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Abstract

Statistical analysis is very much dependent on the quality and type of a data set. There are

three types of data - continuous, categorical and mixed. Of these three types, statistical

modeling on a mixed data had been a challenging job for a long time. This is due to the fact

that most of the traditional statistical techniques are defined either for purely continuous

data or for purely categorical data but not mixed data. In reality, most of the data sets are

neither continuous nor categorical in a pure sense but are in mixed form which makes the

statistical analysis quite difficult. For instance, in the medical sector where classification of

the data is very important, presence of many categorical and continuous predictors results

in a poor model. In the insurance and finance sectors, lots of categorical and continuous

data are collected on customers for targeted marketing, detection of suspicious insurance

claims, actuarial modeling, risk analysis, modeling of financial derivatives, detection of

profitable zones etc.

In this work, we bring together several relatively new developments in statistical model

selection and data mining. In this work, we address two problems. The first problem is

to determine the optimal number of mixtures from a multivariate Bernoulli distributed

data using genetic algorithm and Bozdogan’s information complexity, ICOMP. We show

that the results of the maximum likelihood values are not just sufficient in determining the

optimal number of mixtures. We also address the issue of high dimensional binary data

using a genetic algorithm to determine the optimal predictors. Finally, we show the results

of our algorithm on a simulated and two real data sets.

The second problem is to discovering interesting patterns from a complicated mixed data
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set. Since mixed data are a combination of continuous and categorical variables, we trans-

form the non linear categorical variables to a linear scale by a mechanism called Gifi

transformation, [Gifi, 1989]. Once the non linear variables are transformed to a linear scale

(Euclidean space), we apply several classical multivariate techniques on the transformed

continuous data to identify the unusual patterns. The advantage with this transformation

is that it has a one-to-one mapping mechanism. Hence, the transformed set of continuous

value(s) in the Gifi space can be remapped to a unique set of categorical value(s) in the

original space. Once the data is transformed to the Gifi space, we implement various sta-

tistical techniques to identify interesting patterns. We also address the problem of high

dimensional data using genetic algorithm for variable selection and Bozdogan’s information

complexity (ICOMP) as our fitness function.

We present details of our newly-developed Matlab toolbox, called Gifi System, that imple-

ments everything presented, and can readily be extended to add new functionality. Finally,

results on both simulated and real world data sets are presented and discussed.

Keywords: Gifi, homals, regression, multivariate logistic regression, fraud detection, medi-

cal diagnostics, supervised classification, unsupervised classification, variable selection, high

dimensional data mining, stock market trading, detection of suspicious insurance claim es-

timates.
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Chapter 1

Introduction

Statistical analysis is very much dependent on the quality and type of the data set. There

are three types of data sets such as continuous, categorical and mixed. A continuous data

set is one in which all the variables in it are in continuous form. A categorical data set

is one in which all the variables in it are either ordinal (ordering of the categories exists)

or nominal (no specific ordering of the categories exists). A particular form of categorical

data set is a binary data set in which all the variables take values 0 and 1’s. A mixed

data set is one which contains some of the variables in continuous form and the rest of

the variables in categorical form. In other words, a mixed data set is a combination of

continuous and categorical data variables. Statistical analysis would have been easy if data

set is purely continuous or purely categorical. In reality, most of the data sets are neither

purely continuous nor purely categorical but are in mixed form which makes the statistical

analysis quite difficult.

In this work, we address two problems. The first problem is about determining opti-

mal number of clusters in a high dimensional binary data set. We can represent any data

set in binary form by discretizing the continuous and the categorical variables (having more

than two levels) by using suitable discretization procedures. We assume that the binary

data set is Multivariate Binary distributed. We determine the optimal number of mix-

tures (clusters) using the information complexity, ICOMP ( [Bozdogan, 1987], [Bozdogan,

1988], [Bozdogan, 90a], [Bozdogan, 90b], [Bozdogan, 2004]), as our selection criteria. We
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also address the problem of selecting the optimal number of variables from a high dimen-

sional binary data set using the GA technique introduced by [Goldberg, 1989].

The second problem is about discovering some interesting patterns in a complicated mixed

data set. Since a mixed data set is combination of continuous and categorical variables,

we transform the non linear categorical variables to a linear scale by a mechanism called

Gifi transformation, [Gifi, 1989]. Once the non linear variables are transformed to a linear

scale (Euclidean space), we apply several classic multivariate techniques on the transformed

continuous data set to identify the unusual patterns. Since the Gifi transformation has a

one-to-one mapping of the nonlinear values to a linear value, the advantage of this trans-

formation is that the final predicted results can be reverse mapped to the original scale

from the transformed scale.

This dissertation is organized as follows. We briefly review the literature of the above

two mentioned problems in chapter 2. Also in chapter 2, we review the concepts of Infor-

mation Complexity and Genetic Algorithm. We also review the literature on categorical

data coding and homogeneity analysis in this chapter. In chapter 3, we briefly discuss

the concepts of Multivariate Bernoulli Distribution. We show that the maximum likeli-

hood values are not just sufficient in determining the optimal number of mixtures in the

Multivariate Binary Distributed data. We show that the optimal number of mixtures are

selected by the maximum likelihood values in addition with the Information Complexity

criteria, ICOMP. We also address the problem of selecting optimal number of variables in

the model. We provide a solution using the genetic algorithm to select the optimal number

of variables from a high dimensional binary data set.

In chapter 4, we describe the problems faced by statistician in a mixed data set and

illustrate a procedure to handle such problems. In chapter 5, we illustrate several appli-

cations of the multivariate statistical methods in the Gifi space. For each application, we

provide two algorithms - one with optimal scaling of the categorical variables in the Gifi

space and the other with a linear combination of the categories of the categorical variables

in the Gifi space. Numerical Results are reported in chapter 6.
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Chapter 2

Literature Review

In this section, we review the literature on Multivariate Bernoulli distribution, Gifi system,

Information Complexity, Genetic Algorithm, Homogeneity Analysis and Categorical Data

Coding.

2.1 Multivariate Bernoulli Distributed Data

A binary variable is one that can take values 0 and 1 which indicates the absence and

presence of that variable respectively. Let P be a population (multivariate binary data)

consisting of n objects where each object is an observation on each of the J binary vari-

ables. Cluster Analysis, [Aderberg, 1973], is a technique of grouping these n objects from

population P into one or more groups such that the objects within each group are similar

and the objects between each group are quite dissimilar. Multivariate binary data arises

in most of the disciplines such as chemistry, pharmacology, ecology, genetics, and social

science, [Larsen and Liu, 2005].

A finite mixture model is one that comprises of two or more finite probability density

functions ( [Titterington et al., 1985], [McLachlan and Peel, 2000], [Lindsay, 1995]). Finite

mixtures of multivariate Bernoulli distributions have been extensively used in diverse fields.

In finite mixture modeling, most of the emphasis in the literature had been on Gaussian

mixture models ( [Dasgupta, 1999], [Dasgupta and Schulman, 2000], [Arora and Kannan,
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2001]) and little attention had been on Bernoulli mixture models. One of the reasons might

be that the class of finite mixtures of multivariate Bernoulli distributions are known to be

nonidentifiable i.e., different values of the mixture parameters can correspond to exactly

the same probability distribution. [Carreira-Perpinan and Renals, 2000] gave an empirical

support to the fact that estimation of this class of mixtures can still produce meaningful

results in practice, thus lessening the importance of the identifiability problem.

[Carreira-Perpinan, 2001] discussed the problem of finite mixtures of Bernoulli distribu-

tions where the selection of optimal number of mixtures is based on the minimum lack

of fit criteria. We show that the minimum lack of fit criteria is not just sufficient in

determining the optimal number of mixtures. We use the concepts of information com-

plexity, [VanEmden, 1971], in selecting the best model. All information complexity criteria

penalize a bad fitting model with negative twice the maximized log-likelihood, as an esti-

mate of the Kullback-Liebler information ( [Kullback, 1968], [Kullback and Leibler, 1951]).

The difference then, is in the penalty for model complexity. We show that the information

criteria, ICOMP, [Bozdogan, 1987], together with the lack of fit can determine the optimal

number of mixtures in this case.

High dimensional data had been a problem by many researches in cluster analysis. It might

be computationally expensive and convergence to the optimal parameter values might be

time consuming. Moreover, not all predictors in the data might be needed for classification

into the target number of mixtures. Selecting the optimal number of predictors from such a

large number of predictors might be a challenging problem. We address the problem of high

dimensional binary data by implementing the genetic algorithm ( [Goldberg, 1989], [Hol-

land, 1992], [Forrest, 1993], [Srinivas and Patnaik, 1994]). A genetic algorithm (GA) is a

stochastic search algorithm which is based on concepts of biological evolution and natural

selection that can be applied to solving problems where vast number of possible solutions

exists.
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2.2 Gifi System

Now, we review the literature on Gifi transformation, [Gifi, 1989]. Even though Alfred

Gifi had written a book on this transformation in 1989, not much work has been done

in this area till now. About a decade ago [Michailidis and de Leeuw, 1996] reviewed the

concepts of Gifi transformation applied on a pure categorical data set. It was shown in

detail the application of several classical multivariate techniques on the transformed scale

to identify patterns in the categorical data set. From this we are motivated to apply the

Gifi transformation on a mixed data set which is much more complicated than a pure

categorical data set. In a mixed data setting, we apply the Gifi transformation on the

qualitative variables leaving the continuous variables intact. After the transformation, the

data set is no more of the mixed data type. It would be purely continuous in nature.

Then, we apply the standard multivariate technique on this transformed continuous space

to identify some useful patterns. Even in this problem, the best model and the optimal

choice of variables to be included in the model are identified by ICOMP and the GA

technique respectively.

2.3 Information Complexity

2.3.1 Introduction

The word information complexity involves notions such as connectivity patterns and the

interactions of model components. In general statistical modeling and model evaluation

problems, the concept of model complexity plays an important role ( [Bozdogan, 2004]).

Without considering the overall complexity of the model, its prediction and the goodness

of fit of the model is difficult to assess. The art of selecting good statistical model lies in

selecting a model that has minimum complexity from the vast pool of other possible models.

In the sections that follow, we describe in detail some of the popular information criteria

that are used in evaluating and selecting a good model from various other possible models.

All information complexity criteria penalize a bad fitting model with negative twice the

maximized log-likelihood, as an estimate of the Kullback-Liebler Information, [Kullback,

1968], [Kullback and Leibler, 1951].
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2.3.2 AIC

AIC stands for Akaike’s Information Criterion. AIC is the first information criterion in-

troduced by Akaike in 1973 for model selection, [Akaike, 1973]. In general, AIC for model

Mk is given by

AIC(Mk) = −2lnL(θ̂) + 2k, (2.1)

where k is the number of independent parameters in the model Mk. The −2lnL(θ̂) is called

the lack of fit component and 2k is the penalty component. The penalty component is a

measure of complexity that compensates for the bias in the lack of fit when the maximum

likelihood estimators are used ( [Bozdogan, 1987]).

2.3.3 CAIC

CAIC stands for Consistent Akaike’s Information Criterion. CAIC was developed by [Boz-

dogan, 1987] as an extension to AIC, [Akaike, 1973], to make it consistent without violating

Akaike’s underlying principles. In general, CAIC for model Mk is given by

CAIC(Mk) = −2lnL(θ̂) + k[ln(n) + 1], (2.2)

where k is the number of independent parameters in the model and n is the number of

observations in the data set. Another form of CAIC which takes in the inverse Fisher

Information matrix (known as CAICF) is also introduced by [Bozdogan, 1987]. The form

of CAICF for model Mk is given by

CAICF (Mk) = −2lnL(θ̂) + k[ln(n) + 2] + ln|F̂ |, (2.3)

where |F̂ | is the determinant of the estimated Fisher Information matrix, F̂ .

2.3.4 MDL \ SC

MDL stands for Minimum Description Length and SC stands for Schwarz criterion. MDL\SC

penalize over-parameterized models more stringently than AIC. MDL\SC for model Mk is

6



given by,

MDL\SC(Mk) = −2lnL(θ̂) + k[ln(n)], (2.4)

[Schwarz, 1978] suggested the criterion given in equation (2.4) assuming that the data

is generated from an exponential family of distributions and using Bayes’ procedure for

the choice of a model. [Rissanen, 1978], [Rissanen, 1989] proposed a criterion based on

information-theoretic shortest code length for the data together with the parameters of a

model. His criterion is called MDL which is also given in equation 2.4. It is to be noted

that MDL is identical to SC in form, but its derivation is quite different.

2.3.5 SBC

SBC stands for Schwarz Bayesian Criterion. SBC, [Schwarz, 1978], for model Mk is given

by

SBC(Mk) = −2lnL(θ̂) + k[ln(n)], (2.5)

2.3.6 ICOMP

ICOMP stands for Information Complexity. ICOMP ( [Bozdogan, 1988], [Bozdogan, 90a],

[Bozdogan, 90b]) was developed for model selection in general multivariate linear and

nonlinear structural models. The formulation of ICOMP was motivated by AIC but it is

based on the generalization of the information-based covariance complexity ( [VanEmden,

1971]). For a general multivariate linear or nonlinear model defined by

StatisicalModel = Signal + Noise, (2.6)

ICOMP is designed to estimation a loss function:

Loss = Lackoffit + LackofParsimony + Profusion of Complexity (2.7)

in several ways using the additivity properties of information theory, [Bozdogan, 2004] and

the developments of Final Estimation Criterion (FEC), [Rissanen, 1976], for estimation

and model identification problems, as well as AIC, [Akaike, 1973], and its analytical exten-
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sions ( [Bozdogan, 1987]).

The development and construction of ICOMP is based on a generalization of the covari-

ance complexity index, [VanEmden, 1971]. Unlike AIC, ICOMP penalizes the covariance

complexity of the model instead of penalizing the free parameters directly. ICOMP for

model Mk is given by

ICOMP (Mk) = −2lnL(θ̂) + 2C(Σ̂Mk
) (2.8)

where C is a real valued complexity measure and ˆCov(θ̂) = Σ̂Mk
represents the estimated

covariance matrix of the parameters of the model Mk.

There are several forms of ICOMP defined in the literature. The first form of ICOMP

is given by

ICOMP = −2lnL(θ̂) + 2C1( ˆCov(θ̂)), (2.9)

where C1( ˆCov(θ̂)) is the maximal information theoretic measure of complexity of a covari-

ance matrix ˆCov(θ̂). C1( ˆCov(θ̂)) is given by

C1( ˆCov(θ̂)) =
p

2
log[

tr( ˆCov(θ̂))
p

]− 1
2
log| ˆCov(θ̂)|, (2.10)

where p is rank of the covariance matrix, ˆCov(θ̂).

A variant of the first form of ICOMP using the second order equivalent measure of com-

plexity, C1F to the original C1 is given by

ICOMP = −2lnL(θ̂) + 2C1F ( ˆCov(θ̂)), (2.11)
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where C1F is given by

C1F ( ˆCov(θ̂)) =
s

4
(1/s)tr( ˆCov(θ̂) ˆCov(θ̂)

′
)− ( tr( ˆCov(θ̂))

s )2

( tr( ˆCov(θ))
s )2

=
1

4λ̄2

s∑

j=1

(λj − λ̄)2 ∼= C1( ˆCov(θ̂)) (2.12)

where λj ’s are the eigenvalues of ˆCov(θ̂) for j = 1, 2, ..., s and λ̄ is the arithmetic mean of

the eigenvalues. C1F (.) is scale-invariant and C1F (.) ≥ 0. It measures the relative variation

in the eigenvalues.

The second form of ICOMP which uses the complexity of the estimated inverse-Fisher

information matrix (IFIM), F̂−1, is given by

ICOMP (IFIM) = −2lnL(θ̂) + 2C1(F̂−1) (2.13)

A variant of the second form of ICOMP using the second order equivalent measure of

complexity, C1F to the original C1 is given by

ICOMP = −2lnL(θ̂) + 2C1F (F̂−1). (2.14)

There is another form of ICOMP, known as ICOMPPEU , which is an approximation of

the posterior expected utility (PEU). It is a useful form of ICOMP in modeling situations

characterized by over parameterization. It clearly enforces a stricter penalty than the usual

ICOMP. It is given by

ICOMPPEU LN = −2lnL(θ̂) + k + 2C1(F̂−1). (2.15)

The consistent ICOMPPEU is given by

ICOMPPEU LN = −2lnL(θ̂) + k + ln(n)C1(F̂−1). (2.16)
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ICOMP is also defined under model misspecification. When a model is misspecified,

ICOMP under misspecification is given by

ICOMP (IFIM)Misspec = −2ln(L(θ̂)) + 2C1( ˆCov(θ̂)Misspec), (2.17)

where ˆCov(θ̂)Misspec = F̂−1R̂F̂−1. The matrix R̂ is the estimated outer product form of

the inverse Fisher Information matrix (IFIM). ˆCov(θ̂)Misspec is a consistent estimator of

ˆCov(θ̂). This is often called the sandwich covariance or robust covariance estimator, since it

is a correct variance regardless whether the assumed model is correct or not. ICOMP under

misspecification enforces even higher penalty term than the other versions of ICOMP.

2.4 Genetic Algorithm

2.4.1 Introduction

Genetic Algorithms (GA) are adaptive heuristic search algorithms premised on the evolu-

tionary ideas of natural selection and genetic. They are a particular class of evolutionary

algorithms (also known as evolutionary computation) that use techniques inspired by evolu-

tionary biology such as inheritance, mutation, selection, and crossover (also called recombi-

nation). They are used in computing to find exact or approximate solutions to optimization

and search problems. Genetic Algorithms are categorized as global search heuristics. A

detailed review on GA and its importance is given in [Marczyk, 2004] and [Mangano, 1996]

respectively.

2.4.2 Methodology

A GA is a stochastic search algorithm which is based on concepts of biological evolution

and natural selection that can be applied to solving problems where vast number of pos-

sible solutions exists. Unlike conventional optimization techniques, the GA requires no

calculation of the gradient of the objective function and is not restricted to local optima

( [Goldberg, 1989]).

A GA treats information as a series of codes on a binary string, where each string repre-
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sents a different solution to a given problem. These strings are analogous models to the

genetic information coded by genes on chromosome. A string can be evaluated according

to some fitness value, for its particular ability to solve the problem. On the basis of the

fitness values, strings are either retained or removed from the analysis after each run so

that, after many runs, the best solution have been identified. One important difficulty

with any GA is in choosing an appropriate fitness function as the basis for evaluating each

solution.

2.4.3 Crossover

Mating is performed as a crossover process ( [Bozdogan, 2004]). A model chosen for

crossover is controlled by the crossover probability or the crossover rate. The crossover

probability is often determined by the investigator. A crossover probability of zero sim-

ply means that the members of the mating pool are carried over into the next generation

and no off springs are produced. A crossover probability of one indicates that the mating

(crossover) always occurs between any two parent models chosen from the mating pool;

thus the next generation will consist only of off spring models (not of any models from the

previous generation).

During the crossover process, we randomly pick a position along each pair of parent models

(strings) as the crossover point. For any pair of parents, the strings are broken into two

pieces at the crossover point and the portions of the two strings to the right of this point

are interchanged between the parents to form two off spring strings.

In this work, we discuss three different crossover methods that can be performed.

Single Point Crossover

One crossover point is selected; binary string from beginning of the chromosome to the

crossover point is copied from one parent, the rest is copied from the second parent. For

example,
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Parent A: 1 1 0 0 | 1 0 1 1

Parent B: 1 1 0 1 | 1 1 1 1

– – – – – – – –

Offspring1: 1 1 0 0 | 1 1 1 1

Offspring2: 1 1 0 1 | 1 0 1 1

– – – – – – – – –

Two Point Crossover

Two crossover points are selected; binary string from the beginning of the chromosome to

the first crossover point is copied from one parent, the part from the first to the second

crossover point is copied from the second parent and the rest is copied from the first parent.

For example,

Parent A: 1 1 0 | 0 1 0 | 1 1

Parent B: 1 1 0 | 1 1 1 | 1 1

– – – – – – – – – –

Offspring1: 1 1 0 | 1 1 1 | 1 1

Offspring2: 1 1 0 | 0 1 0 | 1 1

– – – – – – – – – –

Uniform Crossover

In this, the bits are randomly copied from the first or from the second parent. For example,

Parent A: 1 1 0 0 1 0 1 1

Parent B: 1 1 0 1 1 1 1 1

– – – – – – – –

Offspring1: 1 1 0 1 1 1 1 1

Offspring2: 1 1 0 0 1 0 1 1

– – – – – – – –
In our algorithm, the user has the option of choosing any one of the three crossovers.
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2.4.4 Mutation

Mutation of models is used in GA as another means of creating new combinations of

variables so that the searching process can jump to another area of the fitness function

landscape instead of searching in a limited area. By mutation, a randomly selected locus

can change from 0 to 1 or from 1 to 0. Thus, a randomly selected predictor variable is

either added to or removed from the model.

2.4.5 GA process

A GA procedure contains the following steps.

Step 1:

Each subset of the data set is coded as a series of 1’s and 0’s (binary string). For ex-

ample, if we have 10 predictors in the data set with labels A to J. The binary string

1001000101 represent the dataset which contains predictors A, D, H and J.

Step 2:

Randomly generate the initial population. An initial population of size N contains N

binary strings where each string represents a subset of the original data set.

Step 3:

Evaluate each member in the population by an appropriate fitness function. Any model

selection criteria such as AIC, SBC, ICOMP, ICOMPPEU , ICOMPPEULN
, CAIC,

ICOMPMisspec can be used as a fitness function. In this work, we use the variants of

ICOMP as the fitness function.

Step 4:
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Create new population by performing mating of parent models to reproduce offspring mod-

els. Crossover and Mutation are performed on the parent models to reproduce offspring

models.

Step 5:

Repeat steps 1 to 4 up to the maximum number of iterations desired by the investiga-

tor (stopping criteria).

2.4.6 Pseudo code

We briefly describe the algorithm for selecting the new population.

Regular procedure

1. Generate a random population of N random models.

2. Evaluate each model in the population by using the fitness function.

3. Select two parent models from the population (Selection).

4. Perform Crossover operation with a crossover probability on the two parent models

to produce an offspring.

5. Perform Mutation operation with a mutation probability on the offspring and place

it in the new population.

6. Perform steps 3, 4 and 5 N times so that the new population has N new models in

it.

7. If the stopping criteria is met, return the best solution from the current population

8. Go to Step 2

Slight modification of the regular procedure

1. Generate a random population of N random models.
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2. Evaluate each model in the population by using the fitness function.

3. Sort the models in the population in the increasing order of the fitness function; the

model with the minimum fitness function as the first element in the population.

4. Since the population has N models, we choose the first N/2 models for the crossover

operation.

5. Crossover operation is performed on each of the models in the population from 2 to

N/2 with the first model.

6. The new population always contains the first model in the population; the model

having the minimum fitness function.

7. The N − 2 offspring’s produced in step 4 go in to the new population. At this point

we have N − 1 models in the new population.

8. To generate a new population of size N , we perform crossover with the first model

in the old population and the N/2 + 1 model in the old population. Since there will

be two offspring’s produced from this crossover operation, we randomly select one

offspring and place it in the new population. Hence the new population contains N

models.

9. Perform Mutation operation with a mutation probability on the models in the new

population.

10. If the stopping criteria is met, return the best solution (which is the first model) from

the current population

11. Go to Step 2

2.4.7 Advantages of GA

There are many advantages of using GA as a search algorithm. Some of them are briefly

listed below.

• GA can be used in parallel processing.
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• GA results in giving the optimal or near optimal solutions where the solution space

is vast.

• GA performs well on complex fitness functions. Complex fitness functions are those

that are discontinuous, noisy, changes over time, or have many local optima ( [Mar-

czyk, 2004]).

• They can be used in searching for optimal solutions (or near optimal solutions) where

simultaneous computation on multi parameters is needed ( [Forrest, 1993]).

2.4.8 Disadvantages of GA

Some of the main disadvantages of GA are briefly listed below.

• Computational intensive

• Resource intensive

• Choice of a good fitness function is appropriate

• Parameter inputs regarding population size, mutation probability, and crossover

probability must be considered with care.

2.4.9 Applications of GA

GAs are used in variety of disciplines. Some of them are listed below.

• Finance

• Economics

• Game Programming

• Robotics

• Mathematics

• Pattern Recognition and Data Mining

• Genome Science
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• Chemistry

• Astrophysics

• Astronomy

• Resource allocation

• Scheduling

• Routing

• Music Theory

2.4.10 Example: Body Fat Data

We illustrate the results of the GA on a real data set, Body Fat. The body fat data consists

of 15 variables and 252 observations. The 15 variables are briefly listed below.

• X1: Density determined from underwater weighing

• Y: Percent body fat

• X2: Age (years)

• X3: Weight (lbs)

• X4: Height (inches)

• X5: Neck circumference (cm)

• X6: Chest circumference (cm)

• X7: Abdomen 2 circumference (cm)

• X8: Hip circumference (cm)

• X9: Thigh circumference (cm)

• X10: Knee circumference (cm)

• X11: Ankle circumference (cm)
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• X12: Biceps (extended) circumference (cm)

• X13: Forearm circumference (cm)

• X14: Wrist circumference (cm)

The overall goal is to estimate the percent body fat given the other variables as predictors

in the model. We fit a multiple regression model with Y as dependent variable and X1-X14

as independent variables. We include the intercept term in the model. We run the genetic

algorithm with the following input parameters.

Number of iterations: 100

Population Size: 20

Crossover: 0.75

Mutation: 0.10

Crossover: Uniform

Fitness function: ICOMPC1

The following predictors are selected as the best predictors.

Model: Intercept, X1, X6

The ICOMPC1 score for this model is 852.8459. The r-square value for this model is

97.72%. The parameter coefficients for this model are given by

β =




455.0651

−418.0924

0.0536




The standard error of the parameter estimates are given by

Sβ =




6.9898

5.7186

0.0129



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Figure 2.1: Body Fat Data: Plot of ICOMP vs Number of iterations in GA.

The regression sum of squares is computed as 17178 and the total sum of squares is com-

puted as 17579. The F ratio for this model is computed to be 5337.1. The best (minimum)

value of ICOMPC1 at the end of each iteration is shown in Figure 2.1. When we run this

data using standard regression model in NCSS, the following parameters are selected.

Model: Intercept, X1, X2

This model produced an R-square of 97.61% and the ICOMPC1 score for this model is

864.1535.

2.5 Coding of Categorical Data

2.5.1 Introduction

Categorical variable (also known as qualitative variable) is a type of data which may be

divided into categories or groups. For instance, the variable gender has only two categories

namely male and female. Hence, it is termed as a categorical variable. Categorical variables

are discrete in nature. There are two types of categorical variables namely ordinal and

nominal. An ordinal variable, [Tamhane and Dunlop, 2003], is a type of categorical variable
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where the categories of that variable can be ordered or ranked (e.g., Disagree, Neutral,

Agree). A nominal variable is a type of categorical variable where the categories simply

represent distinct labels (e.g., Red, Green, Black).

2.5.2 Data Representation

Let us assume that there are finite number of m categorical variables hj (j = 1, 2, ..., m).

Also assume that each variable hj has kj distinct categories. Suppose that a finite set of

n objects (or individuals) are collected on these m categorical variables. We represent the

data matrix H as an n×m matrix with elements hij giving the category of variable hj for

object i.

Bipartite Graph

Given such a data matrix H, one can represent all the available information by a bipartite

graph, [Michailidis and de Leeuw, 1996], where the first set of n vertices corresponds to

the objects and the second set of
∑m

j=1 kj vertices to the categories of the m variables.

Each object is connected to the categories of the variables it belongs to. Hence the set

of n
∑m

j=1 kj provides information about which categories an object belongs to, or alter-

natively which objects belong to a specific category. The n vertices corresponding to the

objects all have degree m, while the
∑m

j=1 kj vertices corresponding to the categories have

varying degrees, equal to the number of objects in the categories. For instance, if data on

two categorical variables are collected on 5 objects where the number of categories for the

first variable is two and the number of categories for the second variable is 3. A bipartite

graph for this data is shown in Figure 2.2.

A bipartite graph would be of minimum use if n and m are large since the graph might

have too much ink and might be difficult to identify interesting patterns.

Binary coding

Another way to represent the data matrix H is to represent each variable hj as a binary

indicator matrix which is described in detail in the next section.
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Figure 2.2: Example of a Bipartite Graph.

Table 2.1: Data matrix: H
p x a
p x b
p x a
q x a
q x b
p y b
q y a
p x b
q x a
p x a

2.5.3 Indicator Matrix

An n × kj binary matrix Gj for each variable hj is defined as Gj(i, t) = 1, i = 1, ..., N ,

t = 1, ..., kj if object i belongs to category t, and Gj(i, t) = 0 if it belongs to some other

category. Gj is called the indicator matrix of hj . The matrix G = (G1, ..., Gj , ..., Gm)

of dimension n × ∑m
j=1 kj is a collection of such matrices and is also called an indicator

matrix. Now, we illustrate an example of an indicator matrix. Consider a data matrix H,

with 10 observations (or objects) and 3 categorical variables, given in Table 2.1. Each of

the 3 categorical variables has two categories. The profile frequency of the data matrix

H is given in Table 2.2 and the reduced profile frequency of H is given in Table 2.3. The

indicator matrix G is given in Table 2.4.
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Table 2.2: Profile Frequency of H
p x a 3
p x b 2
p y a 0
p y b 1
q x a 2
q x b 1
q y a 1
q y b 0

Table 2.3: Reduced Profile Frequency of H
p x a 3
p x b 2
p y b 1
q x a 2
q x b 1
q y a 1

Table 2.4: Indicator Matrix G for the data matrix H
p q x y a b

1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 0 1 0
0 1 1 0 1 0
0 1 1 0 0 1
1 0 0 1 0 1
0 1 0 1 1 0
1 0 1 0 0 1
0 1 1 0 1 0
1 0 1 0 1 0
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Complete Indicator Matrix

The indicator matrix Gj is said to be complete if each row of Gj has only one element equal

to unity and zeros elsewhere, so that row sums of Gj are equal to unity ( [Gifi, 1989]). In

vector form, we can represent this as Gju = u where u is a vector of unit elements. If all

Gj are complete, their combined matrix G is also said to be complete. In vector form, we

can write Gu = mu since the rows of G add up to m.

Properties of a Complete Indicator Matrix

The properties of a complete indicator matrix are briefly described below.

1. Let dj be the vector of column totals of Gj . Its kth element corresponds to the kth

category of hj . The sum of the elements in dj must equal n. Mathematically, it can

be written as u
′
dj = n where u is a vector of 1’s.

2. Since an object corresponds to only one category of the variable, the columns of the

matrix Gj are orthogonal.

3. Let Dj = G
′
jGj , be a diagonal matrix where the kth diagonal element equals the

kth element in dj . We define Mj as the diagonal matrix of row totals of Gj . For

a complete indicator matrix, Mj = Im where I is an identity matrix. We define

M∗ =
∑

Mj of hj .

4. Let Cjl = G
′
jGl, be a two dimensional cross tabulation of variables hj and hl. Its

elements correspond to the frequency of objects characterized by a particular com-

bination of one category in hj and one in hl. We define C as a combination of all

Cjl’s. The jth diagonal sub-matrices in C corresponds to the diagonal matrix, Dj

for variable hj .

5. We define D as the partitioned matrix of C, in the sense that elements of D and C

are identical in the diagonal sub-matrices Cjj = Dj , where D has zero elements in

its off diagonal sub-matrices. D is a matrix of univariate marginals. The matrices C

and D for the data matrix H are given in Tables 2.5 and 2.6 respectively.

23



Table 2.5: Matric C for the data matrix H
p q x y a b

p 6 0 5 1 3 3
q 0 4 3 1 3 1

x 5 3 8 0 5 3
y 1 1 0 2 1 1

a 3 3 5 1 6 0
b 3 1 3 1 0 4

Table 2.6: Matric D for the data matrix H
p q x y a b

p 6 0 0 0 0 0
q 0 4 0 0 0 0

x 0 0 8 0 0 0
y 0 0 0 2 0 0

a 0 0 0 0 6 0
b 0 0 0 0 0 4

Incomplete Indicator Matrix

An indicator matrix Gj is incomplete if it has rows with only zero elements. An incomplete

indicator matrix can be quantified using the same principles outlined for the complete

indicator matrix. Therefore,

x ∝ M−1
∗ Gy

yj ∝ D−1
j G

′
jx

Since the object scores will become more similar to the extent that the two objects have

more categories in common, a solution based on the above requirements will be different

from a solution based on the complete indicator matrix ( [Gifi, 1989]).

Reversed Indicator Matrix

The reversed indicator matrix is derived from the transpose of the original indicator matrix

G. We illustrate this with an example. Consider a data matrix H1, with 5 objects and 2

categorical variables where each categorical variable has 3 levels, given in Table 2.7. The

transposed data matrix of H1 is given in Table 2.8. The reversed indicator matrix for H1

is given in Table 2.9.
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Table 2.7: Data Matrix, H1
I II
p x
p y
q y
r y
r z

Table 2.8: Transposed Data Matrix, H1
1 2 3 4 5

I p p q r r
II x y y y z

2.5.4 Quantification

Quantification of a categorical variable hj is a process of converting its categorical value

to a continuous scale so that the classical techniques of multivariate analysis (MVA) can

be applied. Quantification of categories of variable hj implies that these kj categories are

mapped as the kj numerical values of a vector yj . Let the quantified variable, qj = Gjyj

be a single vector which gives a numerical result for each object with respect to hj .

Let us define x = m−1
∑

qj , the mean vector of all qj ’s. x contains the quantification

of the objects or in other words, the induced score of objects. We define the category

quantification of a category as the average of the scores of those objects that are mapped

into that category. Mathematically, we write it as yj = D−1
j G

′
jx. The vector x would be

of size n× 1 and the vector yj is of size kj × 1.

2.5.5 Missing Data

The presence of missing data has been a recurring problem in multivariate data analysis.

There might be many reasons for the presence of missing data. One such reason might be

that a subject left a blank on his/her response sheet. Many ways of handling missing data

have been proposed. One such proposal would be to insert a random value selected from

Table 2.9: Reversed Indicator Matrix for H1
1p 1x 2p 2y 3q 3y 4r 4y 5r 5z

I 1 0 1 0 1 0 1 0 1 0
II 0 1 0 1 0 1 0 1 0 1
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Table 2.10: Data Matrix, H2
p x
p z
q y
p ?
r ?
? x

Table 2.11: Indicator matrix with missing data
p q r x y z

1 0 0 1 0 0
1 0 0 0 0 1
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

the range of possible values. In this work, we shall distinguish the missing data with the

following three options.

Using the indicator matrix, we can represent the missing data in three possible ways.

1. the indicator matrix is left incomplete.

2. the indicator matrix is completed with a single additional column for each variable

with missing data.

3. the indicator matrix is completed by adding to Gj as many additional columns as

there are missing data for the jth variable.

We illustrate the above three cases with an example. Consider a data matrix H2 in

Table 2.10. It has 6 objects on 2 categorical variables. Some of the objects have missing

values. The indicator matrix for case 1 is shown in Table 2.11, for case 2 in Table 2.12 and

for case 3 in Table 2.13 respectively.

2.6 Homogeneity Analysis

2.6.1 Introduction

The word homogeneity means the quality of being similar or comparable in nature. We say

a data matrix H is homogeneous if and only if all the variables in H are similar. That is,
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Table 2.12: Indicator matrix with missing data, single category
p q r ? x y z ?

1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0

Table 2.13: Indicator matrix with missing data, multiple category
p q r ? x y z ? ?

1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0

all the variables measure the same thing. In this sense, if we plot each observation in H as

profiles, each profile would be a straight horizontal line. If the idea of measuring the same

thing were imperfectly true (variables measure the same thing, but with random error),

rows of H may have elements that vary somewhat (more to the extent that measurement

error increases). A graph of profiles would then show zigzag curves at different levels.

Replacing such profiles by a straight line then implies some loss of information. Variables

are homogeneous if the loss is relatively small.

According to [Gifi, 1989], the term homogeneity analysis can be used in a strict sense

and a broad sense. In a strict sense, it is a technique for the analysis of purely categori-

cal data, with a particular loss function that defines it and with a particular method for

finding an optimal solution. In a broad sense, it refers to a class of criteria for analyzing

multivariate data in general, sharing the characteristic aim of optimizing the homogeneity

of variables under various forms of manipulation and simplification.

According to [Michailidis and de Leeuw, 1996], the basic premise of homogeneity analysis

was that complicated multivariate data can be made more accessible by displaying their

main regularities and patterns in plots. The technique scales the n objects (map them into

a low dimensional Euclidean space) in such a way that objects with similar profiles were
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close together, while objects with different profiles were relatively apart. In one way, this

transformation optimally scales the categorical values to their corresponding continuous

scores. Several multivariate techniques on nonlinear data are reported in [Breiman and

Friedman, 1985], [Hastie et al., 1994], [Meulman and der Kooij, 2000], [Buuren and Heiser,

1989], [der Kooji and Meulman, 1997], [SPSS, 1999], [SPSS, 2004], [SPSS, 2006], [Young,

1981], [Young et al., 1976], [Young et al., 1978], [Gower and Blasius, 2005], [Groenen

et al., 1998], [Guttman, 1941], [Heiser and Meulman, 1994], [Kruskal, 1964], [Meulman,

1982], [Meulman, 1992], [Meulman, 1993], [Meulman, 1996], [Meulman, 1998], [Meulman,

2003], [Meulman et al., 2002], [Meulman et al., 2004], [Nishisato, 1980], and [Nishisato,

1994].

In the next section, we explain in detail the working of HOMALS (Homogeneity Anal-

ysis by means of Alternating Least Squares). Most of the review of HOMALS is from [Gifi,

1989] and [Michailidis and de Leeuw, 1996].

2.6.2 HOMALS

Categorical PCA (HOMALS) is a particular form of nonlinear PCA that is based on a

categorical coding of variables in indicator matrices. As described in the Categorical Data

Coding chapter, Gj is an indicator matrix for variable j. The quantification of objects and

of categories for a set of complete indicator matrices {G1, ...Gj , ...Gm} should satisfy the

following proportionalities.

x ∝ m−1
∑

j

Gjyj (2.18)

yj ∝ D−1
j G

′
jx (2.19)

In the equations (2.18) and (2.19), x is the vector of object scores and yj is the vector of

the quantifications of the categories of variable j.

Let X be the n × p matrix (usually p ≤ m) containing the object scores and Yj be the

kj × p matrix containing the category quantification of variable j. Since the quantification
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process incurs some loss of information, a typical loss function is given as,

σ(X; Y1, ..., Ym) = m−1
m∑

j=1

SSQ(X −GjYj)

= m−1trace[(X −GjYj)′(X −GjYj)], (2.20)

where SSQ(H) denotes the sum of squares of the elements of the matrix H. The loss

function (2.20) is at the heart of the Gifi System ( [Gifi, 1989]). We want to minimize the

above loss function simultaneously over X and Yj ’s. The entire system is mainly about

different versions of the above minimization problem. By imposing various restrictions on

the category quantifications Yj and in some cases coding of the data, different types of

analysis can be derived.

In the process of minimizing the loss function in (2.20), we impose two constraints in

order to avoid the trivial solution corresponding to X = 0, and Yj = 0 for every j. The

two constraints are

X
′
X = nIp (2.21)

u
′
X = 0, (2.22)

where u is a vector of ones with dimension p×1. The constraint in (2.21) standardizes the

squared length of the object scores (to be equal to n), and in two or higher dimensions also

requires the columns of X to be in addition orthogonal. The constraint in (2.22) basically

requires the graph plot to be centered around the origin.

We minimize the above loss function simultaneously over X and Yj ’s by employing an

Alternating Least Squares (ALS) algorithm. We start the process with a uniformly ran-

dom choice of X (X 6= 0), with a mean zero, normalize it to the sum of squares n (rather

than 1, so that the scores have variance 1). We compute a first set of category quantification

Yj by

Ŷj = D−1
j G

′
jX (2.23)
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where Dj = G
′
jGj is the kj × kj diagonal matrix containing the univariate marginals of

variable j.

In the second step of the algorithm, the loss function in (2.20) is minimized with respect

to X for fixed Yj ’s. It is given by

X̂ = m−1
m∑

j=1

GjY j. (2.24)

In the third step of the algorithm the object scores X are column centered by setting

B = X̂ − u(u
′
X/n), and then orthonormalized by the modified Gram-Schmidt procedure,

[Trefethen and Bau, 1997], X =
√

nGRAM(B), so that both the normalization constraints

in (2.21) and (2.22) are satisfied. The usual normalization condition used in ALS is given

by

X = X(X
′
X)−1/2. (2.25)

The problem with the usual normalization condition in (2.25) might arise when p is large.

When p is large this method could become quite expensive from a computational point

of view. It can be replaced with the cheaper Gram-Schmidt method. The Gram-Schmidt

method starts with unit normalizing the first column of X, then projects the second column

of X onto the space orthogonal to the first column, replaces the second column by the unit

normalized antiprojection, next projects the third column of X onto the space orthogonal

to the new second column, and so on. This process can be summarized by stating that X

is decomposed as X = UT , with U
′
U = I and T an upper triangular matrix. The matrix

U is scaled by the
√

n and the resulting matrix is taken as the new X.

The ALS algorithm cycles through these three steps until the convergence criterion is

met. The first step in (2.23) expresses the first centroid principle (a category quantifica-

tion is in the centroid of the object scores they belong to it), while the second step in (2.24)

shows that an object score is the average of the quantifications of the categories it belongs

to. Hence, this solution accomplishes the goal of producing a graph plot with objects close

to the categories they fall in and categories close to the objects belonging in them.
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Once the ALS algorithm has converged, by using the fact that Ŷ
′
j Dj Ŷj = Ŷ

′
j Dj(D−1

j G
′
jX̂)

= Ŷ
′
j G

′
jX̂, we can write the loss function in (2.20) as

m−1
m∑

j=1

tr[(X̂ −Gj Ŷj)
′
(X̂ −Gj Ŷj)] = m−1

m∑

j=1

tr(X̂
′
X̂ − Ŷ

′
j Dj Ŷj)

= m−1
m∑

j=1

tr(nIp − Ŷ
′
j Dj Ŷj)

= np−m−1
m∑

j=1

tr(Ŷ ′
j Dj Ŷj). (2.26)

The sum of the diagonal elements of the matrices Ŷ
′
j Dj Ŷj is called the fit of the solution.

2.6.3 Discrimination Measures: Contribution of Variables

The discrimination measures in HOMALS are given for each variable in each dimension.

The discrimination measure for the jth variable in sth dimension is given by

η2
js = y

′
(j)sDjy(j)s/n, (2.27)

where y(j)s is the quantification for hj in the sth dimension of the solution.

The discrimination measures give the average squared distance (weighted by the marginal

frequencies) of the category quantifications to the origin of the p-dimensional space. The

discrimination measures add up across variables to y
′
sDys/n = ψ2

s , so that the reported

eigenvalue ψ2
s/m is the average of the discrimination measures in the sth dimension. When

a variable does not contribute to the sth dimension of the solution, the discrimination mea-

sure is zero (its category quantifications coincide with the origin). It can be shown that the

discrimination measures are equal to the squared correlation between an optimally quan-

tified variable Gj
ˆYj(., s) in dimension s, and the corresponding column of object scores
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ˆX(., s). Hence, the loss function can also be expressed as

n(p− 1
m

m∑

j=1

p∑

s=1

η2
js) = n(p−

p∑

s=1

γs), (2.28)

where the quantities γs = 1
m

∑m
j=1 η2

js, s = 1, ..., p called the eigenvalues, correspond to

the average of the discrimination measures, and give a measure of the fit of the Homals

solution in the sth dimension.

2.6.4 Properties of HOMALS

Some of the basic properties of HOMALS are listed below.

1. Category quantifications and object scores are represented as points in joint space.

2. Category points are the center of gravity of the object points that share the same

category.

3. A variable discriminates better to the extent that the category points are farther

apart.

4. If a category applies uniquely to only a single object, then the object point and that

category point will coincide.

5. Category points with low marginal frequencies will be located further away from the

origin of the joint space, whereas categories with high marginal frequencies will be

located closer to the origin.

6. Objects with a ’unique’ profile will be located further away from the origin of the

joint space, whereas objects with a profile similar to the ’average’ one will be located

closer to the origin.

7. The category quantifications of each variable j have a weighted sum over categories

equal to zero. This follows from the employed normalization of the object scores,

since u
′
Dj Ŷj = u

′
DjD

−1
j G

′
jX̂ = u

′
G
′
jX̂ = u

′
X̂ = 0.
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8. The Homals solutions are nested. This means that if one requires a p1-dimensional

Homals solution and then a second p2 greater than p1 dimensional solution, then the

first p1 dimensions of the later solution are identical to the p1-dimensional solution.

9. The solutions for subsequent dimensions are ordered. This means that the first

dimension has the absolute maximum eigenvalue. The second dimension has the

next maximum eigenvalue subject to the constraint that X(., 2) is uncorrelated to

X(., 1), and so forth.

10. The solutions for the object scores are uncorrelated. However, the solutions for the

quantifications need not necessarily be uncorrelated.

11. The solution is invariant under rotations of the object scores and of the category

quantifications. To see this, we select a different basis for the column space of the

object scores X; that is, let X] = X × R, where R is a rotation matrix satisfying

R
′
R = RR

′
= Ip. We then get that Y ]

j = D−1
j G

′
jX

] = ŶjR. Thus, the axes of the

joint space can not be uniquely identified.

2.6.5 Homogeneity Analysis as an Eigenvalue and Singular Value De-

composition Problem

Homogeneity Analysis is appealing in the sense that its minimization problem can be

treated as an eigenvalue problem. If we substitute the optimal Ŷj = D−1
j G

′
jX for given X,

in the loss function, the loss function in (2.20) can be given as

σ(X; ∗) =
1
m

m∑

j=1

tr[(X −GjD
−1
j G

′
jX)

′
(X −GjD

−1
j G

′
jX)]

=
1
m

m∑

j=1

tr(X
′
X −X

′
GjD

−1
j G

′
jX), (2.29)

where the symbol ∗ has replaced the argument over which the loss function is minimized.

Let Pj = GjD
−1
j G

′
j denote the orthogonal projector on the subspace spanned by the
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columns of the indicator matrix Gj . Equation (2.29) can be rewritten as

σ(X; ∗) =
1
m

m∑

j=1

tr[(X − PjX)
′
(X − PjX)]

=
1
m

m∑

j=1

tr(X
′
X −X

′
PjX). (2.30)

Let P∗ be the average of the m projectors. The equation (2.30) together with the normal-

ization constraints in (2.21) and (2.22) gives that maximizing (2.30) comes to maximizing

tr(X
′
ζP∗ζX), where ζ = I − uu

′
/u

′
u is a centering operator that leaves ζX in deviations

from its column means. The optimal X corresponds to the first p eigenvectors of the matrix

ζP∗ζ. We can write the minimum loss as

σ(∗; ∗) = m(p−
p∑

s=1

λs), (2.31)

where λs, s = 1, ..., p are the first p eigenvectors of P∗. Therefore, the minimum loss of

homogeneity analysis is a function of the p largest eigenvalues of the average projector P∗.

The solution for optimal X can be obtained by the singular value decomposition of

m−1/2ζGD−1/2 = U ∧ V (2.32)

where the left-hand side is the super-indicator matrix in deviations from column means

and corrected for marginal frequencies. The optimal X corresponds to the first p columns

of the matrix U (the first p left singular vectors).

2.6.6 Homogeneity Analysis with Missing Data

In the presence of missing data, the loss function then becomes

σ(X; Y1, ..., Yj) = m−1
m∑

j=1

tr[(X −GjYj)
′
Mj(X −GjYj)] (2.33)
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subject to the normalization constraint X
′
M∗X = mnIp and u

′
M∗X = 0 where Mj and

M∗ are explained in detail in the categorical data coding section.

2.6.7 Relationship between HOMALS and Linear PCA

HOMALS is related to linear PCA in the following way. We start with having a look at

the first HOMALS dimension. Let Q1 be the optimally scaled data matrix and let the

correlation matrix between the transformed variables in Q1 be denoted by R1. We assume

that the columns of Q1 are unit normalized. Hence, we write R1 = Q
′
1Q1. We write the

singular value decomposition of Q1 as Q1 = K1 ∧1 L
′
1 and the eigenvalue decomposition

of R1 as R1 = K1 ∧2
1 L

′
1. It can be shown that the normalized object scores in the first

HOMALS dimension x1 are proportional (with respect to a factor n1/2) to the normalized

component scores on the basis of Q1, which are obtained by taking k1. The discrimination

measures are equal to the squares of the component loadings in the first PCA dimension,

which are obtained by a1 = λ1l1. Refer [Gifi, 1989] Chapter 3 for the proof.

2.6.8 Relationship between HOMALS and Chi-Square

Let T be an i × j contingency table, whose entries tij give the frequencies with which

row category i occurs together with column category j. Let r = Tu denote the vector

of row marginals, c = T
′
u the vector of column marginals and n = u

′
c = u

′
r the total

number of observations. Let Dr = diag(r) be the diagonal matrix containing the elements

of vector r and Dc = diag(c) the diagonal matrix containing the elements of vector c. The

χ2−distances between rows i1 and i2 of table T is given by

δ2(i1, i2) = n
m∑

j=1

(ti1j/ri1 − fi2j/ri2)
2

cj
(2.34)

Equation (2.34) shows that δ2(i1, i2) is a measure for the difference between the profiles of

rows i1 and i2.

To derive the coordinates X of the row categories of table T in the new Euclidean space, we

consider the singular value decomposition of the matrix of the observed frequencies minus
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the expected frequencies corrected for row and column marginals

D−1/2
r (F − E)D−1/2

c = U ∧ V
′

(2.35)

where E = rc
′
/n. The optimal scores X are then given (after normalization) by

X = n1/2D−1
r U (2.36)

so that, X
′
DrX = nI and u

′
DrX = 0.

Now consider the super-indicator matrix G. It resorts to the singular value decomposi-

tion of the matrix

m−1/2(G− m

mn
Guu

′
)D−1/2 = m−1/2ζGD−1/2

= U ∧ V (2.37)

which is identical to equation (2.32). This shows that homogeneity analysis could also be

viewed as approximating the χ2−distances between rows of the super-indicator matrix.

This is due to the fact that the row marginals of the super-indicator matrix are all equal

to m.
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Chapter 3

Multivariate Binary

Mixture-Model for Cluster

Analysis

3.1 Introduction

A binary variable is one that can take values 0 and 1 which indicates the absence and

presence of that variable respectively. Let P be a population (multivariate binary data)

consisting of n objects where each object is an observation on each of the J binary vari-

ables. Cluster Analysis, [Aderberg, 1973], is a technique of grouping these n objects from

population P into one or more groups such that the objects within each group are similar

and the objects between each group are quite dissimilar. Multivariate binary data arises

in most of the disciplines such as chemistry, pharmacology, ecology, genetics, and social

science ( [Larsen and Liu, 2005]).

A finite mixture model is one that is comprised of two or more finite probability den-

sity functions ( [Titterington et al., 1985], [McLachlan and Peel, 2000], [Lindsay, 1995]).

Finite mixtures of multivariate Bernoulli distributions have been extensively used in di-

verse fields. In finite mixture modeling, most of the emphasis in the literature had been on

Gaussian mixture models ( [Dasgupta, 1999], [Dasgupta and Schulman, 2000], [Arora and
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Kannan, 2001]) and little attention has been on Bernoulli mixture models since the class of

finite mixtures of multivariate Bernoulli distributions is known to be non-identifiable i.e.,

different values of the mixture parameters can correspond to exactly the same probability

distribution. [Carreira-Perpinan and Renals, 2000] gave an empirical support to the fact

that estimation of this class of mixtures can still produce meaningful results in practice,

thus lessening the importance of the identifiability problem.

[Carreira-Perpinan, 2001] discussed the clustering of finite mixtures of Bernoulli distri-

butions where the selection of optimal number of mixtures is based on the minimum lack

of fit criteria. We show that the minimum lack of fit criteria is not just sufficient in deter-

mining the optimal number of mixtures. We show that the information criteria, ICOMP

( [Bozdogan, 1987]) together with the lack of fit can determine the optimal number of

mixtures in this case.

High dimensional data has been a problem by many researches in cluster analysis. It might

be computationally expensive and convergence to the optimal parameter values might be

time consuming. Moreover, not all predictors in the data might be needed for classification

into the target number of mixtures. Selecting the optimal number of predictors from such

a large number of predictors might be a challenging problem. We address the problem

of high dimensional binary data using a genetic algorithm ( [Goldberg, 1989], [Holland,

1992], [Forrest, 1993], [Srinivas and Patnaik, 1994]).

This chapter is organized as follows. Section 2 gives a brief background on univariate

and multivariate Bernoulli distribution and their respective moments. Finite mixture-

model of multivariate Bernoulli distributions is discussed in section 3. A brief explanation

of information complexity (ICOMP) for the mixture case and the reason for using genetic

algorithm for high dimensional binary data is given in section 4 and section 5 respectively.
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3.2 Background

We review some of the concepts of Bernoulli distribution ( [Carreira-Perpinan, 2001]) in

this section.

3.2.1 Univariate Bernoulli Distribution

Definition

The Bernoulli distribution is a discrete distribution having two possible outcomes X = 0

and X = 1 where X = 1 is called success and it occurs with probability p and X = 0 is

called failure and it occurs with probability q = 1− p where 0 < p, q < 1. The probability

function of a univariate Bernoulli distribution is given by

P (x) =





1− p x = 0

p x = 1
(3.1)

The above function can also be written as

P (x) = px(1− p)1−x (3.2)

Moments

The moments of a univariate Bernoulli distribution of parameter p are given by

Mean : µ = p (3.3)

V ariance : σ2 = p(1− p) (3.4)
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3.2.2 Multivariate Bernoulli Distribution

Definition

A D-variate Bernoulli distribution of parameter p = (p1, . . . , pD)T ∈ [0, 1]D,

BD(p), is defined as

P (t; p) =
D∏

d=1

ptd
d

(1− pd)1−td =
D∏

d=1

P (td|B(pd) (3.5)

where B(pd) is a Bernoulli distribution of parameter pd, d = 1, . . . , D. Thus, the D-variate

Bernoulli distribution is equivalent to D independent Bernoulli distributions.

Moments

The moments of the D-variate Bernoulli distribution of parameter p are given as:

mean : µ = p (3.6)

covariance : Σ = diag(pd(1− pd)) (3.7)

3.3 Finite Mixture-Model of Multivariate Bernoulli Distri-

butions

A mixture of M D-variate Bernoulli distribution BD(pd), . . . , BD(pM ) is defined as:

p(t; {πm, pm}M
m=1) =

M∑

m=1

πmp(t|m) (3.8)

where the mixing proportions πm satisfy 0 < πm < 1 for m = 1, . . . ,M and
∑M

m=1 πm = 1

and the component distributions are D-variate Bernoulli distributions, t|m ∼ BD(pm). In

case of M = 1, choose π1 = 1.
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The moments for the mixture of M D-variate Bernoulli distributions are given as:

mean : µ =
M∑

m=1

πmµm (3.9)

covariance : Σ =
M∑

m=1

πmEp(t|m){ttT } − µµT

=
M∑

m=1

πm(Σm + µmµT
m)− µµT , (3.10)

where for m = 1, . . . ,M, µm = pm and Σm = diag(pmd(1−pmd)) are the component means

and covariance matrices, respectively. Expanding Σ obtains:

(Σ)de =
∑
n>m

πmπn(pmd − pnd)(pme − pne) (3.11)

(Σ)dd = µd(1− µd). (3.12)

Since Σ is no longer diagonal, a mixture of multivariate Bernoulli distribution can account

for correlations between variables.

3.3.1 Log likelihood of multivariate Bernoulli distribution

Let M be a fixed number of components. Let π = (π1, . . . , πM )T and P = (p1, . . . , pM ).

The log likelihood of the parameters {π, P} given a sample {tn}N
n=1 is

L(π, P ) =
N∑

n=1

ln(p(tn; π, P ))

=
N∑

n=1

ln(
M∑

m=1

πm

D∏

d=1

ptnd
md(1− pmd)1−tnd). (3.13)
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3.3.2 Maximum likelihood parameter estimation

The maximum likelihood parameters are estimated by using an EM algorithm. The gra-

dient density of the log likelihood of multivariate Bernoulli distribution is given by

∂L

∂πm
=

1
πm

N∑

n=1

p(m|tn;π, P )−N

m = 1, . . . ,M (3.14)

∂L

∂pmd
=

1
pmd(1− pmd)

N∑

n=1

p(m|tn; π, P )(tnd − pmd)

m = 1, . . . ,M d = 1, . . . , D (3.15)

where

p(m|tn;π, P ) =
p(tn|m; π, P )p(m)∑M

m′=1
p(tn|m′ ; π, P )p(m′)

=
πm

∏M
d=1 ptnd

md(1− pmd)1−tnd

∑M
m
′
=1

πm′
∏D

d=1 ptnd

m
′
d
(1− pm′d)

(1− tnd)

The basic equations for the derivations of the EM algorithm for finite mixture of multi-

variate Bernoulli distributions are given below:

E step: computation of the responsibilities using the above p(m|tn;π, P ) from the current

parameter estimates {π(τ), P (τ)} at iteration τ, p(m|tn;π(τ), P (τ)).

M step: re-estimation of {π(τ+1), P (τ+1)};

π(τ+1)
m =

1
N

N∑

n=1

p(m|tn; πτ , P τ )

p(τ+1)
m =

1

Nπ
(τ+1)
m

N∑

n=1

p(m|tn; π(τ), P (τ))tn

The sequence of parameters obtained for τ = 0, 1, 2, . . . by iterating between the E and M

steps from any starting point {π(0), P (0)} produces a monotonically increasing sequence of
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values for the log-likelihood [Dempster et al., 1977].

A common problem of estimation in mixture distributions is that of singularities, that

is, points in parameter space whose log-likelihood tends to positive infinity. Such singu-

larities are undesirable because they give rise to degenerate distributions. Fortunately,

the log-likelihood surface of a finite mixture of multivariate Bernoulli distributions has no

singularities of value +∞. The reason is that both the log-likelihood and its gradient are

bounded above in the whole parameter space, including its boundaries. This means that

estimation by the above EM algorithm from any non pathological starting point, which is

always possible by choosing pmd in (0, 1), will always lead to a proper stationary point of

the log-likelihood.

3.4 Information Complexity in Binary Mixture-Modeling

The very first step in mixture modeling is to determine the number of mixtures that actually

fit the data. Let K = 1, . . . , KM be the number of mixtures that can be used to fit the

distribution. [Bozdogan, 1987] gave several guidelines for determining the limit of KM .

KM < ceil(
2N

(D + 1)(D + 2)
) (3.16)

KM
∼= ceil(

√
N

2
) (3.17)

KM = ceil(log2N) (3.18)

Once KM is determined, we need to find the best number of mixtures K from the KM

different arrangements of the data. Information complexity helps in determining the best

number of mixtures from various arrangements of the data. The criterion for choosing the

best model for the data is to choose the model that has the lowest information criteria value.

The usual penalty term used in AIC is 2k where k is the total number of parameters

in the model. Therefore,

AIC = −2Loglikelihood + 2k
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But in the case of mixture models, the penalty term is 3k. In the D-Bernoulli distribution

case with K mixtures, we have K ×D probability values to estimate and (K − 1) mixture

parameters to estimate. Therefore, the estimated k in this case would be:

k = K ×D + (K − 1)

where K is the number of mixtures of Bernoulli distribution and D is in D-variate Bernoulli

distribution for each mixture.

Therefore, for the mixture of Bernoulli distributions, we can write AIC and SBC as

AIC = −2
N∑

n=1

ln(
M∑

m=1

πM

D∏

d=1

ptnd
md(1− pmd)1−tnd) + 3k (3.19)

SBC = −2
N∑

n=1

ln(
M∑

m=1

πm

D∏

d=1

ptnd
md(1− pmd)(1−tnd)) + log(N)k (3.20)

ICOMP for the normal models is given as

ICOMP ( ˆCov) = −2Loglikelihood + 2C1F ( ˆCov) (3.21)

where ˆCov is the estimated covariance matrix of the mixture density and C1F ( ˆCov) is given

as:

C1F ( ˆCov) =
s

2
log(

trace( ˆCov)
s

)− 1
2
log(| ˆCov|), s = rank( ˆCov) (3.22)

The ˆCov in this case, is given by

ˆCov = F̂−1
π

=




F̂−1
π 0 . . . 0

0 F̂−1
1 . . . 0

. . .

0 . . . . . . F̂−1
M




(3.23)
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For m = 2,

F̂−1(π̂) =




1
π̂1

0

0 1
π̂2




= ˆCov(π̂) (3.24)

F̂−1(1) =


 Σ̂1 0

0
′

( 2
n1

)D+
p (Σ̂1 ⊗ Σ̂1)D+

′
p


 (3.25)

F̂−1(2) =


 Σ̂2 0

0
′

( 2
n2

)D+
p (Σ̂2 ⊗ Σ̂2)D+

′
p


 (3.26)

In the case of mixture of D-Bernoulli distributions, the penalty term in the ICOMP is even

higher than the normal case. It is given by

ICOMP ( ˆCov) = −2Loglikelihood + 2C1F ( ˆCov) + 3k (3.27)

In the mixture case, ICOMPPEU LN and ICOMPPEU Misspec is given by,

ICOMPPEU LN ( ˆCov) = −2
N∑

n=1

ln(
M∑

m=1

πm

D∏

d=1

ptnd
md(1− tnd))

+3k + log(N)C1F ( ˆCov) (3.28)

ICOMPPEU Misspec( ˆCov) = −2
N∑

n=1

ln(
M∑

m=1

πm

D∏

d=1

ptnd
md(1− tnd))

+2
Nk

N − k − 2
+ 2C1F ( ˆCov) (3.29)

3.5 High Dimensional Binary Data

If data contains many predictors (generally greater than 10), the EM algorithm in the

above Bernoulli case might be computationally expensive and convergence to the optimal

parameter values might be time consuming. Moreover, not all predictors in the data might

be needed for classification into the target number of mixtures. Selecting the optimal num-
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ber of predictors from such a large number of predictors might be a challenging problem.

One quick solution to this problem might be using the all possible subsets approach. This

approach has a drawback. For high dimensional data, the number of all possible sub-

sets is large and hence needs a lot of computation expense. For example, if the number

of predictors in the data set are 10. The number of all possible subsets is 210 = 1024.

Other conventional optimization techniques such as steepest ascent, conjugate gradient

etc., might be restricted to local optima. Hence, we need to have an efficient optimization

procedure which does not restrict itself to local optima. We use the concept of genetic

algorithm to search for the optimal or near optimal solution from this vast solution space.
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Chapter 4

Mixed Data

4.1 Introduction

4.1.1 Definition

Mixed Data can be defined as a combination of quantitative and qualitative data vari-

ables. Real world data are not all quantitative or not all qualitative. Mostly, they are a

combination of quantitative and qualitative data.

4.1.2 Example

The data shown in table 4.1 are a perfect example of mixed data. The variables age, height

and weight are continuous. The variables gender and smoker are nominal and the variable

CARDIAC (test for a cardiac arrest) is ordinal.

Table 4.1: Example of a Mixed Data
Age Gender Height(in cm) Weight(in lbs) Smoker CARDIAC

32 Male 176.2 192.4 0 Negative
35 Female 164.3 154.2 0 Negative
48 Male 175.3 162.7 1 Positive
36 Male 180.1 200.6 1 Positive
52 Female 154.9 143.4 0 Negative
63 Female 157.2 142.9 0 Negative
53 Male 165.5 176.2 1 Positive
47 Male 173.6 192.4 0 Negative
35 Female 164.1 153.4 0 Negative
41 Male 172.9 220.7 1 Positive
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4.2 Problems with Mixed Data

Researchers in statistical data analysis usually face problems if the data are of the mixed

type. Most of the univariate and multivariate statistical concepts deals with continuous or

categorical data but not mixed data. The traditional statistical techniques performed with

the presence of a qualitative variable in the data set containing other quantitative variables

might not give accurate results. If qualitative variables are only a few when compared to

quantitative variables, the usual practice followed by researchers is to just leave the quali-

tative variable intact (treat them as continuous variables) and analyze the data. Another

option is to drop the qualitative variables and analyze only the quantitative variables in the

data. For instance, in multiple regression, where the response is a continuous variable, by

removing the qualitative variables from the model we lose significant amount of knowledge

regarding the effects that a qualitative variable has on the continuous response variable.

The other option is to use dummy variables. Similar is the case when a data set has most

of the variables qualitative and a few variables quantitative.

We illustrate a procedure described in [Lee, 2007]. Consider an ordered categorical variable

with a five-point scale 1, 2, 3, 4, 5 corresponding to the answer on the opinion of a pol-

icy. The description for each of the scales are ’strongly disagree’, ’disagree’, ’no opinion’,

’agree’ and ’strongly agree’. One common approach is to treat the assigned integers as

continuous data from a normal distribution. This approach may not lead to serious prob-

lems if the histogram of the observations is symmetrical and with the highest frequency

at the center. This is the situation where most subjects choose the category ’no opinion’.

To claim multivariate normality of the observed variables, we need to have most subjects

choosing the middle category, for example ’no opinion’ or ’no change’, in all the correspond-

ing items. However, for an interesting item in the questionnaire, most subjects would be

likely to select categories at both ends, for example, ’strongly agree (strongly disagree)’ or

’agree (disagree)’. Hence, in practice, histograms corresponding to most variables are ei-

ther skewed or bi-modal. Clearly, routinely treating ordered categorical variables as normal

may lead to erroneous conclusions ( [Lee et al., 90a], [Lee et al., 90b], [Lee et al., 1995]).
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4.3 How to handle Mixed Data

[Lee, 2007] describes a better approach for assessing discrete data. The approach is to

treat them as observations that are coming from a hidden continuous normal distribution

with a threshold specification. Suppose for a given data set, the proportions of 1, 2, 3,

4 are 0.05, 0.05. 0.4 and 0.5, respectively. If we make a histogram for this discrete data

it would be highly skewed to the right. The threshold approach for analyzing this highly

skewed discretized variable is to treat the ordered categorical data as manifestations of an

underlying normal variable y. The exact continuous measurements of y are not available,

but are related to the observed ordered categorial variable z such as follows: for k = 1, 2,

3, 4

z = k if αk−1 < y ≤ αk;

where −∞ = α0 < α1 < α2 < α3 < α4 = ∞, and α1, α2 and α3 are thresholds. Then the

ordered categorical observations can be captured by N(0,1) with appropriate thresholds.

As α2 - α1 can be different from α3 - α2, unequal-interval scales are allowed. Hence, this

threshold approach allows flexible modeling. As it is related to a common normal distri-

bution, it also provides easy interpretation of the parameters. It should be noted that the

ad hoc integral values, here k = 1, 2, 3, 4, are solely used to represent the category; only

their frequencies are important in the statistical analysis.

Mixed Data can be handled by transforming the qualitative data into quantitative form.

If all the data variables are quantitative, the usual classical multivariate analysis (MVA)

can be performed. In this work, we use the Gifi transformation, [Gifi, 1989], to trans-

form the qualitative variables to quantitative form. Detailed description about the Gifi

transformation is given in the Literature Review Chapter.
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Chapter 5

Gifi System – Applications

In this chapter, we analyze the data in the Gifi space with several traditional multivari-

ate statistical methods such as multiple regression, binary logistic regression, multivariate

regression, multivariate logistic regression, discriminant analysis and cluster analysis. For

each application, we introduce two algorithms that can be used to analyze the data in the

Gifi space. One algorithm (OSM - Optimal Scaling Method) optimally scales the cate-

gorical variables in the Gifi space, thus making the data set purely continuous in the Gifi

space. Hence in the optimally scaled version, the p-dimensional categorical variables are

transformed to a p-dimensional continuous variables. The other algorithm (LCM - Linear

Combination Method) does a linear combination of the categories of the categorical vari-

ables thus making it a 1-dimensional continuous space. Hence, in the second version, a

p-dimensional categorical variables are transformed to a 1-dimensional continuous space.

The OCM might be useful when there are a few categorical variables in the data set whereas

the LCM might be useful when the dimension of the categorical variables is very large.

5.1 Data Transformation

Consider a mixed data set D0 consisting of variables x1, x2, x3, x4, x5, y and n = 100 obser-

vations. Suppose that the variables x1, x2, x4 are categorical and the rest are continuous.

The input to the Gifi system will be the data set D1, where D1 contains data on the

variables x1, x2, x4. After the transformation using LCM, the original data set D0 can
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be represented by a transformed data set D3, where D3 contains a linear combination of

the weights of the categories of x1, x2, x4 in 1-dimension in addition to the original linear

values of x3, x5, y. Therefore, after the transformation the three dimensional categorical

space becomes a one dimensional continuous space. Hence the transformed Gifi space

would be of size 100 × 4. We use the normal scores algorithm adapted to heterogeneous

variances for transforming the categorical space to a continuous space. Hence, in this ex-

ample, the transformed Gifi space would be of size 100×4. After the transformation using

OCM, the original data set D0 can be represented by a transformed data set D3 where

D3 = {G1×y1, G2×y2, x3, G4×y4, x5, y} where Gi is the indicator matrix for a categorical

variable i and yi is the set of corresponding weights for the categories of a categorical vari-

able i. Here also we use the normal scores algorithm adapted to heterogeneous variances

for transforming the categorical space to a continuous space. Hence, in this example, the

transformed Gifi space would be of size 100× 6.

5.2 Regression

Regression analysis is a statistical methodology to estimate the relationship of a response

(or a dependent) variable to a set of predictor (or independent) variables. This technique

can be performed on one or more than one dependent variable(s). Regression analysis on

one dependent variable and one or more independent variables is known as multiple regres-

sion. A simple regression, having one dependent variable and one independent variable, is

a special case of multiple regression. Regression analysis on a data set having more than

one dependent variable and one or more independent variable(s) is known as multivariate

regression.

Most of the work in the literature had been on linear regression analysis and less em-

phasis had been on nonlinear regression analysis. In the simple case, a linear regression

analysis is about fitting a straight line,

y = β0 + β1x, (5.1)
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to a set of paired data {(xi, yi), i = 1, 2, ..., n} on two numerical variables x and y. The

usual linear regression techniques generate good models when the data is purely continuous.

If data contains mostly categorical variables, these techniques fail to generate good models.

In this work, we use the Gifi transformation, [Gifi, 1989], on the non linear data and apply

the usual linear regression analysis on the transformed linear data. In this chapter, we

first explain the implementation of the Gifi system on a mixed data for multiple regression

and then explain the implementation of the Gifi system on a mixed data for multivariate

regression.

5.2.1 Multiple Regression

Methodology

After the transformation, in the Gifi space, the data set is no more of the mixed type.

It would be purely in continuous form. Hence, we can apply the usual linear multiple

regression technique on the transformed mixed data.

In multiple regression we fit a model of the form

y = β0 + β1x1 + β2x2 + ... + βkxk + ε, (5.2)

where x1, x2, ..., xk are k predictor variables, β0, β1, ..., βk+1 are k + 1 unknown parameters

and ε the error term.

The multiple regression model 5.2 and the formulas for its estimation can be presented

in a compact form if we use matrix notation [Tamhane and Dunlop, 2003]. Let

Y =




Y1

Y2

.

.

.

Yn




y =




y1

y2

.

.

.

yn




ε =




ε1

ε2

.

.

.

εn



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X =




1 x11 x12 ... x1k

1 x21 x22 ... x2k

. . . . .

. . . . .

. . . . .

1 xn1 xn2 ... xnk




where Y is a n× 1 vector of the random variables Y ′
i s, y is a vector of observed values, ε is

a vector of random errors and X is a n× (k+1) matrix of the values of predictor variables.

The first column of X of all 1’s corresponds to the constant term β0 in the model 5.2. Also

let,

β =




β0

β1

.

.

.

βk




β̂ =




β̂1

β̂2

.

.

.

β̂n




where β and β̂ are the (k + 1)× 1 vectors of unknown parameters and their least squares

estimates, respectively.

Using this notation, the model in 5.2 can be written as

Y = Xβ + ε (5.3)

The matrix notation to obtain the least squares estimates is represented as

X
′
Xβ = X

′
y (5.4)
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If the inverse of the matrix X
′
X exists, then the solution is given by

β̂ = (X
′
X)−1X

′
y (5.5)

We assume that the errors are normally distributed. Let σ̂2 be the variance of the residuals.

The negative loglikelihood in the normal case is given by

−logL(β̂, σ̂2) =
n

2
log(2π) +

n

2
log(σ̂2) +

n

2
(5.6)

where the parameter σ̂2 is estimated by

σ̂2 =
1
n

(y −Xβ̂)T (y −Xβ̂), (5.7)

Information Criteria

The various information criteria’s for the multiple regression case are briefly described in

this section. Let k be the number of parameters in the model. For now, we assume a

normal distribution on the residuals.

AIC, [Akaike, 1973], is given by

AIC = nlog(2π) + nlog(σ̂2) + n + 2k (5.8)

CAIC, [Bozdogan, 1987], is given by

CAIC = nlog(2π) + nlog(σ̂2) + n + k(log(n) + 1) (5.9)

The IFIM (inverse fisher information matrix) version of ICOMP ( [Bozdogan, 1987],

[Bozdogan, 1988], [Bozdogan, 90a], [Bozdogan, 90b], [Bozdogan, 2004]) in its Frobenius

norm characterization is given by

ICOMP1F (IFIM) = nlog(2π) + nlog(σ̂2) + n + 2C1F (F̂−1) (5.10)
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where

F̂−1 =




σ̂2∑n
i=1 x2

i
0

0 2σ̂2

n


 (5.11)

and

C1F ( ˆF−1) =
s

4
(1/s)tr( ˆF−1 ˆF−1

′
)− ( tr( ˆF−1)

s )2

( tr( ˆF−1)
s )2

=
1

4λ̄2

s∑

j=1

(λj − λ̄)2 ∼= C1( ˆF−1) (5.12)

To compute the ICOMP for the misspecification case, first we need to compute the outer

product form of FIM. The estimated outer product form of FIM is given by

ˆ
R(ˆ)θ =




n

σ̂2

nSk

2σ̂3

nSk

2σ̂3

n(Kt−1)

2σ̂4


 (5.13)

where Sk is the coefficient of skewness, Sk =
1
n

∑n
i=1 ε3

i

σ̂3
and Kt is the coefficient of kurtosis,

Kt =
1
n

∑n
i=1 ε4

i

σ̂4
. ICOMPMISSPEC is given by

ICOMPMISSPEC = nlog(2π) + nlog(σ̂2) + n + 2C1(F̂−1 ˆ
R(ˆ)θF̂−1) (5.14)

SBC, [Schwarz, 1978], is given by

SBC = nlog(2π) + nlog(σ̂2) + n + log(n)k (5.15)

Algorithm: Optimal Scaling Method

This algorithm fits a multiple regression model for a continuous response and a mixed set

of predictors, X, and also selects the optimal predictors that explain most of the variation

in the response.
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Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Continuous Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data X and optimally scale the categorical vari-

ables in the Gifi space. A categorical variable j is optimally scaled by multiplying its

indicator matrix, Gj , with its optimal weight vector, yj . Suppose if the data contains

variables [x1, x2, x3, x4, x5]. Let x1 and x4 be continuous and x2, x3, x5 be categorical.

Let G2 and y2 be the indicator matrix and the optimal weight vector for the categori-

cal variable x2 respectively. Similarly, G3, G5 and y3, y5 are the indicator matrices and

optimal weight vectors of the categorical variables x3 and x5 respectively. Therefore,

the data matrix in the Gifi space will be of the form {x1, G2×y2, G3×y3, x4, G5×y5}.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model in the Gifi space. Consider each row of the population to be

a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew.

• Perform multiple regression with y as response and Xnew as predictors and

compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

56



5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 3

Algorithm: Linear Combination Method

This algorithm fits a multiple regression for a continuous response and a mixed set of pre-

dictors, X, and also selects the optimal predictors that explain most of the variation in the

response.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Continuous Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed

data set, we split the Xnew matrix into Xcon and Xcat where Xcon is the
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data on the continuous predictors and Xcat is a 1-dimensional continuous data

of the categorical predictors in the Gifi space. Hence Xnew can be repre-

sented as Xnew =
[

Xcon Xcat

]
. Suppose, if the current chromosome selects

x1, x2, x3, x4, x5 where x1, x2, x3, x4, x5 are a subset of the original set of pre-

dictors x1, ..., xp where p ≥ 5. Suppose x1, x3 are continuous and x2, x4, x5

are categorical. We perform the Gifi transformation on x2, x4, x5 and trans-

form it to a 1-dimensional continuous space, Xcat. Since x1, x3 are continuous,

Xcon =
[

x1 x3

]
. Therefore, Xnew =

[
Xcon Xcat

]
.

• Perform multiple regression with y as response and Xnew as predictors and

compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2

5.2.2 Binary Logistic Regression

Methodology

Binary Logistic Regression (BLR) is a parametric method for regression when Yi ∈ 0, 1 is

binary [Wasserman, 2004]. For k-dimensional covariate X, the model is

pi ≡ pi(β)

≡ P (Yi = 1|X = x)

=
e
∑k

j=1 βjxij

1 + e
∑k

j=1 βjxij

(5.16)
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or, equivalently,

logit(pi) =
k∑

j=1

βjxij (5.17)

where

logit(p) = log(
p

1− p
) (5.18)

The name logistic regression comes from the fact that ex

1+ex is called the logistic function.

Because the Yi’s are binary, the data are Bernoulli:

Yi|Xi = xi ∼ Bernoulli(pi) (5.19)

Hence the (conditional) likelihood function is

ζ(β) =
n∏

i=1

pi(β)Yi(1− pi(β))1−Yi (5.20)

The MLE of β̂ has to be obtained by maximizing ζ(β) numerically by the reweighted least

squares algorithm.

Reweighted Least Squares Algorithm

Choose starting values β̂0 = (β̂0
1 , ..., β̂0

k) and compute p0
i using equation 5.16, for i = 1, .., n.

Set s = 0 and iterate the following steps until convergence.

1. Set

Zi = logit(ps
i ) +

Yi − ps
i

ps
i (1− ps

i )
, i = 1, ..., n

2. Let W be a diagonal matrix with (i,i) element equal to ps
i (1− ps

i ).

3. Set

β̂s = (XT WX)−1XT WZ

This corresponds to doing a (weighted) linear regression of Z on X.

4. Set s = s + 1 and go back to the first step.

59



Information Criteria

The various information criteria’s for the binary logistic regression case are briefly described

in this section. Let k be the number of parameters in the model.

The loglikelihood for the binary logistic case is given by

log(ζ(β)) =
n∑

i=1

[Yilog(pi(β)) + (1− Yi)log(1− pi(β))] (5.21)

AIC, [Akaike, 1973], is given by

AIC(k) = −2log(ζ(β)) + 2k (5.22)

CAIC, [Bozdogan, 1987], is given by

CAIC(k) = −2log(ζ(β)) + k(log(n) + 1) (5.23)

SBC, [Schwarz, 1978], is given by

SBC(k) = −2log(ζ(β)) + klog(n) (5.24)

ICOMPIFIM , ( [Bozdogan, 1987], [Bozdogan, 1988], [Bozdogan, 90a], [Bozdogan, 90b],

[Bozdogan, 2004]), is given by

ICOMPIFIM = −2log(ζ(β)) + 2C1(F̂−1) (5.25)

where F̂−1 is given by

F̂−1 =


 σ̂2(XT WX) 0

0
′ 2σ̂4

n


 (5.26)

and σ̂2 is estimated from

σ̂2 =
n∑

i=1

(Yi − pi)2

pi(1− pi)
(5.27)

60



Algorithm: Optimal Scaling Method

This algorithm fits a binary logistic regression for a binary response, y and a mixed set of

predictors, X, and also selects the optimal predictors that can best classify the data into

two categories.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Binary Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data set, X, and optimally scale the categorical

variables in the Gifi space.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model in the Gifi space. Consider each row of the population to be

a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew.

• Perform binary logistic regression with the binary y as response and Xnew as

predictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.
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5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 3

Algorithm: Linear Combination Method

This algorithm fits a binary logistic regression for a binary response, y and a mixed set of

predictors, X, and also selects the optimal predictors that can best classify the data into

two categories.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Binary Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed data

set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on
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the continuous predictors and Xcat is a 1-dimensional continuous data of the

categorical predictors in the Gifi space. Hence Xnew can be represented as

Xnew =
[

Xcon Xcat

]
.

• Perform binary logistic regression with the binary y as response and Xnew as

predictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2

5.2.3 Multi-class Logistic Regression

Methodology

The multi-class logistic regression is a parametric method for regression when the response,

y, contains K classes where K ≥ 3. We consider the covariate X to be p dimensional

without the intercept term. We consider the K-th class to be the base class and fit K − 1
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logit transformations on the other K − 1 classes.

log(
P (G = 1|X = x)
P (G = K|X = x)

) = β10 + βT
1 x

log(
P (G = 2|X = x)
P (G = K|X = x)

) = β20 + βT
2 x

...

log(
P (G = K − 1|X = x)

P (G = K|X = x)
) = β(K−1)0 + βT

(K−1)x

(5.28)

where β10, β20, . . . , β(K−1)0 are the coefficients of the intercept terms in the equation 5.28.

Hence for any class pairs (k, l), we can write the logit transformation as

log(
P (G = k|X = x)
P (G = l|X = x)

) = βk0 − βl0 + (βk − βl)T x (5.29)

Therefore, the number of parameters in this model is given by

m = (K − 1)× (p + 1) (5.30)

Let us denote the parameter set by θ given by

θ = {β10, β1, β20, β2, . . . , β(K−1)0, β(K−1)} (5.31)

The posterior probability that an observation xi belongs to a class k is given by

P (G = k|X = xi) =
eβk0+βT

k xi

1 +
∑K−1

l=1 eβl0+βT
l xi

for k = 1, ...,K − 1 (5.32)

and for a class K it is given by

P (G = K|X = xi) =
1

1 +
∑K−1

l=1 eβl0+βT
l xi

(5.33)
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The equations 5.32 and 5.33 ensures that the sum of the probabilities that an observation

xi belongs to classes 1, 2, ..., K equals 1.

Let there be N samples each having class gi, i = 1, 2, ..., N . The conditional log-likelihood

of the class labels is given by

l(θ) =
N∑

i=1

log(P (G = gi|X = xi)) =
N∑

i=1

log(pgi(xi; θ)) (5.34)

Since there are K ≥ 3 classes, β is a (K − 1)(p + 1) vector:

β =




β10

β11

...

β1p

β20

...

β2p

...

β(K−1)0

...

β(K−1)p




(5.35)

Let

β̄l =


 βl0

βl


 (5.36)
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Hence, the likelihood function is given by

l(β) =
N∑

i=1

log(pgi(xi; β)

=
N∑

i=1

log(
eβ̄T

gi
xi

1 +
∑K−1

l=1 eβ̄T
l xi

)

=
N∑

i=1

[β̄T
gi

xi − log(1 +
K−1∑

l=1

eβ̄T
l xi)] (5.37)

The first order derivative for the equation 5.37 is given by

∂l(β)
∂βkj

=
N∑

i=1

[I(gi = k)xij − eβ̄T
k xi

1 +
∑K−1

l=1 eβ̄T
l xi

]

=
N∑

i=1

xij(I(gi = k)− pk(xi; β)) (5.38)

where I(.) is an indicator function which equals 1 when the argument is true and 0 other-

wise.

The second order derivative for the equation 5.37 is given by

∂2l(β)
∂βkjβmn

= −
N∑

i=1

xijxinpk(xi;β)[I(k = m)− pm(xi;β)] (5.39)

Reweighted Least Squares Procedure

In matrix form, we represent y as the concatenated indicator vector of dimension N(K −
1)× 1. It is given by

y =




y1

y2

...

yK−1




yk =




I(g1 = k)

I(g2 = k)
...

I(gN = k)




1 ≤ k ≤ K − 1 (5.40)
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The fitted probabilities p is the concatenated vector of dimension N(K−1)×1. It is given

by

p =




p1

p2

...

pK−1




pk =




pk(x1;β)

pk(x2;β)
...

pk(xN ; β)




1 ≤ k ≤ K − 1 (5.41)

X̃ is an N(K − 1)× (p + 1)(K − 1) matrix. It is given by

X̃ =




X 0 . . . 0

0 X . . . 0

. . . . . . . . . . . .

0 0 . . . X




(5.42)

The weight matrix W is an N(K − 1)×N(K − 1) square matrix and is given by

W =




W11 W12 . . . W1(K−1)

W21 W22 . . . W2(K−1)

. . . . . . . . . . . .

W(K−1)1 W(K−1)2 . . . W(K−1)(K−1)




(5.43)

where each submatrix Wkm, 1 ≤ k, m ≤ K − 1, is an N ×N diagonal matix. When k = m,

the i-th diagonal element in Wkk is given by

pk(xi;βold)(1− pk(xi; βold)) (5.44)

When k 6= m, the i-th diagonal element in Wkm is given by

−pk(xi;βold)pm(xi;βold) (5.45)

The new β at each iteration is be given by

βnew = βold + (X̃WX̃)−1X̃T (y − p) (5.46)
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We can use β = 0 as one of the options as an initial starting point. One major problem

with this approach is that convergence is not guaranteed in some cases.

Information Criteria

The various information criteria’s for the binary logistic regression case are briefly described

in this section. Let k be the number of parameters in the model.

AIC, [Akaike, 1973], is given by

AIC(k) = −2l(β)) + 2k (5.47)

CAIC, [Bozdogan, 1987], is given by

CAIC(k) = −2l(β)) + k(log(n) + 1) (5.48)

SBC, [Schwarz, 1978], is given by

SBC(k) = −2l(β)) + klog(n) (5.49)

ICOMPIFIM , ( [Bozdogan, 1987], [Bozdogan, 1988], [Bozdogan, 90a], [Bozdogan, 90b],

[Bozdogan, 2004]), is given by

ICOMPIFIM = −2l(β)) + 2C1(F̂−1) (5.50)

where F̂−1 is given by

F̂−1 = −H−1 (5.51)

and H is the Hessian matrix of the equation 5.37. The Hessian matrix, H is a square

matrix of the order (K − 1)(p + 1)× (K − 1)(p + 1). Each element of the Hessian matrix

can be computed from the equation 5.39.
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Algorithm: Multi-class Logistic Regression in Gifi space

The algorithm for the multi-class case is same as the one for the binary logistic regression

case. But instead of using binary logistic regression we use multi-class logistic regression

since there are K ≥ 3 classes.

5.2.4 Multivariate Regression

Methodology

The methodology in the multivariate case is similar to the methodology in the multiple

regression case since the transformed data set is purely continuous. Hence, we can apply

the usual multivariate regression technique on the transformed mixed data.

Let Y be an (n × p) data matrix of n independent observations on p responses, X be

the (n× q) design or model matrix of fixed known independent variables, B be the (q× p)

matrix of coefficients to be estimated, and let E be the matrix of random errors. Then the

multivariate linear regression model is given by

Y = XB + E, (5.52)

where q = k + 1, k = number of independent variables. In matrix notation,

Y =




Y11 Y12 ... Y1p

Y21 Y22 ... Y2p

. . . .

. . . .

. . . .

Yn1 Yn2 ... Ynp




X =




1 x11 x12 ... x1k

1 x21 x22 ... x2k

. . . . .

. . . . .

. . . . .

1 xn1 xn2 ... xnk



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B =




β01 β02 ... β0p

β11 β12 ... β1p

. . . .

. . . .

. . . .

βk1 βk2 ... βkp




E =




ε11 ε12 ... ε1p

ε21 ε22 ... ε2p

. . . .

. . . .

. . . .

εn1 εn2 ... εnp




(5.53)

The moments of the model 5.52 are given by E(Y ) = XB and V AR(Y ) = I ⊗ Σ where

I is the identity matrix, Σ is the covariance matrix of the error terms and the symbol ⊗
denotes the kronecker product.

Each dependent variable follows a univariate model given by

Y(i) = XB(i) + ε(i) i = 1, 2, ..., p (5.54)

is called the usual multiple regression model with Cov(ε(i)) = σiiI ≡ σ2I. However, the

errors for different responses on the same trial can be correlated.

Assumptions

To have multivariate regression model hold, we impose the following assumptions and

constraints on the quantities of the model in 5.52.

•
n ≥ p + q (5.55)

• The total number of parameters

m ≤ pq +
p(p + 1)

2
(5.56)

•
rank(X) = q (5.57)
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This condition is required so that we obtain a unique solution to the normal equations.

If equation 5.57 is not satisfied, we use a generalized inverse.

•
En×p ∼ Nnp(0, Σp×p ⊗ In×n) (5.58)

In this work, we assume the error matrix E is multivariate normally distributed. The

negative log likelihood of B and Σ is given by

−logL(B, Σ) =
1
2
nplog(2π) +

n

2
log|Σ|+ 1

2
trΣ−1(Y −XB)T (Y −XB) (5.59)

From the equation 5.59, we can estimate the parameters B and Σ. The parameter B is

estimated by

B̂ = (X
′
X)−1X ′Y (5.60)

The parameter Σ is given by

Σ̂ =
1
n

(Y −XB̂)T (Y −XB̂) (5.61)

Information Criteria

The various information criteria’s for the multivariate regression case are briefly described

in this section. For now, we assume that the residuals are multivariate normally distributed.

Let k be the number of parameters in the model. The value of k is computed by

k = pq +
p(p + 1)

2
(5.62)

AIC, [Akaike, 1973], is given by

AIC = nlog(2π) + nlog|Σ̂|+ np + 2k (5.63)
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ICOMP, ( [Bozdogan, 1987], [Bozdogan, 1988]) is given by

ICOMP (β̂, (Ê/B̂)) = nplog(2π) + nlog|Σ̂|+ np + (5.64)

(n + q)C1(Σ̂) + pC1((X
′
X)−1)

Future [Bozdogan and Magnus, 2003] derived F̂ , the estimated inner product form of the

Fisher information matrix. It is given by

F̂ =




Σ̂−1 ⊗X
′
X 0

0 n
2 D

′
p(Σ̂

−1 ⊗ Σ̂−1)Dp


 (5.65)

The inverse of F̂ is given by

F̂−1 =




Σ̂⊗ (X
′
X)−1 0

0 n
2 D+

p (Σ̂⊗ Σ̂)D+
′

p


 (5.66)

The upper left block in equation 5.66 is the Kronecker product of Σ̂ and (X
′
X)−1, which

have dimensions p× p and q× q respectively, giving dimensions for the product of pq× pq.

The middle term of the lower right block is the Kronecker product of Σ̂ and Σ̂, which has

dimensions p2×p2. The matrix D+
p is the Moore-Penrose inverse of the duplication matrix

Dp. The duplication matrix Dp has dimensions p2 × 1
2p(p + 1), and so its Moore-Penrose

inverse

D+
p = (D

′
pDp)−1D

′
p (5.67)

has dimensions 1
2p(p+1)×p2. It follows that the dimensions of the product D+

p (Σ̂⊗Σ̂)D+
′

p

are 1
2p(p+1)× 1

2p(p+1). This means that s = dim(F̂−1) is pq + 1
2p(p+1), which happens

to be equal to the number of parameters. Further, note that the duplication matrix Dp is

implicitly defined by

vec(Σ̂) = Dpvech(Σ̂) (5.68)
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where vec(Σ̂) vectorises the distinct elements of Σ̂ by vertically stacking those on and below

the principal diagonal. Consequently

vech(Σ̂) = D+
p vec(Σ̂) (5.69)

The outer product form of the estimated Fisher information matrix, R̂ is given by

R̂ =




Σ̂−1 ⊗X
′
X 1

2(Σ̂−
1
2 ⊗X

′
)Γ̂1D

+
′

p 4̂)

1
24̂D+

p Γ̂1(Σ̂−
1
2 ⊗X

′
) 1

44̂D+
p Γ̂∗2D

+
′

p 4̂


 (5.70)

Here,

4̂ = D
′
p(Σ̂

−1− 1
2 ⊗ Σ̂−1− 1

2 )Dp (5.71)

and

Γ̂∗2 = Γ̂2 − n2IpI
′
p (5.72)

is the kurtosis matrix and Γ̂1 is the skewness matrix.

The inverse Fisher information matrix (IFIM) form of ICOMP is given by

ICOMP (IFIM) = nplog(2π) + nlog|Σ̂|+ np + C1( ˆF−1) (5.73)

= nplog(2π) + nlog|Σ̂|+ np

+
p(p + q)

2
A− 1

2
(p + q + 1)log|Σ̂|

−p

2
log|(X ′

X)−1| − p

2
log(2)

where

A = log[
tr(Σ̂)tr(X

′
X)−1 + 1

2 tr(Σ̂2) + 1
2(tr(Σ̂))2 +

∑
j σ̂2

jj

p(p + q)
]

The mis-specification form of ICOMP is given by

ICOMP (IFIM)MISSPEC = nplog(2π) + nlog|Σ̂|+ np + 2C1( ˆF−1R̂ ˆF−1) (5.74)
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Algorithm: Optimal Scaling Method

This algorithm fits a multivariate regression for a set of continuous responses, Y and a

mixed set of predictors, X, and also selects the optimal predictors that explain most of the

variation in the response set, Y .

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Continuous Response Data set: Y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data set, X, and optimally scale the categorical

variables in the Gifi space.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model in the Gifi space. Consider each row of the population to be

a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew.

• Perform multivariate regression with Y as response and Xnew as predictors and

compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.
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5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 3

Algorithm: Linear Combination Method

This algorithm fits a multivariate regression for a set of continuous responses, Y and a

mixed set of predictors, X, and also selects the optimal predictors that explain most of the

variation in the response set, Y .

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Continuous Response Data set: Y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed data

set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on
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the continuous predictors and Xcat is a 1-dimensional continuous data of the

categorical predictors in the Gifi space. Hence Xnew can be represented as

Xnew =
[

Xcon Xcat

]
.

• Perform multivariate regression with Y as response and Xnew as predictors and

compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2

5.2.5 Multivariate Logistic Regression

Methodology

Let a data set, D0 consists of 2 categorical dependent variables, y1, y2 and 5 independent

variables, x1, x2, ..., x5 where x1 and x4 are continuous and x2, x3 and x5 are categorical.

The data set, D0 is a perfect example of a multivariate logistic regression setting. In the Gifi

space, the categorical dependent variables are transformed to a 1-dimensional continuous

space on the response side and the categorical independent variables are transformed to a

1-dimensional continuous space on the predictors side. Suppose, if y1 contains 2 categories

and y2 contains 2 categories, a linear combination of the categories of the two dependent

variables y1 and y2 is transformed to the continuous space with 2×2 = 4 unique continuous

values. Since we can treat each value as a unique class, this becomes a multi class logistic

regression in the Gifi space. If y1 and y2 contains many categories, then their linear

combination in the Gifi space will contain many unique continuous values. In this case, it

would make reasonable sense to treat the problem as a multiple regression problem.
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Algorithm: Optimal Scaling Method

This algorithm fits a multivariate logistic regression for a categorical response set, Y , and

a mixed set of predictors, X, and also selects the optimal predictors that explain most of

the variation in the response.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Categorical Response Data set : Y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data set, X and Y , and optimally scale the

categorical variables in the Gifi space. The response Y in the Gifi space becomes

continuous. Hence, we can fit a multivariate regression with Y in the Gifi space as

response and X in the Gifi space as predictors.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew, in the Gifi space.

• Run multivariate regression with Y in the Gifi space as response and Xnew as

predictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.
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5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 4

Algorithm: Linear Combination Method

This algorithm fits a multivariate logistic regression for a categorical response set, Y , and

a mixed set of predictors, X, and also selects the optimal predictors that explain most of

the variation in the response.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Categorical Response Data set : Y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed data

set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on
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the continuous predictors and Xcat is a 1-dimensional continuous data of the

categorical predictors in the Gifi space. Hence Xnew can be represented as

Xnew =
[

Xcon Xcat

]
.

• Since the data set, Y is a categorical data set, transform that to a 1-dimensional

continuous space, called Ynew, by the Gifi transformation. Suppose Y = {y1, y2}.
Let y1 and y2 contains two categories each. Therefore, the 1-dimensional con-

tinuous data (linear combination of the categories of y1, y2 in the Gifi space)

would contain 2 × 2 = 4 distinct continuous values. We can consider these 4

distinct continuous values as 4 distinct classes.

• Perform multi-class logistic regression with Ynew as response and Xnew as pre-

dictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2

5.3 Discriminant Analysis

5.3.1 Introduction

Discriminant Analysis (DA) is a supervised classification technique. DA consists of assign-

ing or classifying an individual or object to one of several known or unknown alternative

classes (or groups) on the basis of many measurements on the individuals or objects, or

cases, [Bozdogan, 2005]. The goal of discriminant analysis is: given the data set with
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two or more than two classes (or groups), say, what is the best feature or feature set ei-

ther linear or non-linear to discriminate between the classes and maximize average class

separation. It uses the density estimation strategy and assume a parametric model for

the densities, [Wasserman, 2004]. We assume that the set of predictors are multivariate

gaussian distributed.

5.3.2 Linear and Quadratic Discriminant Analysis

A discrimination procedure can be developed via the estimation of the class conditional

density functions and the use of Bayes rule. We consider the matrix consisting of n total

observations on p variables on k = 1, 2...,K classes or groups given by

X =




x
′
11

...

x
′
1n1

x
′
21

...

x
′
2n1

...

x
′
kn1

...

x
′
knk




(n1+...+nk)×p

Let fk(x) denote the class-conditional density of X in k-th class with prior probability πk

of class k such that
∑K

k=1 πk = 1. We classify an observation to a class for which the

posterior probability of group membership is the greatest. This is achieved by utilizing the

Bayes rule or theorem

P (K = k|X = x) =
fk(x)πk

f(x)
=

fk(x)πk∑K
k=1 fk(x)πk

(5.75)
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Applying the Bayes rule in equation 5.75 and by considering the class conditional density

to be a multivariate gaussian model given by

fk(x) =
1

(2π)p/2|Σ|1/2
e−

1
2
(x−µk)

′
Σ−1

k (x−µk), (5.76)

we obtain the log posterior probability of group membership as

logP (K = k|X = x) = log(fk(x)) + log(πk)− log(f(x))

= −1
2
(x− µk)

′
Σ−1

k (x− µk)− 1
2
log|Σk|

−p

2
log(2πk)− log(f(x)) (5.77)

In equation 5.77 since logf(x) is independent of the class, the discrimination rule can be

established. So in comparing two classes k and l, we assign the observation vector x to

class k if

dk(x) > dl(x) (5.78)

for all k 6= l, where

dk(x) = log(πk)− 1
2
log|Σk| − 1

2
(x− µk)

′
Σ−1

k (x− µk) (5.79)

Classifying an observation vector x on the basis of the values of dk(x), k = 1, 2, ..., K is

called the gaussian-based quadratic discriminant function (QDA), [McLachlan, 1992], since

the decision boundary between each pair of classes k and l is described by a quadratic equa-

tion in x.

We note that in the special case when the class covariance matrices Σ1, ...,ΣK are all

the same, that is, Σk = Σ for all k, the linear discriminant analysis (LDA) arises and that

from equation 5.79 we obtain the linear discriminant functions given by

dk(x) = log(πk)− 1
2
µ
′
kΣ

−1µk + x
′
Σ−1µk. (5.80)
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In comparing two classes k and l, we assign the observation vector x to class k if

dk(x) > dl(x) (5.81)

for all k 6= l, where dk(x) is given in equation 5.80.

In practice we do not know the parameters of the Gaussian model. We need to esti-

mate these unknown parameters by using the maximum likelihood method. Hence, the

estimation problem basically reduces to the parameter estimation for the class conditional

densities. Given that the classes are known for the training data, we can write down the

likelihood or the log likelihood of the (MLE’s) or plug-in-estimators given below.

• The estimator of the prior probability πk is π̂k = nk
n , where nk is the number of

observations in class k.

• µ̂k = x̄k = 1
nk

∑nk
i=1 xki, are the sample means of each class; x̄k = 1

n

∑K
k=1

∑nk
i=1 xki

is the sample mean or grand mean of the entire training set, and n =
∑K

k=1 nk is the

total number of observations, k = 1, 2, ..., K.

• Σ̂k = Sk = 1
nk

∑nk
i=1(xki − x̄k)(xki − x̄k)

′
is the estimated class covariance or scatter

matrix for k = 1, 2, ...K.

• Averaged over all classes the biased scatter matrix describing the noise is:

Σ̂ = SW =
1
n

K∑

k=1

nk∑

i=1

(xki − x̄k)(xki − x̄k)
′

(5.82)

This matrix is called the within-scatter (or inter-scatter) matrix. It describes the

average scattering within classes. An unbiased version of SW is given by

Σ̂ = (
n

n−K
)SW (5.83)

• Between-scatter (or intra-scatter) matrix SB that describes the scattering of the

82



class-dependent sample means around the overall average is given by

SB =
1
n

K∑

k=1

nk(x̄k − x̄)(x̄k − x̄)
′

(5.84)

• Total scatter matrix is:

ST = SW + SB

=
n∑

i=1

(xi − x̄)(xi − x̄)
′
. (5.85)

Both the LDA and QDA are computationally efficient. LDA is expected to perform well in

homoscedastic cases when sample size is large compared to the dimension of the measure-

ment or variable space. In a well-determined homoscedastic case, LDA should give better

performance because it estimates fewer parameters.

On the other hand, QDA should perform well in a well-determined heteroscedastic case.

However, LDA may fail when the within class distributions are heteroscedastic. Also, both

LDA and QDA will have problems when any of the matrices Σ̂k is singular. For both LDA

and QDA will have problems when the data are nonlinear and when the class conditional

densities do not follow a Gaussian distribution. Since the data is continuous in the Gifi

space, we overcome the problem that occurs when the data is nonlinear.

5.3.3 Information Criteria

In this section, we briefly list the information criteria measures for choosing the number

of discriminant functions. The number of useful discriminant functions is defined by the

number of nonzero eigenvalues in the classes, which in turn, equal to the rank of SB, i.e.,

m = NumberofDF ′s = rank(SB),m = 0, 1, 2, ..., s. (5.86)

Let fk(x, θ) denote the class conditional density of X, where the parameter vector θ is:

θ = (µ1, ..., µK , Σ1, ..., ΣK). (5.87)
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Then -2 times maximized log-likelihood function is

−2l(µ̂k, Σ̂) = −2logL(µ̂k, Σ̂)

= nplog(2π) + np + nlog|SW |+

nlog
s∏

i=m+1

(1 + λi) (5.88)

where λ1 ≥ λ2 ≥ ... ≥ λm ≥ λm+1 = ... = λp = 0 are the eigenvalues of S−1
W SB and

λ1, λ2..., λm are the positive eigenvalues.

The selection based on AIC is equivalent to the procedure by which we choose the DF

dk(x) such that the criterion differences of AIC

DIC(m) = nlog
s∏

i=m+1

(1 + λi)− 2(p−m)(K −m) (5.89)

is minimum, where n is the total number of observations, p is equal to the number of

variables, and K is the number of classes.

Similarly, we can compute DICOMP1F (m) given by

DICOMP1F (m) = nlog
s∏

i=m+1

(1 + λi)− 2C1F (S−1
W SB)

= nlog

s∏

i=m+1

(1 + λi)− 2[
1

4λ̄2
a

p∑

j=1

(λj − λ̄a)2] (5.90)

where λ̄a = 1
m

∑m
j=1 λj is the arithmetic mean of the eigenvalues, and λ̄g = (

∏m
j=1 λj)1/m

is the geometric mean of the eigenvalues of S−1
W SB, respectively. We note that C1F (.) ≥ 0

with C1F (.) = 0 only when all λj = λ̄. Also, C1F (.) measures the relative variation in the

eigenvalues while CF (.) measures the absolute variation in the eigenvalues.
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5.3.4 Algorithm: Optimal Scaling Method

This algorithm performs a supervised classification (discriminant analysis) for a categorical

response and a mixed set of predictors, X, and also selects the optimal predictors that clas-

sifies the data into k classes where k is the number of categories of the response variable.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Categorical Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data set, X, and optimally scale the categorical

variables in the Gifi space.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew.

• Perform discriminant analysis with y as classification variable and Xnew as pre-

dictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else
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• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 3

5.3.5 Algorithm: Linear Combination Method

This algorithm performs a supervised classification (discriminant analysis) for a categorical

response and a mixed set of predictors, X, and also selects the optimal predictors that clas-

sifies the data into k classes where k is the number of categories of the response variable.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Predictor Data : X

Categorical Response Data : y

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed data

set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on

the continuous predictors and Xcat is a 1-dimensional continuous data of the

categorical predictors in the Gifi space. Hence Xnew can be represented as

Xnew =
[

Xcon Xcat

]
.
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• Perform discriminant analysis with y as classification variable and Xnew as pre-

dictors and compute the respective information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2

5.4 Cluster Analysis

5.4.1 Introduction

Clustering is the classification of objects into different groups. It partitions a data set into

subsets (clusters), so that the data in each subset (ideally) share some common trait. There

are two different types of clustering algorithms namely - hierarchical and partitional. Hi-

erarchical algorithms find successive clusters using previously established clusters, whereas

partitional algorithms determine all clusters at once. Hierarchical algorithms can be ag-

glomerative (”bottom-up”) or divisive (”top-down”). Agglomerative algorithms begin with

each element as a separate cluster and merge them into successively larger clusters. Divi-

sive algorithms begin with the whole set and proceed to divide it into successively smaller

clusters. There are several clustering algorithms such as k-means, fuzzy clustering, medoids

etc. In this work, we do an unsupervised clustering of the data in the Gifi space assuming

that the data is generated from a mixture of gaussian distributions.
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5.4.2 Gaussian Mixtures

Model

The problem of clustering of n individuals on the basis of p-dimensional observation vectors

x1, x2, ..., xn ∈ <p will be studied using a mixture of normal probability density functions

[Bozdogan, 1994]. In this method, we do not know a priori the number of clusters (K),

mixing proportions, mean vectors, and covariance matrices of the class distributions. If

we assume that each observation vector xi has probability πk of coming from the k-th

population k ∈ 1, 2, ..., K, then x1, x2, ..., xn is a sample from

f(x) ≡ f(x; π, µ,Σ) =
K∑

k=1

πkgk(x; µk, Σk), (5.91)

where π = (π1, π2, ..., πK−1) are K-1 independent mixing proportions such that

0 ≤ πk ≤ 1 for k = 1, 2, ..., K and πK = 1−∑K−1
k=1 πk (5.92)

and where gk(x; µk,Σk) is the k-th component multivariate normal density function given

by

gk(x;µk, Σk) = (2π)−p/2|Σk|−1/2e−
1
2
(x−µk)

′
Σ−1

k (x−µk). (5.93)

The model given in equation 5.93 is called the standard multivariate normal mixture model.

Parameter Estimation

In this mixture, the parameters to be estimated are K-1 mixing proportion estimates, K

mean vectors, K covariance matrices. We can write the loglikelihood function of the data

x1, x2, ..., xn as:

l(θ) ≡ logL(θ|X)

=
n∑

i=1

log[
K∑

k=1

πk(2π)−p/2|Σk|−1/2e−
1
2
(xi−µk)

′
Σ−1

k (xi−µk)] (5.94)

(5.95)
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To obtain the maximum likelihood estimators (MLE’s) of the unknown parameters, we

use matrix differential calculus and compute the partial derivatives of the log likelihood

function l(θ) with respect to πk, the mean vector µk, and Σk, respectively, and set these

equal to zero. We obtain the following ML equations:

ˆP (k|xi) =
π̂kgk(xi; µ̂k, Σ̂k)∑K

k=1 π̂kgk(xi; µ̂k, Σ̂k)
k = 1, 2, ..., K (5.96)

π̂k =
1
n

n∑

i=1

ˆP (k|xi) k = 1, 2, ..., K (5.97)

µ̂k =
1

nπ̂k

n∑

i=1

xi
ˆP (k|xi) k = 1, 2, ..., K (5.98)

Σ̂k =
1

nπ̂k

n∑

i=1

P̂ (k|xi)(xi − µ̂k)(xi − µ̂k)
′

k = 1, 2, ..., K (5.99)

where π̂k is the estimated mixing proportion πk, µ̂k is the estimated mean vector µk, Σ̂k is

the estimated covariance matrix Σk and P̂ (k|xi) is the estimated posterior probability of

group membership of the observation vector xi in the cluster k.

Information Criteria

In this section, we briefly state the information criteria such as AIC, CAIC and ICOMP

for the gaussian mixture case. Let p be the dimension of a model M . Let L(θ̂) be the

maximum likelihood value of the model M . Let K be the number of mixtures fitted to the

data. AIC, [Akaike, 1973], for the model M is given by

AIC = −2log(L(θ̂)) + 3m (5.100)

where m is the number of free parameters estimated within the model M . There are K-

1 mixture parameters, Kp mean parameters and Kp(p + 1)/2 covariance parameters to

estimate. Hence m is given by

m = K − 1 + K × p + K × p× (p + 1)/2 (5.101)
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CAIC, [Bozdogan, 1987], for the model M is given by

CAIC = −2log(L(θ̂)) + m(log(n) + 1) (5.102)

where n is the number of observations in the data.

ICOMP, ( [Bozdogan, 1987], [Bozdogan, 1988], [Bozdogan, 90a], [Bozdogan, 90b], [Boz-

dogan, 2004], [Bozdogan, 2005]), is given by

ICOMP = −2log(L(θ̂)) + 2C1(F̂−1) (5.103)

where F̂−1 is the estimated Inverse Fisher Information Matrix (IFIM) and C1(F̂−1) is given

by

C1(F̂−1) =
s

2
log[

trace(F̂−1)
s

]− 1
2
log|F̂−1| (5.104)

The parameter s in the equation 5.104 is the rank(F̂−1).

Let λ1, λ2, ..., λs be the eigenvalues of F̂−1. Further let λ̄a = 1
s

∑s
j=1 λj be the arithmetic

mean and λ̄g = (
∏s

j=1 λj)1/s is the geometric mean of the eigenvalues. The complexity of

F̂−1 can be written as C1(F̂−1) = s
2 log( λ̄a

λ̄g
). Hence, ICOMP can be given by

ICOMP = −2log(L(θ̂)) + slog(
λ̄a

λ̄g
) (5.105)

The F̂−1 for the model M [Bozdogan, 1994] is given by

F̂−1 = Diag(F̂1
−1

, ..., F̂K
−1

) (5.106)

where F̂k
−1

is given by

F̂k
−1

=




1
π̂kΣ̂k

0

0 2D+
p (Σ̂k ⊗ Σ̂k)D+

′
p


 (5.107)
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F̂−1 in equation 5.106 is due to the fact that the parameters for a particular mixture cluster

are independent of the parameters of the subsequent mixture cluster after the clusters are

recovered. Hence, F̂−1 is a block diagonal matrix with the diagonal block given by the

estimated asymptotic covariance matrices F̂k
−1

for the k-th mixture cluster, and ⊗ de-

notes the Kronecker product. In equation 5.107, D+
p = (D

′
pDp)−1D

′
p is the Moore-Penrose

inverse of the duplication matrix Dp. A duplication matrix is a unique p2p(p+1)/2 matrix

which transforms v(Σ̂k) into vec(Σ̂k). v(Σ̂k) denotes the p(p+1)/2-vector that is obtained

from vec(Σ̂k) by eliminating all supra-diagonal elements of Σ̂k and stacking the remaining

columns one underneath the other.

For computational efficiency, we expand the equation 5.103 for model M as

ICOMP = −2
n∑

i=1

log[
K∑

k=1

πkgk(x; µk, Σk)] + [kp + kp(p + 1)/2]× C (5.108)

where C is given by

C = log[

∑K
k=1

1
π̂ktrace(Σ̂k)

+ 1
2 trace(Σ̂k

2
) + 1

2(trace(Σ̂k))2 +
∑p

j=1(σ̂kjj)2

kp + kp(p + 1)/2
]

Algorithm: Optimal Scaling Method

This algorithm performs an unsupervised classification of a mixed data set, X, and also

selects the optimal predictors that classifies the data into the target number of groups.

We first, perform an unsupervised clustering (assuming mixtures of gaussian distribution)

on X to determine the optimal number of gaussian mixtures, optMix. We now perform

a variable selection method to select the optimal predictors that classifies the data into

optMix groups.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation
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Cross over type : Uniform, Single point, Two point

Population size : N

Data set : X

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Run the Gifi transformation on the data set, X, and optimally scale the categorical

variables in the Gifi space.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew.

• Perform cluster analysis with Xnew and number of mixtures, optMix. Also

compute the information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else

• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 3

Algorithm: Linear Combination Method

This algorithm performs an unsupervised classification of a mixed data set, X, and also

selects the optimal predictors that classifies the data into the target number of groups.

We first, perform an unsupervised clustering (assuming mixtures of gaussian distribution)

on X to determine the optimal number of gaussian mixtures, optMix. We now perform
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a variable selection method to select the optimal predictors that classifies the data into

optMix groups.

Input:

Maximum Iteration : maxIter

Probability of Cross over : pCrossover

Probability of Mutation : pMutation

Cross over type : Uniform, Single point, Two point

Population size : N

Data set : X

Information score : AIC, ICOMP, ICOMPIFIM, CAIC, SBC

1. Transform the mixed data set X to a pure continuous space using Gifi transformation.

2. Generate a random population of size N and dimension p, where p is the number of

predictors in the model. Consider each row of the population to be a chromosome.

3. For each chromosome in the population

• Build a new predictor data matrix, Xnew. Since Xnew might be a mixed data

set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on

the continuous predictors and Xcat is a 1-dimensional continuous data of the

categorical predictors in the Gifi space. Hence Xnew can be represented as

Xnew =
[

Xcon Xcat

]
.

• Perform cluster analysis with Xnew and number of mixtures, optMix. Also

compute the information score.

4. Sort the chromosome in the population in the increasing order of the information

score. The chromosome with the lowest information score is considered to be the

best chromosome than the N − 1 other chromosomes.

5. Stop if the stopping criteria is met and return the best model from the current

population or else
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• Perform cross over and mutation with pCrossover, pMutation and the cross over

type to generate a new population. Always include the best model in the new

population.

• Go to step 2
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Chapter 6

Numerical Results

6.1 Mixtures of Multivariate Bernoulli Distributed Data

We ran our experiments on one simulated and two real data sets to illustrate the identifi-

cation process of a number of mixtures in a Multivariate Bernoulli distributed data using

genetic algorithm and information complexity.

6.1.1 A simulated data example

First, we show the results on the simulated data set. The data is simulated as described

below.

1. Simulate random normals of 50 rows and 5 columns from N(0, 1).

2. Simulate random normals of 50 rows and 5 columns from N(2, 1).

3. Create a matrix of 100 rows and 5 columns where the first 50 rows of the matrix are

from step 1 and the second 50 rows of the matrix are from step 2.

4. Convert the generated random normals to binary form by the following criteria. If

each element of the generated data matrix is greater than the mean of the random

normals in that column assign a value 1 or else assign a value 0.

5. Run the Bernoulli Mixture algorithm on the generated binary data set.
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Table 6.1: Simulated Data: Lack of fit & information criteria values for mixtures 1 to 6
# of LackofFit AIC SBC ICOMP ICOMP

Mixtures (PEU)

1 691.7854 706.7854 714.8113 706.7855 706.7855
2 536.7557 569.7557 587.4126 575.4775 582.9306
3 529.8647 580.8647 608.1526 587.081 595.1783
4 527.9289 596.9289 633.8478 603.42 611.8751
5 527.6492 614.6492 661.1991 621.1651 629.6527
6 527.1351 632.1351 688.3161 639.0032 647.9495
7 523.3198 646.3198 712.1318 653.5446 662.9554
8 516.55 657.55 732.993 664.9358 674.5563
9 516.5408 675.5408 760.6148 682.9077 692.5037
10 516.5457 693.5457 788.2507 700.9432 710.7542

Table 6.2: Simulated Data: Count of the number of mixtures by Lack of fit & ICOMP
# of Count of Mixtures Count of Mixtures

Mixtures selected by LackofFit selected by ICOMP

1 0 0
2 0 100
3 12 0
4 2 0
5 4 0
6 3 0
7 10 0
8 10 0
9 23 0
10 36 0

We run 100 simulations of our multivariate Bernoulli mixture algorithm on random normals

generated from two different mixtures. We list the information criteria scores for one of

the simulations. All the information criteria values in table 6.1 are minimum for the two

mixture model which is true since the data is generated from two mixtures of normal

distribution where as the minimum lack of fit criteria chooses nine mixtures. Table 6.2

shows that out of 100 simulations, the ICOMP approach picked up the right model (two

mixture case) in all cases whereas the lack of fit criteria overfitted.

6.1.2 Mobile phone data set

This data set contains information on 20 variables and contains 1021 observations. PCA

is obtained on this data set and the PCA scores (20 PC scores) are used for determining

the number of mixtures in this mobile phone data. A neat and straight-forward method of

converting the PCA score to binary data is to assign a value 1 for all scores greater than

the mean in that column and a value 0 for all scores less than the mean in that column.
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Table 6.3: Mobile Phone Data: Lack of fit & information criteria values for mixtures 1 to
10

# of Lackoffit AIC SBC ICOMP ICOMP
Mixtures (PEU)

1 28101.3948 28161.3948 28239.9656 28161.398 28161.4056
2 28013.3025 28136.3025 28297.3726 28140.6627 28151.4073
3 27924.6817 28110.6817 28354.251 28118.6299 28138.2166
4 27801.4749 28050.4749 28376.5435 28060.3503 28084.686
5 27730.165 28042.165 28450.7329 28054.1576 28083.7106
6 27672.1705 28047.1705 28538.2377 28061.6492 28097.3287
7 27538.5697 27976.5697 28550.1362 27993.5311 28035.3288
8 27455.5341 27956.5341 28612.6 27974.8435 28019.9626
9 27385.0512 27949.0512 28687.6163 27970.3776 28022.9315
10 27410.9423 28037.9423 28859.0067 28057.5909 28106.0104

Table 6.4: Mobile Phone Data: Mixing proportion estimates
Mixture Estimate

π̂1 0.6521
π̂2 0.0345
π̂3 0.0281
π̂4 0.0184
π̂5 0.0930
π̂6 0.0287
π̂7 0.0422
π̂8 0.0775
π̂9 0.0253

The following results (table 6.3) are generated by MATLAB for this data set. In this case,

the nine mixture model has the minimum information criteria value for AIC, SBC, ICOMP

and ICOMPPEU . Even according to the maximum likelihood criteria, the nine mixture

model is considered to be good since it has the minimum lack of fit.

The mixing proportion estimates and the probability estimates for each variable in each

mixture in the mobile phone data set is given below in table 6.4 and table 6.6 respectively.

The classification table is given in table 6.5.

We now do a variable selection using GA on this data set. The following parameters

are used as inputs to the GA process: maximum iterations - 10, population size - 50,

probability of crossover - 0.90, probability of mutation - 0.10 and crossover type - uniform.

The GA selected the first two principal components as the optimal predictors for clustering.

The associated ICOMP score for the first two principal components is 2793.3999. The plot

of the best ICOMP at the end of each iteration of the GA process is shown in figure 6.1.

97



Table 6.5: Mobile Phone Data: Classification matrix
Mixture # of

observations

1 671
2 37
3 32
4 21
5 83
6 33
7 44
8 73
9 27

Table 6.6: Mobile Phone Data: Probability estimates of the variables
Probability m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

p1 0.2861 0.1513 0.2895 0.8092 0.9881 0.2516 0.7716 0.1671 0.0366
p2 0.4954 0.1496 0.0000 0.0000 0.8546 0.4508 0.5443 0.0006 0.0000
p3 0.4330 0.4327 0.5055 0.3142 0.6294 0.2270 0.5514 0.3527 0.6541
p4 0.4804 0.1466 0.0000 0.1702 0.5378 0.6530 0.5946 0.3418 1.0000
p5 0.5577 0.3637 0.1436 0.4082 0.2767 0.5628 1.0000 0.7605 0.0000
p6 0.4348 0.3398 0.7468 0.3514 0.3986 0.2909 0.7198 0.6724 1.0000
p7 0.4995 0.7136 0.5420 0.1565 0.2543 0.9506 0.8797 0.2407 0.4544
p8 0.4890 0.2989 0.6218 0.6706 0.7617 0.4534 0.4550 0.4422 0.7021
p9 0.6171 0.0000 0.8192 0.0000 0.3999 0.1637 0.2039 0.0000 0
p10 0.5744 0.8279 1.0000 0.3200 0.3231 0.4619 0.4429 0.2677 0.3537
p11 0.5228 0.4674 0.2284 0.1978 0.1932 0.1895 0.3962 0.1623 0.8234
p12 0.5240 1.0000 0.3321 1.0000 0.7102 1.0000 0.0565 0.3402 0.5576
p13 0.5766 0.0000 1.0000 0.0000 0.5166 0.0000 0.0792 0.5060 1.0000
p4 0.5501 0.8021 0.5612 0.4000 0.5585 0.0000 0.9962 0.2374 0.5045
p15 0.3914 0.1374 1.0000 0.8063 0.5485 0.3444 0.6247 0.6130 0.9673
p16 0.4193 0.5930 0.2079 0.2835 0.5200 0.0000 0.6485 0.4990 0.3019
p17 0.5296 0.0000 0.8199 0.6790 0.4889 0.1624 0.8438 0.4811 0.0931
p18 0.5221 0.1187 0.0000 0.5325 0.4647 0.9999 0.3422 0.5226 0.2553
p19 0.4922 0.5899 0.6700 0.0000 0.4516 0.6806 0.9505 0.5453 0.1267
p20 0.4062 0.2704 0.7449 0.0421 0.6057 0.5263 0.4235 0.4123 0.0000
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Figure 6.1: Mobile Phone Data: Plot of ICOMP vs Number of iterations in GA

6.1.3 Keratoconjunctivitissicca (KCS) data set

Now we present the results on a real medical data set given in [Botev, 2005]. The data is

regarding the diagnosis of Keratoconjunctivitissicca (KCS). The description of the data set

is briefly given below:

1. Part 1 consists of 40 patients suffering from KCS. Each patient may or may not have

any of the 10 possible symptoms of the disease. The presence of the symptoms is

represented as binary row vectors of length 10. A 1 means that the symptom is

present and a 0 stands for no clinically obvious pathology.

2. Part 2 consists of 37 non-KCS patients.

3. Part 1 and Part 2 form the first group of 77 patients, referred to as group-1.

4. The same 10 symptoms are recorded for another group of 41 patients, henceforth

referred to as the group-2 patients. This group consists of 24 KCS patients and 17

non KCS patients.
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Table 6.7: KCS Group1: Lack of fit & information criteria values for mixtures 1 to 10
# of Lackoffit AIC SBC ICOMP ICOMP

Mixtures (PEU)

1 888.2047 918.2047 931.6428 918.5119 918.8718
2 715.5283 778.5283 806.7482 793.3299 810.6759
3 702.5933 798.5933 841.5951 814.974 834.1706
4 696.9249 825.9249 883.7086 842.9794 862.9655
5 696.8369 858.8369 931.4024 875.9241 895.9487
6 693.4241 888.4241 975.7715 905.5905 925.7079
7 694.4588 922.4588 1024.588 939.4061 959.2667
8 693.161 954.161 1071.0721 971.5217 991.8667
9 691.9613 985.9613 1117.6543 1003.7215 1024.5348
10 690.655 1017.655 1164.1298 1035.6503 1056.7391

Table 6.8: KCS Group1: Mixing proportion estimates
Mixture Estimate

π̂1 0.4764
π̂2 0.5236

Running the Multivariate Bernoulli algorithm on the group 1 data set generated the fol-

lowing information criteria values shown in table 6.7. Even in this case, the two mixture

model has the minimum information criteria value for AIC, SBC, ICOMP, ICOMPPEU .

According to the maximum likelihood criteria, the six mixture model is considered to be

good since it has the minimum lack of fit.

The estimated parameters for the two mixture model in the group 1 data set are given

below in table 6.8 and table 6.10 respectively. Table 6.9 shows that out of 77 observa-

tions, the two mixture model classified 37 observations into mixture 1 and 40 observations

into mixture 2. The confusion matrix for the above classification is given in table 6.11.

We now present the results of our GA algorithm to determine which subset of the ten

symptoms in the group 1 data set are sufficient for classification into the target number of

mixtures. The probability of mutation is 0.10. The population size is taken to be 50. The

GA is run for 10 iterations. The following results (table 6.12) are generated at the end of

Table 6.9: KCS Group1: Classification matrix
Mixture # of

observations

1 37
2 40
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Table 6.10: KCS Group1: Probability estimates of the variables
Probability m = 1 m = 2

p1 0.8364 0.0823
p2 0.8315 0.0372
p3 0.7321 0.0283
p4 0.7363 0.0493
p5 0.4902 0.0749
p6 0.2727 0.0247
p7 0.4359 0.2483
p8 0.4085 0.0252
p9 0.2467 0.0484
p10 0.4090 0.0495

Table 6.11: KCS Group1: Confusion matrix
Actual\Predicted Mixture1 Mixture2

Mixture1 36 4
Mixture2 1 36

each iteration. The results of our GA show that the symptoms 6 and 9 are sufficient for

classification into the target number of mixtures. The plot of the minimum ICOMP score

at each iteration for the KCS group 1 data set is shown in figure 6.2.

Now, we present the results for the group 2 medical data set. The information criteria

scores generated are shown in table 6.13. Even in this case, the two mixture model has the

minimum information criteria value for AIC, SBC, ICOMP and ICOMPPEU . According

to the maximum likelihood criteria, the six mixture model is considered to be good since

it has the minimum lack of fit.

Table 6.12: KCS Group1: Best model & its ICOMP score for each iteration of the GA
Model # of Mixtures ICOMP

1 0 0 0 0 0 1 0 0 0 2 218.5677
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611
0 0 0 0 0 1 0 0 1 0 2 141.1611

0 0 0 0 0 1 0 0 1 0 2 141.1611
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Figure 6.2: KCS Group1: Plot of ICOMP vs Number of iterations in GA

Table 6.13: KCS Group2: Lack of fit & information criteria values for mixtures 1 to 10
# of Lackoffit AIC SBC ICOMP ICOMP

Mixtures (PEU)

1 482.0649 512.0649 519.2006 512.4537 512.7868
2 397.9123 460.9123 475.8973 474.2833 485.7394
3 393.7224 489.7224 512.5567 503.8307 515.9185
4 391.7407 520.7407 551.4243 535.7644 548.6365
5 391.7313 553.7313 592.2642 568.932 581.9557
6 391.2109 586.2109 632.5931 601.3298 614.2835
7 391.2211 619.2211 673.4525 634.3989 647.4031
8 391.2379 652.2379 714.3187 667.4511 680.4856
9 391.2453 685.2453 755.1754 700.4152 713.4126
10 391.2447 718.2447 796.024 733.4081 746.3999
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Table 6.14: KCS Group2: Mixing proportion estimates
Mixture Estimate

π̂1 0.5870
π̂2 0.4130

Table 6.15: KCS Group2: Classification matrix
Mixture # of

observations

1 24
2 17

The estimated parameters for the two mixture model in the group 2 data set are given

below in table 6.14 and table 6.16 respectively. Table 6.15 shows that out of 41 observa-

tions, the two mixture model classified 24 observations into mixture 1 and 17 observations

into mixture 2. The confusion matrix for the above classification is given in table 6.17.

We now present the results of our GA algorithm to determine which subset of the ten

symptoms in the group 2 data set are sufficient for classification into the target number of

mixtures.

The probability of mutation is 0.10. The population size is taken to be 50. The GA

is run for 10 iterations. The following results are generated at the end of each iteration

(table 6.18). The results of our GA show that the symptoms 7 and 10 are sufficient for

classification into the target number of mixtures. The plot of the minimum ICOMP score

at the end of each iteration for the KCS group 2 data set is shown in figure 6.3.

Table 6.16: KCS Group2: Probability estimates of the variables
Probability m = 1 m = 2

p1 0.8310 0.0000
p2 0.8310 0.0000
p3 0.7077 0.1753
p4 0.6232 0.0000
p5 0.4995 0.0578
p6 0.4171 0.2929
p7 0.3324 0.0000
p8 0.3326 0.1769
p9 0.2493 0.0000
p10 0.2077 0.0000
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Table 6.17: KCS Group2: Confusion matrix
Actual\Predicted Mixture1 Mixture2

Mixture1 24 0
Mixture2 0 17

Table 6.18: KCS Group2: Best model & its ICOMP score for each iteration of the GA
Model # of Mixtures ICOMP

0 0 0 0 0 0 1 0 1 0 2 86.2947
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965
0 0 0 0 0 0 1 0 0 1 2 76.2965

0 0 0 0 0 0 1 0 0 1 2 76.2965
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Figure 6.3: KCS Group2: Plot of ICOMP vs Number of iterations in the GA
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6.2 Gifi - Multiple Regression

We use Gifi transformation on a mixed data set to transform the categorical predictor

variables to a continuous space and then fit a multiple regression model to predict the

continuous response. We show the results of our optimal scaling method (OSM) and linear

combination method (LCM) on a simulated and two real data sets.

6.2.1 Simulation

We simulated a mixed data using the following protocol.

• ε1 ∼ N(0,1).

• ε2 ∼ N(0,1).

• ε3 ∼ N(0,1).

• x1 = 10 + ε1.

• x2 = 10 + 0.3× ε1 + 0.9539× ε2.

• x3 = 10 + 0.3× ε1 + 0.5604× 0.9539× ε2 + 0.8282× 0.9539× ε3.

• x4 ∼ Bernoulli.

• x5 ∼ Bernoulli.

• x6 ∼ discrete U(1, 4).

• x7 ∼ discrete U(1, 5).

• x8 ∼ discrete U(1, 4).

• y = −8 + x1 + 0.3× x3 + 0.5× x5 + 0.4× x6 + 0.6× x8.

We ran multiple regression procedure on this mixed data with y as response and x1 − x8

as predictors. We included the intercept in this model. We use GA for variable selection

with the following parameters: maximum iterations - 100, population size - 20, probability

of crossover - 0.75, probability of mutation - 0.10, crossover type - uniform, fitness function

- ICOMPC1. The variables selected are Intercept, x1, x3, x4, x5, x6, x7, x8. These selected
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variables seems that the model in the original mixed space is over-fitted. Now, we trans-

form this mixed space to a pure continuous space using our Gifi system and run multiple

regression procedure on the transformed continuous space. The variables selected using

OSM procedure are Intercept, x1, x3, x5, x6, x8. The variables selected using the OSM pro-

cedure are the right set of predictors. The variables selected using LCM procedure are

Intercept, x1, x3, x5, x6. The variables selected using the LCM procedure are almost the

same as the ones selected by OSM procedure except for x8. This can be accounted for the

loss of information using the LCM procedure.

6.2.2 Beta-Carotene Data

Beta-Carotene Data: Linear Combination Method

Observational studies have suggested that low dietary intake or low plasma concentrations

of retinol, beta-carotene, or other carotenoids might be associated with increased risk of

developing certain types of cancer. However, relatively few studies have investigated the

determinants of plasma concentrations of these micronutrients. A cross-sectional study

was designed to investigate the relationship between personal characteristics and dietary

factors, and plasma concentrations of retinol, beta-carotene and other carotenoids. Study

subjects (N = 315) were patients who had an elective surgical procedure during a three-

year period to biopsy or remove a lesion of the lung, colon, breast, skin, ovary or uterus

that was found to be non-cancerous. We display the data for only two of the analytes

(BETAPLASMA and RETPLASMA).

Variable names:

• AGE: Age (years)

• SEX: Sex (1=Male, 2=Female).

• SMOKSTAT: Smoking status (1=Never, 2=Former, 3=Current Smoker)

• QUETELET: Quetelet (weight/(height2))

• VITUSE: Vitamin Use (1=Yes, fairly often, 2=Yes, not often, 3=No)
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• CALORIES: Number of calories consumed per day.

• FAT: Grams of fat consumed per day.

• FIBER: Grams of fiber consumed per day.

• ALCOHOL: Number of alcoholic drinks consumed per week.

• CHOLESTEROL: Cholesterol consumed (mg per day).

• BETADIET: Dietary beta-carotene consumed (mcg per day).

• RETDIET: Dietary retinol consumed (mcg per day)

• BETAPLASMA: Plasma beta-carotene (ng/ml)

• RETPLASMA: Plasma Retinol (ng/ml)

This data has not been published yet but a related reference is [Nierenberg et al., 1989].

Since the variables SEX, SMOKSTAT, and VITUSE are categorical, we use the Gifi trans-

formation to generate an optimal weight(score) vector that is used for transforming the

categorical space to the continuous space. Some of the pair-wise kernel density estimates

of this data in the Gifi space is shown in table 6.2.2. In this work, we used gaussian kernel

with bandwidth, h = 0.5.

We fit a multiple regression model with RETPLASMA as the dependent variable and the

variables AGE, SEX, SMOKSTAT, QUETELET, VITUSE, CALORIES, FAT, FIBER,

ALCOHOL, CHOLESTROL, BETADIET and RETDIET as independent variables. We

also include the intercept term in this model. We assume that the residuals are normally

distributed. We use GA for variable selection with maximum iterations of 100, population

size of 20, probability of crossover of 0.75, probability of mutation of 0.10 and crossover

type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score (ICOMPC1)is

given by
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Table 6.19: Kernel Density Estimate of Beta-Carotene Data in the Gifi space
KDE1 KDE2
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Model: Intercept, Age, Sex, Smokstat, Quetlet, Fat, Alcohol, Retdiet

Information criteria score: 4233.376. The parameter estimates for the above set of variables

is given by

β =




500.7981

2.5039

1.0760

−0.5323

−0.2685

−0.0118

37.2665




The RMSE for this model is 200.3348. The optimal weights(scores) associated with the

categories of the variables Sex and Smokestat are

wSex =


 1.7298

−0.2661


 wSmokeStat =




−0.6169

0.5241

0.8508




Hence, the regression equation can be written as

RETPLASMA = 500.7981 + 2.5039×Age + 1.0760×Quetlet−

= 0.5323× Fat− 0.2685×Alcohol − 0.0118×Retdiet +

= 37.2665× catX

where catX is the linear combination of the weights(scores) of the categories of the vari-

ables SEX and SMOKESTAT respectively.

The model given by the stepwise variable selection using NCSS software is given by

Model: Intercept, Age, Sex

and the RMSE computed by NCSS for the above model is 202.99. The RMSE computed by

NCSS on the data in the original mixed space for the model selected by GA and ICOMP

in the Gifi space is 201.041. In this example, the way to analyze the efficiency of this

109



0 20 40 60 80 100
4233.2

4233.4

4233.6

4233.8

4234

4234.2

4234.4

4234.6

4234.8

4235

4235.2
Plot of ICOMP vs Number of iterations in GA

Number of iterations

IC
O

M
P

 s
co

re

Figure 6.4: Beta-Carotene (RetPlasma): Plot of ICOMP vs Number of iterations in GA

transformation is by general intuition. The variable that is very much related to tumor

development is SmokeStat. This variable is not picked up by the model in the original

mixed space whereas it is picked up by the model in the Gifi space.

For instance, if the categorical variable Smokestat takes value 1 and the categorical vari-

able Sex takes value 0. The corresponding weight associated with a value of 1 for the

categorical variable Smokestat is 0.5241 and the corresponding weight associated with a

value of 0 for the categorical variable Sex is 1.7298. Therefore, the value of catX would be

0.5241 + 1.7298 = 2.2539

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.4. The plot matrix of the best set of predictors selected by GA and

ICOMP is given in figure 6.7. The plot matrix is in the order of the predictors reported

in the model i.e., Age, Quetlet, Fat, Alcohol, Retdiet and catX where catX is the linear

combination of the categorical variables Sex and Smokestat in the Gifi space. The set of

variables selected by AIC with same set of GA parameters is given by
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Model: Intercept, Age, Sex, Smokstat, Fat

The AIC score for this model is 4241.647. The estimated parameters for the model given

by AIC are given by

β =




527.5606

2.4593

−0.6243

36.5431




Since ICOMP is more consistent in choosing the right model, we consider the model selected

by ICOMP as our best fitting model for this data.

Beta-Carotene Data: Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally scaled.

We fit a multiple regression model with RETPLASMA as the dependent variable and the

variables in the Gifi space AGE, SEX, SMOKSTAT, QUETELET, VITUSE, CALORIES,

FAT, FIBER, ALCOHOL, CHOLESTROL, BETADIET and RETDIET as independent

variables. We also include the intercept term in this model. We assume that the residuals

are normally distributed. We use GA for variable selection with maximum iterations of

100, population size of 20, probability of crossover of 0.75, probability of mutation of 0.10

and crossover type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

Model: Intercept, Age, Sex, Smokstat, Vituse

The ICOMP score for this model is 4244.857. The parameter estimates for the above set

of variables is given by

β =




469.2317

2.6634

41.0245

26.9100

−22.4476



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Figure 6.5: Beta-Carotene (RetPlasmaOS): Plot of ICOMP vs Number of iterations in GA

Hence the regression equation in the Gifi space can be given by

RETPLASMA = 469.2317 + 2.6634×Age + 41.0245× Sex

+26.9100× Smokstat− 22.4476× V ituse

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.5. The set of variables selected by AIC with same set of GA

parameters is given by

Intercept, Age, Sex, Smokstat, Fat
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The AIC score for this model is 4243.2061. The estimated parameters for the above model

is given by

β =




537.5733

2.2938

45.5978

27.1234

−0.6466




Since ICOMP is more consistent in choosing the right model, we choose the model selected

by ICOMP as our best fitting model.

6.2.3 Cars Data

Cars Data: Linear Combination Method

This data is taken from JSE (Journal of Statistical Education) data archive. It contains

new car specifications for the year 2004. It contains 387 observations on 19 variables.

There are no missing values in this data. The description of the 19 variables is briefly

listed below:

• Sports Car (1=yes, 0=no)

• SUV: Sport Utility Vehicle (1=yes, 0=no)

• Wagon (1=yes, 0=no)

• Minivan (1=yes, 0=no)

• Pickup (1=yes, 0=no)

• AWD: All-Wheel Drive (1=yes, 0=no)

• RWD: Rear-Wheel Drive (1=yes, 0=no)

• SRP: Suggested Retail Price, what the manufacturer thinks the vehicle is worth,

including adequate profit for the automaker and the dealer (U.S. Dollars)

• DC: Dealer Cost (or ”invoice price”), what the dealership pays the manufacturer

(U.S. Dollars)
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• Engine size (liters)

• NumCylinders: Number of Cylinders

• HP: Horsepower

• CMPG: City Miles Per Gallon

• HMPG: Highway Miles Per Gallon

• Weight (Pounds)

• Wheel Base (inches)

• Length (inches)

• Width (inches)

The variables Sports Car, SUV, Wagon, Minivan, Pickup, AWD, RWD, NumCylinders are

categorical and the variables SRP/DC, Engine size, HP, CMPG, HMPG, Weight, Wheel

Base, Length and Width are continuous variables. The variables SRP/DC, CMPG and

HMPG can be considered to be the most obvious choice for the response variable(s). We

use the Gifi transformation on the categorical predictor variables to generate an optimal

weight(score) vector that is used for transforming the categorical space to the continuous

space. Some of the pair-wise kernel density estimates of this data in the Gifi space is shown

in table 6.2.3.

We fit a multiple regression model to the cars data with SRP as the response variable and

the variables Sports Car, SUV, Wagon, Minivan, Pickup, AWD, RWD, NumCylinders,

Engine size, HP, CMPG, HMPG, Weight, Wheel Base, Length and Width as predictor

variables. We also include the intercept term in this model. We assume that the residuals

are normally distributed. We use GA for variable selection with maximum iterations of

100, population size of 20, probability of crossover of 0.75, probability of mutation of 0.10

and crossover type as uniform. ICOMPC1 is used as the fitness function.
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Table 6.20: Kernel Density Estimate of Cars Data in the Gifi space
KDE1 KDE2
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The best set of variables selected by GA and its associated information score is given

by

Model: Intercept, SUV, Wagon, RWD, Engine size, NumCylinders, HP, HMPG, Weight,

Wheelbase, Width

Information criteria score: 8199.6978. The parameter estimates for the above set of vari-

ables is given by

β =




47055

−1942

222

681

15

−765

−621

−3523




with RMSE of 9592.1. Hence the regression equation can be given by

SRP = 47055− 1942× Enginesize + 222×HP +

= 681×HMPG + 15×Weight− 765×WheelBase−

= 621×Width− 3523× catX

where catX is the linear combination of the weights of the categories of the variables SUV,

Wagon, RWD and NumCylinders. The weight vector associated with the categories of the

variable SUV, Wagon, Minivan, RWD, and NumCylinders are given by

wSUV =


 −0.2595

1.4426


 wWagon =


 −0.0174

0.2152


 wMinivan =


 −0.0148

0.2721



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wRWD =


 0.4403

−1.37256


 wNumCylinders =




0.0433

0.1204

1.1637

0.0239

−0.2795

−3.1550




The model given by the stepwise (backward) regression method using JMP software is

given by

Model: Intercept, Minivan, RWD, Engine size, NumCylinders, HP, HMPG, Weight,

Wheel base, Length, Width

and the RMSE computed by JMP for the above model is 9741.286. The RMSE computed

by JMP for the model selected by Gifi is 9778.26. This shows that the model fitting might

be better in the Gifi space than the original space when there are many categorical vari-

ables. In this case, the categorical variables that are directly related to the SRP are SUV,

AWD/RWD, and NumCylinders. Clearly, SUV is not picked by the model in the original

mixed space whereas it is picked up by the model in the Gifi space.

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.6. A plot matrix of the best predictors in the Gifi space is shown in

figure 6.8. The plot matrix is in the order of the predictors EngSize, HP, HMPG, Weight,

WheelBase, Width and catX where catX is the linear combination of the categories of the

categorical variables SUV, Wagon, RWD and NumCylinders in the Gifi space.

The model selected by AIC with the same set of GA parameters is given by

Model: Intercept, SUV, Wagon, RWD, Engine size, NumCylinders, HP, HMPG, Weight,

Wheel base, Width

The AIC score for this model is 8210.8271. Since ICOMP is more consistent in choosing

the right model, we consider the model selected by ICOMP as the best fitting model for
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Figure 6.6: Cars Data (SRP): Plot of ICOMP vs Number of iterations in GA

this data set.

Cars Data: Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally scaled.

We fit a multiple regression model to the cars data with SRP as the response variable and

the variables Sports Car, SUV, Wagon, Minivan, AWD, RWD, NumCylinders, Engine size,

HP, CMPG, HMPG, Weight, Wheel Base, Length and Width as predictor variables. We

also include the intercept term in this model. We assume that the residuals are normally

distributed. We use GA for variable selection with maximum iterations of 100, population

size of 20, probability of crossover of 0.75, probability of mutation of 0.10 and crossover

type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

SportsCar, SUV, AWD, RWD, EngSize, NumCylinders, HP, HMPG, Weight, WheelBase
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Figure 6.7: Beta-Carotene: Plot matrix of the best predictors in the model RetPlasma
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Figure 6.8: Cars(SRP) Data: Plot Matrix of the predictors in the Gifi space
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The ICOMP score for this model is 8232.5139. The parameter estimates for the above

model is given by

β =




−1045.9

−2271.5

1317.9

−3745.8

−3194.8

−7070.1

225.0

756.5

11.7

−626.1




Hence the regression equation in the Gifi space is given by

SRP = −1045.9× SportsCar − 2271.5× SUV +

1317.9×AWD − 3745.8×RWD − 3194.8×EngSize

−7070.1×NumCylinders + 225×HP +

756.5×HMPG + 11.7×Weight− 626.1×WheelBase

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.9. The set of predictors selected by AIC is given by

Intercept, SUV, RWD, EngSize, NumCylinders, HP, HMPG, Weight, WheelBase, Width

The AIC score is: 8212.7737. Since ICOMP is more consistent in choosing the right model,

we consider the model selected by ICOMP as our best fitting model.

6.3 Gifi - Binary Logistic Regression

We use Gifi transformation on a mixed data set to transform the categorical predictor

variables to a continuous space and then fit a binary logistic regression model to predict
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Figure 6.9: Cars Data (SRPOS): Plot of ICOMP vs Number of iterations in GA

the binary response. We show the results of our algorithm on two real data sets.

6.3.1 ICU Data

ICU Data: Linear Combination Method

The data consist of 200 subjects from a larger study on the survival of patients following

admission to an adult intensive care unit (ICU). The study used logistic regression to pre-

dict the probability of survival for these patients until their discharge from the hospital.

The dependent variable is the binary variable Vital Status (STA). Nineteen possible pre-

dictor variables, both discrete and continuous, were also observed.

Variable names:

• ID: ID number of the patient

• STA: Vital status (0 = Lived, 1 = Died)

• AGE: Patient’s age in years

• SEX: Patient’s sex (0 = Male, 1 = Female)
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• RACE: Patient’s race (1 = White, 2 = Black, 3 = Other)

• SER: Service at ICU admission (0 = Medical, 1 = Surgical)

• CAN: Is cancer part of the present problem? (0 = No, 1 = Yes)

• CRN: History of chronic renal failure (0 = No, 1 = Yes)

• INF: Infection probable at ICU admission (0 = No, 1 = Yes)

• CPR: CPR prior to ICU admission (0 = No, 1 = Yes)

• SYS: Systolic blood pressure at ICU admission (in mm Hg)

• HRA: Heart rate at ICU admission (beats/min)

• PRE: Previous admission to an ICU within 6 months (0 = No, 1 = Yes)

• TYP: Type of admission (0 = Elective, 1 = Emergency)

• FRA: Long bone, multiple, neck, single area, or hip fracture (0 = No, 1 = Yes)

• PO2: PO2 from initial blood gases (0 = > 60, 1 = 60)

• PH: PH from initial blood gases (0 = 7.25, 1 < 7.25)

• PCO: PCO2 from initial blood gases (0 = 45, 1 = > 45)

• BIC: Bicarbonate from initial blood gases (0 = 18, 1 = < 18)

• CRE: Creatinine from initial blood gases (0 = 2.0, 1 = > 2.0)

• LOC: Level of consciousness at admission (0 = no coma or stupor, 1 = deep stupor,

2 = coma)

This data set is first run using the logistic regression in NCSS. It resulted in giving a warn-

ing message stating that the maximum likelihood criteria failed to converge. The warning

message given by the NCSS software tells us that the usual statistical software fails to come

up with an accurate or a near accurate model when the data is of the mixed type. The

results that are given by NCSS shows that only the parameters RACE, CAN and LOC are
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significant. These results are not be believed since the software failed to get the maximum

likelihood routine to converge. Even the software JMP produced a similar result. Hence,

we can say that the present commercial software’s fail to produce good results on such data

sets.

Now, we show the results of our Gifi system on this data set. The variables AGE, SYS

and HRA are continuous predictors and the variables SEX, RACE, SER, CAN, CRN, INF,

CPR, PRE, TYP, FRA, PO2, PH, PCO, BIC, CRE and LOC are categorical predictors.

STA is a binary response variable. We first apply the Gifi transformation on the categorical

predictors to generate an optimal weight(score) vector that is used for transforming the

categorical space to a pure continuous space. A plot matrix of the data in the Gifi space is

shown in figure 6.12. The plot matrix is in the order of the predictors, AGE, SYS, HRA,

catX where catX is the linear combination of the categories of the categorical variables in

the Gifi space. Some of the pair-wise kernel density estimates of this data in the Gifi space

is given in table 6.3.1.

We fit a binary logistic regression in the Gifi space.The input model includes an inter-

cept term. We use GA for variable selection with maximum iterations of 100, population

size of 20, probability of crossover of 0.75, probability of mutation of 0.10 and crossover

type as uniform. ICOMPIFIM is used as the fitness function.

The following model is selected by GA with above input parameters.

Model = Intercept, RAC, INF, TYP, FRA, LOC

Information Criterion Score: 164.102. The best value of the above fitness function at the

end of each iteration of the GA process is shown in the figure 6.10. The parameters INF,

TYP, FRA and LOC are all related to the seriousness of the patients’ condition.

The confusion matrix is given in table 6.22. The prediction accuracy is 84% and the
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Table 6.21: Kernel Density Estimate of ICU Data in the Gifi space
KDE1 KDE2
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Figure 6.10: ICU Data (BLR): Plot of ICOMP vs Number of iterations in GA
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Table 6.22: Classification matrix

Lived(0) Died(1)

Lived(0) 158 30
Died(1) 2 10

error rate is 16%. The estimated parameters are given by

β =


 −1.7573

1.3035




where -1.7573 is the coefficient corresponding to the intercept term and 1.3035 is the

coefficient corresponding to the categorical terms in the model. The weights associated

with the variable RAC, INF, TYP, FRA, and LOC are given by

wRAC =




0.0178

−0.1572

−0.0757


 wINF =


 −0.3867

0.5341


 wTY P =


 −0.9797

0.3532




wFRA =


 0.0140

−0.1725


 wLOC =




−0.1087

0.4921

1.7652




For instance, a value of 1 for RAC, 1 for INF, 1 for TYP, 1 for FRA, and 1 for LOC would

yield

0.0178− 0.3867− 0.9797 + 0.0140− 0.1087 = −1.4433

Therefore, the predicted probability, p, is given by

p =
e−1.7573−1.3035×1.4433

1 + e−1.7573−1.3035×1.4433

= 0.0256

Since the value of p is less than 0.5, the category of STA predicted is 0.

125



The data in the original space is run for binary logistic regression using GA and ICOMPIFIM

as the model selection criteria. The best model selected by GA is given by

Model: AGE, RAC, SER, CAN, CPR, SYS, PRE, TYP, PCO, LOC

The model fitted in the Gifi space is much better in terms of sparsity. The model selected

by AIC is given by

Model: Intercept, AGE, RAC, TYP, LOC

The AIC score for this model is 160.23. Since ICOMP is more consistent in choosing the

right model, we consider the model selected by ICOMP as the best fitting model.

ICU Data: Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally scaled.

We fit a binary logistic regression model with STA as the binary response variable and AGE,

SEX, RACE, SER, CAN, CRN, INF, CPR, SYS, HRA, PRE, TYP, FRA, PO2, PH, PCO,

BIC, CRE and LOC as predictor variables. The input model includes an intercept term.

We use GA for variable selection with maximum iterations of 100, population size of 20,

probability of crossover of 0.75, probability of mutation of 0.10 and crossover type as uni-

form. ICOMPIFIM is used as the fitness function.

The following model is selected as best by the GA with the above input parameters.

Intercept, AGE, TYP, LOC

The information criteria score: 166.6826. The estimated parameters for this model is given

by

β =




−3.6453

0.0325

−1.6342

−1.8151




The confusion matrix is given in table 6.23. The prediction accuracy is 83.5% and the error

rate is 16.5%. The best value of the above fitness function at the end of each iteration of

the GA process is shown in figure 6.11.
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Table 6.23: Classification matrix

Lived(0) Died(1)

Lived(0) 158 31
Died(1) 2 9
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Figure 6.11: ICU Data (BLROS): Plot of ICOMP vs Number of iterations in GA
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6.3.2 Prostate Cancer Data

Prostate Cancer Data: Linear Combination Method

This data is taken from [Hosmer and Lemeshow, 2000]. The data contains 380 observations

on 9 variables with 4 missing observations. The missing observations were deleted leaving

376 observations for the analysis. The variables are briefly listed below:

• CAPSULE - Tumor Penetration of Prostatic Capsule, (0 - No Penetration, 1 - Pen-

etration).

• AGE

• RACE (1 - white, 2 - black)

• DPROS - Results of the Digital Rectal Exam (1 - No Nodule, 2 - Unilobar Nodule

(Left), 3 - Unilobar Nodule (Right), 4 - Bipolar Nodule

• DCAPS - Detection of Capsular Involvement in Rectal Exam (1 - No, 2 - Yes)

• PSA - Prostatic Specific Antigen Value (mg/ml)

• VOL - Tumor Volume Obtained from Ultrasound (cm3)

• GLEASON - Total Gleason Score (0 - 10)

The data on these 376 observations has been transformed to the Gifi space. A plot matrix

of the data in the Gifi space is shown in figure 6.13. The plot matrix is in the order of the

variables AGE, PSA, VOL, catX where catX is the linear combination of the categories of

the categorical variables in the Gifi space. Some of the pairwise kernel density estimates

of this data is given in table 6.3.2.

A binary logistic regression model is fit to the data in the Gifi space with CAPSULE

as the response variable and RACE, DPROS, DCAPS, GLEASON, AGE, PSA and VOL

as predictor variables. The input model includes an intercept term. We use GA for variable

selection with maximum iterations of 100, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPIFIM is used
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Figure 6.12: ICU Data: Plot Matrix of the data in the Gifi space
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Figure 6.13: PCD Data: Plot Matrix of the data in the Gifi space
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Table 6.24: Kernel Density Estimate of Prostate Cancer Data in the Gifi space
KDE1 KDE2
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Figure 6.14: PCD (BLR): Plot of ICOMP vs Number of iterations in GA

Table 6.25: Classification matrix

CAPSULE No Penetration Penetration

No Penetration 185 62
Penetration 40 89

as the fitness function.

The following model is selected as best model by the GA process with above input pa-

rameters.

Model = Intercept, DPROS, PSA, GLEASON

Information Criterion Score: 399.5404. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.14. The confusion

matrix is given in 6.25. The prediction accuracy is 72.87% and the error rate is 27.12%.

The data in the original mixed space is run for binary logistic regression using NCSS. The

only variables found significant are DPROS and PSA resulting in a prediction accuracy of

69.737%. The confusion matrix is given in table 6.26. For this data set, the model fitting

in Gifi space is better than the model fitting in the original mixed space.
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Table 6.26: Classification matrix

CAPSULE No Penetration Penetration

No Penetration 197 30
Penetration 85 68

Table 6.27: Classification matrix

CAPSULE No Penetration Penetration

No Penetration 193 56
Penetration 32 95

Prostate Cancer Data: Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally

scaled. We fit a binary logistic regression model with CAPSULE as the response variable

and RACE, DPROS, DCAPS, GLEASON, AGE, PSA and VOL as predictor variables.

The input model includes an intercept term. We use GA for variable selection with max-

imum iterations of 100, population size of 20, probability of crossover of 0.75, probability

of mutation of 0.10 and crossover type as uniform. ICOMPIFIM is used as the fitness

function.

The following model is selected as best model by the GA process with above input pa-

rameters.

AGE, DPROS, PSA, GLEASON

The information criteria score: 403.5058. The parameter estimates for this model is given

by

β =




−0.0121

−0.7721

0.0237

−1.2747




The confusion matrix is given in table 6.27. The prediction accuracy is 76.595% and the

error rate is 23.4%. The best value of the above fitness function at the end of each iteration

of the GA process is shown in the figure 6.15.
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Figure 6.15: PCD (BLROS): Plot of ICOMP vs Number of iterations in GA

6.4 Gifi - Multivariate Regression

We use Gifi transformation on a mixed data set to transform the categorical predictor

variables to a pure continuous space and then fit a multivariate regression model to predict

a set of continuous responses. We show the results of our algorithm on two real data sets.

6.4.1 Beta-Carotene

Beta-Carotene – Linear Combination Method

We fit a multivariate regression model for the Beta-Carotene data with BETAPLASMA

and RETPLASMA as dependent variables and AGE, SEX, SMOKSTAT, QUETELET,

VITUSE, CALORIES, FAT, FIBER, ALCOHOL, CHOLESTROL, BETADIET and RET-

DIET as independent variables. Since the variables SEX, SMOKSTAT, and VITUSE are

categorical, we use the Gifi transformation to come up with an optimal weight vector that

is used for transforming the categorical space to a pure continuous space. We assume that

the residuals are multivariate normally distributed. We also include the intercept term in

this model. We use GA for variable selection with maximum iterations of 100, population
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size of 20, probability of crossover of 0.75, probability of mutation of 0.10 and crossover

type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

Model: Intercept, Sex, Smokstat, Vituse

Information criteria score: 14785.0949.

The parameter estimates for the above set of variables is given by

β =


 189.8921 602.7905

−29.7136 18.4572




A new observation vector Yi can be predicted from Xi ×Beta.

The optimal weights associated with the categories of the variable Sex, Smokestat and

Vituse are given by

wSex =


 1.7298

−0.2661


 wSmokeStat =




−0.6169

0.5241

0.8508


 wV ituse =




−0.5462

−0.4232

0.9130




For instance, if the ith observation contains value 2 for Sex, 1 for SMOKESTAT and 3

for V ITUSE. Therefore the linear combination of the weights of these categories would

yield -0.2661 + -0.6169 + 0.9130 = -0.03. Hence the predicted Ŷi is given by

[
1 −0.03

]
× beta =

[
1 −0.03

]

 189.8921 602.7905

−29.7136 18.4572




=
[

190.7835 602.23678
]
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Figure 6.16: Beta-Carotene (MVR): Plot of ICOMP vs Number of iterations in GA

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.16. The set of variables selected by AIC with same set of GA

parameters is given by

Model: Intercept, Age, Sex, Smokstat, Quetlet, Vituse, Fiber, Cholestrol, Betadiet

The AIC score for this model is 14752.2643.

The estimated parameters for the model given by AIC are given by

β =




225.1809 485.7480

1.1767 2.7632

−6.2996 0.7885

4.9647 −1.3943

−0.1360 −0.1047

0.0183 0.0005

−26.6503 16.3297



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Since ICOMP is more consistent in model selection, we consider the model selected by

ICOMP as our best fitting model for this data. The variable selection for multivariate

regression in NCSS gave Age, Sex, Quetlet, Vituse, Fiber, Cholestrol, Betadiet as the best

predictors for this data in the original mixed space. Even in the multivariate regression

case, the most obvious categorical variable Smokestat is not picked up by the model in the

original mixed data space whereas it is picked up by the model in the Gifi space.

Beta-Carotene – Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally scaled.

We fit a multivariate regression model for the Beta-Carotene data with BETAPLASMA

and RETPLASMA as dependent variables and AGE, SEX, SMOKSTAT, QUETELET,

VITUSE, CALORIES, FAT, FIBER, ALCOHOL, CHOLESTROL, BETADIET and RET-

DIET as independent variables. Since the variables SEX, SMOKSTAT, and VITUSE are

categorical, we use the Gifi transformation to come up with an optimal weight vector that

is used for transforming the categorical space to a pure continuous space. We assume that

the residuals are multivariate normally distributed. We also include the intercept term in

this model. We use GA for variable selection with maximum iterations of 100, population

size of 20, probability of crossover of 0.75, probability of mutation of 0.10 and crossover

type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

Intercept, Age, Sex, Smokstat, Quetlet, Vituse, Fiber

The information criteria score is: 8381.3187.
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Figure 6.17: Beta-Carotene (MVR-OS): Plot of ICOMP vs Number of iterations in GA

The parameter estimates for the above model is given by

β =




195.6098 475.9395

1.4726 2.6944

−23.9980 42.0694

−18.3848 26.1379

−6.3072 0.7824

−47.4683 −24.5633

6.6793 −2.2463




The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.17. The set of predictors selected by AIC are given by

Intercept, Age, Sex, Quetlet, Vituse, Fiber, Cholestrol, Betadiet

The AIC score for this model: 8381.5021.

Since ICOMP is more consistent in model selection, we choose the model selected by

ICOMP as our best fitting model.

137



6.4.2 Cars Data

Cars – Linear Combination Method

We fit a multivariate regression to the cars data with SRP, CMPG, and HMPG as the

dependent variables and the variable Sports Car, SUV, Wagon, Minivan, Pickup, AWD,

RWD, NumCylinders, Engine size, HP, Weight, Wheel Base, Length and Width as pre-

dictor variables. We assume a multivariate normal distribution on the residuals. We also

include the intercept term in this model. We use GA for variable selection with maximum

iterations of 100, population size of 20, probability of crossover of 0.75, probability of mu-

tation of 0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

Model: Intercept, SUV, Wagon, Minivan, EngSize, HP

Information criteria score: 26333.2606.

The parameter estimates for the above set of variables is given by

β =




1.0e + 004∗
−1.6021 0.0032 0.0039

−0.1915 −0.0002 −0.0002

0.0258 −0.0000 −0.0000

−0.1714 −0.0002 −0.0004




The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.18. The set of variables selected by AIC with the same set of GA

parameters is given by

Model: Intercept, SUV, Wagon, Minivan, HP, Weight, WheelBase, Length, Width

The AIC score for this model is 20162.0113.
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Figure 6.18: Cars Data (MVR): Plot of ICOMP vs Number of iterations in GA

The estimated parameters for the model given by AIC are given by

β =




69010 34 32

225 0 0

9 0 0

−617 0 0

−19 0 0

−636 0 0

−4855 0 −2




We consider the model selected by ICOMP as our best fitting model for this data. The

variable selection for multivariate regression in NCSS gave SUV, RWD, HP, Weight, Wheel-

Base, and Length as the best predictors for this data in the original mixed space.

Cars – Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally

scaled. We fit a multivariate regression to the cars data with SRP, CMPG, and HMPG as
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the dependent variables and the variable Sports Car, SUV, Wagon, Minivan, AWD, RWD,

NumCylinders, Engine size, HP, Weight, Wheel Base, Length and Width as predictor vari-

ables. We assume a multivariate normal distribution on the residuals. We also include the

intercept term in this model. We use GA for variable selection with maximum iterations

of 100, population size of 20, probability of crossover of 0.75, probability of mutation of

0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The best set of variables selected by GA and its associated information score is given

by

Intercept, SUV, RWD, EngSize, NumCylinders, HP, Weight, WheelBase

The information criteria score : 17660.0141.

The parameter estimates are given by

β =




1.0e + 004∗
3.9084 0.0032 0.0033

−0.3516 −0.0000 −0.0002

−0.3184 0.0000 0.0001

−0.3418 −0.0001 −0.0000

−0.7702 −0.0002 −0.0001

0.0213 −0.0000 −0.0000

0.0009 −0.0000 −0.0000

−0.0683 0.0000 0.0000




The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.19. The best set of predictors selected by AIC is given by

Intercept, SUV, Minivan, AWD, RWD, NumCylinders, HP, Weight, WheelBase, Length,

Width

The information criteria score: 11590.1955.

We choose the model selected by ICOMP as our best fitting model.
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Figure 6.19: Cars Data (MVROS): Plot of ICOMP vs Number of iterations in GA

6.5 Gifi - Multivariate Logistic Regression

We use Gifi transformation on a mixed data set to transform the categorical predictor

variables to a pure continuous space and then fit a multivariate logistic regression model

to predict a set of categorical responses. We show the results of our algorithm on a real

data set.

Healthcare Service Data

Healthcare Service Data – Linear Combination Method

This data contains 98 observations on 9 independent and 2 binary dependent variables.

Some of independent variables are continuous and some are categorical. These observa-

tions are drawn from a population of more than 9000 cases. This data set is from a health

care company that offers home health service to patients, usually old people, and gets their

revenue from Medicare payments. The company experienced a great amount of losses. So

to improve their operating strategies, the company decided to introduce statistical analysis

to build up models to identify the factors (variables) that are important in determining y1,
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whether this patient is profitable (’1’) or not (’0’) and y2, whether this patient is hospital-

ized (’1’) or not (’0’).

The variables are briefly described below:

• LOS (Length of stay). Type: Continuous

• AGE (Age of a patient). Type: Continuous

• ICD: Code for the primary disease of the patient. Type: Categorical

• REHPOT: Potential for rehabilitation. Type: Categorical

• FREQ: Number of times care giver comes per day. Type: Categorical (1 - more than

10 times, 2 - 8 to 10 times, 3 - 5 to 7 times, 4 - 1 to 4 times, 5 - irregularly, 6 -

unknown)

• TOTVS: Total visits from nurses and therapists for an episode. Type: Continuous

• SUPPCHGS: Supply charges. Type: Continuous

• SEX: Gender of a patient. Type: categorical

• GRP: number of a group into which a patient is classified according to different

clinical scores, functional scores, and service scores.

• PROFITABLE: Is it profitable to provide services to a particular patient. Type:

Categorical.

• HOSPITALIZED: Is a particular patient HOSPITALIZED? Type: Categorical.

A plot matrix of the data in the Gifi space is shown in figure 6.20. The plot matrix is in

the order of the predictors LOS, AGE, TOTVS, SUPPCHGS and catX where catX is the

linear combination of the categories of the categorical variables in the Gifi space. Some of

the pair-wise kernel density estimates of this data in the Gifi space is shown in table 6.5.
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Figure 6.20: HCS Data: Plot Matrix of the data in the Gifi space

Table 6.28: Kernel Density Estimate of Health Serivce Data in the Gifi space
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Figure 6.21: HCS Data (MVLR): Plot of ICOMP vs Number of iterations in GA

The categorical predictor variables are first transformed to 1-dimensional Gifi space and

a multivariate logistic regression model is fit to the data with PROFITABLE and HOS-

PITALIZED as binary responses and LOS, AGE, ICD, REHPOT, TOTVS, SUPPCHGS,

GRP as predictors. The input model uses the intercept term. We use GA for variable

selection with maximum iterations of 20, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPIFIM is used

as the fitness function.

The following model is selected by GA process with the above input parameters.

Model = Intercept, ICD, TOTVS, SEX

Information Criterion Score: 155.8194

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.21. The estimated parameters are given by
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Table 6.29: HCS: Linear Combination Values

PROFITABLE HOSPITALIZED Linear Combination Value (LCV)

0 0 (0.0265 + (-0.4905)) = -0.464
0 1 (0.0265 + (0.4709)) = 0.4974
1 0 (-0.4058 + (-0.4905)) = -0.8963
1 1 (-0.4058 + 0.4709) = 0.0651

β =




−5.1460 −1.8936 −2.4355

0.0829 0.0723 −0.0181

−0.9179 −0.7818 −0.2603




where the first row corresponds to the intercept coefficient and the second row corresponds

to the coefficient of the continuous predictor TOTVS, and the third row corresponds to

the coefficient of the categorical variables, ICD and SEX.

The weight vectors associated with the categorical response variables, PROFITABLE and

HOSPITALIZED, are given by

wPROFITABLE =


 0.0265

−0.4058


 wHOSPITALIZED =


 −0.4905

0.4709




Hence, a linear combination of the weights of these two categorical response variables would

give four different continuous values given in table 6.29. Hence, the 1-dimensional contin-

uous values in the Gifi space for the categorical response variables PROFITABLE, and

HOSPITALIZED consists of four distinct values. We consider these four distinct LCV’s

as four different classes with the lowest LCV as class 1, the next lowest as class 2, the

next lowest as class 3, and the highest LCV as class 4. Hence the linear combination

that corresponds to PROFITABLE = 1 and HOSPITALIZED = 0 is considered as class

1, the linear combination corresponding to PROFITABLE = 0 and HOSPITALIZED = 0

is considered as class 2, the linear combination corresponding to PROFITABLE = 1 and

HOSPITALIZED = 1 is considered as class 3 and the linear combination corresponding to

PROFITABLE = 0 and HOSPITALIZED = 1 is considered as class 4.
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Table 6.30: ICOMP: Confusion Matrix (HCS)

Class 1 2 3 4

1 0 0 0 0
2 3 31 0 7
3 0 0 0 0
4 0 14 3 40

Table 6.31: AIC: Confusion Matrix (HCS)

Class 1 2 3 4

1 0 0 0 0
2 3 31 0 9
3 0 0 0 0
4 0 14 3 38

The confusion matrix (ICOMP) is given in table 6.30. The prediction accuracy is 72.45%

and the error rate is 27.55%.

The model selected by AIC is given by

Model = Intercept, LOS, ICD, TOTVS, SUPPCHGS, SEX

The AIC score for this model is 137.8224.

The parameter estimates are given

β =




−5.2812 −2.1566 −1.8322

0.0032 0.0056 −0.0977

0.0758 0.0664 0.0860

0.0094 0.0079 −0.0085

−0.7962 −0.7728 −0.1817




The confusion matrix (AIC) is given in table 6.31. The prediction accuracy is 70.41% and

the error rate is 29.59%.

We consider the model selected by ICOMP as the best fitting model.
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Healthcare Service Data – Optimal Scaling Method

The data set if first transformed to the Gifi space and the categorical variables are optimally

scaled. In the Gifi space, the data set is purely continuous. Hence, we fit a multivariate re-

gression with PROFITABLE and HOSPITALIZED variables in the Gifi space as responses

and the variables LOS, AGE, ICD, REHPOT, FREQ, TOTVS, SUPPCHGS, SEX, GLEA-

SON variables in the Gifi space as predictors. The input model includes the intercept term.

We use GA for variable selection with maximum iterations of 100, population size of 20,

probability of crossover of 0.75, probability of mutation of 0.10 and crossover type as uni-

form. ICOMPIFIM is used as the fitness function.

The following model is selected as best model by the GA process with above input pa-

rameters.

Intercept, ICD, REHPOT, FREQ, TOTVS, GRP

The information criteria score: -7.7717.

The estimated parameters for this model is given by

β =




−0.0077 0.2737

0.0071 0.2645

−0.0300 −0.1525

−0.0038 −0.1129

0.0003 −0.0098

0.0256 −0.1307




The predicted values of the response variables PROFITABLE and HOSPITALIZED are

re-mapped to their original scale. The confusion matrix for the response variable, PROF-

ITABLE, is given in table 6.32. The prediction accuracy is 93.88% and the error rate is

6.12%.

The confusion matrix for the response variable, HOSPITALIZED, is given in table 6.33.

The prediction accuracy is 81.63% and the error rate is 18.37%.
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Table 6.32: Classification matrix

PROFITABLE 0 1

0 92 6
1 0 0

Table 6.33: Classification matrix

HOSPITALIZED 0 1

0 37 7
1 11 43

The best value of the above fitness function at the end of each iteration of the GA process

is shown in the figure 6.22.

6.6 Gifi - Discriminant Analysis

We use Gifi transformation on a mixed data set to transform the categorical predictor

variables to a one dimensional continuous space and run discriminant analysis in the Gifi

space. We show the results of our algorithm on two real data sets.

6.6.1 ICU Data

ICU Data: Linear Combination Method

The data is run for discriminant analysis in the original space with STA as the classification

variable and AGE, SEX, RACE, SER, CAN, CRN, INF, CPR, SYS, HRA, PRE, TYP,

FRA, PO2, PH, PCO, BIC, CRE, LOC as predictor variables. The classification variable,

STA, has two groups (0 and 1). We use the likelihood ratio statistic to test for the equality

of the covariance matrices for the two groups, ( [Ender, 1998]). The covariance matrices for

the two groups in the original space are detected to be unequal. Hence, we run quadratic

discriminant analysis instead of linear discriminant analysis. The confusion matrix is given

in table 6.34. The AIC score for this model is 7042.2 and ICOMP score is 7632.9. The

prediction accuracy is 87%. The following classification functions are computed for each
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Figure 6.22: HCS Data (MVLROS): Plot of ICOMP vs Number of iterations in GA

Table 6.34: ICU Data: Confusion Matrix

STA 0 1

0 140 6
1 20 34
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category.

STA(0) = −171.4033 + 0.1647×AGE + 1.9163× SEX +

4.5249×RACE + 25.4714× SER + 25.2614× CAN +

2.7593× CRN + 2.8873× INF + 41.4321× CPR +

0.2245× SY S + 0.0370×HRA + 15.7151× PRE +

23.0880× TY P + 18.3646× FRA + 32.9669× PO2 +

8.9991× PH − 10.0003× PCO + 10.4094×BIC +

31.5575× CRE + 18.7705× LOC

STA(1) = −444.4892 + 1.2151×AGE +−54.5064× SEX +

24.6862×RACE + 49.0009× SER + 57.0335× CAN +

−25.1709× CRN − 38.2563× INF − 2.5582× CPR +

0.6841× SY S + 1.1966×HRA + 73.7960× PRE +

150.4803× TY P + 49.8615× FRA− 4.5000× PO2−

0.8055× PH + 40.9973× PCO + 26.8239×BIC +

56.5803× CRE + 34.2815× LOC
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Table 6.35: ICU Data: Confusion Matrix

STA 0 1

0 147 23
1 13 17

The number of discriminant functions selected by ICOMP is 1. It is given by

DF =




−0.0075

0.0885

0.0121

0.0754

−0.4206

−0.0086

−0.0407

−0.1075

0.0016

0.0007

−0.1783

−0.3609

−0.1122

−0.0783

−0.3564

0.3902

0.0683

−0.0871

−0.5690




Now, we present the results of the discriminant analysis in the Gifi space. The categorical

predictors are transformed to the Gifi space. The covariance matrices for the two groups

are detected to be unequal. Hence we run quadratic discriminant analysis in the Gifi

space. The confusion matrix is shown in table 6.35. The AIC score for this model is 6505.6

and ICOMP score is 6515.1. The prediction accuracy is 82%. There is a 5% loss in the
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prediction accuracy. This loss can be accounted for the loss of information using the LCM

procedure. The following classification functions are computed for each category.

STA(0) = −20.0056 + 0.1099×AGE + 0.1319× SY S + 0.1551×HRA + 0.6305× catX

STA(1) = −24.6195 + 0.2121×AGE + 0.1281× SY S + 0.1635×HRA− 0.3037× catX

where catX is the linear combination of the weights of the corresponding categories of the

categorical predictors in the Gifi space. The weight vector associated with SEX, RACE,

SER, CAN, CRN, INF, CPR, PRE, TYP, FRA, PO2, PH, PCO, BIC, CRE, LOC are

given by

wSEX =


 0.1478

−0.2411


 wRACE =




−0.0178

0.1572

0.0757


 wSER =


 −0.7401

0.6433




wCAN =


 −0.0823

0.7405


 wCRN =


 0.1362

−1.2978


 wINF =


 0.3867

−0.5341




wCPR =


 0.1171

−1.6840


 wPRE =


 −0.0352

0.1997


 wTY P =


 0.9797

−0.3532




wFRA =


 −0.0140

0.1725


 wP02 =


 0.1172

−1.3476


 wPH =


 0.1349

−1.9410




wPCO =


 0.1118

−1.0059


 wBIC =


 0.1376

−1.6966


 wCRE =


 0.0948

−1.8007



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wPCO =




0.1087

−0.4921

−1.7652




Suppose if a new observation contains the following values:

AGE = 27

SEX = 1

RACE = 1

SER = 1

CAN = 1

CRN = 1

INF = 1

CPR = 1

SYS = 142

HRA = 88

PRE = 1

TYP = 1

FRA = 1

PO2 = 1

PH = 1

PCO =1

BIC = 1

CRE = 1

LOC = 1
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In the Gifi space, the value of catX for this observation is given by

catX = −0.2411− 0.0178 + 0.6433 + 0.7405−

1.2978− 0.5341− 1.6840 + 0.1997− 0.3532 +

0.1725− 1.3476− 1.9410− 1.0059− 1.6966−

1.8007− 0.4921

= −10.6559

Hence,

STA(0) = −20.0056 + 0.1099× 27 + 0.1319× 142 +

0.1551× 88 + 0.6305× (−10.6559)

= 8.6217

STA(1) = −24.6195 + 0.2121× 27 + 0.1281× 142 +

0.1635× 88− 0.3037× (−10.6559)

= 16.9217

Since STA(1) > STA(0), we assign the new observation to the group for which STA = 1.

The within group and between group covariance matrices in the Gifi space are given by

ΣW =




385.8 53.5 16.8 −3.1

53.5 1035.2 −44.1 11.4

16.8 −44.1 715.5 −22.7

−3.1 11.4 −22.7 6.2



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Figure 6.23: ICU Data (DA): Scatter Plot Matrix of the data in the Gifi space

ΣB =




14.3641 −25.4972 3.2215 −3.3754

−25.4972 45.2593 −5.7184 5.9916

3.2215 −5.7184 0.7225 −0.7570

−3.3754 5.9916 −0.7570 0.7932




This is one of the advantages of the Gifi system since the dimension of the within group

and between group covariance matrices would be much less than in the original space if

there are many categorical variables in the data.

The number of discriminant functions selected by ICOMP are 2. They are given by

[
DF1 DF2

]
=




−0.2862 −0.0677

−0.0379 0.0394

−0.0263 0.0273

−0.9570 0.9966




The scatter plot matrix for each pair of variables in the Gifi space is shown in figure 6.23.

The set of variables that are included in the scatter plot are AGE, SYS, HRA and catX
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Figure 6.24: ICU (DA): Plot of ICOMP vs Number of iterations in GA

where catX is the linear combination of the categories of the categorical variables in the

Gifi space. The scatterplot on the first row and the second column is the scatterplot of

the variable AGE and SYS. The two groups are identified with two different colors in the

scatterplot.

Now, we show the results of the variable selection on this data set. We use GA for variable

selection with maximum iterations of 100, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPC1F is used

as the fitness function.

The following parameters are selected by GA with the above input parameters.

Model : RAC

Information Criterion Score: -639.0167. The best value of the above fitness function at the

end of each iteration of the GA process is shown in the figure 6.24.

156



Table 6.36: ICU Data: Confusion Matrix

STA 0 1

0 144 8
1 16 32

ICU Data: Optimal Scaling Method

The data is transformed to the Gifi space and the categorical variables are optimally

scaled. We fit a discriminant analysis with STA as the classification variable and AGE,

SEX, RACE, SER, CAN, CRN, INF, CPR, SYS, HRA, PRE, TYP, FRA, PO2, PH, PCO,

BIC, CRE, LOC as predictor variables. The classification variable, STA, has two groups

(0 and 1). The covariance matrices for the two groups in the Gifi space are detected

to be unequal. Hence, we run quadratic discriminant analysis instead of linear discrimi-

nant analysis. The confusion matrix is given in table 6.36. The AIC score for this model is

5954 and ICOMP score is 7485.2. The prediction accuracy is 88% and the error rate is 12%.

The classification functions are given by

STA(0) = −24.6708 + 0.1898×AGE + 1.3122× SEX

+12.3108×RAC + 1.1111× SER + 0.8713× CAN

+5.9038× CRN + 2.0444× INF − 1.6979× CPR

+0.1567× SY S + 0.1694×HRA− 10.4174× PRE

−1.6696× TY P + 26.5411× FRA + 3.0161× PO2

+0.9725× PH + 2.4430× PCO − 4.1856×BIC

+4.6344× CRE + 0.3172× LOC
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STA(1) = −78.6236 + 0.6079×AGE + 51.0637× SEX

+10.2779×RAC + 9.3886× SER + 11.9869× CAN

+2.5168× CRN + 7.9870× INF + 6.5007× CPR

+0.3757× SY S + 0.5917×HRA + 91.4165× PRE

−34.3489× TY P + 128.4370× FRA + 3.4783× PO2

−0.6055× PH + 1.5200× PCO + 2.0856×BIC

−6.8098× CRE − 15.1322× LOC

The number of discriminant functions selected by ICOMP is 1. It is given by

DF =




−0.0049

−0.1547

0.4404

0.0384

−0.3389

0.0132

0.0313

0.0472

0.0010

0.0006

−0.5360

0.1851

−0.3572

0.0418

0.1046

−0.2289

−0.0273

0.0346

0.3823



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Figure 6.25: ICU (DAOS): Plot of ICOMP vs Number of iterations in GA

Since there are many variables in the Gifi space, we do not give the scatter plot matrix in

this case.

Now, we show the results of the variable selection on this data set. We use GA for variable

selection with maximum iterations of 100, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPC1F is used

as the fitness function.

The following parameters are selected by GA with the above input parameters.

Model : SEX, RAC, PRE, FRA

Information Criterion Score: -1805.0682. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.25.
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Table 6.37: PCDData: Confusion Matrix

CAPSULE 0 1

0 101 12
1 124 139

6.6.2 Prostate Cancer Data

Prostate Cancer Data: Linear Combination Method

The data is run for discriminant analysis with CAPSULE as the classification variable

and AGE, RACE, DPROS, DCAPS, PSA, VOL, GLEASON as predictor variables. The

classification variable, CAPSULE, has two groups (0 and 1). The covariance matrices for

the two groups in the original space are detected to be unequal. Hence, we run quadratic

discriminant analysis instead of linear discriminant analysis. The confusion matrix is given

in table 6.37. The AIC score for this model is 11275 and ICOMP score is 11321. The

prediction accuracy is 53.72%. The following classification functions are computed for

each category.

CAPSULE(0) = −85.8067 + 1.5868×AGE + 10.9557×RACE +

1.9695×DPROS + 22.4489×DCAPS − 0.2655× PSA +

0.0083× V OL + 4.7656×GLEASON

CAPSULE(1) = −100.2382 + 1.7384×AGE + 18.1691×RACE +

1.5893×DPROS + 0.4284×DCAPS − 0.1139× PSA +

−0.0573× V OL + 9.0504×GLEASON
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The within group and between group covariance matrices in the original space are given

by

ΣW =




41.1845 −0.0860 −0.2446 0.0347 0.8503 12.9017 0.3120

−0.0860 0.0866 0.0256 0.0060 0.9123 0.4087 0.0098

−0.2446 0.0256 0.8938 0.0512 2.3555 −0.3176 0.1197

0.0347 0.0060 0.0512 0.0893 1.2666 −0.4610 0.0579

0.8503 0.9123 2.3555 1.2666 353.3217 20.4006 5.2030

12.9017 0.4087 −0.3176 −0.4610 20.4006 333.4824 −0.1524

0.3120 0.0098 0.1197 0.0579 5.2030 −0.1524 0.9491




ΣB =




0.0673 0.0006 −0.0823 −0.0196 −1.6667 0.5463 −0.1270

0.0006 0.0000 −0.0008 −0.0002 −0.0159 0.0052 −0.0012

−0.0823 −0.0008 0.1005 0.0240 2.0362 −0.6674 0.1551

−0.0196 −0.0002 0.0240 0.0057 0.4856 −0.1592 0.0370

−1.6667 −0.0159 2.0362 0.4856 41.2468 −13.5189 3.1418

0.5463 0.0052 −0.6674 −0.1592 −13.5189 4.4309 −1.0297

−0.1270 −0.0012 0.1551 0.0370 3.1418 −1.0297 0.2393




The number of discriminant functions selected by ICOMP is 1. It is given by

DF =




0.0116

0.4231

−0.4206

−0.4434

−0.0168

0.0090

−0.6686




Now, we present the results of the discriminant analysis in the Gifi space. The categorical

predictors are transformed to the Gifi space. The covariance matrices for the two groups

are detected to be unequal. Hence we run quadratic discriminant analysis in the Gifi space.

The confusion matrix is shown in table 6.38. The AIC score for this model is 10191 and
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Table 6.38: ICU Data: Confusion Matrix

STA 0 1

0 48 9
1 177 142

ICOMP score is 10214. The prediction accuracy is 50.53%. There is almost 3% loss in the

prediction accuracy. This loss can be accounted for the loss of information using the LCM

procedure. The following classification functions are computed for each category.

CAPSULE(0) = −55.9138+1.6538×AGE+0.1105×PSA−0.0384×V OL+1.3265×catX

CAPSULE(1) = −52.6554+1.5595×AGE+0.0362×PSA+0.0124×V OL−0.0467×catX

where catX is the linear combination of the weights of the categories of the categorical

predictors (RACE, DPROS, DCAPS, GLEASON) in the Gifi space.

The within group and between group covariance matrices in the Gifi space are given by

ΣW =




41.1845 0.8503 12.9017 −0.2637

0.8503 353.3217 20.4006 −9.1931

12.9017 20.4006 333.4824 1.2836

−0.2637 −9.1931 1.2836 1.6821




ΣB =




0.0673 −1.6667 0.5463 0.1832

−1.6667 41.2468 −13.5189 −4.5338

0.5463 −13.5189 4.4309 1.4860

0.1832 −4.5338 1.4860 0.4984




The number of discriminant functions selected by ICOMP is 1. It is given by

DF =




0.0196

−0.0242

0.0140

0.9994



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Figure 6.26: PCD Data (DA): Scatter Plot Matrix of the data in the Gifi space

The scatter plot matrix for each pair of variables in the Gifi space is shown in figure 6.26.

The set of variables that are included in the scatter plot are AGE, SYS, HRA and catX

where catX is the linear combination of the categories of the categorical variables in the

Gifi space. The scatterplot on the first row and the second column is the scatterplot of

the variable AGE and SYS. The two groups are identified with two different colors in the

scatterplot.

Now, we show the results of the variable selection on this data set. We use GA for variable

selection with maximum iterations of 100, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPC1F is used

as the fitness function.

The following parameters are selected by GA with the above input parameters.

Model : RACE

Information Criterion Score: -513.1463. The best value of the above fitness function at the

end of each iteration of the GA process is shown in the figure 6.25.
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Figure 6.27: PCD (DA): Plot of ICOMP vs Number of iterations in GA

Table 6.39: PCDDataOS: Confusion Matrix

CAPSULE 0 1

0 101 12
1 124 139

Prostate Cancer Data: Optimal Scaling Method

The data is run for discriminant analysis with CAPSULE as the classification variable

and AGE, RACE, DPROS, DCAPS, PSA, VOL, GLEASON as predictor variables. The

classification variable, CAPSULE, has two groups (0 and 1). The covariance matrices for

the two groups in the Gifi space are detected to be unequal. Hence, we run quadratic

discriminant analysis instead of linear discriminant analysis. The confusion matrix is given

in table 6.39. The AIC score for this model is 10511 and ICOMP score is 10639. The

prediction accuracy is 63.829%. The following classification functions are computed for
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each category.

CAPSULE(0) = −58.0564 + 1.7102×AGE + 5.7108×RACE +

−1.2613×DPROS + 0.7366×DCAPS + 0.1478× PSA +

−0.0486× V OL + 4.2325×GLEASON

CAPSULE(1) = −53.9645 + 1.6063×AGE − 12.8706×RACE +

0.6330×DPROS + 0.5681×DCAPS + 0.0287× PSA +

−0.0117× V OL− 0.6155×GLEASON

The within group and between group covariance matrices in the original space are given

by

ΣW =




41.1845 0.0358 0.0580 −0.0703 0.8503 12.9017 −0.2872

0.0358 0.0150 0.0078 0.0050 −0.3792 −0.1699 0.0028

0.0580 0.0078 0.3724 0.0753 −2.1171 0.2202 0.0592

−0.0703 0.0050 0.0753 0.3671 −2.5674 0.9345 0.0905

0.8503 −0.3792 −2.1171 −2.5674 353.3217 20.4006 −4.1294

12.9017 −0.1699 0.2202 0.9345 20.4006 333.4824 0.2988

−0.2872 0.0028 0.0592 0.0905 −4.1294 0.2988 0.4465




ΣB =




0.0673 −0.0003 0.0510 0.0398 −1.6667 0.5463 0.0927

−0.0003 0.0000 −0.0002 −0.0002 0.0066 −0.0022 −0.0004

0.0510 −0.0002 0.0387 0.0301 −1.2633 0.4141 0.0702

0.0398 −0.0002 0.0301 0.0235 −0.9843 0.3226 0.0547

−1.6667 0.0066 −1.2633 −0.9843 41.2468 −13.5189 −2.2929

0.5463 −0.0022 0.4141 0.3226 −13.5189 4.4309 0.7515

0.0927 −0.0004 0.0702 0.0547 −2.2929 0.7515 0.1275



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The number of discriminant functions selected by ICOMP is 1. It is given by

DF =




−0.0100

0.6215

−0.3718

−0.1244

0.0087

−0.0051

−0.6781




Now, we show the results of the variable selection on this data set. We use GA for variable

selection with maximum iterations of 100, population size of 20, probability of crossover of

0.75, probability of mutation of 0.10 and crossover type as uniform. ICOMPC1F is used

as the fitness function.

The following parameters are selected by the GA process with above input parameters.

Model : RACE

Information Criterion Score: -513.1463. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.28. In both ICU and

prostate cancer data sets, the prediction accuracies in the Gifi space are far better using

the discriminant analysis approach than the binary logistic regression approach. This can

be accounted for the normalization of the data in the Gifi space. Generally, we recommend

the discriminant analysis approach in the case of categorical predictions.

6.7 Gifi - Unsupervised Clustering

6.7.1 ICU Data

ICU Data: Linear Combination Method

The gaussian mixture algorithm is run on the ICU data in the Gifi space using the Linear

Combination Method (LCM). The information criteria scores are reported in table 6.40.
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Figure 6.28: PCD (DAOS): Plot of ICOMP vs Number of iterations in GA

Table 6.40: ICU Data: Information Criteria Scores

Mixture AIC ICOMP SBC CAIC

K = 1 6577.6 6578.3 6609.8 6623.8
K = 2 6517.6 6504.0 6584.3 6613.3
K = 3 6498.8 6467.6 6599.9 6643.9
K = 4 6487.5 6442.9 6623.1 6682.1
K = 5 6519.3 6447.8 6689.4 6763.4
K = 6 6541.5 6474.9 6746.1 6835.1
K = 7 6561.2 6476.7 6800.3 6904.3
K = 8 6577.6 6458.6 6851.1 6970.1

167



Table 6.41: ICU Data: Mixing Proportion Estimates

Mixture Probability

π1 0.4018
π2 0.0902
π3 0.1362
π4 0.3719

Table 6.42: ICU Data: Mixture Mean Vector

Mixture Mean Vector

K = 1 66.7977 136.8229 110.0631 -0.6007
K = 2 58.9648 119.8873 115.0995 -5.5450
K = 3 19.9852 127.9838 94.8006 1.0346
K = 4 60.9592 131.9496 84.4788 1.6146

AIC and ICOMP are minimum for K = 4, where K is the number of gaussian mixtures

fitted to the data. SBC and CAIC are minimum for K = 2. Since our selection criteria is

ICOMP, we consider K = 4, as the optimal number of gaussian mixtures fitted to the ICU

data.

The mixing proportion estimates are given in table 6.41. The mean vectors for each mixture

is given in table 6.42. The covariance matrices for each group are given by

Σ1 =




167.8 −43.3 −8.9 −3.7

−43.3 1764.6 −294.8 31.8

−8.9 −294.8 681.5 −7.8

−3.7 31.8 −7.8 4.9




Σ2 =




201.9 −63.4 2.7 −7.4

−63.4 1487.4 390.3 −3.3

2.7 390.3 1090.1 25.3

−7.4 −3.3 25.3 2.1




Σ3 =




6.9745 7.5461 −23.4536 −1.8025

7.5461 307.3645 −71.2192 0.2516

−23.4536 −71.2192 659.0682 −1.4995

−1.8025 0.2516 −1.4995 1.6636



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Table 6.43: ICU Data: Classification Table

Value Count Percent

K = 1 69 34.50%
K = 2 20 10.00%
K = 3 28 14.00%
K = 4 83 41.50%
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Figure 6.29: ICU Data: Scatter Plot Matrix

Σ4 =




222.0275 35.6037 −52.9731 5.5851

35.6037 459.1244 98.8143 1.5207

−52.9731 98.8143 271.6618 −6.4832

5.5851 1.5207 −6.4832 1.6459




The classification table is given in table 6.43. The scatter plot matrix for each pair of

variables in the Gifi space is shown in figure 6.29. The set of variables that are included

in the scatter plot are AGE, SYS, HRA and catX where catX is the linear combination

of the categories of the categorical variables in the Gifi space. The scatterplot on the first

row and the second column is the scatterplot of the variable AGE and SYS. The clusters

are identified with four different colors in the scatterplot.
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Figure 6.30: ICU (CA): Plot of ICOMP vs Number of iterations in GA

Now, we do a variable selection assuming that the data is generated from four mixtures

(since ICOMP is minimum for four mixtures). We use GA for variable selection with max-

imum iterations of 20, population size of 20, probability of crossover of 0.75, probability of

mutation of 0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The following parameters are selected by the GA process with above input parameters.

Model : CPR, TYP, PO2, PH

Information Criterion Score: -11309.7517. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.30. In the original

mixed data space, we fit four gaussian mixtures and found that the number of optimal

mixtures is 1. The ICU data fits one mixture in the original mixed data space and four

mixtures in the Gifi space.

170



Table 6.44: ICU Data: Information Criteria Scores

Mixture AIC ICOMP SBC CAIC

K = 1 10335 10339 10376 10390
K = 2 9805 9807 9890 9919

Table 6.45: PCD Data: Mixing Proportion Estimates

Mixture Probability

π1 0.2388
π2 0.7612

6.7.2 Prostate Cancer Data

Prostate Cancer Data: Linear Combination Method

The gaussian mixture algorithm is run on the PCD data in the Gifi space using the Linear

Combination Method (LCM). The information criteria scores are reported in table 6.44.

The algorithm couldn’t run for more than 2 mixtures due to the insufficient number of

observations in one of the mixtures. Hence the results up to two mixtures are reported for

this data. The mixing proportion estimates are given in table 6.45. The mean vectors for

each mixture is given in table 6.46. The covariance matrices for each group are given by

Σ1 =




35.2791 −12.4333 13.2839 −0.7619

−12.4333 883.2839 94.9101 −8.5513

13.2839 94.9101 253.0473 −0.0344

−0.7619 −8.5513 −0.0344 3.3994




Σ2 =




43.0893 0.0398 13.9949 0.3165

0.0398 25.9026 17.5486 −1.1899

13.9949 17.5486 357.7300 1.1323

0.3165 −1.1899 1.1323 0.8671




Table 6.46: PCD Data: Mixture Mean Vector

Mixture Mean Vector

K = 1 66.3544 38.1410 11.8215 -1.5032
K = 2 65.9657 8.1084 17.1595 0.4715
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Table 6.47: PCD Data: Classification Table

Value Count Percent

K = 1 81 21.54%
K = 2 295 78.46%
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Figure 6.31: PCD Data: Scatter Plot Matrix

The classification table is given in table 6.47. The scatter plot matrix for each pair of

variables in the Gifi space is shown in figure 6.31. The set of variables that are included

in the scatter plot are AGE, PSA, VOL and catX where catX is the linear combination

of the categories of the categorical variables in the Gifi space. The scatterplot on the first

row and the second column is the scatterplot of the variable AGE and PSA. The clusters

are identified with two different colors in the scatterplot.

Now, we do a variable selection assuming that the data is generated from two mixtures

(since ICOMP is minimum for two mixtures). We use GA for variable selection with max-

imum iterations of 20, population size of 20, probability of crossover of 0.75, probability of

mutation of 0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The following parameters are selected by the GA process with above input parameters.
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Figure 6.32: PCD (CA): Plot of ICOMP vs Number of iterations in GA

Table 6.48: KCSG1 Data: Information Criteria Scores

Mixture AIC ICOMP SBC CAIC

K = 1 423.5765 418.3728 426.2641 428.2641
K = 2 366.2016 351.6431 372.9206 377.9206

Model : DCAPS

Information Criterion Score: -26966.7369. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.32. In the original

mixed data space, we could’nt fit more than two mixtures due to insufficient number of

observations in one of the mixtures. This data fits one mixture in the original mixed data

space and two mixtures in the Gifi space.

6.7.3 KCS Group 1 Data

KCS Group 1 Data: Linear Combination Method

The gaussian mixture algorithm is run on the KCS group 1 data in the Gifi space using the

Linear Combination Method (LCM). The information criteria scores are reported in table

6.48. The algorithm couldn’t run for more than 2 mixtures due to insufficient number of
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Table 6.49: KCSG1 Data: Mixing Proportion Estimates

Mixture Probability

π1 0.4828
π2 0.5172

Table 6.50: KCSG1 Data: Mixture Mean Vector

Mixture Mean Vector

K = 1 -3.4764
K = 2 3.2451

observations in one of the mixtures. Hence the results up to two mixtures are reported for

this data. The mixing proportion estimates are given in table 6.49. The mean vectors for

each mixture is given in table 6.50. The variances for each group are given by

σ1 = 3.3956

σ2 = 0.6675

The classification table is given in table 6.51. The scatter plot matrix for each pair of

variables in the Gifi space is shown in figure 6.33. The original data contained 40 patients

from the KCS group and 37 patients from the non-KCS group. The algorithm was able to

identify two mixtures in the Gifi space where one of the mixture contained 37 patients and

the other mixture contained 40 patients. Clearly, one mixture indicates the KCS group

and the other mixture indicates the non-KCS group. We do not have any information

regarding the prior classification of the observations and hence we are unable to provide

the confusion matrix for this data set.

Now, we do a variable selection assuming that the data is generated from two mixtures

(since ICOMP is minimum for two mixtures). We use GA for variable selection with max-

Table 6.51: KCSG1 Data: Classification Table

Value Count Percent

K = 1 37 48.05%
K = 2 40 51.95%
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Figure 6.33: KCS Group 1 Data: Scatter Plot Matrix

imum iterations of 20, population size of 20, probability of crossover of 0.75, probability of

mutation of 0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The following parameters are selected by GA process with the above input parameters.

Model : G

Information Criterion Score: -5307.5883. The best value of the above fitness function at the

end of each iteration of the GA process is shown in figure 6.34. In the original mixed data

space, we could’nt fit more than two mixtures due to insufficient number of observations

in one of the mixtures. This data fits one mixture in the original mixed data space and

two mixtures in the Gifi space.

6.7.4 KCS Group 2 Data

KCS Group 2 Data: Linear Combination Method

The gaussian mixture algorithm is run on the KCS group 2 data in the Gifi space using the

Linear Combination Method (LCM). The information criteria scores are reported in table
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Figure 6.34: KCSG1 (CA): Plot of ICOMP vs Number of iterations in GA

Table 6.52: KCSG2 Data: Information Criteria Scores

Mixture AIC ICOMP SBC CAIC

K = 1 223.1712 217.8840 224.5983 226.5983
K = 2 210.0398 195.3100 213.6077 218.6077
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Table 6.53: KCSG2 Data: Mixing Proportion Estimates

Mixture Probability

π1 0.3304
π2 0.6696

Table 6.54: KCSG2 Data: Mixture Mean Vector

Mixture Mean Vector

K = 1 3.6124
K = 2 -1.7822

6.52. The algorithm couldn’t run for more than 2 mixtures due to insufficient number of

observations in one of the mixtures. Hence the results up to two mixtures are reported for

this data. The mixing proportion estimates are given in table 6.53. The mean vectors for

each mixture is given in table 6.54. The variances for each group are given by

σ1 = 0.2224

σ2 = 7.7375

The classification table is given in table 6.55. The scatter plot matrix for each pair of

variables in the Gifi space is shown in figure 6.35. The original data contained 24 patients

from the KCS group and 17 patients from the non-KCS group. The algorithm was able to

identify two mixtures in the Gifi space where one of the mixture contained 15 patients and

the other mixture contained 26 patients. Clearly, one mixture indicates the KCS group

and the other mixture indicates the non-KCS group. We do not have any information

regarding the prior classification of the observations and hence we are unable to provide

the confusion matrix for this data set.

Now, we do a variable selection assuming that the data is generated from two mixtures

Table 6.55: KCSG2 Data: Classification Table

Value Count Percent

K = 1 15 36.59%
K = 2 26 63.41%
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Figure 6.35: KCS Group 2 Data: Scatter Plot Matrix

(since ICOMP is minimum for two mixtures). We use GA for variable selection with max-

imum iterations of 20, population size of 20, probability of crossover of 0.75, probability of

mutation of 0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.

The following parameters are selected by GA process with the above input parameters.

Model : A, B, D, E

Information Criterion Score: -963.4305. The best value of the above fitness function at

the end of each iteration of the GA process is shown in the figure 6.36. In the original

mixed data space, we could’nt fit more than two mixtures due to insufficient number of

observations in one of the mixtures. This data fits one mixture in the original mixed data

space and two mixtures in the Gifi space.

Note: In case of insufficient number of observations, one might run into singularity de-

tails when computing the inverse of the covariance matrix. In this case, one might use

improved covariance smoothers such as maximum entropy, [Theil and Fiebig, 1984], max-

imum likelihood / empirical bayes, maximum entropy / empirical bayes, stipulated ridge

178



0 5 10 15 20
−1000

−950

−900

−850

−800

−750

−700

−650

−600
ICOMP score vs Number of iteraions

Iterations

IC
O

M
P

 S
co

re

Figure 6.36: KCSG2 (CA): Plot of ICOMP vs Number of iterations in GA

and stipulated diagonal, [Shurygin, 1983], convex sum, [Chen, 1976], shrinkage estimator

of ledoit and wolf, [Ledoit and Wolf, 2003].
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Chapter 7

Conclusions

In this work, we addressed two problems. The first problem is to determine the optimal

number of mixtures in a multivariate Bernoulli distributed data using genetic algorithm

and information complexity (ICOMP). We showed that choosing the highest maximum

likelihood value by itself does not yield an optimal number of mixtures. We addressed the

problem of high dimensional binary data using a genetic algorithm to identify the best set

of predictors that are sufficient for classification. We used a slight variation in our GA pro-

cedure to the traditional procedure. The results of our GA procedure showed convergence

to an optimum solution with minimum number of iterations. We ran our experiments on

a simulated data set and also on two real data sets (mobile phone data set and KCS and

non-KCS patient data set). The results are explained in detail in the first part of the

numerical results section.

The second problem is to mine for some interesting patterns from a mixed data set. We pre-

sented the idea of transforming the mixed data space to a continuous space by a mechanism

known as Gifi transformation, [Gifi, 1989]. In the Gifi space, the data is purely continuous

in nature. Therefore, we can implement the usual multivariate statistical methods on the

data in the Gifi space.

We presented two algorithms for implementing the multivariate statistical methods in the

Gifi space - the optimal scaling method and the linear combination method. In the optimal
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scaling method each categorical variable in the Gifi space is optimally scaled by multiply-

ing its indicator matrix with its optimal weight vector. With the optimal scaling method,

the data in the Gifi space would be the same as the data in the original space but with

the categorical values replaced by its corresponding continuous weight/score values. In the

linear combination method, the categorical variables in the Gifi space are collapsed to a

1-dimensional continuous values by the linear combination of the weights of the categories

of all the categorical variables in the Gifi space. With the linear combination method, the

size of the data in the Gifi space would be different than the data in the original space. The

continuous variables would be the same in the Gifi space and the original space. The cate-

gorical variables will be transformed to a 1-dimensional continuous values in the Gifi space.

We presented several techniques of the multivariate statistical methods in the Gifi space

such as Multiple Regression, Multivariate Regression, Binary Logistic Regression, Multi-

variate Logistic Regression, Discriminant Analysis and Unsupervised classification. The

numerical results showed that the analysis in the Gifi space is very impressive when there

are a lot of categorical variables in the data set. We also addressed the problem of high

dimensional data using a slight variation of the genetic algorithm with the fitness function,

ICOMP.
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Appendix A

Appendix

We provide a detail documentation of the Gifi system in this section. The Gifi System was

developed using MATLAB 7.4.0 on Windows XP platform running on Pentium (R) 4 CPU

3.00GHz, 504MB of RAM.

A.1 Data Input

The input to the Gifi System must be in MS Excel format. The system automatically

detects the header if it finds any non numeric character in the first row of the data file.

The initial data input screen of the Gifi System is shown in the figure A.1. The following

steps should be followed to import the data from the MS Excel file.

1. Click on the ’Select a file’ button. This opens a file open dialog with all the MS Excel

files present in the current directory.

2. Select the desired data file and click on the ’Open’ button in the file open dialog.

The name of the file with the path information is displayed in the text box next to

the ’Select a file’ button.

3. Click on the ’Import’ button. When the data import is complete, the ’Done’ button

becomes active.

4. Click on the ’Done’ button. Now, the user should see the number of variables dis-

played in the ’Total Number of Variables’ text box as shown in figure 2. For example,
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Figure A.1: Gifi System - Initial data input screen

we show the data import of the ’ICU Data’. The variable number and its name are

displayed in text boxes as shown in figure A.2.

5. At this point, the user should specify the type of the variable by selecting its type

from the combo box shown in figure A.2. If the variable is categorical, the user

should select categorical from the combo box. For instance, the variable ’STA’ is

a categorical variable having two categories ’0’ and ’1’. If we specify a variable as

categorical, the ’Get Categories’ button becomes active. If the user clicks on the

’Get Categories’ button, one can see the categories of that variable in the list box on

the right. If the variable is continuous, the user should select continuous from the

combo box. For instance, the variable ’AGE’ is a continuous variable. If the user

selects continuous as the type of the variable, the ’Get Categories’ button remains

inactive. It becomes active only for the categorical type variables. If the variable is

neither categorical nor continuous, the user should leave the combo box unselected.

For example, the variable ’ID’ is neither categorical nor continuous. Hence we do not

select anything in the combo box.
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Figure A.2: Gifi System - Intermediate data input screen

6. The user must click on the ’Save’ button after specifying the type for each variable.

7. Click on ’Next’ button to specify the type of the next variable and repeat steps 5

and 6. In case, if the user has misspecified the type of a previous variable, one can

go back by clicking on the ’Previous’ button until the specific variable is displayed.

At this point, the user can again specify the type of that variable and click on ’Save’

button.

8. After specifying the type of all the variables, click on the ’Complete’ button. By

clicking on this button, all the controls on the panel become inactive. At this point

the data and the category specifications have been stored in a structure format in

the memory.

194



A.2 Transformation to the Gifi space

A.2.1 HOMALS - Normalized ALS scores for single solution

1. Go to HOMALS → SingleSolutions → Scores

2. Only the data on the categorical variables are taken for transformation into the Gifi

space. The object score quantification (X), the category quantifications (Y), the

information loss (sigma), the eigen vector (eta), the discrimination measure (psi),

the number of iterations taken for convergence (iter) are reported in the MATLAB

editor. Usually the convergence, leads to a unique eigen value but in some cases it

might give positive eigen value or a negative eigen value. In this case, we choose the

positive eigen value as our arbitrary choice.

3. At this point, the category quantification and the indicator matrices for each cate-

gorical variable are stored in their respective structures.

A.2.2 HOMALS - Normalized ALS weights for single solution

1. Go to HOMALS → SingleSolutions → Weights

2. Only the data on the categorical variables are taken for transformation into the Gifi

space. The object score quantification (X), the category quantifications (Y), the

information loss (sigma), the eigen vector (eta), the discrimination measure (psi),

the number of iterations taken for convergence (iter) are reported in the MATLAB

editor. Usually the convergence, leads to a unique eigen value but in some cases it

might give positive eigen value or a negative eigen value. In this case, we choose the

positive eigen value as our arbitrary choice.

3. At this point, the category quantification and the indicator matrices for each cate-

gorical variable are stored in their respective structures.

A.2.3 HOMALS - Normalized ALS scores for multiple solutions

1. Go to HOMALS → MultipleSolutions → Scores and enter the number of the

dimensions in the input dialog box shown in figure A.3 and click on ’Ok’ button.
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Figure A.3: Gifi System: Number of dimensions for multiple solutions

2. Only the data on the categorical variables are taken for transformation into the Gifi

space. The object score quantification (X), the category quantifications (Y), the

information loss (sigma), the eigen vector (eta), the discrimination measure (psi),

the number of iterations taken for convergence (iter) are reported in the MATLAB

editor. Usually the convergence, leads to a unique eigen value but in some cases it

might give positive eigen value or a negative eigen value. In this case, we choose the

positive eigen value as our arbitrary choice.

3. At this point, the category quantification and the indicator matrices for each cate-

gorical variable are stored in their respective structures.

A.3 Analysis

The analysis in the Gifi space can be performed using two methods. They are

• Optimal Scaling Method

• Linear Combination Method

These two methods are described in detail in the ’Applications’ chapter of the dissertation.

First, we show the analysis of the Gifi space data using the Optimal Scaling Method

(OSM).
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Figure A.4: Gifi System: OSM Regression screen

A.4 Optimal Scaling Method (OSM)

A.4.1 Regression

1. Select Analysis → Regression.

2. The regression GUI will be displayed on the screen as shown in figure A.4.

3. Select the continuous response in the response combo box and click on the ’OK’

button shown in figure A.4.

4. All the variables other than the selected response variable will be displayed in the

list box to the left of the ’Add’ button shown in figure A.4.

5. Select the predictor variable in the list box to the left of the ’Add’ button and click on

the ’Add’ button. This adds the predictor to the final predictor list and is displayed

in the list box to the right of the ’Add’ button.

6. Repeat step 5 until all predictors have been added to the final predictor list.
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Figure A.5: Gifi System: GA input parameters

7. Select the distribution of the residuals from the ’Select Residuals Distribution’ combo

box shown in figure A.4. By default, the distribution of the residuals is normal.

8. Check the ’Include Intercept’ check box.

9. Select the information measures from the ’Information Criteria’ panel below.

10. Select ’Genetic Algorithm’ or ’All Possible Subsets’ from the ’Perfrom Variable Se-

lection’ combo box. If nothing is selected in the ’Perform Variable Selection’ combo

box, the system outputs the results for the current model. The current model is one

with the response variable and the predictors in the final list of predictor’s list box.

11. If the user selects ’Genetic Algorithm’ from the ’Perfrom Variable Selection’ combo

box, the following input dialog shown in figure A.5 appears with default parameters

specified.

12. Click on ’OK’ button and select the type of crossover from the input list dialog shown

below in figure A.6.

13. Select the information criteria from the input list dialog shown in figure A.7.
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Figure A.6: Gifi System: GA crossover type
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Figure A.7: Gifi System: GA Fitness Function

14. By default the following parameters are selected.

Maximum Iterations: 100

Population Size: 20

Probability of Crossover: 0.75

Probability of Mutation: 0.10

Crossover type: Uniform

Information Criteria: AIC

A.4.2 Logistic Regression

1. Go to Analysis → LogisticRegression.

2. A binary logistic regression GUI is displayed on the screen as shown in figure A.8.

3. Select the binary response variable from the ’Select the response variable’ combo box

and click on ’Ok’ button.
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Figure A.8: Gifi System: OSM Logistic Regression Screen

4. All the variables other than the selected binary response variable will be displayed

in the list box to the left of the ’Add’ button shown in figure A.8.

5. Select the predictor variable in the list box to the left of the ’Add’ button and click on

the ’Add’ button. This adds the predictor to the final predictor list and is displayed

in the list box to the right of the ’Add’ button.

6. Repeat step 5 until all predictors have been added to the final predictor list.

7. Check the ’Include Intercept’ check box.

8. Select ’Genetic Algorithm’ or ’All Possible Subsets’ from the ’Perfrom Variable Se-

lection’ combo box. If nothing is selected in the ’Perform Variable Selection’ combo

box, the system outputs the results for the current model. The current model is the

one with the response variable and the predictors in the final list of predictor’s list

box.

9. If the user selects ’Genetic Algorithm’ from the ’Perfrom Variable Selection’ combo

box, follow steps 11-14 from the Regression procedure under OSM.
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Figure A.9: Gifi System: OSM Multivariate Regression Screen

A.4.3 Multivariate Regression

1. Go to Analysis → MultivariateRegression

2. The multivariate regression GUI is displayed on the screen as shown in figure A.9.

3. All the variables in the data set will be displayed in the list box to the left of the

response ’Add’ button shown in figure A.9. Select each response variable and click on

the ’Add’ button. This adds the response variable to the final response list displayed

in the list box to the right of response ’Add’ button.

4. After all the response variables have been added, click on the ’OK’ button.

5. All the variables other than the selected response variables will be added to the initial

predictor list which is the list box to the left of the predictor ’Add’ button shown in

figure A.9. Select the predictor variable in the list box to the left of the ’Add’ button

and click on the ’Add’ button. This adds the predictor to the final predictor list and

is displayed in the list box to the right of the ’Add’ button. Repeat this step until

all the predictors have been added.
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6. Select the distribution of the residuals from the ’Select Residuals Distribution’ combo

box shown in figure A.9. By default, the distribution of the residuals is normal.

7. Check the ’Include Intercept’ check box.

8. Select ’Genetic Algorithm’ or ’All Possible Subsets’ from the ’Perfrom Variable Se-

lection’ combo box. If nothing is selected in the ’Perform Variable Selection’ combo

box, the system outputs the results for the current model. The current model is

one with the current set of response variables and the predictors in the final list of

predictor’s list box.

9. If the user selects ’Genetic Algorithm’ from the ’Perfrom Variable Selection’ combo

box, follow steps 11-14 in the Regression procedure under OSM.

A.4.4 Multivariate Logistic Regression

1. Go to Analysis → MultivariateLogisticRegression.

2. The multivariate logistic regression GUI is displayed on the screen as shown in figure

A.10.

3. Follow steps 3-9 in the multivariate regression procedure under OSM.

A.4.5 Discriminant Analysis

1. Go to Analysis → DiscriminantAnalysis

2. The Discriminant Analysis GUI is displayed on the screen as shown in figure A.11.

3. Select the classification variable from the ’Select the classification variable’ combo

box and click ’OK’ button.

4. Follow steps 4 - 9 from the logistic regression procedure under OSM.

A.4.6 Cluster Analysis

1. Go to Analysis → ClusterAnalysis.

2. The Cluster Analysis GUI is displayed on the screen as shown in figure A.12.
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Figure A.10: Gifi System: OSM Multivariate Logistic Regression Screen

Figure A.11: Gifi System: OSM Discriminant Analysis Screen
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Figure A.12: Gifi System: OSM Cluster Analysis Screen

3. All the variables in the data file are listed in the initial predictor list (list box to the

left of the ’Add’ button shown in figure A.12.

4. Select the predictor variable in the list box to the left of the ’Add’ button and click on

the ’Add’ button. This adds the predictor to the final predictor list and is displayed in

the list box to the right of the ’Add’ button. Repeat this step until all the predictors

have been added.

5. Select the distribution assumption from the ’Distributional Assumption’ combo box.

6. Follow steps 8 - 9 in the multivariate regression procedure under OSM.

A.5 Linear combination Method (LCM)

A.5.1 Regression

1. Select Analysis → MR.

2. The regression GUI will be displayed on the screen as shown in figure A.13.
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Figure A.13: Gifi System: LCM Multiple Regression Screen

3. Follow steps 3 - 14 (excluding 9) of the regression procedure under OSM.

A.5.2 Logistic Regression

1. Go to Analysis → BinaryLR

2. Repeat steps 3 - 9 of the logistic regression procedure under OSM.

A.5.3 Multi-class Logistic Regression

1. Go to Analysis → Multi− classLR

2. The multi class logistic regression GUI will be displayed on the screen as shown in

figure A.14.

3. Repeat steps 3 - 9 of the logistic regression procedure under OSM.

A.5.4 Multivariate Regression

1. Go to Analysis → MV R
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Figure A.14: Gifi System: LCM Multi-class Logistic Regression Screen

2. Repeat steps 3 - 9 in the multivariate regression procedure under OSM.

A.5.5 Multivariate Logistic Regression

1. Go to Analysis → MV LR

2. Follow step 3 in the multivariate logistic regression procedure under OSM

A.5.6 Discriminant Analysis

1. Go to Analysis → DA

2. Follow steps 3 and 4 in the Discriminant Analysis under OSM.

A.5.7 Cluster Analysis

1. Go to Analysis → ClusterAnalysis

2. Follow steps 3 - 6 in the Cluster Analysis procedure under OSM.

207



Vita

Suman Katragadda was born in Gudiwada, Andhra Pradesh, India in 1982. This place

is popularly known as ”The Land of Legends” since legendary movie actors like N.T.R

and A.N.R, legendary telugu music director Gantasala and the media moghul Ramoji Rao

have taken birth here. He was sent to a boarding school, Loyola Public School, at the age

of 5 and so stayed away from home for most of the time in his life. Due to his immense

interest in quantitative analytics and computation he chose to do a bachelors degree in

Computer Science and Information Technology at Vignana Jyothy Institute of Engineering

and Technology, JNTU, Hyderabad, AP, India.

In May 2003, Suman matriculated with a B.Tech degree in CSIT and came to the United

States in Aug 2003, seeking a masters degree in Computer Science at Kent State University,

Kent, OH, USA. At KSU, he happened to meet the world famous researcher in databases,

Dr. Yuri Breitbart. With his exceptional performance in the Advanced Database Design

course, Dr. Breitbart invited Suman to join him in his research on Cardiological Data

Mining project which was a 2 million dollar funded project by the Cleveland Clinic Foun-

dation, Cleveland, OH, USA. During the course of his research he was nominated for the

Ohio Board of Reagents award in 2004. After one and a half years of work on this research

project he was able to come up with some interesting results that were not known in the

medical literature. His results were accepted by the researchers at the Cleveland Clinic

Foundation and were published in their journals.

During the course of his masters at Kent State University, Suman was offered a full time

job in May 2004 at Axentis Inc, Cleveland, OH, USA. He joined Axentis as an application

208



developer and was later promoted to the rank of software engineer within a few months. He

was working at Axentis and on his research project simultaneously from May 2004 to April

2005. He graduated with a master of science degree in Computer Science in May 2005.

Due to his immense interest in quantitative field and as per the advice of Dr. Breitbart, he

decided to do a masters in statistics. In Aug 2005, he joined The University of Tennessee,

Knoxville, TN, USA and it is here where he met another world famous researcher in infor-

mation statistics, Dr. Hamparsum Bozdogan. He secured an internship from State Farm

Insurance in May 2006. It was at State Farm that suman developed his initial fraud detec-

tion system to detect suspicious claim estimates, thus saving millions (probably more than

a billion according to the Director of Strategic Resources at State Farm) of dollars to State

Farm. It was at State Farm where he first noted the problem of modeling mixed data. At

the same time, Dr. Bozdogan was also investigating on the same mixed data modeling issue.

Suman decided to do a Ph.D. under the supervision of Dr. Bozdogan on Multivariate

Mixed Data Mining. He was awarded the Graduate Excellence Award in Aug 2007 and

bagged a place in the students brag book published by the College of Business Administra-

tion, UTK, in Summer 2008. Suman intends to complete the requirements for the Ph.D. in

Statistics by the end of 2008. His primary research interests are mixed data modeling with

applications to evidence based medical data mining in the medical sector, stock market

trading in the financial sector and suspicious insurance claims detection in the insurance

sector.

209


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2008

	Multivariate Mixed Data Mining with Gifi System using Genetic Algorithm and Information Complexity
	Suman Katragadda
	Recommended Citation


	tmp.1455810539.pdf.DXdoe

