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ABSTRACT 

 

Enterobacter sakazakii is considered an emerging opportunistic pathogen 

associated with sporadic life-threatening bacterial infections in neonates linked to 

the compsumption of contaminated infant formula [Stoll et al., 2004]. In 2001 a 

neonate fatal infection associated with the presence of E. sakazakii in infant 

formula occurred in the neonatal intensive care unit (NICU) of the University of 

Tennessee Hospital [Himelright et al., 2002], as a result of this outbreak, the 

hospital made several policy changes and requested the Food Safety Center of 

Excellence of University of Tennessee to analyze the growth pattern of this 

microorganism at the conditions maintained in the hospital. The objective of this 

study was to analize E. sakazakii growth profile during preparation and 

administration of formula, as well as E. sakazakii tolerance to chlorine sanitizers 

widely used in hospital settings.Our results showed that if the starting 

temperature of the formula at the time of administration was 6 oC, the formula 

reached 25 oC in a period of four hours. Once contaminated formula reach 25 oC 

the generation times can decrease to less than one hour. We also noted that 

cells organized in colonies or in contact with solid surfaces had a higher 

resistance to chlorine sanitizers than those of planktonic cells, this phenomena 

could be explained by the expression of genes triggered by the physical contact 

between cell and surface.
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Introduction 

Enterobacter sakazakii is considered an emerging opportunistic pathogen 

associated with sporadic life-threatening bacterial infections in neonates 

particularly affecting low birth weight preterm infants of less than 2500 g [Stoll et 

al., 2004]. The pattern of disease includes meningitis, bacteremia, necrotizing 

enterocolitis, necrotizing meningoencephalitis and death in 40-80% of cases 

[Nazarowec-White and Farber, 1997a]. Recent studies have found that infants in 

whom meningitis developed tended to be near-term with greater gestational age 

and birth weight than those with bacteremia alone [Bowen and Braden, 2006]. 

The reservoir for E. sakazakii is still unknown, nevertheless it has been 

isolated from: milk powder, UHT milk, cheese, meat, vegetable, herbs, chocolate, 

cereal, potato flour, spices, pasta, rice seeds and from guts of the stable fly: 

Stomoxys calcitrans, and the Mexican fruit fly: Anastrpha ludens [Cottyn et al., 

2001; Hamilton et al., 2003; Kandhai et al., 2004; Kuzina et al., 2001; Leclercq et 

al., 2002; Skladal et al., 1993].  

Although E. sakazakii has been detected in various types of food, special 

attention has been given to outbreaks linked to the consumption of powdered 

infant formula milk (IFM). Powdered infant formula is not a sterile product. The 

analysis of 141 samples of milk-based powdered infant formula products 

obtained from a number of different countries showed that E. sakazakii could be 

recovered from 20 (14%) of 141 samples [Muytjens et al., 1988], another study 
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conducted in 2003 found E. sakazakii in 2 (2.4%) of 82 powdered infant formula 

samples [Iversen and Forsythe, 2004]. Results of previous investigations suggest 

that milk-based powdered infant formula with low levels of E. sakazakii, fulfilling 

the requirements of the Codex Alimentarius, can lead to development of infection 

[van Acker et al., 2001]. 

The Food Drug Administration (FDA) has pointed out that powdered milk-

based infant formulas are heat-treated during processing, but unlike liquid 

formula products they are not subjected to high temperatures for sufficient time to 

make the final packaged product commercially sterile. FDA has noted that infant 

formulas nutritionally designed for consumption by premature or low birth weight 

infants are available only in commercially sterile liquid form. However, so-called 

"transition" infant formulas that are generally used for premature or low birth 

weight infants after hospital discharge are available in both non-commercially 

sterile powder form and commercially sterile liquid form [Taylor, 2002]. Some 

other specialty infant formulas are only available in powder form.  

The American Dietetic Association and the FDA have issue guidelines for 

infant formula preparation, storage and administration and recommend powdered 

infant formulas not be used in neonatal intensive care settings unless there is no 

alternative available [Agostoni et al., 2004; Taylor, 2002].  However, to meet the 

increased nutritional needs of premature infants, some hospitals continue to use 

powdered infant formulas since certain nutrients are lost during heat processing 

of liquid infant formulas. 
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Taxonomy 

Enterobacter sakazakii is a member of the phylum proteobacteria, which 

includes Gram-negative bacteria with an outer membrane composed mainly of 

lipopopysaccharides. Many of the bacteria pertaining to this phylum move using 

flagella, but some are non-motile or rely on bacterial gliding. The proteobacteria 

are divided into five sections or classes: α,β,γ,δ,ε  based on rRNA sequences. E. 

sakazakii is a member of the family Enterobacteriaceae included in the γ section 

or class Gamma-proteobacteria order Enterobacteriales. The family 

Enteobacteriaceae contains more than 100 species of Gram-negative, oxidase-

negative, nonsporing bacilli some of which normally inhabit the intestines of 

humans and animals and are commonly referred as coliforms. All members of 

the family degrade sugars by means of the Embden-Meyerhof pathway and 

cleave pyruvic acid to yield formic acid. Preliminary genera identification is based 

on motility and biochemical characteristics. 

Different genera of the Enterobacteriaceae family have earned a 

reputation placing them among the most pathogenic and most often encountered 

organisms in clinical microbiology (eg. Salmonella and Escherichia coli). 

E. sakazakii was named using the binomial nomenclature that consists of 

Genus (Enterobacter) and species (sakazakii). Genus is a taxonomic category 

ranking below a family and above a species and generally consisting of a group 

of species exhibiting similar characteristics.  
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Species consist of individual organisms which are very similar in 

appearance, anatomy, physiology and genetics due to having relatively recent 

common ancestors. E. sakazakii was previously known as yellow-pigmented 

Enterobacter cloacae but in 1980 the microorganism was reclassified as a new 

bacterial species based on differences between E. cloacae and E. sakazakii in 

deoxyribonucleic acid DNA-DNA hybridization, biochemical reactions, pigment 

production and antibiotic susceptibility [Farmer, 1980]. E. sakazakii differs from 

other species in its ability to produce an extracellular deoxyribonuclease and the 

inability of some strains to ferment D-sorbitol [Farmer, 1980; Heuvelink et al., 

2002]. 

Distinguishing characteristics of the microorganism also include activity of 

the enzyme α-glucosidase, utilization of citrate as a sole carbon source, survival 

of cells in stock cultures stored at 17-30 °C without transfer for up to 8 years and 

production of yellow pigment. Muytjens et al. [1984] reported that 100% of E. 

sakazakii (n = 129) were positive for α-glucosidase in comparison to 0% of other 

Enterobacter species (n = 97), however other member of the family 

Enterobacteriaceae have shown to be positive for both yellow pigment and α-

glucosidase activity. The yellow pigment production is enhanced at temperatures 

less than 36 °C, with optimum production at 25 °C, but the production of the 

diffusible yellow pigment is unstable with repeated subculturing. The occurrence 

of non-pigmented E. sakazakii has also been reported [Farmer, 1980].  
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Different techniques are used to study the phylogenetic relationships of E. 

sakazakii ; while the microorganism was reported to be 50% related to 

Enterobacter cloacae and Citrobacter koseri by using DNA-DNA hybridization 

[Farmer, 1980], other techniques using 16 S ribosomal DNA (rDNA) and hsp60 

sequencing, showed that E. sakazakii type strain 16S rDNA sequence was 

97.8% similar to that of Citrobacter koseri but 97.0% similar to that of 

Enterobacter cloacae [Iversen et al., 2006; Lehner et al., 2006]. Techniques 

using DNA hybridization, antibiotic susceptibility and biochemical reactions have 

further distinguish 57 strains of yellow pigmented E. sakazakii [Farmer, 1980], 

nevertheless the phenotype test has not been proven effective for identification of 

all species and is not reliable in distinguishing strains within species.  

Comparative 16S rDNA and hsp60 sequencing of 126 strains identified as 

E. sakazakii by biochemical test kits ( API20E and ID32E) showed  that 

commercial biochemical test kits identified more than one species as E. 

sakazakii, and that there were at least four clusters conformed by genetically and 

biochemically distinct subgroups of E. sakazakii [Iversen et al., 2004c]. The 

majority of the 126 strains evaluated (110 strains) were in cluster 1, with 0.1 to 

1.2% difference from the type strain. Nine strains exhibited 1.6 to 1.9% sequence 

divergence from the type strain and formed a second cluster closely related to E. 

sakazakii. The third cluster contained five strains, which were more closely 

related to Enterobacter pyrinus, Enterobacter hormaechi, and C. koseri.  The 

fourth cluster contained two strains, identified as E. sakazakii by API20E and 
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ID32E, but their 16S rDNA sequences were just 96.5% similar to the type strain 

of that species. 

Other studies in characterization of taxonomic heterogeneity between  the 

strains, have been developed using fingerprinting DNA and RNA techniques 

such as PCR, pulsed-field gel electrophoresis (PFGE), chromosomal DNA 

restriction analysis, ribotyping, plasmid typing and randomly amplified 

polymorphic DNA (RAPD) [Farber, 1996; Grant and Kroll, 1993; Nazarowec-

White and Farber, 1999]. Ribotyping analysis with the EcoR1 restriction 

endonuclease showed to be more discriminatory than restriction endonuclease 

analysis (REA) [Clark et al., 1990; Nazarowec-White and Farber, 1999]. The 

application of Artificial Neural Networks (ANNs) to identify key phenotypic 

characteristics and nucleotide sequences which discriminate E. sakazakii from 

similar, closely related organisms, predicted that testing for the metabolism of 

glucose-1-phosphate, sucrose and arginine gave the highest discrimination 

[Iversen et al., 2006; World Health Organization and Food and Agriculture 

Organization of the United Nations, 2006]. 

 Isolation  

Enterobacter sakazakii is a Gram negative, facultative, rod-shaped 

bacterium, that possesses peritrichous flagella. Initial isolation of the bacterium  

using the U.S. Food and Drug Administration (FDA) method requires rehydration 

of infant formula powder in sterile distilled water overnight at 36 °C, enrichment in 
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Enterobacteriaceae enrichment broth (EE), overnight at 36 °C, direct spreading 

or streaking method into violet red bile glucose agar (VRBGA) with incubation 

overnight at 36 °C and subculture of presumptive purple halo E. sakazakii 

colonies onto Trypticase Soy Agar  (TSA) for 48-72 hours to detect the 

production of yellow pigment. Confirmation is performed by using API20E series 

and oxidase test. This method has the disadvantage that VRBG agar is not 

sufficiently selective, and that TSA requires 24-72 hours incubation time to 

produce yellow-pigment colonies. In addition, pigment production in some strains 

is temperature dependent and not all strains of E.sakazakii are yellow pigmented 

(Farmer et al. 1980) Guillaume-Gentil et al.[2005] reported  that pigment 

production was enhanced by light exposure and  the use of artificial white light.  

As an alternative for the FDA isolation method, simple and rapid cultural 

methods for detection of E. sakazakii have been developed, including media 

containing new chromogenic or fluorogenic substrates, such as: DFI developed 

by Iversen, Drugan and Forsythe (2004), LBDC agar developed by Leuschner, 

Baird, Donald, and Cox (2004), OK agar developed by Oh and Kang (2004), NES 

agar developed by Guillaume-Gentil  et al.  (2005), ISO agar developed by ISO 

TS 22964, and RF agar developed by Restaino et al (2006). Chromogenic or 

fluorogenic media are based on the α – glucosidase activity and/or the use of 

fluorogenic and chromogenic substrates such as 4-methylumbelliferyl (4-MU) and 

5-bromo-4-methyl-3-indoxyl (X)- -linked  α-D-glucosides in media [Guillaume-

Gentil et al., 2005; Iversen et al., 2004a; Leuschner et al., 2004; Oh and Kang, 
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2004]. The performance of differential selective media for supporting 

resuscitation and colony development by stressed cells of E. sakakazakii 

previously submitted to heat, freezing, acidic pH, alkaline pH and desiccation 

indicated that differential selective media vary greatly in their abilities to support 

resuscitation and colony formation, the general order of growth indices of 

stressed cells is:TSA agar with 0.1% pyruvate, LBDC  > Fecal Coliform Agar > 

RF > VRBG,OK > DFI, EE [Gurtler and Beuchat, 2005]. 

The colony morphology follows two distinct phenotypes [Farmer, 1980; 

Iversen and Forsythe, 2003]. One colony type is described as “matt”, being 

leathery or rubbery when touched with a wire loop, this type of colony snaps back 

to the agar when touched. The other colony type is described as “glossy”, it is 

smooth and creamy, easily removed with a wire loop. It has been found that 

leathery colonies may revert to typical smooth colonies when subcultured from 

stock cultures. The production of either matt or glossy morpholgies is related to 

presence of capsules or production of exopolysaccharides [Harris and Oriel, 

1989]. The condition influencing the production of exopolysaccharides was 

studied by Scheepe-Leberkuhne and Wagner [1986]. Preliminary results of the 

heteropolysaccharide composition revealed that the exopolysaccharide 

contained galactose/fucose/glucose/glucuronic acid/acetate in the molar ratio of 

2:2:1:0:7:3 [Lehner et al., 2005; Scheepe-Leberkuhne and Wagner, 1986]. The 

composition of the sugars was independent of the carbon source (Glucose or 

Glycerol) used during cultivation and the polysaccharide production was 
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optimized by increasing the carbon/nitrogen ratio in the growth media. Further 

analysis of heteropolysaccharides produced by E. sakazakii 1387-2 indicated the 

presence of glucose, galactose, fucose and glucuronic acid in the ratio 1:1:1:0.8 

[Lehner et al., 2005]. Phenotypic and molecular investigation of cellulose 

expression suggested cellulose production by certain strains of E. sakazakii 

grown in Luria-Bertani broth (LB) at 28 °C and 37 °C.  

Resistance to Stress Conditions 

Acid Tolerance 

The ability to tolerate acidic environments is an important feature that 

influences the survival of foodborne pathogens in foods and through the 

gastrointestinal system. Some members of the family Enterobacteriaceae, such 

as Escherichia coli O:157 posses an acid-tolerance response mechanism 

consisting of an integral membrane protein that pumps glutamate and γ-

aminobutyrate in opposite directions [Waterman and Small, 2003]. Glutamate is 

transported inside the cell where decarboxylation takes place consuming one 

intracellular proton; the product is then exported out of the cell, thereby helping to 

maintain a neutral cytoplasmic pH when extracellular pH drops [Waterman and 

Small, 2003]. While it has being presumed that a mechanism similar to this can 

be present in E. sakazakii, no evidence has been provided. Actually, there is 

currently little data regarding E. sakazakii tolerance to acid environments, some 

studies report that E. sakazakii did not grow on apple juice (pH 3.9) or strawberry 

juice (pH 3.6); but did grow in tomato juice (pH 4.4), watermelon juice (pH 5.0) 
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and cantaloupe juice (pH 6.8) [Kim and Beuchat, 2005]. The ability of a 

microorganism to survive exposure to an acid environment is dependent on a 

large number of factors such as pH, acidulant identity, acidulant concentration, 

temperature, water activity, atmosphere, and the presence of other inhibitory 

compounds [Buchanan and Edelson, 1999; Buchanan and Golden, 1995]. 

Edelson-Mammel et al. [2006] reported that after 5 hours of exposure at 

pH 3.5, 10 of 12 E. sakazakii strains in stationary phase showed less than 1 log 

reduction, the most sensitive strain showed a 3.5 log reduction. At pH 3.0, the 

decline over the 5 hours incubation period ranged from 4.0 to >6.3 log. Their 

study reports that stationary cells of E. sakazakii can withstand transitory 

exposure to a pH 3.0 and that the acid resistance of some, but not all strains of 

E.sakazakii is enhanced by prior growth in an acidogenic medium that habituated 

cells to pH 5.0-5.2. This evidence supports the fact that E. sakazakii can survive 

the acidic conditions of neonates stomach because the pH of infants is rarely 

below pH 4–5 for the first six months of life. 

Another factor that has being linked with acid tolerance in E. sakazakii is 

the synthesis of exopolysaccharides which produces the formation of mucoid 

colonies. E. sakazakii exopolysaccharides contain glucuronic acid [Lehner et al., 

2005; Scheepe-Leberkuhne and Wagner, 1986]; the negatives charges of 

glucuronic acid have the ability to buffer extracellular protons providing protection 

to the cell, glucuronc acid is also involved in the production of mucoid colonies. 
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Osmotic and dry stress resistance 

The detection of E. sakazakii in powdered infant formula suggests that this 

microorganism can survive for extended periods in low water activity products. 

Dry infant formula has a water activity (aw) of approximately 0.2 [Breeuwer et al., 

2003]. The ability of E. sakazakii to survive in such a dry environment is 

influenced by the bacterium’s osmotic and dry stress resistance.  

Desiccation-sensitive bacteria die when the cellular water content is 

reduced to 0.3 water/g dry weight [Potts, 1994b] while desiccation-tolerant  

bacteria  resist  the removal of all but 0.1g water/g dry weight [Billi and Potts, 

2000]. Several organisms capable of surviving dehydration have the ability to 

accumulate large amounts of solutes, such as K+ ions, glutamate, glutamine, 

praline, glycine betaine, glucosylglycerol sucrose and trehalose. 

According to the water replacement hypothesis, trehalose and sucrose 

hydrogen bond membrane phospholipids and proteins, maintaining their integrity 

in the absence of water. Another point of view suggests that sugars involved in 

stabilizing dehydrated microorganisms do so by virtue of the ability to form 

glasses. A glass is defined as a liquid of such high viscosity that it is capable of 

slowing all chemical reactions and prevents the complete dehydration of bacterial 

cells at temperatures below the melting point of glass. An additional mechanism 

of protection that has been considered is the production of exopolysaccharides of 

high viscosity around bacterial cell walls, which tend to be hygroscopic thus 



 

 13

decreasing the rate of water loss from the cells. It is widely believed that 

production of exopolysaccharides provides microorganisms with a means to 

survive drying; however, little is known about the specific responses of 

polysaccharide synthesis to drying. Some studies have confirmed the 

exopolysaccharides protective roles, but others studies have failed to show any 

obvious correlation [Potts, 1994a].  Recent studies have shown that different 

carbohydrate derivatives (glycolipids), have subtle effects on the physical 

properties of membranes, the carbohydrate portion of each derivative appeared 

to mimic the effects of water; these data align with the  water replacement 

hypothesis [Goodrich et al., 1991]. 

E. sakazakii resistance to osmotic and dry stress has been related to its 

ability to accumulate intracellular trehalose [Breeuwer et al., 2003]. In a recent 

study, it was found that dried stationary cells increased the trehalose 

concentration more than five folds; this accumulation was not observed in dried 

exponential phase E. sakazakii cells, which are much more sensitive to dry 

stress [Breeuwer et al., 2003]. Studies conducted with E. coli cells demonstrated 

that the trehalose synthesis genes were induced by stationary phase sigma 

factor θ s [Hengge-Aronis et al., 1991], these findings help to explain the higher 

concentration of trehalose in stationary phase and therefore the higher resistance 

to osmotic and dry stress compared with exponential phase cells. 

Edelson-Mammel et al.[2005] studied the survival of E. sakazakii 

inoculated in a batch of infant formula over the course of almost two years. An 
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approximate 2.3-log decrease in viable counts upon rehydration was observed 

during the first 150 days of storage. The D-value during this initial period of 150 

days, was 73.8 days. In the second phase of the study (153 to 687 days), viable 

counts declined an additional 1.0 log cycle; the calculated D-value was 684.9 

days. Even though a majority of E. sakazakii cells were inactivated by storage in 

dehydrated powdered infant formula, a portion of the cells were highly resistant 

to the storage conditions and survived for at least 2 years. 

In conclusion, stationary phase E. sakazakii cells have the ability to 

survive desiccation and have been found to be more resistant to osmotic and dry 

stress than Escherichia coli, Salmonella and other bacteria in the  

Enterobacteriaceae. 

Thermal resistance 

Effective use of thermal treatments to reduce the risk associated with food 

borne pathogens requires accurate information on the heat resistance of the 

targeted microorganism; the thermal treatment should be sufficient to inactivate 

the microorganism of concern while minimizing the loss of nutrients [Edelson-

Mammel and Buchanan, 2003]. 

It is known that heat resistance is influenced by different factors such as 

physiological state of the organism, growth temperature and medium composition 

[Knabel et al., 1990].  The high content of total solids and high amount of fat in 

infant formula protect microorganisms from heat, making it difficult to compare D-



 

 15

values. However, Breeuwer et al.[2003] found that for four E. sakazakii strains 

analyzed the  type of reconstituted infant formula did not influence the D-value. 

Nazarowec-White and Farber [1997b] obtained data on the D and z values 

of ten Canadian E. sakazakii strains (5 clinical and 5 food isolates) in 

reconstituted dried-infant formula. D-values for clinical strains were not significant 

different to the D-values for the food strains. D-values of E. sakazakii for 

reconstituted  dried-infant formula were D 52 ºC 54.8 min , D 54 ºC  23.7 min, D 56ºC 

10.3 min, D 58ºC 4.2 min, D 60ºC 2.5 min. The z value for the pooled clinical and 

food strains was 5.82 ºC, which was within the range reported for most non-

sporeforming bacteria. Iversen et. al. [2004b] calculated D-values for E. sakazakii  

in a rehydrated powdered milk formula obtaining as result D 54 ºC 16.4 min , D 56ºC  

5.1 min, D 58ºC 2.6 min, D 60ºC 1.1 min, D 62ºC 0.3 min. From the limited data 

obtained, it appears that some strains of E. sakazakii are more thermotolerant 

than many other Enterobacteriaceae or Listeria monocytogenes in dairy products 

[Nazarowec-White and Farber, 1997a, Piyasena et al., 1998]. 

Edelson-Mammel and Buchanan [2003] evaluated the diversity in thermal 

resistance among 12 E. sakazakii isolates and the effect of rehydrating dried 

infant formula with water at different temperatures on the survival of the 

microorganism. Substantial variation in thermal resistance was observed among 

the isolates, with almost a 20 fold differential existing between the most and least 

heat-resistant strain. The distribution of heat resistance among the various 

isolates was bimodal, with half of the strains having D 58ºC -values of less than 50 
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s and the other half having D58ºC -values of more than 300 s. The calculated z 

value for the most heat resistant strain was 5.6 ºC, and  4-D or more inactivation 

was observed with water temperatures >  70 ºC. On the basis of the 12 strains 

examined, the thermal resistance of E. sakazakii fell into two distinct phenotypes, 

which suggest that this microorganism might have a relative simple set of genetic 

determinants for thermal resistance [Edelson-Mammel and Buchanan, 2003]. 

In order to obtain a 6 or 7 log reduction, the length of heat treatment 

required at 60 ºC would be 15 and 17.5 min, respectively [Nazarowec-White and 

Farber, 1997a]. E. sakazakii would not survive the pasteurization process; high 

temperature, short time (HTST) pasteurization schedule (15 s at 71.7 ºC) 

ensures a greater than 11D kill of E. sakazakii in dried-infant formula, which 

indicates that E. sakazakii can not survive a commercial pasteurization process 

[Iversen et al., 2004b]. However, Skladal et al. [1993] found E. sakazakii to be 

one of the major contaminating bacteria in ultra-high-temperature (UHT) milk 

cartons, implying that the organism may survive UHT temperatures or post 

processing contamination may take place. 

Determination of D-values of pathogens cannot be easily extrapolated to 

continuous processes such as HTST, as they do not take into account the 

possible effects of shear force and other physical stress. By using a pilot scale 

HTST pasteurizer it was confirmed that treatments at 68 ºC for 16 s can ensure a 

5-log reduction of E. sakazakii [Nazarowec-White et al., 1999]. Kindle et al. 

[1996] studied the killing activity of microwaves in milk and reported than heating 
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150-ml portions of various infant formula for 85 to 100 s achieved a mean 

temperature of 82 ºC to 93 ºC and lead to more than 4-D inactivation of E. 

sakazakii. However, Edelson-Mammel and Buchanan [2003] suggested the use 

of rehydration temperatures no higher than 70 ºC to avoid scalding hazard. 

Antibiotic resistance 

Antibiotics are secondary metabolites produced by microorganisms that 

inhibit or kill a wide spectrum of microorganisms. E. sakazakii is typically 

susceptible to ampicillin, the aminoglycosides, chloramphenicol, and the third-

generation cephalosporins [Lai and 2001]. However the occurrence of antibiotic 

resistance has been observed during patient treatment. Muytjens el al. [1983] 

studied eight cases of neonatal meningitis due to E. sakazakii which occurred in 

the Netherlands. Even though all strains were inhibited in vitro by ampicillin, 

chloramphenicol, gentamicin and kanamycin as measured by an agar disk 

diffusion procedure, two patients died despite treatment with ampicillin and 

gentamicin. 

It has been reported that strains are much more susceptible to some of 

the new beta-lactam antibiotics than to ampicillin. Farmer et al. [1980] tested 10 

strains of E. sakazakii for antibiotic susceptibility and determined that the 

minimum inhibitory concentrations (MICs) to chloramphenicol and ampicillin were 

moderate, at 4–8 μg/ml and 2–4 μg/ml, respectively. Examination of 24 strains of 

E. sakazakii using the Kirby–Bauer disk method revealed that 96% were 
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sensitive to nalidixic acid (30 μg), 100% to gentamicin (10 μg), 92% to 

streptomycin (10 μg), 100% to kanamycin (30 μg), 87% to tetracycline (30 μg), 

100% to chloramphenicol (30 μg), 100% to ampicillin (10 μg) and 87% to 

carbenicillin (100 μg)[Farmer, 1980]. The same strains were less susceptible to 

penicillin (0% at 10 U), cephalothin (13% at 30 μg), sulfadiazine (67% at 250 μg), 

and colistin (71% at 10 μg) [Farmer, 1980]. 

Results obtained from a study in China where sixteen strains of E. 

sakazakii isolated from powdered infant formula were evaluated showed that all 

of the isolates were resistant to benzylpenicillin, oxaxillin and vancomycin, r 

cephazolin and cefpodoxime except one isolate [Pei et al., 2007]. 

Stock and Wiedemann [2002] analyzed the antibiotic resistance of 35 E. 

sakazakii strains and found that all strains were natural sensitive to tetracyclines, 

aminoglycosides, penicillin (amoxicillin, ampicillin), chephalosporin (cefoxitin, 

cefaclor), carbapenems, monobactams, quinilones, lincosamides, 

streptogramins, glycopeptides and antifolates. Some strains were also resistant 

to azithromycin. 

Lai [2001] reported that the case-fatality rate among patients with 

meningitis before the use of third-generation cephalosporins was 62%; with the 

introduction of third-generation cephalosporins in 1985, the case-fatality rate was 

reduced to14%. E. sakazakii has developed resistance to the gold standard 

treatment ampicillin–gentamicin treatment by means of transposable elements 
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and to β-lactams by the production of β-lactamase [Lai and 2001; Pitout et al., 

1997]. Pitout et al.[1997] tested eight strains of E. sakazakii for the presence of 

β-lactamases. Antibiotic susceptibility testing was against ampicillin, ampicillin–

sulbactam, amoxacillin–clavulanic acid, ticarcillin, ticarcillin–clavulanic acid, 

piperacillin, piperacillin–tazobactam, aztreonam, cephalothin, cefazolin, cefoxitin, 

cefotaxime, cetriaxone, ceftazidime, cefepime and imipenem. Some of the eight 

strains were sensitive to the three β-lactams, ampicillin, cephalothin, and 

cefoxitin, while all wild-type E. sakazakii strains were susceptible to ampicillin, 

cefoxitin and cephalosporins. All eight strains tested for β-lactamases were 

positive for Bush group 1 β-lactamase (cephalosporinase).  

Block et al.[2002] examined E. sakazakii isolates from six neonatal and 

childhood infections and reported all as being β-lactamase positive, most likely 

representing Bush group 1 β-lactamase. Increasing antibiotic resistance among 

Enterobacter species could lead to consider using the carbapenems or the newer 

cephalosporins in combination with a second agent such as an aminoglycoside. 

Lai [2001] also suggested that trimethoprim-sulfamethoxazole may be a useful 

agent in the treatment of infections caused by the Enterobacter species, 

especially in view of the production of extended-spectrum beta-lactamases 

capable of inactivating the cephalosporins and extended-spectrum penicillin.  

Willis and Robinson [1988] detailed two cases of E. sakazakii-induced 

neonatal meningitis that, after being unresponsive to ampicillin–gentamicin 

therapy, resulted in abatement via treatment with moxalactam. Naqvi et al. [1985] 
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eliminated E. sakazakii infection in one patient by using cefotaxime. Block et al. 

[2002] concluded that general assumptions concerning antimicrobial therapy for 

E. sakazakii cannot be made, and treatment should be guided by clinical 

judgment and in vitro susceptibility testing. 

Mechanisms of Pathogenicity 

Little is known about the mechanisms of pathogenicity of E. sakazakii. E. 

sakazakii has been implicated in cases of meningitis and neonatal necrotizing 

enterocolitis originated by the consumption of contaminated infant formula. To 

cause disease E. sakazakii, must be ingested, survive the harsh conditions of the 

stomach acids and be able to colonize the lower gastrointestinal tract.  

E. sakazakii infections are associated with neonates; although the pH of 

the gastric liquids in the stomach of neonates is higher than in adults, the 

stomach still provides a harsh condition. 

Actual data regarding E. sakazakii tolerance to acid environments, confirm 

the microorganism’s ability to stand the acidic conditions of neonates stomach 

however further research is needed to understand mechanisms used to 

overcome acidic conditions [Edelson-Mammel et al., 2006]. 

Adhesion to tissue cells is an essential virulence factor for most bacterial 

pathogens, once the microorganism adheres, it can colonize tissue and exert 

pathogenesis. Mange et al. [2006] studied the adherence ability of 50 E. 

sakazakii strains on three cell lines: Epithelial Hep-2 and Caco-2, as well as the 
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brain microvascular endothelial cell line HBMEC.  Their results show that 

adherence followed two distinctive patterns, a diffuse adhesion and the formation 

of localized clusters of bacteria on the cell surface. Research on E. sakazakii 

multicellular behavior showed extracellular matrix, cell clumping, pellicle 

formation and biofilm formation associated with the expression of cellulose and 

curli fimbrie features which have been related to increased to increased virulence 

and transmission in other pathogens [Zogaj et al., 2003].  Mange et al. [2006] 

reported that adherence is maximal during late exponential phase and is mainly 

non-fimbial based [Mange et al., 2006]. 

Bacterial mechanisms of pathogenicity include production of endotoxins 

and exotoxins. Exotoxins are proteins, often enzymes, produced inside the cells 

that produce damage upon release from the cell. An enterotoxin is an exotoxin 

released by a micro-organism in the lower intestine that disrupts the lining of the 

gastrointestinal tract. On the other hand, endotoxins are structural components of 

bacteria such as: lipid A core region of lipopolysaccharide (LPS) which forms the 

outer membrane of Gram-negative bacteria and exerts their effect after cell lysis. 

Endotoxins are heat stable at 100 °C and can remain biologically active 

after pasteurization. Pagotto et al. [2003] evaluated 18 isolates of E. sakazakii for 

enterotoxin production by the suckling mouse assay, four isolates were found to 

test positive for enterotoxin production. When comparing the cytopathic effect of 

the enterotoxin produced by E. sakazakii LA to that of E. coli O157:H7, it was 

found that E. sakazakii LA enterotoxin was toxic to three cell lines CHO, VERO, 
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Y-1 while E. coli O157:H7 was only toxic to Vero cells but to  a higher degree. 

Boiling of the enterotoxin did not eliminate the cytopathic effect either in E. 

sakazakii LA enterotoxin or in E. coli O157:H7 enterotoxin. These results showed 

that E. sakazakii LA and E. coli O157:H7 produced an enterotoxin with similar 

cytotoxicity, which can destroy the tissue in the intestines causing necrotizing 

enterocolitis.  

Further studies determined the level of endotoxin in 75 samples of infant 

formula collected from seven countries [Townsend et al., 2007]. The endotoxin 

level ranged from 40 to 55 X 10³ endotoxin units (EU) per gram, half of the 

samples had a concentration less than 3000 EU/g. Townsend et al [2007] 

proposed that endotoxins may contribute to failure of neonatal intestine integrity 

therefore facilitating bacterial translocation leading to local and systemic 

infection, and encouraged further research on mechanism which LPS utilizes to 

enhance bacterial translocation across the gut and blood barrier.  

Another factor that contributes to E. sakazakii pathogenicity is the 

synthesis of capsules. The capsule antigens may inhibit phagocytosis, 

complement, and responses from the host's immunological mechanisms, 

increasing the organism’s ability to breach the blood-brain barrier and to reach 

the central nervous system. Once the microorganism is established in the central 

nervous system it can produce meningitis. 
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Non-thermal Methods of Decontamination 
 

Gamma radiation  

The U.S. Food and Drug Administration (FDA) and the World Health 

Organization consider the use of ionizing (gamma) radiation as an alternative to 

thermal processes for the preservation of certain foods. Gamma-radiation is an 

alternative to chemical preservatives. The United States is the 25th nation to 

endorse irradiation for a wide variety of foodstuffs. Among the countries which 

have issued unconditional or provisional approval for commercial irradiation of 

certain foodstuffs are: Belgium, Canada, China, France, Holland, Italy, Israel, 

Japan, and the USSR [Health Physics Society, 1988]. 

Lethality due to ionizing radiation, as proposed by the target theory, 

occurs when the irradiated microorganisms are destroyed by the passage of an 

ionizing particle or quantum of energy through, or in close proximity to, a 

sensitive portion of the cell. This direct "hit" on the target causes ionization in this 

sensitive region of the organism or cell and subsequent death. It is also assumed 

that much of the germicidal effect results from the ionization of the surroundings, 

especially water, to yield free radicals, some of which may be oxidizing or 

reducing and therefore helpful in the destruction of the organisms. 

The gamma rays destroy pathogenic microorganisms in the final product 

after packaging because of its high permeability [World Health Organization, 
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1999]. Similarly to microwaves in an oven, the gamma rays pass through the 

food, radioactivity is not added to the product. Gamma radiation does not heat 

the food, which can be stored or packaged and shipped immediately [Health 

Physics Society, 1988].  

The inactivation effects of Gamma radiation on E. sakazakii ATCC 29544 

are similar to that of other gram-negative food-borne pathogens.  The D10 - 

values obtained for E. sakazakii ATCC 29544 in sterilized tryptic soy broth (TSB) 

and dehydrated powdered infant formula were 0.27 and  0.76 kGy respectively 

[Lee et al., 2006]. D10 –values in the 0.2 to 0.5 kGy range are typically observed 

with broth cultures of gram-negative pathogens such as E. coli or Salmonella 

Typhimurium. Gamma radiation at a dose of 5 kGy eliminated E. sakazakii 

inoculated at 8.0 to 9.0 log CFU/g onto a dehydrated powdered infant formula 

without affecting its sensory properties. Given the low contamination levels (1 to 

10 CFU/100g) detected in infant formula, lower radiation doses could be used in 

order to minimize the loss of nutritional properties [Lee et al., 2006]. 

Pulsed electric field  

During the last decade, Pulsed Electric Field (PEF) has been evaluated as 

alternative process to ensure the quality of liquid products. The process involves 

applying high-intensity pulsed electric fields to liquid products, the field within the 

media causes the ions inside any contaminant cell to move along the direction of 

the field until the ions are held back by the cell membrane. The ions then start to 
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exert a force on the cellular membrane that builds up causing a potential across 

the cell. When this potential reaches a critical value electroporation occurs. The 

size and number of pores formed depends on the strength and duration of the 

applied electric field [Barbosa-Canovas et al., 1999]. Since PEF do not involve a 

thermal treatment that can cause denaturation of proteins and degradation of 

vitamins, the use of this methodology to ensure the safety of liquid infant does 

not  cause detrimental changes in  nutritional value.  

In a study conducted to analyze the inactivation of E. sakazakii in infant 

formula by PEF, the maximum outlet temperatures reached always remained 

below 40 o C. Inactivation of E. sakazakii by PEF in buffered peptone water and 

infant formula milk was studied in a reference medium and in rehydrated infant 

formula milk; the population of E. sakazakii was reduced 2.70 log10 and1.22 log10 

units respectively, when processed by PEF technology at 40 kV cm-1 for 360 μs 

[Pina Perez et al., 2007]. The effectiveness of the treatment depended mainly on 

the treatment time and electric field strength as reported by Barbosa et al.[1999]. 

High Pressure 

The use of high hydrostatic pressure has been accepted as a safe 

alternative to thermal process for certain foods. The application of high pressure 

to preserve milk, fruits and vegetables has been investigated more than a 

hundred years ago [Hite, 1899; Hite et al., 1914]. Japanese companies re-

discovered the application of high-pressure in food processing and launched 
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products using this technology [Rastogi et al., 2007]. Vegetative cells, including 

yeast and moulds, are pressure sensitive and they can be inactivated by 

pressures of 300-600 MPa [Knorr, 1995; Patterson et al., 1995]. The application 

of high hydrostatic pressure affects cell wall structure, leaving the cell more 

permeable, which leads to significant changes in the tissue architecture 

[Dornenburg and Knorr, 1993; Farr, 1990; Rastogi and Niranjan, 1998; Rastogi et 

al., 2005].It was observed that in Saccharomyces cerevasiae, at pressures of 

about 400 MPa, the structure and cytoplasmic organelles were grossly deformed 

and large quantities of intracellular material leaked out, while at 500 MPa, the 

nucleus could no longer be recognized, and a loss of intracellular material was 

almost complete [Farr, 1990].  

Studies conducted with milk, showed that the complex physicochemical 

environment of milk exerted a strong protective effect on Escherichia coli against 

high hydrostatic pressure inactivation, reducing inactivation from 7 logs at 400 

MPa to only 3 logs at 700 MPa in 15 min at 20°C. A substantial improvement in 

inactivation efficiency at ambient temperature was achieved by the application of 

consecutive, short pressure treatments interrupted by brief decompressions. The 

combined effect of high pressure (500 MPa) and natural antimicrobial peptides 

(lysozyme, 400 μg/ml and nisin, 400 μg/ml) resulted in increased lethality for 

Escherichia coli in milk [Garcia et al., 1999]. 

The effect of high pressure processing on four strains of E. sakazakii, was 

analyzed using pressures at 600 MPa for 1 min at 25 oC [Gonzalez et al., 2006]. 
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The results showed log reductions ranging from log 3 to 6.84/ml, depending on 

the strain. It was also observed that reconstituted infant formula had a significant 

protective effect for certain strains and pressures [Gonzalez et al., 2006]. Even 

though more research is needed to completely understand the difference in 

tolerance between the different strains, this research showed that high pressure 

processing is an effective method to reduce E. sakazakii contamination in infant 

formula.  

Bacteriophages 

Bacteriophages (phages) are viruses frequently found in the environment 

which can infect and lyse bacteria. Multiple phages have been isolated from 

different foods or food processes, which indicates that they are normal 

inhabitants of foods. Information about the presence of phages in food such as: 

lettuce, kimchi, chilled and frozen crabs, pork, oysters, mussels, mushrooms, 

pies, biscuit dough, deli loaf, roast turkey and chicken, chicken, cheese, yoghurt, 

buttermilk and beef is compiled in a review by Hudson et al. [2005]. 

The bactericidal activity of bacteriophages against bacteria has been 

observed in different studies and might pose a novel alternative to preserve the 

quality of foods. Control of pathogenic foodborne microorganisms by 

bacteriophages has been successfully demonstrated for several foods, during 

preharvest and postharvest [Greer, 2005; Hudson et al., 2005]. During 

preharvest, phage biocontrol strategies have been applied toward the control of 
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plants and animal pathogens. In postharvest, phages have been successfully 

used to control spoilage bacteria as well as human pathogens. Greer [2005] 

provided several references for use of bacterial phages to control contamination 

in preharvest foods and animals: cultivated mushrooms, tomatoes, apples, stone 

fruits, sprouts, fish, chicken, beef cattle, calves, piglets, lambs, sheep, dairy 

cattle, pigs and postharvest food: melon, apple slices, milk, cheese, chicken skin, 

retail chicken, chicken frankfurters, beef steaks, vacuum-packed beef and pork 

fat.  

Kim et al. [2006a] analyzed the effectiveness of bacteriophages for 

biocontrol of E. sakazakii. In their study two novel E. sakazakii bacteriophages 

were isolated and applied to prevent E. sakazakii growth in BHI media and in 

reconstituted infant formula kept at 12, 24 or 37º C. BHI media was inoculated 

with a 12h culture of E. sakazakii propagating strain to reach an appropriate cell 

density (OD 600 approx. 0.5), in addition, powdered infant formula (3.5% fat) was 

prepared according to the instructions described in the label and inoculated with 

exponentially growing E. sakazakii cells (OD 600 approx. 0.5), to a final 

concentration of 10 2 CFU ml -1. Inhibition was dependent upon intrinsic lysis 

properties and the applied phage concentration. The most significant inhibition 

was obtained at either 24 or 37oC with the phage at the highest concentration of 

10 9 PFU ml -1.  A decrease in optical densities was evident 4 h after phage 

infection. Non-detectable levels of E. sakazakii were obtained with 
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concentrations of 10 9 PFU ml -1, while lower concentrations 10 8 -10 7 PFU ml -1 

resulted in re-growth of E. sakazakii over time. 

Monocaprylin 

A variety of free fatty acids and their monoglycerides have been reported 

to exert antimicrobial activity against a wide range of microorganisms. The 

bactericidal properties of fatty acids are due in general to their function as anionic 

surface agents. Monocaprylin is a monoglyceride derived from caprylic acid, an 

eight carbon fatty acid, naturally present in human breast milk, bovine milk and 

coconut oil. Caprylic acid food grade chemical is generally recognized as safe by 

the U.S. Food and Drug Administration (FDA).  

The antimicrobial effect of monocaprylin against pathogenic bacteria has 

been studied as a mean to prevent contamination of food by pathogenic bacteria. 

Nair et al. [2004] investigated the antibacterial effect of low concentrations 2.5 

mM or 5 mM of monocaprylin on a five-strain mixture E. coli O157:H7 inoculated 

into apple juice maintained at 23oC and 4 o C. At room temperature 5 mM and 2.5 

mM of monocaprylin reduced the population of E. coli for more than 5 logs/ml 

after 3 and 5 days of storage. When samples were refrigerated, 2.5 mM of 

monocaprylin reduced the population of E. coli for more than 3 logs/ml after 14 

days, while 5 mM  of monocaprylin reduced the population of  E. coli  by more 

than 5 logs/ml after 6-7 days. 
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The antilisterial activity of monocaprylin (MC) in combination con acetic 

acid (AA) has also been investigated [Nair et al., 2004]. Frankfurters were 

surface inoculated with a three-strain mixture of Listeria monocytogenes and 

dipped for 35 s in a solution containing 50 mM MC and 1% AA. The solutions 

were maintained either at 45 or 50 oC. After 70 days of storage. Overall, results 

indicated that dipping of frankfurters with MC reduced L. monocytogenes, and 

inclusion of AA further enhanced MC antilisterial activity, without negative effect 

on sensory attributes (odor or color). 

Nair [2004] studied the potential of monocaprylin to inactivate E. sakazakii 

in reconstituted infant formula. A five-strain mixture of E. sakazakii was 

inoculated into infant formula. The samples were incubated at 37 or 23oC. 

Results showed that monocaprylin (50 mM) reduced the pathogen by >5 log 

CFU/ml by 1 h of incubation at 37 or 23 degreeso C and by 24 h of incubation at 

8 or 4 degrees o C. This study indicates that monocaprylin could potentially be 

used to inactivate E. sakazakii in reconstituted infant formula; however, sensory 

studies are still needed before its use can be recommended. 

Biofilm Formation 
 

In recent years, it has become evident that, in many cases, the natural 

mode of growth of bacteria is not as single cells suspended in an aqueous 

environment (planktonic mode) but as a community of cells living together in an 

ordered structure knowns as a biofilm [Wilson et al., 2002]. Biofilms are complex 
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aggregation of microorganisms embedded in a polymeric matrix with growth at 

interfaces - solid/liquid, liquid/air, solid/air and is often permeated by water 

channels. Because the polymeric matrix is often negative charged, many 

nutrients are attracted to the biofilm surface, thus providing the cells with plenty 

of food in this area compared with the surrounding water and medium [Prakash 

et al., 2003]. 

The processes involved in biofilm development include: initiation, 

maturation, maintenance, and dissolution. Bacteria seem to initiate biofilm 

development in response to specific environmental cues, such as nutrient 

deprivation , which promotes the adherence of the microorganisms to surfaces.  

Factors affecting attachment and biofilm formation include nutrient availability, 

the pH of the surrounding medium, and the nature of the cell and abiotic surface 

[Frank, 2001]. Adhesion to a substratum often leads to changes in gene 

transcription, resulting in an alteration in the phenotype of the organism [Wilson 

et al., 2002]. If nutrients are available, attached cells grow and reproduce. 

Maturation involves the formation of microcolonies and macrocolonies in a 

complex heterogeneous structure of dormant and actively growing bacteria 

colonies along with enzymes, extracellular polymers and small channels forming 

part of the overall structure. It has been suggested that the water channels 

function as a primitive circulatory system that deliver nutrients to the embedded 

cells and remove excretory products. There is some evidence that in nutrient-rich 

environment with a low fluid rate, there are fewer water channels and the biofilms 
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have a less open structure. Maintenance achieved by stability and resilience 

against environmental perturbations are critical properties to prevent and delay 

the dissolution of biofilms on contact surfaces. 

E. sakazakii has the ability to form biofilms in equipment used for the 

preparation of the infant formula [Bar-Oz et al., 2001; Simmons et al., 1989]. This 

microorganism  attaches and adheres to different surfaces, including glass, 

silicon, latex, polycarbonate, polyvinyl chloride (PVC ) and stainless steel [Kim et 

al., 2006a; Kim et al., 2006b; Kim et al., 2006c; Lehner et al., 2006; Lehner et al., 

2005]. Microorganisms seem to attach more rapidly to hydrophobic nonpolar 

surfaces such as teflon and other plastics than to hydrophylic material such as 

glass or metals [Bendinger et al., 1993; Characklis et al., 1990]. Once biofilms 

are developed the microorganisms embedded in the heteropolysaccharide matrix 

are less susceptible to antimicrobial agents and environmental stresses such as 

UV light, osmotic stress, heat, starvation, acids, detergent, antibiotics, 

phagocytes, antibodies and bacteriophages [Costerton and Lappin-Scott, 1995; 

O'Toole et al., 2000]. 

Among the explanations that have been offered for the reduced 

susceptibility of micro-organisms in biofilms are: (i) slow antimicrobial penetration 

due to binding and slow migration of the antimicrobial agent through the biofilm 

matrix, (ii) antimicrobial inactivation by enzymes trapped in the biofilm matrix, (iii)  

altered micro-environment within the biofilm, which can reduce the activity of the 

agent (iv) formation of a protected subpopulation of ‘persister’ cells in the interior 



 

 33

of a biofilm microcolony, persister cells enter in a  slow growth rate when nutrient 

becomes limiting and reduces the uptake of solutes from the environment 

including antimicrobials[Spoering and Lewis, 2001; Stewart, 2002; Stewart and 

Costerton, 2001]. 

Studies  to determine the effectiveness of disinfectants in killing E. 

sakazakii in suspension, dried on the surface of stainless steel, and embedded in 

biofilms on stainless steel, showed that quaternary ammonium and phenolic 

disinfectants commonly used in hospitals, food service and childcare settings are 

ineffective in killing some cells of E. sakazakii embedded in organic matrices 

[Kim et al., 2006a]. 

Lehner et al. [2005] evaluated several features important for the survival 

and persistence of E. sakazakii in food production units associated with the 

manufacturing of infant formula. It was found that biofilm formation was 

influenced by the nutrient availability. It has been suggested that certain 

components within Brain Heart Infusion (BHI) media promote E. sakazakii biofilm 

formation, this hypothesis can be related to the frequent observation of different 

colony morphologies (smooth versus rough) in E. sakazakii grown on various 

agars [Lehner and Stephan, 2004]. The presence of cellulose fibrils as part of the 

extracellular matrix produced by certain E. sakazakii strains has been confirmed 

by HPLC analysis; cellulose appears to play a structural role by facilitating cell 

adhesion,conferring mechanical, chemical, or biological protection.  
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Abstract  

Our environment is vastly populated by microorganisms, which constantly 

evolve to acquire a better adaptation to the environment. Different 

microorganisms that in the past were not considered food borne pathogens have 

entered in this category, due to evolution or to a better application of identification 

techniques that allow relating the microorganisms with certain reported diseases. 

Enterobacter sakazakii is a motile peritrochous, gram-negative rod that 

has been recognized as a new food borne pathogen implicated in several forms 

of neonatal meningitis. Urmenyi and Franklin [1961] reported the first two cases 

of neonatal meningitis caused by E. sakazakii, however at that time the 

microorganism was considered an E. cloacae strain. Since 1961 cases have 

been reported worldwide in different countries. In 2001 a fatal infection was 

associated with the presence of E. sakazakii in a commercial powdered formula 

fed to a male infant delivered by cesarean section at 33.5 weeks’ gestation and 

hospitalized in a neonatal intensive care unit (NICU) of the University of 

Tennessee Hospital [Himelright et al., 2002]. As a response to this outbreak, 

hospital personnel reviewed NICU-infection control practices, policies and 

procedures for preparation storage and administration of powdered infant 

formula. The hospital made several policy changes and requested the Food 

Safety Center of Excellence of University of Tennessee to analyze the growth 

pattern of this microorganism at the conditions maintained in the hospital. 
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 Preliminary studies showed no significant growth at refrigeration 

temperatures of 6 oC for the strains E. sakazakii ATCC 29004 and E. sakazakii 

ATCC 29544. However, holding of reconstituted formula at 25 oC for 4 hours 

resulted in 0.02 to 2.34 logs CFU increase, depending on the initial temperature 

of formula. These data are significant since 4 hours is the amount of time the 

formula bag is maintained at room temperature while applied to a patient. 

We concluded that ready to drink formula maintained at room temperature 

or powdered infant formula reconstituted with sterile water maintained at room 

temperature constitute the worst scenario for potential growth of E. sakazakii. It is 

critical to refrigerate the ready to drink formula before administration or 

reconstitute the powdered infant formula with sterile cold water. 

 Introduction 
 

In 2001 a rare case of neonatal meningitis associated with E. sakazakii 

was detected in a neonatal intensive care unit in the state of Tennessee, 

Knoxville. As a result of this outbreak a complete investigation of risk factors as 

carried out in order to determine the source of infections and to prevent future 

infections in the hospital. The following study set sights on current practices, 

policies and procedures for preparation, storage, and administration of powdered 

infant formula and intend to analyze the growth profile of E. sakazakii at the 

particular temperatures maintained in the hospital settings. 
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The outbreak that leads to this study took place in April 2001. A low birth 

weight, premature and respiratory distress neonate delivered by cesarean 

section at 33.5 weeks’ gestation was hospitalized in a neonatal intensive care 

unit (NICU) at the University of Tennessee hospital. At day 11 the infant was 

diagnosed with fever, tachycardia decreased vascular perfusion and neurological 

abnormalities. Cerebrospinal fluid (CSF), a normally sterile site, obtained by 

lumbar puncture revealed the presence of E. sakazakii. The infant died 9 days 

later, despite treatment with intravenous antimicrobials. 

Investigations aimed to determine if other patients in NICU were infected 

lead to the screening of 49 infants present in the NICU. Results from the 

screening showed than 10 other infants tested positive for the bacterium. Seven 

of the ten infants were colonized (culture-positive from stool and/or urine), two 

were suspected to be infected (culture positive from tracheal aspirate) and one 

was confirmed to be infected (culture positive from CSF).  

Of the 49 patients, 9 patients were considered case-patients taking into 

account confirmed and suspected infections as well as colonization during the 

study period. Medical records were analyzed to establish risk factors such as, 

gestational age, birth weight, mechanical ventilator, humidifier incubation, oral 

medications and feeding time. Analysis of risk factor identified only use of a 

specific powdered infant formula, Portagen (Mead Johnson Nutritionals, 

Evansville, Indiana), to be significantly associated with E. sakazakii infection or 

colonization. Cultures of formula taken from opened and unopened cans 
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revealed the presence of E.sakazakii and pulse field gel electrophoresis reveled 

that isolates from CSF culture and powdered infant formula were identical. 

Current microbiological specifications of the Codex code for coliforms in 

powdered infant formula allow less than 3 cfu/g . The prevalence of E. sakazakii 

in 141 powdered infant formulas analyzed was estimated as 14 %, yet all 

formulas found positive complied with the current microbiological specifications 

(< 3cfu/g) [Muytjens et al., 1988]. Despite the accomplishment of current 

specification, it is currently assumed that low levels of E. sakazakii in infant 

formula can lead to infection.  

Different studies have analyzed the risk of E. sakazakii in infant formula, 

yet conditions of preparation, storage and administration of infant formula varies 

between hospitals. Therefore it was considered beneficial to study the growth 

profile of E. sakazakii at the temperatures and times used for the preparation, 

storage and administration of the powdered infant formula in a specific location. 

Materials and Methods 

Bacterial strains  

Clinical strains used in this study were obtained from the American Type 

Culture Collection (ATCC). Both strains E.sakazakii  ATCC 29004 and E. 

sakazakii ATCC 29544 were propagated in Brain Heart Infusion Broth according 

to ATCC procedures. 
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Formula 

 Portagen (Mead Johnson Nutritionals, Evansville, Indiana ) a type of 

formula recommended by the manufacturer for infants with nutritional 

malabsorption problems was selected to evaluate the growth of E. sakazakii in 

reconstituted infant formula. Formula was prepared following manufacturer’s 

directions under aseptic conditions. For 946.4 ml of prepared product, 203 g of 

powder were added to 820 ml of water. 

Inoculation of the formula:   

The prepared formula was divided into sterile flasks containing 100 ml of 

final product. While some flasks were used as control samples other were 

inoculated with either E. sakazakii ATCC 29004 or E. sakazakii  ATCC 29544. 

Inoculated formula and controls were incubated at two temperatures: room 

temperature 25 o C and slightly abused refrigeration temperature 6o C.  

Sampling 

Formula incubated at 25 oC was plated every hour in Triptose Soy Agar 

(TSA) and Violet Red Bile Glucose Agar (VBRGA). Formula incubated at 6 oC 

was plated every 12 hours in Triptose Soy Agar (TSA) and Violet Red Bile 

Glucose Agar (VBRGA). The final count of bacteria was recorded; data were 

analyzed using SAS 9.1 to determine the growth profile over time. 
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Temperature measurement: 

Changes in temperature over time, were measured every 10 min  by 

introducing Barnstead ERTCO time temperature indicators (TTIs) into 

reconstituted infant formula. 

Statistical analysis: 

 Simple regression analyses are frequently carried out without replication, 

for each time-value there is only one observed log CFU/ml -value. In this study 

we used SAS procedure, to apply lack of fit to a regression model. Lack of fit is a 

technique used when a regression experiment has replicated data [Saxton, 

2004]. Since any single analysis is subject to indeterminate error, the mean of 

several replicate analyses will always provide a better estimate of the true 

value.The goodness of fit is given by R-square , and diagnosis for normal 

distribution is given by Shapiro Wilk.  

 Analysis of variance (SAS procedure) was applied to a RBD model with 

replication, with the dependable variable: growth , expressed  as log CFU/ml and 

variables strain, media, time. 

Results 

Formula preparation 

This study included a visual inspection of the specific procedures 

documented in the Hospital's Nursing Manual used for preparing batches of 

formula from powder. [The University of Tennessee Memorial Hospital, 1999]: 
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1. Work surfaces were cleaned with Cavicide (Bacto Laboratories). 

2. Hands were washed and cleaned with paper towels and covered 

with gloves. A hat/cap is worn when preparing batch formula. 

3. All necessary items for formula preparation were placed readily 

accessible. 

4. The nutritionist's list was checked in order to determine the types 

and amounts of formula to be prepared. 

5. Labels were filled with the expiration date (next day's date). 

6. Bottles of sterile water were opened and the desired amount of 

water poured into the blender according to recipe. 

7. The formula can was opened and the lid lay aside “top down” on 

the counter top. Formula is dated at the time of opening and may 

be used for 1 month after opening.  

8. An sterile ¼ measuring cup was used to scoop the desired amount 

of formula powder onto the water in the blender container, an sterile 

tongue depressor was used to dislodge caked formula. 

9. Using sterile funnel, prepared formula was poured into the glass 

sterile water bottles and placed in the refrigerator. 
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10. Previous day's formula was discarded. 

11. Blender was rinsed and washed with sanitizer containing 

quaternary ammonium compound. 

Formula is prepared on daily basis by trained personnel between 10 -11 

am, in one large batch. Each patient is assigned an individual 6 oz bottle of 

formula from which his/her formula are obtained using a sterile syringe which is 

placed into an automatic syringe pump dispenser. The time from initial 

preparation of the “batch” to formula administration is listed in table 2.1. Formula 

is kept in the refrigerator until it is ready to be drawn into the syringe. 

Continuous enteral feedings 

The protocol used for continuous enteral feeding was explaned, following 

the procedures described in the University of Tennessee Memorial Hospital 

Nursing Manual [The University of Tennessee Memorial Hospital, 1999; The 

University of Tennessee Memorial Hospital, 2000]. Formula contained in the 

syringe is delivered by the syringe pump through an “Enteral Only” extension set 

connected to a feeding tube: polyurethane “Indwell” or silastic “Nutri-catch”. The 

route of continuous feeding (gastric or jejunal), formula type and rate of infusion 

is ordered by the physician. Syringe pumps with continuous feeding are kept 

outside of the patient's isolette or radiant warmer to avoid exposure to favorable 

growth temperature for a prolonged period of time.
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Table 2.1 Formula administration: Time from initial preparation [The 

University of Tennessee Memorial Hospital, 1999] 

 
Start Hang Time from initial 

preparation 
02:00 pm 3-4 hours 
10:00 pm 11-12 hours 
06:00 am 19-20 hours 
02:00 pm 27-28 hours 
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Formula is not pre-warmed prior to “hanging”. Syringes and extension sets 

are replaced every four hours, but the tubing change is performed every 8 hours.  

Growth profile at room temperature (25 ºC)  

Linear polynomial regressions for the growth profile of E. sakazakii ATCC 

29004 and E. sakazakii ATCC 29544 in infant formula incubated a 25 ºC and 

plated hourly in VRBGA and TSA were evaluated l (Figure 2.1-Figure 2.2) and 

ANOVA (Table2.2-Table 2.3).  

Growth profile at refrigeration temperature (6 ºC)  

Inoculated formula and controls maintained under refrigeration at 6ºC, 

were plated in VRBGA and TSA every 12 hours.  Data were recorded in figure 

2.3 and table 2.4. 

Changes in population during hanging time and refrigerated storage of 
ready to use formula Enfamil A.R. Lipil 

Changes in population during hanging time and refrigeration of the ready 

to use formula Enfamil A.R. Lipil are recorded in tables 2.5 and table 2.6 

respectively. Results are compared with those obtained for Portagen. In this 

study Enfamil A.R. Lipil initial temperature was 25 ºC and Portagen initial 

temperature was 6ºC. Enfamil A.R. Lipil is a ready to drink formula usually kept at 

room temperature prior to consumption. Portagen as mentioned before is 

reconstituted and kept refrigerated until time of consumption. (See also tables 2.7 

and 2.8 and figure 2.4.)  
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Table 2.2 Predicted values for the growth profile of E. sakazakii 
ATCC 29004 and E. sakazakii ATCC 29544 in Portagen infant 
formula incubated a 25 ºC and plated in VRBGA and TSA. 
  

Predicted value Log CFU/ml 
Time 
(hour) 

29004 
VRBGA 

29544 
VRBGA 

29004 
TSA 

29544 
TSA 

0 0.69 1.38 0.81 1.44 

1 0.78 1.29 0.80 1.37 

2 0.89 1.27 0.85 1.37 

3 1.04 1.34 0.96 1.45 

4 1.22 1.48 1.13 1.60 

5 1.42 1.69 1.37 1.83 

6 1.66 1.99 1.68 2.13 

7 1.94 2.35 2.04 2.51 

8 2.24 2.80 2.47 2.97 

9 2.57 3.32 2.96 3.51 

R-square 0.822 0.987 0.801 0.979 
Shapiro 

Wilk 0.976 0.890 0.883 0.960 

 
Predicted values obtained using quadratic regression with lack of fit. 
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Table 2.3 Analysis of Variance for the growth profile of E. sakazakii 
ATCC 29004 and E. sakazakii ATCC 29544 in Portagen infant formula 
incubated a 25 ºC and plated in VRBGA and TSA. 
 

 
 

 
 

 

Effect 

Numerator 
Degrees of 
Freedom 

Denominator  
Degrees of 

Freedo F  Value Pr>F 
Strain 1 36 35.1 <.0001 
Media 1 36 2.08 0.1577 
Time 9 36 34.35 <.0001 
Strain*Media 1 36 0.16 0.6912 
Strain*Time 9 36 0.47 0.8834 
Media*Time 9 36 0.29 0.973 
Strain*Media*
Time 9 36 0.19 0.9939 
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Figure 2.1 Growth profile of E. sakazakii in Portagen infant formula incubated a 25 ºC.   (A) E. 
sakazakii ATCC 29004 plated in VRBGA   (B) E. sakazakii ATCC 29004 plated in TSA   (C) E. 
sakazakii ATCC 29544 plated in VRBGA (D) E. sakazakii ATCC 29544 plated in TSA. 
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Figure 2.2 Predicted growth curves of E. sakazakii ATCC 29004 & 29544 incubated at 25 ºC and 
plated in VRBGA and TSA 
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Table 2.4 Analysis of Variance for growth profiles of E. sakazakii 
ATCC 29004 & ATCC 29544 in Portagen infant formula refrigerated 
at 6 ºC and plated in VRBGA and TSA. 

 

Effect 

Numerator 
Degrees of 
Freedom 

Denominator 
Degrees of 
Freedom F Value Pr>F 

Strain 1 14 6.34 0.0246 
Media 1 14 46.35 <.0001 
Time 3 14 8.68 <.0017 
Strain*Media 1 14 14.13 0.0021 
Strain*Time 3 14 11.18 0.0005 
Media*Time 2 14 6.98 0.0079 
Strain*Media*Time 2 14 0.78 0.4753 
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Figure 2.3 Growth profile of E. sakazakii in Portagen infant formula incubated at 6 ºC. (A) E. 
sakazakii  ATCC  29004 plated in VRBGA   (B) E. sakazakii ATCC 29004 plated in TSA (C) E. 
sakazakii ATCC 29544 plated in VRBGA (D) E. sakazakii  ATCC  29544 plated in TSA.
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Table 2.5 E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 
average growth (Log10 CFU/ml) in Enfamil A.R. Lipil and Portagen 
infant formula after four hours incubation at 25 ºC. Samples were plated 
in VRBGA and TSA. 
 
 
 

 
 
 
 
 
 

 

Log CFU/ml 
Enfamil Portagen 

Plating media Plating media 
Strain Time (hour) VRBGA TSA VRBGA TSA 
29004 4 1.61 1.67 0.33 0.25 
29004 4 2.00 0.89 0.105 0.185 
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Table 2.6 Analysis of Variance of E. sakazakii  ATCC 29004 and ATCC 
29544 growth in Enfamil A.R. Lipil and Portagen infant formula after 
four hours incubation at 25 ºC. 
 

Effect 

Numerator 
Degrees of 
Freedom 

Denominator 
Degreess of 

Freedom F Value Pr>F 
Strain 1 11 1.48 0.249 
Media 1 11 3.59 0.085 
Formula 1 11 91.1 <.0001 
Strain*Media 1 11 3.39 0.092 
Strain*Formula 1 11 0.03 0.867 
Media*Formula 1 11 3.59 0.085 
Strain*Media*Formula 1 11 5.85 0.034 
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Table 2.7 Predicted values for the growth profile of E. sakazakii 
ATCC 29004 and ATCC 29544 in Enfamil A.R. Lipil infant formula 
incubated a 6 ºC and plated in VRBGA and TSA. 
 

Predicted value Log CFU/ml 
Time hour 29004 VRBGA 29544 VRBGA 29004 TSA 29544 TSA 

0 2.38 2.37 2.70 2.77 
12 1.71 2.01 2.55 2.78 
24 1.27 1.76 2.44 2.79 
48 0.84 1.49 2.28 2.79 
54 0.63 1.33 2.15 2.77 
60 0.59 1.27 2.07 2.75 
90 1.43 1.44 1.75 2.60 

R-square 0.78 0.63 0.89 0.36 
Shapiro 

Wilk 0.96 0.89 0.96 0.96 
 
 
 
 

Predicted values obtained using quadratic regression with lack of fit
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Table 2.8  Analysis of variance for the growth profile predicted values 
of E. sakazakii  ATCC 29004 & ATCC 29544 in Enfamil A.R. Lipil 
formula incubated a 6 ºC and plated in VRBGA and TSA.  
 

 
 

 
 
 
 
 
 
 
 
 

Effect 

Numerator 
Degrees of 
Freedom 

Denominator  
Degrees of 
Freedom F Value Pr>F 

Strain 1 53 34.5 <.0001 
Media 1 53 198.21 <.0001 
Time 6 53 14.10 <.0001 
Strain*Media 1 53 0.29 0.5939 
Strain*Time 6 53 1.85 0.1075 
Media*Time 6 53 7.64 <.0001 
Strain*Media*Time 5 53 2.50 0.0418 
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Figure 2.4 Growth profile of E. sakazakii  in Enfamil A.R. Lipil infant formula incubated a 6 ºC.(A) E. 
sakazakii  ATCC  29004 plated in VRBGA (B) E. sakazakii ATCC 29004 plated in TSA (C) E. 
sakazakii ATCC 29544 plated in VRBGA (D) E. sakazakii ATCC  29544 plated in TSA
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Change of temperature over time 

In order to reproduce the conditions for formula storage and hanging, a 

Barnstead ERTCO time temperature indicator (TTIs) was introduced into two (30 

ml) samples taken out of the refrigerator (6 ºC) and placed in an incubator at 25 

ºC. The change in temperature over time was registered every 10 min; recorded 

in table 2.9 and plotted in figure 2.5. 

Discussion 
  

Formula preparation 

Powdered infant formula is not a sterile product and may contain 

microorganisms that can proliferate after reconstitution, favored by its high 

nutrient content. Current Codex advisory microbiological specifications for dried 

and instant products are detailed in table 2.10. The Food and Agricultural 

Organization have set an accepted maximal limit for powdered milk formula of <3 

CFU/g coliform organisms [World Health Organization and Food and Agriculture 

Organization of the United Nations, 2004]. Even though, identical E. sakazakii 

strains have been isolated from the powdered milk used for feeding and the 

blood of cerebrospinal fluid of infected infants, only low numbers of E. sakazakii 

(< 3 cfu/g), which are below the accepted maximal limit previously described, 

have been found in powdered infant formula [Iversen and Forsythe, 2004; 

Muytjens et al., 1988; Nazarowec-White and Farber, 1997a; van Acker et al., 

2001]. Nowadays, the number of cells needed to cause disease has not been 



 

 72

 

Table 2.9 Changes in temperature over time of Portagen infant 
formula incubated at 25 ºC, initial temperature 6.1 ºC. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time(min) Rep 1 Rep2 
0 6.11 6.11 
10 8.67 7.33 
20 7.00 9.28 
30 9.06 11.00 
40 11.06 12.56 
50 12.89 14.11 
60 14.50 15.39 
70 15.89 16.61 
80 17.11 17.67 
90 18.11 18.67 

100 19.11 19.50 
110 19.89 20.33 
120 20.67 21.00 
130 21.33 21.61 
140 21.89 22.17 
150 22.39 22.61 
160 22.83 23.00 
170 23.22 23.39 
180 23.56 23.72 
190 23.89 24.06 
200 24.11 24.28 
210 24.39 24.50 
220 24.61 24.78 
230 24.78 24.94 
240 24.94 25.06 
250 25.06 25.22 
260 25.22 25.39 
270 25.33 25.44 
280 25 44 25 44
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Figure 2.5 Changes in temperature over time of Portagen infant 
formula incubated at 25 ºC, initial temperature 6.1 ºC. 
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Table 2.10 Current Codex advisory microbiological specifications for dried and instant products 
[World Health Organization and Food and Agriculture Organization of the United Nations, 2004]. 
 

 
 
 
 
 
 
 

*Including products intended for consumption after the addition of liquid, dried infant formula, instant infant cereal, etc. 
< 3 means no positive tube in standard 3 tube MPN (most probable number), method (ICMSF 1978). 

For Salmonella, 25 g should be used. 
 
 
 

 
 
 
 
 
 

Limit per g*  Case Class plan n c 
m M 

Mesophilic aerobic 6 3 5 2 1000 10000 
Coliforms 6 3 5 1 <3 20 

Salmonellae 12 2 60 0 0 0 
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determined, however, it has been noted that poor preparation procedures, 

temperature abuse and hygienic practices are considered contributing factors to 

infections .During this study we verified the procedures employed for 

thepreparation, storage and refrigeration of infant formula followed the 

recommendations provided by Himelright et al. [2002] and the European Society 

of Paediatric Gastroenterology [Agostoni et al., 2004]. The “hang time” for 

continuous enteral feeding does not exceed 4 hours.  

Hang time was previously reduced from 8 hours to 4 hours to avoid 

prolonged multiplication periods; however the optimum growth temperature at 

which the formula is maintained in the infant bedroom (25 oC) still makes of this 

stage a high risk factor. Rosset et al. [2007] recommended the use of a cold 

syringe cover to maintain the formula at a lower temperature. 

The widespread nature of E. sakazakii has been detected in food 

manufacturing facilities, households and clinical [Drudy et al., 2006b; Kandhai et 

al., 2004]. Contamination of the surface and utensils used for infant formula 

preparation has also been reported, moreover, linked to outbreaks in neonatal 

units [Block et al., 2002; Bowen and Braden, 2006; Drudy et al., 2006a]. Kim et al 

[2006a] noted that E. sakazakii had the ability to form biofilms in areas used for 

the preparation of the infant formula. Once the biofilms are developed some cells 

can survive the application of disinfectants frequently used in hospital, day-care, 

and food service kitchen settings [Kim et al., 2006a]. Therefore it is important to 
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clean the surfaces immediately after the preparation of the formula. Scrubbing of 

surfaces helps out to break up the biofilm matrix facilitating the penetration of 

disinfectants to reach and kill the embedded cells. In addition to this, the use of 

autoclavable blenders and utensils results valuable.  

Infant formula time temperature profile 

Rosset et al. [2007] registered 6 oC as the lower initial temperature of 

infant formula collected from 25 neonatal care units of public hospitals located in 

Paris and its suburbs. In our study using time temperature indicators, we found 

out that the small sample volume (30 ml) contained in the syringe was very 

susceptible to temperature changes. 

The samples object of study were maintained under refrigeration 

conditions and then placed at room temperature (25 oC) for more than 8 hours; 

the initial temperature was 6 oC. The time required for the sample to reach 10 oC 

and 25 oC was in average 30 and 240 minutes respectively (table 2.12). It is well 

known that changes in temperature affect the growth profile of the 

microorganisms and the generation time. 

Growth profile of E. sakazakii during formula administration at 25oC 

For most known bacteria that can be cultured, generation times range 

from about 15 minutes to 1 hour [Todar, 2006]. The generation time for E. coli in 

the laboratory is 15-20 minutes, but in the intestinal tract, the coliform's 

generation time is estimated to be 12-24 hours [Todar, 2006].  
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In this study generation times were calculated from the predicted values 

recorded in table 2.3. Generation time for the first four hour period, starting from 

the moment at which the Portagen infant formula was taken out from the fridge 

(initial temperature 6 oC) through the four hour administration time (incubation at 

25 oC) was on average 182 min for E.sakazakii ATCC 29004 and 590 min for 

E.sakazakii ATCC 29544 . Once the samples reached 25 oC, the generation time 

of E.sakazakii ATCC 29004 decreased to 46.8 min and for E.sakazakii ATCC 

29544 to 38.8 min.  These results are in accordance to results obtained by 

Nazarowec White and Farber [1997a], in which average generation times of 5 

hours at 10 oC and only 40 minutes at 23 oC were observed.  

Data show that previous refrigeration of the formula is crucial to decrease 

generation times, if the formula is prepared at room temperature and immediately 

hang at 25 oC; the generation time will decrease around 3.88 to 15.2 folds. The 

use of cold water (6 oC or less) for formula reconstitution is an alternative to be 

used for the preparation of formula that will be immediately hanged. 

The proportion of variability in a data set accounted by the lack of fit 

statistical model for lineal regression was above 80%.  We decided to use a 

quadratic model because it gave us a closer fit to initial data phase (lag).The 

regression model complied with the diagnosis requirements , including looking at 

residual errors for evidence of no pattern, a normal distribution of values and the 

absence of leverage points. ANOVA analysis showed that over the eight hour 

period there was statistically significant differences (P0.0246) strains (table 2.4). 
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Once the growth curve passed the lag phase and the sample reached 25 oC the 

generation times and slopes for the two strains became closer. The same logic 

can be used to compare the results obtained for the population increase during 

the administration of the ready to drink formula (Enfamil A.R. Lipil) with those 

obtained for the powdered infant formula (Portagen). There was a statistically 

significant difference between growth in ready to drink formula (Initial 

temperature: 25oC) and reconstituted infant formula refrigerated overnight (Initial 

temperature: 6oC) (table 2.6). Since the ready to drink formula is maintained at 

an optimum room temperature 25 oC, the time required for the microorganisms to 

reach the exponential phase is less, therefore the generation time decreases. 

The average increase in the population after a four hour period ranged from 0.11  

to 0.33 log CFU/ml for Portagen powdered infant formula and from 0.89 to 1.67 

for the ready to drink formula A.R. Lipil Enfamil. It is important to highlight that 

Portagen  nutrient content is higher than A.R. Lipil Enfamil's, exception of linoleic 

acid. However this difference in nutrient content didn't seem to favor growth in 

Portagen formula, if the formula is kept at an initial temperature of 6 oC before 

administration . It was also found that there were no statistically significant 

differences found in the recovery of bacteria with either VRBGA or TSA.   

Growth profile of E. sakazakii during refrigeration  

The minimum growth temperature of the E.sakazakii type strain (ATCC 

29544), was described as 7 oC [Nazarowec-White and Farber, 1997a]. 

Nazarowec White and Farber [1997a] noted that Enterobacter spp. cultivated 
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from infant formulae did not growth at temperatures below 5.5 oC but began to 

multiply at temperatures between 5.5 oC and 8 oC. In our study neither E. 

sakazakii ATCC 29004 nor E. sakazakii ATCC 29544 grew under refrigeration 

temperature (6 oC) (figure 2.3). Cells inoculated into Enfamil A.R. Lipil and 

incubated at 6 oC showed a decrease in population over time (Figure 2.4). 

Significant findings 
 

 During our study we noted that in hospital settings some of the utensils in 

direct contact with the formula are washed and disinfected by chemical agents; 

however quaternary ammonium and phenolic disinfectants commonly used result 

ineffective in killing some cells of E. sakazakii embedded in organic matrices 

[Kim et al., 2006a]. Ready to drink formula or powdered infant formula kept or 

prepared a room temperature provide excellent conditions for bacterial 

replication, therefore it is recommended to autoclave the necessary material 

used to prepare the formula in order to eliminate the presence of microorganisms 

resulting from crosscontamination. 

There was no statistically significant difference in growth between strains 

E. sakazakii 29004 and E. sakazakii 29544 cultured in Portagen formula or 

between the plating media used to their recovery. 

 Even though the administration (hang) time of infant formula has been 

reduced from 8 hours to 4 hours; hang time still constitutes a high risk factor for 
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the proliferation of E. sakazakii, given the temperatures maintained in the infant 

bedroom (25 oC). Once contaminated formula reach 25 oC generation times can 

decrease to less than one hour. If the starting temperature of the formula at the 

time of administration is 6 oC, the formula will reach 25 oC in period of four hours.  

Since growth was no observed under refrigeration (6 oC) conditions we 

highly recommend to to keep formula refrigerated or to prepare it with cold water. 

The use cold cold syringe cover to maintain the formula at a lower temperature  

during hanging time seems beneficial[Rosset et al., 2007]. 
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PART 3 ENTEROBACTER SAKAZAKII TOLERANCE TO 

CHLORINE SANITIZERS
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ABSTRACT  

Enterobacter sakazakii has been recognized as a new food-borne 

pathogen implicated in a severe form of neonatal meningitis. It is recognized that 

the same strain of E. sakazakii may produce colonies with two distinct 

morphologies when plated in different media. Typical colonies plated on 

trypticase soy agar (TSA) produce a smooth and creamy colony with a yellow 

pigment [Farmer, 1980]. Colonies plated in violet red bile glucose agar (VRBGA) 

produce two different morphologies either dry, crenated and rubbery or smooth 

and creamy [Farmer, 1980].  

There is also evidence of the ability of E. sakazakii to attach to surfaces 

and form biofilms resistant to the bactericidal effect of a broad range of sanitizers 

[Kim et al., 2006a]. 

The objective of this study was to determine the effect of chlorine 

sanitizers against cells in suspension (planktonic), cells organized in a colony 

and cells in a biofilm matrix adhered to different surfaces. We were also 

interested in determining the minimum chlorine level and exposure time required 

for 3 log/ml inactivation of E. sakazakii ATCC 29004 and E. sakazakii ATCC 

29544.  

E. sakazakii strains ATCC 29004 and ATCC 29544 were cultivated in 

brain heart infusion broth- (Difco) and violet red bile glucose broth (Difco 

ingredients) and exposed to different chlorine concentrations (2 ppm, 4 ppm and 
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6 ppm) for three minutes. Survival of cells was quantified by direct plating and log 

CFU/ml reductions calculated. Statistical analyses of variance (SAS 9.1) was 

used to determine if the medium used for recovery of E. sakazakii had an effect 

on cell survival. 

E. sakazakii ATTC 29544 exposed to VRBG broth prior to treatment with 

chlorine solutions showed a greater resistance to inactivation with chlorine 

compared to cells grown in BHI. Changes in survival could indicate that 

metabolic stress of E. sakazakii may increase resistance to chlorine sanitizers. 

Results showed that exposure to 2 ppm chlorine solutions for 3 minutes 

produced 1.0 to 2.0 log CFU/ml  reductions in E. sakazakii, exposure to 4 ppm 

chlorine solutions for 3 minutes produced 2.1 to 3.3 log CFU/ ml reduction and 

exposure to 6 ppm for 3 minutes produced 3.5 to 4.5 log CFU/ml reduction in 

population. Exposure to chlorine solutions for time periods between 3 and 10 

minutes did not cause additional increases in the log reduction.  

E. sakazakii colonies grown in agar: brain heart infusion agar BHIA (Difco) 

and violet red bile glucose agar VRBGA (Difco) were more resistant to the effect 

of chlorine sanitizer than planktonic cells.  The application of solutions containing 

100 or 200 ppm free chlorine was not an effective method to kill colonies grown 

in BHIA and VRBGA for 7 days. Even though it has been suggested that the 

production of extracellular capsule helps to protect bacteria from chlorine, no 

significant differences (p> 0.05) in resistance were found between encapsulated 
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E. sakazakii ATCC 29004 and non-capsulated E. sakazakii ATCC 29544. 

Expression of cellulose within colonies was analyzed using calcofluor and congo 

red screening assays.   

E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 attached and 

survived on stainless steel, silicone, polycarbonate and glass surfaces covered 

by infant formula. Biofilms also were resistant to the bactericidal effect of 100-200 

ppm free chlorine solutions. The high resistance of biofilms to chlorine sanitizers 

can explain the persistence of E. sakazakii in the formula processing 

environment and subsequent sloughing off of cells from surfaces into the formula 

which can result in foodborne disease outbreaks. 

Introduction 

Enterobacter sakazakii has become a public health concern since it can 

cause meningitis or neonatal septicemia with high fatality rates among neonates 

particularly pre-term infants, low-birth-weight infants or immunocompromised 

infants. Although no reservoirs for this microorganism have been reported, the 

bacterium is considered a ubiquitous microorganism, with noticeable presence in 

the environment. Different studies report that E. sakazakii is a widespread 

microorganism present in a variety of foods and surfaces [Drudy et al., 2006; 

Forsythe, 2005; Friedemann, 2007; Kandhai et al., 2004a; Kandhai et al., 2004b; 

Kim and Beuchat, 2005; Muytjens et al., 1988]. Other studies have evaluated the 

presence of E. sakazakii in potable water , Muytjens and Kollee [1990] could not 

isolate this microorganism from surface water, yet it has been reported that two 
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strains of E. sakazakii were isolated from samples of water collected in Mexico 

[Cruz et al., 2004] . 

E. sakazakii’s ability to survive in the environment and in water supplies 

can be enhanced by the presence of a capsule. The capsule allows  the 

microorganism to attach to surfaces and form biofilms, which increases 

resistance to cleaning and disinfecting agents. The effectiveness of disinfectants 

in killing E. sakazakii in suspension, dried on the surface of stainless steel, and 

embedded in biofilm on stainless steel was evaluated by Kim et al [2006a]. Kim 

et al [2006a] show that quaternary ammonium and phenolic disinfectants 

commonly used in hospital, day-care, and food service kitchen settings are 

ineffective in killing some cells of E. sakazakii embedded in organic matrices.  

Despite the information provided by Kim [2006a], little is known about the 

effectiveness of chlorine sanitizing agents in killing E. sakazakii. 

Chlorine is used for the disinfection of our water supply. The 

Environmental Protection Agency (EPA) has set a limit for drinking water of 4 

milligrams of chlorine per liter of water; in Tennessee the chlorine concentration 

detected in the water distribution systems is on average 2ppm [Environmental 

Protection Agency, 2006; Knoxville Utility Board, 2006]. 

Food manufacturing plants, households, day-care and hospitals have 

established chlorine as one of the disinfecting agents most commonly used. 

Sanitation with 20 ppm is recommended for 30 to 60 minutes; higher 
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concentrations or longer soak times will increase effectiveness in sanitation, but 

repeated sanitation at concentrations higher than 50 ppm can cause corrosion of 

stainless steel valves, manifolds, and piping [Edstrom Industries, 2003].  

Sodium hypochlorite solutions are widely used to disinfect surfaces, 

equipment and utensils used for food preparation. Sodium hypochlorite dissolved 

in water ionizes to produce Na+ and the hypochlorite ion, OCl , which remains in 

equilibrium with hypochlorous acid, HOCl. Between pH 4 and 7, chlorine exists 

predominantly as HClO, whereas above pH 9, OCl  predominates. Hypochlorous 

acid HClO has long been considered the active moiety responsible for bacterial 

inactivation, the OCl  ion has a minor effect compared to undissolved HOCl 

[McDonnell and Russell, 1999].  

The actual mechanism of action of chlorine is not fully known; chlorine 

releasing agents are highly active oxidizing agents, which destroy the cellular 

activity of proteins [Bloomfield, 1996]; potentiation of oxidation may occur at low 

pH, where the activity of the chlorine releasing agent is maximal, although 

increased penetration of outer cell layers may be achieved with chlorine in the 

unionized state [Bloomfield, 1996; McDonnell and Russell, 1999]. 

Gram-negative bacteria are generally more resistant to antiseptics and 

disinfectants than are nonsporulating, nonmycobacterial gram-positive bacteria, 

thanks to the outer membrane that acts as a barrier that limits the entry of many 

chemically unrelated types of antibacterial agents [McDonnell and Russell, 1999]. 
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This inherited resistance is added to the ability of E. sakazakii to produce 

exopolysaccharides [Harris and Oriel, 1989; Lehner et al., 2005] and adhere to 

surfaces forming biofilms [Kim et al., 2006b].  This ability emphasizes the 

importance of understanding  the microorganism’s resistance to chlorine 

sanitizers.  

The objective of this experiment was to analyze the effect of chlorine as 

an antimicrobial against E. sakazakii strains in suspension, organized into 

colonies and in biofilms on different surfaces.   

Materials and Methods 
 
Experimental Plan 
 

The study was designed to test two different strains: E. sakazakii ATCC 

29044 and E. sakazakii ATCC 29544, cultivated in different treatments (VRBG or 

BHI; planktonic or colonies), to three different concentration of chlorine solutions. 

Cells in suspension cultured either on BHI or VRBG were exposed to 2, 4 and 6 

ppm. Colonies growing on BHI agar or VRBG agar for 24 hours were exposed to 

2, 4 and 6 ppm free chlorine solutions and colonies grown on BHI agar or VRBG 

agar for 7 days were exposed to 100 and 200 ppm free chlorine solutions. 

Preliminary experiments showed that 50 ppm free chlorine solutions did not have 

an antimicrobial effect on cells growing in colonies. Accurate monitoring of the 

sanitizing capacity of our solutions was achieved by the use of free chlorine 

measurements, since total chlorine is the total amount of chlorine in the water, 
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but free chlorine is the amount of chlorine still available to sanitize the water. The 

pH of solutions and culture media was continuously monitored; buffered solutions 

were prepared to maintain pH 7.0+ 0.2. Biofilms were grown on four different 

surfaces: glass, stainless steel, polycarbonate and silicone. Analysis of biofilm 

growth was performed using crystal violet staining and enumeration of cells by 

direct plating. 

Bacterial strains 

Clinical strains used in this study were obtained from the American Type 

Culture Collection (ATCC). Both strains: E. sakazakii ATCC 29004 and E. 

sakazakii ATCC 29544 were propagated in brain heart infusion broth according 

to ATCC procedures. 

Media  

Planktonic cells were grown in brain heart infusion broth -BHI (Difco) and 

violet red bile glucose broth -VRBG (Difco). Colonies were grown on VRBG agar 

and BHI agar prepared by adding granulated agar (Fisher chemicals, 15 g/L) to 

BHI broth and VRBG broth. Biofilms were developed on surfaces immersed in 

Portagen (Mead Johnson) powdered infant formula. Serial dilutions were 

performed in 0.1% peptone water (Difco) and plated on trypticase soy agar (TSA) 

(Difco). Expression of cellulose was detected by adding 200 mg/ml -1 calcofluor 

(fluorescent brightener 28, Sigma, St. Louis, Mo.) onto Luria-Bertani Agar (Difco), 

BHI agar (Difco) and VRBG agar prepared without adding neutral red and crystal 



 

 93

violet. Congo red plates were prepared from TSB plus 2% (w/v) agar containing 

0.01% (w/v) congo red, following the procedure described by Smith et al. [1990] 

Chemical solutions 

Chlorine solutions were prepared from a commercial household product 

(Clorox) containing 6% sodium hypochlorite. Phosphate Buffer solutions pH 7 

and crystal violet solutions 0.41% were obtained from Fisher Chemical.  

Experimental design 

Resistance of E. sakazakii planktonic cells to chlorine sanitizers: E. 

sakazakii (ATCC 29004), E. sakazakii (ATCC 29554), were grown individually in 

BHI broth at 35-37°C for 24 h. The 24-h cultures were transferred to VRBG broth 

and BHI broth and incubated at 35-37 °C for an additional 24 hours. Each culture 

was transferred again to the same media and incubated for 24 hours at 35-37°C. 

Once the incubation time was completed the cells were centrifuged for 15 min at 

15,000 rpm, the pellet was washed and resuspended in 5 ml of phosphate buffer 

solution (pH 7), 1 ml of each culture was then submitted for 3 minutes to four 

different treatments: 0 ppm chlorine solution, 2 ppm chlorine solution, 4 ppm 

chlorine solution, 6 ppm chlorine solution. After the 3 minute treatment, each 

culture was transferred to BHI in order to inactive free-chlorine; neutralization of 

chlorine was verified using Aquacheck total/free chlorine test strips (Hach 

Company, Loveland, CO). Serial dilutions in 0.1% peptone water were plated in 

TSA supplemented with pyruvate for recovery of stressed cells.The number of E. 

sakazakii recovered was recorded and analyzed to determine if there was a 
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significant difference (p<0.05) in the log reduction for each of the treatment 

combinations ( strains, chlorine treatments and the media used for the recovery 

of the microorganisms.) 

Resistance of E. sakazakii colonies to chlorine sanitizers: E. sakazakii 

(ATCC 29004), E. sakazakii (ATCC 29554), were grown individually in BHI broth 

at 35-37°C for 24 h. The 24-h cultures were transferred to VRBG broth and BHI 

broth and incubated at 35-37 °C for additional 24 hours. Each culture was 

transferred again to the same media and incubated for 24 hours at 35-37°C. 

Once the incubation time was completed 0.1 ml of each culture were plated on 

BHI Agar and VRBG agar and incubated at 35-37 °C for 24 h. The plates were 

then incubated at 25 °C for either 24 hour or 7 days to allow colonies to grow 

(Figure 3.1). Colonies with the same diameter were selected and immersed in 

chlorine solutions of different concentrations: 2 ppm, 4 ppm, 6 ppm (for 24-hour 

colonies) or 100 ppm and 200 ppm (for 7-day colonies) without disrupting their 

morphology. After 30 minutes of contact time, BHI broth was added to inactive 

free chlorine, neutralization of chlorine was verified using Aquacheck total/free 

chlorine test strips (Hach Company, Loveland, CO). Serial dilutions in 0.1% 

peptone water were plated in TSA supplemented with pyruvate for recovery of 

stressed cells.The number of E. sakazakii recovered was recorded and analyzed 

to determine if there was a significant difference (p<0.05) in the log reduction for 

each of the treatment combinations ( strains, chlorine treatments and the media 

used for the recovery of the microorganisms.).
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Figure 3.1 E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 
colony morphology after 7 days. 
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Expression of cellulose and morphotypes within colonies: E. 

sakazakii (ATCC 29004), E. sakazakii (ATCC 29554), were grown individually in 

BHI broth at 35-37°C for 24 h. After incubation microbial outgrowth was collected 

with a sterile loop and streaked on congo red agar and incubated at 35-37 oC  

Colony morphology was compared with the basic morphotypes detected by 

Zogaj et al. [2003]. E. sakazakii (ATCC 29004) and E. sakazakii (ATCC 29554) 

were also streaked on LB agar, BHI agar and VRBG agar supplemented with 

calcofluor, and incubated for 48 hours at 28 o C. Fluorescent colonies were 

observed under a 366-nm UV light source.  

The Role of Biofilm Formation on the Protection of Enterobacter 

sakazakii from Chlorination: Biofilms for chlorine resistance experiments were 

grown on coupons of each of the following materials: stainless steel, silicone, 

polycarbonate and glass. Coupons (4cm ²) were inoculated with 50 μl of a 24 h 

culture of E. sakazakii grown in BHI broth and then incubated at 35 °C for 3 h in 

sterile petri dishes. Each coupon was rinsed with 100 ml of 0.015 M KH2PO4 and  

adjusted to pH 7.0 using  a manual dispenser 10 ml at a time from top to bottom 

and front to back. After rinsing, the coupons were transferred to sterile plastic 

petri dishes containing sterile infant formula (Portagen, Mead Johnson) and 

incubated for 48 h at 35 °C. After biofilm growth, the coupons were washed by 

using a manual dispenser, directing the stream of sterile phosphate buffer 

(approximately 50 ml) evenly from top to bottom and front to back to remove the 

growth media and unattached cells.  
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Washed coupons were either stained with crystal violet and let dry for 30 

minutes to visualize biofilm growth or placed in a petri dish filled with 20 ml of 

phosphate buffer, 20 ml of 100 ppm or 20  ml of 200 ppm chlorine solution for 30 

min. Treated coupons were placed in petri dishes and covered with sterile BHI 

broth for 5 min to neutralize free chlorine; neutralization of chlorine was verified 

using Aquacheck total/free chlorine test strips (Hach Company, Loveland, 

Colo.).Coupons were then rinsed with 50 ml of phosphate buffer three times, and 

scraped using a cotton swab to remove attached cells. Cotton swabs were 

immersed in 10 ml of phosphate buffer and vortexed for 15 sec. Coupons were 

placed in a petri dish, overlaid with TSA+pyruvate and incubated at 30 °C for 48 

h to allow colony formation from the attached survivors.  Survivors in phosphate 

buffer solutions (Rinse, swab) and TSA+pyruvate petri dishes were reported as 

log CFU/ cm². Data were transformed to log scale for statistical analysis.   

 Each experiment was conducted with at least two replications and 

analyzed with the SAS Mixed Procedures using SAS Software Release 9.1 (SAS 

Institute Inc., Cary, NC). Significant differences among means were determined 

by the Least-Squares Means method with the PDIFF (p-value for differences) 

option. We were interested in evaluating: 

• Whether or not there was a difference between treatments when applied 

to the same strain.  
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• What were the mean estimates for the log reduction obtained for each 

treatment? 

• Whether or not there was a difference between strain or/and media when 

applying the same treatment. 

Data analysis were conducted using RBD factorial model  with replicates,  

blocking by replicate. 

Expression of cellulose was analyzed from a qualitative point of view by 

comparison with previous results obtained from different authors regarding 

morphotypes and fluorescence on media prepared with the addition of congo red 

and calcofluor dye. 

Results 

Exposure of E. sakazakii planktonic cells to 2 ppm , 4 ppm and 6 ppm free 

chlorine solutions for 3 minutes produced in average1.0 to 2.0 log, 2.1 to 3.3 log 

and 3.5 to 4.5 log CFU/ml reduction estimates, respectively (Table 3.1, Figure 

3.2).  

The type 3 test of fixed effect and LSD method (P <.05) applied to the 

overall data showed no statistical differences in the decrease in population 

between strains, although, there were statistically differences between 

treatments: 2, 4, 6 ppm and media: BHI broth and VRBG broth (Table 3.2-3.3). 
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Table 3.1 Average decrease in population after treatment of 
planktonic cells with 2 ppm, 4 ppm, 6 ppm free chlorine solutions. 

 

 

 

 
 
 
 
 

 
 
 
 

Log CFU/ml Reduction 

E.sakazakii ATCC 29004 E.sakazakii ATCC 29544 

Plating media Treatment 

BHI VRBG BHI VRBG 

2 ppm 1.99 1.88 1.04 1.07 

4 ppm 2.12 2.09 3.29 2.95 
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Figure 3.2 Average decrease in population after treatment of colonies 
with 2 ppm, 4 ppm and 6 ppm free chlorine solutions. 
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Table 3.2 Analysis of variance for decrease in population means after 
treatment of planktonic cells with 2 ppm, 4 ppm, 6 ppm free chlorine 
solution. 
 

Effect 

 Numerator  
Degrees of 
Freedom  

 Denominator 
Degrees of 
Freedom    F Value     Pr > F 

Strain 1 34 0.01 0.9347 
Media 1 34 5.4 0.0262 
Treatment 2 34 109.22 <.0001 
Strain * media 1 34 0.93 0.3417 
Strain* treatment 2 34 21.39 <.0001 
media* treatment 2 34 1.77 0.1861 
Strain*media*treatment 2 34 0.78 0.4651 
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Table 3.3 LSD method (P<.05) for decrease in population after 
treatment of planktonic cells with 2, 4, 6 ppm free chlorine solution 
 

Strain Media Treatment Log CFU/ml Standard 
Error 

Letter 
Group 

29004   2.70 0.10 A 
29544   2.71 0.08 A 

 BHI  2.86 0.10 C 
 VRBG  2.55 0.09 B 
  2 ppm 1.51 0.10 D 
  4 ppm 2.61 0.11 E 
  6 ppm 4.00 0.14 F 
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Mean separation showed that within the same strain and treatment (2ppm 

or 4ppm) there was no difference in the log reduction between media, however 

there was a difference between strains (Table 3.4 and 3.5). For the treatment 

using 6 ppm chlorine solution there was no difference in the log reduction 

obtained for one strain or the other but E. sakazakii ATCC 29544 cells exposed 

to VRBG prior to treatment with chlorine solutions showed a one log or greater 

resistance to inactivation with chlorine compared to cells grown in BHI (Table 

3.6). 

Both strains E. sakazakii ATCC 29004 and ATCC 29544 showed a 

difference in log reduction between treatments with 2ppm and 6 ppm (Table 3.7 

and Table 3.8). Treatment with 4 ppm free chlorine was  similar to treatments 

with 2 ppm or 6 ppm free chlorine with the exception of E. sakazakii ATCC 29544 

grown in BHI for which all treatments differed (Table 3.8).   

Exposure of E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 
colonies grown for 24 hours to 2 ppm, 4 ppm and 6 ppm free chlorine 
solutions. 

Two different morphologies were observed for cells grown in VRBG agar. 

E. sakazakii ATCC 29544 colonies were smooth, creamy and easy to remove 

from the agar. E. sakazakii ATCC 29544 colonies were dry, crenated, rubbery 

and difficult to remove from the agar (Figure 3.1). 

Exposure of 24 hour colonies grown in BHI agar and VRBG agar to 2 ppm 

free chlorine solutions did not cause a decrease on the population, exposure to 4 
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Table 3.4 LSD method (P<.05) for decrease in population after 
treatment of planktonic cells with 2 ppm free chlorine. 
 

Strain Media Log CFU/ml Standard 
Error 

Letter 
Group 

29004 BHI 2.03 0.28 A 
29004 VRBG 1.88 0.19 A 
29544 BHI 1.04 0.17 B 
29544 VRBG 1.07 0.12 B 
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Table 3.5 LSD method (P<.05)  for decrease in population after 
treatment of planktonic cells with 4 ppm free chlorine. 
 

 Strain Media Log CFU/ml Standard 
Error 

Letter 
Group 

29004 BHI 2.12 0.23 B 
29004 VRBG 2.09 0.28 B 
29544 BHI 3.29 0.19 A 
29544 VRBG 2.95 0.15 A 
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Table 3.6 LSD method (P<.05) sliced by treatment for decrease in 
population after treatment of planktonic cells with 6 ppm  

 

Strain Media Treatment 
Log 

CFU/ml 
Standard 

Error 
Letter 
Group 

29004 BHI 6 ppm 4.23 0.28 AB 
29004 VRBG 6 ppm 3.86 0.28 AB 
29544 BHI 6 ppm 4.46 0.28 A 
29544 VRBG 6 ppm 3.45 0.28 B 
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Table 3.7 LSD method (P<.05) sliced by media VRBG for decrease in 
population after treatment of planktonic cells with 2, 4, 6 ppm free 
chlorine 
 

 

 

 

 

 

 

 

 

 

Srain Media Treatment Log CFU/ml 
Standard 

Error  
Letter 
Group 

29004 VRBG 2 ppm 1.88 0.1949 C 
29004 VRBG 4 ppm 2.09 0.2757 C 
29004 VRBG 6 ppm 3.86 0.2757 A 
29544 VRBG 2 ppm 1.07 0.1175 D 
29544 VRBG 4 ppm 2.95 0.1474 B 
29544 VRBG 6 ppm 3.45 0.2757 AB 
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Table 3.8 LSD method (P<.05) sliced by media BHI for decrease in 
population after treatment of planktonic cells with 2, 4 and 6 ppm free 
chlorine. 

Strain Media Treatment
Log 

CFU/ml 
Standard 

Error  
Letter 
Group 

29004 BHI 2 ppm 2.03 0.2757 C 
29004 BHI 4 ppm 2.12 0.2251 C 
29004 BHI 6 ppm 4.22 0.2757 A 
29544 BHI 2 ppm 1.04 0.1744 D 
29544 BHI 4 ppm 3.29 0.1949 B 
29544 BHI 6 ppm 4.46 0.2757 A 
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ppm produced no more than 0.3 log reduction and exposure to 6 ppm produced 

averages ranging from 0.2 to 1.0 log reduction(Table 3.9, Figure 3.3). 

Planktonic cells of E. sakazakii ATCC 29004 and E. sakazakii ATTC 

29544 had a larger decrease in population after exposure to 2, 4 and 6 ppm free 

chlorine than cells organized in colonies, grown in VRBG agar and BHI agar for a 

period of 24 hours. 

E. sakazakii ATCC 29544 colonies, grown in VRBG agar for 24 hours 

were more resistant to the antimicrobial effect of the applied chlorine solutions 

than colonies grown in BHI agar for the same period of time. However, the 

opposite occurred for E. sakazakii ATCC 29004.  Cells of ATCC 29004 growing 

in BHI agar were more resistant to the antimicrobial effect of chlorine than cells 

growing in VRBG agar which exhibited the dry, crenated and rubbery 

morphology. 

Exposure of E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 
colonies grown for 7 days to 100 ppm and 200 ppm free chlorine solution 

Exposure of 7-day colonies grown in BHI agar and VRBG agar to 100 ppm 

chlorine solutions for 30 min produced mean reductions  ranging from 0.21 to 

0.92 log CFU/ml , exposure to 200 ppm chlorine solutions for 30 minutes 

produced mean reductions   ranging from 0.35 to 0.91 log CFU/ml  (table 3.10-, 

figure 3.4). There was no significant difference in population decrease between 

the strains after treatments were applied (P >0.05) (Table 3.11-3.12), however  
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 Table 3.9 Average decrease in population after treatment of E. 
sakazakii ATCC 29004 and E. sakazakii ATCC 29544 24 h colonies 
with 2 ppm, 4 ppm, 6 ppm free chlorine solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Log CFU/ml Reduction 

E.sakazakii ATCC 29004 E.sakazakii ATCC 29544 

Plating media Treatment 

BHI VRBG BHI VRBG 

2 ppm 0 0 0 0 

4 ppm 0.07 0.33 0.03 0.02 
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Figure 3.3 Average decrease in population after treatment of E. 
sakazakii ATCC 29004 and E. sakazakii ATCC 29544 24 h colonies 
with 2 ppm, 4 ppm and 6 ppm free chlorine solutions. 
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Table 3.10 Average decrease in population after treatment of E. 
sakazakii ATCC 29004 and E. sakazakii ATCC 29544 7 day colonies 
with 100 and 200 ppm free chlorine solutions. 
 
 

 

 

 

 

 

 

 

 

 

 

Log CFU/ml Reduction 

E.sakazakii ATCC 29004 E.sakazakii ATCC 29544 

Plating media Treatment

BHI VRBG BHI VRBG 

100 ppm 0.87 0.28 0.92 0.21 

200 ppm 1.32 0.35 0.91 0.35 
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Figure 3.4 Average decrease in population after treatment of E. 
sakazakii ATTC 29004 and E. sakazakii ATCC 29544 colonies with 
100 and 200 ppm free chlorine solutions. 
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Table 3.11 Analysis of variance results for decrease in population 
after treatment of E. sakazakii ATCC 29004 and E. sakazakii ATCC 
29544 colonies with 100 ppm and 200 ppm free chlorine solution 

 

 

 

 

 

Effect 

 Numerator  
Degrees of 
Freedom      

Denominator 
Degrees of 
Freedom     F Value     Pr > F 

Strain 1 14 4.04 <.0642 
Media 1 14 179.87 <.0001 
Treatment 1 14 9.25 0.0088 
Strain * media 1 14 1.92 0.1873 
Strain* treatment 1 14 3.45 0.0846 
media* treatment 1 14 1.18 0.2962 
Strain*media*treatment 1 14 6.38 0.0242 
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Table 3.12  Decrease in population after treatment of E. sakazakii 
ATCC 29004 and E. sakazakii ATCC 29544 colonies with 100 ppm 
and 200 ppm free chlorine. 
 
 

Strain Media Treatment Log CFU/ml 
Standard 

Error 
Letter 
Group 

29004   0.7 0.04 A 
29544   0.6 0.04 A 

 BHIA  1.01 0.04 C 
 VRBGA  0.29 0.04 D 
  100 ppm 0.57 0.04 F 
  200 ppm 0.73 0.04 E 
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cells grown in VRBG agar showed a lower log reduction (0.29) than cells grown 

in BHI agar (1.01)(Table 3.12). 

There were statistically significant differences (p<0.05) in population 

decrease between 100 and 200 ppm treatments. Colonies treated with 100 ppm 

free chlorine solution showed an estimate of 0.57 log CFU/ml decrease in 

population while cells submitted to 200 ppm free chlorine solution showed a 0.73 

log CFU/ml decrease in population (Table 3.12); this difference was not seen for 

colonies recovered from VRBG agar and was only noticed for E. sakazakii ATCC 

29004 colonies grown in BHI agar  and treated with  200 ppm free chlorine 

(Table 3.15-3.16).  

The significant difference in E. sakazakii ATCC 29004 population 

decrease between colonies grown in VRBG agar and BHI agar and exposed to 

200 ppm chlorine could be attributed to the metabolic stress produced by the 

medium (Table 3.15 - 3.16). 

Expression of cellulose and morphotypes within colonies 

Morphotype and expression of cellulose were tested by screening colonies 

for congo red and calcofluor binding (Table 3.17, Figure 3.5).  

Isolates growing in LB agar supplemented with congo red were compared 

to the basic morphotypes detected in S. Typhimurium (Figure 3.5) and classified 

in one of the following morphotypes: (i) red, dry, and rough, indicating curli and 

cellulose production (rdar);  (ii) brown, dry, and rough, indicating curli production 
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Table 3.13 LSD method (P<.05) sliced by treatment for decrease in 
population after treatment of E. sakazakii ATCC 29004 and E. 
sakazakii ATCC 29544 colonies with 100 ppm free chlorine. 

 

 

 

 

 

 

 

 

 

Strain Media Treatment 
Log 

CFU/ml 
Standard 

Error 
Letter 
Group 

29004 BHIA 100 ppm 0.87 0.09 A 
29004 VRBGA 100 ppm 0.28 0.07 B 
29544 BHIA 100 ppm 0.92 0.07 A 
29544 VRBGA 100 ppm 0.21 0.07 B 
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Table 3.14 LSD method (P<.05) for decrease in population after 
treatment of E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 
colonies with 200 ppm free chlorine. 

 

 

 

 

 

 

Strain Media Treatment 
Log 

CFU/ml 
Standard 

Error 
Letter 
Group 

29004 BHIA 200 ppm 1.32 0.09 A 
29004 VRBGA 200 ppm 0.35 0.07 C 
29544 BHIA 200 ppm 0.91 0.07 B 
29544 VRBGA 200 ppm 0.35 0.07 C 
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Table 3.15 LSD method (P<.05) BHI broth showing decrease in 
population after treatment of E. sakazakii ATCC 29004 and E. 
sakazakii ATCC 29544 colonies with 100 and 200 ppm free chlorine. 
 

 

 

 

 

 

Strain Treatment Log CFU/ml 
Standard 

Error 
Letter 
Group 

29004 100 ppm 0.87 0.09 B 
29004 200 ppm 1.32 0.09 A 
29544 100 ppm 0.92 0.07 B 
29544 200 ppm 0.91 0.07 B 
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Table 3.16 LSD method (P<.05) sliced by media for  decrease in 
population after treatment of E. sakazakii ATCC 29004 and E. 
sakazakii ATCC 29544 colonies with 100 and 200 ppm  

 

 

 

 

 

 

Strain Treatment 
Log 

CFU/ml 
Standard 

Error 
Letter 
Group 

29004 100 ppm 0.28 0.07 A 
29004 200 ppm 0.35 0.07 A 
29544 100 ppm 0.21 0.07 A 
29544 200 ppm 0.35 0.07 A 



 

 121

 

 

Table 3.17 Morphotype and expression of extracellular matrix component 

 

Strain Morphotype¹ Calcofluor binding ²
E. sakazakii  ATCC 29004 pdar +
E. sakazakii  ATCC 29544 pdar +  

¹ Morphotype on CR plates at 28 °C. 

² Fluorescent phenotype on LB agar, BHI agar and VRBG agar prepared without crystal violet 
and neutral red 
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Figure 3.5 Morphotype and expression of extracellular matrix 
component 
 
 A: Congo red and Calcofluor staining of morphotypes of representatives of enterobacterial 
species isolated from feces. The strains were grown for 48 h at 28°C and for 24 h at 37°C. 
Morphotypes include the phenotype of serotype Typhimurium UMR1 (ATCC 14028-1s, Nal r) and 
its mutants, streaked at the lower part of the panel. ROWS: 1, Citrobacter sp. strain Fec2; 2, C. 
freundii Fec4; 3, C. koseri/farmeri Fec157; 4, Enterobacter sp. strain Fec125; 5, E. aerogenes 
Fec135; 6, E. cloacae Fec36; 7, E. sakazakii Fec39; 8, Klebsiella sp. strain Fec164; 9, K. oxytoca 
Fec139; 10, K. pneumoniae Fec141; 11, R. ornithinolytica Fec153; 12, P. mirabilis Fec162; 13, 
serotype Typhimurium UMR1 (cellulose 28+, curli 28+); 14, serotype Typhimurium MAE1 
(cellulose 28+, curli -); 15, serotype Typhimurium MAE222 (cellulose -, curli 28+); 16, serotype 
Typhimurium MAE51 (cellulose -, curli -) (Zogaj et al. 2003). B: Congo red and Calcofluor staining 
of E. sakazakii ATCC 29004 (Top part petri dish) and E. sakazakii ATCC 29544 (Bottom part petri 
dish), incubated at 28 ºC.
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but lack of cellulose production(bdar) (iii) smooth and white, indicating lack of 

both curli and cellulose production (saw); (iv) pink colony, indicating cellulose 

production (pdar). [Solomon et al., 2005]. Both strains showed a pdar 

morphotype on congo red incubated at 28 oC for 48 hour (Figure 3.5), indicating 

cellulose production but not curli fimbriae. 

The screening method for detection of cellulose based on the 

fluorescence of colonies on calcofluor agar plates, indicated cellulose production 

after 48 hours incubation at 28 oC by both  E. sakazakii ATCC 29004 and E. 

sakazakii 29544. Fluorescence was observed under long-wave UV light, in the 

three media stained with calcofluor: LB agar, BHI agar and VRBG agar without 

crystal violet and neutral red. 

These results differ from those obtained by Lehner et al. [2005] who didn’t 

report cellulose production on strains E. sakazakii 29004 and E. sakazakii 29544, 

using the same calcofluor screening technique. 

Exposure of E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 biofilms 
to 100 and 200 ppm free chlorine solutions. 

From the statistical point of view, there was a significant difference (p<0.05) 

between treatments with 100 and 200 ppm chlorine (Table 3.18-3.20); however 

log reductions were not greater than 1.04 log CFU/cm2, with the exception of 3.3 

log CFU/cm2 reductions obtained for E. sakazakii ATCC 29544 biofilms formed 

on glass treated with 200 ppm free chlorine (Table 3.21-3.23, Figure 3.6). There 
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Table 3.18  Average decrease in population after treatment of biofilms with 100 
and 200 ppm free chlorine solutions 
 
 

E. sakazakii  29004 E. sakazakii 29544 Surface 
100 ppm 200 ppm 100 ppm 200 ppm 

Glass 0.33 0.75 0.23 3.30 
Stainless Steel 0.94 0.76 0.35 0.45 
Silicone 0.44 0.15 0.18 0.71 
Polycarbonate 0.77 0.83 0.93 1.04 
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Figure 3.6 Average decrease in population after treatment of biofilms 
with 100 and 200 ppm free chlorine solutions 
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Table 3.19 Analysis of variance results for decrease in population 
after treatment of biofilms with 100 ppm and 200 ppm free chlorine 
solution 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect 

 Numerator  
Degrees of 
Freedom       

Denominator  
Degrees of 
Freedom    F Value    Pr > F 

Strain 1 15 24.53 0.0002 
Surface 1 15 34.59 <.0001 
Treatment 1 15 71.31 <.0001 
Strain *surface 1 15 40.58 <.0001 
Strain* treatment 1 15 70.94 <.0001 
Surface* treatment 1 15 59.09 <.0001 
Strain*surface*treatment 1 15 28.97 <.0001 
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Table 3.20 LSD method (P<.05) for decrease in population after 
treatment of biofilms with 100 ppm and 200 ppm free chlorine solution 

 

Strain Surface Treatment Log CFU/ ml 
Standard 

error Letter group 
29004   0.62 0.03904 B 
29544   0.90 0.04141 A 

 Glass  1.16 0.05522 C 
 Polycarbonate  0.89 0.05522 D 
 Stainless Steel  0.62 0.05522 E 
 Silicone  0.37 0.06173 F 
  100 ppm 0.52 0.03904 G 
  200 ppm 1.00 0.04141 H 
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Table 3.21 LSD method (P<.05) sliced by treatment 100 ppm free 
chlorine for decrease in population after treatment of biofilms with 100 
ppm free chlorine solution 
 

 
Strain Surface Estimate Standard error Letter Group 

29004 Glass 0.33 0.11 B 

29004 Polycarbonate 0.77 0.11 A 

29004 Stainless Steel 0.94 0.11 A 

29004 Silicone 0.44 0.11 B 

29544 Glass 0.23 0.11 B 

29544 Polycarbonate 0.93 0.11 A 

29544 Stainless Steel 0.35 0.11 B 

29544 Silicone 0.18 0.11 B 
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Table 3.22 LSD method (P<.05) sliced by treatment 200 ppm free 
chlorinefor decrease in population after treatment of biofilms with 200 
ppm free chlorine. 

 
 
 

Strain Surface Log CFU/ ml 
Standard 

error Letter Group 
29004 Glass 0.75 0.11 BC 

29004 Polycarbonate 0.83 0.11 B 

29004 Stainless Steel 0.76 0.11 BC 

29004 Silicone 0.15 0.11 D 

29544 Glass 3.33 0.11 A 

29544 Polycarbonate 1.04 0.11 B 

29544 Stainless Steel 0.45 0.11 CD 

29544 Silicone 0.71 0.11 BC 
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Table 3.23 LSD method (P<.05) sliced by surface glass for decrease 
in population after treatment of biofilm with 100 and 200 ppm free 
chlorine solutions 
 
 

Strain Treatment Log CFU/ ml
Standard 

error Letter Group 
29004 100 ppm 0.33 0.11 C 
29004 200 ppm 0.75 0.11 B 
29544 100 ppm 0.23 0.11 C 
29544 200 ppm  3.33 0.11 A 
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was an overall significant difference (p<0.05) observed between the strains in 

terms of resistance to chlorine solutions (Table 3.19 -3.20), that could be 

observed after analyzing each treatment and surface separately (Table 3.21-

3.26).  

Biofilms formed by E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 

behaved similarly on all surfaces after treatment with 100 ppm free chlorine with 

the exception of biofilms formed in stainless steel surfaces, where strain E. 

sakazakii ATCC 29004 showed a 0.94 log CFU/cm2 decrease in population 

compare with a 0.35 log CFU/cm2  decrease observed for E. sakazakii ATCC 

29544 (Table 3.21-3.25). Biofilms formed by E. sakazakii ATCC 29004 and E. 

sakazakii ATCC 29544 behaved similarly in all surfaces after treatment with 200 

ppm free chlorine with the exception glass and silicone biofilms (Table 3.22 -

3.23; 3.26) in which E. sakazakii showed a higher decrease in population. 

After treatment of glass coupons with 200 ppm free chlorine solutions 

strain E. sakazakii ATCC 29004 showed a 0.75 log CFU/cm2  decrease in 

population compare with a 3.33 log decrease observed for E. sakazakii ATCC 

29544 (Table 3.22-3.23).After treatment of silicone coupons with 200 ppm free 

chlorine solutions strain E. sakazakii ATCC 29004 showed a 0.15 log CFU/cm2  

decrease in population compare with a 0.71 log CFU/cm2  decrease observed for 

E. sakazakii ATCC 29544 (Table 3.26) 
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Table 3.24 LSD method (P<.05) sliced by surface polycarbonate for 
decrease in population after treatment of biofilm with 100 and 200 
ppm 
 
 

Strain Treatment Log CFU/ml Standard 
error Letter Group 

29004 100 ppm 0.77 0.11 A 
29004 200 ppm 0.83 0.11 A 
29544 100 ppm 0.93 0.11 A 
29544 200 ppm 1.04 0.11 A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 133

Table 3.25 LSD method (P<.05) sliced by surface stainless steel for 
decrease in population after treatment of biofilm with 100 and 200 
ppm free chlorine solutions 
 
 

Strain Treatment Log CFU/ml Standard 
error Letter Group 

29004 100 ppm 0.94 0.11 A 
29004 200 ppm 0.76 0.11 AB 
29544 100 ppm 0.35 0.11 C 
29544 200 ppm 0.45 0.11 BC 
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Table 3.26 LSD method (P<.05) sliced by surface  silicone for  
decrease in population after treatment of biofilm with 100 and 200 
ppm free chlorine solutions 
 
 

Strain Treatment Log CFU/ ml 
Standard 

error Letter group 
29004 100 0.435 0.11 AB 
29004 200 0.145 0.11 B 
29544 100 0.175 0.11 B 
29544 200 0.71 0.16 A 
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Exposure of E. sakazakii to 100 ppm and 200 ppm chlorine solutions 

produced up to 1.04 log CFU per cm2 reduction (Table 3.21-3.22), except for the 

200 ppm chlorine solution applied to ATCC 29544 biofilm adhered to glass, 

where the log reduction estimate was 3.3 log CFU/cm2 (Table 3.24). Even 

though the mean reduction in E. sakazakii on glass (1.16 log CFU/cm2) is higher 

than the mean reduction obtained for polycarbonate (0.89 log CFU/cm2); biofilms 

growing on polycarbonate showed a higher log reduction after treatment with 100 

ppm than biofilms growing on glass (Table 3.21, 3.23, 3.24).  ATCC 29004 and 

ATCC 29544 biofilms treated with 100 ppm showed the highest log reduction 

when growing on polycarbonate or stainless steel surfaces (Table 3.21). 

However when 200 ppm chlorine solutions were applied to ATCC 29004 biofilms, 

no significant difference was found between  the surfaces; except for silicone, 

which showed the lowest  log reduction (0.15 log CFU/cm2) (Table 3.22). For 

ATCC 29544 biofilms treated with 200 ppm, glass showed the highest log 

reduction (3.32 log CFU/cm2) followed by polycarbonate (1.04 log CFU/cm2) 

(Table 3.22).  

Detachment of E. sakazakii ATCC 29544 and E. sakazakii ATCC 29004 

from the surfaces after application of the treatments was calculated by comparing 

the initial number of bacteria attached to surfaces before treatment with the final 

number of cells that remained adhered to the surface after the treatment. The 

results obtained showed the highest log reduction for E. sakazakii ATCC 29544 
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biofilms formed on glass surfaces and treated with either 100 ppm or 200 ppm 

free chlorine solutions (Table 3.27). 

Discussion 

The three most common ways of growing bacteria in vitro are as 

planktonic cultures, colonies on agar plates, and biofilms [Mikkelsen et al., 2007].   

Biofilms were previously defined as “cells irreversibly attached to a surface 

or interface, embedded in a matrix of extracellular polymeric substances which 

these cells have produced, and including the noncellular or abiotic components”. 

This definition should encompass most cell aggregates, including bacterial 

colonies on agar plates; however, very few studies have mentioned bacterial 

colonies in a biofilm context [Mikkelsen et al., 2007]. Moreover, Donlan and 

Costerson [2002], considered that colonies of bacteria growing on the surface of 

agar behave like planktonic cells "stranded" on a surface and exhibited none of 

the inherent resistant characteristics of true biofilms, such as: altered growth rate 

and transcription of specific genes . Conversely,  Shapiro [1998] and Kolter and 

Greenberg [2006] , predict colonies to behave like biofilms, since they are 

organized communities encased in a polysaccharide matrix with high cell 

densities and coordinated cellular behavioral patterns. 

In a recent review, Kolter and Greenberg [2006] described a P. 

aeruginosa colony as an air-exposed biofilm in which as the community grows; 
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3.27 Detachment of E. sakazakii ATCC 29004 E. sakazakii ATCC 29544 from 
surfaces after treatment with 100-200 ppm free chlorine. 

 
  E. sakazakii 29004 E. sakazakii 29544 

Surface Treatment Log CFU/ml Log reduction Log CFU/ml Log reduction 
Control 8.0  6.0  

100 ppm 7.8 0.2 3.0 3.0 
Glass 

200 ppm 7.3 0.7 3.0 3.1 
Control 5.2  5.2  

100 ppm 5.1 0.1 4.4 0.8 
Stainless 

Steel 
200 ppm 5.1 0.1 4.3 0.9 
Control 7.5  7.8  

100 ppm 7.0 0.5 7.7 0.1 
Silicone 

200 ppm 6.9 0.7 7.1 0.7 
Control 8.7  8.8  

100 ppm 7.8 0.9 7.9 0.9 
Polycarbonate 

200 ppm 7.8 0.9 7.8 0.9 
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different cell types appear as the original strain diversifies to allow cells to take 

on different tasks or to exist in different 'microniches'. 

 

The capability of cells to survive the antimicrobial effect of chlorine 

sanitizers have been object of study for several years. While some authors report 

that micro-organisms grow attached to a surface in the form of a biofilm exhibit 

remarkable resistance to all types of antimicrobials when compared with the 

same microorganisms grown in suspended cultures [Gilbert and Brown 1995], 

other authors report that certain biofilms are not different from stationary-phase 

planktonic cells in their resistance to killing by antibiotics and a biocide [Spoering, 

and Lewis 2001].  

Different hypotheses have been considered to explain tolerance to the 

antimicrobial effect of chlorine sanitizers [Cochran et al. 2000]: 

• Presence of persister cells 

• Starving state or low growing activity. 

• Failure of the antimicrobial agent to penetrate the full depth of the 

biofilm. 
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Presence of persister cells 

Keren et al. [2004] emphasized that the presence of a residual fraction of 

cells die slowly or not at all when exposed to antimicrobials. These survivors 

(persister cells) are responsible for the high levels of tolerance of biofilms to 

antimicrobials, yet their increased tolerance is not heritable.  It is also thought 

that persister cells are in a dormant state or are unable to initiate programmed 

cell death [Massey et al., 2001]. 

Several studies have presented data to support that biofilm cells resemble 

planktonic cells in stationary phase; it has also been noted that the proportion of 

persistent is higher in stationary phase populations [Spoering and Lewis, 2001; 

Stoodley et al., 2002; Waite et al., 2005]. 

Planktonic stationary phase cultures of P. aeruginose have exhibited a 

higher resistance to killing by antibiotics than biofilms ({Keren et al., 2004, 

Spoering and Lewis 2001]. These observations suggest that biofilm survival is 

based on the presence of persisters regulated by the growth stage of the 

population and not on expression of possible biofilm-specific resistant 

mechanisms. 

In our study we observed that while exposure of stationary planktonic cells 

to 2 ppm , 4 ppm and 6 ppm free chlorine solutions for 3 minutes produced in 

average1.0 to 2.0 log, 2.1 to 3.3 log and 3.5 to 4.5 log CFU/ml reductions 

,respectively, the use of the same chlorine solutions against cells  growing in 
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colonies produced in average 0, 0.1 and 0.6 log CFU/ml reduction estimates. 

Even though E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 planktonic 

cells were in stationary phase after 24 h growth at 35 oC, they behaved differently 

than biofilms cells and colonies in term of resistance to chlorine sanitizers. An 

explanation to this can be related to observations that report that many microbes 

in contact with solid surfaces, trigger highly sophisticated colonization responses 

that include expression of specific genes that increase resistance to antimicrobial 

agents [Lejeune, 2003, Davies et al., 1993]. It is important to highlight that 

planktonic cells were concentrated and washed, pellicle was disturbed and 

therefore cells had a greater area of exposure to chlorine. In addition to this, 

stationary phase in a planktonic culture is merely a descriptive term which is 

likely to cover a heterogeneous population of cells in different metabolic states 

[Kolter and Greenberg, 2006]. 

Starving state or low growing activity 

Some authors suggest that cells in the interior of a biofilm microcolony, 

form a protected subpopulation of cells which enter in a slow growth rate when 

nutrient becomes limiting and reduces the uptake of solutes from the 

environment including antimicrobials [Stewart and Costerton, 2001] 

In this study we found that colony resistance to chlorine sanitizers 

increased under starvation stress, being similar to that expressed by biofilms, 
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and higher than the resistance expressed by planktonic cells or colonies 

cultivated for 24 hours.  

In our study colonies were grown on agar for 7 days. This prolonged 

period could have generated starvation conditions and triggered genes that are 

not expressed under normal conditions. Lisle et. al. [1998] reported that E. coli 

O157:H7 chlorine resistance progressively increases throughout starvation 

periods due to the development of chlorine injury-resistant membrane structures. 

Berg et al [1982] speculated that the increased resistance was due to changes in 

cell membrane permeability of slow growing bacteria.  

In a biofilm, cell densities are substantially higher than in planktonic 

culture, [Prigent-Combaret et al., 1999] as a consequence, most biofilm cells are 

likely to encounter nutrient and oxygen limitation as well as higher levels of waste 

products, secondary metabolites, and secreted factors [Parsek and EP., 2005; 

Xu et al., 1998]. The development of injury-resistant membranes in starved 

colonies and cells contained in the biofilm matrix could explain the higher 

resistance of these cells to chlorine sanitizers.  

The effectiveness of 200 ppm free chlorine solutions against E. sakazakii 

ATCC 29544 biofilms can be explained by its effect on increasing the 

detachment from the glass surface, once the cell detach, the surface area of the 

cell in contact with the disinfectant is higher which is detrimental for the cell.  
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Some studies have shown that microorganisms seem to attach more 

rapidly to hydrophobic nonpolar surfaces such as Teflon and other plastics 

compared to hydrophylic material such as glass or metals [Bendinger et al., 

1993; Characklis et al., 1990]. Different studies [Sharma and Beuchat, 2004; 

Sharma et al., 2005] suggest a synergistic mechanism between an alkaline 

cleaner and hypochlorite that results in killing higher numbers of cells of E. coli 

O157:H7 in biofilms. These studies suggest the application of alkaline solutions 

to impart hydrophilic properties to stainless steel which may decrease bacterial 

attachment to surfaces. 

Failure of antimicrobial agent to penetrate the full depth of the biofilm. 

The production of extracellular polysaccharides by certain bacteria plays a 

role in their protection against antimicrobials. Exopolysaccharides which express 

a  negative charge can repel antimicrobials with an anionic charge or attract 

antimicrobials with cationic charge and neutralized them before they reach the 

cell. In addition, the penetration rate of antimicrobials in biofilms decreases as 

the exopolysaccharide content increases. Lisle et. al. [1998] proposed that 

bacterial resistance to chlorine is a biphasic process, in which the disinfectant 

first reacts with extrinsic components (e.g., the capsule and outer membrane) 

and then induces intrinsic components (i.e., the heat shock proteins and redox 

regulon). However, if the oxidative or disinfectant demand of the extrinsic barriers 

is met or overwhelmed (e.g., by increased exposure time or increased 

disinfectant concentration), the disinfectant diffuses to the cell's cytoplasmic 
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membrane. Oxidative damage to this and other intracellular targets (e.g., nucleic 

acids) then induces the intrinsic mechanisms in an attempt to repair the resulting 

damage. 

During our experiments, analysis of colony polymorphisms showed that if 

incubation time of colonies of E. sakazakii ATCC 29004 growing on agar was 

extended to 7 days the cells produced a higher amount of extracellular 

substances showing strong adhesion to the agar surface and very difficult 

suspension in liquid medium, even with extreme shaking. On the contrary, E. 

sakazakii ATCC 29544 colonies were easily picked from agar, and evenly 

suspended in liquid medium, even with very brief, gentle shaking. We also 

observed the formation of large cell clusters by E. sakazakii ATCC 29004 when it 

was grown under planktonic conditions, which is indicative of enhanced 

expression of intercellular adhesive properties 

Even though E. sakazakii ATCC 29004 and E. sakazakii ATCC 29544 

strains are considered different in terms of the amount of exopolysaccharide 

produced [Lehner et al., 2005], they showed no significant difference )p>0.05) 

consistently in terms of resistance to chlorine sanitizers . E. sakazakii ATCC 

29544 a non-capsulated strain [Lehner et al., 2005] had a similar resistance to 

chlorine than the capsulated strain E. sakazakii ATCC 29004. Therefore, it is 

reasonable to hypothesize that the resistance of biofilms and colonies against 

chlorine is explained by mechanisms other than the presence of polysaccharides 

alone.  
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Mah and O'toole [2001]  noted that the exopolysaccharide matrix does not 

form an impenetrable barrier to the diffusion of antimicrobial agents, and other 

mechanisms must be in place to promote biofilm cell survival. Nevertheless, for 

certain compounds, the exopolysaccharide matrix does represent an initial 

barrier that can delay penetration of the antimicrobial agent. Aggregation in 

colonies and biofilms generates a protective barrier against sanitizers that is not 

observed by cells in suspension. De Beer et al. [1994] reported that chlorine 

disinfectant, did not reach >20% of the bulk media's concentration within a mixed 

Klebsiella pneumoniae and P. aeruginosa biofilm, as measured by a chlorine-

detecting microelectrode . The cells located in the internal part of the aggregate 

are protected by a surrounding layer of cells or organic matter. The surrounding 

layer will interact with the sanitizer and render it ineffective before reaching the 

internal cells of the aggregate.  

We also discovered  that both strains E. sakazakii ATCC 29004 and E. 

sakazakii 29544 tested positive for cellulose expression in the screening assays 

using calcofluor and congo red. The presence of cellulose may  contribute to  the 

resistance of both strains to chlorine sanitizers. Solano et al. [2002] described in 

their studies that bacterial cellulose was responsible for the chlorine resistance of 

wild-type strains of Salmonella enteritidis, when using  30 ppm NaOCl 

concentrations; after 20 min exposure period, 75% of the wild-type cells survived 

NaOCl exposure. In contrast, only 0.3% of the cellulose deficient cells survived 

under the same experimental conditions [Solano et al., 2002] 
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Significant findings 

The results obtained in this study suggest that colony resistance to 

chlorine sanitizers increased under starvation stress, being similar to that 

expressed by biofilms, and higher than the resistance expressed by stationary 

phase planktonic cells or stationary phase colonies cultivated for 24 hours. Cell 

organization in colonies and growth in solid surfaces  confers a higher resistance 

to chlorine sanitizers than those of planktonic cells, this could be explained by the 

expression of genes triggered by the physical contact between cell and surface. 

We can also hypothesize that tolerance to chlorine occurs  due to the 

production of cellulose and development of chlorine injury-resistant membrane 

structures and  changes in cell membrane permeability of slow growing bacteria 

as suggested  by  Lisle et. al. [1998] study on E. coli O157:H7 and Berg et al 

[1982].  
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