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Abstract

We de�ne a uniformity on a glued space under uniformly continuous attachment
maps. If the component spaces are uniform coverable then the resulting glued space
is uniform coverable. We consider examples including the glued uniformity on a
�nite dimensional CW complex which is shown to be uniformly coverable. For one
dimensional CW complexes, the resulting deck group is equivalent to the fundamental
group. Other properties of the deck group are explored.
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1 Introduction

The fundamental group is a powerful tool for determining when two topological spaces
are not homeomorphic. It works well for topological spaces which are locally nice
in the sense that they are locally path connected and semi-locally simply connected.
For more complicated spaces, variations of the fundamental group have been found
and used to explore topological properties. In 2001, Sormani and Wei [12] de�ned a
"revised" fundamental group on the Gromov-Hausdor¤ limit of sequences of compact
manifolds with a uniform lower Ricci curvature bound and a uniform upper diameter
bound. In 2000, Cannon and Conner [5] de�ned a "Big" fundamental group for use in
studying spaces similar to the Hawaiian Earring (which is not a semi-locally simply
connected space).
More recently, Berestovski and Plaut [2] have de�ned a "deck" group in the cat-

egory of uniform spaces, which allows for a type of covering space theory in this
category. In essence, paths are replaced with inverse limits of sequences allowing
one to suspend path connected requirements. The deck group is equivalent to the
fundamental group in many instances, although there are examples in which they
di¤er. Many questions arise concerning the extent to which traditional theory corre-
sponds to the uniform covering space theory. The present paper attempts to address
some of these questions. In particular we will show that some of the lifting properties
associated with a traditional cover extend to uniform covers (see theorem 38). We
will prove an analog of the Van Kampen Theorem for deck groups (theorem 61). We
also de�ne a uniformity on a space formed by attaching uniform spaces via uniformly
continuous maps (de�nition 42). If the spaces involved are uniform coverable then so
is the glued uniform space (56). In particular we will show that this uniformity on a
one-dimensional CW complex has a deck group which is equivalent to the fundamental
group 66).
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2 Background

The following is a brief introduction to uniform spaces. We will follow the construction
in [11]. [8] and [3] are also helpful resources for uniform spaces. If the reader is already
familiar with uniform spaces, it is important to note that, following [11], our use of
the term "entourage" will mean a symmetric entourage.
Intuitively, a uniform space is a topological space with enough structure to be able

to de�ne a notion of a uniformly continuous function. In metric spaces a function
f : X ! Y is uniformly continuous if the inverse image of an "-ball centered at any
point f(x) in the image of f contains a �-ball centered at x. " and � are �xed in
this de�nition, but the criterion is independent of the points x in X. In essence, the
metric provides, for each " > 0, a way of specifying a collection of neighborhoods, one
for each point in the space. Informally speaking, the inverse image of each " collection
must contain a � collection. Uniform Spaces are generalizations of metric spaces in
which collections of neighborhoods are speci�ed. Just as a metric is de�ned between
each pair of points, a uniform structure is de�ned on the product space X �X.

De�nition 1 A �lter on a set X is de�ned to be a collection F of subsets of X which
satisfy the following properties:

1. ; =2 F .

2. If A;B 2 F then A \ B 2 F (intersections of elements of F are also elements
of F).

3. If A 2 F and A � B then B 2 F (supersets of elements of F are also elements
of F).

Let X be a set and let � = f(a; a) 2 X �X j a 2 Xg (the diagonal). A subset E
of X �X is said to be symmetric if (a; b) 2 E =) (b; a) 2 E. We de�ne a "product"
on the collection of subsets of E in the following way.

De�nition 2 If E, F are any two subsets of X � X then E � F := f(a; c) j there
exists b 2 X such that (a; b) 2 E and (b; c) 2 Fg.

Thus a pair (a; c) is in the product of E and F if there exists a sequence with
three elements a; b; c such that the �rst pair is an element of E while the second pair
is an element of F . In particular, if one forms En (the nth product of E with itself)
then (a; b) 2 En implies the existence of a sequence a; x1; x2; :::xn�1; b such that each
sequential pair is an element of E.

De�nition 3 Let 
 be a collection of subsets of X � X which satisfy the following
properties:

1. For all E 2 
, � � E. (Every subset in the collection contains the diagonal).

2. For all E 2 
; E is symmetric.

3. If E;F 2 
 then there exists D 2 
 such that D � E \ F:
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4. For every E 2 
 there exists an F 2 
 such that F 2 � E

Then the collection F := fK � X � X j there exists E 2 
 such that E � Kg
forms a �lter on X � X. F is called a uniformity on X while 
 is called a basis
for the uniformity F . Notice that if 
 is a basis for a uniformity then the collection

 [ fX � Xg is also a basis for the same uniformity. Hence we may add the set
X�X to any basis, and will do so automatically. A set X together with a uniformity
will be called a uniform space. If 
 also satis�es: 5) \
E = � (The intersection of
all E in 
 is the diagonal) then the uniform space will be called Hausdor¤ (see 8).

De�nition 4 An entourage is de�ned to be any symmetric element of a uniformity.

Proposition 5 If X is a uniform space with basis 
, and uniformity F then the set
� of all entourages (symmetric elements of F) forms a basis for the uniformity. If 

satis�es condition 5 then so does the set of all entourages.

Proof. 1) For any G 2 F we have, by de�nition, that G is a superset for some F 2 
.
Thus � � F � G.
2) This statement is true by de�nition.
3) Let G1; G2 be entourages, and F1; F2 2 
 such that F1 � G1 and F2 � G2. We

let K 2 
 such that K � F1 \ F2 � G1 \ G2. Then, since K is an entourage, K
satis�es property 3 for G1; G2:
4) Let G be an entourage and F 2 
 such that F � G. Let K 2 
 be such that

K2 � F � G. Then, since K is an entourage, K satis�es property 4 for G.
5) We assume that \
E = �. Since the collection of entourages is larger than 


we have \F2�F � \E2
E = �. However, since � � E for all entouages � � \F2�
and property 5 holds.

De�nition 6 The basis for a uniformity consisting of all entourages will be called a
full basis.

We note that in most references conditions 2 is not required for a basis of a unifor-
mity, or for the de�nition of an entourage. However, given a uniformity, it is always
possible to form a basis consisting of symmetric subsets of X � X (see [2], or [3]).
Since we will be working exclusively with symmetric elements of a uniformity, it will
be convenient to assume this condition from the start. It is also important to note
that a given set X can have more than one distinct uniformity, just as a given set
can have multiple topologies de�ned on it. Every entourage E in a uniform space
determines a collection of subsets of X, one for each point x 2 X, by considering
the projections of E onto X. Following the notation for metric spaces, we have the
following de�nition.

De�nition 7 Let E be an entourage of a uniform space X. The E-ball centered at
x 2 X is B(x;E) := fy 2 X j (x; y) 2 Eg.
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Proposition 8 Declare a set U � X to be open if for all x 2 U there exists E 2 

such that B(x;E) � U . Then the collection of all open subsets of X forms a topology
on X called the topology induced by 
. For each x 2 X and E 2 
 we can �nd
an open set U such that U � B(x;E). Further, condition 5 in the de�nition of a
uniformity is equivalent to the topology being Hausdor¤ (see propostions 1 and 3 of
II.1.2 of [3].

Proof. Clearly ; is open since it is vacuous and X is open since the condition is
satis�ed for every E in 
. Suppose U and V are open. Then for each x in U \V there
exists Ex; Fx 2 
 such that B(x;Ex) � U and B(x; Fx) � V . By property 3 we may
�nd Dx 2 
 such that Dx � Ex\Fx. By de�nition B(x;Dx) � B(x;Ex)\B(x; Fx) �
U \ V and hence U \ V is open. Finally, if x 2 [�U� where each U� is open, then
x 2 U� for some �. Hence there exists an E 2 
 such that B(x;E) � U� � [�U� and
[�U� is open. We conclude that the collection of open subsets forms a topology. To
prove the second statement, let U = fy 2 X j for some F 2 
, B(y; F ) � B(x;E)g.
Then, for each y 2 U we have that y 2 B(y; F ) � B(x;E) and hence U � B(x;E).
Further, x 2 U since, in particular B(x;E) � B(x;E). We must show that U is open.
Let y 2 U and F 2 
 such that B(y; F ) � B(x;E). We must �nd a K such that
B(y;K) � U . We choose K to be any entourage such that K2 � F . The problem is
now to show that if a 2 B(y;K) then a 2 U . In fact, if a 2 B(y;K) and b 2 B(a;K)
then (y; a); (a; b) 2 K so that (y; b) 2 K2 � F . But then, since B(y; F ) � B(x;E)
we must have that b 2 B(x;E). Thus we have shown that B(a;K) � B(x;E) so that
a 2 U .
To see that this topology is Hausdor¤ under condition 5, let x; y be distinct points

of X. We may �nd an entourage E such that (x; y) =2 E. Further, we �nd an
entourage F such that F 2 � E. We claim thatB(x; F )\B(y; F ) is empty. Then, since
B(x; F ) and B(y; F ) contain open sets containing x and y respectively, the Hausdor¤
condition would be satis�ed. Now, for the purpose of contradiction, suppose that
a 2 B(x; F ) \ B(y; F ). Then, since F is symmetric we have that (x; a) 2 F and
(a; y) 2 F . But then (x; y) 2 E which is a contradiction. Thus condition 5 implies
Hausdor¤. To see that Hausdor¤ implies condition 5 (assuming conditions 1-4) let
(x; y) 2 �c. Then we may �nd open sets U and V such that x 2 U , y 2 V and
U \ V is empty. Further we may �nd entourages E;F such that B(x;E) � U and
B(y; F ) � V . Choosing D � E \ F we have that B(x;D) � U , B(y;D) � V and
B(x;D) \ B(y;D) is empty. Then, in particular y =2 B(x;D) and (x; y) =2 D. Thus
(using condition 1) we have that \
 = �.

De�nition 9 The topology on X determined by 8 is called the topology induced by
the uniformity base 
.

Uniform spaces generalize both metric spaces and topological groups as the fol-
lowing examples show. For background and relevant de�nitions for these examples,
one may consult [3].

Example 10 (Metric Spaces) Let M be a metric space (see [4]). For each � > 0 we
de�ne E(�) = f(x; y) j d(x; y) < �g. We then de�ne a uniformity base on M �M
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as the collection 
 = fE(�) j � > 0g. Then the properties of metric spaces translate
into properties of uniformity bases in the following way.
1) Since d(x; x) = 0 for all x we have that (x; x) < � and hence (x; x) 2 E(�) for

all x 2 X and � > 0. Thus � � E(�) for all E(�) 2 
.
2) Since d(x; y) = d(y; x) we have that (x; y) 2 E(�) =) (y; x) 2 E(�). Hence

E(�) is symmetric.
3) (x; y) 2 E(�1)\E(�2) =) d(x; y) < �1 and �2 and hence (x; y) 2 E(min(�1; �2)).

Thus, in fact E(�1) \ E(�2) = E(min(�1; �2)).
4) If (x; y) 2 E(�=2)2 then by de�nition there exists z 2M such that (x; z); (z; y) 2

E(�=2). But then, by the triangle inequality, d(x; y) � d(x; z)+d(z; y) < �=2+�=2 = �
so that (x; y) 2 E(�). This shows that for each � > 0, E(�=2)2 � E(�):
Thus 
 forms a uniformity base on the metric space M . Notice that:

B(x;E(�)) = fyj(x; y) 2 E(�)g = fyjd(x; y) < �g = B(x; �)

Hence the topology induced by the uniformity base is equivalent to the metric
topology.

Example 11 (Topological Groups) Let G be a topological group (see chapter III of [3])
and U a symmetric open subset of the identity (i.e. e 2 U and g 2 U =) g�1 2 U).
Then we de�ne E(U) = f(g; h) j gh�1 2 Ug. The collection 
 = fE(U) j U is a
symmetric subset of the identityg forms a uniformity base.
1) Since gg�1 = e 2 U we have that (g; g) 2 E(U) for all g 2 G and hence

� � E(U) for all U .
2) (g; h) 2 U =) gh�1 2 U =) (gh�1)�1 = hg�1 2 U (since U is symmetric)

=) (h; g) 2 U . Hence E(U) is symmetric.
3) By the properties of the topology we have that if U; V are open subsets of the

identity then so is U\V . In fact, U\V is also symmetric since g 2 U\V =) g�1 2 U
and g�1 2 V (since U and V are symmetric) and hence g�1 2 U \ V . We show that
in fact E(U \ V ) = E(U) \ E(V ). Let (g; h) 2 E(U \ V ). Then gh�1 2 U \ V and
hence gh�1 2 U and gh�1 2 V . Thus (g; h) 2 E(U) and E(V ).
4) In a topological group WV = fg1g2 j g1 2 W; g2 2 V g. By the properties of

a topological group, it is possible to �nd, for each U (a symmetric open subset of
the identity) a V (a symmetric open subset of the identity) such that V 2 � U . We
show that E(V )2 � E(U). Let (g1; g2) 2 E(V )2. Then there exists an h 2 G such
that (g1; h) 2 E(V ) and (h; g2) 2 E(V ). Thus g1h�1; hg�12 2 V . But then g1g�12 =
(g1h

�1)(hg�12 ) 2 V 2 � U and we have the result.

Let X and Y be uniform spaces, and f : X ! Y . We wish to consider the
properties of entourages (subsets of X � X and Y � Y ) under the mapping f � f .
Following [11], we adopt the following convention.

Remark 12 Let X and Y be uniform spaces, f : X ! Y , E an entourage of X�X
and F an entourage of Y � Y . We de�ne f(E) = f(f(x); f(y)) j (x; y) 2 Eg. Thus
f(E) really means (f�f)(E). Similarly f�1(F ) = f(x; y) 2 X�X j (f(x); f(y)) 2 Fg
or in other words f�1(F ) = (f�f)�1(F ). Further, we will state that E is an entourage
of X rather that of X �X.
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De�nition 13 A function f : X ! Y is de�ned to be uniformly continuous if for
each entourage F of Y , f�1(F ) is an entourage. If f is surjective and, in addition,
there exists for each entourage E of X an entourage F of Y such that F � f(E)
then f will be called bi-uniformly continuous. Finally, if a bi-uniformly continuous
function is also one-to-one, then it is termed a uniform homeomorphism.

Proposition 14 A uniformly continuous function is a continuous function between
the topological spaces induced on X and Y by the uniformities (see proposition 1 of
section II.2.1 in [3]).

Proof. Let U be open in Y , and x 2 f�1(U). By de�nition, we may �nd an
entourage F in Y such that B(f(x); F ) � U . Let E � f�1(F ) and consider B(x;E).
If a 2 B(x;E) then (x; a) 2 E so that, by the choice of E we have (f(x); f(a)) 2 F .
But then f(a) 2 B(f(x); F ) � U . Hence B(x;E) � f�1(U) which implies that
f�1(U) is open.
We note that it is possible for a bi-uniformly continuous function between uniform

spaces to fail to be a uniform homeomorphism. For example, let R be given the
standard metric, and let S1 be the unit circle under the length metric (the distance
between points is the length of the shortest curve between them). If R and S1 are
given the metric uniformities outlined in 10 and f : R! S1 is the covering map given
by f(x) = e2�ix then f is bi-uniformly continuous, but not one-to-one. To see that
f is bi-uniformly continuous, let F (�) be the entourage in S1 determined by � and
E(�) the entourage in R determined by �. Then, for � < 1

2
; E(�) � f�1(F (�)) while

f(E(�)) = F (�).
There is, then, a category whose objects are uniform spaces and whose morphisms

are uniformly continuous functions. In [2] a covering space theory is developed for
this category, which allows one to de�ne a "deck group" which will be labeled �1(X).
In many cases, the deck group is the traditional fundamental group. In cases where
it is not, however, this theory has the advantage of extending many algebraic topo-
logical results to spaces for which the traditional fundamental group is less useful
(see example). It is worth emphasizing that the deck group is a functor from the
uniform space category, and not the more general topological space category. Thus
it is possible for homeomorphic spaces to have di¤erent uniform fundamental groups.
We will outline Plaut, Berestovski theory below. Let X be a uniform space. We

begin by constructing, for each entourage E in X, a uniform space XE, which is a
traditional covering space of X. Let E be a �xed entourage of X which means, in
particular that E is symmetric (See 4 above.) We consider the following collection
of sequences SE := f x0; x1; :::xn j (xi�1; xi) 2 E for 1 � i � ng. If X is a metric
space and E = E(�) then SE(�) would consist of those sequences such that two
consecutive elements in the sequence are no farther apart than �. An element of SE
is called an E-chain. In order to avoid confusion, we will denote an E-chain using the
notation 
 = fx0; x1; :::xng. If 
 = fx0; x1; :::xng,and � = fy0; y1; :::ymg are two E-
chains such that xn = y0 then the E-chain 
� = fx0; :::xn; y1:::ymg, and the E-chain

�1 = fxn; xn�1; :::x0g (which is an E-chain since E is symmetric).

6



De�nition 15 Let 
 = fx0; x1; :::xng 2 SE and suppose that for some 1 � i � n,
there exists z 2 X such that (xi�1; z) 2 E and (z; xi) 2 E. Then the E-chain � =
fx0; x1; :::xi�1; z; xi; :::xng is said to be an expansion of 
 whereas 
 is a contraction
of �. A �nite sequence of E-chains �0; �1; :::�m 2 SE such that �i is an expansion or
contraction of �i�1 for 1 � i � m is called an E-homotopy from �0 to �m. Notice that
in an E-homotopy, the beginning and ending points in the sequences are all the same.
An E-homotopy is essentially a "�xed-endpoint" homotopy. Two E-chains 
; 
0 2 SE
are E�equivalent if there exists an E-homotopy between them. To form XE we �x
a basepoint � 2 X, and let S�E be the set of E-chains such that x0 = �, i.e. the set
of E-chains which begin at �. It is easy to see that E-equivalence is an equivalence
relation on S�E. We de�ne XE to be S�E modulo E-equivalence. Elements of XE will
be denoted [
]E. The common initial point and end point of the E-chains in [
]E will
be called the initial point and end point of [
]E.

An E-chain in the uniform structure of X is analogous to a path in the topological
structure of X. We now de�ne a uniform structure on XE in a manner which, for
length spaces, is roughly parallel to the � cover in [12].

De�nition 16 For each D � E we de�ne an entourage D� of XE to be the set
of all pairs ([
]E; [�]E) such that [
]E = [f� = x0; x1; :::xn; ag]E , [�]E = [f� =
x0; x1; :::xn; bg]E and (a; b) 2 D. Thus D� is the collection of all pairs in XE whose
endpoints form a pair in D and which are E-homotopic to E-chains which di¤er only
in their endpoints. The uniformity properties of D� follow easily from the uniformity
properties of D, as we now show.

Proposition 17 The collection fD� � XE�XE j D � Eg is a basis for a uniformity
on XE (see proposition 16 of [2]). If X is Hausdor¤, then so is XE.

Proof. 1) Let 
 = f� = x0; x1; :::xng be any E-chain beginning at �. Then
([
]E; [
]E) 2 D� since (xn; xn) 2 D and 
 = 
.
2) Let [
]E = [f� = x0; x1; :::xn; ag]E , [�]E = [f� = x0; x1; :::xn; bg]E be such that

([
]E; [�]E) 2 D�. Then (a; b) 2 D and the symmetry of D implies that (b; a) 2 D.
Hence ([�]E; [
]E) 2 D�.
3) Let D1; D2 � E. Choose an entourage K � D1 \ D2. Then, if [
]E = [f� =

x0; x1; :::xn; ag]E , [�]E = [f� = x0; x1; :::xn; bg]E are such that (a; b) 2 K then (a; b) 2
D1 \D2: Hence K� � D�1 \D�2.
4) Let D � E and �nd an entourage K such that K2 � D. Suppose that

([
]E; [�]E) 2 (K�)2. Then there exists [�]E such that ([
]E; [�]E); ([�]E; [�]E) 2
K�. Then there exists 
 2 [
]E; �1; �2 2 [�]E;and � 2 [�]E such that 
 = f� =
x0; x1; :::xn�1; ag; �1 = f� = x0; x1; :::xn�1; cg; �2 = f� = y0; y1; :::ym�1; cg; and � =
f� = y0; y1; :::ym�1; bg. In particular we have that (a; c) and (c; b) are elements of
K � E and hence �� = f� = y0; y1; :::ym�1; c; bg is an E-chain in the equivalence class
[�]E whereas �
 = f� = x0; x1; :::xn�1; c; ag is an E-chain in the equivalence class of
[
]E. Using the equivalence �1 � �2 we see that �
 � f� = y0; y1; :::ym�1; c; ag which
di¤ers from �� only in the �nal element. Since (a; c) and (c; b) are elements of K and
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K2 � D we have (a; b) 2 D. Thus, by de�nition, ([
]E; [�]E) 2 D� and we obtain
that (K�)2 � D�

We now assume that X satis�es condition 5) in the de�nition of a basis for a
uniform space. Suppose [
]E; and [�]E are distinct elements of XE. We must �nd
some D� such that ([
]E; [�]E) =2 D�. In general, we may not assume that the
endpoints of E-chains in [
]E;and [�]E are distinct even if [
]E;and [�]E are distinct.
Suppose for the sake of contradiction, however, that the endpoints are the same. Then
for any D�, if ([
]E; [�]E) 2 D� then [
]E = [f� = x0; x1; :::xn; ag]E and [�]E = [f� =
x0; x1; :::xn; bg]E. Since the endpoints are the same a = b and f� = x0; x1; :::xn; bg =
f� = x0; x1; :::xn; ag which implies that [
]E = [�]E a contradiction. Hence we may
assume that the endpoints are distinct. Now, we may �nd an entourage K1 in X such
that (a; b) =2 K1, and then an entourage K2 � K1 \ E. If ([
]E; [�]E) 2 K�2 however,
then (a; b) 2 K2 � K1 which is a contradiction.
Thus XE is in fact a uniform space. Notice that if E = X �X then (a; b) 2 E for

all a; b 2 X. Hence for all c 2 X we have that fa; c; bg is an expansion of fa; bg:This
implies that [
]X�X is uniquely determined by its end point. Thus we have the
following proposition.

Proposition 18 If X is a uniform space then X is uniformly homeomorphic to
XX�X (see notation 28 in [2]).

Proof. We simply de�ne f : XX�X ! X as f([f� = x0; x1; :::xng]X�X) = xn (the
end point map). The map is surjective since given a 2 X we have f�; ag is an X �X
chain and hence f([f�; ag]X�X) = a. It is also injective since [
]X�X is uniquely
determined by its end point. Let E be an entourage of X and E� the associated
entourage of XX�X . If ([f�; ag]X�X ; [f�; bg]X�X) 2 E� then (a; b) 2 E and hence
(f([f�; ag]X�X); f([f�; bg]X�X)) = (a; b) 2 E. If (f([f�; ag]X�X); f([f�; bg]X�X)) 2
E then by necessity (a; b) 2 E and hence ([f�; ag]X�X ; [f�; bg]X�X) 2 E�. Thus
f(E�) = E and f is a uniform homeomorphism.
For each entourage E of X there is an associated group in XE. De�ne any E-

chain whose initial and end points are the same to be an E-loop. If we let �E(X) =
f[
]E j 
 is an E�loopg then �E(X) forms a group under the operation induced by
concatenation. More speci�cally, if [
]E; [�]E 2 �E(X) then the product [
]E � [�]E =
[
�]E.

Proposition 19 �E(X) under the operation � forms a group (see de�nition 36 of
[2]).

Proof. We �rst establish that the operation is well de�ned on the equivalence
classes of XE. Let 
0 2 [
]E and �0 2 [�]E. Let 
 = 
0;
1; 
2; :::
s = 
0 and
� = �0; �1; �2; :::�t = �0 be corresponding E-homotopies. Then


� = 
0�0; 
1�0; 
2�0; :::
s�0; 
s�1; 
s�2; :::
s�t = 
0�0

is an E-homotopy from 
� to 
0�0. The operation is also associative since [
]E �([�]E �
[�]E) = [
��]E = ([
]E � [�]E) � [�]E. The element [f�; �g]E is an identity element. To
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see this, let [
]E 2 �E(X) where 
 = f�; x1; :::xn�1; �g. Then, in particular, by the def-
inition of an E-chain, (xn�1; �) 2 E. Hence [
]E�[f�; �g]E = [fx0; x1; :::xn�1; �; �g]E =
[
]E since (xn�1; �) and (�; �) 2 E implies that f� = x0; x1; :::xn�1; �; �g is an expan-
sion of 
. A similar result holds for [f�; �g]E�[
]E. Finally, we show that [
�1] = [
]�1.
Notice that:

[
]E � [
�1]E = [

�1]E = [f�; x1; :::xn�1; �; xn�1; xn�2; :::x1; �g]E

Now, since (xn�1; xn�1); (xn�1; �) and (�; xn) 2 E we have that fxn�1; xn�1g is a
contraction of fxn�1; �; xn�1g. Further, since (xn�2; xn�1) and (xn�1; xn�1) 2 E we
have that fxn�2; xn�1g is a contraction of fxn�2; xn�1; xn�1g. Similarly, fxn�2; xn�2g
is a contraction of fxn�2; xn�1; xn�2g. Thus we have established that

[f�; x1; :::xn�1; �; xn�1; xn�2; :::x1; �g]E = [f�; x1; :::xn�2; xn�2; :::x1; �g]E

We may proceed inductively to show that in fact [
]E � [
�1]E = [f�; �g]E. Since
(
�1)�1 = 
 we have that [
�1]E � [
]E = [
�1]E � [(
�1)�1]E = [f�; �g]E and hence
[
�1] = [
]�1.

De�nition 20 The group �E(X) is called the E-deck group of the entourage E.

Proposition 21 If F and E are entourages in X such that F � E then any F -chain
is automatically an E-chain. We may therefore de�ne a function �EF : XF ! XE

by setting �EF ([
]F ) = [
]E. �EF is uniformly continuous (see lemma 22 of [2]).
Further, �EF j�F (X) : �F (X)! �E(X) is a group homomorphism (theorem 39 in [2]).

Proof. To see that this function is well de�ned on the equivalence classes of XF

suppose 
 = �0; �1; :::�s = 
0 is an F -homotopy. Then each �i is an E-chain and
hence 
0 is E-equivalent to 
, and [
]E = [
0]E. We show further that each �EF
is uniformly continuous. Let D� be an entourage in XE, so that D � E. If we
choose K � D \ F then K � F so we can de�ne K�F to be the entourage of XF

de�ned by K . If ([
]F ; [�]F ) 2 K�F then [
]F = [f� = x0; x1; :::xn; ag]F , and [�]F =
[f� = x0; x1; :::xn; bg]F for some F -chain f� = x0; x1; :::xng and (a; b) 2 K. Hence
�EF ([
]F ) = [f� = x0; x1; :::xn; ag]E and �EF ([�]F ) = [f� = x0; x1; :::xn; bg]E where
(a; b) 2 K � D. Hence (�EF ([
]F ); �EF ([�]F )) = ([
]E; [�]E) 2 D�. This shows
that K�F � ��1EF (D

�) and �EF is uniformly continuous. To see that �EF j�F (X) is
a group homomorphism, we note �rst that the image of �EF j�F (X) lies in �E(X)
since end points are preserved under this mapping. Further, �EF j�F (X)([
]F � [�]F ) =
�EF j�F (X)([
�]F ) = [
�]E = [
]E � [�]E.

Proposition 22 Let 
 be the full basis for X consisting of all entourages. If E;F 2

, then we set E � F if F � E. This is a partial ordering on the collection of all
entourages which is directed, since given E;F we may �nd D � E \ F and hence
E � D and F � D. The collection fXEgE2
 together with the mappings �EF form
an inverse system in the category of uniform spaces. Further, the collection f�E(X)g
together with the homomorphisms �EF j�F (X) form an inverse system in the category
of groups (see the paragraph following lemma 26 in [2]).
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Proof. We must show that if E � F � D then �EF ��FD = �ED. This follows from
(�EF � �FD)([
]D) = �EF ([
]F ) = [
]E = �ED([
]D).
By the preceding proposition, we may form, for each uniform space X, the inverse

limits ~X = lim
 �

XE and �1(X) = lim
 �

�E(X). Notice that if (
) 2 ~X then for each

entourage E the projection mapping  E(
) = [
]E has the same initial and end points.
In general, we focus our attention on uniform spaces of the following type.

De�nition 23 ~X is called the fundamental inverse system of X. �1(X) is called the
deck group. A uniform space is said to be uniform coverable if there exists a basis

 for the uniformity (which includes the entourage X �X) such that the projection
maps  E : ~X ! XE are surjective. The basis 
 is called a covering basis.

Let X be a uniform space. In [11] Plaut considers the group HX of all uni-
form homeomorphisms of X with the product operation given by composition. The
topology on HX is the topology of uniform convergence. If G is a subgroup of HX

then G is said to act discretely on X if there exists an entourage E of X such that
(g(x); x) 2 E =) g = id:The term comes from the fact that if G acts discretely on X
then G is a discrete subgroup of HX (in the subspace topology). Let fX�; f��g�2A be
an inverse system of sets over an index A, and fG�; h��g�2A be an inverse system of
groups over the same index such that G� acts on X�. If the systems are compatible
in the sense that f��(gx) = h��(g)f��(x) then we have an inverse system of actions.
In this case the group lim

 �
G� acts on lim �

X� via the relation (g�)(x�) = (g�x�) and

such an action is termed a prodiscrete action. In particular, every discrete action is
prodiscrete. If, given a prodiscrete action, there exists a basis 
 for the uniformity
on X such that g(E) = E for all g 2 G and E 2 
 then the projection � : X ! X=G
is called a uniform cover. That X=G forms a uniform space is a non-trivial result in
[11]. In [2] it is proved that if a uniform space is uniform coverable then the projection
 X�X : ~X ! XX�X (= X by 18) is a uniform cover and �1(X) is the deck group.
The set of uniform coverable uniform spaces is large and includes path connected,

locally compact topological groups [1], geodesic metric spaces, connected locally path
connected compact topological spaces, Peano continua [2] and �nite dimensional CW
complexes (see 64 of this work).

De�nition 24 For a uniform coverable space X, ~X will be called the uniform uni-
versal cover and �1(X) the uniform fundamental group.

De�nition 25 A uniform space is called chain connected if, for each entourage E
and pair (a; b) 2 X � X there exists an E-chain from a to b. Thus, between every
two points in X there exist "�ner and �ner" E-chains between them.

Proposition 26 A uniform coverable uniform space is chain connected (see lemma
44 in [2]).
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Proof. Let (a; b) 2 X �X. Then, in particular f�; ag and f�; bg are X �X chains.
SinceX�X is an entourage in the covering basis ofX we have that  X�X is surjective.
Hence there exists (
1); (
2) 2 ~X such that  X�X(
1) = [f�; ag]X�X and  X�X(
2) =
[f�; bg]X�X . Let E be any entourage of the covering basis of X and consider  E(
1) =
[�]E = [f� = x0; x1; :::xn = ag]E and  E(
2) = [�]E = [f� = y0; y1; :::ym = bg]E. Then
��1� is an E-chain from a to b and the result follows.

Proposition 27 Let X and Y be uniform spaces and f : X ! Y a uniformly con-
tinuous function. Let F be an entourage in Y and E and entourage in X such that
f(E) � F . If 
 = f� = x0; x1; :::xng is an E-chain, we de�ne f(
) = ff(�) =
f(x0); f(x1); :::f(xn)g.We let � be the basepoint in X and f(�) be the basepoint in Y .
De�ne fEF : XE ! YF by fEF ([
]E) = [f(
)]F . Then fEF is a well de�ned uniformly
continuous function (see theorem 30 of [2]). In particular, �EF = idFE.

Proof. Notice that f(
) is an F -chain by the assumption on E. Further, if 
 =
�0; �1; :::�s = 
0 is an E-homotopy then f(
) = f(�0); f(�1); :::f(�s) = f(
0) is an
F -homotopy and hence the function fEF is well de�ned. To see that the function is
uniformly continuous, let D � F and K � E \ f�1(D). If 
 = f� = x0; x1; :::xn; ag
and � = f� = x0; x1; :::xn; bg are E-chains such that ([
]E; [�]E) 2 K� then (a; b) 2 K
and hence (f(a); f(b)) 2 D (since K � f�1(D)). Thus (f([
]E); f([�]E)) 2 D� and
K� � f�1EF (D

�).
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3 Basic Results

In the work that follows, it will frequently be necessary to switch basepoints in the
consideration of E chains. We will need to see, for example, that if E is a covering
entourage from the vantage of one basepoint, then it is a covering entourage from
the vantage of any other basepoint. Independence of basepoint for path connected
spaces is an important feature of traditional covering space theory. The fact that, for
a chain connected uniform space X, the same is true, i.e. it is possible to substitute
any other point of X for the basepoint is established in [2]. Lemmas 28 and 29 along
with proposition 30 provide a more explicit justi�cation.
For the following lemmas, let z 2 X where X is a uniform space. Denote by

~Xz the inverse limit of the fundamental system of X using z as basepoint and by
Xz
E; �

z
EF ; and  

z
E the elements, bonding maps, and projection maps of this system.

The equivalence classes of Xz
E will be denoted as [x]

z
E.

Lemma 28 Suppose that ([
F ]F ) 2 ~Xb1 is such that  b1E [([
F ]F )] = [
E]
b1
E where


E := fb1 = x0; x1; :::; xn = b2g. In other words, the Eth representative of ([
F ]F )
is the equivalence class determined by the chain 
E from b1 to b2. Then there exists
(
�1) 2 ~Xb2 such that  b2E [(


�1)] = [
�1E ]
b2
E where u�1 := fb2 = xn; xn�1; :::; x0 = b1g

(the Eth representative of (
�1) is the equivalence class determined by u�1 from b2 to
b1).

Proof. For each entourage F we de�ne the F th element of (
�1) to be [
�1F ]
b2
F where


F is the F th element of ([
F ]F ). 

�1
F exists since F is symmetric. Then, if F � K

we have that �b1KF ([
F ]
b1
F ) = [
K ]

b1
K so there exists a K homotopy 
F = �0; �1; :::�n =


K . Since K is symmetric, 
�1F = ��1n ; ��1n�1:::�
�1
0 = 
�1K is a K homotopy from 
�1F to


�1K . Hence �b2KF ([

�1
F ]

b2
F ) = [


�1
K ]

b2
K and hence (
�1) 2 ~Xb2 is well de�ned. Further,

we have that  b2E [(

�1)] = [
�1E ]E by de�nition, so that the Eth representative of (


�1)
is [
�1E ]

b2
E .

Lemma 29 Let ([
F ]F ) 2 ~Xb1be such that the endpoint of each 
F is b2 and let
([�F ]F ) 2 ~Xb2. De�ne [�]b1F = [
F�F ]

b1
F Then ([�F ]F ) 2 ~Xb1.

Proof. Let F � E. Since �b1EF ([
F ]
b1
F ) = [
E]

b1
E there must be an E homotopy


F = 
0; 
1; :::
n = 
E from 
F to 
E. Similarly there exists an E homotopy
�F = �0; �1; :::�m = �E from �F to �E. Then we have that


F�F = 
0�0; 
1�0; :::; 
n�1�0; 
n�0; 
n�1; :::
n�m = 
E�E

is an E homotopy from 
F�F to 
E�E. Hence, �
b1
EF ([
F�F ]

b1
F ) = [
E�E]

b1
E and (�) is

well de�ned.

Proposition 30 Let X be a chain connected uniform space and b1; b2 2 X. If E is a
covering entourage with respect to the basepoint b1 then it is a covering entourage with
respect to b2. In particular a uniform coverable uniform space is uniform coverable
with respect to any element of X.
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Proof. Since X is chain connected, there exists an E chain 
E from b1 to b2 and
since E is a covering entourage with respect to b1 there exists ([
F ]F ) 2 ~Xb1 such that
 b1E ([
F ]F ) = [
E]

b1
E , i.e. ([
F ]F ) is an element in the fundamental inverse system of X

with respect to b1 whose Eth representative is the equivalence class of the E-chain 
E.
We must show that  b2E : ~X

b2 ! Xb2
E is surjective. Let [�E]

b2
E 2 X

b2
E be such that the

endpoint of �E is b3. Notice that 
E�E is an E chain with initial point b1 and hence
[
E�E]

b1
E 2 X

b1
E . Since E is a covering entourage with respect to the basepoint b1 there

exists ([�F ]F ) 2 ~Xb1 such that  b1E ([�F ]F ) = [
E�E]
b1
E , i.e. the Eth representative of

[�E]E = [
E�E]
b1
E . We wish to de�ne an element of ~X

b2 such that for each F the F th
representative is the equivalence class determined by the chain which travels along

�1F to b1 and then along �F to the endpoint b3. This is possible since ([


�1
F ]F ) 2 ~Xb2

by 28 and then by 29 the element ([�F ]F ) 2 ~Xb2 whose F th element is [
�1F �F ]
b2
F is

well de�ned. Further, we have that  b2E (�) = [

�1
E �E]

b2
E = [


�1
E 
E�E]

b2
E = [
E]

b2
E and

the result follows. If X is a uniform coverable uniform space with respect to the
basepoint b1 then by de�nition there exists a basis for the uniformity (including the
set X � X) which consists of covering entourages with respect to b1. In particular,
it is chain connected and thus, by the preceeding the same collection of entourages
forms a basis of covering with respect to any point of X.
Since we have established that for any chain connected uniform space the notion

of coverability is independent of the choice of basepoint, we will simply denote the
basepoint by �. Then [�]E = [f�; �g]E will always be the choice of basepoint for
XE. Further, (�) 2 ~X will designate the point whose Eth representative is [�]E and
will always be the choice of basepoint for ~X. If X is a uniform coverable uniform
space then by de�nition there exists a basis for the uniformity consisting of covering
entourages. We will show (see proposition 33) that in fact it is possible to �nd a basis
consisting of open entourages. The following lemmas are needed for this proposition.
These lemmas may be known, but the author has not found a direct reference for
them.

Lemma 31 If F ,G are open entourages and E is any entourage then F �E �G is an
open entourage.

Proof. Let (a; b) 2 F � E � G. Then there exists (x; y) 2 E such that (a; x) 2
F; (x; y) 2 E; (y; b) 2 G. Since F;G are open entourages, B(x; F ) and B(y;G) are
open subsets of X. Hence, we may �nd entourages K1 and K2 such that B(a;K1) �
B(x; F ) and B(b;K2) � B(y;G). Let (s; t) 2 B(a;K1) � B(b;K2). Then, by the
choice of K1 and K2 we have that s 2 B(x; F ) and t 2 B(y;G) which implies that
(s; x) 2 F and (y; t) 2 G. Since (x; y) 2 E we have that (s; t) 2 F � E � G. Thus
B(a;K1) � B(b;K2) � F � E � G. By 8 there must exist an open set U of X � X
such that (a; b) 2 U � B(a;K1)�B(b;K2) � F �E �G and hence F �E �G is open
in X �X.

Lemma 32 If E is an entourage then int(E) is an entourage and int(E)�E � int(E)
is an open entourage.

Proof. The fact that int(E) is an element of the uniformity is a result of Corollary 2
in section II.1.2 of [3]. To see that int(E) is symmetric, let (a; b) 2 E, and U; V open
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subsets of X such that (a; b) 2 U � V � int(E). Since E is symmetric we have that
V � U � E and hence V � U � int(E) (since V � U is an open subset of E). Since
(b; a) 2 V � U the result follows. The second claim then follows from lemma31 since
int(E) is open.

Proposition 33 If X is a uniform coverable uniform space then there exists a basis
for the uniformity consisting of open covering entourages.

Proof. Let E be a covering entourage, and set E 0 = int(E) � E � int(E). Then
E 0 is an open entourage by 31. We must show that it is a covering entourage. Let
(a; b) 2 E 0, so that there exists (x; y) 2 E such that (a; x); (y; b) 2 int(E) � E.
Then, fa; xg; fx; yg;and fy; bg are all E-chains and since E is a covering entourage
with respect to any basepoint by 30, we may �nd (
1) 2 ~Xa; (
2) 2 ~Xx; (
3) 2 ~Xy

such that  aE(
1) = [fa; xg]aE,  xE(
2) = [fx; yg]xE,and  
y
E(
3) = [fy; bg]

y
E. By 29 there

exists (
) 2 ~Xa such that  aE(
) = [fa; x; y; bg]aE. Since E � E 0 we have:  aE0(
) =
�(E0)E([fa; x; y; bg]aE) = [fa; x; y; bg]aE0. Notice that (x; x) 2 int(E) implies that
(x; b) 2 E 0 and thus fa; x; y; bg is E 0-homotopic to fa; bg. In other words,  aE0(
) =
[fa; bg]aE0. Now, let � = f� = x0; x1; :::xng be any E 0 chain. By the preceeding, we
may �nd for 1 � i � n, (
i) 2 ~Xxi�1 such that  E0(
i) = [fxi�1; xig]

xi�1
E0. Again, by

29 we can �nd a chain (
) 2 ~X� such that  E0(
) = [�]
�
E and hence E

0 is a covering
entourage. To see that the collection of all such entourages forms a basis for the
uniformity, let E be an arbitrary entourage and choose F such that F 3 � E: Then
E 0 � F 3 � E. Finally, X �X is an open entourage and is a covering entourage by
de�nition, since X is assumed to be uniform coverable.
For the remainder of this section we will consider X; Y to be uniform coverable

uniform spaces with associated uniform universal covers ~X; ~Y and projection maps
 X : ~X ! X and  Y : ~Y ! Y . If f : X ! Y is a uniformly continuous function
such that f(�) = � then from [2] we know that f induces a uniformly continuous
function ~f : ~X ! ~Y . In fact ~f is the unique uniformly continuous function such
that ~f(�) = � and f �  X =  Y � ~f . We wish to prove some lifting properties of
covers, but to do so it will be necessary to characterize the mapping ~f . Consider the
mapping fEF : XE ! YF de�ned in 27 which sends the Eth equivalence class of an
E-chain 
 to the F th equivalence class of f(
). In other words fEF ([
]E) = [f(
)]F .
Then by Theorem 30 in [2] this is a unique uniformly continuous function such that
fEF ([�]E) = [�]F and �YY F � fEF = f � �XXE (�XE = �(X�X)E and �Y F = �(Y�Y )F by
de�nition). Given an element ([
E]E) 2 ~X we associate an element ([�F ]F ) 2 ~Y in the
following way. We may use the fact that f is uniformly continuous to �nd an element
E of the covering basis of X such that f(E) � F . Then we set [�F ]F = [f(
E)]F .
The following proposition shows that ([�F ]F ) is a well de�ned element of ~Y and that
the above association is equivalent to the function ~f .

Proposition 34 The above association de�nes a function � : ~X ! ~Y and � = ~f .

Proof. This mapping does not depend on the choice of covering entourage. To see
this we �rst let K be a covering entourage in X such that K � E. We then have
f(K) � f(E) � F so that K can be used to de�ne [�F ]F . Since ([
E]E) 2 ~X we

14



have that [
E]E = �XEK([
K ]K)). Thus, in particular, 
K is an E-chain in [
E]E and
fEF ([
E]E) = fEF ([
K ]E) = [f(
K)]F . However, we also have, by de�nition that
fKF ([
K ]K) = [f(
K)]F = fEF ([
E]E). Thus any covering entouage contained in E
can be used to de�ne the mapping. Now, let M be any covering entourage such that
f(M) � F and choose a covering entourage K �M \E. Then, by what we have just
shown, fMF ([
M ]M) = fKF ([
K ]K) = fEF ([
E]E). We conclude that the mapping
is independent of the choice of covering entourage E in X with f(E) � F . To see
that ([�F ]F ) is a well de�ned element in ~Y , suppose H is an entourage in Y such
that H � F: Let K be a covering entourage in X such that f(K) � H and choose a
covering entourage M � K \ E. Then, in fact f(K) � F \ H. Hence we may use

K to de�ne the F th and Hth equivalence classes in ([�F ]F ) i.e. the F th and Hth
equivalence classes are de�ned to be [f(
K)]F and [f(
K)]H respectively. Since f(
K)
is both an F and an H-chain, we have �FH([f(
K)]F ) = [f(
K)]H and hence (�) is
well de�ned.
�(�) = � since fEF ([�]E) = [f(�)]F = [�]F for all E such that f(E) � F . We now

show that � is uniformly continuous. Let D� be a basis entourage in YF (D � F ) and
consider ( YF )

�1(D�). This is the set of all pairs ((�1); (�2)) 2 ~Y � ~Y such that the
F th equivalence classes,  YF (�1);  

Y
F (�2) contain elements �1F = f� = y0; y1; :::yn; ag

and �2F = f� = y0; y1; :::yn; bg respectively with (a; b) 2 D. Let E be a covering
entourage in X such that f(E) � F . Let K be a covering entourage in X such that
K � E and f(K) � D. In particular, K� is a basis element in XE. Let ((
1); (
2)) 2
( XE )

�1(K�). Then, by de�nition, the Eth equivalence classes  XE (
1);  
X
E (
2) con-

tain elements 
1E = f� = x0; x1; :::xm; cg and 
2E = f� = x0; x1; :::xm; dg respec-
tively with (c; d) 2 K. But then, by the choice of K we have that (f(c); f(d)) 2
D. Consider fEF ( 

X
E (
1);  

X
E (
2)) = ([f(
1E)]F ; [f(
2E)]F ). Since f(
1E) = f� =

f(x0); f(x1); :::f(xm); f(c)g and f(
2E) = f� = f(x0); f(x1); :::f(xm); f(d)g we have
that �((
1); (
2)) is an element of D

� and hence �(( XE )
�1(K�)) � ( YF )�1(D�). Thus

� is uniformly continuous. By the de�nition of � it is clear that if a is the endpoint
of ([
E]E) then the endpoint of �([
E]E) is f(a). Hence  

Y � � = f �  X and by
uniqueness in theorem 54 of [2] we have � = ~f .
The map ~f induces a homomorphism f� : �1(X) ! �1(Y ) given by f� = ~f j�1(X)

[2]. We have the following corollary.

Corollary 35 Let X; Y and Z be uniform coverable spaces f : X ! Y uniformly
continuous and g : Z ! Y bi-uniformly continuous such that f�(�1(X)) � g�(�1(Z))
(see diagram 1). Then for each covering entourage F in Z there is a covering
entourage E in X such that fEg(F )(�E(X)) � gFg(F )(�F (Z)) where fEg(F ) : XE !
Yg(F ) and gFg(F ) : ZF ! Yg(F ) are the induced maps (diagram 2).

1)

Z
# g

X ! Y
f

2)

ZF
# gFg(F )

XE ! Yg(F )
fEg(F )

Proof. g(F ) is an entourage of Y since g is bi-uniformly continuous. We choose
E to be any covering entourage in X such that f(E) � g(F ). Let lE be an E-loop
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so that [lE]E 2 �E(X). Since E is a covering entourage we know that [lE]E is the
Eth element of some ([lK ]K) 2 �1(X). Using the characterization of ~f above and the
fact that f� = ~f j�1(X) we have that the g(F )th element in f�([lK ]K) is [f(lE)]g(F ).
Now, using the property f�(�1(X)) � g�(�1(Z)) we know that there is an element
([mJ ]J) 2 �1(Z) such that ~g([mJ ]J) = ~f([lK ]K). We have that mF is an F -loop in
the F th equivalence class of ([mJ ]J) i.e. [mF ]F 2 �F (Z). Again using the above
characterization, and the fact that F is a covering entourage whose image under g is
contained in (in fact is equal to) the entourage g(F ), we must have that [g(mF )]g(F ) is
the g(F ) equivalence class in ~g([mJ ]J) = ~f([lK ]K) and combining this with above we
have [g(mF )]g(F ) = [f(lE)]g(F ): Hence fEg(F )([lE]E) = gFg(F )([mF ]F ). Since [lE]E was
an arbitrary element of �E(X), we have demonstrated that for each [lE]E 2 �E(X)
there exists an [mF ]F 2 �F (Z) such that fEg(F )([lE]E) = gFg(F )([mF ]F ) and the result
now follows.
The next lemma establishes a "unique chain lifting property" for discrete covers

(de�ned in the paragraph following 23). It is a result (theorem 39 in [2]) that if X is
chain connected then the mapping �XE : XE ! X is a discrete cover.

Lemma 36 Suppose f : Y ! X is a discrete cover under the action of a group G,
b 2 X and p 2 f�1(b). Then there is a su¢ ciently small entourage E such that if
F = f(E) then every F -chain with initial point at b has a unique lift to an E-chain
with initial point at p. In other words, for every F -chain fb = x0; x1; :::xng there
is a unique E-chain fp = y0; y1:::yng such that f(yi) = xi. If fb = x0; x1; :::xn =
cg = 
0; 
1; :::
k = fb = t0; t1; :::tm = cg is an f(E) homotopy from 
0 to 
k then

00; 


0
1; :::


0
k is an E-homotopy where each 


0
i is the unique lift of 
i which starts at p.

Proof. The proof of Proposition 55 in [2] essentially proves this lemma. In the
interest of completeness, the following more direct proof is o¤ered. Let D be an
entourage of Y such that (a; g(a)) 2 D ) g = e, and let E be an invariant entourage
such that E3 � D. Since f is bi-uniformly continuous (see [11]), F = f(E) is an
entourage. We have f(p) = b by assumption. For the purpose of induction suppose
that fp = y1; y2; :::yig is a unique lift of fb = x0; x1:::xig. We have that (xi; xi+1) 2 F .
There is then, since F = f(E), an (a; b) 2 E such that f(a) = xi and f(b) = xi+1.
Since a 2 f�1(xi), and f is the quotient de�ned by the action of G, there must be a
g 2 G such that g(a) = yi. Let yi+1 = g(b). Then (yi; yi+1) = (g(a); g(b)) 2 E since
E is G invariant and fp = y1; y2; :::yi; yi+1g is a lift of fb = x0; x1:::xig. To prove
uniqueness, suppose there exists another y such that (yi; y) 2 E and f(y) = xi+1.
Then y 2 f�1(xi+1) and there must be an h 2 G such that h(y) = yi+1: But then
(y; yi) 2 E by symmetry and (yi; h(y)) = (yi; yi+1) 2 E which implies that (y; h(y)) 2
E2 � D. By the assumption on D, h = e and y = yi+1.
For the second statement let 
0i be the unique lift of 
i which starts at p. We need

only verify that 
00; 

0
1; :::


0
k is an E-homotopy. Notice that each 
0i is an E-chain.

Suppose 
i is obtained from 
i�1 by the insertion of an element a between xj�1 and
xj. Denote 
0i�1 by fp = y0; y1; :::yng and 
0i by fp = z0; z1; :::zj�1; A; zj; :::zng, so that
f(yk) = xk = f(zk) for all 0 � k � n and f(A) = a. By the uniqueness of chain lifting
applied to the �rst j� 1 elements we must have that yk = zk for 0 � k � j� 1. Now,
(yj�1; yj) 2 E implies that (yj; zj�1) 2 E by symmetry and the fact that yj�1 = zj�1.
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We also know that (zj�1; A); (A; zj) 2 E hence (yj; zj) 2 E3 � D. Since f(yj) = f(zj)
we must have that zj = g(yj) for some g 2 G so that (yj; zj) 2 D =) (yj; g(yj)) 2 D
and by the choice of D we have that g = e. Hence yj = zj. Then, the uniqueness
of chain lifting implies that yk = zk for j � k � n. Hence 
0i is an expansion of

0i�1. If 
i is obtained from 
i�1 by the removal of an element then the argument
above implies that 
0i�1 is an expansion of 


0
i, i.e. 


0
i is a contraction of 


0
i�1. Thus


00; 

0
1; :::


0
k is a well de�ned E-homotopy. In particular we have that each 


0
i ends at

the same point in f�1(c).

Lemma 37 Suppose X; Y; Z are uniform coverable spaces f : X ! Y is uniformly
continuous and g : Z ! Y is a discrete cover with covering group G and assume that
f(�) = � = g(�) (see diagram). Then the following are equivalent:

1. For every entourage F in Z there exists an entourage E � f�1(g(F )) in X such
that fEg(F )(�E) � gFg(F )(�F ).

2. There exists a unique uniformly continuous lift Lf : X ! Z such that Lf (�) = �
and g � Lf = f .

Z
% Lf # g

X ! Y = ZnG
f

Proof. (1=)2). We de�ne Lf : X ! Z in the following way. Choose an entourage
F in Z small enough to satisfy the conditions of 36. Since g is a discrete cover it
is bi-uniformly continuous [11] and hence g(F ) is an entourage in X. We use 1,
to choose an entourage E in X such that fEg(F )(�E) � gFg(F )(�F ). Let x 2 X.
Since X is uniform coverable it is chain connected, so choose an E-chain c from �
to x. Then f(c) is a g(F ) chain in Y . By 36 there is a unique lift f� = z0; z1; :::zng
of f(c) beginning at �. We set Lf (x) = zn. To see that this is well de�ned, let
c0 be a second E-chain in X from � to x with lift f� = k0; k1; :::kmg in Z. Then
c(c0)�1 is an E-loop in X. Hence f(c(c0)�1) is a g(F )-loop in Y . By 36 there is a
unique lift of f(c(c0)�1) to an F chain in Z. By uniqueness of lifts beginning at �,
the �rst n elements in the lift of f(c(c0)�1) must be z0; z1; :::zn. Denote the lift of
f(c(c0)�1) by f� = z0; z1; :::zn; sm�1; sm�2; :::s0g. Since [c(c0)�1]E 2 �E(X) and since
fEg(F )(�E(X)) � gFg(F )(�F (Z)) there must be an F -loop l in Z whose image g(l) is
in the same equivalence class as f(c(c0)�1). However, by the second part of 36 above,
the g(F ) homotopy between f(c(c0)�1) and g(l) must lift to an F -homotopy between
the lift of f(c(c0)�1) and l. In particular, this implies that the lift of f(c(c0)�1) is a
loop with base point �, i.e. s0 = �g: Then, by the uniqueness of the lift of c0 beginning
at � we then have that the lift of f(c(c0)�1) is f� = z0; z1; :::; zn = km; km�1; :::k0 = �g
and hence zn = km. Thus Lf is well de�ned. By construction we have g � Lf = f .
To see that Lf is uniformly continuous, let M be an entourage of Z and choose
D �M \ F so that D satis�es the conditions of 36. Let N � E \ f�1(g(D) be such
that fNg(D)(�N) � gDg(D)(�D). If (x1; x2) 2 N then, applying the above process, we
�nd N -chains cx1 ; cx2 from � to x1; x2 respectively. Let cx1(cx2)�1 denote the N -chain
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which travels along cx1 from � to x1, jumps to x2 and travels along c�1x2 back to �.
This is an N -loop, and we may apply the preceeding to see that f(cx1(cx2)

�1) lifts to
a unique D-loop in Z. This then implies that the unique lift of the chains f(cx1) and
f(cx2) end in elements z1; z2 2 Z such that (z1; z2) 2 D � M . Since N � E, cx1 ; cx2
are also E-chains and hence by above we must have z1 = Lf (x1), z2 = Lf (x2). Hence
Lf (N) �M and Lf is uniformly continuous.
To prove uniqueness of Lf , suppose L : X ! Z is another uniformly continuous

functions such that L(�) = � and g�L = f . Let x 2 X. Since Lf and L are uniformly
continuous we may choose K � L�1(F )\L�1f (F )\E. Then K is an entourage such
that L(K) � F and Lf (K) � F . Choose a K chain (which is also an E chain by the
choice of K) c = f� = x0; x1; :::xn = xg in X from � to x, and let f� = z0; z1; :::zng be
the unique lift of f(c) to an F chain. By the choice of K we have that L(c) and Lf (c)
are F chains in Z. Since g(L(c)) = g(Lf (c)) = f(c) by assumption, we must have, by
uniqueness, that L(c) = Lf (c) = f� = z0; z1; :::zng. In particular L(x) = Lf (x) and
the result follows.
(2=)1). Let F be an entourage in Z and choose an entourage K in X such that

Lf (K) � F . Let [l]K 2 �K : Then f(l) = g � Lf (l). Since Lf (l) is an F -loop (by the
choice of K) we have that [Lf (l)]F 2 �F (Z). Hence fKg(F )([l]K) 2 gFg(F )(�F ).

Theorem 38 Suppose X; Y; Z are uniform coverable, f : X ! Y is a uniformly
continuous function, g : Z ! Y is a uniform cover. Then f lifts to a function
Lf : X ! Z such that g � Lf = f if and only if f�(�1(X)) � g�(�1(Z)):

Proof. Since g is a uniform cover, we have by theorem 48 in [11] that Z = lim
 �
fZ�; ���g

such that Y = Z1 for some minimal element in the index, g =  1 and each �1� : Z� !
Y is a discrete cover. We thus have the following diagram:

Z = lim
 �
fZ�; ���g

# g =  1
X �! Y = Z1

f

Suppose f�(�1(X)) � g�(�1(Z)). We wish to show that for each index � we may
apply the previous lemma to obtain a lift L�f : X ! Z� and that L

�
f satisfy the

universal property of inverse limits, de�ning a function Lf : X ! Z. Note that
a basis for the uniformity on Z is given by the sets  �1� (D�) where � is arbitrary
and D� is a basis element of Z�. Let D� be an entourage in Z� and let F be a
covering entourage contained in  �1� (D�). By 35, there is an entourage E in X such
that fE 1(F )(�E(X)) � ( 1)F 1(F )(�F (Z)). Thus the image under f of any E-loop is
 1(F )-homotopic to the projection  1 of some F -loop in Z. However, to be able to
apply the previous lemma, we need to know that the image of any E-loop is �1�(D�)-
homotopic to the image under �1� of some D�-loop. We use the fact that ��� form
an inverse system and hence  1 = �1;� �  �. Let 
 be an E-loop in X, and let l be
an F -loop in Z such that f(
) is  1(F )-homotopic to  1(l). Then  �(l) is a D�-loop
in Z� and  1(l) = �1;�( �(l)). Since  1(F ) � �1;�(D�) the  1(F )-homotopy from
 1(l) to f(
) is also a �1�(D�)-homotopy. Hence we may apply 37 to obtain a unique
lift L�f : X ! Z� such that �1� �L

�
f = f . Notice that �1� � (��� �L

�
f ) = �1� �L

�
f = f
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and hence by uniqueness, ��� � L
�
f = L�f . By the universal property of inverse limits

we have a function Lf : X ! Z and g � Lf =  1 � Lf = f .
For the reverse, suppose we have such a lift Lf such that g � Lf = f . If (l) 2

�1(X). Then for each entourage K in Y; we choose an entourage D in Y so that
the Kth element of g�(m) is determined by gDK([mD]D) for any loop (m) in �1(Z).
Then we choose an E in X so that both the Dth element in (Lf )�(l) and the Kth
element in f�(l) are determined by (Lf )ED([lE]E) and fEK([lE]E) respectively. Then
the Kth element in f�(l) is [f(lE)]K = [g(Lf (lE))]K . The Dth element of (Lf )�(l)
is [Lf (lE)]D. Since K was arbitrary, we have that f�(l) = g�((Lf )�(l)) and hence
f�(�1(X)) � g�(�1(Z)).

Proposition 39 Let X be a uniform coverable uniform space. Let D be a dense
subspace of X with � 2 D. Then D is uniform coverable in the subspace uniformity.
If i : D ! X is the inclusion mapping and ~{ : ~D ! ~X the induced map from 34 then ~{
is injective, and ~{( ~D) is dense in ~X. Further, i� : �1(D)! �1(X) is an isomorphism.

Proof. By 33 we may choose 
 to be a basis for X consisting of open covering
entourages. For each E in 
 we set ED = E \ (D � D) and the collection 
D of
all such elements forms a basis for the subspace uniformity on D: It su¢ ces to show
that each ED is a covering entourage. Let 
 = f� = d0; d1; :::; dng be an ED chain in
D. Then 
 is also an E-chain in X and hence [
]E 2 XE:Then, since E is a covering
entourage for X, there exists ([uS]S) 2 ~X such that �E([uS]S) = [uE]E = [
]E: For
each entourage F � E, uF is an F chain in X which is E-equivalent to 
. We �nd
an FD chain in [uF ]F by slightly moving the element of uF onto elements of D. We
must �nd an entourage K which is small enough so that our choice of elements in D
actually form a FD chain. We will then show below that these chains in D form a
well de�ned element of ~D.
Let uF = f� = x0; x1; :::xm = dng. Since F is open and (xi; xi+1) 2 F for

i = 0; 1; :::m�1, there is a basis entourage Ki such that B(xi; Ki)�B(xi+1; Ki) � F .
This implies that if di 2 B(xi; Ki) and di+1 2 B(xi+1; K) then in fact (di; di+1) 2 F .
Let K 2 
 be such that K � \m�1i=0 Fi\F so that, for all i, B(xi; K)�B(xi+1; K) � F
and K � F . Using the density of D, and the fact that K and hence the balls of K
are open, we can �nd a yi 2 B(xi; K)\D. If xi 2 D then we will speci�cally choose
yi = xi, so that, in particular, y0 = � and ym = xm = dn. By the choice of K we
have that (yi; yi+1) 2 F for all i which implies that vF = f� = y0; y1; y2:::ym = dng
is an F chain. To see that it is F equivalent to uF notice that, again by the choice
of K, for each � � i � m � 2, we have that (xi; yi+1) 2 B(xi; K) � B(xi+1; K) � F
and yi+1 2 B(xi+1; K) implies (yi+1; xi+1) 2 K � F . Thus yi+1 may be inserted into
xixi+1. We form an equivalence between the chains by inserting the y elements and
then removing the x elements. Speci�cally, we have the following equivalences:

�x1:::xm�1dn � �y1x1y2x2:::ym�1xm�1dn � �y1:::ym�1dn
We wish to show that ([vF ]FD) is a well de�ned element of ~D, i.e. that ifM � F the

bonding map �FM takes [vM ]MD
to [vF ]FD . In particular, �ED([vF ]FD) = [vE]EDand,

vE = 
E since each element of 
E is an element of D and hence by convention the
elements of vE are simply taken to be the elements of 
E. Hence it su¢ ces to show
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that if MD � FD � ED then vM is FD-equivalent to vF . Since vM 2 [uM ]M and
vF 2 [uF ]F and �FM [uM ]M = [uF ]F , we know that vM is F -equivalent to vF i.e.
there exists an F -homotopy vM = 
0; 
1:::
k = vF . The 
i however may contain
elements of X which are not in D. We need to show that it is possible to move any
such elements slightly and still maintain the conditions of an F -homotopy. We will
�rst �nd an entourage N small enough that if the elements of chains 
i are replaced
with elements of D no more than a distance N away then the resulting chains will
form an FD-homotopy. Toward this end, we note that if 
i is obtained from 
i�1
by the deletion of an element xj then (xj�1; xj+1) 2 F and, since F is open, we can
�nd an entourage Ni of X such that B(xj�1; Ni) � B(xj+1; Ni) � F: Similarly, if 
i
is obtained from 
i�1 by the insertion of an element a between xj and xj+1 then
both (xj; a) and (a; xj+1) 2 F and we can �nd an entourage Ni of X, such that
B(xj; Ni)� B(a;Ni) � F and B(a;Ni)� B(xj+1; Ni) � F . Thus if e is the number
of expansions and r the number of deletions, we have chosen 2e+r such N 0:We index
them as N1; N2; :::N2e+r. We then choose N to be an element of 
 contained in the
(�nite) intersection \2e+ri=1 Ni \ F .
We will use induction to build an FD homotopy �M = 
00; 


0
1:::


0
k = �F . We begin

by assigning 
00 = 
0. It is then trivial to verify the following for i = 0.

1. 
0i has the same length as 
i

2. If dj is the jth element of 
0i and xj is the jth element of 
i then (xj; dj) 2 N .

3. If xj 2 D then xj = dj:

We assume that 
0i�1 has been chosen and satis�es the three properties above.
To choose 
0i, �rst assume that 
i is obtained from 
i�1 by the deletion of an el-
ement xj. Then, by property 2, we know that (xj�1; dj�1); (xj+1; dj+1) 2 N =)
dj�1 2 B(xj�1; N) and dj+1 2 B(xj+1; N). Also, N was chosen so that B(xj�1; N)�
B(xj+1; N) � F which then implies that (dj�1; dj+1) 2 F and dj can be removed from

0i�1 obtaining an FD-chain which we set equal to 


0
i. 
i and 


0
i obey properties 1-3

since 
i�1 and 

0
i�1 do. On the other hand, if 
i is obtained from 
i�1 by the insertion

of an element a between xj and xj+1 then we can use the density of D to �nd an ele-
ment d 2 B(a;N). Using property 2 we have that dj 2 B(xj; N); dj+1 2 B(xj+1; N).
Then, again by the choice of N we have that (dj; d); (d; dj+1) 2 N which implies that
(dj; d); (d; dj+1) 2 F . We then set 
0i to be the FD-chain obtained from 
0i�1 by the
insertion of the element d. If a 2 D then we take d = a so that property 3 is satis�ed.
The �rst two properties are satis�ed as well. Proceeding inductively, we de�ne 
0i for
all i. By property 3 we must have that 
0k = 
k = �F and thus �M = 
00; 


0
1:::


0
k = �F

is an FD homotopy from �M to �F and (�) is well de�ned.
We now consider the mapping ~{ . To see injectivity, suppose ~{(([vSD ]SD)) =

~{(([wSD ]SD)): Then vSD is S homotopic to wSD for each entourage S. By what we
have just shown, vSD must then be SD homotopic to wSD for each entourage SD and
thus ([vSD ]SD) = ([wSD ]SD). To see that ~{( ~D) is dense in ~X, let F � E be open
covering entourages in X, F � the corresponding entourage in XE and L = ��1E (F

�)
a basis entourage in ~X. If ([uS]S) 2 ~X then we need to �nd a ([vSD ]SD) 2 ~D such
that ~{([vSD ]SD) 2 B(([uS]S); L). B(([uS]S); L) is the set of all ([wS]S) 2 ~X such
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that wE is E-homotopic to an E-chain of the form f� = x0; x1; :::xn�1; ag and uE
is E-homotopic to an E-chain of the form f� = x0; x1; :::xn�1; bg where (a; b) 2 F .
Since B(b; F ) is open in X we can �nd d 2 D such that (b; d) 2 F . Consider the
chain vE = f� = x0; x1; :::xn�1; b; dg. By what we have shown, there is an element
([vSD ]SD) 2 ~D whose EDth element is E-homotopic to vE. By 34 and the fact that
i(ED) � E we know that ~{(([vSD ]SD)) = ([vSD ]S) which is an element in ~X whose
Eth element is E-homotopic to vE. Since f� = x0; x1; :::xn�1; b; bg is an expansion of
f� = x0; x1; :::xn�1; bg, uE is E-homotopic to a chain which di¤ers from vE only in
the endpoint b. Since (b; d) 2 F; ([uE]E; [vE]E) 2 F � and we see that ~{(([vSD ]SD)) 2
B(([uS]S); L). Hence ~{( ~D) is dense in ~X. We have already shown that ~{ is injective.
Thus to show that the induced homomorphism i� is an isomorphism we only need
show that it is surjective. However, if ([uS]S) is in �1(X) then by assumption the
endpoint of each uS is � which lies in D. Hence, by what we have shown above,
there is a loop ([uSD ]SD) 2 �1(D) such that each uSD is S homotopic to uS. Thus
i�(([uSD ]SD)) = ([uS]S) and i� is surjective.
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4 A Uniformity for Glued Uniform Spaces

Our goal is to show that connected �nite dimensional CW complexes have a uni-
formity, compatible with thier topology, which is coverable. We present the basic
de�nitions here (in the context of uniform spaces). The reader is referred to section
I.2.4 of [3] for the basics of the quotient topology and to [6] and [13] for more details
on gluing and CW complexes. Let X be a uniform space. Let fY�g�2A be a collection
of uniform spaces and for each � let Z� be a subspace of Y� and f� : Z� ! X be
uniformly continuous. We wish to de�ne an equivalence relation on the disjoint union
XqfY�g . First, we set y1 � y2 if f�(y1) = f�(y2) for any two indices �; � 2 A. Then,
assign x � y if f(y) = x. This clearly partitions Z q fIm(f�)g. The remainder of
points are given their own class. We denote by X^fY�g the collection of equivalence
classes. We note that [a] contains more that one element if and only if it contains for
some � 2 A one element of Im(f�), together with all of its pre-images under any f�.
This implies that for any equivalence class [a] in X ^ fY�g we must have that either
X \ [a] is empty or it contains a unique element. X ^ fY�g has a quotient topology
in which a set is open if and only if the inverse image of the set under the inclusion
maps iY� : Y� ! X ^ fY�g and iX : X ! X ^ fY�g are open. We will de�ne a
uniformity on X ^ fY�g compatible with this topology in such a way that if all the
spaces involved are uniform coverable, then X ^ fY�g is uniform coverable.
CW complexes are obtained by gluing special uniform spaces called n-cells. An

n-cell is the subspace of Rn consisting of the unit ball Bn together with its boundary
Sn�1. We choose � 2 Sn�1 as the basepoint of Bn. Let f : Sn�1 ! X be a continuous
function. It can be shown (see Theorems 1 and 2 of section II.4.1 in [3]) that every
Compact Hausdor¤space has a unique uniform structure compatible with its topology
and every continuous function f de�ned on it is uniformly continuous. This implies
that f is uniformly continuous for the metric uniformity on S1, which is a uniform
subspace of Bn under the metric uniformity. A CW complex is formed inductively
by dimension. We begin with X0, a discrete set of points (the 0-skeleton). The
discrete topology is induced by a uniform structure whose uniformity base consists
of the single set � (see example 2 in II.1.1 of [3]). A collection of 1-cells fB1

�g are
glued to X0 by continuous (hence uniformly continuous) f� from fS0�g. The resulting
quotient space is denoted by X1 (the 1-skeleton). Then, a collection of 2-cells fB2

�g
are attached to X1 via continuous maps f� from fS1�g to form the 2-skeleton X2.
This process either ends at some dimension n in which case the complex is said to be
n-dimensional, or it can continue inductively, with the resulting in�nite dimensional
complex given the weak topology. All Bn and Sn�1 for n � 2 are uniform coverable
by [2].
We turn now to the task of de�ning an appropriate uniform structure on a glued

space, X^fY�g. Let X and fY�g�2A be Hausdor¤ uniform spaces and for each � let
Z� be a subspace of Y� under the subspace uniformity and f� : Z� �! X a uniformly
continuous function. Let E be any entourage in X , F� an entourage in Y�, for each
� and ([a]; [b]) 2 X^fY�g �X^fY�g:

De�nition 40 We will abuse terminology slightly and say that ([a]; [b]) is "in E" if
there exists x1 2 X \ [a]; x2 2 X \ [b] such that (x1; x2) 2 E. Similarly, ([a]; [b]) is
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"in F�" if there exists y1 2 Y� \ [a]; y2 2 Y� \ [b] such that (y1; y2) 2 F�. Now, let
F� be an entourage in Y � such that F� \ Z� � Z� � f�1� (E). We will call any pair
(E;F�) acceptable if it meets this condition.

Lemma 41 For each � and entourage E of X, there is an entourage F� of Y� such
that (E;F�) is acceptable. If (E;F�) is acceptable then (E;F� \K) is acceptable for
all entourages K in Y�. If (E;F�) is acceptable and (y1; y2) 2 F� \ Z� � Z� then
([y1]; [y2]) is in E.

Proof. If E is any entourage of X then f�1� (E) is an entourage of Z� in the subspace
uniformity by the uniform continuity of f�: Therefore, there must be an entourage in
Y� whose intersection with Z��Z� is f�1� (E). For any entourage K in Y , (K \F�)\
Z��Z� � F�\Z��Z� � f�1� (E). For the last statement, (y1; y2) 2 F�\Z��Z� �
f�1� (E) implies that (f�(y1); f�(y2)) 2 E. Since f(y1) 2 X \ [y1] and f(y2) 2 X \ [y2]
we have that ([y1]; [y2]) is in E.
Note: If the pairs ([a]; [b]); ([b]; [c]) are in an entourage E of X then ([a]; [c]) is

in E2. If fact, if we let x1; x2; x3 be the unique elements in X \ [a]; X \ [b]; X \
[c] respectively then by de�nition we have (x1; x2); (x2; x3) 2 E which implies that
(x1; x3) 2 E2 and hence ([a]; [c]) is in E2. Notice however that if f� is not injective
then the same may not apply if the pairs are in an entourage of some Y�. In this
case, two distant elements y1; y2of Y� could get mapped to the same x by f� which
implies that [y1] = [y2]. If y3 is close to y1 and y4 is close to y2 then it could happen
that ([y3]; [y1]) = ([y3]; [y2]) and ([y2]; [y4]) are both in F� and yet ([y3]; [y4]) not an
element of F 2�.

For the following de�nition, choose for each � 2 A an entourage F� of Y� such
that (E;F�) is acceptable. Let E 0 be an entourage in X such that (E 0)4 � E and
then choose for each �, F 0� such that (F

0
�)
4 � F� and (E 0; F 0�) is acceptable. It is

possible to do this by �rst choosing an entourage E 0 such that (E 0)4 � E. We can
then �nd entourages H�; K� in Y� such that (E 0; H�) is acceptable and K4

� � F�.
Letting F 0� � H� \K� we can use the above lemma to see that F 0� has both of these
properties.

De�nition 42 Let E;E 0 be as in the preceeding paragraph and F� and F 0� be cho-
sen for each � as in the preceeding paragraph. We de�ne hE;E 0; F�; F 0�i (a glued
entourage) to be the set of all ([a]; [b]) such that either:

1. ([a]; [b]) is in E or F� for some � 2 A.

2. There exists (x1; x2) 2 E 0 such that ([a]; [x1]); ([x2]; [d]) are in E 0 or F 0� for some
� 2 A.

Condition 2 provides a way of measuring the closeness of two points which origi-
nate from distinct spaces prior to gluing and are not in Z� or Im(f�) for some �. In
e¤ect, two points in X ^ fY�g are close as measured by hE;E 0; F�; F 0�i, if they are
su¢ ciently close (as measured by E 0; F 0�) to points which are (or whose images are)
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su¢ ciently close together in X. We have abused notation slightly since F�; F 0� rep-
resents collections of entourages. To illustrate this somewhat complicated de�nition
we present an example.

Example 43 Let X be the subset of R2 consisting of the union of the unit circle
centered at the origin and the line segment between the points (0,1) and (0,2). Let Y
be the closed unit ball in R2. Both X and Y are given the metric uniformity induced
by the metric in R2. We glue the boundary of Y to the unit circle in X by the mapping
which loops around the circle twice, i.e. f(e2�i�) = e4�i�. Thus each point on the unit
circle in X has precisely two pre-images on diametrically opposite sides of Y . The
boundary of Y must be "stretched" to twice its size to accomplish this gluing. We let
E(1:1) = f(x1; x2) 2 Xjd(x1; x2) < 1:1g and note that E(1=4)4 � E(1:1). We let
�1; �2 be small enough that f(F (�1)\S1�S1) � E(1:1), f(F (�2)\S1�S1) � E(1=4)
and F (�2)4 � F (�1).
We consider two hE(1:1); E(1=4); F (�1); F (�2)i balls in X^Y . Let x = (0; 2) and

consider B([x]; hE(1:1); E(1=4); F (�1); F (�2)i). In this case x is the unique element
in [x] and ([x]; [a]) cannot be in F (�1) or F (�2). Thus ([x]; [a]) can be in this ball by
condition 1 only if there exists x0 2 X \ [a] such that d(x; x0) < 1:1. Thus the set
of points in X^Y which meet condition 1 is the set of points within a distance of 1:1
from the point (0; 2). This consists of the equivalence classes of all the points which
lie on the line segment in X, together with a small arc of the unit circle. We claim
that condition 2 adds no additional points. If there is an x0 2 X \ [b] which meets
the criteria then there would be x1; x2 2 X such that no two consecutive elements
in the sequence x; x1; x2; x0 are more than a distance 1=4 apart which means that
(x; x0) 2 E(1:1) and [b] already meets condition 1. On the other hand, if there was
a y 2 Y \ [b] which meets the criteria then there would be x1; x2 2 X such that
([x]; [x1]) is in E(1=4) (it can�t be in F (�2)), ([x1]; [x2]) is in E(1=4) and ([x2]; [y])
is in F (�2). This implies that x2 lies on the boundary. But then x1 would have to
be within 1=4 of both (0; 2) and a point on the boundary which is not possible. We
note that B([x]; hE(1:1); E(1=4); F (�1); F (�2)i) is not an open set in X^Y under the
quotient topology.
Now let x = (0; 5=4). [x0] 2 B([x]; hE(1:1); E(1=4); F (�1); F (�2)i) by condition

1 for those x0 which lie on the line segment, as well as a (somewhat larger) arc of
the circle which we will label A1. This time, however, there are additional points
of Y which do not lie on the boundary, but which meet condition 2. If we let A2
be the (smaller) arc of the circle in X whose points are within a distance of 1=2
from x, then for all x1 2 A2 we can �nd an x2 on the line segment such that the
distance between x1 and x2 is less than 1=4 while the distance between x2 and x is
also less than 1=4: The pre-image of this arc, f�1(A2) will consist of two arcs on the
boundary of Y . Then any y which lies in the �2 neighborhood of f�1(A2) will satisfy
[y] 2 B([x]; hE(1:1); E(1=4); F (�1); F (�2)i).

We wish to show that the collection of all hE;E 0; F�; F 0�i forms a basis of a uniform
space on X ^ fY�g. To do this we will need to investigate the properties of certain
sequences of elements in X ^ fY�g. We �x, for the moment, hE;E 0; F�; F 0�i and
consider a glued entourage hH;H 0; K�; K

0
�i such that for each � we have (H)4 � E 0
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and (K�)
4 � F 0�. The following lemmas will be useful.

Lemma 44 Let [a]; [x1]; [x2]; [b]; [x3]; [x4]; [c] be a sequence of elements of X ^ fY�g
such that x1; x2; x3; x4 are elements of X and we have that:

1. ([a]; [x1]); ([x4]; [c]) are in either F 0� for some � or E
0.

2. ([x1]; [x2]); ([x3]; [x4]) are in H.

3. ([x2]; [b]); ([b]; [x3]) are in either K 0� for some � or H
0

Then ([a]; [c]) 2 hE;E 0; F�; F 0�i:

Proof. We will show that ([x2]; [x3]) is in H. Then condition 2 would imply that
([x1]; [x4]) is in (H)3 � E 0. This, together with condition 1 would imply that ([a]; [c])
meets condition 2 of the de�nition of hE;E 0; F�; F 0�i.
We now assume ([x2]; [b]); ([b]; [x3]) are in eitherK 0� for some � orH

0 and show that
([x2]; [x3]) is in H. First assume that X \ [b] is empty. Then we would have b 2 Y� for
some � and b the unique element of [b]. Then neither of ([x2]; [b]) or ([b]; [x3]) can be
in (H)0 Since both of these pairs must satisfy condition 3 they must then be in (F ��)

0

where � is the index such that b 2 Y�. Thus we have a y2; y3 2 Y� \ [x2]; Y� \ [x3]
such that (y2; b); (b; y3) 2 K 0�. Thus (y2; y3) 2 (K 0�)2 � K�. Since y2 2 [x2]; y3 2 [x3]
we also have that f�(y2) = x2 and f�(y3) = x3. Thus (y2; y3) 2 K� \Z� �Z� and by
41 above ([y2]; [y3]) is in H. But ([y2]; [y3]) = ([x2]; [x3]) and we are done in this case.
For the second case let x 2 X \ [b]. We show in this case that ([x2]; [b]) and

([b]; [x3]) are both necessarily in H 0 If ([x2]; [b]) were in K 0� for some �, then let
y2 2 Y� \ [x2]; y 2 Y� \ [b] such that (y2; y) 2 K 0�. Since f�(y2) = x2; f�(y) = x we
have (y2; y) 2 K 0�\Z��Z� and we can again use 41 to show that ([x2]; [x]) = ([x2]; [b])
is in H 0. Similarly ([b]; [x3]) is in H 0. This then implies that (x2; x); (x; x3) 2 H 0 so
that (x2; x3) 2 (H 0)2 � H and the result follows.

Lemma 45 Let [a]; [b]; [x3]; [x4]; [c] be a sequence of elements of X ^fY�g such that
x3; x4 2 X and :

1. ([a]; [b]); ([x4]; [c]) are in either K� for some � or H:

2. ([b]; [x3]) is in either K 0� for some � or H
0

3. ([x3]; [x4]) is in H

Then ([a]; [c]) 2 hE;E 0; F�; F 0�i.

Proof. First assume thatX\[b] is empty. Then we would have b 2 Y� for some � and
b the unique element of [b]. We must then have that ([a]; [b]) is in K� and ([b]; [x3]) in
K 0� where � is the index such that b 2 Y�. Thus there is a y 2 Y�\[a] and y1 2 Y�\[x3]
such that (y; b) 2 K� and (b; y1) 2 K 0� � K�. Then (y; y1) 2 (K�)

2 � F 0� which in
turn implies that ([a]; [x3]) is in F 0� since [a] = [y] and [y1] = [y3]. Then conditions 2
and 3 imply that ([a]; [c]) meets condition 2 of the de�nition of hE;E 0; F�; F 0�i.
Now, assume that x 2 X\[b]. Then [a]; [x]; [x]; [b]; [x1]; [x2]; [c]meets the conditions

of lemma 2 (note that H � E 0 and K� � F 0�) and the result follows.
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Proposition 46 The collection 
 = fhE;E 0; F�; F 0�ig is a basis for a uniformity on
X ^ fY�g .

Proof. 1. �X ^fY�g � hE;E 0; F�; F 0�i
Notice that if [a] contains an x 2 X then ([a]; [a]) 2 hE;E 0; F�; F 0�i by condition

1 of the de�nition since (x; x) 2 E. If [a] does not contain an element of X then by
necessity, a 2 Y� for some � and a is the unique element in [a]. Since (a; a) 2 F� in
this case, we have ([a]; [a]) 2 hE;E 0; F�; F 0�i by condition 1 of the de�nition.
2. hE;E 0; F�; F 0�i is symmetric.
Clearly if ([a]; [b]) is in any entourage K then the symmetry of K implies ([b]; [a])

is also in K. Thus ([b]; [a]) meets conditions 1 or 2 of the de�nition of hE;E 0; F�; F 0�i
if ([a]; [b]) does.
3. Let hE;E 0; F�; F 0�i; hH;H 0; K�; K

0
�i 2 
. Then there exists

hL;L0;M�;M
0
�i � hE;E 0; F�; F 0�i \ hH;H 0; K�; K

0
�i

We �rst show that it is possible to choose L � E \H;L0 � E 0\H 0 and for each �,
M� � F� \K�;M

0
� � F 0� \K 0�. We �rst note that within a given uniform space, the

properties of being acceptable with an entourage of X, of having power contained in
another entourage, and of being contained in an intersection are all preserved under
intersections with other entourages. We �rst use the uniformity of X to �nd an L
such that L � E \H and then by intersecting entourages we can �nd an L0 such that
(L0)4 � L and L0 � E 0 \H 0: Then, again by intersecting entourages, we can �nd for
each �, an M� entourage in Y� so that (L;M�) is acceptable and M� � F� \ K�.
Finally, we can choose for each � anM 0

� such that (L
0;M 0

�) is acceptable, (M
0
�)
4 �M�

and M 0
� � F 0� \K 0�.

Now, suppose ([a]; [b]) is in L. Then, since L � E \ H we have that ([a]; [b]) is
both in E and in H and hence ([a]; [b]) 2 hE;E 0; F�; F 0�i \ hH;H 0; K�; K

0
�i. A similar

argument works if ([a]; [b]) is in M� for some �. Thus, if ([a]; [b]) meets condition 1
in the de�nition of hL;L0;M�;M

0
�i then it meets condition 1 in the de�nition of both

hE;E 0; F�; F 0�i and hH;H 0; K�; K
0
�i. Now, suppose there is a ([c]; [d]) in L0 such that

([a]; [c]); ([d]; [b]) are in either L0 or M 0
� for some �. Then, as above, ([c]; [d]) is in

E 0 \H 0 while ([a]; [c]); ([c]; [b]) are each in either E 0 \H 0 or F 0� \K 0� for some � and
again ([a]; [b]) 2 hE;E 0; F�; F 0�i \ hH;H 0; K�; K

0
�i

4. For each hE;E 0; F�; F 0�i 2 
 there is an hH;H 0; K�; K
0
�i such that

(hH;H 0; K�; K
0
�i)2 � hE;E 0; F�; F 0�i

We choose H;K� as in the paragraph preceding 44, so that H4 � E 0 and K4
� � F 0�

for each �. Suppose that ([a]; [c]) 2 (hH;H 0; K�; K
0
�i)2. Then there exists a [b] 2 X ^

fY�g such that ([a]; [b]); ([b]; [c]) 2 hH;H 0; K�; K
0
�i. Each of these pairs must satisfy

one of the two conditions in the de�nition of hH;H 0; K�; K
0
�i. Thus there are 4 cases

to consider.
Case 1: Both ([a]; [b]) and ([b]; [c]) satisfy condition 1 of de�nition 42.
Suppose that X \ [b] is empty. Then b 2 Y� for some � and b is the unique

element of [b]. Hence there must exist a y1 2 Y� \ [a] and a y2 2 Y� \ [c] such
that (y1; b); (b; y2) 2 K�. Then (y1; y2) 2 (K�)

2 � F 0� � F� and we have that
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([a]; [c]) 2 hE;E 0; F�; F 0�i. On the other hand, let x 2 X\[b]. Then clearly (x; x) 2 E 0
so that ([b]; [b]) is in E 0 and hence ([a]; [c]) satis�es condition 2 of the de�nition of
hE;E 0; F�; F 0�i.
Case 2: ([a]; [b]) satis�es condition 1 of the de�nition of hH;H 0; K�; K

0
�i while

([b]; [c]) satis�es condition 2.
We have in this case that ([a]; [b]) is in either H or K� for some � and a pair

([x3]; [x4]) in H 0 such that ([b]; [x3]); ([x4]; [c]) are in either H 0 or K 0�. Then the
sequence [a]; [b]; [x3]; [x4]; [c] satis�es the conditions of 45 above and we have that
([a]; [c]) 2 hE;E 0; F�; F 0�i.
Case 3: ([a]; [b]) satis�es condition 2 of the de�nition of hH;H 0; K�; K

0
�i while

([b]; [c]) satis�es condition 1.
We have by the symmetry of the conditions that the pairs ([c]; [b]); ([b]; [a]) fall into

the category of case 2. Hence ([c]; [a]) 2 hE;E 0; F�; F 0�i and hence by the symmetry
of hE;E 0; F�; F 0�i, ([a]; [c]) 2 hE;E 0; F�; F 0�i.
Case 4: Both ([a]; [b]) and ([b]; [c]) satisfy condition 2 of the de�nition.
We have the existence of pairs ([x1]; [x2]) and ([x3]; [x4]) in H 0 such that

([a]; [x1]); ([x2]; [b]); ([b]; [x3]); ([x4]; [c])

are all in either H 0 or K 0� for some �. Then the sequence [a]; [x1]; [x2]; [b]; [x3]; [x4]; [c]
satis�es the conditions of 44 and hence ([a]; [c]) 2 hE;E 0; F�; F 0�i.
We will call the uniform structure on the space X ^ fY�g as the glued uniformity.

We have not veri�ed condition 5 (the Hausdor¤ condition) for the space X ^ fY�g.
If the component spaces are Hausdor¤, it is unknow to the author whether X ^ fY�g
is Hausdor¤. However, in the special case that the subspaces Z� are closed, we can
show that X^fY�g meets condition 5.

Proposition 47 Let X and fY�g be as in the previous proposition, and suppose fur-
ther that Z� is a closed subspace of Y� for each �. Then X ^ fY�g is Hausdor¤.

Proof. We will show that for �xed ([a]; [b]) 2 4C �X ^ fY�g�X ^ fY�g, there exists
an entourage hE;E 0; F�; F 0�i such that ([a]; [b]) =2 hE;E 0; F�; F 0�i. We will consider
the following cases.
Case 1: At least one of X \ [a] and X \ [b] is empty.
Since each hE;E 0; F�; F 0�i is symmetric, we may assume without loss of general-

ity, that X \ [a] is empty. Then there exists an index � such that a 2 Y� is the
unique element of [a]. We will choose an entourage F� in Y� in such a way that if
hE;E 0; F�; F 0�i is formed using F� then B([a]; hE;E 0; F�; F 0�i) contains only equiva-
lence classes of iY�(Y�). Then we may use the Hausdor¤ condition in Y� to imply the
condition in X ^ fY�g. Since Z� is closed, we can then �nd an entourage F� such
that B(a; F�) � ZC

� (the complement of Z� in Y�): Letting E be an entourage in X
we may assume (by intersecting F� with an acceptable entourage if necessary) that
(E;F�) is acceptable. We then form a glued entourage hE;E 0; F�; F 0�i. By the choice
of F� the pair ([a]; [b]) cannot satisfy condition 2 in the de�nition of hE;E 0; F�; F 0�i,
and can satisfy condition 1 only if b 2 Y� such that (a; b) 2 F�. If it should happen
that b 2 Y� such that (a; b) 2 F� then we may then use the Hausdor¤ condition on
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Y� to choose a smaller entourage H� so that B(a;H�) \ B(b;H�) is empty. Since
(E;H�) is acceptable by 41 we may form an entoruage of the form hE;E 0; H�; H

0
�i.

Then ([a]; [b]) cannot meet either condition 1 or 2 in the de�nition of hE;E 0; H�; H
0
�i

and hence ([a]; [b]) =2 hE;E 0; H�; H
0
�i

Case 2: There exists x 2 X \ [a] and x0 2 X \ [b].
We use the Hausdor¤condition onX to choose an entourage E such that B(x;E)\

B(x0; E) is empty. Consider any hE;E 0; F�; F 0�i. By the choice of E we cannot
have ([a]; [b]) (= ([x]; [x0])) in E. Suppose there exists an index � and y 2 Y� \
[a]; y0 2 Y� \ [b] such that (y; y0) 2 F�. Then by 41 we would have ([a]; [b]) in E
which is a contradiction. Finally, assume there exists ([x1]; [x2]) in E 0 such that
([x]; [x1]); ([x2]; [x

0]) are in E 0 or F 0� for some �. Then, again applying [acceptable
properties], we have that ([x]; [x1]); ([x2]; [x0]) are by necessity in E 0 which implies
that (x; x0) 2 (E 0)3 � E a contradiction.
Our ultimate goal is to show that the glued uniform space of any �nite dimensional

CW complex is uniform coverable. The uniform structure on X^fY�g certainly allows
us to form lim

 �
(X ^ fY�g)hE;E0;F�;F 0�i and we will show that if the original spaces

are uniform coverable so is X^fY�g. One di¢ culty, however, is that the uniform
structure provides a topology on the glued space which may be distinctly smaller
than the quotient topology (see 52 below). Since the topology of a CW complex is
the quotient topology, we must show that the uniform topology on it is equivalent
to the quotient topology. In fact, we will show that if each of the subspaces Z� is
compact then equivalence of the topologies follows (see 51). Since the boundary of
each n-cell is a compact subspace of the cell, the result would apply to CW complexes.
To accomplish this we will use the following facts. 48 is proved as corollary 8.15 in
[8] whereas 49 follows from corollary 2 of proposition 2 of section II.1.2 of [3].

Remark 48 Let U be an open subset of a uniform space Y and let K be a compact
subset of Y which is contained in U . Then there exists an entourage F such that the
F neighborhood of K; F (K) � U , or in other words, k 2 K, a 2 Y and (k; a) 2 F
implies that a 2 U .

Remark 49 Let U be an open set of a uniform space Y and x 2 U . Then there exists
an entourage F such that cl(B(x; F )) � U .

Proposition 50 The functions iX : X ! X ^ fY�g is a uniform homeomorphism
onto its image, and iY� : Y� ! X ^ fY�g is uniformly continuous.

Proof. Let hE;E 0; F�; F 0�i be a basis entourage of X ^ fY�g. If (x1; x2) 2 E then
iX(x1; x2) = ([x1]; [x2]) 2 hE;E 0; F�; F 0�i. On the other hand, if (y1; y2) 2 F� for some
�, then iY�(y1; y2) = ([y1]; [y2]) 2 hE;E 0; F�; F 0�i. Hence E � i�1X (hE;E 0; F�; F 0�i)
and F� � i�1Y� (hE;E

0; F�; F
0
�i) which implies that iX and iY are uniformly continuous.

iX is injective since the elements in X \ [a] are unique (if they exist). Further, let
x1; x2 2 X such that ([x1]; [x2]) 2 hE;E 0; F�; F 0�i. Then, if ([x1]; [x2]) meets condition
1 in the de�nition of hE;E 0; F�; F 0�i then (x1; x2) 2 E. If ([x1]; [x2]) meets condition
2 in the de�nition of hE;E 0; F�; F 0�i then there exists x3; x4 2 X such that ([x3]; [x4])
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is in E 0 whereas ([x1]; [x3]) and ([x4]; [x2]) are in either F 0� for some � or E
0. However,

since (E 0; F 0�) is acceptable for all � by 41 we know that, ([x1]; [x3]); ([x4]; [x2]) must
be in E 0. Then (x1; x3); (x3; x4); (x4; x2) 2 E 0 implies that (x1; x2) 2 (E 0)3 � E.
This shows that ([x1]; [x2]) 2 hE;E 0; F�; F 0�i implies that (x1; x2) 2 E and hence
iX(E) = hE;E 0; F�; F 0�i \ iX(X)� iX(X). This implies that the image of E under iX
is an entourage in the subspace uniformity and thus iX is uniformly homeomorphic
to its image.

Proposition 51 The uniform topology on X ^ fY�g is a subset of the quotient topol-
ogy. If Z� is a compact subspace of Y� for each � then the topologies are equivalent.

Proof. The quotient topology is induced by the maps iX and fiY�g�2A. By proposi-
tion 2, these maps are uniformly continuous (hence continuous) maps to the space X
^ fY�g endowed with the uniform topology. Therefore, if a set U is open in X ^ fY�g
under the uniform topology, its inverse image must be open in each of the spaces X
and Y�. Hence U is open in the quotient topology by de�nition and the �rst statement
is a consequence of 50. Now, suppose that Z� is a compact subspace of Y� and let U
be a subset of X ^ fY�g which is open in the quotient topology. We will show that if
[a] 2 U then there exists an hE;E 0; F�; F 0�i such that B([a]; hE;E 0; F�; F 0�i) � U . We
will consider the following 2 cases.
Case 1: There exists x 2 X \ [a].
Since U is open in the quotient topology, i�1X (U) is open in X and hence there

exists by 49, an entourage E such that cl(B(x;E)) � i�1X (U). By the continuity of
each f� we have that f�1� (cl(B(x;E)) is a closed subset of Z� and hence is compact.
Further, if y 2 f�1� (cl(B(x;E)) then f�(y) = x0 for some x0 in cl(B(x;E)) which
implies that [y] = [x0] 2 U . Hence f�1� (cl(B(x;E)) � i�1y� (U) which is open in Y . We
can now apply 48 to �nd an entourage H� in Y� such that the H� neighborhood of
f�1� (cl(B(x;E)) is a subset of i�1y� (U). For each �, we then choose an entourage F�
in Y� such that (E;F�) is acceptable and, by intersecting F� with H� we may assume
that the F� neighborhood of f�1� (cl(B(x;E)) is contained in i�1y� (U).
We now show that B([a]; hE;E 0; F�; F 0�i) � U . Suppose [b] is an element in

B([a]; hE;E 0; F�; F 0�i). If ([a]; [b]) is in E then (x; x0) 2 E for x0 2 X \ [b]. Then, by
the choice of E; we have that x0 is in i�1X (U) which implies that [b] is in U . If ([a]; [b])
is in F� for some � then (y; y0) 2 F� for some y 2 Y� \ [a] and y0 2 Y� \ [b]. Further,
since f�(y) = x, we must have that y 2 f�1� (cl(B(x;E)). Since the F� neighborhood
of f�1� (cl(B(x;E)) � i�1Y� (U) we have that y

0 2 i�1Y� (U):Hence [b] 2 U .
On the other hand, assume that there exists a pair ([x1]; [x2]) in E 0 such that

([a]; [x1]); ([x2]; [b]) are in either F 0� for some �, or E
0. If y 2 Y� \ [a] and y0 2

Y� \ [x1] are such that (y; y0) 2 F� then since f�(y) = x and f�(y0) = x1 we have
that (y; y0) 2 F� \ Z� � Z�. By 41 from the beginning of this section, ([a]; [x1])
is then in E 0 by necessity. Thus (x; x1) 2 E 0 and (x1; x2) 2 E 0 which implies that
(x; x2) 2 (E 0)2. We �rst suppose that ([x2]; [b]) is also in E 0. Then there exists x3
in X \ [b] and (x2; x3) 2 E 0. Hence (x; x3) 2 (E 0)3 � E. Then, using the fact that
cl(B(x;E)) � i�1X (U) by the choice of E; we have x3 2 i�1X (U) and hence [b] 2 U .
On the other hand, if ([x2]; [b]) is in F 0� then (y; y

0) 2 F� for some y 2 Y� \ [x2] and
y0 2 Y� \ [b]. In particular, we know that f�(y) = x2. Since (x; x2) 2 (E 0)2 � E we
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must have y 2 f�1� (cl(B(x;E)). Then y0 is in the F� neighborhood of f�1� (cl(B(x;E))

and must therefore be in i�1Y� (U). Since [y
0] = [b] we have that [b] 2 U .

Case 2: X \ [a] is empty.
Notice that y 2 Z�\[a] for any � then f�(y) 2 [a] which contradicts the assumption

in this case. Hence a 2 ZC
� � Y� is the unique element of [a]. Since Z� is a compact

subset of a Hausdor¤space it is closed and hence we can �nd an entourageG in Y� such
that B(a;G) � ZC

� . We can also �nd an entourage H such that B(a;H) � i�1Y� (U).
Let F� � G\H. Given any entourage E inX we may assume (by intersecting with an
acceptable entourage) that F� is acceptable with E. For each index � 6= � we choose
an acceptable entourage F�. Suppose that [b] 2 B([a]; hE;E 0; F�; F 0�i). We will show
that, by necessity, ([a]; [b]) is in F�. We cannot have ([a]; [b]) in any entourage of X
or F� for � 6= � since [a] contains no elements of X or Y�. Suppose there exists a pair
([x1]; [x2]) in E 0 such that ([a]; [x1]) is in F 0� and ([x2]; [b]) is in either E

0 or F 0� for some
�. Then ([a]; [x1]) in F 0� implies that (a; y) 2 F 0� � F� for some y 2 Y� \ [x1]. Hence,
by the choice of F� we must have y 2 ZC

� and y the unique element of [x1]. This is a
contradiction since x1 2 X \ [x1]. Hence ([a]; [b]) can be an element of hE;E 0; F�; F 0�i
only if ([a]; [b]) is in F�. Then, again by the choice of F� we have that b 2 i�1Y� (U) and
hence [b] 2 U . This proves the proposition.
Example 52 The above proposition fails in general, i.e. there exists X ^ fY�g and
U � X ^ fY�g such that U is open in the quotient topology but not in the uniform
topology.

Proof. Let Y be the square in R2 with corners at (1; 1); (1;�1); (�1; 1) and (�1;�1)
(include the interior of the square). Let Z be the set f(x; y)jy < x2g. Let X be the
interval [�1; 1] and de�ne the function f : Z ! X by the projection f((x; y)) = x.
To see that this function is uniformly continuous, notice that if (x1; y1); (x2; y2) are
less than a distance " apart, then jx2 � x1j < ". Suppose F (") is the entourage
in Y de�ned by the distance " and E(") is the entourage in X de�ned by the dis-
tance ": Then ((x1; y1); (x2; y2)) 2 F (") implies jx2 � x1j < " which implies that
(f(x1; y1); f(x2; y2)) = (x1; x2) 2 E("). Thus F (") � f�1(E(")) and f is uniformly
continuous.
Consider the subset U ofX ^Y equal to f[x]jx 2 Xg. U is the image ofX under iX :

X ! X ^ Y and hence i�1X (U) is open in X. Similarly i
�1
Y (U) = Z which is an open

subset of Y . Thus U is an open subset of X ^Y in the quotient topology. Consider the
point iX(0) = [0]. Let hE("); E("0); F (�); F (�0)i be an arbitrary entourage of X^Y .
Let y < �. Then the point (0; y) 2 Y is not in Z and hence (0; y) is the unique element
in the equivalence class [(0; y)]. In particular [(0; y)] =2 U . On the other hand, since
f(0; 0) = 0 we have that (0; 0) 2 [0] 2 U . However, the distance between (0; 0) and
(0; y) is y < �. Hence ([(0; 0)]; [(0; y)]) = ([0]; [(0; y)]) is in F (�). But then [(0; y)] 2
B([0]; hE("); E("0); F (�); F (�0)i) but [(0; y)] =2 U . Since hE("); E("0); F (�); F (�0)i was
arbitrary, U cannot be open in the uniform topology on X ^Y . This proves the result.

We will now consider the question of uniform coverability of X ^ fY�g. We will
show (see proposition 5 below) that if the original uniform spaces are uniform cover-
able then X ^ fY�g is uniform coverable as well. A natural candidate for a covering
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basis on X ^ fY�g would be the set of entourages hE;E 0; F�; F 0�i where E and F�
are elements of the covering basis of X and Y� respectively. Before we proceed with
the proof that such entourages of X ^ fY�g are indeed covering entourages, we must
establish �rst of all that such entourages exist, and that they form a basis. Toward
that end we consider the following more general lemma.

Proposition 53 Let � be a basis for the uniformity on X and �� be a basis for the
uniformity on Y�. Then the set of all entourages hH;H 0; K�; K

0
�i such that H;H 0 2 �

and K�; K
0
� 2 �� forms a basis for the uniformity on X ^ fY�g.

0
Proof. Let hE;E 0; F�; F 0�i be a basis entourage inX ^ fY�g. ChooseH 2 � such that
H � E. For each � we choose an (arbitrary) entourage D� in Y� such that (H;D�)
is acceptable and then we �nd a basis entourage K� 2 �� such that K� � D�. By
41 (H;K�) is acceptable. We then choose any H 0 and K 0� which meet the conditions
in the de�nition of hH;H 0; K�; K

0
�i. By choosing basis elements H 00; F 00� contained in

H 0 \ E 0 and K 0� \ F 0� we may assume that the following hold:
1) H � E;H 00 � E 0; K� � F�; and K 00� � F 0�
Notice that if ([a]; [b])meets either condition 1 or 2 in de�nition 42 for the entourage

hH;H 00; K�; K
00
�i then by 1) it must also satisfy the same condition in the de�nition

of hE;E 0; F�; F 0�i. Thus hH;H 00; K�; K
00
�i � hE;E 0; F�; F 0�i and the result follows.

Lemma 54 Let hE;E 0; F�; F 0�i be an entourage of X ^ fY�g. If

 := fa0; a1; :::ang, � := fb0; b1; :::bmg are E-chains of X, then the chains �
 :=

f[a0]; [a1]:::[an]g and �� := f[b0]; [b1]:::[bm]g are hE;E 0; F�; F 0�i chains. Further, if there
exists an E homotopy from 
 to � then there exists a hE;E 0; F�; F 0�i homotopy from
�
 to ��. A similar result holds for F�-chains.

Proof. Since iX ; iY� are uniformly continuous by 50 and iX(E); iY�(F�) � hE;E 0; F�; F 0�i
we have from De�nition 19 and Theorem 27 in [2] that �
; �� are hE;E 0; F�; F 0�i-chains
and that there exists uniformly continuous functions (iX)EhE;E0;F�;F 0�i; (iY�)F�hE;E0;F�;F 0�i
de�ned by (iX)EhE;E0;F�;F 0�i([
]E) = [iX(
)]hE;E0;F�;F 0�i = [�
]hE;E0;F�;F 0�i. The well de-
�nedness of these maps gives the second statement.
Let x 2 X and (X^fY�g)�[x] be the fundamental inverse system of X^fY�g with

[x] as basepoint. By the previous lemma it is natural to consider the map which
takes each element ([uE]E) in ~Xx to the element of (X^fY�g)�[x] which has as its
hE;E 0; F�; F 0�ith representative, the barred version of the Eth representative of (
),
i.e. [�uE]hE;E0;F�;F 0�i. We must show that such an element is well de�ned.

Lemma 55 There are mappings ~{xX : ~X
x ! (X^fY�g)�[x] and ~{yY� : ~Y

y
� ! (X^fY�g)�[y]

de�ned by:

~{xX([uE]E) = ([�uE]hE;E0;F�;F 0�i);~{
y
Y�
([uF� ]F�) = ([�uF� ]hE;E0;F�;F 0�i)

Proof. Consider [�uE]hE;E0;F�;F 0�i. Suppose hH;H 0; K�; K
0
�i � hE;E 0; F�; F 0�i. We

must show that there is an hE;E 0; F�; F 0�i-homotopy between �uH and �uE. We choose
an entourageM � H\E. Since ([uE]E) 2 ~Xx we have that uM isH-homotopic to uH
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and E-homotopic to uE. By what we have just shown, �uM is then hH;H 0; K�; K
0
�i-

homotopic to �uH . Then, since hH;H 0; K�; K
0
�i � hE;E 0; F�; F 0�i we know that every

hH;H 0; K�; K
0
�i-homotopy is, in particular, an hE;E 0; F�; F 0�i-homotopy. Thus, in

fact �uM is hE;E 0; F�; F 0�i-homotopic to �uH . The E-homotopy between uM and uE
implies an hE;E 0; F�; F 0�i-homotopy between �uM and �uE. Thus �uH is hE;E 0; F�; F 0�i-
homotopic to �uM which is in turn hE;E 0; F�; F 0�i-homotopic to �uE. Thus there is an
hE;E 0; F�; F 0�i-homotopy between �uH and �uE and ([�uE]hE;E0;F�;F 0�i) is well de�ned.
The same proof works for each ~{Y� :

Theorem 56 If X and Y� are uniform coverable uniform spaces for each � then X
^ fY�g is uniform coverable.

Proof. Let � be a basepoint of X and choose [�] as the basepoint of X ^ fY�g. Let
hH;H 0; K�; K

0
�i be a glued entourage such that H;H 0 are covering entourages of X

and K�; K
0
� are covering entourages of Y�. We will show that such an entourage is

a covering entourage in X ^ fY�g. By 53 we know that such entourages form a basis
for the uniformity on X^fY�g and thus X^fY�g will be uniform coverable. We let

 := f[�] = [a0]; [a1]; :::[aK ]g be an hH;H 0; K�; K

0
�i chain and we must then show that

there exists
([
hE;E0;F�;F 0�i]hE;E0;F�;F 0�i) 2 (X^fY�g)

�[�]

such that the hH;H 0; K�; K
0
�ith element is [
]hH;H0;K�;K0

�i.
Our strategy is as follows. First, we show that it is possible to assume that each of

the pairs ([ai]; [ai+1]) satis�es condition 1 in the de�nition of hH;H 0; K�; K
0
�i. This

means that we may assume that (ai; ai+1) 2 H orK�. Then we use the fact thatH;K�

are covering entourages to �nd elements of ~Xai or ~Y ai
� whose Hth or K�th element

is [fai; ai+1g]. We then use the mappings ~{X ;~{Y to �nd an element in (X^fY�g)�[ai]
whose hH;H 0; K�; K

0
�ith element is ([ai]; [ai+1]). Then by 29 we can combine these to

form an element of (X^fY�g)�[�] whose hH;H 0; K�; K
0
�ith element is [
]hH;H0;K�;K0

�i
To begin, we show that it is possible to assume that each of the pairs ([ai]; [ai+1])

satis�es condition 1 in the de�nition of hH;H 0; K�; K
0
�i. Suppose that in 
, the

pair ([ai]; [ai+1]) satis�es condition 2 in the de�nition of hH;H 0; K�; K
0
�i. Then there

exists a pair ([x1]; [x2]) in H 0 (and hence in H) such that ([ai]; [x1]); ([x2]; [ai+1]) are
in H 0 or K 0� (and hence are in H or K�) for some �. We will show that ([ai]; [ai+1]) is
hH;H 0; K�; K

0
�i homotopic to ([ai]; [x1]; [x2]; [ai+1]). First, we claim that [x1] may be

inserted into [ai]; [ai+1]. This is because �rst of all the pair ([ai]; [x1]) is in H 0 or K 0�
(and hence is inH orK�) and satis�es condition 1 of the de�nition of hH;H 0; K�; K

0
�i.

Further, ([x1]; [ai+1]) satis�es condition 2 in the de�nition of hH;H 0; K�; K
0
�i since

([x2]; [x2]) is in H 0 while ([x1]; [x2]) and ([x2]; [ai+1]) are in either H 0 or K 0�. Also,
note that [x2] can be inserted into [x1]; [ai+1] since both ([x1]; [x2]) and ([x2]; [ai+1])
are in H 0 or K 0� (and hence is in H or K�) and satisfy condition 1 of the de�nition
of hH;H 0; K�; K

0
�i. Applying these homotopies to each of the pairs ([ai]; [ai+1]) in 
,

it follows that 
 is hH;H 0; K�; K
0
�i related to an hH;H 0; K�; K

0
�i chain in which each

of the pairs ([ai]; [ai+1]) are in H or K� for some �.
Let � be �xed and suppose that ([ai]; [ai+1]) is in K�. Then there exists yi 2

Y� \ [ai]; yi+1 2 Y� \ [ai+1] such that (yi; yi+1) 2 K�. Since K� is a covering en-
tourage with respect to the basepoint of Y�; we have by 30 that it is a covering
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entourage with respect to yi. Hence it is possible to �nd ([ui;i+1]F�) 2 ~Y yi
� such

that the K�th representative [ui;i+1]k� is the equivalence class [fyi; yi+1g]K�
. Then

~{yiY�([ui;i+1]F�) = ([�ui;i+1]E^fF�g) is a well de�ned element of (X^fY�g)�[ai] such that
the hH;H 0; K�; K

0
�ith element is the equivalence class [([ai]; [ai+1])]hH;H0;K�;K0

�i. A
similar argument works if ([ai]; [ai+1]) is in X. We note that in particular, there
is an element ([�u0;1]hE;E0;F�;F 0�i 2 (X^fY�g)�[�] whose hH;H 0; K�; K

0
�ith element is

[f[�]; [a1]g]hH;H0;K�;K0
�i. We then use 29 to obtain an element ([uhE;E0;F�;F 0�i]hE;E0;F�;F 0�i) 2

(X^fY�g)�[�] whose hH;H 0; K�; K
0
�ith element is

[f[�]; [a1]; :::[an]g]hH;H0;K�;K0
�i = [
]hH;H0;K�;K0

�i

To �nish the proof we note that in particular, X � X and Y� � Y� are covering
entourages in their respective uniform spaces (by the de�nition of a covering basis).
We note that X�X and Y��Y� are covering entourages such that (X�X)4 � X�X
and (Y� � Y�)

4 � Y� � Y� and hence the above process works for the particular
entourage hX�X;X�X;Y��Y�; Y��Y�i where (X�X)0 and (Y��Y�)0 are taken
to be X�X and Y��Y� respectively. Thus if (X^fY�g)� (X^fY�g) = hX�X;X�
X; Y� � Y�; Y� � Y�i, we have that (X^fY�g) � (X^fY�g) is a covering entourage
and X^fY�g would then be uniform coverable. To see that (X^fY�g)� (X^fY�g) =
hX�X;X�X; Y��Y�; Y��Y�i, we �rst let ([a]; [b]) 2 (X^fY�g)�(X^fY�g) such that
a 2 Y� and b 2 Y�. We let z1 2 Z� and z2 2 Z�. Then ([z1]; [z2]) = ([f�(z1)]; [f�(z2)])
is in X �X, ([a]; [z1]) is in Y�� Y� and ([z2]; [b]) is in Y� � Y� hence ([a]; [b]) satis�es
condition 2 in the de�nition of hX �X;X �X; Y� � Y�; Y� � Y�i. A similar line of
reasoning works if a or b (or both) are elements of X. Hence (X^fY�g)�(X^fY�g) �
hX � X;X � X; Y� � Y�; Y� � Y�i. The other containment follows by de�nition so
that (X^fY�g)� (X^fY�g) = hX �X;X �X; Y� � Y�; Y� � Y�i.

Proposition 57 Let X; fY�g be uniform spaces and for each �, Z� a compact subset
of Y�. Suppose the balls of the entourages E;E 0; F�; F 0� are path connected in their
respective spaces. Then the glued entourage hE;E 0; F�; F 0�i has path connected balls.

Proof. By 51 we may assume that the topology is the quotient topology. We consider
the following cases.
Case 1) X \ [a] is non-empty.
In this case, let x 2 X\ [a] and suppose ([a]; [b]) 2 hE;E 0; F�; F 0�i. From the proof

of 50 we know that i�1X (B([a]; hE;E 0; F�; F 0�i) = B(x;E): This is a path connected
subset of X by assumption. Thus, if X \ [b] is non-empty we let x0 2 X \ [b]. If
p is a path from x to x0 which lies in B(x;E) then iX � p is a path from [a] to [b]
which lies in B([a]; hE;E 0; F�; F 0�i). On the other hand, suppose X \ [b] is empty.
Then b 2 Y� is the unique element in [b]. Consequently, ([a]; [b]) 2 hE;E 0; F�; F 0�i
implies that ([a]; [b]) satis�es condition 2 in the de�nition of hE;E 0; F�; F 0�i. It follows
that b 2 B(z; F 0�) for some z 2 Z� and we note that for any y� 2 B(z; F 0�) we have
[y�] 2 B([a]; hE;E 0; F�; F 0�i). Since f�(z) 2 B(x;E) we have, by what we have
already proved, a path iX � p1 from [a] to [z] which lies in B([a]; hE;E 0; F�; F 0�i).
Since B(z; F 0�) is path connected we �nd a path p2 in Y� from z to b which lies in
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B(z; F 0�) and then iY� � p2 is a path from [z] to [b]. Since im(p2) � B(z; F 0�) we
know that im(iY� � p2) � B([a]; hE;E 0; F�; F 0�i) and thus B([a]; hE;E 0; F�; F 0�i) is
path connected in this case.
Case 2) X \ [a] is empty.
In this case we may assume that a 2 Y� is the unique element in [a]. We �rst

suppose that ([a]; [b]) meet condition 1 in the de�nition of hE;E 0; F�; F 0�i. This can
only happen if there exists a y 2 Y� \ [b] such that (a; y) 2 F�. Since B(a; F�) is
path connected by assumption, we choose a path p from a to y which lies in B(a; F�)
and then iY� � p is a path from [a] to [b] which lies in B([a]; hE;E 0; F�; F 0�i. Now
suppose ([a]; [b]) meet condition 1 in the de�nition of hE;E 0; F�; F 0�i. Then there
exists z� 2 Z� and z� 2 Z� such that ([a]; [f�(z�)]) is in F 0�, ([f�(z�)]; [f�(z�)]) is in
E 0 and ([f�]; [b]) is in F 0�. Then, since B(y�; F

0
�) is path connected we �nd a path p1

lying in B(z�; F 0�) between a and z�. Any point lying in the image of p1 is within
F 0� of a and hence iY� � p1 is a path between [a] and [z�] = [f�(z�)] which lies in
B([a]; hE;E 0; F�; F 0�i). We then note that B(f�(z�); E 0) is path connected and �nd a
path p2 between f�(z�) and f�(z�). Any point which lies on p2 is within E 0 of f�(z�)
and hence points on iX � p2 are in B([a]; hE;E 0; F�; F 0�i) by condition 2. iX � p2 is a
path in X^fY�g connecting [f�(z�)] to [f�(z�)]. Finally we choose a path p3 between
z� and b which lies in B(z�; F 0�). Points on p3 are within F

0
� of z� and hence points on

iY� � p3 lie in B([a]; hE;E 0; F�; F 0�i) by condition 2. Since iX � p2 is a path connecting
[z�] = [f�(z�)] to [b] we connect iY� � p1; iX � p2 and iX � p2 to obtain a path between
[a] and [b] which lies in B([a]; hE;E 0; F�; F 0�i). Thus B([a]; hE;E 0; F�; F 0�i) is path
connected in this case as well.
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5 The Van Kampen Theorem for Deck Groups

The Van Kampen Theorem is a highly useful tool for calculating the fundamental
group of topological spaces. If a larger topological space is composed of simpler
"pieces" whose fundamental groups are known, and whose intersections obey some
basic path connected requirements, then the Van Kampen Theorem provides a pre-
sentation for the fundamental group of the larger space. The fundamental groups of
the component spaces are �rst combined into a larger group (the free product). Since
the generators of these groups are eqivalence classes of loops, any loop which lies
in more than one component space will appear more than once in the free product.
Thus, to complete the construction, generators that lie in more than one component
space are identi�ed.
A "Van Kampen" theorem for uniform fundamental groups would be an important

tool for calculating such groups on more complicated uniform spaces. The proposi-
tions below provide such a tool, but it is important to note that the theorem works
on two levels. First, 59, we have a "Van Kampen" theorem for spaces at the deck
group level (in which a given entourage is �xed). Then we consider inverse limits of
such deck groups in proposition 2. To use the traditional Van Kampen Theorem, one
considers a topological space as a union of open sets whose fundamental groups are
known. The requirement that the sets be open cannot be dropped, as the example
of the Hawaiian Earring shows (see [9]). One main feature of 61 is that it does not
require the openness of subsets. Further, the lack of a requirement of openness allows
61 to be applicable to more complicated spaces like those considered in [9]. This is
because individual deck groups will "miss" small holes and are unencumbered with
the complications that arise in considering an in�nite number of smaller and smaller
generators. These generators are picked up in the inverse limit. We note, however,
that �1 may not equal the fundamental group in these cases (see [Example]).
To begin, we will provide some de�nitions and notation for free products. See [7],

p. 68 for more details. Let fG�g�2A be a collection of groups, indexed by A. We
may consider the set S = f(x1)�1(x2)�2 :::(xn)�njxi 2 G�ig. This is the collection
of all �nite sequences of elements from [�G�. We wish to de�ne an equivalence
relation on S. First, we declare all of the identity elements to be equivalent to each
other. Suppose (xk)�k = (y)�k(z)�k or in other words, xk equals the product yz
in G�k . Then, the sequence (x1)�1(x2)�2 :::(xk�1)�k�1(xk)�k :::(xn)�n will be called a
contraction of (x1)�1(x2)�2 :::(xk�1)�k�1(y)�k(z)�k :::(xn)�n while the second sequence
will be called an expansion of the �rst. Then any two sequences a1; a2 2 S are
equivalent (a1 � a2) if there exists sequences a1 = s0; s1; :::sm = a2 such that each sk
is an expansion or contraction of sk�1. We then form the quotient set S= �.
We de�ne a group operation on the set S= � by concatenating. In other words:

[(x1)�1(x2)�2 :::(xn)�n ] � [(y1)�1(y2)�2 :::(ym)�n ]
= [(x1)�1(x2)�2 :::(xn)�n(y1)�1(y2)�2 :::(ym)�n ]

The well de�nedness of the operation �, as well as the fact that it is associative follows
as in the proof of the similar assertions for �E(X) in 19. It is easy to see that the
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equivalence class containing all the identity elements is the identity for this group,
and that an inverse to [ (x1)�1(x2)�2 :::(xn)�n ] is [(xn)

�1
�n(xn�1)

�1
�n�1 :::(x1)

�1
�1
]:This group

is called the free product of the groups G� and will be denoted �G�.

Lemma 58 Let E be an entourage in a uniform space and suppose 
 = 
1x
2 is
an E chain,where 
1 = fa0; a1; :::ai�1g and 
2 = fai+1; ai+2; :::; ang. Let � = fx =
x0; x1; :::xmg be an E chain from x to some point xm. Then 
 � 
1��

�1
2.

Proof. We begin by noting that (x; x) and (x; ai+1) are both elements of E since 

is an E chain. Hence x may be inserted into x; ai+1 to obtain x; x; ai+1. Then the
following equivalences follow from the fact that � is an E chain:

x; x � x; x1; x � x; x1; x1; x � x; x1; x2; x1; x � x; x1; x2; x2; x1; x

� ::: � x; x1; :::xm�1; xm; xm�1; :::x1; x = ���1

.
These equivalences imply that 
 = 
1x
2 � 
1��

�1
2

Proposition 59 (Van Kampen Theorem for �E(X)): Let fX�g be a collection
of subsets of a uniform space X whose union is X. Let � be a base point in X
and suppose � 2 X� for all �. Let E be an entourage. Suppose that for each triple
X�; X�; X
 we have that E(X�)\E(X�)\E(X
) is E chain connected. If � is an E-
loop in E(X�)\E(X�) let [�]�; [�]� be the E-equivalence classes of � in the subspaces
E(X�) and E(X�) respectively. Let ��E(E�) be the free product of all �E(X�), and
let N be the normal subgroup generated by elements of the form [
]�[
]

�1
� . Then

�E(X) ~= � �E(E(X�))=N .

Proof. We begin by showing that if 
 := f� = x0; x1; :::xn = �g is an E�loop in X,
then there exists E-loops g1; g2; :::gn; each of which is contained in some E(X�); such
that [
]E = [g1g2:::gn]E = [g1]E � [g2]E � ::: � [gn]E in �E(X). To see this, we choose
for 1 � s � n � 1, an element Xs 2 fX�g such that xs 2 Xs. For convenience we
set Xn = Xn�1. Notice that since (xs; xs+1) 2 E and xs+1 2 Xs+1 we have by the
symmetry of E that xs 2 E(Xs) \ E(Xs+1). Using the fact that E(Xs) \ E(Xs+1)
is E-chain connected and contains � we may �nd, for each 1 � s � n� 1 an E-chain
� s � E(Xs) \ E(Xs+1) from xs to �. For convenience we set � 0 = �n = �. Then,
using 58 we have that 
 � �� 1��11 � 2�

�1
2 :::��1n�1� = ��10 � 1�

�1
1 � 2�

�1
2 :::��1n�1�n. De�ning

gs = ��1s�1� s for 1 � s � n, we have that each gs is an E-loop contained in E(Xs) and
the result follows. Notice that the factorization [
]E = [g1]E�[g2]E�:::�[gn]E resulting
from 58 depends on the choice of Xs 2 fX�g and on the choice of the chains � s. Any
such factorization corresponds to an element of the group ��E(E(X�), namely the
equivalence class of the sequence [g1]1 � [g2]2 � ::: � [gn]n where [gs]s 2 �E(Xs).
We de�ne a map � : ��E(E(X�)) ! �E(X) by mapping [g0]0 � [g1]1 � ::: � [gl]l to

[g0g1:::gl]E. To see that the mapping � de�ned above is well de�ned on ��E(E(X�)),
notice that if [gk]k = [h]k�[h0]k = [hh0]k in �E(E(Xk)) then there exists anE-homotopy
from gk to hh0 in the subspace E(Xk). This implies that there is an E-homotopy in
X from gk to hh0 and hence [g0g1:::gk:::gl]E = [g0g1:::hh0:::gl]E. Thus any expansion
or contraction of [g0]0 � [g1]1 � ::: � [gl]l has the same image under � and since all the
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elements in the equivalence class of [g0]0�[g1]1�:::�[gl]l can be obtained through a �nite
number of expansions or contractions, � is well de�ned. Clearly � is a homomorphism
since the operation in both ��E(E(X�)) and �E(X) is concatenation. Further, we have
shown that any [
]E has a factorization, and hence � is surjective. For any generator
[
]� � [
]�1� of N we have �([
]� � [
]�1� ) = [
 �
�1]E = [�]E so that N is a subgroup of
ker(�). Thus there is a well de�ned surjective function � : ��E(E(X�)=N ! �E(X)
de�ned by �(gN) = �(g) (see [7]). The remainder of the proof will establish that �
is injective. This is accomplished by showing that any two factorizations of [
]E are
in the same equivalence class of ��E(E(X�)=N
We �rst establish that any choice of the chains � s results in factorizations whose

representatives in ��E(E(X�))=N are equal. For each 1 � s � n� 1; let �s be an E-
chain in E(Xs)\E(Xs+1) from xis to �, and set �0 = �n = �. Let [
]E = [h1]E � [h2]E �
:::�[hn]E be the resulting factorization (i.e. hs = ��1s�1�s), then [g1]1�[g2]2�:::�[gn]n is in
the same equivalence class as [h1]1�[h2]2�:::�[hn]n in ��E(E(X�)=N . For some �xed s
it su¢ ces to consider the case that �k = � k for all k 6= s . Then applying this case n�1
times would obtain the result. We note that hk(= ��1k�1�k) is equal to gk(= ��1k�1� k)
for all k 6= s or s + 1 while hs = ��1s�1�s and hs+1 = ��1s � s+1. We form the loop
��1s � s and note that it is an E-loop which lies in both �E(E(Xs)) and �E(E(Xs+1)).
Hence by the de�nition of N we have that [��1s � s]s = [��1s � s]s+1 in ��E(E(X�)=N .
By the de�nition of gs we have that gs = ��1s�1� s � ��1s�1xs� s (since �

�1
s�1 ends at xs�1

while � s begins at xs and xs can be inserted between xs�1 and xs). Further, 58
then gives ��1s�1xs� s � ��1s�1�s�

�1
s � s as E-chains. These equivalences take place in the

subspace E(Xs) so, if we consider [gs]s as an element of �E(Xs) then we can write
[gs]s = [�

�1
s�1� s] = [�

�1
s�1�s�

�1
s � s] = [�

�1
s�1�s]s� [��1s � s]s = [hs]s � [��1s � s]s. Now, as an

element of ��E(E(X�)=N we have that [gs]s�[gs+1]s+1 = [hs]s�[��1s � s]s�[gs+1]s+1 (since
[gs]s = [hs]s�[��1s � s]s in �E(Xs))= [hs]s�[��1s � s]s+1�[gs+1]s+1 (by the de�nition ofN)=
[hs]s � [��1s � sgs+1]s+1 = [hs]s � [��1s � s�

�1
s � s+1]s+1. Since ��1s � s�

�1
s � s+1 � ��1s xs� s+1 �

��1s � s+1 as above, we have that [gs]s � [gs+1]s+1 = [hs]s � [��1s � s�
�1
s � s+1]s+1 = [hs]s �

[hs+1]s+1 and the result follows.
Now we show that the representative in ��E(E(X�)=N of the factorization of [
]E

does not depend on the choice of subspace Xs containing xs. Suppose that for each
1 � s � n � 1 we have that xs 2 X�s for some X�s 2 fX�g. Let �s be an E-chain
in E(X�s) \ E(X�s+1) and set �0 = �n = �. Let [
]E = [h1]E � [h2]E � ::: � [hn]E
be the resulting factorization (i.e. hs = ��1s�1�s), then [g1]1 � [g2]2 � ::: � [gn]n is in
the same equivalence class as [h1]�1 � [h2]�2 � ::: � [hn]�n in ��E(E(X�)=N . We will
use the previous paragraph, and the de�nition of N repeatedly to replace the chains
�s with � s. To begin, notice that since �1 can be replaced with any E-chain in
E(X�1)\E(X�2), we may assume that �1 lies in E(X�1)\E(X�2)\E(X1) (which is
E-chain connected by the requirements of the proposition). Then, in particular, the
E-chain ��1 lies in both E(X�1) and E(X1) so by the de�nition of N , [h1]�1 = [h1]1
and we have that [h1]�1 � [h2]�2 � ::: � [hn]�n = [h1]1 � [h2]�2 � ::: � [hn]�n. This is
a factorization based on the assumption that x1 2 X1 instead of X�1 . Then, �1
can be replaced with any other E-chain in E(X1) \ E(X�2). This time, using the
assumption that E(X1) \ E(X�2) \ E(X2) is E-chain connected we may replace �1
with some E-chain � 01 which lies in E(X1) \ E(X�2) \ E(X2). This gives us an
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h01 = �� 01 and h02 = (� 01)�1�2 and by the results of the previous paragraph, we have
that [h1]1 � [h2]�2 � ::: � [hn]�n = [h01]1 � [h02]�2 � ::: � [hn]�n. Then, since h02 = (� 01)�1�2
lies in both E(X2) and E(X�2) we have, from the de�nition of N that this is equal to
[h01]1� [h02]2� [h3]�3 � :::� [hn]�n. Proceeding inductively we obtain [h01]1� [h02]2� :::� [h0n]n.
Finally, since each �0s lies in E(Xs)\E(Xs+1) we may replace each � 0s with � s so that
h0s = (�

0
s)
�1� 0s+1 = ��1s�1� s = gs and obtain [h01]1�[h02]2�:::�[h0n]n = [g1]1�[g2]2�:::�[gn]n.

We have now demonstrated that the equivalence class of [g1]1 � [g2]2 � ::: � [gn]n
in ��E(E(X�)=N is independent of how the E-loop [
]E = [g1]E � [g2]E � ::: � [gn]E
is factored as above. We will show further that if � is any loop E-equivalent to

 (i.e. � is any other element in the equivalence class [
]E) then any factorization
of � is in the same equivalence class as [g1]1 � [g2]2 � ::: � [gn]n in ��E(E(X�)=N .
Toward this end, suppose that a 2 Xa can be inserted into 
, i.e. that � = f� =
x0; x1; :::xs; a; xs+1; xn = �g is an expansion of 
 = f� = x0; x1; :::xng. If [�]E =
[h1]E � [h2]E � ::: � [hs]E � [ha]E � [hs+1]E � ::: � [hn]E is a factorization of � then we wish
to show that [h1]1�[h2]2�:::�[hs]s�[ha]a�[hs+1]s+1�:::�[hn]n is in the same equivalence
class as [g1]1�[g2]2�:::�[gn]n in ��E(E(X�)=N . Since (xs; a) and (a; xs+1) 2 E we have
that a 2 E(Xs)\E(Xs+1) and xs; xs+1 2 E(Xa). Using what we have already shown,
we may assume that �s = � s for all s with the added assumption that � s is an E-chain
in E(Xs)\E(Xa)\E(Xs+1) and � s+1 is an E-chain in E(Xs+1)\E(Xa)\E(Xs+2):
This then implies that ht = gt for all t 6= a or s + 1. We may also choose �a to
lie in E(Xs) \ E(Xa) \ E(Xs+1). Then we have that the chain gs+1 = ��1s � s+1 lies
in both of the subspaces E(Xs+1) and E(Xa); so that by the de�nition of N we
have [gs+1]s+1 = [gs+1]a in ��E(E(X�)=N . Further, gs+1 = ��1s � s+1 � ��1s a� s+1 (by
assumption on a)� ��1s �a�

�1
a � s+1 (by [chain inset lemma]). Since � s; �a; � s+1 all lie

in E(Xa) we have [gs+1]a = [��1s �a�
�1
a � s+1]a = [�

�1
s �a]a � [��1a � s+1]a = [ha]a � [hs+1]a

in �E(E(Xa)). Since ��1a � s+1 also lies in E(Xs+1) we have by the de�nition of N that
[hs+1]a = [hs+1]s+1 in ��E(E(X�)=N . All of this gives that [gs+1]s+1 = [ha]a � [hs+1]s+1
in ��E(E(X�)=N . Thus, if � is obtained from 
 by an expansion or contraction, then
any factorization of either is equivalent in ��E(E(X�)=N .
To show that any factorization of � has a representative in ��E(E(X�)=N equiv-

alent to that of 
 we will need one other fact. Suppose [
]� 2 ��E(E(X�)) and
[g1]E � [g2]E � ::: � [gn]E is a factorization of 
. Then [g1]1 � [g2]2 � ::: � [gn]n is
in the same equivalence class as [
]� in ��E(E(X�)=N . 
� in E(X�) implies that
xs 2 E(X�) for all 0 � s � n. We then form a factorization as above, with the
additional assumption that each � s lies in E(X�) \E(Xs) \E(Xs+1). Then we have
that [
]� = [g1g2:::gn]� = [g1]� � [g2]� � ::: � [gn]� in �E(E(X�)) and hence [
]� and
[g1]� � [g2]� � ::: � [gn]� are in the same equivalence class in ��E(E(X�))=N . Also, by
the de�nition of N , [gs]� = [gs]s in ��E(E(X�))=N and the result follows.
Now, suppose that [g1]1�[g2]2�:::�[gn]n and [h1]1�[h2]2�:::�[hm]m are two elements

of ��E(E(X�)) such that �([g1]1 � [g2]2 � ::: � [gn]n) = �([h1]1 � [h2]2 � ::: � [hm]m) i.e.
[g1g2:::gn]E = [h1h2:::hm]E in �E(X). Then there exists E chains 
0; 
1; :::
k such
that 
i is an expansion or contraction of 
i�1 and g1g2:::gn = 
0 whereas 
k =
h1h2:::hm. Let fi be a factorization of 
i and let Fi be the corresponding element in
��E(E(X�). Then F0 is equivalent to [g1]1 � [g2]2 � ::: � [gn]n (by what we have just
shown), Fi is equivalent to Fi�1 since 
i is obtained from 
i�1 by an expansion or
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contraction and Fk is equivalent to [h1]1 � [h2]2 � ::: � [hm]m again, by what we have
just shown. Hence � is injective and the proposition is proved.
We now consider the inverse limit. If NE represents the normal subgroup de-

�ned by the previous proposition then for each E there is an isomorphism �E :
��E(E(X�))=NE ! �E(X) we may de�ne for F � E homomorphisms fEF = ��1E �
�EF � �F . If [g1]1 � [g2]2 � ::: � [gn]n 2 ��F (F (X�)) then

�EF � �F ([g1]1 � [g2]2 � ::: � [gn]n) = �EF ([g1g2:::gn]F ) = [g1g2:::gn]E

However, each gi is a loop in �F (F (Xi)) and since F � E each gi is a loop in
�E(E(Xi)). Thus [g1]E � [g2]E � ::: � [gn]E is a factorization of �EF ([g1g2:::gn]F ) and
hence ��1E (�EF ([g1g2:::gn]F )) = [g1]1 � [g2]2 � ::: � [gn]n. In short, fEF is the mapping
obtained by the inclusion of each term [gi]i in �F (F (Xi)) into �E(E(Xi)). fEF are
thus bonding maps for the groups ��E(E(X�))=NE. We let pE be the projection map
of this inverse system onto ��E(E(X�))=NE.

Corollary 60 Let fX�g be a collection of subsets of a uniform space X whose union
is X. Let � be a base point in X and suppose � 2 X� for all �. Suppose there exists a
basis 
 for the uniformity on X such that for each entourage E 2 
 and each triple
X�; X�; X
 we have that E(X�) \ E(X�) \ E(X
) is E chain connected. Then for
each E we de�ne NE to be the normal subgroup de�ned in proposition 2 for E. Then
�1(X) = lim �

��E(E(X�)=NE.

Proof. Since 
 forms a basis for the uniformity on X the collection of entourages
forms a co-�nal subset of the index on �1. We may then de�ne

IE : lim �
��E(E(X�))=NE �! �E(X)by�E � pE:

So that
��1E � �EF � IF = ��1E � �EF � �F � pF = fEF � pF = pE

Using the fact that �E is an isomorphism we obtain that �EF � IF = �E � pE = IE
and by the fundamental property of inverse limits we have a well de�ned homomor-
phism I : lim

 �
��E(E(X�))=NE �! �1(X). Similarly we de�ne JE : �1(X) �!

��E(E(X�))=NE by JE =  E ���1E and by a proof similar to the one above we obtain
a well de�ned homomorphism J : �1(X) �! lim

 �
��E(E(X�))=NE. If (x) 2 �1(X)

then the Eth element in (I � J)(x) is (�E � ��1E )(xE) = xE. Thus I � J = id and
similarly J � I = id so that I is an isomorphism.
We wish to remove the E-neighborhoods from the previous statement, i.e. we

want �1(X) = lim �
��E(X�)=HE, where HE is now the normal subgroup of ��E(X�)

generated by elements of the form [
]�E([
]
�
E)
�1 for every E-chain 
 which lies in the

intersection X� \X�. The bonding maps for this inverse limit will be denoted gEF
and are induced by the maps �EF . This statement may not be true on an individual
E level, since the consideration of neighborhoods of X� was necessary to insure that
each loop of X had a factorization. In the event, however, that E(X�) \ E(X�) =
E(X� \ X�) for every E in a basis for the uniformity on X the inverse limits are
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isomorphic. This will follow from the fact that for a suitably chosen entourage F , the
F -equivalence classes of F (X�) are E-equivalent to some E-equivalence class in X�.

Theorem 61 (Van Kampen Theorem for deck groups). Let X; fX�g be as in the
previous Corollary. If E(X�) \ E(X�) = E(X� \ X�) for all �; � and E 2 
 then
�1(X) = lim �

��E(X�)=HE.

Proof. We will de�ne maps

I : lim
 �
��E(X�)=HE �! lim

 �
��E(E(X�))=NE

;
J : lim

 �
��E(E(X�))=NE �! lim

 �
��E(X�)=HE

such that IJ = JI = id. Since X� � E(X�) we have a (uniformly continuous)
inclusion map from X� � E(X�) which induces a homomorphism i�E from �E(X�)!
�E(E(X�)) ,! ��E(E(X�)). Hence (see [7] page 68) there exists a homomorphism

iE : ��E(X�)! ��E(E(X�))

If [
]�E([
]
�
E)
�1 2 HE then 
 lies in X� \ X� � E(X�) \ E(X�) = E(X� \ X�)

and hence iE(HE) � NE. Thus iE induces a homomorphism from ��E(X�)=HE to
��E(E(X�)=NE which we deonte by ~{E. If F � E then fEF � ~{F = ~{E � gEF since
fEF ; gEF are simply the maps obtained by renaming each F equivalence class as an E-
equivalence class. If  K represents the Kth projection mapping of lim �

��E(X�)=HE

we may then de�ne IK : lim �
��E(X�)=HE ! �K(K(X)) by IK(
) = ~{K �  K(
). If

F � K then

IK(
) = ~{K( K(
)) = ~{K(gKF ( F (
)) = fKF (~{F ( F (
))) = fKF (IF (
))

and the ~{K satisfy the universal property of inverse limits de�ning the homomorphism
I.
We must then de�ne J : lim

 �
��E(E(X�)=NE ! lim

 �
��E(X�)=HE such that IJ =

JI = id: To de�ne J we let E be an entourage of X and choose F so that F 3 � E.
Then the elements in an F chain in the F neighborhood of X� are each within F of
some point of X. By the choice of F these points form an E-chain. More speci�cally,
Let [
]F be an F -loop equivalence class in F (X�) where 
 = f� = a0; a1; :::an = �g.
Then for each 1 � i � n � 1 there exists an xi 2 X such that ai 2 B(xi; F ).
Then, by the choice of F we have that � = f� = a0; x1; :::xn�1; an = �g is an E-
chain. We then de�ne j�FE : �F (F (X�)) ! �E(X�) by sending [
]F to [�]E. To see
that this mapping is independent of the choice of xi, suppose that ai 2 B(yi; F )
for 1 � i � n � 1. Then each yi is within F 3 of both xi�1 and xi and so � is
E-equivalent to the chain f� = a0; y1; x1; y2; x2; :::yn�1; xn�1; an = �g which is E-
equivalent to f� = a0; y1; y2; :::yn�1; an = �g. This demonstrates that the mapping
does not depend on the choice of xi. Further, if (aj; a); (a; aj+1) 2 F so that f� =
a0; a1; :::aj; a; aj+1; :::an = �g is an F expansion of 
 then, �nding an x such that
a 2 B(x; F ) we can show that x is within F 3 of both xj and xj+1 and thus f� =
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a0; x1; :::; xj; x; xj+1; :::xn�1; an = �g is an E expansion of �. j�FE is then well de�ned.
We must show that this mapping is independent of the choice of F . We �rst let F 0

be an entourage contained in F (so that in particular (F 0)3 � E). We note that if
[
]F 0 is a loop in �F 0(F 0(X)) then, since fFF 0 [
]F 0 = [
]F we know that every F 0-chain
in [
]F 0 is an F -chain in [
]F . Further, choosing x to be within F 0 of a implies that
x is within F of a. Since we have already shown that the mapping is independent of
the choice of x or the representative of [
]F we have that j�F 0E( F 0(
)) = j�FE( F (
)).
We now consider any entourage K such that K3 � E. We �nd D � K \F . By above
j�KE([
]K) = j�DE([
]D) = j�FE([
]F ).
The j�FE de�ne a map from ��E(E(X�))! ��E(X�): Further, if 
 lies in F (X�)\

F (X�) = F (X� \X�) then � may be taken to lie in X� \X�. This implies that the
image of NF is contained in HE. We let jFE represent the corresponding map from
��F (F (X�)) ! ��E(X�)=HE. We now wish to de�ne ~jK : lim

 �
��E(E(X�)=NE !

��K(X�)=HK by sending (
) 2 lim
 �
��E(E(X�))=NE to jFK( F (
)) for any F such

that F 3 � E. We show that the collection f~jEg satis�es the universal property of
inverse limits. Suppose R � K and D is an entourage such that D3 � R \ K. We
must show that gKR � ~jR = ~jK or, gKR � jDR( D(
)) = jDK( D(
)). If 
 = f� =
a0; a1; :::an = �g 2  D(
) and � = f� = a0; x1; :::xn�1; an = �g is the corresponding
chain in X then by the choice of D; � is both an R chain and an K chain. Hence the
result follows since gKR simply relabels each R equivalence class as a K equivalence
class.
It remains to show that IJ = JI = id. We �rst note that in the mapping

jFE([
]F ) = [�]E that 
 = f� = a0; a1; :::an = �g is E equivalent to � = f� =
a0; x1; :::xn�1; an = �g in E(X�). Hence we obtain iEjFE([
]F ) = [
]E = fEF ([
]F ).
Hence IJ = id. Further, if 
 is a loop in F (X) consisting of elements already in X
then we can set � = 
. This gives us that jFEiE([
]F ) = [
]E = �EF ([
]F ) and hence
JI = id.
We conclude this section by noting that the bonding maps gEF form an inverse

system on the groups ��E(X�) and HE separately. In fact lim
 �

HE is a normal

subgroup of lim
 �
��E(X�). Following the last paragraph of section III.7.1 of [3] we

obtain the following corollary.

Corollary 62 If X; fX�g satisfy the requirements of the previous theorem, then
there exists a homomorphism ' : lim

 �
��E(X�)= lim �

HE ! lim
 �
��E(X�)=HE.

The homomorphism ' is not surjective in general.
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6 Applications

We will show that the uniform space de�ned by the gluing uniformity on a �nite
connected CW complex is uniform coverable. As in the discussion preceding section
3, we let Bn be the unit ball in Rn and Sn�1 the boundary of Bn. Xn is the n-
skeleton of X. Bn is compact and thus has a unique uniformity with basis consisting
of metric entourages by Theorem 1 in section II.4.1 of [3]. If f� : Sn�1� ! Xn�1 is a
continuous map then it is uniformly continuous by Theorem 2 of the same section.
Since Sn�1� is compact in Bn we know that the glued uniformity on each n-skeleton
is compatible with the quotient topology. The proof will be by induction using 56.
Since the 0-skeleton X0 of a connected CW complex is discrete however, it is not
uniform coverable under the discrete uniformity and 56 does not apply. Thus we
must prove that the 1-skeleton is uniform coverable separately.
We will show that there exists a basis of entourages whose balls are open and path

connected, and the result will then follow by corollary 65 in [2]. We �rst consider the
basis for each 1-cell B1

� formed by the entourages F�(1=n) for n 2 N, n > 2. Since X0

is discrete we may take � as a basis (see example 2 in II.1.1 of [3]). We may then form
a basis for the uniformity on X1 consisting of entourages h�;�; F�(1=n�); F�(1=m�)i
where for each �, F�(1=m�)

4 � F�(1=n�). (�; F (1=n�)) is acceptable since f�1� (�) =
f(0�; 0�); (1�; 1�)g and, since n > 2; F�(1=n�) \ f�1� (�) = f�1� (�). The balls of this
basis are path connected by 57, but they are not open. We must �nd a second, more
suitable basis.

Lemma 63 Let X0 be a discrete space and fB1
�g a collection of 1-cells with attach-

ment maps f� : S0� ! X0. For each � we choose K�(1=n�) such that n� > 2. Let
hK�(1=n�)i be the set of all pairs ([a]; [b]) such that either

1. [a] = [b]

2. ([a]; [b]) is in K�(1=n�) for some �.

3. There exists x 2 X0 such that ([a]; [x]) is in K�(1=n�) for some � and ([x]; [b])
is in K�(1=n�) for some �.

Then the collection of all hK�(1=n�)i forms a basis for the uniformity on X1 =
X0^fB1

�g whose balls are open and path connected.

Proof. Note that each hK�(1=n�)i is symmetric. To show that the collection of all
hK�(1=n�)i forms a basis for the uniformity on X1 it is su¢ cient to show that for each
h�;�; F�(1=n�); F�(1=m�)i in the basis for X1 there exists hK�(1=n�)i; hK 0�(1=n�)i
such that

hK�(1=n�)i � h�;�; F�(1=n�); F�(1=m�)i � hK 0�(1=n�)i

The second inclusion implies that each hK�(1=n�)i is in the uniformity of X1 and
symmetry implies that it is an entourage. Then the �rst inclusion implies that the
collection forms a basis for the uniformity. In fact, we will show that

hF�(1=m�)i � h�;�; F�(1=n�); F�(1=m�)i � hF�(1=n�)i
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First, we show that hF�(1=m�)i � h�;�; F�(1=n�); F�(1=m�)i. If a pair ([a]; [b])
meets condition 1 or 2 in the de�nition of hF�(1=m�)i then, since F�(1=m�) �
F�(1=n�) for each � and � � � we have that the pair meets condition 1 in the
de�nition of h�;�; F�(1=n�); F�(1=m�)i. Further, if ([a]; [b]) meets condition 3 of
the de�nition of hF�(1=m�)i then, since ([x]; [x]) is in � we have that ([a]; [b]) meets
condition 2 of the de�nition of h�;�; F�(1=n�); F�(1=m�)i. Thus hF�(1=m�)i �
h�;�; F�(1=n�); F�(1=m�)i.
Now, we claim that h�;�; F�(1=n�); F�(1=m�)i � hF�(1=n�)i. If ([a]; [b]) meets

condition 1 in the de�nition of h�;�; F�(1=n�); F�(1=m�)i then either ([a]; [b]) is in�
or in F�(1=n�) for some �. If x1 2 X\[a] and x2 2 X\[b] such that (x1; x2) 2 � then
x1 = x2 and hence [a] = [b]. On the other hand if ([a]; [b]) is in F�(1=n�) for some �
then by de�nition ([a]; [b]) satis�es condition 2 of the de�nition of hF�(1=n�)i. Now,
suppose ([a]; [b]) meets condition 2 in the de�nition of h�;�; F�(1=n�); F�(1=m�)i:
Then there exists x1; x2 2 X such that ([a]; [x1]); ([x2]; [b]) is in F�(1=m�) for some
� or � and (x1; x2) 2 �. Notice that (x1; x2) 2 � implies that x1 = x2. Thus if
([a]; [x1]); ([x2]; [b]) are both in F�(1=m�) for some � then since F�(1=m�) � F�(1=n�),
([a]; [b]) would satisfy condition 3 of the de�nition of hF�(1=n�)i. If ([a]; [x1]) is
in � while ([x2]; [b]) is in F�(1=m�) for some � then [a] = [x1] = [x2] and hence
([a]; [b]) satis�es condition 2 in the de�nition of hF�(1=n�)i. A similar argument
applies if ([x2]; [b]) is in � while ([a]; [x1]) is in F�(1=m�) for some �. Finally, if both
([a]; [x1]); ([x2]; [b]) are in � then [a] = [x1] = [x2] = [b] and ([a]; [b]) satis�es condition
1 in the de�nition of hF�(1=n�)i. Thus the collection of all hK�(1=n�)i forms a basis
for the uniformity on X1:
B([a]; hK�(1=n�)i) is open in the quotient topology. First, i�1X (B([a]; hK�(1=n�)i)

is open automatically since X0 is discrete. Now, suppose that there exists y 2 B1
�

such that ([a]; [y]) 2 hK�(1=n�)i. We will show that there exists a metric ball B(y; ")
such that

iB�(B(y; ")) � B([a]; hK�(1=n�)i)
We must consider several cases.
Case 1) ([a]; [y]) 2 hK�(1=n�)i by condition 1.
In this case [a] = [y] and then iB1�(B(y; 1=n�)) � B([a]; hK�(1=n�)i) by virtue of

condition 2 in the de�nition.
Case 2) ([a]; [y]) 2 hK�(1=n�)i by condition 2:Then for some �, there exists

t1 2 B1
� \ [a] and t2 2 B1

� \ [y] such that d(t1; t2) < 1=n�. If � = �, and y is
not 0� or 1� then y is the unique element in [y] and we must have t2 = y. We then
choose an " ball around t2 so that B(y; ") � B(t1; 1=n�). Then iB�(B(y; ")) �
B([a]; hK�(1=n�)i) by virtue of condition 2. If � = �, and y is 0� or 1� then
iB1�(B(y; 1=n�)) � B([a]; hK�(1=n�)i)by virtue of condition 2 in the de�nition. If
� 6= � then f�(t2) = f�(y). Then if y0 2 B(y; 1=n�) we have ([a]; [f�(t1)]) inK�(1=n�)
and ([f�(y)]; [y0]) in K�(1=n�), and hence [y0] 2 B([a]; hK�(1=n�)i) by virtue of con-
dition 3.
Case 3) ([a]; [y]) 2 hK�(1=n�)i by condition 3. Let x 2 X0 such that ([a]; [x]) is in

K�(1=n�) for some � and ([x]; [y]) is inK
(1=n
) for some 
. We know by assumption
that y 2 B1

�(1=n�). If y 6= 0� or 1� then y is the unique element of [y] and hence

 = �. Further we have f�(e) = x and d(e; y) < 1=n� for one of the endpoints
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e = 0� or 1�. We choose an " small enough that B(y; ") � B(e; 1=n�) and then
iB1�(B(y; ")) � B([a]; hK�(1=n�)i) by condition 3 in the de�nition of hK�(1=n�)i. On
the other hand, if y = 0�; or 1� then ([x]; [y]) in K
(1=n
) implies that for some
y
 2 B1


 we have f
(y
) = f�(y) = x. Hence iB1�(B(y; 1=n�)) � B([a]; hK�(1=n�)i)
by virtue of condition 3 in the de�nition of hK�(1=n�)i. We have thus exhausted the
possibilities, and hence B([a]; hK�(1=n�)i) is open in the quotient topology.
We �nish the proof by showing that B([a]; hK�(1=n�)i) is path connected. Notice

that if ([a]; [b]) meets condition 1 then there is nothing to show. Suppose ([a]; [b])
meets condition 2. Let y1 2 B1

� \ [a] and y2 2 B� \ [b] such that d(y1; y2) < 1=n�.
We let p = ty1+(1� t)y2 be the straight line path in B�. Then d(y1; p(t)) < 1=n� for
all t 2 I and hence iB1� � p is a path between [a] and [b] lying in B([a]; hK�(1=n�)i).
Finally, suppose ([a]; [b]) meets condition 3. Let x 2 X0 such that ([a]; [x]) is in
K�(1=n�) while ([x]; [b]) is in K�(1=n�). Let y� 2 B1

� \ [a]; e� 2 B1
� \ [x] such that

d(y�; e�) < 1=n� and y� 2 B1
� \ [b]; e� 2 B1

� \ [x] such that d(y�; e�) < 1=n�. Letting
p1 be the straight line path from y� to e� and p2 the straight line path from e� to y�
we have that d(y�; p1(t)) < 1=n� for all t 2 I and d(e�; p2(t)) < 1=n� for all t 2 I.
Hence iB1� � p1 is a path from [a] to [x] which lies in B([a]; hK�(1=n�)i) by condition
2, while iB1� � p2 is a path from [x] to [b] which lies in B([a]; hK�(1=n�)i) by condition
3.

Proposition 64 If X is a connected �nite dimensional CW complex then the gluing
uniformity on X de�nes a uniform space which is uniform coverable.

Proof. If n = 0 then X = X0 which must be a single point since the space is
assumed connected. If n � 1 then attaching n+ 1 cells cannot reduce the number of
components. This is because each Sn is connected hence its image is connected hence
its image is contained in some connected component of Xn. Thus the assumption
that X is connected implies that Xn is connected. Further, the gluing uniformity on
every connected 1-dimensional CW complex is uniform coverable by 63. The result
then follows inductively by 51 (since Sn�1 is a compact subset of Bn) and 56.
We now turn to the task of showing that for �nite connected CW complexes, the

fundamental group is equivalent to the deck group. We will prove the 1-dimensional
case separately using Theorem 88 of [2] which states that for a connected uniformly
locally path connected, uniformly semi-locally simply connected uniform space X,
�1(X) = �1(X). Let X1 be a path connected 1-dimensional CW complex. We have
already shown that such a space is uniformly locally path connected. Thus, to obtain
the result it is su¢ cient to show that X1 is uniformly semi-locally simply connected.

Lemma 65 Every 1-dimensional CW complex X1 is uniformly locally simply con-
nected (hence uniformly semi-locally simply connected).

Proof. We choose the basis element hK�(1=n�)i, which is the entourage formed
by choosing the metric entourage K(1=n�) in each of the cells B1

�. Let [a] 2
X1. We will show that any loop L : I ! B([a]; hK�(1=n�)i) is null-homotopic in
B([a]; hK�(1=n�)i). Since we already know that B([a]; hK�(1=n�)i) is path connected,
it is su¢ cient to assume that the loop is based at [a]. We consider 2 cases.
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Case 1) X \ [a] is non-empty. We let x0 2 X \ [a]. Notice from the de�nition
of hK�(1=n�)i that [x0] is the only element of iX0(X0) in B([a]; hK�(1=n�)i). For
each � we consider the set U� = iB1�((0�; 1�)). Each equivalence class of U� consists
of a single element from (0�; 1�). Thus i�1

B1�
(U�) = ; if � 6= �, and (0�; 1�) if

� = �. Also, i�1X (U�) = ;. Thus U� is open in X1 for each �. Hence L�1([�U�)
is open in I. L�1([�U�) then consists of a (countable) collection of disjoint open
intervals fJmg1m=1. In fact, we may assume that for each m we have L(Jm) � U�(m)
for some �(m). Otherwise a standard argument will show that L�1(U�(m)) and
L�1([� 6=�(m)U�) are both open and closed in Jm which contradicts connectedness.
Further, if m1 < m2 are the endpoints of Jm we know that L(m1); L(m2) =2 U�(m)
by the de�nition of Jm. We also know that L(m1); L(m2) = [a]. This is because
L(m1) 2 U� (L(m2) 2 U�) for some � implies that there exists an open interval
(m1 � ";m1 + ") � L�1(U�), ((m2 � ";m2 + ") � L�1(U�)). The previous argument
shows that � = �(m) but this then provides a contradiction. Finally, we note that if
t 2 I such that t =2 L�1([�U�) then L(t) 2 X0 \B([a]; hK�(1=n�)i) = [x0] = [a]. All
of this together implies that if �Jm is the closure of Jm we have that i�1B1

�(m)

(L( �Jm)) is

a loop in B1
�(m) based at either 0�(m) or 1�(m). Using the contractability of B

1
�(m)we

can �nd a homotopy Hm : �Jm � I ! B1
�(m) which takes i

�1
B1�(m)

L( �Jm) to the trivial
loop at either 0�(m) or 1�(m). Speci�cally, for the trivial loop at 0�(m) we can de�ne
Hm(s; t) = 0�(m) for m1 � s � m1 + (m2 � m1)t and Hm(s; t) = L(s) � tL(s) for
m1 + (m2 � m1)t � s � m2. We note that Hm is decreasing in t in this case and
thus it�s image lies in the metric ball B(0�(m); 1=n�(m)). Thus, if we denote by H 0m
the homotopy iB1

�(m)
�Hm then H 0m is a homotopy which takes L( �Jm) to the constant

function at [a] and the image of H 0m lies in B([a]; hK�(1=n�)i). We can obtain similar
results for the trivial loop at 1�(m) in which case the homotopy Hm is increasing in t.
�
We de�ne the homotopy H to be H 0m on �Jm � I and constant on

L�1(([�U�)C)� I = L�1([a])� I

We have that H is continuous at any point (s; t) 2 Jm � I by the continuity of
H 0m. Now, suppose (s; t) 2 L�1([a]) � I. We will prove that H is continuous at
(s; t) directly. Let V be an open set of X1 containing [a] and �nd an entourage
hK�(1=k�)i such that 1=k� < 1=n� for each � and B([a]; hK�(1=k�)i) � V . Since
this ball is open, by 63 L�1(B([a]; hK�(1=k�)i) is open in I and we may �nd an
" such that Is = (s � "; s + ") � L�1(B([a]; hK�(1=n�)i). Now, we claim that
H(Is � I) � B([a]; hK�(1=k�)i). If s0 2 Is \ L�1([a]) then H is de�ned to be
constant on fs0g � I hence H(fs0g � I) = f[a]g. On the other hand if s0 2 Jm for
somem then H(fs0g�I) = H 0m(fs0g�I) � B([a]; hK�(1=k�)i) since Hm is decreasing
in t if 0m is the endpoint or increasing in t if 1m is the endpoint (Hm is de�ned by a
contraction on B1

�(m) to one endpoint). Thus Is� I is an open set in I � I containing
(s; t) and such that H(Is � I) � B([a]; hK�(1=k�)i) � V and H is then a homotopy.
Since H(I�f1g) = [a] we have shown that L is null homotopic in B([a]; hK�(1=n�)i)
and thus B([a]; hK�(1=n�)i) is simply connected.
Case 2)X \ [a] is empty.
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In this case a 2 B1
� for some � is the unique element in [a]. If

minfd(a; 0�); d(a; 1�)g � 1=n�

then B([a]; hK�(1=n�)i) = iB1�(B(a; 1=n�)) and we can use the contractability of
B(a; 1=n�) onto a to �nd a homotopy which takes L to [a]. Suppose d(a; 0�) <
1=n�. We note that in this case B([a]; hK�(1=n�)i) is equal to B([x0]; hK�(1=n�)i)[
iB1�([0�; a + 1=n�]) where x0 = f�(0�). Thus if there exists a �rst s1 such that
L(s1) = [x0] and a last s2 such that L(s2) = [x0] then Lj[s1;s2] is a loop based at [x0]
and we can apply the previous case to obtain a homotopy which takes Lj[s1;s2] to the
constant loop at [x0]. Thus it is possible to assume that L is a loop which lies in
iB1�(B

1
�) and we can use the contractability of [0�; a+1=n�] onto a to �nd a homotopy

which takes L to [a]. A similar result applies if d(a; 1�) < 1=n�.

Corollary 66 If X is a connected one dimensional CW complex then �1(X) �= �1(X).

Proof. Since every connected one dimensional CW complex is connected, uniformly
locally path connected by 63 and uniformly semi-locally simply connected by 65, the
result then follows by theorem 88 in [2].
We conclude by considering two examples. Let S consist of a countable number

of circles fCng1n=1all joined at a point. We will consider two distinct uniformites
on this set. If we consider S to be formed by gluing the endpoints of a countable
number of unit intervals to a single point � then we can put the glued uniformity
on S which induces the quotient topology. Then S becomes a 1-dimensional CW
complex under the induced topology, which is the wedge of a countable number of
circles. We will denote this space by f�g^fB1

ng. On the other hand, if we allow the
perimeter of the circles to shrink to 0 by making the nth circle a circle with perimeter
2�
2n
then we can create a distinct uniformity on S by assigning it the length metric

uniformity. The distance between points under the length metric is the length of the
shortest curve connecting them. The space S under the induced topology is called the
Hawaiian Earring, which we will denote by H. The metric uniformity which creates
the Hawaiian Earring is distinct from the glued uniformity on the countable wedge
of circles. To see this we note that in the Hawaiian Earring, B(�; ") will contain an
in�nite number of circles under the length metric uniformity, whereas 63 demonstrates
that in the countable wedge of circles, B(�; hF�(1=n�)i) contains only those points
on each circle within a distance of 1=n� from the endpoints. In both cases, we show
that it is possible to apply the Van Kampen Theorem for deck groups. In each case
we will consider the subsets Xn to be the circles Cn. We note that [1n=1Cn = S.

Example 67 (The Hawaiian Earring). If E(") is a basis entourage for the Hawaiian
Earring, then the E(")-neighborhood of any circle Cn consists of Cn together with
points z on any circle such that the length of the shortest arc from z to � is less than
". This neighborhood is then path connected and hence E(")-chain connected. The
E(")-neighborhood of any two distinct circles consists only of those points z on any
circle such that the length of the shortest arc from z to � is less than ". This is, in
particular, the E(")-neithborhood of � and hence E(")(Cn) \ E(")(Cm) = E(")(�) =
E(")(Cn \ Cm). The intersection of the E(") neighborhood of any three such circles
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Cn1 ; Cn2 ; Cn3 is either E(")(Cn) if n1 = n2 = n3 = n or E(")(�) if any two are
distinct. In either case, these neighborhoods are path connected and hence E(")-chain
connected. Thus theorem 61 applies. The author has shown [10] that in the unit
circle S1, if " < 2�

3
then �E(")(S

1) = Z and if " � 2�
3
then �E(")(S

1) = hei (the
trivial group). A modi�cation of that proof would establish that for any circle Cnwith
perimeter 2�

2n
if " < 1

3
2�
2n
then �E(")(Cn) = Z whereas �E(")(S1) = hei if " � 1

3
2�
2n
.

We let "n satisfy the inequality 1
3
2�
2n+1

� "n <
1
3
2�
2n
. Then for each n we have that

�E("n)(Ck) = Z for k � n and hei for k > n. By the Van Kampen Theorem for Deck
Groups, �1(H) �= lim � ��E("n)(Cn)=NE("n) = lim �

�fZgn=NE("n) where �fZgn represents
the free product of n copies of Z. NE("n) is the normal subgroup generated by terms
[
]Cn1 [


�1]Cn2 for all E("n)-loops which lie in Ck1 \Ck2 = f�g. Since the only E("n)-
loop in any such intersection is the trivial loop, we have that �fZgn=NE("n)

�= �fZgn.
Further, for m < n, the bonding map �E("m)E("n)(�fZgn) ! �fZgm which sends
every E("n)-loop to its E("m)-equivalence class will trivialize every loop which lies
on the circles Cm+1; Cm+2; :::Cn. Thus, �1(H) = lim

 �
�fZgn is exactly the inverse

limit described in [9]. We note that �1(H) is thus not equivalent to the fundamental
group of H. In [9] the fundamental group of the Hawaiian Earring is identi�ed as a
subgroup of this inverse limit.

Example 68 We have already proved that �1(f�g^fCng) = �1(f�g^fCng). We now
calculate this group. For m = 4; 5; ::: we consider the entourage hFn(1=m)i where,
for each n, we choose the entourage Fn(1=m) in B1

n. If Ck (= iB1k(B
1
k)) is one of

the circles in f�g^fB1
ng then the hFn(1=m)i-neighborhood of Ck would be the union

of Ck with the inclusions of all points of B1
n for n 6= k which lie in the intervals

[0n; 1=m) or (1=m; 1n]. This neighborhood is path connected by [path ent] and hence
hFn(1=m)i-chain connected. The intersection of the hFn(1=m)i-neighborhoods of any
two distinct circles would consist of the equivalence classes of all intervals [0n; 1=m) or
(1=m; 1n]. This neighborhood is similarly hFn(1=m)i-chain connected. In particular
we have

hFn(1=m)i(Cn) \ hFn(1=m)i(Cm) = hFn(1=m)i(�) = hFn(1=m)i(Cn \ Cm)

Further, the intersection of the hFn(1=m)i neighborhood of any three such circles
Cn1 ; Cn2 ; Cn3 is either hFn(1=m)i(Cn) if n1 = n2 = n3 = n or hFn(1=m)i(�) if any two
are distinct. In either case, these neighborhoods are path connected and hence E(")-
chain connected. Hence we may apply the Van Kampen Theorem for Deck groups.
Since the intersection of any two circles is �, we have that NhFn(1=m)i is trivial and ob-
tain that �1(f�g^fB1

ng) �= lim � ��hFn(1=m)i(Cn): However, for any m, �hFn(1=m)i(Cn)
�= Z

and ��hFn(1=m)i(Cn) is the free product of a countable number of copies of Z. Further,
the bonding maps are one-to-one and thus the deck group is equivalent to the countable
free product of integers.
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