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Abstract 

 

International standards require that dimensional inspection operations include an 

assessment of measurement uncertainty.  Scanning coordinate measuring machines 

(CMMs) are frequently used to measure part surfaces and features, and there is a 

continuing need to improve their performance for high precision measurement 

applications.  This research provides a mechanism for minimizing the uncertainty of 

measurements made with a CMM in scanning mode by developing a model of CMM 

scanning that allows selection of optimum scanning parameters.  

 

The method for selecting scanning parameters is based on models developed from 

measurements of a ring with a constant five micrometer amplitude swept sine wave 

machined on the inner and outer diameters.  The inputs to the model are the scanning 

force, scanning speed, low-pass filter cut-off frequency, rotary table action, probe tip 

diameter, and ring orientation.   The methods used in this work are based on techniques 

developed for point-to-point probing.  The first phase of research develops a calibration 

method for the ring artifact and determines the calibration measurement uncertainty.  The 

second phase develops models of CMM scanning operations based on measurements of 

the wavy ring.  The final phase generates a measurement protocol to select scanning 

parameters based on these models.   
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The primary significance of this research is that it provides a method to develop and 

validate a model of probe/workpiece interaction for a scanning CMM.  Additionally, a 

method is provided to select the scanning parameters such as probe tip diameter, filters, 

scanning speed, and probing force to minimize measurement uncertainty.  Finally, this 

work establishes a framework for future modeling of precision scanning operations.  The 

methodology used is applicable to other precision metrology applications.  This work will 

reduce uncertainty in scanning measurements and will minimize the number of 

measurement operations required to measure part features as well as surface texture.  

Therefore, this research has extended the capabilities of CMMs. 
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Nomenclature 
 
a Positive real number 

A Constant amplitude of sine wave = 0.005 mm 

b Bias between the measured and calibrated values 

d Linear modulation parameter = 200 

devbestfit_slow2005 Deviations from experimental data best-fit to slowest scan radius and 

center from 2005 (mm) 

devbestfit_slow2006 Deviations from experimental data best-fit to slowest scan radius and 

center from 2005 (mm) 

devori_cal Deviations off of best-fit calibrated radius (mm) 

dph Deflection of probe head (mm) 

e  Average normal distance between scanned points and calibrated spline 

(mm) 

ei Normal distance between scanned point i and calibrated spline (mm) 

es Error signal 

f The function that relates the measurand to the input quantities and 

relates the output estimate and input estimates 

F Scanning force (Newtons) 

fb Base frequency (Hz) = 10 Hz 

Fd Nominal scanning force 

fi Input frequency (Hz) 

Fm Scanning force (g) 



 xi

fs Sampling frequency (Hz) 

G (s) Filter transfer function in Laplace domain 

hf Filter coefficients 

i Integer number of waves per quadrant 

k Coverage factor 

K Theoretical filter scaling factor 

ksc Spring constant (Newtons/mm) 

kscm Spring constant (185 g/mm) 

l Arc length (mm) 

L 
4
R2π = length of one quadrant of circumference (mm) 

m Integer number of points in one quadrant of circumference for 

calibration 

n Positive integer 

N Number of points measured during experimental scan 

nf Order of filter 

R Radius of a circle (mm) 

R Radius of curvature at a point (mm) 

rcal Calibrated radius (mm) 

rexp Radius of experimental data (mm) 

Ri Inner radial value at a given angular location (mm) 

if
R  The least squares best fit average of all inside data points (mm) 
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R  The least squares best fit average of all outside data points (mm) 

Ro Outer radial value at a given angular location (mm) 

rslow2005 Best-fit radius from slowest scan speed in 2005 (mm) 

rslow2006 Best-fit radius from slowest scan speed in 2005 (mm) 

Rtheor Theoretical inner or outer radius of ring (mm) 

t Vector of distance samples varying from 0 to L (mm) 

t Time since impulse (sec) 

Td Time delay coefficient    

dT  Damped period (sec) 

tf Time increment (sec) 

Tp3 Coefficient for third theoretical filter pole                                        

Tw Coefficient for theoretical filter pole                                   

Tz Coefficient of theoretical filter zero 

U Expanded uncertainty of output estimate y 

u Commanded position 

u(xi) The standard uncertainty of the ith input estimate xi 

uc(y) Combined standard uncertainty of output estimate y 

ucal Calibration standard uncertainty from the calibration certificate 

Ucal Expanded calibration uncertainty 

ui(y) The ith component of the combined standard uncertainty uc(y) of the 

measurement result y 

up Standard uncertainty due to the measurement strategy 



 xiii
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X (s) Input to filter in Laplace domain 

xcal Estimate of the calibrated value (mm) 

xf Filter sample 

xi Estimate of input quantity Xi 

Xi The ith input quantity 

xmach x-axis of machine coordinate system 

xpart x-axis of part coordinate system 

xph Deflection of probe head in x-direction (mm) 

y The measurement result; estimate of Y; output estimate 

Y Measurand 

y Deviations off of nominal circle (mm) 

y  Average measured value (mm) 

Y(s) Output of filter in Laplace domain 

yb Deflection boundary curve (mm) 

Yf Filter output 

ymach y-axis of machine coordinate system 

yo Actual measured position 

ypart y-axis of part coordinate system 

yph Deflection of probe head in y-direction (mm) 

Zeta Damping factor 

zmach z-axis of machine coordinate system 



 xiv
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ix
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The sensitivity coefficient that describes how the output y varies with 

changes in the input quantity xi 

ζ  Damping ratio 

θ Angular location (rad) 

κ  Curvature (1/mm) 

λ Wavelength (mm) 
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1. Introduction 

 
Coordinate measuring machines, or CMMs, are used to collect three-dimensional 

coordinates on workpiece surfaces.  With the first hard probes and later touch trigger 

probes, this collection consisted of a limited number of points that was used for 

calibration, inspection, process control, or engineering development.  Today, scanning 

probes collect data at a much faster rate allowing CMMs not only to measure parts more 

quickly but also to be able to analyze “a product’s physical characteristics in greater 

detail than is normally articulated in an engineering drawing [1, p. 1].”  This capability 

allows CMMs to measure a part’s surface down to the level of surface roughness.  To 

achieve this level of detail, the density of data on the workpiece surface must be higher 

than that needed for conventional inspection activities, and the measurement uncertainty 

of the results should be as low as is reasonably achievable.  New methods to estimate and 

then lower CMM task specific measurement uncertainties must be developed because 

existing techniques have limited capability and utility. 

 

This research provides foundational work that will lead to lower measurement 

uncertainties in CMM pre-defined path scanning operations.  Previous research has 

provided a thorough understanding of touch trigger probing and of methods to 

compensate for individual scanning errors.  However, the complex interactions at the 

probe/surface interface of factors such as the probing force, scanning speed, data filters, 

and surface characteristics are not well understood.  This research will model these  
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effects and provide an empirical model of scanning performance.  This model will be 

used to develop an experimental method for selecting parameters such as probe tip 

diameter, data filter characteristics, scanning speed, and probing force to enable the 

reduction of measurement uncertainty.  This work will quantify the utility of using 

CMMs to make short wavelength measurements.  This capability is useful because it 

potentially eliminates the need for separate roundness testers.  The methods developed in 

this research will be applicable to other precision metrology applications. 

 

The second chapter provides background information on the new measurement 

uncertainty needs in metrology.  An overview of the CMM system and measurement 

process is provided in order to highlight contributing factors to CMM measurement 

uncertainty, and the method to evaluate measurement uncertainties is given.  Relevant 

previous work is then reviewed to show the existing techniques and tools that can be 

applied to this topic as well as the open problems which must be addressed.   

 

The next three chapters describe the three main parts of this research: the calibration of 

the wavy ring artifact, the experimental work, and the modeling, data analysis and 

evaluation of those results.  The final chapter outlines the conclusions from this research, 

suggests future work, and reviews the fundamental contributions of this project. 
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2. Literature Review 
 

2.1. New CMM measurement uncertainty drivers 

According to Swift [1], product inspection tests whether a part’s features are within the 

tolerances given on the engineering drawing.  The tolerances are defined according to 

ANSI Y14.5, and the sparse data gathered can be used to determine the form, location, 

profile, or orientation of part features.  In contrast, dense data is needed to determine the 

roughness, waviness, or lay of the part surface.  When parts are certified to be within 

tolerance, engineers can be assured that the manufacturing process is functioning 

properly.    

 

Many companies that inspect products are adopting international standards, such as ISO 

17025, that require an assessment of measurement uncertainty.  In order to be accredited 

according to ISO 17025, “testing laboratories shall have and shall apply procedures for 

estimating uncertainty of measurement [2, p. 14].”  In the case of CMMs, this is an 

especially challenging task due to the many types of measurements made on these 

machines which each require a unique uncertainty budget.  Therefore, an array of 

measurement uncertainty techniques is needed.  The traceability of measurements defined 

in the Guide to the Expression of Uncertainty in Measurement [3,4] also requires a 

statement of measurement uncertainty.    ASME B89.7.5 [5] explains the requirements 

for this traceability and gives examples of traceability for various applications.  
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Additionally, ISO 14253-1 [6] and ASME B89.7.3.1 [7] put forth decision rules for 

accepting and rejecting parts.  ISO has a stringent acceptance and relaxed rejection zone 

which reduces the upper and lower acceptance specifications by a guard band that is 

100% of the uncertainty by default.  Large measurement uncertainties drastically reduce 

the allowable manufacturing tolerance and can therefore dictate the inspection plan 

including the choice of equipment.  Therefore, companies want to develop methods for 

establishing reasonably low measurement uncertainty values for their measurements [8].   

 

In order to be economically competitive, the metrologist must measure the part as fast as 

possible while maintaining the acceptable level of uncertainty.  Information is needed as 

to how various process parameters affect the measurement capability of a CMM.  This 

research will focus on providing this type of information.  Then, if the process parameters 

cannot be adjusted to meet the manufacturing and metrology requirements, the 

measurement uncertainties could be lowered by investments in better equipment or more 

stable environments.  

 

2.2. Sources of measurement uncertainty 

A CMM has both hardware and software components that contribute to the machine’s 

performance.  The hardware components include the probe head, the CMM platform, and 

the control circuitry.  The software includes the operator interface software, the 

evaluation software, and the controller software.  The operator interface software allows 
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the operator to create a measurement plan.  The evaluation software interprets the 

collected data and provides an assessment of the workpiece dimensions.  The operator 

creates the typical measurement plan on a PC and then transfers it to the controller.  The 

controller software interfaces with the CMM mechanical systems to collect the desired 

data.  The data are then passed through the controller back to the PC where the evaluation 

schemes selected by the operator interpret the data and return the results to the user.   

 

The CMM hardware contributes most to a CMM’s ability to make scanning 

measurements.  Specifically, the probe head must have a “wide linear control range with 

low damping permitting highly dynamic contour following [9, p. 79].”  The next most 

important characteristics are that the mechanical system must be rigid and that the control 

system must be capable of commanding the axes to travel to the proper positions with a 

high accuracy.  The filtering implemented in the software system is also important.  

CMM scanning measurements can also be significantly impacted by the environment in 

which the measurements are taken.  Temperature and vibration are two of the most 

important environmental factors to be controlled.   

 

Measurement uncertainty is defined in the International Vocabulary of Basic and General 

Terms in Metrology [10] as “a parameter, associated with the result of a measurement 

that characterizes the dispersion of the values that could reasonably be attributed to the 

measurand [4, p. 34].”  ISO 14253-2 [11], lists ten primary contributors to the uncertainty 

of a measured characteristic:  

1. Environment 
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2. Reference element of measurement equipment 

3. Measuring equipment 

4. Measuring setup 

5. Software and calculations 

6. Metrologist 

7. Measuring object 

8. Definitions of the measurand 

9. Measuring procedure 

10. Physical constants. 

 

Environmental sources of measurement uncertainty include the temperature, humidity, 

dirt, and vibrations present at the time of the measurement.  The reference element of 

measurement equipment refers to the scales that are used by the CMM to determine 

location.  The material of the scale, its fixturing, and calibration all can introduce 

measurement uncertainty.  The measuring equipment itself is a source of measurement 

uncertainty since no piece of equipment is constructed with perfect geometry.  

Additionally, the probe configuration used can contribute uncertainty [8].   

 

The measuring setup refers to the fixturing, how stable the part is, and whether it is 

distorted by the fixture.  All of these are sources of uncertainty. The software used is 

another source of uncertainty.  The algorithms used in the software can also be incorrect 

and lead to uncertainty in a measurement.  The metrologist can create uncertainty by 

causing thermal expansion of the setup from body heat.   
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The object to be measured introduces uncertainty because it will never be perfectly clean, 

and it may be subject to deformation from the probe tip or fixturing.  The definition of the 

measurand can also produce uncertainty.  For example, with point to point probing, every 

point in a circle cannot be measured.  If the measurand is then defined as the minimum 

circumscribed circle, some uncertainty will exist because the measurand requires the 

measurement of every point [12].   The measuring procedure includes the uncertainty 

introduced by the choice of equipment, fixturing, and measurement procedure.  The final 

source of uncertainty described in ISO 14253-2 is the uncertainty in the knowledge of 

physical constants such as the coefficient of thermal expansion.   

 
Determination of CMM measurement uncertainty is complex due not only to the 

variations in these contributing factors but also to the many different measurands 

measured on CMMs including dimensions, locations, and form.  In ISO terminology [3], 

all of these contributors to measurement uncertainty are called influence quantities. An 

influence quantity is defined as a factor “that is not the measurand but that affects the 

result of the measurement [4, p. 32].”  A quantity influences a measurement when the 

condition is imperfectly corrected for or when its effects are imperfectly approximated 

[8].  The influence of these quantities must be determined in the uncertainty evaluation.  

Once this information is known, methods can be developed to lower the influence of 

these quantities on the measurand.   A nice discussion of influence quantities can be 

found in Phillips et al [13].    
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2.3 . Method of determining CMM measurement uncertainty 

Researchers must understand how CMM measurement uncertainty is evaluated before 

they can work to reduce it.  According to Phillips [8], there are the following basic steps 

of uncertainty evaluation when the Guide to the Expression of Uncertainty in 

Measurement [3,4] is followed.  Worked examples using this method are found in 

B89.7.3.2 [14].  This method is useful when a mathematical representation of the 

measurement is known.   

 
1. Specify the measurand and the values of all influence quantities 

This specification should exactly describe the measurand and measurement 

procedure in such a way as to produce a repeatable measurement result. 

 

2. State the validity conditions 

The validity conditions are the values of the influence quantities given in the 

specification of the measurand and are the conditions for which the uncertainty 

statement will be valid.  An extended set of validity conditions can also be given 

for the range of values of influence quantities expected during the use of a given 

measuring process.   

 

3. List the influence quantities 

The influence quantities or uncertainty sources are given in the previous section.  

These uncertainty sources are classified into two categories: Type A and B based 

on the method used to determine them.  Type A components are calculated by 
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statistical methods while Type B components are determined by non-statistical 

means.   

 
4. Determine the input quantities 

The measurand, Y, can be defined according to Equation 2.1 where Xi is the ith 

input quantity and f is the function that relates the two.  An input quantity may be 

a combination of several related influence quantities.  Influence quantities are 

grouped according to the way in which their influence is quantified, whether by 

analytic equation, procedure, algorithm, or expert opinion; namely,    

 

Y = f (X1, X2, …, Xi, …, XN). (2.1)
 
 

5. Evaluate the standard uncertainty of each input quantity  

The ith component of the combined standard uncertainty of the measurement 

result y is ui(y) which is calculated according to Equation 2.2 where u(xi) is the 

standard uncertainty of the ith input quantity and 
ix

f
∂
∂ is the sensitivity coefficient 

[4] that describes how the output y varies with changes in the input quantity xi, as 

 

 )()( i
i

i xu
x
fyu

∂
∂= . (2.2)

 

The method used to calculate ui depends on the function f.  For analytic functions, 

calculus can be used to determine ui.  When f is a procedure, experimentation is used 

to find ui by varying xi and noting the resulting variations in y.  Examples of these 
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methods are found in Phillips et al [15] which evaluates the uncertainty of simple ring 

gauge measurements made on a CMM using both analytic and experimental 

representations of the uncertainty.  Rasnick et al [16] gives a more complex example 

of experimental determination of uncertainty.  In this case, a combination of simple 

experimental results is used to evaluate the measurement uncertainty of complex 

features such as gear profiles when they are measured on a CMM. For algorithm 

based functions, Monte Carlo simulations can be used that vary the xi within the 

probability distribution and calculate y repeatedly to determine the standard deviation 

of y.  Phillips et al [17] used a Monte Carlo based simulation by constraints method to 

calculate CMM task specific measurement uncertainty. 

 
6. Combine the input quantities and calculate uc 

The combined standard uncertainty, uc, is “one standard deviation of the 

probability distribution centered around the measurement result, y [8, p. 54].”  

Typically, the input quantities are uncorrelated, and the combined standard 

uncertainty is found from Equation 2.3 as 

 

 ∑
=

=
N

i
ic yuyu

1

2 )()( . (2.3)

 
 

7. Use the coverage factor to obtain the expanded uncertainty U 

Often, companies desire to report an interval that contains more than one standard 

deviation (68%) for normally distributed measurement results.  Then, a coverage 

factor k can be used to calculate the expanded uncertainty, U = k·uc(y).  The 



 11

coverage factor, k, is typically 2 or 3 which for normally distributed measurement 

results, gives a 95 or 99.73% level of confidence that the true value of the 

measurand actually lies within the interval y ± U.   

 
8. Employ the uncertainty statement in a subsequent measurement 

Once the uncertainty has been determined, the uncertainty can then be reported on 

a calibration certificate or used in the decision rules for inspecting products. 

 
In many cases, a mathematical model of the measurement does not exist, and the above 

method must be modified.  In these situations, expert judgment, experimental techniques, 

or computer simulations can be used to determine the task specific measurement 

uncertainty [18]. 

2.4. Existing Methods of Reducing CMM Measurement Uncertainty 
Researchers must develop methods to reduce the uncertainty in a measurement.  This 

section will review existing methods for reducing CMM measurement uncertainty in 

three of the categories given in Section 2.2: the environment, software and calculations, 

and measuring equipment characteristics such as the CMM geometry and probe.  These 

categories are of particular interest because in these areas the user selects parameters 

which determine the measuring performance of the CMM.   

 

2.4.1. Measuring environment  
The machine bulk temperature and/or the thermal gradients within the CMM, part, and 

environment can have a drastic influence on CMM measurement uncertainty.  Thermal 
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variations can be both spatial and temporal, so the transient temperature effects must be 

addressed carefully because they can add significant measurement uncertainty.  

Temperature increases cause thermal expansion and distortion of both part and machine.  

The machine errors caused by the expansion are determined by the assembly and 

materials of the CMM as well as the thermal gradients within the machine structure.  

Thermal errors from part expansion can be prevented by thermally soaking the part.  

Errors from machine expansion can be prevented by operating the CMM in the narrow 

temperature range at which the CMM was error mapped and by correcting within that 

range according to the thermal error index method described in national standards [19].  

This also requires the elimination of intermittent thermal disturbances due to sources such 

as personnel, lighting, etc. Alternatively, some CMMs are equipped with a real-time 

temperature compensation system.  Researchers have used finite element analysis to 

study the thermal errors [20].   

 

Vibrations in CMM system performance can result from environmental vibrations, 

vibrations induced within the CMM such as those due to accelerations or from air bearing 

instabilities, or from the contact of the probe with the workpiece.  Rivin [21] studied the 

benefits of passive versus active damping for environmental vibrations and determined 

that passive damping is suitable in most cases.  A dynamic model of a precision machine 

is presented that can be used to determine the sensitivity of machine parameters to 

vibrations.  Singhose et al [22] demonstrated how to improve CMM performance by 

decreasing acceleration induced vibrations through the use of input shaping.  Although 

this study was conducted on touch trigger probes operated in the point-to-point mode, this 
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method of active damping would be applicable to the scanning induced accelerations as 

well.  Van Vliet and Schellekens [23] studied the bouncing that can occur when the probe 

contacts the workpiece.  These vibrations lead to inaccurate measurements or can even 

cause the probe to lose contact with the workpiece which then requires recovery time and 

decreases throughput.  The recommendation is for a probe with high internal damping to 

reduce the bouncing.   

 

CMM and probe manufacturers also continue to develop ways to reduce vibrations in 

CMM systems.  Browne and Sharpe [24] patented passive dampers positioned to reduce 

vibrations caused by the motor and gearing.  Additionally, they patented passive dampers 

located in the legs of a CMM to compensate for acceleration induced vibrations [25].  

Leitz [26] patented an active vibration damping system that includes a vibration sensor, 

control system, and actuator to provide the active damping to compensate for acceleration 

induced vibrations.  Renishaw [27] developed a method to reduce probe vibrations by 

measuring the accelerations with accelerometers and then integrating the signals to 

velocities which are then used in a velocity feedback control loop to reduce changes in 

probe deflection due to accelerations.  This method can compensate for vibrations due to 

drive motors, external vibrations, air bearing instabilities, and kinematics.  Past work 

cited in this patent describes other methods to reduce these vibrations such as to “reduce 

the overall feedback gain of the position and velocity servo loops [27, p. 3]” to use a 

notch filter in the velocity loop, or to characterize the elastic bending of the CMM.    
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2.4.2. Software and calculations 

This section examines methods used to reduce the measurement uncertainty caused by 

the CMM data filtering and analysis methods.  Data filtering first occurs due to the 

interaction between the probe tip and the workpiece and is influenced by factors such as 

probe size, shape, and friction.    Secondly, the inspection data are filtered by the probe 

head dynamics.  If the probe cannot follow the form quickly enough, data will be lost.  

Finally, the software filters the data using filters that are described in national standards 

[9].  These filters can be used to eliminate noise in the data caused by vibrations or to 

eliminate certain segments of roughness, waviness, or form.   

 

After data have been filtered, they can then be fitted to an ideal geometry.  The results 

produced by data fitting algorithms are tied to the sampling strategy used to gather the 

data.  The selections of the algorithm and sampling strategy must be made considering 

the purpose of the parts and the information needed from the measurement.  For example, 

algorithms for evaluating circular data include least-squares, minimum zone, maximum 

inscribed, and minimum circumscribed.  Each algorithm provides different information 

about the circular feature under study.   

 

Bourdet et al [28] describes how the least-squares algorithm used during probe 

calibration to determine the center and radius of the sphere is impacted by whether the 

radius of the calibration sphere is fixed or is included in the minimization within the 

least-squares optimization.  The influence of the number of points and the arc of the 
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sphere measured during probe calibration on the algorithm were also evaluated.  Dowling 

et al [29] provides a comprehensive review from a statistical perspective of how various 

fitting algorithms such as least-squares and minimum zone are related to design intent 

and how the sampling strategy affects the results of fitting algorithms.  Finite sampling 

always affects the results from the fitting algorithms because when a finite number of 

data points are collected for a measurement, the sampling strategy determines what 

components of part geometry can be detected, and this leads to measurement uncertainty.  

Any calculation of measurement uncertainty must include the contributions of the 

software and sampling strategy selected [19].  

 

2.4.3. CMM geometry 

CMM geometry errors are linked to the machine tables, guide ways, bearings, and drives 

and do not include errors in the computer systems or probing system.  The CMM 

geometry is prone to rigid body errors, structural distortions, and dynamic errors.  A 

typical CMM has three axes and twenty-one rigid body errors.  Each axis contributes a 

scale error, two mutually orthogonal straightness errors, and three rotational errors (roll, 

pitch, and yaw).  Additionally, three squareness errors exist between pairs of axes.  CMM 

manufacturers attempt to reduce these errors by producing well-designed and carefully 

fabricated mechanical platforms.  Software based error compensation techniques are also 

used to reduce repeatable errors [19].   
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CMM performance evaluation techniques are used to evaluate how the remaining errors 

contribute to the machine’s measurement uncertainty.  Standards such as the ISO 10360 

series [30] and ASME B89.4.1 [31] provide standardized tests and methods of evaluating 

CMM performance.  These standards require significant time to complete, and a large 

suite of interim testing methods and artifacts have been developed to provide alternate, 

less time consuming testing options that can be performed on a more frequent basis, 

typically several times a year.  A thorough review of these techniques is presented in 

Miguel et al [32].  

  

The CMM is not a rigid body and is subject to structural distortions.  When these 

distortions are repeatable, they can be reduced through error compensation techniques.  

However, structural distortions due to thermal gradients in the environment or due to the 

variable weight of different parts that may be loaded on a machine in different locations 

are more difficult to predict.  Thermally induced geometry errors can be avoided by 

maintaining strict temperature control in the environment or compensated for if the CMM 

has temperature sensors and a reliable temperature compensation model [19].   

 

The errors described above may be described as static errors because they exist when the 

machine is in a stationary condition.  An additional source of CMM geometry errors are 

the dynamic motion errors that occur while the machine is moving from one location to 

another.  Machine dynamic error sources are related to speeds, accelerations, and the 

relative location of the CMM axes during measurements.  Large CMMs and scanning 

CMMs are especially prone to dynamic errors.  In scanning, the CMM is usually 
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accelerated while probing, and scanning path errors related to the machine servo system 

degrade the measurement accuracy.  These errors can be avoided by holding the probe in 

a fixed position during the scan and rotating the part instead.  Some CMMs can 

compensate for these dynamic errors in the error map [19].   

 

2.4.4. CMM probe 

The CMM probe is a major source of measurement uncertainty, but many techniques 

exist for reducing these effects. The probe related error sources include dynamic probe 

errors, the stylus ball size, probe lobing, multiple styli effects, and probe changing issues.  

The stylus ball size and probe lobing are related to the calibration procedure which will 

be described later in this section.  The use of multiple styli such as on a star probe can 

produce an additional error source because errors occur in locating each probe tip relative 

to the other probe tips.  Additionally, when probe changers are used, the repeatability of 

the changing system can be a primary source of error unless each probe is re-calibrated 

after a probe change [19]. 

 

This research focuses on errors in scanning probes and includes the assessment of their 

performance.  Continuous scanning probes maintain contact with a part surface during a 

measurement in contrast to touch trigger probes which make contact with the workpiece 

only at the discrete points where data are collected. Most scanning probes and some point 

to point probes are analog transducers that produce an output signal that is proportional to 

the displacement of the probe.  The size of the linear region of the scanning probe limits 
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the probe accuracy for a given probing speed.  A larger linear region allows the probe to 

more accurately respond to rapid changes in the part surface.   

 

The advantage of the scanning probe technology is that the scanning process yields ten to 

fifty times as much data over a given time period [33].  For this reason, scanning probes 

are well suited for measuring form and contours of surfaces.  The additional data density 

also results in a lower measurement uncertainty.  Since the probe remains in contact with 

the surface, performance depends on the roughness, discontinuities, and lubricity of the 

workpiece/stylus interface.   

 

Scanning can be done in a closed-loop or open-loop mode and with a pre-defined path or 

a not pre-defined path.  In closed-loop scanning, the probe maintains contact with an 

unknown surface by maintaining a constant deflection.  Closed-loop scanning is more 

demanding on the controller and therefore speeds are lower than for open-loop scanning.  

Open-loop scanning drives the probe along a known path normal to the surface nominal 

[33]. In pre-defined path scanning, the probing system motion is directed along a pre-

defined line of intended contact points.  This sometimes involves a mixture of open- and 

closed-loop control.  In not pre-defined path scanning, feedback from the probing system 

directs the motion of the probing system [3,4]. 

 

Metrology companies such as Brown and Sharpe, Renishaw, and Mitutoyo are actively 

developing new scanning technology to reduce measurement uncertainty.  However, little 

technical information is available in the open literature except for patent descriptions and 



 19

product descriptions.  For example, the state-of-the-art scanning technologies available 

from Renishaw [34] are the SP25M and the SP80 probes which are lightweight, passive 

(not motored), with a high natural frequency, measure deflections optically, use dynamic 

error compensation from Renscan technology to compensate for inertia, and can be used 

at speeds of over 500 mm/s.   

 

The calibration routines being developed by these companies are some of the most 

significant advances in reducing uncertainty in scanning measurements.  The purpose of 

the calibration routine is to allow the location of the workpiece surface to be determined 

based on the center of the probe tip which is the point known by the probe as data are 

taken.  Therefore, the calibration registers the offset between the center of the probe tip 

and the point of contact.  Calibration routines are typically performed by measuring a 

very round sphere.  Renishaw [34] measures this sphere with a series of bi-directional 

scans.  Then, during scanning, splines are created that shift the data by the probe radius.  

Renishaw’s latest calibration routines [35] generate a transformation matrix that includes 

consideration of misalignment between the probe axes and the CMM axes, non-

orthogonality among the probe axes, and scaling errors.  The new calibration method is 

also not sensitive to slipping at the probe/workpiece interface.   

 

Renishaw [36] now error maps the probe deflections to improve probing accuracy.  The 

error map includes compensation for friction which was determined to have a significant 

impact on measuring performance.  This has improved radial measuring errors to sub-

micrometer level.  Additionally, Renishaw’s [36] latest dynamic calibration routines 
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correct for errors in both the CMM and probe caused by different accelerations generated 

by different scanning speeds.  This is not a probe calibration routine but a scanning 

system calibration routine.  The result is that faster scanning speeds can be used. 

 

Another method of reducing measurement uncertainty due to probing is to conduct 

performance tests on the probe and model the effects of user selectable parameters.  

Miguel et al [37] reviews the techniques that have been used in the past for touch trigger 

probe performance testing.  Additionally, Feng and Pandey [38] report the effects of 

travel speed, pitch value, probe angle, probe size, and feature size on measurement 

uncertainty for a CMM using a touch trigger probe determined by fractional factorial 

experimentation.   Some of the testing procedures reviewed by Miguel would be valid for 

analog scanning probe tests though the results would not be applicable since the research 

was conducted on analog touch trigger probes.  Relatively little research has been done 

with scanning probes.  Tang and Sun [39] did conduct a study using a scanning probe and 

studied the effects of sample size, speed, stylus deflection, internal vs. outer diameter, 

and feature size.   

 

The performance evaluation standard for scanning is ISO 10360-4 [30].  This standard 

measures a nominally 25 mm diameter calibrated sphere with a surface roughness of less 

than 0.05 micrometers.  The scan performance is quantified by the range of radii 

calculated and the deviation of the best fit radius from the calibrated value.  Since this 

surface is almost perfectly smooth, this is a test of scanning long wavelength features.  

This test allows additions to the surface introduced by the CMM to be seen, but it does 
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not show what data has been removed by the CMM.  The mode selected, whether low or 

high point density and predefined or not predefined scanning, impacts the results [40]. 

 

A two-axis static and dynamic force characterization device was developed at UNC-

Charlotte.  Pereira [41] used this device to measure the forces on a probe during a 

scanning measurement and then to develop a model that compensates for the errors 

induced by centripetal acceleration when measuring ring gauges of various sizes and 

multiple scanning speeds in open loop mode.  This research only considers the effects on 

the long wavelengths represented by the entire ring gauge diameter.   

 

Other research at UNC-Charlotte [40] evaluated how specific variables such as speed, 

radius of curvature, stylus stiffness, scanning mode, and machine stiffness affected the 

form measurement of a ring gauge.  The authors note that the dynamics of the probe head 

have a strong influence on scanning capability.  Additionally, work was done using a grid 

plate to separate machine and probe head errors.  A method for verifying the dynamic 

natural frequency of a probe head was also developed that measures a hole with a 

constant wavelength, constant amplitude sinusoid at increasing speeds.  The analysis 

notes that a step increase in form occurs at the natural frequency. 

 

By using artifacts with waves on the surface, additions as well as subtractions from the 

surface data can be observed.  UNC-Charlotte [42] has developed scanning artifacts with 

wavelengths of 5-20 mm.  These artifacts have a constant wavelength sine wave 

machined on either a linear or disc artifact with an amplitude of 2 mm for the 10 and 20 



 22

mm wavelengths, and an amplitude of 10 µm for the 5 mm wavelength.  Two methods of 

analyzing the data are presented.  Either the data is fit to a theoretically perfect sine wave 

of fixed frequency or to a reference wave measured at a slow scan speed.  The 

degradation at increasing speeds is then noted.   

 

Several research groups have created systems that simulate the measurement of artifacts 

with shorter wavelengths.  This method uses a piezo to excite the probe head and does 

not involve the measurement of an actual surface.  As a result, these studies do not 

include the effects of friction or the probe tip and workpiece interaction.  They also do 

not provide a way to quantify the effects of scanning using the machine axes as 

measuring an actual artifact would allow. 

 

A wave with a wavelength of approximately 2 mm and amplitude of 100 µm was 

simulated using a piezotranslator stage in Poland [43].  The results generated by the 

probe when vibrated by the piezotranslator can then be compared to the reference 

characteristic signal that was to be generated by the piezotranslator and measured 

independently using a laser interferometer.  As the author concludes, the most sensitive 

region is that of the shortest simulated wavelength features.   

 

PTB [44] developed a similar methodology for examining dynamic probe performance.  

A piezo vibration platform was used to generate waveforms including sinusoids, square, 

triangle, swept sinusoids, and arbitrary waveforms.  The authors show how the device can 

be used for traceable, dynamic probe calibration of form testers and plan to use it to study 
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the amplitude-frequency response of a variety of probes.  The advantage of this system is 

the flexibility of input waveform.  The disadvantage is that the generated waveform does 

not always match the theoretical waveform due to hysteresis of the piezo.   

 

Two similar Dutch systems are described by Haitjema and Kotte [45].  The open-loop 

system operates at higher frequencies but is less repeatable than the closed-loop piezo 

system.  The use of the system to determine the frequency response of a system is shown.  

These systems are lab based instruments at a National Metrology Institute that require 

precise laser interferometers and complex set-ups and are therefore not suitable for 

industrial use. 

 

As previously mentioned, the piezo systems just described do not fully represent the 

effects of scanning surfaces that contain short wavelengths because the probe tip 

interaction with the surface is not included.  An artifact with short wavelengths would be 

required to obtain this information.  This information is important to CMM users because 

actual parts are not smooth and contain defects of various sizes that can be represented by 

these short wavelengths.  It would be desirable to model the effects of scanning these 

wavy surfaces in order to determine parameters that would reduce the measurement 

uncertainty.   

 

PTB [46] has manufactured multi-wave standards for the calibration of form measuring 

machines.  These artifacts contain superimposed sinusoidal waves of varying amplitude 

and frequency that are machined with a fast tool servo onto a nickel plated aluminum 
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disk.  The analysis of measured data is performed in frequency space by examining how 

well a form machine detects the correct amplitude for wavelengths between 0.5 mm and 

50 mm.  The amplitudes vary from 1-5 µm.  While the artifact is appropriate for the 

calibration of form testers, it is not as applicable to CMMs which measure spatial profiles 

instead of frequencies and amplitudes.  It would be difficult to relate the Fourier analysis 

of data back to the capability of the CMM to make a given measurement because the 

averaging that occurs in determining the amplitude at a given frequency eliminates much 

of the localized information generated during the measurement.  However, these multi-

wave standards have been used to provide a measure of CMM scanning performance by 

comparing the spectral amplitudes for given frequencies and the roundness to that 

determined by a form tester [47].   

 

Based on this need for a CMM scanning artifact that can be used to model the effects of 

scanning and thereby lower measurement uncertainty for short wavelength 

measurements, North Carolina State University [48] designed and fabricated a ring with a 

swept sine wave machined with a fast tool servo onto the inner and outer diameters.  The 

swept sine wave has an amplitude of five micrometers and a wavelength that varies from 

approximately 0.5-6 mm.  The wavy ring was fabricated with a stainless steel substrate 

with nickel plating for durability.  A simulated data analysis concept is reported in which 

an air-bearing capacitance gauge was excited using the Fast Tool Servo to simulate the 

measurement of the ring with a CMM probe.  Differences in cap gauge response with and 

without filtering were observed [49].  No measurements or analysis of measurements 
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from a scanning CMM were reported.  The wavy ring artifact is used in this dissertation  

to develop a new method for reducing scanning CMM measurement uncertainty. 

 

2.5. New method of reducing CMM measurement uncertainty 

This research builds on the understanding of drivers for measurement uncertainty 

research, the sources of measurement uncertainty in CMM scanning, the method of 

calculating measurement uncertainty, and existing methods of lowering measurement 

uncertainty.  Specifically, this research models the complex interactions at the interface 

of the probe and workpiece surface.  Implicitly included in this model are the surface 

position, normal force, scanning speed, gravity, the non-linear friction force which is 

determined from the surface normal to the probe tip, the surface contact patch, and the 

mass, spring, and damping characteristics of the probe.  The models presented provide 

information on scanning parameter choices that can lower the measurement uncertainty. 



 26

3. Calibration of the Wavy Ring Artifact 

 

3.1. Description of artifact 

In order to test the capability of a CMM to scan short wavelength features, a new artifact 

was developed and manufactured at North Carolina State University [48].  This artifact 

termed the “wavy ring” and used in this research is shown in Figure 3.1.  The ring has an 

inner diameter of 152 mm, an outer diameter of 203 mm, and a thickness of 25 mm.  The 

ring is 17-4 PH stainless steel that was heated treated for dimensional stability.  An 

electroless nickel plating was added not only to provide durability but also to give a non-

ferrous surface which would be suitable for machining with a diamond tool.  The bore 

holes can be used to establish the angular positioning for the ring.  The faces were 

diamond turned.   

 

 
Figure 3.1: Wavy ring artifact 
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As can be seen in Figure 3.1, a band of swept sine waves was machined on the inner and 

outer circumferences of the ring using a Fast Tool Servo.  Details of the manufacturing 

process can be found in Folkert [48]. The swept sine wave provides a constantly 

changing wavelength that simulates a range of surface conditions.  The swept sine wave 

is shown in Figure 3.2, and the formula is given in Equation 3.1 [48]. This equation 

produces wavelengths varying in length from 0.531 mm to 6.24 mm for the inner radius 

given by  
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2
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π  (3.1)

 

where 

y = deviations off of nominal circle (mm),  

 

 

Figure 3.2: Swept sine wave 
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A = constant amplitude of sine wave = 0.005 mm, 

L = 
4

R2π theor = length of one quadrant of circumference (mm), 

Rtheor = theoretical inner or outer radius of ring (mm), 

fb = 10 = base frequency (Hz), 

d = 200 = linear modulation parameter, and 

t = vector of distance samples varying from 0 to L (mm). 

 

To generate the waveform for either the inner or outer surface, Rtheor is defined as the 

theoretical inner or outer radius, respectively.  In Figure 3.2, the waves are amplified by a 

factor of 2000.  In this application, the sine wave sweeps from a long wavelength at zero 

degrees to a short wavelength at 90 degrees and then increases from that short 

wavelength back to the long wavelength over 180 degrees.  The wave is then completed 

by decreasing back to a short and then increasing again to a long wavelength as the wave 

comes back to complete the circle. 

 

3.2. Basis for calibration 

The International Vocabulary of Basic and General Terms in Metrology [10] defines a 

calibration as a “set of operations that establish, under specified conditions, the 

relationship between values of quantities indicated by a measuring instrument or 

measuring system, or values represented by a material measure or a reference material, 

and the corresponding values realized by standards [13, p. 371].”   The first note for this 
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definition says that “the result of a calibration permits either the assignment of values of 

measurands to the indications or the determination of corrections with respect to the 

indications [13, p. 372].”  In order to achieve traceability to metrological standards, a 

calibration must be accompanied by an uncertainty statement.  

 

The calibration of the artifact is necessary for determination of uncertainty of later 

measurements of the artifact.  In this research, the calibration of the artifact will allow 

traceable measurements of the artifact to be made.  These measurements can be used to 

quantify the performance of the CMM when scanning.  Traceability refers to the 

unbroken chain of comparisons back to the international standard of length.   

 

Artifact calibrations can be primary, secondary, or working.  Primary calibrations refer to 

calibration of a standard which is used as the basis for secondary standards.  The 

secondary and working standard calibrations will always have a higher uncertainty 

because they are based on the primary calibration and then have added uncertainty from 

the subsequent measurement steps.    

 

3.3. Calibration development 

3.3.1. Determination of measurand  

The measurand is that which is being measured and is defined by a set of specifications 

that describe the conditions for measurement.  The measurand should be precisely 

defined so that the measurement results provide the desired information [13].  The 
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measurement uncertainty components vary based on the selection of the measurand.  

Therefore, a measurand for a standard should be selected that includes the measurement 

uncertainty components of interest.  The measurand selected for the wavy ring artifact is 

shown in Figure 3.3 and was based on these criteria.   

 

If the measurand were defined as a profile off of the center location, the measurement 

uncertainty would likely be 2-3 micrometers which would be significant in comparison to 

the 5 micrometer amplitude wave.  The majority of this uncertainty would be due to the 

ability of the CMM to measure the radius instead of the waves.  Instead, the measurand 

can be defined as deviations from a best fit circle.  This eliminates the measurement 

uncertainty component of measuring radius that is not critical to the purpose of the 

artifact.   

 

The measurand shown in Figure 3.3 is a profile tolerance.  A profile tolerance as defined 

in Y14.5M “may control form, orientation, size, and location depending on how it is 

applied [50, p. 157].”  The tolerance shown in Figure 3.3 gives the profile by means of an 

equation which defines the profile, Ri, as 
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and Ro as  
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Figure 3.3: Toleranced drawing of measurand 
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where at each angular location, θ, the profile is the superposition of the best fit radius,  

if
R  or 

of
R , and the waveform given in Equation 3.1.   The argument of the sine function 

is simplified by substituting t=Rtheorθ and the values of fb, d, and L.  When calculating t 

for the inner or outer wave, Rtheor is defined as the inner or outer theoretical radius, 

respectively. 

 

The profile is referenced to the datum on the top of the artifact as shown in the datum 

reference frame.  The profile tolerance generates a 0.025 mm wide boundary divided 

evenly on either side of the true or mathematically defined profiles, Ri. and Ro. By this 

definition, the profile measurement includes the angular location of the waveform and the 

waveform itself.  Referencing the waveform to either the best fit inner radius, 
if

R ,  or the 

best fit outer radius, 
of

R , instead of the nominal radius prevents manufacturing errors that 

affected the best fit radius from contributing to the uncertainty. 

 

3.3.2. Desired measurement uncertainty 

The calibration methodology will in large part be based on the required measurement 

uncertainty of the experimental work.  This requirement will dictate not only the type of 

equipment required, but also the machine selection, the number of points, the density of 

points, and the calibration procedure.  Since this is a new area of research, it is desired 

that the uncertainty of the artifact calibration be as low as reasonably achievable, so that 
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the widest possible range of performance indices can be explored.  Once the scanning 

models are selected, calculations could then show whether a higher artifact uncertainty 

would be acceptable.  A low uncertainty is also needed because only one ring will be 

calibrated as a primary standard.  This ring will later be used to calibrate a secondary 

standard ring which will have a higher uncertainty than the primary ring.  In each case, 

the uncertainty in the calibration results will include the positioning capability of the 

rotary table, the ability to measure a length from the center of the rotary table, and the 

ability of the CMM to measure the wave pattern. 

 

The 4:1 and 10:1 rule commonly used in industry says that the measurement uncertainty 

should be less than one-fourth to one-tenth of the tolerance [19].  In this research, the ring 

does not have a specified tolerance for acceptance of measurement results.  However, 

since the peak-to-valley deviations are 10 micrometers, the desired uncertainty would be 

less than one micrometer so that the data is not completely uncertain. A lower 

measurement uncertainty will exist in the long wavelength sections due to the slower 

changes in slope in the wave which are more easily measured.  Therefore, an uncertainty 

band could be generated that varies with wavelength. 

 

3.3.3. Machine selection 

Two classes of equipment were considered for the calibration of the artifact as shown in 

Figure 3.4: (a) roundness machines and (b) CMMs.  The purpose of a roundness machine 

is to measure deviations from perfect roundness.  Spherical and cylindrical workpieces  
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Federal Formscan 3200 
(a) Roundness Machine 

Leitz PMM-C 
(b) CMM 

Figure 3.4: Machines considered for calibration 
 

can be measured on these machines.  The advantage of the roundness machine is that it 

can provide a low uncertainty in measuring roundness parameters.  However, these 

machines would not calibrate the size of the ring which is necessary for the study of a 

surface profile.  If the ring were to be calibrated on a roundness machine, separate 

calibrations of size would also be required.  As mentioned previously, the size 

uncertainty would then dominate the measurement uncertainty. 

 

A CMM can calculate the size as well as the roundness and is therefore the preferred 

calibration platform.  Unlike the roundness machines with its stationary probe that 

maintains contact with a rotating part, the CMM probe is typically moved on guides both 

vertically and horizontally.  This can introduce geometry errors.  In order to eliminate this 

error source, a rotary table was used in the calibration.   



 35

Once the class of machine had been selected, the specific machine for calibration was 

chosen.  NIST was selected to perform the calibration because their National Metrology 

Institute standing gives ultimate credence to the calibration and subsequent use of the 

artifact in the development of national scanning standards.  The NIST M-48 located in 

Gaithersburg, Maryland, is shown in Figure 3.5.  The M-48 has a rotary table and can 

perform the desired calibration with the very low uncertainty that is expected from the 

National Measurement Institute, NIST. 

 

3.3.4. Point spacing 

The calibration data for the swept sine waveform can be considered as sampled data 

points on a continuous sine wave. The point spacing must select the proper distribution of 

points on the waveform.  Past practice spaces probing points at equal angular 

 

Figure 3.5 Moore M-48 at NIST 
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distributions.  This distribution does not account for the varying wavelength.  Therefore, 

an algorithm was created that would vary the point spacing with wavelength.  This would 

allow each wave to theoretically have the same number of calibration points.   

 

According to Shannon’s sampling theorem, the minimum sampling rate for each wave 

should be the Nyquist rate which is defined as twice the maximum frequency in the 

signal [51].  In order to recreate the sine wave with higher fidelity, each wave should be 

sampled with 2n samples per wave where n is greater than or equal to two to maintain the 

conditions required by Shannon’s sampling theorem.  By using 2n samples per wave, 

each wave will be sampled at equal divisions of the wave.  The resulting sampling for 

n=2, 3, and 5 are shown in Figure 3.6.   
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Figure 3.6: Constant number of calibration points per wavelength 
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(b) 8 points  
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(c) 32 points  
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Figure 3.6: Continued 
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As shown in Figure 3.6, increasing n increases the density of the sampling at the 

maximums and minimums of the wave.  Since this information will degrade during 

scanning and will be critical in measurements of the ring and modeling scanning 

performance, it is desired to have the largest n that will be feasible during the calibration 

measurement.  There are 840 waves on the circumference of the ring.  The M-48 takes 11 

seconds to measure one point.  Therefore, measurement time limits the calibration.  

Based on previous experience, it is unreasonable to expect the measurement environment 

to stay within specification continuously for more than a few days.  Table 3.1 lists the 

number of points per wave and the time that would be required for calibration of the 

inside or outside surface.  As shown in Table 3.1, with 32 points per wave, the 

measurement of each circumference will take 82.4 hours or 3.4 days.  Thirty-two points 

per wave was selected as the maximum achievable density.  As shown in Figure 3.6c, this 

density also provides excellent sampling coverage of each wave and will allow 

satisfactory reconstruction. 

 

Mathematically, this can be achieved for a quadrant of the ring by setting the inner 

argument of the sine function in Equation 3.1 equal to the incremental length as shown in 

Equation 3.4, namely   

 

Table 3.1: Hours required for calibration as a function of points per wave 
Points per wave Time for inside or outside calibration (hrs)

4 10.3 
8 20.6 
16 41.2 
32 82.4 
64 164.8 
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)
2
1(i,

2
2,

2
10,a nnn −= K  

and i = integer number of waves in one quadrant. 

 

The positive root of this polynomial is the circumferential length location of the sampling 

point.  Equation 3.5 can be used to convert this length to an angular location, θ, given by 

 

theorR
t=θ , (3.5)

 

where Rtheor = theoretical inner or outer radius of the ring. 

 

The MATLABTM program that executes this algorithm and generates the angular 

locations of the calibration points for the inner and outer surfaces is given in Appendix 1.  

The portion of code in this program that defines the theoretical waveform given in 

Equation 3.1 was developed by North Carolina State University [48].  MATLABTM is a 

matrix based mathematical software package. 

 

3.4. Calibration procedure  

A calibration procedure was developed to measure the wavy ring per the drawing given 

in Figure 3.3.  This section will detail the calibration procedure.  The required equipment 
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includes the wavy ring artifact, the probe configuration, epoxy and cotton swabs for 

application, three posts, and the calibration sphere.  

  

3.4.1. Probe selection  

Two probes are required for calibration of the wavy ring artifact because both the top of 

the ring, Datum A, and the waves on the outer and inner surfaces of the ring must be 

measured.  Because of the low uncertainty desired in the measurement of the waves, a 

probe oriented normal to the surface is desired.  Yet this horizontal probe configuration 

would not allow Datum A to be probed.  An indexable probe should not be used in this 

application due to the introduction of repeatability errors and the extra flexibility that 

exists in the joints of this probe type.  Instead it is desired to have two probe tips on one 

probe configuration.  The two most common probe materials are tungsten carbide and 

industrial ruby.  The advantage of the ruby tip is that it generally has a better roundness.  

However, this tip must be glued on to the probe shaft and is therefore not as durable.  The 

tungsten carbide tip and shaft are ground as an integral component thus providing more 

durability.  In both the calibration and the later experimentation with the ring, the probe 

will remain in the same nominal location while the ring turns on the rotary table.  During 

the calibration, only a small spherical arc of the probe surface will contact the part, and 

the durability advantage of the tungsten carbide outweighs the roundness disadvantage.  

A small 0.4 mm diameter tip probe will be used for calibration of the waves, while a 

larger 3 mm diameter probe tip will be acceptable for measurement of Datum A.  The 

probe configuration selected is shown in Figure 3.7.   
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Figure 3.7: Probe configuration 

 

The small horizontally mounted probe tip is desired to be as large as possible for 

durability yet small enough to fit into the shortest wavelength wave.  Mathematically this 

means that the probe radius must be smaller than the radius of curvature at every point.  

For each point on the ring, the radius of curvature R is defined by Equation 3.6; namely, 

 

κ
= 1R , (3.6)

 

with the curvature κ defined by  

 

ll l ∆
∆==

→∆

φφκ lim
0d

d , (3.7)

PRB(1): 3mm diameter 

Probe length = 
96.52 mm

PRB(2): 0.4 mm 
diameter
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where φ  is the tangential angle and l is the arc length as shown in Figure 3.8 [52]. 

Therefore,  

 

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆=

t
arctan lφ  (3.8)

 

where ∆t is the incremental distance between calibration points and 

 

m
L=∆l  (3.9)

 

where L is the length of one quadrant of the ring and m is the number of points in one 

quadrant assuming points are equally distributed about the circumference instead of 

distributed equally per wave.  The results show that the minimum radius of curvature is 

 

 

Figure 3.8: Radius of curvature 
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theoretically 0.4396 mm.  Therefore, a 0.4 mm diameter tip with a 0.2 mm radius will be 

appropriate for calibration. 

 

3.4.2. Fixturing method 

The fixturing method must assure that no stresses are induced that would deform the ring.  

Therefore, an adhesive bond is preferred to bolting the ring to a fixture.  A quick-setting 

epoxy was selected that is easily removed.  Additionally, epoxy should only be applied to 

the edges of the adjoining surfaces and not between them because that would introduce a 

non-flat surface that would not yield a stable measurement surface.   

 

3.4.3. Calibration steps 

The first step is to clean the ring and probes with alcohol and a dust-free cloth.  Alcohol 

is used as a cleaning agent because it evaporates quickly and will not create thermal 

gradients in the artifact.  A dust-free cloth is required because at this level of accuracy, 

dust on the probes or artifact will be visible in the measurement results. 

 

The probe calibration routine is pre-programmed such that only one clearance point is 

required before taking one probing point at the top of the calibration sphere with the 3 

mm tip.  The calibration program is given in Appendix 2.  The calibration for the 0.4 mm 

tip is also pre-programmed to run automatically.  The calibration requires a 15.875 mm 

diameter calibration sphere as shown in Figure 3.9.  For this program, the calibration  
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Figure 3.9: Probe calibration 

 

sphere and probes must be configured as shown in Figure 3.9.  Next, the rotary table must 

be calibrated.  This calibration measures a calibrated sphere at multiple angular positions 

of the rotary table in order to establish a coordinate system based on the center of rotation 

of the rotary table. 

 

The manual set-up must then be conducted to determine an initial coordinate system 

based on the actual location of the ring.  The ring was fixtured as shown in Figure 3.10 

with glue at the top and bottom of the three posts.  In order to take advantage of the 

symmetry of the ring, it was centered within 50 micrometers radial run-out on the rotary 

table.  The epoxy must set for 45 minutes before the calibration can continue.   The posts 

should be mounted approximately 120 degrees apart as shown in Figure 3.11 for 

CMM 
+x
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Figure 3.10 Ring fixturing 

 

maximum stability.  The orientation of the ring on the fixture is important for the 

establishment of the coordinate system.  It is conceptually simpler if the coordinate 

system on the ring is nominally in agreement with the directions of the axes of the rotary 

table coordinate system when the rotary table is at zero degrees.  This consistency allows 

the calibration program to be re-usable instead of being re-written for a randomly 

selected ring orientation.   

 

The initial ring coordinate system has the x-axis of the part, xpart, directed from the center 

of the ring through the angular reference location “2” shown in Figure 3.11 with the 

positive z-axis, zpart, normal to the top of the ring and pointing up.  The orientation of the 

part coordinate system axes are approximately the same as the orientation of the machine 

coordinate system axes.  Only the origins of the coordinate systems differ significantly.    
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Figure 3.11: Ring orientation and fixture post locations 

 

To obtain the necessary data to establish this part coordinate system, three probing points 

are first taken on the top of the ring with the 3 mm tip.  To establish the center of the ring 

and the origin of the coordinate system, three probing points are taken on the smooth 

inside diameter of the ring between the top and wavy surfaces as shown in Figure 3.12.  

To determine the position of the angular reference location “2”, four points are taken 

inside the 6.35 mm bore hole next to the etched 2 as shown in Figure 3.13.   

 

Next, the part coordinate system is refined by automatically re-measuring the same 

features.  In order to execute the automatic part coordinate system, the probe only needs 

to be moved to any position over the ring because the location of the features of the ring 

have been determined to a reasonable level of accuracy through the manual part  
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Figure 3.12: Manual set-up probing point to determine center of ring 

 

 

 

 

 

 

 

 

Figure 3.13: Manual set-up probing points to determine angular reference location 
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coordinate system measurements.  The automatic part coordinate system must be of the 

lowest uncertainty, so the epoxy must cure for a total of two hours from application 

before the automatic part coordinate system determination can begin.   

 

Both Cartesian and cylindrical coordinate systems are established automatically on the 

ring.  The calibration measurement is made in the cylindrical coordinate system.  First, 

the inside circumference is measured.  The 0.4 mm tip is used for this actual calibration 

of the waveform.   

 

The location of the waveform given in Figure 3.2 was experimentally determined with 

respect to the angular reference location.  It was measured to be 8.7974 degrees from the 

reference location for the inside surface and 6.6549 degrees from the reference location 

for the outer surface for Ring 2.  Ring 2 is the ring being used as the primary standard.  

For Ring 1 which will later be used as a secondary standard, different rotations are 

required to agree with the waveform machined on Ring 1.  The cylindrical coordinate 

system is then rotated by this amount so that the 0 angle aligns with the beginning of the 

longest wavelength on the ring as shown in Figure 3.2.   

 

The angular locations that will allow 32 points to be measured on each wave as shown in 

Figure 3.6c are now imported.  There are 840 waves on the circumference of the ring 

which therefore requires 26880 points to be measured during the calibration nominally 

along a circular path.    The calibration points are then established 12.5 mm down from 

the top of the ring.  The measurement of the ring to establish the calibrated values is then 
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made, and the data is saved.  The process is repeated for the outside circumference 

yielding all the data required for the calibration.  A sample of the calibration data points 

is shown in Figure 3.14.   

 

3.5. Primary standard calibration results 

NIST collected this data using the method described in Section 3.4.  NIST made one 

modification to the calibration program which rotated the coordinate system by 180 

degrees about zpart.  Therefore, the NIST data must be rotated 180 degrees to match the 

theoretical waveform.  Once the raw data was collected, it was corrected by NIST to 

account for atmospheric pressure fluctuations and a closure error that occurred during the  

 

 
Figure 3.14: NIST calibration data 
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measurement.  This gave an inner radius of 76.11564 mm and an outer radius of 

101.71266 mm.  Then a circle was re-fit to the corrected data which yields a final 

calibrated inner radius of 76.116036 mm and a calibrated outer radius of 101.71315 mm.  

Then, the calibration data is reported as the deviation from this best fit circle at a given 

angular location.  The uncertainty in this measurement result is given in the official NIST 

calibration report shown in Appendix 3.   

 

The uncertainty was calculated by the method described in the Guide to the Expression of 

Uncertainty in Measurement [3,4].  The expanded uncertainty, U, with a coverage factor 

of k=2 was calculated to be ±0.382 µm.  As described in the calibration report, this 

uncertainty accounts for eight primary error sources as shown in Table 3.2.  The profile 

toleranced in Figure 3.3 coupled with the uncertainty statement provided by NIST yields  

a region in which each point is expected to lie with 95% certainty as shown in Figure 

3.15.  It should be noted that the choice of measurand eliminates differences between the 

 

 

Table 3.2: Components of ring uncertainty statement 

Item Description 
1 Machine positional and laser scale uncertainty 
2 Historical length reproducibility of calibrated artifacts 
3 Laser wavelength compensation 
4 Thermal expansion coefficient and thermometer reading 
5 Difference in contact deformation between probe and calibration sphere and 

probe and artifact 
6 Uncorrected atmospheric pressure fluctuations during data collection 
7 Closure error for 360 degree rotational data sets due to drift 
8 Rotary table mechanical errors and length errors from radial positioning 

uncertainty 



 51

 

Figure 3.15: Uncertainty region for a probed point  

 

mathematical definition of the waveform and the manufactured waveform as a source of 

uncertainty.   

 

As shown in Figure 3.15, the uncertainty is more significant in the direction of the 

deviation since the bounds of the deviations are ± 5 µm.  In contrast, the uncertainty is 

less significant along the angular positioning axis since the length of a half degree 

segment of the inner radius is 664 µm.  This is the reason that the square uncertainty 

region appears as a line when drawn to scale in Figure 3.15.  The resulting uncertainty 

region is highlighted in the circle in Figure 3.15 for a probing point in the highest 

frequency area of the wave.   
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4. Experimental Work 

 
The purpose of the experimental work is first to isolate the key parameters that influence 

CMM scanning performance and then to provide data that can be used to generate and 

validate a model, or characterization, of a CMM.  This model will then be used to select 

appropriate scanning parameters for a given application. 

 

4.1. Experimental parameter selection 

Based on the literature and industrial practice, the following factors are known to be of 

primary influence in scanning CMM measurements: probe tip diameter, the use of a 

rotary table, probing force, artifact orientation, filter characteristics, and scanning speed.  

The goal of this project is to provide a means of selecting appropriate values for these 

parameters.  This section describes the parameters which can be selected.  The following 

section describes the experimental setup including the specific parameter values used in 

this project. 

 

4.1.1. Probe tip diameter 

During a scan, the probe tip should remain in contact with the surface of the artifact at all 

times.  Therefore, the probe tip diameter must be selected based on the level of detail to 

be measured.  As described in Section 3.4, the probe radius must be less than the 

minimum radius of curvature of the surface which is 0.4396 mm in order to allow 
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measurement of the shortest wavelength.  Therefore, a 0.5 mm diameter tip, shown in 

Figure 4.1, was selected because the tip radius of 0.25 mm is within the radius of 

curvature limits.  A 0.5 mm diameter tip made of industrial ruby was used in the 

experiments because during the experimental scans unlike during the calibration, a large 

area of the probe tip will contact the surface during the scan since each scanned point is 

not measured normal to the surface.  Therefore, the roundness provided by the industrial 

ruby tip is important.  The 0.5 mm diameter tip is the smallest ruby tip that is commonly 

used in industry because the glue that holds the tip to the stylus is fragile due to a contact 

area of only 0.071 mm2.  The tip breaks off easily with smaller diameter tips. 

 

4.1.2. Rotary table 

A rotary table provides a rotational axis to a CMM and is computer controlled with the 

other axes.    Precision rotary tables are used to increase the precision of the measurement 

of an axisymmetric workpiece.  The advantage of a rotary table is that when a workpiece 

is placed on the table, the measurement capability is improved by eliminating the motion  

of machine translational axes.  This is accomplished by leaving the probe in a fixed 

 

Figure 4.1: Probe used in experimentation (used with permission of Carbide Probes) 
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position and rotating the workpiece to reach the next measurement location.  One 

measure of the accuracy of a rotary table is the total indicator run-out.  The total indicator 

run-out is the difference in the maximum and minimum deviations measured from the 

least-squares best fit circle.  This test measures how well the center of the rotary axis can 

be found.  Precision rotary tables are constructed of stainless steel, weigh hundreds of 

pounds, and use air bearing spindles in both the radial and thrust planes.  The accuracy 

that can be realized is due not only to the mechanical accuracy of the table itself, which 

can have a radial error as low as 0.0508 micrometers, but also to the precision of the 

rotary table calibration, which determines the orientation of the axis of rotation and the 

location of the center of rotation.  Since this application is of the highest precision, a 

rotary table was used in all experiments as shown in Figure 4.2.   

 

 

 
Figure 4.2: Rotary table 
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4.1.3. Probing force 

During scanning, the control system attempts to maintain the probing force at a set point.  

This set point is selected based on the measurement application.  The control system 

actually monitors the deflection of the probe from its nominal position via linear variable 

displacement transducers (LVDTs).  This deflection can be converted to a force through 

the spring equation  

 

phscdkF = , (4.1)
 

where 

F = scanning force (Newtons), 

ksc = spring constant (Newtons/mm), and 

dph = deflection of probe head (mm). 

 

The system monitors this deflection during measurements and will present a system error 

if the deflection boundaries are exceeded.  This error would indicate that a constant scan 

has not been achieved.  For scanning, a low force set point, corresponding to small 

deflections, is desired because the system would not respond quickly enough to all the 

waves encountered on the ring if the force were set higher.  CMM manufacturers 

typically provide several parameter sets with differing scanning force set points.  The 

lowest force parameter set available that allows for reasonably fast scanning was selected 

for this application.   
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4.1.4. Artifact orientation 

Artifact orientation is a key parameter in influencing scanning measurements.  The 

orientation of the workpiece with respect to the CMM determines which axes are used 

during a measurement.  Commonly, artifacts are oriented along machine axes to facilitate 

interpretation of results, but many orientations are physically achievable.  For high 

precision measurements, it is desirable to minimize the axes used.  As described in 

Section 4.1.2, a rotary table, which must be placed flat on the graphite surface plate of the 

CMM, minimizes the motion of the machine axes.  In order to allow for the use of the 

rotary table as the only motion during measurement, the artifact must be placed in the 

plane of the face of the rotary table in a horizontal orientation.  The horizontal orientation 

also allows the entire ring to be scanned with a single probe tip.  Other configurations, 

such as a vertical orientation, would not meet these criteria and also would not allow for 

the use of a rotary table but would instead require movement of the translational axes.  

Based on this information, the horizontal orientation was selected for all experiments 

with the wavy ring.   

 

The ring is ideally centered with the center of the rotary table.  This positioning will 

allow the probe to stay within the deflection boundaries described in Section 4.1.3 while 

measuring all the waves.  The experimental methods and data analysis techniques 

developed with the ring in a horizontal orientation are applicable for tests conducted with 

the artifact in other orientations as well. 
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This orientation also minimizes the fixturing required as the ring can be placed directly 

on the faceplate with no fixturing.  Fixturing is not required because the ring and 

faceplate of the rotary table are so flat that they can be wrung together.  Wringing is 

possible due to the adhesion of the thin film layer of moisture between surfaces and the 

molecular attraction of the surfaces [53].  Fixturing could induce stresses and deform the 

ring.  If the ring were fixtured in a vertical orientation, fixturing errors could also lead to 

movement of the ring during measurements and to invalid results.  

  

4.1.5. Environmental parameters 

The purpose of these experiments is to determine how to select scanning parameters for 

scanning measurements made in a well-controlled environment.  It is assumed that the 

inspection area in which high precision measurements would be made would have 

environmental parameters that are conducive to good measurements.  Specifically, the 

temperature and vibration should be well controlled.  It is assumed that any variation in 

environmental parameters that are within operating bounds would not impact the results 

of scanning the wavy ring. 

 

Temperature variations lead to thermal expansion based on the coefficient of thermal 

expansion.  The coefficient of thermal expansion for the ring, which is made of 17-4 PH 

stainless steel, is 10.8 µm/m-°C [48].  Therefore, in the analysis of the deviations of the 

surface from the best-fit circle, the 10 µm peak-to-valley would experience an increase of 
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10.8x10-5 µm for a 1 °C increase in temperature.  A typical operating range is 20°C ±1°C, 

so the effect on the waves is negligible.   

 

The CMM is designed so that resonance frequencies are not excited under typical 

measurement conditions.  System vibrations are tested for during CMM certification tests 

performed at regular intervals.  During these tests, the scanning performance of a CMM 

is typically validated using a smooth artifact.  If the data is smooth, then vibrations are 

not confounding the scanning results.   

 

In order to determine whether the waves will excite vibrations in the system, uni-

directional tests that had been previously conducted on the probe head to determine the 

natural frequency of the probe head were studied.  Since the wavy ring experiments were 

conducted with the head probing in the x-direction, this plot is shown in Figure 4.3.  This 

plot was generated by inputting an impulse to the system and watching the movement of 

the LVDT until it settles.  From Figure 4.3, the natural frequency can be calculated as 

described below.  The damped period, Td, can be calculated from the plot as 0.117 

seconds.  This data can then be used to calculate the damped frequency given by 

 

sec7024.532 rad

d
d T

== πω , (4.2)

 

where  

dω = the damped frequency (rad/sec) and 
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Figure 4.3: Probe head natural frequency in x-direction 

 

dT  = the damped period (sec). 

The LVDT can be approximated as a second-order mass-spring-damper system.  It is 

known that the decay curves for the impulse response of this system type  [54] are 

bounded by curves given by  

 

yb = )
1

exp(5.1 2ζ
ζω
−

−
⋅

td , (4.3)

 

where 

yb = deflection boundary curve (mm), 

ζ  = damping ratio,  
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t = time since impulse (sec), and 

 

where the 1.5 mm amplitude is determined from the initial conditions as shown in Figure 

4.3.  The damping ratio is defined as the ratio of actual damping to critical damping.   

 

The coordinates of the experimental data point at the first peak were extracted as (t, yb) = 

(0.09638 sec, 1.38073 mm).  After some algebraic manipulation, Equation 4.3 can be 

solved to yield a damping ratio, ζ =0.016.  This value in conjunction with the damped 

frequency can be used to solve for the natural frequency, ωn, of the system via Equation 

4.4, and given as  

 

sec2
sec

2 7162.53
016.01

7024.53
1

rad
rad

d
n =

−
=

−
=

ζ
ωω . (4.4)

 

In cycles per second, this is 8.55 Hz.  Ideally, this frequency should be avoided during 

scanning measurements.  However, if this frequency is expected based on the surface 

characteristics, this vibration must be considered as a possible source of disturbance in 

the data.  If the wavy ring data are not noisy, it can be determined that these vibrations 

are not an issue.  Regions of noisy data outside the probe head natural frequency could 

also be due to the interaction of the probe tip and the surface generating noise in the 

system.   
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4.1.6. Scanning speed  

Scanning speed is measured in mm/s and describes the linear speed of the probe relative 

to the workpiece.  This speed can affect the measurement result if the speed exceeds the 

following capability of the control system for the feature being measured.  This project 

seeks to determine an experimental means of determining a maximum scanning speed.  

Therefore, in these experiments the speed was varied from a low of 0.5 mm/s to the 

maximum speed achievable for the wavy ring, which was experimentally determined to 

be 11 mm/s. 

 

4.1.7. Filter characteristics 

A digital filter is used to process raw scanning data.  This filtering is critical because it 

can remove or obscure information that is actually on the workpiece surface. This filter is 

often proprietary but must be characterized in order to correctly select filter parameters 

and understand these filtering effects.  Therefore, during these experiments, the user 

selectable low-pass filter cut-off frequency is varied in order to accomplish these goals.  

The range of cut-off frequencies that should be considered must be selected based on the 

expected wavelengths on the surface of a workpiece and the range of scanning speeds as 

shown in Equation 4.5; namely, the input frequency fi is given by 

 

λ
vfi = . (4.5)
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When the scanning speed, v, is given in mm/s and the wavelength, λ,  in mm, the units of 

frequency are Hz.  Since the scanning speed varies from 0.5 mm/s to 11 mm/s as 

described in Section 4.1.6 and the wavelengths present on the ring vary from 0.531 mm 

to 6.24 mm, the range of frequencies encountered as inputs to the system can be 

calculated using Equation 4.5 and are shown in Table 4.1.  Based on this data, cut-off 

frequencies of 2, 3, 5, 10, 100, and 200 Hz are tested.  These cut-off frequencies allow 

the data to be filtered at different points and sometimes not at all.  This range of data 

allows filtering effects to be studied. 

 

4.2. Experimental setup 

The experimental set-up is shown in Figure 4.4.  The CMM is a Leitz PMM with a B4 

controller, a TRX probe head, and a rotary table.  The temperature control for the area is 

 

Table 4.1: Range of frequencies in ring based on scanning speed and wavelength 

Speed (mm/s) Wavelength = 6.24 mm Wavelength = 0.531 mm 
0.5 0.08 Hz 0.94 Hz 
1 0.16 Hz 1.88 Hz 
2 0.32 Hz 3.77 Hz 
3 0.48 Hz 5.65 Hz 

3.5 0.56 Hz 6.59 Hz 
4 0.64 Hz 7.53 Hz 

4.5 0.72 Hz 8.47 Hz 
5 0.80 Hz 9.42 Hz 
6 0.96 Hz 11.30 Hz 
7 1.12 Hz 13.18 Hz 
8 1.28 Hz 15.07 Hz 
9 1.44 Hz 16.95 Hz 
10 1.60 Hz 18.83 Hz 
11 1.76 Hz 20.72 Hz 
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20±1 °C.  This type of CMM has a moving table design with air bearings on the guide 

ways.  The machine volume is created by axes that are approximately 1200 mm, 700 mm, 

and 700 mm in length.  The permitted load is 4400 pounds.  The probing force can range 

from 0.1-1.2 Newtons.  The maximum positioning speed is 400 mm/sec.  As described in 

Section 4.1.5, the probe head has a natural frequency along the x-axis, which is the 

longest axis along the granite, of 8.55 Hz.  Collision protection is built into the system. 

This system is equipped with an automatic probe changer.  This CMM has a Volumetric 

Length Measurement Error of 0.6+ L/600 µm per ISO 10360-2 [30].  That means that at 

the farthest reach at 1200 mm, the volumetric accuracy is 2.6 µm.   

 

The rotary table is an A.G. Davis Ultraron that has a 36000 line count encoder to provide 

rotational increments of 0.001°.  On the inside diameter of the ring, which was used for 

 

Figure 4.4: Leitz CMM 
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the majority of the experiments, this gives a radial positioning capability of 1.33 µm.  The 

radial positioning uncertainty is lower for objects of smaller radius.  Typical certification 

for this rotary table gives a 0.005 mm radial error motion.  The certification test positions 

a single sphere on the rotary table and measures the radial error.   

 

The CMM user-interface software Quindos [55] is on a PC with Windows XP.  Quindos 

is used to develop inspection routines and evaluate data for the CMM and has a database 

structure.  Quindos also contains a powerful geometric analysis engine.  The system is 

configured so that commands generated in Quindos are sent through the controller to the 

CMM.  Data collected on the CMM are then sent back through the controller to Quindos 

and the operator. 

 

For the experimentation, the Low Force Probing Set was used.  An Ultra-Low Force 

Probing Set exists but is only appropriate for perfectly smooth surfaces.  On textured 

surfaces, the ultra-low force would be insufficient to maintain contact with the surface of 

the workpiece.  Therefore, the Low Force Probing Set is selected.  When the probe is 

within a deflection window of 30±20 µm, probing points are continually taken at the 

selected data acquisition rate which is selected on a points/mm basis, up to the maximum 

data collection rate of 250 points/second.  The scan acceleration is set to 3 mm/s2.   

 

During experimentation, the ring is placed horizontally on the faceplate of the rotary 

table.  No fixturing is required.  In the probe configuration used, as shown in Figure 3.1, 

the probe is held at a 45-degree angle to provide clearance for the probe head.  The ring is 
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not mounted on posts because this fixturing might introduce instabilities under the 

scanning force.  The probe tip diameter used in all scanning experiments is 0.5 mm.  The 

implemented probe configuration is shown in Figure 3.1. 

 

4.3. Experimental procedure 

A range of scanning speeds and filter cut-off frequencies was tested as shown in Table 

4.2 based on the considerations stated in Sections 4.1.6 and 4.1.7.  These experiments  

were used to determine the performance effects due to changes in scanning speed and 

filtering.  In Table 4.2, every combination of speed and filter cut-off frequency was tested 

on the inside diameter of the ring.  The shaded cells represent the tests that were  

conducted on the outside of the ring.  Tests were focused on the inside of the ring because 

 

Table 4.2: Speeds and filter cut-off frequencies tested 

Cut-off Frequencies Tested 
Speed 
(mm/s) 

2 Hz 3 Hz 5 Hz 10 Hz 100 Hz 200 Hz 

0.5 X X X X X X 
1 X X X X X X 
2 X X X X X X 
3 X X X X X X 

3.5 X X X X X X 
4 X X X X X X 

4.5 X X X X X X 
5 X X X X X X 
6 X X X X X X 
7 X X X X X X 
8 X X X X X X 
9 X X X X X X 
10 X X X X X X 
11 X X X X X X 



 66

initial tests of both outside and inside diameters revealed that the results are similar on 

either surface.  Therefore, the experiments focused on the inside diameter.  Each 

combination of speed and cut-off frequency was tested with one full rotation of the ring 

measuring either the inner or outer diameter.  This measurement is equivalent to multiple 

observations of a ring of constant frequency because each frequency occurs four times on 

the ring as it sweeps from low to high and back to low in each half.   

 

A Quindos program given in Appendix 4 is used to conduct these experiments and collect 

the necessary data.  This program is based on a scanning program created by Mattias 

Schubert of MTWZ in 2005.  That initial code is significantly modified for this 

application. 

 

4.3.1. Setup procedure 

When the Quindos program is initialized, the Low Force Probing Set is selected for the 

probing force.  The probes that are used are then calibrated.  A 5 mm diameter tip straight 

down probe is first calibrated and then placed back in the probe changer.  The 0.5 mm 

diameter tip on the 45-degree angle is next calibrated as shown in Figure 3.1.  Finally, the 

rotary table is calibrated as described in Section 3.4.3.   

 

Once the probes and rotary table are calibrated, the manual coordinate system is created.  

This coordinate system is measured with the 5 mm tip.  It is generated by first probing the 

top of the ring to generate Datum A.  The center of the ring is then determined by 

measuring the smooth section on the inside of the ring, and the center of the counterbore 
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located clockwise from the hole marked with a “2” as shown in Figure 3.11 is also 

measured at four points.  These manual measurement points are projected onto the xmach-

ymach reference plane.  An axis is then created through the center of these two circles and 

is called the xpart-direction.  The zpart-direction is normal to the Datum A plane, and the 

origin of the manual Cartesian coordinate system is established where the axis through 

the center of the ring intersects the plane on the top of the ring.   

 

After the manual coordinate system has been established, an automatic coordinate system 

is then established.  This coordinate system is generated with no manual intervention 

from the operator since the features were located during the determination of the manual 

coordinate system.  This coordinate system will also measure more points per feature and 

is therefore more accurate.  The automatic coordinate system differs from the manual 

coordinate system only in the orientation of the axes in the xmach-ymach plane.   

 

The automatic coordinate system is rotated by 71.15 degrees about zpart so that the zero 

degree location on the xpart-axis lines up with one of the longest wavelengths.  The scans 

will begin at the zero-degree location, and this should be at the longest wavelength where 

the slopes are the most gradual and therefore easiest on the scanning control system.  The 

value of 71.15 degrees was determined experimentally by magnifying a plot of the 

waveform.  This zero position is approximately 2.35 degrees counterclockwise of the 

zero used for the calibration.  For comparison of the data, the measured data will be 

rotated to align with the calibration data.  Next, both Cartesian and cylindrical coordinate 

systems are created.  The Cartesian coordinate system will be used to develop the scan 
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path during the scanning experiments while the cylindrical coordinate system will be 

used during the actual scan and the data analysis. 

 

4.3.2. Measurement Procedure 

The following measurement procedure was used during each experimental scan: 

1. Select 0.5 mm probe tip 

2. Select Cartesian coordinate system 

3. Select filter cut-off frequency 

4. Select scan point density of 50 points per linear mm to provide a spacing of 

approximately every 20 µm 

5. Generate scan path 12.5 mm down from the top plane of the ring in the Cartesian 

coordinate system and then transform into the cylindrical coordinate system for 

the actual scan 

6. Scan ring 

7. Change filter cut-off frequency 

8. Run second experiment with the same speed and different filter cut-off frequency 

 

4.4. Experimental results 

For each point measured in the data set, the experimental results include the filtered 

coordinates of each point and the probe head deflections in the Cartesian directions.  

When the ring is measured, no calculations are initially done to the data until the raw data 



 69

which contains the probe head deflections are saved to a different variable.  Calculations 

are then performed on the raw data to determine the best fit radius and deviations from 

that radius for each scanned data point.  A single scan generates approximately 23800 

data points which translates to 60 MB of data.  Data are collected for each of the 

experimental data sets shown in Table 4.2.  The data has been archived and is available 

from the author.  From each scan, the plots shown in Figure 4.5 are generated.  Figure 

4.5a shows the deviations from a least-squares circle and Figure 4.5b shows the scanning 

force variations during the scan. 

 

4.5. Experimental data analysis 

During experimentation, a preliminary, qualitative data analysis is performed.  This 

analysis verifies that the anticipated dependencies among scanning speed, filtering 

parameters, and scanning performance are significant.  This section details this analysis. 

 

4.5.1. Scanning speed effects 

In order to conduct an initial evaluation of the scanning performance, a roundness plot is 

generated.  To create this plot the data are first transformed back into Cartesian 

coordinates to accommodate the Quindos roundness plotting routines.  Once this is 

performed, a roundness plot is generated of the inside circumference of the ring measured 

in the xpart-ypart plane.  The deviations from the best fit circle are magnified by a factor of 

1000 for plotting purposes.  The plots for three representative cases of increasing  



 70

 
(a) Deviations off best fit circle 

 

 
(b) Variation of scan force above deviations 

Figure 4.5: Experimental results per scan 
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speed are shown in Figures 4.6, 4.7, and 4.8.  In each case, the plot shown is for a filter 

cut-off frequency of 200 Hz because no data filtering of the frequencies present on the 

wave occurs. 

 

As seen from these plots, the probe has increasing difficulty following the contour of the 

ring as the speed increases.  For the experimental speeds tested, a waveform close to the 

calibrated waveform is observed for slow speeds as shown in Figure 4.6.  However, 

disturbances and discontinuities in the data are noted at higher speeds as shown in 

Figures 4.7 and 4.8.  The roundness, or form of the circle, increases from 11.3 µm for the 

0.5 mm/s case in Figure 4.6, to 18.1 for 7 mm/s in Figure 4.7, and finally to 68.8 µm for 

11 mm/s in Figure 4.8. 

 

 
Figure 4.6: Roundness from slow scanning speed  
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Figure 4.7: Roundness from medium scanning speed  

 

 

 
Figure 4.8: Roundness from fast scanning speed  
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 The 7 mm/s data set contains frequencies that vary from 1.12 Hz to 13.18 Hz as shown 

in Table 4.1.  This range encompasses the natural frequency of the LVDT which explains 

in part why disturbances appear at this and higher speeds.  In the next chapter on 

modeling, these data are further analyzed in order to provide a means of selecting a 

proper scanning speed.  The data are studied to determine if the disturbances in the data 

begin at this natural frequency. 

 

It is desired to analyze the scan force and the deviations versus angular position for each 

speed in order to determine the correlation between the values.  Since the control system 

attempts to maintain a constant force or deflection, noisy position data should correlate to 

rapidly fluctuating scanning force values.  The force data must be calculated from the 

probe head deflection data which are stored.  This calculation is made as shown in 

Equation 4.6 in the Cartesian coordinate system which is an extension of Equation 4.1.  

According to Leitz, the probe head has a spring constant of 1.8 N/mm.  However, it is 

typical to express the scanning force in grams not Newtons.  For this case, the spring 

constant can be found by dividing by the gravitational acceleration of 9.8 m/s2 according 

to Newton’s second law of motion, and the result is a spring constant of 185 g/mm.  The 

scanning force is calculated from 

 

2
ph

2
ph

2
phscmm zyxkF ++=  (4.6)

 

where 

Fm = scanning force (g), 
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kscm= spring constant (185 g/mm), 

xph = deflection of probe head in x-direction (mm), 

yph = deflection of probe head in y-direction (mm), and 

zph = deflection of probe head in z-direction (mm). 

 

The data is then sorted in order of angular position because sometimes the first data point 

was actually made at 359.99 degrees instead of 0.01 and then plotted.  The calibrated 

waveform for the inside surface of the ring is shown in Figure 4.9 and can be compared 

to the inside scan experimental results shown in Figures 4.10, 4.11, and 4.12.  Figure 4.9 

shows deviations off the final least-squares best fit radius of  76.116036 mm.  Figure 4.10  

shows the experimental results for scanning the ring at 0.5 mm/s with a 200 Hz cut-off 

frequency.   Figure 4.11 shows the experimental results for scanning the ring at 7 mm/s 
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Figure 4.9 Inside calibrated waveform shown as deviations off of best fit radius 
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Figure 4.10: Force and deviations vs. angular position for slow scanning speed 

 

 
Figure 4.11: Force and deviations vs. angular position for medium scanning speed 
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Figure 4.12: Force and deviations vs. angular position for fast scanning speed 

 

with a 200 Hz cut-off frequency.   Figure 4.12 shows the experimental results for 

scanning the ring at 11 mm/s with a 200 Hz cut-off frequency.   It should be noted that 

these figures do not all have the same vertical range.  The range of forces increases from 

1.1 g for 0.5 mm/s, to 3.75 g for 7 mm/s, to 7 g for 11 mm/s.  From these plots, it can also 

be seen that, in general, as the range in force increases, the range of deviations increases 

at the same angular position.  It should also be noted that the force is most constant in the 

areas of longest wavelength where the following is easiest for the control system. Figures 

4.11 and 4.12 also contain information that shows when the speed increases but the 

wavelengths are long enough, the scan can still maintain good following of the 
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waveform.  For this reason, the beginnings and ends of these data sets have a higher 

variation in force without a corresponding increase in range of deviations.   

 

4.5.2. Filtering effects 

The filter used does not affect the scanning force.  However, the filtering effect is evident 

in the roundness plots.  When several roundness plots of scans at the same speed but with 

differing cut-off frequencies are studied, the substantial effects of filtering can be noted.  

Figures 4.13, 4.14, and 4.15 show the effects for a speed of 5 mm/s with cut-off  

frequencies of 2 Hz, 5 Hz, and 10 Hz, respectively.  The resulting forms of the circle for  

 

 
Figure 4.13: Roundness with low frequency cut-off  
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Figure 4.14: Roundness from mid-range cut-off frequency 

 

 
Figure 4.15: Roundness from high cut-off frequency 
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the cases of 2 Hz, 5 Hz, and 10 Hz are 10.1 µm, 10.6 µm, and 10.9 µm respectively.  It 

should be noted from Table 4.1 that the input frequencies for 5 mm/s are 0.8 Hz to 9.42 

Hz.  Therefore, the 2 Hz cut-off frequency filters most of the data while 10 Hz should 

filter almost none of the data.  From Figures 4.13 and 4.14, it can be seen that the high 

frequency portions of the data are being filtered. 
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5. Modeling 

 
This chapter develops empirical models of CMM scanning that aid in the selection of 

scanning parameters.  Methods are given to select parameters that provide the lowest 

achievable measurement uncertainty.  These models must accurately represent the 

performance of scanning as a function of the user-selectable scanning speed and filter 

parameters.  The generated models should be applicable to any scanning CMM and 

should be generated through a set of measurements that could feasibly be conducted in an 

industrial setting.  Each model will function as shown in Figure 5.1.  The inputs to the 

model are the measurements of the ring, the probe head natural frequency, the 

wavelengths of interest, and the allowable uncertainty.  The outputs are the optimum 

scanning parameters to meet the input requirements.  The models contain the data 

analysis routines that analyze the system scanning performance. 

 

Figure 5.1: Schematic of modeling concept 

 
Experimental data from ring 

measurements Refine filter as 
needed 

Filter Model 

Speed Effect
Model 

Scanning 
Parameters 

Probe head natural frequency 

Allowable uncertainty 

Wavelengths of interest 



 81

5.1. Modeling of filtering effects 

The purpose of this model is to characterize the filtering of scanning data.  These digital 

filters are often proprietary and, as described in Chapter 4, must be characterized to 

ensure that no meaningful information is lost due to the effect of the filter which rejects 

certain frequencies.  This model takes the experimental data from the ring experiments 

described in Chapter 4 and quantifies the filter parameters.  A low-pass filter structure is 

assumed based on the application and the desire to filter high frequency noise. 

 

5.1.1. Desired filter parameters to derive 

For the theoretical filter model, a filter transfer function is calculated.  For the digital 

filter, it is desired to specify the filter type, roll-off, stop band, transition band, pass band, 

and ripples [51].  The filter type determines which range of frequencies is in the pass 

band, and allowed to pass, in the stop band, and filtered out, or in the transition band 

where the data is partially passed through the filter.  As the names signify, low-pass 

filters pass frequencies up to some cut-off frequency.  In contrast, high-pass filters only 

allow data above some cut-off frequency to pass.  The roll-off occurs in the transition 

band and quantifies how quickly the data is attenuated when moving from the pass band 

to the stop band.  The roll-off is determined in part by the filter cut-off frequency.  The 

ripples are caused by the imperfect attenuation of the signal in the stop band.  These 

characteristics are shown in Figure 5.2.  It can be seen that for the CMM under test, the 

filter type is a low-pass filter because it allows low frequency signals to pass while 

blocking higher frequencies. 
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Figure 5.2: Filtering parameters 

 

5.1.2. Mathematical methodology for filter modeling  

Filter characterization can be performed in the frequency domain.  As previously 

described, the input frequency seen by the system is found by dividing the scanning 

speed by the wavelength on the ring being scanned.  Therefore, the input frequencies seen 

in this set of experiments varied from a low of 0.08 Hz to a high of 28.25 Hz.  In order to 

transform the data into the frequency domain using MATLABTM [56], a Quindos program 

was written that puts the experimental data into a format that can be used by 

MATLABTM.  Quindos [55] is the geometric data analysis program described in Section 

4.2 that provides a user interface to Leitz CMMs.  The Quindos program is given in 

Appendix 5.  The output is a text file named according to the time of the experimental run 

and containing the angular position of each data point along with the deviations off the 
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best fit circle.  This text file was then the input for the MATLABTM program given in 

Appendix 6. 

 

This MATLABTM program is used to separate the waves in order to see the effect of 

scanning parameters on the measurement of various wavelengths.  Every other zero 

crossing of the wave is assumed to signify the beginning of a new wave. This analysis is 

then verified by superimposing the lines calculated as separating the waves over the 

experimental data as shown in Figure 5.3.  The waves shown in this figure are the 

deviations off the least-squares, best-fit circle for the data. 

 

Figure 5.3 also shows how within each wave, the maximum and minimum deviations are 

found.  The difference between these two values gives the peak-to-valley amplitude of 
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Figure 5.3: Analytical separation of waves and marking of maxima and minima 
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that wave.  According to the calibration, each wave actually has an approximate 10 µm 

peak-to-valley amplitude.  An amplitude ratio is then calculated as the amplitude divided 

by 10.  Therefore, the amplitude ratio will vary from 0 for a wave with an amplitude of 0 

to 1 when the wave has an amplitude of 10 µm.  The wavelength is next calculated as a 

proportion of the circumference.  Finally, the frequency is calculated as the speed divided 

by the wavelength.  Once the frequency has been calculated for each wave, the 

frequencies and their corresponding amplitude ratios are sorted by frequency and plotted. 

Next, the filter cut-off frequency that was input during the selection of the experimental 

data set is plotted along with the theoretical input frequencies present in the data set 

based on the scanning speed.  Sample results are shown in Figures 5.4 and 5.5.   

 

 

 
Figure 5.4: Experimental filtering results – no filtering apparent 
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Figure 5.5: Experimental filtering results – filtering apparent 

 

Using this technique the effects of each filter cut-off frequency are experimentally 

determined.  As shown in Figure 5.4, if the cut-off frequency is beyond the frequency 

content of the data, no filtering occurs, and the amplitude ratio remains constant at 

approximately one.  However, if the filter cut-off frequency is set within the data, then 

filtering occurs as shown in Figure 5.5.  Important characteristics such as the filtering to 

80% of the original amplitude at the cut-off frequency are readily apparent, but a more 

detailed characterization of the filtering parameters is needed.   

  

5.1.3. Theoretical filter modeling results 

A theoretical filter characterization is first conducted.  A filter transfer function in the 

Laplace domain can be calculated according to  
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)s(G
)s(X
)s(Y = , (5.1)

 

where 

Y(s) = output, 

X (s) = input, and 

G (s) = filter transfer function. 

 

This characterization was performed using the MATLABTM System Identification 

Toolbox [56].  The data was input into the toolbox using the program given in Appendix 

7.  The data input is shown in Figure 5.6. 

 

 
Figure 5.6: Input and output data for theoretical filter characterization 
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In the System Identification Toolbox, a process model is selected with certain 

characteristics such as numbers of poles and zeros.  The Toolbox then fits a model to the 

data provided and generates the coefficients for the model.  Some aspects of the filter 

structure can be observed from the filtered data characteristics.  For example, the ripples 

seen in Figure 5.5 in the stop band indicate the presence of small resonances within the 

filter.  Therefore, the filter must be second-order at a minimum.  Additionally, some 

delay inherently exists in the system due to several factors including the time required to 

digitize and process the sampled data.   

 

Through manual iterations on the filter characteristics, the addition of poles and a zero 

were found to bring the model closer to the actual data.  The best model found was one 

with three underdamped poles, a zero, and a time delay.  This filter is given by Equation 

5.2 

 

1+Tz*s 
G(s) = K * --------------------------------- * exp(-Td*s)  

(1+2*Zeta*Tw*s+(Tw*s)^2)(1*Tp3*s) 

(5.2)

where                                                        

K = -1.8381,                                       

Tw = 5.2019,                                        

Zeta = 0.42271,                                       

Tp3 = 105.96,                                        

Td = 22.625, and                                        

Tz = -1.5746. 
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Figure 5.7 shows the model output in gray superimposed over the measured output in 

black.  The model captures the major characteristics of the filter but does not represent it 

perfectly.  It is important to note that this model contains the maximum number of poles 

that can be simulated using this toolbox.  A more accurate representation of the system, 

including the rates of change of the output, likely could be achieved if more poles could 

be included in the simulation.   

 

5.1.4. Digital filter modeling results 

Once the filter has been theoretically characterized, it is desired to find a reasonable 

digital model for the filter.  A digital filter model is needed since the filter is implemented 

 

 
Figure 5.7: Measured and simulated  filter output 
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digitally in the CMM system.  The MATLABTM Signal Processing Toolbox which 

contains a Filter Design and Analysis tool was used to perform this characterization.  The 

theoretical filter that was generated in Section 5.1.3 was used to initialize the model.  The 

MATLABTM digital filter specifications [56] to be selected are shown in Figure 5.8.   

 

The toolbox initializes the model as a low-pass, equiripple finite impulse response (FIR) 

filter.  Next, the filter parameters must be selected in order to match the filter to the data 

shown in Figure 5.5.  The sampling frequency, fs, is calculated according to  

 

if
R⋅⋅

⋅=
π2

vNfs  (5.3)

 

as the number of points, N, measured during the experimental run divided by the  

measurement time.  The measurement time is the circumferential length found from the 

 

Figure 5.8: MATLABTM digital filter specifications 
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inner radius, 
if

R , divided by the scanning speed, v, 

 

where  

N = 23794 points, 

v = 5 mm/s, and 

if
R  = 76.15 mm. 

For scanning the inside of the ring at 5 mm/s, fs is 248.65 Hz. 

 

From a comparison of Figure 5.5 to Figure 5.8, several parameters including the passband 

frequency Fpass, the passband ripple Dpass, the stopband frequency Fstop, and the 

stopband attenuation Dstop were set to the following values: 

 

Fpass = 1.8 Hz 

Dpass = 0.02 units 

Fstop = 5 Hz 

Dstop = 0.25 units. 

 

MATLABTM then designs a digital filter that matches these characteristics.  The 

MATLABTM digital filter design is shown in Figure 5.9, and the pole/zero plot for this 

filter structure is given in Figure 5.10.  The resulting MATLABTM file is given in 

Appendix 8.   
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Figure 5.9: Digital filter design in MATLABTM 
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The minimum order is determined by the Parks McClellan optimal FIR filter order 

estimation method [57] which uses the parameters specified above to estimate the 

required order.  The designed digital FIR filter uses a 72nd order system in a structure 

defined by   

 

∑
=

−⋅=
72

0
)()()(

fn
fffffff ntxnhtY  (5.4)

 

where 

Yf = filter output, 

hf = filter coefficients, 

nf = order of filter, 

xf = sample, and 

tf = time increment. 

 

For digitally sampled systems, each sample is delayed by 1/fs from the previous sample.   

FIR filters use a sum of the current sample and n samples adjacent to the current sample, 

multiplied by n f +1 corresponding filter coefficients to produce a single filtered output 

sample.  For a digital filter of order n f, there are always n f +1 coefficients [58].  The 

designed filter coefficients are given in Table 5.1.   

 

These coefficients are the Fourier series coefficients of the filter frequency response and 

therefore in the time domain represent the time constants of the system [59].  The goal of  
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Table 5.1: Digital filter coefficients 

       #        Value    #      Value    #        Value 
1 -0.096589996 25 0.023927646 49 0.023927646
2 0.002697494 26 0.024989033 50 0.022831088
3 0.002839692 27 0.025972176 51 0.021681455
4 0.003089186 28 0.026895708 52 0.020482488
5 0.003454683 29 0.027728276 53 0.01926881
6 0.003919166 30 0.028502512 54 0.018030774
7 0.004487232 31 0.029153892 55 0.016787373
8 0.005149786 32 0.029824637 56 0.015549787
9 0.005909834 33 0.030308196 57 0.01432036

10 0.00671457 34 0.030584315 58 0.013103488
11 0.007654109 35 0.030918938 59 0.011927152
12 0.008638277 36 0.031041263 60 0.01078181
13 0.009684922 37 0.031131703 61 0.009684922
14 0.01078181 38 0.031041263 62 0.008638277
15 0.011927152 39 0.030918938 63 0.007654109
16 0.013103488 40 0.030584315 64 0.00671457
17 0.01432036 41 0.030308196 65 0.005909834
18 0.015549787 42 0.029824637 66 0.005149786
19 0.016787373 43 0.029153892 67 0.004487232
20 0.018030774 44 0.028502512 68 0.003919166
21 0.01926881 45 0.027728276 69 0.003454683
22 0.020482488 46 0.026895708 70 0.003089186
23 0.021681455 47 0.025972176 71 0.002839692
24 0.022831088 48 0.024989033 72 0.002697494

73 -0.096589996  
 

the Parks McClellan minimization function [56] is to minimize the maximum error 

between the desired and actual filter frequency responses by selecting the optimum 

coefficients.  Since the designed coefficients only vary from a minimum of -0.09659 to a 

maximum of 0.03104, this small variation within an order of magnitude confirms that all 

coefficients are significant.  

 

The designed coefficients are valid for the sampling rate that is used for a scanning speed 

of 5 mm/s.  For a different sampling rate, the coefficients are dynamically re-calculated 

within the CMM controller or retrieved from a look-up table stored within the CMM.     
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Once the digital filter model is determined, the modeled results are compared to the 

experimental results as shown in Figure 5.11.  Figure 5.11 shows good agreement 

between the model and experimental results.  For example, at the cut-off frequency of 3 

Hz, both data sets show an amplitude ratio of 0.8.  The -3 dB level where the amplitude 

ratio is at 0.5 can also be compared.  This level occurs just past 4 Hz for both the 

modeled and experimental results.  The design parameters can also be compared, and the 

Fpass of 1.8 Hz, Dpass of 0.02 units, Fstop of 5 Hz, and Dstop of 0.25 units are all 

observed in the filter model as in the experimental data.  Additionally, the resonances 

occur at frequencies of approximately 7 and 10 Hz.   

 

5.1.5. Use of models to select filter  

The filter must be selected to filter noise and disturbances but not surface data.  If not 

filtering data were the only concern, a high filter cut-off frequency could be set. 
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Figure 5.11: Comparison of digital filter model to experimental filtering results 
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However, as shown in Figure 5.12 for a 2 mm/s scan using a 200 Hz cut-off frequency, 

noise may be present in the data set which should only contain frequencies from 0.32 to 

3.77 Hz.  In Figure 5.12, noise is detected at frequencies in the 33 Hz and 50 Hz bands. 

Therefore, a filter should be selected that filters this noise from the data.  For a speed of 2 

mm/s, a 10 Hz filter filters the noise without filtering the ring surface data.  A comparison 

of the effects of the 10 Hz and 200 Hz filters on this data is seen in Figure 5.13. 

 

Using the methods developed in this section, theoretical and digital models of a 

proprietary CMM filter are developed from the wavy ring experimental data.  These  

models simulate the effects of the filter on any given experimental data set and predict 

whether the surface data and expected noise patterns are filtered.  With this knowledge, 

user selectable filter parameters, such as cut-off frequency, can be appropriately set to 
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Figure 5.12: Experimental data showing noise beyond data range  
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Figure 5.13: Comparison of filtering with different cut-off frequencies  

 

filter out noise but not surface data.  The selected parameters should then be used in the 

experiments for modeling the scanning speed effects. 

 

5.2. Modeling of scanning speed effects 

The purpose of these models is to characterize the effects of scanning speed on 

measurement capability.  Like the filters described previously, the servo loop for CMMs 

is also proprietary, so empirical methods must be used to determine the effects of scan 

speed.   This model takes the experimental data from the ring experiments described in 

Chapter 4 and quantifies the effect of scanning speed. 

 

5.2.1. Modeling objectives  

The objectives of the modeling are to determine the primary sources of disturbances in 

scanning data and to quantify the measurement uncertainty that exists for a given 
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scanning speed.  This information can then be used to select a scanning speed.  A primary 

source of disturbance in the system is the natural frequency of the probe head which 

limits the bandwidth of the servo loop.  When the input frequency equals the natural 

frequency, resonance occurs in the system due to secondary mechanical motions.  This 

motion generates a disturbance that is difficult to distinguish from noise in the 

measurement data.  In this case, the bandwidth of the servo loop has been exceeded 

because the probe can no longer track the surface waves.   

 

This servo loop is shown in Figure 5.14.  Figure 5.14 shows how the initial input to the 

controller is es, the error signal.  This signal is input into the controller which outputs a 

commanded position, u, to the CMM that will take the probe to the proper location based 

on the pre-defined circle path.  The output, yo, is therefore the actual measured position 

which is then converted back into units of force for comparison to the force set point per  

 

 

Figure 5.14: Servo loop 

 

Fd Force 
Controller 

CMM u yo es 

Force 
transformation 
calculation 

F 



 98

Equation 4.6.  The difference between this force and the nominal force, Fd, is used by the 

controller to adjust the commanded data and improve the scanning performance.  When 

the error signal is large, this suggests that the bandwidth has been exceeded.  Data are not 

reported when contact is lost with the surface and the force is outside the acceptable 

range.  Although the servo loop is proprietary and its specifications are unknown, the 

models developed will be used to characterize this servo loop and model scanning 

performance. 

 

5.2.2. Modeling the combined effects of scanning speed and probe head natural 

frequency 

The natural frequency of the probe head in the x-direction was determined in Section 

4.1.5 to be 8.55 Hz.  The data format presented in Figures 5.4 and 5.5 can be used here to 

determine the effect of natural frequency.  The program used to create Figures 5.4 and 5.5 

is given in Appendix 6.  This program is modified to show a vertical line at the location 

of the natural frequency.  Additionally, a horizontal line is plotted at an amplitude ratio of 

1.2.  From Section 5.1.2, the amplitude ratio is defined as the amplitude of a wave 

divided by the nominal amplitude of 10 µm.  A ratio of 1.2 is selected as being significant 

since this represents a 20% disturbance in the signal.  The resonance that occurs at the 

natural frequency is often a source of this disturbance.  

 

In order to separate filtering and natural frequency effects, only experimental sets with 

unfiltered measurement data containing observable natural frequency effects are 

examined and given in Figure 5.15.  It is known that the measurement data in these sets is  
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Figure 5.15: Natural frequency effects in experimental data sets 

 

unfiltered because the cut-off frequency is set higher than the maximum frequency of the 

wave for the scanning speed.  These maximum frequencies can be seen in Table 4.1.   

 

Speeds less than 5 mm/s were eliminated because the natural frequency is not 

encountered at these speeds and therefore has no effect.   At higher speeds, cut-off 

frequencies of 10 Hz or less filter the natural frequency effects and some of the 

measurement data.   

 

For each speed, the experimental data set with a cut-off frequency of 100 Hz was plotted 

as shown in Figure 5.16.  This cut-off frequency was selected because it is the minimum 

cut-off frequency for which no filtering is present for the speeds under consideration.   As  
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Figure 5.16: Combined effect of natural frequency and scanning speed on scanning performance 
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can be seen from Figure 5.16, the amplitude ratio begins increasing without bound when 

the natural frequency is reached at each speed.  An increase in amplitude above one 

indicates that the system response has been dynamically disturbed.  The disturbance in 

the data become significant at the natural frequency or soon thereafter.  Therefore, the 

disturbances exhibited in these experimental data sets are attributable to the natural 

frequency that leads to system vibrations.  This analysis shows that examination of data 

from the wavy ring artifact could also be used to experimentally determine the natural 

frequency of the probe head.   

 

5.2.3. Modeling the effect of scanning speed on measurement uncertainty 

The ISO standard 15530-3 [60] describes an experimental method for determining the 

uncertainty of a measurement using a calibrated artifact.  This is a special case of the 

uncertainty determination method described in Section 2.2.  The basis of this standard is 

that the uncertainty in such a measurement can be found from the difference in the 

measured and calibrated values of the artifact.  Uncertainty sources that must be 

considered include standard uncertainty due to the measurement strategy, up, calibration 

standard uncertainty from the calibration certificate, ucal, and any bias between the 

measured and calibrated values, b.  Additional terms can be added if this method is to be 

extended to provide an uncertainty estimate for workpieces that are very similar to the 

calibrated workpiece.  Equation 5.5 gives the mathematical form of this uncertainty 

evaluation as it is given in 15530-3; namely,  
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buukU pcal ++×= 22  (5.5)
 

where 

U = the expanded measurement uncertainty, 

k = coverage factor determining level of confidence in uncertainty estimate, 

k
Uu cal

cal =  where k is the coverage factor used in the artifact calibration, 

∑
=

−
−

=
N

1

2)(
1N
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i

ip yyu = the standard deviation of measured values, and 

calxyb −=  where y is the average measured value and xcal is the calibrated value. 

 

The above equation is appropriate for measurands which yield a discrete result such as 

the diameter of a circle.  However, this equation is not directly applicable to the 

measurement of the ring for which the measurand is the deviations off of the best fit 

circle because a y  cannot be calculated.  Alternative calculations must be used to 

account for the standard deviation of the measured values.  Based on this measurand, the 

bias should be removed from Equation 5.5 because the bias represents how well the 

radius was measured.  The quality of radius measurement is not included in the 

measurand of deviations off of best fit circle.   

 

The equivalent uncertainty for the wavy ring can be calculated using the following 

procedure.  Each data point consists of the angle of measurement and the deviation from 

the best fit circle for that point.  Each data set is independent and will generate a slightly 
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different radius.  To account for this difference, the data must be referenced to a common 

radius.   

 

The experimental data were collected in two sets in November 2005 and March 2006.  

Temperature compensation was not used, so the temperature difference led to different 

best fit radii.  The average best fit radius in 2005 was 76.3144 mm.  The average best fit 

radius in 2006 was 76.1124 mm.  The calibrated radius was 76.116036 mm.  The data 

were divided by year.  For each year, the data for all experimental sets were re-fit to the 

best fit center and radius of the slowest scan speed.  The re-fit deviations were then added 

to the slow scan speed radius to obtain the surface data for the scanned data.  For the 

calibration data, the calibrated deviations were added to the slow scan speed radius.  

These data transformations were performed in Quindos and are shown in Table 5.2. 

 

Once these data transformations had been performed, the experimental data could be 

directly compared to the calibration data.  Although the nominal angular values are the 

same for each measurement made with the same set of scanning parameters, the actual 

angular value for each measurement will vary.  As an example, the fifth measurement 

 

Table 5.2: Data transformations to unify reference data 

 Calibration data Experimental data 

Scans in 2005 calorislowcal devrr _2005 += 2005_2005exp slowbestfitslow devrr +=

Scans in 2006 calorislowcal devrr _2006 += 2006_2006exp slowbestfitslow devrr +=
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point nominally may be at an angular location of 2 degrees while the measured values 

may be at angles of 1.99 degrees or 2.02 degrees.  Especially at the higher frequencies,  

these slight angular differences could lead to false comparisons of calibrated and 

measured data.  Additionally, there are 26880 calibrated data points compared to 

approximately 23800 measured data points.  Due to these challenges, the measured points 

cannot be directly correlated with calibrated data points.  Instead, a fifth-order 

polynomial is fit through the six nearest calibration points, and the normal distance from 

the measured point to the calibrated spline is calculated as shown in Figure 5.17.  A fifth-

order polynomial was sufficient to generate an accurate representation of the calibrated 

waveform near the measured point without producing a computational burden.  Using  

additional points to generate a higher-order polynomial would not substantially alter the 

curve in the region of interest. 

 

 
Figure 5.17: Graphical representation of the error between measured and calibrated values 
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This normal distance is the error between the measured and calibrated values and is 

stored.  The MATLABTM program used to perform these calculations is given in 

Appendix 9.  These calculations were performed for each speed tested using the lowest 

filter cut-off frequency at each speed that would not filter out actual data as determined in 

Section 5.1.  The cut-off frequencies used were 5 Hz for speeds of 0.5 and 1 mm/s, 10 Hz 

for speeds from 2 to 4.5 mm/s, and 100 Hz for speeds of 5 mm/s and greater.  For 0.5 

mm/s, 5 Hz was used instead of 3 Hz because this data set was better centered which 

required less data processing.  Additionally, data analysis confirmed that the 5 Hz data is 

not noisier than the 3 Hz data. 

 

The errors can then be plotted versus angular position as shown in Figure 5.18.  This 

figure shows that the highest errors occur at the shortest wavelengths around 90 and 270  
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degrees.  The longer wavelength regions near 0, 180, and 360 degrees show smaller 

errors.  A histogram of these errors can then be created as shown in Figure 5.19, and the 

standard deviation of the error data calculated from this data.  This histogram shows a 

Gaussian distribution of data, from which a standard deviation can be easily calculated.   

 

It should also be noted that the bias which is being ignored in this analysis is represented 

by the distance of the highest peak from zero.  The bias is ignored because the measurand 

for the experimental scans is a roundness instead of a profile measurement.  The ring 

could be used to analyze profile measurements, in which case the bias would be included. 

The deviations measurand makes this analysis applicable to roundness machines as well 

as CMMs. 
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Figure 5.19: Histogram of errors showing standard deviation and bias 
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Since the bias is no longer included in the uncertainty calculation, U can be calculated by  

 

22
pcal uukU +×= . (5.6)

 

However, the equation for up must be modified since y  cannot be calculated.  The 

modified equation for up is then the standard deviation of the error values as found from 

Equation 5.7; namely, 

 

∑
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N
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where 

N = total number of data points in experimental data set and 

ei = normal distance between scanned point i and calibrated spline. 

 

One or two standard deviations are equivalent to a coverage factor of k=1 or k=2, 

respectively.  The denominator is changed to N, which is equal to the number of 

measured points, since the entire population of data instead of a sample is being used.  

The geometric interpretation of this uncertainty source remains unchanged from that in 

Equation 5.5.  This term accounts for how closely all the values are clustered. 

 

Since no averaging is done on the actual data in this calculation, repeated measurements 

of the ring with a given set of parameters are not required in order to generate a first-
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order estimate of the uncertainty.  However, good measurement practice would be to 

repeat the experiment until the histogram converges.  Mathematically, this means to add 

data until the standard deviation converges within an acceptable tolerance.   

 

The uncertainty calculation is then conducted for each experimental data set, and an 

uncertainty for that speed determined.  The results of this procedure are shown in Figure 

5.20.  As expected, the uncertainty increases with increasing speed.  At slow speeds the 

uncertainty is under 0.001 mm.  The uncertainty begins increasing once the natural 

frequency of the x-axis of the probe head is encountered during the scan, which occurs at 

speeds of 5 mm/s and greater.  This region is noted as the region where resonance is  

possible on Figure 5.20.  The large increase in uncertainty by an order of magnitude at 

speeds above 8 mm/s should be noted.  This figure can be used to determine appropriate 

 

 
Figure 5.20: Uncertainty versus speed 

No resonance Resonance 
possible 
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operating speeds when wavelengths that encompass the range of the wavy ring must be 

measured. 

 

The method described above is equally valid for determining a single uncertainty value 

for the measurement of the entire frequency spectrum of the ring or for establishing 

uncertainty bands for subsets of the waveform.  This concept can therefore also be used 

to plot how the uncertainty varies over the range of frequencies within a single 

experiment.  Figure 5.21 illustrates this concept and shows how the data are divided 

into four uncertainty bands.  Each band contains approximately the same number of 

wavelengths.  The bands contain the following wavelengths: 0.5-0.75mm, 0.75-1mm, 1-2 

 

 

 

Figure 5.21: Uncertainty bands 
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mm, and 2-6 mm as shown by the horizontal lines in Figure 5.21.  The angular divisions 

for each of these bands are shown by the vertical lines.   

 

The errors for a given experimental data set can then be separated by band and plotted as 

shown in Figure 5.22.  Although each speed was represented by a single uncertainty 

value in Figure 5.20, Figure 5.22 illustrates that the uncertainty at a given speed varies  

with wavelength.  Measurements at the shorter wavelengths have a higher uncertainty.  

This figure allows an operator to determine whether a given speed is appropriate for 

measuring a subset of the wavelengths on the wavy ring. 

 

A plot similar to Figure 5.22 is generated for each speed.  These plots can then be 

combined into a plot such as that in Figure 5.23 that shows how the uncertainty increases 

 

 

Figure 5.22: Uncertainty bands for a single speed 
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Figure 5.23: 3-D plot of uncertainty vs. wavelength and all scanning speeds 

 

with increasing speed.  The 3-D plot highlights the uncertainty bands present at each 

speed.  From Figure 5.23, it is very clear that the region of peak uncertainty should be 

avoided.  These high uncertainties occur at speeds of 9-11 mm/s.  This plot can be used to 

determine that while these speeds may be acceptable for measuring long wavelengths, 

they are not suitable for short wavelength measurements. 

 

The variations in uncertainty in the apparently almost planar region are dwarfed by the 

large uncertainties at the higher speeds.  Therefore, the speeds from 0.5-8 mm/s are re-

plotted in Figure 5.24.  This figure shows the variation in uncertainty at these slower 

speeds.  This figure can be used to select the highest speed that can be used to measure  

the wavelengths of interest with a given uncertainty.  For example, if wavelengths down 
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Figure 5.24: 3-D plot of uncertainty vs. wavelength and slower speeds 

 

to 1 mm are of interest and the maximum uncertainty allowable, as determined by the 

metrologist, is 1 micrometer, then a maximum speed of 7 mm/s should be used. 

 

5.2.4. Use of models to select scanning speed 

The developed models provide a means for understanding the effect of scanning speed on 

measurement uncertainty for a given experimental set-up.  The information in Figure 5.23 

can be used to select the maximum scanning speed that provides the desired level of 

uncertainty.  The desired measurement uncertainty is typically selected based on the 

tolerance of the measurement.  This analysis shows how the ring can be used to 

experimentally determine the optimum scanning speed for a CMM system. 
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5.3. Experimental plan for scanning parameter selection 

Using the techniques developed in this chapter, an appropriate scanning speed and filter 

cut-off frequency can be selected based on the desired measurement uncertainty and the 

wavelengths of interest.  An experimental plan that would accomplish this task is 

summarized in the following steps: 

 

1. Determine expected wavelength range of surface content from either expert 

opinion, point to point measurements, or very slow scan of surface. 

2. Calculate probe head natural frequency in direction of interest as described in 

Section 4.1.5.  Using this information and the minimum wavelength of interest 

selected in Step 1, determine maximum speed that will avoid natural frequency 

using Equation 4.5. 

3. Characterize filter using techniques in Section 5.1. 

4. Select filter that will not filter data at maximum speed but will filter system noise. 

5. Determine maximum acceptable level of uncertainty. 

6. Measure ring at increasing speeds up to the maximum allowable speed or to 

maximum speed before probe begins losing contact with surface.  Use the slow 

speed scan data as reference data. 

7. Calculate maximum speed that will provide desired uncertainty over wavelength 

range of interest using method described in Section 5.2. 

8. Refine filter cut-off by selecting the lowest cut-off filter that will not filter data (to 

filter out higher frequency noise sources) at the selected speed. 
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6. Contributions and Future Work 

 

6.1. Contributions 

A number of fundamental contributions to the understanding of scanning CMM 

operations have been achieved. These include the following contributions that extend the 

capabilities of CMMs to measure surface texture with optimal speeds and low 

uncertainties: 

1. A method for calibrating a wavy artifact is developed.  This method includes the 

definition of the appropriate measurand and a calibration procedure.  The 

measurand of deviations off the best fit circle allows for the scanning effects to 

dominate the measurement instead of CMM geometry errors. 

2. An experimental procedure is developed that minimizes the scanning parameters 

that must be varied and isolates the key effects of speed and filtering.  Algorithms 

and data analysis techniques that capture the scanning performance are developed. 

3. Models of scanning operations focusing on filtering and speed effects are 

developed.  These models are used to quantify scanning performance and the 

interaction of the probe and workpiece.  Specifically, the filtering model is used to 

select a filter that filters the system noise but not the surface data at a given speed.   

The scanning speed model can be used to select a scanning speed that provides 

the fastest measurement for a given level of uncertainty.  This quantifies the 

operating limits of the CMM in order to achieve the desired uncertainty. 
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4. A method for calculating the measurement uncertainty of a CMM making form 

measurements over a range of wavelengths is developed.  This capability could 

reduce the number of inspection platforms on which a workpiece would need to 

be measured.  A reduction in inspection platforms needed reduces both inspection 

costs and time. 

5. A method for minimizing measurement uncertainty through the selection of 

optimum scanning parameters such as probe tip diameter, scanning speed, filter, 

and probing force is developed. 

6. An understanding of the physics of the scanning probe and how these 

characteristics must drive scanning parameter selection is achieved.  Specifically, 

the effect of the natural frequency on scanning performance is characterized. 

7. A framework for future simulation of scanning is created.  The models and 

methods developed in this work can be extended and built upon to model other 

aspects of CMM scanning operations. 

8. A method for performance evaluation of CMMs used in scanning mode is created.  

The tests developed here could be incorporated into future standards that would 

allow users to select a CMM that would be most appropriate for their scanning 

application. 

9. A method for evaluating whether an inspection platform can accurately measure 

the surface texture requirements specified on an engineering drawing is 

developed.   
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6.2. Future work 

Many opportunities exist for further work in the area of modeling CMM scanning.  

Future work could: 

1. Develop theoretical models that capture the information in the empirical models 

presented here so that decisions on scanning parameters would not be dependent 

on experimental techniques.  This would require modeling the probe and CMM 

controller.  Additionally, a model of the interaction of the probe tip with the 

surface would be required. 

2. Develop performance tests that are sensitive to scanning error sources.  The 

models presented here could be incorporated into performance tests in standards 

to quantify performance with respect to scanning parameters such as scanning 

speed.  The testing described in this dissertation would need to be simplified and 

condensed to a few key tests that would yield similar information.  These models 

would provide the metrologist with much more information about a system’s 

scanning capabilities than can be derived from the current international standard 

for scanning, ISO 10360-4, which was described in Section 2.3.2. 

3. Determine how 2-D or 3-D scanning measurements would be affected by the 

different natural frequencies in the 2 or 3 axes used.  In this dissertation only one 

axis of the probe head was used during scanning.  Therefore, it was possible to 

avoid the natural frequency of this axis.  This concept could be extended to the 

more general case of 3-D scanning.  This case would also include errors generated 

by bulk machine motion and geometry errors. 
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4. Create an optimization framework that would select a variety of scanning 

parameters to optimize a measurement.  This dissertation has described how 

scanning speed and filters should be selected.  Other components of the 

optimization framework could determine the measurement strategy including the 

optimum workpiece orientation and scanning paths to minimize measurement 

uncertainty. 

5. Develop active probes or nano-scale probes that could be used in scanning 

applications.  Probe characterization could be based on the concepts presented in 

this dissertation. 

6. Improve the servo control of the system based on the insight provided by the 

models developed here.  This information could be used to improve the force 

control algorithms and filters used in the system. 
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Appendix 1: Angular locations of calibration points 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %               Angular locations of calibration points for ring 
% %               Pamela Murray 
% %               Last updated: 9/15/06 
% %    cal_spacing_dissertation.m 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
  
%NC State ring waveform 
A=0.005 ;%starting signal amplitude (mm) 
R=152.4/2; %inner radius in mm 
L=(R*2)*pi/4; %length of one quadrant 
f=10; %base frequency 
d=200; %linear modulation parameter 
N=36000; %total number of points in ring 
  
n=N/4;  % number of points per section  
res=L/n; % spatial resolution 
t1=0:res:L-res; % vector of distance samples 
  
su = A*sin(2*pi/(L+00)*  t1 .*(d/L.*  t1 +f)); %low to high freq sweep 
sd = -A*sin(2*pi/(L+00)*(L-t1).*(d/L.*(L-t1)+f)); %high to low freq 
sweep 
t = [t1 t1+L t1+2*L t1+3*L]; % concatenate to form swept wave for ring 
theta=(t/R)*180/pi; %convert to angles 
s = [su sd su sd];  
  
% Calculate the number of waves around the ring 
%"sign" has a +1 in the increment if the wave is positive there, 0 if 
it is 
%0, and a -1 if the wave is negative in that increment 
for i=1:N 
if s(i)<0 
    sign(i)=-1; 
else if s(i)==0 
        sign(i)=0; 
    else sign(i)=1; 
    end 
end 
end 
  
%"change" contains a 1 in each of the N-1 increments where the sign 
%changes - this is where a 0 crossing occurs 
for i=1:N-1 
    if sign(i)<=0  
        if sign(i+1)>0 
            change(i)=1; 
        else change(i)=0; 
        end 
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    else if sign(i)>0 
            if sign(i+1)<=0 
                    change(i)=1; 
            else change(i)=0; 
            end 
    end 
end 
end 
  
%"index" contains the indices that contain 0 crossings 
%Note: these are the indices that contain a 1 in "change" 
index=0; 
for i=1:N-1 
    if change(i)==1 
        index=[index i]; 
    end 
end 
length_index=length(index); 
index=index(2:length_index); 
  
%"lines" contains the indices that separate waves 
%Note: every other zero crossing separates waves 
lines=0; 
for i=1:2:length(index) 
    lines=[lines index(i)]; 
end 
length_lines=length(lines); 
lines=lines(2:length_lines); 
lines=[lines N]; 
  
%Calculate the angles for calib. so each wave has 2^n points 
a=(length(lines)-1)/4; %a=number of waves per quadrant 
%fprintf('The ring has %g waves in one quadrant.\n',a) 
  
%Find theta increments for su 
n=5; %will give 2^n points/wave 
  
%for su 
for i=1:(a*(2^n)) 
    increment=(i-1)/(2^n); 
    p=[d f*L -increment*(L^2)]; 
    r=roots(p); 
    pos=r>=0; 
    tup(i)=r(pos); 
    %thetaup(i)=(tup(i)/R)*(180/pi); %in degrees 
end 
%plot(tup,'.') 
%plot(thetaup) 
  
%low to high freq sampled sweep 
sunew=A*sin(2*pi/(L+00)*  tup .*(d/L.*  tup +f));  
  
%for sd 
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for i=2:(a*(2^n)+1) 
    increment=(i-1)/(2^n); 
    p=[d f*L -increment*(L^2)]; 
    r=roots(p); 
    pos=r>=0; 
    tdown(i-1)=L-r(pos); 
end 
tdown=fliplr(tdown);  
  
tnew = [tup tdown+L tup+2*L tdown+3*L]; %length locations for 
calibration 
thetanew=(tnew/R)*180/pi; %these are the radial locations that should 
be probed in the calibration 
  
  
%put thetanew in text file 
fid = fopen('thetas32.txt','w'); 
fprintf(fid,'%3.6f\n',[thetanew]); 
fclose(fid); 
  
%create clearance points angles (space half way between prb) 
j=0; 
for i=1:length(thetanew) 
    otheta(i+j)=thetanew(i); 
    j=j+1; 
end 
for i=1:(length(thetanew)-1) 
    otheta(2*i)=thetanew(i)+(thetanew(i+1)-thetanew(i))/2; 
end 
  
fid = fopen('othetas32.txt','w'); 
fprintf(fid,'%3.6f\n',[otheta]); 
fclose(fid); 
  
%plot calibration density on wave 
figure(1) 
hold on 
%plot wave 
%plot(theta,s) 
plot(t1,su,tup,sunew,'b.') 
title('Sample Location vs. Angular Position') 
xlabel('Angular Position (deg)') 
ylabel('Deviation (mm)') 
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Appendix 2: Ring calibration program 
  

IO2NIST.WDB 
************************************************************************
****** 
 *                                                                              * 
 *                        P R O G R A M   -  L I S T I N G                      * 
 *                                                                              * 
 
************************************************************************
******** 
   
 LOAD 
 OPEN C:\IO2NIST.TXT, D1 
 LISTING , D1 
 !*****Ring 2 Calibration Program*** 
 !******************************* 
 !Setup 
 GOTO      1000 
 !Probe and rotary table calibration 
 GOTO      2000 
 !Establish coordinate systems 
 GOTO      3000 
 !Measure 
 GOTO      (LAB=4000) 
 !******************************* 
 !Setup 
 1000:CONTIN 
 !Setup instructions provided in "Setup for wavy ring measurements" 3/7/06 
 !Read all slides before beginning 
  !Check for equipment listed on slide 2 
 !Define and use parameter set for M48 (if needed) 
 STOP 
 DFNCMM 
 USECMM 
  
 !******************************* 
 !Probe and rotary table calibration 
 2000:CONTIN 
 !***PROBE CALIBRATION 
  DSBRTMOV 
  DSBRTCSY 
 !Mount 5/8 inch calibration sphere as shown on slide 4 
 !edit value below if using different cal sphere 
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 DFNNOR    (VAL=0.625*25.4) 
 !Confirm that probe is configured as shown in Slide 3 
 !Install probe so that .4 dia tip points in machine +x as shown on Slide 4 
 !Take CLP and PRB with 3mm tip for REFPRB.  
 REFPRB , , , , , , , -3.8*25.4, , 3, , PRB(1), , , , , , , , , , , , Y, , , , 2 
 !Execute PRB(2) calibration - NPTs are there. 
 CALSPH PRB(2), .402, , , , , , , 3, , 0, 0 
 LISPRB LDBPRB:PRB(1) 
 LISPRB LDBPRB:PRB(2) 
  
 !Rotary table calibration (slide 5) 
 !Follow all notes in help text 
 USEPRB PRB(1) 
 ENBRTMOV 
!**edit dia of rot table cal sphere as needed*** 
AUTRTCSY  (NRP=(0,45,90,135,180,225,270,315), DIA=.75*25.4, PSP=2, SAF=2) 
STOP 
ENBRTCSY 
!********************************** 
!Establish coordinate systems 
3000:CONTIN 
  
!Orient, center, and fixture ring as shown in slides 6 and 7 
!Let epoxy cure for 45 minutes before beginning manual set-up 
  
!Manual coordinate system 
~DEL=YY 
USECSY REFR$CSY 
!Measure 3 points w/ PRB(1) on top of ring with CLP before the first (Slide 8) 
USEPRB    (NAM=PRB(1)) 
MEPLA     MAN_PLA, , REFR$CSY, , (NOE), , , , , , , , , , , , , , , , ~DEL 
!Measure 3 points w/PRB(1) on smooth circle on inside of ring (Slides 9 and 10) 
MECIR MAN_CIR, , REFR$CSY, REFR$CSY.$XY, (NOE), , , , , , , , , , , , , , , , ~D 
          <  EL 
!Measure 4 points w/ PRB(1) in 1/4 inch bore  closest to notch (Slide 11) 
!This is the bore marked with 2 on top 
MECIR     MAN_CIR_SM, , REFR$CSY, REFR$CSY.$XY, (NOE), , , , , , , , , , , , , , 
          <   , , ~DEL 
COLPTS    MAN_AXI, REFR$CSY, Y, (MAN_CIR,MAN_CIR_SM) 
!Calculate axis through center of circle and center of bore 
MEAXIXY   MAN_AXI, , REFR$CSY, , (NOM,NOE) 
!Build coordinate system 
BLDCSY    CSY(1), , REFR$CSY, MAN_PLA, +Z, , MAN_AXI, +X, , MAN_CIR, , 
MAN_CIR,  
          <  , MAN_PLA 
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USECSY    CSY(1) 
STOP 
!Move probe above ring (slide 12) 
EDTTXT HEADER 
  
!*******************AUTOMATIC MEASURE SECTION**************** 
!Do not begin until epoxy has cured for a minimum of 2 hours 
4000:CONTIN 
!Measure per slide 13 
INDPRC AUTO_RUN 
SAVE , , , , , , , C:\IO2NIST.WDB 
STOP 
!Check for files per slide 14 
!Take photos per slide 15 
 
AUTO_RUN Procedure 
!**AUTO START HERE 
!**AUTO START HERE 
!**AUTO START HERE 
!Automatic coordinate systems 
USEPRB PRB(1) 
ENBRTMOV 
ENBRTCSY 
USECMM SLOWER_A 
USECSY CSY(1) 
  
GENCIR AUTO_PLA, 0, 0, 0, 160, 17, XY, P, 0, 360, 3, CSY(1), , , , 25 
MEPLA     (NAM=AUTO_PLA, CSY=CSY(1)) 
MOVCMM    (RTP=0, DST=(0,0,15)) 
GENCIR AUTO_CIR, 0, 0, -4, 152.251, 17, XY, I, 0, 360, 3, CSY(1), , , , 25 
MECIRXY   (NAM=AUTO_CIR, CSY=CSY(1)) 
MEPNT KLEER(1), , CSY(1), , (NOC,NOE) 
GENCIR AUTO_CIR_SM, 89.2, 0, -4, 7, 6, XY, I, 0, 360, 5, CSY(1), , , , 15, , 0 
MECIRXY   (NAM=AUTO_CIR_SM, CSY=CSY(1)) 
COLPTS    (NAM=AUTO_AXI, CSY=CSY(1), ELE=(AUTO_CIR,AUTO_CIR_SM)) 
 MEAXIXY   (NAM=AUTO_AXI, CSY=CSY(1), MOD=(NOM,NOE)) 
 MOVCMM    (RTP=0, DST=(0,0,15)) 
 !Build cartesian csy 
 BLDCSY CSY(2), , CSY(1), AUTO_PLA, +Z, , AUTO_AXI, +X, , AUTO_CIR, , 
AUTO_CIR, , AUTO_PLA 
  
 !Build cylindrical csy 
 BLDCSY CSY(3), CYL, CSY(1), AUTO_PLA, +Z, , AUTO_AXI, +X, , AUTO_CIR, , 
AUTO_CIR, , AUTO_PLA 
 USECSY    (NAM=CSY(3)) 
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   !STOP 
  
 !***************************** 
 4000:CONTIN 
 !Measure inside 
 !Select small probe and coordinate system 
 USECSY    (NAM=CSY(3)) 
 USEPRB    (NAM=PRB(2)) 
 MOVCMM    (RTP=0, TYP=ABS, DST=(0,0,100)) 
  
 !Find beginning of wave 
 !GENCIR STARTER, , , -10, 152.25, 200, , , 0, 25, .4, CSY(3), , , , 25, , , , , , 180 
 !MECIR STARTER, , CSY(3) 
 !EDTNPT STARTER 
 ! 
 !SSSSSSSSSSSSS 
 !From analysis of data, the 0 location is at 4.2743 degrees 
 !Rotate csy by 4.2743 degrees 
 !  ring 1 
 !BLDTRA ROT_ANGLE, , 0, 0, 0, 4.274303, Z 
 !  ring 2 
  
 BLDTRA ROT_ANGLE, , 0, 0, 0, 8.79741, Z 
 TRACSY CSY(4), ROT_ANGLE, CSY(3) 
 USECSY CSY(4) 
  
 !Generate probing points in theta4 element 
 !CNVFIL C:\QDSCMM\IN32.TXT, ELE 
 !EDTNPT IN32 
 !GENPTS IN32, 1, 99999, 1, I, 152.2/2, , X, , ALT 
 !GENPTS IN32, 1, 99999, 1, I, -12.5, , Z, , ALT 
 !GENPTS IN32, 1, 99999, 1, I, 180-Y$VAL, , R, , ALT 
 !  ring 1 
 !GENPTS IN32, 1, 99999, 1, I, R$VAL-4.2743, , R, , ALT 
 !  ring 2 
 !GENPTS IN32, 1, 99999, 1, I, R$VAL-8.79741, , R, , ALT 
 !EDTNPT IN32 
 !GENPTS IN32, 1, 99999, 1, I, 1, , U, , ALT 
 !GENPTS IN32, 1, 99999, 1, I, 180+Y$VAL, , V, , ALT 
!GENPTS IN32, 1, 99999, 1, I, 0, , W, , ALT 
 !DO I, 1, 99999, 1 
 !PUTSTR , IN32.NOM.PTS(I), T, ELE, , , 'PRB' 
 !ENDDO 
  
 FMTTIME IN32START, , MM/DD/YYYY  hh:mm 
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 MECIRXY IN32, , CSY(4) 
 FMTTIME IN32STOP, , MM/DD/YYYY  hh:mm 
  
 !**!WRITE TO FILE*** 
   !CVMSKTXT CHSMSK, PM$CHSTT 
   !CVMSKTXT APTMSK, PM$APTTT 
   !EDTTXT APTMSK 
   ! EDTTXT CHSMSK 
   !CNVTXT APTMSK 
   ! CNVTXT CHSMSK 
   !EDTAPT CIR(1) 
   !DELNPT CIR(1), N 
 !**WRITE APTS TO FILE*** 
 OPEN IN2NIST.TXT, D1, , , , * 
  LISTXT HEADER, D1 
  LISCHS    (MSK=CHSMSK,NAM=CHS:IN32*(), DEV=D1) 
  LISAPT    (MSK=APTMSK,NAM=IN32, DEV=D1, HDR=1) 
 CLOSE , D1 
  
 SAVE I2NIST 
 !STOP 
 DELAPT IN32, N 
 !EDTNPT IN32 
 !STOP 
  
 !**MOVE TO OC*** 
 MOVCMM , 0, ABS, (0,0,100) 
 MOVCMM , 0, ABS, (200,0,100) 
 MOVCMM , 0, ABS, (200,0,50) 
 MOVCMM , 0, ABS, (150,0,-12.5) 
  
 !******MEASURE OUTSIDE 
 !Select small probe and coordinate system 
 !USECSY    (NAM=CSY(3)) 
 !USEPRB    (NAM=PRB(2)) 
 !manually measure od to find dia 
 !MECIR OCIR, , CSY(3) 
 !Find beginning of wave 
 !GENCIR OSTARTER, , , -10, 207, 200, , O, 0, 25, .4, CSY(3), , , , 25, , , , , , 0 
 !MECIR OSTARTER, , CSY(3) 
 !SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
 !From analysis of data, the 0 location is at 6.6549 degrees 
 !Rotate csy by 6.6549 degrees 
 !Rotate csy by 10.4604 degrees 
 BLDTRA    (NAM=OROT_ANGLE, SHX=0, SHY=0, SHZ=0, ANG=10.4604, AXI=Z) 
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 !SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
 TRACSY CSY(5), OROT_ANGLE, CSY(3) 
 USECSY CSY(5) 
  
!CNVFIL C:\QDSCMM\OUT32.TXT, ELE 
 !EDTNPT OUT32 
 !DO I, 1, 99999, 2 
 !PUTVAL , OUT32.NOM.PTS(I), X, , , 101.65 
 !ENDDO 
 !DO I, 2, 99999, 2 
 !PUTVAL , OUT32.NOM.PTS(I), X, , , 102.15 
 !ENDDO 
 !GENPTS OUT32, 1, 99999, 1, I, -12.5, , Z, , ALT 
 !GENPTS OUT32, 1, 99999, 1, I, -Y$VAL, , R, , ALT 
 !SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
 !GENPTS OUT32, 1, 99999, 1, I, R$VAL-10.4604, , R, , ALT 
 !EDTNPT OUT32 
 !SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
 !GENPTS OUT32, 1, 99999, 1, I, 1, , U, , ALT 
 !GENPTS OUT32, 1, 99999, 1, I, Y$VAL, , V, , ALT 
 !GENPTS OUT32, 1, 99999, 1, I, 0, , W, , ALT 
 !EDTNPT OUT32 
 !DO I, 1, 99999, 2 
 ! PUTSTR , OUT32.NOM.PTS(I), T, ELE, , , 'PRB' 
 !ENDDO 
 !DO I, 2, 99999, 2 
 ! PUTSTR , OUT32.NOM.PTS(I), T, ELE, , , 'CLP' 
 !ENDDO 
  
  
 FMTTIME OUT32START, , MM/DD/YYYY  hh:mm 
 MECIRXY OUT32, , CSY(5) 
 FMTTIME OUT32STOP, , MM/DD/YYYY  hh:mm 
  
 OPEN OUT2NIST.TXT, D1, , , , * 
  LISTXT HEADER, D1 
  LISCHS    (MSK=CHSMSK,NAM=CHS:OUT32*(), DEV=D1) 
  LISAPT    (MSK=APTMSK,NAM=OUT32, DEV=D1, HDR=1) 
 CLOSE , D1 
 SAVE O2NIST 
  
 MOVCMM , , DLT, 20 
 MOVCMM , 0, ABS, (140,0,-10) 
 MOVCMM , 0, ABS, (140,0,100) 
   DELAPT LDBELE:*(), N 



 134

   DELCSY LDBCSY:*(), N 
   DELREA LDBREA:*(), N 
   DELCHS LDBCHS:*(), N 
  
  
 !END AUTO HERE 
 !END AUTO HERE 
 !END AUTO HERE 
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Appendix 3: Ring calibration report 

R E P O R T   O F   C A L I B R A T I O N 

N I S T  Test No.  821/273679-06 
Amended: January 31, 2007 

 
For: (1) Wavy Ring CMM Artifact                                                                                          
Page 1 of 6 
Serial Number: 2 
 

             
            

This wavy ring CMM artifact has been measured using an error-mapped coordinate measuring 
machine in combination with a precision rotary table. The CMM is housed in a constant humidity 
measurement environment where room temperature is controlled to 20.00 ± 0.05 º C. Historical 
measurement processes employ several parts. The artifact is measured multiple times in a specific 
table location to generate short-term repeatability data and to sample artifact geometry and surface 
finish effects. NIST control standards are also measured concurrently to develop statistical long-
term reproducibility data for the measurement system. The artifact was mounted to the rotary table 
with three raised feet and using a light application of epoxy. No restrictive or clamping devices 
were used. The average artifact temperature during the measurements was 20.008 º C. The 
measurand results are reported at the temperature of 20.000 º C. 
 
 

 

                                    
Figure 1.                                                                     Figure 2. 

 
The measurand is defined as the deviations from the best fit circle applied to the data collected 
using the QUINDOS programs and probe configuration provided and supplied by the customer. 
Accuracy of the program’s function is the responsibility of the customer. Figure 1 shows the setup 
of the artifact on the CMM table and the orientation of the probe head. The results are supplied to 
the customer on the computer CD with the M8638 data label shown in Figure 2 and signed by a 
signatory of this report. This written report does not contain results within its pages.  
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Report continued, page 2 of 6 
NIST Test No. 821/273679-06 
Group Control No. M8638 Amended 
Amended: January 31, 2007 
 
 
The best fit radius for the inside surface measurement of the artifact is 76.11564 millimeters.** 
The best fit radius for the outside surface measurement of the artifact is 101.71266 millimeters.** 
 
These values are corrected for pressure fluctuations and closure related errors and represent the 
least squares average of the data collected at each surface. 
 
The uncertainty of this measurement result was calculated according to NIST Technical Note 
1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results," 
and the ISO document “Guide to the Expression of Uncertainty in Measurement”, considered to be 
parts of this report. The expanded uncertainty, U,  using a coverage factor of k = 2, is  ± 0.382 µm. 
A detailed error budget is included in the following pages. 
 
This report shall not be reproduced except in full without the written approval of the Engineering 
Metrology Group. 

 
Measurements made by ____________________________________________ (301) 975-3468. 

          John R. Stoup 
 
                                                                         For the Director, 
                                                      National Institute of Standards and Technology 
 
 
                                                                  Dr. Theodore D. Doiron, Group Leader 
                                                                  Engineering Metrology Group 
                                                                   Precision Engineering Division 
                                                                   Manufacturing Engineering Laboratory 
 
Purchase Order No. 4300050772 
Group Control No. M8638 
Date: June 26, 2006 
 
 
 
** The original reported values were corrected for an error in the 
environmental compensation   calculations. New data was also added to the 
CD files as requested by the client. 
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Report continued, page 3 of 6 
NIST Test No. 821/273679-06 
Group Control No. M8638 Amended 

Uncertainty budget for M48 1D & 2D Calibrations 
1.  Machine Positional and Scale Uncertainty 

The external calibration laser and on-machine laser scales were set to the same 
wavelength compensation number.  The only sources of error in the machine map are the 
reproducibility of the map, index of refraction difference between the two laser paths, 
difference in laser frequencies and interpolation errors between measured points of the 
map. 
 
Along the X and Y axes, the positional and scale uncertainty is assessed by analyzing the 
error map of positional errors as measured by gridplate and ballplate rotation 
assessments. The historical average standard deviation of the positional errors is about 
0.040 µm. The zerodur double corner cube artifact yielded 0.042 µm which was used for 
this analysis. This also includes the variations due to the probe form error that is sampled 
during the artifact rotation and repositioning. 
 
The temperature difference between the two beams is quite small.  In fact the temperature 
difference between any points near the table is less than 0.02 °C, giving an associated 
error of 0.02 µm/m. Taking this as the half width of a rectangular distribution we get a 
standard uncertainty of 0.01 µm/m.  The atmospheric pressure difference between the 
two beams, about 100 mm apart in height, is negligible. 
 
The vacuum laser frequencies were the same to a few parts in 10-8 .  We have taken 2 x 
10-8 as an estimate of the standard uncertainty from this source.  The error map 
smoothness is quite good and linear interpolation between the measured points, 25 mm 
apart, is indistinguishable from the map reproducibility cited above. 
 

2.  Control Artifacts and Historical Length Dependent Reproducibility 
We have measured gages on the same machine for over 5 years and have both check 
standard data (over 200 calibrations of 900 mm, 20 inch steel gage blocks and a 42 inch 
Zerodur end standard) as well as multiple calibrations of check standard ring and plug 
gages.  Analysis of the check standard data show the reproducibility (1σ) level is 0.040 
µm + 0.040 x 10-6 L. The A term is already counted in line 1 of the budget. We will 
include the calibration history of the primary measurement spheres used by the CMM to 
determine the probe diameter. The historical standard uncertainty of these spheres is 
0.008 µm. These terms also include the probing repeatability. 
 

3.  Wavelength Compensation 
The wavelength compensation has two parts.  First the current wavelength is calculated 
from the atmospheric pressure, temperature and humidity using stand alone monitors and 
loaded into the  
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Report continued, page 4 of 6 
NIST Test No. 821/273679-06 
Group Control No. M8638 Amended 
 
computer.  During the run, the wavelength compensation is updated using internal 
recalculations and re-measurements of the environmental components.  The sources of 
error are therefore: the Edlén Equation to convert pressure, temperature and humidity to 
wavelength correction, and the uncertainty in pressure, temperature and humidity used in 
the equation.  The old Edlén equation was estimated to have a systematic error of about 5 
x 10-8.  The new equation based on the refractometry of air work at NPL is stated to be 
accurate to about 3 x 10-8. 
 
Since the environmental sensors have had multiple calibrations during the time span of 
the check standards and customer histories, the variability due to these sensors will 
eventually be adequately sampled in the reproducibility data.  Currently, however, we 
have less than 10 recalibrations of the temperature, pressure, and humidity instruments 
that make up the weather station.  The thermometer calibration history shows the 
thermistors “as found” condition at calibration to have a standard deviation of 0.006 ºC.  
Using this and the dependence of the refractive index on the temperature we get a 
standard length uncertainty of 6 x 10-9.  The standard uncertainty in pressure, derived 
from the “as found” condition on calibration over the last two years, of 10 Pa gives a 
length uncertainty of 3 x 10-8, and the humidity uncertainty of 4% gives a length 
uncertainty of 4 x 10-8. 
 

4.  Thermal Expansion Correction 
There are two sources of uncertainty associated with thermal expansion: the uncertainty 
in the thermometer measurement and the uncertainty in the value of the thermal 
expansion coefficient.  The system uses thermocouples referenced to a calibrated SPRT.  
The uncertainty in this system has been tested by measurements against other calibrated 
SPRTs.  The standard uncertainty from these comparisons is estimated to be 2 mK.  
Multiple thermometers are placed on or in each artifact.  Temperature differences along 
artifacts are generally under 4 mK, and corrections are applied for larger differences. The 
uncertainty in the thermal expansion coefficient of the artifact depends on the artifact.  
For steel artifacts of unknown origins we will take the uncertainty to be 1x10-7 /°C.  The 
uncertainty in the length measurement due to temperature and CTE effects is less than 
2x10-9 /°C 
 

5.  Contact Deformation 
Since the probe is calibrated using a steel sphere the deformation is only the same for the 
master sphere and the artifact when the materials match.  The deformation can be 
calculated using the formula of Puttock and Thwaite (CSIRO Report, 1967).  The 
deformation of a sphere-sphere contact has been calculated independently at NIST, and 
checked experimentally. No statistically significant differences have been found between 
experimental and theoretical results. For steel artifacts, this results in a standard 
uncertainty of 0.005 µm. 
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Report continued, page 5 of 6 
NIST Test No. 821/273679-06 
Group Control No. M8638 Amended 
 
 

6.  Atmospheric Pressure Fluctuations During Data Collection  
The coordinate measuring machine can not make intermediate corrections to the 
wavelength in air while it is executing measurement commands. For very long data 
collection routines, this can allow drift in the environmental conditions to affect the 
quality of the collected data if the laser beam deadpath is long. This type of effect from 
humidity and temperature drifts can be negligible for these laboratories; however air 
pressure drifts must be corrected due to the impact on the wavelength. For the 
measurement of this wavy ring artifact, the data collection required several days of 
continuous measurement during which the air pressure changes could not be corrected. 
Independent monitoring of the air pressure developed a 6th order polynomial correction 
curve to be applied to the finished results. Deviations from this curve were never more 
than 200 Pascals for either the internal or external surface data collection. Using an 
average laser beam deadpath of 500mm and a rectangularily distributed error, this 
equates to a standard uncertainty due to uncorrected pressure fluctuations of  0.150 µm. 
 

7. Closure Error for 360 Degree Rotational Data Sets  
For long data collection routines, there can be positional drift of the rotary table and 
coordinate measuring machine coordinate systems. Under normal operating conditions 
over 12 hour spans of time, these drifts rarely exceed 0.100 µm to 0.150 µm. Historical 
analyses of larger drifts indicate that a linear approximation is usually a satisfactory 
estimate if the drifts exceed 0.250 µm. This is usually indicative of a disturbance in the 
thermal equilibrium of the machine environment. A range of ± 0.150 µm is estimated as 
the deviation from the linear function fitted to these larger drifts. Using the rectangular 
distribution estimate, the standard uncertainty of this source is estimated to be ± 0.087 
µm. 
 

8. Rotary Table Error  
The precision rotary table used on the M48 CMM has three errors sources associated with 
its rotary positioning function. The table has a ± 0.040 µm cyclical error that appears to 
have 400 cycles per revolution. This is most likely related to the mechanism used for 
precisely rotating and then stopping the table motion. In addition to this, a large 
frequency rotational error of  ± 0.100 µm has been observed through measurements of a 
primary hemisphere standard of known roundness. These errors are not accurately 
mapped at this time so there effects will be estimated using rectangularily distributed 
errors within these described ranges. The combination of these errors gives a standard 
uncertainty of 0.062 µm. The table also has a radial positioning accuracy of 
approximately ± 0.5 sec. when traveling along one direction. The highest radial position 
sensitivity on the wavy ring is about 0.050 µm/arcsec. These combine to give a worst 
case length error of ± 0.025 µm. 
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Report continued, page 6 of 6 
NIST Test No. 821/273679-06 
Group Control No. M8638 Amended 
 

ERROR BUDGET CALCULATION 
In order to present an uncertainty statement of the form (A+BL) we calculate the 
uncertainty for short artifacts by summing the squares of the length independent sources 
and take the square root to be (A).  We then sum all of the sources using L as 1 meter and 
take the square root to be (A+B) and solve for B.  This procedure overestimates the 
uncertainty for the intermediate lengths slightly, but is necessary if we are to have a linear 
uncertainty statement. For the case of the wavy ring, we did not make a standard two-
point measurement, therefore the length dependent term does not apply. 

 

Wavy Ring Uncertainty Budget (L is in meters) 

Factor
# Source µm ppm 

1a Machine Positioning Uncertainty 
 

0.042 
 
 

1b Temperature difference in beam 
paths during calibration   

0.01 
1c Laser Frequency Difference 

 
 

 
0.02 

2 Mastering Artifact and Historical 
Length Dependent Performance 

 
0.008 

 
0.04 

3a Edlén Equation 
 
 

 
0.03 

3b Index of Refraction – Air 
Temperature 

 
 

 
0.01 

3c Index of Refraction - Air Pressure 
 
 

 
0.03 

3d Index of Refraction – Humidity 
 
 

 
0.04 

4a Thermal Expansion 
 
 

 
0.05 

4b Coefficient of Thermal Expansion  0.05 
5 Deformation Corrections 0.005  
6 Pressure Fluctuation Corrections 0.150  
7 Closure Error 0.087  
8a Rotary Table Error 0.062  

8b  Length Error from Radial 
Positioning Uncertainty 0.025  

 Total Standard Uncertainty, uc 
(k = 1) 0.191 0.10*L 

 
 

U   (µm) = 0.382 µm             ( k = 2 ) 
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Appendix 4: Experimental scanning program 
************************************************************************
******** 
*                                                                              * 
*                        P R O G R A M   -  L I S T I N G                      * 
*                                                                              * 
 
************************************************************************
******* 
  
  
!*****Ring Measurement Program*** 
 !******************************* 
 !Setup 
 GOTO 1000 
 !Probe calibration 
 GOTO 2000 
 !Establish coordinate systems 
 GOTO 3000 
 !Measure inside 
 GOTO 4000 
 !Plot 
 GOTO 4500 
 !Measure outside 
 GOTO 5000 
 !Calculate surface points 
 GOTO 6000 
 !******************************* 
 !Setup 
 1000: CONTIN 
 INSKWD 
 DELCMM    GDBCMM:SAVE$CMM, N 
 DELCMM    LDBCMM:SAVE$CMM, N 
 DELCMM    EDBCMM:SAVE$CMM, N 
 !Create new parameter set 
 CRECMPAR  (NAM=GDBCMM:SAVE$CMM, IPA=LFPS) 
 AUTZER   
 !PMGMGCSY 
 USEMGCSY  (NAM=GDBCSY:MG$CSY) 
 !Select magazine position of probe in head. -1=no probe in head 
 SETMAGA   (MGZ=001) 
 SETMAGA   (MGZ=201) 
 SETMAGA   (MGZ=-1) 
 DFNNOR    (VAL=29.9932) 
 !Check scanning parameters 
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 TSCMCO    (OPR=READ, TXT=INIFILE, CMD='SHOW INIFILE') 
 TSCMCO    (OPR=READ, TXT=CONF, CMD='SHOW CONFIG') 
 EDTTXT    (NAM=INIFILE) 
 EDTTXT    (NAM=CONF) 
  
 !******************************* 
 !Probe calibration 
 2000: CONTIN 
 ~DEL=Y 
 REFPRB_P  (XOF=0, YOF=0, ZOF=-80, DIA=5, PRB=PRB(1), MGZ=001, 
DEL=~DEL, SNT=TRX, DFT=3) 
!PTODEV    (STR='ENABLE CMPARAM', DEV=CM) 
 !Change probing offset: distance along normal to offset off surf before probing 
 !for probe calibration 
 PTODEV    (STR='PRBLPA ,,2', DEV=CM) 
 !PTODEV    (STR='DISABLE CMPARAM', DEV=CM) 
 !Calibrate probes 2 and 3 
 ~DEL05=N 
 CALSPH    (NAM=PRB(2), DIA=.5, DFT=2, MGZ=201, AZI=180, ELV=-45, 
SNT=TRX, DEL=~DEL05, UAD=Y) 
 MOVCMM    (TYP=DLT, DST=(0,0,100)) 
 CALSPH    (NAM=PRB(3), DIA=1, DFT=2, MGZ=101, AZI=180, ELV=-45, 
ANG=(30,0,0), SNT=TRX, DEL=~DEL05, UAD=Y) 
 MOVCMM    (TYP=DLT, DST=(0,0,100)) 
 !Reset offset back to .5 
 !PTODEV    (STR='ENABLE CMPARAM', DEV=CM) 
 PTODEV    (STR='PRBLPA ,,0.5', DEV=CM) 
 !PTODEV    (STR='DISABLE CMPARAM', DEV=CM) 
 STOP   
 USEPRB    (NAM=PRB(1)) 
 USECSY    (NAM=REFR$CSY) 
 !MOVCMM    (RTP=0, TYP=ABS, DST=(400,400,300)) 
 AUTRTCSY  (DIA=29.9932, SAF=1, DEL=Y) 
 USERTCSY 
 ENBRTMOV   
 MOVCMM    (RTP=0, DST=(0,0,200)) 
 STOP   
  
 !***************** MANUAL CSY ***************** 
 !Establish coordinate systems 
 3000: CONTIN 
 ~DEL=NN 
 ~DEL=YY 
 !top of ring 
 MEPLA     (NAM=MAN_PLA, CSY=REFR$CSY, MOD=(NOE), DEL=~DEL) 
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 !smooth circle on inside 
 MECIR     (NAM=MAN_CIR, CSY=REFR$CSY, PRO=REFR$CSY.$XY, 
MOD=(NOE), DEL=~DEL) 
 !top counter bore  
 MECIR     (NAM=MAN_CIR_SM, CSY=REFR$CSY, PRO=REFR$CSY.$XY, 
MOD=(NOE), DEL=~DEL) 
 COLPTS    (NAM=MAN_AXI, CSY=REFR$CSY, DEL=Y, 
ELE=(MAN_CIR,MAN_CIR_SM)) 
 !Axis through center of circle and center of counterbore 
 MEAXIXY   (NAM=MAN_AXI, CSY=REFR$CSY, MOD=(NOM,NOE)) 
 BLDCSY    (NAM=CSY(1), REF=REFR$CSY, SPA=MAN_PLA, SDR=+Z, 
PLA=MAN_AXI, PDR=+X, XZE=MAN_CIR, YZE=MAN_CIR, ZZE=MAN_PLA) 
 USECSY    (NAM=CSY(1)) 
 LISCSY CSY(1) 
 !***************** AUTO   CSY  **************** 
  
 GENCIR    (NAM=AUTO_PLA, XCO=0, YCO=0, ZCO=0, DIA=160, NPT=12, 
PLA=XY, INO=P, MIP=0, MXP=360, PDI=3, CSY=CSY(1), ZVL=25) 
 MEPLA     (NAM=AUTO_PLA, CSY=CSY(1)) 
 MOVCMM , 0, , (0,0,15) 
 GENCIR    (NAM=AUTO_CIR, XCO=0, YCO=0, ZCO=-4, DIA=152.251, NPT=12, 
PLA=XY, INO= I, MIP=0, MXP=360, PDI=3, CSY=CSY(1), ZVL=25) 
 MECIRXY   (NAM=AUTO_CIR, CSY=CSY(1)) 
 GENCIR    (NAM=AUTO_CIR_SM, XCO=89.2, YCO=0, ZCO=-4, DIA=13.646, 
NPT=6, PLA=XY, INO=I, MIP=0, MXP=360, PDI=5, CSY=CSY(1), ZVL=15, RTP=0) 
 MECIRXY   (NAM=AUTO_CIR_SM, CSY=CSY(1)) 
 COLPTS    (NAM=AUTO_AXI, CSY=CSY(1), ELE=(AUTO_CIR,AUTO_CIR_SM)) 
 MEAXIXY   (NAM=AUTO_AXI, CSY=CSY(1), MOD=(NOM,NOE)) 
 TRAOBJ    (NEW=AUTO_AXI, OLD=AUTO_AXI, ANG=71.15, AXI=Z, 
REF=CSY(1)) 
  
 !Build cartesian csy 
 BLDCSY    (NAM=CSY(2), REF=CSY(1), SPA=AUTO_PLA, SDR=+Z, 
PLA=AUTO_AXI, PDR=+X, XZE=AUTO_CIR, YZE=AUTO_CIR, 
ZZE=AUTO_PLA) 
  
 MOVCMM    (RTP=0, DST=(0,0,15)) 
 !Build cylindrical csy 
 BLDCSY    (NAM=CSY(3), TYP=CYL, REF=CSY(1), SPA=AUTO_PLA, SDR=+Z, 
PLA=AUTO_AXI, PDR=+X, XZE=AUTO_CIR, YZE=AUTO_CIR, 
ZZE=AUTO_PLA) 
  
 STOP 
 USECSY CSY(3) 
 !***************Measure inside********* 
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 4000: CONTIN 
 !Select probe 
 USECSY CSY(2) 
 USEPRB    (NAM=PRB(2)) 
 MOVCMM    (RTP=0, TYP=ABS, DST=(0,0,100)) 
 PTODEV    (STR='COFREQ 100', DEV=CM) 
  
 !Modify PDI for probe selected 
 GENSCACIR (NAM=CIR(1), PLA=XY, INO=I, TYP=CIR, XCO=0, YCO=0, ZCO=-
12.5, DIA=152. 25, DNS=50, SPD=11, PDI=0.5, MIP=0, MXP=360, DEL=Y, 
CSY=CSY(2)) 
 !GENSCACIR , CIR(1), XY, I, CIR, 0, 0, -12.5, 152.25, 50, 2, , 0.5, 0, 360, , Y, , , , 
CSY(3) 
 PUTVALS   (OBJ=CIR(1).NOM.PTS(2), RDS=R, VAL=180-71.15) 
 PUTVALS   (OBJ=CIR(1).NOM.PTS(3), RDS=R, VAL=178-71.15) 
 TRAELE    (NEW=CIR(1), TRA=CSY(3), OLD=CIR(1), TYP=CSY) 
 EDTNPT CIR(1) 
 CPYOBJ    (FRM=CIR(1), TO =CIR_NKOFI(1), TYP=ELE) 
 MECIRXY   (NAM=CIR(1), CSY=CSY(3), MOD=(NOC,NOE)) 
 CPYOBJ    (FRM=CIR(1), TO =DVMOUT(1)) 
 !just calc and eval 
 MECIRXY   (NAM=CIR(1), CSY=CSY(3), MOD=NOM) 
 !"No filter" 
 PTODEV    (STR='COFREQ 200', DEV=CM) 
  
 !use noc, noe so will still have dvm (head deflections) in vector columns 
 MECIRXY   (NAM=CIR_NKOFI(1), CSY=CSY(3), MOD=(NOC,NOE)) 
  
 !Analyze data 
 PTODEV    (STR='COFREQ 100', DEV=CM) 
 CPYOBJ    (FRM=CIR_NKOFI(1), TO =DVMOUT_NKOFI(1)) 
 MECIRXY   (NAM=CIR_NKOFI(1), CSY=CSY(3), MOD=NOM) 
  
 !translate to cartesian coords for plotting 
 TRAELE    (NEW=XY_CIR(1), TRA=CSY(2), OLD=CIR(1), TYP=CSY) 
 TRAELE    (NEW=XY_CIR_NKOFI(1), TRA=CSY(2), OLD=CIR_NKOFI(1), 
TYP=CSY) 
 MECIRXY   (NAM=XY_CIR(1), CSY=CSY(2), MOD=NOM) 
 MECIRXY   (NAM=XY_CIR_NKOFI(1), CSY=CSY(2), MOD=NOM) 
!Copy force data to different element for data analysis 
 CPYOBJ  (FRM=DVMOUT(1), TO =XY_(1)) 
 CPYOBJ  (FRM=DVMOUT_NKOFI(1), TO =XY_NK(1)) 
 !find number of scan points (j) in a calculated element 
 GETVAL    (NAM=CIR_PTS(1), OBJ=CIR(1), DSC=j) 
 GETVAL    (NAM=CIRNK_PTS(1), OBJ=CIR_NKOFI(1), DSC=j) 
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 !modify points in dvm element to add point numbers into field D 
 GENPTS    (NAM=XY_(1), BGN=1, END=CIR_PTS(1), DLT=1, VNA=I, FUN=I, 
DSC=D, TYP=APT, MOD=ALT) 
 !CPYOBJ XY_(1), XY_MM(1) 
 !Convert deflection to grams 
 !SFM=Spring force multiplier=conversion from mm to g 
 !MTK4 has spring constant of 1.8N/mm 
 SFM=185 
 GENPTS    (NAM=XY_(1), BGN=1, END=CIR_PTS(1), DLT=1, VNA=I, 
FUN=SFM*FSQR(U$VAL*U$VAL+V$VAL*V$VAL+W$VAL*W$VAL), DEL=N, 
DSC=A, TYP=APT, MOD=ALT) 
 !GENPTS XY_MM(1), 1, CIR_PTS(1), 1, I, 
FSQR(U$VAL*U$VAL+V$VAL*V$VAL+W$VAL*W$VAL), N, A, APT, ALT 
 GENPTS    (NAM=XY_NK(1), BGN=1, END=CIRNK_PTS(1), DLT=1, VNA=I, 
FUN=I, DSC=D, TYP=APT, MOD=ALT) 
 GENPTS    (NAM=XY_NK(1), BGN=1, END=CIRNK_PTS(1), DLT=1, VNA=I, 
FUN=SFM*FSQR(U$VAL*U$VAL+V$VAL*V$VAL+W$VAL*W$VAL), DEL=N, 
DSC=A, TYP=APT, MOD=ALT) 
 !Sort points in increasing angular order to improve plotting 
 SRTAPT    (NAM=CIR(1), ORI=CIR(1), CRI=Y) 
 SRTAPT    (NAM=XY_(1), ORI=XY_(1), CRI=Y) 
 !SRTAPT XY_MM(1), XY_MM(1), Y 
 SRTAPT    (NAM=CIR_NKOFI(1), ORI=CIR_NKOFI(1), CRI=Y) 
 SRTAPT    (NAM=XY_NK(1), ORI=XY_NK(1), CRI=Y) 
 STOP 
  
 !*******************Plot*************** 
 !Circular plot of data 
 !to do: fix no. pts. and inspector, date, and time on plot 
 RNDNES_P  (ELE=XY_CIR(1), OPN=N, FAC=1000) 
 RNDNES_P  (ELE=XY_CIR_NKOFI(1), OPN=N, FAC=1000) 
  
 4500: CONTIN 
 !Strip plot of data 
 !Describe plot 
 ~DESCRIPTION='filtered RT scan of inside with .5mm probe' 
 ~DESCRIPTION='unfiltered RT scan of inside with .5mm probe' 
 !Select scan data to plot 
 ~SCAN_DATA=CIR(1) 
 ~SCAN_DATA=CIR_NKOFI(1) 
 ~SCAN_DATA=OCIR(2) 
 ~SCAN_DATA=OCIR_NKOFI(2) 
 !Select force data to plot 
 ~FORCE_DATA=XY_(1) 
 ~FORCE_DATA=XY_NK(1) 
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 ~FORCE_DATA=OXY_(2) 
 ~FORCE_DATA=OXY_NK(2) 
 !Plot all data 
 INDPRC PLOT_ALL 
 !Select range of data to plot 
 MINANG=80 
MAXANG=100 
 INDPRC PLOT_PART 
  
 !Return to outside measurement section 
 GOTO 5500 
  
 !Complete inside measurement section 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\CIR(1).TXT, NAM=CIR(1), TYP=ELE) 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\CIR_NKOFI(1).TXT, 
NAM=CIR_NKOFI(1), TYP=ELE) 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\DVMOUT(1).TXT, NAM=DVMOUT(1), 
TYP=ELE) 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\DVMOUT_NKOFI(1).TXT, 
NAM=DVMOUT_NKOFI(1), TYP=ELE) 
 STOP 
 SAVE      (SCB=Y, FIL=C:\QUINDOS6LIB\RING\RING.WDB) 
 DELAPT ELE:*(), N 
  
 !******************OUTSIDE****************** 
 5000:CONTIN 
 !Select probe 
 USEPRB    (NAM=PRB(2)) 
 MOVCMM    (RTP=0, TYP=ABS, DST=(0,0,100)) 
 MOVCMM    (RTP=0, TYP=ABS, DST=(200,0,100)) 
 USECSY    (NAM=CSY(2)) 
 PTODEV    (STR='COFREQ 5', DEV=CM) 
  
 !Modify PDI in GENSCACIR for probe tip size 
 GENSCACIR (NAM=OCIR(2), PLA=XY, INO=O, TYP=CIR, XCO=0, YCO=0, 
ZCO=-12.5, DIA=203.5, DNS=50, SPD=3.5, PDI=0.5, MIP=0, MXP=360, DEL=Y, 
CSY=CSY(2)) 
 PUTVALS   (OBJ=OCIR(2).NOM.PTS(2), RDS=R, VAL=360-71.15) 
 PUTVALS   (OBJ=OCIR(2).NOM.PTS(3), RDS=R, VAL=358-71.15) 
 !PUTVALS OCIR(2).NOM.PTS(3), , R, 358 
 TRAELE    (NEW=OCIR(2), TRA=CSY(3), OLD=OCIR(2), TYP=CSY) 
 EDTNPT    (NAM=OCIR(2)) 
 CPYOBJ    (FRM=OCIR(2), TO =OCIR_NKOFI(2), TYP=ELE) 
 MECIRXY   (NAM=OCIR(2), CSY=CSY(3), MOD=(NOC,NOE)) 
 CPYOBJ    (FRM=OCIR(2), TO =ODVMOUT(2)) 
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 !calc and eval 
 MECIRXY   (NAM=OCIR(2), CSY=CSY(3), MOD=NOM) 
 PTODEV    (STR='COFREQ 200', DEV=CM) 
 MECIRXY   (NAM=OCIR_NKOFI(2), CSY=CSY(3), MOD=(NOC,NOE)) 
  
 !Data analysis 
 !switching back to filtered 
 PTODEV    (STR='COFREQ 5', DEV=CM) 
 CPYOBJ    (FRM=OCIR_NKOFI(2), TO =ODVMOUT_NKOFI(2)) 
 MECIRXY   (NAM=OCIR_NKOFI(2), CSY=CSY(3), MOD=NOM) 
 TRAELE    (NEW=OXY_CIR(2), TRA=CSY(2), OLD=OCIR(2), TYP=CSY) 
 TRAELE    (NEW=OXY_CIR_NKOFI(2), TRA=CSY(2), OLD=OCIR_NKOFI(2), 
TYP=CSY) 
 !re-calc in Cartesian csy 
 MECIRXY   (NAM=OXY_CIR(2), CSY=CSY(2), MOD=NOM) 
 MECIRXY   (NAM=OXY_CIR_NKOFI(2), CSY=CSY(2), MOD=NOM) 
 !Copy data to different element for data analysis 
 CPYOBJ    (FRM=ODVMOUT(2), TO =OXY_(2)) 
 CPYOBJ    (FRM=ODVMOUT_NKOFI(2), TO =OXY_NK(2)) 
 !find number of points (j) in a calculated element 
GETVAL    (NAM=OCIR_PTS(2), OBJ=OCIR(2), DSC=j) 
GETVAL    (NAM=OCIRNK_PTS(2), OBJ=OCIR_NKOFI(2), DSC=j) 
 !modify points in dvm element to add point numbers into field D 
 !and Convert deflection to grams 
 !SFM=Spring force multiplier=conversion from mm to g 
 !MTK4 has spring constant of 1.8N/mm 
 SFM=185 
 GENPTS    (NAM=OXY_(2), BGN=1, END=OCIR_PTS(2), DLT=1, VNA=I, FUN=I, 
DSC=D, TYP=APT, MOD=ALT) 
 GENPTS    (NAM=OXY_(2), BGN=1, END=OCIR_PTS(2), DLT=1, VNA=I, 
FUN=SFM*FSQR(U$VAL*U$VAL+V$VAL*V$VAL+W$VAL*W$VAL), DEL=N, 
DSC=A, TYP=APT, MOD=ALT) 
 GENPTS    (NAM=OXY_NK(2), BGN=1, END=OCIRNK_PTS(2), DLT=1, VNA=I, 
FUN=I, DSC=D, TYP=APT, MOD=ALT) 
 GENPTS    (NAM=OXY_NK(2), BGN=1, END=OCIRNK_PTS(2), DLT=1, VNA=I, 
FUN=SFM*FSQR(U$VAL*U$VAL+V$VAL*V$VAL+W$VAL*W$VAL), DEL=N, 
DSC=A, TYP=APT, MOD=ALT) 
 !Sort points in increasing angular order to improve plotting 
 SRTAPT    (NAM=OCIR(2), ORI=OCIR(2), CRI=Y) 
 SRTAPT    (NAM=OXY_(2), ORI=OXY_(2), CRI=Y) 
 SRTAPT    (NAM=OCIR_NKOFI(2), ORI=OCIR_NKOFI(2), CRI=Y) 
 SRTAPT    (NAM=OXY_NK(2), ORI=OXY_NK(2), CRI=Y) 
  
 STOP 
 !Plot roundness charts 
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 CONDEVPL 
 RNDNES_P  (ELE=OXY_CIR(2), FAC=2000) 
 RNDNES_P  (ELE=OXY_CIR_NKOFI(2), FAC=2000) 
 CUTDEVPL 
 !Go to strip chart plotting section 
 GOTO 4500 
 !Return from strip chart plotting section 
 5500: CONTIN 
 !Clean-up, clean-up 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\OCIR(2).TXT, NAM=OCIR(2), 
TYP=ELE) 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\OCIR_NKOFI(2).TXT, 
NAM=OCIR_NKOFI(2), TYP=ELE ) 
FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\ODVMOUT(2).TXT, 
NAM=ODVMOUT(2), TYP=ELE) 
 FMTOBJ    (FIL=C:\QUINDOS6LIB\RING\ODVMOUT_NKOFI(2).TXT, 
NAM=ODVMOUT_NKOFI(2), TYP=ELE) 
 STOP 
 SAVE      (SCB=Y, FIL=C:\QUINDOS6LIB\RING\RING.WDB) 
 DELAPT    (NAM=ELE:*(), CNF=N) 
  
 !****************Find surface points********* 
 6000:CONTIN 
 !Put probe radius in deviation field 
 GETVALS   (OBJ=XY_CIR(2), RDS=j, REA=NUM_PTS) 
 GENPTS    (NAM=XY_CIR(2), BGN=1, END=NUM_PTS, DLT=1, VNA=A, FUN=-
.25, DEL=N, DSC=A, TYP=APT, MOD=FUN) 
 !shift along normal vector by deviation 
 SHFPTS    (SRC=XY_CIR(2), DST=XY_CIR(9), STY=APT, MOD=DVI) 
 !Verify shfpts command 
 EDTAPT    (NAM=XY_CIR(2)) 
 EDTAPT    (NAM=XY_CIR(9)) 
 !Develop mask 
CVMSKTXT  (TXT=TESTMASK, MSK=PM$APTTT) 
 EDTTXT    (NAM=TESTMASK) 
 CNVTXT    (NAM=TESTMASK) 
 LISAPT    (NAM=XY_CIR(9),MSK=XYZ_ONLY) 
 OPEN      (FIL=D:\INSIDE_DATA.TXT, DEV=D1, DCH=*) 
 LISAPT    (NAM=XY_CIR(9), DEV=D1, MSK=XYZ_ONLY) 
 CLOSE     (DEV=D1) 
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Appendix 5: Format data for MATLAB analysis 
!*********************************************************************** 
!****FILTERAPTS.WDB***** 
!****Program to put APTs in correct format for MATLAB analysis of filter***** 
 !****Gives 2 columns of data: 1st=angular position, 2nd=deviations from circle 
 !****Input: date of files of interest 
 !****Output 2 text files containg APTs for scans with and w/o cut-off filter 
 !****Pamela Murray 3/10/06 
 *********************************************************************** 
 !Create mask (first time only) 
 !CVMSKTXT APTMSK, PM$APTTT 
 !EDTTXT APTMSK 
 !CNVTXT APTMSK 
 0001: CONTIN 
 STOP 
 !Edit date information for files of interest 
 ~YEAR=2006 
 ~MONTH=03 
 ~DAY=02 
 ~TIME=1351 
 !Hit gold-execute for the correct side 
 !Measured inside 
 GOTO 2000  
 !Measured outside 
 GOTO 3000 
  
 !*********************************************** 
 !Inside measurement section 
 2000: CONTIN 
 CONCAT ~DATE, (~YEAR,~MONTH,~DAY,~TIME), 1 
 !This works as long as there is only one .wdb in the folder 
 CONCAT ~LOADFILE, 
('\\YCFS1\DIMENSIONAL$\NCSTATE_RING\RING_DATA\',~DATE,'\*.WDB'), 1 
 LOAD , TDBELE:CIR(1), , , , , N, ~LOADFILE 
 LOAD , TDBELE:CIR_NKOFI(1), , , , , N, ~LOADFILE 
 CONCAT ~SAVECO, ('C:\MATLAB701\WORK\RING\',~DATE,'CO.TXT'), 1 
 CONCAT ~SAVENCO, ('C:\MATLAB701\WORK\RING\',~DATE,'NCO.TXT'), 1 
 !Save APTs to files in correct format - select based on in/outside 
 OPEN ~SAVECO, D1, , , , * 
 LISAPT CIR(1), D1, , , APTMSK 
 CLOSE , D1 
 OPEN ~SAVENCO, D1, , , , * 
 LISAPT CIR_NKOFI(1), D1, , , APTMSK 
 CLOSE , D1 
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 !delete elements and strings to prepare for running with next data set 
 DELELE CIR(1), N 
 DELELE CIR_NKOFI(1), N 
 DELCHS ~DATE, N 
 DELCHS ~LOADFILE, N 
 DELCHS ~SAVECO, N 
 DELCHS ~SAVENCO, N 
 GOTO 0001 
  
 !Meausred outside 
 3000: CONTIN 
 CONCAT ~DATE, (~YEAR,~MONTH,~DAY,~TIME), 1 
 !This works as long as there is only one .wdb in the folder 
 CONCAT ~LOADFILE, 
('\\YCFS1\DIMENSIONAL$\NCSTATE_RING\RING_DATA\',~DATE,'\*.WDB'), 1 
 !if measured outside 
 LOAD , TDBELE:OCIR(2), , , , , N, ~LOADFILE 
 LOAD , TDBELE:OCIR_NKOFI(2), , , , , N, ~LOADFILE 
 CONCAT ~SAVECO, ('C:\MATLAB701\WORK\RING\',~DATE,'CO.TXT'), 1 
 CONCAT ~SAVENCO, ('C:\MATLAB701\WORK\RING\',~DATE,'NCO.TXT'), 1 
 !Save APTs to files in correct format - select based on in/outside 
 OPEN ~SAVECO, D1, , , , * 
 LISAPT OCIR(2), D1, , , APTMSK 
 CLOSE , D1 
 OPEN ~SAVENCO, D1, , , , * 
 LISAPT OCIR_NKOFI(2), D1, , , APTMSK 
 CLOSE , D1 
 !delete elements and strings to prepare for running with next data set 
 DELELE OCIR(2), N 
 DELELE OCIR_NKOFI(2), N 
 DELCHS ~DATE, N 
 DELCHS ~LOADFILE, N 
 DELCHS ~SAVECO, N 
 DELCHS ~SAVENCO, N 
 GOTO 0001 
  
 SAVE , , , , , , , \\TECHDEV2\TECHDEV\PM5\PROJECTS\UNIV_RELATIONS\ 
NCSU\FILTERAPTS.WDB 
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Appendix 6: Amplitude ratio vs. frequency 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %               filter_definition.m: Filter Analysis  
% %               Pamela Murray 
% %               Last updated: 3/14/06 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
A=0.005 ;%starting signal amplitude (mm) 
R=152.3/2; %inner radius in mm 
L=(R*2)*pi/4; %length of one quadrant 
%terms to generate wave taken from NCSU selected to give wavelengths of 
%interest (.2mm to 2 mm) and so waveforms match up approximately 
f=10; %base frequency 
d=200; %linear modulation parameter 
N=40000; %total number of points in ring 
n=N/4;  % number of points per section  
res=L/n; % spatial resolution 
t1=0:res:L-res; % vector of distance samples 
% generate low to high sweep 
su = A*sin(2*pi/(L+00)*  t1 .*(d/L.*  t1 +f)); 
% generate high to low frequencey sweep 
sd = -A*sin(2*pi/(L+00)*(L-t1).*(d/L.*(L-t1)+f)); 
% concatenate sequences to form swept wave for ring 
t = [t1 t1+L t1+2*L t1+3*L]; 
theor_theta=(t/(2*R))*360/pi; 
theor_s = [su sd su sd]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Edit data below to evaluate experimental results 
year='2006'; 
month='03'; 
day='23'; 
time='1339'; 
side='Inside'; 
speed=11; %mm/s 
filter='NCO'; %CO or NCO 
cof=200; %Hz 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
date=strcat(year,month,day,time); 
file=strcat(date,filter); 
path=strcat('c:\MATLAB701\work\ring\',file,'.txt'); 
D=importdata(path); 
theta=D(:,1); 
s=D(:,2); 
N=length(s); 
  
%"sign" has a +1 in the increment if the wave is positive there, 0 if 
it is 
%0, and a -1 if the wave is negative in that increment 
for i=1:N 
if s(i)<0 
    sign(i)=-1; 
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else if s(i)==0 
        sign(i)=0; 
    else sign(i)=1; 
    end 
end 
end 
  
%"change" contains a 1 in each of the N-1 increements where the sign 
%changes - this is where a 0 crossing occurs 
for i=1:N-1 
    if sign(i)<=0  
        if sign(i+1)>0 
            change(i)=1; 
        else change(i)=0; 
        end 
    else if sign(i)>0 
            if sign(i+1)<=0 
                    change(i)=1; 
            else change(i)=0; 
            end 
    end 
end 
end 
  
%"index" contains the indices that contain 0 crossings 
%Note: these are the indices that contain a 1 in "change" 
index=0; 
for i=1:N-1 
    if change(i)==1 
        index=[index i]; 
    end 
end 
length_index=length(index); 
index=index(2:length_index); 
  
%"lines" contains the indices that separate waves 
%Note: every other zero crossing separates waves 
lines=0; 
for i=1:2:length(index) 
    lines=[lines index(i)]; 
end 
length_lines=length(lines); 
lines=lines(2:length_lines); 
lines=[lines N]; 
  
%plot wave 
figure(1) 
hold on 
plot(theta,s) 
title({'Deviation vs. Position';file}) 
xlabel('position (deg)') 
ylabel('deviation (mm)') 
hold on 
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%plot lines to separate waves 
for i=1:length(lines) 
    location=lines(i); 
    x=[theta(location) theta(location)]; 
    y=[-.005 .005]; 
    plot(x,y,'r-') 
    hold on 
end 
  
%plot min/max within each wave 
%calculate amplitude, amplitude ratio, and wavelength of each wave 
for i=1:length(lines)-1 
    min_index=lines(i); 
    max_index=lines(i+1); 
    y_temp=s(min_index:max_index); 
    [y,c]=max(y_temp); 
    plot(theta(c+min_index-1),y,'g*') 
    [z,d]=min(y_temp); 
    plot(theta(d+min_index-1),z,'g*') 
    amplitude(i)=y-z; 
    amplitude_ratio(i)=(y-z)/(2*A); 
    wavelength_deg(i)=theta(max_index)-theta(min_index); 
    wavelength(i)=wavelength_deg(i)*2*pi*R/360; 
    frequency(i)=speed/wavelength(i); 
end 
hold off 
  
figure(2) 
%sort frequencies and ratios and plot 
[sorted_frequency,order] = sort(frequency,2); 
% order the amplitude ratio like the frequency 
ordered_ratio=zeros(1,length(frequency)); 
for i=1:length(frequency) 
ordered_ratio(i)=amplitude_ratio(order(i)); 
end 
plot(sorted_frequency,ordered_ratio,'.') 
topline=strcat(side ,' Amplitude Ratio vs. Frequency: Speed= 
',num2str(speed), 'mm/s and COF= ',num2str(cof),'Hz'); 
title({topline;file}) 
xlabel('frequency (Hz)') 
ylabel('amplitude ratio') 
%plot COF location 
hold on 
cofx=[cof cof]; 
fy=[0 1]; 
plot(cofx,fy,'r') 
%plot range of input frequencies 
min_input_freq=speed/6.24; 
max_input_freq=speed/.531; 
minfreqx=[min_input_freq min_input_freq]; 
maxfreqx=[max_input_freq max_input_freq]; 
hold on 
plot(minfreqx, fy,'g') 
hold on 
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plot(maxfreqx,fy,'g') 
%axis([0 1.5 0 1.2]); 
hold off 
print('-f2', '-djpeg90', file); 
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Appendix 7: Theoretical filter characterization 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %               filter_sysid5.m: data for system id - Final version 
% %               Pamela Murray Moor 
% %               Last updated: 2/5/07 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Import filtered data 
year='2006'; 
month='03'; 
day='02'; 
time='0852'; 
side=' Inside'; 
speed=5; %mm/s 
filter='NCO'; %CO or NCO 
cof=3; %Hz 
date=strcat(year,month,day,time); 
file=strcat(date,filter); 
%path=strcat('C:\MATLAB701\work\RING\',file,'.txt'); %work 
path=strcat('C:\Program Files\MATLAB_SV71\work\ring\',file,'.txt');  
D=importdata(path); 
theta=D(:,1); 
s=D(:,2); 
N=length(s); 
thetai=0:.0135:360; 
si = interp1(theta,s,thetai,'cubic')'; 
Ni=length(si); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Import unfiltered data 
uyear='2005'; 
umonth='11'; 
uday='11'; 
utime='1530'; 
uside=' Inside'; 
uspeed=.5; %mm/s 
ufilter='CO'; %CO or NCO 
ucof=5; %Hz 
udate=strcat(uyear,umonth,uday,utime); 
ufile=strcat(udate,ufilter); 
%upath=strcat('C:\MATLAB701\work\RING\',ufile,'.txt'); %work    
upath=strcat('C:\Program Files\MATLAB_SV71\work\ring\',ufile,'.txt'); 
%home 
uD=importdata(upath); 
utheta=uD(:,1); 
us=uD(:,2); 
uN=length(us); 
uthetai=0:.0135:360; 
usi = interp1(utheta,us,uthetai,'cubic')'; 
uNi=length(usi); 
%correct interpolation at end of series 
for i=26639:26667 
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    usi(i)=usi(26638); 
end 
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Appendix 8: Digital filter characterization 
 
%digital_filter2.m 
%Digital filter selection 
 
function Hd = digital_filter2 
%DIGITAL_FILTER2 Returns a discrete-time filter object. 
  
% 
% M-File generated by MATLAB(R) 7.1 and the Signal Processing Toolbox 
6.4. 
% 
% Generated on: 05-Feb-2007 22:11:01 
% 
  
% Equiripple Lowpass filter designed using the FIRPM function. 
  
% All frequency values are in Hz. 
Fs = 248.65;  % Sampling Frequency 
  
Fpass = 1.8;   % Passband Frequency 
Fstop = 5;     % Stopband Frequency 
Dpass = 0.02;  % Passband Ripple 
Dstop = 0.25;  % Stopband Attenuation 
dens  = 20;    % Density Factor 
  
% Calculate the order from the parameters using FIRPMORD. 
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, 
Dstop]); 
  
% Calculate the coefficients using the FIRPM function. 
b  = firpm(N, Fo, Ao, W, {dens}); 
Hd = dfilt.dffir(b); 
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Appendix 9: Uncertainty analysis 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %               Wavy Ring Uncertainty Analysis 
% %    unc_analysis_final.m 
% %               Pamela Murray Moor 
% %               Last updated: 2/25/07 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
begin_time=clock 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Edit data below to import measured data 
%This data has been centered and had the radius fixed in Quindos to 
agree 
%with the following data sets 
%2005: 200511111530CO .5 mm/s, COF=5 Hz r=152.3410, x=.0012, y=.0001 
%2006: 200603021032 1 mm/s, COF=3 Hz r=152.2291, x=0, y=.0001 
year='2006'; 
month='03'; 
day='02'; 
time='0836'; 
side=' Inside '; 
speed=4.5; %mm/s 
filter='CO'; %CO or NCO 
cof=10; %Hz 
  
%Select correct year for experimental data set 
%fit fast data to slow center and radius 
  
%meas_radius=152.3410/2; %mm 2005 .5 mm/s 
meas_radius=152.2291/2; %mm 2006 1mm/s 
cal_radius=meas_radius; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
date=strcat(year,month,day,time); 
file=strcat(date,filter); 
fprintf(1,'Loading measured data...\n'); 
path=strcat('c:\MATLAB701\work\ring\',file,'_ITCONT.txt'); %work 
%path=strcat('C:\Program 
Files\MATLAB_SV71\work\ring\',file,'_ITCONT.txt'); %home 
M=importdata(path); 
%meas_theta=M(:,1)+2.363; 
%ori_meas_theta=M(:,1)+2.363; 
 meas_theta=M(:,2)+2.363; 
ori_meas_theta=M(:,2)+2.363; 
%meas_dev=M(:,2); 
meas_dev=M(:,3); 
meas_N=length(meas_dev); 
  
  
fprintf(1,'Converting measured data...\n'); 
%calculate total radii by adding back in LSBF radius 
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for i=1:meas_N 
    scaled_meas_r(i)=meas_radius+meas_dev(i); %surface data 
end 
  
%Import calibration data 
fprintf(1,'Loading calibration data...\n'); 
D=importdata('c:\MATLAB701\work\nistcalbyy12method.txt'); %work 
%D=importdata('C:\Program 
Files\MATLAB_SV71\work\ring\nistcalbyy12method.txt'); %home 
cal_theta=D(:,1); %this data has already been rotated by 180 degrees to 
line up with internal cal data 
cal_dev=D(:,2); 
cal_N=length(cal_dev); 
%cal_radius=76.116036; %mm %using slow speed radius instead 
%calculate total radii by adding back in LSBF radius 
fprintf(1,'Converting calibration data...\n'); 
for i=1:cal_N 
    cal_r(i)=cal_radius+cal_dev(i); %surface points 
end 
  
n_samples=50; %number of sampled points between each two cal points 
order=5 ;%polynomial order 
%for each measured point, find 6 nearest neighbors 
fprintf(1,'Processing...\n'); 
for i=1:meas_N  %for each measured point 
    rot_angle=90-meas_theta(i); 
    meas_theta=meas_theta+rot_angle; 
    cal_theta=cal_theta+rot_angle; 
    [meas_x,meas_y] = pol2cart(meas_theta'*pi/180,scaled_meas_r); 
    [cal_x,cal_y] = pol2cart(cal_theta'*pi/180,cal_r); 
    if mod(i,500)==0 
        fprintf(1,'Evaluating measured point %i of %i... \n',i,meas_N) 
    end 
    for j=1:cal_N   %calculate the distance from the measured point to 
each calibrated point 
        delta_x=meas_x(i)-cal_x(j); 
        delta_y=meas_y(i)-cal_y(j); 
        dist(j)=sqrt(delta_x^2+delta_y^2); 
    end 
    %find 6 closest calibrated points 
    [sorted_dist,k] = sort(dist); %sorts in ascending order 
    for m=1:6 
        p=k(m); 
        nearest_thetas(m)=cal_theta(p); 
        nearest_devs(m)=cal_r(p); 
        % Find closest XY cal points 
        nearest_cal_x(m)=cal_x(p); 
        nearest_cal_y(m)=cal_y(p); 
    end 
    % Find X span of closest cal points 
    min_cal_x=min(nearest_cal_x); 
    max_cal_x=max(nearest_cal_x); 
     
    min_theta=min(nearest_thetas); 
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    max_theta=max(nearest_thetas); 
    sorted_thetas = sort(nearest_thetas); 
  
    % Calculate polynomial through nearest calibrated XY points 
    [p_xy,s_xy,mu_xy] = polyfit(nearest_cal_x,nearest_cal_y,order); 
    % Generate points along the range of nearest calibrated X points 
    x_samples = min_cal_x:(max_cal_x-min_cal_x)/5000:max_cal_x;  % MAY 
NEED TO CHANGE TO A CONSTANT NUMBER OF X SAMPLES 
    % Compute polynomial points for each of the above 
    f_samples = polyval(p_xy,x_samples,[],mu_xy); 
    %f_samples = spline(nearest_cal_x,nearest_cal_y,x_samples); 
    % Compute distances between the measured point 
    % and each polynomial point 
    for q=1:length(x_samples) 
        dist_xy(q)=sqrt((x_samples(q)-meas_x(i))^2 + (f_samples(q)-
meas_y(i))^2); 
    end 
    % Find the index of the smallest distance  
    [sorted_dist_xy, index] = sort(dist_xy); 
    error_xy(i) = sorted_dist_xy(1);  
       if i==5800 
%         % Plot all cal and measured data with shortest distance to 
one 
%         point drawn as line 
        figure(1) 
        % Plot measured data 
        plot(meas_x(i),meas_y(i),'ro');hold on; 
        plot(meas_x,meas_y,'r.');hold on; 
        % Plot calibrated data 
        plot(cal_x,cal_y,'b.');hold on; 
        plot(nearest_cal_x,nearest_cal_y,'bo');hold on; 
        % Plot polynomial 
        plot(x_samples,f_samples,'g.-');hold on; 
        %plot a line to the nearest point 
        line_x = [meas_x(i) x_samples(index(1))]; 
        line_y = [meas_y(i) f_samples(index(1))]; 
        plot(line_x, line_y, 'r-');hold on; 
%         % Plot a line to the next nearest point 
%         line_x = [meas_x(i) x_samples(index(2))]; 
%         line_y = [meas_y(i) f_samples(index(2))]; 
%         plot(line_x, line_y, 'm-');hold on;         
        topline=strcat(side ,' Calibrated and Scanned data: Speed= 
',num2str(speed), 'mm/s and COF= ',num2str(cof),'Hz'); 
        title({topline;file}) 
        xlabel('x (mm)') 
        ylabel('y (mm)') 
     end  
       hold off 
  
end %end main loop 
  
%plot normal distance to each measured point 
figure(2) 
for ii=1:meas_N 
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    if ori_meas_theta(ii)>360 
        ori_meas_theta(ii)=ori_meas_theta(ii)-360; 
    end 
    plot(ori_meas_theta(ii),error_xy(ii),'.') 
    hold on 
end 
topline=strcat(side ,' Normal distance from measured point to 
polynomial: Speed= ',num2str(speed), 'mm/s and COF= 
',num2str(cof),'Hz'); 
        title({topline;file}) 
        xlabel('angle (degrees)') 
        ylabel('Normal distance (mm)') 
    hold off 
     
   
% for i=1:length(error_xy) 
%     if error_xy(i)>.001 
%         i 
%     end 
% end 
  
%plot histogram off all data 
figure(3) 
hist(error_xy,250) 
[H,bin_center]=hist(error_xy,250); 
[sorted_bins,bin_key]=sort(H,'descend'); 
total_bias=bin_center(bin_key(1)) %mm 
total_st_dev=std(error_xy,1) %mm 
topline=strcat(' Histogram of error between ',side,' calibrated and 
scanned data: Speed= ',num2str(speed), 'mm/s and COF= 
',num2str(cof),'Hz'); 
title({topline;file}) 
xlabel('error (mm)') 
ylabel('number of points') 
hold off 
  
  
%Plot circle with errors greater than x plotted in red 
figure(4) 
error_divider=.0092; 
for i=1:length(error_xy) 
    if (error_xy(i) > error_divider) 
        plot(meas_x(i),meas_y(i),'r.');hold on; 
    else 
        plot(meas_x(i),meas_y(i),'k.');hold on; 
    end 
     
end 
topline=strcat(side ,' Location of errors 
over',num2str(error_divider),' mm for Speed=' ,num2str(speed), 'mm/s 
and COF= ',num2str(cof),'Hz'); 
title({topline;file}) 
xlabel('x (mm)') 
ylabel('y (mm)') 
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%plot(cal_x,cal_y,'b.');hold on; 
hold off; 
  
     
%unc calculation 
k=2; 
cal_unc=.000382; %mm 
U=k*sqrt(cal_unc^2+total_st_dev^2)+abs(total_bias) %mm 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%unc bands 
%theta dividers that divide waveform into bands based on wavelengths 
%Band 1 (2+mm): 0-20, 160-180, 180-200, 340-360 
%Band 2 (1-2mm): 20-40, 140-160, 200-220, 320-340 
%Band 3 (.75-1mm): 40-60, 120-140, 220-240, 300-320 
%Band 4 (.5-.75mm): 60-120, 240-300 
  
bb1 = [0 20 160 180 180 200 340 360]; 
bb2 = [20 40 240 160 200 220 320 340]; 
bb3 = [40 60 120 140 220 240 300 320]; 
bb4 = [60 120 240 300]; 
  
%parse errors into correct uncertainty band by angle=wavelength 
error1=0; 
error2=0; 
error3=0; 
error4=0; 
  
 bloop=1; %band 1 
    for bi = 1:2:length(bb1)-1 
        for ii = 1:meas_N 
            if (bb1(bi)<=ori_meas_theta(ii)) && 
(ori_meas_theta(ii)<bb1(bi+1)) 
           error1=[error1 error_xy(ii)]; 
            end 
        end 
    end 
    error1=error1(2:length(error1)); 
    st_dev(bloop)=std(error1,1); %mm 
    [H,bin_center]=hist(error1,50); 
    [sorted_bins,bin_key]=sort(H,'descend'); 
    bias(bloop)=bin_center(bin_key(1)); %mm 
    Unc(bloop)=k*sqrt(cal_unc^2+st_dev(bloop)^2)+abs(bias(bloop)); 
 bloop=2; %band 2 
    for bi = 1:2:length(bb2)-1 
        for ii = 1:meas_N 
            if (bb2(bi)<=ori_meas_theta(ii)) && 
(ori_meas_theta(ii)<bb2(bi+1)) 
           error2=[error2 error_xy(ii)]; 
            end 
        end 
    end 
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    error2=error2(2:length(error2)); 
    st_dev(bloop)=std(error2,1); %mm 
    [H,bin_center]=hist(error2,50); 
    [sorted_bins,bin_key]=sort(H,'descend'); 
    bias(bloop)=bin_center(bin_key(1)); %mm 
    Unc(bloop)=k*sqrt(cal_unc^2+st_dev(bloop)^2)+abs(bias(bloop)); 
bloop=3;%band 3 
    for bi = 1:2:length(bb3)-1 
        for ii = 1:meas_N 
            if (bb3(bi)<=ori_meas_theta(ii)) && 
(ori_meas_theta(ii)<bb3(bi+1)) 
           error3=[error3 error_xy(ii)]; 
            end 
        end 
    end 
    error3=error3(2:length(error3)); 
    st_dev(bloop)=std(error3,1); %mm 
    [H,bin_center]=hist(error3,50); 
    [sorted_bins,bin_key]=sort(H,'descend'); 
    bias(bloop)=bin_center(bin_key(1)); %mm 
    Unc(bloop)=k*sqrt(cal_unc^2+st_dev(bloop)^2)+abs(bias(bloop)); 
bloop=4;%band 4 
    for bi = 1:2:length(bb4)-1 
        for ii = 1:meas_N 
            if (bb4(bi)<=ori_meas_theta(ii)) && 
(ori_meas_theta(ii)<bb4(bi+1)) 
           error4=[error4 error_xy(ii)]; 
            end 
        end 
    end 
error4=error4(2:length(error4)); 
st_dev(bloop)=std(error4,1); %mm 
[H,bin_center]=hist(error4,50); 
[sorted_bins,bin_key]=sort(H,'descend'); 
bias(bloop)=bin_center(bin_key(1)); %mm 
% including bias 
Unc(bloop)=k*sqrt(cal_unc^2+st_dev(bloop)^2)+abs(bias(bloop));  
  
%plot unc bands 
figure(5) 
uncx=[6 2 1 .75 .5]; 
for j=1:1:length(uncx)-1 
    x=[uncx(j) uncx(j+1)]; 
    y=[Unc(j) Unc(j)]; 
    plot(x,y) 
    hold on 
end 
topline=strcat(side ,' Unc bands versus wavelength: Speed= 
',num2str(speed), 'mm/s and COF= ',num2str(cof),'Hz'); 
        title({topline;file}) 
        xlabel('wavelength (mm)') 
        ylabel('Uncertainty (mm)') 
hold off 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%save data to file 
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%savepath=strcat('c:\MATLAB701\work\ring\',file,'_ITCONT.txt'); %work 
savepath=strcat('C:\Program 
Files\MATLAB_SV71\work\ring\',file,'_processed.txt'); %home 
fid = fopen(savepath,'wt'); 
fprintf(fid,'%f %f %2.8f\n',[ori_meas_theta';scaled_meas_r;error_xy]); 
fclose(fid); 
end_time=clock    
 
%Note unc_plot2.m was used to calculate uncertainties without biases 
%and plot those uncertainty bands in 2-D and 3-D 
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