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ABSTRACT

The dissertation intends to develop a new approach to the identification of

the best factor pattern structure. This new approach is a multivariate regression

analysis where factor scores are regressed on original variables. The dissertation

shows the versatility of information model selection criteria, Bozdogan’s ICOMP-

type criteria in particular, in two types of modeling problems: determining the

number of factors in factor analysis and working as the fitness function for Genetic

Algorithm.
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1 Introduction and Purpose

1.1 Overview

Factor analysis is a widely used multivariate statistical technique the principal ob-

jective of which is to attain a parsimonious description of the observed data (Har-

man, 1976), or to reduce the dimensionality of the observed data. There are two

types of factor analysis: exploratory factor analysis (EFA) and confirmatory

factor analysis (CFA).

EFA is often used to explore the possible underlying factor structure of a set

of observed variables without imposing a preconceived structure on the outcome

(Child, 1990) whereas CFA usually serves to verify the hypothesized factor struc-

ture configuration of a set of observed variables. CFA requires specification of

a model a priori whereas EFA is only an orderly simplification of interrelated

variables (Suhr, n.d.). A major drawback/disadvantage of EFA is its inability to

specify correlational relationships in the factor model (Munro, 2004). Because

EFA is far more common than CFA in social sciences (Garson, 2008), it is cer-

tainly desirable to add a factor pattern identification algorithm to regular EFA
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so that this type of analysis leads to a specified factor model solution which pro-

vides a satisfactory model-data fit. Therefore, this study intends to present such

a technique that finally unifies EFA and CFA.

EFA assumes there are certain common factors and certain specific factors

(Lawley & Maxwell, 1971) and, thus, there are usually two problems associated

with this type of modeling scenario. First, no prior knowledge is available re-

garding what is the true dimensionality of the original set of variables. Second,

no information is available regarding what the relationship is between extracted

factors and observed variables. Given a finite sample, the first problem relates

to how many factors should be extracted so that the information contained in

the original set of variables is sufficiently explained whereas the second problem

involves an investigation of the regression relationship between original variables

and estimated factor scores from the factor model solution. This study addresses

both problems with the aid of information model selection criteria and Genetic

Algorithm.
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1.2 Problem One

For the first problem of determining the number of factors in factor analysis,

the use of information model selection criteria overcomes problems involved in

the traditional goodness-of-fit test approach (Bozdogan & Ramirez, 1987). The

traditional approach, proposed by Lawley (1940, 1942), is to use a sequence of

χ2 hypothesis tests for judging the adequacy of the factor model when m = 1, 2,

..., M factors are fitted. These χ2 tests, for which the null hypothesis is that the

current m− factor model fits the data well, are very sensitive to the sample size

and a large sample can easily cause a good factor model to be rejected.

In addition to the sample size issue, although the level of significance for each

test α(1), α(2), ..., α(M) is known, the overall level of significance for the entire

model selection procedure is unknown (Anderson & Rubin, 1976). In other words,

it is impossible to choose a level of significance probability which accounts for the

number of hypothesis tests being performed. As a result, the critical values from

the sequence of χ2 tests are not adjusted from one model to another. And this

causes the conclusion on the number of factors from the hypothesis test approach

to be problematic due to the inflated Type I error rate.

On the other hand, information model selection criteria are not hypothesis
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tests, so no level of significance probability is involved. Stated differently, the

level of significance probability is already implicitly incorporated within the model

selection criteria which depend on the specific functional form of the penalty

component of the criteria (Bozdogan, 2000). These criteria tend to choose the

factor model which is the least likely to be rejected to be the best approximating

model. In addition, these criteria map how well the factor model fits the data to

a scalar value, which makes the comparison of factor models straightforward.

1.3 Problem Two

For the second problem of identifying the factor pattern, the use of Genetic Al-

gorithm provides a highly intelligent and computationally feasible approach to

selecting the optimal multivariate regression subset of predictors (Bearse & Boz-

dogan, 2000). This subset of predictors is a required component for determining

the factor pattern. After the number of factors m is determined, the factor model

can be obtained and the factor score matrix F estimated. To investigate how the

factor solution relates to the original variables, the number of which is p, involves

regressing F on the original raw data X. The total number of possible subset

regression models is 2mp. With even moderate values of m and p, the task of
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evaluating all subset models is extremely computationally expensive (Bearse &

Bozdogan, 2000).

As a result, a technique is called for which is capable of selecting the best-

approximating subset model from a portfolio of competing models in a reasonable

amount of time. Proposed in this study is the use of Genetic Algorithm which

iteratively compares models and chooses better ones based on the concept of

natural selection (Bearse & Bozdogan, 2000). This technique is applicable to both

linear and nonlinear modeling problems. Demonstrated in this study is how it is

used in multivariate regression analysis under Gaussian errors. An information

model selection criterion of choice will be used as the fitness function for Genetic

Algorithm.

1.4 Outline of the Dissertation

The outline of the dissertation is as follows. In Section 2, the theory of maxi-

mum likelihood factor analysis is briefly covered. Section 3 gives the formulas for

six information model selection criteria used to choose the number of factors in

exploratory factor analysis. Presented in Section 4 is an introduction of Genetic

Algorithm with one type of information criterion as the fitness function, and Sec-
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tion 5 is on how MVR model parameters are estimated given a selected subset of

predictors. Numerical examples are given in Section 6 that show the application

of the technique proposed in the study.
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2 Factor Analysis Model & Maximum Likelihood Factor Analysis

2.1 Orthogonal Factor Model

Let x be a vector of p observed variables x1, x2, ..., xp that satisfies the following

condition:

x˜Np (µ,Σ) . (1)

It is assumed that the covariance structure of the x vector Σ is of full rank p.

It is also assumed that the mean vector µ = 0.

Then the m− factor orthogonal factor model holds for x1, x2, ..., xp in the

following form:

x
(p×1)

= Λ
(p×m)

f
(m×1)

+ ε
(p×1)

, (2)

where

x is a p by 1 vector representing the observed data,

Λ is a p by m factor loading matrix,

f is an m by 1 vector representing m common factors,
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ε is a p by 1 vector representing residuals.

That is to say, each of the observed variables x1, x2, ..., xp can be written as

a linear combination of the m common factors plus a residual term:

x1 = λ11f1 + λ12f2 + ... + λ1mfm + ε1, (3)

x2 = λ21f1 + λ22f2 + ... + λ2mfm + ε2,

......,

xp = λp1f1 + λp2f2 + ... + λpmfm + εp,

where the weight matrix, Λ
(p×m)

= [λij] , i = 1, 2, ..., p, j = 1, 2, ..., m, represents

factor loadings.

Also, the model in Equation 2 imposes a covariance structure on x given by

Cov (x) = Σ = ΛΛ′ + Ψ, (4)

Cov (x, f) = Λ. (5)

In Equation 4, Ψ
(p×p)

= Diag (Ψ1, Ψ2, ..., Ψp) is a diagonal matrix the elements

of which are variances for the residual terms ε1, ε2, ..., εp in ε
(p×1)

. Ψ
(p×p)

is the
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matrix of specific variances which represents the uniqueness of each variable in

the observed vector x
(p×1)

.

The orthogonal factor model is usually based on the following assumptions

f˜Nm (0, Im) , (6)

where

m ≤ p, (7)

ε˜Np (0,Ψ) , (8)

Cov (f , ε) = 0, (9)

Λ′
(m×p)

Ψ−1

(p×p)
Λ

(p×m)
= ∆

(m×m)
, (10)

where ∆
(m×m)

= Diag (δ1, δ2, ..., δm) with δ1 > δ2 > ... > δm is called matrix

unique condition because of the multiplicity of choices for the factor loading

matrix Λ (Johnson & Wichern, 1982). This constraint is used to force the iterative

maximum likelihood estimates to converge to a unique solution.

9



2.2 Maximum Likelihood Analysis of Factor Models

In maximum likelihood common factor analysis under the orthogonal factor model,

the aim is to estimate the factor loading matrix Λ
(p×m)

and the specific variance

matrix Ψ
(p×p)

given the number of factors using the method of maximum likelihood

to explain an empirical correlation matrix (Harman, 1976). In other words, the

interest is in the MLE of the factor loading matrix Λ̂ and the MLE of the unique

variance matrix Ψ̂ when the uniqueness constraint in Equation 10 is satisfied.

In this study, MATLABTM’s factoran function is used to find Λ̂ of Λ and Ψ̂ of

Ψ given the number of extracted factors m. This function factoran standardizes

the observed data matrix X
(n×p)

to zero mean and unit variance before estimating Λ

and Ψ. As a result, Λ̂ and Ψ̂ are returned in terms of the standardized variables,

or Λ̂ = Λ̂z and Ψ̂ = Ψ̂z. In other words, Λ̂Λ̂′ + Ψ̂ = Λ̂zΛ̂
′
z + Ψ̂z is an estimate

of the correlation matrix of the original data X
(n×p)

(The MathWorks, Inc., 2007):

R̂m
(p×p)

= Λ̂z
(p×m)

Λ̂′
z

(m×p)

+ Ψ̂z
(p×p)

. (11)

It should be noted that Equation 4 and Equation 11 are equivalent of each other

when the original raw data X are standardized to zero mean and unit variance

due to the scale invariance property of the maximum likelihood estimators. When

10



Σ has the structure Σ = ΛΛ′ + Ψ, then the population correlation matrix P can

be factored as

P = V−1/2ΣV−1/2 (12)

=
(
V−1/2Λ

) (
V−1/2Λ

)′
+ V−1/2ΨV−1/2

= ΛzΛ
′
z + Ψz,

where

V−1/2 = Diag
(
σ
−1/2
11 , σ

−1/2
22 , ..., σ−1/2

pp

)
(13)

= Diag
((

σ2
1

)−1/2
,
(
σ2

2

)−1/2
, ...,

(
σ2

p

)−1/2
)

.

Therefore

P̂ = R̂m = Λ̂zΛ̂
′
z + Ψ̂z, (14)

which can be used equivalently because of the powerful invariance property of

the maximum likelihood estimators. In addition, extracting the factors from the

sample correlation matrix rather than the sample covariance matrix can usu-
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ally achieve much faster convergence in the optimization process (Bozdogan &

Ramirez, 1987).
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3 Determining the Number of Factors Using Information Criteria

3.1 A Traditional Approach

In most cases when factor analysis is performed, there is no information regarding

what the true underlying dimension m is. As a result, the goal is to find a best

approximating factor model based on the finite set of available data. To that

end, determination of an appropriate number of factors is a task that has to be

accomplished.

In the literature, one traditional approach to selecting the number of factors is

the classical goodness-of-fit test which has been under criticism for not adjusting

the critical value from one model to another when a set of hypotheses are being

tested (Everitt, 1984; Lawley & Maxwell, 1971). In practice, the problem of

determining the number of factors is usually not testing just one hypothesis, but

rather involves multiple test decisions (Anderson & Rubin, 1956). However, the

overall level of significance for fitting m = 1, 2, ..., M factors is unknown.

Proposed in this study is a new approach to determining the number of factors

in factor analysis. This new technique involves the use of Information Complexity

13



Model Selection Criteria, or ICOMP (Bearse & Bozdogan, 2000; Bensmail &

Bozdogan, 2002; Bozdogan, 1996, 2000; Bozdogan & Haughton, 1998). ICOMP-

type criteria, like AIC (Akaike, 1973, 1987), CAIC (Bozdogan & Ramirez, 1987)

and SBC (Schwartz, 1978), belong to a larger family of entropy-based model

selection criteria. Although the use of AIC, CAIC and SBC in factor analysis

is well documented in the literature (Akaike, 1978; Bozdogan & Ramirez, 1987;

Lopes & West, 2004), the research on applying ICOMP-type criteria to such

modeling problems is sparse. One of only the few studies that use ICOMP-type

criteria in factor analysis is the one by Bozdogan and Shigemasu (1998). In

addition, Liu and Bozdogan (2004) have applied ICOMP criteria to principal

component analysis (PCA), another statistical technique the major goal of which

is similar to that of factor analysis.

3.2 Mathematical Forms of Information Criteria

Here, the search for the optimal number of factors is based on 3 ICOMP criteria:

ICOMPIFIM , ICOMPIFIMPEU Mis and ICOMPIFIMPEU Mis LN . In addi-

tion, AIC, CAIC and SBC are also used for the purpose of comparing model

selection results. A total of six model selection criteria are to be scored using the

14



finite original data for each candidate factor model. Based on one criterion, the

optimal number of factors is selected as the one that leads to its minimization.

Without providing detailed mathematical proof, analytical forms of the six in-

formation criteria for the orthogonal factor model are given below. These formulas

use standard outputs from factoran.

ICOMPIFIM = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ 2C1

(
ẑ−1

)
, (15)

ICOMPIFIMPEU Mis = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ 2

(
ns

n− s− 2

)
(16)

+2C1

(
ẑ−1

)
,

ICOMPIFIMPEU Mis LN = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ 2

(
ns

n− s− 2

)
(17)

+ [log (n)] C1

(
ẑ−1

)
,

AIC = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ 2k, (18)

CAIC = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ [log (n) + 1] k, (19)

SBC = −2 log L
(
µ̂, Λ̂, Ψ̂

)
+ [log (n)] k, (20)

where

15



−2 log L
(
µ̂, Λ̂, Ψ̂

)
= np log (2π) + n log

∣∣∣R̂m

∣∣∣ + ntr
(
R̂−1

m R
)

, (21)

R̂m = Λ̂zΛ̂
′
z + Ψ̂z, (22)

2C1

(
ẑ−1

)
= s log




(
trR̂m

)
tr

(
F
′
F

)−1
+

1

2n

(
trR̂2

m +
(
trR̂m

)2

+ 2
p∑

j=1

(rjj)
2

)

s




(23)

− (p + m + 1) log
∣∣∣R̂m

∣∣∣ + p log
∣∣∣F′

F
∣∣∣ +

1

2
p (p + 1) log (n)− p log (2) ,

s = dim
(
ẑ−1

)
= rank

(
ẑ−1

)
=

1

2
[2pm + p (p + 1)] , (24)

k = (mp + p)− 1

2
m (m− 1) , (25)

and

16



R̂m : Estimated factor model correlation matrix,

R : Sample correlation matrix,

F : Estimated factor score matrix,

ẑ−1 : Estimated inverse-Fisher information matrix,

s : Dimension of ẑ−1,

C1

(
ẑ−1

)
: Complexity of ẑ−1,

−2 log L
(
µ̂, Λ̂, Ψ̂

)
: Minus twice maximized log likelihood function,

n : Sample size,

p : Number of variables in the original data set,

m : Number of common factors,

k : Number of free parameters in the factor model.

For each candidate factor model, a total of six information criteria are scored.

And candidate factor models are compared using each criterion, respectively. For

a finite original data set of p variables, factoran has an upper limit M on the

number of factors that can be extracted.

When m assumes an integer value that falls into the interval determined by

17



1 and M , the goal is to find the factor model that achieves the minimum on

ICOMPIFIM , the information criterion of choice, and this model is selected as

the best approximating model for the data set. This factor model also serves as

the basis for all follow-up analyses.

Next, the (n× p) original data X is converted to the (n×m) factor score

matrix F, then the factor structure being sought can be determined by regressing

F on X. That is to say, the regression coefficient matrix B in F = XB + E is to

be estimated. When m > 1, this is a multivariate regression (MV R) analysis

where there are m response variables and p predictors. As a result, an optimal

MVR subset of predictors is to be identified which is reasonably parsimonious and

achieves pretty good predictive power. This is where Genetic Algorithm comes

into play.

18



4 Genetic Algorithm

4.1 From Factor Analysis to Multivariate Regression

When the number of factors is already determined using information criteria, the

factor solution is obtained. And the factor score matrix F
(n×m)

is estimated using

Bartlett’s Weighted Least Squares method. Given F̂
(n×m)

and the original data

X
(n×p)

, the regression coefficient matrix B in F = XB + E is to be estimated.

When two or more factors are extracted or m ≥ 2, the problem of estimating

B becomes that of multivariate regression modeling because there is more than

one response variable in the estimated factor score matrix F̂ and these response

variables have to be considered simultaneously.

Before estimating the coefficient matrix B, it is necessary to identify an MVR

subset matrix that shows to which group of predictors each response variable is

related so that the fitted regression model reaches a satisfactory level of predictive

power. This subset of predictors matrix is the basis of a two-step approach to

estimating B which is to be used in a later section of the study. In other words, a

subset matrix consisting of only 1’s and 0’s is being sought here in this section that
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has the same number of rows and columns as the regression coefficient matrix B.

Each 1 in the matrix indicates the inclusion of a predictor for a response variable

whereas each 0 the opposite. To obtain such a subset matrix, Genetic Algorithm

(GA) is used.

4.2 Genetic Algorithm with ICOMP as the Fitness Function

Genetic Algorithm is a stochastic search method that is widely used in model

selection problems from a wide variety of fields such as Engineering, Economics,

Game Theory, Biology etc. (Holland, 1975). As a clever non-local optimization

algorithm, GA is capable of pruning combinatorially large numbers of sub-models

to obtain an optimal or near-optimal MVR subset (Bearse & Bozdogan, 2000) so

the algorithm is effective in terms of solving problems where a large number of

possible solutions exist.

GA is based on evolution and natural selection concepts in Biology and uses

a series of genetic operators in its implementation, such as crossover & mutation.

And it selects a champion model by maximizing or minimizing a fitness function

mapping the performance of a candidate model to a scalar value with which a

comparison of competing models becomes easy and straightforward.
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GA represents a model using a binary coding, called chromosome, with 1

indicating the presence of a variable in the model and 0 the absence. Therefore,

each subset MVR model is represented by a binary string on which a 1 includes

the predictor and a 0 excludes it. The length of the GA binary string is equal to

the number of predictors, p in X
(n×p)

, times the number of responses, m in F̂
(n×m)

.

Suppose an MVR model is to be fitted where two responses f1 and f2 and

three predictors x1, x2 and x3 are taken into account.

fi1 = xi1B11 + xi2B21 + xi3B31, (26)

fi2 = xi1B12 + xi2B22 + xi3B32,

i = 1, 2, ..., n.

A binary string of 110010 generated by GA indicates that, in the MVR model, x1

and x2 are selected for f1 whereas x2 is the only predictor selected for f2.

GA also needs an objective function or a fitness function on which to base

the decision of model choice. The fitness function used in the GA maps the per-

formance of a candidate model to a scalar value. The model that maximizes

or minimizes the fitness function is selected as the champion model. Although

the choice of a GA fitness function is plenty, this study implements Bozdogan’s
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Information Complexity Criterion (ICOMPIFIM) which penalizes parameter in-

teractions/redundancy as well as the number of model parameters (Bearse &

Bozdogan, 2000). Since a smaller value of ICOMPIFIM indicates a better model,

the GA implementation in this study intends to minimize the fitness function.

Models with lower ICOMPIFIM values have higher fitness scores, hence a better

model-data fit. It should be noted that other information criteria such as AIC,

CAIC, SBC could also be used as the fitness function for GA. Lanning (2008),

Y. Liu (2007), Z. Liu and Bozdogan (2008), and Zhang (2007) have successfully

combined the use of GA with information model selection criteria, ICOMP in

particular.

4.3 GA Parameters

The GA initializes N randomly-selected binary strings or models to begin with.

Here, N is termed population size, or the number of candidate models in the

initial and subsequent pools of models. The choice of N is typically determined

experimentally. In addition to population size, there are several more parameters

that need to be specified before the algorithm is implemented. These parame-

ters include number of generations, probability of crossover and probability of
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mutation.

1. Number of generations: The number of times the evolutionary model cre-

ation process is repeated.

2. Probability of crossover pc: The probability controlling the pair of chromo-

somes chosen for crossover.

3. Probability of mutation pm: The probability that a randomly selected locus

alternates between 0 and 1.

Besides, the algorithm allows the best model from the current GA generation

to be included in the next one, which is called elitism rule. In this study, this

rule is always applied.

4.4 The Iteration Process

Given these parameters and the initial population of models, the algorithm iter-

atively explores the model space through an evolutionary process. This process

continues until the predefined number of generations is exhausted. Moving from

one generation to another, new models are created through the operations of

natural selection, crossover and mutation (Bearse & Bozdogan, 2000).

For the purpose of constructing a mechanism to iteratively improve model
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selection results through an evolutionary process, this study uses the rank order-

ing of (−1) ∗ ICOMPIFIM . The candidate models are sorted in an ascending

order by the rank of (−1) ∗ ICOMPIFIM . The model with the largest/worst

ICOMPIFIM value has the smallest ranking 1 while that with the smallest/best

ICOMPIFIM value has the highest ranking. Then a weighted roulette wheel with

N bins is constructed with each bin corresponding to each subset MVR model.

And the bin width for a model with Rank i is
i

N (N + 1) /2
. Then N uniform

distribution random numbers are generated from (0, 1). Therefore, with each of

the N bins or N models, there is a uniform random number associated. Each time

the random number falls in its bin, the corresponding model is included in the

mating pool. Since better models have wider bins, it is expected that they will be

better represented in the mating pool due to the improved chance of the random

number falling into the bin. By applying such a mechanism, the natural selection

role of the GA is achieved (Bearse & Bozdogan, 2000).

To determine the subset MVR models included in the next GA generation, a

crossover operation is applied to the mating pool which recombines subset MVR

models of the current generation, or the parents, into new subset MVR models

for the next generation, or the offsprings. To perform crossover, the subset MVR
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models in the mating pool are randomly paired. Each locus in the binary coding

scheme is swapped with the corresponding locus of its mate with crossover prob-

ability pc. The overall probability of at least one locus crossing over in a given

mating pair is given by Equation 27.

p∗c = 1− (1− pc)
string length , (27)

where string length equals the length of the binary coding representing an MVR

subset model, or the number of response variables times the number of predictors.

When pc = 0, p∗c = 0, which indicates the subset models in the next population

are identical to those in the current one. Whenever pc ∈ (0, 1), the offspring models

are expected to differ from the mating pool.

The resulting N offspring models are then subjected to mutation. Mutation

is a means of creating new combinations of variables not available in the current

area of the model space, thereby allowing the GA to create models not attainable

through the crossover operation alone. Mutation is controlled by a user-defined

mutation probability pm at which a locus on the binary coding alternates between

0 and 1. Therefore, for each offspring model, the mutation technique allows a

predictor variable to be added or removed randomly.
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When subset models are generated by GA, they are evaluated by the fitness

function under the MVR modeling situation to find a champion subset. And

this champion subset is then subjected to a two-step estimation scheme to obtain

the estimated regression coefficient matrix in F = XB + E. Both the two-step

scheme and the mathematical formulas of the GA fitness functions are covered in

the section that follows.
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5 Multivariate Regression

5.1 Overview of Multivariate Regression

Multivariate regression is a statistical technique that uses a set of independent

variables to predict two or more response variables simultaneously. This is often

seen in many areas of application including econometrics, behavioral sciences,

social sciences, etc. In this study, factor scores F̂ estimated from MLE common

factor analysis are to be regressed on the original data set X to find out how

the factor scores depend upon the original set of variables. Stated differently, an

optimal or near optimal subset of original variables is to be found that could be

used to predict the factor scores by estimating the regression coefficient matrix B

in F = XB + E.

To that end, information model selection criteria are employed which evaluate

the fit of each MVR subset generated by the GA. The subset that minimizes

the information criterion of choice, or the fitness function for the GA, is selected

as the champion model. Covered in this section are the theoretical background

of MVR model parameter estimation given a subset of predictors and how it
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relates to the mathematical formulas of the two information criteria: AIC (MV R)

and ICOMPIFIM (MV R). As has been mentioned in the previous section,

ICOMPIFIM (MV R) is the information criterion of choice, or it serves as the

GA fitness function in the study.

5.2 Gaussian MVR Model

5.2.1 Mathematical Forms & Model Assumptions

The Gaussian MVR model under discussion is written as

F = XB + E, (28)

where

F
(n×m)

= (f1, f2, ..., fn)′ , (29)

X
(n×p)

= (x1,x2, ...,xn)′ , (30)

B
(p×m)

=




β11 ... β1m

... ... ...
βp1 ... βpm


 , (31)

E
(n×m)

= (ε1, ε2, ..., εn)′ , (32)

εt˜i.i.d. Nm (0,Σ) , (33)

t = 1, 2, ..., n.
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In Equation 31, B
(p×m)

=
[
βij

]
, i = 1, 2, ..., p, j = 1, 2, ..., m, is the matrix

of regression coefficients. The matrix element βij denotes the partial effect of the

ith predictor on the jth response variable. When no zero restrictions are imposed

on the elements of B, Equation 28 represents the saturated MVR model. That is

to say, each of the m response variables is being predicted by all p predictors.

5.2.2 Imposing Zero Restrictions on the Coefficient Matrix

When zero restrictions are imposed on the elements of B, subset MVR models are

obtained. In order to identify from all GA-generated MVR subsets the optimal one

that achieves satisfactory predictive power and a reasonable level of parsimony,

information criteria are to be scored that map the fit of an MVR model to a scalar

value. As a consequence, the study proceeds to derive mathematical formulas of

the information criteria for the MVR model.

To that end, the model is rewritten in the vectorized notation:

vec (F) = vec (XB) + vec (E) (34)

= (Im ⊗X) vec (B) + vec (E) ,

or
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f
(nm×1)

= Xsup
(nm×mp)

β
(mp×1)

+ e
(nm×1)

, (35)

e˜Nnm (0,Ω) , (36)

where

f = vec (F) , (37)

Xsup = (Im ⊗X) , (38)

β = vec (B) , (39)

e = vec (E) , (40)

Cov (e)
(nm×nm)

= Ω = (Σ⊗ In) , (41)

where ⊗ denotes the Kronecker product,

Σ
(m×m)

= Cov (εt) , (42)

t = 1, 2, ..., n.

Let
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β
(mp×1)

= R
(mp×w)

γ
(w×1)

, (43)

where R is a matrix consisting of only 0’s and 1’s,

w ≤ mp. (44)

In Equation 44, w is the number of nonzero or unrestricted elements in the

(mp× 1) vector β. So, it holds that w = (mp−Number of zero restrictions on β).

The (w × 1) vector γ contains all the unrestricted elements in β.

If the ith element of β is restricted to 0, the ith row of R consists of all 0’s

with no exceptions whatsoever. If the ith element of β is unrestricted, the ith

row of R consists of all 0’s with the exception of the jth column, which has a one

in it, where j equals the total number of unrestricted β elements at and prior to

the current row. Followed next is a demonstration of the determination of j if the

ith element of β is unrestricted.

If the following indicator variable is used:

ui =

{
1 if the ith row of β is unrestricted
0 if the ith row of β is restricted

, (45)
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then j =
∑
i≤k

ui if the kth element of β is unrestricted.

In order to facilitate a better understanding of how the choice of R and γ

relates to β and MVR subsets, an example is presented below with m = 2, p = 3.

Then

B
(p×m)

=




β11 β12

β21 β22

β31 β32


 . (46)

[
ft1

ft2

]
=

[
β11 β21 β31

β12 β22 β32

]


xt1

xt2

xt3


 +

[
εt1

εt2

]
, (47)

where t = 1, 2, ..., n.

Based on Equation 39, the following result is obtained:

β =vec (B) = [β11 β21 β31 β12 β22 β32]
′ . (48)

Suppose the restrictions imposed on the elements of B are

β21 = 0, (49)

β31 = 0, (50)

β22 = 0. (51)
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Then

β =




β11

0
0

β12

0
β32




. (52)

By doing so, the predictors x2 and x3 are excluded from the equation for

predicting f1, and the predictor x2 is removed from the equation for predicting

f2.

In order to obtain Equation 52 using Equation 43, the construction of R and

γ should be

R =




1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1




, (53)

γ =




β11

β12

β32


 . (54)

Then
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β = Rγ =




β11

0
0

β12

0
β32




, which is the desired outcome. (55)

By the appropriate choice of the R matrix, zero restrictions can be imposed

on the elements of the B matrix, which in turn yields different MVR subsets.

Then, β in Equation 35 is replaced with R and γ based on Equation 55 so that

the MVR model is transformed to a multiple regression model where the number

of response variables is 1 and the regression coefficient matrix is γ. With R and

an estimate of γ, an estimate of β can be obtained based on Equation 55 and

it is then restructured to derive an estimate of B according to Equation 46 and

Equation 48.

Considering both Equation 35 and Equation 43, the following results can be

obtained.

f
(nm×1)

= Xsup
(nm×mp)

β
(mp×1)

+ e
(nm×1)

(56)

= Xsup
(nm×mp)

R
(mp×w)

γ
(w×1)

+ e
(nm×1)

= X∗
sup

(nm×w)

γ
(w×1)

+ e
(nm×1)

,
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or

f
(nm×1)

= X∗
sup

(nm×w)

γ
(w×1)

+ e
(nm×1)

, (57)

where X∗
sup contains the predictors for the subset model. This is because X∗

sup has

w columns and Xsup mp columns. Based on Equation 44, w ≤ mp.

With the help of the R matrix, the subset MVR model in Equation 28, with

zero restrictions imposed on the elements of B, has been transformed to a multiple

regression model in Equation 57 where the dimension of the observed response

variable matrix f is (nm× 1) and that of the observed independent variable matrix

X∗
sup is (nm× w).

5.2.3 A Two-Step Approach to MVR Parameter Estimation

For a multiple regression model in Equation 57 which is originally derived from a

subset MVR model, a two-step estimation scheme is employed to obtain feasible

generalized least squares (FGLS) estimates for γ, its covariance matrix Cov (γ),

and the covariance matrix of e residuals Ω ≡ Cov (e) ≡ Σ⊗ In.

Step 1. Obtain a consistent estimator of Ω ≡ Cov (e)

a. Construct the least squares (LS) estimator
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γ̂
(w×1)

=

(
X∗′

sup
(w×nm)

X∗
sup

(nm×w)

)−1

X∗′
sup

(w×nm)

f
(nm×1)

. (58)

b. Construct a consistent estimator of ε from

ε̂
(nm×1)

= vec

(
Ê

(n×m)

)
= f

(nm×1)
− X∗

sup
(nm×w)

γ̂
(w×1)

. (59)

Let ε̂i denote the ith element of ε̂ and define

Ê
(n×m)

=




ε̂1 ε̂n+1 ... ε̂n(m−1)+1

ε̂2 ε̂n+2 ... ε̂n(m−1)+2

... ... ... ...
ε̂n ε̂2(n) ... ε̂n(m)


 =




ε̂1,1 ε̂1,2 ... ε̂1,m

ε̂2,1 ε̂2,2 ... ε̂2,m

... ... ... ...
ε̂n,1 ε̂n,2 ... ε̂n,m


 . (60)

c. Construct a consistent estimator of Σ by

Σ̂
(m×m)

=
1

n
Ê′

(m×n)
Ê

(n×m)
. (61)

d. Construct a consistent estimator of Ω from

Ω̂
(nm×nm)

= Σ̂
(m×m)

⊗ In
(n×n)

. (62)

Step 2. Obtain the FGLS estimator of γ & Ω
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a. Construct the FGLS estimator of γ

γ̃
(w×1)

=

(
X∗′

sup
(w×nm)

Ω̂−1

(nm×nm)
X∗

sup
(nm×w)

)−1

X∗′
sup

(w×nm)

Ω̂−1

(nm×nm)
f

(nm×1)
. (63)

b. Construct the FGLS residuals

ε̃
(nm×1)

= vec

(
Ẽ

(n×m)

)
= f

(nm×1)
− X∗

sup
(nm×w)

γ̃
(w×1)

. (64)

c. Construct the FGLS estimator of Σ by reshaping the previous equation

Σ̃
(m×m)

=
1

n
Ẽ′

(m×n)
Ẽ

(n×m)
. (65)

d. Construct the FGLS estimator of Ω from

Ω̃
(nm×nm)

= Σ̃
(m×m)

⊗ In
(n×n)

. (66)

Under Gaussian errors, the following things should be noted.

• The ML estimators of β and Ω are the GLS estimators.

• The FGLS estimators have the same asymptotic distributions as the GLS

estimators, and consequently, the ML estimators.
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For a model in Equation 57, after the two-step estimation scheme, several

estimates are obtained.

γ̃
(w×1)

=

(
X∗′

sup
(w×nm)

Ω̃−1

(nm×nm)
X∗

sup
(nm×w)

)−1

X∗′
sup

(w×nm)

Ω̃−1

(nm×nm)
f

(nm×1)
. (67)

A consistent estimator of the covariance matrix of γ̃ is given by

Ĉov (γ̃)
(w×w)

=

(
X∗′

sup
(w×nm)

Ω̃−1

(nm×nm)
X∗

sup
(nm×w)

)−1

. (68)

Similarly a consistent estimator of the covariance matrix of ε̃ residuals is given

by

Ĉov (ε̃)
(nm×nm)

= Ω̃
(nm×nm)

= Σ̃
(m×m)

⊗ In
(n×n)

. (69)

Based on the results from the two-step estimation scheme, the log likelihood

function for the subset MVR model under Gaussian errors,

38



log L (γ,Σ) = −nm

2
log (2π)− n

2
log (|Σ|) (70)

−1

2

[
(f − (Im ⊗X) γ)′

(
Σ−1 ⊗ In

)
(f − (Im ⊗X) γ)

]

= −nm

2
log (2π)− n

2
log (|Σ|)

−1

2
tr

[
(F−XB)′ (F−XB)Σ−1

]

= −nm

2
log (2π)− n

2
log (|Σ|)− nm

2
,

can now be maximized.

5.2.4 Information Criteria for MVR Subset Selection

Therefore, according to the results from the two-step scheme and the maximized

log likelihood function for a Gaussian MVR model, the analytical forms of infor-

mation model selection criteria AIC (MV R) and ICOMPIFIM (MV R) can be

derived. The open-form formulas are given below. It should be noted that the

required inputs for the two formulas are available as part of the standard output

of most regression packages.

AIC (MV R) = nm log (2π) + n log
(∣∣∣Σ̃

∣∣∣
)

+ nm + 2

[
w +

m (m + 1)

2

]
, (71)
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ICOMPIFIM (MV R) = nm log (2π) + n log
(∣∣∣Σ̃

∣∣∣
)

+ nm (72)

+s log





tr
[
Ĉov (γ̃)

]
+

1

n

[
1

2
tr

(
Σ̃2

)
+

1

2
tr2

(
Σ̃

)
+

m∑
j=1

((
σ̃2

jj

)2
)]

s





− log
∣∣∣Ĉov (γ̃)

∣∣∣−m log (2) +
m (m + 1)

2
log (n)− (m + 1) log

∣∣∣Σ̃
∣∣∣ ,

where

s = dim
(
ẑ−1

)
= rank

(
ẑ−1

)
, (73)

ẑ−1 ≡ ẑ−1
(
γ̃, Σ̃

)
=




Ĉov (γ̃)
(w×w)

0

0
′ 2

n
D+

m

(
Σ̃⊗ Σ̃

)
D+′

m

m (m + 1)

2
×
m (m + 1)

2







, (74)

D+
m is the Moore− Penrose inverse of the duplication matrix Dm,

D+
m =

(
D
′
mDm

)−1

D
′
m, (75)

and σ̃2
jj, j = 1, 2, ..., m, is the jth diagonal element of Σ̃

(m×m)
.

With γ̃ and R, β̃ can be obtained according to Equation 55, so B̃ can be

derived by restructuring β̃ based on Equation 46 and Equation 48. B̃ will then

be sparsed to obtain B̃Sparsed, which means any value in B̃ that falls between
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the absolute value of the corresponding column mean and its negative value is

considered to be a zero. The pattern of zeroes in B̃Sparsed is used to zero out

corresponding elements in the factor loading matrix to obtain the best factor

pattern structure being sought, and the structure is then used as an initial pattern

for a confirmatory factor analysis.

Now with the information already presented previously, the following goals

can be achieved.

1. Choosing the number of factors in maximum likelihood factor analysis using

the information criterion of choice, obtaining the factor solution and estimating

factor scores.

2. Choosing the optimal MVR subset of original variables to predict factor

scores using the GA with an ICOMP-type criterion as the fitness function.

3. Estimating MVR parameters given the GA-selected optimal MVR subset

to establish the factor pattern structure that is being sought.

4. Sparsing B̃ to obtain B̃Sparsed which is then used to zero out the factor

loading matrix for the purpose of deriving the best factor pattern structure.

In each of the following five examples, B̃ will be obtained. In the first two

examples, B̃ will be further sparsed to determine the best factor pattern structure.
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And several relevant correlation coefficient matrices will be estimated to check

some factor model assumptions presented previously. It should be noted that the

sparsing procedure could also be easily applied to the other three examples upon

request.
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6 Numerical Examples

In this section, several data sets are analyzed. The outcomes from the analyses

demonstrate the application of the new approach to factor analysis using informa-

tion criteria and Genetic Algorithm. In order to save space, some abbreviations

for ICOMP-type criteria are used in the study. ICOMPIFIM is abbreviated as

ICOMP1, ICOMPIFIMPEU Mis as ICOMP2, and ICOMPIFIMPEU Mis LN

as ICOMP3. GA is used in analyzing each example. The GA population size is

20 and the number of generations is 30. The probability of crossover is 0.50 and

the probability of mutation is 0.01. ICOMPIFIM, as is defined in Equation 72,

serves as the fitness function and the elitism rule is always applied.

6.1 Example 1. A Simulation Study

This data set consists of 100 i.i.d. observations and is simulated from a 12-

dimensional multivariate normal distribution (Bozdogan & Ramirez, 1987). The

multivariate normal distribution has a zero mean vector and a covariance matrix

ΣSim = ΛSimΛ′
Sim +ΨSim. Here, ΛSim and ΨSim are set up in the following way:
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ΛSim
(12×3)

=




.9 0 0

.9 0 0

.9 0 0

.9 0 0
0 .8 0
0 .8 0
0 .8 0
0 .8 0
0 0 .7
0 0 .7
0 0 .7
0 0 .7




, (76)

and

ΨSim
(12×12)

= Diag (.19, .19, .19, .19, .36, .36, .36, .36, .51, .51, .51, .51) . (77)

When the data is simulated, maximum likelihood factor analysis is run using

MATLABTM’s factoran function. When there are 12 variables, this function can

fit up to 7 factors. And as is described above, for each fitted factor model, six

information criteria are scored for the purpose of evaluating the model-data fit.

Table 1 has in it the information criterion scores for all fitted factor models.

ICOMP1 or ICOMPIFIM is minimized at 2785.1 when m = 3. So the best

approximating factor model is selected as the one with 3 factors. As a result,

Genetic Algorithm is run for the 3-factor model.

Using previously specified parameters, GA is run three times and each run of
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the GA leads to a minimized fitness function or ICOMPIFIM . A total of three

minimum ICOMPIFIM values from three runs of GA are obtained. Then the

champion MVR subset is selected as the one that corresponds to the smallest of

these three minimum values.

Presented in Figure 1, Figure 2, and Figure 3 are the progress graphs for the

three runs of GA. In each graph, average and minimum fitness function values

are plotted against GA generation index, respectively, with the one on top corre-

sponding to the average ICOMPIFIM value for that GA generation and the other

one the minimum ICOMPIFIM value.

As can be seen from Figure 1, Figure 2, and Figure 3, the information criterion

ICOMPIFIM decreases substantially as the GA moves from one generation to

another. Since a smaller value of ICOMPIFIM indicates a better model, the

graphs show that GA is capable of finding better models through an iterative

process. Table 2 shows the selected optimal MVR subset model from the GA.

For this subset, ICOMPIFIM is minimized at −3042.8. Note that the columns

represent factors and the rows original variables.

When all GA generations are finished, the subset MVR model for the model

F = XB + E is obtained where F is an n by m matrix of estimated factor scores
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from maximum likelihood factor analysis and X is an n by p matrix of original

data. From the application of GA, already obtained is to what subset of original

variables each response variable or extracted factor is related.

Next comes the use of feasible generalized least squares (FGLS) method

to estimate the regression coefficient matrix B for the purpose of identifying the

complex relationship between extracted factors and original variables. Stated

differently, given F, X and the inclusion/exclusion information of a predictor in

B, the regression weight matrix B is to be estimated by regressing F on X using

the FGLS method. The estimated matrix B̃ is a p by m matrix. In this problem,

p = 12 and m = 3. So B̃ should be 12 by 3.

B̃
(12×3)

=




0.3802 0.0861 −0.0191
0.2073 0.1005 −0.0065
0.1890 0.0882 0.0196
0.2644 0.0555 −0.0618
−0.0584 0.2863 −0.0128
−0.0393 0.2018 −0.0005
−0.0410 0.2730 −0.0147
−0.0222 0.4181 −0.1413
0.0104 0.0369 0.2767
0.0034 0.0662 0.4049

0 −0.0059 0.3293
−0.0117 0 0.4792




. (78)

To find out about how well B̃ relates F to X, it is natural to observe the
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residuals: F̂−F̃ = F̂−B̃X. Figure 4 has in it a histogram of the vectorized

residuals which are pretty small, ranging from -0.1 to 0.2. In addition, the residuals

cluster around 0 and are approximately normally distributed. This indicates that

the multivariate regression model that has been built provides a good fit.

Next, B̃ is to be sparsed to obtain B̃Sparsed. Any element in Equation 78

that falls between the absolute value of the corresponding column mean and its

negative value is zeroed out. The elements in Equation 78 that meet the said

criterion are in bold. Therefore,

B̃Sparsed
(12×3)

=




0.3802 0 0
0.2073 0 0
0.1890 0 0
0.2644 0 0

0 0.2863 0
0 0.2018 0
0 0.2730 0
0 0.4181 −0.1413
0 0 0.2767
0 0 0.4049
0 0 0.3293
0 0. 0.4792




. (79)

Based on the pattern of zeroes in B̃Sparsed, the optimal factor pattern structure

can be determined by zeroing out corresponding elements in Λ̂z. Therefore, the

following is obtained:
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Λ̂zSparsed =




0.9380 0 0
0.8740 0 0
0.8700 0 0
0.9148 0 0
0 0.7865 0
0 0.7362 0
0 0.7876 0
0 0.8163 0
0 0 0.6260
0 0 0.7065
0 0 0.6278
0 0 0.7392




. (80)

As can be seen from Equation 80, the true underlying 3-factor structure has been

identified successfully. The result from the simulated data is supportive of the use

of the new factor pattern search algorithm in analyzing data sets coming from the

real world.

Using previously estimated factor scores F̂ and Λ̂zSparsed, residuals ε in Equa-

tion 2 can be estimated. In matrix form, those estimated residuals are noted

as Êr
(n×p)

. Then three sets of correlation coefficients are estimated, namely cor-

relations between estimated residuals and estimated factor scores corr
(
Êr, F̂

)
,

correlations between original variables and estimated factor scores corr
(
X, F̂

)
,

and interfactor correlations corr
(
F̂, F̂

)
.
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corr
(
Êr, F̂

)
=




0.0234 0.2864 0.0009
0.0060 0.3896 0.0054
0.0139 0.3873 0.0490
0.0021 0.3173 −0.1212
−0.4965 0.0040 −0.0480
−0.3857 0.0034 −0.0167
−0.3797 0.0061 −0.0476
−0.5510 0.0406 −0.0040
0.0322 0.1972 −0.0125
−0.2113 0.3015 −0.0139
0.3020 0.0875 0.0124
−0.0094 0.0895 0.0012




. (81)

As can be seen from Equation 81, most of the correlation coefficients are very

close to 0, indicating that the correlations between the residuals and the extracted

factors are almost nonexistent. Therefore, the assumption outlined in Equation 9

is satisfied.

corr
(
X, F̂

)
=




0.9608 0.0663 0.0000
0.8921 0.1639 0.0022
0.8916 0.1633 0.0220
0.9316 0.1026 −0.0443
−0.2899 0.8278 −0.0271
−0.2544 0.7749 −0.0107
−0.2231 0.8301 −0.0268
−0.2681 0.8757 −0.1312
0.0229 0.1412 0.6976
−0.1301 0.1851 0.7889
0.2103 0.0608 0.7173
−0.0054 0.0490 0.8349




. (82)

As can be seen from Equation 82, the pattern of positive and negative values

49



in this matrix is almost the same as that in the factor loading matrix with the

exception of only three matrix elements, which is supportive of the effectiveness

of the techniques presented in the study.

corr
(
F̂, F̂

)
=




1.0000 −0.0137 −0.0002
−0.0137 1.0000 −0.0002
−0.0002 −0.0002 1.0000


 . (83)

As can be seen from Equation 83, all correlation coefficients are very close to zero,

indicating that the extracted factors are statistically independent and orthogonal

of each other.

Figure 5 presents the optimal factor pattern structure that has just been iden-

tified. All factor loadings in the figure are available in Equation 80.

6.2 Example 2. Kendall Job Applicant Data

This data set comes from scores of 48 job applicants for a certain job in UK. In

this data set, each of the 48 applicants is measured on 15 variables. So the final

data used for the regression model F = X B + E has a total of 15 variables, or

p = 15. Background information of the 15 variables is presented in Table 3.

Next, maximum likelihood factor analysis is run using MATLABTM’s factoran

function. When there are 15 variables, this function can fit up to 10 factors. And
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as is described above, for each fitted factor model, six information criteria are

scored for the purpose of evaluating the model-data fit. Table 4 has in it the

information criterion scores for all fitted factor models.

ICOMP1 or ICOMPIFIM is minimized at 1689.1 when m = 5. So the best

approximating factor model is selected as the one with 5 factors. As a result,

Genetic Algorithm is run for the 5-factor model.

The GA parameters used for this data set are identical to those for the previous

one. GA is run three times and each run of the GA leads to a minimized fitness

function or ICOMPIFIM . A total of three minimum ICOMPIFIM values

from three runs of GA are obtained. Then the champion MVR subset is selected

as the one that corresponds to the smallest of these three minimum values.

Presented in Figure 6, Figure 7, and Figure 8 are the progress graphs for the

three runs of GA. In each graph, average and minimum fitness function values

are plotted against GA generation index, respectively, with the one on top corre-

sponding to the average ICOMPIFIM value for that GA generation and the other

one the minimum ICOMPIFIM value.

As can be seen from Figure 6, Figure 7, and Figure 8, the information criterion

ICOMPIFIM decreases substantially as the GA moves from one generation to
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another. Since a smaller value of ICOMPIFIM indicates a better model, the

graphs show that GA is capable of finding better models through an iterative

process. Table 5 shows the selected optimal MVR subset model from the GA.

For this subset, ICOMPIFIM is minimized at −1858.6. Note that the columns

represent factors and the rows original variables.

When all GA generations are finished, the subset MVR model for the model

F = XB + E is obtained where F is an n by m matrix of estimated factor scores

from maximum likelihood factor analysis and X is an n by p matrix of original

data. From the application of GA, already obtained is to what subset of original

variables each response variable or extracted factor is related.

Next comes the use of feasible generalized least squares (FGLS) method

to estimate the regression coefficient matrix B for the purpose of identifying the

complex relationship between extracted factors and original variables. Stated

differently, given F, X and the inclusion/exclusion information of a predictor in

B, the regression weight matrix B is to be estimated by regressing F on X using

the FGLS method. The estimated matrix B̃ is a p by m matrix. In this problem,

p = 15 and m = 5. So B̃ should be 15 by 5.
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B̃
(15×5)

=




−0.0568 0 0.0017 −0.1079 0
−0.0824 0 0.0048 0 0.0299
−0.1435 −0.0113 0.0124 −0.0670 0.0512
−0.0351 −0.0601 0 0.1273 0
−0.0557 0 0.0153 0.0905 −0.2678
0.1410 −0.4103 0.2892 −0.3205 0.2807

0 0 −0.0012 0.1862 0
0.0552 0.0724 0.0041 0 −0.1488

0 0.0526 0.0004 −0.0663 0
−0.0388 0.0327 0.0040 −0.0330 −0.0560

0 0.1549 0.0084 0 −0.2383
−0.0277 0 0.0127 0.0405 0
0.1694 0.2734 −0.0014 0.3250 0.2122
0.1401 −0.1367 −0.3990 −0.1685 0
0.0106 0.1013 −0.0014 −0.0728 0.1229




. (84)

To find out about how well B̃ relates F to X, it is natural to observe the

residuals: F̂−F̃ = F̂−B̃X. Figure 9 has in it a histogram of the vectorized

residuals which are pretty small, ranging from -0.6 to 0.8. In addition, the residuals

cluster around 0 and are approximately normally distributed. This indicates that

the multivariate regression model that has been built provides a good fit.

Next, B̃ is to be sparsed to obtain B̃Sparsed. Any element in Equation 84

that falls between the absolute value of the corresponding column mean and its

negative value is zeroed out. The elements in Equation 84 that meet the said

criterion are in bold. Therefore,
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B̃Sparsed
(15×5)

=




−0.0568 0 0 −0.1079 0
−0.0824 0 0.0048 0 0.0299
−0.1435 −0.0113 0.0124 −0.0670 0.0512
−0.0351 −0.0601 0 0.1273 0
−0.0557 0 0.0153 0.0905 −0.2678
0.1410 −0.4103 0.2892 −0.3205 0.2807

0 0 0 0.1862 0
0.0552 0.0724 0.0041 0 −0.1488

0 0.0526 0 −0.0663 0
−0.0388 0.0327 0.0040 −0.0330 −0.0560

0 0.1549 0.0084 0 −0.2383
−0.0277 0 0.0127 0.0405 0
0.1694 0.2734 0 0.3250 0.2122
0.1401 −0.1367 −0.3990 −0.1685 0
0.0106 0.1013 0 −0.0728 0.1229




. (85)

Based on the pattern of zeroes in B̃Sparsed, the optimal factor pattern structure

can be determined by zeroing out corresponding elements in Λ̂z. Therefore, the

following is obtained:
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Λ̂zSparsed =




0.3957 0 0 −0.3321 0
0.4049 0 0.1007 0 −0.0582
−0.1034 0.3989 0.4384 0.1959 0.3028
0.6635 −0.0337 0 0.3846 0
0.7597 0 0.3186 0.1503 −0.4232
0.8915 −0.0584 0.4428 −0.0203 0.0204

0 0 0 0.6619 0
0.8099 0.2572 0.2690 0 −0.2539

0 0.5586 0 −0.3484 0
0.7731 0.3984 0.0810 −0.0228 −0.1305

0 0.3523 0.2148 0 −0.3513
0.8472 0 0.3290 0.0814 0
0.7888 0.3985 0 0.2335 0.1519
0.8530 −0.0150 −0.5168 −0.0077 0
0.4857 0.5714 0 −0.2884 0.2954




. (86)

Using previously estimated factor scores F̂ and Λ̂zSparsed, residuals ε in Equa-

tion 2 can be estimated. In matrix form, those estimated residuals are noted

as Êr
(n×p)

. Then three sets of correlation coefficients are estimated, namely cor-

relations between estimated residuals and estimated factor scores corr
(
Êr, F̂

)
,

correlations between original variables and estimated factor scores corr
(
X, F̂

)
,

and interfactor correlations corr
(
F̂, F̂

)
.
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corr
(
Êr, F̂

)
=




−0.1614 0.3785 −0.2937 −0.1107 0.2957
−0.1387 0.3539 0.0042 0.2272 0.0153
−0.1828 −0.0993 −0.0426 −0.1432 −0.0256
−0.0561 −0.0472 −0.3489 −0.0903 0.4743
−0.0836 0.2058 0.0619 −0.1256 0.0023
−0.0075 −0.0101 −0.0674 −0.1341 0.0401
0.5719 −0.2824 −0.1619 −0.0854 0.0712
0.0319 0.0283 0.0077 −0.3172 0.0053
0.2420 −0.0444 −0.0846 −0.0753 0.4788
0.0399 0.0237 −0.0251 −0.0660 0.0586
0.8766 −0.0437 0.0439 −0.0402 −0.0571
−0.0531 0.3552 −0.0325 −0.1036 0.2370
0.1395 0.0373 0.5183 −0.0671 0.1745
−0.0070 −0.0102 −0.0677 −0.1364 0.0299
0.0381 0.0045 −0.0678 −0.0636 0.0986




. (87)

As can be seen from Equation 87, most of the correlation coefficients are very

close to 0, indicating that the correlations between the residuals and the extracted

factors are almost nonexistent. Therefore, the assumption outlined in Equation 9

is satisfied.
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corr
(
X, F̂

)
=




0.2460 0.3072 −0.2493 −0.4766 0.2413
0.2551 0.3247 0.1105 0.2114 −0.0597
−0.2689 0.3597 0.4502 0.1150 0.3453
0.5739 −0.1033 −0.2313 0.3406 0.3008
0.7136 0.0577 0.3258 0.1056 −0.4590
0.8566 −0.0992 0.4511 −0.0795 0.0261
0.4020 −0.2092 −0.1074 0.6716 0.0356
0.7888 0.2455 0.2749 −0.1426 −0.2839
0.1527 0.5531 −0.0540 −0.4398 0.3499
0.7400 0.3916 0.0858 −0.0765 −0.1434
0.7280 0.3374 0.2216 −0.0201 −0.3928
0.7789 0.1584 0.3382 0.0144 0.1111
0.7574 0.3921 0.2482 0.2071 0.1732
0.7892 −0.0734 −0.5134 −0.0836 −0.0941
0.4349 0.5761 0.0230 −0.3701 0.3341




. (88)

As can be seen from Equation 88, the pattern of positive and negative values

in this matrix is almost the same as that in the factor loading matrix with the

exception of only one matrix element, which is supportive of the effectiveness of

the techniques presented in the study.

corr
(
F̂, F̂

)
=




1.0000 −0.0535 0.0308 −0.0316 −0.0622
−0.0535 1.0000 0.0222 0.0010 0.0015
0.0308 0.0222 1.0000 0.0177 0.1024
−0.0316 0.0010 0.0177 1.0000 −0.0236
−0.0622 0.0015 0.1024 −0.0236 1.0000




. (89)

As can be seen from Equation 89, all correlation coefficients are very close to zero,

indicating that the extracted factors are statistically independent and orthogonal

of each other.
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Figure 10 presents the optimal factor pattern structure that has just been

identified. All factor loadings in the figure are available in Equation 86.

6.3 Example 3. Soil Evaporation Data

In this data set, each of the 46 subjects is measured on 11 variables. So the final

data set used for the regression model F = X B + E has a total of 11 variables,

or p = 11. Background information of the 11 variables is not available.

Next, maximum likelihood factor analysis is run using MATLABTM’s factoran

function. When there are 11 variables, this function can fit up to 6 factors. And as

is described above, for each fitted factor model, six information criteria are scored

for the purpose of evaluating the model-data fit. Table 6 has in it the information

criterion scores for all fitted factor models.

ICOMP1 or ICOMPIFIM is minimized at 968.35 when m = 5. So the best

approximating factor model is selected as the one with 5 factors. As a result, the

Genetic Algorithm is run for the 5-factor model.

The GA parameters used for this data set are identical to those for the previous

one. Presented in Figure 11, Figure 12, and Figure 13 are the GA progress graphs

which are generated under the same rules as in the previous example. In each
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graph, the average fitness function value corresponds to the zigzag plot on top

whereas the minimum fitness function value the other zigzag plot.

It is evident from these graphs that better models are selected through an

evolutionary process. As GA moves from one generation to the next, ICOMPIFIM

decreases substantially. Presented in Table 7 is the selected optimal MVR subset

model from the three runs of GA. For this subset, ICOMPIFIM is minimized at

−1479.9. Note that the columns represent factors and the rows original variables.

When all GA generations are finished, the coefficient matrix B in F = XB + E

is estimated using the FGLS method. In this problem, p = 11 and m = 5. So B̃

should be 11 by 5.

B̃
(11×5)

=




0.0101 −0.1379 0 0 0.3618
−0.0026 −0.0124 0.0959 0 0
0.0218 0.0418 0 −0.0966 −0.1404

0 −0.0075 0 0 −0.0131
−0.0169 −0.0578 0.3110 0.0976 −0.1775
0.0191 0.0586 −0.0783 0.0492 0.0846
−0.0514 −0.1977 −0.0517 0.1822 −0.2808
−0.0147 −0.0332 0 0.0705 −0.0949
−0.0035 0.0494 −0.0256 −0.0511 0.0539
0.0000 0.0001 0.0048 −0.0002 0
0.0008 0 0 0.0056 0




. (90)

Based on B̃, the residuals for the MVR model F = XB + E are computed in

the same way as in the previous example, vectorized and plotted in a histogram.
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Figure 14 is the histogram of the vectorized residuals.

In Figure 14, the residuals are small, ranging from -1.25 to 1.25. They cluster

around 0 and are approximately normally distributed. The histogram shows that

the fitted regression model provides a good fit, hence supporting the effectiveness

of the new approach to the identification of the best factor pattern structure.

6.4 Example 4. Gelpo Data

This data set contains a comparison of 41 countries according to 10 different

political and economic parameters. So the final data used for the regression model

F = X B + E has a total of 10 variables, or p = 10. Background information of

the 10 variables is presented in Table 8.

Next, maximum likelihood factor analysis is run using MATLABTM’s factoran

function. When there are 10 variables, this function can fit up to 6 factors. And as

is described above, for each fitted factor model, six information criteria are scored

for the purpose of evaluating the model-data fit of each factor model. Table 9 has

in it the information criterion scores for all fitted factor models.

ICOMP1 or ICOMPIFIM is minimized at 959.5 when m = 3. So the best

approximating factor model is selected as the one with 3 factors. As a result, the
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Genetic Algorithm is run for the 3-factor model.

The GA parameters remain unchanged from the previous example. Presented

in Figure 15, Figure 16, and Figure 17 are the GA progress graphs which are

generated under the same rules as previously. In each graph, the average fitness

function value corresponds to the zigzag line on top whereas the minimum fitness

function value the other zigzag line.

As the GA generations are being performed, each of the six zigzag lines has a

marked tendency to go down, indicating better models are being iteratively identi-

fied. These graphs are supportive of the effectiveness of the GA in finding models

that provide a better fit. Table 10 has in it the selected optimal MVR subset

model from the three runs of GA. For this subset, ICOMPIFIM is minimized at

−2107.5. Note that the columns represent factors and the rows original variables.

When all GA generations are finished, the regression weight matrix B in

F = XB + E is estimated using the FGLS method. In this problem, p = 10

and m = 3. So B̃ should be 10 by 3.

61



B̃
(10×3)

=




−0.0000 −0.0008 −0.0001
0.0001 −0.0001 0.0001
−0.4974 0.6160 0.9069
0.0002 0.0140 0.0006
−0.0008 −0.0413 −0.0026
0.0053 0.4018 0.0248
0.0007 −0.0151 −0.0283
0.0001 0 −0.0031
0.0000 −0.0007 −0.0001
0.0001 0.0015 0




. (91)

Based on B̃, the residuals for the MVR model F = XB + E are computed and

plotted in the same way as in the previous example. Figure 18 is the histogram

of the vectorized residuals.

The vectorized residuals are small, ranging from -0.8 to 0.5. They cluster

around 0 and are only a little bit skewed. The histogram shows that the fitted

MVR model based on B̃ provides a good fit, hence supporting the effectiveness of

the new approach to the identification of the best factor pattern structure.

6.5 Example 5. Medical School Test Data

The last example is based on a data set consisting of 142 rows and 24 columns.

Each element in this 142 by 24 matrix is a score from a new medical school

student on an item of a psychological test. A total of 142 medical school students

are involved. Background information of the 24 test items is not available.
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Next, maximum likelihood factor analysis is run using MATLABTM’s factoran

function. When there are 24 variables, this function can fit up to 17 factors. And

as is described above, for each fitted factor model, six information criteria are

scored for the purpose of evaluating the model-data fit. Table 11 has in it the

information criterion scores for the first 12 factor models.

ICOMPC1 or ICOMPIFIM is minimized at 6994.6 when m = 9. So the

best approximating factor model is selected as the one with 9 factors. As a result,

the Genetic Algorithm is run for the 9-factor model.

The GA parameters used for this data set are identical to those for the previous

one. Presented in Figure 19, Figure 20, and Figure 21 are the GA progress graphs

which are generated under the same rules as previously. In each graph, the average

fitness function value corresponds to the zigzag plot on top whereas the minimum

fitness function value the other zigzag plot.

Like in the previous examples, those GA progress graphs show the effectiveness

of the GA in finding better models through an iterative process. Each of the six

zigzag lines drops substantially with each GA generation, hence the identification

of a better model. Presented in Table 12 and Table 13 is the selected optimal

MVR subset model from the three runs of GA. For this subset, ICOMPIFIM is
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minimized at −3157.4. Note that the columns represent factors and the rows

original variables.

When all GA generations are finished, the regression coefficient matrix B in

F = XB + E is estimated using the FGLS method. In this problem, p = 24 and

m = 9. So B̃ should be 24 by 9. The estimated matrix B̃ is omitted here to save

space.

Based on B̃, the residuals for the model F = XB + E are computed and plot-

ted in the same way as in the previous example. Figure 22 has in it the histogram

of the vectorized residuals.

The histogram shows that the residuals from the fitted MVR model based on

B̃ are small, ranging from -1.5 to 1.5. In addition, the residuals cluster around 0

and are approximately normally distributed. The histogram indicates the fitted

model provides a good fit, hence supporting the effectiveness of the new approach

to the identification of the best factor pattern structure.
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7 Conclusions

The study presents a new approach to expert model selection in maximum likeli-

hood factor analysis using information criteria. The study emphasizes the use of

Bozdogan’s ICOMP − type criteria: ICOMP (IFIM), ICOMPIFIMPEU Mis,

ICOMPIFIMPEU Mis LN (Bearse & Bozdogan, 2000; Bozdogan 2000) and it

compares factor model selection results using ICOMP criteria with those from

other well-established model selection criteria: AIC (Akaike, 1973, 1987), CAIC

(Bozdogan & Ramirez, 1987), and SBC (Schwartz, 1978). At the same time,

ICOMPIFIM is also used as the fitness function in the implementation of the

Genetic Algorithm for the purpose of selecting the optimal MVR subset. Based

on model selection results from the GA, the study finds the extent to which ex-

tracted factors depend on the original data by building a multivariate regression

model which relates factor scores to the original data set.

The study removes the subjectivity in the selection of factor models. One

traditional approach to the determination of the number of factors counts on

eyeballing the scree plot of the eigenvalues. This causes plenty of subjectivity
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in model selection because different people may draw different conclusions about

at which eigenvalue the scree plot tends to level off and, thus, come up with

different answers to the number of factors that need to be extracted. The use of

information criteria eliminates the subjectivity in that the best model is selected

as the one that minimizes information criteria. Stated differently, information

criteria map the performance of a candidate model to a scalar value on which to

base subsequent conclusions on model-data fit.

The study implements the Genetic Algorithm (Bearse & Bozdogan, 2000; Hol-

land, 1975) in the determination of the best MVR subset. The GA provides

a computationally inexpensive approach to best MVR subset selection and this

study is supportive of its use in complex modeling situations where the traditional

all-possible-subset technique fails to work. This study provides evidence to show

how the GA works smartly to quickly find an optimal MVR subset through an

iterative and evolutionary process after the required parameters are given. Since

the specification of such GA parameters as population size, number of genera-

tions, probability of crossover, probability of mutation and the fitness function of

choice is vital to the performance of the algorithm, further study on this topic is

warranted. However, this study does support the use of ICOMPIFIM which
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performs well as the GA objective/fitness function.

The study builds a multivariate regression model that predicts factor scores

based on original variables. The GA simultaneously takes into account all response

variables in determining the champion MVR model structure, or the optimal

subset of original variables used for the prediction of each response or each of the

factor score variables. The estimation of the regression coefficients is based on a

method known as feasible generalized least squares (FGLS). The marriage of

the GA and the FGLS method proves to be effective as the residuals from each

fitted MVR model appear to be small and normally distributed, and they also

tend to cluster around 0.

In conclusion, the new approach presented in the study successfully unifies EFA

and CFA by providing regular EFA with a computationally efficient and effective

algorithm for optimal factor pattern search. This approach is recommended for

use in similar modeling situations.
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Table 1: Criterion Scores for Fitted Factor Models for the Sim Data

1 2 3 4 5 6 7

ICOMP1 3054.0 2867.4 2785.1 2788.5 2793.0 2795.7 2807.2

ICOMP2 3118.9 2978.5 2954.9 3034.0 3137.4 3271.6 3459.4

ICOMP3 3204.0 3117.1 3126.8 3222.8 3340.0 3486.9 3692.0

AIC 3036.6 2831.0 2743.1 2751.6 2761.4 2768.4 2778.6

CAIC 3123.2 2957.2 2905.4 2946.3 2985.0 3017.2 3049.0

SBC 3099.2 2922.2 2860.4 2892.3 2923.0 2948.2 2974.0
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Table 2: GA MVR Subset for the Sim Data

f1 f2 f3

x1 1 1 1

x2 1 0 1

x3 1 1 1

x4 1 1 1

x5 1 1 1

x6 1 1 0

x7 1 1 1

x8 1 1 1

x9 1 0 1

x10 1 1 1

x11 1 0 1

x12 1 1 1
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Table 3: Variable Description for the Job Data

x1 : Form of application letter

x2 : Appearance

x3 : Academic ability

x4 : Likeability

x5 : Self-confidence

x6 : Lucidity

x7 : Honesty

x8 : Salesmanship

x9 : Experience

x10 : Drive

x11 : Ambition

x12 : Grasp

x13 : Potential

x14 : Keenness to join

x15 : Suitability

77



Table 4: Criterion Scores for Fitted Factor Models for the Job Data

1 2 3 4 5

ICOMP1 1780.2 1739.3 1709.6 1691.6 1689.1

ICOMP2 1960.2 3851.3 1212.2 1403.6 1463.2

ICOMP3 2128.4 4058.8 1456.5 1681.6 1766.1

AIC 1660.5 1605.4 1562.5 1532.4 1525.3

CAIC 1746.7 1731.7 1726.1 1730.5 1755.0

SBC 1716.7 1687.7 1669.1 1661.5 1675.0

6 7 8 9 10

ICOMP1 1689.9 1690.7 1698.3 1714.4 1726.1

ICOMP2 1493.6 1511.4 1529.9 1553.5 1570.4

ICOMP3 1819.8 1864.9 1905.5 1949.4 1979.3

AIC 1521.2 1510.8 1511.0 1519.1 1529.1

CAIC 1779.7 1795.1 1818.2 1846.5 1873.6

SBC 1689.7 1696.1 1711.2 1732.5 1753.6
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Table 5: GA MVR Subset for the Job Data

f1 f2 f3 f4 f5

x1 1 0 1 1 0

x2 1 0 1 0 1

x3 1 1 1 1 1

x4 1 1 0 1 0

x5 1 0 1 1 1

x6 1 1 1 1 1

x7 0 0 1 1 0

x8 1 1 1 0 1

x9 0 1 1 1 0

x10 1 1 1 1 1

x11 0 1 1 0 1

x12 1 0 1 1 0

x13 1 1 1 1 1

x14 1 1 1 1 0

x15 1 1 1 1 1
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Table 6: Criterion Scores for Fitted Factor Models for the Soil Data

1 2 3 4 5 6

ICOMP1 1129.0 1012.1 976.99 974.88 968.35 978.61

ICOMP2 1221.0 1257.4 2234.3 73.284 539.02 661.72

ICOMP3 1351.5 1449.2 2462.0 325.06 815.5 957.77

AIC 1030.2 866.33 809.99 797.52 777.97 778.83

CAIC 1092.4 956.84 925.96 936.12 936.37 954.2

SBC 1070.4 924.84 884.96 887.12 880.37 892.2
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Table 7: GA MVR Subset for the Soil Data

f1 f2 f3 f4 f5

x1 1 1 0 0 1

x2 1 1 1 0 0

x3 1 1 0 1 1

x4 0 1 0 0 1

x5 1 1 1 1 1

x6 1 1 1 1 1

x7 1 1 1 1 1

x8 1 1 0 1 1

x9 1 1 1 1 1

x10 1 1 1 1 0

x11 1 0 0 1 0
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Table 8: Variable Description for the Gelpo Data

x1 : Population

x2 : Gross internal product per habitant

x3 : Rate of increase of the population

x4 : Rate of urban population

x5 : Rate of illiterate in the population

x6 : Rate of students in the population

x7 : Expected life time of people

x8 : Rate of nutritional needs realized

x9 : Number of newspapers & magazines per 1000 habitants

x10 : Number of TV sets per 1000 habitants
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Table 9: Criterion Scores for Fitted Factor Models for the Gelpo Data

1 2 3 4 5 6

ICOMP1 988.64 967.03 959.5 959.78 964.74 969.88

ICOMP2 1075.0 1204.8 2476.5 238.18 592.01 688.01

ICOMP3 1153.4 1300.7 2586.8 360.16 725.83 832.09

AIC 937.08 913.13 904.81 905.42 908.55 911.72

CAIC 991.35 991.82 1005.2 1024.8 1044.2 1061.0

SBC 971.35 962.82 968.21 980.82 994.23 1006.0
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Table 10: GA MVR Subset for the Gelpo Data

f1 f2 f3

x1 0 1 1

x2 1 1 1

x3 1 1 1

x4 1 1 1

x5 1 1 1

x6 1 1 0

x7 1 1 1

x8 0 1 1

x9 1 1 1

x10 1 1 1
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Table 11: Criterion Scores for Fitted Factor Models for the Test Data

1 2 3 4 5 6

ICOMP1 8771.3 7830.4 7287.9 7150.3 7095.7 7045.3

ICOMP2 8919.4 8122.6 7849.9 8395.6 13438 3702.9

ICOMP3 9270.6 8838.9 8799.1 9440.1 14551 4883.5

AIC 8629.6 7487.8 6831.6 6671.6 6610.9 6552.5

CAIC 8819.5 7768.6 7199.5 7122.5 7141.0 7157.7

SBC 8771.5 7697.6 7106.5 7008.5 7007.0 7004.7

7 8 9 10 11 12

ICOMP1 7014.9 6997.5 6994.6 7000.8 6998.8 7000.9

ICOMP2 5448.4 5885.2 6089.4 6213.5 6287.2 6341.8

ICOMP3 6691.9 7184.4 7437.3 7618.5 7742.9 7847.7

AIC 6515.6 6494.4 6490.6 6488.1 6479.8 6474.0

CAIC 7192.0 7238.1 7297.6 7354.4 7401.5 7447.1

SBC 7021.0 7050.1 7093.6 7135.4 7168.5 7201.1
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Table 12: GA MVR Subset for the Test Data - Part 1

f1 f2 f3 f4 f5 f6 f7 f8 f9

x1 1 0 1 0 0 0 1 1 1

x2 0 1 1 1 0 0 1 1 1

x3 1 1 1 1 1 0 1 1 0

x4 1 0 0 1 1 1 1 1 1

x5 0 0 1 0 1 1 1 0 1

x6 0 1 0 1 1 0 0 1 0

x7 1 1 1 1 0 1 0 0 1

x8 0 1 1 1 0 0 0 0 1

x9 0 1 1 1 1 1 1 1 1

x10 0 0 1 1 1 1 1 0 0

x11 1 0 1 1 1 0 0 0 1

x12 0 1 1 1 1 1 1 1 0
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Table 13: GA MVR Subset for the Test Data - Part 2

f1 f2 f3 f4 f5 f6 f7 f8 f9

x13 1 1 1 1 1 0 1 1 1

x14 1 0 0 1 0 1 1 1 0

x15 0 1 0 1 0 1 1 0 1

x16 0 1 0 1 1 0 0 1 1

x17 1 0 1 1 1 1 0 0 1

x18 1 1 1 1 1 1 1 1 1

x19 0 0 1 1 1 1 0 1 1

x20 0 1 0 1 0 1 1 0 1

x21 1 1 0 1 1 1 0 0 0

x22 0 0 1 0 0 0 1 1 1

x23 0 1 1 1 0 1 1 1 0

x24 0 1 0 1 1 0 0 1 1
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Figure 1: First GA Run for the Sim Data
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Figure 2: Second GA Run for the Sim Data
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Figure 3: Third GA Run for the Sim Data
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Figure 4: Distribution of Factor Score Residuals for the Sim Data

92



Figure 5: Factor Pattern Diagram for the Sim Data
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Figure 6: First GA Run for the Job Data
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Figure 7: Second GA Run for the Job Data
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Figure 8: Third GA Run for the Job Data
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Figure 9: Distribution of Factor Score Residuals for the Job Data
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Figure 10: Factor Pattern Diagram for the Job Data
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Figure 11: First GA Run for the Soil Data
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Figure 12: Second GA Run for the Soil Data
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Figure 13: Third GA Run for the Soil Data
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Figure 14: Distribution of Factor Score Residuals for the Soil Data
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Figure 15: First GA Run for the Gelpo Data
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Figure 16: Second GA Run for the Gelpo Data
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Figure 17: Third GA Run for the Gelpo Data
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Figure 18: Distribution of Factor Score Residuals for the Gelpo Data
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Figure 19: First GA Run for the Test Data
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Figure 20: Second GA Run for the Test Data
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Figure 21: Third GA Run for the Test Data

109



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Figure 22: Distribution of Factor Score Residuals for the Test Data
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