 

diffusion length ld, which is given by  

τ)(TDld = ,     (1.9) 

where D(T) is the temperature dependent surface diffusion coefficient and τ is the mean 

residence time of atoms at the surface [26]. 

 If surface diffusion of atoms happens only along and between layers, ideal thin 

films are deposited one atomic layer at a time. However, atoms traveling over the surface 

can tumble over �cliffs� between layers [27]. These cliffs can be expressed as several 
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different energetic barriers, called Ehrlich-Schwoebel (ES) barriers [28] shown in Figure 

1.5(a), where k+ and k- are the rate constants for capture of adsorbed atoms adjacent to 

the left and right step. As shown in Figure 1.5(b), the terrace-step-kink (TSK) model of a 

thin film surface displays different dimensional barriers which are related to growth 

mechanisms dependent on kinetic and thermodynamic adatoms. First, atoms experience 

the �corner-crossing� barrier, a one-dimensional version of the ES barrier. Second, atoms 

moving over steps that are one-atomic-layer high must cross the two-dimensional ES 

barrier. Finally there are three-dimensional ES barriers for atoms traveling over steps that 

are four or more atomic layers high, or over the edges between two facets [29]. This 

suggests that higher energetic adatoms can easily overcome those barriers following the 

step flow growth mode, which is usually observed with fully strained films at high 

temperature growth conditions. 

 Strictly speaking, an epitaxial film is defined as fully strained grow on a single 

crystalline material on top of a substrate with the same crystal orientation as the intended 

layer. However, epitaxial films can be commonly identified by three different growth 

modes dependent on film relaxation: the layer-by-layer (Frank-van der Merwe) growth, 

the layer-then-3D island (Stranski-Krastanov) growth, and the 3D island (Volmer-Weber) 

growth [Figure 1.6] [30]. Lattice relaxation of films, which provokes different growth 

modes, is strongly related to the lattice mismatch f, which can be defined as 

substrate

substratefilm

a
aa

f
−

=     (1.10) 

where afilm and asubstrate are the lattice constants of the deposited material and the 

substrate, respectively. In general, almost perfectly lattice matched materials can grow in 
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Figure 1.5: Energy barrier of thin film surface. (a) Enrlich-Schwoebel barrier. (b) The
terrace-step-kink (TSK) model of a thin film surface. Figure (a) amd (b) adapted from
[27] and [28] respectively. 

(a)

(b)
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a layer-by-layer mode [30]. For relatively large lattice mismatched materials, 3D island 

or layer-then-3D island are the energetically favored growth modes [30]. 

 The different kinds of growth modes are also characterized by the total free 

energies of the system during growth. The energy determining the growing film has 

contribution from three terms, namely γf, γs, and γi, where γf is the surface free energy of 

the film, γs is the surface free energy of the substrate, and γi is the interfacial energy 

between the substrate and the film [31]. The relation between these contributions 

strongly influences the film growth since during the initial stages of growth which 

determines the growth mode one can neglect the volume energy of the film. For instance, 

3D island growth occurs when the atoms are more strongly bound to each other than to 

the substrate, i.e. 

sif γγγ >+ ,    (1.11) 

so that it is energetically favored to leave some substrate exposed. In layer-by-layer 

growth, it is always energetically favorable to distribute the film uniformly over the 

surface when the bonds between the film atoms and the substrate atoms are stronger than 

Figure 1.6: The main epitaxial growth modes. 
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between the atoms of the film, i.e. 

sif γγγ <+ .            (1.12) 

However, it is possible that over time, the lattice mismatch associated with the growth 

creates too much strain in the film and the energetic relationship switches to Equation 

(1.11), which corresponds to the layer-then-3D island growth mode. 

 The ability to control thin film growth has not only advanced our current 

understandings of two-dimensional physics, but also directly led to the observation of 

important physical phenomena such as giant electroresistance (GER) [32], ferroelectric 

tunneling junction (FTJ) [33,34], and ferroelectric thickness limit [3,4,5,6]. Especially, 

epitaxial thin films provide unique and different physical properties compared to the bulk 

due to the strained effect on films by the substrate, which will be discussed in the next 

section. 

 

1.2.2 Ferroelectric oxide thin films 

 

 In the perovskite ferroelectrics, it is well known that polarization as well as the 

ferroelectric phase transition due to temperature are strongly coupled to strain [35]. This 

suggests that external stress is contributed strongly to ferroelectric transition temperature 

and polarization magnitude. Enormous strains can exist in epitaxial thin films, resulting 

from lattice mismatch of the film to the substrate. Experimentally, the properties of 

ferroelectricity in epitaxial thin films can be significantly different from the intrinsic 

properties of the corresponding unstrained bulk [11,36,37,38]. Recent results report that 
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epitaxial compressive strain has been used to significantly enhance the ferroelectric 

properties of thin films compared to those of bulk materials [39,40]. 

 In Figure 1.7, possible 2-dimensional domain patterns of tetragonal (100) thin 

films (0 < T < 130 °C) are depicted. In the case of free strained films, the mixed in-plane 

and out-of-plane polarizations coexist similar to bulk phase. However, when compressive 

stain is applied to thin films, only out-of-plane polarizations are expected, while the films 

under tensile strain show only in-plane polarizations.  

 Real epitaxial films have more complicated domain patterns, called 3-D 

intermediate domain, different from 3-D unstrained bulk domains in Figure 1.3 (the 

previous section). Table 1.1 shows a 3-D intermediate domain description of the six 

possible epitaxial BaTiO3 phases considered by Pertsev et al. [25]. The two phase 

diagrams (Pertsev diagrams) for BaTiO3 presented in terms of 3-D intermediate phases in 

Figure 1.8(a) and (b), are computed using two different sets of Landau-Devonshire 

parameters, used by Pertsev and coworkers in Refs. [25] and [41]. These results are 

based on an empirical thermodynamic potential with parameters fitted at temperatures in 

the vicinity of the bulk phase transitions. The Pertsev diagrams in Figure 1.8 show that 

imposed stresses can markedly affect the stability of the ferroelectric phase, as well as 

the ease with which polarization can be reoriented in some directions.  

 However, Vanderbilt and coworkers recently mapped out the structure of 

epitaxial BaTiO3 using parameter-free total-energy methods based on density functional 

theory (DFT) [20,42]. The phase diagram in Figure 1.9(a) obtained from DFT 

calculations [42,43] differ from the Pertsev diagrams computed previously using a 

Landau-Devonshire theory where the parameters needed were obtained from 
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Figure 1.7: Possible domain structure of tetragonal (100) thin films at RT. 

Table 1.1: Summary of possible epitaxial BaTiO3 phases. Columns list, respectively:
phase; space group; out-of-plane lattice vector; number of free internal displacement
coordinates; and form of the polarization vector [42]. 
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Figure 1.8: Phase diagram of epitaxial BaTiO3 by semi-empirical method. (a) Using the
parameters quoted in [25]. (b) Using the parameters quoted in [41]. The second- and
first-order phase transitions are presented by thin and thick lines, respectively. 

(a) (b)
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Figure 1.9: Diagram of epitaxial BaTiO3 by DFT. (a) Phase diagram using the effective
Hamiltonian [43]. (b) Energies of the possible epitaxial BaTiO3 phases for different
misfit strains, as obtained from the full ab initio calculation. The vertical lines denote the
phase transition points given by the stability analysis. Figures adapted from [42]. 

(a) (b) 
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experimental information about bulk BaTiO3 at the phase transitions temperatures. 

According to DFT calculations shown in Figure 1.9(b), the energy of the ac phase is 

always higher than that of the r phase, which makes sense given that the r phase is an 

epitaxial distortion of the ground-state rhombohedral phase of bulk BaTiO3, while the ac 

phase is related to the higher energy bulk orthorhombic phase. Therefore, we can expect 

that the phase sequence at low temperatures is not c ! ac ! aa as given in [42], but c ! 

r ! aa. 

 

1.2.3 Metallic ruthenium oxide thin films 

 

 Considerable attention has been given to mixed strontium ruthenates with 

perovskite-based crystal structures, which form in alternating layers of Sr-O and Ru-O 

planes, both because of their interesting electronic and magnetic properties and because 

of the recent discovery of non-doped superconductivity in the layered ruthenate Sr2RuO4 

[44]. The layered structure can take on many different arrangements as they form a 

metallic Srn+1RunO3n+1 Ruddlesden-Popper (RP) homologous series as shown in Figure 

1.10(a) [45]. Figure 1.10(b) summarizes several different phase diagram and the 

complexity of Srn+1RunO3n+1 materials, all of which have metallic behavior, by exhibition 

of a wide array of magnetic, structural, and conductive properties [46]. The tetravalent 

ruthenium in the RP series has highly correlated electron system in 4d orbital. 4d ions 

generally have more extended d orbital than the corresponding 3d ions, and as a result 4d 

oxides tend to have greater overlap and strong hybridization between Ru 4d and O 2p 

orbital in the Ru-O plane [47], which leads to more interplay between structural degrees 
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Figure 1.10: Ruddlesden-popper homologous series Srn+1RunO3n+1. (a) Crystral 
structure. (b) A general phase diagram for all members of Srn+1RunO3n+1 with n = 1,2,3, 
and ∞. Figures adapted from [45,46]. 

(a)

(b)
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of freedom and the magnetic and electronic properties. The extended 4d shell suggests 

that the intra-atomic Coulomb interaction U becomes weaker, relative to the 3d�s, which 

would tend to drive the 4d TMO toward metallic behavior characterized by U/W < 1, 

where W is the conduction band width [46]. 

 Recent surface studies of Srn+1RunO3n+1 series have been performed on Sr2RuO4 

and Sr3Ru2O7 [48,49,50,51]. However, the perovskite structure of SrRuO3 precludes 

surface preparation through cleaving, which produces atomically flat surfaces for layered 

ruthenates such as Sr2RuO4 and Sr3Ru2O7. For this reason, epitaxial SrRuO3 thin films 

with surface studies by in-situ characterization are required to understand a variety of its 

interesting physical phenomena due to the closeness of the structural phase transition 

from cubic to orthorhombic phases, which in similar layered compounds triggers metal-

insulator and magnetic phase transitions. Recent advances of laser MBE techniques have 

allowed the growth of high quality thin films of the Srn+1RunO3n+1 RP series, especially 

very successful in growth of SrRuO3 films, which provides highly strained films with 

atomically flat surfaces [45,52]. It has also allowed the orientation of Srn+1RunO3n+1 thin 

film to be controlled by choosing appropriate substrates [45]. 

 SrRuO3 is the only known itinerant ferromagnetic perovskite, with a Curie 

temperature about 160 K and a moment 1.1 µB at T = 0 K [53]. It is also well known that 

this material displays excellent chemical stability and good metallic conductivity 

[54,55,56]. Strain-free SrRuO3 crystallizes in the orthorhombic distorted perovskite 

structure (space group Pbnm symmetry) below 850 K, which arises from the tilting and 

rotating of the corner-sharing RuO6 octahedra zig-zag chains [57]. Experimentally, 

strained SrRuO3 films can grow epitaxially exhibiting two out-of-plane orientations 
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([001] and [110]) and two in-plane arrangements per orientation [58,59]. For the [001] 

oriented films, the in-plane lattice parameters (a and b) of the orthorhombic Pbnm lattice 

are constrained to be equal in order to match the square lattice of the substrate, called e-

Pbnm[001] group symmetry where �e� indicates �epitaxial�. However, for the [110] 

oriented films, SrRuO3 is subject to substantially different constraints compared with the 

[001] orientation, called e-Pbnm[110] group symmetry. Two different orientations of the 

SrRuO3 epitaxial films, e-Pbnm[001] and e-Pbnm[110], exhibit significant differences in 

their structural properties. The film with e-Pbnm[001] symmetry remains orthorhombic 

at any reasonable value of the strain while the film with e-Pbnm[110] symmetry has 

monoclinic symmetry unless there is no in-plane strain [57].  

 Finally, note that strontium ruthenate, SrRuO3, is broadly used as a conductive 

electrode for perovskite oxide electronics due to good conductivity, chemical stability, 

and a relatively small lattice mismatch to SrTiO3 substrates and many perovskite 

ferroelectrics. In this dissertation, the surface structure of SrRuO3 thin films, serving as 

an electrode for electrical contact, will be investigated to understand the interface 

between conductive SrRuO3 and ferroelectric BaTiO3 films, which leads to 

reconstruction in ultra-thin BaTiO3 films. 

 

1.3 The ferroelectric thickness limit 

 

 Bulk ferroelectric perovskites experience spontaneous macroscopic polarization 

due to a lattice distortion which involves relative displacements between ions of opposite 

charge. This distortion is associated with a vanishing restoring force corresponding to 
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zero transverse optic mode frequency, and is called a �soft phonon mode� [35]. Although 

the ferroelectric soft mode is a collective motion of atoms in bulk materials, 

ferroelectricity, viewed as a collective phenomenon, is expected to be strongly influenced 

by surface and finite-size effects. In these pictures, the long-range electrostatic 

interaction along the polarization axis may not favor the parallel anisotropic alignment of 

dipoles anymore and probably does not dominate over the short-range repulsion between 

dipole-dipole interactions. There are theoretical predictions and experimental results that 

the length scale for ferroelectricity can be reduced down to a nanometer range and it will 

cease to exist under the critical thickness [3,5,6,7,8,9,10,11,12,13]. Recent developments, 

however, suggest that this is not a purely intrinsic behavior of ferroelectric materials, but 

a reflection of the mechanical and electrical boundary conditions resulting from the 

synthetic methods used [4]. As a result, the size dependence of the ferroelectricity 

remains an unresolved issue, in particular for the technologically important perovskites. 

 The existence of a critical thickness for ferroelectricity in perovskite thin films is 

usually explained by depolarizing fields ED produced by polarization charges σp 

accumulated on the two surfaces of the films: 

n P        , P   E pD
)⋅=−= σπ4 ,   (1.13) 

where P is the polarization generated in the ferroelectric thin film and n )  is a unit vector 

normal to the surface that points out of the film. While the polarization and the 

accumulated surface charge are independent of the film thickness, the depolarizing field, 

ED, increases as the film becomes thinner. Thus a critical thickness may exist, where the 

depolarizing field is sufficiently large to suppress the polarization. 

 There are two mechanisms available to reduce the depolarizing field energy: 
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compensation by screen charges at the boundaries [8] or the formation of equilibrium 

180° stripe domains with oppositely oriented polarization [3]. Here we focus on 

stabilization of the single-domain state in ferroelectric films by interfacial charge. If the 

ferroelectric film is placed between two electrodes M1 and M2, the polarization charges 

are screened with the screen charges σs, which are given by  

 
d

dP
s ++

=
)( 21 δδε

σ ,    (1.14) 

where d is the thickness of film, ε is the dielectric constant, and δ1,2 are the Thomas-

Fermi screening lengths in the M1,2 electrodes [32,60]. From Equation (1.14), the 

following cases can be distinguished: 

" Complete screened, i.e., σs = - σp (no depolarizing field ED in the ferroelectric.) 

for �good� metals in which the screening length is small and for not too thin 

ferroelectrics, such as 1/)2 <<+ dδδε 1( . 

" Completely unscreened, i.e., σs = 0 (the depolarization field increases to 

saturation at E = - P/ε [61]) in the opposite limit, 1/)2 >>+ dδδε 1( . 

However, when the thickness of the ferroelectric film is sufficiently reduced, such 

as 1/)2 >>+ dδδε 1( , the screening becomes incomplete and the depolarizing field that 

results from an incomplete compensation of the polarization charges becomes significant. 

Batra and Silverman showed that the incomplete compensation of the polarization 

charges changes the stability of the ferroelectric phase [62,63,64]. The depolarization 

field that results from an incomplete compensation of the polarization charges becomes 

significant when the thickness of the ferroelectric film is reduced. It is then energetically 

difficult for the sample to sustain its uniform polarization. At some critical thickness the 

electrostatic energy associated with the depolarizing fields overcomes the energy gained 
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due to ferroelectric ordering [8]. At this thickness the ferroelectric state becomes unstable. 

 The predicted minimum thickness for ferroelectricity has decreased significantly 

over time [Figure 1.11]. Early works from Batra and Silverman predicted a minimum 

thickness of 400 nm [64]. Recent first principles calculations assuming short circuit 

boundary conditions suggest a critical thickness of 2.4 nm for SrRuO3/BaTiO3/SrRuO3, 

1.2 nm for stress-free PbTiO3, and 1 nm for Pt/KNbO3/Pt, physically resulting from the 

imperfect screening of the depolarization filed [8,9,12], while the predictions of some 

groups imply that no thickness limit is imposed on practical devices by an intrinsic 

ferroelectric size effects [4]. This substantial change of the predictions over time is 

mainly due to a better understanding of the influence of electrical and mechanical 

boundary conditions. Experimentally, in the last 10 years a lot of work has been done and 

the outcome of the improved deposition and analytical techniques has been quite 

considerable. However, most ultra-thin films show large leakage currents, which makes 

direct electrical measurements difficult, and therefore methods other than the traditional 

P-E hysteresis loop have been reported to characterize the stability of the ferroelectric 

phase state down to 1.2 nm for PiTiO3 and 4 nm for Pb(Zr0.2Ti0.8)O3 [3,5]. 

 

1.4 Ferroelectric tunneling junction 

 

 Since tunneling current was predicted by Wilson, Frenkel, and Joffe 70 years ago, 

the tunnel effect has played a significant role during the development of quantum 

mechanics and its applications. This physical phenomenon has recently been described in 



 30

m

Figure 1.11: History of ferroelectric thickness limit. 
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etal-ferroelectric-metal (MFM) devices, termed a �ferroelectric tunnel junction (FTJ)�, 

with ultra-thin (< 6 nm thick) barriers and the polarization state of a barrier 

[32,33,34,65,66]. Conventionally, a ferroelectric is treated as an insulator, which has very 

small leakage current due to free carriers. If the thickness of a ferroelectric layer is small 

enough, the dominant transport mechanism may be even the direct quantum mechanical 

electron tunneling rather than the leakage current phenomena across the whole barrier 

(local measurements of tunneling current can also reduce the possibility of the large 

leakage current due to film defects).  

 Recent theoretical studies on the FTJ suggest that the polarization reversal in the 

ferroelectric barrier produces a change in the potential profile across the junction and 

leads to the resistance switching by the influence of converse piezoelectric effect and 

depolarizing field effect [32,33]. The effect of a ferroelectric on the tunneling current is 

complex and not well understood. To first order, a switch in the direction of ferroelectric 

polarization changes to location (depth) of the tunneling barrier, but not its height. Since 

the effective barrier height is not changed directly, this has no influence on the tunneling 

rate. Indirect effects thought to be important include (1) barrier width modification by the 

converse piezoelectric effect, (2) changes in the electron mass by structural changes in 

the ferroelectric, and (3) the depolarizing electric field of the screening electrons in the 

conducting elements.  None of these theories has been directly tested.  The purpose of 

this work is to investigate the electron transport by tunneling through FTJs with ultra-

thin barriers in order to understand the physics and its dependence on the polarization 

state of the barrier. 

 In Ref. [32], Zhuarvlev, et al., calculated the changes in the tunneling 
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conductance associated with the polarization switching using a model (M1-FE-M2) which 

takes into account screening of polarization charges in metallic electrodes (M1 and M2) 

and direct quantum tunneling across a ferroelectric barrier. The different depolarizing 

fields due to the finite electron screening length in metals modify the potential barrier in 

a M1-FE-M2 junction for electron tunneling. However, for symmetric FTJs (M1 = M2), 

the potential profile changes neither the mean barrier height nor the average slope of the 

barrier even if M1 = M2 = bad and good metals. Therefore, according to this work, the 

depolarizing field cannot change the tunneling conductance and induce significant 

resistive switching. In the case of asymmetric FTJs, the potential profile for different 

electrodes changes the mean barrier and tunneling conductance. Especially, polarization 

switching with the same electrodes (but M1 ≠ M2) can also provide a different average 

potential barrier height, which means the changes in the tunneling conductance depend 

on polarization status.  

 In Ref. [33], the current-voltage characteristics of FTJs are analyzed under the 

assumption that the direct electron tunneling represents the dominant conduction 

mechanism. In this ref., Kohlstedt et al. describe the influence of a converse piezoelectric 

effect inherent in ferroelectric materials and the influence of the depolarization field 

arising due to imperfect screening of polarization charges by electrons in metal 

electrodes with respect to symmetric and asymmetric FTJs. When a potential difference, 

V, between the electrodes is applied, the out-of-plain strain, S3, can vary due to the 

converse piezoelectric effect. After the polarization reversal, the effective longitudinal 

piezoelectric coefficient d*
33 (∆S3 ~ d*

33) changes its sign, which make a jump of current 

or conductance at the critical voltage ( J(V) = C1V + C2(d*
33)V2 + C3(d*

33
2)V3 + �). 
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These phenomena can happen to both symmetric and asymmetric FTJs. They also 

mentioned the depolarization field effect, which changes the hysteretic I-V curve 

drastically in asymmetric FTJs. An asymmetric curve [Figure 1.12(a)] can be obtained 

due to the converse piezoelectric and depolarizing field effects, whereas a symmetric 

curve [Figure 1.12(b)] can be obtained only by the converse piezoelectric effect. 

 The idea and very preliminary study of a FTJ was presented already in 1971 by 

Esaki. However, the realization of this idea is a task with many obstacles, because it 

requires the fabrication of ultrathin films retaining pronounced ferroelectric properties at 

a thickness of only a few unit cells. Recent experimental work shows ferroelectricity was 

observed down to a nanometer scale in perovskite ferroelectric oxides shown in the 

previous section. We study FTJ with BaTiO3 films (< 6 nm thick) by nanoscale 

measurement such as in-situ scanning tunneling spectroscopy (STS) to avoid the leakage 

current due to film defects and to tunnel through a homogenous film. 

 
Figure 1.12: The current-voltage characteristics of FTJ. Figures adapted from [33]. 

(a) (b) 
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Chapter 2 

Characterization Techniques 

 

2.1 Laser molecular beam epitaxy 

 

 Depending on the characteristics of materials, a number of techniques are now 

available to produce high quality of single and multilayered thin films. These include 

thermal evaporation, sputter deposition, molecular beam epitaxy, chemical vapor 

deposition, and pulsed laser deposition (PLD). Especially, physical vapor deposition 

techniques such as plasma and ion beam sputter deposition and pulsed laser ablated 

deposition are extensively used for synthesizing thin films [67]. Compared to other 

growth techniques conducted in ultrahigh vacuum (UHV) environment, PLD is uniquely 

able to obtain high quality and highly oxidized thin films and multilayer of complex 

materials [31]. Complex materials such as transition metal oxides have a perovskite-

based crystal structure similar to many ferroelectric materials and can be successfully 

deposited as epitaxial films in high oxygen pressure by PLD. 

 Laser molecular beam epitaxy (laser MBE) is essentially a sub-category of PLD 

in which a pulsed laser rapidly evaporates a target material forming a thin film that 

retains target composition. Ideal for nanoscale thin films, the combination of PLD and in-

situ high pressure reflection high energy electron diffraction (RHEED) provides precise 

control of film growth at the monolayer level (MBE-like monolayer control of thin film 

growth), called �laser MBE�. This laser MBE can operate to grow highly oxidized thin 



 35

films in high oxygen pressure up to ~ 500 mTorr using high pressure RHEED, which will 

be explained in Section 2.4.1. 

 A sketch of our laser MBE system is schematically shown in Figure 2.1(top). 

This system consists of a KrF excimer laser (λ = 248nm) and a growth chamber, which is 

connected to the complex UHV system for in-situ characterization [Figure 2.1(bottom)]. 

A pulsed laser beam from an excimer laser, external to the growth chamber, is focused 

onto the rotating target through an optical system of lenses. The lenses and windows 

passed through by the laser beam are chosen to minimize any absorption of intensity and 

to maximize the attainable laser power on the target. A pyrolytic Boron Nitride (PBN) 

heater, which is covered with Hastelloy (a stainless steel alloy) housing for good 

conservation of heat, is used to heat the substrate up to ~850 °C in high oxygen pressure 

(~500 mTorr). For in-situ characterization, the growth system needs the specially 

designed Hastelloy sample holder, which can be transferred to the characterization 

chambers. When the laser beam interacts with the ceramic target, a plume is formed from 

a target so that the material of target is deposited on the heated substrate. A plume in 

Figure 2.1(top) consists of a plasma containing energetic neutral atoms, ions, and 

molecules. 

 To get high quality thin films, several the adjustable experimental parameters 

play an important role in laser MBE growth. These parameters include target material, 

substrate temperature, oxygen pressure, target-substrate distance, laser energy and 

repetition rate, and film-substrate lattice mismatch. Note that all parameters are not 

independent, which means there is no universal correct value of parameters, but every 

parameter has to be considered for the best growth conditions of a particular material. 
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Figure 2.1: Synthesis and characterization. Schematic of Laser Molecular Beam Epitaxy 
(top). The complex UHV system for in-situ characterization (bottom). 
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For example, relatively high oxygen pressure conditions may require a reduction in the 

target-substrate distance due to the change of a plume size. Too many adjustable 

parameters suggest that laser MBE growth is not easy to get high quality of films. 

Therefore, it is very important to understand the parameters which influence the growth 

in order to control them and to determine the film properties. In the present study, laser 

MBE parameters are optimized for each material under investigation. 

 

2.2 X-ray diffraction 

 

 The diffraction of x-rays by the closely spaced lattice of atoms in a crystal 

produces a pattern, which can be recorded and analyzed to identify crystalline and 

structural properties. X-ray diffraction is now a standard tool for materials science with 

many available references [68,69]. The (θ-2θ, φ, ψ, ω) x-ray diffraction (XRD) patterns 

of thin films were measured using the four-circle x-ray diffractometry. Figure 2.2 shows 

a schematic of the four-circle x-ray geometry. The detector (θ-2θ) and the sample (φ, ψ, 

ω) can be rotated independently to measure the patterns and provide specific information 

with respect to each angle scan. The θ-2θ and ω circles enable probing of the crystalline 

planes in a film parallel to the substrate surface. The φ and ψ circles allow probing of 

reflections and planes that are not parallel to the surface of the substrate. 
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Figure 2.2: Schematic of four-circle x-ray diffractometry 
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2.2.1 θ-2θ scan 

 

 The θ-2θ scan provides information about the crystalline orientation of the 

crystal and the out-of-plane lattice parameters. A beam of x-rays, with wavelength λ, that 

reaches the crystal surface at angle θ is elastically scattered by electrons [Figure 2.3(a)]. 

The sample consists of rows of crystal planes that are separated by d, which is a distance 

between the atomic layers in a crystal. The constructive interference of the scattered 

probe results in sharp diffraction peaks determined by the celebrated Bragg�s law 

θλ sin2dn =                            (2.1) 

where n is integer.  

 

2.2.2 ω-scan 

 

 The ω-scan, known as a rocking curve measurement, gives the information on 

the texture and the crystalline quality of the films. For a (00l) oriented thin film, the ω-

scan of a Bragg reflection, is performed to determine whether atomic layers are perfectly 

aligned the each other, i.e. the spread and tilt of the film. To measure a ω-scan, the peak 

from the θ-2θ scan diffractogram should be chosen and then the detector remains at a 

fixed position (black lines in Figure 2.3(b)) while the rocking curve is measured by 

rotating (or rocking) the sample around the ω circle. The ω-scan is defined as θ0-θ shown 

as in Figure 2.3(b). If the sample is a single crystal, the intensity of the reflected beam 
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becomes zero because θ0 does not satisfy the Bragg condition. On the other hand, if the 
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Figure 2.3: Probing of the crystalline planes parallel to the surface. (a) Bragg diffraction
of x-ray and (b) Schematic describing the ω-scan (Rocking curve). 

(a) 

(b) 
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sample is composed by atomic layers that are not perfectly aligned each other, a finite 

intensity is measured. Therefore, the full width at half maximum (FWHM) in ω provides 

a measure of the spread in the orientation of the atomic layers aligned the each other. 

 

2.3 Electron diffraction 

 

 Electron diffraction is in the arsenal of surface science techniques to investigate 

the structure and the symmetry of surfaces. These techniques are based on the wave 

nature of electrons and their strong interaction with matter. They provide the chance to 

analysis a surface in two ways: low kinetic energy electrons (typically 20 eV � 500 eV), 

and high energy electrons (> 1 keV). The first corresponds to the low energy electron 

diffraction (LEED) technique with a mean free path (or average distance between two 

inelastic scatterings) lower than 1 nm, and the second is reflection high energy electron 

diffraction (RHEED) with the higher value of the mean free path. However, this higher 

value of the mean free path requires that RHEED should work in grazing incidence to 

have only access to the structure of the surface atomic planes. 

 

2.3.1 Reflective high energy electron diffraction 

 

 RHEED is a surface sensitive technique which allows us to monitor epitaxial 

growth of thin films in real time and qualitatively measure properties of the surface of a 

sample during the growth process. In RHEED, the incident electron beam strikes the 
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crystalline surface under bombardment with high energy electrons near grazing incidence 

typically < ~3°) and is reflected onto a phosphorescent screen. The diffraction pattern 

provides very surface sensitive information (1nm depth) on the atomic arrangement of 

the top layers of a solid. 

 The grazing incidence angle ensures surface specificity despite the high energy 

of the incident electrons. The intensity of the reflected beam is proportional to the surface 

roughness [Figure 2.4]. If a surface is atomically flat, a high reflected intensity and sharp 

RHEED patterns are seen. However, rough surfaces do not reflect well and the intensity 

is lower. In this case, the RHEED pattern is more diffuse. This behavior can be applied 

for monitoring method of the thin film growth, so called �RHEED oscillation�, during 

thin film deposition. In Figure 2.5, the origin of the RHEED intensity oscillations is 

explained while the layer-by-layer growth mode proceeds [70]. If the initial surface is 

perfectly flat, the specular spot has relatively high intensity of reflectivity. When 

deposition starts to evaporate materials onto a surface, the incident electron beam 

becomes partially scattered by the island steps of the forming monolayer, thus reducing 

the reflected intensity of the specular spot. Minimum intensity of reflectivity is observed 

at half ML coverage, which indicates that scattering of beams becomes maximized. With 

keeping the growth procedure, the new monolayer completes and the surface flattens 

again by coalescence of the islands, and the reflected intensity recovers its maximum 

value. Note that time interval of one RHEED oscillation is almost constant except for 

one of the first oscillation. 

 In the case of layer-by-layer growth mode, the films thickness (ML) can be 

easily estimated by measuring the period (T) of RHEED oscillation and total growth time 
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Figure 2.4: RHEED patterns dependent on the surface roughness of BaTiO3 films. The
films were grown by laser MBE. 
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Figure 2.5: Mechanisms of RHEED oscillations during growth of a monolayer. Figures 
adapted from [70]. 
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(t) and given as 

  
T
tMLd =)(  .                          (2.2) 

However, this RHEED oscillation is observed in the case of only layer-by-layer growth 

mode. This RHEED oscillation cannot appear in the other growth modes such as step 

flow growth or 3D island growth. In this case, the thickness of films can be measured by 

other kind of techniques (XRD, transmission electron microscopy et al.). 

 

High-pressure RHEED 

 In the thin film growth of metallic or semiconducting materials under UHV 

conditions, normal RHEED procedures apply. However, the high oxygen pressure 

required for oxide growth prevents the use of normal RHEED systems due to the small 

mean free path (a few cm) of electrons in the 10-200 mTorr regime commonly used. For 

this reason, a modified RHEED system is required for high-pressure growth. Usually, the 

electron gun filament in a RHEED system must be operated in high vacuum (1.5x10-5 

Torr) in order to increase its lifetime. The use of a double differential pumping system 

makes it possible to minimize the path electrons travel through the high pressure 

deposition chamber, while still keeping the electron gun under high vacuum. Our current 

high-pressure RHEED system allows the deposition pressure up to 500 mTorr.  
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2.3.2 Low energy electron diffraction 

 

 Low energy electron diffraction (LEED) is the oldest and the most successful 

surface science technique and is used to study the structure of crystalline surfaces. From 

the first LEED experiment by Davison and Germer in 1927 [71,72] to now, many 

different techniques and extremely sophisticated applications have been developed. In 

these days, LEED I-V analysis has been developed with an accuracy of less than a few 

hundreds Å for the structure analysis of atomic positions in the surface unit cell. Note 

that there are two reasons why LEED is surface sensitive technique as follows: 

1) The mean free path for low energy electrons in solids is short. 

2) The electron de Broglie wavelength fits very well the typical distances in 

crystals. 

  

2.3.2.1 Diffraction pattern formation 

 

 To understand how a LEED pattern is formed we can start with the overview of 

the construction (or destruction) interference of the scattered waves emanating from the 

crystal surface [73]. In X-ray diffraction, the diffraction conditions for a three 

dimensional lattice are given by the �Laue condition� 

)(
2gl 321
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gggkghk rrr
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rrrrr

×⋅
×

==++=∆ π          ,           (2.3) 

where gr is a reciprocal lattice vector, igr (i = 1,2,3) are primitive vectors in reciprocal 
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lattice, and iar  are primitive vectors of the crystal lattice [Figure 2.6(a)]. This condition 

can be visualized by a simple geometric construction (Ewald sphere) using the fact that 

intensities can appear only in directions given by gkkk rrrr
=−=∆ '  [Figure 2.6(b)]. 

However, ideal two-dimentionality has only a single atomic layer, which means that the 

real-space periodicity along the plane normal is infinite, i.e.,  
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rr π                .           (2.4) 

This gives 2-D rectangular real space lattice corresponding to the reciprocal lattice rods 

with two reciprocal lattice vectors [Figure 2.6(c)]: 
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The diffraction conditions for this two dimensional reciprocal lattice are given by the 

following Laue condition associated with the momentum transfer parallel to the surface: 

 ||21|| ggkghk rrr =+=∆ .                     (2.6) 

This momentum ( ||k ) is conserved and satisfied with planar symmetries existing along 

the surface. Therefore, the reciprocal lattice cuts the surface of the Ewald sphere 

perpendicular to the rods, which forms a circle, and the wave vectors can be projected on 

to it [Figure 2.6(d)]. This shows how to form LEED pattern.  

 When considering the diffraction from the real surface, the semi-three 

dimensional nature should be taken into account instead of a perfect 2D lattice in which 

the integral intensity of spots is not modified but the intensity distribution is influenced 

in reciprocal space. Since the incident electron beam penetrates into the crystal even 

though only within a few atomic layer and feel the third Laue condition, our reciprocal 
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Figure 2.6: Principles of 2 dimensional diffraction pattern formations. (a) 3-D reciprocal 
lattice. (b) 3-D Ewald construction through Bragg spots. (c) 2-D reciprocal space. (d) 3-
D Ewald construction through Bragg rods and 2-D projection of Ewald sphere parallel
to Bragg rods. (e) Modified reciprocal lattice by surface reality. Figures adapted from 
[73]. 

(a)  (b)  

(c)  

(d)  

(e)  
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lattice rods are not infinite continuously. Instead of infinite rods, reciprocal lattice �seen� 

by LEED is a mixture between continuous rods and discrete points [Figure 2.6(e)]. This 

leads to very strong intensity variations in the LEED spots as a function of energy by 

measurement of intensity vs. accelerating voltage of the electrons. By the measurement 

and analysis of intensities, we can probe crystallographic information regarding the 

geometrical atomic structure near the surface region of the crystal, which will be 

discussed in Section 2.3.2.2 in detail. 

 Now, let�s apply these concepts to the real LEED experiment [74]. A typical 

experimental set-up is shown in Figure 2.7(a). The LEED experiment uses a beam of 

electrons of a well-defined low energy (typically in the range 20 - 500 eV) incident 

normally on the surface of the sample. The sample itself must be a single crystal with a 

well-ordered surface structure in order to generate a back-scattered electron diffraction 

pattern. Equation 2.6 for the high intensities of the patterns requires the relation between 

the magnitude |'| k  of the outgoing electrons and the emission angle hkθ  such as  

21||||||
||1 ''          and        
|'|

|'|
sin gkghkkk

k

k
hk

rrrrr
r

r

+==−= −θ              (2.7) 

where 0|| =k  due to the normal incident beam. Therefore, shown as Figure 2.7(b), the 

position of the intensity maxima on the screen in LEED apparatus is given by 
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From Equation 2.7, we can see that the spots move closer to the center of the screen 

(reduce dhk) by increasing the energy E. New spots also move in on the sides of the 
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screen which have not been visible before. Note that the different dhk values are given 

from the different set of (h,k), which corresponds to each spots on LEED screen. 

Especially, if a reconstruction or an overlayer with double periodicity is present, then we 

will see such a (1/2,0) spot and so on in the real measurement, which will be discuss in 

the next. 

 

2.3.2.2 Surface Structure determination by LEED 

 

 Based on the Schrödinger equation for the scattering of electrons by a surface, 

the scattering amplitude after the kinematic approximation (1st Born approximation by 

single scattering approach) can be described as a sum of electron wave function scattered 

by all surface atoms with potential iij
ji

VrRrV ⋅+−∑∑= )]([ rr
δ  at position ijji rRr

rrr
+=,  

Figure 2.7: Schematic of LEED set-up. (a) LEED system and (b) linear imaging of the
reciprocal lattice by LEED. Figures adapted from [74]. 

(a) (b) 
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shown in Figure 2.8, 
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into the lattice factor |G|2, which influences the only intensity distribution in reciprocal 

space and the structure factor |F|2, which includes the information of in-depth attenuation 

and multiple scattering [75]. The lattice factor |G|2 provides the Laue condition gk rr
=∆  

with strong maxima for 

nRk j π2=⋅∆
rr

.                          (2.11) 

This lattice factor is determined by the lattice periodicity and arrangement of spots 

instead of providing the information of atomic position, which is already described in the 

previous section.  

 While traveling within a solid a charged electron undergoes inelastic scattering 

process, which suggests the electron beam should be attenuated and yielding a fairly 

Figure 2.8: The position vector of atoms in jth unit cell. 
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short mean free path (typically 10-20Å). The structure factor |F|2 provides the 

information of penetration depth by introducing the imaginary part of the inner potential, 

which is alter the electron energy and its momentum k, the so called �optical potential� 

ir iVVV 000 +=  .                        (2.12) 

Then, the penetration depth λp can be written as 
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Figure 2.9(a) exhibits the intensity as a function of energy with the different choices of 

constant real and imaginary parts of the inner potential [76], which shows the effects of 

the attenuation and shift of the peak intensities with respect to the different choices of V0r 

and V0i. This also shows the peak intensities are reduced as the beam energy decreases 

due to the penetration depth proportional to E1/2. However, this kinematic approximation 

is totally different from experimental spectrum as shown in Figure 2.9(b), which suggests 

that we need to consider other factors such multiple scattering and diffraction (dynamic 

approximation). 

 Instead of direct solving the Schrödinger equation by considering the higher 

order scattering term in Born approximation, we can make use of scattering hierarchy 

(single atomic scattering, layer diffraction, and full surface diffraction) with multiple 

scattering as displayed in Figure 2.10 [75] and the corresponding approximation 

procedure known as Renormalized Forward Scattering (RFS) [77,78,79]. The single 

atom scattering in Figure 2.10(left) is based on the assumptions of spherically symmetric 

scattering potential mainly due to inner shells and nucleus. If wave functions overlap at 

the muffin-tin radius they are folded back to the inner of the atomic sphere. By solving 
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Figure 2.9: Kinetic approximation. (a) Intensity vs. energy with the different choices of
constant real and imaginary parts of the inner potential [Vor = Voi = 0 (Blue); Vor = 0, Voi

= -5 eV (Green); and Vor = 10 eV, Voi = -5 eV (Red). Figures adapted from [76]. (b) 
Comparison of experimental spectrum (Red) and kinematic approximation (Black).
Figures adapted from [73]. 

(a)  

(b) 
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the Schrödinger equation with ansatz 
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the phase shift δl fully describe the multiple scattering inside the muffin-tin spheres. This 

phase shift can be obtained using the flux conservation outgoing and incoming wave 

must have the same modulus 

li
ll e δαβ 2≡                             (2.15) 

where phase shift δl has l cut off at a certain maximum value of the angular momentum. 

The layer diffraction in Figure 2.11(a) is considered by assembling atoms to layers and 

calculating the 2D diffraction, which consists of backward scattering and forward 

scattering, using the matrix inversion method [80]. Note that, even if only a single layer 

exists, multiple scattering should be taken into account because the total wave field 

impinging on the atom consists of the wave coming from outside plus that from the 

neighbors and even more, there is a contribution which depends on the scattering of the 

very atom itself [Figure 2.11(a)]. The full surface diffraction in Figure 2.11(b) is 

Figure 2.10: Hierarchy of dynamic (multiple scattering) LEED intensity evaluation.
Figures adapted from [75]. 
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Figure 2.11: Multiple scattering. (a) Single layer only. (b) Multiple interlayer scattering
in full surface diffraction. Figures adapted from [73]. 

(b) 

(a) 
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considered by stacking the layers to build the surface and compute its diffraction. In this 

case, interlayer multiple diffraction between layers becomes important because the 

backscattering at moderate electron energies is significant and therefore multiple 

scattering events are probable instead of the kinematic approximation (weak 

backscattering). The preferred method for calculating interlayer multiple scattering is the 

RFS method as shown in Figure 2.11(b), which exhibits 1st or 2nd approximation 

procedure [77,78,79,81]. 

 A dynamic spectrum due to multiple scattering or interlayer multiple scattering 

has much more peaks than a kinematic spectrum as shown in Figure 2.12, which suggests 

that it has higher precision to an experimental spectrum and has more structure 

information. Correlation between the theoretical spectrum and experimental spectrum 

can be evaluated with the use of a reliability factor. Then, we need an optimization 

process where differently generated trial structure models are calculated and compared 

with experimental data. The trial structure which has the best correlation with 

experimental data is accepted as the true real space configuration of the atoms near the 

crystal surface. This dynamic approximation in LEED theory is necessary to describe the 

dependence between the geometrical atomic structure near the surface region of the 

crystal and the intensities of the diffraction spots as a function of incident beam energy, 

the so called �LEED I-V� spectra [82]. 

 

Reliability factor 

 In order to find the correct structure, the experimental spectra should be 

reproduced by model calculations which need a quantitative measurement to compare the 
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Figure 2.12: Comparison of kinematic spectrum (Blue) and dynamical spectrum (Red).
Figures adapted from [73]. 
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experimental spectra.  For this reason, the reliability factors (R-factors) are widely used 

to evaluate the goodness of fit between the theoretical and experimental LEED I-V 

spectra. Due to the complex structure of the spectra, there are several R-factors [78] 

developed for LEED using different concepts for the construction. However, the mostly 

used R-factors in these days are the relative mean square deviations of intensities (R2) or 

the Pendry R-factor (Rp) [83], which is more sophisticated than R2 and will be used to 

evaluate our data. The advantage of Rp is the emphasis on the positions of maxima and 

minima than on the absolute height of intensities, which means all maxima are equally 

important even though weak and small peaks. This is true because their positions mirror 

constructive or destructive interference and reflect the structure in the IV spectra, which 

is a direct consequence of the geometrical configuration of atoms on the surface. 

Therefore, instead of the intensities, Rp is based on logarithmic derivatives with respect 

to energy 
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When the IV curve is near a minima with I(E) ≈ 0, a singularity occurs in the logarithmic 

derivative. To avoid singularities, a Y function 
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is used instead of L(E). The Pendry R-factor then simply results as the mean square 

deviations of Y functions rather than of the intensities as in the case of R2: 
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where Yexp and Yth are the Y functions for the experimental and theoretical beams 
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respectively. Perfect agreement corresponds to Rp = 0 (i.e. Yexp = Yth), uncorrelated 

spectra yield Rp = 1 (i.e. Yexp·Yth = 0), and anti-correlated curves produce Rp = 2 (i.e. Yexp 

= -Yth). In general, the LEED community accepts a Rp below ~ 0.3 as a reliable solution 

for system containing a few atoms per unit cell. The variance of the Rp 
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where ∆E is the total energy range of the experimental data set. This variance of the 

Pendry R-factor allows estimation of the error limits for the model parameters 

determined [83]. 

 

2.4 Scanning Probe Microscopy 

 

 The development of scanning probe microscopy (SPM) allows us to study the 

surface science in range of phenomena from the micrometer down to the subnanometer 

scale. The family of SPM techniques is very diverse, with different methods specializing 

in different surface phenomena, such as surface topography, electronic properties, film 

growth, friction, dielectric and magnetic properties, contact charging, and many other 

phenomena. Here, we are focused on the two most commonly used techniques � 

scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Both 

techniques have sharp tips interacting with the surface and a topographic surface image 

is produced by scanning. However, the control parameter of operation in STM is the 

tunneling current, whereas the control parameter in AFM is the atomic force between tip 

and sample.  
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2.4.1 Scanning tunneling microscopy and spectroscopy 

 

 The Scanning Tunneling Microscope (STM) was introduced by G. Binnig and W. 

Rohrer in 1981 which was honored by the Nobel Prize in 1986. It has become widely 

used as an important instrument for real space analysis in surface science. Scanning-

tunneling microscopy (STM) can image surfaces of conducting materials with atomic-

scale resolution. With its ultimate resolution, this remarkable instrument forms the basis 

of an enormous development within physics. Within one year of its invention, the STM 

helped to solve one of the most intriguing problems in surface science: the structure of 

the Si (111) surface [Figure 2.13]. A large number of metals and semiconductors have 

been investigated on the atomic scale and marvelous images of the world of atoms were 

created within the few years after the inception of the STM. 

 The basic idea is to bring an atomically-sharp metallic tip in close proximity (a 

few Å) to a conductive sample [Figure 2.14]. By applying a voltage between the tip and 

the sample a small electric current can flow from the sample to the tip or reverse, 

although the tip is not in physical contact with the sample. This phenomenon is called 

electron tunneling and its current can be measured. The magnitude of tunneling current 

depends on the distance between the tip and the surface. As the tip is moved laterally 

across the surface, a feedback mechanism moves the tip up and down to maintain a 

constant tunneling current. Restoring the tip across the surface therefore produces a 

topographic map of the surface. The extreme sensitivity of the tunneling current with 

respect to the tip-sample distance is the basis of vertical resolution in STM. By scanning 

the tip across the surface and detecting the current a map of the surface can be generated 



 62

(a) 

Figure 2.13: Atomically resolved STM images of Si (111) surface at RT: (a) 25 nm2,
+2.0Vgap, (b) 15 nm2, +1.0Vgap, (c) 5 nm2, +1.5Vgap and (d) 15 nm2, -1.0Vgap 

(b) 

(c) (d) 
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Figure 2.14: The principle of scanning tunneling microscopy. 
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with a resolution in the order of atomic distances. In reality a STM image is much more 

complex and rich with information. Note that the image cannot just be interpreted as a 

topographic map because the tunneling current is also influenced by the lateral and 

vertical variation of the electronic state density at the surface. The lateral resolution is 

about 1Å whereas a vertical resolution up to 0.01Å can be achieved. 

 Scanning tunneling spectroscopy (STS) performed with a STM is a technique 

which provides information about the local density of electronic states on surfaces at 

atomic scale. The tunneling current (I) is measured as a function of the bias voltage (V) 

between the tip and the surface at the measurement point. From this technique, the 

current-voltage (I-V) curve can be observed at every point in a data set, providing a 

three-dimensional map of electronic structure. With a lock-in amplifier, the differential 

conductance�voltage (dI/dV)-V curve can be collected directly. The tunneling current is 

proportional to the local electronic state, which is approximately estimated to 
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where E is the electron energy based on the Fermi state of the sample, ρs is the density of 

the electronic state of the sample, and ρt is the density of the electronic state of the tip. 

Differentiation yields the density of states 

)(/ eVEdVdI Fs −∝ ρ .                    (2.21)  

Actual spectroscopic images corresponding to the spatial variation of dI/dV contain 

topographic and electronic structure information. 

 



 65

2.4.2 Atomic force microscopy 

 

 Despite the phenomenal success of the STM, it has a serious limitation to 

conductive surface because of its control parameter - the tunneling current which flows 

between a biased tip and a sample. However, AFM, invented by Bininig, Quate, and 

Gerber in1986 [84], does not require that the sample be an electrically conducting 

material. As shown in Figure 2.15, the AFM consists of a microscale cantilever with a 

sharp tip (probe) at its end that is used to scan the specimen surface [85]. The AFM uses 

an atomically-sharp tip that is brought very close to the surface similar to STM while, as 

a control parameter, the tip of AFM feels atomic forces which lead to move up or down 

on its supporting cantilever. The key to the sensitivity of AFM is in monitoring the 

movement of the tip or the cantilever. The deflection is measured using a laser beam spot 

reflected from the top of the cantilever into an array of photodiodes. A feedback loop 

keeps the deflection constant by adjusting the vertical position of the cantilever while 

scanning along a surface. The feedback signal provides the topographical profile of the 

surface.  

 In principle, an AFM can operate in three primary modes, i.e., contact mode, 

non-contact mode, and tapping (intermittent contact) mode. In the contact mode, the tip 

senses the short-range repulsive forces exerted by the surface while in non-contact mode 

the tip senses the long-range attractive forces approaching of the sample surface [Figure 

2.16] [86]. The forces act on the tip after approaching it to the surface causing a 

deflection of the cantilever. The tip altitude in the contact mode is adjusted to follow the 

surface height using the deflection signal. In this case, the force between the tip and the 
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Figure 2.15: The principle of atomic force microscopy. Figures adapted from [85]. 

Figure 2.16: Distance dependence of atomic forces. The typical tip-surface
separations expressed in the contact mode, non-contact mode, and intermittent contact
mode. Figures adapted from [86]. 
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surface is kept constant during scanning by maintaining a constant deflection. However, 

operation in the contact mode, which provides high quality of lateral resolution, typically 

implies relatively large shear forces that can damage the tip and the surface, limiting the 

range of samples that can be imaged. In the non-contact mode, the cantilever is 

externally oscillated at or close to its resonance frequency modified by tip-sample 

interaction forces in the attractive region. In this case, the tip does not contact the surface 

at all. Especially ambient conditions allow most samples to develop a liquid meniscus 

layer. Because of this layer, it is difficult to keep the probe tip close enough to the sample 

for contact mode to become detectable while preventing the tip from sticking to the 

surface. The tapping (intermittent contact) mode was developed to bypass this problem 

[87]. In the tapping mode, periodic tip-surface interactions provide the dominant 

contribution to the dynamic (oscillated) behavior of the cantilever. 

 In addition to morphology of the surface, progress in SPM is associated with the 

emergence of a large number of electrical, electromechanical, or magnetic 

characterization techniques enabled by several tip-surface interaction regimes (contact, 

non-contact, and intermittent contact). Especially, SPM based techniques have been 

successfully employed for the characterization of ferroelectric surfaces on the micron 

and nanometer level [88,89]. 
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Chapter 3  

Epitaxial thin film growth 

 

3.1 SrTiO3 substrate preparation 

 

 As one of the ABO3 perovskite type, insulating strontium titanate (SrTiO3) single 

crystal in Figure 3.1 is an excellent substrate material for epitaxial growth of many 

oxide-based thin films. It provides a good lattice match to many materials with 

perovskite structure. At room temperature it exists in the cubic form with a lattice 

constant ac = 3.905 Å [90], but transforms into the tetragonal structure at temperature 

less than 105 K. The crystal structure of SrTiO3 perovskite consists of an alternating 

stack of the two atomic planes (SrO and TiO2), which provides two possible terminations 

of a perovskite (100) surface.  

 The surface structure of the substrate produces an important effect on the early 

stages of film growth. A single terminated surface is a prerequisite for reproducible thin 

film growth and fundamental growth studies. If the terminating layer is not uniquely 

decided, the mixture of two terminations coexists and degrades interfacial properties due 

to chemical and electronic uncertainty on a unit-cell scale. An ideal surface should have 

only one of the two terminations with a regular step structure. However, a surface 

obtained by polishing after cleaving or cutting results in an equal amount of two 

terminated domains separated by half unit cell steps with several kind of defects on the 

surface [91]. Even if there were many methods to improve the surface quality and a 
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preferential termination for reproducible growth, these could not guarantee a single 

terminated surface before the first step by Kawasaki et al. [92]. 

  

Chemical treatment 

 In 1994, a near-perfect TiO2-terminated SrTiO3 substrate with single-stepped 

surface was obtained by treating the crystal surface with a pH-controlled NH4F-HF 

(BHF) solution as described in Ref. [92]. Figure 3.2 shows the detailed procedure based 

on the selective etching of the more basic oxide SrO rather than acidic oxide TiO2 by 

controlling the pH value of the solution [93]. That is to say, the BHF etching removes Sr 

more efficiently than Ti, which suggests the etchant mostly attacks the Sr at the step 

edges, dissolving it and then removing Ti by lift-off. Following this etching, we can 

obtain very reproducible practically perfect TiO2-terminated surfaces on SrTiO3 

substrates. However, the pH value of the BHF solution or the etching time is actually 

crucial for surface status. Under-etching results in non-perfect TiO2-termination with 

single-stepped surface, while over-etching causes unit cell deep holes in the terraces and 

Figure 3.1: Schematic diagram of SrTiO3 crystal structure in cubic unit cell at RT. 
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Figure 3.2: Chemical etching treatment. The procedure based on the selective etching 
of the more basic oxide SrO rather than acidic oxide TiO2. Figures adapted from [93]. 
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deep etch pits, which hamper thin film growth. After Kawasaki et al.�s work, many 

literatures report the development of etching techniques, which provide us almost perfect 

etching conditions to get uniform TiO2 terminated SrTiO3 substrates with atomically flat 

surface [52,54,94,95]. 

 In our preparation prior to film growth [54,96], as-received (100) SrTiO3 

substrate (miscut tolerance < 0.1°), purchased from CrysTec, Inc., is immersed for 30 s in 

a buffered oxide etch (BOE:H2O = 1:10) with a pH equal to 4.5, then rinsed with distilled 

water, followed by thermal annealing which will be discussed next. The line profiles 

from AFM images for substrates before and after etching show terraces with typical 

height differences of half (~2 Å) and single (~4 Å) for before etching while single unit 

cell height of most terraces for after etching. 

 

Thermal treatment 

 Even though the chemical etching contributes to form atomically flat surfaces of 

the substrate, a near-perfect single stepped surface of SrTiO3 substrate requires additional 

thermal treatment in order to remove the remnants of the etching treatment and facilitate 

re-crystallization. AFM images of the etched SrTiO3 (100) substrate surface before and 

after annealing in atmosphere are shown in Figure 3.3(b and c). The surface morphology 

of the substrate before annealing exhibits disordered step edges on the terraces which are 

broken into meandering islands. Despite the breakup of the surface edges, most of steps 

and small islands have a single unit cell height (~4 Å). As annealing temperature 

increases, the small islands start to combine and form fairly broken terraces, and then 

wavy step edges become clearly visible (not shown). The thermal annealing at ~ 1200 °C 
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Figure 3.3: Ex-situ AFM topographic images of (100) SrTiO3 substrates: (a) as-
received, (b) after etching before anneal, (c) after etching and anneal at 1200 °C for 1
hour, and (d) after etching and anneal at 1350 °C for 1 hour. All image size is 5x5 µm2

. 

(a) (b) 

(c) (d) 
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for 1 hour in atmosphere provides perfectly straight step edges with fairly good terrace 

width, which can be partly controlled by annealing temperature and time [Figure 3.3(c)]. 

However, as shown in Figure 3.3(d), over-annealing causes jagged edges instead of 

straight terrace edges. 

 

3.2 Epitaxial SrRuO3 thin films 

 

 Strontium ruthenates have recently attracted significant attention due to their 

outstanding electrical transport properties [56,97]. The perovskite SrRuO3 is broadly 

used as a conductive electrode for oxide electronics due to good conductivity and 

relatively small lattice mismatch to insulating SrTiO3 substrate and many perovskite 

ferroelectrics. Especially, as shown in Figure 3.4, SrRuO3 has a small lattice mismatch 

with SrTiO3 (0.64%), which makes it possible to grow fully strained high quality 2D 

epitaxial films [52,94,98,99]. As an electrode, these high quality and fully strained 

SrRuO3 films greatly affect getting the next growth components with high quality 

heteroepitaxial structure. 

 After confirming the high quality of TiO2 terminated annealed SrTiO3 substrate 

by AFM and XRD (FWHM < 0.03°), epitaxial SrRuO3 thin films were grown by laser 

MBE using a KrF excimer laser (λ = 248 nm) at the substrate temperature 700 °C in 100 

mTorr O2. The average growth rate (deposition flux) was chosen as 0.059 ML/s 

controlled by the laser aperture size (8 x 23 mm2) and the repetition rate (5 Hz). During 

growth, high pressure RHEED was executed to monitor epitaxial growth of thin films in 

real time, which is shown in Figure 3.5(a). Ambient AFM images of 15 nm thick SrRuO3 
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Figure 3.4: In-plane lattice mismatch between peudocubic SrRuO3 and cubic SrTiO3 at
RT. 

0.64 % in-plane lattice mismatch (RT)

SrTiO3 
(cubic) 

SrRuO3 
(peudocubic) 
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Figure 3.5: SrRuO3 films growth. (a) RHEED oscillation and pattern during the growth
of SrRuO3 films on SrTiO3 substrate. (b) Ex-situ AFM topography of 15 nm thick
SrRuO3 films after deposition (image size: 5x5 µm2). 

(a) 

(b) 
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films after deposition [Figure 3.5(b)] illustrate a stepped topography � similar to that of 

the TiO2-terminated SrTiO3 substrate prior to deposition � with a low step density and 

flat terraces. The crystalline quality of these films was also confirmed by measuring the 

rocking curve (FWHM < 0.05°) for a (002) oriented SrRuO3 thin films. 

 Figure 3.5(a) shows overall RHEED intensity variations of the specular spot 

during the growth of SrRuO3 films, in which two regimes with different growth modes 

are distinguishable. The oscillation in the first regime indicates 2D layer-by-layer growth, 

whereas a steady RHEED signal in the second regime indicates 2D step flow growth, 

which is consistent with the previous reports [52]. The intermediate regime, in which the 

oscillations fade away, corresponds to the transition in growth mode from 2D layer-by-

layer to step flow. The detailed study of the growth mode transition is discussed in Ref. 

[52]. 

 During layer-by-layer growth, the periods of the first and second oscillations 

have different values (24 sec and 17 sec, respectively) while the oscillation periods are 

equal in time (17 sec) after the second oscillation [Figure 3.5(a)]. The different initial 

growth periods result from the change of perovskite stacking and stoichiometric 

deposition compared to TiO2-terminated SrTiO3 substrate. While the first layer deposits, 

SrRuO3 decomposes to stable SrO and highly volatile RuxOy and this decomposition 

stops after the terminating layer is completely converted to SrO, which leads to take a 

little longer than deposition of other homoepitaxial layers. After that, perovskite stacking 

and stoichiometric deposition are preserved and the SrO-termination of SrRuO3 films is 

observed in thin films. A detailed study of the termination of SrRuO3 thin films is 

discussed in Ref. [99], which is consistent with our results. 
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3.3 Epitaxial BaTiO3/SrTiO3 thin films 

 

 Heteroepitaxial growth of perovskite thin films has been widely investigated 

since physical properties, such as dielectric, pyroelectric, piezoelectric or ferroelectric 

properties, can differ significantly from those of bulk crystals [37,38,39,40], allowing 

tunability of ferroelectric, conductive, and magnetic properties by strain and thickness 

effects. To grow a high-quality epitaxial film, a layer-by-layer (Frank-van der Merwe) 

growth mode is a prerequisite. Layer-by-layer growth is necessary for fully stained film 

deposition by the substrate without relaxation, which typically requires a small lattice 

mismatch between the film and substrate. For relatively large lattice mismatched 

materials, 3D island (Volmer-Weber) or layer-then-3D island (Stranski-Krastanov) are 

the energetically favored growth modes [Figure 1.6] [30]. 

 Control over growth conditions can open pathways to self-assembly of 

nanophase materials with novel functional properties. Well-known examples include 

classical semiconductors such as Ge/Si, where nanodots with controlled geometry and 

unusual electrooptical and electronic properties can be formed. In oxide materials, the 

control over self-assembly is a much more challenging task, due to the limitations 

inherent in multi-component systems. These include propensity for oxygen and cationic 

non-stoichiometries, thermodynamic instabilities, and stringent conditions on lattice 

mismatch with substrate, resulting in a more restricted parameter space for growth 

processes. To date, successful examples of oxide self-assembly include successive 

growth of oxide nanodots as pinning centers in semiconductors [100] and self-assembled 

multiferroic structures [101]. In all these examples, self-assembly is primarily driven by 
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the interplay between macroscopic phase separation and strain energy between dissimilar 

phases. 

 In this Section, we report an experimental study of highly strained BaTiO3 thin 

films on SrTiO3 and demonstrate control over thermodynamic and kinetic parameters of 

deposition process to yield (a) layer-by-layer growth of excellent structural quality, 

highly oxidized, and highly strained epitaxial thin films and (b) pseudo-2D growth 

resulting in highly-ordered arrays of nanoscale islands of several unit steps high. The 

crossover between these mechanisms is controlled by growth temperature and deposition 

rate, which together determine the surface diffusion length [26,102]. This development 

opens the pathway for fabrication of high-quality films for applications such as 

ferroelectric tunneling barriers [33,65] and data storage and non-volatile memories 

[103,104], and produces novel materials in which long-range order and high uniformity 

of self-assembled nanoislands are combined with electric-field tunability of optical 

properties and switchable polarization to yield new classes of photonic nanostructures.  

 Bulk BaTiO3 is a well-known ferroelectric with tetragonal lattice parameters at 

room temperature (a = b = 0.3992 nm and c = 0.4036 nm) [105]. Compared to cubic 

SrTiO3 with a lattice parameter ac = 0.3905 nm [105], the lattice mismatch, defined as 

(afilms � asubstrate)/asubstrate, is a relatively large 2.23% [Figure 3.6], which suggests that 

layer-by-layer growth of BaTiO3 films on SrTiO3 will only occur in equilibrium 

conditions below a small critical thickness, above which lattice relaxation occurs and 

misfit dislocations are introduced [106,107,108,109,110,111]. Epitaxial growth can be 

obtained by changing the film stoichiometry, for example by introducing oxygen 

vacancies by growth at low oxygen pressures [112,113], but with associated degradation 
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2.23 % in-plane lattice mismatch (RT)

SrTiO3 
(cubic) 

BaTiO3 
(tetragonal)  

Figure 3.6: In-plane lattice mismatch between tetragonal BaTiO3 and cubic SrTiO3 at 
RT. 
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of electronic properties of the film. For oxygen pressures above ~1 mTorr equilibrium 

film growth produces island or layer-then-island growth modes due to lattice relaxation 

and dislocations [108,109,111]. Recently, the growth mode of epitaxial BaTiO3 films on 

SrTiO3 substrates fabricated by pulsed laser deposition (PLD) has been reported as layer-

then-3D island growth with a ~ 5 nm critical thickness [111]. 

 In this work, BaTiO3 thin films were grown on (001) SrTiO3 substrates by laser 

molecular beam epitaxy (laser MBE) using a KrF excimer laser (λ = 248nm) incident on 

a high-density BaTiO3 ceramic target at a repetition rate of 3 Hz. During deposition, two 

growth rates were chosen as 0.08 ML/s and 0.2 ML/s, the latter considerably higher than 

in previous publications. Growth parameters of substrate temperature and oxygen 

pressure were varied from 650 to 825 °C and 10 to 100 mTorr, respectively. TiO2-

terminated surfaces of (001) SrTiO3 substrates were prepared with single unit-cell terrace 

steps and ~500 nm terrace widths by immersing oriented SrTiO3 (miscut tolerance < 

0.1°) for 30 s in a buffered oxide etch with a pH equal to 4.5, then rinsing with distilled 

water, followed by thermal annealing at 1150 °C for 1 h in air [92,95]. RHEED patterns 

and intensities were recorded during the growth to monitor film quality and growth 

modes. The films were characterized by AFM, XRD, high pressure RHEED, and 

transmission electron microscopy (TEM). 

 For relatively low growth rates (0.08 ML/s, ~ 40 laser pulses per unit cell), only 

layer-then-3D island growth was observed throughout the ranges of substrate 

temperature (650 � 825 °C) and oxygen pressure (10 � 100 mTorr), consistent with 

previous reports [111]. To promote non-equilibrium growth, kinetic limitations were used 

to reduce the surface diffusion length, τ)(TDld =  where D(T) is the temperature 
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dependent surface diffusion coefficient and τ is the mean residence time of atoms at the 

surface [26,102]. Both the substrate temperature and deposition rate were varied to affect 

surface diffusion length.  

 Kinetic limitations employed here have allowed highly strained epitaxial BaTiO3 

films to be grown on SrTiO3 even at high oxygen pressures. Figure 3.7(a) shows a 

topographical image of a 125 nm thick BaTiO3 film grown at a rate of 0.2 ML/s, ~15 

laser pulses per unit cell, temperature of 650 °C, and oxygen pressure of 10 mTorr. The 

topography shows large atomically flat terraces, over 500 nm wide, separated by single 

unit cell steps of 0.4 nm, similar to that of the SrTiO3 substrate prior to deposition. The 

Fourier transform of the surface topography [Figure 3.7(a) right] shows only a linear set 

of intense spots related to the step spacing. The associated RHEED pattern [inset Figure 

3.7(a) left] obtained in-situ under growth conditions, exhibits a bright specular spot and 

diffraction pattern consistent with a smooth surface. During growth, RHEED intensities 

oscillate as shown in Figure 3.8(a, line I) with the formation of each layer. These 

oscillations are observed throughout the entire film growth and confirm that these flat 2D 

films are grown by a layer-by-layer mode. 

 The parameter window for this epitaxial growth was found to be quite narrow.  

Maintaining a high growth rate (0.2 ML/s) but increasing the oxygen pressure and 

temperature (P = 100 mTorr, T = 750 °C) leads to layer-then-3D island growth [Figure 

3.7(b)] similar to that found with a relatively low growth rate. Only a few RHEED 

oscillations were observed under these conditions [Figure 3.8(a, line II)], consistent with 

layer-then island growth. The topographical image of a deposited 125 nm film [Figure 

3.7(b) left] exhibits large irregular grains without distinct step edges and a high RMS 



(a) 

(b) 

(c) 

Figure 3.7: The surface of BaTiO3 films after growth. AFM images (3x3 μm2 area) 
(left) and RHEED patterns (left inset) and Fourier transformed images with averaged 
radial profiles (right) of 125 nm thick BaTiO3 films on SrTiO3 substrates with growth 
modes of (a) layer-by-layer (650 °C and 10 mTorr), (b) layer-then-3D (750 °C and 100 
mTorr), and (c) “pseudo-2D” (825 °C and 10 mTorr), respectively. All films are grown 
at 0.2 ML/s. 
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(a) 

Figure 3.8: RHEED oscillation and roughness of BaTiO3 film. (a) RHEED intensity
oscillations observed during the epitaxial growth of 125 nm thick BaTiO3 films grown
layer-by-layer (650 °C and 10 mTorr )(line I) and pseudo-2D (750 °C and 100 mTorr)
(line II). (b) Dependence of the roughness of BaTiO3 films on the film thickness for
pseudo-2D growth (P = 10 mTorr and T = 825 °C with 0.2 ML/s growth). 

(b) 
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roughness of ~4.45 nm. The roughness increases monotonically with the film thickness 

[111]. Contrary to SrRuO3 films on SrTiO3 [114], BaTiO3 films grown in high pressure 

exhibit more coarsened morphology in Figure 3.7 even if less intense bombardment and 

reduced surface diffusion occur during the growth [108,111,112]. This suggests that 

higher oxygen pressures lead to decreased compressive stress and reduced strain, 

resulting in lattice relaxation and dislocations in the films. This difference may be due to 

the larger lattice mismatch for BaTiO3 than SrRuO3 film on SrTiO3. 

 In contrast, increasing the growth temperature to 825 °C but maintaining the 

optimal oxygen pressure of 10 mTorr and growth rate of 0.2 ML/s produces an novel 

island growth mode [Figure 3.7(c)], which is different both from epitaxial two 

dimensional island [98] and lattice relaxed three dimensional island modes [Figure 

3.7(b)]. We have labeled this new mode the �pseudo-2D� growth mode, since the average 

island size and effective roughness do not increase with film thickness. The height of the 

pseudo-2D islands is 2-4 several unit cells does not increase with film thickness. 

Furthermore, the islands coexist with step edges of terraces with single unit cell height 

even after 125 nm (i.e. > 300 unit cells) of film growth [Figure 3.7(c)]. Remarkably, the 

Fourier transform of surface topography shows pronounced short-range ordering (a ring 

in the FT image). The RHEED pattern [Figure 3.7(c), left inset] shows discontinuous 

spots with weak specular and diffraction spots, due to the islands. Similar to conventional 

layer-then 3D island growth, only a few RHEED intensity oscillations were observed. In 

Figure 3.8(b), the rms roughness of BaTiO3 films grown by the layer-then pseudo 2D 

island mode is shown as a function of film thickness. Note that psedo-2D islands are 

nearly steady-state; once formed (above 5~ 10 nm), the film roughness does not increase 
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with thickness as it does for 3D islands [111], and the island size and density remains 

fixed, with evidence of island-island repulsion.  

 To investigate the crystallographic orientation and quality of these BaTiO3 thin 

films, XRD θ-2θ and ω scans were performed. Only SrTiO3 (00n) and BaTiO3 (00n) 

peaks for 125 nm thick BaTiO3 films were observed [Figure 3.9(a)], indicative of high-

quality and uniform orientation of deposited BaTiO3 thin films. The peak shifts 

dependent on temperature are related to the change of the c- lattice constant. The full 

width at half-maximum (FWHM) of rocking curves of the BaTiO3 002 peak for all films 

studied including 3D island growth ranged from 0.045° to 0.096° confirming the high 

degree of crystallinity. Conversely, growth at <550 °C resulted in broadened rocking 

curves (~0.592°). This transition illustrates there is a minimum thermal energy for 

adatoms on the top of an island to diffuse to the edge of the island.  

 The measured c and a-values of the lattice constant for 125 nm BaTiO3 thin 

films are shown in Figure 3.9(b) as a function of growth temperature (10 mTorr, 0.2 

ML/s). Note the rapid cross-over from the values corresponding to layer-by-layer to 

layer-then pseudo 2D island growth at ~750 °C, indicating the transition from highly 

strained to fully relaxed films by pseudo-2D island formation (instead of 3D island) 

above this temperature. The onset of structural relaxation at high temperature arises from 

the increasing surface diffusion length [26,102] and a larger lattice mismatch due to 

different thermal expansion. Using bulk thermal expansion data for single-crystal BaTiO3 

and SrTiO3 [115], the temperature dependence of the lattice mismatch between BaTiO3 

and SrTiO3 becomes ~ 2.39% and ~2.47% at growth temperatures 650 °C and 800 °C 

respectively, values which are even larger than the ~2.23% lattice mismatch at 20°C. 
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(a) 

Figure 3.9: XRD measurements. (a) θ-2θ scans of BaTiO3 films reveal a dependence 
on growth temperature. (b) The dependence of the out-of plane (Red) and in-plane 
(Blue) lattice constant of 125 nm thick BaTiO3 films with growth temperatures. The 
transition corresponds to the shift from layer-by-layer to pseudo-2D growth. 

(b)
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Consequently the lattice mismatch for peudo-2D island growth is greater than that for 

layer by layer growth, increasing the possibility of island formation and structure 

relaxation at higher temperature. From the XRD data, the average in-plane strain in 

BaTiO3 films grown by the layer-by-layer mode can be approximately estimated at -1%1, 

which is comparatively large enough to enhance ferroelectricity [39], while the average 

in-plane strain in BaTiO3 films grown by the layer-then pseudo-2D island mode indicates 

that it is nearly fully relaxed. This suggests that two different growth modes have 

different density and possibly type of dislocations. 

 A comparison of cross-sectional TEM images2 of the layer-by-layer and the 

layer-then pseudo-2D island growth modes clarifies the growth mechanism as related to 

dislocation networks. The bright field TEM images in Figure 3.10(a) and (b) of films 

grown by each growth mode respectively demonstrate features indicative of nearly 

straight threading dislocation lines propagating throughout the films. These dislocation 

lines are anchored by misfit dislocations at the substrate-film interface (inset on Figure 

3.10(a)). The average density of dislocations3 in fully relaxed films grown by the layer-

then pseudo-2D island mode can be estimated at ~5000 dislocations/µm2, which is much 

larger than that of dislocations (~1000 dislocations/µm2) in highly strained films by layer-

by-layer growth mode.  

 A correlation between the length scales in AFM images of the pseudo-2D islands 

                                            
1 This misfit strain is calculated using s = a/a0 � 1, where a is the measured in-plane 
lattice parameter of strained films and a0 is the in-plane lattice parameter of bulk BaTiO3 
at RT. The negative value of misfit strain means compressive strain in the films. 
2 The TEM images were obtained by A.Y. Borisevich. 
3 The density of dislocations per area is given by (1/aS � 1/a)2,, where a is the in-plane 
lattice parameter of BaTiO3 films and aS is the lattice parameter of cubic SrTiO3 substrate. 
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[

Figure 3.10: Cross-sectional TEM studies of BaTiO3 thin films. (a) Bright field TEM 
image of a layer-by-layer (650 °C, 10 mTorr, 0.2 ML/s) film. Inset is a HAADF 
STEM image of a misfit dislocation at the interface. (b) Bright field TEM image of a
pseudo-2D (825 °C, 10 mTorr, 0.2 ML/s) film. The arrows show linear features 
extending to the surface, indicative of threading dislocations. 

(b)(a) 
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Figure 3.7(c)] and in TEM images of the threading dislocations [Figure 3.10(b)] suggests 

a connection. The Fourier transformation of the topographic image in Figure 3.7(c, right) 

indicates that the layer-then pseudo-2D island growth has roughly periodic island 

formation on the surface quite different from the diffuse islands of layer-then 3D island 

growth.  This Fourier image reveals that the islands in pseudo-2D growth are 

moderately uniform in size and tend to form a hexagonal array with an average distance 

between islands of ~65 nm (based on a maximum radial average of ~15 µm-1). This 

distance roughly corresponds to the distance 20 � 80 nm observed between the threading 

dislocations in TEM image [Figure 3.10(b)]. This correlation suggests that the pseudo-

2D island growth mode is related to the lattice of the threading dislocations, perhaps 

formed at the termination of screw dislocations at the surface, which are also expected to 

form a hexagonal array due to mutual repulsion. 

 To summarize, kinetic control achieved using high growth rates in a narrow 

window of high oxygen pressure and substrate temperatures enables unusual layer-by-

layer and pseudo-2D island growth modes of BaTiO3 on SrTiO3. Highly strained 

epitaxial films were grown despite a large lattice mismatch, as indicated by RHEED 

oscillations observed up to 125 nm during growth, atomically flat terraces with single 

unit cell steps. Higher O2 pressures result in layer-then-3D island growth with only a few 

RHEED oscillations and rough surfaces. Higher temperatures lead to an unusual 

�pseudo-2D� growth, characterized by little surface roughness and islands with nearly 

uniform heights of a few unit cells and spacing of ~65 nm.  This pseudo-2D island 

growth has not been previously reported and shows the unusual behavior of constant 

roughness independent of film thickness (above the first few unit cells) despite the 
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presence of islands with thickness greater than a single unit cell. TEM micrographs 

suggest that the islands are related to threading dislocations which extend through the 

films, although the exact relationship has not been established. The crossover between 

these three growth modes is strongly affected by kinetic limitation of adatoms and lattice 

mismatch between film and substrate. 

 These studies open a pathway for both better understanding of oxide thin film 

growth and control of the final morphology after deposition. The pseudo-2D growth 

reported here could lead to creation of arrays of ferroelectric nanoclusters with short-

range order, opening routes to electrooptical photonic crystals and information storage 

applications. We have employed these growth conditions to produce high quality ultra-

thin layers of BaTiO3 on SrRuO3/SrTiO3 and have experimentally addressed polar 

ordering and polarization switching by in-situ low energy electron diffraction and 

scanning tunneling spectroscopy in Chapter 5 and 6. 

 

3.4 Epitaxial BaTiO3/SrRuO3/SrTiO3 multilayers 

 

 In the previous section, we discussed the growth behavior for high quality films 

of ferroelectric BaTiO3 on non-conducting SrTiO3 substrate. However, the in-situ 

measurement of the physical properties using electron diffraction and scanning tunneling 

spectroscopy requires a conducting bottom electrode growth before deposition of BaTiO3 

films. Here, we discuss the growth of epitaxial thin BaTiO3 films on SrO-terminated 

SrRuO3/SrTiO3, especially ultra-thin BaTiO3 films (thickness ≤ 10 unit cells) with 

application of the growth conditions in the previous section. In Chapter 5 and 6, 
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ferroelectric properties of these ultra-thin BaTiO3 films on SrRuO3/SrTiO3 will be 

discussed by studying the structure and transport of ultra-thin films using LEED, STM, 

and STS.  

 Before the growth of ultra-thin BaTiO3 films, ~ 15 nm thick SrRuO3 films were 

grown with the same conditions shown in Section 3.2 as a bottom electrode. To grow the 

high quality of ultra-thin BaTiO3 films on SrRuO3/SrTiO3, we can apply the best 

conditions shown in Section 3.3. Note that ultra-thin BaTiO3 films still have ~2.23 % 

[Figure 3.11] lattice mismatch compared to the SrRuO3 bottom electrode, which was 

fully strained to match the SrTiO3 substrate. This suggests that the growth mechanism of 

BaTiO3 films on SrRuO3/SrTiO3 might be similar to that of BaTiO3 films on SrTiO3. 

Without cooling after growing SrRuO3 films on SrTiO3, epitaxial ultra-thin BaTiO3 films 

with thickness (10 ML, 4 ML, and 1~2 ML) were grown on SrO-terminated 

SrRuO3/SrTiO3 at the growth temperature 700 °C in 10 mTorr O2. The average growth 

rate was chosen as 0.2 ML/s controlled by the laser aperture size (7 x 15 mm2) and the 

repetition rate (3 Hz). 

 High pressure RHEED was executed to monitor epitaxial growth of thin films in 

real time. During growth, RHEED oscillations of the specular spot were observed as 

show in Figure 3.12(a), which confirms that these flat 2D films are grown by a layer-by-

layer mode. In this particular example, RHEED intensities oscillate 10 times, which 

corresponds to the formation of 10 layers of unit cell. The associated RHEED pattern 

[inset Figure 3.12(a)] obtained in-situ under growth conditions, exhibits a bright specular 

spot and diffraction pattern consistent with a smooth surface. After growth, BaO 

termination of BaTiO3 films is expected because the RHEED oscillation periods are 
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2.23 % in-plane lattice mismatch (RT)

BaTiO3 
(tetragonal) 

Figure 3.11: In-plane lattice mismatch between tetragonal BaTiO3 and fully strained 
SrRuO3 films grown on SrTiO3 at RT. 
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Figure 3.12: BaTiO3 films growth on SrRuO3/SrTiO3. (a) RHEED oscillation and
pattern of 10 ML thick BaTiO3 films. (b) Ex-situ AFM topography of 10 ML thick
BaTiO3 films after deposition (image size: 5x5 µm2). 

(a) 

(b) 
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equal in time, especially the first and second periods. This indicates no change of 

perovskite stacking and stoichiometric deposition compared to SrO-terminated SrRuO3 

electrode. This will be confirmed by LEED IV analysis in Chapter 5. Ambient AFM 

images of 10 ML thick BaTiO3 films after deposition [Figure 3.12(b)] illustrate a stepped 

topography � similar to that of the SrO-terminated SrRuO3 films in Figure x prior to 

BaTiO3 deposition � with a low step density and flat terraces. These RHEED and AFM 

results indicate that ultra-thin BaTiO3 films have a very flat surface, suggesting that our 

films are highly strained by the bottom electrode SrRuO3. 
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Chapter 4  

Surface stability of epitaxial SrRuO3 films: the 

need for in-situ analysis4 

 

4.1 Introduction 

 

 Perovskite-type SrRuO3 films have attracted significant attention in materials 

science and technology due to their outstanding electrical and magnetic properties. 

SrRuO3 is also a promising electrode material for oxide electronic devices such as 

ferroelectric heterostructures and non-volatile ferroelectric random access memories 

(FeRAM), due to its high conductivity and low lattice misfit with many functional 

perovskite transition metal oxides [117,118,119]. Crucial for integrability of SrRuO3 into 

the device fabrication process is surface stability with respect to reduction, contamination, 

or loss of volatile ruthenium oxides under high-vacuum conditions corresponding to PLD 

or MBE of the second component. Minute deviation in the stoichiometry of SrRuO3 

surfaces prior to the second component deposition could result in the formation of 

weakly conductive dead-layers that degrade device performance, including retention loss, 

fatigue, and reduced device capacitance. 

 Here, we investigate surface properties and thermal stability of epitaxial SrRuO3 

film surfaces and bulk under a range of carefully controlled conditions ranging from 

                                            
4 This chapter is based on the papers published in Ref. [54] and [116]. 
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vacuum to an oxygen/ozone mixture.  Films were studied using an array of surface 

probes including STM, x-ray photoemission and high resolution electron energy loss 

spectroscopies (XPS and HREELS), thermal desorption spectroscopy (TDS), and LEED 

and RHEED. 

 Results reveal that exposure to atmosphere, even for short times, leads to 

hydrocarbon contamination of the SrRuO3 surface.  This contamination reduces the 

stability of the surface, leading to decomposition and desorption at relatively low 

temperatures in vacuum.  Removal of the hydrocarbons by preannealing in oxidizing 

conditions produces a surface stable above 600 °C in vacuum, comparable to the bulk 

SrRuO3 stability, and compatible with conditions needed for deposition of additional 

oxide materials. 

 

4.2 Thermodynamic analysis 

 

 Functional properties of SrRuO3-based thin films and devices are governed both 

by the bulk stability of strontium ruthenate and the surface behavior of the films. Bulk 

stability can be addressed using simple thermodynamic theory. In an oxygen-rich 

environment, a possible decomposition route for SrRuO3 is oxidation (average oxidation 

state of ruthenium increases) with formation of volatile Ru oxides and ruthenium loss 

[Figure 4.1(a)]: 

SrRuO3 + O2 → SrO + RuO4(g) ↑ ,                   (4.1) 

An alternative route for the decomposition of SrRuO3 is disproportionation (where the 

average oxidation state of ruthenium remains constant) which is insensitive to the partial 
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Figure 4.1: Thermodynamic analysis. (a) Possible decomposition routes for SrRuO3. 
(b) Ellingham diagram for RuO2 and SrRuO3. Red lines delineate the stability region 
of RuO2 (the decomposition pressure of RuO4(g) is taken as 10-10 atm); Black lines 
delineate the stability region of SrRuO3. Blue line depicts the calculated partial oxygen 
pressure for pH2:pH2O = 100 (high vacuum conditions). (c) Approximate phase 
diagram for the SrO-RuO2 system. 
 

disproportionation 

SrRuO3 

SrO + Ru + RuO4↑  SrO + RuO4↑  SrO + Ru  

+[O] -[O]

oxidation reduction 

(a)

(b) (c)
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pressure of oxygen: 

        2 SrRuO3 → 2 SrO + Ru + RuO4(g) ↑ .                (4.2) 

Under weakly reducing conditions, partial reduction with the formation of an oxygen 

deficient phase becomes likely:  

SrRuO3 ↔ SrRuO3-δ + δ/2 O2(g)↑ .                   (4.3) 

Under strongly reducing conditions, SrRuO3 reduces with formation of metallic 

ruthenium and SrO [Figure 4.1(a)] with possible formation of intermediate Srn+1RunO3n+1 

phases: 

SrRuO3 → SrO + Ru + 3/2 O2(g)↑ .                   (4.4) 

 In cases of Reactions 4.1, 4.2, and 4.4, the reaction is complicated by the fact 

that SrRuO3 and SrO will not coexist in equilibrium and the decomposition process is 

likely to involve formation of the intermediate SrO-rich layered Sr3Ru2O7 and Sr2RuO4 

phases. Decomposition under oxidizing conditions by Reactions 4.1 and 4.2 involves the 

irreversible loss of ruthenium from the film. Partial reduction by Reaction 4.3 is expected 

to be reversible and will not result in the destruction of the film. Such behavior was 

previously reported by Bensch et al. [120] for bulk CaRuO3. Reduction under strongly 

reducing conditions by Reaction 4.4 involves the loss of oxygen and formation of SrO 

and metallic ruthenium and was reported to be the case for bulk SrRuO3 in Ref. [120]. In 

this case, the SrRuO3 phase can be restored by oxidative treatment, but the morphology 

of the film will be altered. 

 To estimate the thermodynamic stability of SrRuO3 thin films for different 

temperatures and oxygen pressures, thermodynamic data for strontium ruthenates is 

required. The free energy of formation, ∆Gf, for SrRuO3, Sr3Ru2O7, and Sr2RuO4 were 
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measured by Mallika and Sreedharan using a solid state electrochemical cell for SrO- 

Sr2RuO4-Ru, Sr2RuO4- Sr3Ru2O7-Ru, and Sr3Ru2O7- SrRuO3-Ru mixtures with an O2 

reference electrode in the temperature range ~950-1200 K [121]. These measurements 

allow direct mapping of the P-T stability diagram (Ellingham diagram) for the SrO-RuO2 

system in this temperature range. Large uncertainties in the experimental measurements 

and lack of the heat capacity data limit these results to the temperature range of study. 

Nevertheless, this allows the stabilization energy of Sr-rich ruthenates compared to the 

SrRuO3 to be estimated. At 1000 K, the Sr2RuO4 phase is stabilized by 5.2 kJ/mol 

compared to Sr3Ru2O7 phase and by 11.2 kJ/mol compared to the SrRuO3 phase, 

corresponding to the difference in the decomposition oxygen pressure of logP(O2) = 0.27 

and 0.58 correspondingly. The thermochemical properties of corresponding calcium 

ruthenates were studied by Jacob et al. [122] using the potentiometric method with a 

RuO2-Ru reference electrode. Corresponding stabilization energies of the Ca2RuO4 phase 

compared to Ca3Ru2O7 and CaRuO3 phases are 1.4 kJ/mol and 5.6 kJ/mol 

correspondingly. For both Ca- and Sr- ruthenates, the excess stabilization energies for the 

layered ruthenates are relatively small and do not exceed ~10 kJ/mol, corresponding in 

the relatively small variation in the decomposition pressure. Thermochemical properties 

of SrRuO3 were also measured by Banerjee et al. [123] using a combination of 

microcalorimetry and fluoride electrochemical cell potentiometry. The free energy of 

formation for SrRuO3 determined in Ref. [123] is smaller by ~50 kJ/mol compared to 

results in Ref. [121]. Here, we use the free energy of formation of SrRuO3 as determined 

by Banerjee et al., while the relative stabilization energies of Sr-rich phases are estimated 

from data in Ref. [121]. 
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 To estimate the stability of SrRuO3 with respect to oxidation and reduction by 

Reactions 4.1 and 4.4, an Ellingham diagram for RuO2-O2 and SrO-RuO2�O2 system was 

constructed as shown in Figure 4.1(b). The thermodynamic data for ruthenium oxides 

RuO2, RuO3, and RuO4 was taken from Ref. [124] and free energies of formation, ∆Gf, 

for SrRuO3, Sr3Ru2O7, and Sr2RuO4 are taken from electrochemical cell measurements 

by Mallika and Sreedharan [121]. Large uncertainties in the experimental measurements 

and lack of heat capacity data from these references restrict application of these values 

but allow stabilization energies to be estimated. Note that thin film strain does not 

contribute significantly to chemical stability. Ruthenium trioxide RuO3 is unstable with 

respect to disproportionation to RuO2 and RuO4 and is thus excluded from consideration. 

Since RuO4 is volatile, the onset of decomposition by Reaction 4.1 depends sensitively 

on the partial pressure of RuO4 and the corresponding critical pressure was selected to be 

P(RuO4) ≈ 10-10 atm. This pressure can be calculated from the Langmuir equation, 

mkT
pAN
π2

=                            (4.5)  

where p is the equilibrium vapor pressure, A is the area, and N is the evaporation rate 

which is given by 1 ML per hour. The reduction by Reaction 4.4 does not include any 

gaseous products other than O2 and corresponding decomposition pressures for RuO2 and 

SrRuO3 can be established unambiguously as shown in Figure 4.1(b).  Also shown in 

comparison is the expected partial oxygen pressure expressed as the molar ratio of 

hydrogen to oxygen, )(/)( 22 OpHp=α , of order of α ~ 10-100, as determined from 

mass-spectroscopic analysis of the gaseous mixture under typical high vacuum 

conditions.   

 A full P-T-x phase diagram for RuO2-SrO system calculated from data in Ref. 
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[121] is shown in Figure 4.1(c). SrO and SrRuO3 do not coexist under equilibrium 

conditions; hence, the equilibrium reaction pathway for the decomposition of SrRuO3 in 

all cases must include formation of intermediate Sr-rich phases such as Sr3Ru2O7 and 

Sr2RuO4. 

 

4.3 Experiment and results  

 

4.3.1 Surface stability 

 

 As shown in Section 3.2, heteroepitaxial SrRuO3 thin films (thickness 4�10 nm) 

were grown on TiO2-terminated SrTiO3 (001) substrates by laser MBE at 700 ºC in 100 

mTorr O2 using a stoichiometric target. After growth, the high quality of films was 

confirmed by ambient AFM and XRD. The SrO-terminated SrRuO3 films were also 

confirmed by Z-contrast scanning transmission electron microscopy (Z-STEM) and by 

RHEED as described in Section 3.2. After reinsertion into high vacuum (~10�9 Torr), a 

LEED pattern [SPECS ErLEED 1000] has been observed at room temperature as 

illustrated in Figure 4.2, confirming a well-ordered surface structure even after extended 

(> 1 day) exposure to air. This behavior is relatively unusual for transition metal oxides; 

few metallic materials, with Au the noted exception, exhibit a LEED pattern after 

exposure to air. 

 Interestingly, LEED patterns irreversibly disappear after annealing for 10 

minutes in high vacuum (~10�8 Torr) at temperatures as low as ~100�200 ºC, indicating 
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surface disordering (not shown). To quantitatively investigate the thermal behavior of the 

surface and determine the stability regions for strontium ruthenate, SrRuO3 thin films 

have been annealed in high vacuum by steps of 100 ºC up to 800 ºC and studied by STM, 

electron spectroscopies including HREELS and XPS. The chemistry of decomposition 

products was examined by TDS and the evolution of surface crystallographic structure 

determined by RHEED. 

 

4.3.2 STM analysis 

 

 Evolution of the surface morphology due to annealing was studied by STM 

(Omicron STM-1, PtIr tips) in high vacuum (~1x10-8 Torr). The surface of air-exposed 

SrRuO3 exhibits unit cell steps; at the same time, large number of irregularly shaped 

white particles can be observed on the terraces [Figure 4.3(a)]. Based on the HREELS 

data [Section 4.3.4], the particles can be identified as hydrocarbon contaminates. After 

Figure 4.2: Ex-situ LEED pattern of SrRuO3 films at RT. The sample was exposed to 
air for 1 day. 

360 eV 



 103

Figure 4.3: STM images of SrRuO3 film dependent on temperature. (a) As-grown, air-
exposed SrRuO3 thin film and  films annealed at (b) 200 °C, (c) 300 °C, (d) 400 °C,
(e) 500 °C, and (f) 700 °C in high vacuum (~1x10-8 Torr). 
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annealing to 200 °C and cooling to 30 °C, the number of particles decreases and their 

distribution becomes more uniform [Figure 4.3(b)]. By 300 °C, surface contaminants 

disappear and a number of irregular pits become apparent [Figure 4.3(c)]. Figure 4.4 

shows the dimension of these pits is 10�20 nm wide and 1�2 unit cell depth [the pseudo-

cubic lattice parameter of SrRuO3 is 0.393 nm at room temperature] [125]. The 

appearance of pits can be correlated with TDS data [Section 4.3.3], where loss of SrO 

and metallic Ru is observed in this temperature range.  Pit widths become smaller after 

annealing to 400 °C [Figure 4.3(d)]. After annealing above ~ 500 °C, spherical particles 

develop from the unstable layer(s) and increase in size with annealing temperature 

[Figure 4.3(e) and (f)]. After annealing as high as ~ 700 °C, atomic steps can still be 

observed, which provides evidence that only a few layers of SrRuO3 have decomposed 

and contribute to the spherical particles, while the bulk of the material is stable. Ambient 

AFM images of the film after vacuum annealing to 1200 °C indicate complete 

decomposition of the SrRuO3 film and formation of large (~100-200 nm) particles (not 

shown). 

 

4.3.3 Thermal Desorption Spectroscopy 

 

 To establish the decomposition pathway for SrRuO3 films in high vacuum 

conditions (below 10-7 Torr), volatile products desorbing from the surface were identified 

using TDS in the temperature range 30�1200 ºC with results shown in Figure 4.5. The 

film was heated by electron bombardment, and the desorption rates of possible volatile 

components were determined as a function of temperature using a quadrupole mass 
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Figure 4.4: Depth of Pits on the surface of SrRuO3 films. (a) STM image of an air-
exposed SrRuO3 thin film annealed at 300 °C and (b) the cross section along the line 
shown in (a). 

   50nm
 

(a)

(b)
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Figure 4.5: TDS from SrRuO3 film in high vacuum as a function of temperature. 



 107

spectrometer [RGA 200, Stanford Research Instruments]. The only volatile forms of Sr 

and Ru desorbing from the surface were SrO and metallic Ru; no metallic Sr or 

ruthenium oxides RuOn, n = 1,2,3,4, were detected, in agreement with thermodynamic 

calculations. The desorption of SrO and Ru starts at ~350 ºC; the amount of desorbed 

material is relatively small, indicating the decomposition of surface layers, and not 

complete bulk decomposition. Interestingly, a second peak corresponding to metallic Ru 

is observed at ~600 ºC. The bulk decomposition of SrRuO3 starts at ~900 ºC as indicated 

by continually increasing oxygen desorption from the surface; no volatile metal-

containing products are detected at this temperature. Finally, annealing at very high 

temperatures (~1200�1400 ºC) results in massive loss of Ru, Sr and Ti containing species 

from the surface, indicative of complete decomposition of the films. 

 

4.3.4 Electron Spectroscopies of Surface Chemistry of SrRuO3 

 

 To identify adsorbates on the SrRuO3 surface, the sample was studied by 

HREELS5 [LK2000 HREELS] in high vacuum (below 10-7 Torr). The corresponding 

spectrum after ~3 day exposure to air is shown in Figure 4.6. On the large tail of the 

elastic peak, the experimental spectrum shows energy loss peaks at 29 and 50 meV that 

can be attributed to phonon modes, similar to phonons in layered Sr2RuO4 [126]. No 

energy loss peaks corresponding to O-H (stretching mode between 400-450 meV) were 

observed, indicative of chemical stability of the surface with respect to hydroxylation. At 

the same time, the HREELS spectrum contains multiple peaks at 130-175 and 369 meV 
                                            
5 The HREELS data were obtained by R.G. Moore. 
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Figure 4.6: HREELS experiment. Spectrum of an air-exposed SrRuO3 thin film reveals
hydrocarbon contamination. 
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attributable to C-H bending and stretching modes correspondingly. Hence, energy loss 

data points to the presence of hydrocarbon contaminates on the surface. However, 

simultaneous observation of phonon modes suggests that, in agreement with LEED data, 

the contamination density is fairly low (< 1 ML) and does not significantly disorder the 

surface. 

 The evolution of the chemical composition of the films and oxidation state of 

ruthenium and strontium during annealing were determined using XPS and Auger 

electron spectroscopy (AES) [Mg�Kα source, pass energy 25 eV, double pass cylindrical 

mirror analyzer (CMA), Physical Electronics]. The system was calibrated to the 4f 

excitation at 84.1 eV of a Au standard. XPS spectra were acquired from the as-inserted 

sample and after each annealing to verify the chemical composition of the film. No 

titanium peaks are observed in XPS for annealing temperatures as high as 900 ºC, 

indicating that the film is continuous and the substrate not exposed even at high 

temperatures. XPS spectra at room temperature were acquired in the energy ranges 524�

540 eV, corresponding to the O 1s peak, at 454�474 eV corresponding to the Ru 3p3/2 

peak, at 128�138 eV corresponding to the Sr 3d3/2 and 3d5/2 peaks, and 260�296 eV, 

which includes the Ru 3d3/2 and 3d5/2, Sr 3p3/2 and 3p1/2, and C 1s peaks. 

 The evolution of oxygen 1s core level with annealing temperatures is illustrated 

in Figure 4.7(a). For samples annealed at low temperatures, the peak is comprised of two 

well-separated components. In the intermediate temperatures range, 400�700 °C, the 

second component becomes less pronounced. However, for samples annealed at highest 

temperatures 800-900 °C the second component is again visible. O 1s peaks were 

corrected using Shirley background subtraction [127] and fitted using two Gaussian 
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Figure 4.7: XPS analysis for O and Ru spectra. (a) O 1s XPS spectra from a SrRuO3

film at RT (Black line) and annealed at 400 ºC (Red line) and 800 ºC (Blue line). (b)
The temperature dependence for the O 1s centroid. (c) Ruthenium 3p3/2 XPS spectra for
different annealing temperatures: RT (Black line), 300 ºC (Red line), 600 ºC (Blue
line), and 800 ºC (Green line). (d) The temperature dependence for the Ru 3p3/2

centroid. 

(c)

(a) (b) 

(d) 
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components of characteristic width 1.5 and 3.2 eV correspondingly with the resulting fit 

illustrated in the inset of Figure 4.7(a). The widths of the Gaussian components do not 

change appreciably during the heating. The position of the first peak at 528.7 eV is also 

independent of annealing temperature. At the same time, the second peak shifts from 531 

eV at RT to a value of 530 eV at 400�700 °C, and shifts back to 531 eV for temperatures 

800 °C and higher. The dependence of annealing temperature for the O 1s centroid is 

illustrated in Figure 4.7(b). Noteworthy is that the temperature dependence of the peak 

position is non-monotonic and two distinct regions can be clearly seen. 

 Thermal behavior of ruthenium 3p3/2 core levels for different annealing 

temperatures is illustrated in Figure 4.7(c). The peaks are asymmetric, indicating the 

presence of chemically non-equivalent Ru atoms or, alternatively, shake-up lines or 

multiplet splitting in metallic SrRuO3 [128]. After the Shirley background subtraction, 

the peaks were fitted by two Gaussians. Fitting using a Doniach-Sunjic line shape, 

expected for materials with broad electron-hole life time distributions, was unsuccessful. 

Binding energies for two Gaussian components as a function of temperature are shown in 

the inset of Figure 4.7(c). Note that the separation between individual components is 

virtually temperature independent, thus suggesting that the satellite should be attributed 

to a shake-up line or multiplet splitting. The latter explanation is consistent with a 

ferromagnetic material; SrRuO3 is ferromagnetic with an ordering temperature Tc = 160 

K. Even in the paramagnetic state, above Tc, short range ferromagnetic correlations lead 

to core level splitting.  The temperature dependence of the Ru 3p3/2 centroid is shown in 

Figure 4.7(d). Here the average binding energy changes monotonically with temperature, 

with the binding energy decrease of ~2 eV between RT and 800 °C. The binding energy 
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for the Ru 3p3/2 after high temperature annealing, 461.5 eV, is close to that of metallic Ru, 

462 eV [129]. The decrease of the binding energy can be interpreted as a complete or 

almost complete reduction of Ru oxide to Ru metal. Strontium 3d3/2 and 3d5/2 core levels 

after annealing are illustrated in Figure 4.8(a). The splitting between the components of 

the 3d peak is small (∆ = 1.79 eV) and is comparable to the instrumental resolution and 

intrinsic peak width, thus precluding reliable separation of the two components. After the 

Shirley background subtraction, the peaks were fitted using Gaussian or Doniach-Sunjic 

line shapes. Fits using a single pair of Gaussians or two pairs of Gaussians with the 

imposed center difference and area ratio constraints were unsuccessful. Instead, we will 

analyze the centroid of the Sr 3d peaks, as shown in Figure 4.8(b). At room temperature, 

the centroid value of 133.4 eV is comparable to the Sr 3d5/2 binding energies in ternary 

oxides with similar transition metals (~133 eV in SrRh2O4 and ~133.5 eV in SrMoO4) 

[129]. The chemical environment of Sr starts to change significantly above 300 °C and 

the centroid binding energies for Sr increase from 133.4 eV at RT to 133.7 eV at 900 °C.  

The observed chemical shift for Sr of 0.3 eV in the reduction process is much smaller 

than expected for the formation of SrO, which would require a ~2 eV chemical shift to 

135.3 eV [129]. Instead, this behavior is indicative of formation of Sr-rich ruthenates at 

300�500 °C. This is consistent with thermal desorption spectroscopy, which shows that 

SrO species are volatile and leave the surface. Due to the volatile property of SrO at 

300�500 °C, Sr-rich ruthenates are remained on the surface instead of SrO species. 

 The thermal evolution of XPS spectra in the 260�296 eV range for different 

annealing temperatures is illustrated in Figure 4.8(c). The characteristic doublets 

corresponding to Ru 3d3/2 and 3d5/2 transitions (281.4 and 285.5 eV) and Sr 3p1/2 and 
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Figure 4.8: XPS analysis for Sr. (a) Strontium 3d3/2 and 3d5/2 XPS spectra for different
annealing temperatures: RT (Black line), 300 °C (Red line), 600 °C (Blue line), and
800 ºC (Green line). (b) The temperature dependence for the Sr 3d centroid. (c) XPS
spectra in the 260-296 eV range for different annealing temperatures: RT (Black line),
300 °C (Red line), and 800 ºC (Blue line). A1 is amount of the area of Sr 3p1/2 peak
and A2 is amount of the area of Sr 3p3/2, Ru 3d3/2 and 3d5/2 and C 1s peaks. (d) The
approximate ratio of C/Sr as a function of annealing temperature. 

(a) (b) 

(c) (d) 
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3p3/2 (268.1 and 278.4 eV) are clearly seen. Overlapping these is the carbon 1s peak 

(284.5 eV), making detection of carbon-containing species difficult; a similar overlap 

exits in AES as well (not shown). Due to the presence of multiple peaks and non-

Gaussian peak shapes (compare Sr 3d3/2 and 3d5/2 and Ru 3p3/2), quantitative analysis of 

the XPS data in this energy interval is difficult; however, qualitatively thermal evolution 

of the spectrum is consistent with other core levels shown in Figures 4.7 and 4.8. The Sr 

peaks shift towards larger binding energies by ~ 0.3�0.6 eV, whereas Ru peaks shift 

smaller binding energies by 2 eV.   

 The change of the surface chemical composition during annealing was also 

determined from the relative intensities of the Sr3d/O1s, Ru3p3/2/O1s, and Sr3d/Ru3p3/2 

XPS peaks. The Sr/O ratio was calculated from the integrated intensities of Sr3d and O1s, 

the Ru/O ratio from Ru3p3/2 and O1s and the Sr/Ru ratio estimated from Sr3d and 

Ru3p3/2. The temperature dependence of intensity ratios is shown in Figure 4.9. 

Noteworthy is that the Sr/Ru ratio is virtually independent of annealing temperature, so 

that although both SrO and Ru species are observed in TDS data [Figure 4.5], the total 

desorbed is small and the remaining ratio constant. At the same time, Sr/O and Ru/O 

ratios increase with temperature by a factor of 1.5. The dependences of annealing 

temperature for these two ratios are virtually identical, consistent with a constant value of 

the Sr/Ru ratio. For the initial stoichiometry of SrRuO3, these ratios correspond to a final 

chemical composition of Sr:Ru:O = 1:1:2. This is consistent with the formation of a 

mixture of metallic Ru and a strontium-rich ruthenate with a stoichiometry of Sr2RuO4. 

Formation of Sr2RuO4 after reduction is in accord with thermodynamic arguments 

developed in Section 4.2 and with the small binding energy shifts for Sr. Moreover, the 



 115

Figure 4.9: Intensity ratios from XPS as a function of annealing temperature. This
indicates oxygen loss consistent with formation of metallic Ru and Sr2RuO4 particles. 
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STM images suggest that the particles forming on the surface are conductive, which will 

not be the case for the formation of wide band gap SrO. 

 To estimate the evolution of the carbon containing species, the XPS spectra in 

the range 260�296 eV were fitted by 6 Gaussian peaks [Figure 4.8(c)]. One of the peaks 

corresponding to Sr 3p1/2 at 268 eV (area A1) can be clearly distinguished from the broad 

peak that comprises contributions from Sr 3p3/2, Ru 3d3/2 and 3d5/2 and C 1s (area A2). 

From the spin-orbital splitting rules, the areas of Sr 3p1/2 and 3p3/2 peaks correspond as 

1:2. Since the Sr/Ru ratio is constant, the C/Sr ratio can be estimated as (A2-A1/2)/A1, 

where A2-A1/2 corresponds to total amount of the areas of [C 1s + Ru 3d3/2 + Ru 3d5/2] 

peaks and A1 corresponds to amount of the area of Sr peak. Note that the amount of 

carbon thus determined is almost constant below 300 °C, decreases between 300 °C and 

500 °C and saturates at ~ 500 °C [Figure 4.8(d)]. At higher temperatures, due to 

significant changes in the Sr peak shape, the scatter of the data increases. Despite the 

large uncertainties related to the background subtraction and non-Gaussian peak shape, 

these results suggest that hydrocarbons are present on the surface at temperatures up to 

300 °C and desorb in the interval 300-500 °C, in agreement with STM, HREELS, and 

XPS data. 

 

4.3.5 RHEED patterns before and after cleaning SrRuO3 films 

 

 Electron diffraction was employed to survey the surface crystallinity of SrRuO3 

thin films during annealing and to explore potential methods to remove hydrocarbon 

contaminants. While LEED primarily explores the first surface layer, RHEED can 
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penetrate to several cells due to a greater mean free path.  RHEED  [high-pressure 

RHEED, double differential pumping, Staib Instruments, Inc.] patterns were recorded 

during annealing for 10 minutes in 100 °C intervals up to 700 °C. RHEED patterns were 

recorded for three environments: (1) in high vacuum (~1x10-7 Torr) after air exposure, 

(2) in high oxygen/ozone pressure (~10 mTorr, ~7% ozone), and (3) in high vacuum 

(~1x10-7 Torr) after an oxygen/ozone exposure. The thermal evolution of air-exposed 

SrRuO3 surface in high vacuum is shown in Figure 4.10(a) from RT to 700 °C. The 

RHEED pattern at RT shown in Figure 4.10(a) shows a bright specular spot, well-defined 

diffraction spots, and well-developed Kikuchi lines, confirming a very flat crystalline 

surface structure. Additional diffraction spots become visible after annealing to 300 °C, 

consistent with the onset of surface decomposition seen with other techniques. Above 

600 °C, the RHEED pattern clearly exhibits new well-defined diffraction spots that 

become more pronounced with temperature 700 °C. The appearance of new diffuse 

diffraction pattern can be correlated with the formation of spherical particles observed by 

STM for the high-vacuum annealing of air-exposed SrRuO3.  

 To attempt to counteract decomposition due to  hydrocarbon contaminants on 

the film surface, a second air-exposed sample was annealed to 700 °C in a high pressure 

oxygen/ozone environment (~10 mTorr, ~7% ozone). The RHEED patterns were 

recorded during annealing from RT to 700 °C at every 100 °C [Figure 4.10(b)]. Note the 

difference between RHEED patterns at 300 °C in high vacuum and oxygen/ozone and 

the absence of new diffraction spots on the latter. The RHEED pattern at RT after 

annealing is similar to the pattern before annealing [RT pattern and RT after 700 °C 

pattern in Figure 4.10(b)] and still shows bright specular and diffraction spots. Compared 



Figure 4.10: RHEED patterns of air-exposed SrRuO3 films at different temperatures. 
Images were taken (a) in high vacuum (~1x10-7 Torr), (b) in high O2/O3 pressure (~10 
mTorr, ~7% ozone), and (c) in high vacuum (~1x10-7 Torr) after annealing in O2/O3. 
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to the RHEED pattern (RT after 700 °C) in Figure 4.10(a), the surface crystallinity of 

SrRuO3 films was not compromised during the presence of high pressure oxygen/ozone. 

 We suggest that heating in either oxygen or oxygen/ozone removes the effect of 

surface hydrocarbons, producing a more stable surface even in vacuum.  To verify this, 

the surface stability of a SrRuO3 sample in high vacuum was studied with RHEED after 

the oxygen/ozone treatment. After annealing to 700 °C and cooling to 30 °C in high 

pressure oxygen/ozone (10 mTorr, ~7% ozone), the sample was again annealed, this time 

in high vacuum (~1x10-7 Torr) without intermediate exposure to atmospheric air. As a 

result, shown in Figure 4.10(c), the bright specular spots and diffraction spots were 

observed up to 600 °C without change of pattern in the medium temperature range (300�

600 °C). This is significantly different from the behavior observed for the air-exposed 

sample in Figure 4.10(a). The lack of decomposition for the oxygen cleaned surface of 

SrRuO3 provides additional evidence that hydrocarbon contaminants are the primary 

cause of surface instability at moderate temperatures. At the highest temperatures, around 

700 °C, discontinuous spots appeared after 10 minutes annealing, but the specular 

intensity disappeared at the same time [700 °C pattern and RT after 700 °C pattern in 

Figure 4.10(c)]. This is different from the diffuse sample patterns [700 °C pattern and RT 

after 700 °C pattern in Figure 4.10(a)] and indicates that at least several layers (not top 

1�2 layers) were destroyed, indicative of the onset of bulk decomposition. 

 

 

 

 



 120

4.4 Discussion 

 

 A consistent picture of the stability and thermal behavior of epitaxial SrRuO3 

thin films emerges from an array of surface probes including STM, HREELS, TDS, XPS, 

and RHEED. Figure 4.11 schematically shows models of the SrRuO3 surface evolution 

after exposure to air then annealed in high vacuum [Figure 4.11(a)], in oxygen/ozone 

[Figure 4.11(b)], and in high vacuum after oxygen/ozone cleaning [Figure 4.11(c)].  

 As illustrated in Figure 4.11(a) hydrocarbon contaminants are present on the air-

exposed surface of SrO-terminated SrRuO3 films at room temperature, as confirmed by 

HREELS. The contamination density is fairly low (< 1 ML) and the surface is very flat 

and highly crystalline, [AFM and LEED]. After annealing to moderate temperatures 

(300�500 °C), the hydrocarbon contaminants induce local reduction of the SrRuO3 

surface and lead to formation of irregular pits, as observed in STM images. This process 

is associated with desorption of small amounts of SrO, Ru, CO2, and O2 [TDS]. The 

RHEED patterns indicate the onset of a new phase at this temperature. Analysis of XPS 

data suggests that carbon contaminants are completely oxidized above this temperature. 

Due to the low density of contaminants, the surface decomposition results in a formation 

of a high defect density top layer [300�500 °C in Figure 4.11(a)], which can further 

decompose at higher temperatures. At higher temperatures [600�700 °C in Figure 

4.11(a)] this stage is associated with the formation of new phases seen in RHEED 

patterns and by somewhat spherical particles in STM images which by XPS can be 

identified as Ru0 and Sr2RuO4 [see also Section 4.2]. This surface decomposition process 

is limited to the high defect density top layer, as evidenced by the clearly seen step edges 
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Figure 4.11: Schematics of possible surface configurations. These correspond at room
temperature and after annealing to 300�500 ºC and 600�700 ºC for air-exposed SrRuO3

films (a) in high vacuum (below 10-7 Torr), (b) in high O2/O3 pressure (~10 mTorr, ~7%
ozone), and (c) in high vacuum (below 10-7 Torr) after annealing in O2/O3. 
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in the STM image and by lack of a Ti substrate signal in the XPS spectra; the relative 

size of the decomposition product particles increases with the annealing temperature, as 

can be seen in STM images and sharpening of the RHEED spots in Figure 4.10(a). 

Finally, annealing at even higher temperatures for several minutes corresponds to the 

bulk decomposition of the SrRuO3 film, as evidenced by formation of large particles and 

appearance of Ti in XPS. 

 High pressure oxygen/ozone annealing results in qualitatively different evolution 

of surface structure and chemistry. Shown schematically in Figure 4.11(b) (RT) are the 

conditions of the surface before annealing. During annealing up to 300 °C, hydrocarbon 

contaminants were removed without destroying the surface [300�500 °C in Figure 

4.11(b)], as confirmed by RHEED. RHEED patterns at RT after annealing to 700 °C in 

Figure 4.10(b) suggest the surface of films is cleaned and without decomposition [600�

700 °C in Figure 4.11(b)]. 

 Finally, the schematic in Figure 4.11(c) illustrates the thermal evolution of an 

oxygen-cleaned surface during annealing in high vacuum. Annealing in oxygen removes 

hydrocarbon contaminants and no decomposition is observed in medium temperatures 

[RHEED]. The onset of bulk decomposition is dependent on annealing temperature and 

times and occurs quickly above ~800 °C, or above ~700 °C for extended times. 

 

4.5 Conclusions 

 

 The surface stability of epitaxial SrRuO3 thin films has been shown as a function 

of temperature at different phases (air-exposed and cleaned phases), which is markedly 
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different from the bulk. Air-exposed samples are shown to have a partial layer of 

hydrocarbon contamination. These hydrocarbons are a destabilizing force, reducing the 

surface at relatively low temperatures ~300 °C in vacuum.  This leads to a 

decomposition of the surface layer accompanied by desorption of SrO and metallic Ru 

and the formation of one or two layer deep pits. At higher temperatures, above 500 °C, 

the remaining surface material forms nanoparticles of Sr-rich ruthenates and metallic Ru. 

The onset of bulk decomposition occurs at much higher temperatures, above ~700 °C, in 

agreement with results of thermodynamic analysis.  

 Hydrocarbons can be oxidized and removed by annealing the SrRuO3 film in 10 

mTorr of oxygen/ozone.  Subsequently, films annealed in vacuum are stable to much 

higher temperatures than those without treatment, surviving to ~600 °C.  Above this 

temperature, the entire film begins to decompose.  The films are further stabilized by an 

oxidizing atmosphere.  In 10 mTorr of oxygen/ozone, no structural decomposition is 

observed below ~700 °C. 

 We conclude that SrRuO3 films grown on SrTiO3 by PLD can remain very flat 

and highly crystalline after exposure to air.  However, contamination leads to surface 

decomposition at elevated temperature unless first removed.  Clean SrRuO3 surfaces are 

more thermodynamically stable, but can still be reduced in vacuum. This behavior 

highlights the need for careful, in-situ, growth and characterization even of oxide 

surfaces which appear to be chemically stable. 
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Chapter 5  

Crystal structure of thin films: in-situ analysis 

 

 In this chapter, our attention is focused on the study of the surface structure of 

epitaxial oxide thin films. As shown in the previous chapter, air-exposed samples are 

shown to have a partial layer of contamination on the surface, which leads to a change in 

the physical properties of the surface. Under ambient conditions, we have also shown 

that the transport measurements are strongly affected by mobile surface charges due to 

humidity on the nanostructure [130]. For this reason, we explore atomic surface structure 

and electronic properties of in-situ grown films with STM and LEED in a UHV 

environment. First, the surface structure of SrRuO3 thin films, served as an electrode, is 

investigated to understand the interface between conductive SrRuO3 and ferroelectric 

BaTiO3 films, which leads to a reconstruction in ultra-thin BaTiO3 films. Next, the 

surface structure of ferroelectric BaTiO3 films grown on SrRuO3 films is studied to 

understand the ferroelectric properties in the surface layers of the strained film. Finally, 

we show the structure changes due to adsorbates by comparing in-situ LEED IV spectra 

of BaTiO3 films with and without exposure in H2O.  
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5.1 Epitaxial SrRuO3 thin films: atomic structure and 

electronic properties 

 

 Conductive SrRuO3 exhibits a variety of interesting physical phenomena due to 

the closeness of structural phase transition from cubic to orthorhombic phases, which in 

similar layered compounds triggers metal-insulator and magnetic phase transitions. 

Understanding the interface structure and properties of oxide heterostructures requires 

the knowledge of the atomic structure of SrRuO3 prior to deposition of a second 

component. However, the perovskite structure of SrRuO3 precludes surface preparation 

through cleaving, which produces atomically flat surfaces for layered ruthenates such as 

Sr2RuO4. We explored the previously unknown atomic surface structure and electronic 

properties of epitaxial SrRuO3 thin films on (100) SrTiO3 substrate grown by in situ 

STM and LEED. 

 The ex-situ AFM image in Figure 3.5(b) indicates high quality SrRuO3 thin film 

with 15 nm thickness, which has atomically flat surface exhibiting only single unit-cell 

terrace steps. To study the atomic surface structure and electronic properties of this film, 

samples which were kept in-situ were annealed at 450 °C for 90 min in 1 Torr O2 after 

growth and then cooled down to room temperature. After this treatment, the samples 

were transferred to the Omicron Variable temperature STM chamber without exposure in 

air. All STM images were acquired at room temperature with chemically etched W-tips in 

a UHV environment (P = ~ 1x10-10
 Torr). As shown in Figure 2.14, a bias voltage is 

applied to the tip and the sample is grounded through the clips and sample plate. Atomic 
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resolution in-situ STM images of SrRuO3 films in Figure 5.1(a) demonstrate the atomic 

features with short range ordered atomic rows in (11) direction and large atomic defect 

density. Other STM images in Figure 5.1(b) were taken after annealing at higher 

temperature (650 °C) but maintaining annealing time and pressure. As shown in Figure 

5.1, after higher annealing temperatures, more ordering of atomic rows was observed, 

which suggests the film surface has high mobility. Surprisingly, despite of the mobility in 

the film surface, Figure 5.2 shows a clear p(2x2) LEED pattern, indicating that the 

surface of films is still well-ordered and several possible crystal domain orientations of 

orthorhombic SrRuO3 with (2x1) structure on cubic SrTiO3 coexist in one thin film. This 

is consistent with the STM image in Figure 5.1, which exhibits different crystal domain 

orientations (shown with arrows) of the films as described in Section 1.2.3. 

 Due to SrO termination of SrRuO3 films as discussed in Section 3.2, it is most 

likely the Sr atoms that are imaged in our STM images. A high density of defects imaged 

as depressions (black) are also visible. As shown in Figure 5.3, the depth of defects on 

the row is half unit-cell height (~0.15 nm), which suggests missing or removing the top 

layer atoms (Sr or SrO vacancies) on the surface. One unit-cell height (~0.36 nm) of 

defects on the surface is also observed randomly with relatively large size. Surprisingly, 

similar defects are also observed in cleaved Sr2RuO4 and Sr3Ru2O7 crystal surfaces 

shown in Figure 5.4. Using first-principles density functional theory (DFT)6 , the 

observed atomic defects in Sr2RuO4 crystal were calculated to establish a structural 

model based on SrO, O and Sr vacancies of ruthenium oxides, which indicates that SrO 

vacancy can explain the defects observed in the STM image. The surface defects in 

                                            
6 The DFT calculation was done by V. Meunier. 
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(a) (b) 

Figure 5.1: Atomically resolved STM images of SrRuO3 films. The films were annealed 
at (a) 450 °C and (b) 650 °C in 1 torr O2 for 90 min after growth (image size - 50x50
nm2, -1.5 Vgap). All images were taken at RT. 
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Figure 5.2: In-situ p(2x2) LEED images of SrRuO3 films taken at RT. 
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Figure 5.3: Line profile of surface defect on SrRuO3 films. The sizes of left and right 
images are 25x20 nm2 and 10 nm2, respectively. 
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Figure 5.4: Surface defects in ruthenates [50,51]. 
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SrRuO3 films may be expected to come from SrO vacancies due to the similar shape of 

patterns. However, even at this point it is clear that these defects, unobservable on 

standard ex-situ AFM, will provide a profound effect on both the surface properties and 

on subsequent growth of TMOs on SrRuO3 and are closely linked to the mechanism of 

oxide thin film growth. 

 As mentioned before, the randomly ordered defects on the surface of epitaxial 

SrRuO3 films look very similar to those of cleaved Sr2RuO4 and Sr3Ru2O7 crystals in 

Figure 5.4. Randomly ordered defects are observed on the surfaces of SrRuO3 and 

Sr3Ru2O7 at room temperature [51]. Upon lowering the temperature, the defects on 

Sr3Ru2O7 start to align and be ordered by creating defect lines along the crystal axes [51]. 

A recent study of Sr2RuO4 by STM shows that areas with ordered defects exist at low the 

temperature [131]. Well-ordered defects shown to exist on the surface Sr2RuO4 and 

Sr3Ru2O7 preferentially align along the crystal axes [50,51]. However, the study of 

temperature dependence for SrRuO3 as well as Sr2RuO4 is not detailed with regard to 

defect ordering. Epitaxial SrRuO3 films may be expected to have well-ordered defects at 

the low temperatures similar to cleaved Sr3Ru2O7 crystals, which may have significant 

influence on the transport and electronic properties of the surface of SrRuO3 [55,56]. 

 

 

 

 

 

 



 132

5.2 Epitaxial BaTiO3/SrRuO3/SrTiO3 multilayers: polar 

structure in ultra-thin films 

 

 Ferroelectricity has long been viewed as a collective phenomenon and is 

expected to be strongly influenced by surfaces and finite-size effects [2], i.e., a different 

degree of ordering may occur near surfaces or interfaces, leading to an intrinsic 

dependence on sample size. As the dimensions of the perovskite layer decrease, the 

question of size dependence becomes crucial. Understanding the suppression of 

ferroelectricity in perovskite thin films is a fundamental issue that has remained 

unresolved for decades as described in Section 1.3. However, a direct experimental 

quantification of the ferroelectric polarization, particularly for films in the sub-10 nm 

thickness range is extremely difficult to measure because of extrinsic effects such as 

leakage current for the traditional P-E hysteresis loop. As a different approach to confirm 

ferroelectricity for this issue, we study the surface structure for polarization in ultra-thin 

(1 � 10 ML) BaTiO3 films grown on SrRuO3/SrTiO3 by in-situ LEED-IV measurements. 

 

5.2.1 The LEED experiment 

 

 For the LEED analysis, we use excellent structural quality, highly oxidized, and 

fully strained ultra-thin (≤ 10 ML) epitaxial BaTiO3 films on SrRuO3/SrTiO3 grown by 

laser MBE as shown in Section 3.4. The bottom electrode SrRuO3 films, connected to 

ground, were grown to prevent accumulating charges on BaTiO3 films for LEED 
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measurements. After growth, samples were transferred from the growth chamber into the 

analysis chamber, where UHV conditions (2 x 10-10 Torr) were established, without 

exposure to air. 

 After the samples were introduced into the analysis chamber, they were 

positioned in front of the LEED optics and aligned to normal incidence. The sample 

holder was allowed to rotate and tilt the sample with (x,y,z) motions to adjust precisely 

the normal incidence condition, which was controlled by comparing the I(V) curves of 

symmetrically equivalent beams. After optimal adjustment, data were taken and recorded 

in energy steps of 1 eV with a high resolution 10 bit digital CCD camera, which is 

controlled by computer software (v 4.30) from KSA 400. I-V curves were extracted from 

digitized diffraction patterns by a locally written computer program [132] that provided 

the intensity in windows, which were positioned on equivalent beams and simultaneously 

monitored with increasing energy. All available equivalent beams, typical energy ranges 

of 50 � 500 eV, were collected, averaged, and normalized to the beam current.  

 For the structure refinement the Barbieri/Van Hove symmetrized automated 

tensor LEED (SATLEED) package [133] was used in order to fit theoretical I-V curves 

derived for different trial structures to the experimental data, which generates the lowest 

reliability factor. For the great part of LEED I-V studies of transition metal oxide 

surfaces, the reported values of Rp are significantly larger (0.40 � 0.60) [91]. Therefore, 

the SATLEED codes were modified to incorporate the energy dependence of the real part 

of the inner potential (Vor) [134]. The imaginary part of the potential (Voi) equal to �6.0 

eV was used in our calculation. The phase shifts have been obtained by an optimized 

muffin-tin (MT) potential, in which the spherical MT wells obtained by Mattheiss 
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prescription include preassigned surface core level shifts and are continuously connected 

with a flat interstitial potential [135]. Compared to empirical MT radii in typical metallic 

alloys [77,78], optimized MT radii in complex metal oxides should be considered 

because the charge transfer between metallic cations and oxygen anions could change the 

effective MT radii of the ionic chemical species. The detailed calculation methods of this 

new approach are described in Ref. [134].  

 

5.2.2 The surface structure of ultra-thin BaTiO3 films 

 

5.2.2.1 The clean surface of BaTiO3 

 

 Symmetry breaking by the surface of ferroelectric perovskites can give rise to a 

broad spectrum of interesting physical phenomena. The first principle calculations of 

(001) surface of the bulk BaTiO3 for the case of in-plane polarization parallel to the 

surface suggests that the TiO2-terminated surface has a small enhancement of the 

ferroelectricity near the surface whereas the BaO-terminated surface has a small 

reduction [136]. However, theoretical calculations for a polarization perpendicular to the 

surface have to deal with the additional problem of the correct electrical boundary 

conditions, which may lead to a suppression of ferroelectric distortion near the surface 

layers. Meyer and Vanderbilt [4] report that even thin layers near the surface can show a 

ferroelectric instability in the case of a vanishing internal electric field by applying 

external electric field. In this case, they considered the case of the tetragonal c axis 
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pointing perpendicular to the surface (z-direction) with the fully relaxed first three layers 

of BaO-termination surface shown in Figure 5.5. Here, the �rumpling parameter ηi� 

[4,136] is defined as the amplitude of the relative displacement between the metal and 

the oxygen ions: [δz (Mi) - δz (Oi)], where δz is the relative displacement of atoms given 

as a fraction of the ideal unrelaxed structure. ηi is positive if the metal ions are below the 

oxygen atoms (downward layer dipole moment). Later, we will compare our 

experimental results with the rumpling parameters due to surface relaxation without 

external electric field and demonstrate the different phenomena for polarization rather 

than surface relaxation. 

 On the atomistic level, the perovskite surfaces can support structural 

reconstructions resulting in deviations form bulk stoichiometry. This broad spectrum of 

phenomena on ferroelectric surfaces necessitates experimental studies. However, 

experimental studies of perovskites surfaces are complicated by the presence of surface 

defects [137] due to sputtering and annealing process for clean surface, making it 

difficult to verify the surface stoichiometry. Intrinsic sensitivity of most perovskites 

surfaces towards contamination, combined with polarization induced reactivity for 

ferroelectrics, necessitates studies of surfaces under UHV conditions. Since the 

perovskite structure of BaTiO3 cannot be cleaved or cleaned using traditional sputtering 

and annealing, it needs to be prepared by in-situ synthesis [3]. In this section, we study 

the surface structure of the in-situ ultra-thin BaTiO3 films epitaxially grown by laser 

MBE in a specially designed UHV system combining growth and characterization shown 

in Section 2.1. Furthermore, the thickness of epitaxially grown thin films can be 

controllable, which means that this approach can easily show new behavior such as the 
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Figure 5.5: Schematics of the fully relaxed structure near the surface of BaTiO3. Figures 
adapted from [4]. The rumpling parameters ηi are calculated using Ref. [136]. 
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critical thickness, below which the ferroelectric phase disappears (detailed in Section 

1.3). Here, we investigate the surface structure of ultra-thin BaTiO3 films by LEED-IV 

experiments, through which we present experimental measurements of surface polar 

distortion on the ultra-thin BaTiO3 films with 10 and 4 ML thickness. 

 Typical LEED patterns for 4 � 10 ML thin BaTiO3 films, taken at sample 

temperature T = 300 K, are shown in Figure 5.6. Very sharp (1x1) LEED patterns have 

been observed in all films at beam energies between 50 and 500 eV, which suggests that 

the surface of highly strained films still has P4mm group symmetry with excellent 

structural condition. The observation of P4mm group symmetry in LEED patterns 

indicates that the surface distortion should be restricted to a tetragonal polar distortion 

perpendicular to the surface without tilt or rotation of oxygen octahedra. 

 To determine the surface distortions, structure refinement was performed with 

restriction to the P4mm group symmetry using the modified Barbieri/Van Hove 

SATLEED codes.7 As described in Section 3.4, a very likely termination on the films is 

BaO as a top layer. To find out the best fit to the experiment I-V spectra, several 

possibilities were considered such as non-polarization, upward polarization, downward 

polarization, or domains with oppositely oriented polarization by shifting Ba, Ti, and O 

atoms.  

 Let us start with 10 ML thin BaTiO3 films first. Experimental LEED I-V curves 

for these films exhibit as black lines in Figure 5.7. To find the best fitted model to these 

experimental I-V curves, we have first searched in-plane and out-of-plane lattice 

parameters using 2 dimensional maps for Rp factor with two parameters shown in Figure 

                                            
7 Theoretical spectra were calculated by V.B. Nascimento. 
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Figure 5.6: In-situ (1x1) LEED images of 10 and 4 ML thick BaTiO3 films taken at RT.
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Figure 5.7: I-V curves of 10 ML BaTiO3 films. 
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5.8. In the case of surface structure without polarization, the minimum of Rp factor is 

0.45 at the lattice constants a = 3.90 Å and c = 4.10 Å [Figure 5.8(a)], which is too high 

to accept this model. To reduce the Rp factor, a polar structure is required to better fit the 

experimental spectra. An upward polar surface structure has the lowest Rp factor, which 

is reduced to 0.34 at a = 3.91 Å and c = 4.19 Å shown in Rp contour plot Figure 5.8(b), 

which was obtained through optimization of lattice parameter a and c. Therefore, we can 

conclude that the 10 ML thick BaTiO3 films are fully strained with an upward surface 

polarization compared to bulk BaTiO3. After performing a lattice parameter grid search, 

the structures were optimized again for structural refinement search. Figure 5.9 and Table 

5.1 show the detailed vertical displacements of each atom showing the upward 

polarization, and provide the final optimized Rp factor as 0.32 ± 0.04, which is reliable 

for confidence in this structure. The error of 0.04 has been calculated using the Equation 

2.19 shown in Section 2.3. The comparison between calculated (red) and experimental 

(black) I-V curves for this structure is presented in Figure 5.7. 

 Using this model with the best fit to the LEED I-V experimental data, we 

computed rumpling parameters ηi for each surface layer shown in the second column of 

Table 5.2. As defined before, the rumpling parameters are given by η(BaO) = δz(Ba) � 

δz(Otop) for a BaO plane and η(TiO2) = δz(Ti) � δz(Oplane) for a TiO2 plane, where δz are 

displacement associated with the ferroelectric instability as a fraction of optimized and 

unrelaxed lattice constant c = 4.19 Å. The rumpling parameters in the second column of 

Table 5.2 have negative signs, which indicate that all layer dipole moments in the surface 

of the film have upward direction. To compare the LEED I-V results with DFT 

calculation for surface layers of bulk, the theoretical rumpling parameters are shown in 
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Figure 5.8: Rp contour plot for 10 ML BaTiO3 films: (a) no polarization in sub-surface
(minimum Rp = 0.45 at a = 3.90 Å and c = 4.10 Å) and (b) upward polarization in sub-
surface (minimum Rp = 0.34 at a = 3.91 Å and c = 4.19 Å). 

(a) (b) 
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Figure 5.9: Final structure refinement for 10 ML BaTiO3 films (final Rp = 0.32). 

Table 5.1: Final structure refinement for 10 ML BaTiO3 films (final Rp = 0.32). 
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Table 5.2: Rumpling parameters for 10 ML BaTiO3 films. 

* Ref. [4] and [136]. 
** Ref [138]. 
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the third column. However, in the theoretical calculation, an the external electric field is 

applied to the surface of bulk BaTiO3 with initially non-polar structure, which is different 

from the experimental strained films with the polar structure independent of an external 

electric field. So far, there is no theoretical information of the surface out-of-plane polar 

distortion in the surface layers independent of external electric field, which corresponds 

directly to our experimental LEED I-V results. The last columns of Table 5.2 give the 

bulk values for reference [4,136,138], which are smaller than the surface polar distortion 

in BaTiO3 films. This demonstrates that the strained films have more enhanced polar 

distortions near the surface than the unstrained bulk. Except for the first layer of BaO 

(half unit cell), moderate values of upward layer dipole moments were observed in Table 

5.2, which indicates that BaO terminated surface of the 10 ML thin BaTiO3 films has 

upward polar structure in Figure 5.10.  

 Interestingly, LEED I-V parameters in Table 5.2 shows the reduced rumpling 

parameter in the top surface layer, which may not be expected in the surface layers of 

bulk BaTiO3 [4]. As shown in Figure 5.5 (also fourth column of Table 5.2), theory 

P

Figure 5.10: Polarization in 10 ML BaTiO3 films. 
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predicts the surface of bulk BaTiO3 is normally relaxed, which results in the appearance 

of a weak layer dipole moment near the surface even if the sample is in the paraelectric 

phase. Similar to the surface of bulk BaTiO3, some relaxation should occur in the surface 

of epitaxial strained BaTiO3 films. Figure 5.5 indicates that the first layer in BaO 

terminated surface of bulk BaTiO3 has 4 times larger relaxation than other layers. This 

surface relaxation forms the downward layer dipole moment, which is the opposite 

direction of the upward enhanced polar structure in our strained films. Therefore, the 

surface relaxation leads to the reduced (4 ~ 7 times) rumpling parameter in the top 

surface layer of the BaO terminated strained films. The existence of a reduced top layer 

polarization is one of the evidences that the rumpling parameters in the surface layers of 

strained films come from the surface polar distortion as well as surface relaxation. If we 

take out the effect of surface relaxation from our measurement, the surface distortion in 

the top layer has a similar value to that of other layers. Therefore, we conclude that the 

reduced rumpling parameter in the top layer comes from the surface relaxation. 

 Experimental LEED I-V curves for 4 ML thin BaTiO3 films are shown as black 

lines in Figure 5.11. To find the best fitted model to these experimental I-V curves, we 

have searched in plane and out of plane lattice parameters using 2 dimensional maps for 

Rp factor in Figure 5.12. Rp contour plot in Figure 5.12 shows that the optimized surface 

structure with upward polarization has the lowest Rp factor as 0.38 at a = 3.91 Å and c = 

4.11 Å. After performing this lattice parameter grid search, the structures were optimized 

again. Figure 5.13 and Table 5.3 show the detailed vertical displacements of the atoms in 

the surface layers after determined by the structure refinement. For the best fit, the final 

value Rp ± ∆Rp is 0.30 ± 0.03, which indicates that this upward polar structure in the 
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Figure 5.11: I-V curves of 4 ML BaTiO3 films.  
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Figure 5.12: Rp contour plot for 4 ML BaTiO3 films: upward polarization in sub-surface 
(minimum Rp = 0.38 at a = 3.91 Å and c = 4.11 Å). 
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s

Figure 5.13: Final structure refinement for 4 ML BaTiO3 films (final Rp = 0.30). 

Table 5.3: Final structure refinement for 4 ML BaTiO3 films (final Rp = 0.30). 
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urface layers is reliable. The comparison between calculated (red) and experimental 

(black) I-V curves for this structure is presented in Figure 5.11. Similarly to 10 ML thin 

BaTiO3 films, Table 5.4 shows larger rumpling parameters in the surface layers of 4 ML 

thin BaTiO3 films than that in bulk BaTiO3 surface except for the top layer, which 

indicates an overall upward polar structure in Figure 5.14. 

 Now, one of the fundamental questions for ferroelectric thin films can be asked 

if the reduced thickness of films affects the stability of the polar phase when the 

polarization has a component perpendicular to the film plane. The previous theoretical 

[25,42] and experimental [39] reports show that epitaxially grown BaTiO3 thin films with 

a large compressive in-plane strain (-2 % for fully strained film, a ~ 3.91 Å) have an out-

of-plane domain structure (P4mm group symmetry) at RT as shown in Section 1.2.2. 

These BaTiO3 thin films above the critical thickness exhibit a stable ferroelectric state, 

where the energy gained due to ferroelectric ordering is larger than the electrostatic 

energy associated with the depolarizing fields due to electrical boundary conditions. 

However, the fundamental size effects may dramatically alter behavior in ultra-thin films 

because the trade-off between bulk energy gain and surface cost leads to a suppression of 

the phase transition to the polar phase as films become thinner. Our experimental results 

for BaTiO3 thin films demonstrate surface polar distortion down to 4 ML thickness of the 

films, which results to upward polarization in a single domain. This suggests the 

existence of ferroelectricity in BaTiO3 layers down to 4 ML, which is the lowest record 

of the critical thickness for ferroelectricity of BaTiO3. To prove ferroelectricity in the 

ultra-thin (4 � 10 ML) BaTiO3 films, the observation of polarization switching should be 

added to the structure analysis by the LEED experiment, which will be discussed in 



 150

P

Table 5.4: Rumpling parameters for 4 ML BaTiO3 films. 

Figure 5.14: Polarization in 4 ML BaTiO3 films. 

* Ref. [4] and [136]. 
** Ref. [138]. 
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Chapter 6. Note that, as mentioned in Section 1.3, the first principle calculations in Ref. 

[8] show a critical thickness of 6 unit cells for SrRuO3/BaTiO3/SrRuO3, which is lowest 

expectation so far. The difference between theoretical expectation and experimental 

results may come from the following reasons: (1) fully strained films used in the 

experiment gives stronger energy for ferroelectric ordering, (2) the different terminations 

of films (TiO2 termination in theory and BaO termination in experiment) have the 

different ferroelectric distortion, or (3) the reducing depolarizing field occurs in the 

experimental case (even though no top electrode does not exit in our films) due to an 

imperfectly clean surface, surface defects, or compensated LEED electrons on the 

surface. 

 

The surface structure of BaTiO3 films at LT 

 Based on the first principles DFT calculations, a phase diagram, i.e., a 

representation of stable ferroelectric phases and domain structures as a function 

temperature and strain, is constructed and shown in Section 1.2.2. Under sufficiently 

large compressive in-plane strains such as -2%, the ferroelectric phase at low temperature 

(~ 130 K) is expected to have tetragonal symmetry with polarization orthogonal to the 

film/substrate interface. To confirm this structure symmetry at LT, fully strained 4 ML 

thick BaTiO3 films with upward polarization domain at RT were cooled down to ~ 130 K 

and LEED I-V data were taken at this low temperature. After the structural refinement 

spectra were calculated, an Rp factor for the best fit model was obtained as 0.45 ± 0.05. 

Compared to the structure of 4 ML BaTiO3 films at RT, a little stronger surface polar 

distortion was still obtained at low temperature with upward polarization phase as 
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expected to the theoretical phase diagram. However, the uncertainties increase due to a 

relatively poor value of Rp factor (0.45). This value makes it difficult to pinpoint the 

exact displacement of atoms and the strength of polar distortion at this temperature. 

Nevertheless, the data is consistent with an upward polarization normal to the surface. 

 

5.2.2.2 The surface of BaTiO3 exposed to H2O 

 

 For size effects of thin film ferroelectricity, the role of uncompensated charge 

density on ferroelectric surfaces has been debated for 50 years. Uncompensated charge 

changes the surface free energy scale with volume and alters the stability of ultra-thin 

polar films. It is known that uncompensated surface charges form measurable stray fields 

that are non-local and controlled by screening of the polarization on ferroelectric surfaces 

[139]. However, there is little experimental information on the atomic mechanisms 

behind the polarization screening behavior in ferroelectrics, in part because the surface 

environment has seldom been controlled. To understand this mechanism, we investigate 

the changes of structure with polar phase in ferroelectric BaTiO3 films due to surface 

compensation by ionic adsorption or desorption. For relatively thick ferroelectric films 

exposed to ambient atmosphere, there is strong experimental evidence for surface 

compensation by ionic adsorption [5,140,141,142]. In this section, we show the 

controlled interaction of H2O with the surface of ultra-thin ferroelectric BaTiO3 films 

with polar phase, which provides a better understanding of atomic mechanisms behind 

the polarization screening behavior in ferroelectrics. 

 As shown in the previous section, 10 ML thick BaTiO3 films with clean surface 
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have upward polar structure in the subsurface region, determined by LEED I-V. Using in-

situ LEED I-V measurements we study the structure change of 10 ML thick polarized 

BaTiO3 films with surfaces exposed to a controlled water vapor environment. For this 

experiment, the sample was transferred from the growth chamber to the load lock, in 

which a high pressure H2O vapor can be introduced, with high vacuum condition (1x10-8 

Torr) base pressure. H2O vapor was introduced at 10-4 Torr for 3 min, 10 min, 20 min, 

and 1 hour respectively. After each end of exposure times, samples were transferred into 

the analysis chamber with UHV conditions to measure LEED patterns and I-V curves for 

comparison with those of the clean samples. 

 Very interestingly, (1x1) LEED patterns were retained as shown in Figure 5.15 

even after the samples were exposed to H2O vapor up to 1 hour (3.6x105 L). The 

observation of sharp LEED patterns indicates that the surface, even though it was 

exposed to H2O vapor, retains P4mm group symmetry with well ordered structural 

condition. However, Figure 5.16 shows experimental I-V curves of samples without and 

with H2O exposure (10 min exposure = 6x104 L) have significantly different shapes, 

which demonstrates that the surface structure has been changed within P4mm symmetry 

due to exposure of H2O vapor. The change of I-V curves was not observed until 3 min 

exposure time. Once LEED intensity is changed by exposure time of 10 min as shown in 

Figure 5.16 - two different patterns shown in Figure 5.15(a) and (b), a longer exposure 

time (1 hour) does not change intensities at each energy shown in Figure 5.15(b) and (c), 

indicating saturated surface conditions.  This LEED experiment suggests that several 

possible conclusions can be considered to understand the mechanism during the exposure 

to H2O. First, it appears only a single ordered H2O layer is adsorbed epitaxially on the 
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Figure 5.15: LEED patterns for BaTiO3 films. Images were taken (a) without exposure
to H2O, (b) with exposure to H2O for 10 min, and (c) with exposure to H2O for 1 hour. 

(a) (b) (c) 

Figure 5.16: Experimental I-V curves of 10 ML BaTiO3 films without and with exposure
to H2O. 
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clean BaTiO3 surface. A second H2O layer should form an ice structure, which is not 

consistent with LEED symmetry observations. More than a third layer of H2O deposition 

is very unlikely unless a new form of water grows epitaxially. As simple models of 

absorption shown in Figure 5.17(a), only fractional occupancy of an oxygen or OH 

adsorbate may be introduced on top of the BaO plane. Hydrogen can be neglected in 

LEED because only oxygen scatters electrons significantly. Figure 5.17(a) exhibits some 

Rp factors for models corresponding to different locations of oxygen adsorbates. The Rp 

factors from these models remain large, which cannot be accepted. The best fits come 

from a model which assumes that H2O vapor may partly capture ionic oxygen from the 

top layers of films - desorption of ionic oxygen from the clean surface: 

  H2O + O-2 ! 2 OH- ,                       (5.1) 

resulting in an oxygen occupancy in the top BaO layer which is less than 1. Figure 5.17(b, 

left) shows that a 30 % oxygen occupancy in the top layer has the lowest Rp of 0.39. The 

best fit retains 100 % Ba occupancy [Figure 5.17(c)]. Compared to exposed films, Figure 

5.17(b, right) shows that the clean sample without exposure to H2O has the minimum Rp 

factor at 100 % oxygen occupancy. In Table 5.5 and Figure 5.18, the detailed vertical 

displacements of the atoms in the surface layers exhibit after determined by the structure 

refinement. The comparison between theoretical and experimental I-V curves for this 

structure is presented in Figure 5.19. 

 From the best fit structure, with 30 % oxygen occupancy on the top layer, we 

found the very interesting rumpling parameters shown in Table 5.6 and Figure 5.20. The 

surface polar distortion is still observed, with the exception of for the top defect layer but 

its direction is reversed to that in the surface without H2O exposure, i.e., polarization is 
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Figure 5.17: Optimizing Rp factors: (a) absorption of ionic oxygen from H2O and 
desorption of (b) oxygen or (c) barium from BaO terminated BaTiO3 films. 

(a)

(b) (c) 
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Table 5.5: Final structure refinement for 10 ML BaTiO3 films exposed to H2O (final Rp

= 0.39). 

Figure 5.18: Final structure refinement for 10 ML BaTiO3 films exposed to H2O (final 
Rp = 0.39). 
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Figure 5.19: I-V curves of BaTiO3 films exposed to H2O. 
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Table 5.6: Rumpling parameters for BaTiO3 films exposed to H2O. 

Figure 5.20: Polarization in BaTiO3 films exposed to H2O. 

* Ref. [4] and [136]. 
** Ref [138]. 
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now downward. This suggests that negatively charged oxygen deficiencies on the surface 

affect the polarization state in several top layers, probably resulting from the inversion of 

dipole moments in ultra-thin films. Interestingly, the structure with 60 % oxygen 

occupancy, which does not fit as well in the experiment results (Rp = 0.42), has a non-

polar state (not shown). This may be reasonable because the intrinsic electric field in the 

films with 60 % occupancy is stronger than that in the films with clean surface but 

weaker than that in the films with 30 % occupancy. These phenomena probably 

demonstrate indirectly that surface polar distortion in ultra-thin BaTiO3 films can be 

switched by an external electric field. These results are consistent with other recent 

reports in which Wang et al. show that ferroelectric switching in 10 nm thick PbTiO3 

films as a function of vapor environment using in-situ grazing-incidence synchrotron x-

ray scattering [143,144]. 

 In conclusion, the exposure of the ferroelectric films to ambient atmosphere with 

H2O vapor can affect the polarization status in sub-surface layers due to surface 

compensation. However, the optimal Rp factor of 0.39 after the final refinement is still 

slightly high, and the exact structure and the strength of polar distortions appear complex 

and have not yet been determined. 

 

5.2.3 The surface reconstruction of 1~2 ML BaTiO3 films 

 

 As has been shown in the previous section, surface polar distortions were 

observed down to 4 ML thick BaTiO3 films. Now, we might be asked if much thinner 

BaTiO3 films such as 1 ~ 2 ML thickness still have polar state or become unstable due to 
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size effects. To address this question, 1 � 2 ML (1 ML and 70 % covered films as the 

second layer) thick BaTiO3 films grown on SrRuO3/SrTiO3 were investigated by LEED 

experiments. Figure 5.21 shows quite different p(2x2) reconstruction LEED pattern of 1 

� 2 ML thick BaTiO3 films compared to (1x1) pattern of thicker (4 ML) films. This 

diffraction pattern looks similar to the p(2x2) LEED pattern of SrRuO3 films. One 

possibility is that the diffraction of the buried SrRuO3 structure is observed through the 

thin BaTiO3 film. However, the intensity of the additional diffraction suggests that the 

structure of 1 � 2 ML thick BaTiO3 films may also be affected by the SrRuO3 films 

grown as bottom electrode. 

 For comparison, experimental I-V curves for 1 � 2, 4, and 10 ML thick BaTiO3 

films are shown in Figure 5.22. As expected by the differing LEED patterns, I-V curves 

for 1-2 thick films are different from those of thicker films, especially positions of peak 

intensity, whereas I-V curves for 4 and 10 ML thick films are very similar. This suggests 

that surface polar distortions observed in 4 and 10 ML thick films might be absent or 

modified in 1-2 ML thick films due to film reconstruction or rather than by intrinsic 

instability by a depolarization field effect. To determine this, structure refinement was 

performed with several models. The structure in this film is more complicated than 

thicker films (≥ 4 ML). In view of the complexity, the best fit Rp factor of 0.52 can imply 

some information of structure but not a full description of structure. In this case, results 

show the Ti atoms displace upward and perhaps there is still polarization in the final 

structure refinement.  

 The observation of reconstruction in 1-2 ML thick films suggests other structural 

possibilities not found in 4 and 10 ML films such as tilt and rotation of octahedra in 
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Figure 5.22: Experiment I-V curves of different thick BaTiO3 films. 

(a) (b) (c) 

Figure 5.21: Evolution of LEED patterns dependent on BaTiO3 film thickness. 
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BaTiO3 films due to the SrRuO3 electrode. Future refinement may need to consider this 

possibility for the better refinement. However, a major blockade to determining the 

structure of 1-2 thick BaTiO3 films is that the exact information of the p(2x2) 

reconstruction surface of SrRuO3 films with randomly ordered defects is also unknown. 

 

Interface structure between BaTiO3 and SrRuO3 films 

 To understand the structure of 1 � 2 ML thick BaTiO3 films, we have 

investigated the interface between BaTiO3 and SrRuO3 films. For a 10 ML thick BaTiO3 

film grown on SrRuO3/SrTiO3 a Z-contrast STEM of a cross-sectional sample is shown 

in Figure 5.23. As shown in Figure 5.23(bottom), Ti and Ru layers appear well separated 

in view of the uniformly distributed intensities. The gradually sloping intensities in the 

profile result from a decreasing specimen thickness towards the edge. However, unlike Ti 

and Ru layers, the Ba* layer at the interface has a significantly lower intensity than the 

rest of the Ba rows, which suggests that the first monolayer of BaTiO3 is Ba deficient and 

has mixed stoichiometry of SrO/BaO. Unfortunately, Ti layers have the least bright of the 

lot because the tilt is not perfect for Z contrast. This is a technical problem in optimizing 

tilt for the substrate instead of the very thin film itself. However, weak Ti layers can be 

seen in the image and it would be very obvious if they were Ru layers instead. 

 The most probable conclusion on the nature of the defects in epitaxially grown 

SrRuO3 films is that these are SrO ad-atoms. In other words, the surface layer is depleted 

of volatile Ru oxides coming from ceramic SrRuO3 target and hence excess SrO makes 

an ad-layer on SrO termination of the SrRuO3 films. After BaTiO3 growth on this defect 

filled surface, the result is a mixed layer at the interface with both Sr and Ba oxide. 
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Figure 5.23: STEM for 10 ML BaTiO3 films on SrRuO3/SrTiO3. 
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Chapter 6  

Ferroelectric tunnel junctions at the nanoscale 

and future directions 

 

6.1 Ferroelectricity of ultra-thin BaTiO3 films 

 

 The observation of surface polar distortion in ultra-thin BaTiO3 films cannot 

guarantee the ferroelectricity of the films. To demonstrate the existence of ferroelectricity, 

a spontaneous electric dipole moment must be reoriented from one crystallographic 

direction to another by an applied electric field, which means that the polar structure 

should be switchable to opposite directions. For this reason, we study ferroelectric 

tunneling effects (FTE), which should exhibit different tunneling current dependent on 

the direction of the polarization in a ferroelectric tunnel junction (FTJ) in Section 1.4. 

 Due to the difficulties in fabrication of ultra-thin FTJ, experimental studies of 

the tunneling across ferroelectric barriers have just started [65]. All experiments to date 

have been on micron scale junctions with possible inhomogeneous interfaces and defects. 

In Ref. [65], 4 ~ 6 nm thick PZT thin films with 4 ~ 200 µm2 junction area were used to 

get hysteretic I-V curves for asymmetric electrodes (Pt and SrRuO3 electrodes). 

According to observed I-V characteristics, the resistive switching was seen at the critical 

voltage due to polarizing reversal. These experimental results show that the theoretical 

approach using the converse piezoelectric effect can be reliable but did not provide clear 
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evidence on the effect of the depolarization field. Private discussion with the authors 

suggests that the hysteretic I-V curve in Ref. [65] is very difficult to reproduce. 

 To get reproducible results, we chose to make nanoscale measurements to avoid 

the leakage current due to film defects and to tunnel through a homogenous film. 

Therefore, we need to observe results for I-V characteristics using a local measurement 

such as SPM. This should produce a local tunneling current dependent on polarization 

due to the converse piezoelectric effect in ferroelectric materials. If we choose several 

different electrodes (still symmetric), we might observe much clearer converse 

piezoelectric effect by tracing the I-V curves. To observe the evidence on the 

depolarization field effect, we can use different top electrodes (from bad metal to good 

metal) with fixed bottom electrode (SrRuO3). With asymmetric electrodes, we might 

observe conductance changes at zero voltage (no converse piezoelectric effect) reflecting 

the different potential profile seen by transport electrons for the two opposite polarization 

orientation. These experiments make it possible to understand the physical phenomena of 

electron transport by tunneling through a FTJ with ultra-thin barriers and its dependence 

on the polarization state of the barrier. 

 For this experimental measurement, we used ultra-thin (4~10 ML) BaTiO3 films 

grown on SrRuO3/SrTiO3 with upward polar state in the sub-surface confirmed by 

LEED-IV experiments described above. The bottom electrode was conductive 15 nm 

thick SrRuO3 films, whereas there is no top electrode � a vacuum gap behaves as top 

electrode. Therefore, our experiment corresponds to an asymmetric FTJ. Tunneling 

current (I-V curve) was measured using in-situ UHV STM. Compared to the previous 

work [65], our experiment was done by local measurement and with thinner ferroelectric 
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films, which should provide more reproducible measurement. As shown in Figure 6.1, 

the bottom electrode SrRuO3 films were connected to the sample plate through clips and 

screw for ground. When a chemically etched W-tip is biased, a net current of electrons 

flows through the ultra-thin BaTiO3 films to ground by tunneling. A typical I-V 

characteristic of 4 and 10 ML thick BaTiO3 films was obtained at RT. The data were 

taken in voltage steps of 0.05 V from +3 V to -3 V for backward I-V curve and then from 

-3 V to +3 V for forward I-V curve without stopping. Acquisition time of each data was 

640 µs with delay time of 200 µs. Total time for one complete cycle was ~ 250 ms. 

 Figure 6.2 shows the interesting features in the I-V curves of both 4 and 10 ML 

thick films, i.e., clear switching events at ±2 ~ 3 V and a crossover at the origin, which 

displays similar shapes as expected in theoretical approaches (asymmetric shape). As 

shown in Figure 6.2, switching events in backward bias occur only negative voltage 

region (+2 ~ 3 V) whereas those in forward bias occur only positive region. This 

indicates that initially upward polarization changes to downward at the negative coercive 

voltage. However, when voltage is applied from negative to positive, downward 

polarization switches to upward at positive coercive voltage. These switching events 

provide the evidence of the hysteresis phenomena observed in ultra-thin BaTiO3 films. 

Interestingly, these switching events could not be observed in every I-V loops and 

positions, which suggests that the features of STS data might have the stochastic nature 

of switching just a few unit cells. This is probably possible because the signal generation 

volume in STS is very small, resulting in the free energy landscape is much shallower 

and the path between initial and final state can meander subject to thermal disorder. 
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Figure 6.1: Experimental setting for FTJ using STS. 
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Figure 6.2: I-V curves for FTJ. Curves correspond to (a) 10 ML (b) 4 ML thick BaTiO3

films on SrRuO3/SrTiO3.  

(a) 

(b) 
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Characteristics of dI/dV at coercive voltages through the local measurements were not 

clear probably due to very small tunneling current (a few nA). 

 This is reproducible as shown in Figure 6.2. All I-V curves have an asymmetric 

shape with similar coercive voltages. When the loop has two complete cycles shown in 

Figure 6.3, the repeated patterns are observed with similar results providing evidence that 

the spurious features seen on the I-V curves are the signature of a switching process. 

Indirectly, we also demonstrated this claim from no observation of these features in I-V 

curves of 10 ML SrTiO3 films on SrRuO3/SrTiO3 in Figure 6.4, which do not have 

ferroelectric properties at RT. 

 

6.2 Summary and future directions 

 

 To summarize, LEED experiment in Chapter 5 exhibits the polar state in sub-

surface of the BaTiO3 films down to 4 ML thickness. In addition, STS measurement in 

this Chapter indicates the polarization switching of 4 ML thick BaTiO3 films at positive 

and negative coercive voltages. Through these experiments, we can say that epitaxial 

grown BaTiO3 films have ferroelectricity down to 4 ML thickness, which is thinner than 

the theoretical expectation [8]. This may result from different strained and terminated 

films, or reducing depolarizing field in the films. Interestingly, 1~2 ML thick BaTiO3 

films have quite different structure and properties compared to thicker films, which may 

cause to lose ferroelectricity, due to reconstruction or the mixed stoichiometry, whereas 

the previous reports described that the critical thickness mostly comes from the imperfect 

screening of the depolarization field. This is very interesting and quite different reason 
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Figure 6.3: Two loops of I-V curves for FTJ. Curves correspond to 4 ML thick
BaTiO3 films on SrRuO3/SrTiO3. 

Figure 6.4: IV curves of non-ferroelectric 10 ML SrTiO3 films on SrRuO3/SrTiO3. 
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for the existence of critical thickness, leads to more incentive study required. The 

polarized BaTiO3 films with surfaces exposed to a controlled water vapor environment 

show that the polarization direction in sub-surface layers can be reversed by surface 

compensation.  

 Due to difficulty in cleaning the surface of non-cleavable TMOs with a 113-

perovskite structure, very little information on surface structure and its properties is 

know so far. One of the great possible approaches to investigate the surface of non-

cleavable TMOs is characterization through in-situ synthesis. Especially the ferroelectric 

transitions and transport properties in ultra-thin films must be explored with in situ 

techniques highly sensitive to the surface after careful synthesis. This dissertation shows 

very interesting and successful results of ultra-thin ferroelectric films with conductive 

bottom electrode by in-situ characterization, which suggest that this new approach for 

studying non-cleavable TMOs is very prospective in the future works.  

 Beyond this dissertation, we have several assignments left for ultra-thin 

ferroelectric films, which is very important to understand their fundament physical 

properties. First, the features of STS data in Section 6.1 were stochastic. In comparison, 

other measurements such as ambient piezoresponse force microscopy have very 

reproducible hysteresis loops in the fine structure [145]. For this view, we might need 

more statistical STS data to understand stochastic behavior for ferroelectric polarization 

switching. The second is the study of symmetric FTJ using SrRuO3 films grown on 

ferroelectric films or conductive tip in vacuum AFM as a top electrode. Compared to this 

symmetric FTJ, we can understand more clearly the general characteristics in transport 

properties by tunneling current dependent on ferroelectric polarization switching. The 
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other important issue is the understanding reconstruction of 1~2 ML thin film, which 

may change the physical properties of the material by the effect of the films below or 

substrate, i.e., the rotation and tilt of the octahedra in ultra-thin BaTiO3 film or polar 

distortion in ultra-thin SrRuO3 films. 
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Appendix A.1. Chamber Construction 

Characterization chamber 

Growth chamber



 190

Preparation chamber for AFM/STM

NanoTransport System 
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