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Abstract 

 

The hydrodynamics of shallow, conical spouted beds of heavy particles were 

experimentally studied to determine how they differ from previous spouted bed reports in 

the literature. Key experimental measurements included minimum spouting velocity, 

time-average and time-varying (dynamic) pressure drop, time-average fountain height 

and time-average gas velocity profile in the bed.  New correlations were developed for 

minimum spouting velocity, time-average pressure drop and fountain height based on the 

experimental data. The time-average gas velocity profile measurements confirmed that 

the beds in the present study exhibited gas flow features that were at least qualitatively 

similar to those previously reported for other experimental conical spouted beds and 

predicted by detailed computational fluid dynamics models.  

 

At least some of the major features of the observed spouted bed pulsation behavior 

appear to be captured by a simple zone-based model of ordinary differential equations. 

The equations are derived from time-differential mass and momentum balances over 4 

spatial zones: entrainment, spout, fountain, and annulus.   The dynamic behavior of the 

model is dominated by the entrainment zone, which includes the effects of 3 key 

processes: 1) Granular particle flow from the annulus into the area immediately above the 

gas inlet; 2) Radial leakage of gas outward from the inlet zone in response to the inward 

flowing particles and; 3) Upward flow of the main part of the inlet gas and subsequent 

particle entrainment in response to the gas-particle drag. Recommendations are made for 

further improvements to the model.
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Units are denoted by M for mass, L for length, T for time, and rad for radians. 
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1. Motivation and Objectives 

Since spouted beds were first extensively utilized in Canada in 1950s, they have become 

widely used for many gas-solids contacting processes in which controlled solids 

circulation is important. The list of such applications is extensive, including grain drying, 

minerals beneficiation, pill coating, and solids agglomeration.  

 

A particular application that has been an important motivation in this research project is 

spouted bed particle coating using chemical vapor deposition (CVD). One version of 

spouted bed CVD is utilized in the production of nuclear fuels used in Advanced High-

Temperature Gas-Cooled Nuclear Reactors (AGR). The AGR fuels are composed of 

uranium-bearing (such as UCO) particles (kernels) that have been coated with four 

different layers of carbon and silicon carbide to prevent the release of gaseous fission 

products from the particle (and thus reactor) core. The current AGR fuel production 

process utilizes a form of shallow spouted bed CVD which operates at high temperatures 

(e.g., ~1200 °C). Developing improved methods for designing and controlling these 

coaters has become a high priority in the implementation of AGR technology. The AGR 

spouted bed coaters are particularly challenging because of the limited ability for making 

measurements and because the stringent quality requirements of the final product depend 

heavily on the detailed time-temperature-species history of particles. 

 

Phenomenologically, spouted beds have many features in common with more 

conventional fluidized beds, such as multi-phase turbulence, high interphase heat and 

mass transfer, widely variable flow conditions, and complex dynamical relationships that 
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make scale-up from laboratory to full-scale systems extremely challenging. Spouted beds 

also have some characteristic features that are relatively unique, including a single (or 

limited number) of primary gas inlets, a very dominant global circulation pattern (with 

distinctive pulsations), and highly distinct spatial zones that include lean entrained 

particle flow (i.e., pneumatic transport) and dense solids flow (i.e., defluidized granular 

flow).  

 

Although there is considerable published literature on experimental studies of relatively 

deep spouted beds (i.e., spouted beds where the bed height ≥ the bed diameter), there is 

relatively little information about shallow beds with the type of dense particles used for 

AGR fuel coating. In addition, the spouted bed data available are virtually all constrained 

to time average measurements and correlations, and there is almost no information 

concerning the dynamics (i.e., the time variations) of spouted bed processes. This lack of 

information about shallow spouted beds and their dynamics was the primary motivation 

behind the initiation of this study.  

 

The overall objective of the present investigation is to conduct an experimental study of 

the hydrodynamics of a shallow spouted bed of dense particles at ambient temperature 

and pressure and to use the results of these experiments to develop improved correlations 

and a low-order dynamic model that accurately describe the observed trends. Key 

questions to be addressed in this investigation include the following:  

• How different are the observed trends in minimum spouting velocity, fountain 

height, and time-average pressure drop compared to the trends in the literature? 
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• How much gas interchange is there between the spout core and outer annulus as a 

function of operating conditions? 

• How extensive and complex is the gas-solids pulsation behavior? 

• What are the competing mechanisms which are driving the pulsations in a 

spouted bed? Can they be of relevant to other fluidization regimes? If there are 

any outstanding issues in terms of the basic mechanism, what can be done to 

identify and understand those processes? 

• Is it possible to construct a simple ODE model that can replicate many of the 

features seen in the pulsation dynamics? 

• What are the overall implications of the above for developing improved designs 

and control schemes for spouted bed processes?  
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2. Background 

2.1 TRISO Fuel Particle Coating 

The United States is developing a new generation of High-Temperature Gas-Cooled 

Reactor (HTGR) referred to as the Advanced Gas-Cooled Reactor (AGR) [Atkins, 1969]. 

This type of reactor requires a special TRISO (tri-structural-isotropic) nuclear fuel [Heit, 

1986]. In TRISO fuel, the fissile uranium component is contained as kernels of discrete 

UO2 or UCO particles that are coated with layers of carbon and silicon carbide. The 

coated particles are then compacted into larger pellets used in fuel rods. The specialized 

construction of the coated kernels prevents the release of the fission products from the 

nuclear reactor core as nuclear disintegrations occur and also improves the thermo-

mechanical durability of the fuel during storage, movement, and usage [Beatty et al., 

1965].  

 

Figure 2.1 depicts the cross-section of a TRISO coated uranium fuel particle. The white 

area at the center is the uranium oxy-carbide kernel. Around the kernel are four 

successive coating layers: 1) an amorphous (soft) carbon layer (referred to as the buffer 

layer); 2) an inner pyrolytic (hard) carbon layer (referred to as the IPyC layer); 3) a 

silicon carbide (SiC) layer; and finally 4) an outer pyrolytic carbon (OPyC) layer. 

Depending on the fuel specifications, the kernel may be between 200 and 350 μm in 

diameter. The coating layers are added to the kernel using a stepwise chemical vapor 

deposition (CVD) process carried out in a spouted bed reactor. During coating, the 

particle diameter increases to 900–1000μm or more [Daw, 2005]. Maintaining the  
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Figure 2.1 Cross-section of a TRISO coated nuclear fuel particle. 

 
 
 
uniformity and integrity of the external layers during coating is critical because the AGR 

fuel specifications require less than one failure in 100,000 [Pannala, 2005a].  

 

The actual design of the spouted bed coaters used for TRISO fuel production is still under 

development, so the process information presented here is generic rather than precisely 

quantitative. The currently favored design is based on a shallow spouted bed CVD reactor 

operated at approximately 1200°C. Because fuel coating quality is so critical to proper 

AGR performance, design and control these coaters have high priority in implementing 

AGR research and development [Daw, 2005].  

 

Figure 2.2 shows a schematic of the 2-inch (5.08-cm)-diameter nuclear fuel coater used 

in experimental studies at Oak Ridge National Laboratory (ORNL) [Pannala et al., 2004].  

In this particular design, the CVD reactor is constructed from a simple conical spouted 

bed enclosed in an electrically heated furnace. The inlet gases include argon as carrier,  
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Figure 2.2 Schematic drawing of the 2-inch (5.08-cm)-diameter laboratory TRISO 

nuclear fuel particle coater used in experiments at ORNL.  

 
 
 
plus reactant gases containing hydrogen, methyl trichlorosilane (MTS) and/or propylene 

depending on which of the four different coatings is being applied.  

 

As the gases flow into the spouted bed through the inlet, they form a central region of 

dilute phase gas-solids flow (central core or spout zone). Particles are entrained by the 

gas near the inlet, flow upward through the core and then are ejected from the bed and 

disengaged from the gas in the spout. As they rise from the inlet, spout gases are rapidly 

heated from near ambient to bed temperature in a few milliseconds and begin to 

decompose into free radicals and/or nanoscale particles that become the building blocks 
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of the coating layer. After separating from the particles, the gas continues upward and out 

the coater exit.  

 

When particles land back on the surface of the bed, they slowly migrate back toward the 

bed inlet. The repeated entrainment and return of particles creates a global recirculation 

process that alternately exposes each particle to the gases in the central core and the outer 

annular zone where gas flow is much reduced. It is believed that the details of this 

alternating exposure (e.g., the precise time, temperature, and gas composition history 

experienced by the particles) are the key to coating quality [Gyarmati and Nickel, 1973; 

Gyarmati et al., 1983; Voice and Lamb, 1969; Stinton and Lackey, 1977; Lauf and Braski, 

1980]. Each of the four coatings is added in a similar fashion by sequentially adjusting 

the inlet gas composition, flow and temperature (so that particles are treated in a 

batchwise operation) [Daw, 2007].  

 

In order to produce large quantities of fuel to support commercial AGRs, spouted bed 

coaters will be needed that are much larger than the present experimental 5-cm diameter 

coaters at ORNL. As with other types of fluidized beds, there is no universal way to scale 

up the hydrodynamics of spouted beds a priori [Knowlton et al., 2005]. Thus a 

considerable amount of experimentation at different scales is required to develop a 

reliable full-scale AGR coater design with the desired gas-solids mixing and heat transfer 

characteristics. Unfortunately, as discussed below, many of the empirical correlations 

available for spouted bed design in the literature are not applicable for beds as shallow 

and with such dense solids as those required for TRISO fuels coating.  
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The situation in AGR coaters is further complicated by the high bed temperature, high 

inlet gas temperature gradient, and highly reactive species present (including fine 

particulates), which make it nearly impossible to make direct measurements of the 

particles during coating. Thus most of what is known about the hydrodynamics and 

mixing of AGR coaters must be inferred from indirect measurements such as pressure in 

the gas inlet [Daw, 2005]. Very little is understood about the details of the chemistry also 

[Daw, 2007]. 

 

Given the above constraints and limited state of knowledge, it was decided that the 

present study should focus on establishing the hydrodynamics of shallow, ambient 

temperature beds similar to those employed in the ORNL laboratory coating studies.  

ZrO2 particles were selected as surrogate fuel particles because of their durability, nearly 

spherical shape, and high density. 

 

2.2 Spouted Bed Hydrodynamics 

Like other types of fluidized beds, spouted beds are good for solid-gas contacting over a 

wide range of operating conditions. When designed and operated properly, spouted beds 

are able to achieve good mixing and uniform surface exposure for all the solids. Spouted 

beds are especially useful for agglomerating solids [Shuck and Knudsen, 1982], and they 

come in a variety of geometries, including flat base, conical base, jet inlet and rectangular 

bed, as shown in figure 2.3 [Bi, 2004; Rocha et al., 1995]. The current geometry of 

choice for nuclear fuel particle coating is based on the conical base design [Daw, 2005].  



 
         (a) Flat-base        (b) Conical-base      (c) Jet spouted bed        (d) Rectangular bed 
 
Figure 2.3 Four basic geometric configurations of spouted beds. 
 
 
 

For coating, the bed is operated with a shallow depth (so that the vertical height of solids 

in the cylindrical zone is less than the bed diameter). 

 

Figure 2.4 is a schematic of a shallow conical spouted bed as it appears in operation and 

as it appears when gas flow is turned off. For discussion purposes it is convenient to 

divide the operating bed into three characteristic zones: the spout, the fountain, and the 

annulus. As described above, high-velocity gas enters the bed through the inlet at the base, 

and particles near the inlet are entrained and carried up through the central core or spout 

zone in dilute two-phase flow. As the particles reach the bed surface and enter the 

fountain, drag from the gas rapidly diminishes. Particles in the fountain continue to move 

upward due to inertia, but eventually their velocities decelerate to zero due to the action 

of gravity, and they fall back to the bed surface. At this point the solids enter the annular 

zone, where they gradually flow down to the bottom of the bed and are picked up again 

by the gas. 
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  (a) Spouted bed in operation                 (b) Spouted bed in assumed static condition 

Inlet Gas 

  

Spouted Bed 
Dc 

Figure 2.4 Schematic drawing of a shallow conical spouted bed in operation (a) and with 

gas flow absent (b). The latter state is also referred to as the static condition.  

 

An important feature of conical spouted beds is that they typically have little or no dead 

zones where solids can become trapped. The single, central gas inlet creates a very strong 

global circulation of solids [Mathur and Epstein, 1974a] that helps maintain the 

distinctiveness of the three major zones. In simple terms, the global solids circulation is 

created by the entrainment of solids at the gas inlet. These entrained solids are pushed 

upward by the gas-solids drag, leaving a momentary void pocket at the apex of the cone 

which then refills with new solids flowing in from the annulus. For many operating 

conditions, the repeated emptying and refilling of this void pocket results in a pulsing action, 

which can be observed visually and also measured in pressure signals as described below. 

 

Like other fluidized beds, conical spouted beds can still have poor performance due to 

spout zone  

fountain zone

γ/2 

annular zone 

Di 

H0 
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incorrect design or inappropriate operating conditions for the particular process and 

solids involved. Such poor performance can be associated with specific issues such as 

unstable (erratic) flows, hot spots, and particle sintering and agglomeration. All of these 

issues are important to avoid in TRISO fuel coating. 

 

Certain key experimental measurements have become widely used for characterizing and 

correlating the hydrodynamics of spouted beds. These measurements include minimum 

spouting velocity, gas pressure drop, fountain height, and gas velocity distribution. In 

most cases, the reported values for these quantities in the literature are time average 

values, so that information about dynamic fluctuations (that is, variations over time) has 

been removed. As is discussed below, it is now recognized that such dynamic 

information can be key to understanding the underlying physics. 

 

The minimum spouting velocity (denoted Ums) corresponds to the minimum inlet gas 

velocity needed to maintain the spouted state in the gas-solid spouted bed [Mathur, 

1974b]. Below this critical gas flow, there is no entrainment of the solids at the inlet and 

global solids circulation is absent. Above this flow, gas drag is sufficient to keep the 

solids circulating. The value of Ums depends on the bed geometry (cone angle, column 

diameter, inlet diameter), particle properties (density, size and size distribution, shape) 

and inventory (static bed height), gas properties (density, viscosity) and running 

condition (temperature, pressure). For processes such as TRISO coating, it is clearly 

important to maintain gas flows that are greater than Ums so that sufficient solids gas 

contacting and overall mixing are maintained.  
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The minimum spouting velocity of conical spouted beds has been extensively measured 

experimentally, as summarized in Table 2.1. This table lists 25 Ums correlations published 

for relatively deep conical beds composed of lower density particles. The dimensionless 

groups used in the correlations include Ar, Di/Dc, tan(γ), tan(γ/2), sin(γ/2), H0/Dc, Rems, 

where the Archimedes number is defined as: 

2

3 )(
μ

ρρρ gd
Ar gppp −

=                             (2.1) 

and the particle Reynolds number at Ums is defined as: 

                                                   
μ
ρ gmsp

ms

Ud
=Re                                      (2.2)                        

It can be observed from these correlations that Ums is proportional to power of particle 

size, dp
n1, with n1 ranging from 0.54 to 1, which means Ums increases with particle size. 

Ums is also proportional to the power of the static particle height, H0
n2, with n2 ranging 

from 0.25 to 1.757, which means Ums increases with static particle height. Also, Ums 

increases with cone angle. 

 

Silica gel, polymer, grain, sand, glass, coal, aluminum, activated charcoal, fertilizer and 

ceramics were used to develop these Ums correlations. The particle sizes ranged from 0.5 

to 1.035 mm. The density of the particles ranged from 240 to 2986 kg/m3 (much lower 

than for TRISO fuel particles, with a density on the order of 10000 kg/m3), and the 

particle size range did not extend down to the kernal size for TRISO particles. 



   
 

Table 2.1 Previous studies of minimum spouting velocity 
Type of 
Spouted 
bed No. Year Author Correlation Bed Geometry Solids used 
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Di=1-1.3cm Conical Quartz, sand, millet, 
H0=3-15cm Aluminum silicate 
γ=12-60° dp=0.5-2.5mm 
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Table 2.1: Continued. 
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 Spouted 

bed No. Year Author Correlation Bed Geometry Solids used 
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Table 2.1: Continued. 
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Table 2.1: Continued. 
 
 
No. Year Author Correlation Bed Geometry Solids used 

Type of 
Spouted 
bed 
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Note: The fluid is air for all cases listed above. 
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In addition, the majority of these correlations deal with deep spouted beds with H0/Dc 

greater than one. The hydrodynamics of deep spouted beds with H0/Dc ≥1 is quite 

different from shallow spouted beds with H0/Dc ≤1 since the particles are constrained in 

the conical part for shallow beds. For example, the Mathur and Gishler (1955) correlation 

for deep beds with H0/Dc ≥1 overestimates Ums in shallow spouted beds [Choi and Meisen, 

1992].  

 

One also must consider the basis for defining Ums, because this is not handled 

consistently in the literature. The early Ums correlations developed by Nikolaev and 

Golubev (1964), Gorshtein and Mukhlenov (1964), and Tsvik (1967) are defined as the 

gas velocity at the onset of spouting when gas velocity is increased from low to high (see 

Figure 2.5(a)). Later, Kmiec (1983) and Olazar et al. (1992) use a different approach.  

They treat the turn point A in Figure 2.5(a) as minimum spouting velocity from which 

pressure drop starts to become level as gas flow rate is increased from low to high. Pham 

(1983) specifies point B in Figure 2.5(b) as Ums when gas velocity is decreased from high 

to low. This latter method is adopted in the experiments used to measure Ums in the 

present research. 

 

Gas pressure drop has also been widely studied for spouted bed hydrodynamics. One 

reason for the importance of pressure drop is that it is one of the few hydrodynamics 

measurements that can be made externally without requiring direct access to the inside of 

the spouted bed vessel. Such external access is especially relevant to industrial contexts  



                       

                     (a)                                                                         (b) 

Figure 2.5 Gas pressure drop vs. gas flow rate. (a) Gas flow rate is increased from low to 

high [Kmiec, 1983]; (b)gas flow rate is decreased from high to low [Pham, 1983].  

 

or situations where external heaters or severe process conditions make internal sensors 

impractical. 

 

Typically, pressure drop measurements are made between the gas inlet and some 

reference point at or near the bed outlet. The situation is complicated by the fact that the 

pulsing action of the global solids flow described above produces relatively large 

pressure fluctuations that can be readily detected if a fast-response sensor is used. If the 

latter is available, it becomes also possible to study these fluctuations in addition to the 

mean pressure drop. Three main approaches are used to analyze pressure drop 

fluctuations in spouted beds as well as fluidized beds in general: simple statistical 

analysis, frequency (spectral) analysis, and nonlinear statistical analysis. The last 

approach is described in detail by Schouten et al. (1998) among others.  
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Once the gas flow exceeds Ums, the average gas pressure drop (ΔPs) changes little with 

gas flow rate as indicated in Figure 2.5. Some correlations have been published relating 

ΔPs to solids properties and bed dimensions, however, most of these correlations are 

based on deep spouted beds with a flat base, and very few are for conical spouted beds. 

Some types of ΔPs correlations are summarized in Table 2.2. 

 

The two correlations listed in Table 2.2 that apply to conical spouted beds are those 

proposed by Mukhlenov and Gorshtein (1964) and Olazar et al. (1993). Both of these 

correlations predict that ΔPs increases with H0. However, the former shows that ΔPs 

increases with cone angle, while the latter shows opposite tendency. The other key 

dimensionless groups in both correlations are Rems and the bed height to diameter ratio. 

Trends in ΔPs with both of these groups also appear to be inconsistent between these 

sources.  

 

Table 2.3 summarizes previous studies where the pressure fluctuations of spouted beds 

were analyzed. Xu et al. (2004) analyzed the pressure fluctuations of rectangular conical 

spouted bed with glass beads and silica gel in both the time and frequency domain. He 

found that the spouting behavior in deep spouted beds (H0/Dc=2.9) is significantly 

different from shallow spouted beds (H0/Dc=1.5). For the beds Xu studied, the standard 

deviation of pressure drop fluctuations increased with gas velocity, and skewness 

exhibited small deviations from that of a normal distribution. He also found that Fourier 

power spectra of the pressure signals are useful for identifying different flow regimes. In 

general Xu observed that the pressure fluctuations in shallow spouted beds were rather 



Table 2.2 Previous studies of average and maximum gas pressure drop 
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Year Author ΔPs correlation Bed geometry Particles Bed type 
1964 Manu-rung =15cm Conical Coal, polymer, rape seed, 

millet 
D
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gp

M 44.3]8.0)(
tan

8.6[
)(

−+=
− λρρ
PΔ− c

γ=60° 
d

 
i = 1.3cm dp=1-4mm 

H0=34-93cm ρp=0.92-1.43g/cm3

γ=12-60° 1964 Mukhlenov and 
Gorshtein 

Conical  Quartz, sand, millet, 33.002.02.0
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 Di=1.03-1.29cm Aluminum silicate 
H0=3-15cm dp=0.5-2.5mm 
Dc= 5cm ρp=0.98-2.36g/cm3

1965 Malek and Lu =15.2cm Wheat Conical DgHP gpM )1)(( ερρ −−=Δ−  c
γ=60° 
Di=0.95-3.81cm 
H0=28-71cm 

dp=3.7mm 
ρp=0.83g/cm3 

 
1965  Mukhlenov et al. Conical Quartz, sand, millet, γ=12-60° 

2.05.02.1 )()
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Δ
Δ

 Di=1.03-1.29cm Aluminum silicate 
H0=3-15cm dp=0.5-2.5mm 
Dc=5cm ρp=0.98-2.36g/cm3

1968 Mamuro and 
Hattori 

Non-specified Theoretical model Conical 
)
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1992 Olazar et al. 08.0006.011.0
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D =36cm Glass, beans, rice, peas, 
lentils, ceramics, 
polystyrene, wood cubes 

Conical Δ γ c− γ=28-45° ρ
Di=3-6cm 

 H0=36-61cm. dp=1-25mm 
ρp=0.24-3.52g/cm3

      Note: The fluid is air for all cases listed above. 
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Table 2.3 The papers on analysis of spouted bed pressure signal for dynamic content. 

No. Year Author Bed geometry Particles Bed type Approach 

1 2004 Freitas et al. H0 = 70cm,L=15cm, 
W=2.9 and 5.3cm, 
γ=60° 

Glass 
dp=1.44mm 
ρp=2.52g/cm3

Rectangular 
 

Statistics; chaos; 
frequency 

2 2004 Xu et al. H=1.7m,γ=60° 
Di=6,10mm 
Dc=8, 12 cm 

Glass, silica gel 
dp=1.4-1.9mm 
ρp=0.43-1.53g/cm3

Conical Statistics; 
frequency 

3 2005 Zhong and 
Zhang 

H=2m, L = 0.3m, 
W=0.03m. 
γ=60°,H0=0.2-0.5m 

Polystyrene 
dp=2.5-3.0mm 
ρp=1.018g/cm3

Rectangular 
 

ARM power 
spectrum 
analysis; 
frequency 

 
                                        Note: The fluid is air for all cases listed above.  
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random while those in deep spouted beds showed strong periodic behavior. The shallow 

spouted beds exhibited a wide range of frequencies from 0 to 20 Hz and did not have a 

distinct dominant frequency, while the deep beds had a sharp dominant frequency from 6 

to 8 Hz depending on particle properties, gas velocity and bed geometry.  

 

Zhong and Zhang (2005) investigated the pressure fluctuation frequency characteristics 

of a two-dimensional deep spouted bed with polystyrene particles. Their results indicated 

that the main frequency increased with gas flow rate and decreased with bed depth. 

Freitas et al. (2004) also used pressure fluctuations to identify the flow regimes in slot-

rectangular spouted beds with glass beads. van der Schaaf et al. (2004) showed the 

similarity between chaos analysis and frequency analysis of pressure fluctuations in 

fluidized beds with sand particles. Svoboda et al. (1983) studied the pressure fluctuations 

in gas-fluidized beds at elevated temperatures and indicated that the frequency spectrum, 

dominant frequency and mean pressure depend considerably on the gas flow rate and 

temperature.  

 

The references in Table 2.3 indicate that the pressure fluctuation signal should be very 

useful for characterizing the behavior of spouted beds, including the TRISO fuel coaters. 

Clearly the characteristics of the pressure fluctuation strongly depend on the spouted or 

fluidized bed structure, particle species, particle diameters and operating conditions, 

including temperature, pressure and gas flow rate. As far as TRISO fuel coating is 

concerned, the missing component in the current literature is the lack of studies with 

shallow spouted beds and dense particles. The nature of the dynamics depicted in the 
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Previous studies of spouted bed fountain height are summarized in Table 2.4. As 

explained earlier, the reported values of fountain height are typically based on time 

average measurements, even though the pulsations described previously are also present 

in the fountain zone. Grace and Mathur (1978) give a theoretical model-based correlation 

for the fountain height H

 

literature is also somewhat ambiguous and system specific, with no development of a 

more general understanding of the physical processes that produce the observed 

dynamics. These missing components in the literature are a chief motivation for the 

present study.  

f: 
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=                                                         (2.3) 

This correlation requires knowledge of the void fraction and the central particle velocity 

at the top of the spout, both of which are usually unavailable in the initial design stage. 

 

Day (1990) published the following correlation for predicting the average fountain height: 
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             (2.4) 

This correlation requires one to know Hm, the maximum spoutable height. Some authors 

report how to predict maximum spoutable bed height in deep spouted beds with light 

particles, such as Morgan and Littman (1982), Rao and Husain (1985), and Cecen (1994). 

However, Hm is not appropriate for shallow spouted beds, because the particles are still 

spoutable even at highest H value (H=Dc). 
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Table 2.4 The average fountain height 

Year Author Hf correlation Bed geometry Particles 
Bed 
type 

1978 Grace 
and 
Mathur 

)(
2
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2

max46.1

gs

sSH
SHf g

v
H

ρρ
ρ

ε
−

=  
Theoretical model Not specified Conical 

1990 Day 
75.249.3892.013.2379.00865.0 )()()()()1(4.46 −−−− −

−=
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f

fs

mmsi
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d

A
H
H

U
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D
H

ρ
ρρ  Dc=15.2, 24.1, 29.2cm 

Di=25.4, 38.1mm 
H0= 15.2-87.6cm (H0/Dc=1-3) 

Glass, polymer 
dp=1.1-3.5mm 
ρp=1.05-2.96g/cm3

Flat 

Conical 2005b San 
José et 
al. 
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msii
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f U

u
D
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D
d

D
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H ργ  
Dc=36cm 
γ=28-45° 
Di=3-5cm 
H0=5-35cm 

polymer 
Dp=1-3.5mm 
ρp=0.07-1.03g/cm3



Perhaps the most relevant correlation to the present study found in the literature for 

spouted bed fountain height was that by San José et al. (2005b). They developed the 

following correlation to predict the average fountain height of polymer particles in 

conical spouted bed: 

45.112.08.452.0083.014.114.0 )()()()(0101.0 −−−−−− Φ= p
msii

p

b

i
f U

u
D
H

D
d

D
DH ργ                     (2.5) 

 is the particle density. where Φ is particle sphericity and ρp

 

The experiments from which this correlation was produced utilized polymer particles of 

1-25 mm diameter in a conical spouted bed with Dc=36 cm, γ=28-45°, H0=5-35 cm and 

Di=3-6 cm. Based on the relative magnitudes of the exponents in this correlation, it 

appears that gas velocity is the dominant factor. 

 

No previous study of spouted fountain height was found for which the range of bed 

height and particle density extended to that of TRISO fuel particle coating.  

 

Spouted gas velocity profiles reveal how the inlet flowing gas redistributes itself as it flows 

upward from the inlet. In particular such measurements reveal how the gas flows outward 

radially from the spout zone into the annular zone. In addition to changing the shape of 

these two zones, the outward gas flow can significantly affect gas-solid contact patterns. 

Generally, gas velocity profiles have been measured with two basic methods [Mathur, 

1974b]. One is to use pitot tube that is inserted from the above down into solids fountain, 

spout, or annulus.  The shortcoming of this method is that the pitot tube can disturb the 
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local voidage and give inaccurate measurements at the bottom of the conical spouted bed 

where the sectional area of the cone is small. Another much less accurate method is to 

measure the longitudinal static pressure gradients at the column wall. In general this latter 

method is not suitable for shallow conical spouted beds such as those of interest here.   

 

Table 2.5 summarizes the previous studies of gas velocity profiles found in the literature.  

Thorley et al. (1955) used the wall method to measure gas velocity profiles of wheat in 

the column part of a deep conical spouted bed with 61 cm diameter column, 45-85° cone 

angle and H0/Dc = 1.5~3.  They found that the gas velocity in the spout zone is much 

higher than the gas velocity in the annular zone, and that 37%-61% gas leaked into 

annular zone at z/H0= 0.5. This leakage ratio decreased as gas velocity, inlet diameter, or 

cone angle increased.  These results can probably not be applied to shallow spouted beds 

because the gas velocity obtained by Thorley et al. is for the constant diameter portion 

above the conical part. 

 

Becker (1961), Mamuro and Hattori (1968) and van Velzen et al. (1972) used a pitot tube 

to measure gas velocity profiles in conical spouted beds. They also found that cross flow 

of gas from the spout into the annulus increases with smaller cone angle, larger size of 

inlet, shallower bed and low gas flow rate.  At higher gas flow rate, most of the additional 

gas flows through spout zone. So the ratio of gas leakage from spout zone into annular 

zone varies with bed geometry and process parameter.  

 

Olazar et al. (1995a) measured gas velocity of expanded polystyrene in a conical spouted 
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Table 2.5 References on gas velocity profile 

No Year Author Bed geometry Particle Bed type 
1 1955 Thorley et 

al. 
Dc=61cm 
H0=91-185cm 
γ=45-85° 
Di=5.08-10.16cm 

Wheat 
dp=3.7mm 
ρp=0.83g/cm3

conical 

2 1959 Thorley et 
al. 

Dc=15.2, 30.48, 
60.96cm 
Di=1.3-5cm 
γ=60° 

Wheat 
dp=3.7mm 
ρp=0.83g/cm3

conical 

3 1961 Becker Dc=15.2, 61cm 
H0 = Hm 
Di=0.1-15.2cm 
γ=90, 120, 180° 

corn, peas, barkley, 
wheat, rape seed, Ottawa 
seed 
dp=0.8-6.9mm 
ρp=0.83-2.655g/cm3

conical and flat 

4 1968 Mamuro and 
Hattori 

Dc=15.2cm 
Di=1.3cm 
γ=180° 

millet, polystyrene, coal 
dp=1.3-1.8mm 
ρp=0.655-0.768g/cm3

flat 

5 1972 van Velzen 
et al. 

Dc=12.5cm 
H0=20cm 
γ=31° 
Di = 2.5-8cm 

Glass, polymer, 
Zirconium oxide 
dp=0.5-1.3mm 
ρp=1-4.4g/cm3

conical 

6 1994b Olazar et al. Dc=36cm 
Di=3-5cm 
H0=36-60cm 
γ=28-45° 

Glass 
dp=1-8mm 
ρp=2.42g/cm3

conical 

7 1995a Olazar et al. Dc=36cm 
Di=5cm 
H0=28cm 
γ=45° 

Expanded polystyrene 
dp=3.5mm 
ρp=0.014g/cm3

conical 



bed and correlated maximum gas velocity in terms of axial height as below: 

z
M eu 27.1076.3 −=                                                (2.6 ) 

where z is the axial height from the gas inlet and its unit is meter. 

 

In addition to experimental investigations of the hydrodynamics of the spouted beds, 

some attempts have also been made to develop detailed computational models of spouted 

bed dynamics. Relevant publications on spouted hydrodynamics modeling are 

summarized in Table 2.5. These publications are divided into two basic classes: discrete 

element method (DEM) models and computational fluid dynamics (CFD) models. In 

DEM, the trajectory of each individual particle at each time step. Gas-solid drag is 

evaluated for each particle based on local conditions, and particle-particle and particle-

wall collisions are treated based on explicit Newtonian mechanics and rules for handling 

elastic/inelastic effects. Prominent DEM models include those by Tsuji et al. (1993), 

Limtrakul et al. (2004), Takeuchi et al. (2004) and Zhong et al. (2006).   

 

CFD models treat gas and solid particles both as continuous but distinct fluid phases 

(with the particles acting as a pseudo-fluid), such as the model by Lu et al. (2004). Using 

a general CFD model for fluidization created originally at the National Energy 

Technology Laboratory (NETL), ORNL has developed a detailed model for simulating 

the shallow conical spouted bed for nuclear fuel coating [Pannala, 2005c]. This model 

currently appears to be the best approach available for capturing all of the details of 

potential TRISO coater designs, and compared to DEM methods, it is expected to be 

computationally much faster. However, even though CFD methods are much faster than 
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DEM, they are still very computationally demanding and require access to high 

performance computing facilities. Even with the latter, simulations of individual cases 

can take days to complete with the fastest computers available. Output from such 

simulations can also be very large, requiring the processing of many gigabytes of data. 

Interpretation of such large amounts of data requires specialized expertise and 

considerable effort.  

 

Because both DEM and CFD models are so computationally intensive, other simpler 

approaches are needed, especially for situations where rapid results are required such as 

with on-line diagnostics and controls. Unfortunately, any previous development of low-

order dynamic models for spouted beds in the literature has not been found so far. 

However, some hints about how to begin development of such models might be obtained 

from two published low-order models for bubbling fluidized beds. One model proposed 

by Pannala, Daw and Halow (2003) explicitly deals with the behavior of void pockets 

(bubbles) as these pockets rise through bubbling bed reactors. This model focuses on the 

number, position, and motion of the bubbles as they evolve with time. Interaction 

between bubbles includes wake effects from leading bubbles and bubble coalescence, 

both of which are defined by explicit deterministic rules expressed as ordinary 

differential equations (ODEs). The number of ODEs is sufficiently small that the model 

runs in near-real-time on a desktop computer. Mass transfer and first-order reactions 

between gas and solids are included, and the model can capture both the dynamics of the 

bubble and solid interactions as well as the effects of simple chemical reactions. 

Simulation results from this model have been shown to match closely with experimental 
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results for ozone bubbling bed reactors [Fryer and Potter, 1976].  This model appears to 

be relevant to shallow spouted beds, because the pulsating void pockets observed in the 

spout zone in the present study (described in following sections) seem to be very similar 

to the incipient bubbles that form in very shallow bubbling beds. 

 

Another low-order model for shallow bubbling bed dynamics was proposed by Sierra, 

Tadrist, and Occelli (2006) based on previous models proposed by Broadhurst (1986) and 

Schouten et al. (1992). It is a one-dimensional numerical model that utilizes an Eulerian-

Lagrangian approach for treating the interaction of a chain of particles in an upflowing 

gas stream. In this case, a series of ODEs is developed to represent the position and 

velocity of each particle. A modified hard-sphere model with a normal coefficient of 

restitution 0 < e < 1 is used to account for the collisions between particles. For fluid 

phase, mass and momentum conservation are also taken into account. By integrating the 

ODEs, particle oscillation frequencies are predicted that closely match the dominant 

frequency of shallow bubbling bed well. This prediction result is encouraging for spouted 

beds because the resulting frequencies are very similar to those seen in the spouted beds 

studied here. Also, it appears that the assumptions used to construct this type of model 

are reasonably close to what one might use to model the entrainment zone of shallow 

spouted beds. 
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3. Approach  

The general approach followed in the present study involved three key steps: 

• Experimental measurements of an ambient-temperature, conical spouted bed; 

• Analysis and correlation of the experimental observations; and 

• Development of a low-order dynamic spouted bed model. 

Since the AGR fuel coating process specifically utilizes shallow, spouted-bed reactors for 

coating the dense fuel particles, improving the design and operation of this process 

requires a good understanding of the hydrodynamics of shallow spouted beds of heavy 

particles. However, as described in the previous chapter, the studies available in the 

literature do not cover the appropriate combination of bed depth, particle size, and 

particle density. In addition, some of the results from the previous studies appear 

contradictory or inconsistent at best, and there is a clear general shortage of information 

about the time-varying behavior of spouted beds in the current literature. Thus the first 

key step of the present study was to develop basic hydrodynamics and time-varying 

information for conditions and parameter ranges closer to those in TRISO fuel coating.  

 

The objective of generating better hydrodynamical information for TRISO fuel coating 

was accomplished by carrying out a series of laboratory experiments with an atmospheric, 

ambient-temperature mock-up of the 5-cm diameter conical spouted bed utilized in the 

ORNL coater development studies [Pannala et al., 2004]. Dense surrogate particles made 

from ZrO2 were used in place of actual nuclear fuel for obvious safety reasons. While 

such ambient experiments with surrogate particles clearly cannot fully represent the 

actual process hydrodynamics, it is reasonable to expect that the behavior of this 
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experimental setup with the same bed dimensions and bed depth, and similar particle 

properties was much closer to the actual process than any of the previous studies. In 

addition, having experiments at ambient temperature and pressure with no reaction made 

it much more practical to make both optical (video-based) and intrusive pitot probe 

measurements of the behavior compared to the actual process. Obviously, the effects of 

the high temperature and reacting conditions in the real AGR coater will need to be the 

subject of future studies. 

 

The next major step of the present study was to analyze the information from the 

experiments to develop engineering correlations and an improved quantitative 

understanding of the dynamical trends for spouted beds like the AGR coater. The new 

correlations developed included relationships among minimum spouting velocity, 

average bed pressure drop, and average fountain height as functions of particle properties 

and flow conditions. Internal time-average gas velocity profiles measured with a pitot 

probe were compared with those reported by others and also with detailed CFD modeling 

results for the ORNL coater. The insights provided by the velocity profiles were also 

useful in constructing assumptions for a low-order dynamical model. Key information 

regarding explicit time-varying features of the experimental spouted bed was extracted by 

analyzing dynamic, high-speed pressure-drop measurements.  

 

The final major step of the present study was to lay the groundwork for a low-order 

dynamical model of shallow, conical spouted beds similar to that studied in the 

experiments. As described in the previous chapter, the DEM and CFD models of spouted 
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beds are not suitable for online monitoring and control because of the intensive 

computational demand. In addition, it is extremely challenging to resolve the essential 

physics of the collective particle behavior from the huge amount of detailed information 

produced by CFD and DEM simulations. Inspired by the success of low-order models for 

bubbling beds, a low-order dynamic model of shallow, conical spouted beds was 

constructed by making a coarse-grain approximation of the spouted bed. The coarse-

graining process involved dividing the bed into a small number of discrete zones and then 

applying differential mass and momentum balances over each zone. The result of these 

balances was a small set of ODEs describing the time rate of change of particle 

concentrations and velocity in each zone. This group of ODEs was then integrated for a 

range of parameters with appropriate boundary conditions. Both time-average and 

dynamical trends were then observed and compared with the experimental measurements 

and limited results from more detailed CFD models 

 

The detailed methods and results for each of the above steps are now discussed in the 

remaining sections. 
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4. Experimental Apparatus and Methods 

The safety issues associated with nuclear fuels made it necessary to use surrogate 

particles in the present experimental study. The surrogate material of choice was yttrium-

stabilized zirconia (YSZ or ZrO2) grinding media because of its high density and the high 

sphericity of the available particles. Both of the latter are important characteristics for 

matching the behavior of nuclear fuels in the spouted bed coater. Table 4.1 and 4.2  

summarize the general physical properties of the ZrO2 particles used as well as the 

experimentally measured and estimated minimum fluidizing velocities. 

 
Minimum fluidizing velocity (Umf) is a standard particle characteristic used for 

correlating and modeling fluidization behavior. The minimum fluidization velocity of 

each zirconia particle size was measured using a simple fluidized bed apparatus 

constructed from a Buchner funnel shown schematically in Fig. 4.1. The Buchner funnel 

was manufactured by Sibata (model 1311-11250A) and had a flat glass filter frit with 

  

Table 4.1 Summary of ZrO2 particle properties 
 

Molecular mass 123.22g/mol 

Appearance white 

Particle Density  5,890kg/m3

Particle sphericity ≈1 

Diameter range(mm) 0.3, 0.4, 0.5, 0.65 

Bulk void fraction 0.42- 0.46 

Hardness -Knoop (GPa) 10-15 

Youngs modulus (GPa) 100-205 

 
                 



 
 and predicted U  of ZrO  particles       Table 4.2 Measured and predicted Umf t 2

 
Particle 

size (mm) 
Measured U
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mf 
(cm/s) 

Umf from Wen-Yu 
correlation (cm/s) 

U  (m/s) t

0.3 17.6 16 3.98 

0.4 22.5 26.9 5.27 

0.5 37.9 39 6.48 

0.65 58.7 57.5 8.2 

 

 

 

 

 

 

.  Figure 4.1 Schematic drawing of the Buchner funnel apparatus used to measure Umf

 

 

 



160-250 micron pores as the filter medium. To begin the measurement, particles of the 

chosen size were added to the top of the funnel to a static bed height of 3 cm. 

Compressed air (from the humidified air system described below) was introduced as the 

fluidizing medium through the Buchner funnel outlet and was metered with a simple 

manually operated rotameter. Air flow was first raised to achieve a full fluidized 

condition and then lowered in small increments as average pressure drop across the frit 

plate was measured with a MKS Baratron pressure transducer (described below) 

connected to a National Instrument (NI) PXI 6052E data acquisition card driven by NI 

computer (described below).  

 

As shown in Fig. 4.2, gas pressure drop decreased smoothly until the minimum fluidizing  

 

Umf 

 

Figure 4.2 Measurement of U  of 400μm ZrO  particles. mf 2
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condition was reached, at which point it more sharply decreased for further flow 

reductions. By noting the characteristic breakpoint in the pressure drop curve, the 

minimum fluidizing air flow was determined. The mean gas velocity in the upper (39-mm 

diameter) section at this sharp transition point defines the minimum fluidization velocity.  

 

The standard gas used for all spouted bed experiments was room-temperature, humidity-

controlled air. Figure 4.3 schematically illustrates the air supply system. High-pressure 

compressed air was filtered and then metered through a 200 standard liter per minute (0.2 

m3/min) MKS mass flow controller (MFC) (model MKS 1559A-200L). The MFC was 

controlled by the NI computer via analog output ports on the NI card (described above). 

To ensure accuracy, the MFC was periodically calibrated with a standardized DryCal air 

flow meter (model no. DCL-H) manufactured by Bios International Corporation.   

 

After passing through the MFC, the air was temporarily split into two parts. One part of 

the air passed through a rotameter (used for controlling the flow split) and a humidifier 

before recombining with the remaining part of air and flowing on to the spouted bed inlet. 

The humidifier consisted of a sealed plastic column containing 30-cm depth of room-

temperature water. By adjusting the ratio of two parts of air, it was possible to control the 

final humidity of the air flowing into the spouted bed inlet to between 30 and 40% 

relative humidity. Humidification was necessary to reduce the static electricity generated 

during bed operation.  

 

Initial experiments intended to provide qualitative visual observations of the spouted bed



 
Figure 4.3 Spouted bed process and instrumentation diagram for high-speed differential pressure measurement.
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behavior were conducted with a glass mock-up of the 5-cm (2 inch) diameter, 60° conical 

spouted bed used at ORNL for laboratory coating studies. A schematic of this bed is 

shown in Fig. 4.4 and a photograph of the experimental setup is shown in Fig. 4.5.   

 

The transparent glass construction of this bed made it possible to visualize the collective 

motion of the spout and the motion of individual particles at the walls and in the particle 

entrainment zone. This visual access was important for both helping to interpret the more 

quantitative measurements made later (as described below) and in developing the key 

assumptions used in the low-order dynamic model. Visual observations and video 

recordings using conventional video (nominal 30 frames/s) were made of the glass 

spouted bed as it was operated over a range of particle sizes, solids inventories (bed 

depths) and gas flow rates.  

 

Also, a limited number of measurements were made with the laser beam illustrated in Fig. 

4.4. The laser was a standard randomly polarized He-Ne laser (Aerotech model LS5R) 

with 25 mW maximum power. The beam detector was constructed on-site at the 

university by Dennis Higdon of the Mechanical, Aerospace, and Biomedical Engineering 

Department. The sensing cell was constructed from a red, super-bright LED. Dark plastic 

film was placed across the lens of the LED to prevent the sensor from saturating. 

 

This laser-detector combination provided a way to directly measure the large-scale 

motion of the solid particles at various locations, including the upper (spout), middle 

(annulus), and lower (inlet) zones of the bed. Since particle fluctuations typically 



°

 

Figure 4.4 Schematic drawing of the glass spouted bed apparatus showing the air 

distributor, laser beam, and video camera arrangement. 

 

 

 
 

Figure 4.5 Glass spouted bed setup operating with 54.5 grams of 0.65mm of ZrO . 2   
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happened faster than could be observed directly by eye, these simple measurements made 

it possible to confirm that the motion of the spout and particles in the cone correlated 

directly with the pulsations in the pressure measurements made in the gas inlet tube. As 

described in the following chapter, it was confirmed that the inlet gas pressure 

measurements contain key information about the solids circulation process. 

 

While useful in providing basic insights into the spouted bed behavior, the glass bed was 

found to suffer from significant construction imperfections that made it unsuitable for 

generating more quantitative information. More specifically, the glass blowing process 

created irregularities in the cone shape that caused obvious asymmetries in the gas and 

particle flow. Consultations with glass blowing experts indicated that this irregularity 

would be extremely difficult to overcome (while still maintaining sufficient transparency), 

so it was decided to build another bed section from more easily machined materials. The 

material of choice for the cone was aluminum, both because of its ease of machining and 

its electrical conductivity, which helped disperse static charge. Three different bottom 

cones were constructed with base cone angles of 45, 60 and 75°, as shown in Fig. 4.6. All 

three cones came to the same maximum inside diameter of 5 cm and had a 0.4-cm-

diameter gas inlet tube. 

 

When assembled, the cones were mounted on a specially machined block of polymethyl 

methacrylate (PMMA or “acrylic”), which acted as the air distributor and contained the 

inlet air tube, a side pressure tap, and a special seal arrangement that secured the 

connection to the bottom of the cone. Figure 4.7 illustrates the acrylic block with key 



 
Figure 4.6. The aluminum cones with 75, 60 and 45° base angle (left to right) constructed 

for the quantitative spouted bed experiments. 
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Figure 4.7 The acrylic block used to mount spouted bed, connect pressure sensor and gas 

pipe, drain particles. 

5.08cm 
13cm 
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features and dimensions noted.  

The upper section of the spouted bed was made of a 5-cm-diameter, transparent quartz 

cylinder, which still allowed optical observation of the upper portion of the bed during 

operation. As shown in Figure 4.8, the spouted bed components were assembled in a 

specially designed, extruded aluminum frame. The bottom was connected to a special T-

valve (e in Figure 4.8) which allowed gas flow in or particles to be discharged. A side tap 

(b in Figure 4.8) connected with one of three MKS pressure transducers, models 223BD-

00001AAB (0-133 Pa), 78444-1E (0-1333Pa), and 78444-2B (0-13332Pa)). The specific 

transducer used depended on the amplitude of the pressure fluctuations. The low-pressure 

side of each transducer was left open to atmosphere. In order to reduce static electricity, 

the aluminum cone and all metal parts were grounded. Figure 4.9 shows the bed in 

operation. 

Pressure signals from the MKS transducers were digitized and recorded with a 

computerized data acquisition system. Signals were first passed through sequential, 4-

pole, analog, high- and low-pass Butterworth filters (Wavetek Dual Hi/Lo Filter 452), 

which were typically set at cut-off frequencies of 0.1 and 100Hz, respectively. After 

filtering, the signals were digitized at 16-bit maximum resolution with a National 

Instruments NI PXI-6052E data acquisition card installed in a desktop microcomputer 

driven by LabVIEW 7.1 software. A special program was written in LabVIEW 7.1 

programming code to control the acquisition of both the pressure and video signals. 

Typically, the pressure time series was recorded at 1000 Hz for one to two minutes. 
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a

b 
d 

e 

c 

Figure 4.8. Spouted bed assembled with the 75° cone. Air flow is currently off.  The label 

a refers to the cylindrical upper portion of the spouted bed; b is the pipe connecting with 

pressure sensor; c is ZrO2 particles that have been discharged from the bed, d is the inlet 

air line and e is T-valve. 

 

 

Figure 4.9. The spouted bed with a γ=60° cone installed in operation. 
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In order to further reduce 60 Hz noise coming from power supplies, an isolation amplifier 

was installed before each piece of electrical equipment.  

The standard procedure for a typical experiment involved the following sequence of 

initial steps: 

• Energizing and warming-up of the MFC for at least 30 minutes; 

• Start-up and warming of the computer and data acquisition system for 30 minutes; 

• Inspection of the pressure sensor line and testing of the instrument’s zero reading; 

• Inspection of the system grounding (for static charge dissipation); 

• And confirmation of bed vertical plumb. 

Once the above steps were taken, the T-valve at the bottom of the apparatus was opened 

to let in a minimum air flow and particles added from above the bed via a funnel (note 

that without air the particles would immediately fall through the gas inlet into the 

discharge zone). Air flow rate was then adjusted to the specified value using the MFC.  

During each experiment the air split to the humidifier was adjusted to maintain a final 

relative humidity in the bed between 30~40%, as measured in the bed exit with an 

electronic hygrometer. Ambient temperature always fell in the range 20-26°C. When 

experimental measurements were completed, air flow was shut off and the particles were 

allowed to drain to the discharge point.  

Experimental determination of minimum spouting velocity was carried out by means of 

measuring the inlet air pressure relative to atmosphere as a function of air flow rate. Air  
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Figure 4.10. Example plot used to determine Ums. In this case, there were 53.9 grams 

0.5mm ZrO2 in a 60° cone.  

 

 

flow was first raised to achieve a full spouting condition and then lowered in small 

increments. As shown in Fig. 4.10, gas pressure drop decreases smoothly until the 

minimum spouting condition is reached, at which point it sharply increases for further 

flow reductions. The gas inlet velocity (defined in terms of the inlet tube cross section) at 

this sharp transition point defined the minimum spouting velocity.   

 

Average gas velocity profiles in the bed during spouting were obtained by use of a pitot 

tube, which is illustrated schematically in Figure 4.11. The pitot tube was composed of 

inner and outer stainless steel tubes that had normal and opposed-flow openings to the 

external gas flow, respectively. By measuring the pressure difference between the total 

gas pressure (P
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total) and static pressure (Pstatic) of the gas, the dynamic pressure is obtained  



 

 
 

Figure 4.11 Schematic of the pitot tube used for velocity profile measurements. D refers to 

diameter; OD is outer diameter; ID is inner diameter. All tubes were made of stainless steel.  

 

from Bernoulli’s equation [White, 2003].                                             

f

statictotal PPu
ρ

)(2 −
=                                 (4.1) 

 

The pitot tube was mounted above the bed with two orthogonal micrometers such that 

both the x and y horizontal positions could be set very precisely. A vertical clamp 

allowed manual adjustment in the vertical direction. The precise vertical position was 

established by measuring the distance between the tip of pitot tube and bottom of the bed. 

Note that the pitot tube openings and volumes were such that the static-dynamic pressure 

differential took several seconds to stabilize once the tube was positioned at the desired 

location. This ‘filtering’ effect meant that the velocities obtained represented only time 

average flows. Short-time scale velocities (i.e., turbulent fluctuations) can not typically 
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be obtained from measurements such as this. 

  

Time-average fountain height for different spouting conditions was determined optically. 

Video recordings of the upper portion of the spout (above the aluminum cone) were 

captured using a Sony digital video camera (model DCR-HC42) for 30 seconds. The 

video recordings were captured electronically on the camera and then extracted as 

standard video files. Sets of 30 randomly selected frames from the video files were then 

superposed to create a composite image of the time-average fountain. This composite 

image was then used to determine the fountain characteristics.  Figure 4.12 shows a 

typical example of the composite image.  

 

Computer processing of the composite image in terms of gray scale variations allowed 

the determination of an unambiguous fountain height as shown in Fig. 4.13. For purposes 

of this study fountain height was defined along the centerline of the umbrella shape on 

the composite image.  



 

Figure 4.12. A composite image for the spouting condition produced with 53.9 grams of 

0.5mm ZrO , in a 60° cone with an air flow equivalent to 1.7U . 2 ms

 

Hf  above 
 the cone       

 
 
Figure 4.13. Determination of the fountain height above the cone based on the gray-scale 

intensity along the centerline of a composite image. Case: 53.9 grams of 650μm ZrO2, 

60° cone angle, and air flow rate = 1.7U .   ms
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5. Experimental results and analysis 

5.1 Time average spouted bed features 

5.1.1 Minimum spouting velocity, Ums

As discussed in the previous chapter, the minimum spouting velocity, Ums, was 

experimentally determined for a range of zirconia particle sizes and spouted bed cone 

angles. The best correlation for these data was found to be given by Equation 5.1: 

87.059.1086.0 )
2

tan()(0015.0Re γ

c
ms D

H
Ar=                                                     (5.1)                             

 ≤ 0.65mm, 0.5 ≤ H /Dwith 0.3mm ≤ Dp 0 c ≤ 1, and 45° ≤ γ ≤ 75°. As illustrated in Figure 

5.1, the fit between the observations and Equation 5.1 is quite good, with a coefficient of 

regression of 0.98.  
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 predicted by Equation 5.1 vs. measured U . Figure 5.1 Ums ms
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Table 5.1 illustrates the goodness of fit for Equation 5.1 compared to other correlations 

from the literature for a range of experimental bed heights.  Correlations from the 

literature are designated with numbers, corresponding to 1) San Jose (1992), 2) Tsvik 

(1967), 3) Gorshtein (1964), 4) Mukhlenov (1965) and 5) Aravinth (1997). Of these, the 

correlation by Aravinth is the best, and its predicted error still ranges between 12%~60%. 

The prediction error of correlation (5.1) is 8~13%. Other correlations from the literature 

were found to have even higher errors for the experimental system of interest here, and 

are not listed.  

 

It should perhaps not be surprising that many correlations in the literature do not compare 

well with the Ums observations from this study. In particular, the effects of cone angle 

were found to be quite significant, but many correlations do not even include cone angle 

as a variable. Also, most correlations are based on measurements with particles having a 

density lower than or around 3 g/cm3, while the density of ZrO2 is 5.89 g/cm3.  In 

addition, most correlations in the literature were derived for deep spouted beds (H0/Dc > 

1). 

 

 

Table 5.1 Comparison of measured Ums with predicted Ums values. Dp=0.5mm, γ=45◦. 

H0/Dc Measured 
Value(m/s) 

Equation 
5.1 (m/s) 

Method 
1(m/s) 

Method 
2(m/s) 

Method 
3(m/s) 

Method 
4(m/s) 

Method 
5(m/s) 

0.5 
0.0450 0.0393 7.43 14.99 3.78 10.61 0.072 

0.6 
0.0586 0.0525 9.6 18.8 3.9 12.7 0.0869 

0.8 
0.0874 0.0829 14.7 26.8 4.2 17 0.1159 

1 
0.1290 0.1182 20.7 35.4 4.4 21.2 0.1448 



5.1.2 Time-average gas pressure drop 

The air pressure drop across the empty spouted beds are measured and analyzed. Three 

correlations predicted the pressure drop across the empty spouted beds are obtained as 

below, for the base cone angles γ:  

γ=45°:                            (5.2a) 284.07.1488.23 ii uuP ++−=Δ

γ=60°:                              (5.2b) 262.138.503.1 ii uuP ++−=Δ

γ=75°:                              (5.2c) 258.169.304.13 ii uuP ++=Δ

where u  is the gas velocity in the inlet pipe with units in m/s.  ΔP has units in pascal. i

 

The air pressure drop across the particles inside the spouted bed equals the measured air 

pressure drop minus the air pressure drop across the empty spouted bed at the 

corresponding air flow rate. 

 

Experimental time-average pressure drop measurements were made for the zirconia 

particles over the following ranges: D
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p =0.3-0.65mm, H /D0 c = 0.5 - 1, γ = 45 - 75°, and 

U/Ums = 1-1.9. The experimental mean pressure drop measurements were found to 

correlate well with Equations 5.3a and 5.3b as below:  

039.0
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                                     (5.3b) 



Both Equations 5.3a and 5.3b predict the same result, but Equation 5.3b contains the 

same predictive variables as Mukhlevnov and Gorshtein (1964) and Olazar et al. (1993) 

correlations. Equations 5.3 a and b actually can be transformed from one to other if Rems 

is expressed in terms of γ, D  and Hp o as in Equation 5.3a. The regression coefficient for 

both forms of the correlation is 0.99. Figure 5.2 shows the pressure drops predicted by 

equation (5.3) are very close to the corresponding experimental data.      

 

Looking more closely at the correlations by Mukhlevnov and Gorshtein (1964) and 

Olazar et al. (1993), it is seen in Table 5.2 that these correlations from the literature do a 

poor job of predicting the observed pressure drops in the bed used in this study. 
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Figure 5.2 Spouted bed pressure drop predicted by Equations 5.3 a and b vs. measured 

pressure drop.  
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Table 5.2 Comparison of ΔPs by Equation (5.3) with ΔPs by Mukhlevnov and Olazar 

equations                   (Units: Dp: mm, γ:degree, ΔPs: Pa, Error: %) 

Condition ΔPs by Equation 
(5.2) 

ΔPs by 
Mukhlevnov 
equation(Pa) 

ΔPs by Olazar 
equation(Pa) 

Dp γ H0/Dc

Experimental 
ΔPs  

data error data error data error 
0.3 45 1 1316.6 1338.3 1.6 1646.5 25.1 2936.3 123 
0.3 60 0.6 786.3 784.5 -0.2  1422.7 80.9 1695.3 115.6 
0.3 75 0.6 755.0 775.7 2.7 1469.5  94.6 1631 116 
0.4 45 1 1290.6 1260.6 -2.3 1618.1  25.4 2921 126.3 
0.4 60 0.8 1018.4 990.9 -2.7 1490.9  46.4 2214 117.4 
0.4 75 0.5 612.0 606.7 -0.9 1263.8  107 1328.1 117 
0.5 45 1 1186.2 1203.4 1.5 1476  24.4 2842 139.6 
0.5 60 0.5 582.6 585.7 0.5 1151.2  97.6 1355.4 132.6 
0.5 75 0.6 676.4 697.5 3.1 1239.1  83.2 1549.7 129.1 
0.65 45 0.5 557.3 561.9 0.8 1071.3  92.2 1403.5 151.8 
0.65 60 0.8 881.3 895.7 1.6 1246  41.4 2097.9 138 
0.65 75 0.6 682.3 660.5 -3.2 1138.8  66.9 1510.9 121.4 

 

 

It is clear that the Mukhlevnov (1964) and Olazar (1993) correlations considerably 

overestimate the pressure drops in the current experiments. The relative error by the 

Mukhlevnov method ranges from 24% to 107% while the Olazar method overestimates 

116% ~ 152%. Again, the experimental ranges for which of these literature correlations 

were derived are quite different from the applicable ranges here.  

 

5.1.3 Gas velocity profiles  

As described in the previous chapter, time-average gas velocity profiles were measured in 

the experimental spouted bed using a pitot tube. In order to get some sense of the 

variations in these profiles with inlet gas velocity, velocity measurements were made at 

varying elevations and radial positions as well as at three different inlet air flows: 0.148, 
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0.193 and 0.237 m/s superficial gas velocity, which corresponds to 1.5, 1.9 and 2.3 U/Ums 

respectively. 

 

Figure 5.3 illustrates the average gas velocity profile as a function of radial position and 

elevation above the air inlet. In this case, the bed was operated with the 60° inlet cone 

and 54.5 grams 0.5mm ZrO2 (H0/Dc = 0.7). In this case the inlet air U/Ums was 1.9. The 

observed velocity profiles appear to be very similar to profiles reported by Becker (1961) 

and Olazar et al. (1995a). The air velocity near the spout center is characteristically much 

higher than near the wall, but the radial gradient in velocity falls quickly with height. 

Both the central and wall velocities drop rapidly with height in the cone as the cross-

sectional area expands. By the time the air exits the bed (i.e., enters the fountain), the 

radial gradient is nearly flat. The above trends suggest that there is considerable outward 

flow of air from the central core as a function of height in the core, even though there is 

little time to do so in such a shallow bed.  

 

Figure 5.4 illustrates the variation in the central gas velocity with bed height in the 60° 

conical spouted bed with 54.5 grams ZrO2 (static bed height = 3.5cm) operated at 1.5, 1.9 

and 2.3 U/Ums or 290, 378 and 465 cm3/s. Note that as height increases, the central 

velocity decreases due to radial expansion of the air.  The curve shapes appear similar for 

each of the three flows.  In the literature, this radial expansion of the gas is often 

described as a ‘leakage’ of gas from the central spout zone to the annular zone. In the 

section, gas in the annular zone also continues to expand with height as the cross-section 

increases. This geometrically motivated gas expansion in the annulus provides a 
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Figure 5.3 Gas velocity profile of 60° spouted bed with 54.5 grams of 0.5mm ZrO2 ,static 

bed height = 3.5cm at air flow rate 1.9 U/U  or 378cm3
ms /s. H=0 corresponds to the cone 

bottom.  

 

 

Figure 5.4 Central velocity of 60° spouted bed with 54.5grams ZrO2 (static bed height = 

3.5cm) operated with 1.5, 1.9 and 2.3 U/U  air flow. ms
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continuing gradient that promotes leakage from the core to the annulus. At the level of 

the fountain, the difference in velocity between the central and annular zones disappears, 

and there is no longer a driving force for gas to ‘leak’ radially. 

 

5.1.4 Fountain height 

As described previously, time-average fountain heights were measured by creating 

composite images from video recordings. An investigation of the fountain height 

correlations in the literature revealed that the results of the measurements in this study are 

relatively well correlated by a correlation of the form proposed by San José et al. 

(2005b). The resulting correlation for the present data is given by:  
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Here the appropriate parameter ranges are: H0/Dc = 0.5 ~ 1, γ = 0.785~1.309, Dp = 

0.3~0.65mm, U/U =1.2 ~ 2.1. The regression coefficient for the fitted correlation is 0.91. ms

 

Figure 5.5 illustrates the agreement between equation 5.4 and the observed fountain 

heights in this study. The maximum error is 15%. 
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Figure 5.5 Fountain height predicted by equation (5.3) vs. measured fountain height.  
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5.2 Dynamic trends 

5.2.1 Gas pressure drop 

Under steady spouting conditions, gas pressure drop over the bed constantly varies over 

time. In some cases the variation occurs almost periodically around a well-defined mean, 

but in others the variation is more complex and erratic. Figures 5.6 and 5.7 illustrate an 

example time series of pressure drop at two different scales of temporal magnification. 

From the visual and laser measurements made with the glass spouted bed, it is clear that 

the pressure drop variations correlate with the global motion of particles in the bed. This 

correlation is especially visible for the particles in the entrainment zone near the air inlet, 

in the fountain, and for the particles near the walls of the annular zone. Such a correlation 

implies that the global particle circulation is closely coupled to the gas pressure 

pulsations, and thus models that capture gas pressure drop pulsations should be useful for 
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Figure 5.6 Total gas pressure drop versus time for 53.9 grams 0.5mm ZrO2 (static bed 

height = 3.5cm) in 60° spouted bed for a gas flow rate corresponding to U/U = 1.5. ms
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Figure 5.7 Time scale enlargement of the gas pressure drop time series from Figure 5.6. 

Note the relatively large pulses occurring about 20 times/s. Lower and higher frequency 

variations in the pulses add a non-periodic complexity. 

 

simulating and tracking the global mixing process.  The inventory of particle inside the 

spouted bed is set to be 53.9grams which corresponds to 0.7 H /D

 60

0 c.  

 

5.2.2 Dynamic pressure drop statistics 

One way of characterizing the pressure drop variations over time is to use typical 

statistics such as standard deviation, skewness and kurtosis. Figure 5.8 illustrates how 

these statistics calculated from the measured gas pressure drop vary with U/Ums for the 

60° conical spouted bed with 53.9 grams 0.5mm ZrO2 (static bed height = 3.5cm) .  As 

gas flow rate is lowered from U/Ums = 2.3 to 1, the standard deviation of the dynamic 

pressure drop decreases, reflecting a diminishing size for the pressure pulses. Skewness 

and kurtosis, on the other had, grow larger at the low flows, indicating that the pressure  



 

Figure 5.8 Variation of standard deviation, skewness and kurtosis of the dynamic 

pressure drop vs. U/U  for the 60° conical bed containing 53.9 grams 0.5mm ZrOms 2 

(static bed height = 3.5cm).  

 

 

oscillation magnitudes are becoming less Gaussian (more skewed and less bell-shaped) in 

distribution.  

 
 
Figures 5.9 through 5.11 illustrate the trends in the dynamic pressure drop standard 

deviation, skewness, and kurtosis for changes in particle size and cone angle while U/Ums 

is held constant. In general, the standard deviation and skewness decrease as particle size 

increases for all cone angles studies, while the kurtosis varies in a more complex fashion. 

In figures 5.9 through 5.11, the particle masses in the spouted bed were fixed for each 

particle size. The particle mass for the 45° cone is 76.2 g, for 60° 53.9 g, for 75° 80.9 g  

 61



0

50

100

150

200

250

300

350

200 300 400 500 600 700
particle diameter(micron)

st
an

da
rd

 d
ev

ia
tio

n 
of

 a
ir 

pr
es

su
re

 d
ro

p 75degree cone, H/Dc=0.65

60degree cone, H/Dc=0.7

45degree cone, H/Dc=1

 

Figure 5.9 Standard deviation of the gas pressure drop vs. ZrO2 particle diameter at 

U/U =1.5 ms 
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 particle diameter at U/U =1.5.  Figure 5.10 Skewness of the gas pressure drop vs. ZrO2 ms 
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 particle diameter at U/U =1.5.  Figure 5.11 Kurtosis of the gas pressure drop vs. ZrO2 ms 

 

 

One additional interesting statistic studied was the ratio of the dynamic pressure drop 

standard deviation to the average pressure drop. As illustrated in Figure 5.12, this ratio 

decreased in a monotonic way for a given cone angle as static bed height increased. Since 

the bed height directly correlates with the current state of coating in the TRISO process, it 

appears that this ratio might provide a way to monitor the coating process in real time. If 

the reliability of this statistic can be confirmed in pilot studies, it would be especially 

attractive as a process monitoring tool since gas pressure drop signals are typically 

always available. 
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Figure 5.12 The ratio of standard deviation to average pressure drop vs. static bed height 

and cone angle for 500μm ZrO . 2

 

 5.2.3 Dynamic pressure drop frequency analysis 

Even though the pressure drop time series were often far from simple periodic 

oscillations, Fourier analysis revealed a lot about their characteristics and how these 

changed with changes in bed geometry, particle properties, and gas flow.  As an example, 

Figure 5.13 illustrates the shift in the observed Fourier power spectrum as the inlet air 

flow was decreased from 2.1 U  to slightly below Ums ms for 0.5mm zirconia particles in 

the 60° conical bed (with a static bed height of 3.5cm). In this case the dominant 

pulsation frequency shifted from 21.4 Hz to 17.4 Hz as air velocity dropped from a 

vigorously spouting condition (2.3Ums) to a much more smooth spouting condition at 

1.3U . At U/U  = 1.2, the dominant pulsation frequency bifurcated, revealing two  ms ms
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Figure 5.13. Shifts in the Fourier power spectra in the gas pressure drop as the inlet gas 

flow rate was changed.  In this case the 60 ° conical bed was composed of 0.5mm 

zirconia particles with a static bed depth of 3.5cm. 
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distinct peaks in the power spectrum. The higher frequency appeared to correspond to a 

warping of the main pulse shape such that it split into two sub-pulses, creating higher 

frequency oscillations at nearly twice the main pulse frequency 

 

As air flow continued to drop to Ums and below, the higher dual pulse frequency became 

dominant at about 25 Hz and then shifted down slowly until the minimum air flow was 

reached (that is, the point at which particles began falling out through the gas inlet. In this 

flow region, the ‘quivering’ of the particles could be observed by eye on the bed surface. 

 

Figure 5.14 depicts the above trends in terms of the variation in the dominant Fourier 

peak as a function of air flow. Note the very sudden jump in the dominant frequency 

 

 
Figure 5.14. Dominant frequency vs. gas flow rate for the same case depicted in Figure 

5.13.  
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associated with the bifurcation as the air flow passes through Ums. Significant shifts in the 

dominant pulsation frequency were also observed in association with changes in cone 

angle and particle size as illustrated in Figures 5.15 and 5.16. In general, increases in both 

particle size and cone angle were accompanied by a reduction in the main pulsation 

frequency. The situation for particle size was more complex however, because the 

smallest particles (0.3mm) had a much different behavior than the larger sizes. For the 

former, the dominant pulsation became extremely periodic but there was also a wide band 

of very complex high frequency oscillations The sudden change in characterization 

between 0.3 and 0.4mm particles is indicative of some sort of bifurcation event similar to 

that seen near Ums. Although very intriguing, this bifurcation was considered outside the 

scope of this investigation and was left for future investigators. 
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 in 45°, 60° and 75° Figure 5.15 Dominant frequency of ΔP for 500 µm ZrO2 spouted beds 

at U/U = 1.5, H /D
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ms 0 c = 0.6. 
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Figure 5.16 Dominant frequency of ΔP for 300, 400, 500 and 650µm ZrO2 in 60° spouted 

beds at U/U = 1.1, H /D
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ms 0 c = 0.7.  
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The preliminary study observes that 0.2mm zirconia particles behaves in quite different 

ways from 0.3, 0.4, 0.5 and 0.65mm zirconia particles in terms of fountain shape. The 

latter fountain shapes are basically parabola with height varying with time. The fountain 

shapes of 0.2mm zirconia particles not only keep changing in height but also swirling 

around its axial axis. It needs to be studied by itself and was left for future study. 

 

In contrast to the previous cases of parametric variation, the static bed height did not have 

an appreciable impact on the dominant pulsation frequency. This can be seen in Figure 

5.17, where the dominant frequency stays nearly constant near 19 Hz for four different 

static bed heights.  
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1.5, H /D
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0 c = 0.5, 0.6, 0.7, and 0.8 (from high to low).  
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6. Low-order model  

6.1 Objectives of low-order model development 

As discussed previously, computational models for multi-phase flows that utilize discrete 

element methods (DEM) and computational fluid dynamics (CFD) can provide extremely 

detailed simulations of fluidized and spouting beds, but they do so at a significant cost in 

computational overhead and time. Such costs can be worthwhile when the objective is to 

evaluate detailed design changes or to probe the underlying physics. But for some 

purposes, such as on-line diagnostics and controls, simpler approaches are more 

desirable.  Based on the previously described experimental observations of the zirconia 

spouted bed behavior, it was concluded that a simplified dynamical model of gas and 

solids interactions for shallow spouted beds could be constructed to capture both the key 

time average and dynamical features, while also operating in near-real time.   

 

The objective in this chapter is to propose the basic components of such a model and to 

describe how it should function. In a succeeding chapter, the general trends predicted by 

this model are studied and compared against the experimental observations for the 

experimental zirconia spouted bed. Where deficiencies in the model are identified, 

possible future improvements are recommended.   

 

6.2 Modeling approach and assumptions:  

In much of the prior literature, spouted beds have been conceived of as having three 

characteristic zones: the spout, the fountain, and the annulus (see for example Mathur and 

Epstein (1974b).  The experimental observations in the present study suggest the addition  



 

Figure 6.1 schematically summarizes the location of each of the four conceptual zones. 

 

of a fourth conceptual zone, the entrainment zone, which is located immediately above 

the gas inlet as shown in Figure 6.1. The importance of this fourth zone is supported by 

the observation that the initial entrainment of particles by the gas occurs at the lower gas-

particle interface and that the rising particles form a cluster which is conveyed largely 

intact upward to the fountain. The size and frequency of the particle cluster formation 

appears to determine the size and frequency of the pressure pulsations and the overall 

solids circulation rate. This same type behavior has been observed in CFD simulations by 

Pannala et al. (2006).  

 
 
The assumed characteristics for each of these zones are summarized below:  

• Entrainment zone (denoted with subscript E) 

− Located below the central spout above the gas inlet. 

− Gas enters the bottom at constant mass rate. 
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− Solids enter radially from the annular zone. 

− Solids and most of the gas exit vertically out the top into the spout. 

− Some gas exits radially into the annular zone when solids are entering (see 

below). 

− Pressure drop is sufficiently low that gas velocity can be considered 

constant over this zone. 

• Spout zone (denoted with subscript S) 

− Located on the centerline above the entrainment zone and below the 

fountain zone. 

− Cylindrical shape with constant diameter equal to the gas inlet diameter. 

− Gas and solids enter at the bottom and exit at the top. 

− Gas and solids move in plug flow with no radial gradient. 

− Drag from gas continues to accelerate solids until the top of the spout zone 

is reached. 

− Pressure drop is sufficiently low that gas velocity can be considered 

constant over this zone. 

• Fountain zone (denoted with subscript F) 

− Above both the annular and spout zones, extending radially across the 

entire upper bed. 

− Gas and solids enter from the spout zone. 

− Gas flow from spout expands radially to fill entire cross-section and gas 

drag on particles is effectively zero. 
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− Within the fountain, particles move in ballistic trajectories defined by the 

spout exit velocity and effect of gravity. 

− Particles leaving the spout zone fan out equally such that they become 

evenly distributed over the top of the annular zone. 

− Gas pressure and velocity are effectively constant and equal to the exit 

values. 

• Annular zone (denoted with subscript A) 

−  Extends between walls and the outer radii of the entrainment zone and 

spout. 

− Gas flow is minimal and enters radially from the entrainment zone when 

particles flow into the entrainment zone. 

− Solid particles enter from fountain in uniform surface layer and exit by 

being pulled into entrainment zone. 

− Solid particles are loosely packed at minimum void fraction (i.e., in a de-

fluidized state) and height varies as there is net inflow/outflow.   

− Solids downflow is uniform and regulated by solids transfer into 

entrainment zone. 

 

In addition to the above assumptions about each zone, there are other assumptions 

common to all the zones: 

• The total mass of solids (sum of all zones) is constant. 

• Differential momentum and mass balances must be satisfied for the solids and gas 

in each zone. 



• Unless otherwise specified, the conditions in each zone can be approximated in 

terms of average density and velocity for both the gas and solids. 

• Gas acceleration/deceleration in each zone is much faster than solids, so gas flow 

reaches steady state locally at each time increment. 

 

6.3 Differential balances for each zone 

6.3.1 Entrainment zone 

Applying the last assumption above that the gas flow reaches steady state immediately 

relative to the solids, the time derivatives for the mass and momentum of the gas are set 

to zero, and the rate controlling processes for the hydrodynamics in this zone are the 

differential balances of mass and momentum for the solids. The differential solids 

momentum balance requires the following: 

sEpEp
EpE

EEp FDragGravity
dt

vd
HA ++−=

− ])1[( ε
ρ                     (6.1).    

gHAGravity EEEpEp )1( ερ −=             (6.2). The gravity force is defined by, 

E
p

DEEEEpE
Ep A

d
CvuH

Drag
2)/)(1(75.0 −−

=
εερThe drag force is defined by,      (6.3).          

uE is the gas velocity in the entrainment zone. It is well known that the air expands 

suddenly after it passes through the narrow inlet pipe in turbulent flow and enters the 

bottom of the spouted bed. So the diameter of the entrainment zone could be equal to or 

bigger than the inlet pipe diameter. 
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Since the gas flow has reached steady state at any instant in time, and the particle-gas slip 

velocity is well defined. The drag coefficient, Cd, is related to the particle Reynolds  

number using a correlation such as: 

)Re15.01(
Re
24 687.0

p
p

dC +=
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, for Re  < 103                                           (6.4);      p

44.0=dC , for Re  > 103                                                                       (6.5); p

Ef

EpEEppp
p

vud
μ

ερ |/|
Re

−
=        (6.6). where the particle Reynolds number, 

The last term in Equation 6.1, Fs, represents the solid particles resistance to compression 

to a void fraction smaller than their minimum static value. Effectively the particles 

become incompressible at the point of maximum packing and any further compression is 

strongly resisted. For purposes of this study this anti-compression force is represented as 

a sharply rising exponential function of void fraction: 

)(1000 mfEeFs
εε −−=                                                         (6.7). 

The differential mass balance for particles in the entrainment zone is given by: 

)()( outminm
dt

dm
EpEp

Ep
••

−=                                                  (6.8). 

In Equation 6.8  is the radial inflow of solids mass from the annular zone. For 

this study this inflow rate is assumed to be proportional to the available ‘empty space’ in 

the entrainment zone. This is stated mathematically as: 

)(inmEp

•

)(inmEp

•

= kEA H (εE Eρp E – ε )                                                            (6.9) mf



where ε  is the minimum void fraction of loosely packed particles, and kmf E is a 

characteristic granular flow rate constant with units of 1/time. The quantities A and HE E 

are the cross-sectional area and height of the entrainment zone, respectively. The rule 

governing kE will be recommended  for future study by means of more advanced 

experimental. 

The quantity is the vertical mass outflow of solids into the spout. This flow rate 

is determined by the upward velocity of the particles and is equal to: 

)(outmEp

•

)(outmEp

•

)1( EpEEp Av ερ −                                                           (6.10) = 

 

Combining Equations 6.8-.10, the differential mass balance can be restated as: 

)1()()1(
EpEEppmfEEE

E
EEp AvHkA

dt
dHA ερρεεερ −−−=

−                     (6.11). 

Equation 6.11 can be further simplified to obtain, 
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Equations 6.1 and 6.12 can be combined and rearranged to yield, 

g
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FDragkv
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EEEp
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ερε
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Equations 6.12 and 6.13 are the final ODEs for the entrainment zone. 

 

One additional aspect of the entrainment zone needs to be included in the model in order 

to capture an important observed feature of entrainment zone behavior. Although the gas 

flow entering the bottom of the entrainment zone is constant, the exit flow can leave 
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either through the top into the spout or through sides into the annulus. The side flow of 

gas into the annulus compensates for the inward solids flow that occurs after the 

entrainment zone has been emptied of solids and the annulus solids collapse into the 

available space. This side flow gas is visible experimentally as a kind of upward moving 

wave that passes upward through the annular solids while the entire annular solids mass 

shifts downward in response.  

 

To capture this process the model produces a split in the outlet gas flow depending on 

whether the solids inventory in the entrainment zone is increasing or decreasing. 

Specifically, when the net solids inventory is decreasing, all the gas exits from the top. 

When the net solids inventory is increasing, a portion of the gas exits radially and the 

remainder exits at the top. The net effect is to reduce the upward gas flow and thus the 

rate at which solids are entrained. This can be summarized mathematically as 

0≥
dt

d Eε
iE uu =    for                                                          (6.14a) 

0<
dt

d Eε
irE uku =  for                                                          (6.14b) 

where kr (the entrainment velocity ratio) is an empirical constant between 0 and 1.  kr 

would be determined in this way such that the simulated fountain height equals to the 

experimental results.  Since the drag force on the solids depends on the relative gas-solids 

slip velocity, the drop in uE that occurs when εE is increasing causes a sudden reduction in 

the drag force.  
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The above ordinary differential equations for void fraction and particle velocity in the 

entrainment zone can be rewritten in non-dimensional form as: 

)1()( *
* EEpmfE
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E vG
dt
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                                   (6.15) 
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FEd is the drag force exerted on particles in the entrainment zone. 

 

The boundary condition for the entrainment zone is that the inlet gas velocity is constant; 

that is, for all t*>0: 
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          uE = ui           at z = 0                     (6.17a) 

 

In dimensionless form this can be written as: 

E

i
iE gH

u
uu == **        at z* = 0       (6.17b) 

In order to integrate the entrainment zone ODEs, it is also necessary to specify initial 

conditions for the void fraction and solids velocity. For simplicity these are usually taken 

as: 

  and  at                                            (6.18) 0* =t0* =EpvmfE εε =

As previously discussed, the gas flow is assumed to be at steady-state for each time 

increment as the solids inventory and velocity in the entrainment zone evolves. Once the 



ODEs for the entrainment zone are integrated, one important remaining gas-related 

quantity that can also be determined is the pressure drop. This is explicitly determined 

from: 

ΔP
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E = F /AEd E                                                                       (16.19) 

 

6.3.2 Spout zone 

For deep spouted beds, most of the gas flows through the spout zone and only a small 

part of the gas leaks into the annular zone. For shallow spouted beds such as that studied 

here, one expects that the impact of radial gas leakage from the spout zone might be even 

less important. The gas velocity profile reported in previous chapter also indicates that 

until the fountain zone is reached, the gas velocity in the spout is much higher than in the 

annulus. So as a first approximation it is assumed here there is no radial gas leak from 

spout zone into the annular zone. This means that the gas flow throughout the spout zone 

equals to the flow rate of the gas flow entering from the entrainment zone.  

 

The resulting solids momentum equation balance requires that: 

SpSp
SSSSp DragGravity

dt
vHAd
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− ])1([ ερ

   (6.20)                    
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where            (6.21). 

The drag coefficient, CD, is calculated in the similar way as shown in equations 6.4 and 

6.5. In the spout zone the particle Reynolds number is determined from: 
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 The differential solids mass balance requires that: 
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dt
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which can be rewritten as:                      
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−

                          (6.24). 

In above equation, the spout zone height equals to the annular zone height minus 

entrainment zone height and both vary with time. At each time step, the height of the 

annular zone is calculated based on the mass of solid particles in annular zone. In other 

words, at each time the radius of the bottom surface and top surface of the annular zone 

can be obtained, which equal to )
2

tan(γEH )
2
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SE HH + and  respectively.  Then 

the volume of the annular zone VA equals to 
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Then the mass of the annular zone equals to  
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By solving equation 6.26, the annular zone height can be obtained at every instant in time. 

Then the spout zone height is obtained. 

 

Combining terms and rewriting equations 6.20 and 6.24 in dimensionless form yields: 
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gm
F

F
Sp

Sd
Sd =*  and mSp is the mass of the solid particles in the spout zone, FSd is the drag 

force exerted on particles in the spout zone. 

The whole spout zone is assumed to be uniform. The gas velocity and particle velocity at 

the boundary of the spout zone are equal to their corresponding values anywhere else in 

the spout zone. The inlet gas flow is equal to the exit gas flow at the top of the 

entrainment zone, and the resulting non-dimensional boundary and initial conditions are: 

** ES uu =       for t*>0                                                        (6.29) 

  and  at                                           (6.30) 0* =t0* =SpvmfS εε =

Neglecting the pressure loss due to gas-wall friction and gas potential energy, the gas 

pressure drop in the spout zone can be calculated as below [Briens et al, 1988], 

S

Sd
S A

F
P =Δ                                                                      (6.29)                           

 

6.3.3 Fountain zone 

As soon as gas exits the spout and annular zones, the flow area is expanded to the whole 

bed cross-sectional area including top annular area plus spout area. Gas pressure in the 

fountain zone equals to the atmosphere pressure. Gas velocity becomes so small that the 

drag force exerted on solid particle is trivial compared to gravitational force particle.  

So the gravitational force can be treated as the total force exerted on solid particles, and 
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the gas pressure drop in fountain zone can be approximated as zero. The momentum 

balance on each particle becomes simply: 

g
dt

dvFp −=                                                                            (6.30.) 

This can be restated in dimensionless form as: 

1*

*

−=
dt

dvFp                                                  (6.31). 

The particles shooting out of the spout zone at the same time step share the same velocity 

in the fountain zone as time evolves until they fall upon the top surface of the annular 

zone. Different sets of particles coming out of spout zone at different times have different 

speed. And the particle speed decreases as they rise till they reach the apex and then  

increases due to gravitational acceleration till they merge into annular zone. Now 

particles in fountain zone are not treated as having average speed any more as the way the 

particles in both entrainment zone and spout zone are treated. The trajectories of 

individual particles are tracked at each time step in the fountain zone.  

The corresponding boundary and initial conditions are: 

**
SpFp vv =       at z* = 1+H /H
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S E  for t*>0             (6.32) 

  and  at t*=0                 (6.33) 0* =FpvmfF εε =

 

After solid particles shoot out of the spout zone and enter fountain zone, their trajectories 

are tracked at each time step. Their velocity evolves with time due to gravity acceleration. 

Their distances from the dynamic top surface of the annular zone are calculated at each 

time step. When the distance equals to or less than zero, the particles enter the annular 



zone. The total mass of solid particles at each time step is the sum of the mass of the 

particles staying in the fountain zone.  

 

6.3.4 Annular zone 

The rate of solids inflow to the annular zone equals the rate at which solids leave the 

fountain. Likewise the rate at which solids leave the annular zone equals the rate at which 

they enter the entrainment zone. A global mass balance requires that the total amount of 

solids in all zones remains constant, so at every instant in time the inventory of solids in 

the annular zone is just: 

FpSpEpTpAp mmmmm −−−=                       (6.34). 

Combining equations 6.25 and 6.26 with equation 6.34, the annular zone height can be 

obtained. So is spout zone which is assumed to equal to annular zone height. 

 

The velocity of the solids in the annular zone is very small because of the large cross 

section and there are large and complex frictional forces at the walls, so a differential 

momentum balance is not very useful here. For purposes of this study, the solids 

inventory and height of this zone is sufficient and further details are not needed.  
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7. Characterization and validation of the low-order model 

7.1 Characterization of the entrainment zone   

As discussed previously, the initial contact between solids and gas occurs just above the 

gas inlet, and the subsequent dynamics in all the other zones can be viewed as a response 

to this initial interaction. The dynamic coupling between the zones is inherently one-way 

in the low-order model as it is currently defined, because there is no mechanism provided 

for dynamic feedback between the annular and entrainment zones (i.e., there is no way 

for changing conditions in the annular zone to affect what happens in the entrainment 

zone).  Thus to understand the present model, it is possible to focus first on the 

entrainment zone by itself to study how the inlet gas energy is initially transferred to the 

bed solids. Later, the momentum and mass transfer between successive zones can be 

studied to understand how they act collectively. 

 

The governing equations for the entrainment zone are the ODEs derived from the 

differential mass and momentum balances. The key parameters in these ODEs and their 

boundary conditions are inlet gas velocity, gas density and viscosity, particle size and 

density, settled void fraction, and the dimensionless quantities G and Lf, which represent 

the tendency for lateral solids and gas flow, respectively. 

 

Because the governing ODEs in the entrainment zone cannot be solved analytically, their 

behavior was studied numerically for a range of parameter values. The two primary 

parameters varied in the spouted bed experiments were particle size and inlet gas velocity, 

so these parameters were varied in the numerical studies of the entrainment zone. The 
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range of particle sizes considered for the model was 200 to 800μm. Particle size can be 

expressed non-dimensionally by dividing the particle diameter by the assumed 

entrainment zone height. It was found to be convenient to express inlet velocity in terms 

of its ratio to the terminal particle velocity, ut, and this ratio was varied from 0 to 4. 

 

The ranges of the key remaining model parameters, the dimensionless solids and gas 

lateral flow parameters G and Lf, were unknown a priori and were varied by 0.1≤G≤1 

and 0.05≤Lf≤-0.4. These choices were later confirmed to be reasonable, as discussed 

below. 

 

To simplify integration, HE was held fixed at 0.35cm, but as noted below, this may be an 

inappropriate assumption in reality. Estimates of the actual value of HE suggest that it can 

change with inlet gas flow. Particle density was held fixed at the experimental value of 

5890 kg/m3, and gas density was 1.172 kg/m3.  This yields a resulting particle-to-gas 

density ratio ((ρp-ρg)/ρg) of 5025.  The settled particle void fraction was set to 0.46 and 

the gas viscosity to 1.86 ×10-5 kg/(m s) to match the experimental conditions. 

 

Even with the above restrictions, an exhaustive mapping of the dynamics over the entire 

parameter space poses a daunting task because of the high dimensionality of the response 

surface. The approach used in this study instead focused on selecting a nominal reference 

condition and observing how the predicted dynamics shifted as one parameter at a time 

was varied and other parameters are ceteris paribus. The reference condition chosen was 



d =0.5mm, u
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p E/ut=1.5, G=0.6, and Lf=0.08. The dynamic trends in the entrainment zone 

were then observed as the above parameters were varied about this reference point.   

 

Example results for void fraction and solids flow are summarized in Figures 7.1 to 7.16. 

From these plots (parenthetically referenced below), the following general observations 

may be made about how the predicted dynamics change as the key parameters deviate 

from the reference condition: 

• As the dimensionless lateral solids flow parameter, G, increases (i.e., solids 

flow in more readily from the annulus), pulsation frequency (7.1) and 

amplitude (7.2 and 7.3) and solids circulation rate (7.4) trend up. These trends 

suggest that it is the effective ‘flowability’ of the solids that determines the 

intensity and frequency of the pulsations in the entrainment zone. Solids that 

flow readily tend to promote overall bed circulation. 

• As the dimensionless lateral gas flow parameter, Lf, increases (more of the 

inlet gas leaks out to the annular zone), pulsation frequency (7.5) and mean 

solids circulation rate (7.8) trends down. Amplitude of pulsation frequency (7.6) 

and solid flow (7.7) increase with Lf. These trends suggest that bed design 

features (e.g., cone angle) or particle properties which promote lateral gas 

leakage will tend to lower pulsation and mean solid flow but increase 

fluctuation of both pulsation frequency and solid flow. 

The solid circulation rate is defined as below: 

t

EEp
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Figure 7.1 Dimensionless frequency of void fraction fluctuation in the entrainment zone 

vs. the lateral solids flow parameter, G (d  = 0.5mm, Lf = 0.08 and u
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p E/u  = 1.5). t

 

 

Figure 7.2 Amplitude of void fraction fluctuation vs. the lateral solids flow parameter, G 

(dp = 0.5mm, Lf = 0.08 and uE/u  = 1.5). t



 

Figure 7.3 Amplitude of solids flow fluctuation vs. the lateral solids flow parameter, G 

(d
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p = 0.5mm, Lf = 0.08 and uE/u  = 1.5). t

 

 

 

)1( E
t

Ep

u
v

ε−Figure 7.4 Mean dimensionless solid flow rate ( ) vs. lateral solids flow 

parameter, G (d  = 0.5mm, Lf = 0.08 and up E/u  = 1.5). t



 

Figure 7.5 Dimensionless void fraction pulsation frequency vs. lateral gas flow parameter, 

Lf (d  = 0.5mm, G = 0.6 and u
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p E/u  = 1.5). t

 

 

 

Figure 7.6 Void fraction pulsation amplitude vs. lateral gas flow parameter, Lf (dp = 

0.5mm, G = 0.6 and uE/ut = 1.5). 



 

Figure 7.7 Solid flow pulsation amplitude vs. lateral gas flow parameter, Lf (dp = 0.5mm, 

G = 0.6 and u
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E/ut = 1.5). 

 

 

 

Figure 7.8 Mean dimensionless solid flow vs. lateral gas flow parameter, Lf (dp = 0.5mm, 

G = 0.6 and uE/ut = 1.5). 



 

Figure 7.9 Frequency of the void fraction pulsation vs. particle size (G = 0.6, Lf = 0.08, 

and u
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E/u  = 1.5). t

 

 

 

Figure 7.10 Amplitude of the void fraction pulsation vs. particle size (G = 0.6, Lf = 0.08, 

and uE/u  = 1.5). t



 

Figure 7.11 Amplitude of solid flow pulsation vs. particle size (G = 0.6, Lf = 0.08, and 

u
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E/u  = 1.5). t

 

 

 

Figure 7.12 Mean dimensionless solid flow vs. particle size (G = 0.6, Lf = 0.08, and uE/ut 

= 1.5). 



 

Figure 7.13 Frequency of void fraction pulsations vs. inlet gas velocity (G = 0.6, Lf = 

0.08, and dp = 0.5mm). 

 

 

 

Figure 7.14 Amplitude of the void fraction pulsation vs. inlet gas velocity (G = 0.6, Lf = 

0.08, and dp = 0.5mm). 
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Figure 7.15 Amplitude of the solids flow pulsation vs. inlet gas velocity (G = 0.6, Lf = 

0.08, and dp = 0.5mm). 

 

 

 

 

Figure 7.16 Mean solids flow vs. inlet gas velocity (G = 0.6, Lf = 0.08, and d  = 0.5mm). p
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One period of the pulsation is defined as one cycle. The mean solid circulation is 

time-averaged solid circulation rather than per cycle. 

 

• As particle size increases, pulsation frequency (7.9) increases while pulsation 

amplitude of solid flow (7.11) and void fraction (7.10) and solids circulation 

rate (7.12) all decrease. 

• Pulsation frequency (7.13), pulsation amplitude (7.14), and mean solids flow 

(7.15) vary in complex ways with inlet gas velocity in the region 0.8 ≤ uE/ut ≤ 

1.9. At uE/ut = 1, the minimum pulsation frequency occurs. The mean solid 

flow steadily increases as uE/ut >1.1 (7.16).  

 

The onset of finite solids flow and a minimum in pulsation frequency ui/ut = 1 strongly 

suggest a connection to the minimum spouting velocity. If this same range of flow indeed 

corresponds to Ums, it should be possible to make improved estimates for the physical 

dimensions of the entrainment zone based on experimentally observed values for Ums. As 

an example, consider that the observed Ums for 0.5mm ZrO2 with a settled height of 

3.5cm was 15.9m/s in the 60° conical bed (recall that this velocity was evaluated at the 

0.4cm diameter inlet). On the other hand the entrainment zone model predicts that the 

onset of significant solids convection occurs at uE = ut or approximately 6.4m/s. For these 

conditions to have the same volumetric flows, it is necessary that the entrainment zone 

diameter be approximately 0.63cm.  This would seem to be a reasonable diameter for the 

entrainment zone considering that some expansion of the inlet gas stream would be 



expected; this expansion was experimentally observed in trials with the glass cone. A 

similar expansion effect is also predicted by MFIX simulations of the experiment. 

 

Another implication of the assumption of Ums correspondence between the model and 

experiment is the connection between the observed and predicted pulsation frequencies. 

The minimum frequency predicted by the model is approximately 0.076 

cycles/dimensionless time unit, while the minimum pulsation frequency observed 

experimentally was approximately 17 cycles/s. The two frequencies should be 

proportionally related by the characteristic time scale defined for the entrainment zone 

model, which is given by gHE /  . In order for these two frequencies to be consistent, 

HE must be approximately equal to 0.019cm. The height of entrainment zone needs to be 

equal or a little bit larger than particle size.  

 

Just above Ums on the other hand, the maximum dimensionless and experimental 

frequencies are about 0.2 cycles/dimensionless time unit and 10.4 cycles/s respectively. 

This implies that the effective value of HE at this condition must be approximately 

0.13cm. These results would seem to suggest that the height of the entrainment zone 

changes significantly with gas flow. In some sense it may not even be appropriate to 

think of the entrainment zone as a separate region for gas flows below Ums because there 

would be no actual solids entrainment. Instead the solids essentially oscillate in place as 

the gas passes through. For flows above Ums, it would seem reasonable that the 

entrainment zone height might parallel the expansion of the fountain height (which varies 

approximately proportional to u /U as discussed previously). One might also consider i ms 
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that the effective values of G and Lf probably vary with flow as well, although the model 

does not indicate such a strong correlation between these parameters and pulsation 

frequency.  

 

7.2 Characterization of the combined multi-zone model 

As discussed above, the initial interaction between the solid particles and incoming gas 

begins in the entrainment zone and then propagates through the spout, fountain, and 

annulus zones. The combined model is constructed such that all of the subsequent particle 

and gas flows in these latter zones are responses to processes that begin in the 

entrainment zone. The dominance of the entrainment zone in the combined model is 

further emphasized by the fact that this zone has most of the adjustable parameters.  

 

The results of an example simulation including the interaction of all the zones is 

illustrated in Figures 7.17 through 7.19 for the case where H0 = 3.5cm, G= 0.6, Lf = 0.08, 

ui = 23.87m/s, DE= 0.63cm and HE= 0.35cm. 

 

As before, it is useful to consider how important features of the combined model behave 

as key parameters are varied. Again for simplicity, the model predictions (in this case for 

all zones together) are plotted as each entrainment parameter is varied and the other 

parameters are held fixed at nominal values of dp = 0.5mm, HE = 0.35cm, G = 0.6, Lf = 

0.08, ui = 23.87m/s, H0 = 3.5cm and DE= 0.63cm. 

 

 



 

 = 0.5mm, HFigure 7.17 Void fraction in entrainment zone vs. time for dp 0 = 3.5cm, G= 

0.6, Lf = 0.08, u  = 23.87m/s, D
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i E= 0.63cm and HE= 0.35cm.   

 

 

 

 = 0.5mm, H Figure 7.18 Air pressure drop across the spouted bed vs. time for dp 0 = 

3.5cm, G= 0.6, Lf = 0.08, u  = 23.87 m/s, Di E= 0.63cm and HE= 0.35cm. 
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Figure 7.19 Fountain height vs. time for dp = 0.5mm, H  = 3.5cm, G = 0.6, Lf = 0.08, u0 i = 

23.87m/s, DE = 0.63cm and HE = 0.35cm. 

 

 

Figures 7.20-7.22 illustrate the predicted trends in overall average pressure drop, pressure 

pulsation frequency, and fountain height, respectively, with the granular flow parameter 

G. All of these results suggest that solids which flow more readily from annulus into the 

entrainment zone tend to more readily couple with the fluid flow, thereby creating a more 

fluid-like dynamics.  

 

Figures 7.23 through 7.25 summarize the predicted multi-zone trends with variations in 

the lateral inlet gas flow parameter, Lf. Average pressure drop (Figure 7.23) increases 

with Lf while both pulsation frequency and fountain height decrease with lateral gas 

leakage. All of these trends seem reasonable considering that higher Lf implies more gas 

by-passing of the spout zone.  Gas that bypasses the spout must move through the  



 

Figure 7.20 Average air pressure drop across the spouted bed vs. G for the combined 

model at d  = 0.5mm, H  = 3.5cm, Lf = 0.08, u  = 23.87m/s, D

 101

p 0 i E= 0.63cm and HE= 0.35cm. 

 

 

 

Figure 7.21 Pulsation frequency vs. G for the combined model at dp = 0.5mm, H0 = 

3.5cm, Lf = 0.08, u = 23.87m/s, Di E= 0.63cm and HE= 0.35cm. 



 

Figure 7.22 Fountain height vs. G for the combined model at d  = 0.5mm, Hp 0 = 3.5cm, Lf 

= 0.08, u
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i = 23.87m/s, DE = 0.63cm and HE = 0.35cm. 

 

 

 

Figure 7.23 Predicted average pressure drop for the combined model vs. Lf at dp = 0.5mm, 

H  = 3.5cm, G = 0.6, u  = 23.87m/s, D0 i E= 0.63cm and HE = 0.35cm. 



 

Figure 7.24 Predicted pressure pulsation frequency for the combined model vs. Lf at dp = 

0.5mm, H  = 3.5cm, G = 0.6, u  = 23.87m/s, D = 0.63cm and H
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0 i E E = 0.35cm. 

 

 

 

 = 0.5mm, HFigure 7.25 Predicted fountain height for the combined model vs. Lf at dp 0 = 

3.5cm, G = 0.6, u  = 23.87m/s, Di E = 0.63cm and HE = 0.35cm. 
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annulus, which has a much higher solids fraction and thus higher pressure drop. As gas  

bypassing increases, there is also less energy available for particle entrainment and the 

associated pulsation process. 

 

While the general behavior illustrated above appears reasonable, it is important to make 

more direct comparisons with experimental observations to determine if the model is 

behaving properly. One way to make such comparisons is to consider how important 

spouted bed features behave as key experimental parameters are varied. The following 

discussion specifically focuses on the trends predicted by the combined model with 

changes in inlet gas flow. Again for simplicity, the model predictions (in this case for all 

zones together) are evaluated as gas flow is varied and the other parameters are held fixed 

at nominal values of dp = 0.5mm, G = 0.6, Lf = 0.08, H0 = 3.5cm, DE = 0.63cm and HE = 

0.35cm. 

 

Figures 7.26-7.28 compare model predicted trends with experimental trends with 

variations in inlet air flow. There appears to be, prima facie, considerable disagreement 

between the trends with air flow (7.26). For example, the experimental pressure drop 

effectively remained constant for inlet flows above Ums, but the multi-zone model 

predicts a continually decreasing pressure drop. One potential explanation for this 

discrepancy might be that the dimensions of the entrainment and/or spout zones or the 

parameters G and Lf do change with flow above Ums, as expected in the discussions 

above.  



 

Figure 7.26 Predicted air pressure drop of the combined model compared with 

experimental results for d  = 0.5mm, H  = 3.5cm, G = 0.6, Lf = 0.08, Dp 0 E = 0.63cm and 

HE= 0.35cm.  

 

 

Figure 7.27 Predicted pressure pulsation frequency of the combined model compared 

with the experimental results for d  = 0.5mm, H  = 3.5cm, G = 0.6, Lf = 0.08, Dp 0 E = 

0.63cm and HE = 0.35cm.  
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Figure 7.28 Predicted Hf for the combined model compared with experimental results for 

d  = 0.5mm, H  = 3.5cm, G = 0.6, Lf = 0.08, D
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p 0 E = 0.63cm and HE = 0.35cm. 

 

 

As discussed in Section 7.1, one might assume that at least some of the five model 

parameters (DE, HE, DS, G and Lf) are actually functions of the gas flow.  This 

assumption would seem especially plausible for the physical dimensions of the 

entrainment and spout zones because these regions appear visually to expand with 

increasing gas flow [San José, 2005b]. This expansion process also appears to be 

supported by the predictions of CFD models such as MFIX [Pannala, 2006]. To 

investigate how variations in the sizes of the entrainment and spout zones might be used 

to reconcile the combined model predictions with the experimental trends, the height of 

entrainment zone (HE) and the diameter of the spout zone (DS) were adjusted to match the 

predicted and observed values of the pulsation frequency and fountain height, 

respectively. The resulting match between model predictions and experimental 

observations are illustrated in Figures 7.29 and 7.30. 



 

Figure 7.29 Comparison of pulsation frequency predicted by the combined model with 

experimental results for d  = 0.5mm, Hp 0 = 3.5cm, G = 0.6, and Lf = 0.08. Values for the 

parameters H
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E and D  are listed in Table 7.1. S

 

 

Figure 7.30 Comparison between the predicted air fountain height from the combined 

model with experimental results for d  = 0.5mm, Hp 0 = 3.5cm, G = 0.6, and Lf = 0.08. 

Values for the parameters HE and D  are listed in Table 7.1. S
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The variations in HE and DS required to give the good model-experiment agreement 

shown in Figures 7.29 and 7.30 are listed in Table 7.1. As expected, it appears necessary 

for these dimensions to increase in order to correctly capture the observed trends in 

frequency and fountain height. The relative smoothness of the dimension variations 

seems physically plausible and suggests that simple correlations might be developed for 

these dimensions using experimental measurements and/or CFD simulations. Also, the 

variation in DS is so small one might conclude that it is effectively constant, making HE 

the only dimension to vary significantly with gas flow. This implies again that the 

entrainment zone is dominating the overall spout dynamics. 

 

Conversely, the magnitudes of the predicted and measured average pressure drops are 

still considerably different, although the trends are similar as illustrated in Figure 7.31.  

This result indicates that the pressure drop produced by gas-particle interactions at the 

outer boundary of the spout zone (i.e., the spout ‘wall’) adds considerably to the overall 

pressure drop. As this ‘wall drag’ is currently not included in the combined model, it 

would appear that its addition is clearly appropriate and a subject for future investigations. 

 

It seems fair to conclude that numerical studies such as those described above suggest 

that it should be possible to improve the combined-zone low order model by accounting 

for variations in the entrainment zone dimension and G and Lf with gas flow and by 

adding appropriate drag terms in the spout zone to account for gas and particle  

 



       Table 7.1 Values of H
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E and D  used in the simulations depicted in Figures 7.29 and  S

       7.30 (G = 0.6, Lf = 0.08, DE = 0.63cm) 

u/U 1 1.1 1.2 1.3 1.5 1.7 1.9 ms

HE(cm) 0.054 0.077 0.1 0.25 0.35 0.43 0.48 

D (cm) 0.63 0.63 0.63 0.63 0.64 0.67 0.7 S

 

 

 

 

Figure 7.31 Comparison of average pressure drop predicted by the combined model with 

experimental results for d  = 0.5mm, H  = 3.5cm, G = 0.6, Lf = 0.08, and Dp 0 E = 0.63cm. 
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interactions with the spout ‘wall’. Because of the large number of possible values for the 

individual parameters and the difficulty of directly validating these values experimentally, 

it appears that a reasonable course for future studies should include CFD simulations. 

Such simulations could provide details unavailable from experiments that could be used 

to directly validate not only the effective parameter values used in the low-order model 

but also the key predictions of the model including the pulsation frequency, the rate of 

solids circulation, the pressure drop, and the fountain height. The use of CFD models 

would also allow the development of a detailed understanding of the physics behind these 

lumped low-order parameters. 

 

One other suggested area for future research is the complex nature of the entrainment 

process itself. Although the present combined low-order model predicts that the pulsating 

flow that drives particle circulation is periodic, experimental observations clearly indicate 

that the dynamics are more complex. In particular, the pulsations appear to undergo 

bifurcations and complex variations that indicate deterministic chaos [Daw, 2007]. The 

only way this could occur in the present combined model would be by the addition of a 

feedback term connecting the each pulsation cycle with the residual effects of previous 

cycles. Such feedback could be expressed in terms of time-delay differential equations, 

such as those used to model the production of white blood cells [Glass and Mackey, 

1988]. One plausible physical process by which feedback could occur in the entrainment 

process would be in hysteretic variations of the lateral granular and gas flows associated 

with the recovery phase of the pulsation cycle. Specifically, changes in the effective 

values of G and Lf associated with recent past history (e.g., by a time-delay mechanism) 
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could produce such a feedback. It is suggested this possibility should be a prominent 

consideration in future studies. 
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8. Conclusions and recommendations 

The hydrodynamics of shallow, conical spouted beds of heavy particles was 

experimentally studied to determine differences from previous spouted bed reports in the 

literature. Key experimental measurements included minimum spouting velocity, time-

average and time-varying (dynamic) pressure drop, time-average fountain height and 

time-average gas velocity profile in the bed. New correlations were developed for 

minimum spouting velocity and time-average pressure drop based on the experimental 

data. A previously reported correlation for fountain height appears to do a good job of 

representing the present observations. The time-average gas velocity profile 

measurements confirmed that the beds in the present study exhibited gas flow features 

that were at least qualitatively similar to those previously reported for other experimental 

conical spouted beds and predicted by detailed computational fluid dynamics models.  

 

Key experimental observations regarding the time-varying pressure-drop measurements 

for the particles and beds in question include the following:  

• For gas flows above the minimum spouting condition, there is always a 

significant level of pressure pulsation, which is observed to closely correlate 

with pulsations in solids circulation. 

• The pulsations appear to originate at the gas inlet in the apex of the cone where 

the gas and solids first contact, and the remaining motion on the bed appears to 

be a response to the propagation of these pulsations. 
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• For gas flows above or below the minimum spouting condition, there appears 

to be a single dominant pulsation frequency with a modest amount of 

spreading in the Fourier spectrum. 

• For gas flow below the minimum spouting condition, small-amplitude, higher-

frequency pressure pulsations are observed, which appear to correlate with 

small up-and-down vibrations of particles (with no net motion). 

• Near the minimum spouting condition, two distinct pulsation frequencies are 

present and appear to exchange dominance in some type of bifurcation as the 

gas flow increases. 

• The net effect of the pulsation bifurcation near minimum spouting is to cause 

the dominant pulsation frequency to drop abruptly as gas flow increases, and 

this seems to be a reliable indicator of spouting onset. 

• The standard deviation, skewness, and kurtosis of the pulsations also shift 

abruptly at the minimum spouting condition, providing additional indicators 

for spouting detection. 

• The pulsation frequency decreases with increasing cone angle and particle size 

but does not change much with static bed height. 

 

At least some of the major features of the observed spouted bed pulsation behavior 

appear to be captured by a simple zone-based ODE model. The ODEs are derived from 

time-differential mass and momentum balances over 4 spatial zones: entrainment, spout, 

fountain, and annulus. The dynamic behavior of the model is dominated by the 

entrainment zone, which includes the effects of 3 key processes: 
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• Granular particle flow from the annulus into the area immediately above the 

gas inlet; 

• Radial leakage of gas outward from the inlet zone in response to the inward 

flowing particles and; 

• Upward flow of the main part of the inlet gas and subsequent particle 

entrainment in response to the gas-particle drag. 

Two new (non-standard) dimensionless groups are required by this model to represent the 

granular flow and radial air leakage processes, respectively. 

 

While qualitatively realistic pulsation and time-average behavior appears to be produced 

by this model, more study is needed to confirm its usefulness and improve its accuracy. 

Specifically, the following issues are recommended as fruitful topics for future study: 

• It appears that the effective dimensions of the entrainment zone change with 

deviations from the minimum spouting condition. Development of 

experimental measurements, correlations, and physical models for these 

effective size changes would be highly useful in improving the model. 

• The physics behind the dimensionless parameters associated with granular 

flow into the entrainment zone and radial leakage of gas out are poorly 

understood at the moment. Development of experimental measurements, 

correlations, and physical models for these processes would also be highly 

useful for understanding how the parameters change with bed design and 

particle properties. 
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•  Radial gas leakage from the spout zone is not included in the present model, 

although it is expected to be a key factor, especially for deeper beds. 

• The present model is limited in its ability to capture feedback effects in the 

solids circulation because there is no dynamic coupling between the states of 

the annulus and entrainment zones. In reality, one expects that there is indeed 

an important impact of the solids packing condition in the annulus on the 

entrainment process, and this needs to be included in an improved model. One 

obvious effect of adding this effect will be to introduce the possibility of time- 

delay feedback on the entrainment dynamics, which is known to produce 

higher-dimensional nonlinear effects and chaos in other contexts. 

• While experimental investigation of the above issues is likely to present 

considerable challenges, it is highly likely that the use of computational fluid 

dynamics codes such as MFIX can be very effective tools for unraveling the 

details that are hard to observe physically. Thus the use of such codes for 

conducting numerical experiments to understand solids entrainment and 

circulation, gas bypassing, and particle trajectories in the fountain and annulus 

should be highly productive. 
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