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Abstract 

 The non-aqueous building block (NABB) method is a synthetic method 

that has the goal of producing atomically dispersed, well-defined, single-site 

heterogeneous catalysts.  The active sites of these catalysts are able to be 

structured on the nanometer scale using the process of sequential additions.  

The method is designed in such a manner that it should be able to produce a 

series of catalysts each with a unique, well-defined, single active site.  This 

series of catalysts can then be used to elucidate the structure-activity relationship 

for the active site in a particular chemical reaction. 

In this dissertation a new building block, butyltin cube, is developed for the 

NABB method.  The preparation of the butyltin cube uses reagents that are less 

toxic and costly than the reagents used to prepare the previous methyltin cube 

starting material.  A series of titanium NABB materials containing different active 

sites was prepared.  The local structure around the active site of these materials 

was then probed using quantitative NMR, FT-IR, Raman, XANES, and EXAFS.  

The activity and selectivity of these materials in the epoxidation of cyclohexene 

with tert-butylhydroperoxide was then measured.  The information was then used 

to propose a structure-activity relationship for olefin epoxidation and comparisons 

were made with structure-activity relationships noted in the literature. 
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Chapter 1. Introduction 

Importance of Catalysts 
 Catalysts are “mandatory in the manufacture of a vast array of chemicals 

and fuels, and as such contribute significantly to our economy” and high standard 

of living.1,2  This concisely states the fact that catalysts currently touch nearly 

every aspect of modern life.  They are used in the production of gasoline, diesel, 

and kerosene from petroleum, as well as important chemical feedstocks such as 

ethylene oxide, propylene, and styrene.3  Many of the plastics that now are 

ubiquitous in consumer products owe their existence to catalytic processes.  

These plastics are found in product packaging, drink bottles, electronic devices, 

and even car bumpers.  

Catalysis also makes important contributions to agriculture.  Eighty-five 

percent of the 98 million tons of nitrogen fixed by the Haber-Bosch process 

annually are used in agricultural fertilizer, and one-half of all the nitrogen 

consumed in agriculture today is provided by this important catalytic process.4,5  

Most of the world’s population depends upon nitrogen obtained from the Haber-

Bosch process to produce at least some of their sustenance, and this 

dependence is projected to increase over time.4   

Environmental remediation is another field heavily impacted by catalysis.  

The three-way catalysts used to reduce automobile emissions may be the most 

visible catalysts used to protect our environment.1   These catalysts are used to 

reduce the amount of nitrogen oxides, carbon monoxide, and hydrocarbons 
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released into the lower atmosphere by vehicles.  Recently, catalysts have also 

been commercialized for the deep oxidation of volatile organic compounds, 

dioxin destruction, and carbon monoxide removal.3 

 With a 1999 U.S. market that approached $3 billion in sales, the 

production of catalysts is a significant business.2  A recent publication indicates 

that 130 new catalytic technologies were commercialized in the 1990s in the 

United States alone, and that number includes only catalysts the companies 

surveyed were willing to publicize.3  The ongoing development of catalysts 

reflects the need for better, more efficient catalysts.   

Theory of Catalysis and Applicable Terminology 
 A catalyst can be defined as a substance that increases the rate of a 

chemical reaction while not being consumed in the reaction, and without 

modifying the overall standard Gibbs energy change in the reaction (Figure 1-1).6  

When used on an industrial scale catalysts save significant amounts of energy.  

This results from the lowering of the activation energy of the reaction relative to 

that of the uncatalyzed reaction.   

A second property of catalysts is their ability to influence what products 

are produced in a reaction if they selectively influence the rate of formation of 

one product over other products.  This selectivity can extend to stereochemical 

reactions.  Catalysts have been used successfully to preferentially produce 

certain enantiomers of compounds.7,8 



 

Figure 1-1.  Reaction coordinate diagram illustrating the effect of a catalyst 

upon a chemical reaction. 

Selectivity and Activity 
The effect of a catalyst is usually described in terms of selectivity and 

activity.  The term selectivity describes the amount of a specific reagent 

converted to a desired product when more than one product is possible.9  To 

prevent the activity of the catalyst from affecting selectivity calculations of the 

selectivity are based upon the amount of substrate consumed when the reaction 

is ended, and is calculated as shown in the equation below. 

Selectivity (%) = 100 × [desired product]/([reagent]0 - [reagent]) 

 Unfortunately, expressing the activity of a catalyst is not as straightforward 

as expressing the selectivity.  Quantitative comparison of catalysts between 

3 
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different research facilities is difficult as reactant concentrations, temperature, 

and even the type of reactor used vary widely.10,11  While activity can be 

expressed in raw percent conversion, turnover frequency, TOF, is commonly 

used in academic descriptions of catalysts.  Turnover frequency is defined as the 

amount of product (frequently moles) produced per mole of catalyst metal per 

unit time, as expressed in the equation below.10 

TOF = [product]/([catalyst] × time) 

 However, the presentation of turnover frequency at a single time does not 

provide information about the stability of a catalyst over time.10  Turnover 

number, TON, is the amount of moles of product produced per mole of catalyst 

metal.10  When presented as a function of time, a series of turnover numbers 

provide more revealing information about the stability of a catalyst through the 

course of a reaction.  For example, as long as reactant concentrations are 

sufficient to maintain a constant rate in a batch-type reaction, the slope of a plot 

of turnover number versus time will be equal to one if the rate of reaction remains 

constant. 

 Finally, an important industrial measurement describing catalysts is 

productivity.  The productivity relates the mass of catalyst to the mass of product 

produced as shown in the equation below.10  Productivity aids the comparison 

between the cost of a catalyst and the value of the product it yields. 

Productivity = (mass of product)/(mass of catalyst) 
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The Active Site 
In a simple sense the active site of a catalyst is the atom or ensemble of 

atoms where the transformation from reactant to product takes place.  The 

breaking and formation of bonds takes place at the active site, and as such the 

nature of an active site may vary for different chemical processes and products.12  

Information describing the active site, its identity, should describe the properties 

of the site that influence its reactivity and selectivity in a chemical reaction.  The 

oxidation state of the metal, its coordination number, the coordination geometry, 

and the electronic and steric nature of its ligands are a number of important 

characteristics of  the active site of a catalyst.13 

In order to reveal the most information about what is happening in a given 

reaction the active site should be a description of the activated complex that 

forms during the transformation of the substrate to product.  However, the 

transient nature of these species can make them difficult to characterize.  

Furthermore, since one material may be used to catalyze many reactions or even 

multiple classes of reactions it makes sense to describe the active site in terms of 

its structure before use in a reaction.  This structure is commonly referred to as 

the active site precursor or active precursor.  Thus it can be said that chemists 

often loosely distinguish between the active site and the active site precursor.14  

In this dissertation references to the active site will actually describe the active 

precursor to the catalyst.  Of particular interest in describing the active precursor 
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will be the oxidation state of the metal, its coordination number and geometry, 

and the number of bonds from the metal to the heterogeneous support.   

Description and Importance of Single-Site Catalysts 
 “The atomic architecture of a homogeneous catalyst is usually very well 

defined, and in many cases precisely known.”13  When a pure active precursor is 

dissolved in solution, it is generally assumed that all the resulting metal 

containing species are identical, and therefore react identically.  Thus, 

homogeneous catalysts are frequently described as single-site catalysts.  The 

essence of the single-site catalyst is that each active site is identical.  This 

implies that each active site produces product at the same rate and with the 

same selectivity.  The low product selectivity of some traditional heterogeneous 

catalysts has been attributed to presence of multiple sites in those catalysts.  

Figure 1-2 shows the multiple sites formed in a traditionally synthesized gold on 

titania catalyst.  The synthesis of single-site catalysts is generally considered to 

be a critical factor for high product selectivity, and is a current challenge in the 

science of heterogeneous catalysts.   

Advantages of Heterogeneous Catalysts 
The terms homogeneous and heterogeneous refer to two families of 

catalysts based upon the phase of the catalyst as compared to the phase in 

which the reactants and products exist.  Homogeneous catalysts are in the same 

phase as the solvents and substrates of the reactions which they catalyze.  On 

the other hand, heterogeneous catalysts are in a phase other than that of the 
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Figure 1-2.  Depiction of the various sites possible when gold is deposited on titania.  From Cho, Science, 

299:1684 (3/14/2003).  Illustration: Cameron Slayden.  Reprinted with permission from AAAS. 
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reactions which they catalyze.  Both fields of catalysis share many of the same 

goals and challenges such as:  1) understanding the reaction mechanism, 2) 

knowing what the active site is and characterizing it, 3) determining how the 

electronic and steric properties of the active site impact the activity, and 4) using 

the information above to optimize the activity of the catalyst in terms of rate and 

selectivity.  However, there are also significant differences between the two 

fields. 

The different properties of homogeneous and heterogeneous catalysts 

lead to trade-offs to be considered when choosing which family of catalysts to 

employ.  Although homogeneous catalysts generally both allow the use of more 

mild reaction conditions and are more active and selective then their 

heterogeneous counterparts15, their stability becomes an issue above 150 °C.  

Therefore, reactions involving homogeneous catalysts are conducted at lower 

temperatures.16,17 

The major drawback to homogeneous catalysts is the difficulty associated 

with the separation of the catalyst from the product mixture.18-21  In most cases 

homogeneous catalysts must be separated from the reaction mixture via 

distillation21 or extraction into a different phase.22  These means of separation 

prevent the reaction from being continuous, add costs to the process, and 

expose the catalyst and products to conditions which may cause them to 

decompose or lose activity.21  The expense of the catalytically active metals and 

their associated ligands in a homogeneous catalyst means any loss of catalyst or 
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decreases in activity can raise process costs significantly.  Furthermore, the 

presence of residual catalyst in the product can negatively impact the desired 

properties of the product.23,24 

The properties of heterogeneous catalysts make them an obvious solution 

to some of these concerns.  Heterogeneous catalysts may simply be removed 

from the reaction mixture via filtration.  This makes them amenable to use in 

fixed-bed reactors or in gas phase reactions which allows the reaction to be 

carried out continuously.21,25  Product contamination is also less of an issue when 

heterogeneous catalysts are used, especially when steps are taken to prevent 

the leaching of species from the catalyst.  Finally, the greater thermal stability of 

heterogeneous catalysts compared to their homogeneous counterparts allows 

them to be used when “forcing” reaction conditions are required. 

Leaching 
 In order for the benefits of a heterogeneous catalyst to be realized in 

application it is important that the catalyst remain truly heterogeneous throughout 

the reaction period.  Leaching refers to the desorption of a metal site from a 

heterogeneous catalyst during the reaction.26  Should leaching occur, it is 

possible that the resultant free metal species in solution could contribute to the 

observed activity of the catalyst.  Thus, it is important to confirm that a 

heterogeneous catalyst retains the same amount of active metal after use. 
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Major Research Areas in Heterogeneous Catalysis 
 The many themes of research in heterogeneous catalysis have the 

underlying goal of producing “next generation”, highly selective heterogeneous 

catalysts.  Ideally, these catalysts will be 100 percent selective and produce the 

product at rates that equal or exceed their homogeneous counterparts.  With the 

aim of achieving this goal, a great deal of effort has been put into establishing a 

relationship between the structure of the active site and its catalytic activity.  

Unfortunately, the techniques that have been used to characterize homogeneous 

catalysts so well (e.g. NMR spectroscopy and X-ray diffraction) cannot 

definitively characterize the vast majority of heterogeneous catalysts.  Further 

complicating the matter is the fact that methodologies commonly employed for 

the synthesis of heterogeneous catalysts frequently yield materials that have 

multiple types of metal sites. 

 Within this context, even without rigorous proof of the identity of the active 

site, the synthesis of nanostructured heterogeneous catalysts has fallen into 

vogue.  Ultimately, nanostructured catalysts will have to be structured on three 

levels.  First, they must be structured on the scale of the active site to maximize 

rate of reaction and product selectivity of a given reaction.  For many catalysts 

and the work herein, this structuring is on the atomic scale.  Second, the 

dispersion of the active sites must be controlled.  This level of structure is likely to 

be on the nanometer scale.  Spatial dispersion of the sites is important in order to 

keep them from interacting with one another and to prevent aggregation or phase 
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separation of the catalyst from a support under reaction conditions.  Finally, the 

structural morphology of the catalyst must be controlled in order to maximize 

reaction rates and catalyst efficiency.  Reactions occur at the surface of a 

heterogeneous catalyst.  Producing materials with high surface areas allows for 

the placement of a high density of active sties at the surface which leads to  

catalysts with high activity per unit weight.  Reaction rates can be increased by 

facilitating mass transport of reagents to the active site when pore diameters of 

the material are in the mesopore range (> 2nm).  Additionally, product shape 

selectivity can be influenced by controlling the shape of the pore structure. 

Meeting the design requirements for these nanostructured catalysts is still 

quite challenging.  Each part of the design hierarchy is important in the 

preparation of catalysts if maximum activities are to be obtained.  However, the 

limited knowledge about the relationship between the structure of current 

heterogeneous catalysts and their activity gives the construction of catalysts 

containing only one single nanostructured active site preeminent importance.  

Consequently, we decided to focus on the development of a synthetic method for 

well-dispersed single-site heterogeneous catalysts that would be generally 

applicable to the transition metals.  The remainder of this chapter describes 

common synthetic methodologies for silica supported heterogeneous catalysts, 

and then goes on to introduce the building block method developed by our 

research. 
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Traditional Methods of Heterogeneous Catalyst Synthesis 

Incipient Wetness and Grafting 
 One of the earliest and most simple and direct methods for the synthesis 

of heterogeneous catalysts is the incipient wetness method.  This method 

involves dissolving a metal compound in a solvent (frequently water) and 

applying an amount of solution equal to the pore volume of a porous support.  

Capillary action will then draw the solution into the pores.  Following evaporation 

of the solvent, the metal remains within the pores of the support adsorbed on the 

surface in various manners.  A schematic diagram of an incipient wetness 

material is shown in Figure 1-3. 

 Grafting catalysts onto the surfaces of a support is procedurally similar to 

the incipient wetness method, with the significant difference being a lack of 

emphasis on drawing the metal complex into the pore structure of the support 

through capillary action.  Another significant difference is the use of non-aqueous 

and aprotic solvents in the grafting technique, which allows the use of moisture 

sensitive metal compounds.  Perhaps the most widely cited use of the grafting 

technique is the work of Thomas and Maschmeyer wherein titanium was applied 

to the surface of the mesoporous material MCM-41 (Figure 1-4).27 

 While procedurally simple, the chemistry behind the incipient wetness and 

grafting techniques is somewhat more complex.  The metal sites produced 

depend upon what metal complex or complexes are formed in solution and their 

interaction with the surface of the metal oxide support.28  In the case of silica, the  
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Figure 1-3.  Incipient wetness impregnation of Cu(NO3)2 on the mesoporous 

silica MCM-41. 



 

 

Figure 1-4.  Grafting of titanocene dichloride onto the surface of MCM-41. 
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surface consists of siloxane bridges (≡Si-O-Si≡) and silanol groups (≡Si-OH).   

The metal becomes anchored to the support when one or more of its ligands is 

replaced by a hydroxyl group on the surface of the support. 

The silanol groups with which the metal complex interact can take three 

forms:  spatially isolated, vicinal, or geminal (Figure 1-5).29  It is possible that 

each silanol site could produce a unique metal site when reacted with a metal 

compound.  It has been shown that thermal treatment of silica reduces the 

number of hydroxyl groups per unit area.  While not a guarantee that all of the 

hydroxyl groups will be spatially isolated, this thermal dehydroxylation of silica 

has been used to steer syntheses towards the formation of monosiloxy metal 

sites (≡Si-O-MLn).29 

 Many studies of the reaction of metal compounds with silica surfaces have 

depended upon gravimetric analysis to establish the number of bonds between 

the metal and the support.  However, gravimetric analysis is inherently an 

averaging technique that will provide a precise description of the structure only 

when it is known that all of the metal compound has reacted with the silica and 

either:  1) uniformly one bond has formed between the metal compound and the 

support or; 2) the maximum number, n, bonds has formed between the metal 

compound MXn and the support where X = a halide or alkoxide.  Likewise, 

EXAFS, another widely used structural technique suffers as it also is an 

averaging technique.30,31 



 

Figure 1-5.  The three types of silanol groups on a silica surface. 

  

 Perhaps some of the most elegant work in the field of grafting metals onto 

silica surfaces has been done by Susannah Scott’s group.  Vanadyl reagents 

were selected for one study so that 51V magic angle spinning (MAS) NMR could 

be used to characterize the resulting solids.  Unlike EXAFS and gravimetric 

analyses, NMR can in theory show all species present that are within the 

detection limit of the technique.  Although three different vanadyl species are 

possible (Figure 1-6), gravimetric analyses showed that regardless of the 

pretreatment temperature (from 25 to 500 °C) O=VX3 (X = OiPr or Cl) reacted 

with silica to yield only the ≡Si-O-V(O)X2 species.  In the case of vanadyl chloride 

this was confirmed by 51V MAS NMR, in which a single resonance attributed to 

the ≡Si-O-V(O)Cl2 species was observed at -295 ppm.  However, the presence of 

intense spinning side bands could mask up to a five percent contribution from the 

theoretically possible (≡Si-O-)2V(O)Cl species.32  A later EXAFS experiment 

corroborated the single presence of the ≡Si-O-V(O)Cl2 species.33 

16 
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Figure 1-6.  Schematic of the three sites possible from the reaction of vanadyl chloride with a silica surface.  

Of the three only the species depicted in c) is formed. 
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Scott’s work in reacting silica with titanium isopropoxide shows that not all 

grafting reactions are as straightforward as the vanadyl reactions.34  Scott found 

that treating silica samples pretreated at either 200 or 500 °C with identical 

amounts of titanium isopropoxide, Ti(OiPr)4, yielded two solids with the same 

amount of titanium incorporated.  This was an unexpected result as silica treated 

at 500 °C has roughly half the amount of hydroxyl groups available for reaction 

as silica treated at 200 °C (0.40 mmol OH/g and 0.86 mmol OH/g respectively).  

Analysis of the by-products showed that propene was evolving in addition to the 

expected isopropanol.  Gravimetric, FT-IR, and 13C MAS NMR analyses led Scott 

to conclude that dimeric titanium species were being generated, and that the 

structure of these species was dependent on the temperature at which the silica 

was treated prior to reaction as shown in the equations and Figure 1-7 below. 

Silica-200:  2 ≡SiOH + 2 Ti(OiPr)4 → [(≡SiO)Ti(OiPr)2]2(O) + 3 iPrOH + C3H6 

Silica-500:     ≡SiOH + 2 Ti(OiPr)4 → (≡SiO)Ti2(OiPr)5(O) + 2 iPrOH + C3H6 

 Scott has shown that the possibility of chemical reactions between 

precursor molecules cannot be ignored, and that the pretreatment temperature of 

the silica does not always affect the type of metal site formed in the reaction 

between a metal alkoxide or chloride and silica.25,34  Furthermore, the incipient 

wetness and grafting techniques are incapable of producing fully embedded or 

“framework” species― that is metal species that have exchanged all their ligands 

for bonds to the silica surface.  The amount of metal incorporated into the 

catalyst is also limited by the number of hydroxyl groups available on the silica  
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Figure 1-7.  Structures of the titanium dimers on silica proposed by Scott’s group. 
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surface.  It is clear that at this point in time the incipient wetness and grafting 

methods are not generally applicable methods that can produce a single 

“tailored” site uniformly throughout a heterogeneous catalyst. 

Hydrothermally Synthesized Materials 
 Zeolites are a large family of naturally occurring and synthetic crystalline 

aluminosilicates that exhibit the important structural characteristics of long range 

order and microporous (pore diameter ≤ 2nm) pore networks.35  They are 

tectoaluminosilicates (each oxygen atom joins together two tetrahedral atoms) 

comprised of [SiO4]4- and [AlO4]5- tetrahedra.36  A network of interconnected 

[SiO4]4- tetrahedra such as quartz, SiO2, is electrically neutral.  The substitution of 

Al3+ for Si4+ in the zeolite framework necessitates the inclusion of cations to 

provide charge balance.35  Properly only aluminosilicates can be called 

zeolites,36 but, purely siliceous37 materials with zeolitic structures have been 

prepared extending their application to areas where Lewis or Brønsted acid 

properties are not desirable.   In this section the term zeolite refers both to 

aluminosilicates and silicates having a crystalline structure with a microporous 

pore network. 

Zeolites are excellent catalysts which are used extensively in the refining 

of petroleum and the production of fine and specialty chemicals.38  Their 

commercial success is in large part due to the continual synthesis or discovery of 

new zeolites with chemical properties that allow the development of new 

technologies or improvements in existing synthetic processes.36  Zeolitic 
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materials are especially interesting from the standpoint of heterogeneous 

catalysis as their high surface area and porosity allow a large number of catalytic 

sites to be incorporated while maintaining site dispersion.  This class of materials 

is an extremely versatile family of catalysts because of their: 1) uniform pore size, 

high surface area, and high adsorption capacity, 2) thermal, hydrothermal, and 

chemical stability, 3) adsorption properties which can be varied from hydrophobic 

to hydrophilic, 4) the intricate pore structure that allows for different types of 

shape selectivity, and 5) the many chemically interesting main group elements 

and transition metals that can be incorporated into the structure.36-38  For 

example, P, Ge, B, and Zn can be included as major components of the 

structure, while Ti, Fe, Co, Cr, V, Mg, and Mn can be added at low weight 

percentages.36,37   

A typical zeolite synthesis begins with the mixture of silicon and aluminum 

sources with a cation in a basic solution.  The cation may also function as a 

structure directing agent (SDA) which is often a quaternary amine.  Then the 

aqueous mixture is heated in an autoclave at temperatures between 100 and 250 

°C.  At first the solids formed in the reactor are amorphous, but as time passes 

the solids begin to crystallize into zeolites.  In accordance with Lowenstein’s rule 

no Al-O-Al linkages should be observed in zeolites.36  Quaternary amines having 

C:N ratios between 11 and 16 have been found to be effective in the production 

of highly siliceous zeolites (Si:Al ratio > 12).39  Purely siliceous zeolites have 

been synthesized by removing aluminum from the reaction mixture. 
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In general, metals of catalytic interest are inserted into zeolite structures 

through isomorphous substitution.  Isomorphous substitution is defined as the 

replacement of an element in the crystalline framework (in this case Al or Si) by 

another element similar in ionic radius and coordination requirements.40  This 

approach has clear limitations.  First, some elements (notably Mo and W) will not 

isomorphously substitute into zeolite lattice because their charge, ionic radius, or 

coordination requirements are not similar enough to Al or Si.  Second, 

“excessive” substitution of an element into the framework can disrupt the 

crystalline lattice.  For example the inclusion of more than three weight percent of 

Ti in TS-1, a zeolite having the MFI structure, leads to the formation of TiO2 

domains and lower catalytic activity in olefin epoxidation.41  Such limitations can 

be problematic when it is desirable to have as many actives sites as possible 

while maintaining site isolation in order to maximize the productivity of the 

catalyst. 

The microporous pore structure of zeolites impedes their general 

application in catalysis.  Although the ordered pore structures have been used to 

impart shape selectivity in some reactions,42 their application is limited to 

reactions using reagents with a kinetic diameter smaller than 10 Å.38,43  

Furthermore, mass transport to and from the catalyst sites in the pore structure is 

slow which limits the rate of reaction that can be attained using these materials.42  

For these reasons a substantial amount of effort has been directed at the 

synthesis of zeolites with mesoporous (pore diameters from 2 to 50 nm) pores.  
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MCM-41, SBA-15, and HMS are three common silica materials with ordered 

mesoporous structures.44  Of those three MCM-41 and SBA-15 are synthesized 

through hydrothermal processes. 

While the pore structures of these mesoporous materials are ordered, 

their framework structures are not crystalline.  This is unfortunate as the ability to 

isomorphously substitute elements of interest into specific sites in the crystalline 

lattice is lost.  When incorporated during the hydrothermal synthesis catalytically 

active metals can be distributed piecemeal throughout the framework structure or 

aggregate together to form metal oxide domains.  The amorphous nature of the 

pore walls also makes the hydrothermal stability of these mesoporous materials 

lower than that of related zeolites.44 

Sol-gel Syntheses 
 The sol-gel method is a low temperature means of metal oxide synthesis 

based upon the formation of a solid oxide from the hydrolysis and condensation 

of a solution of metal salts or alkoxides.45  This method is amenable to the 

preparation of materials used for a variety of purposes from refractory materials, 

ceramics, and superconductors to silica glass and heterogeneous catalysts.46  

The ability to employ easily purified precursors, lack of stoichiometric constraints, 

and mild reaction conditions that allow the synthesis of hybrid organic-inorganic 

materials make the sol-gel procedure an attractive synthetic method.47 

 There are two major types of reagents used in the sol-gel process: metal 

salts and metal alkoxides.  Despite the differences in these reagents sol-gel 
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procedures go through the five basic steps of hydrolysis, condensation, gelation, 

ageing, and drying.  While all the steps are important, the initial steps of 

hydrolysis and condensation have the most effect on the structure of a silica 

supported heterogeneous catalyst. 

 Hydrolysis is an extremely important step because the M(OH) species 

formed through hydrolysis are almost exclusively responsible for the formation of 

the M-O-M bonds necessary for gel formation.  Metal salts are used in aqueous 

solution and an equilibrium exists between the aquo-, hydroxo-, and oxo- species 

of the metal as shown in the equation below.  The point of equilibrium for a 

[M(H2O)z+] ↔ [M(OH)]z-1 + H+ ↔ [MO]z-2 + 2 H+ 

system depends upon the pH and the charge, coordination number, and 

electronegativity of the metal. 

 Hydrolysis of metal alkoxides occurs through the addition of water to the 

metal center followed by transfer of a proton to the alkoxide ligand and 

elimination of alcohol as shown in the equation below.  There are differences 

Si(OR)4 + n H2O → Si(OR)4-n(OH)n + n ROH 

silicon alkoxides and metal oxides that are important with regard to the synthesis 

of silica supported heterogeneous catalysts.  Many metal alkoxides self-

associate in solution.  For example, Ti(OMe)4 is tetrameric in a benzene 

solution.46  While the degree of self-association decreases with the increasing 

steric bulk of the alkyl group (down to an average of 1.4 for Ti(OiPr)4 in benzene), 

self-assocation holds these metals in close proximity and promotes the formation 
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of oxide domains upon hydrolysis.46,47  Further complicating the situation is the 

greater Lewis acidity of the transition metal alkoxides relative to silicon alkoxides 

as shown by the table of estimated partial positive charges, ∂(M), for a series of 

metal ethoxides below (Table 1-1).48  The rate of hydrolysis increases with the 

partial positive charge on the metal.  For example, the relative rate of hydrolysis 

for any Ti(OR)4 species is estimated to be 105 times faster than that of the 

corresponding Si(OR)4 species.48 

   Condensation is the formation of M-O-M bonds from metal hydroxo species.  

Condensation can occur between two hydroxo units, hydroxo and aquo units, or 

hydroxo and alkoxide units as shown in the equations below.  As the rate of 

condensation depends upon the concentration of hydroxo species, the  

(RO)3SiOH + HOSi(OR)3 → (RO)3SiOSi(OR)3 + H2O 

Si(OR)4 + HOSi(OR)3 → (RO)3SiOSi(OR)3 + ROH 

rate of hydrolysis can have a significant influence on the products formed during 

condensation.  Furthermore, the dispersion of a metal in the final product is 

influenced by the relative rates of homocondensation (formation of M-O-M or M’-

O-M’) the rates of heterocondensation (formation of M-O-M’) for the reagents 

involved.49  It is during condensation that metal oxide domains may begin to 

form. 

Gelation occurs when condensation has occurred to such a degree that a 

gelatin like solid forms across the expanse of the reaction medium.  At this point 

solvent is entrapped in the pore structure of the material.  Ageing is the further 



Ethoxide Zr(OEt)4 Ti(OEt)4 Nb(OEt)5 Ta(OEt)5 V(O)(OEt)3 W(OEt)6 Si(OEt)4

∂(M) 0.65 0.63 0.53 0.49 0.46 0.43 0.32 

Table 1-1.  Estimated partial positive charge on the metal center of a series of metal ethoxides. 
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cross-linking of un-reacted sites after gelation occurs.  Drying is the process by 

which occluded solvent is removed from the sol-gel product.  The method of 

drying chosen can have a significant impact upon the final properties of the 

material.  Drying by heating the material can lead to the collapse of the pore 

structure and densification of the material.  Materials produced through drying 

are called xerogels.  Supercritical extraction of the solvent can leave the pore 

structure of such materials intact, and the resulting products are called aerogels. 

The mild conditions of the sol-gel process also make it amenable to 

modification.  As with the hydrothermal methods, structure directing agents can 

be used to produce materials with ordered pore structures.  

Non-hydrolytic sol-gel process 
A non-hydrolytic sol-gel process has been developed to overcome the 

formation of metal oxide domains during conventional sol-gel syntheses.50  In the 

non-hydrolytic method metal halides are reacted directly with metal alkoxides. 

MClx + M’ORy → Clx-1MOM’ORy-1 + RCl 

While rapid ligand exchange reactions between metal alkoxides and metal 

halides are known, a high degree of homogeneity in the product can be obtained 

if the resulting products have condensation rates of the same order.49  It has 

been reported that if the rate of heterocondensation between metals is high 

under non-aqueous sol-gel conditions that well dispersed titanium on silica can 

be made.48,51
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Four Key Principles of Non-aqueous Building Block Approaches to Nano-
structured Solids 
 An important drawback of the incipient wetness, grafting, hydrothermal, 

and sol-gel synthetic methods is that they allow the formation of multiple active 

site precursors that can contribute to catalytic activity, limit the type of active site 

that can be produced, or allow the aggregation of catalyst precursors into oxide 

domains.  An approach that attempts to address these challenges and provide a 

general approach to the synthesis of single site catalysts is the non-aqueous 

building block (NABB) method.  Four aspects of the NABB method  that make its 

use advantageous over traditional methods for heterogeneous catalysts are:  1) 

the use of non-aqueous conditions, 2) the site dispersal offered by rigid building 

blocks, 3) the larger size metric of the structural building blocks compared to 

single molecules, 4) the opportunity to choose functional groups optimal for the 

reaction conditions.  First, the use of strictly non-aqueous conditions is designed 

to prevent  the condensation of metal- chloride, alkoxide, or hydroxide reagents 

into metal oxide domains.  Second, the rigid structure of the building block should 

keep sites well-dispersed after the building blocks have been condensed 

together to form a solid material.  The use of polyfunctional building blocks 

should allow high catalyst loadings to be achieved.  Third, the larger size metric 

provided by building blocks can increase the surface area of a solid as compared 

to one made of similar simple molecules.  Klemperer and co-workers showed this 

when the sol-gel product of an Si8O12(OCH3)8 had a specific surface area of 900 

m2/g which was 400 m2/g greater than a gel produced from Si(OCH3)4 under the 
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same conditions.52  Finally, the use of appropriately functionalized building blocks 

and reagents can improve control over the active sites produced in the finished 

material when compared to traditional synthetic methods. 

The Building Block 
There are many building blocks available to the synthetic chemist.  The 

question then is what building blocks are best suited for the construction of a 

material that will be used as a catalyst.  A key requirement is that the building 

block be chemically and thermally robust.  This is important for two reasons.  

First, the building block must be able to come through the synthesis of the 

material intact.  Otherwise, the advantages given by using a building block will be 

lost.  Second, the building block must be able to withstand the conditions the 

catalyst material will encounter during use.  Another requirement for a building 

block is that it be easy to synthesize, preferably in high yield.  Finally, a building 

block should be appropriately functionalized for its intended use. 

We selected the Si8O12 building block (Figure 1-8) for several reasons.  

First, silica is thermally and chemically robust which is one of the most important 

requirements for a building block as described above.  Secondly, the dimensions 

of the Si8O12 unit promote site isolation.  The length along the edge of the cube 

from one silicon corner to another is approximately 3.1 Å.  A third reason we 

selected the Si8O12 building block is that it is the most easily synthesized and 

purified member of the Si2nO3nR2n (n = 3-7; R = H, halide, alkyl, alkoxy) 

silsesquioxane family.  Finally, we selected the Si8O12 building block because it 
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~ 3.1 Å
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Figure 1-8.  ORTEP drawing of Si8O12R8. 
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can be functionalized in a manner that supports another fundamental tenet of our 

synthetic methodology. 

“A” plus “B” Functionality 
 As mentioned earlier in this chapter, one of the problems associated with 

sol-gel chemistry is the lack of control over the reaction when condensing two 

different metal alkoxides—say tetraethyl orthosilicate and tetraethyl othrotitanate 

for example.  Little can be done to prevent the orthotitanate from condensing with 

itself under sol-gel conditions even if the goal was to disperse titanium uniformly 

within the resulting gel.  Vioux and co-workers offered a solution to this problem 

in what they call a non-hydrolytic sol-gel reaction.53  The solution is elegant in its 

simplicity.  Molecules with “A” and “B” functionalities are used.  “A” and “B” both 

represent functionalities that will react with one another, but will not react with 

themselves.  This is shown schematically in the equations below.  Vioux and co-  

A + B = AB 

A + A ≠ AA 

B + B ≠ BB 

workers chose to react metal halides with metal alkoxides as shown in the 

equation that follows.  One problem with the reaction of metal halides with metal 

M(OR)n + M’Xy → n-1(RO)M-O-M’Xy-1 + RX 

alkoxides is the possibility of “scrambling” reactions.  In the case of “scrambling” 

rapid ligand exchange occurs when a metal halide is mixed with a metal alkoxide 

resulting in the formation of an equilibrium mixture of halogenoalkoxides.53 



 

32 

M(OR)n + MXn ↔ 2 MXn-y(OR)y 

 We chose not to use the metal alkoxide functionality for two reasons.  

First, we felt that we could minimize the possibility of “scrambling” reactions by 

using a functional scheme which is described in the next section.  Second, we 

wished to avoid the possibility of damaging the Si8O12 core under reaction 

conditions as described by Klemperer and co-workers when using the alkoxy 

functionalized Si8O12 building block, Si8O12(OCH3)8.52 

The Si8O12(OSnR3)8 Building Block Fulfills the Four Principles 
 In 1991 Feher and Weller reported that Si8O12(OSnMe3)8, 

octakis(trimethyltin) spherosilicate, could be synthesized in high yield from the 

reaction of octahydridosilsesquioxane, Si8O12H8, and bis(trimethyltin) oxide, 

O(SnMe3)2 as shown below.54  They noted in that work and demonstrated in 

Si8O12H8 + 8 O(SnMe3)2 → Si8O12(OSnMe3)8 + 8 HSnMe3 

following work that the reaction of Si8O12(OSnMe3)8, a.k.a. methyltin cube, with a 

molecule containing a metal halide bond caused the bond between the corner 

oxygen and the tin heteroatom to be cleaved.54,55  This effectively changes the 

Si8O12 building block into a Si8O20 building block with a distance of about 4.9 Å 

between the corner oxygen atoms (Figure 1-9).  Furthermore, methyltin cube has 

eight identical ≡Si-O-SnMe3 reactive sites that could potentially allow the 

synthesis of materials with very high loadings of metals. 
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~ 4.9 Å

Figure 1-9.  ORTEP drawing of Si8O20 building block. 
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The work of Feher and Weller effectively brought the four advantages of 

the non-aqueous building block method together in one package.  Reaction 

conditions were rigorously anhydrous.  The building block was proven to yield 

materials with higher surface areas than materials synthesized using single 

molecules as shown by Klemperer and co-workers.52  The reaction scheme of 

metathesis between the tri-alkyltin functionalized building blocks and metal 

halides coupled with the 4.9 Å separation between reactive sites should favor the 

production of atomically disperse metal sites.  What remained was to take the 

principles of the NABB method and demonstrate that the method could be used 

to construct well-defined single site catalysts, and that the method would be 

applicable to a wide variety of metals accessible through their respective halides. 

The Non-aqueous Building Block Synthetic Method 
 The NABB method is also unique in that it allows an unprecedented 

control of the structure of the active site through a variety of means.  In order to 

examine the various means of control available, it helps to examine some 

specific reactions involving Si8O20(SnMe3)8 and silicon tetrachloride.  If we 

represent a molecule of methyltin cube as ≡Si-O-SnMe3 and react that molecule 

with a single molecule of silicon tetrachloride, SiCl4, the reaction would proceed 

as shown below.  Two things are apparent from this simple reaction.  The first is 

≡Si-O-SnMe3 + SiCl4 → ≡Si-O-SiCl3 + ClSnMe3 

that two distinct silicon species detectable by 29Si NMR are present in the 

product.  The silicon at the corner of the methyltin cube becomes a Q4 site with a 
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chemical shift expected near -110 ppm.  The silicon atom in the -OSiCl3 segment 

of the product is a pseudo Q1 site with a chemical shift expected near -45 ppm.  

The second thing that is apparent is that three potentially reactive chlorine sites 

remain in the -OSiCl3 segment of the product. 

 Let us continue this thought experiment, assuming that we have three 

molecules of methyltin cube to react with the product from above.  One should 

≡Si-O-SiCl3 + 3 ≡Si-O-SnMe3 → Si(O-Si≡)4 + 3 ClSnMe3 

note that the silicon atom that originated from the SiCl4 molecule is now itself a 

Q4 site and therefore indistinguishable using 29Si NMR from the Q4 sites formed 

at the corners of the methyltin cube.  It is also apparent from this thought 

experiment that the structure of the final product depends upon the stoichiometry 

of the reaction.  As we saw, the addition of a limiting amount of SiCl4 to a solution 

of methyltin cube can produce Si(O-Si≡)4 sites.  However, the use of higher 

stoichiometries could produce Cl2Si(O-Si≡)2 or ClSi(O-Si≡)3 species. 

 Indeed studies of the reaction between silicon tetrachloride and the 

methyltin cube have shown that the structure of the product is dependent upon 

the stoichiometry of the reaction.56  Stoichiometric ratios of less than one SiCl4 

per methyltin cube show that all four chlorides react producing fully-embedded 

Si(O-Si≡)4 in the resultant solid as observed by 29Si magic angle spinning (MAS) 

NMR.  When stoichiometric ratios of greater than one SiCl4 per methyltin cube 

are used a mixture of capping Cl3Si(O-Si≡), bridging Cl2Si(O-Si≡)2, and possibly 

some fully-embedded Si(O-Si≡)4 sites are formed.  We refer to this process 
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where the halide containing the metal of interest is added first to a solution of 

methyltin cube and simple stoichiometric adjustments are made to affect the 

structure of the metal center in the product as the process of normal addition in 

order to differentiate it from the process described next.  A representation of 

normal addition is shown in Figure 1-10. 

What if capping sites, sites where only one bond from metal halide to 

methyl tin cube is formed, are the only species desired?  Simply reversing the 

order the reagents are added to the reaction vessel can produce the capping 

species preferentially.  We refer to this as the inverse addition process and it is 

shown in the equation below and in Figure 1-10.  The molecular all-capping  

excess MXn + ≡Si-O-SnMe3 → ≡Si-O-MXn-1 + XSnMe3

species Si8O20(SiCl3)8 has been successfully produced by adding a solution of 

methyltin cube to a solution containing a large excess of SiCl4.57  Similarly, the 

inverse addition reaction between vanadyl chloride, V(O)Cl3, and methyltin cube 

yields a solid where ≡Si-O-V(O)Cl2 capping groups are the preferred product.58 

 If we return to our thought experiment, you may notice that we have only 

considered the reaction of methyltin cube with pure metal halides.  However, a 

variety of metal compounds that contain both halide and hydride, alkyl, or aryl 

groups are known.  One can easily picture, as shown below, that the reaction 

between methyltin cube and methyltrichlorosilane, MeSiCl3, could only produce a 

material with a maximum of three bonds from cubes to the methylsilyl unit.  We 

MeSiCl3 + excess ≡Si-O-SnMe3 → MeSi(O-Si≡)3 + 3 ClSnMe3
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Figure 1-10.  Representations of normal addition (top) and inverse addition (bottom). 

Si+ limiting SiCl4

= SnMe3 (Remaining SnMe3 groups
omitted for clarity.)

+ ClSnMe3

Si8O20(SnMe3)8

Excess SiCl4 + + ClSnMe3

Normal addition

Inverse addition

= SiCl3
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refer to selecting reagents with nonreactive groups to control the structure of the 

product as the use of blocking groups.   A model study using 

trichlorosilane,HSiCl3, shows that blocking groups can be used to limit the 

number of bonds formed between a metal halide and the cube.56,59  If necessary 

the blocking groups can be removed post-synthesis via calcination to yield M-OH 

groups typical of those found on the surfaces of metal oxides. 

From a consideration of the above we have been able to formulate a 

general process for the preparation of atomically dispersed, site isolated, single 

site catalysts.  We call this the process of sequential additions and it uses the 

principles of normal addition, inverse addition, and blocking groups in 

combination with the fact that we wish to disperse a metal in a silica matrix.  If we 

wish to form a metal site with a connectivity of two without the use of blocking 

groups, we can react methyltin cube with a limiting amount of a silicon halide and 

leave tin sites available at unreacted corners of the cube. (Connectivity refers to 

the number of bonds formed between the metal halide and cubes.  For example, 

a Cl2Ti(O-Si≡)2 site would have a connectivity of two.)  We can then add a 

different metal halide, zirconium tetrachloride for example.  If the proper amount 

of tin sites remain the product will contain Cl2Zr(O-Si≡)2 sites exclusively as 

shown in Figure 1-11.  Remaining tin sites can then either be removed from the 

system by reaction with trimethylsilyl chloride, or reacted with other reagents as 

the researcher deems appropriate. 
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= SnMe3

+ ClSnMe3

Si8O20(SnMe3)8

Figure 1-11.  Representation of the non-aqueous building block method of sequential additions. 

Si

ZrSi
Cl

Cl

1. Limiting SiCl4
2. ZrCl4
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Now let us consider two processes designed to control the structure of the 

NABB method product specifically through influencing the rate of reaction.  

These means of control are among the least explored in the non-aqueuous 

building block method.  Temperature is an obvious means of influencing the rate 

of a reaction.  It has been shown that in the case of the addition of SiCl4 to 

methyltin cube that an increase in  temperature from 50 to 80 °C favors the 

formation of silicon centers with higher connectivity.56,59 

The use of coordination compounds of metal halides can also influence 

the rate of reaction.  For example, I found that the addition of titanium 

tetrachloride to a solution of butyltin cube (analogous to methyltin cube and 

described in Chapter 2) produced a visible solid product within minutes.  

However, the reaction of bis(pyridine)titanium tetrachloride (a solid), TiCl4·py2, 

with butyltin cube proceeds more slowly and does not produce a solid product 

after 24 hours.  Unlike the case of titanium, the reaction of SiCl4 with butyltin 

cube was found to proceed slowly, and a solid product was not produced after 48 

hours.  Presumably, the absence of a solid product means that no reaction 

occurred or that a preponderance of capping species were produced. However, 

the reaction of bis(pyridine)silicon tetrachloride, SiCl4·py2, was found to produce 

a solid product that was recognizable after 18 hours. 

It is clear from these examples that reaction temperature and the use of 

coordination compounds of metal halides are two more means of influencing the 

structure of the product available in the NABB method.  While these means are 
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directed at influencing the rate of reaction, their impact on the structure of the 

product is powerful.  As studies of the non-aqueous building block method 

continue control of reaction temperature and the use of coordination compounds 

must be considered in attempts to synthesize specific active site precursors. 

 The non-aqueous building block method shows great potential for the 

synthesis of nano-structured heterogeneous catalysts.  As we have seen, this 

method offers many means to control the structure of the active site in the 

product including: the use of blocking groups, the use of coordination 

compounds, temperature selection, and the multi-faceted process of sequential 

additions.  The NABB method overcomes many of the shortcomings of traditional 

methods of heterogeneous catalyst synthesis while being generally applicable to 

a variety of high valent transition metal and main group halides including: P, Al, 

Si, B, Ti, Zr, and V.55-61  The major limits of the non-aqueous building block 

method may be those imposed by the reactivity and coordination constraints of 

the metal being inserted into the building block matrix. 

Dissertation Overview 
 Catalysts touch nearly every aspect of modern life.  As we have seen in 

this chapter, there is an industrial demand for highly active and selective 

catalysts that can easily be separated from the reaction mixture.  However, 

traditional methods appear to be inadequate for the synthesis of these next 

generation catalysts.  While the catalysts synthesized through these means are 

effective, their propensity to form materials with multiple sites that could be 
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responsible for the observed activity have made it very challenging in most cases 

to identify the active sites in heterogeneous catalysts.  Given the lack of methods 

available for the synthesis of single-site catalysts, it is clear that new 

methodologies need to be developed so that structure-activity relationships can 

be determined for heterogeneous catalysts.  Ideally, these methods will be 

generally applicable to a wide variety of transition metals and give rise to truly 

nano-structured catalysts.  One such method that holds promise in elucidating 

structure-activity relationships and synthesizing nano-structured catalysts is the 

non-aqueous building block method. 

 Chapter 2 describes the synthesis of the butyltin cube, Si8O20(SnnBu3)8.  

As discussed in that chapter, this building block is crucial to the scope of the non-

aqueous building block method.  This material addresses issues associated with 

the cost and toxicity involved with the synthesis of the methyltin cube, 

Si8O20(SnMe3)8, making the application of the non-aqueous building block 

method possible on an industrial scale. 

 Chapter 3 describes the reactivity of Si8O20(SnnBu3)8 with SiCl4, SiCl4·py2, 

and TiCl4.  Methods for the structural characterization of non-aqueous building 

block methods including a quantitative 1H NMR method for determining the 

amount of ClSnnBu3 by-product formed during non-aqueous building block 

reactions.  The chapter also includes information on the stoichiometry necessary 

to form titanium non-aqueous building block materials with specific titanium 

connectivity values. 



 

43 

 Chapter 4 examines epoxidation reactions catalyzed by titanium-on-silica.  

The oxidants made available by titanium-on-silica catalysts are discussed, and 

the activity and structural characterization of several titanium-on-silica catalysts 

from the literature are described.  The results of experiments measuring the 

activity and selectivity of titanium non-aqueous building block catalysts in the 

epoxidation of cyclohexene are discussed, and comparisons with literature 

catalysts are made.
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Chapter 2. Significance, Synthesis, and Characterization of 

Octakis(tri-n-butyltin)spherosilicate 

Rationale 
 Previous research about the Si8O20 building block conducted by the 

groups of Feher and Barnes used octakis(trimethyltin)spherosilicate, 

Si8O20(SnMe3)8, as the source of the building block.55,58-60  While facile, the 

reaction in the equation below reported by Feher for the synthesis of 

Si8O20(SnMe3)8, uses bis(trimethyltin)oxide, O(SnMe3)2, which is not 

commercially available and is synthesized in two steps from highly toxic 

trimethyltin chloride.54  However, the tri-n-butyltin analogue, 

Si8O12H8 + O(SnMe3)2 → Si8O20(SnMe3)8 + 8 HSnMe3

bis(tri-n-butyltin)oxide, O(SnnBu3) or n-butyltin ether, is commercially available 

and relatively inexpensive due to its widespread use as a fungicide and anti-

fouling agent in marine paints.62  Thus, concerns about the toxicity of trimethyltin 

compounds and their high cost motivated attempts to synthesize octakis(tri-n-

butyltin)spherosilicate, Si8O20(SnnBu3)8. 

Cost Comparison 
 In contrast to the n-butyltin ether, the methyl analogue must be 

synthesized from trimethyltin chloride, ClSnMe3.  The synthesis is a two-step 

process in which the chloride is first converted to the hydroxide with water, which 
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is then dehydrated using calcium hydride to yield O(SnMe3)2 as shown in the 

following equations.  Neglecting yield considerations and other costs associated 

Me3SnCl + NaOH (aq.) → Me3SnOH + NaCl (aq.) 

2 Me3SnOH + CaH2 → Me3SnOSnMe3 + 2 H2 + CaO 

with the synthesis, the amount of ClSnMe3 needed to produce one mole of 

bis(trimethyltin) oxide is over 25 times more expensive than a mole of n-butyltin 

ether purchased directly from a commercial supplier.62 

Safety considerations 
 While cost was a driving force behind the exploration of the synthesis of 

the tri-n-butyltin analogue of Si8O20(SnMe3)8, toxicity was also a major factor.  All 

trialkyltin compounds exhibit some level of toxicity.  ClSnMe3 is particularly toxic 

and known to cause cerebral edema.62  A direct comparison of the LD50 (12.6 

mg/kg for ClSnMe3 versus 148-234 mg/kg for O(SnnBu3)2) shows that trimethyltin 

chloride is substantially more toxic than n-butyltin ether. 

 Normally the toxic effects of chemicals are avoided by avoiding exposure 

to the toxins.  The great danger of trimethyltin compounds is their high vapor 

pressure which increases the risk of exposure to this potent class of compounds.  

In contrast to ClSnMe3 which readily sublimes at atmospheric pressure, 

O(SnnBu3)2 has a boiling point of 180 °C at a pressure of 2 torr.62  While the use 

of standard Schlenk techniques can mitigate the exposure risks associated with 

trimethyltin compounds, the lower relative vapor pressure and toxicity of the n-
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butyltin ether make its use in large scale syntheses preferable from a safety 

standpoint. 

Synthesis 
The substitution of the n-butyltin ether for the methyltin analogue in the 

reaction with the octahydrido siloxane, H8Si8O12, results in the synthesis of pure 

Si8O20(SnnBu3)8, butyltin cube, in high yield.  Because commercially available n-

butyltin ether is provided at 96% purity, the O(SnnBu3)2 was vacuum distilled prior 

to use.  In a typical synthesis, 4 g (9.4 mmol) of H8Si8O12 was added to a 

magnetically stirred round-bottomed flask containing 47 g (79.1 mmol, 5% molar 

excess) of neat n-butyltin ether at 0 °C.  The reaction was allowed to proceed for 

one hour.  Removal of the tri-n-butyltinhydride, HSnnBu3, by-product is easily 

facilitated by short-path distillation under reduced pressure.  However the butyltin 

cube product is extremely soluble in the remaining n-butyltin ether, and a rubbery 

solid results following removal of the HSnnBu3.  Two methods proved successful 

in separating the product from the excess n-butyltin ether.   

First, continued short-path distillation under reduced pressure utilizing high 

temperature yields a pure product in essentially quantitative yield.  This method 

requires the use of an oil bath with temperatures from 200 to 230 °C, and careful 

heating of the distillation head to prevent condensation of the n-butyltin ether 

before it reaches the condenser.  Sufficient time, at least 18 hours, must also be 

allowed for the residual O(SnnBu3)2 to diffuse out of the rubbery solid.   
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Second trituration of the rubbery solid with cold (-20 °C) methanol, and 

collection of the product via vacuum filtration also yields a pure product.  The 

trituration method results in recovered yields of 70 to 80%. 

Characterization  
Si8O20(SnnBu3)8 was characterized using multinuclear NMR, infrared (IR) 

spectroscopy, Raman spectroscopy, and elemental analysis.  The results of 

elemental analysis are as follows: found 40.40% C and 7.57% H, calculated for 

Si8Sn8O20C96H216: 40.24% C and 7.60% H. 

The results of the multinuclear NMR studies are as follows:  1H NMR: δ 

1.09 (t, 72H); δ 1.38 (t, 48H); δ 1.54 (m, 48H); δ 1.84 (m, 48H); 13C NMR: δ 14.2 

(s); δ 16.4 (s) 1J(SnC) = 356, 373 Hz; δ 27.7 (s) 3J(SnC) = 60.3, 63.1 Hz; δ 28.4 

(s) 2J(SnC) = 17.8 Hz; 119Sn: (149.18 MHz, C6D6) δ 85.9 (s); and 29Si: δ -101.0 

(s).  The resonances at 1.09 and 1.38 ppm in the 1H NMR spectrum were 

assigned to the terminal methyl group and the methylene group closest to tin on 

the n-butyl chain of the trialkyltin groups respectively.  Those assignments were 

made upon the basis of the splitting patterns of the resonances and their relative 

integration values.  The resonances at 1.54 and 1.84 are assigned to the interior 

methylene groups of the n-butyl chain, but have not been assigned to specific 

positions on the chain.  13C NMR resonances were assigned upon the basis of 

the nJ(C-117Sn,119Sn) coupling constants.63-66  Figure 2-1 shows the 1H and 13C 

NMR spectra along with assignments. 
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Figure 2-1.  a) Alkyl region of 1H NMR spectrum for Si8O20(SnnBu3)8. 

b) Alkyl region of 13C NMR spectrum for Si8O20(SnnBu3)8. 
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The infrared and Raman spectra (Figures 2-2 and 2-3 respectively) were 

assigned according to bands reported in the literature for O(SnnBu3)2
67 and  

H8Si8O12
68-71.  Assignments for major bands are given in Table 2-1. 
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Figure 2-2.  Expansion of the fingerprint region of the FT-IR spectrum of Si8O20(SnnBu3)8 with full spectrum 

inset. 
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Figure 2-3.  Expansion of the fingerprint region of the Raman spectrum of Si8O20(SnnBu3)8 with full spectrum 

inset. 
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Table 2-1.  Assignments of major Raman and IR bands in the vibrational 

spectra of Si8O20(SnnBu3)8. 

Raman (cm-1) IR (cm-1) Assignment 
1442 1466 ∂as CH3
1415 1419 ∂as CH2
― 1378 ∂s CH3

1174 ― ∂s CH2
1151 ― ∂ CH 
― 1143 νas (Si-O-Si) 

1075 1075 (shoulder) ν C-C 
― 1036-1022 ν (Si-O-Si) 

1045 ― ν C-C 
880 877 ρ CH 
― 867 ρ CH 

840 842 ρ CH 
― 696 νs (Si-O-Si) 
― 628 νs (Si-O-Si) 

589 ― νas SnC3
― 540 νs (O-Si-O) 

503 ― νs SnC3
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Chapter 3. Synthesis and Characterization of Titanium Non-aqueous 

Building Block Materials 

Introduction 
 Heterogeneous catalysts are notoriously difficult to characterize.  Most of 

the heterogeneous catalysts generated using traditional synthetic methods are 

structurally complex for one or more of the following reasons:  1) they frequently 

lack long range order (are amorphous), 2) the active sites are located on the 

surface of supports that are not structurally uniform and, 3) they consist of 

multiple species that involve the active metal (multiple sites).  (Traditional 

methods for the synthesis of heterogeneous catalysts are discussed in the first 

chapter of this dissertation.)  Even zeolites which are well-ordered materials with 

crystalline structures and ordered networks or micropores can present problems 

with regard to determining the structure of catalytic sites.  While diffraction 

methods are available to probe the bulk structure of crystalline materials, they 

are not generally sensitive to structural correlations involving dilute atomic 

components.72  Thus, diffraction methods are not well-suited for the 

characterization of catalytic sites which are typically incorporated at a low weight 

percent or in defect sites that could be responsible for catalytic activity.  The 

question then is, “What methods can be used to characterize heterogeneous 

catalysts?”. 

 Perhaps the simplest method to begin the structural characterization of a 

material, albeit indirectly, is the gravimetric method or variations thereon.  If one 
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understands the chemical reactions that occur and the mass of the product and 

the mass(es) and identity(ies) of the by-product(s) of the reaction then one can 

make reasonable conclusions about the identity and structure of the reaction 

product using stoichiometry.  Simple gravimetric measurements were used to 

help characterize the structure of materials previously prepared using the non-

aqueous building block method.57  Scott and Basset have used gas 

chromatography and quantitative FT-IR spectroscopy to identify and measure the 

amount of by-products formed during syntheses of catalytic materials to aid in 

structural determinations, yet the principle is the same as gravimetry.29,32,34 

Solid state NMR (SSNMR) has been used to characterize heterogeneous 

catalysts.  Solid acid catalysts have been extensively characterized using 

SSNMR both by directly probing the local structure around NMR active nuclei 

such as Si, Al, and H and monitoring their interaction with probe molecules, 

such as NH .   Si and V NMR have been used to aid the structural 

characterization of non-aqueous building block (NABB) materials.  

29 27 1

3
73 29 51

56-59

Vibrational spectroscopy has been used to characterize a variety of 

catalysts supported on metal oxides.74  FT-IR spectroscopy has been used to 

investigate the surface functionality of metal oxides and the structure of those 

oxides after reaction with various catalyst precursors.29  Raman spectroscopy 

has been used to look for vibrations specific to metals with catalytic potential 

bound to metal oxide supports.75 
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 X-ray absorption spectroscopy has also been used to probe the structure 

of heterogeneous catalysts.30  X-ray absorption near edge spectroscopy 

(XANES) studies can provide information about the oxidation state and symmetry 

of metal sites in a material.  Fits of extended X-ray absorption fine structure 

(EXAFS) data can be used to determine the number, atom type, and distances of 

atoms neighboring the metal center. 

 While the above is not an exhaustive list of the methods used to 

characterize heterogeneous catalysts, it includes many of the methods most 

commonly used for their characterization.  In the study of the structure of titanium 

centers in materials produced from the non-aqueous building block method, a 

variation on gravimetric analysis was used to gain the first information about the 

structure of the titanium centers.  Then structural information gathered using FT-

IR, Raman, SSNMR, XANES, and EXAFS was used to form a more complete 

understanding of the structure of the titanium sites in those materials.  The 

procedure for synthesizing these Ti non-aqueous building block materials, the 

data collected using various techniques, and conclusions about the effect of 

reaction stoichiometry on the structure of the titanium center in these materials 

are presented below. 

Experimental 
 The metal halides used in the non-aqueous building block method are 

sensitive to water and hydroxide species on the surface of glass.  As such, 

special care was taken to exclude those species during synthesis.  All the 
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glassware used in the syntheses was treated with chlorotrimethylsilane (Sigma-

Aldrich, 97%) followed by triethylamine (Sigma-Aldrich, 99.5%) to remove 

hydroxyl groups from the surface of the glass.  Hexanes and toluene (Fisher 

Scientific) were dried using an alloy of sodium and potassium and distilled prior 

to placement in solvent bulbs.  Pyridine (Fisher Scientific) was distilled and dried 

using calcium hydride.  Hexanes, toluene, and pyridine were kept in solvent 

bulbs equipped with high vacuum Teflon® stopcocks (J. Young Scientific 

Glassware, Ltd.) with their appropriate drying agent.  They were degassed using 

three freeze-pump-thaw cycles and stored under vacuum prior to use.  

Si8O20(SnnBu3)8 was synthesized according to the method described in the 

second chapter of this dissertation. 

 Silicon(IV) chloride (Acros Organics, 99.8%) and titanium(IV) chloride 

(various suppliers and grades) were distilled under a nitrogen gas purge.  During 

distillation the fraction collected below the boiling point of the metal halide was 

discarded.  The constant boiling fraction of distillate boiling within 2 °C of the 

boiling point was collected in a solvent bulb equipped with a high vacuum 

Teflon® stopcock.  The metal halides were degassed using three freeze-pump-

thaw cycles and stored under vacuum prior to use. 

 A conventional nitrogen gas/vacuum manifold was used to facilitate the 

transfer of solvents and metal halide vapors to the reaction vessel.  Solvents 

were transferred to the reaction vessel directly through the manifold.  However, 

metal halides were transferred to the reaction vessel using glass “T”s to prevent 
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contamination of the manifold.59  Metal halides were transferred from solvent 

bulbs to glass capillary tubes (3 or 5 mm diameter) equipped with Teflon® 

stopcocks.  Metal halides were then subsequently transferred from capillary 

tubes to the reaction vessel. 

 Change in the volume of the liquid in the vessels was used to initially 

estimate the amount of material transferred from the solvent bulbs and capillary 

tubes to the reaction vessels.  As the internal diameter of the capillary vessels 

was known, the change in height of the liquid column in the vessel was used to 

monitor the volume change.  The small diameter of the capillary tubes allowed 

the addition of precise amounts of metal halides to the reaction vessel.  Final 

determination of the amount added to the reaction was based upon gravimetric 

measurements of the capillary tube. 

General Procedure for the Synthesis of Building-Block Materials 
 In a typical reaction to make cross-linked solids based upon the cubic 

Si8O20 spherosilicate building block, 4.00 g of Si8O20(SnnBu3)8 (butyltin cube) was 

placed in a beaker and dissolved in hexanes.  The butyltin cube/hexanes solution 

was then quantitatively transferred to a Schlenk type reaction vessel.  A Teflon® 

coated magnetic stir bar was placed inside the vessel, and a glass transfer “T” 

was placed on the ground glass joint of the vessel.  The hexanes were removed 

in vacuo through the stopcock of the reaction vessel.  The vessel was then 

placed in an oil bath and heated in vacuo at 80 °C from 12 to 18 hours in order to 

remove any coordinated water molecules from Si8O20(SnnBu3)8. 
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 Approximately 50 mL of solvent was vapor transferred from a solvent bulb 

through the vacuum manifold into the reaction vessel at -78 °C.  The reaction 

vessel was then allowed to warm until the butyltin cube completely dissolved.  

The reaction vessel was then again cooled to -78 °C, and stirring was begun.  An 

appropriate amount of metal halide was added to the reaction vessel via vapor 

transfer through the glass “T”.  As mentioned above, the amount of metal halide 

added was estimated by the change of the liquid column height inside the glass 

capillary and later quantified by the change in mass of the capillary Schlenk 

vessel. 

Quantitative 1H NMR Sample Preparation 
Samples for quantitative 1H NMR (QNMR) spectroscopy were prepared 

according to the following procedure.  Perdeuterobenzene (Cambridge Isotopes, 

99.6%) was dried over sodium-potassium alloy, degassed using three freeze-

pump-thaw cycles, and taken into a N2 (g) glove box.  Separate 

perdeuterobenzene solutions of metal halide, butyltin cube, and mesitylene 

(internal standard) were prepared inside the glove box and stored in silylated 

glass vials equipped with Teflon®-backed silicone septa.  NMR tubes were 

silylated, taken into the glove box to be filled with dry N2 (g), and capped with a 

latex septum prior to removal.  Subsequent manipulations were conducted in the 

atmosphere using syringes and standard Schlenk techniques.  A rubber stopper 

with an appropriate sized hole was used to facilitate measuring accurate masses 

of the NMR tube through the process by allowing the tube to be held vertically 
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during measurement.  Solutions were transferred from the vials to the NMR tube 

via syringe.  The mass of the solution added to the NMR tube was determined to 

the nearest tenth of a milligram by difference. 

Butyltin cube solution was added to the NMR tubes first.  Metal halide 

solution was then added to the tube, and it was vigorously shaken.  Mesitylene 

solution was added to the tubes after the reaction had proceeded for 30 minutes 

in order to prevent interference with the reaction. 

Preparation of Samples for Structural Characterization 
A typical reaction began with 8.00 g of butyltin cube.  Following heating of 

the butyltin cube in vacuo to remove any physisorbed water, 100 mL of hexanes 

was vapor transferred into the reaction vessel containing the butyl tin cube.  Then 

the desired amount of TiCl4 was added to the reaction vessel via vapor transfer.  

The reaction was then allowed to warm to room temperature and proceed for two 

hours. 

After two hours had passed, a weighed amount of the solid bis(pyridine) 

complex of silicon tetrachloride, SiCl4·py2, was added to the reaction vessel 

under a N2(g) purge.  An excess was added for each sample.  The number of 

moles added to the reaction was equal to the initial number of moles of tri-n-

butyltin in the starting material less the number of moles of TiCl4 added.  The 

stoichiometry for each sample is shown in Table 3-1 below.  The reaction was 

allowed to proceed for 18 hours. 
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Table 3-1.  Stoichiometry used to prepared titanium non-aqueous building 

block catalysts. 

Sample TiCl4:butyltin cube SiCl4·py2:butyltin cube 
Ti-4 0.25 7.75 
Ti-3 1.0 7.0 
Ti-2 2.0 6.0 

 

 

Volatile liquids were then removed in vacuo.  Excess SiCl4·py2 was 

removed using vacuum sublimation at 80 °C.  Samples were then taken into a 

N2(g) filled glove box.  Sample preparation for the various methods of 

characterization was performed in the glove box.      

Instrumentation 
 Silicon-29 magic angle spinning (MAS) NMR spectra were recorded on a 

Varian Inova spectrometer at a frequency of 79.43 MHz and a spinning rate of 

3.5 kHz.  Moisture sensitive samples were packed into 5 mm pencil rotors in a N2 

(g) glove box, and sealed with paraffin wax. 

 Infrared spectra were obtained using a N2 (g) purged Bio-Rad FTS-60A 

spectrometer operating at a resolution of 2 cm-1.  Samples were mixed with an 

appropriate amount of potassium bromide and pressed into pellets. 

 Raman spectra were acquired in the backscattering mode on the 

"microstage" of a Dilor XY Raman spectrometer.  Samples were placed in an 

NMR tube while in a N2(g) glove box.  The tube was capped, and then the cap 
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was wrapped with Parafilm® immediately following removal from the box.  The 

514.5-nm line of a Coherent Innova 200 argon ion laser was used for excitation. 

 X-ray absorption spectroscopy (XAS) spectra were collected in 

fluorescence mode at the X-19A (focused beam, 12 channel solid state Ge 

detector) and X-18B (broad beam, PIPS detector) beamlines on the X-ray 

storage ring of the National Synchrotron Light Source (NSLS)  in Upton, New 

York operating at 2.8 MeV with a typical beam current of 200-300 mA.  Data 

were collected at the titanium K-edge (4966 eV) and analyzed using IFEFFIT76 

and the Athena and Artemis programs.77    

 Quantitative 1H NMR spectra were recorded in a method similar to that of 

Maniara, et. al.78  The spectra were recorded on a Varian NMR with a 1H 

frequency of 300 MHz.  A 30° pulse was used with a recycle delay of 20 

seconds.  The recycle delay was slightly greater than four times T1 for the longest 

resonance of interest– the methyl protons of tri-n-butyltin chloride at δ 0.86 ppm.  

T1 values were measured on the same instrument using a standard population 

inversion experiment. 

 Experiments at each stoichiometric ratio were performed in triplicate.  The 

data collected was processed and analyzed using MestReC version 4.9.9.6.  A 

detailed procedure for processing the data is presented later in this chapter. 

Solid-state NMR Study of Titanium Non-aqueous Building Block Materials 
 Since the structure of the titanium site in the non-aqueous building block 

materials (NABB) is of principle interest, titanium NMR would be a desirable 
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means of characterizing these materials.  However few solid-state titanium NMR 

studies have been published to date.79  One reason for this is the large 

quadrupole moments of 47Ti and 49Ti (the two NMR active isotopes) which 

broaden the signals observed in the spectra of titanium compounds.79  Another 

experimental difficulty associated with titanium NMR is the similarity in resonance 

frequency of the two isotopes.  Even at magnetic field strengths of 14.1 Tesla (1H 

resonance frequency = 600 MHz) the resonance frequencies of the 47Ti and 49Ti 

isotopes differ only by about 9 kHz and, “most spectra will consist of completely 

overlapped resonances from the two isotopes because of the width of the 

lines.”79 

 Silicon NMR spectra, on the other hand, are relatively easily obtained.  An 

experiment was performed to determine if the 29Si chemical shift of an atom in a 

NABB material is sensitive to the structure of titanium atoms in close proximity.  

Figure 3-1 shows a schematic of the possible structures of the titanium sites in 

the NABB materials.  The silicon atoms whose chemical shift might be affected 

by the structure of titanium atoms are bound to them through an oxide linkage. 

A NABB material was made from the addition of TiCl4 to a solution of 

butyltin cube in a molar ratio of eight to one.  This ratio is equal to one mole of 

TiCl4 for every equivalent of tin present in the reaction.  One should note that 

while there is a stoichiometric balance between titanium and tin there is actually 

a four-fold excess of chloride relative to tin in the reaction.  This sample is  

referred to as Ti-XS to reflect the stoichiometric excess of chloride versus the  
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Figure 3-1.  The various titanium centers that could be produced by the non-aqeuous building block method. 

Ti

Si8O20
building block

4-connected

3-connected

Ti
Cl

Ti
ClCl

Ti
Cl

Cl

Cl

2-connected

1-connected



 

64 

amount of tin sites available for reaction.  Because a solid formed quickly 

following the addition of TiCl4 to the butyltin cube solution it is unlikely that the 

product of the reaction is the molecular Si8O20(TiCl3)8 species which would 

remain soluble.  The stoichiometry of the Ti-XS sample makes it likely that many 

titanium sites are present in the material. 

Let us perform a thought experiment to test the assertion that many 

titanium sites are likely to be present in the Ti-XS sample.  If one assumes that 4- 

connected sites are formed exclusively, the reaction will progress up to a point 

where the material is so extensively cross-linked that four tin sites will no longer 

be within the reach of a single TiCl4 molecule.  At that point the reaction will 

either cease, or other titanium species will form according to the number of tin 

sites within “reach”.  At a minimum, 4-connected and 1-connected species would 

be expected in the sample if the reaction consumes all the reaction sites 

available. 

The 29Si MAS NMR spectrum of the Ti-XS sample is shown in Figure 3-2.  

The spectrum shows only one resonance at -114 ppm.  A resonance signal at 

approximately -101 ppm is expected if tin sites remain in the sample.  The single 

resonance in the spectrum of the Ti-XS material, where the only linking center is 

titanium but where a distribution of 4-, 3-, 2-, and 1- connected titanium centers 

are expected is evidence that the chemical shift of 29Si bound to titanium through 

oxygen is insensitive to the titanium chemical environment.  Because of this 

evidence, I elected not to use 29Si MAS NMR to attempt to obtain structural  
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Figure 3-2.  29Si MAS NMR spectrum of Ti-XS sample showing the insensitivity of the 29Si chemical shift to the 

connectivity of the Ti center. 
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information about the nature of the titanium site(s) in non-aqueous building block 

materials. 

Reaction Analysis via Quantitative NMR 
One of the major differences between the reaction of the methyltin cube, 

Si8O20(SnMe3)8, and the butyltin cube, Si8O20(SnnBu3)8, is the properties of the tin 

chloride by-product in their reaction with metal chlorides.  Trimethyltin chloride is 

the reaction by-product from the methyltin cube and is highly volatile (as noted in 

the second chapter of this work).62  It is easily and quantitatively removed from  

the reaction mixture, and gravimetric analysis of the reaction is relatively 

easy.57,59  However, the tri-butyltin chloride by-product from the reaction of the 

tributyltin cube is only slightly volatile, and is not easily removed from the Schlenk 

reaction vessels. 

This is significant because gravimetric analysis has proven to be a useful 

tool in determining the average number of metathesis reactions per metal halide 

used in the synthesis.57  This number is often referred to as the average 

“connectivity” of the linking metal halide, and provides information about the 

number of M-(O-Si) links in the system.  The connectivity is limited by the fact 

that in general it only provides average connectivity values except in cases when 

either all of the halide groups or only one of the halide groups undergo reaction.  

In other cases a mixture of linking sites with different connectivities could be 

present that could yield the same numerical average as a sample containing only 

2-connected titanium, Ti(OSi≡)2Cl2, linking groups for example. 
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For this reason, an experimental protocol to perform  quantitative 1H NMR 

spectroscopy (QNMR) was developed as an alternative to gravimetric analysis.  

The details regarding the collection of the spectra are given in the experimental 

section of this chapter.  The accuracy of quantitative analysis of the spectra was 

found to be highly dependent upon the phasing and background corrections 

performed on the spectra.  A reproducible procedure for phasing and background 

correction of the spectra using the Mestre-C program was developed.  This 

procedure is explained below. 

After importing the FID into Mestre-C, a Fourier transform with a line 

broadening factor of 0.1 Hz was applied.  Figure 3-3 shows a typical spectrum 

immediately after the Fourier transform is applied.  Figure 3-4 shows an 

expansion of the initial spectrum from 6.3 to 7.8 ppm.  The resonance at 6.7 ppm 

is from the aromatic protons on mesitylene, and the resonance at 7.15 ppm is 

from residual protons in the dueterobenzene solvent.  This expansion clearly 

shows that the spectrum is not well phased. 

Manual phasing was applied using 7.15 ppm as the pivot point.  Zero 

order phasing was applied first using the 7.15 and 6.7 ppm resonances as a 

guide.  Those resonances are now symmetrical as shown in Figure 3-5.  Figure 

3-6 shows the effect of the zero order phasing on the whole spectrum.  A blow up 

of the area from 0.4 to 2.4 ppm that contains the resonances used to quantify the 

amount of tri-n-butyltin chloride is shown in Figure 3-7.  The resonance at 2.15 

ppm is due to the methyl protons on mesitylene and the resonance at 0.85 ppm
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Figure 3-3.  Typical 1H QNMR spectrum before phasing is applied. 
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Figure 3-4.  Expansion of aromatic region showing need for phasing. 
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Figure 3-5.  Aromatic region after the application of zero order phasing. 
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Figure 3-6.  Effect of zero order phasing on the entire spectrum. 
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Figure 3-7.  Expansion of 0.4 to 2.4 ppm region.  Only zero order phasing has been applied. 
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is due to the methyl protons in ClSnnBu3.  First order phasing was applied to 

bring the baseline on each side of the group of resonances between 2.15 and 

0.85 ppm to the same level.  That is to say a straight horizontal line drawn from 

the baseline immediately below the 2.15 ppm resonance would intersect the 

baseline immediately above the 0.85 ppm resonance. 

Figure 3-8 shows the expansion after proper application of first order 

phasing.  A third order polynomial baseline correction was then applied. 

The properly phased spectrum with corrected baseline is shown in Figure 

3-9.  An expansion of the area with the resonances of interest is shown in Figure 

3-10.  Integration for the quantitative analysis was done strictly from 2.20 to 2.10 

and 0.90 to 0.80 ppm for the methyl resonances of mesitylene and tri-n-butyltin 

chloride, respectively, in every spectrum.   

The area of the resonance due to the aromatic mesitylene protons was 

also measured for purposes of estimating the error involved in processing the 

spectrum.  The integral for that resonance was measured between 6.80 and 6.60 

ppm.  The typical error associated in the measurement of the two different types 

of protons was about 1.3%.  The greatest error seen in that measurement was 

3.5%. 
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Figure 3-8.  Expansion of 0.4 to 2.4 ppm region with zero and first order phasing applied. 
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Figure 3-9.  Entire spectrum after phasing and background correction. 
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Figure 3-10.  Expanded spectrum showing the areas integrated for quantitative analysis. 
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Quantitative 1H NMR Results 

Reaction of Tributyltin Cube with Silicon Tetrachloride  
Two systems were analyzed using quantitative NMR.  First, the reaction of 

a limiting amount of SiCl4 with tributyltin cube was examined.  This was done 

because the formation of a cross-linked solid during the reaction was not 

observed although it is expected based upon the work of Clark.56,59  29Si MAS 

NMR spectra from Clark’s work show that even at ratios as high as 2 SiCl4 per 

methyltin cube 4-connected linking sites, Si(OSi≡)4 (commonly known as Q4 

sites), were almost exclusively formed in the resultant solid products.  However, 

this was not found to be the case for the tributyltin cube. 

The reaction of 0.5 equivalents of SiCl4 per tributyltin cube was monitored 

over 42 hours using QNMR.  The first two-thirds of an hour of the experiment 

were conducted at room temperature.  Afterwards, the temperature was raised to 

80 °C and the reaction was monitored at various times.  The complete results are 

presented in Table 3-2 below.  The times quoted in that table are referenced from 

the start of the reaction. 

The relationship between the areas their methyl group peaks and the 

amounts of mesitylene ClSnnBu3 are given in Equation 1 below.  That 

relationship simplifies to the one shown in Equation 2.  When measured at 0.67 h  

methyl mesitylene of area
mesitylene moles

 methyl BuClSn of area
BuClSn moles

3
n

3
n

= (1) 



 

78 

methyl mesitylene of area
mesitylene molesBuClSn of areaBuClSn moles 3

n

3
n ×

= (2) 

the integral values for the mesitylene and ClSnnBu3 methyl groups were 

measured as 363,722 and 108,932 respectively.  2.82 x 10-5 moles of mesitylene 

and 1.06 x 10-5 moles of SiCl4 were in the reaction mixture.  Inserting the values 

given into Equation 2 gives the expression shown in Equation 3.  The value of 

Equation 3 is given in Equation 4.  Finally, the number of moles of ClSnnBu3 

present must be normalized to the amount of metal halide used in the reaction to 

determine the amount of links formed between butyltin cube building blocks and 

the metal center.  This relationship is shown in Equation 5.  Numerical values are 

inserted, and the expression is solved in Equation 6.  Equation 6 provides the 

value given for the elapse time of 0.67 h in Table 3.2. 

722,363
1082.2932,108BuClSn moles

5

3
n

−××
= (3) 

6
3

n 1045.8BuClSn moles −×= (4) 

4

3
n

SiCl moles
BuClSn moles (5) 

8.0
1006.1
1045.8

5

6

=
×
×

−

−

(6) 

The results clearly show that the reaction does not proceed in the same 

manner as that of the reaction of SiCl4 with methyltin cube.  After two-thirds of an 

hour, less than one equivalent of chloride reacted per equivalent of SiCl4 on 

average.  After 41.5 hours or reaction time at 80 °C, mimicking Clark’s reaction 
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Table 3-2.  QNMR results for the reaction of butyltin cube with SiCl4. 

 
Elapsed Time (h) 

 
Temperature (°C)

Equiavlents ClSnnBu3
Produced per SiCl4 (±0.1)

0.67 23 0.8 
1.5 80 1.2 
19.5 80 1.6 
41.5 80 1.9 

 

 

conditions, an average of nearly two equivalents of chloride reacted per      

equivalent of SiCl4.  This is much less than the average of four equivalents of 

chloride reacted per equivalent of SiCl4 determined by Clark under similar 

reaction conditions. 

In order to achieve typical heterogeneous catalyst compositions of one to 

two weight percent of a metal dispersed in a material, it is important to be able to 

cross-link the butyl tin cube building blocks with a linker that contains a 

“catalytically inert” element such as silicon.  This led me to examine the reaction 

of butyltin cube with the bis(pyridine) complex of SiCl4, SiCl4·py2.  SiCl4·py2 is a 

solid which readily sublimes and is easily prepared from the reaction of SiCl4 with 

pyridine.80  Hexanes and toluene were found to suitable solvents for the 

synthesis in lieu of the carbon tetrachloride used in the literature. 

In a test reaction eight moles of SiCl4·py2 per mole of butyltin cube were 

added to a Schlenk vessel containing butyltin cube dissolved in toluene.  The 

SiCl4·py2 is not soluble in the reaction mixture, and the compound is visible as 

large, dense particles.  As the reaction progresses over a period of 18 hours a 
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flocculant solid becomes visible which is an indication that a reaction between 

SiCl4·py2 and the butyltin cube has taken place.  Volatiles were removed in 

vacuo, and unreacted SiCl4·py2 was removed via sublimation. 

The 29Si MAS SSNMR of the product (Figure 3-11) shows that the product is a 

cross-linked solid material consisting of Si8O20 cores linked by silicon species of 

several connectivities.  The resonance centered at -43 ppm is a silicon group 

with a connectivity of one.  As the connectivity increases the 29Si chemical shift 

becomes more negative.  The resonances centered at -68 and -89 ppm have 

connectivities of 2 and 3 respectively.  The resonance centered at -112 ppm is 

from Q4, Si(OSi)4, species.  The resonance centered at -102 ppm is due to 

unreacted tin sites that remain in the product. 

 The successful synthesis of cross-linked materials from the reaction of 

SiCl4·py2 and butyltin cube led to the decision to use SiCl4·py2 as the “catalytically 

inert” linker for the studies reported in this dissertation.  The results of structural 

and catalytic studies contained herein demonstrate that the use of SiCl4·py2 as a 

second linking agent does not negatively affect the properties of the final product. 

 Reaction of Tributyltin Cube with Titanium Tetrachloride  
In contrast with SiCl4, TiCl4 reacts quickly with butyltin cube and forms a 

precipitate within minutes of its addition.  QNMR studies of the reaction between 

titanium tetrachloride and tributyltin cube show that the reaction is complete 

within one hour.  The results shown in Table 3-3 below show that the average  

  



 

81 

Figure 3-11.  29Si MAS NMR spectrum of the product of the reaction between butyltin cube and SiCl4·py2. 
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Table 3-3.  QNMR results for the reaction of butyltin cube with TiCl4. 

TiCl4 per butyltin cube Cl reacted per TiCl4 (±0.1) 
0.25 4.0 
0.5 3.7 
0.75 3.4 
1.0 3.1 
2.0 2.0 

 

 

connectivity of the titanium decreases as the stoichiometric ratio of TiCl4 to 

butyltin cube increases.  At a low TiCl4 to tributyltin cube ratio of 0.25 to 1 sites 

with a connectivity of 4, Ti(OSi≡)4 centers, are formed exclusively (Figure 3-12).  

As the stoichiometric ratio is increased the average connectivity of the titanium 

sites decreases.  When an equimolar ratio of TiCl4 to butyltin cube is used the 

average connectivity of titanium is very close to three.  If the ratio of TiCl4 to 

butyltin cube is doubled to 2 to 1, the average connectivity of the titanium is 2. 

The QNMR results for the reaction of titanium tetrachloride with tributyltin 

cube are definitive.  Stoichiometry clearly affects the average structure of the 

product.  At low TiCl4 to tributyltin cube building block ratios exclusively 4-

connected linking Ti groups are obtained.  As the stoichiometric ratio is increased 

the number of Ti-O-Si bonds formed decreases leaving unreacted Ti-Cl groups in 

the material.  QNMR also established that specific stoichiometric ratios can be 

used to produce materials with titanium sites of integral connectivity values. 

Based upon the stoichiometric ratios provided by QNMR spectroscopy 

samples of titanium non-aqueous building block materials were synthesized for 
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further structural characterization.  These materials will be referred to as the Ti-X 

series where “X” is a number that gives the average connectivity of the titanium 

sites in the material as determined by quantitative 1H NMR spectroscopy.  The 

sample designation, QNMR results, and the presumed structure of the titanium 

sites in the material are shown in Table 3-4 below.  A schematic representation 

of the titanium connectivity with sample name is shown in Figure 3-12. 

Infrared Spectroscopy 
There are a number of reports in the literature that associate the presence 

of a relatively strong band at 960 cm-1 with the presence of tetrahedrally 

coordinated framework titanium, Ti(OSi≡)4, in titanium on silica materials.34,41,75,81-

83  At the same time, however, Li, et. al. point out that there is evidence that the 

band may be due to surface hydroxyl groups (≡Si-OH) or defect sites in the silica  

 

 

Table 3-4.  Titanium non-aqueous building block sample designations with 

proposed structures. 

Sample 
Name 

 
Weight % 

Ti 
TiCl4:butyltin 

cube 
QNMR Results 

ClSnnBu3:TiCl4 
Proposed 
Structure 

Ti-4 0.90 0.25 4.0 Ti(OSi≡)4 
Ti-3 3.45 1.0 3.1 Ti(OSi≡)3Cl 
Ti-2 6.08 2.0 2.0 Ti(OSi≡)2Cl2 

Ti-XS N/A 8.0 N/A Many Ti sites 
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Figure 3-12.  Schematic representations of the titanium sites in three titanium non-aqueous building block 

materials. 
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matrix.84  It is also possible, that that a 960 cm-1 can be obscured by the strong, 

broad Si-O-Si bands in silica materials. 

Li, et. al. state that the assignment of the 960 cm-1 to framework titanium is 

incorrect based upon the lack of resonance enhancement of this band in UV 

resonance Raman experiments.84  Bordiga and co-workers refute this claim 

based upon several lines of evidence.75  First, they show a linear correlation 

between the strength of the 960 cm-1 band and the amount of titanium 

incorporated into the framework of TS-1.  Second, they note that an isolated 

titanium atom in a crystalline silica material can be considered a defect site.   

Third, they note that in TS-1 the band attributed to silanol groups is at 978 cm-1.  

Fourth, they assert that resonance enhancement of the 960 cm-1 band in UV 

resonance Raman experiments is prohibited by selection rules for the resonance 

enhancement process.  Finally, they note the work of Soult, et. al.85 which reports 

a vibrational structure at 966 ± 24 cm-1 that is unambiguously attributed to 

titanium in the silicalite structure. 

Scott and co-workers also make a contribution to the assignment of the 

band at 960 cm-1 observed in samples of titanium on silica.34  For samples of 

silica partially dehydroxylated at 500 °C treated with Ti(OiPr)4 or Ti(NEt2)4 IR 

bands are observed at 951 and 957 cm-1 respectively.  In order to determine if 

the IR bands were related to the presence of titanium an isotopic labeling study 

was conducted.  The reactions were repeated using silica partially 

dehydroxylated at 500 °C in which the surface hydroxyl groups had been labeled 
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with 18O (80% enrichment level), and are shown in Figure 3-13.  The IR band for 

the silica treated with Ti(OiPr)4 did not shift and was assigned to a skeletal 

vibration of the isopropyl groups.  However, the IR band for the silica treated with 

Ti(NEt2)4 shifted from to 936 cm-1.  On this basis, the band at 957 cm-1 for the 

silica treated with Ti(NEt2)4 was assigned to a Si-O-Ti vibration. 

As the reader can see, there is some diversity of opinion regarding the 

assignment of the 960 cm-1 IR band.  The description of the titanium sites in the 

literature that associates the 960 cm-1 with the presence of titanium is also not 

exact.  However, the overall consensus that emerges from the literature is that 

the 960 cm-1 is a sign of the presence of Ti-O-Si bonds.      

Mindful that some care should be used when IR spectroscopy is used to 

look for evidence of Ti-O-Si bonds in materials, the IR spectra of unreacted 

butyltin cube and the Ti-XS sample were compared (Figure 3-14).  In the 

spectrum of the butyltin cube a very small, narrow shoulder at 960 cm-1 is visible 

on the broad Si-O-Si band centered at 1030 cm-1.  In the Ti-XS spectrum a 

strong, broad shoulder is visible at 950 cm-1.  This 950 cm-1 band is more intense 

than the Si-O-Si band at 1030  cm-1.  As Ti-XS has only cube-O-Ti-O-cube 

linkages in the material, the Ti-O-Si band is expected to be quite intense which is 

consistent with the 950 cm-1 band observed in Figure 3-14. 

IR spectra for the Ti-4, Ti-3, and Ti-2 materials are shown in Figure 3-15.  

The spectrum of pure butyltin cube is included for reference.  All the materials 

show bands near 950 cm-1, although the bands in Ti-4 and Ti-3 are shifted to  
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Figure 3-13.  Reaction of 18O enriched silica with Ti(OiPr)4 and Ti(NEt2)4.  The isotope effect is only observed 

in the FT-IR spectrum for the Ti(NEt2)4 treated silica. 
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Figure 3-14.  Overlay of the IR spectra of Ti-XS and pure butyltin cube. 
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Figure 3-15.  Overlay of the IR spectra of butyltin cube and the Ti-X series of NABB materials.
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slightly lower wavenumber.  While the IR spectra do not allow for quantitative 

analysis the intensity of the 950 cm-1 band increases with titanium loading.  The 

950 cm-1 in all the Ti-X materials is ascribed to the presence Ti-O-Si bonds. 

Another important piece of information can be derived from the IR 

spectrum of Ti-XS.  No band from hydroxyl groups is discernible in the 3500 to 

3700 cm-1 region.  This indicates that the syntheses of the Ti-materials were 

successfully conducted under rigorously anhydrous conditions, and that it is 

unlikely that hydrolytic condensation of the TiCl4 occurred during the reaction. 

Raman Spectoscopy 
 One article from the literature suggested that Raman spectroscopy could 

be used to aid in the identification of the titanium species in the sample.86  

Specifically, Raman spectroscopy was used to identify (≡SiO)2TiCl2 and 

(≡SiO)TiCl3 species on the surface of partially dehydroxylated silica gel through 

bands attributed to Ti-Cl vibrations.  A band at 404 cm-1 was assigned to the 

symmetric stretch of a Ti-Cl bond in a –TiCl3 group.86  A band at 435 cm-1 was 

assigned to the same kind of vibration in a =TiCl2 group.86 

Ti-XS was analyzed using Raman spectroscopy because it should contain 

a high density of Ti-Cl species bound to silica.  Although the literature results 

were reproducible, the bands assigned to the (≡SiO)2TiCl2 and (≡SiO)TiCl3 

groups were not detected in Ti-XS or in any of the other non-aqueous building 

block samples containing titanium. 
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Anatase and rutile are the common polymorphs of synthetic titania.87  Both 

of those polymorphs are detectable by Raman spectroscopy,88 with anatase 

being the most common form of titania detected in samples of titanium on 

silica.81,89-92  Furthermore, anatase TiO2 has strong Raman bands which are 

discernable at low concentrations.91  Spectra of samples that contain anatase 

TiO2 show Raman bands at 140, 390, 513, and 637 cm-1.89  Raman bands typical 

of the rutile phase occur at 143, 235, 447, and 612 cm-1.  No Raman bands for 

anatase or rutile titania were found in samples Ti-4, Ti-3, and Ti-2.  Bands from 

anatase or rutile titania were also not observed in samples of the three materials 

that had been calcined at 550 °C for 24 hours. 

These observations lead us to conclude that the titanium sites in the 

titanium non-aqueous building block materials are isolated and atomically well-

dispersed.  Furthermore, the position of the titanium centers in these materials is 

so well-fixed that phase separation into TiO2 and SiO2 could not occur even at 

relatively high titanium loadings of six weight percent.  

X-ray Absorption Spectroscopy 
 X-ray absorption spectroscopy (XAS) is a direct method for experimentally 

probing the electronic and physical characteristics of materials.93  Using data 

collected around a given X-ray absorption edge (K, LI, LII, etc.) it is possible to 

probe the electronic characteristics and structure around a particular element in a 

material.  The dominant form of interaction between X-rays of proper energy and 

an atom is the photo-ionization of an electron from one of the core shells of the 
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atom.93  Ionization is accompanied by an abrupt jump in the absorbance called 

the absorption edge which is measurable as a drop in the intensity of transmitted 

light at the ionization energy.  The absorption edge is used as a point of 

reference when speaking about XAS data. 

Raw XAS spectra are typically divided into two parts for analysis.  X-ray 

adsorption near edge spectroscopy (XANES) describes the part of a spectrum 

that is near the absorption edge.  XANES was defined by Bare to be data within 

50 eV of the ionization edge.94  However, Bare points out that XANES is widely 

used (as it will be here) to describe data that includes pre-edge features (features 

below the ionization edge) as well as the spectrum up to approximately 50 eV 

above ionization edge.  “XANES is strongly sensitive to formal oxidation state” 

and the symmetry of the absorbing atom.95  Extended absorption x-ray fine 

structure (EXAFS) refers to data that is greater than 50eV above the ionization 

edge.  Structural models based upon EXAFS data are used to determine the 

distances, coordination number, and species of the neighbors of the absorbing 

atom.95 

The normalized XAS spectra collected at NSLS for the Ti-4, Ti-3, and Ti-2 

non-aqueous building block materials are given in Figures 3-16, 3-17, and 3-18 

respectively.  

 



 

93 

Figure 3-16.  Normalized XAS spectrum for Ti-4. 
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Figure 3-17.  Normalized XAS spectrum for Ti-3. 



Figure 3-18.  Normalized XAS for Ti-2. 
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XANES 
 It is well known that a strong pre-ionization edge feature in the XANES 

region is associated with the presence of titanium in a tetrahedral or pseudo-

tetrahedral configuration.30,31,41,96  The height of the feature is normally 70 to 80% 

of the normalized edge jump.  The feature results from a 1s to 3d transition that 

is formally allowed only when no center of inversion is present at the absorbing 

metal center.97  Practically speaking, this means that a strong, sharp pre-edge 

feature is observed when titanium is in a tetrahedral state, and that only a weak 

pre-edge feature is observed for titanium is an octahedral coordination 

environment.  The Ti-4, Ti-3, and Ti-2 samples all show relatively strong pre-

edge features consistent with tetrahedral or pseudo-tetrahedral symmetry around 

the Ti center as seen in the spectra in Figure 3-19.  The positions and normalized 

heights of the pre-edge features for the materials are summarized in Table 3-5. 

Farges, Brown, and Rehr have correlated the position of the pre-edge 

feature and its intensity to identify the oxidation state of titanium atoms in various 

oxide compounds.98  According to these researchers, the pre-edge feature of the 

Ti-4 sample at 4969.3 eV with a normalized height of 0.76 is consistent with pre-

edge features observed for titanium compounds containing four coordinate 

titanium centeres.   The positions of the pre-edge features for the Ti-2 and Ti-3 

samples at 4970.4 and 4970.5 eV respectively are consistent with those 

observed for compounds containing five coordinate titanium centers.  However, 

the normalized heights for the pre- edge features of those samples are lower 
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Figure 3-19.  XANES spectra of titanium non-aqueous building block materials. 
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Table 3-5.  Summary of XANES pre-edge features. 

Sample Pre-edge Feature Position (eV)
Normalized Height  

 of Pre-edge Feature
Ti-4 4969.3 ± 0.2 0.76 
Ti-3 4970.5 ± 0.2 0.28 
Ti-2 4970.4 ± 0.2 0.24 

 

 

than those reported for compounds containing five coordinate titanium centers. 

While the work of Farges, Brown, and Rehr has been cited extensively in 

the literature, (Feb. 8, 2008 SciFinder search shows the article cited 131 times.  

The number of citations drops to 33 when the results are refined using the 

research topic “catalyst.”) a comparison between the XANES spectra of the oxide 

compounds containing Ti in their work and the Ti NABB materials studied in our 

work may not be ideal.  The Ti NABB materials contain chlorine directly bound to 

the titanium centers while the oxides studied by Farges, Brown, and Rehr do not.  

George, et. al. collected data in the XANES region for a series of titanium 

compounds containing chlorine.99  All the compounds had titanium centers with 

tetrahedral or pseudo-tetrahedral symmetry.  They found that the intensity of the 

pre-edge features of TiCpCl3 and TiCp2Cl2 were dramatically lower than the 

intensity of the pre-edge feature observed for TiCl4 as shown in Figure 3-20.  The 

intensity of the pre-edge feature decreased as chlorine content of the compound 

decreased. 
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Figure 3-20.  XANES spectra showing the effect of change in 

symmetry from tetrahedral to pseudo-tetrahedral, and 3d-4p 

mixing. 
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George, et. al. attribute the intensities of the pre-edge features they 

observed to differences in metal 3d–4p mixing between the compounds.100  In a 

metal center with tetrahedral symmetry, mixing occurs between d orbitals of t2 

symmetry and 4p of t2 symmetry.  The mixing is enhanced by overlap of chloride 

ligand p orbitals with the metal 3d and 4p orbitals.  As the symmetry of the metal 

center and number of chloride ligands in the molecule decrease the 3d–4p 

mixing decreases resulting in pre-edge features of lower intensity. 

The behavior of the pre-edge features of the Ti-2 and Ti-3 samples is 

consistent with the effects of metal center symmetry and 3d–4p observed by 

George, et. al.  Both samples have dramatically lower pre-edge intensities than 

that of the Ti-4 sample which contains tetrahedral titanium.  The slightly greater 

intensity of the pre-edge feature of the Ti-2 material compared to that of Ti-3 may  

be from an enhancement of the 3d–4p mixing due to the greater number of 

chloride ligands on the metal center in Ti-2. 

Another feature observable in the XANES spectrum of Ti-4 is a shoulder 

on the ionization edge at 4978.6 ± 0.2 eV.  This feature is assigned to a 1s to 4p 

transition that is simultaneous with ligand-to-metal shakedown.101-103  A 1s to 4p 

transition with simultaneous ligand-to-metal shakedown involves the excitation of 

a metal 1s electron to the vacant metal 4p orbitals.  During the lifetime of this 

excited state, electronic character from a ligand is transferred to the metal 3d 

orbitals.  The 1s to 4p transition with simultaneous ligand-to-metal shakedown is 

shown schematically in Figure 3-21. 
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Figure 3-21.  Schematic representation of the 1s to 4p ligand-to-

metal shakedown transition. 
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The work of Finnie and co-workers shows that the strength of the 1s to 4p 

ligand-to-metal shakedown transition grows through the series of titanium 

ethoxide compounds: Ti(OEt)4 < Ti(OEt)3Cl < Ti(OEt)2Cl2 < Ti(OEt)Cl3.104  A 

similar trend was expected to be observed in the titanium non-aqueous building 

block material series: Ti-4 < Ti-3 < Ti-2.  However, the 1s to 4p ligand-to-metal 

shakedown transition is not observed for the Ti-2 and Ti-3 samples.  A similar 

series of Ti NABB materials synthesized by Richard Mayes using the methyltin 

cube building block did display growth of the ligand-to-metal shakedown 

transition as the number of the chloride ligands on the titanium center increases.  

At this time it is not understood why the band is not observed in the butyltin cube 

materials. 

Based upon comparison of XANES data reported for titanium compounds 

in the literature with the XANES data collected for the titanium non-aqueous 

building block solids with, it is concluded that the titanium centers in all the 

samples are in the 4+ oxidation state and have tetrahedral or pseudo-tetrahedral 

symmetry.  The weakness of the pre-edge features in the Ti-3 and Ti-2 samples 

compared to those presented by Farges and co-workers has been explained by 

comparison to compounds containing chloride ligands directly bound to titanium 

centers and, the pseudo-tetrahedral symmetry of the titanium centers in the Ti-3 

and Ti-2 materials. 
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EXAFS 
Analysis of the EXAFS portion of XAS data for titanium on silica is quite 

difficult.  The first coordination sphere for most of those materials solely consists 

of oxygen atoms.  As the majority of titanium on silica epoxidation catalysts have 

four oxygen atoms in the first coordination sphere, modeling the number of atoms 

in the first coordination sphere alone is not helpful in determining the structure of 

the titanium centers in those materials.  The resolution of EXAFS experiments is 

governed by how far the EXAFS oscillations continue out in k-space as shown in 

the equation below.105  Since the EXAFS oscillations for titanium K-edge spectra 

ΔR = π/2·kmax

of titanium on silica materials typically die off at about 12 k, differences in the 

radii of two scattering shells must be greater than 0.13 Å in order to be resolved 

under normal circumstances.  This severely limits the ability to differentiate 

between a first coordination sphere oxygen bonded to hydrogen and a first 

coordination sphere oxygen bonded to silicon.  The low Ti content of the 

samples, the possibility of multiple-scattering contributions at longer distances, 

and static disorder which enlarges Debeye-Waller factors make determination of 

the exact coordination environment beyond the first coordination sphere quite 

challenging and generally lowers confidence in conclusions drawn from such 

analyses.104,106 

 Despite the difficulties of determining the coordination environment of the 

second coordination sphere, J. M. Thomas and co-workers reported the structure 
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of a catalyst made from MCM-41 calcined at 550 °C grafted with titanocene 

dichloride, TiCp2Cl2, based upon the coordination number determined for silicon 

atoms in the second coordination sphere.27  This material is commonly referred 

to as Ti↑MCM-41. In a follow up work Gleeson, et. al. detail the method they use 

to model the second coordination sphere of Ti↑MCM-41.107 

 Gleeson, et. al. present four models of titanium centers, shown in Figure 

3-22, that could be present in titanium on silica catalysts.  The authors state that, 

“it is not generally possible to differentiate experimentally between the above 

models [except (4), since Ti=O is about 0.1 Å shorter than a Ti-O in tetrahedral 

coordination] using conventional Ti K-edge XAS (both XANES and EXAFS) data 

analysis procedures.”  The authors go on to state that the titanyl species can be 

immediately discarded because it only contains three oxygen atoms in the first 

coordination sphere.  However, their statement about being able to differentiate 

between titanyl, Ti=O, and Ti-O in a tetrahedral configuration due to the 0.1 Å 

difference in length between the two bonds reveals a key issue with their 

analyses and conclusions.  Using the resolution equation for EXAFS experiments 

given above and a kmax of 13 (slightly greater than the kmax for the best set of data 

presented in the paper), differences in bond length of 0.12 Å can be resolved.  It 

is just possible to differentiate between a Ti=O and a Ti-O bond from the best 

EXAFS data collected by the authors.  This is a concern as the authors appear to 

be pushing and perhaps exceeding the bounds of their data in their analyses. 



 

Figure 3-22.  Structures of titanium centers possible in titanium-on-silica 

catalysts. 

Furthermore, the authors repeatedly report distinct Ti–Si distances for a 

model that they cannot differentiate (are within 0.1 Å of each other) based upon 

the resolution of the data they collected.  This decreases my confidence in the 

validity of the process they have used to determine coordination numbers for the 

second coordination sphere.        

Gleeson, et. al. specifically state that they compared the fits of two 

different models to their EXAFS data.  One model contained three Si atoms in 

the second coordination sphere.  The second model placed four Si atoms in the 

second coordination sphere.  Rather than comparing the statistical parameters 

normally used to compare fits of EXAFS data33, the authors present their own 

statistical parameter called the fit index.  The fit index includes a term to account 

for fit statistics, but what statistical parameters are included and their relative 

105 
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weighting is not explained.  The failure of the authors to present conventional 

statistical measures such as chi-squared and residuals in addition to their fit 

index is a concern. 

Gleeson, et. al. conclude from their studies that the structure of the 

titanium centers in TS-1 is Ti(OSi≡)4.107  The explanation of the method used to 

determine the structure of the second coordination sphere given in that work is 

also supposed to bolster the conclusion of Thomas and co-workers that the 

structure of the titanium centers in Ti↑MCM-41 is Ti(OSi≡)3OH.  The structural 

parameters of the fits presented not reflecting the limited resolution of the 

experiment and the failure of the authors to present detailed information about 

their fit index leave me concerned about the validity of the results presented. 

When metal chlorides are used as the linking agents in the non-aqueous 

building block process, the materials produced are more easily analyzed using 

EXAFS than materials produced using sol-gel or hydrothermal methods of 

synthesis.  The advantage of the NABB materials is that the first coordination 

sphere contains both oxygen and chlorine in cases where unreacted sites remain 

on the metal center.  In the case of titanium linking centers, the expected 

difference in bond lengths between Ti-O (1.8 Å) and Ti-Cl (2.3 Å) makes 

resolution of the two possible using EXAFS data with normal k-ranges that 

extend to 12 or 13.  The different linking centers expected from the reaction of 

TiCl4 with butyltin cube are shown in Figure 3-23. 
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Figure 3-23.  Oxygen and chlorine atoms are in the first coordination sphere of titanium in materials produced 

from the non-aqueous building block reaction of butyltin cube and TiCl4. 
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It is reasonable to assume that the oxygen atoms in the first coordination 

sphere of these Ti NABB materials are exterior oxygen atoms on the Si8O20 core.  

In other words, each oxygen atom in the first coordination sphere of titanium in 

the NABB materials is evidence for a link from the titanium center to a Si8O20 

building block.  Unreacted Ti-Cl groups in the first coordination sphere are 

expected to react with water or methanol to form Ti-OH or Ti-OMe groups 

respectively when the material is treated with one of those reagents prior to the 

material being used as a catalyst. 

Figure 3-24 shows the Fourier transform of the EXAFS data for samples 

Ti-4, Ti-3, and Ti-2.  The plot is not phase corrected.  The features from the Ti-O 

and Ti-Cl bonds are clearly visible, although not completely resolved from one 

another.  The intensity of the Ti-Cl peak in sample Ti-2 is greater than that of Ti-3 

as expected.  The small feature in the Ti-4 sample in the same region as the Ti-

Cl peak is due to a multiple-scattering from Ti-O bonds.  Results from fitting the 

EXAFS data of the individual samples are summarized in Table 3-6. 

For sample Ti-4 the amplitude reduction factor, S0
2, was calculated using 

FEFF8108 and held constant during the fitting process.  The fit was conducted 

using data from 4 to 10.5 k with a k3 weighting.  Ti-4 was the only material where 

the inclusion of the silicon atoms in the second coordination sphere improved the 

quality of the fit.  Therefore, results are given for the first and second coordination 

spheres. Ti-O-Si-Ti and Ti-O-Si-O-Ti multiple scattering paths at 3.298 and 3.400 

Å, respectively, were included in the fit.  The results of the fit are summarized in
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Figure 3-24.  Fourier transform of EXAFS data showing Ti-O and Ti-Cl 

bonds in titanium non-aqueous building block materials. 
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Table 3-6.  Summary of EXAFS fitting results for the Ti non-aqueous building block materials. 

Sample O C.N. Ti-O Dist. (Å) Cl C.N. Ti-Cl Dist. (Å) σ (Å2) ΔE0
Ti-4 3.8 ± 0.2 1.80 ± 0.01 Not modeled Not modeled 0.0045 ± 6 x 10-4 -2 ± 2
Ti-3 2.8 ± 0.1 1.81 ± 0.01 1.2 ± 0.1 2.38 ± 0.01 2 x 10-4 ± 2 x 10-4 -4 ± 2
Ti-2 2.4 ± 0.2 1.80 ± 0.01 1.6 ± 0.2 2.38 ± 0.01 -2 x 10-4 ± 1 x 10-3 -1 ± 2

110 
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Table 3-7.  Graphs comparing the fit to experimental data in k-space, r-space, 

and the real component of the fit in r-space are given in Figures 3-25, 3-26, and 

3-27 respectively. 

For sample Ti-3 the amplitude reduction factor was calculated using 

FEFF8108 and held constant during the fitting process.  The fit was conducted 

using data from 2 to 10.4 k with a k3 weighting.  Attempts to model the second 

coordination sphere did not improve the quality of the fit.  The results of the fit are 

summarized in Table 3-8.  Graphs comparing the fit to experimental data in k-

space, r-space, and the real component of the fit in r-space are given in Figures 

3-28, 3-29, and 3-30 respectively. 

For sample Ti-2 the amplitude reduction factor was calculated using FEFF8.108  

The fit was conducted using data from 2 to 10.5 k with a k3 weighting.  Due to a 

poor fit of the oxygen and chlorine coordination numbers indicated by a poor 

match in the amplitude of the peaks in the r-space plot, the amplitude reduction 

factor was allowed to vary during the fitting process after the bond lengths had 

been determined.  Attempts to model the second coordination sphere did not 

improve the quality of the fit.  The results of the fit are summarized in Table 3-9.  

Graphs comparing the fit to experimental data in k-space, r-space, and the real 

component of the fit in r-space are given in Figures 3-31, 3-32, and 3-33 

respectively. 

 



Oxygen Coordination Number 3.8 ± 0.2 
Ti-O Distance  1.80 ± 0.1 Å 
Δr for Ti-O 0.00(1) ± 0.01 
σ2 for Ti-O 0.004(5) ± 0.0006 Å2

Silicon Coordination Number Set equal to oxygen coordination 
number 

Ti-Si Distance 3.14 ± 0.1 Å 
Δr for Ti-Si -0.05 ± 0.01 Å 
σ2 for Ti-Si 0.004 ± 0.001 Å2

S0
2 0.965 (set) 

ΔE0 -2 ± 2  
Reduced Chi-squared 30.5 
R-factor 0.04 

 
Table 3-7.  Results of Ti-4 EXAFS fit. 
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Figure 3-25.  K3 plot comparing the EXAFS data and the Ti(OSi)4 model fit for sample Ti-4. 
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Figure 3-26.  R-space plot comparing the EXAFS data and the Ti(OSi)4 model fit for sample Ti-4. 
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Figure 3-27.  Plot of the real portion of the Fourier Transform comparing the EXAFS data and the Ti(OSi)4 

model fit for sample Ti-4. 
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Table 3-8.  Results of Ti-3 EXAFS fit. 

Oxygen Coordination Number 2.8 ± 0.1 
Ti-O Distance  1.81 ± 0.1 Å 
Δr for Ti-O 0.033  ± 0.009 
σ2 for Ti-O 0.0002(8) ± 0.0002(5) Å2

Chlorine Coordination Number 1.2 ± 0.1 
Ti-Cl Distance 2.38 ± 0.1 Å 
Δr for Ti-Cl -0.02 ± 0.01 Å 
σ2 for Ti-Cl Set equal to Ti-O σ2

S0
2 0.965 (set) 

ΔE0 -4 ± 2  
Reduced Chi-squared 23.8 
R-factor 0.07 
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Figure 3-28.  K3 plot comparing the EXAFS data and the TiO3Cl model fit for sample Ti-3. 
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Figure 3-29.  R-space plot comparing the EXAFS data and the TiO3Cl model fit for sample Ti-3. 
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Figure 3-30.  Plot of the real portion of the Fourier Transform comparing the EXAFS data and the TiO3Cl 

model fit for sample Ti-3. 
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Table 3-9.  Results of Ti-2 EXAFS fit. 

Oxygen Coordination Number 2.4 ± 0.2 
Ti-O Distance  1.81 ± 0.1 Å 
Δr for Ti-O 0.00(8)  ± 0.01 
σ2 for Ti-O -0.0002 ± 0.001 Å2

Chlorine Coordination Number 1.6 ± 0.2 
Ti-Cl Distance 2.38 ± 0.1 Å 
Δr for Ti-Cl 0.03 ± 0.01 Å 
σ2 for Ti-Cl Set equal to Ti-O σ2

S0
2 0.829  

ΔE0 -1 ± 2  
Reduced Chi-squared 107.9 
R-factor 0.02 
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Figure 3-31. K3 plot comparing the EXAFS data and the TiO2Cl2 model fit for sample Ti-2. 
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Figure 3-32.  R-space plot comparing the EXAFS data and the TiO Cl  model fit for sample Ti-22 2 . 
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Figure 3-33.  Plot of the real portion of the Fourier Transform comparing the EXAFS data and the TiO2Cl2 

model fit for sample Ti-2. 
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Conclusion 
Titanium containing silicate materials have been synthesized from TiCl4 

and Si8O20(SnnBu3)8 using the non-aqueous building block method.  These 

materials were characterized using NMR, IR, Raman, XANES, and EXAFS 

spectroscopy.  No direct evidence about the structure of the titanium centers was 

observed from SSNMR spectroscopy.  Quantitative 1H NMR spectroscopy 

allowed the amount of ClSnnBu3 by-product formed from the reaction of TiCl4 with 

butyltin cube to be determined.  The QNMR results were used to determine 

stoichiometric ratios of TiCl4 to butyltin cube necessary to synthesize materials 

with titanium connectivity values of four, three, and two.  The pre-edge features 

visible in the XANES spectra of the materials are evidence that the titanium 

centers have tetrahedral or pseudo-tetrahedral symmetry.  Fits of the EXAFS 

data for the samples yielded information about the number of oxygen and 

chlorine atoms in the first coordination sphere of the titanium centers in the 

materials.  The values obtained from the fits were consistent with the conclusions 

drawn from the QNMR studies. Table 3-10 summarizes the results of these 

structural characterization methods and shows the presumed structure of the 

titanium centers in the materials. 

All of the materials showed bands near 950 cm-1 in their infrared spectra 

which are assigned to a Ti-O-Si vibrational mode.  No bands from the anatase or 

rutile polymorphs of TiO2 were visible in the Raman spectra of the materials 

either before or after calcination. 



Sample 
Name 

Stoichiometry 
TiCl4 per tributyltin cube 

QNMR Results 
ClSnnBu3 per TiCl4

EXAFS Results 
CN O 

EXAFS Results 
CN Cl 

Presumed 
Structure 

Ti-4 0.25 4.0 3.8 ± 0.2 Not modeled Ti(OSi≡)4
Ti-3 1 3.1 2.8 ± 0.1 1.2 ± 0.1 Ti(OSi≡)3Cl 
Ti-2 2 2.0 2.4 ± 0.2 1.6 ± 0.2 Ti(OSi≡)2Cl2

Table 3-10.  Summary of structural results for titanium non-aqueous building block materials. 
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From the data presented herein, it is concluded that each of the non-

aqueous building block materials containing titanium is structurally unique and, 

that they are effectively different catalysts when considered in the context of 

olefin epoxidation.  The titanium centers in the Ti-4 material are bonded to 4 

Si8O20 building blocks. This structural determination is the most conclusive as the 

presence of other titanium centers with lower connectivity would give rise to an 

average connectivity value lower than four. 

The data also shows that the average connectivity for titanium centers in 

the Ti-3 and Ti-2 materials is bonded to 3 and 2 Si8O20 building blocks, 

respectively.  Unlike the Ti-4 material it is possible that these materials contain 

titanium centers of different connectivities where their average value of 

connectivity happens to be an integral value.  For example, if one-half of the 

titanium centers in a material had a connectivity of four and the other half had a 

connectivity of two the average connectivity of the titanium centers in the material 

would be three.  That average value would also be reflected in the amount of by-

product measured using 1H QNMR, the XANES spectrum, and the EXAFS fits of 

the material.  While it may be unlikely that the Ti-2 and Ti-3 materials both 

contain the correct amount of titanium centers with different connectivities to give 

an average value that is an integer, that possibility cannot be discounted. 

In the future it may be possible to better characterize the Ti-3 and Ti-2 

materials using techniques such as 17O MAS NMR.  Perhaps, resonance Raman 

techniques could be used to enhance bands from symmetric Ti-Cl stretching 
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modes that were not observable using conventional Raman techniques.75,86  Until 

such experiments are performed, let us move on to compare the activity of these 

non-aqueous building block materials in the epoxidation of cyclohexene with tert-

butylhydroperoxide. 
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Chapter 4.   Effect of Active Site Structure on Olefin Epoxidation–A Review 

of Literature Catalysts and An Examination of Titanium Non-aqueous 

Building Block Catalysts  

Epoxides are important intermediates in a number of chemical 

technologies.  For example ethylene oxide, a commercially produced epoxide, is 

an intermediate in the manufacture of textiles, detergents, anti-freeze, solvents, 

and adhesive.109  Propylene oxide, another commercially produced epoxide, is 

used widely in the manufacture of polyurethane foams.  Epoxides of other 

olefins, although not produced on the scale of ethylene or propylene oxide, are 

important intermediates in the synthesis of fine chemicals and in the 

pharmaceutical industry.43  

Ethylene oxide is produced industrially using a heterogeneous silver 

catalyst with oxygen as the oxidant.  However, this method is not suitable for use 

with most olefins—especially those with allylic or other reactive C-H bonds.43  

The chlorohydrin method and the use of peroxyacids (peracids) as oxidants are 

two traditional “wet chemistry” means of synthesizing epoxides.110  However, the 

costs associated with the handling of chlorine and chlorinated waste streams 

makes the use of the chlorohydrin method undesirable when scaled up.  

Likewise, the costs associated with the production and transportation of peracids 

makes their use less desirable than alternative oxidants that become available 

for use when catalysts are employed. 



 

Scheme 4-1.  Two common non-catalytic processes for epoxide synthesis. 

Oxidants Made Available By Catalysts 
“The ideal system for ‘green’ oxidation is the use of molecular oxygen as 

the primary oxidant together with recyclable catalysts in nontoxic solvents.”111  

Increasing environmental regulation is a major incentive for the fine chemicals 

and pharmaceuticals industries to consider the use of catalytic processes in 

combination with “environmentally friendly” oxidants in the reactions they 

conduct.  However, with the notable exception of ethylene, a suitable system for 

the catalytic epoxidation of olefins with molecular oxygen has not been 

discovered. 

Hydrogen peroxide and tert-butylhydroperoxide (TBHP) are two leading 

“environmentally friendly” candidates for oxidants in catalytic epoxidation 

reactions.  The reaction by-products for hydrogen peroxide and TBHP 
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epoxidations are water and tert-butanol respectively.  Thus, hydrogen peroxide is 

touted as the “greenest” peroxide. 

However, for non-radical, metal-catalyzed oxygenations of organics, 

TBHP is one of the best sources of oxygen atoms when one considers its 

combined advantages in economics, selectivity, and safety.112  From the vantage 

point of safety, TBHP is less sensitive to decomposition from trace metals than 

hydrogen peroxide.  From an economic standpoint aqueous solutions containing 

30% hydrogen peroxide or 70% TBHP are shippable by rail giving them an 

enormous advantage over other peroxides which can only be shipped by truck.  

Finally, the ability to prepare non-aqueous solutions of TBHP provides an 

advantage in compatibility with some heterogeneous catalysts vide infra. 

Thus, TBHP is a suitable alternative to oxygen and hydrogen peroxide in 

many catalytic oxidations.   

Development of Catalytic Olefin Epoxidation 
In the early 1960s employees of Halcon and Atlantic Richfield (ARCO) 

independently discovered and developed processes for the production of 

epoxides using an alkyl hydroperoxide in the presence of homogeneous 

transition metal catalysts.43,113  Soluble compounds of molybdenum, vanadium, 

tungsten, and titanium were shown to be active catalysts, with molybdenum 

compounds having the best activities and selectivities.43  Subsequently, Halcon 

and ARCO formed a joint venture called the Oxirane corporation to apply this 



 

Scheme 4-2.  Catalytic expodiation of an olefin by a peroxide. 

technology to the manufacture of propylene oxide.  Roughly half of the propylene 

oxide produced annually worldwide is produced using the Oxirane process.43 

Further investigation of these catalysts revealed that they contain the 

metal in its highest oxidation state.  Metals with low oxidation potentials and high 

Lewis acidity in their highest oxidation states are superior catalysts, and the order 

of reactivity is: Mo(VI) > W(VI) > V(V) > Ti(IV).  It was also found that strongly 

coordinating solvents, particularly, alcohols and water, severely retard the 

reaction by competitively binding to coordination sites on the catalyst.  Thus, the 

co-product of the reaction causes the rate of reaction to decrease.43,113   

About a decade later workers at Shell developed a heterogeneous 

titanium on silica (Ti(IV)/SiO2) catalyst which exhibits selectivities comparable to 

homogeneous molybdenum epoxidation catalysts and high activities for a 

heterogeneous catalyst.43,113,114  This catalyst was far superior to homogeneous 

Ti(IV) epoxidation catalysts.  The superiority of the Shell catalyst has been 

attributed to two factors: 1) an increase in the Lewis acidity of the titanium center 

resulting from electron withdrawl through bonds to the silica surface and, 2) site 

isolation of discrete titanium centers on the silica surfaces which prevents 
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formation of what are thought to be unreactive μ-oxo species responsible for the 

poor performance of the homogeneous titanium catalysts.43,113 

The Shell catalyst was the first truly heterogeneous epoxidation catalysts 

useful for continuous operation in the liquid phase.43,113-115  This catalyst has 

become the basis of commercial propylene oxidation with ethylbenzene 

hydroperoxide, in which the co-product alcohol can be dehydrated to styrene.113  

Like the homogeneous catalysts, the Shell catalyst is deactivated by protic 

molecules with the severity of deactivation increasing as follows: t-BuOH < EtOH 

< MeOH < H2O.113  Thus, hydrogen peroxide is not a suitable oxidant for use with 

the Shell catalyst which in the presence of water deactivates quickly.25  

Attempts have been made to synthesize silica supported heterogeneous 

catalysts containing molybdenum(VI), tungsten(VI), and V(V).  However, these 

metals rapidly leach from the silica support under reaction conditions and, to this 

day a truly heterogeneous analog of the successful homogeneous molybdenum 

epoxidation catalyst has not been commercialized.113 

TS-1 
In 1983 TS-1, a synthetic titanium-containing zeolite with the MFI 

structure, was synthesized by Enichem.41  TS-1 was revolutionary because it was 

found to be an active catalyst for a number of oxidation reactions, including 

epoxidation, when aqueous hydrogen peroxide is used as the oxidant.  The 

failure of TS-1 to deactivate in the presence of water has been attributed to the 

hydrophobic nature of the microporous network in the support.41 
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Another important attribute of TS-1 is its ability to promote the ready 

epoxidation of relatively unreactive olefins such as propylene and allyl chloride at 

low temperatures (below 60 °C).113  However, TS-1 is not without its 

shortcomings.  Due to the size of its micropores, TS-1 is limited to the oxidation 

of substrates with kinetic diameters less than 5.5 Å.43  TS-1 cannot, for example, 

catalyze the epoxidation of cyclohexene because of this size exclusion.  The 

desire to carry out catalytic epoxidations on molecules having kinetic diameters 

greater than 5.5 Å helped cause a push to develop catalysts with larger pore 

structures.44 

Mesoporous Epoxidation Catalysts 
As the size of a pore in a material grows, the atomic scaffolding that defines 

that pore becomes less able to support the void volume in the material.  In order 

to compensate for this the “walls” of a pore grow thicker as the size of the pore 

increases.  As pore sizes transition from microporous to mesoporous, the walls 

must grow so thick that crystalline structure in the walls of the pore is lost.  An 

important distinction between TS-1 and MCM-41 is that while both have ordered 

pore structures, only TS-1 has walls that are crystalline. 

Following the 1992 report by Mobil scientists that they had synthesized a 

material with an ordered pore structure in the mesoporous size regime, a vast 

family of similar materials have been synthesized.44   These mesoporous metal 

oxides, such as MCM-41 and SBA-15, are synthesized using a silica source and 

a structure directing agent (SDA) under hydrothermal conditions.  The resulting 
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solid is then calcined to remove the SDA which leaves the surface of the 

resultant material covered with hydroxyl groups.   

Two basic methods are available to researchers wishing to incorporate 

metals with catalytic potential into these materials.  First, a metal source may be 

mixed in with the silica source prior to the synthesis.  This results in the inclusion 

of the metal in the structure of the pore walls.  Such materials are sometimes 

referred to as framework materials, as the metal is incorporated into the 

structural framework that defines the pores.  The second method is a post-

synthesis modification of the material where an appropriate metal reagent can be 

reacted with the hydroxyl groups on the surface of the mesoporous material.  

This method results in placement of the metal on the surface of the mesoporous 

material.  Materials in this second class are often referred to as grafted materials 

to emphasize the surface location of the incorporated metal.  

Of the mesoporous materials, MCM-41 containing titanium is the most well 

studied.116  MCM-41 with framework titanium has been shown to be catalytically 

active in the epoxidation of olefins with TBHP, including bulky olefins such as 

norbornene and limonene.116  Titanium grafted MCM-41 has been shown to be 

active in the epoxidation of cyclohexene and pinene when TBHP is used as the 

oxidant.27 

MCM-41 and other mesoporous materials show a great deal of promise in 

the epoxidation of large substrates.  However, when hydrogen peroxide is used 

as the oxidant they do not perform as well as TS-1.  In general the rates of 
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reaction and the selectivity for the epoxide are low when hydrogen peroxide is 

used as the oxidant in titanium MCM-41 catalyzed reactions.106,117-123  

Back to the Future? 
Scott and Mayoral’s  groups revisited the technology used to develop the 

Shell catalyst in their recent work.25,34,124-126  The Shell catalyst was prepared by 

treating silica with TiCl4 or organotitanium compounds, followed by steam 

treatment and calcination.43  In a method similar to that of Shell, these groups 

prepared their catalysts by treating partially dehydroxylated silica gels with 

titanium(IV) isopropoxide.  The catalyst is then activated in vacuo at 140 °C.  

Steam treatment or calcination of the catalysts is not necessary.  The catalysts 

are active in the epoxidation of bulky olefins with TBHP.  Notably, both Scott and 

Mayoral report that the catalysts are much less sensitive to the presence of 

moisture than the Shell catalyst.25,124 

Characterization of Titanium on Silica Epoxidation Catalysts 
The ultimate goal of the work presented herein is to establish a 

relationship between the structure of titanium on silica epoxidation catalysts and 

their activity.  Now that the major players have been introduced, let us examine 

the results of the structural studies of these materials and look for structural 

similarities between them. 

TS-1 
TS-1 is unique amongst the heterogeneous titanium-on-silica catalysts 

because it is the only one that is crystalline.  Thus, it is not surprising that X-ray 
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diffraction (XRD) measurements of the material have been made.  Attempts to 

precisely locate the sites at which titanium atoms substitute into the lattice have 

not been successful due to the low titanium loading, especially when considered 

in terms of atomic percentage.41  The unit cell of TS-1 is observed to expand in 

direct proportion to the titanium content.127  This has been taken as a sign of 

isomorphous substitution of a titanium atom for a silicon atom in the silicate 

structure.41   

Vibrational spectroscopy has also been used to characterize TS-1.  In the 

infrared (IR) spectrum a band at 960 cm-1 attributed to isolated tetrahedral 

Ti(OSi)4 sites is present.41,81  A discussion of the assignment of this 960 cm-1 

band is provided in the third chapter of this work.  A band in the Raman spectrum 

at 1125 cm-1 has been assigned to “a totally symmetric vibration of the TiO4 

tetrahedron, achieved through in-phase antisymmetric stretching of the four-

connected Ti-O-Si bridges.”75  Put more simply, the band is assigned to a 

Ti(OSi≡)4 unit. 

X-ray absorption spectroscopy (XAS) has also been used to study TS-1.  A 

strong pre-edge feature at 4967 eV in the XANES data indicates that the titanium 

in the sample is in a tetrahedral configuration (Figure 4-1).41,75  EXAFS data 

indicates that the first coordination sphere of the titanium atoms contain four 

oxygen atoms at a distance of 1.79 – 1.81 Å.41   

Diffuse reflectance UV-Visible spectroscopy (DRUV-Vis) has also been 

used to characterize TS-1.  A band at 208 nm is observed.75  This band is 
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Figure 4-1.  XANES spectrum typical of TS-1.  (Modified from Gleeson, et. 

al. Physical Chemistry Chemical Physics, 20, 2, 4812-4817 (2000), used with 

permission.)  
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 assigned to a ligand-to-metal charge transfer (LMCT) band of an isolated 

tetrahedral TiO4 unit.41  If octahedral titanium oxides were present a band would 

be expected between 303 and 317 nm.41 

Framework Ti-MCM-41 
Infrared spectra of MCM-41 materials with titanium in the framework 

(Ti→MCM-41) show a band at 963 cm-1.82  This band is which is attributed to the 

presence of Ti-O-Si units.  However, little Raman data has been presented, and 

to my knowledge there are no reports of a band located near 1125 cm-1 in the 

Raman spectrum similar to that reported in TS-1.  The lack of Raman data may 

be due to the large fluorescence background of Ti→MCM-41 materials.128  

XAS data supports the presence of a tetrahedral TiO4 site.  XANES data 

shows a significant, sharp pre-edge feature indicative of tetrahedral titanium at 

4968 eV.82,116  EXAFS data indicates that the first coordination sphere of the 

titanium atoms contain four oxygen atoms at a distance of 1.80 Å.116 

Two reports of DRUV-Vis spectra of Ti→MCM-41 materials mention the 

presence of a strong LMCT band.122,129  Eimer and co-workers report the location 

of the band as 210 nm, while Chaudhari and co-workers report it at 220 nm. 

Grafted Ti-MCM-41 
In 1995 J. M. Thomas and co-workers reported the structure of titanium 

centers grafted onto the surface of MCM-41 materials.27  The synthetic scheme 

of the grafted material referred to as Ti↑MCM-41 is shown in Figure 4-2.  This 

work is notable because the authors conclude that the structure of the active site  



 

139 

Figure 4-2.  Synthetic scheme for titanium grafted MCM-41 

(Ti↑MCM-41). 
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is (≡SiO)3TiOH and not Ti(OSi≡)4 which is believed to be the active site in TS-1 

and Ti→MCM-41. 

XAS studies of Ti↑MCM-41 were somewhat more involved than those for 

other materials, as Thomas and co-workers chose to follow the reaction of 

titanocence dichloride (TiCp2Cl2) with MCM-41 using EXAFS.27  Unlike the 

EXAFS results reported above, the researchers chose to model the first and 

second coordination spheres.  The difficulty associated with accurately modeling 

the second coordination sphere and some concerns about the method used by 

Thomas and co-workers are discussed in detail in the third chapter of this work. 

Thomas and co-workers report that after the chemical reaction between 

TiCp2Cl2 and MCM-41 is complete, the titanium species formed is (≡SiO)3TiCp.  

This conclusion is based upon the presence of only five carbon atoms in the first 

coordination sphere of titanium in the structural model that best fit the EXAFS 

data.  The model also includes three silicon atoms in the second coordination 

sphere of the titanium center.  The conclusion that a (≡SiO)3TiCp species is 

formed is somewhat surprising as only the chloride ligands from the TiCp2Cl2 are 

expected to react and form bonds from the titanium center to the support. 

The EXAFS results were surprising enough that computational studies 

were performed.83  These studies indicate that the (≡SiO)3TiCp species is lower 

in energy (more stable) the the (≡SiO)2TiCp2 species and support the 

conclusions generated from fitting the EXAFS data. 
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Calcination of the material is reported to result in a catalyst with titanium 

centers of the structure (≡SiO)3TiOH.27  That conclusion is based upon evidence 

that only three silicon atoms are in the second coordination sphere of titanium as 

determined by fitting EXAFS data.  A follow-up paper provided details of the 

method used to fit the second coordination sphere of the Ti↑MCM-41.107  Specific 

concerns about the fitting procedure are given in the third chapter of this 

dissertation. 

The strong pre-edge expected for tetrahedral titanium in the XANES 

spectrum is observed at about 4970 eV.27 

Infrared spectra of MCM-41 materials with titanium grafted on the surface 

(Ti↑MCM-41)  show a “very broad” band at 935 cm-1.130  Thomas and co-workers 

assign this band as a Ti-O-Si band even though its center is approximately 25 

cm-1 from positions normally reported for such a band.  In the same publication, 

the authors note a decrease in the intensity of the silanol band located at 3745 

cm-1 of the MCM-41 materials following reaction with titanocene dichloride.130  

They argue that this decrease is evidence for successful chemical transformation 

of part of the surface ≡Si-OH groups to ≡Si-O-Ti≡ groups.  Raman data for 

Ti↑MCM-41 has not been reported, presumably because of the high fluorescence 

background of these materials as noted above.    

For Ti↑MCM-41 materials DRUV-Vis shows a band centered around 230 

nm attributed to the LMCT band of isolated tetrahedral TiO4 units.130,131 
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Ti(IV) on Silica Gel from Ti(OR)4

Titanium grafted silica gel is produced by the reaction of silica gel with 

titanium(IV) isopropoxide, Ti(OiPr)4, under anhydrous conditions.  Scott and co-

workers used silica gel partially dehydroxylated at 200 °C (silica-200) in their 

studies, while Mayoral and co-workers used silica gel treated in vacuo at 140 °C 

in their research.  In one article Scott and co-workers note the similarity between 

their work and that of Mayoral’s group.25  (The reader should note what while the 

materials are not rigorously the same, slightly different conditions very different 

loadings, they are reported together and may have active sites with similar 

structures.)  Scott’s group used gas chromatography to quantify the amount of 

propanol liberated during the reaction between silica-200 and Ti(OiPr)4 as shown 

in the equation below.34  Somewhat surprisingly, propene was also observed as 

a product of the reaction.  The amount of propene liberated during the course of 

the reaction was also quantified using gas chromatography.34  The formation of 

propene during the reaction suggests that a reaction also occurs between two 

lone titanium centers which results in the formation of a Ti-O-Ti group.  The 

condensed equation is shown below and an illustration of the reaction between 

two Ti(OiPr)3 groups on silica is shown in Figure 4-3. 

silica-200 + 2 Ti(OiPr)4 → [≡SiOTi(OiPr)2]2O + 3 iPrOH + C3H6

Quantitative FT-IR spectroscopy data was used to determine the amount 

of CO2 liberated from calcination of the grafted products.34  It was found that six 

moles of CO2 were released per mole of titanium in the sample.  The loss of the 
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Figure 4-3.  Schematic of the reaction between two Ti(OiPr)3 groups on silica to form the Ti-O-Ti dimer 

proposed by Scott and co-workers. 
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silanol band 3747 cm-1 following the grafting reaction was taken as evidence of 

the formation of ≡Si-O-Ti≡ bonds.25,34  A band at 680 cm-1 was also observed in 

the IR spectrum.25  This band was assigned to a Ti-O-Ti vibration.   

13C cross-polarization MAS NMR of the product shows resonances at 25 

(methyl) and 78 (methyne) ppm.34  These resonances are assigned, respectively, 

to the methyl and methyne carbons of an isopropoxide group.  From this data, 

Scott and co-workers concluded that the reaction of Ti(OiPr)4 with the surface 

silanol groups of silica gel treated at 200 °C produces silica gel with dimeric μ-

oxo titania species anchored to the surface.   The structure of this species is 

shown in Figure 4-4.34 

The catalysts synthesized by Mayoral’s group were not as rigorously 

characterized as those of Scott’s group.  While, the procedure used to synthesize 

the materials is similar between the two groups there are two important 

procedural differences.  First, Mayoral’s group treats their silica gel at 140 °C 

which is lower than the pre-treatment temperature of Scott.  This lower pre- 

treatment temperature may leave more silanol groups on the surface of the silica 

gel.  Second, the loading of titanium placed on the silica gel support is much 

higher in the materials prepared by the Mayoral group (5.64 weight % Ti) as 

opposed to the low loadings used by the Scott group (0.2 weight % Ti).  These 

differences prevent the assumption that the structures of the materials 

synthesized by the Scott and Mayoral groups are identical. 
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Figure 4-4.  Structure of [≡SiOTi(OiPr)2]2O. 

However, Mayoral’s group is the only group to characterize materials 

prepared from the reaction of Ti(OiPr)4 with silica gel using XAS.125  

Unfortunately, the publication indicates that no great care was taken to prevent 

exposing the material to moisture prior to or during XAS data collection.  It is 

possible that the following information may be affected by the presence of water 

molecules in the titanium coordination sphere. 

A weak pre-edge feature is observed at 4966 eV in the XANES 

spectrum.125  The weakness of the feature may indicate the presence of water 

coordinated to the titanium sites.132  A fit of the EXAFS data  indicates the 

presence of 4.2 (±0.2) oxygen atoms in the first coordination sphere of titanium at 

a distance of 1.88 Å.  (This bond length is 0.04 Å longer than the greatest Ti-O 

bond distance reported for tetrahedral titanium by Farges, et. al.98)  While the 

comparison is not the most ideal, the coordination number determined by 

Mayoral’s group for silica gel treated with Ti(OiPr)4 can be said to be in 

agreement with the structure proposed by Scott’s group. 
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Are There Common Structural Features between the Catalysts?     
Is there a general consensus on structural features of the active site 

between these titanium-on-silica oxidation catalysts?  A popular belief, possibly 

derived from the isomorphous substitution of titanium for silica in TS-1, is that 

atomically dispersed Ti(OSi≡)4 sites are responsible for the catalytic activity.  Yet, 

this level of structural detail is not supported by the results for the catalysts as 

described in the preceding text. 

Although there is disagreement about the contents of the second 

coordination sphere of the active site, there is a clear consensus about the first 

coordination sphere of titanium.  All the active sites proposed above consist of 

titanium in the oxidation state +4 surrounded by a tetrahedron of oxygen atoms 

with a Ti-O distance of approximately 1.8 Å. 

Many researchers believe that there are either three or four silicon atoms 

in the second coordination sphere of the active site.  These structures are 

represented respectively as Ti(OSi≡)3OH and Ti(OSi≡)4.  Although he champions 

the “tripodal” Ti(OSi≡)3OH active site in his work with Ti↑MCM-41, Thomas 

admits that “dipodal” Ti(OSi≡)2(OH)2 and possibly even “tetrapodal” Ti(OSi≡)4 

may also be present (Figure 4-5).131  However, the work of Scott and co-workers 

with grafted titanium on silica gel suggests that titanium may be present in the 

second coordination sphere.   



 

Figure 4-5.  First and second coordination spheres of titanium sites 

described by Thomas. 

The possibility of a titanium atom in the second coordination sphere is 

especially intriguing because it is widely believed that oligomerization of titanium 

species is responsible for the inactivity of homogeneous catalysts.34,43,113  Yet, 

the structure of the active site that Scott proposes is a μ-oxo titanium dimer.  In a 

single report, Yuan, et. al. argue that partially polymerized titania species are 

responsible for the catalytic activity of grafted Ti-MCM-41.133  These species are 

similar to those proposed by Scott’s group and are shown in Figure 4-6.  (The 

reader should note that Yuan, et. al.133 use the –podal terminology of J. M. 

Thomas, but apply it somewhat differently.  The prefix indicates the number of 

silicon atoms in the second coordination sphere.  Any second coordination 

sphere vacancies can be filled by OH or Ti.)   
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Figure 4-6.  Oligomeric titanium sites proposed by Yuan, et. al. 

A Challenge to the TiO4 Active Site Structure 
In a single report, Tuel and Hubert-Pfalzgraf suggest that small clusters of 

titanium atoms in octahedral coordination can be active catalysts for olefin 

epoxidation.134  In their work they claim to graft the hexanuclear cluster [Ti6(μ3-

O)6(μ-O2CC6H4OPh)6(OEt)6] (shown in Figure 4-7 ), hereafter Ti6 cluster, to the 

walls of SBA-15 (a mesoporous silica support).  Following calcination, the 

material was found to be active in the epoxidation of cyclohexene with TBHP.  

Unfortunately, little structural characterization of the Ti6 cluster on SBA-15 

material is presented. 

Clearly, there is a difference of opinion about the structure of the active 

site in titanium-on-silica catalysts for olefin epoxidation.  These differences of 

opinion highlight the need for synthetic methods directed at the synthesis of 

single site catalysts which can be used to develop a clear the relationship 

between structure of the active sites and catalytic activity.  The work of the Tuel, 
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Figure 4-7.  Ortep (left) and polyhedral (right) representations of the Ti-6 

cluster.  From Papiernik, et. al.  J. Chem. Soc., Dalton Trans.  14, 2285-2287 

(1998). – Reproduced by permission of The Royal Society of Chemistry.  

Scott, and Mayoral groups provides evidence that the formation of μ-oxo bonds 

between titanium atoms may not be detrimental to activity in olefin epoxidation.  It 

is known that bulk TiO2 is detrimental to olefin epoxidations when hydrogen 

peroxide is used as the oxidant because it is an efficient catalyst for the 

decomposition of H2O2.41  Perhaps, the key factor to the success of the Tuel, 

Scott, and Mayoral groups is that no TiO2 particles large enough to display 

properties of bulk TiO2 are produced using their synthetic methods. 

Titanium non-aqueous building block (NABB) materials are well-suited for 

examining the relationship between the structure of the active site and its activity 

in olefin epoxidation.  As shown in the third chapter of this work a series of Ti 

NABB materials containing Ti in a tetrahedral state with an oxidation number of 

positive four and four oxygen atoms in first coordination sphere have been 
149 
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prepared.  The difference between the materials is the average number of silicon 

atoms in the second coordination sphere.  Furthermore, the Ti-4 material is a 

structurally well-characterized catalyst that contains only Ti(OSi≡)4 sites and is a 

excellent material for examining the popular notion that Ti(OSi≡)4 sites are the 

active sites in olefin epoxidation catalysts.  Later in this chapter, a titanium NABB 

material that is proposed to contain a dimeric titanium site will be described.  

Before testing for a structure-activity relationship it important to examine issues 

encountered when comparing literature reports of catalytic activity to one another 

and the activity that will be reported for Ti NABB materials herein. 

Comparing Ti(IV) on silica epoxidation catalysts 
One of the difficulties encountered when comparing catalysts from various 

publications, especially between research groups, is the wide variety of catalyst 

preparations and reaction conditions that are often used.  Catalyst pre-treatment 

procedures are not universal, and some pre-treatments such as calcination or 

reduction can alter the properties of a material significantly.  A variety of choices 

are available for substrates and oxidants in epoxidation reactions.  Likewise the 

choice of solvent, substrate-to-oxidant ratio, and temperature can impact the 

activity and selectivity observed in a reaction.  When taken together the amount 

of variability between catalyst preparation and reaction conditions in the literature 

can make “apples to apples” comparisons of catalysts difficult. 

In my opinion, the best comparisons between published catalyst results 

are made between reports with reactions that use the same substrate and 
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oxidants.  Solvent choice does not necessarily have to be the same, although 

one should note if a protic solvent is used.  As mentioned above, alcohols and 

water inhibit many heterogeneous epoxidation catalysts.  Thus, comparisons 

between reports for a given set up substrates are best made if the solvents are 

either the same or aprotic.  Substrate-to-oxidant ratio, reaction temperature, and 

duration should all be reported when comparing published catalyst results.  

Knowledge of these parameters allows the reader to assess if differences 

between catalysts can be explained by different reaction conditions or inherently 

different activities.  For example, the use of different reaction temperatures might 

explain a difference in the rate or reaction reported for two catalysts.  

In this work we will compare reports where cyclohexene was used as the 

substrate and TBHP was used as the oxidant.  This reaction was chosen 

because data for it are often reported in the literature on heterogeneous 

epoxidation catalysts. 

Prior to examining results for catalysts synthesized by the non-aqueous 

building block method, let us examine the results reported in the literature for 

some titanium on silica catalysts in the epoxidation of cyclohexene with TBHP as 

shown in Table 4-1.  Cyclohexene (Cyc) conversion is given as percent 

converted of the theoretical maximum as shown in the equation below.  In all 

cases, but one, the number of moles cyclohexene theoretically convertible 

Cyc conversion (%) = ([Cyc]theoretical – [Cyc]converted)/[Cyc]theoretical x 100 
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Table 4-1.  Selected results from the literature for the titanium-on-silica catalyzed epoxidation of cyclohexene 

with TBHP. 

 
 

 
 

Catalyst 

 
Reported 
Structure 

Ti 
Content 
(Wt. %) 

 
Temp.

(°C) 

 
 

Cyc.:Ox. 

 
Cyc.
TON

 
Time
(h) 

 
Cyc. 
TOFa

Cyc. 
Conv. 

(%) 

Epox. 
Sel. 
(%) 

1 Ti 0.10 70 527 75 <28% →MCM-
41122 

Ti(OSi)4 4:1 7 35 

2 Ti 1.12 70 4:1 86 7 12 65 28% →MCM-
41122 

Ti(OSi)4

3 Ti 1.08 50 20:1 42 0.25 168 13 >95 ↑MCM-4196 (SiO)3TiOSiPh3
4 Ti  50 20:1 48 0.25 192 14 >95 ↑MCM-4196 (SiO)3TiOH 1.08 
5 Ti  50 1:1.2 86 86 50 95 ↑MCM-4127 (SiO)3TiOH 6.76 1 
6 Ti 1.02 60 74 5 15 14 93 →MCM-

41106 
Ti(OSi)4 4:1 

7 Ti/SiO2
25 [≡SiOTi(OiPr)2]2O 0.20 50 1:1 980 16 62 98 100 

8  1:1 87 98 Ti/SiO2
124 NR 5.64 25 9 1 35 

9   5.64 15 2:1 35 7 9 57 98 Ti/SiO2
124 NR

10 Shell Ti/SiO2
115 NR 2.00 90 1:1 75 88 75 18 4 

a) h-1
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to the epoxide is equal to the number of moles TBHP in the reaction.  Epoxide 

selectivity is defined as the number of moles cyclohexene oxide (Cyc-ox) 

produced per mole cyclohexene converted.  The turnover number, TON, is 

defined as the moles of 

Epoxide Selectivity (%) = [Cyc-ox]/[Cyc]converted x 100 

cyclohexene converted per mole of titanium in the reaction.  The turnover 

frequency, TOF, is defined as the turnover number divided by the reaction time in 

hours (h).  TOF is a measurement of catalyst activity per unit time, it can be quite 

deceiving 

TON = [Cyc]converted/[Ti] 

TOF = [Cyc]converted/([Ti] x h) 

as it can mask the fact that the activity of a catalyst can vary with time.  For 

example, the Ti↑MCM-41 sample in the fifth entry in Table 4-1  shows a TOF of 

86 h-1.  However, the reaction period over which the TOF is measured is rather 

short (one hour).  Careful reading of the original report reveals that the catalyst 

deactivated after 90 minutes.27  The reaction times for the preceding Ti↑MCM-41 

entries are even shorter at 0.25 h.  No explicit mention of deactivation is 

mentioned in this report, but given the short reaction times continued deactivation 

after 90 minutes would not be surprising.96  At the same time, Ti↑MCM-41 is 

frequently cited in the literature as an excellent epoxidation catalyst.   

 The second entry in Table 4-1 Ti→MCM-41 shows a reasonable 

conversion of 65% but, the selectivity is poor.  The selectivities of other entries 
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are high, but their conversions are generally low.  Perhaps the best catalyst in 

the table is that of Scott and co-workers given in the seventh entry.  The TOF 

and TON are reasonable, and the conversion and selectivity are both high.  

Indeed, that catalyst seems to slightly outperform the Shell catalyst in terms of 

conversion and selectivity. 

Titanium Non-aqueous Building Block Epoxidation Catalysts 

General Synthetic Method for Mononuclear Titanium Epoxidation Catalysts 
The catalysts studied in this thesis were prepared in a manner similar to 

that described in the third chapter of this work.  A typical reaction began with 8.00 

g of Si8O20(SnnBu3)8 (butyltin cube).  Following heating of the butyltin cube at 80 

°C in vacuo for 18 hours to remove all water, 100 mL of hexanes was vapor 

transferred into the reaction vessel containing the butyl tin cube.  Then magnetic 

stirring was started and an amount of TiCl4 appropriate for the type of site 

desired (as determined in Chapter 3 and shown in Table 4-2) was added to the 

reaction vessel via vapor transfer at a temperature of -78 °C.  The reaction was 

then allowed to warm to room temperature while being stirred and proceed for 

two hours.  A yellow flocculant solid formed within minutes of removing the 

reaction vessel from the -78 °C bath. 

After two hours had passed, the bis(pyridine) complex of silicon 

tetrachloride, SiCl4·py2, was added to the reaction vessel under a N2(g) purge.  

The number of moles added to the reaction was equal to the initial number of 

moles of tri-n-butyltin groups in the starting material less the number of moles of  
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Table 4-2.  Stoichiometry used to prepared titanium non-aqueous building 

block catalysts. 

Sample TiCl4:butyltin cube SiCl4·py2:butyltin cube 
Ti-4 0.25 7.75 
Ti-3 1.0 7.0 
Ti-2 2.0 6.0 

 

 

TiCl4 added.  The reaction was allowed to proceed for 18 hours at room 

temperature. 

Immediately following the addition of SiCl4·py2, both the yellow flocculant 

solid that had formed earlier and dense, white particles of SiCl4·py2 were visible in 

the reaction mixture.  Over the course of 8 to 12 hours the amount of SiCl4·py2 

particles visible diminished, and the amount of flocculant material increased while 

the color of the flocculant material changed from yellow to a white or light beige.  

At the end of the reaction a significant amount of the light beige flocculant 

material and clumpy, dense particles of SiCl4·py2 were visible. 

Volatile liquids were then removed in vacuo.  Excess SiCl4·py2 was 

removed using vacuum sublimation.  Dry methanol or water was added to the 

solid product in the reaction vessel.  The product was then collected on a fritted 

funnel, and washed until the pH of the filtrate (measured at the funnel stem) 

returned to the normal pH for that solvent.  Presumably, this indicates that all 

chloride groups on the product have been converted to hydroxyl or methoxy 
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groups.  The catalysts were activated by heating to 140 °C in vacuo for 12 hours 

prior to use. 

The sample nomenclature remains the same as that used in the third 

chapter of this work.  The only change in the structure of the active sites of the 

catalysts is presumed to be the exchange of chloride ligands on the titanium sites 

for hydroxide or methoxide ligands. 

The final catalysts contain TiO4 centers surrounded by Si8O20 building 

blocks.  The number of building blocks around the Ti site depends upon the 

stoichiometric ratio of TiCl4 to butyltin cube used in the synthesis.  The building 

blocks are further linked together by silicon atoms that have either hydroxy or 

methoxy groups attached depending upon the post synthesis treatment.  In 

general terms, the catalyst consists of atomically dispersed TiO4 in a silica 

building block matrix.  The surface of the building block matrix is relatively 

hydrophilic if the material was treated water.  The surface of the building block 

materials treated with methanol are less hydrophilic than those treated with 

water. 

Synthetic Method for Dimeric Titanium Epoxidation Catalyst 
The sample of the non-aqueous building block material containing the 

titanium dimer was prepared by Richard Mayes.  The dimer, [TiCl2O2C5H8]2 was 

prepared from the reaction of TiCl4 and cis-1,2-cyclopentanediol in the method of 

Bachand and Wuest.135  The proposed structure for the dimer is given in Figure 

4-8 below. 
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Figure 4-8.  Structure of the titanium dimer, [TiCl O C H ]2 2 5 8 2.

Methyltin cube, Si8O20(SnMe3)8 was placed in a Schlenk vessel and 

dehydrated in vacuo.  The dimer was added to the Schlenk vessel in a molar 

ratio of 0.53 dimer per methyltin cube.  Dry toluene was then added to reaction 

vessel via vapor transfer at -78 °C to start the reaction.  The reaction was heated 

to 80 °C and allowed to progress for 48 hours.  After 48 hours had elapsed the 

reaction was cooled so that dichlorodimethylsilane, SiMe2Cl2, could be added to 

the reaction via vapor transfer.  The molar ratio was 1.1 SiMe2Cl2 per mole of 

methyltin tin cube.  The reaction was again heated to 80 °C and allowed to 

progress for 24 hours.  After 24 hours volatiles were removed in vacuo, and the 

resulting solid was treated with an excess of trimethylchlorosilane, ClSiMe3, in 

order to remove any residual trimethyltin groups. 

Gravimetric analysis reveals that an average of 3.6 chlorides per dimer 

molecule reacted with the methyltin groups on the Si8O20 cores.  Thus, the active 

site in the resultant product is expected to consist mainly of dimers with a total of 

four Si8O20 cores connected.  However, structural characterization of the material 
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using EXAFS has not yet been completed.  The sample is referred to as Ti-dimer 

catalyst. 

Ti-dimer catalysts contain [TiO2C5H8]2 sites surrounded by Si8O20 building 

blocks.  The building blocks are further linked together by SiMe2 groups, and un-

reacted tin sites were removed using ClSiMe3.  The surface of the pristine 

catalyst is hydrophobic as the surface functionality consists of =SiMe2 and          

–SiMe3 groups.  The surface of the calcined catalyst is hydrophilic and consists 

of Si-OH groups. 

Figure 4-9 shows a schematic of the site and surface differences between 

the Ti-X (X = integer) series and the pristine Ti-dimer catalyst. 

Catalytic Epoxidation Reaction Conditions 
 Cyclohexene (Aldrich, 99%), cyclohexene oxide (Aldrich, 98%), and 

mesitylene (Acros, 99%) were used as received.  A solution of tert-

butylhydroperoxide (TBHP) in toluene was made from a solution of 70% TBHP in 

water (Acros) using the method of Sharpless.112  The concentration of the 

solution of TBHP in toluene was determined by iodometric titration.136  A detailed 

procedure for iodometric titration is given in the appendix. 

The epoxidation of cyclohexene using TBHP has been performed under 

batch-type conditions using glass vials sealed with Teflon® coated rubber septa.  

Vials were loaded with 18 mmol of cyclohexene (1.48 g), 16 mmol of TBHP (4.05 

g of a 35.8% TBHP solution in toluene), 4.5 mmol of mesitylene (0.53 g, internal 

standard), and 40 mg of catalyst.  The reaction was allowed to run for six hours  



 

159 

Figure 4-9.  Schematic representations of the Ti-X series catalysts (top) and 

the Ti-dimer catalyst (bottom). 
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at 60 °C.  A 0.1 mL aliquot was removed from the reaction vial using a syringe 

and diluted to 10 mL with ether. 

A Hewlett Packard 5890A series gas chromatograph equipped with a 

standard 30 m (5% Phenyl)-95% methylpolysiloxane column and a flame 

ionization detector was used to quantify the amounts of cyclohexene and 

cyclohexene oxide in the aliquot.  Helium (Ultra-high purity, Airgas) was used as 

the carrier gas.  Response factors relative to mesitylene were determined to be: 

cyclohexene, 1.6; cyclohexene oxide 0.95.  By-products of the reaction were 

identified using an Agilent 6890 series gas chromatograph equipped with a mass 

selective detector. 

The results presented are an average of the results from three separate 

trials.  The results of the individual trials for a given catalyst sample did not differ 

within experimental error from one another. 

A blank run in which no catalyst was used showed cyclohexene 

conversion of two percent.  The products of the blank reaction indicate that a 

free-radical reaction also occurs under the reaction conditions.137  The amount of 

free-radical reaction products are not observed to increase when catalyst is 

present.  The amount of cyclohexene consumed by the free-radical process is 

small, and the amount of epoxide produced by this process is within experimental 

reproducibility for non-radical epoxide formation.  Thus, the effects of the free-

radical process are not accounted for in the calculations of activity and selectivity. 
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Discussion of Results 

Non-aqueous building block catalyst results 
The catalysts produced by the non-aqueous building block method herein 

were found to be active in olefin epoxidation with a solution of TBHP in toluene.  

However, the catalysts were inactive when aqueous hydrogen peroxide was 

used as the oxidant.  Preliminary results from extended reactions show that the 

mononuclear catalysts are sill active after 24 hours of continuous use under 

reaction conditions. 

Several trends are apparent from the results of the catalytic epoxidation 

reactions presented in Table 4-3.  First, for the mononuclear catalysts, the TON 

decreases with the connectivity of the titanium center.  In other words the TON of 

the catalysts decreases as the number of silicon atoms in the second 

coordination sphere of titanium decreases.  A second trend in the data for the 

mononuclear catalysts is that catalysts treated with methanol have higher 

activities than those treated with water.  Similarly, the methanol treated catalysts 

are also more selective than their water treated counterparts.  The greater 

activity of the methanol treated catalysts may due to the slightly more 

hydrophobic nature of these catalysts compared to those treated with water.  The 

increased hydrophobicity reduces competitive coordination of the co-product 

alcohol and any water that may be present in the reaction mixture.  The lower 

selectivity of the water treated catalysts can be explained by the Brønsted 
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Table 4-3.  Results for the epoxidation of cyclohexene with TBHP in toluene using titanium non-aqueous 

building block catalysts. 

 
Catalyst 

Reported 
Structure 

Ti Content
(Wt. %) 

 
Treatment

Cyc. 
Conv. (%) ± 5

Epox. 
Sel. (%)

Cyc. 
TON 

Cyc. 
TOF 

Blank N/A 0.00 N/A 2a 27 ± 7 N/A N/A 
Ti-4 Ti(OSi≡)4 0.90 ± .01 MeOH 52 44 ± 6 1114 ± 100 186 ± 17
Ti-4 Ti(OSi≡)4 0.90 ± .01 H2O 45 37 ± 5 885 ± 90 147 ± 15
Ti-3 Ti(OSi≡)3OMe 3.45 ± .02 MeOH 44 37 ± 5 310 ± 40 52 ± 7 
Ti-3 Ti(OSi≡)3OH 3.45 ± .02 H2O 31 27 ± 5 179 ± 30 30 ± 5 
Ti-2 Ti(OSi≡)2(OMe)2 6.08 ± .02 MeOH 58 47 ± 6 153 ± 15 25 ± 2 
Ti-2 Ti(OSi≡)2(OH)2 6.08 ± .02 H2O 23 22 ± 5 97 ± 20 16 ± 3 

Ti-dimer [TiO2C5H8]2Cl0.4(OSi≡)3.6 5.18 ± .05 None 71 48 ± 4 246 ± 20 41 ± 3 
Ti-dimer Unknown 6.09 ± .05 550 °C 16 6 ± 2 46 ± 15 8 ± 2 

Reference124 NR 3.85 ± .02 N/A 71 44 ± 4 244 ± 20 41 ± 3 
a) ± 0.5
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acidity of the hydroxyl groups on the catalyst.  Hydroxyl groups can convert the 

epoxide to a diol through a ring-opening reaction. 

Despite, the thorough characterization of the NABB series of catalysts, 

only the structure of the Ti-4 catalyst is known with a high degree of certainty.  

The possibility that the Ti-3 and Ti-2 materials, whose active sites were 

determined on average to be Ti(OSi≡)3OR and Ti(OSi≡)2OR2 (R = H, Me), 

contain Ti(OSi≡)4 sites along with sites of lower connectivity cannot be excluded.  

Therefore, the observed activity could possibly be due to Ti(OSi≡)4 sites in the 

material. 

Quantitative 1H NMR results indicate that Ti(OSi≡)4 sites are formed with 

exclusivity up to about a one weight percent loading of titanium in the NABB 

catalysts.  To examine the possibility that the activity of the Ti-3 and Ti-2 

catalysts might be due to the presence of Ti(OSi≡)4 sites, new TONs for the Ti-3 

and Ti-2 samples were calculated.  These calculations assume that the catalysts 

contain one weight percent titanium as Ti(OSi≡)4 and that only Ti(OSi≡)4 are 

active catalytic sites for olefin epoxidation.  Using those assumptions, the TONs 

would be 1070 and 931 for the Ti-3 and Ti-2 catalysts respectively.  Those TONs 

approach the TON of 1114 reported for the Ti-4 catalyst.  These calculations 

show that the possibility that Ti(OSi≡)4 sites are responsible for the activity 

observed in the Ti-3 and Ti-2 catalysts cannot be eliminated. 

The turnover number for the pristine Ti-dimer material is 246.  This is 

close to the level of the Ti-3 catalyst, but much lower than the TON of the Ti-4 
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catalyst.  Readers should remember that the TON is calculated using the total 

amount of titanium in the material.  If we normalize the TON to the number of 

sites, the TON doubles to 492.  The 48% epoxide selectivity of the Ti-dimer 

catalyst is slightly better than the 44% selectivity of the Ti-4 catalyst.  The high 

selectivity compared to that of the other NABB catalysts may be due to the lack 

of protons on the surface of the pristine Ti-dimer. 

Calcination of the Ti-dimer material prior to use as a catalyst adversely 

effects the properties of the catalyst.  The TON for the calcined Ti-dimer is less 

than 20% of the pristine material, and the selectivity for the epoxide falls to 6%.  

The structure of the sites in the calcined Ti-dimer have not been studied, but it is 

clear that calcination either destroys the majority of the active sites or prevents 

reagents from accessing them. 

Comparison of non-aqueous building block catalysts with the literature 
 Table 4-4 collects results from some of the best non-aqueous building 

block epoxidation catalysts compared with some of the best epoxidation catalysts 

reported in the literature.  The catalysts are ranked from first to eighth by turnover 

frequency.  The eighth ranked catalyst is the heterogeneous Shell titanium-on-

silica epoxidation catalyst which is a convenient point of reference.  The Shell 

catalyst, which was commercialized, converts 75% of the cyclohexene in the 

reaction with 88% selectivity to the epoxide with a TOF of 4 h-1.  The high 

selectivity towards the epoxide allowed the catalyst to be commercialized despite 

it’s low TOF.   
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Table 4-4.  Selected literature and titanium non-aqueous building block epoxidation catalysts ranked by 

turnover frequency. 

 
 
Rank 

 
 
Catalyst 

 
Reported 
Structure 

 
Ti Content
(Wt. %) 

 
Temp.
(°C) 

 
 
Cyc:Ox 

 
Time
(h) 

 
 
TOF

 
 
TON

 
Cyc. 
Conv. (%)

 
Epox. 
Sel. (%)

1 Ti↑MCM-4196 50 0.25 192 48 (SiO)3TiOH 1.08 20:1 14 >95 
2 Ti-4 Ti(OSi)4 0.90 60 1.1:1  52 44 6 186 1114
3 Ti 0.10 70 7 75 527 35 <28 →MCM-41122 Ti(OSi)4 4:1 
4 Ti/SiO 1:1 16 62 980 98 100 2

25 [≡SiOTi(OiPr)2]2O 0.20 50 
5 Ti-3 Ti(OSi)3OMe 3.45 60 6 52 310 44 1.1:1 47 
6  60  6 41 246 71 48 Ti-dimer  5.18 1.1:1
7 6.08 60 1.1:1 6 25 153 58 47 Ti(OSi)2(OMe)2Ti-2 
8 Shell Ti/SiO2

114 NR 2.00 90 1:1 18 4 75 75 88 
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The first ranked catalyst, Ti↑MCM-41, has a selectivity of greater than 

95% and a TOF of 192 h-1 which are both superior to the Shell catalyst.  

However, Ti↑MCM-41 deactivates following 90 minutes of use.  The Ti-4 catalyst 

has a TOF of 186 h-1 which is comparable to Ti↑MCM-41, but Ti-4 still shows 

catalytic activity after 24 hours of use.  The TOF and selectivity of Ti-4 are 

approximately twice that of the third ranked catalyst Ti→MCM-41.  

The activity of Ti-4 is far superior to that of the original heterogeneous 

epoxidation catalyst developed by Shell.  However, the selectivity of Ti-4 is half of 

the Shell catalyst.  The catalyst fourth in terms of TOF has the highest selectivity 

for the epoxidation of cyclohexene with TBHP.  This is the catalyst developed by 

Scott’s group that is proposed to have dimeric titanium sites.  The Scott catalyst 

has a TOF of 62 h-1, converts nearly all the cyclohexene in the reaction after 16 

hours, and exclusively forms the epoxide. 

The selectivity of the non-aqueous building block catalysts are generally 

lower than those of the other catalysts presented in Table 4-4.  The selecitivity of 

the NABB catalysts is better than the 28% selectivity given in one of the initial 

reports for Ti→MCM-41 as shown in the table, and it is important to remember 

that Ti NABB catalysts are in their first generation.  Based upon the literature, it 

seems likely that fine-tuning the reaction conditions and parts of the structural 

hierarchy of the catalyst beyond the active site (see the first chapter of this work) 

should improve selectivity.  It will be important to eliminate the free-radical 

process seen under the current reaction conditions in order to assure that the 
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presence of free-radicals does not negatively impact epoxide selectivity.    

Likewise, fine-tuning the surface properties of the catalysts by treating the 

surface of the catalysts with chlorotrimethylsilane or other silylating agents may 

result in increasing selectivity and activity of the Ti NABB epoxidation catalysts. 

Conclusion 
This work conclusively shows that isolated Ti(OSi≡)4 sites in non-aqueous 

building block catalysts are highly active for the epoxidation of cyclohexene with 

tert-butylthydroperoxide in toluene.  The structural characterization of the Ti-4 

catalyst (third chapter of this work) shows evidence for the sole presence of 

isolated Ti(OSi≡)4 through quantitative 1H NMR, FT-IR, XANES, and EXAFS.  

Raman and XAS data indicate that the Ti-4 catalyst is free of TiO2 domains. 

 The epoxidation TOF and TON figures of merit for methanol treated Ti-4 

are both high.  The activity of and selectivity of the titanium non-aqueous building 

block catalysts decrease as the connectivity of the titanium falls.  These findings 

lend credence to literature reports that isolated Ti(OSi≡)4 sites are responsible for 

the epoxidation activity of TS-1 and Ti→MCM-41 catalysts.  The activity and 

selectivity of theTi-dimer catalyst suggest that di-nuclear titanium sites are also 

active for the epoxidation of cyclohexene with TBHP in toluene. 

The Ti-4 and Ti-dimer materials both warrant further investigation for use 

as catalysts in olefin epoxidation.  Despite their different proposed structures and 

the greater TON of Ti-4, both Ti-4 and the Ti-dimer are similar in selectivity for 

the epoxide.  Further study of the structure of the active site in the Ti-dimer 
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material, and fine-tuning of the pore-structure and surface properties of both 

materials should help elucidate differences in the activity and selectivity of these 

two materials.  The following chapter contains specific ideas for future research 

using the non-aqueous building block methods. 
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Chapter 5. Conclusions and Future Work 

Conclusions 
One of the fundamental challenges of heterogeneous catalysis is 

establishing a well-defined relationship between the structure of active sites in a 

catalyst and their activity.  Understanding the structure-activity relationship 

should allow the synthesis of “next generation” catalysts with improved activities 

and selectivities.  The first chapter of this work described traditional methods for 

the synthesis of heterogeneous catalysts.  These traditional methods of synthesis 

often yield materials that have multiple types of active sites.  Such materials can 

make the development of the relationship between the structure of a catalytically 

active site and its activity in a reaction very difficult.  This had led to the 

development of synthetic methods designed specifically to produce single-site 

catalysts which can then be used to study structure-activity relationships. 

The non-aqueous building block (NABB) method is one method being 

developed which is targeted at producing nanostructured single-site catalysts.  

When coupled with the sequential additions process explained in the first chapter 

of this work, the non-aqueous building block method should give rise to a series 

of catalysts each containing a unique and well-defined active site.  This series of 

materials can then be studied to examine the impact of structural changes at the 

active site on the activity and selectivity of the catalyst.  In this work the non-

aqueous building block method was used to synthesize a series of titanium-on-

silica catalysts that were used to study the effect of active site structure upon the 
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activity of the epoxidation of cyclohexene in toluene with tert-butylhydroperoxide 

(TBHP). 

These titanium non-aqueous building block materials were synthesized 

from butyltin cube, Si8O20(SnnBu3)8.  The butyltin cube was developed as an 

alternative to the methyltin cube used in much of the previous research 

developing the non-aqueous building block method.  The butyltin cube is an 

important part of the non-aqueous building block method as the costs and toxicity 

of the reagents used in the synthesis of butyltin cube are lower than those for the 

reagents used in the synthesis of the methyltin cube.  The synthesis of the 

butyltin cube and comparisons with the reagents used to synthesize the methyltin 

cube are found in the second chapter of this work. 

In the third chapter of this work, the structure of the active site of each 

titanium-on-silica material synthesized using the non-aqueous building block 

method was characterized using quantitative 1H NMR, infrared, Raman, XANES, 

and EXAFS.  The results from those methods of characterization indicate that 

three materials with active sites of different average connectivity were prepared 

from the reaction of titanium tetrachloride with butyltin cube.  Furthermore, the 

methods of structural characterization used indicate that the Ti-4 non-aqueous 

building block material is a single-site catalyst containing only atomically 

dispersed Ti(OSi≡)4 active sites. 

The catalytic activity for the epoxidation of cyclohexene with TBHP in 

toluene was measured for the three unique single-site catalysts synthesized from 
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the butyltin cube and a dimeric catalyst synthesized by Richard Mayes using the 

methyltin cube.  The results of the batch-type epoxidation reactions show that the 

structure of the titanium center in the non-aqueous building block materials does 

affect the catalytic activity.  The Ti-4 and Ti-dimer materials, which have high 

connectivities to the building block framework of the material, had the highest 

selectivity for the epoxide.  The TOF and TON figures of merit are also high 

enough to warrant the further investigation of these materials, to see if the 

selectivity and activity of the materials can be improved.  The Ti-3 and Ti-2 

materials which have lower connectivities were not as active as the Ti-4 material 

and generally had low selectivity for the epoxide. 

Future Work 

Non-aqueous building block method in general 
A large parameter space with respect to the non-aqueous building block 

method remains to be examined.  There are many transition metal and main 

group elements of interest that could potentially be used in the non-aqueous 

building block method.  To date only Si, Ti, V, and Al linking groups have been 

studied by the Barnes group.  The linking chemistry of Cr, Sn, and W reagents 

are currently being studied, but many other metals have yet to be investigated.   

In the future it may be desirable to substitute another functional group for 

the trialkyl tin functional groups on the methyltin and butyltin cubes.  There are 

several reasons to do this.  First, all trialkyl tin reagents are toxic to some degree.  

The use of a non-toxic substitute would eliminate exposure hazards and 
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potentially lead to lower waste disposal costs.  Second, the use of functional 

groups other than trialkyl tin groups may improve the atom economy of the non-

aqueous building block process.  In the method currently used to produce methyl 

or butyltin cube, one-half of the trialkyl tin groups are converted to trialkyl tin 

hydride by-product as shown in Equation 1.  Essentially, one-half of the trialkyl tin 

groups are converted to waste in the production of the trialkyl tin cubes essential 

to the non-aqueous building block method.  Although procedures for recycling the 

trialkyl tin hydride by-product have been developed,57 the use of a halide or 

alkoxy functionality on the Si8O12 building block could lead to substantial gains in 

atom economy depending upon the method used  to place those groups on the 

building block.  In subsequent reactions of the trialkyl tin cube with a metal 

halide, shown schematically in Equation 2, the by-product is a chlorotrialkyl tin.  

While ClSnMe3 can be converted to O(SnMe3)2 using bench top procedures by 

the Barnes group,57 no such procedures are in place for ClSnnBu3.  Finally, all 

trialkyl tin groups must be removed from a non-aqueous building block material in 

order to insure that the material is a single-site catalyst.  Substitution of the 

trialkyl tin functionality for a catalytically inert functional group will obviate the 

procedures needed to ensure complete removal of trialkyl tin groups from the 

material.   

Si8O12H8 + 8 O(SnR3)2 → Si8O20(SnR3)8 + 8 HSnR3   (1) 

Si8O20(SnR3)8 + 8 ClSiMe3 → Si8O20(SiMe3)8 + 8 ClSnR3  (2) 
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 Whatever functional group is chosen to replace the trialkyl tin group in the 

non-aqueous building block process, it is important to maintain the 

complimentary “A + B” functional group scheme.  The “A + B” functional scheme 

is important in preventing the formation of metal oxide domains that so often 

plagues hydrothermal and sol-gel syntheses. 

 As mentioned is the first chapter, control of the structural morphology of 

catalysts is also important.  While the Si8O20 building block was picked with the 

thought that materials prepared from it using the non-aqueous building block 

method would have high surface areas, little work has been done with regard to 

controlling the pore structure of NABB materials.  I conducted some experiments 

using block copolymers in a manner similar to that used by Kriesel and Tilley.138  

The initial trials were not successful, and the block copolymers that are most 

readily available are terminated with hydroxyl groups which are not compatible 

with the non-aqueous building block method used herein.  A wide variety of 

surfactants are available for use as structure directing agents, and the use of 

these in the NABB method should be investigated. 

Titanium non-aqueous building block materials 
Future work for the titanium non-aqueous building block materials should 

include examining the use of reagents with blocking groups to prepare materials 

with titanium centers that have connectivities less than four.  For example, 

titanocene dichloride could potentially be used to prepare a NABB material where 

the connectivity of the titanium centers in the material is two.  The challenge 
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associated with the use of blocking groups may be finding routes to remove the 

blocking groups from the titanium center without changing the connectivity of the 

center. 

The use of titanium clusters should also continue to be examined.  An 

open question in the literature is what nuclearity is required at active catalyst 

sites.  While it is widely believed that mononuclear sites are the only sites active 

for epoxidation reactions, the results for the Ti-dimer catalyst and the Ti6 cluster 

of Tuel134 suggest that this may not be the case.  The inclusion of well-defined 

polynuclear clusters in non-aqueous building block studies may help clarify the 

answer to this important issue in catalysis. 

Finally, the catalytic utility of titanium non-aqueous building block materials 

in other reactions should be explored.  Transesterification is a reaction that 

should be explored.  Clark performed some preliminary studies of 

transesterification activity using titanium NABB materials synthesized from the 

methyltin cube.59  Given the importance of transesterification to the synthesis of 

biodiesel139, the activity of titanium NABB materials in such reactions should 

definitely be explored. 

Closing Remarks 
The synthesis of single-site heterogeneous catalysts with nanostructured 

active sites is a fundamental challenge in the field of catalysis.  The development 

of synthetic methods capable of producing such catalysts is important to allow 
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the study of structure-activity relationships.  If scalable, those synthetic methods 

may be used to synthesize the next generation of catalysts used by industry. 

This work is one part of a larger study of the non-aqueous building block 

method for the synthesis of nanostructured single-site heterogeneous catalysts.  

The whole body of work on the non-aqueous building block method is directed at 

showing that the method is broadly applicable to an array of catalytically 

interesting transition metal and main group elements, and that it is useful for 

making active and selective heterogeneous catalysts that can be used in 

industrially relevant chemical reactions. 

 This work has shown that titanium materials can be successfully 

synthesized using the non-aqueous building block method.  These first 

generation titanium non-aqueous building block materials were used to study the 

structure-activity relationship of the titanium center in the epoxidation of 

cyclohexene with toluene.  The results of these experiments have highlighted 

issues that deserve further study.  Further success with other non-aqueous 

building block studies will allow this method to contribute to the body of 

fundamental knowledge regarding the effect of active site structure upon the 

activity of heterogeneous catalysts. 
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Determination of Peroxide Concentration via Iodimetric Titration 

Introduction 
 Peroxides are used as the oxidant in the epoxidation of olefins.  Due to the 

expense of organic peroxides used to enhance selectivity towards the epoxide 

product, an important consideration in determining the utility of a catalytic 

epoxidation reaction is the calculation of the percent of the peroxide converted to 

the peroxide.  In order to perform this calculation one must accurately know the 

concentration of the peroxide solution used as the oxidant in the reaction. 

 The concentration of peroxides that are easily reduced can be readily 

determined through iodimetric titration.  Such peroxides react readily with the 

iodide anion, I-, to form the red-brown triiodide anion, I3-, under reflux conditions 

within five minutes (Equation 1).  Triiodide then reacts with two equivalents of 

thiosulfate to yield iodide and render the solution colorless (Equation 2).  The 

method given below is appropriate for use with peroxoacids, diacyl peroxides, 

and all hydroperoxides.  This method is based largely upon the work of Mair and 

Graupner whose paper also includes methods for determining the concentration 

of peroxides that are easily reduced such as di-tert-butylperoxide.136 

ROOH + 3 I- ↔ I3- + ROH + H2O  (1) 

I3- + 2 S2O3
2- ↔ 3 I- + S4O6

2-  (2) 
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Preparation of Standard Sodium Thiosulfate140 
 Sodium thiosulfate, Na2S2O3, is a widely used titrant for I3- and is the titrant 

used in this method.  Thiosulfate solutions can be standardized with a fresh 

solution of I3- prepared from potassium iodate, KIO3, and potassium iodide, KI, or 

a solution of I3- standardized with tetraarsenic hexoxide.  Alternatively, one can 

use anhydrous Na2S2O3, which is a suitable primary standard.  Anhydrous 

Na2S2O3 can be prepared from 21 g of Na2S2O3 · 5H2O by refluxing with 100 mL 

of methanol for 20 minutes.  The anhydrous product is then filtered, washed with 

20 mL of methanol, and dried at 70 °C for 30 minutes.  This procedure is also 

suitable for restoring old anhydrous Na2S2O3 to primary standard quality. 

 Thiosulfate solutions should be stored in the dark.  The addition of 0.1 g of 

sodium carbonate per liter of solution maintains the pH in the optimum range for 

stability of the solution.  If long-term storage is planned thee drops of chloroform 

should be added to the solution to inhibit bacterial growth. 

Method of Iodimetric Titration 
1. Pour 20-50 mL of an isopropanol solution that is 10% acetic acid by 

volume into a round bottomed flask equipped with a stir bar. 

2. Add 2 g (13 mmol) of sodium iodide, NaI, and 10 mL of isopropanol to the 

round bottomed flask. 

3. Dissolve the NaI completely with stirring. 

4. Add up to 4 mmol of peroxide sample to the flask. 

5. Reflux the sample for at least 5 minutes. 
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6. Add 5-10 mL of water. 

7. Titrate with a standard Na2S2O3 solution.  Recommended concentration is 

between .4 and .8 M.  Remember to add a few drops of 1% starch solution 

to enhance the remaining color as you approach the endpoint.  Be aware 

that the reaction between the thiosulfate and triiodide is slow.  I 

recommend waiting 30 seconds to 1 minute between additions of titrant 

near the end point to allow the solution time to go colorless between 

additions. 
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