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Abstract 

R67 dihydrofolate reductase (DHFR) catalyzes the transfer of a hydride ion from NADPH to 

dihydrofolate (DHF) to produce tetrahydrofolate (THF). The enzyme is a homotetramer and its 

222 symmetry allows for binding of both ligands to a single active site pore. A productive ternary 

complex is formed by the binding of one molecule of DHF and NADPH and inter-ligand 

cooperativity has been suggested to be essential for binding and catalysis. To gain further insight 

into the thermodynamics involved in the ground state and the transition state, temperature 

dependent studies on DHF binding and catalysis were performed. It was observed that binding of 

both NADPH and DHF is enthalpy driven. From van’t Hoff plots, the change in enthalpy, entropy 

and free energy for NADPH binding to R67 DHFR in the ground state were determined. 

Similarly, the thermodynamics of DHF binding to the R67 DHFR-NADPH complex in the 

ground state were determined. Arrhenius plots were also employed to study the energetics of the 

transition state. A comparison of TdeltaS values (for DHF binding to R67 DHFR-NADPH 

complex) in both ground state and transition state indicates that TdeltaS is more negative in the 

transition state (–11.3 kcal/mol) as compared to the ground state (–5.4 kcal/mol). This indicates a 

reorientation of the substrate in the transition state.  

The role of water in DHF and NADPH binding to R67 DHFR was also investigated. For 

this, the effect of osmotic pressure on the Ka /Km of ligand binding, as well as the kcat of the 

reaction was studied. It was observed that the kcat of the reaction was not significantly affected, 

while the binding of ligands was affected with increasing osmolality. Specifically, binding of 

NADPH tightened as osmolality increased, while binding of DHF weakened with increasing 

osmolality, suggesting release of water upon NADPH binding and an uptake of water on DHF 

binding. Results from in vivo experiments on E.coli cells containing wild type and mutant clones 

of R67 DHFR were also consistent with in vitro experiments, suggesting that water is involved in 

ligand binding to R67 DHFR.

                                                                         v 
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Preface 

R67 Dihydrofolate reductase (DHFR) catalyzes the NADPH dependent reduction of 

dihydrofolate (DHF) to tetrahydrofolate (THF). The enzyme is a homotetramer with 222 

symmetry that has a single active site pore 24 Å long and 18 Å wide traversing the length of the 

protein. The promiscuous binding surface of the active site can accommodate two ligands that 

enter the pore from opposite ends. Binding of two DHF or two NADPH molecules results in the 

formation of non-productive complexes, while a productive ternary complex is formed when one 

molecule of DHF and one molecule of NADPH bind. X-ray crystallography and NMR 

spectroscopy studies indicate that the pteridine ring of DHF adopts a fixed position, while the 

pABA-glutamate tail is disordered. Additionally, the cofactor NADPH binds in a relatively fixed 

position. 

 

The first goal of this research was to investigate the thermodynamics of ligand binding in the 

ground state and transition state. For this, ligand binding and catalysis was monitored as a 

function of temperature. Binding of both NADPH and DHF is enthalpy driven. Also, recent 

primary isotope effect studies indicate hydride transfer is the rate-determining step. From van’t 

Hoff plots, the ΔH, TΔS and ΔG for NADPH binding to R67 DHFR in the ground state were 

determined to be -8.6 kcal/mol, -1.1 kcal/mol and –7.5 kcal/mol respectively. Similarly, ΔH, TΔS 

and ΔG for DHF binding to the R67 DHFR•NADPH complex in the ground state were 

determined to be -13.3 kcal/mol, -5.4 kcal/mol and –7.9 kcal/mol respectively. Using Arrhenius 

plots, the activation energy associated with the transition state ([R67 DHFR•NADPH•DHF]‡) 

was determined to be 6.9 kcal/mol, corresponding to a ΔH of 6.3 kcal/mol. Also, TΔS and ΔG 

associated with the transition state were –11.3 kcal/mol and 17.6 kcal/mol. A comparison of     

TΔS values from both ground state and transition state indicates that TΔS is more negative in the 
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transition state (–11.3 kcal/mol) as compared to the ground state (–5.4 kcal/mol), indicating a 

reorientation of the substrate in the transition state.  

 

In order to understand the role of the glutamate tail of DHF, dihydropteroate (an analog of DHF 

lacking the para-aminobenzoyl-glutamate tail (pABA)) also was used.  A weaker binding affinity 

was observed as compared to DHF (ΔΔG = 1.9 kcal/mol), along with a large loss in the binding 

enthalpy value (ΔΔH = 6.4 kcal/mol).  Additionally, the kcat value for dihydropteroate reduction is 

decreased 1600-fold compared to DHF usage. This result suggested that the pABA-glutamate tail 

of DHF is important for catalysis. 

 

The second goal of this research was to investigate the role of water in DHF and NADPH binding 

to R67 DHFR. For this, the protein was subjected to osmotic pressure using different osmolytes. 

Steady state kinetics as well as isothermal titration calorimetry experiments were employed to 

determine the effect of osmotic pressure on the Ka of ligand binding as well as the kcat of the 

reaction. It was observed that the kcat of the reaction was not significantly affected with the 

addition of osmolytes. For NADPH binding, the Ka increased as osmolality went higher. Similar 

effects were observed using a range of osmolytes, where NADPH binding is accompanied by a 

net release of 38 water molecules. In contrast, DHF binding weakened as osmolality increased, 

suggesting that water stabilizes DHF binding. The net number of water molecules taken up by 

DHF binding varied, which may possibly be due to the different binding modes of the disordered 

pABA-glutamate tail. In vivo experiments were also used to probe the sensitivity of ligand 

binding to change in water activity. Using the antibacterial drug trimethoprim, as a selection for 

R67 DHFR, it was demonstrated that increasing concentrations of in media containing sorbitol 

resulted in decreased catalytic efficiency of E.coli cells containing wild type and mutant clones of 
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R67 DHFR. These results are consistent with in vitro experiments, suggesting that water is 

involved in ligand binding in R67 DHFR. 
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General Introduction To Dihydrofolate Reductases 

 
Folic acid intake is essential during cell division and growth as it is required for nucleic acid 

synthesis in both prokaryotes and eukaryotes. One of the biologically active forms of folic acid is 

methylene-tetrahydrofolate which is used by thymidylate synthase to methylate dUMP to produce 

dTMP and dihydrofolate (DHF). The dTMP is then used for nucleic acid biosynthesis. Thus, a 

deficiency of folic acid hinders DNA synthesis and cell division. The DHF product is further 

reduced by dihydrofolate reductase (DHFR) to form tetrahydrofolate (THF). THF is essential for 

the synthesis of thymidylate, purine nucleosides, methionine and other metabolic intermediates. 

Due to its important metabolic role, DHFR has been extensively studied and is the target for a 

number of inhibitors (antifolates). For example, methotrexate is one of the anticancer drugs that 

have been developed to inhibit DHFR. Trimethoprim is another drug targeted against DHFR used 

in combination with sulfonamides to block nucleic acid biosynthesis.  

 

R-Plasmid Dihydrofolate Reductases 

 
Clinical studies have shown that certain strains of Escherichia coli and Klebsiella aerogenes can 

grow in the presence of high levels of trimethoprim. This resistance is imparted by plasmids 

called R-factors (1). On the basis of their sensitivity to TMP, seventeen different types of R-

plasmid encoded DHFRs have been discovered so far, namely types I-XVII (2). 

Of these, the type II R-plasmid encoded DHFRs provide the most resistance to trimethoprim and 

are also weakly inhibited by methotrexate. The type-II family has 3 members: R67, R388 and 

R751 DHFRs. They share greater than 78% sequence identity, differing from each other only at 

the N-terminus (first 21 residues) (1, 3, 4).  
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Structure Of Chromosomal DHFR 
 
 
Chromosomal DHFR has a molecular weight of 18,000 Daltons and is a monomer (159 amino 

acids) with an eight–stranded β-sheet core and with 4 α-helices packing against the β-strands 

(figure 1A). There is a hinge region between two domains (5-7). The enzyme contains a single 

active site with specific binding pockets for the substrate, DHF, and the cofactor, NADPH. Some 

of the conserved active site residues include M20, P21, W22, D27, F31, R44, R57, G75, G96 and 

T113 (8-10). Of these, the M20 residue is present in a flexible loop that connects the A strand of 

the β-sheet with α-helix B (figure 1A). The conformational change of the loop from closed to 

occluded to open is a part of the catalytic cycle (11, 12). The reaction mechanism involves 

binding of DHF followed by transfer of a proton and hydride. This is then followed by the release 

of NADP+, binding of NADPH and finally the release of THF (13). This catalytic cycle is 

therefore facilitated not only by the movement of the M20 loop, but also sub-domain movement 

(14). 

 

Structure Of R67 DHFR 
 
 
R67 DHFR is a 34 KDa protein that is active as a homotetramer (with each subunit of 78 amino 

acids) as shown in figure1B. At a low pH, the active homotetramer dissociates into 2 inactive 

dimers, indicating an equilibrium between the active homotetrameric form and the inactive 

dimeric form (15). The first crystal structure was of dimeric DHFR and a weak electron density 

was observed around the first 17 amino acids (7). Later, Narayana et al. solved the crystal 

structure at 1.7Å resolution with the first 16 amino acids cleaved off by chymotrypsin (pdb file 

1VIE) (16). The N-terminal truncation however does not result in any loss of activity (17). The 

enzyme possesses 222 symmetry with a central pore that is 25Å long, 18Å wide and 12Å thick. 

This is unusual as there is only one active site per tetramer. Each subunit of the tetramer is a β-  
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Figure 1: Structures of Chromosomal (from E.coli) and R67 DHFR A) Structure of E. coli 

DHFR bound to the inhibitor methotrexate (MTX) and NADPH (PDB: 3DFR): The β-sheets are 

in yellow and the α-helices packing against them are in purple. The different loop regions (along 

with Met 20 loop) are represented in cyan. The aspartate 27 residue in the active site is shown in 

white.  B) Ribbon diagram of R67 DHFR (PDB: IVIE). Four monomers (green, pink, ochre and 

violet) join to form a homotetramer, with a large active site pore in the center. The monomer-

monomer interfaces occur between pink and green (or ochre and violet) subunits. The dimer-

dimer interfaces occur between green and violet (or pink and ochre) subunits.  
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barrel made up of 5 antiparallel β-strands (residues 28-32, 38-47, 54-59, 65-70 and 74-76). The 

enzyme is dimer of dimers. The monomer-monomer interfaces are stabilized by an intersubunit 6-

stranded β-barrel structure. The dimer-dimer interfaces are stabilized by loop-loop interactions. 

Symmetry related histidine 62 residues occur at these interfaces and their protonation leads to 

tetramer destabilization and dimer formation. The dimer-dimer interface is also stabilized by 

hydrogen bonding interactions between histidine 62 and related serine 59 residues (15, 18). 

Another crystal structure is the binary complex with folate (1VIF) (16). The Fourier map of the 

binary complex and apoenzyme are isomorphous which suggests that no conformational change 

occurs upon folate binding. The electron density was fit to two asymmetrically bound molecules 

of folate, the first with Fol1 bound with its si face exposed towards the center of the pore and the 

other orientation with Fol2 bound with its si face facing the protein surface. Fol1 describes a 

productive orientation as it agrees with the stereochemistry of the hydride transfer reaction.  

 

The central, hourglass shaped pore is comprised of the loop region between β-strands of 

monomer 1 and 2 (residues 30-40), monomer 2 and 3 (residues 44-55) and the region of β-strand 

of monomer 4 (residues 63 to 74). Residues K32, A36, Y46, T51, G64, S64, V66, G67, I68 and 

Y69 from each subunit make up the active site pore. Of these, S65, V66, Q67, I68 and Y69 

comprise 47% of the surface area of the active site pore. Gln67 and its symmetry related residues 

are present at the dimer-dimer interfaces and form the floor and ceiling of the pore. I68 and its 

symmetry related partners form interacting pairs at the sides of the pore. 

 

Recently, another crystal structure of truncated apo R67 DHFR was solved by Narayana (19). 

This structure was solved at cryo-cooling conditions (100oK) and had a resolution of 1.1 Å. The 

electron density of this structure agreed with the earlier structure at 277oK.  However, the side 

chains of S20, N21, R29, R31, K32, Q41, W45, Q67, L74, E75 and N78 residues appeared in 
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slightly different conformations, indicating flexibility in these regions. The volume of the central 

hourglass shaped pore is 2600 Å3, with a total of 168 water molecules in the pore. These water 

molecules are well ordered and form a network of hydrogen bonds with an array of fixed 

pentagonal rings. 

 

Ligand Binding To R67 DHFR 

 
The 222 symmetry in the structure of R67 DHFR suggests that four identical sites could 

theoretically be used for binding of ligands. The ligand binding properties of R67 DHFR were 

evaluated using fluorescence anisotropy and isothermal titration calorimetry techniques (20). It 

was observed that R67 DHFR forms three different types of ligand complexes:  either 2 NADPH 

molecules, or 2 DHF molecules, or one molecule of each NADPH and DHF (structures shown in 

figure 2A and 2B). This suggested that even though there are four identical binding sites, they 

cannot be occupied simultaneously due to steric hindrance. The binding of two DHF molecules 

exhibits positive cooperativity, whereas the binding of two NADPH molecules shows negative 

cooperativity (figure 2C). A productive complex is formed when 1 molecule of folate binds to a 

1:1 mixture of R67 and NADPH (21).  

     

To gain further insight into the ternary structure of R67 DHFR, Li et al. used transferred NOE 

(Nuclear Overhauser Effect) and Interligand NOE (ILOE) experiments with bound NADP+ and 

folate (22). They found that the ribonicotinamide bond of cofactor adopts a syn conformation, 

while glycosidic bond of the adenosine moiety adopts an anti conformation. This is in contrast to 

all other reductases in which the ribonicotinamide bond adopts an anti conformation ((23) and 

references therein). Also, strong ILOEs were observed between the H4 and H5 protons of the 

nicotinamide ring and the H9 protons of folate. In order to determine the orientation of the  
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Figure 2: The structures of Folate and NADPH and the proposed binding mechanism of 

R67 DHFR A) Folate is comprised of the pteridine ring and para-amino benzoyl glutamate 

(pABA-glu) tail. In dihydrofolate (DHF), the C7-N8 double bond is reduced. B) The cofactor, 

NADPH, has the NMNH (nicotinamide mononucleotide) moiety that transfers a hydride (HR) 

from C4 of the nicotinamide ring to C6 of DHF. C) Isothermal titration calorimetry (ITC) and 

time resolved fluorescence anisotropy experiments were used to determine the mechanism of 

binding of substrate (DHF) and cofactor (NADPH) to the enzyme. The preferred path is shown in 

bold, where NADPH binds to the enzyme followed by DHF (20). 
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substrate and cofactor in the active site, a folate analog 2-deamino-2-methyl-5,8-dideazafolate 

(DMDDF) was employed. The advantage of using this analog is that it contains more protons as 

compared to folate and would therefore increase the possibility of obtaining stronger NOE 

signals. The results suggest that folate and NADP+ molecules enter from either side of the pore, 

and the pteridine and nicotinamide rings meet at the middle. Ring stacking is observed supporting 

an endo transition state geometry (24). This is in contrast to the chromosomal enzyme, where the 

ligands adopt an edge on or exo conformation (figure 3). 

 

To gain further insight into the orientation of the bound cofactor, Pitcher et al. labeled R67 DHFR 

with 13C and 15N (25). Then using Heteronuclear single-quantum coherence spectroscopy 

(HSQC), changes in the chemical shifts of the amide groups upon titration of either folate or 

NADP+ were determined. The general observation was that amides exhibiting the biggest 

chemical shift were the residues lining the active site pore. These include K32, K33, G35, E39, 

S59, E60, A61, G64, S65, V71, A72, A73 and L74 residues.   

 

To obtain more information on the orientation of NADP+ bound to the enzyme, transfer NOE 

experiments were also performed (25). While a direct observation of NOEs between NADP+ and 

the enzyme was not observed (25), stronger NOEs were observed  in the presence of folate 

(between the nicotinamide H4 and H5 protons and the H9 protons of folate). These results 

possibly suggest that the structure of NADP+ would be more constrained in the presence of folate. 

It was also proposed that the adenine base of NADP+ is positioned near the pore, while the 

phosphate group of the adenosine extends into the pore and forms interactions with a lysine 32 

residue. This is consistent with R67 DHFR having a preference for binding to NADPH as 

compared to NADH. Another observation was that there was a slow conversion of NADP+ to 

NAD+ upon binding to the enzyme. This indicates that R67 DHFR possesses a phosphatase  
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Figure 3:  Endo (left) and Exo (right) orientations of the transition states. Ab initio quantum 

mechanical calculations have been used to determine the geometry of hydride transfer from the 

C4 (red) position of the nicotinamide ring to the C6 (magenta) position of the pteridine ring.  

Results obtained suggested that the endo transition state is more stable than the exo transition 

state by 2-8 kcal/mol (26). Maximum overlap of the nicotinamide ring (yellow) with the pteridine 

ring occurs in the endo transition state. Very little overlap between the nicotinamide ring (purple) 

and pteridine ring is seen in the exo transition state (27).  
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activity. Also, a transhydrogenase activity was observed, indirectly indicating that R67 DHFR 

can bind two cofactor molecules.  

 

Since the orientation of NADPH in the active site pore was not well understood, the crystal 

structure of R67 DHFR with bound Fol1 (16) was used as a template to dock the nicotinamide 

ribose-phosphate moiety (NMNH) of NADPH  (26). This study used the DOCK 4.0 program, 

which is based on utilizing van der Waals interactions for docking flexible ligands (28, 29). 

Another program, SLIDE (30, 31), was also employed, which takes into account ligand and 

protein side-chain flexibility as well as bound water molecules. First the NMNH moiety of 

NADPH was docked into the R67 DHFR•Fol1 complex (20). Eight out of the top ten docked 

NMNH conformers docked into the active site in an orientation consistent with previous 

experimental data (24).  The top scoring conformers from both DOCK and SLIDE agreed with 

the ILOE data, which suggests that ligands bind in an extended conformation with no overlap of 

the tails (24, 32) (figure 4). Also, the transition state adopted by the R67 DHFR•Folate•NMNH 

docked complex is consistent with an endo conformation. From the model, several residues were 

proposed to interact with NMNH. Also a number of residues including A36, Y46, V66, Q67, I68 

and Y69 were also predicted to serve dual binding roles. The amphipathic nature of these ligands 

can allow for making hydrophobic and hydrophilic contacts with the ligands.  

 

Role Of Interligand Interactions In Catalysis 
 

The folate•NADP+•enzyme complex has been probed by NMR and the NOEs (intraligand and 

interligand) obtained indicate that the ligands bind in an extended conformation in the active site 

pore (25). In addition, stacking between the pteridine (of DHF) and nicotinamide (of NADPH) 

rings is observed. These interligand interactions appear to play a crucial role in facilitating the  
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Figure 4: Docking of Folate into R67 DHFR•NMNH complex. The high scoring NMNH 

conformer (left) was used for generating a model of the ternary complex. The pteridine ring 

(middle) is mostly in a fixed conformation, which agrees with the Fol1 orientation in the crystal 

structure. On the other hand, the pABA-glu moiety can be seen to possess numerous potential 

orientations. For clarity, the enzyme is not shown. 
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formation of the ternary complex. Ab initio quantum mechanical calculations predict that the endo 

transition state is 2-8 kcal/mol more stable than the exo transition state (33). Also, NMR and 

docking results predict that R67 uses an endo transition state complex in its catalytic mechanism. 

Therefore, in this enzyme, interligand co-operativity is likely important in transition state 

formation. 

 

Mechanism Of Hydride Transfer In R67 DHFR 
 
 
Hydride transfer takes place from the H4 (re) atom of NADPH to the C6 atom of DHF. The si 

face of DHF receives the hydride from NADPH (32). In order to determine if hydride transfer is 

the rate-limiting step of the reaction, isotope effect studies were performed. NADPD isotope 

effects using a H62C mutant of R67 DHFR were used to determine DV (ratio of kcat in the 

presence of NADPH and NADPD) at pHs 5.0 and 7.0. The DV at pH 5.0 was found to be 3.6 and 

the DV at pH 7.0 was found to be 3.3 (34). Therefore, hydride transfer is at least partially rate 

limiting for pH 5 to 7. More recent studies by Amnon Kohen indicate that hydride transfer is fully 

rate determining (personal communication). 

 
Does R67 DHFR Possess A Proton Donor? 
 
 
In order to determine if R67 possesses a proton donor, a pH profile of R67 DHFR activity was 

studied. At low pH, the activity of the enzyme decreased due to dimer formation (34). Therefore, 

an H62C mutant was generated so as to covalently link the tetramer at all pH values. A linear 

increase in activity was observed as the pH decreased to pH 4.5. This suggested that R67 DHFR 

does not possess a proton donor. The possibility that Y69 residue could be a potential proton 

donor was also ruled out since it did not show any evidence of a titration upto pH 10 (34). To 

further investigate this model, Raman spectroscopy with DHF bound to R67 DHFR•NADP+ was 
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performed by Deng et al. (35). The pKa for the N5 of bound DHF was less than 5, indicating 

minimal to no perturbation of its pKa. Together, these results suggest that R67 DHFR does not 

possess a proton donor in its active site, but uses a preprotonated substrate to facilitate catalysis. 

Since the concentration of protonated DHF is low, so is the catalytic rate. 

 

Critical Residues Lining The Active Site Pore 
 
 
Based on the crystal structure, the residues in the pore have been identified, which include K32, 

K33, S34, G35, A36, Y46, T48, L50, T51, G64, S65, V66, Q67, I68, Y69, P70 and A73. Of 

these, S65, Q67, I68 and Y69 make up 47% of the surface in the pore. From the structure, the 

symmetry related Q67 residues pair with each other as do the I68 side chains. On the other hand, 

the S65 and Y69 residues are located further away from the 222 symmetry operator and do not 

form pair-wise interactions. Another critical residue is K32, which is present at the edge of the 

active site pore and which forms an electrostatic patch with other charged residues such as R31 

and K33. Site directed mutagenesis of these residues was previously performed and the results 

obtained are described below: 

1) Q67 residue: The crystal structure of R67 DHFR with bound folate shows that Q67 

forms van der Waals interactions with the pteridine ring of folate (16). Also, the 

symmetry related Q67 residues present on the floor as well as the ceiling of the active site 

pore (figure 5) interact with their symmetry related partners via hydrogen bonds. To 

study the role of the Q67 residue, a Q67H mutant was generated (36). This mutant binds 

DHF 36-fold tighter and NADPH 110-fold tighter than the wild type enzyme (17, 36), 

however it is accompanied by severe substrate and cofactor inhibition. The effect of this 

mutant on binding and catalysis suggests that Q67 is directly involved in binding DHF 

and NADPH. A recent crystal structure of the R67 DHFR•DHF•NADP+ complex by  
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Figure 5: Important residues lining the active site pore of R67 DHFR (PDB: 1VIE). The 

monomers 1, 2, 3 and 4 are shown in green, pink ochre and violet respectively. Each monomer 

contains symmetry related K32 (blue), Q67 (orange), I68 (yellow) and Y69 (grey) residues. The 

K32 residues are present at the edge of the pore, while the Q67 residues form the floor and ceiling 

of the pore. Additionally, the I68 residues are present at the sides of the pore and the Y69 residues 

are located near the Q67 residues. 

 

 

 



 17

Krahn et al. suggests that binding of substrates causes a change in conformation of Q67 from an 

extended to a bent conformation (37). This also suggests that Q67 is a critical residue involved in 

ligand binding and catalysis. Therefore, the role of the Q67 residue was further studied using 

asymmetric mutations as described in the following section. 

2) I68 residue: The I68 residues are present at the sides of the pore. From the R67 

DHFR•DHF•NADP+ structure (37), the N3 and O4 atoms of DHF form hydrogen bonds with  

the backbone atoms of I68. Also, hydrogen bonds are formed between the carboxamide group of 

NADPH and the backbone NH and O atoms of a symmetry related I68 residue. In order to study 

the role of this residue, I68M and I68L mutants were generated. Kinetic studies indicated that 

both mutants had similar effects. The Km of DHF increased by ~4-fold and the Km of NADPH 

increased ~9-fold. Also, the kcat was decreased, especially in the case of the I68M mutant (8, 38, 

39). These data suggest that I68 directly affects the binding of the ligands and consequently 

catalysis. 

3) Y69 residue: The crystal structure of R67 DHFR in complex with DHF and NADP+ suggests 

that two pairs of Y69 and Q67 residues together form an extended surface so as to tightly hold the 

substrate and cofactor in a favorable position for hydride transfer. Kinetic studies using the Y69F 

mutant show that the Km of DHF is increased 11-fold and that of NADPH is increased 23-fold. 

Also, the kcat of the reaction is 2-fold higher than that for the wild type enzyme (38). Introduction 

of non-conservative mutations such as Y69L affected the Km of DHF and NADPH 31-fold and 

23-fold respectively. Similarly, for the Y69H mutation Km of DHF and NADPH was increased 8-

fold and 59-fold respectively. Additionally, the kcat values for Y69L and Y69H DHFRs decreased 

8 and 93-fold respectively (as compared to the wild type enzyme) (38, 39). Therefore, the overall 

catalytic efficiency is decreased, which indicates a strong preference for a hydrophobic group 

(specifically aromatic groups) at that position. NMR studies also suggested that the chemical shift 

of Y69 is affected upon binding of NADP+ (25). These results confirm that Y69 forms important 
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interactions with both the substrate and cofactor. Therefore, the Y69 residue is also critical in 

binding and catalysis. 

4) K32 residue: The crystal structure of R67 DHFR indicates that the K32 residue is present at 

the edge of the active site pore (16, 19) (figure 5). Another crystal structure with R67 in complex 

with DHF and NADP+ shows that two K32 residues interact with 2 phosphate moieties of 

NADPH and two other K32 residues bind to DHF, contributing to positioning and affinity. Also, 

Delphi predictions show that K32 helps form a positive electrostatic potential in and near the 

active site pore which aids in binding of negatively charged ligands (26). Mutation of K32 

resulted in an inactive dimer, therefore the role of K32 was studied indirectly using salt effects 

(40). Using steady state kinetics, a log-log plot of kcat versus ionic strength showed a slope of 0.9. 

This indicated that during catalysis, one ionic bond is broken. Other charged residues around 

lysine 32 include arginine 31, lysine 33 and glutamic acid 75 and they form a charged patch near 

the active site pore.  Since the role of the K32 residue could not be directly studied by site 

directed mutagenesis, an alternate approach was employed in which the neighboring K33 residue 

was replaced with a methionine. Kinetic studies revealed that both the Km and the kcat were 

affected by 2 to 4 fold suggesting the K33 residue is only minimally involved in binding and 

catalysis. Therefore, to directly probe the role of the K32 residue, asymmetric mutants were 

generated and characterized by kinetics and binding studies (41). These results will be discussed 

in the following section on asymmetric mutations.  

 

To summarize, mutagenesis and binding studies indicate that the enzyme possesses a 

promiscuous binding surface that is capable of binding to both folate and NADPH. In other 

words, catalysis in R67 DHFR does not depend on a single residue, but depends on the global 

environment of the active site. Therefore, R67 DHFR not only adopts a novel mechanism, but a 

simple approach to catalysis (38). Finally binding studies on these mutants using isothermal 
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titration calorimetry (ITC) also suggest that there is a linear correlation between the enthalpy 

change for the formation of a ternary complex and the catalytic efficiency of the enzyme (39).  In 

other words, the positive cooperativity observed between the substrate and cofactor is correlated 

with the increasing exothermicity of the reaction. Other studies have also proposed that increased 

exothermicity (associated with non-covalent interactions) may result in closer contact distances 

(42-44).  

 

Asymmetric Mutations 
 
 
Non-conservative mutations in the R67 DHFR gene result in 4 mutations per active site pore and 

can cause a large cumulative effect. In order to study the effect of a single mutation on binding 

and catalysis, it is necessary to eliminate the constraints imposed by the 222 symmetry of the 

enzyme. For this reason, a tandem array of 4 gene copies was constructed to allow generation of 

asymmetric mutations. Briefly, four R67 DHFR gene copies were covalently linked in frame so 

as to obtain a quadruplicated gene product.  The molecular weight of the protein product is four 

times the mass of the monomer and is proposed to have the same tertiary structure as wild type 

R67 DHFR, since it has similar kinetic and binding properties as compared to R67 DHFR (20). In 

addition, unique restriction sequences were engineered between gene copies to allow for mutation 

of a single gene copy, which can be inserted back into the tandem array (45). One limitation of 

early versions of the tandem gene array was that the N-terminal 17 residues are long enough to 

allow alternate ways for the domains to associate. If the domains are labeled 1, 2, 3 and 4, then 

they could form either a 1234 or a 1243 topology. In order to circumvent this problem, two 

additional mutations were inserted into the sequence based on the observation that H62 interacts 

with S59 from another monomer at the dimer-dimer interface in wild type R67 DHFR (18).  

Neither the H62L nor the S59A mutants were active. They were found to be stable dimers. 
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However, mixing of these two dimers resulted in complementation and heterotetramer formation 

and enzyme activity (18). Therefore, these mutations were introduced into gene copy 1 and gene 

copy 4 respectively so as to complement each other at the dimer-dimer interface. This resulted in 

a preferred topology. This construct was named ‘Quad 3’. The kinetic parameters of Quad 3 (kcat 

and Km) as well as the binding parameters (46) are similar to those of the wild type enzyme (47), 

therefore this construct was used to study the role of the K32, Q67 and Y69 residues (41, 47, 48). 

Only the Q67 and K32 results are summarized below as they help build a multimutant of interest. 

The nomenclature used to describe the asymmetric mutants is as follows: the wild type residue 

(letter code) and its position in the monomeric amino acid sequence is specified first, followed by 

the residue to which it is being mutated. The domains have been numbered numerically where 

domain 1 occurs in the top left region and the domains increase in number in an anticlockwise 

manner. The domain in which the asymmetric mutant is generated, is then represented by the 

number after the colon. For example, Q67H: 1+4 indicates that glutamine is replaced by histidine 

in domains 1 and 4. 

1) Q67 residue: Q67H homotetrameric mutant binds DHF and NADPH 36-fold and 100-fold 

more tightly than the wild type enzyme. However, the kcat concurrently decreased 7-fold, which 

resulted in a 3.6-fold increase in the catalytic efficiency (34). This mutant also shows substrate 

and cofactor inhibition. Therefore, asymmetric mutants were generated to probe whether tight 

binding could be uncoupled from substrate and cofactor inhibition. A single mutant Q67H: 1 was 

generated as well as three double mutants, Q67H: 1+2, Q67H: 1+3 and Q67H: 1+4. Finally, a 

triple mutant Q67H: 1+2+3 and a quadruple mutant Q67H: 1+2+3+4 were also generated (47). 

Steady state kinetic studies as well as ITC studies were performed and it was observed that a 

single mutation had an effect on DHF binding. However, the catalysis of the reaction was not 

affected by the addition of the mutants. Also, it was observed that at least three mutations were 

required to see an effect on NADPH binding. The Q67H: 1+2 mutant showed cofactor inhibition 
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and the Q67H: 1+3 mutant showed both substrate and cofactor inhibition. However, the Q67H: 

1+4 mutant showed no substrate or cofactor inhibition. A comparison of Kd values for formation 

of the various complexes indicated that as the number of mutations increased, the enzyme became 

unable to differentiate between productive and non-productive complexes, supporting a role for 

Q67 in interligand co-operativity patterns. 

2) K32 residue: In order to directly study the role of the K32 residue, three different asymmetric 

constructs were generated. They included K32M: 1+2, K32M: 1+3 and K32M: 1+4 asymmetric 

mutants (41). The K32M: 1+2 and the K32M: 1+4 mutants placed two mutations on either side of 

the pore, although at different orientations. Kinetic studies of the K32M: 1+2 mutant indicated 

that the Km(DHF) and Km(NADPH)  are increased by ~2-fold and ~4-fold respectively. Also, the kcat is 

decreased ~4-fold. In the case of the K32M: 1+4 mutant, both the Km(DHF) and Km(NADPH)  are 

increased by ~1.5-fold and the kcat is decreased 8.5-fold. This suggested that R67 DHFR tolerates 

alternate positions of the pABA-glu tail of DHF. On the other hand, the K32M: 1+3 mutant, 

places these two mutations on the same side of the pore. The DHF Km increased more than 50-

fold, while the Km of NADPH increased by about 37-fold (as compared to Quad 3), indicating a 

loss of ionic interactions of DHF with the K32 residues. Also surprisingly, the kcat was enhanced 

4-fold suggesting that removal of charge on one side of the pore enhances transition state 

formation. Therefore, the K32M asymmetric mutants helped provide more insight into the 

binding preference of DHF and NADPH to the active site. 

 

Asymmetric Multimutants 
 
 
The Q67H residues are present on the floor and ceiling of the active site pore and have been 

suggested to form interactions with the nearby Y69 residues so as to provide additional stacking 

interactions with the pteridine and nicotinamide rings (37, 47). Therefore various asymmetric 
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mutants of Q67H were evaluated as described above and in Smiley et al. (47). Of these, the 

Q67H: 1+4 mutant contains a pair of wild type Q67 residues on the floor, while a pair of Q67H 

residues is present on the ceiling of the active site. In contrast to the Q67H: 1+2 and Q67H: 1+3 

mutants, this mutant shows neither substrate nor cofactor inhibition. Also, the binding of NADPH 

is tightened 5-fold in this mutant.  

 

As described earlier, another important residue that has been studied using asymmetric mutations 

is the K32 residue (41). Hicks et al. have demonstrated that the K32M: 1+3 mutations, which are 

present on the same side of the pore, shows a very weak binding of substrate coupled with an 

increase in kcat (41). The K32 residue is located about 8Å away from the Q67 residue in the active 

site pore and there is a possibility that mutations at Q67 could be additive with mutations at K32 

(49-52). Therefore the question arises: can addition of the Q67H: 1+4 mutations compensate for 

the loss of K32 in the K32M: 1+3 mutant?  

 

To investigate this, Q67H: 1+ 4 mutations were engineered into the K32M: 1+3 construct and the 

resultant construct was called Q67HhalfK32Mhalf  (figure 6). Another construct was also generated 

which contained the Q67H mutation in all monomers, called Q67HfullK32Mhalf (Feng and Howell, 

manuscript accepted). Kinetic and ITC studies showed that the binding of DHF was tightened 40-

fold in Q67HhalfK32Mhalf as compared to the K32M: 1+3 ‘parent’. These results indicated that the 

Q67H mutations could compensate for the weak binding of the substrate due to the loss of the 

K32 residues. Another observation is that this mutant exhibits no DHF and NADPH inhibition. 

The Q67HfullK32Mhalf mutant on the other hand is strongly inhibited by DHF, but not by NADPH.  

In other words, addition of the Q67H mutations to the Q67HhalfK32Mhalf does not rescue the 

binding of NADPH to the mutant K32M side of the pore. This provides strong evidence that 

NADPH binds to the wild type half of the pore. Additional support for this arises from the  
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Figure 6: Ribbon structure of the Q67HhalfK32Mhalf mutant of R67 DHFR. Monomers 1, 2, 3 

and 4 are shown in green, pink, ochre and violet respectively. The expected linkages between the 

monomers to form the Quad 3 construct are shown by the dashed lines. The Q67 residues 

(orange) are present on the ceiling and floor of the pore, and are mutated to histidines (yellow) in 

monomers 1 and 4. The K32 residues (blue) are located at the edge of the active site pore and are 

mutated to methionine (red) in monomers 1 and 3. 
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observation that the kcat/Km(NADPH)  for the K32M: 1+3, Q67HhalfK32Mhalf  and the 

Q67HfullK32Mhalf  mutants remains relatively constant, suggesting that NADPH prefers binding to 

the wild type half of the pore. Finally, a strong salt dependence of NADPH binding also suggests 

the presence of two ionic interactions between the pyrophosphate bridge and the 2’ phosphate 

with the symmetry related K32 residues (40). 

 

NMR and crystallography studies have shown that the pABA-glu tail of DHF is disordered and 

docking studies predict that its carboxylate groups form intermittent contacts with K32 residues 

on the same side of the pore. Previously, ITC studies using analogs of folate showed that loss of 

the pABA-glu tail or the glutamic acid results in loss of binding enthalpy (53). This suggested 

that the binding enthalpy arises from the interaction between the K32 residues and the glutamic 

acid tail of DHF. However, in the case of the Q67HhalfK32Mhalf and the Q67HfullK32Mhalf mutants, 

a binding enthalpy was observed, suggesting that loss of the ion pair or solvent separated ion pair 

between K32 and the glutamate tail did not have an effect on the binding enthalpy. One 

possibility is that water molecules entrapped in the active site provide an enthalpic contribution 

(54, 55). Another possibility is that interligand interactions between the pteridine and 

nicotinamide rings provide binding enthalpy. 

 

Determination Of Critical Regions Of Substrate And Cofactor That Are Involved In 

Binding To R67 DHFR 

 
Site directed mutagenesis has been employed to determine the critical residues that determine the 

binding and positioning of the substrate and cofactor in the active site (38-41, 47, 48). A parallel 

approach is to mutate / modify the substrate and/or cofactor, so as to identify the critical regions 

of DHF and NADPH that are involved in binding to R67 DHFR. These experiments were 



 25

performed by Jackson et al., wherein the binding affinity of different analogs of DHF/ Folate and 

NADPH were determined using steady state kinetics (Ki determination) and isothermal titration 

calorimetry studies (Kd determination) (53). 

Analogs of Folate: 

1) Folate analogs with truncations of the para- aminobenzoic acid glutamic acid (pABA-

glu) tail: Biopterin lacks both the para-amino benzoic acid moiety and the glutamic acid 

moiety of folate (figure 7). The reduced form of this analog, 7,8 dihydrobiopterin (DHB), was 

used to determine its binding properties. An inhibition constant (Ki) of ~157 µM was 

obtained. However, no signal was obtained for the binary complex titration using ITC. 

Another analog, pteroic acid, contains the pteridine ring and the pABA moiety. However, it 

lacks the glutamate tail (figure 7). The Ki of pteroic acid is ~60 μM and an ITC signal was 

observed for a binary titration (binding of two molecules of ligand to protein). However, 

saturation was not achieved due to solubility problems. The reduced form, dihydropteroate 

had a Ki of ~27 μM. ITC studies with these analogs also showed that ternary complex 

(enzyme•NADPH•substrate) formation was weakened going from folate/DHF to pteroic 

acid/DHP to bioterin/DHB. Also, a decrease in binding enthalpy to ~-8 kcal/mol (for DHP 

binding to a NADPH•R67 DHFR complex) was observed, as compared to -12 kcal/mol (for 

DHF binding to a NADP+•R67 DHFR complex). These results suggested that the pABA-

glutamic acid tail of folate is important for binding to the enzyme. Further studies were also 

performed using these analogs to study the transition state formation as described later. 

2) Substitution of the glutamic acid tail with a positively charged amino acid: Substitution 

of glutamic acid in the folate tail with histidine or ornithine (N
α
-pteroyl-L-histidine or N

α
-

pteroyl-L-ornithine respectively) showed less than a 2-fold effect on binding by Ki 

determination. These studies suggested that the α-carboxylate moiety of DHF is not important  
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Figure 7: Structures of folic acid and its analogs used for binding studies. 7,8-Dihydrofolate, 

7,8-dihydropteroic acid and 7,8-dihydrobiopterin are reduced across the C7-N8 bond. In N
α
-

pteroyl-L-histidine and N
α
-pteroyl-L-ornithine, the glutamate moiety is replaced by histidine and 

ornithine, respectively (53).  The acids are represented in their un-ionized forms. 

(Continued) 

 

Folic Acid 

Pteroyl-diglutamate (PG2); n=2 
Pteroyl-pentaglutamate (PG5); n=5 

Biopterin 

NH

N N

N

H2N

O

H2
C

N

N
H

COOHO

H

CO-OH

n

NH

N N

N

H2N

O

CH3

OH

OH

NH

N N

N

H2N

O

H2
C

N

N
H

R'

COOHO

R

 



 27

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 (Continued): Structures of folic acid and its analogs used for binding studies. 
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in binding. If ionic interactions occur, then they likely exist between the α-carboxylate of 

DHF and K32.   

3) Increasing the length of the glutamic acid tail or rotational restriction of tail: Little 

effect was observed on binding when the length of the glutamic acid tail was increased by 

addition of 1 or 4 glutamates (pteroyl γ-L di glutamate and pteroyl γ-L -penta glutamate). 

When the tail was substituted with a N5-deaza analog, which also contains a rotationally 

restricted glutamic acid tail as in the case of PT648 [(2S)-2-[5-[N- (2-amino-4 (3H)-

oxopyrido [2,3-d] pyrimidin-6-yl) methylamino [2,3-dihydro-1 (3H)-oxoisoindol-2-yl] 

aminopentane-1, 5-dioic acid)], weaker binding was observed and the Ki increased 3-fold. 

4) Substitution of the groups on the pteridine moiety: Aminopterin has a NH2 group in 

place of the O4 atom in folate; it was not able to form a ternary complex. This suggested that 

the O4 group is important for binding. 

 

In summary, studies with folate analogs showed that R67 DHFR has a strong preference for 

binding to the dihydro form of the substrate compared to folate or tetrahydrofolate. An important 

observation was that the keto form of folate displays stronger binding. Therefore, a neutral 

pteridine ring is required for binding to the enzyme. These atoms have been shown to form 

interactions with the NH and O backbone of I68 (26). Finally, removal of the pABA glu tail 

weakened binding and resulted in a low enthalpic signal.  

 

Analogs of NADPH: 

1) Importance of nicotinamide group: When an analog lacking the nicotinamide group was used 

to monitor binding, as in the case of ATP-ribose (figure 8), the Kd increased 64-fold. This result 

indicates that the nicotinamide ring is important for binding of the cofactor in the active site. 

Other analogs used to investigate the importance of this group were thio-NADPH and acetyl  
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Figure 8: Structures of analogs of NADPH used in binding studies. The structures of 

NADPH, NADH, Thio-NADPH, AcPADPH have been shown with respective substitutions on 

the R’ and R” groups (53). Also shown are structures for 2’, 5’ adenosine phosphate, ADP-ribose 

and ATP-ribose. 
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pyridine adenine dinulceotide phosphate (AcPADPH).  Binary ITC titrations using these two 

compounds showed that binding of the first cofactor molecule is reduced by 3-fold and 33-fold 

respectively. Use of these analogs identified the importance of the carboxamide moiety in binding 

to R67 DHFR. Additionally, truncations of the cofactor to 2,5-diphosphosphoadenosine showed 

weakened binding. 

2) 2’phosphate group of NADPH: To test the importance of the 2’phosphate group of NADPH, 

NADH was used as it lacks the 2’ phosphate group (figure 8). A 14-fold weaker binding by this 

analog indicated the 2’phosphate group was important in binding. This is consistent with salt 

effect studies (40, 41). Additional experiments using ADP-ribose and 2’, 5’diphosphoadenosine 

showed (110-fold and 250-fold weaker binding respectively) as compared to NADPH, which 

showed that the sugar and 2’phosphate groups are essential for binding.  

 

Overall, the thermodynamic parameters obtained by ITC studies of substrate and cofactor analogs 

show that binding of the first molecule of NADPH is enthalpy driven, while binding of the 

second molecule of folate is enthalpy driven. These observations are similar to those observed by 

Bradrick (20). 

 

Protonation Effects During Ligand Binding 
 
 
To determine whether binding is accompanied by changes in protonation state, the ΔH change 

associated with formation of the 2 NADPH binary complex or 2 folate binary complex or the  

R67 DHFR•NADP+•DHF ternary complex was monitored in different buffers.    

If a pKa perturbation occurs upon binding and is accompanied by proton release or uptake, then 

changes in enthalpy will be observed as represented below: 

ΔHobserved = ΔHbinding + nΔHionization
                                                                                 ( 1)                                     
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where, ∆H binding is the enthalpy change associated with binding, ∆H ionization is the change in the 

heat of ionization and n is the number of protons involved (55). 

Therefore, the binary and ternary ITC titrations were performed in different buffers, each 

possessing different heats of ionization. Results indicated that no enthalpy change was involved 

with binding of 2 NADPH molecules or DHF to enzyme•NADP+. However, the enthalpy change 

associated with the binding of 2 folate molecules or folate to R67 DHFR•NADPH was found to 

vary in different buffers. Using equation 1, the ∆Hbinding of folate to R67 DHFR•NADPH was 

found to be -13.1 Kcal/mol. Also, the ∆Hobserved was plotted against the ∆Hionization. The plot 

obtained was linear and the slope of the plot gave an estimate of the number of protons involved 

in binding. A positive slope of 0.4 ± 0.05 was obtained which indicated proton uptake upon 

binding at pH 8.0 (53). 

 

The pKa of the  N3 group of DHF is reported as 9.54 or more recently 10.8  (56, 57). This is 

much above the pH of ITC experiments (8.0) and is consistent with no perturbation of this group 

upon binding to R67 DHFR. Therefore, DHF binds to the active site without any proton uptake. 

On the other hand, the pKa of the N3 group of folate is 8.38 (56, 58). This is near the pH of the 

experiment (8.0) and is consistent with folate binding to the enzyme with a partial proton uptake 

as R67 utilizes N3 and O4 atoms in binding folate (37). 

 

Use Of Alternate Substrates To Study Ligand Binding And Catalysis  
 
 
Folate analogs with truncations in the tail region showed that the binding is weakened in the 

absence of the glutamic acid tail and is further weakened if both the pABA moiety and the 

glutamic acid tail are removed. Salt effect studies have also shown that in going from the ground 

state to transition state, one ionic interaction is broken (40).  Binding and kinetic studies with 
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dihydropteroic acid (DHP, folate analog lacking the glutamic acid tail) showed that the Km is 

increased ~5-fold. Additionally, kcat of the DHFR reaction using DHP as a substrate showed an 

approximately 1600-fold reduction in the kcat as compared to the kcat obtained using DHF (59). 

This suggested that the pABA glu tail is important for interacting with the K32 residue and 

consequently for correctly positioning the substrate in the active site. 

 

Thermodynamics Of Ligand Binding In The Ground State And Transition State 
 
 
To garner more information on how R67 DHFR facilitates transition state formation, the 

temperature dependence of binding (NADPH and DHF) and catalysis was monitored. Using the 

van’t Hoff plot, the enthalpy of binding of DHF and/or NADPH in the ground state was 

determined to be –8.6 kcal/mol and –13.3 kcal/mol respectively. Additionally, an Arrhenius plot 

was used to obtain the activation energy and the corresponding enthalpy change of (6.3 kcal/mol 

at 25oC) associated with transition state formation.  The TΔS associated with ground state was 

also calculated to be –5.4 kcal/mol. This value of TΔS is less negative as compared to the TΔS in 

the ground state (-11.3 kcal/mol), indicating a reorientation of the substrate in the transition state. 

Similar results have been obtained using a poor substrate DHP (53, 59) . These results have been 

discussed in chapter 2.  

 

Role Of Water In Ligand Binding In R67 DHFR? 

 
Water is an essential component present in all living organisms. It forms an integral part of all 

biomolecular systems as it associates with proteins, carbohydrates, lipids and nucleic acids. 

Understanding the role of water will help shed light on the mechanism of cellular function. In the 

case of proteins, the polar nature of water forces the hydrophobic regions to come together to 

form a tightly packed core, which provides a driving force for protein folding. Additionally, water 



 33

molecules form a network of hydrogen bonds with themselves and the protein, maintaining 

protein stability. Characterization of the hydration of proteins is essential for understanding 

protein folding, structure and function. In order to achieve this, techniques such as x-ray 

crystallography and NMR spectroscopy have been used (60, 61). Another approach towards 

obtaining a global picture is to use molecular dynamic (MD) simulations and neutron scattering 

experiments. Both small angle scattering (SAS) of x-rays and neutrons in H2O and D2O have 

been used to understand the perturbation of water on the surface of lysozyme and its difference 

from the bulk solvent (62). It was observed that the first hydration shell (~3Å thick) is 15% 

denser than bulk water. In order to gain insight into the structural properties of the first hydration 

shell, molecular dynamic simulations were also performed (63). Results obtained suggested that 

the geometry of the water molecules contributed to 75% of the density of the first hydration shell, 

while other factors such as topographical and electrostatic properties of the protein surface may 

be responsible for the remaining 25% density of the hydration shell. Thus, these results were 

similar to those obtained by SAS. Another interesting feature on the interact[ption of water with 

proteins is that about 55% of these water molecules are bound to the backbone atoms and the 

remaining to the charged side chains. Therefore, the positions of some of these water molecules 

are conserved and always found in crystal structures at the same position (64, 65). 

 

Since water plays a vital role in maintaining the structure and function of proteins, it is imperative 

to maintain its concentration in the cell. Any changes in environmental conditions such as 

osmotic stress, high hydrostatic pressures or dehydration could be lethal to the cell. An in-built 

mechanism in cells to combat such extreme conditions is the production of organic solutes. Some 

examples of these solutes are trimethylamine N-oxide (TMAO) and glycine betaine. These 

compounds are proposed to help in stabilization of the native state of proteins by their preferential 

exclusion at the protein surface, allowing hydration (66-68). Due to these properties, organic 
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solutes have been used for both in vitro and in vivo experiments for determining the role of water 

in ligand binding to proteins (69, 70). Addition of these solutes results in a displacement of some 

water molecules, consequently leading to a perturbation of solvent structure and unfolding of 

proteins. The basic idea behind using osmolytes for in vitro experiments is to control water activity 

by using solutes (osmolytes), which themselves do not interact with the protein of interest. Addition 

of osmolytes causes an increase in osmotic pressure, which eventually leads to dehydration and the 

squeezing out of water molecules from the active site (71). By using a range of osmolyte 

concentrations, the number of water molecules squeezed out can potentially be quantified. Generally, 

the effect of the osmolyte on the Ka is monitored. A plot of ln(Ka) versus osmolality gives an 

estimate of the number of water molecules involved. An increase in Ka due to osmolyte addition 

suggests a net release of water molecules. On the other hand, a decrease in Ka reflects an uptake of 

water molecules (69, 70). This approach has been used for a number of proteins. For example, 

hemoglobin has been found to gain 60 water molecules upon binding to 4 oxygens (72). In another 

example, hexokinase was found to lose about 60 water molecules upon binding to a glucose 

molecule (73). Finally, cytochrome oxidase undergoes a hydration/ dehydration cycle involving 10 

water molecules as the protein is reduced and then transfers an electron internally (74). Additional 

examples of this phenomenon also include changes in hydration due to conformational change (75), 

as seen in the case of glucose binding to hexokinase (73),  aspartate to ATCase (76) or DNA binding 

to repressors (75). 

 

Depending on their chemical properties, osmolytes can be categorized into two groups: protecting 

osmolytes and denaturing osmolytes. Protecting osmolytes raise the free energy of the unfolded 

state and hence favor the folded protein population (for example, trimethylamine oxide (TMAO). 

On the other hand, denaturing osmolytes lower the free energy of the unfolded state and thereby 

favor a higher population of the unfolded state (for example, urea and guanidine chloride) (77-
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79). An example of this is urea, which interacts with the peptide backbone and also with other 

urea molecules. The effect of these osmolytes on proteins can be evaluated thermodynamically by 

measuring the transfer free energies (Δgtr) of backbone models from water to 1M osmolyte 

solutions. A Δgtr>0 indicates that osmolytes stabilize the protein and Δgtr<0 indicates that the 

particular osmolyte has a denaturing effect on the protein (77, 80, 81). Ab initio calculations 

further showed that the Δgtr values of many osmolytes are negatively correlated with their 

fractional polar surface area (82). In other words, as the fractional polar surface area increases, 

the osmolyte interacts more favorably with the protein (decreasing the gtr). Also, the amount of 

interaction depends on the surface area of the protein.  

 

In the case of R67 DHFR, the volume of the hour-glass shaped active site pore is 2600 Å3, which 

includes a total of 168 water molecules (19). The water molecules are well ordered and their 

hydrogen-bonding network forms an array of fused pentagonal rings. A crystal structure of the 

Q67H mutant with bound NADP+ shows that Water 149 has a conserved position and is displaced 

upon binding of two NADPH molecules (83). This suggests that water may play an important role 

in ligand binding to R67 DHFR. To investigate this, preliminary experiments were performed 

using osmolytes such as sucrose and trehalose. It was observed that the binding of the substrate 

weakened as the concentration of osmolytes was increased (59). This strongly suggested that 

water is important in stabilizing the interaction of DHF with R67 DHFR. Further studies were 

performed using different osmolytes, which will be discussed in chapter 3. 

 

Role Of Water In Binding Enthalpy 
 
 
Isothermal titration calorimetry provides valuable information on the enthalpy and entropy 

changes accompanying a binding process. The net enthalpy change measured by ITC is not only 
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due to hydrogen bonding or ionic interactions, but also due to changes in solvent-solvent, protein-

solvent and protein-ligand interactions. From the changes in enthalpy at different temperatures, a 

heat capacity change can be calculated based on the relationship:  

 ΔCp = ∂ΔH/∂T                                                                                                         (2) 

Therefore, the slope of a plot of ΔH versus temperature gives a value for ΔCp. If the favorable 

(more negative) enthalpy is increased with temperature, it is compensated by a decrease in 

favorable entropy. Thus, the entropy change can also be determined from the heat capacity 

change as shown by the following equation: 

ΔG = ΔCp
 (ΔT) - TΔS                                                                                                 (3) 

A number of factors contribute to heat capacity and entropy: 

1) Dehydration of a non-polar or polar surface: Dehydration of a non-polar surface leads to a 

decrease in heat capacity and an increase in favorable entropy (84). On the other hand, 

dehydration of a polar surface results in an increase in the heat capacity and a corresponding 

increase in the favorable entropy (85, 86). Chervenak and Toone performed binding studies in the 

presence of H2O and D2O and observed different binding enthalpies in light and heavy water. 

This led them to suggest that ‘solvent reorganization’ is responsible for 25% to 100% of the 

enthalpy of binding (54). A negative heat capacity change is usually observed for ligand-nucleic 

acid and ligand-protein binding interactions (87-90).  

2) Internal vibrations: Vibrational tightening can decrease the heat capacity of a system and also 

decrease the favorable entropy (86, 91, 92).  

3) Conformational changes:  A binding reaction that is accompanied by a conformational change 

also has an effect on the heat capacity, which is also associated with a decrease in the entropy (91, 

93, 94). 
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4) Electrostatic interactions and protonation changes during binding: Long range electrostatic 

interactions also have a strong influence on heat capacity (95). Additionally, protonation changes 

have also shown to contribute to the observed heat capacities (94). 

Of these possibilities, the heat capacity change due to dehydration of polar / non-polar surfaces in 

many systems (96-98) may indirectly demonstrate the contribution of water molecules in binding 

of ligands. The heat capacity change involving the folding of various proteins as well as the 

transfer of hydrocarbons and amides from water to pure liquid phase has been characterized .by 

the following equation: 

            ΔCp (cal/moloK) = Capolar *ΔANP + Cpolar *ΔAP                                                                                (4) 

where, ∆ANP  and ∆AP are the solvent accessible non-polar and polar surface areas respectively 

(85, 99).  

Various groups have studied this and have generated different coefficients for the heat capacity 

(100). The coefficients reported by Spolar and Record are often used as follows (85). 

           Capolar = 0.32 ± 0.04 and Cpolar -0.14 ± 0.04                                                       (5) 

 

In order to thermodynamically characterize the contribution of solvent-reorganization due to the 

burial/ exposure of polar/non-polar surface of R67 DHFR, heat capacity studies have been 

performed on R67 DHFR. In summary, the heat capacity change for binding of DHF to form a 

ternary complex in the presence of the cofactor and R67 DHFR has been measured. In addition to 

this, the heat capacity change for binary complex binding of NADPH has been studied. These 

results will be discussed in chapter 3. 
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Goal Of The Project: How Do The Ligands DHF And NADPH Bind In The Active 

Site Of R67 DHFR? 

 
R67 DHFR has a promiscuous active site that allows for binding of both the substrate and 

cofactor in similar positions. Therefore, the manner in which ligands bind to the enzyme in the 

ground state and transition state is not completely understood. X-ray crystallography, NMR 

studies, docking studies and molecular dynamic simulations all indicate that the DHF tail is 

disordered. In this study, we have addressed ligand binding to the enzyme by two different 

approaches: 

1) Using analogs (truncated at the tail region) of folate we investigated the importance of the 

glutamic acid region of folate. Also, a thermodynamic characterization of the ligand 

binding in the ground state and transition state has been achieved using Arrhenius plots. 

These results are discussed in chapter 2.  

2) The role of water molecules in DHF and NADPH binding has been studied using 

osmolytes. Heat capacity studies have also been performed as a part of this study. The 

experiments and results obtained have been described in chapter 3. 
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Abstract 
 
 
R67 dihydrofolate reductase (DHFR) is a novel homotetrameric protein that possesses 222 

symmetry and a single, voluminous active site pore.  This symmetry poses numerous limitations 

on catalysis, for example, two dihydrofolate (DHF) molecules or two NADPH molecules, or one 

substrate plus one cofactor can bind.  Only the latter combination leads to catalysis.  To garner 

additional information on how this enzyme facilitates transition state formation, the temperature 

dependence of binding and catalysis was monitored.  The binding of NADPH and DHF is 

enthalpy driven.  Recent primary isotope effect studies indicate hydride transfer is the rate-

determining step.  Accordingly, the activation energy associated with transition state formation is 

6.9 kcal/mol (ΔH‡
25 = 6.3 kcal/mol).  A large entropic component is also found associated with 

catalysis, TΔS‡
25  = –11.3 kcal/mol.  Binding of a poor substrate, dihydropteroate, shows weaker 

affinity than for dihydrofolate (ΔΔG = 1.9 kcal/mol) and a large loss in the binding enthalpy value 

(ΔΔH = 6.4 kcal/mol).  The kcat value for dihydropteroate reduction is decreased 1600 fold 

compared to DHF usage.  This effect appears to derive mostly from the ΔΔH difference in 
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binding, demonstrating that the glutamate tail is important for catalysis.  This result is surprising 

as the para-aminobenzoyl-glutamate tail of DHF has been previously shown to be disordered by 

both NMR and crystallography studies.  Viscosity studies were also performed and confirmed 

that the hydride transfer rate is not sensitive to sucrose addition.  Surprisingly, binding of DHF, 

by both Km and Kd determination, was found to be sensitive to added viscogens, suggesting a role 

for water in DHF binding.  

 

Introduction 
 
 
Dihydrofolate reductase (EC 1.5.1.3) catalyzes the reduction of dihydrofolate (DHF) to 

tetrahydrofolate (THF) using NADPH as a cofactor.  Two different protein scaffolds that catalyze 

the DHFR reaction have been identified.  The first corresponds to chromosomal E. coli DHFR, 

which is the target of the antibacterial drug, trimethoprim (TMP).  The second DHFR is encoded 

by an R-plasmid, which provides resistance to TMP.  R67 DHFR is unrelated genetically and 

structurally to chromosomal DHFR.  Chromosomal E. coli DHFR has been described as a well-

evolved enzyme with an efficiency of 0.15 (2), while R67 DHFR has been suggested to be a 

model for a "primitive" enzyme that has not yet been optimized by evolution (3, 4).   

 

The proposal that R67 DHFR is a primitive enzyme arises from the constraints imposed by its 

structure coupled with its use of two substrates (dihydrofolate and NADPH).  As shown in figure 

1, R67 DHFR is a homotetramer with a single active site pore that is solvent-accessible, except 

perhaps at the hourglass center when ligands are bound. The overall structure possesses 222 

symmetry (3).  The obligatory symmetry of the active site results in overlapping binding sites for 
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Figure 1: Structures of R67 DHFR, Dihydrofolate and Diydropteroate.  A) Ribbon structure 

of R67 DHFR (protein data bank file 1VIE) (3). The enzyme is a dimer of dimers; the monomer-

monomer interfaces occur on the sides of the structure (sea green + blue or chartreuse + red), 

while the dimer-dimer interfaces occur on the top and bottom of the structure (sea green + red or 

chartreuse + blue).  The active site pore corresponds to the “doughnut hole” in the center.  B) 

Structures of DHF and DHP with atom labels from N5 to N8. 
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DHF and NADPH.  This can be seen experimentally as R67 DHFR binds a total of two ligands; 

either two NADPH molecules or two folate/DHF molecules or one NADPH plus one folate/DHF 

molecule (5).  The first two complexes are dead-end complexes, while the third is the productive 

catalytic complex (figure 1). The ability to discriminate between the homoligand and   

heteroligand complexes mostly appears to arise from stacking between the ligands, as well as 

some contribution from the enzyme (6, 7).  It has been found experimentally that the greater the 

enthalpy change associated with formation of the productive ternary complex, the greater the 

catalytic efficiency (8).  Other groups have correlated enthalpic effects with structural tightness 

(9-11).  Another consequence arising from this particular constellation of structural features is 

that introduction of a mutation in the gene results in four mutations per active site.  These 

mutations typically have large cumulative effects (8, 12) and make it unlikely that R67 DHFR 

uses a general acid in its active site to facilitate catalysis (as addition of one general acid per gene 

will result in four general acids per active site pore).  Rather, pre-protonated DHF from solution is 

used as substrate (13).  Finally, the rate-determining step of R67 DHFR is chemistry as NADPD 

isotope effects using a H62C mutant of R67 DHFR find DV (= kcat using NADPH / kcat using 

NADPD) at pH 5.0 equals 3.6 ± 0.45 and at pH 7.0, DV = 3.3 ± 0.33 (13).  These results indicate 

hydride transfer is rate determining from pH 5–7.  

 

While the 222 symmetry restricts the catalytic strategy of R67 DHFR, there are some advantages 

associated with this symmetry.  The first positive feature is expenditure of less energy and DNA 

in encoding the genetic information.  A second advantage pertains to the consequences of 

symmetry breaking whereby different properties and packing relationships arise (14, 15).  For 

example, the initial binding of NADPH to R67 DHFR utilizes the symmetry of the protein by 

allowing binding to 1 of 4 symmetry related sites.  Once bound, NADPH creates a local 

asymmetric environment in the active site pore, which results in negative cooperativity 
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disfavoring binding of a second NADPH molecule or positive cooperativity favoring binding of 

DHF.  Both these cooperativity patterns strongly favor channeling of the binding pathway 

towards the productive ternary complex, NADPH•DHF.  A third benefit of symmetry is the 

potential for multivalent binding (16).  Here, once a site is occupied, the proximity of other 

symmetry related sites can enhance binding by reduction of the associated entropy and/or by 

decreasing the dissociation rate (17, 18).  This type of effect appears likely to occur in R67 DHFR 

(19, 20). 

 

A study of the transition state used by R67 DHFR will help further deconvolute its catalytic 

strategy.  From interligand NOEs using NMR, the bound NADP+•folate complex is most 

consistent with use of an endo transition state, where the nicotinamide ring of cofactor overlaps 

that of the N5 containing pteridine ring of substrate (6, 21).  The endo transition state has been 

proposed to be 2 kcal/mol more stable than the exo transition state used by chromosomal E. coli 

DHFR (22, 23).  To garner more information concerning the transition state used by R67 DHFR, 

the temperature dependence of its reaction was studied.   

 

Materials And Methods 
 
 
Protein Purification R67 DHFR was expressed in E. coli SK383 cells in TB media containing 

200μg/ml ampicillin and 20μg/ml trimethoprim as previously described (24).  Briefly, ammonium 

sulfate precipitation and ion-exchange column chromatography were used to purify the protein to 

homogeneity.  Purified samples were dialyzed against distilled, deionized H2O and then 

lyophilized.  Protein concentrations were determined with a biuret assay (25). 
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Fluorescence Quenching Binding of NADPH to 2.0 μM R67 DHFR was monitored in MTA 

buffer at various temperatures using tryptophan fluorescence as per Zhuang et al. (26).  MTA is a 

polybuffer containing 50 mM MES, 100 mM Tris and 50 mM acetic acid at pH 7.0, which 

maintains a constant ionic strength from pH 4.5-9.5 (27).  Data were fit to:  

Fl = Fo – 0.5 Fo [Ptot + Kd + Ltot – [(Ptot + Kd + Ltot)2 – 4 Ptot Ltot)1/2]                  (1) 

where Fl is the observed fluorescence, Ltot is the total ligand concentration, and Ptot, Kd and Fo are 

variables describing the number of enzyme binding sites, dissociation constant and fluorescence 

yield per unit concentration of enzyme, respectively (28).   

 

Steady State Kinetics  Steady state kinetic data were obtained using either a Perkin-Elmer λ3a or 

a λ35 spectrophotometer interfaced with an IBM PS2 as previously described (29).  Briefly, 

assays were performed at 30°C in MTA polybuffer, by the addition of substrate (DHF) and 

cofactor (NADPH), followed by the addition of enzyme to initiate the reaction.  To obtain kcat and 

Km values, the concentration of NADPH was held constant at a subsaturating level while the 

concentration of DHF was varied.  This process was repeated using four additional subsaturating 

concentrations of NADPH.  The data were fit globally to the nonlinear bisubstrate Michaelis 

Menton equation utilizing SAS (statistical analysis software; (7, 30)).  The NLINEK macro for 

use in SAS is available at: http://www.agriculture.utk.edu/ansci/faculty/saxton_software.html.   

 

The temperature dependence of the steady state kinetic behavior of R67 DHFR was studied from 

20-50oC.   The pH meter was standardized at each temperature and MTA buffer titrated to pH 7.0.  

Within error, the extinction coefficient of the reaction did not change as temperature was varied 

(data not shown).   
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For solutions containing viscogens, the steady state data were initially monitored as described 

above.  When it became apparent that the main variation occurred in the Km for DHF, data were 

then collected using saturating NADPH concentrations.  

  

Reduction of the alternate substrate, dihydropteroic acid (DHP), was also studied.  Pteroic acid 

was purchased from Schircks Laboratories and reduced to DHP according to Prabhu et al. (31).  

NMR analysis confirmed formation of the reduced species and the simultaneous disappearance of 

the oxidized compound.  The molar extinction coefficient used to assess reduction of DHP was 

monitored and found to be the same as for DHF reduction, which is 12,300 M-1cm-1 (32).  Since 

this is a poor substrate, higher enzyme concentrations were used and Michaelis-Menton 

conditions did not apply.  Data were fit to equation 2: 

 

v     =   kcat * ([Etot] + [Stot] + Kd) - {([Etot] + [Stot] + Kd)2 - 4[Etot][Stot]}1/2     (2) 

         2 

 

where [Etot], [Stot], Kd, v and kcat are the total enzyme and substrate concentrations, the substrate 

binding constant, the initial velocity and the catalytic rate constant, respectively (33). 

 

Determination of Substrate pKa values The pKa value for the N5 atom in DHF was determined 

as per Maharaj et al. (34).  Essentially, the absorbance of a DHF solution (<30μM ) was 

monitored within 30 seconds at 228 nm.  A range of pH values were obtained using 0.2M sodium 

phosphate buffer or various concentrations of HCl (<0.25M).  To minimize any precipitation of 

DHF near its isoelectric point, DHF was dissolved first, followed by addition of buffer or HCl.  

The data were fit to an equation describing a standard ionization curve (35).  An identical 

approach was used to determine the N5 pKa of dihydropteroic acid.  
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Viscosity Measurements Kinematic viscosity (η/ρ in mm2/s) was monitored using a Cannon-

Fenske viscometer equilibrated at 30oC in a Precision Temp-Trol mineral oil bath.  Kinematic 

viscosity was converted to viscosity (η) by multiplying by the density of the solution (ρ in 

gms/ml).  Sucrose (≤1.75M) was added to increase η to ≤10.5 cP.  Relative viscosities (η/ηo) 

were calculated using MTA buffer as the reference.  Trehalose (≤1.6M), also a disaccharide, was 

additionally used as a viscogen to determine whether sucrose had a specific or non-specific effect.   

 

Isothermal Titration Calorimetry Affinities, stoichiometries as well as ΔH values were 

determined for binding studies using isothermal titration calorimetry (ITC) as previously 

described (5).  Measurements were performed on a VP-ITC microcalorimeter from MicroCal 

interfaced to a Gateway PC for data acquisition and analysis.  Origin® v.5 scientific software was 

used to analyze the data.  The design and use of this instrument have been previously described 

(36).  R67 DHFR concentrations typically ranged between 90-150 μM in MTA buffer (pH 8).  

Experiments were performed at least in duplicate.  For titrations with sucrose present, MTH 

buffer plus sucrose was used in the reference cell. 

 

Results 
 
 
What is the Temperature Dependence of NADPH Binding to R67 DHFR?  To determine the 

temperature dependence of the Kd for NADPH, a fluorescence quenching approach was 

employed.  Titration of NADPH into R67 DHFR was performed from 10-35oC and the data fit to 

obtain a Kd value (table 1).  As the temperature rose, so did the Kd (figure2).  The data were then 

analyzed using the van’t Hoff equation:  

ln Ka = (-ΔH / RT) + ΔS / R        (3) 
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Table 1: Temperature dependence for NADPH binding. Data describing the Kd values 

obtained upon titration of NADPH into R67 DHFR to form enzyme•2NADPH complex at 

different temperatures. 

 

Temperature 

(oCelsius) 

Temperature 

(oKelvin) 

1/T (Kelvin-1)*10-3 Kd (μM) 

 

10 

 

283 

 
 

3.53 
 

 

1.29 ± 0.1 

 

15 

 

288 

 
 

3.47 
 

 

1.31 ± 0.2 

 

20 

 

293 

 
 

3.41 
 

 

2.22 ± 0.2 

 

20 

 

293 

 
 

3.41 
 

 

1.85 ± 0.2 

 

25 

 

298 

 
 

3.36 
 

 

2.80 ± 0.2 

 

30 

 

303 

 
 

3.30 
 

 

3.34 ± 0.3 

 

35 

 

308 

 
 

3.25 
 

 

4.30 ± 0.3 

 

40 

 

313 

 
 

3.20 
 

 

4.87 ± 0.9 
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Figure 2:  A van’t Hoff plot describing the temperature dependence of NADPH binding to 

R67 DHFR. Binding of NADPH was monitored by fluorescence quenching, which only 

describes titration of a single NADPH molecule.  Errors associated with the Kd1 values are 

smaller than the symbol size.  Best-fit values are given in the text as well as Table 7.  
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where the association constant, Ka, equals 1/Kd, ΔH is the enthalpy change, ΔS is the entropy, R is 

the gas constant and T is the temperature in degrees Kelvin (table 1).  The slope of these plots 

equals -ΔH/R, and ΔH is calculated to be –8.6 ± 0.6 kcal/mol.   

 

What is the Temperature Dependence of R67 DHFR Catalysis?  The steady state kinetic 

behavior of R67 DHFR was also studied and found to be dependent on temperature from 20 to 

50oC.  Effects on both kcat and Km values were observed.  The data were then analyzed using the 

Arrhenius equation:  

k = Ae –Ea/RT           (4) 

where k is the rate, A is the pre-exponential factor and Ea is the activation energy (37).  Figure 3 

plots the reciprocal temperature versus ln kcat as well as ln kcat/Km (DHF).  The plots are linear, 

consistent with a single rate-determining step being monitored.  The slope for this plot 

corresponds to Ea / R where Ea is the activation energy for the reaction.  For the kcat plot, Ea is 

calculated to be 6.90 ± 0.6 kcal/mol.  From the equation ΔH‡ = Ea - RT, ΔH‡
25 for R67 DHFR can 

be calculated as 6.3 kcal/mol and from ΔG‡ = -RT ln (kcat•h / kB•T), ΔG‡
25 can be calculated as 

17.6 kcal/mol (where h is Planck’s constant and kB is the Boltzmann constant) (38, 39).  TΔS‡
25 

can then be computed as –11.3 kcal/mol from ΔG‡ = ΔH‡-TΔS‡ (table 2). Alternate fits were also 

employed and provided similar values. To minimize error propagation, the raw data were also fit 

directly to rate Ae (-Ea/RT). For this nonlinear fit, Ea = 7.1 ± 0.7 kcal/mol and ΔH‡
25 = 6.5 ± 0.7 

kcal/mol. 

 

The temperature dependence of dihydropteroate (DHP) reduction was additionally studied.  DHP 

is a fragment of DHF where a para-amino-benzoate tail replaces the p-amino-benzoyl-glutamate 

(pABA-glu) tail of DHF (see figure 1B).  A negative charge remains on the tail, albeit in a 

different position.  DHP reduction is much slower than DHF reduction, with a kcat value of 4.9 x 
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10-4 ± 1.7 x 10-5 s-1 and a Km (DHP) value of 23 ± 2.4 μM at 25 oC.  These changes reflect an ~10 

fold increase in Km and an ~1600 fold decrease in kcat with respect to DHF reduction.  The 

temperature dependence of DHP reduction is also shown in figure 3.  The corresponding 

activation energy is 14.3 ± 1.4 kcal/mol. ΔH‡
25 can then be calculated as 13.7 kcal/mol with a 

ΔG‡
25 of 22 kcal/mol and a TΔS‡

25 of -8.3 kcal/mol.  The various thermodynamic values for DHP 

binding and catalysis are given in table 3. 

The H‡, ΔG‡ and TΔS‡ values for DHF and DHP reduction were also obtained using the Eyring 

equation:  

k = (κkBT)/h * e-ΔG‡ / RT              (5) 

where κ is the transmission coefficient (with a value of 1); kB is the Boltzmann constant (1.38·10-

23 JK-1  molecule-1); h is the Planck’s constant (6.624·10-34 Js molecule-1) and R is the gas constant 

(8.314 JK-1 mol-1). The slope of the plot of 1/T vs ln kh/kBT equals ΔH‡/R and the y-intercept 

equals ΔS‡/R. from which, the values of ΔH‡ (6.3 ± 0.6 kcal/mol) and TΔS‡
 (-11.8 ± 0.6 kcal/mol) 

were obtained at 25oC. The Eyring plot was also used for DHP reduction and ΔH‡ was found to 

be 13.7 ± 1.4 kcal/mol and TΔS‡ 25 = 8.2 ±1.4 kcal/mol (figure 4). 
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Table 2: Temperature dependence for DHF reduction. Data describing the Km and kcat values 

obtained for DHF binding (using steady state kinetics) at different temperatures. van’t Hoff, 

Arrhenius and Eyring plots were used to obtain values for ΔH and ΔS as shown in figure 3 and 4. 

 

Temperature (oKelvin) Km 

(μM) 

kcat 

(s-1) 

kcat/Km  

(M-1s-1) * 104 

 

293 

 
 

1.78 ± 0.2 

 
 

0.54 ± 0.01 

 
 

30.6 

 
 

298 

 
 

2.37 ± 0.3 

 
 

0.77 ± 0.02 

 
 

32.7 
 

 
 

303 

 
 

3.08 ± 0.3 

 
 

0.88 ± 0.03 

 
 

28.5 
 

 

308 

 
 

5.24 ± 0.3 

 
 

0.98 ± 0.03 

 
 

17.0 

 

313 

 
 

7.31 ± 0.5 

 
 

1.29 ± 0.04 

 
 

17.6 

 

318 

 
 

11.3 ± 0.6 

 
 

1.37 ± 0.03 

 
 

12.1 

 

323 

 
 

15.5 ± 1.4 

 
 

1.81 ± 0.07 

 
 

11.7 
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Table 3: Temperature dependence for DHP reduction. Data describing the Km and kcat values 

obtained for DHP binding (using steady state kinetics) at different temperatures. van’t Hoff, 

Arrhenius and Eyring plots were used to obtain values for ΔH and ΔS as shown in figure 3 and 4.  

 

Temperature (oKelvin) Km 

(μM) 

kcat 

(s-1) * 10-4 

kcat/Km  

(M-1s-1)* 10-6 

 
 

298 
 
 

 
19.7 ± 2.0 
27.0 ± 2.4 
21.5 ± 2.3 

 
4.86 ± 0.2 
5.91 ± 0.2 
3.54 ± 0.1 

 
24.6 
21.9 
16.5 

 
300 

 
 

27.7 ± 5.3 6.59 ± 0.4 23.8 

 
303 

 
 

 
31.0 ± 4.9 
31.1 ± 2.1 

 
8.20 ± 0.4 
9.23 ± 0.2 

 
26.5 
29.5 

 
308 

 
 

 
38.0 ± 1.9 
35.1 ± 7.7 
44.0 ± 2.6 

 
9.26 ± 0.2 
11.1 ± 0.9 
9.89 ± 0.2 

 
24.4 
31.8 
22.8 

 
 

311 
 
 

 
40.2 ± 1.4 

 
14.7 ± 0.2 

 
36.7 

 
313 

 
 

 
37.5 ± 1.3 

 

 
16.1 ± 0.2 

 

 
42.8 
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Figure 3: Arrhenius plots describing R67 DHFR catalysis.  Steady state kinetic analysis was 

performed as described in the Materials and Methods section.  Reduction of DHF and DHP were 

both studied and are described by and  points, respectively.  Errors associated with the 

various parameters are smaller than the symbol size.  Panel A describes the ln kcat values while 

panel B describes ln kcat/Km (substrate) data.  The inset plots the variance of ln 1/Km (substrate) with 

inverse temperature. 
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Figure 4: Eyring plots describing R67 DHFR catalysis. An Eyring plot (1/T vs ln(kh/kBT) was 

also used to evaluate ΔH‡ and ΔS‡ values, as the slope of this plot equals ΔH‡/R and the y-

intercept equals ΔS‡/R. A) For DHF reduction, ΔH‡ = 6.3 ± 0.6 kcal/mol and TΔS‡
25 = -11.8 ± 0.6 

kcal/mol. B) For DHP reduction, ΔH‡ was found to be 13.7 ± 1.4 kcal/mol and TΔS‡
25 was 

determined to be 8.2 ±1.4 kcal/mol using an Eyring plot. 
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Temperature Dependence of the N5 pKa in DHF Since R67 DHFR reduces pre-protonated 

DHF (13), a trivial reason for kcat to increase with temperature would be that the N5 pKa increases 

with temperature.  The structure of DHF is given in figure 1 along with atom labels.  While 

previous studies of organic cyclic compounds predict that the N5 pKa should decrease with 

increasing temperature (40), the N5 titration in DHF was directly monitored from 10 to 20oC.  A 

typical titration curve is shown in figure 5A.  Above 20oC, DHF is not sufficiently stable in acidic 

solutions to continue the titrations (34), however the general trend of a decreased pKa associated 

with the N5 atom can be observed with increasing temperature.  Specifically, at 10°C, the N5 pKa 

is 2.86 ± 0.01, while at 15°C, the pKa is 2.74 ± 0.03 and at 20°C, the pKa is 2.69 ± 0.02.  Thus the 

increased kcat associated with R67 DHFR at elevated temperatures does not arise from an increase 

in the concentration of free, protonated DHF.  These values compare with an N5 pKa equal to 

2.59, previously obtained at 20oC (34). The effect of temperature on the pKa of DHP was also 

estimated (34). A value of 2.54 ± 0.03 is obtained at 20oC, indicating no to minimal change in this 

pKa compared to DHF. 
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Table 4: Effect of temperature on the pKa of the N5 group of DHF. Data describing the pKa 

values of the N5 position of DHF at 10oC, 15oC and 20oC. The pKas obtained were converted to 

ln Ka and are shown  in figure 5B. 

 

 
Temperature (oKelvin) 

 
1/T (Kelvin-1)*10-2 

 
pKa 

 
283 

 
3.534 

 
2.86 ± 0.01 

 
288 

 
3.472 

 
2.74 ± 0.03 

 
293 

 
3.413 

 
2.69 ± 0.02 
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Figure 5: Determination of the N5 pKa value for dihydrofolate at different temperatures A) 

Absorbance at 228 nm was monitored as a function of pH at 20oC. From this, the pKa was 

determined to be 2.69 ± 0.02 as shown in table 4. B) van't Hoff plot describing protonation of the 

N5 atom in DHF.   The pKas obtained at different temperatures were converted to Ka. The inverse 

temperature dependence of ln Ka was plotted and the slope used to calculate a ΔH value of 6.5 ± 

1.0 kcal/mol.    
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Are There Any Viscosity Effects on kcat/Km?  A common approach to show that the rate of the 

enzyme under study is not limited by either binding or release of ligands involves monitoring the 

steady-state rate in solutions of varying viscosities.  If ligand binding or release is the rate-

determining step, increasing the microscopic viscosity will decrease kcat/Km in a linear fashion 

(41, 42).  Even though an H62C mutant of R67 DHFR shows a NADPD isotope effect (DV = kcat 

using NADPH / kcat using NADPD at pH 7.0 = 3.3 ± 0.33 (13)), we monitored catalysis in 

increasing concentrations of sucrose.  No effect on kcat was observed.  Surprisingly, clear effects 

on kcat/Km (DHF) were seen as well as a small effect on kcat/Km (NADPH) (~2 fold at the highest 

viscosity).  The results are plotted in figure 6.  Viscogens can have a variety of effects including 

perturbation of solvent structure.  Since the viscogenic effect is predominately observed on 

kcat/Km (DHF), a possibility is that the viscogen affects the water structure, which selectively affects 

DHF binding.   

 

To investigate whether sucrose acts specifically or whether it acts non-specifically as a viscogen, 

trehalose was also used to alter the solution viscosity. At comparable relative viscosities (η/ηo), 

similar kinetic effects were observed using either trehalose or sucrose (see figure 6, table 5), 

consistent with viscosity being the primary variable.   
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Table 5: Effect of viscosity on Km and kcat/Km of DHF Steady state kinetic experiments were 

performed in the presence of different concentrations of sucrose and trehalose and the kcat and 

Km(DHF) was determined at saturating concentrations of NADPH. A plot of the ratio of kcat/Km(DHF) 

versus ratio of viscosity (relative to MTH) is shown in figure 6. A plot of ratio of kcat versus ratio 

viscosity is shown in the same figure. 

 

Viscogen Viscosity 

at 30oC 

Ratio 

Viscosity 

Km (DHF) 

(μM) 

kcat 

(s-1) 

Ratio kcat Ratio 

kcat/Km(DHF) 

(M-1s-1) 

Water 
 

0.89 1.02 - - - - 

MTH 1.01 1 3.85 ± 0.5 0.90 ± 0.03 1 1 

0.8 sucrose 2.34 2.62 5.93 ± 1.2 0.76 ± 0.05 0.85 1.8 

1 sucrose 2.80 3.14 12.9 ± 0.8 0.92 ± 0.02 1.02 3.26 

1.25 sucrose 4.05 4.53 17.8 ± 3.1 0.88 ± 0.05 0.98 4.71 

1.5 sucrose 6.04 6.76 21.5 ± 1.7 0.92 ± 0.03 1.03 5.45 

1.6 sucrose 9.34 10.5 28.6 ± 4.1 0.81 ± 0.04 0.91 8.19 

1.75 sucrose 10.5 11.8 32.0 ± 3.7 0.82 ± 0.03 0.91 9.14 

       

MTH  0.89 1 3.62 ± 0.2 0.71 ± 0.01 1 1.20 

Trehalose 
(1M) 

3.18 3.56 8.90 ± 0.6 0.84 ± 0.03 0.84 2.48 

Trehalose 
(1.4M) 

6.42 7.19 13.3 ± 1.1 0.57 ± 0.02 1.24 4.57 
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Figure 6: A plot of relative viscosity versus relative kcat and kcat/Km (DHF) values.  Relative 

viscosities (η/ηo) were calculated using MTA buffer as the reference (ηo).  Relative kcat (squares) 

and kcat/Km (DHF) (circles) values use steady state kinetic values in MTH buffer as the reference.  

Data using sucrose or trehalose as the viscogen are represented by the filled (n,g) and open 

( , ) data points, respectively.  A theoretical dashed line is shown with a slope of 1, consistent 

with diffusion being the rate limiting process for kcat/Km. The solid line displays a slope of 0, the 

expected trend if diffusion did not have any effect on catalysis.   
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To monitor the effect of viscosity on Kd (DHF) directly, binding of DHF to R67 DHFR•NADP+ was 

studied in increasing concentrations of sucrose using isothermal titration calorimetry (figure 7, 

table 6). An approximately 4-fold increase in Kd was observed in buffer containing 1.25 M 

sucrose (η/ηo = 5.1).  A clear effect on Kd is observed (including data obtained at 28 and 30oC, 

not shown), however as the η/ηo ratio rises, the difference between the Km and Kd values 

increases (from two to three fold).  Values are not reported using even higher sucrose 

concentrations as the observed binding stoichiometry was affected.  This may have resulted from 

any effects of higher mixing rates on protein stability or perhaps secondary effects on NADP+ 

binding.   

 

Use of Dihydropteroate as an Alternate Substrate: The temperature dependence of 

dihydropteroate (DHP) reduction was additionally studied. DHP is a fragment of DHF where a 

para-amino benzoate tail replaces the p-aminobenzoylglutamate (pABA-glu) tail of DHF (see 

figure 1). This fragment diminishes the negative charge to –1 and places the charge at a different 

position on the tail. DHP reduction is much slower than DHF reduction, with a kcat value of (0.49 

± 0.17)* 10-4 s-1 and a Km (DHP) value of 23 ± 2.4 μM at 25oC. These changes reflect an ~10-fold 

increase in Km and ~1600-fold decrease in kcat with respect to DHF reduction. The temperature 

dependence of DHP reduction is also shown in figure 3. The corresponding activation energy is 

14.3 ± 1.4 kcal/mol. ΔH‡
25 can then be calculated as 13.7 ± 1.4 kcal/mol with a ΔG‡

25 of 22 ± 0.1 

kcal/mol and a TΔS‡
25 of –8.3 ± 1.4 kcal/mol. The various thermodynamic values comparing 

DHF versus DHP binding and catalysis are given in Table 7. To determine whether the reduction 

in catalytic rate could arise partly from a decrease in the N5 pKa of DHP, a spectrophotometric 

titration was performed as described above or DHF (34). The N5 pKa for DHP is 2.54 ± 0.03 at 

20oC indicating no to minimal change in this pKa compared to DHF. 
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Table 6:  Formation of the ternary R67 DHFR•NADP+•DHF complex as monitored by 

isothermal titration calorimetry.    

 

DHF was titrated into a 1:3.5 (to 1:4) mixture of R67 DHFR•NADP+ at a pH of 8.0 and 25oC as 

previously described (3, 5).  The protein concentration ranged from 89-130 μM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condition Kd (μM) ΔH (kcal/mol) Stoichiometry 

MTH buffer 1.6 ± 0.1 -13.3 ± 0.8 0.85 ± 0.01 

MTH buffer + 0.75M sucrose (η/ηo = 2.0) 3.7 ± 0.2 -12.8 ± 1.0 1.1 ± 0.1 

MTH buffer + 1.25M sucrose (η/ηo = 5.1) 6.0 ± 0.4 -11.3 ± 1.3 1.0 ± 0.1 



 68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Titration of DHF into R67 DHFR•NADP+ in 0.75 M sucrose as monitored by 

isothermal titration calorimetry at 25oC. The top panel shows the series of peaks generated 

from the heat liberated upon binding of dihydrofolate. As the protein approaches saturation, less 

of each subsequent addition is bound, so the peaks decrease in intensity. The protein 

concentration was 110µM tetramer. The bottom panel shows the heat liberated per mole of titrant 

vs. the dihydrofolate: protein molar ratio. The smooth line shows the fit of the data to a single 

interacting sites model. Best-fit values are given in Table 6 of the text. 
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Table 7:  Thermodynamic values describing binding and reduction of DHF and DHP by 

R67 DHFR 

Complex Value ΔG 

(kcal/mol) 

ΔH 

(kcal/mol) 

TΔS 

(kcal/mol) 

E•NADPHa Kd (NADPH) = 2.8 μM -7.5 -8.6 -1.1 

E•NADPH•DHFb Km (DHF) = 2.4 μM -7.7 -14.1 -6.4 

[E•NADPH•DHF]≠ kcat = 0.77 s-1 

 

17.6 6.3 -11.3 

E•NADPH•DHPc, Km (DHP) = 23 μM -6.3 -7.5 -1.2 

Relative to DHF binding                                     ΔΔG = 1.4    ΔΔH = 6.6       Δ(TΔS) = 5.2 

[E•NADPH•DHP] ≠ kcat = 4.9 x10-4 s-1  22.0 13.7 -8.3 

Relative to DHF reduction                                 ΔΔG = 4.4    ΔΔH = 7.4       Δ(TΔS) = 3.0 

 

a For comparison, ITC values describing binding of NADPH at 28oC, pH 8 are: Kd = 2.5 μM, ΔG 

= -7.7 kcal/mol, ΔH = -8.6 kcal/mol, TΔS = -0.9 kcal/mol (5). 

b For comparison, ITC values describing binding of DHF to R67 DHFR•NADP+ at 25oC, pH 8 

are: Kd = 1.6 μM, ΔG = -7.9 kcal/mol, ΔH = -13.3 kcal/mol, TΔS = -5.4 kcal/mol (Table 6). ITC 

experiments are performed at pH 8 rather than pH 7 to minimize any contribution to the enthalpy 

change from the pH-dependent tetramer to 2 dimers dissociation. 

c For comparison, ITC values describing binding of DHP to R67 DHFR•NADPH at 25oC, pH 8 

are: Kd  = 18.3 ± 0.5 μM, ΔG = -6.0 kcal/mol, ΔG = -6.5 ± 0.1 kcal/mol,  ΔH = -9.5 ± 0.2 kcal/mol    

TΔS = -3.0 ± 0.2  kcal/mol (43). 
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Discussion 
 
 
Role of Water No effects on kcat were observed in our viscosity studies, consistent with hydride 

transfer being the rate-determining step.  However an effect was observed on the Km for DHF 

using both sucrose and trehalose.  To determine if the Kd for DHF was also affected, ITC studies 

were also performed.  At low viscosities, Kd (DHF) did increase with increasing viscosity and 

Km(DHF) approximated Kd (DHF) (within a factor of 2).  However as the relative viscosity increased 

to 5.1, a greater divergence was noted between Kd and Km (~3 fold), suggesting that the DHF Km 

may contain some kinetic terms at higher viscosities.   

 

If water is involved in a binding interaction, perturbation of water content should alter binding.  

For example, closer contact distances typically exclude water.  In binding of ferredoxin to 

ferredoxin: NADP+ reductase, Jelesarov and Bosshard (44) found increasing concentrations of 

glycerol resulted in tighter binding.  They interpreted this behavior as arising from dehydration of 

the protein-protein interface, which led to tighter binding as water was released.  For R67 DHFR, 

the opposite behavior has been observed, i.e. weaker binding in increasing sucrose 

concentrations, suggesting water stabilizes DHF binding.  This observation is consistent with 

previous NMR and crystallography studies which have found the pABA-glu tail of DHF/folate is 

disordered when bound (3, 6). Also, docking studies predicted the pABA-glu tail could interact 

with either symmetry related K32 residue in one half of the pore (21, 45).  Finally, addition of 

two asymmetric K32M mutations on opposite sides of the pore can have two topologies, i.e. they 

can occur on the same dimer-dimer interface or they can exist diagonally on both dimer-dimer 

interfaces (see figure 1 in (19)).  These two asymmetric K32M double mutant topologies have 

been constructed and found to have similar effects on steady state kinetic values.  If a preferred 

topology existed for the pABA-glu tail - K32 interaction, then the asymmetric mutants would  
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have shown different behavior (19).  These various studies, combined with the present viscosity 

studies, support a role for water in binding of DHF.  We have previously proposed solvent 

separated ion pairs (46-50) may exist between the glu tail of DHF and K32 residues in R67 

DHFR (19, 43).  Solvent separated ion pairs would also diminish the desolvation penalty involved 

in binding (51).  Water stabilized binding has also been seen in an antibody - lysozyme 

interaction (52) as well as ligand binding to adenosine deaminase (53).   

 

Comparison of Enthalpies Derived from Temperature Dependent Kinetic Studies and ITC   

Previously, a strong preference for initial binding of NADPH to R67 DHFR, followed by binding 

of DHF, has been proposed based on the relative Kd values as well as the behavior of site directed 

mutants (5, 19).  This preferred binding mechanism will be used here as well.  The enthalpy 

change associated with binding NADPH was found to be –8.6 ± 0.6 kcal/mol using a van’t Hoff 

approach (figure 8A).  This value compares well with an ΔH of –8.6 ± 0.2 kcal/mol previously 

monitored by ITC at 28oC (5), indicating the two approaches converge to similar answers (figure 

8B).   

 

The enthalpy change associated with formation of the R67 DHFR•NADPH•DHF complex from 

R67 DHFR•NADPH can be estimated by monitoring the temperature dependence of 1/Km (DHF).  

The value obtained is -14.1 ± 0.6 kcal/mol.  Figure 8A compares well with an ITC derived ΔH 

value of -13.3 ± 0.9 kcal/mol describing binding of DHF to R67 DHFR•NADP+ (25oC, table 6).  

While the latter is a product-substrate complex, the convergence of the ΔH values (from ITC and 

Arrhenius plots) suggests it is a good mimic of the productive ternary complex. 

 

 

 



 72

Figure 8: A Gibbs free energy diagram describing R67 DHFR catalysis at 25oC. A) The ΔG 

values for DHF reduction were obtained from the observed Kd (NADPH), Kd (DHF) and kcat values and 

are shown in black.  The enthalpic contributions were calculated as described in the text.  Since 

Km (DHF) could possibly contain kinetic terms, the Kd for DHF binding to R67 DHFR•NADP+ was 

used to mimic productive ternary complex formation.  Use of the poor substrate, DHP, is shown 

in gray. B) The bottom panel shows a bar graph depicting the differences between DHF and DHP 

binding and reduction describing ΔΔG, ΔΔH and Δ(TΔS) terms.   The binding differences were 

calculated using ITC data for formation of R67 DHFR•NADP+•DHF and R67 

DHFR•NADPH•DHP at 25 and 13oC respectively (43). 
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The ΔH value for the formation of R67 DHFR•2NADPH complex has also been determined 

using the heat capacity (ΔCp) for binding of NADPH to R67 DHFR (from chapter 3). A ΔCp 

value of –178 cal/oK mol is obtained and from this the ΔH and ΔS and be determined using the 

following equations (44): 

ΔH = ΔH* + ΔCp [(T-T*
h)                                                                                                     (6)   

ΔS = ΔS* + ΔCp ln(T/ T*
s)]                                                                                                   (7) 

Where ΔH* is the enthalpy change at T*
h and ΔS* the enthalpy change at T*

s 

 

From the plot of ΔH versus temperature for formation of the R67 DHFR•2NADPH complex, a 

ΔCp of –0.178 kcal/oK mol has been calculated. Also, the ΔH* value at 303oK (T*
h) is –9.25 

kcal/mol. Applying these values to equation (6), the ΔH at 25oC (298oK) was determined to be -

8.1± 0.2 kcal/mol. Similarly using equation (7), ΔS at 298oK was calculated to be -9.79 cal/mol. 

The corresponding value of TΔS at this temperature is –2.9 ± 0.2 kcal/mol. Additionally, ΔG was 

calculated to be –5.2 ± 0.2 kcal/mol    using the relationship,  

ΔG = ΔH – TΔS                                                                                                                  (8) 

 

Since ΔCp is small, the ΔG, ΔH and TΔS values obtained are not different from the values 

determined using the van’t Hoff equation. Similarly, using a ΔCp value of –0.199 kcal/oK mol for 

formation of the ternary R67 DHFR•NADP+•DHF complex (chapter 3), the corresponding values 

of ΔG, ΔH and TΔS were calculated to be -8.3 ± 0.4 kcal/mol, -10.9 ± 0.2 kcal/mol and –2.7 

± 0.3 kcal/mol respectively.            

 

Construction of a Gibbs Free Energy Diagram Combining the above ΔG and ΔH values as 

well as values obtained from the Arrhenius plot describing kcat allows construction of a Gibbs free 
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energy diagram at 25oC.  The resulting plot is shown in figure 8B.  Formation of the binary and 

ternary complexes is clearly enthalpy driven, while formation of the transition state contains a 

large entropic contribution. Jencks has suggested large entropic components can be associated 

with enzyme catalysis, particularly those describing bisubstrate reactions (54, 55).  However, 

previous studies have found wide distributions of enthalpy and entropy terms can be associated 

with kcat.  As examples of bisubstrate reactions: 1) for peptide bond formation in the ribosome, 

ΔG‡ = 16.5 kcal/mol, ΔH‡ = 17.2 kcal/mol and TΔS‡ = 0.7 kcal/mol (56); 2) for truncated ATP 

sulfurylase from Penicillium chrysogenum, a ΔG‡ value of 17.4 kcal/mol was calculated as well 

as a ΔH‡ value of 16.3 kcal/mol with a TΔS‡ value of -1.1 kcal/mol (at 30oC and where the rate 

determining step describes catalysis of the ternary substrate complex to the ternary product 

complex coupled with Mg-pyrophosphate release) (57); 3) for thymidylate synthetase, a ΔG‡ 

value of 10.6 kcal/mol describing the hydride transfer rate was determined with a ΔH‡ of 3.4 and 

a corresponding TΔS‡ of -7.2 kcal/mol (58); and 4) for the catalytic antibody 29G12 catalyzing a 

1,3-dipolar cycloaddition reaction, a ΔG‡ value of 17.7 kcal/mol with a ΔH‡ of 7.1 and a TΔS‡ of  

-10.6 kcal/mol were observed (59). 

 

As noted above, our Arrhenius data describing R67 DHFR catalysis indicate that ΔG‡ is 

dominated by the entropy term.  Typically, positive ΔS‡ values are associated with reorganization 

of solvent (60-62) while studies with ordered water molecules in active sites suggest entropic 

values can be negative, but coupled with an approximately equal ΔH contribution ((63, 64) and 

references therein).  Negative ΔS‡ terms typically describe loss of translational and rotational 

motion in the transition state (65).  Since crystal structure and NMR data indicate minimal motion 
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of R67 DHFR upon ligand binding (3, 66), changes in ligand orientation are more likely to 

describe the large, negative entropic term in R67 DHFR.   Additionally when substrates form 

more charged transition states (as is likely in DHFR with DHF protonated at N5), ΔS‡ is usually 

negative. Thus many factors could be involved in this large, negative ΔS‡ term. 

 

Typical hydride transfer reactions have enthalpies of activation near 8-15 kcal/mol (67).  

However activation energies of 11.9, 5.5 and 3.7 kcal/mol have been calculated for chromosomal 

DHFRs from Thermotoga maritima (68), Bacillus stearothermophilus (69) and E. coli (70).  The 

E. coli chromosomal DHFR value was obtained at pH 9.0 where hydride transfer rate is rate 

determining (71).  At pH 9, ΔG‡
25, ΔH‡

25 and TΔS‡
25 values are 16.0, 3.1, and -12.9 kcal/mol 

respectively.  These values are near those observed for R67 DHFR, indicating the same general 

range for these reactions.  This convergence could either indicate similar chemistry or 

alternatively, coincidence as chromosomal and R67 DHFRs have entirely different structures, 

active sites and transition states (4, 6, 22, 23).   

  

Finally, use of DHP as an alternate substrate leads to only 10 fold weaker binding with respect to 

DHF.  However since the glutamic acid moiety of the pABA-glu tail appears to provide most of 

the enthalpic signal associated with DHF binding (43), substitution of glutamate by a carboxylate 

group weakens the enthalpic contribution.  Thus a ΔΔH value of ~6.5 kcal/mol can be calculated 

when ITC values or the slopes in the Arrhenius plots describing 1/Km for DHF vs. DHP binding 

are compared.  This value appears to correlate with the decrease in kcat, where a ΔΔH of 7.6 

kcal/mol is observed (compared to DHF reduction), strongly implicating the pABA-glu tail in 

correctly docking DHF in the active site pore pursuant to catalysis.  A comparison of the ΔΔG 

values shows a smaller difference (4.4 kcal/mol), indicating partial entropic compensation of the 
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effects that alter ΔΔH.  These results all suggest increases in the range of motion associated with 

bound DHP could interfere with catalysis.  

 

Does Protonation Play a Role?  Another possible interpretation of the thermodynamic values for 

R67 DHFR arises if protonation and hydride transfer are concerted events.  To address this issue, 

the question of how DHF is protonated in the R67 DHFR active site needs consideration first.  In 

one scenario, the predominant species, neutral DHF would bind and then be protonated.  

Alternatively, R67 DHFR could preferentially bind protonated DHF (HDHF).  However, this 

species is at an extremely low concentration at pH 7.  Since the N5 pKa = 2.60 (extrapolated to 

25oC), the ratio of DHF to HDHF can be calculated as 2.5 x 104 at pH 7.  If protonated DHF is the 

actual substrate, then the observed Km is an apparent value.  A Km of 96 pM for protonated DHF 

can be calculated by dividing the apparent Km by the HDHF concentration (72).  If productive 

binding of substrate in R67 DHFR indeed utilizes the protonated species, the observed DHF Km 

would be expected to decrease as the concentration of HDHF increases (i.e. decreasing pH).  

However in our H62C mutant, the reverse is observed as the Km (DHF) rises going from pH 7 to 5 

(13).  While other ionizations could be occurring that affect Km, the simplest interpretation 

suggests this mutant binds neutral DHF, followed by protonation.   

 

To estimate whether the thermodynamic values associated with protonation of DHF at N5 are at 

all near the catalytic thermodynamic parameters, a plot of inverse temperature vs. ln Ka of the 

ionization constant was constructed (73).  While this plot only contains 3 data points (figure 5), it 

allows estimation of ΔH value for N5 protonation of 6.5 ± 1.0 kcal/mol.   

 

While the local environment could alter the thermodynamic values associated with protonation of 

free versus enzyme bound DHF (73, 74), a comparison of the DHF protonation values with the 
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values associated with kcat suggests the enthalpy change associated with substrate protonation 

could play a role in transition state formation if protonation and hydride transfer are concerted 

events.  However the entropic term for DHF protonation is positive, so this term would fight 

against the observed negative value observed during catalysis, leaving the question of whether 

protonation and hydride transfer are concerted unresolved.  Solvent isotope effects could allow 

further analysis of this possibility. 

 

Conclusion  
 
 
 In our present studies as well as our ITC binding studies (5), R67 DHFR uses enthalpic 

interactions to form its NADPH•DHF complex.  However, because R67 DHFR uses a “one site 

fits both approach” whereby both ligands are accommodated by a generalized binding surface, 

this binding is not optimal (12, 21).  Thus it seems likely that some adjustment of the complex 

position and/or orientation is necessary to reach the transition state, which could be reflected by 

the TΔS‡ value of –11.3 kcal/mol.  In general, both the 222 symmetry and large active site 

exposed to solvent support non-optimal binding or a loose ground state.  In addition, previous 

steady state studies in the presence of increasing salt concentrations found that kcat increased (75).  

This surprising observation suggested that a salt sensitive interaction needed to be broken to reach 

the transition state, again consistent with a large entropic contribution associated with transition 

state formation.   
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Protocol For Reduction Of Pteroic Acid To Dihydropteroic Acid (DHP) 

Pteroic acid was purchased from Schircks and reduced to 7,8-dihydropteroic acid (DHP) 

according to Prabhu et al. (31). About 8 mg of pteroic acid was first dissolved in 5 ml of 0.1N 

NaOH. Reduction was then carried out by addition of 300 mg of sodium hydrosulfite (in the 

presence of 5mM β-mercaptoethanol (~20ml). The solution was stirred and incubated at room 

temperature for 30 minutes. The resulting precipitate was dirty white in color (in contrast to the 

bright yellow color of pteroic acid). The precipitate was separated by centrifugation and washed 2 

to 3 times with 0.005N HCl to remove any traces of reducing agents. The reduction step can be 

repeated 2 more times to reduce any remaining pteroic acid in the supernatant. The 100μl aliquots 

of the precipitate were taken and stored at –80oC. 

 

The formation of DHP was confirmed by obtaining a 1H NMR spectrum of DHP in DMSO. 

Comparison with the 1H NMR spectrum of pteroic acid in DMSO also indicated that the 7,8 

positions of pteroic acid were indeed reduced to obtain dihydropteroic acid (DHP). Very little 

amount of pteroic acid was also detected as an impurity in DHP. However, integration of the 

peaks indicated the purity of DHB to be greater than 90%. 

 

The extinction coefficient of DHP was 22000 M-1cm-1 at 278 nm (76). Also, the molar extinction 

coefficient used to assess reduction of DHP was monitored and found to be the same as for DHF 

reduction, which is 12 300 L M-1 cm-1 (32). 

 

Additionally, the absorbance spectrum of DHP in 0.1N NaOH at room temperature remained 

unchanged for 4 to 5 hours. This indicates that DHP is reasonably stable for at least 5 hours. 
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Figure 9: Structure of Dihydropteroic acid (DHP) and its 1H NMR spectrum obtained in 

DMSO. A) Structure of dihydropteroic acid with chemical shifts for different functional groups.  

B) 1H NMR spectrum of DHP obtained in DMSO. 
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Protocol for pKa Determination of DHF/ DHP (based on method by Maharaj et al.) (34) 

1. Prepare 0.2M sodium phosphate buffer. Aliquot about 10 to 15 mls in different tubes and 

adjust to different pH values ranging from pH 2.0 to 5.0. 

2. Combine DHF pellets from about 2 appendorf tubes and wash 3 times with cold 0.001N 

HCl to remove any traces of β-mercaptoethanol. 

3. Resuspend the washed DHF pellet in 20mM Tris-EDTA buffer (pH 8.0). Add a small 

amount of dilute NaOH to dissolve the DHF, till the solution appears clear. Store the 

DHF solution on ice to minimize the degradation of DHF. 

4. Determine the concentration of the stock DHF solution (extinction coefficient of DHF at 

228 nm = 28,000 M-1cm-1) (77). From this calculate the volume of DHF required to 

obtain 3ml of a 30μM solution.  

5. For pKa measurements the absorbance of 30μM DHF is measured (at 228 nm) at different 

pH values: 

• Absorbance readings in the pH range of 1.0 to 2.0 are carried out in 0.25N HCl, 

while absorbance measurements at pH values above 2.0 are performed in sodium 

phosphate buffer.  

• For measurements in HCl, determine the amount of water and 0.25N HCl to add 

to reach the desired pH. Zero the spec using water as a blank. To 1.5ml of water, 

add the appropriate amount of DHF and mix. Then add the appropriate volume of 

0.25N HCl to obtain a final volume of 3.0 and the desired pH. Immediately take 

3 readings of the absorbance. Then measure the pH of the solution. The pH meter 

should be calibrated in the particular pH range and the temperature at which the 

experiment is being performed. 

• For measurements in sodium phosphate buffer, first zero the spectrophotometer 

using 1.5ml of H2O and 1.5ml of sodium phosphate buffer. For DHF absorbance 
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measurements, add 1.5 ml H2O to the cuvette followed by DHF to get a 

concentration of 30μM and mix. Then add 1.5ml of sodium phosphate buffer (at 

a particular pH) and mix. Transfer the DHF + water + sodium phosphate mixture 

in a 15ml falcon tube and place it in a water bath at the desired temperature. Then 

measure the pH of the solution. 

 

6. Use Sigma plot to determine the pKa of DHF (from the plot of absorbance versus pH) to 

determine the pKa of the N5 position of DHF.  

 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 85

References 
 
 
1. Agarwal, P. K., Billeter, S. R., Rajagopalan, P. T., Benkovic, S. J., and Hammes-Schiffer, 

S. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 2794-9. 
2. Fierke, C. A., Kuchta, R. D., Johnson, K. A., and Benkovic, S. J. (1987) Cold Spring 

Harbor Symp. Quant. Biol. 52, 631-638. 
3. Narayana, N., Matthews, D. A., Howell, E. E., and Nguyen-huu, X. (1995) Nat. Struct. 

Biol. 2, 1018-1025. 
4. Howell, E. E. (2005) ChemBioChem 6, 590-600. 
5. Bradrick, T. D., Beechem, J. M., and Howell, E. E. (1996) Biochemistry 35, 11414-24. 
6. Li, D., Levy, L. A., Gabel, S. A., Lebetkin, M. S., DeRose, E. F., Wall, M. J., Howell, E. 

E., and London, R. E. (2001) Biochemistry 40, 4242-52. 
7. Smiley, R. D., Stinnett, L. G., Saxton, A. M., and Howell, E. E. (2002) Biochemistry 41, 

15664-75. 
8. Strader, M. B., Chopra, S., Jackson, M., Smiley, R. D., Stinnett, L., Wu, J., and Howell, 

E. E. (2004) Biochemistry 43, 7403-12. 
9. Calderone, C. T., and Williams, D. H. (2001) J. Am. Chem. Soc. 123, 6262-7. 
10. Williams, D. H., Stephens, E., and Zhou, M. (2003) Chem. Commun. (Camb.), 1973-6. 
11. Williams, D. H., Stephens, E., and Zhou, M. (2003) J. Mol. Biol. 329, 389-99. 
12. Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. 

(2001) Biochemistry 40, 11344-52. 
13. Park, H., Zhuang, P., Nichols, R., and Howell, E. E. (1997) J. Biol. Chem. 272, 2252-8. 
14. Marijuan, P. C. (1996) BioSystems 38, 163-71. 
15. Blundell, T. L., and Srinivasan, N. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14243-8. 
16. Goodsell, D. S., and Olson, A. J. (2000) Annu. Rev. Biophys. Biomol. Struct. 29, 105-53. 
17. Kitov, P. I., and Bundle, D. R. (2003) J. Am. Chem. Soc. 125, 16271-84. 
18. Kortt, A. A., Dolezal, O., Power, B. E., and Hudson, P. J. (2001) Biomol. Eng. 18, 95-

108. 
19. Hicks, S. N., Smiley, R. D., Stinnett, L. G., Minor, K. H., and Howell, E. E. (2004) J. 

Biol. Chem. 279, 46995-7002. 
20. Stinnett, L. G., Smiley, R. D., Hicks, S. N., and Howell, E. E. (2004) J. Biol. Chem. 279, 

47003-9. 
21. Howell, E. E., Shukla, U., Hicks, S. N., Smiley, R. D., Kuhn, L. A., and Zavodszky, M. I. 

(2001) J. Comput. Aided Mol. Des. 15, 1035-52. 
22. Andres, J., Moliner, V., Safont, B. S., Domingo, L. R., Picher, M. T., and Krechl, J. 

(1996) Bioorganic Chem. 24, 10-18. 
23. Castillo, R., Andres, J., and Moliner, V. (1999) J. Am. Chem. Soc. 121, 12140-12147. 
24. Reece, L. J., Nichols, R., Ogden, R. C., and Howell, E. E. (1991) Biochemistry 30, 

10895-904. 
25. Gornall, A. G., Bardawill, C. J., and David, M. M. (1949) J. Biol. Chem. 177, 751-766. 
26. Zhuang, P., Yin, M., Holland, J. C., Peterson, C. B., and Howell, E. E. (1993) J. Biol. 

Chem. 268, 22672-9. 
27. Ellis, K. J., and Morrison, J. F. (1982) Methods Enzymol. 87, 405-26. 
28. Dunn, S. M., Lanigan, T. M., and Howell, E. E. (1990) Biochemistry 29, 8569-76. 
29. Howell, E. E., Warren, M. S., Booth, C. L., Villafranca, J. E., and Kraut, J. (1987) 

Biochemistry 26, 8591-8. 
30. Smiley, R. D., Saxton, A. M., Jackson, M. J., Hicks, S. N., Stinnett, L. G., and Howell, E. 

E. (2004) Anal. Biochem. 334, 204-6. 



 86

31. Prabhu, V., Lui, H., and King, J. (1997) Phytochemistry 45, 23-27. 
32. Baccanari, D., Phillips, A., Smith, S., Sinski, D., and Burchall, J. (1975) Biochemistry 14, 

5267-73. 
33. Segel, I. H. (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and 

Steady-State Enzyme Systems, John Wiley and Sons, New York. 
34. Maharaj, G., Selinsky, B. S., Appleman, J. R., Perlman, M., London, R. E., and Blakley, 

R. L. (1990) Biochemistry 29, 4554-60. 
35. Fersht, A. (1985) Enyzme Structure and Mechanism, W.H. Freeman and Company, New 

York. 
36. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N. (1989) Anal. Biochem. 179, 

131-137. 
37. Laidler, K. J., and Peterman, B. F. (1979) Methods Enzymol. 63, 234-57. 
38. Wolfenden, R. (1999) Bioorg. Med. Chem. 7, 647-52. 
39. Bienvenue, D. L., Mathew, R. S., Ringe, D., and Holz, R. C. (2002) J. Biol. Inorg. Chem. 

7, 129-35. 
40. Perrin, D., Dempsey, B., and Serjeant, E. (1981) pKa Prediction for Organic Acids and 

Bases, Chapman and Hall, London. 
41. Snider, M. J., Gaunitz, S., Ridgway, C., Short, S. A., and Wolfenden, R. (2000) 

Biochemistry 39, 9746-53. 
42. Sampson, N. S., and Knowles, J. R. (1992) Biochemistry 31, 8488-94. 
43. Jackson, M., Chopra, S., Smiley, R. D., Maynord, P. O., Rosowsky, A., London, R. E., 

Levy, L., Kalman, T. I., and Howell, E. E. (2005) Biochemistry 44, 12420-33. 
44. Jelesarov, I., and Bosshard, H. R. (1994) Biochemistry 33, 13321-8. 
45. Alonso, H., Gillies, M. B., Cummins, P. L., Bliznyuk, A. A., and Gready, J. E. (2005) J. 

Comput. Aided Mol. Des. 19, 165-87. 
46. Roca, M., Marti, S., Andres, J., Moliner, V., Tunon, I., Bertran, J., and Williams, I. H. 

(2003) J. Am. Chem. Soc. 125, 7726-37. 
47. Umezurike, G. M. (1987) Biochem. J. 241, 455-62. 
48. Bagnol, L., Horner, J. H., and Newcomb, M. (2003) Org. Lett. 5, 5055-8. 
49. Dougherty, R. C., and Howard, L. N. (2003) Biophys. Chem. 105, 269-78. 
50. Harder, S., Feil, F., and Repo, T. (2002) Chemistry 8, 1991-9. 
51. Chong, L. T., Dempster, S. E., Hendsch, Z. S., Lee, L. P., and Tidor, B. (1998) Protein 

Sci. 7, 206-10. 
52. Bhat, T. N., Bentley, G. A., Boulot, G., Greene, M. I., Tello, D., Dall'Acqua, W., 

Souchon, H., Schwarz, F. P., Mariuzza, R. A., and Poljak, R. J. (1994) Proc. Natl. Acad. 
Sci. U. S. A. 91, 1089-93. 

53. Dzingeleski, G. D., and Wolfenden, R. (1993) Biochemistry 32, 9143-7. 
54. Page, M. I., and Jencks, W. P. (1971) Proc. Natl. Acad. Sci. U. S. A. 68, 1678-83. 
55. Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219-410. 
56. Sievers, A., Beringer, M., Rodnina, M. V., and Wolfenden, R. (2004) Proc. Natl. Acad. 

Sci. U. S. A. 101, 7897-901. 
57. Hanna, E., Ng, K. F., MacRae, I. J., Bley, C. J., Fisher, A. J., and Segel, I. H. (2004) J. 

Biol. Chem. 279, 4415-24. 
58. Agrawal, N., Hong, B., Mihai, C., and Kohen, A. (2004) Biochemistry 43, 1998-2006. 
59. Toker, J. D., Tremblay, M. R., Yli-Kauhaluoma, J., Wentworth, A. D., Zhou, B., 

Wentworth, P., Jr., and Janda, K. D. (2005) J. Org. Chem. 70, 7810-5. 
60. Houck, W. J., and Pollack, R. M. (2003) J. Am. Chem. Soc. 125, 10206-12. 
61. Jen-Jacobson, L., Engler, L. E., and Jacobson, L. A. (2000) Structure Fold. Des. 8, 1015-

23. 
62. Jelesarov, I., and Bosshard, H. R. (1999) J. Mol. Recognit. 12, 3-18. 



 87

63. Phillips, R. S. (2002) J. Mole. Catalysis B: Enzymatic 19-20, 103-107. 
64. Holdgate, G. A., Tunnicliffe, A., Ward, W. H., Weston, S. A., Rosenbrock, G., Barth, P. 

T., Taylor, I. W., Pauptit, R. A., and Timms, D. (1997) Biochemistry 36, 9663-73. 
65. Anslyn, E. V., and Dougherty, D. A. (2006) Modern Physical Organic Chemistry, 

University Science Books, Sausalito, CA. 
66. Pitcher, W. H., 3rd, DeRose, E. F., Mueller, G. A., Howell, E. E., and London, R. E. 

(2003) Biochemistry 42, 11150-60. 
67. Kohen, A., and Klinman, J. P. (1998) Acc. Chem. Res. 31 397-404. 
68. Maglia, G., and Allemann, R. K. (2003) J. Am. Chem. Soc. 125, 13372-3. 
69. Kim, H. S., Damo, S. M., Lee, S. Y., Wemmer, D., and Klinman, J. P. (2005) 

Biochemistry 44, 11428-39. 
70. Sikorski, R. S., Wang, L., Markham, K. A., Rajagopalan, P. T., Benkovic, S. J., and 

Kohen, A. (2004) J. Am. Chem. Soc. 126, 4778-9. 
71. Fierke, C. A., Johnson, K. A., and Benkovic, S. J. (1987) Biochemistry 26, 4085-92. 
72. Schmitzer, A. R., Lepine, F., and Pelletier, J. N. (2004) Protein Eng. Des. Sel. 17, 809-

19. 
73. Bhattacharya, S., and Lecomte, J. T. (1997) Biophys. J. 73, 3241-56. 
74. Sarmini, K., and Kenndler, E. (1999) J. Biochem. Biophys. Methods 38, 123-37. 
75. Hicks, S. N., Smiley, R. D., Hamilton, J. B., and Howell, E. E. (2003) Biochemistry 42, 

10569-78. 
76. Shiota, T., Disraely, M. N., and McCann, M. P. (1964) J Biol Chem 239, 2259-66. 
77. Blakley, R. L. (1960) Nature 188, 231-232. 
 
 



 88

 

 

Part III: A Balancing Act: Net Uptake of Water During Dihydrofolate 

Binding And Net Release of Water Upon NADPH Binding in R67 

Dihydrofolate Reductase 
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Abstract 
 
 
R67 Dihydrofolate reductase (DHFR) catalyzes the NADPH dependent reduction of 

dihydrofolate (DHF) to tetrahydrofolate (THF). The enzyme is a homotetramer with 222 

symmetry and a single active site pore that is 24 Å long and 18 Å wide. The two ligands enter the 

pore from opposite ends. One molecule of DHF and NADPH bind to form a productive ternary 

complex. X-ray crystallography results find the cofactor NADPH binds to the active site in a 

fixed conformation and the pteridine ring of DHF adopts a fixed position, while the para-amino 

benzoyl-glutamate tail is disordered. In this study, the role of water in DHF and NADPH binding 

has been investigated by subjecting the protein to osmotic pressure. For this, varying 

concentrations of osmolytes were employed. The ligand binding properties of R67 DHFR were 

studied using steady state kinetics and isothermal titration calorimetry (ITC). An increase in 

osmotic pressure resulted in a decrease in the Kd for NADPH and an increase in the Kd and/or Km 

of DHF. Also the kcat of the reaction was unaffected. Quantifying the number of water molecules 

showed that there is a net release of 38 water molecules upon NADPH binding, while the net 

number of water molecules taken up by DHF binding varied. Thermodynamic characterization of 

ligand binding at different temperatures was also explored. A heat capacity change of –178 
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cal/moloK was estimated for formation of the enzyme•NADPH complex, while a heat capacity 

change of -199 cal/moloK was determined for the formation of the enzyme•NADP+•DHF 

complex. The involvement of water was also probed by in vivo experiments using resistance to 

the antibacterial drug trimethoprim, as a selection for R67 DHFR. Increasing concentrations of 

sorbitol in the media resulted in a decrease in the catalytic efficiency of mutant R67 DHFRs and 

decreased ability of the clone to grow in sorbitol containing media. These results are consistent 

with in vitro experiments, suggesting that water is involved in ligand binding in R67 DHFR. 

 
 
Introduction 
 
 
Dihydrofolate reductase (DHFR) reduces dihydrofolate to tetrahydrofolate using NADPH as a 

cofactor. The reaction product, tetrahydrofolate, is essential for the synthesis of thymidylate, 

purine nucleosides, methionine and other metabolic intermediates. R67 DHFR is a type II 

plasmid encoded enzyme that catalyses the same reaction. However, this enzyme is genetically 

and structurally different from chromosomal DHFR. Unlike the chromosomal enzyme, R67 is a 

homotetramer with a single active site pore (figure 1A). Therefore, a mutation in the gene results 

in 4 mutations in the pore. The chromosomally encoded enzyme is inhibited by low 

concentrations (1nm) of trimethoprim (TMP). However, R67 DHFR is not affected by TMP and 

remains fully active. Chromosomal DHFR is also strongly inhibited by methotrexate, while R67 

DHFR is only weakly inhibited (1, 2). Therefore, even though both enzymes catalyze the same 

reaction, their ligand binding and catalytic properties are significantly different. 

 

Narayana et al. have crystallized R67 DHFR and observe that the enzyme exhibits 222-symmetry 

(3). The electron density was fit to two asymmetrically bound molecules of folate, the first with 

Fol1 bound with its si face exposed towards the center of the pore. The other orientation has Fol2  
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Figure 1: Structure of tetrameric R67 DHFR (1VIE) A) Frontal view of the active site. The 

four monomers are represented in green, pink, ochre and violet. The dimer-dimer interface occurs 

on the top (green and violet) and bottom (pink and ochre) of the structure. B) Side view of the 

active site obtained by rotation of the top structure by 90o along the y-axis. The inside surface of 

the pore (obtained by slicing through the active site) is represented by a Connolly surface. The 

key residues K32 (orange), Q67 (blue), I68 (light yellow) and Y69 (green) are shown. Also 

shown are the two ligands in the ternary complex crystal structure (4): NADP+ (left)  and DHF 

(right). The positions of NADP+ and the pteridine ring of DHF are fixed (colored by the code of 

atoms, carbon in green, nitrogen in blue, oxygen in red, hydrogen in white and phosphorous in 

magenta). However, the position of the pABA-glutamate tail is disordered (one potential 

conformer represented in yellow). The dotted circle indicates the potential rotation of the pABA 

glutamate tail to form intermittent contacts with K32 residues on either side of the pore.   
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bound with its si face facing the protein surface. Fol1 describes a productive orientation as it 

agrees with the stereochemistry of the hydride transfer reaction.  

 

Using ITC, Bradrick et al. found that three types of complexes can be formed with R67 DHFR:  

either 2 NADPH molecules, or 2 DHF molecules, or one molecule of NADPH and DHF (5). The 

DHF•NADPH complex is the productive pair that binds to the enzyme with each ligand 

occupying one half of the pore (6) (figure 1B). The reactants meet at the middle of the pore where 

the reaction occurs.  

 

The volume of the active site pore has been determined to be 2398 Å3 using CASTp (7, 8). Also, 

a recent crystal structure of R67 DHFR shows that water molecules in the pore are well ordered 

and form a network of hydrogen bonds with an array of fixed pentagonal rings (9). This suggests 

that water may play an important role in ligand binding to R67 DHFR.  

 

Binding of ligands (DHF and NADPH) to R67 DHFR has been studied by various techniques. 

For DHF binding, crystal structures have been solved using R67 DHFR•2folate (binary) complex 

(3) and DHFR •NADP+•DHF (ternary) complex (4). In both structures, electron density was 

observed for the pteridine ring. However, no electron density was observed for the pABA-

glutamate tail, consistent with disorder. Studies were also performed by Li et al. using transferred 

NOE (Nuclear Overhauser Effect) experiments with bound NADP+ and folate (10). Positive 

NOEs of the pABA-glutamate tail for both the binary and ternary complexes also indicated tail 

disorder. Additionally, docking of DHF or folate (an analog of DHF) resulted in a series of 

structures with varying tail positions (6). Results from docking as well as x-ray crystallography 

studies show that the glutamate tail of DHF interacts with symmetry related K32 residues present 

at the edge of the pore (3, 4, 9). 
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To determine how NADPH binds to R67 DHFR, NOE studies were carried out by Britto et al. 

and they demonstrated that the cofactor binds in an extended conformation (11). Also, the 

ribonicotinamide bond of cofactor adopts a syn conformation, while the glycosidic bond of the 

adenosine moiety adopts an anti conformation. Interligand NOE (ILOE) experiments with bound 

NADP+ and folate showed that both ligands bind in an extended conformation in the active site 

pore (12). In addition, stacking between the pteridine (of folate) and nicotinamide (of NADP+) 

rings is observed. These interligand interactions appear to play a crucial role in facilitating the 

formation of the ternary complex. Also, NMR and docking results predict that R67 uses an endo 

transition state complex in its catalytic mechanism. Therefore, in this enzyme, interligand 

cooperativity is likely important in transition state formation.  

 

Also, from the R67 DHFR•DHF•NADP+ structure (4), the N3 and O4 atoms of DHF form 

hydrogen bonds with  the backbone atoms of I68. Also, hydrogen bonds are formed between the 

carboxamide group of NADPH and the backbone NH and O atoms of a symmetry related I68 

residue.  

 

The simplest approach to determine whether or not water contributes significantly to the 

energetics of a reaction is to vary the concentration or activity of water and measure how that 

influences the reaction. This approach is known as osmotic stress. The basic idea behind these 

experiments is to control water activity by addition of neutral solutes (osmolytes), which 

themselves do not interact with the protein of interest. Addition of osmolytes causes an increase 

in osmotic pressure, which eventually leads to dehydration and the squeezing out of water 

molecules from the active site (13). This approach has been used for a number of enzymes. For 

example, hexokinase was found to release about 60 water molecules upon binding to glucose 

(14). Also, cytochrome oxidase undergoes a hydration/ dehydration cycle involving 10 water 
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molecules as the protein is reduced and then transfers an electron internally (15). Preliminary 

studies with R67 DHFR demonstrated that addition of an osmolyte such as sucrose weakens the 

binding of DHF, suggesting that water is important in stabilizing the interaction of DHF with the 

enzyme (16). In the present study we have investigated the role of water in ligand binding to R67 

DHFR using osmolytes. 

 
 
Materials and Methods 
 
 
Protein purification Escherichia coli SK383 cells containing the plasmid encoding R67 DHFR 

were grown in Terrific broth (TB) (17) at 37oC in the presence of 200ug/ml ampicillin (AMP) and 

20ug/ml trimethoprim (TMP). The cells were grown until the late stationary phase, after which 

the cells were lysed. Purification was achieved by a series of steps including ammonium sulfate 

precipitation, molecular sieving (using G-75 sephadex column), and anion exchange 

chromatography (using DEAE Fractogel, Hi-Q and mono-Q chromatography columns). The 

purity of the samples was checked using SDS-PAGE analysis and activity assays. The pure 

protein was extensively dialyzed against deionized water and stored by lyophillization at –80oC. 

Finally, the Biuret assay was used to determine protein concentration (18). 

 
Viscosity measurements A Cannon-Fenske viscometer equilibrated at 30oC in a Precision Temp-

Trol mineral oil bath was used to determine the kinematic viscosity (η/ρ in mm2/s). The viscosity 

(η) was then calculated by multiplying the kinematic viscosity by the density of the solution (ρ in 

g/ml). The relative viscosity was obtained from the ratio of viscosity of the sample with that of 

MTA buffer (control).   

 

Dielectric constant The dielectric constant (D) was calculated based on the equation, 

 D= Do + C (δ)                                                                                                                             (1) 
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where, Do is the dielectric constant of water, C is the molarity of the osmolyte and δ is the 

dielectric increment. The values of the dielectric increments were obtained from (19). 

 

Steady state kinetics Steady state kinetic data were obtained using a Perkin-Elmer λ35 

spectrophotometer interfaced with an IBM PC as described before (20). Kinetic assays were 

performed in MTA polybuffer (containing 50mM 100mM MES, Tris, 50 mM acetic acid and 

10mM β-mercaptoethanol) at pH7.0, 30oC. The advantage of using this buffer is that it maintains 

a constant ionic strength from pH 4.5 to 9.5 (21). Kinetic parameters such as Km (DHF), Km (NADPH)  

and kcat were determined by varying the concentration of one ligand, while maintaining the 

concentration of the other ligand constant. This was performed at five different sub saturating 

ligand concentrations. Extinction coefficients of  7750 M-1cm-1 at 340nm for DHF (22), 

6220 M-1cm-1 at 340nm for NADPH (23) and 12,300 M-1cm-1 at 340nm for the reaction were used 

(24). Statistical analysis software (SAS) was then employed to fit the data using the non-linear 

bisusbtrate Michelis Menten equation (25, 26), (see  

http://animalscience.ag.utk.edu/faculty/saxton/software.htm). 

 

pH dependence of tetramer to dimer equilibrium in presence of osmolytes The equlibrium 

between the tetramer (T) and two protonated dimers (2DHn) of R67 DHFR can be represented by 

the following equation: 

 

T + 2nH+                                     2 DHn                                                                                                (2) 

where Koverall equals Ka
2n / Kd.  This model comes from Nichols et al. (27), where dissociation of 

the tetramer into two dimers was found to be linked to the protonation of symmetry related H62 

residues located at the dimer-dimer interfaces. 

Koverall 
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Since W38 also occurs at these interfaces, tryptophan fluorescence can be used to monitor this 

equilibrium.  In order to probe the pH dependence equilibrium between the tetramer and the 2 

protonated dimers in the absence and presence of osmolytes (cosolutes), tryptophan fluorescence 

was monitored using a Perkin Elmer LS-50B luminescence spectrometer. Wild type R67 DHFR 

(1.3 μM) in MTH buffer pH 8.0 and/or buffer containing osmolytes was titrated with 2N HCl 

(containing osmolytes) and the pH of the sample was measured. The emission spectra for 

tryptophan fluorescence (excitation at 295 nm) were also recorded from 300 to 450 nm for each 

pH titration. The intensity averaged emission wavelength (λ) was then calculated using the 

equation: 

λ = Σ(Ii λi )/ Σ(Ii)                                                                                                                 (3) 
 
where I is the intensity and λ is the wavelength (28). 
   
The data obtained were fit to the following equation, which describes the linkage between the 

tetramer and the two protonated dimers (27): 

Fluobs = {(Fludi – Flutet)[[H]2n/(4Koverall Ptot)][-1 + (1+8Koverall Ptot /[H]2n)1/2]} + Fludi       (4) 

where Fluobs is the observed fluorescence; Fludi and Flutet are the calculated limits for dimer and 

tetramer fluorescence at low and high pH, respectively; Ptot is the total protein concentration in 

terms of dimer (29) and Koverall = ([tetramer][H]2n)/([dimer]H2n
2) in units of M, M2 or M3 for n = 

1, 1.5 or 2, respectively. Sigma Plot was used to fit the data for 2n=3. 

For comparison of the pH profiles in different osmolytes, the data were normalized by fitting to 

the equation: 

Fapp = (Yobs – YpH8)/(Y pH5 – YpH8)                                                                                         (5) 

where Fapp is the fractional value between 0 and 1 and Yobs, YpH8, and YpH5 are the optical values 

associated with the observed pH and the pH limits of 8 and 5 respectively. 
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Osmotic pressure measurements The osmotic pressure exerted by various cosolutes was 

measured using a Wescor vapor pressure osmometer. The osmolality obtained was then converted 

to water activity using the equation: 

ln aH2O = - Os·                                                                                                                      (6) 

where aH2O is the water activity (30), Os is the osmolality in osmol kg-1 and  is the molal volume 

of water (55.56 M). 

 

Analysis of ligand binding in the presence of osmolytes The binding of DHF to the 

NADPH•R67 DHFR complex in the presence of cosolutes/ osmolytes can be represented as: 

DHF + NADPH• R67 DHFR                    DHF• NADPH•R67 DHFR + νH2O H2O + νs S    (7) 

where νH2O  and νs  are the stoichiometric coefficients of water and the cosolute respectively. 

This can also be described using the Wyman linkage equation (31) 

 

 ∂ ln Ka               ∂ ln as  

    = νH2O + νS                                                                                        (8) 

 ∂ ln aH2O      ∂ ln aH2O 

 

where Ka is the association constant for DHF binding and as is the activity of the cosolute.   

 

Isothermal Titration calorimetry (ITC) ITC experiments were performed to determine the 

binding affinity (Ka), stoichiometry (n) and enthalpy of binding (ΔH) for the formation of 

enzyme•2NADPH and enzyme•NADP+•DHF complexes. A Microcal VP isothermal titration 

calorimeter was employed connected to a Gateway PC (32). Protein concentrations in the range 

of 60-150μM were used and titrations were carried out in MTA buffer (or MTA buffer containing 

osmolyte) at pH 7.0 at 30oC. Data were collected using VPITC software and were analyzed using 
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the Origin 5.0 software. For tirations involving osmolytes, buffer containing osmolyte was used 

in the reference cell. A c-value (=[Ptotal]/Kd) of 3 to 127 was observed for all binding experiments, 

which is within the suggested range of 1 to 1000 (32). 

 

Heat capacity experiments were also performed using isothermal titration calorimetry. The 

enthalpy change was determined at different temperatures (T) ranging from 278-303oK. The 

relationship between heat capacity change (ΔCp) and enthalpy change (ΔH) can be described as: 

 

∂ ΔH 
              ΔCp      =                                                                           (11) 
                             ∂ T 

 

Determination of total, polar and non-polar surface areas Solvent accessible surface areas 

were calculated using the access surf command in the NMR refine module in InsightII (Accelrys). 

A probe radius of 1.4 ± 0.1 Å for a water molecule was used to access the change in solvent 

accessible areas for the following structures: Apo R67 DHFR (4) and binary NADP+•R67 DHFR 

complex (which was obtained by removal of DHF from the ternary complex of DHF• 

NADP+•R67 DHFR (4)). The change in solvent accessible surface area (ΔASA) for the formation 

of each complex was calculated using the relationship:  

ΔASA = ASAE●NADP+ - (ASAE + ASANADP+)                            (12) 

A correlation between heat capacity and the solvent exposure of non-polar and polar areas of the 

protein has been determined by various groups (33-35). Using protein folding or ligand binding 

events, a general relationship is as follows: 

ΔCp = Capolar ΔASAapolar + Cpolar ΔASApolar                                                                                    (13) 

where Capolar  and Cpolar  are the coefficients for the apolar and polar contributions respectively.  
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Propagation of errors was calculated using the method described in the following link: 

www.colby.edu/chemistry/PChem/scripts/error.html. 

 
Escherichia coli growth in the presence of sorbitol The E.coli DH5α strain was first 

transformed with a pUC8 plasmid containing the R67 DHFR gene. The cells containing wild type 

and/ or mutant R67 DHFR genes were then tested for their ability to show TMP resistance by 

growing on M9 minimal media (36) containing 0.02% casamino acids and 20μg TMP/ml.  

Further screening was done by adding increasing concentrations of sorbitol to the media. The 

water activity of the plates containing sorbitol was measured using an Aqualab meter (Decagon 

devices).  

 

Results 

 
Effect of osmolytes on the oligomeric structure of R67 DHFR In order to study the role of 

water in ligand binding to R67 DHFR, varying concentrations of different osmolytes were 

employed. Also, the catalytic activity of R67 DHFR depends on the tetrameric nature of the 

enzyme (37). Therefore, prior to performing ligand-binding studies in the presence of osmolytes, 

we tested if addition of osmolytes had any effect on the tetramer-dimer equilibrium of R67 

DHFR. Hence, pH titration experiments were performed in the presence of different osmolytes.  

At low pH, the histidine 62 residues of R67 DHFR get protonated and the tetramer dissociates 

into two protonated dimers, which is described by Koverall  (27), where 

               Koverall 
     T + 2nH+                                  2DHn                                                                                 (14) 

 and n is the number of protons (H). The W38 residues present at the dimer-dimer interface show 

changes in fluorescence during the titration from tetramer (hydrophobic) to dimer (solvent 

exposed environment). Therefore, to calculate the Koverall, the fluorescence emission spectrum of 
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R67 DHFR is measured at each pH during the titration. The experiment was performed in MTA 

buffer containing different osmolytes such as 10% ethylene glycol, 12.5% DMSO or 15% 

PEG400 and the Koverall compared to that observed in MTA buffer. It was observed that the 

titrations in the presence of each osmolyte overlapped (figure 2). This suggested that osmolyte 

addition did not perturb the tetramer structure of R67 DHFR. Koverall values varied 3 fold (table 1) 

also indicating osmolytes have minimal effects on the oligomeric state of R67 DHFR. 

 

Correlation between ligand binding and osmolyte properties The effect of various osmolytes on 

the binding and catalysis of R67 DHFR was measured using both steady state kinetics as well as 

isothermal titration calorimetry. Various osmolytes such as glycerol, ethylene glycol, 

trimethylamine N-oxide (TMAO), dimethylsulfoxide (DMSO), glycine betaine, and sucrose were 

employed, the structures of which are shown in figure 3. We observed that addition of osmolytes 

affected the Km and Kd values associated with DHF and/or NADPH binding, but had little (<1.5 fold) 

or no effect on the kcat of the reaction. This suggested that introduction of osmolytes affected ligand 

binding, but had not catalysis. 

 

The next step was to determine which property of the osmolyte was affecting binding of the ligand. 

Solutes used as osmolytes are chemically distinct and could affect proteins differently depending on 

their properties. For example, betaine and sucrose change the dielectric constant of the medium in 

different directions. Similarly, polyethylene glycols (PEG) are neutral, but can cause a volume 

exclusion effect depending on their size (38). The use of different osmolytes with R67 DHFR will 

allow us to determine if these properties affect DHF and/or NADPH binding. 
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Table 1: Koverall values for the T + 2nH+⇌ 2DHn equilibrium in the presence of osmolytes 

monitored by fluorescence. 

 

Osmolyte Koverall (=Ka
2n / Kd) for 2n = 3 in units of M2 

MTA buffer 1.42e-13 ± 4.54e-15 

10% Ethylene glycol 1.08e-13 ± 3.54e-15 

12.5% DMSO 8.99e-14 ± 2.78e-15 

20% PEG 400 2.78e-13 ± 6.34e-14 
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Figure 2: pH titration curves describing the tetramer-dimer equilibrium in the presence of 

osmolytes. Fluorescence spectroscopy was used to monitor the environment of W38 residues.  At 

pH 8, these residues are buried at the dimer-dimer interfaces.  As the pH is decreased, W38 

residues become exposed upon titration of nearby H62 residues.  Data are presented for MTH 

buffer ( ), buffer containing 10% ethylene glycol ( ), buffer containing 12.5% DMSO ( )  and 

buffer containing 20% PEG400 ( )  
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Figure 3: Structures of Sucrose, Sorbitol, Betaine, Glycerol, Ethylene glycol, Polyethylene 

glycol, Dimethyl sulfoxide and Trimethylamine oxide. 
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The relationship between ln Ka (for binding of first molecule of NADPH to R67 DHFR) and 

osmolality was first analyzed. Isothermal titration calorimetry (ITC) was performed in this 

determination. For this, NADPH was titrated into R67 DHFR at pH 7.0 and 30oC and the Ka of 

binding was determined after fitting the raw isotherm to a sequential sites model. The potential 

number of water molecules was then determined using the relationship:  

ln(Ka)/Os = Δnw/-V,                                                                                                                        (15) 

where Δnw  is the number of water molecules, V is the molal volume of water (0.018 M) and Os is the 

osmolality given in units of osmol Kg-1 

 

Overlapping data were obtained with a plot of ln (Ka1) versus osmolality. From this plot, the value 

of Δnw was determined to be –38 ± 6 consistent with binding of NADPH to R67 DHFR being 

accompanied by a release of water from the active site (figure 4A, table 2).   

 

Q-total (or total heat) plots were concurrently used to analyze the effect of osmolytes on NADPH 

binding. These plots show the total heat associated with the binding process. Q-total analyses 

were performed using sucrose, betaine, DMSO, PEG 400, glycerol and ethylene glycol. A 

representative plot in the presence of betaine is shown in figure 4B. From the plot, it is clear that 

increasing osmolyte concentrations shows tighter binding of NADPH.  Another observation from 

the figure is that as the osmolyte concentration increases, more heat is evolved during binding of 

NADPH to R67 DHFR (ΔH becomes more negative). Similar observations have been made 

during the interaction of ferredoxin with ferredoxin NADP+
 reductase in the presence of glycerol 

as an osmolyte (39). It was suggested that this may be due to ‘heat of dilution’, which is caused 

by mixing of osmolytes into water (an exothermic process) (40-42). Enthalpy-entropy 

compensation resulting from the involvement of water can also explain the changes in enthalpy 

(43).  A plot of Ka2 (binding of the second molecule of NADPH) and osmolality 



 106

Table 2: Data for effect of osmolality on the association constant (Ka1) for binding of the first 

molecule of NADPH. The data is plotted in figure 4A. 

Osmolyte Osmolality (Osm) Ka1 (M) * 10-4 

MTA buffer 0.22 10.5 ± 0.9 

MTA buffer 0.22 8.9± 0.5 

5%Betaine 0.86 18.8 ± 1.2 

5%Betaine 0.86 24.9 ± 0.9 

10%Betaine 1.45 34.0 ± 0.4 

10%Betaine 1.45 39.5 ± 1.6 

15%Betaine 1.86 135 ± 23 

20%Betaine 2.97 89.4 ± 9.6 

20%Betaine 2.97 60.1 ± 2.3 

5% DMSO 0.95 20.1 ± 1.2 

5% DMSO 0.95 16.9 ± 0.6 

5%DMSO 0.88 22.3 ± 0.5 

7.5% DMSO 1.18 21.3 ± 1.0 

7.5% DMSO 1.18 22.6 ± 1.0 

12.5% DMSO 1.92   25.3 ± 0.9 

12.5%DMSO 1.91 41.5 ± 3.1 

5% Ethylene glycol 0.87 17.9 ± 0.4 

5% Ethylene glycol 0.87 20.1 ± 0.7 

10% Ethylene glycol 1.73 23.5 ± 0.5 

10% Ethylene glycol 1.73 21.9 ± 0.4 

15%PEG400 0.95 28.1 ± 0.6 

25%PEG400 1.25 30.1 ± 1.2 
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Figure 4: Binding of NADPH to R67 DHFR in presence of osmolytes A) A plot of ln Ka1 

values vs. osmolality is shown, where Ka1 describes binding of the first NADPH molecule. The 

solutions used are: MTH buffer ( ), buffer containing glycine betaine ( ), DMSO ( ), ethylene 

glycol ( ) or PEG400 ( ). Ka increases as osmolality increases. Also, overlapping data points 

are observed, and can be fit with a single slope. Therefore, osmolality can be used as a parameter 

to describe the change in Ka values upon ligand binding. A value –38 ± 6 is obtained for Δnw 

using the relationship: d ln Ka / d [Osmolal] = - Δnw / 55.6. B) A plot of total heat (Qtotal) vs 

NADPH concentration in the presence of different concentrations of betaine. Data describing 

NADPH binding in MTH buffer ( ), 5% betaine ( ) and 20% betaine ( ) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Osmolality (Osm)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ln
 K

a 

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

A 

B 



 109

was also used to determine the net change in water molecules upon NADPH binding. A Δnw 

value of –20 ± 8 was obtained. However, there is a larger variation in the Ka2 as it shows weaker 

binding (data not shown). 

 

An analysis of the plot of Ka1 (NADPH) vs. viscosity showed that the data did not overlap indicating that 

viscosity was not the variable that affected DHF binding (figure 5A). Finally, a plot was constructed 

to see if there was any correlation between the dielectric constant and Ka (NADPH). It was observed that 

there was a wide-range of slopes using different osmolytes (figure 5B), which led us to conclude that 

the dielectric constant does not explain effects on NADPH binding. 

 

Therefore, osmolality was the property that was used to explain the observed change in Ka values 

upon ligand binding. For NADPH binding (in the 1st site), a net release of –38 ± 6 water molecules 

(between free NADPH and free R67 DHFR and the bound complex) was estimated 
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Figure 5: Relationship between catalytic efficiency (kcat/Km) and viscosity and dielectric 

constant A) Plot of ln(kcat/Km (DHF)) vs. viscosity.  Viscosity was calculated as described in the 

Materials and Methods section.  Data describe MTH buffer ( ), buffer containing glycine betaine 

( ), DMSO ( ), ethylene glycol ( ) or PEG400 ( ).  B) Plot of ln(kcat/Km (DHF)) vs. dielectric 

coefficient.  Dielectric coefficients were calculated as described in the Materials and Methods 

section.  Data points describe MTH buffer ( ), buffer containing sucrose ( ), glycine betaine 

( ) and PEG400 ( ). 
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Role of water in DHF binding The effects of viscosity and dielectric constant on DHF binding was 

also tested. The data obtained with different osmolytes did not overlap (as Osmotic pressure was also 

used to test binding of the substrate, DHF to enzyme•NADPH (by kinetics) or enzyme•NADP+ (by 

ITC). It was observed that as the osmolality increased, kcat/Km (DHF) also increased (table 3). 

However, variable slopes were observed with different osmolytes (figure 6). This resulted in 

different values for the net change in water upon DHF binding (Δnw). The Δnw determined using 

TMAO, glycerol and ethylene glycol ranged from around 16 to 25 (combined fit gave a slope of 17 ± 

2), whereas the Δnw estimated using sucrose, betaine and DMSO ranged from 40 to 60.  

Additionally, PEG 400, PEG 3350 and PEG 8000 showed Δnws of 78, 145 and 353 respectively as 

listed in table 4. The origin of variable slopes for DHF binding is not completely understood and can 

be due to different possibilities, which are considered in the discussion section. 
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Table 3: Data for the effect of osmolytes on the Km(DHF) and kcat for the binding of DHF to 

the R67 DHFR•NADPH complex.  A plot for this data is shown in figure 6. 

Osmolyte Concentration Osmolality (Osm) Km(μM) kcat (sec-1) 
     

MTH buffer 0% 0.22 4.3 ± 0.3 0.7 ± 0.01 
 0% 0.27 5.99 ± 0.2 0.8 ± 0.01 
     

Glycerol  7.5% 1.52 9.02 ± 0.3 0.8 ± 0.01 
 15% 2.53 11.4 ± 0.5 0.7 ± 0.01 
 20% 3.38 10.0 ± 0.8 0.6 ± 0.01 
     

Ethylene glycol 5% 1.00 7.18 ± 0.4 0.8 ± 0.01 
 10% 1.73 10.9 ± 0.9 0.8 ± 0.02 
     

TMAO 12.5% 1.80 11.3 ± 0.5 0.8 ± 0.01 
 15% 2.07 11.8 ± 0.8 0.8 ± 0.02 
     

DMSO  2.5% 0.55 5.17 ± 0.3 0.8 ± 0.01 
 5% 0.91 9.65 ± 0.6 0.7 ± 0.02 
 10% 1.63 13.5 ± 1.4 0.7 ± 0.02 
 12.5% 1.92 18.0 ± 1.0 0.8 ± 0.02 
     

Sucrose  0.25M 0.46 6.20 ± 0.5  0.6 ± 0.01 
 0.5M 0.78 6.09 ± 0.5 0.6 ± 0.01 
 0.75M 1.24 10.9 ± 0.7 0.6 ± 0.01 
 1M 1.73 12.0 ± 0.7 0.6 ± 0.01 
 1.5M 2.10 14.0 ± 1.1 0.6 ± 0.01 
 1.75M 2.06 15.4 ± 0.9 0.5 ± 0.01 
     

 Betaine 2.5% 0.37 7.55 ± 0.7 0.5 ± 0.01 
 5% 0.86 10.2± 0.5 0.5 ± 0.01 
 10% 1.43 15.3 ± 0.6 0.5 ± 0.01  
 15% 1.84 22.1 ± 1.3 0.4 ± 0.01 
     

PEG 400  10% 0.61 12.5 ± 1.2 0.7 ± 0.02 
 15% 0.85 15.0 ± 1.1 0.8 ± 0.02 
 20% 1.40 30.7 ± 2.5 0.7 ± 0.02 
 25% 1.63 26.5 ± 1.2 0.7 ± 0.01 
 30% 1.74 49.4 ± 3.9  0.6 ± 0.02 
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Figure 6: Relationship between ln kcat/Km(DHF) and osmolality. Steady state kinetic data were 

obtained at saturating concentrations of NADPH in the presence of different osmolytes. Using the 

Michaelis-Menten equation, kcat and Km values were extracted. Data for MTH buffer  ( ), 

glycerol ( ), ethylene glycol ( ), TMAO ( ), sucrose ( ), DMSO ( ), glycine betaine ( ) 

and PEG400 (   ) are shown. It is observed that as the osmolality increases, binding of DHF to the 

enzyme•NADPH complex is weakened. In contrast to NADPH binding with a single slope, 

variable slopes are obtained for DHF binding. The slopes of these plots were converted to Δnw 

using the relationship:  d ln kcat / Km (DHF) / d [Osmolal] = - Δnw / 55.6.  A plot of ln kcat / Km (DHF) 

vs. ln water activity can also be used to determine Δnw. These values are reported in Table 4.    
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Table 4:  Osmolyte properties and slopes (Δnw) associated with plots of ln aH2O vs. ln  

kcat/Km (DHF) as determined by steady state kinetics (as shown in figure 6).   

 

    Vmol is the molar volume of the osmolyte determined from literature:  a from (38); b  from (44); c     

     from (45); d from (46) and e from (47). 

 

 

 

Osmolyte MW 
(Daltons) 

Vmol 
(ml/mol) 

Δnw 
 

Ethylene Glycol 62 54.1 a 
 

25 ± 8 
 

Glycerol 92 71.6 a 
 

16 ± 3 
 

TMAO 111 73 b 
 

22 ± 1 

DMSO 78 71 c 
 

41 ± 7 

Sucrose 342 214.4 d 
 

40 ± 4 

Glycine betaine 118 75.2 a 
 

60 ± 13 

PEG400 400 343.6 a 
 

78 ± 11 

PEG3350 3350 2913 e 
 

145 ± 42 

PEG8000 8000 6760 a 
 

353 ± 38 
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Isothermal Titration calorimetry to determine Ka for binding of DHF to R67 DHFR•NADP+ 

Isothermal titration calorimetry studies were also performed to determine the ternary complex Ka 

describing binding of DHF to enzyme•NADP+ complex in the presence of different osmolytes. For 

this, DHF was titrated into a mixture of R67 DHFR and NADP+ at pH 7.0 and 30oC and the Ka of 

binding determined after fitting the raw isotherm to a single sites model (table 5). Using glycine 

betaine and sucrose, a value of 29 ± 3 was obtained, consistent with an uptake of 29 water molecules 

during DHF binding (figure 7A). A general observation is that the Kd values (determined from 1/Ka) 

are ~2 fold lower than the Km values in the presence of added osmolytes. This may be because Km 

can contain kinetic terms, while Kd represents a true binding constant. Good ITC fits could not be 

obtained for data at high osmolyte concentrations. This behavior is not completely understood 

and hence data for high concentrations of osmolytes are not presented. 

 

Q-total (or total heat) plots for DHF binding also confirm a weaker interaction in the presence of 

different osmolytes. Figure 7B represents a Q-total plot for DHF titration in R67 DHFR•NADP+ 

complex in the presence of different concentrations of betaine. Titration of folate into R67 DHFR 

(to form a binary complex with folate) in the presence of osmolytes was also performed. These 

data were analyzed by a Q-total plot (figure 7C) and showed a similar trend, wherein increasing 

osmolyte concentrations showed weakened binding of folate. Another observation from the Q-

total plots is that as the osmolyte concentration increases, the heat evolved during binding of DHF 

to R67 DHFR•NADP+ complex (or 2 folates binding to R67 DHFR) becomes less negative. 

Similar observations have been made during the interaction of HyHEL5 antibody with lysozyme 

in the presence of glycerol as an osmolyte (48). 

 

Overall, these data suggest that NADPH and DHF bind differently to the enzyme with NADPH 

releasing water molecules upon binding and DHF taking up water molecules. 
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Table 5: Data for the effect of osmolytes on the binding (Ka) of DHF. A plot for this data is 

shown in figure 7A. 

 

Osmolyte Osmolality (Osm) Ka (M) * 10-2 Stoichiometry (N) 

MTH buffer 
 

0.23 
 

23.7 ± 0.4 
 

1.29 ± 0.01 

MTH buffer 
 

0.23 
 

28.4 ± 0.8  
 

1.29 ± 0.01 

10%Betaine 
 

1.45 14.1 ± 0.5 1.42 ± 0.01 

10%Betaine 
 

1.45 
 

15.7 ± 0.3  
 

1.28 ± 0.01  

20%Betaine 
 

2.70 6.46 ± 0.1 1.38 ± 0.01 

20%Betaine 
 

2.70 8.15 ± 0.2  1.33 ± 0.01 

0.75M sucrose 
 

1.30 16.7 ± 0.5 1.27 ± 0.01 

0.75Msucrose 
 

1.30 12.5 ± 0.9  1.34 ± 0.01 

15%PEG400 
 

0.95 6.79 ± 0.2 1.43± 0.01 

25%PEG400 
 

1.25 4.84 ± 0.2 1.36 ± 0.01  
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Figure 7: Binding of DHF to R67 DHFR in presence of osmolytes A) The Ka of binding of 

DHF to the enzyme•NADP+ complex has been plotted as a function of osmolality. A decrease in 

Ka is observed as osmolality is increased, indicative of weaker binding of DHF. Overlapping data 

are obtained for MTH buffer  ( ) containing sucrose ( ) and buffer containing glycine betaine 

( ), and a Δnw of 29 ± 3 is estimated. When buffer containing PEG400 (  ) is used, a steeper 

slope is obtained, resulting in a higher value of Δnw (77 ± 11). B) Plot of total heat (Qtotal) vs DHF 

concentration in the presence of different concentrations of betaine. Data describing DHF binding 

in MTH buffer ( ), 10% betaine ( ) and 20% betaine ( ) are shown in the figure. The Q-total 

limit decreases as the concentration of betaine increases. C) Q-total plot for the binding of folate 

to the apo enzyme to form the enzyme•2folate complex. A trend similar to DHF binding is 

observed, where Q-total decreases as the concentration of betaine increases. 
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Figure 7: (continued): Binding of DHF to R67 DHFR in the presence of osmolytes. 
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Effect of osmolytes on R67 DHFR function in vivo  Extremes in environmental conditions such 

as high salinity, dehydration or high temperature are deleterious to cell growth. Adaptation to 

conditions of osmotic stress is important as it protects organisms from fluctuations in water 

activity and solute content in the environment (49). One of the ways that cells survive under these 

conditions is by intracellular accumulation of solutes, which help prevent water loss and thereby 

maintain the turgor pressure of cells. These solutes can either be synthesized de novo by certain 

strains or taken up from their environment by specific transport systems. These molecules not 

only stabilize the native state of various globular proteins, but also favor formation of protein 

assemblies (50, 51). Some of the solutes that aid in osmoprotection of cells are potassium 

glutamate, proline, trehalose, betaine and ecotine. Which osmolyte is produced depends on the 

type of bacteria or the medium in which they are grown (49, 52, 53). Tolerance to osmolality 

varies from one bacterial strain to the other. For example, E. coli can withstand osmotic pressures 

in the range of 0.015 Osm ~1.9 Osm in minimal medium (53-55).   

 

As described earlier, our in vitro experiments indicate that water stabilizes DHF binding. Another 

approach to test the importance of water is by performing in vivo experiments. This was addressed by 

adding increasing concentrations of sorbitol to M9 minimal media (56, 57). The effect of osmolyte 

concentration was then tested on E.coli DH5α, which is transformed with wild type or mutant R67 

DHFR clones.  

 

For this experiment, two types of controls were used. The first control involved use of 20μg TMP/ml 

in M9 minimal media plates. This condition results in inhibition of chromosomal DHFR, but 

rescue by R67 DHFR. Both wild type and mutant clones of R67 DHFR (transformed in E.coli) 

were tested for their ability to show TMP resistance. A range of growth patterns was observed on 

media containing mutant clones. In general, wild type and mutant clones with high kcat/Km(DHF) 
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values showed confluent growth with overnight incubation. The clones with lower catalytic 

efficiency showed a slow growth pattern. For example, the Y69L mutant showed growth after 72 

hours of incubation. Also, the K32M mutant has a low catalytic efficiency and low protein 

expression levels and is also not able to withstand the TMP pressure.  

 

The second set of control plates involved the use of increasing concentrations of sorbitol in M9 

minimal medium plates. The purpose of these control plates was to determine the highest 

osmolality levels at which E.coli DH5α cells could survive. It was observed, that confluent growth 

of the cells occurred up to 1.95 Osm Also, at this high concentration, 48 hours of incubation was 

required for confluent growth (figure 8). 

 

Once the controls were established, cells containing the wild type and mutant clones were grown 

in the presence of 20μg TMP/ml and increasing concentrations of sorbitol at 37oC (table 6). The 

wild type clone can grow up to an osmolality of 1.95 Osmol, beyond which the cells cease to 

grow. The Q67H mutant has a reasonable catalytic efficiency, but also shows substrate and 

cofactor inhibition (58). This mutant is able to grow in a medium with osmolality as high as 1.81 

Osmol. On the other hand, mutants with lower catalytic efficiencies such as I68M and Y69L are 

able to grow in media with osmolalities of 1.44 and 0.81 Osmol respectively. Therefore, an 

increase in the osmotic pressure results in a decrease in the cellular water content which affects 

the ability of substrate to bind to the enzyme, thereby resulting in a decrease in catalytic 

efficiency. Since the cell growth is related to the catalytic efficiency of the mutants, another level 

of selection is conferred when intracellular water is decreased. Overall, there exists a correlation 

between in vivo function and in vitro water uptake. 
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Table 6: Number of days required for the growth of E.coli DH5α cells on M9 minimal 

media containing osmolytes. E.coli DH5α cells transformed with a pUC8 plasmid containing 

wild type and/or mutant R67 DHFR genes were tested for their ability to grow in M9 minimal 

media containing the osmolyte sorbitol and trimethoprim (TMP) at 37oC. 

  Wt R67 
DHFR 

Q67H I68M Y69L K32M DH5α 

kcat/Km 
(DHF) 

(M-1s-1) 
 

 
 

2.2*e 5 

 
1.4*e 5 
(pH 8) 

 
6800 

 
890 

<200 
& low 

expression 
levels 

 
- 

1.44 Osmol 1 
 

1 1 1 1 1 

1.81 Osmol 1 
 

1 1 1 1 1 

1.95 Osmol 2 
 

2 2 2 2 2 

0.31 Osmol  + 
20μg TMP/ml 
 

1 1 1 3 - - 

0.81 Osmol + 
20μg TMP/ml 
 

1 1 1 4 - - 

0.81 Osmol + 
20μg TMP/ml 
 

1 1 1 - - - 

0.81 Osmol + 
20μg TMP/ml 
 

1 1 1 - - - 

0.92 Osmol + 
20μg TMP/ml 
 

1 1 1 - - - 

1.01 Osmol + 
20μg 
TMP/ml 

1 1 2 - - - 

1.44 Osmol + 
20μg TMP/ml 
 

1 2 - - - - 

1.81 Osmol + 
20μg TMP/ml 
 

1 2 - - - - 

 

1.95 Osmol + 
20μg TMP/ml 
 

2 - - - - - 
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Figure 8: Effect of sorbitol on growth of wild type and mutant DHFR clones.  Wild type R67 

DHFR and its mutants were tested for their ability to grow on M9 minimal media containing 

20μg/ml trimethoprim (TMP) and varying concentrations of sorbitol. Each petri plate containing 

the media is divided into 6 zones. Position 1 shows the region where E.coli DH5α cells (lacking a 

plasmid) are streaked on the plate. Position 2 indicates the region where E.coli cells (containing 

the wild type R67 DHFR gene cloned into pUC8) are streaked. Positions 3, 4, 5 and 6 indicate the 

regions where the Q67H, I68M and Y69L mutant clones are plated. No growth is observed in 

position 1, indicating that E.coli DH5α cells are susceptible to TMP. Also no growth is observed 

for the K32M clone in media containing 20μg/ml TMP as well as in the presence of sorbitol. 

Cells containing the gene for wild type R67 DHFR however, are able to grow in 20μg/ml TMP 

and can withstand sorbitol concentrations of 0.5M. The Q67H and I68M mutants are also not 

much affected by concentrations of sorbitol as high as 0.25M. The Y69L mutants can grow on 

plates containing TMP and 0.25M sorbitol, but cease to grow in 0.5M sorbitol. 
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Role of water in binding enthalpy Isothermal titration calorimetry provides valuable 

information on the enthalpy and entropy changes accompanying a binding process. The net 

enthalpy change measured by ITC is not only due to hydrogen bonding or ionic interactions, but 

also due to changes in protein-solvent, solvent-solvent and protein-ligand interactions (59). From 

the changes in enthalpy (ΔH) at different temperatures (T), a heat capacity change can be 

calculated, which is based on the relationship:   

ΔCp = ∂ΔH/∂T                                                                                                                   (16)                                     

Therefore, the slope of a plot of ΔH versus temperature gives a value for ΔCp.  

 

A number of factors contribute to heat capacity values. These include dehydration of a non-polar 

or polar surface, internal vibrations during a binding reaction, conformational change, 

electrostatic interactions and protonation changes during binding (60-63). A heat capacity change 

that is caused by dehydration of polar/ non-polar surfaces may indirectly indicate that water is 

involved in ligand binding. From our results in R67 DHFR, water uptake is associated with DHF 

binding and release of water occurs upon NADPH binding, so it is of interest to monitor ΔCp in 

this enzyme.    

 

In order to thermodynamically characterize ligand binding to R67 DHFR, heat capacity studies 

have been performed. In brief, the heat capacity change for binding of DHF to form a ternary 

complex in the presence of the NADP+ and R67 DHFR has been measured (table 7, figure 9A). In 

addition to this, the heat capacity change for binary complex binding of NADPH has been studied 

(table 8, figure 9B). The enthalpy of binding of the ligands was determined at temperatures 

ranging from 278oK to 303oK and the slope of the plot was used to calculate the heat capacity. 

For NADPH binding, a heat capacity of –178 ± 15cal/ oK mol was observed and for 
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Table 7: Data for ΔH, TΔS and ΔG at different temperatures for the formation of enzyme• 

DHF•NADP+ complex. The value of ΔH is more negative as the temperature increases, while the 

value of -TΔS is more negative as the temperature increases. However, the ΔG values do not 

change significantly with temperature.  

 

Temperature (oK) ΔH (cal/mol) -TΔS (cal/mol) ΔG (cal/mol) 

278 -7000 ± 31 
-6800 ± 28 

 

780  
960  

 

-7800 ± 65 
-7700 ± 57 

283 -7900 ± 43 
-7960 ± 42 

 

-400  
-390  

 

-7500 ± 66 
-7600 ± 65 

288 -9300 ± 35 
 
 

-1700  
 
 

-7600 ± 44 

295 -10000 ± 44 
-11000 ± 34 

 

-2900  
-3700  

 

-7300 ± 30 
-7300 ± 44 

303 -12300 ± 29  
-11200 ± 38 

 

-4900  
-3600  

 

-7400 ± 19 
-7550 ± 31 
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Table 8: Data for ΔH, TΔS and ΔG at different temperatures for the formation of 

enzyme•2NADPH complex.  Raw ITC data were fit to sequential binding sites model. Data for 

only the 1st site are given. The value of ΔH is more negative as the temperature increases, while 

the value of -TΔS is more negative as the temperature increases. No significant change is 

observed for the ΔG values as a function of temperature. 

 

Temperature (oK) ΔH (cal/mol) -TΔS (cal/mol) ΔG (cal/mol) 

278 -5300 ± 22 
-4500 ± 24 

 

1600  
2900  

 

-6900 ± 41 
-7300 ± 86 

288 -6400 ± 37 
-6300 ± 42 

 

1070  
1070  

 

-7400 ± 77 
-7400 ± 86 

295 -8000 ± 287 
 
 

-1200  
 
 

-6800 ± 245 

303 -9600 ± 147  
-8900 ± 88 

 

-2700  
-2000  

 

-7000 ± 109 
-6900 ± 65 
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Figure 9: Heat capacity plots A) Temperature dependence of ΔH (●), ΔG ( ) and -TΔS ( ) for 

DHF binding to the enzyme•2NADP+ complex. From the ΔH plot, a heat capacity of –199 

kcal/oK.mol is obtained. B) Temperature dependence of ΔH (●), ΔG ( ) and -TΔS ( ) for the 

binding of the first molecule of NADPH to the apo enzyme to form the enzyme•2NADP+ 

complex. 
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DHF binding, a heat capacity of -199 ± 16 cal/oK mol was observed. The observed heat capacity 

change does not involve any contributions from protonation as binding of neither DHF nor 

NADP(H) involves release or uptake of protons (64). 

 

In the case of NADPH, the carboxamide group forms interactions with the backbone NH and O 

atoms of I68. Also the phosphate groups interact with K32 residue. Similar interactions with N3 

and O4 groups of pteridine ring of DHF with the I68 residue are observed. Also the carboxylate 

group of DHF likely forms ionic interactions with K32. The common modes of interaction of the 

two ligands may explain the similar values of ΔCp.  

 

Discussion 

 
Water molecules in proteins are present in cavities or molecular interfaces and are also in contact 

with the protein surface. Of these, solutes are specifically excluded from cavities and interfaces 

and these aid in determination of the net change in water molecules upon ligand binding (65-67). 

Using a variety of osmolytes possessing different properties, the effects of osmotic pressure on 

the binding of DHF and NADPH to R67 DHFR was studied. Binding of NADPH involves net 

release of water, while binding of DHF involves net uptake of water.  

 

Possible factors contributing to different Δnw observed for DHF binding Analysis of the plot 

for DHF binding (figure 7) indicated that different osmolytes showed variable slopes, which is in 

contrast to the single slope obtained for NADPH binding. These variable slopes observed could 

potentially be the result of the following possibilities: 

1) Preferential binding of solutes: If this scenario has occurred, then the observed change in 

the number of water molecules taken up may have been overestimated.  From equation (8), 
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Timasheff has proposed that the slope can be generated using different combinations of 

number for νH2O and νsolute (assuming that νsolute is a positive value) (68). For example, a 

value of 10 for Δnw can be generated by 10H2O + 0solute or 9H2O + 1solute or 5H2O + 5solute, etc. 

Conversely, if water molecules were released upon binding, then the number of water 

molecules may have been underestimated (68, 69). From the data presented in table 5, 

betaine, DMSO and sucrose show higher slopes, suggesting a preferential binding of these 

osmolytes to the protein. On the other hand, the glycerol, ethylene glycol and TMAO 

conditions show the lowest slopes, suggesting these osmolytes might be associated with the 

best estimate of Δnw. 

2) Volume exclusion:  A second possible explanation for variable slopes is crowding or 

volume exclusion effects, which are due to steric exclusion of solutes from large surfaces 

(38, 44, 70, 71). In the case of R67 DHFR, the maximum radius of the active site pore is 12 

Å (72). Also, the average radius of gyration of PEG 400 is 8.1 Å (73). However, hydration 

of the PEG causes an increase in the overall radii to 15 Å (depending on the macromolecule 

studied). Therefore PEGs with larger molecular weights (such as PEG 3350 and PEG 8000) 

will have a much higher radius of gyration, consequently not allowing the molecule to fit 

into the active site pore. The high slopes of 78, 145 and 353 observed for PEG400, PEG 

3350 and PEG8000 respectively (figure 10 and table 4) seem to suggest volume exclusion or 

crowding effect. Therefore, these higher molecular weight PEGs cannot be used to estimate 

the net change in water molecules involved in DHF binding.  

3) Overlapping slopes are obtained if water is entrapped in a cavity or a channel (67). 

However, the slopes can vary 2 to 5 fold when a larger surface area is probed because of 

the difficulty of desolvating large areas (55, 74). 
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Figure 10: Relationship between molar volume (Vmol) and slope of the plot of ln kcat / Km (DHF) 

vs. osmolality The molar volumes for the osmolytes are listed in table X, as are slopes obtained 

from the plots of ln kcat /Km (DHF) vs osmolality. The plot of Vmol vs. slope shows data points for 

the following osmolytes: glycerol ( ), ethylene glycol ( ), TMAO ( ), sucrose ( ), DMSO 

( ), glycine betaine ( ), PEG400 (   ), PEG3350 ( ) and PEG8000 (  ). From the figure it is 

evident that the slopes of high molecular weight osmolytes such as PEG 400, PEG3350 and 

PEG8000 are dependent on Vmol, indicating a crowding/ volume exclusion effect. 
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4) A change in protein conformation upon introduction of osmolytes may also lead to different 

slopes. However, this seems less likely in the case of R67 DHFR as crystal and NMR 

structure suggest that the conformation of the protein does not change upon ligand binding 

(75, 76). A recent crystal structure by Krahn et al. shows that there is a small shift in the 

positions of the Q67 and Y69 residues upon ligand binding (4). 

 

Finally, other possible reasons for the different binding behavior of DHF and NADPH in the 

presence of osmolytes may be due to the properties of the ligands themselves.  NADPH prefers 

binding first and therefore binds to the apo enzyme. In contrast, DHF binds to the 

enzyme•NADPH complex. Moreover, binding of 2 folate molecules to the apo enzyme also 

indicate water uptake as shown in figure 7C. This suggests that the binding sequence of the 

ligands is not responsible for the variation in slopes for DHF binding. Instead, the property of the 

ligands may be responsible for this.  

As can be seen, a number of factors could possibly contribute to variable slopes and their origin is 

not completely understood. 

 
 
Protein Hydration and Different Models to Explain the Role of Water in Ligand Binding  
 
Water plays a major role in maintaining protein stability and dynamics. A number of approaches 

such as thermodynamic analyses and molecular dynamic simulations have been used to study the 

interplay between water and proteins (67, 68, 77). However, understanding of protein stability, 

folding and protein-ligand interactions at the molecular level of protein hydration is limited due to 

dearth of suitable techniques. Results obtained form some studies have been summarized briefly 

as mentioned below: 
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In order to determine if water molecules present on the surface of a protein are different from that 

in the bulk solvent, small angle scattering (SAS) of x-rays and neutrons (in H2O and D2O) have 

been performed.  Using these techniques on lysozyme as a model protein, Merzel and Smith 

demonstrated that the first hydration shell (~3Å thick) is 15% denser than bulk water (78). These 

results compared well to results from molecular dynamic simulations, which suggested that the 

geometry of water molecules around the protein surface contributed to about 75% of the density 

of the first hydration shell (79). Another viewpoint on protein hydration is by Chandler (80). 

According to this model, hydrogen-bonding networks of water near small hydrophobic surfaces 

result in an increase in the density of water by two (80). This results in ‘wetting’ of the surface. In 

contrast, larger cavities are ‘dewetted’ or ‘dry’ as these cavities cause the hydrogen-bonding network 

of water to break away. 

 

The solvation of proteins and/ or ligands has also been used to explain the variable slopes obtained 

for DHF binding to the R67 DHFR•NADP(H) complex. These have been discussed using different 

models:  

 
 
Mechanistically, one possible explanation for water uptake may be explained by two phases of 

water as proposed by Tanaka (81, 82). The first phase is an ordered phase and has a lower energy. 

Ordered water has a tetrahedral configuration in which other molecules do not penetrate, making 

it less dense (figure 11). The second phase is a more disordered phase and of higher density. This 

phase describes the bulk phase. In the case of DHF binding, the pABA-glu tail forms intermittent 

contacts with the K32 residues on either side of the pore (83, 84), making the water molecules 

around it disordered. This may lead to an increase in density of water in the active site as 

compared to the density of water in the apo enzyme pore, which has highly ordered water 
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Figure 11: Pentagonal structure of ordered water. Figure taken from Tanaka et al. (81).  Water 

molecules have an ordered structure in the less dense phase, while water molecules are disordered 

in the more dense phase Since the pABA-glutamate tail of DHF is disordered, water may be more 

dense around this region.  
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molecules (as shown in a recent crystal structure of the apo enzyme by Narayana) (9).  As a 

result, this model may provide a mechanism whereby there is an uptake of water upon DHF 

binding. 

  

Another model by Sidorova et al. utilizes ‘preferential hydration’ to explain the interaction of 

water by protein (74, 85). Preferential hydration can be explained as a tendency of proteins to 

bind water as compared to cosolutes (or osmolytes). Thus, solutes are excluded from protein 

surfaces (38, 68, 73). This exclusion of solutes not only depends on the protein surface, but also 

depends on the nature of the solutes themselves.  According to Sidorova et al., water molecules 

that are entrapped in cavities, channels or pockets are more associated with the protein surface 

and would exclude osmolyte. Thus it is relatively straightforward to estimate the net change in 

number of water molecules (upon ligand binding) on this surface. In contrast to this, water 

molecules hydrating exposed surfaces are more difficult to remove, resulting in variable effects. 

 

To test this hypothesis, the binding of BamHI binding to specific and non-specific DNA 

sequences was tested (85). When only non-specific DNA sequences were tested, the number of 

water molecules released upon binding of BamHI was less than that estimated for BamHI binding 

to specific DNA sequences. In other words, the non-specific DNA-BamHI complex was found to 

sequester about 120 to 150 more water molecules than the specific complex. Thus the interface 

between protein and non-specific DNA sequence can accommodate more number of water 

molecules as compared to that specific DNA-BamHI complex. Additionally, variable slopes were 

obtained for a plot of binding constant versus osmolality for both specific and non-specific DNA 

sequences. 
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When the ratio of specific to non-specific binding constants was measured as a function of 

osmolality, the net change in water molecules released was determined to be -130 ± 7 water 

molecules. This number is consistent with results from crystal structure. Using this approach, 

only a weak dependence on solute nature is observed using 7 different osmolytes. Thus, for 

estimation of water molecules involved in ligand binding, the type of macromolecular surface 

also needs to be considered. 

 

The effect of osmolytes on the transition state can also be explained by considering an energy 

profile diagram (for the case of [S]<Km) (86). Since the substrate concentration is much lower 

than the Km, the rate of the reaction is determined by the second order rate constant (kcat/Km), 

describing E +S                     ES‡. To decrease kcat/Km, a higher reaction barrier is required. This 

can be achieved in 2 different ways. The first possibility is that the osmolytes destabilize both the 

ES and ES‡ complexes equally. The ES complex is destabilized since Km rises upon osmolyte 

addition. Also, since the kcat does not change in presence of osmolytes, the barrier height for the 

formation of the transition state must increase by the same amount. This results in the increase of 

the total height required for the enzyme to reach the transition state (figure 12A). A second 

possibility is where the enzyme (or substrate) is stabilized by osmolytes in the ground state itself, 

resulting in a less negative ΔG. Therefore, the barrier height for formation of the transition state is 

increased (figure 12B). 

 
Molecular dynamic simulations of the ternary complex of R67DHFR•NADPH•DHF suggest that 

the interaction between the K32 residues and the carboxylate moiety of the glutamate tail of 

folate may involve both direct and solvent separated ion-pairs (Beahm and Guo, personal 

communication). From average snapshots along a 2ns trajectory, the tail is mobile and some 

snapshots show more than one solvent molecule may be mediating the interaction between the 

K32 residues and the glutamate tail, indicating that possibility more than one hydration 
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Figure 12: Energy profile diagram describing the effect of osmolytes on the formation of 

transition state when [S] < Km. A) Binding of osmolytes results in increase in Km of the 

substrate (DHF). This is reflected by an increase in the ΔG required for formation of the ES 

complex. Since the kcat of the reaction is not affected (and the overall kcat/Km decreases), the 

energy required for formation of the transition state ES‡ also increases by an equal amount.   

Therefore, a barrier height from ground state to the transition state increases, which is also 

reflected by a decrease in catalytic efficiency as concentration of osmolytes in increased. B) 

Binding of osmolytes causes stabilization of the enzyme, resulting the ΔG of the ground state to 

be more positive. Therefore more energy is needed to form the ES complex. This would 

consequently result in an increase in the energy barrier required to reach to transition state (ES‡). 
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shell can be present. Osmolyte studies mostly describe the first hydration shell. As it is unclear 

how osmolytes can affect additional hydration shells, a greater sensitivity of bound DHF to 

osmolyte addition may arise. This might be a mechanism whereby destabilization of the ES and 

ES‡ complexes are achieved as depicted in figure 12A. 

 

Another model has been proposed by Dzingeleski and Wolfenden (87), according to which solvent 

molecules interact differently with the protein due to their irregular surfaces. In their study, substrate 

binding to adenosine deaminase involves an uptake of 9 water molecules. They proposed that the 

enzyme exists in 2 conformers, one more hydrated than the other. The more hydrated species is the 

one that binds substrate.  

Water + Enzyme                    Enzyme•9waters + Substrate                    Enzyme•Substrate•9Waters                               

                Product 

This possibility can be represented by figure 12B, where stabilization of the enzyme in the ground 

state results in a les negative ΔG in the ground state and hence a higher energy barrier to reach the 

transition state. 

 
 
 
Importance of water in the catalytic efficiency in vivo Our results from in vitro experiments 

indicate that binding of DHF involves uptake of water. The net change in water molecules taken 

up varies depending on the osmolyte used. However, the common observation is that there is an 

uptake of water. In vivo experiments using sorbitol demonstrate that water is required for the 

catalytic efficiency of R67 DHFR. In the cell, R67 DHFR is present in the cytoplasm. The 

presence of solutes in the cytoplasm may mimic the behavior of osmolytes, causing 

macromolecular crowding. Additionally, in conditions of osmotic stress, osmolytes may be 

generated within the cell, leading to further crowding. In this scenario, the binding of NADPH 
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will be tightened, which may potentially lead to inhibition by 2 NADPH molecules. On the other 

hand, formation of a binary complex of DHF will be weakened. Therefore, the high solute 

concentration in the cell may lead to a decreased catalytic efficiency of R67 DHFR, making the 

enzyme sensitive to the osmolality (7).  

It is interesting to note that even though a common binding site is available for ligand binding, the 

mechanism by which the ligands bind is different.  Due to the release of water by one ligand and 

uptake by another, the binding of either ligand is not optimal in the active site pore, which is 

consistent with low catalytic efficiency of this enzyme. 

 

Burial of Solvent Accessible Surface Various groups have found a correlation between heat 

capacity and the solvent exposure of non-polar and polar areas of the protein (33-35). This 

information can be obtained by determining the solvent accessible surface areas of the apo 

enzyme and the ligand bound enzyme. The glutamic acid tail of DHF is disordered when bound 

to R67 DHFR and hence we are not able to determine the change in solvent accessible surface 

area for this complex. However, the R67 DHFR•NADP+ complex is available (12). Therefore, 

surface area calculations could be performed for this model. The ∆ASA for the formation of the 

enzyme•NADP+ complex (4) (a mimic of the enzyme· NADPH complex) was determined from 

the following relationship: 

∆ASA = ASAE·NADP
+ - (ASAE + ASANADP+)                                                                            (17) 

where E is the apo enzyme; E•NADP+  is the enzyme•NADP+ complex and NADP+, the ligand 

only complex. The latter was obtained by removal of NADP+ from the ternary structure. 

Using the NMR refine module in Insight II (along with a probe diameter of 1.4 Å for solvent), a 

change in total solvent accessible surface area of 754 Å2 was calculated. Also using probe radius 

of 1.3 Å for the solvent, a ∆ASA of 657Å2 was calculated. The ∆ASA from our experimental 

data was calculated to be 369 ± 75 Å2 (using the data for release of 38 ± 6 water molecules due to 
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NADPH binding to the enzyme and assuming the area of water to be 9 ± 1 Å2
 (76)). This value is 

lower than the calculated values of 754 Å2 (using probe radius of 1.4 Å2) or 657Å2 (using probe 

radius of 1.3 Å2). This discrepancy might arise from the different conformations adopted by 

NADPH; extended when bound and compact when free (88). Another possibility is that 

geometric, cavity or electrostatic effects can cause an ~15% increase in the density of water at a 

surface as proposed by Merzel and Smith (79).  

 

Heat Capacity From the temperature dependence of ΔH, a heat capacity change of –178 

cal/oK.mol for binding of NADPH to the apo enzyme has been determined. Additionally, the 

changes in entropy (ΔS) and Gibbs free energy (ΔG) at different temperatures have been 

determined. From the plot in figure 8A, it is observed that binding of NADPH to the enzyme is 

associated with a favorable enthalpy change and a positive (favorable) entropy change until about 

281oK. Beyond this temperature, the entropy is unfavorable (more negative) and binding is only 

enthalpically driven. Also, the change in ΔG is small, which is consistent with enthalpy-entropy 

compensation (89, 90). A small heat capacity change of –199 cal/oK.mol has also been observed 

for DHF binding to the enzyme•NADPH complex (table 9). As shown in figure 8B, a positive 

entropic contribution is observed till about 291oK, beyond which the entropy is negative 

(unfavorable). In addition, the change in ΔG is small. Similar results have been observed for 

binding of folate to an enzyme•NADP+ complex in the presence of increasing salt concentrations 

wherein a significant change in ΔH is observed, while not much change is observed in ΔG (83). A 

small change in ΔG as compared to ΔH and TΔS suggests that enthalpy-entropy compensation 

may be involved in this process. Enthalpy-entropy compensation has been commonly observed in  

weak binding interactions (91). Also, this phenomenon suggests that water may be playing a role 

in binding reactions (89, 90). 
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Table 9: Comparison of water molecules involved in the DHF and/or NADPH binding and 

the heat capacity change associated with each binding process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ligand Δnw ΔCp (cal/oK.mol) 

DHF binding to enzyme●NADP+ 29 ± 3 -199 ± 16 

NADPH binding to enzyme 

(Ka1) 
–38 ± 6 -178 ± 15 
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A theoretical approach to determine heat capacity is by utilizing the correlation between heat 

capacity change and changes in solvent accessible polar and non-polar surface areas upon 

binding. The heat capacity change involving the folding of various proteins as well as the transfer 

of hydrocarbons and amides from water to pure liquid phase has been characterized using 

equation 18. However, varying coefficients have been generated by different groups, with the 

Spolar and Record coefficient being the most commonly used (Cnonpolar = 0.32 ± 0.04 and Cpolar -

0.14 ± 0.04 (92)).  Using these coefficients results in a positive ΔCp (10 ± 23). Therefore the 

coefficients from Robertson and Murphy were used (93) and are shown in the equation below: 

∆ Cp (cal/moloK) = (0.16 ± 0.05) ∆ANP + (0.12 ± 0.08) ∆AP                                                    (18)                              

where ∆ANP  and ∆AP describe the change in solvent accessible non-polar and polar areas 

respectively.   

 

As mentioned, earlier we are only able to perform surface area calculations for the R67 

DHFR·NADP+ complex. The access_surf command of the NMR refine module of Insight II was 

used to calculate non-polar and polar solvent accessible surface areas of -207 Å2 and -547 Å2, 

respectively. Incorporating these values in the above equation, a heat capacity change of –101 ± 

43 cal/ oK mol is calculated (error obtained using the online tool: 

www.colby.edu/chemistry/Pchem/scripts/error.html), which (within error) agrees with the 

experimentally determined value of -178 ± 15 cal / oK mol. 

These values of ΔCp observed are small as compared to those mentioned in the literature (35) and 

hence further analysis was not pursued. 
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Conclusion 

 
R67 DHFR is a primitive enzyme possessing an unusually large active pore with a volume of 

2938 Å3 (as calculated by CASTp) (8), which provides a binding site for both DHF and NADPH. 

Of the two ligands, NADPH prefers binding to the enzyme first, followed by DHF (5). Also it 

forms contacts with the enzyme via its carboxamide moiety and phosphate groups as well as 

hydrogen bonds and van der Waals contacts, leading to a rigid structure with a fixed 

conformation (4). This agrees with our observations that binding of NADPH is tightened upon 

release of water. On the contrary, an opposite trend is observed for DHF wherein binding is 

weakened when water is squeezed out of the pore. In other words, water is required to stabilize 

DHF in the active site pore. This result can be explained from X-ray crystallography results, 

which show that the pteridine ring forms fixed contacts with the enzyme, however the pABA-glu 

tail is disordered (3, 4, 9). The change in conformation of the tail may lead to a change in the 

density of water, consequently resulting in uptake of water. The water present between the 

ligands may provide more hydrogen bonding contacts providing shape complementarity (94-98). 
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Introduction  

 
R67 DHFR is a homotetrameric enzyme possessing 222 symmetry in its active site pore. The 

active site is 25 Å long and 18 Å wide and it binds to both DHF and NADPH to facilitate 

catalysis. The substrate (DHF) and cofactor (NADPH) enter from opposite sides of the pore and 

assume an endo geometry to facilitate hydride transfer from the C4 of the nicotinamide ring to the 

C6 position of the pteridine ring (1). Site directed mutagenesis studies have been used to identify 

critical residues involved in ligand binding (2-5). Also, analogs of substrate and cofactor have 

been utilized to determine the critical regions on the substrate and cofactor that are important for 

binding (6). However, information on the ground state and transition state in the R67 DHFR 

reaction is lacking. The research presented and discussed in this thesis addresses these issues in 

more detail. Additionally, our research conducts an investigation into the role of water molecules 

in the ligand binding.    

  

Interactions Formed By NADPH And DHF With The Protein   
 
                                                                          
The ligands enter the pore and the carboxamide group of NADPH and the N3-O4 atoms of folate 

help position the substrate and cofactor for hydride transfer (6). The pteridine ring of folate is in a 

fixed position, while the tail regions are mobile. MD simulations predict that the tail forms 

intermittent contacts with the K32 residues (Robert Beahm and Hong Guo, personal 

communication). Mutagenesis and salt dependence studies also show that the interactions of the 

folate tail with the K32 residues are important (4, 7). Another approach to determine the 

importance of the tail is to use folate analogs with shorter tails. Two different truncated species 

have been used: 1) dihydrobiopterin (lacking the pABA-glu tail) and 2) dihydropteroic acid 

(lacking only the glutamate tail) (6). ITC binding studies and Ki studies show that removal of 

these groups weakens binding indicating these moieties provide important interactions. Also, 
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removal of these groups result in reduced binding enthalpies. Therefore, the charged groups on 

folate likely contribute to the binding enthalpy. Other studies in which the length of the glutamate 

tail is increased by polyglutamylation suggest that binding is not improved by increasing the 

negative charge on the substrate (6). Overall, results using folate and NADPH analogs suggest 

that two common features of the substrate and cofactor, i.e. the negative charge in the tail and the 

(N-C=O) groups in the head of the molecule, are essential for binding to the symmetric active site 

of R67 DHFR. 

 
 
Thermodynamics Of Ligand Binding In The Ground And Transition States 

 
 The goal of chapter 2 was to shed light on the energetics of ligand binding in the ground state 

and transition state. By determining kcat and kcat/Km for the DHFR reaction at different 

temperatures, both van’t Hoff and Arrhenius plots were obtained and the activation energy of 

substrate binding in the ground state and transition state were calculated (8). From this, the 

change in enthalpy was also obtained. Additionally the entropy and free energy of substrate 

binding in both the ground state and transition state were calculated. Results indicated that the ∆H 

is more negative in the ground state than the transition state. A second observation was that the 

TΔS associated with ground state was –5.4 kcal/mol. This value of TΔS is less negative as 

compared to the TΔS in the transition state (-11.3 kcal/mol), consistent with a reorientation of the 

substrate in the transition state.  

 

Importance Of The Glutamate Tail Of DHF In Binding And Catalysis 

 
Dihydropteroate (DHP), an analog of DHF, lacks the glutamate tail. As compared to DHF, DHP 

has only a single negative charge. The Ki of DHP is ~25 μM and the ternary complex Kd is 20μM 

(6).  Therefore, loss of the glutamate tail results in weaker binding. Additionally, kcat of the 
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DHFR reaction using DHP as a substrate showed an approximately 1600 fold reduction in kcat as 

compared to DHF reduction (8). This suggested that the pABA glu tail is important in interacting 

with the K32 residue and consequently for correctly positioning the substrate in the active site. 

 

Role Of Water In Ligand Binding In R67 DHFR 
 
 
The active site pore of R67 DHFR is large with a volume of 2938 Å3 (as calculated by CASTp) 

(9, 10). Water molecules have also been observed in the apo and ternary complex crystal 

structures of R67 DHFR (11, 12).  Therefore, the ligands (DHF and NADPH) are not able to 

occupy the entire space in the pore and water must fill the remaining space. Figure 1 illustrates 

water molecules in the ternary complex structure of R67 DHFR•DHF•NADP(H). 

 

To further probe the role of water in ligand binding and catalysis in R67 DHFR, osmolytes such 

as sucrose, betaine, DMSO, TMAO, ethylene glycol and glycerol were employed. It was 

observed that as the osmolyte concentration increased (i.e. osmotic pressure was increased), the 

Km and/or Kd of NADPH decreased (based on results from kinetics and ITC experiments) 

(Chopra et al., manuscript submitted). This suggested that binding of NADPH is tightened upon 

release of water. Using this approach, the net change in number of water molecules (Δnw) upon 

NADPH binding was estimated to be –38 ± 6 water molecules. Similarly, increasing 

concentrations of osmolytes were used to determine the effect on DHF binding. An opposite 

effect was observed, in which the binding of DHF weakened as the water concentration was 

decreased due to addition of osmolytes. Overall, the DHF data suggest that water uptake is required 

to stabilize DHF in the active site. Thus, osmolyte studies indicate that NADPH interacts with the 

protein through more direct contacts  (via a ‘dry’ surface) as proposed by Janin (13) , while 

interactions of DHF with the protein are mediated by water molecules (using a ‘wet’ surface). 
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Figure 1: Water molecules in the ternary structure of R67 DHFR. The crystal structure of R67 

DHFR with bound folate and NADP+ was used as a template (Joe Krahn and Bob London; 

manuscript accepted) (12). Hydrogens were added to all residues and the bound folate was reduced 

to the protonated form of DHF using molecular modeling. Using a similar approach, the bound 

NADP+ was converted to NADPH. A 5ns molecular dynamic simulation was then carried out and 

the resultant structure is shown with water molecules. DHF and NADPH are shown in orange and 

green respectively and half slice of the protein backbone is represented in blue. Water molecules 

around each ligand are represented in red. 
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Net uptake of water molecules was variable, depending on osmolyte identity and the observed 

range was 16 to 70 water molecules. This variation in the determination of Δnw is usually 

attributed to several factors such as volume exclusion, preferential binding or preferential 

exclusion. In vivo experiments using media containing increasing concentrations of sorbitol as an 

osmolyte showed that the growth of E.coli containing wild type R67 DHFR and its mutant clones   

was arrested. This also indicated that water is required for substrate binding by R67 DHFR and 

can be considered a co-substrate. Therefore involvement of water in both DHF and NADPH 

binding suggests that water may provide shape complementarity upon binding of ligands.    

 

 As described in chapter 3, various models can perhaps explain the different sensitivities of NADPH 

and DHF binding to osmolytes. These models are based on the hydration of the protein and/or ligand, 

as well as on the density of the hydration shell.  

 

One model proposed by Tanaka suggests that H2O can be present in two phases (14). The first phase 

is an ordered phase, which other molecules do not penetrate, thereby making it less dense. The 

second phase is a more disordered phase and of higher density. In the case of R67 DHFR, uptake of 

water by DHF binding to the enzyme can possibly be explained by the Tanaka model. Prior to 

binding, water molecules in the enzyme active site are highly ordered (as shown in a recent crystal 

structure of the apo enzyme by Narayana) (11). When DHF binds to R67 DHFR, the mobile pABA-

glu tail forms intermittent contacts with the K32 residues on either side of the pore (4, 7) resulting in 

a disordering of local water molecules. This may lead to an increase in density of water in the active 

site as compared to the density of ordered water in the apo enzyme pore. As a result, there is an 

uptake of water upon DHF binding. 
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Another model proposed by Dashnau et al. (15, 16) and Sidorova et al. (15, 16) suggests that 

variations in hydration of ligands can explain the differences in NADPH and DHF binding upon 

addition of osmolytes. Sidorova et al also proposed that water molecules can get sequestered in 

cavities or channels associated with the protein surface and are difficult to remove. Thus 

determination of the net change in water molecules is much easier on such surfaces as compared to 

exposed surfaces (16, 17). 

 

A third possibility proposed by Bennion et al. and Beck et al. is that different hydration levels of the 

protein may be contributing to the differences in solvation induced by osmolytes (18, 19). 

Dzingeleski and Wolfenden proposed that there is a equilibrium between the hydrated and 

dehydrated forms of the protein. For some proteins, the hydrated form is more favorable for 

formation of the enzyme-substrate complex. Energetically, this can be explained as the stabilization 

of the enzyme by water and hence the requirement of more energy to reach the transition state. 

 

Finally, it is also possible that more that one hydration layer is present between the glutamate tail and 

the K32 residue of the protein. Since osmolyte studies mainly describe the first hydration shell, it is 

possible that the bound DHF is more sensitive to osmolyte addition. From the energetic point of 

view, the formation of the enzyme-substrate complex would require more energy. This would result 

in an increase in the energy required for the formation of the transition state  by the same amount  (as 

kcat of the reaction is not affected) and a consequent increase in the total barrier height to go from the 

ground state to the transition state. 

 

 As we can see, a number of different models can be invoked to explain binding of ligands to R67 

DHFR. A stepwise analysis of each model may help evaluate the differences on NADPH and 



 158

DHF binding to R67 DHFR. Therefore, to obtain a clearer picture on the role of water in ligand 

binding to R67 DHFR, further experiments should be considered. For example: 

 

1. Determination of ligand solvation: The difference in solvation of Bovine serum albumin 

(BSA) (upon osmolyte addition) has been investigated by Courtenay et al (20).  A plot of 

osmolality   (of particular osmolyte/ cosolute) versus concentration of the osmolyte was 

studied. This data was then compared to plot of buffer osmolality (without osmolyte) versus 

osmolyte concentration. The difference in the slopes of the two plots will indicate the degree 

of exclusion of the osmolyte from the protein. A similar approach can also be used in the 

case of R67 DHFR to determine the solvation of ligands (DHF and NADPH) in presence of 

different osmolytes. These studies may therefore explain if any differences in ligand 

solvation (upon osmolyte addition) are responsible for the different binding behavior of 

DHF and NADPH. 

 

2. Evaluation of osmolyte addition with the Q67H mutant: Addition of osmolytes to wild 

type enzyme resulted in weaker binding of DHF and a tighter binding of NADPH.  The 

Q67H mutant exhibits a 110 fold lower Km(NADPH) and a 36 fold lower Km(DHF) as 

compared to the wild type enzyme (5). In addition to a slight increase in catalytic 

efficiency, this mutant also has substrate and cofactor inhibition. Therefore, if osmolytes 

are used to study the binding of DHF to this mutant, we would predict a weakening of 

DHF binding as well as a decrease in DHF inhibition. Further, since addition of 

osmolytes tightens NADPH binding, we may expect to see very tight binding of NADPH 

to the Q67H mutant upon addition of osmolytes. Furthermore, we may also observe an 

increased level of cofactor inhibition as the concentration of osmolytes is increased. This 
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experiment could help support our findings that binding of DHF involves uptake of 

water, while binding of NADPH is associated with release of water.  

 
 
Heat Capacity Changes For DHF And NADPH Binding? 
 
 
The energetics of ligand binding to R67 DHFR was also evaluated at different temperatures. The 

data obtained were used to determine the heat capacity of the system (ΔCp= ∂ΔH/∂T). This 

parameter can provide information on the exposure/ burial of solvent accessible areas in the 

protein, protonation, conformational change, changes in internal vibrations or solvent 

reorganization during a binding reaction.  

 

Using ITC, the enthalpy change for the binding of DHF and/or NADPH to R67 DHFR was 

determined at different temperatures (5oC to 30oC). The heat capacity for DHF binding (to form a 

ternary complex of DHF•NADP+•enzyme) was found to be –199 cal/moloK, while the heat 

capacity for NADPH binding to form E·NADPH is –177 cal/moloK. These values for heat 

capacity are much smaller than those usually observed (in the range of -1000 cal/moloK). Also, 

the question that arises is: What contributes to the heat capacity for DHF and NADPH binding? 

Since several factors may be contributing to the observed heat capacity, these possibilities may 

need to be evaluated as described below: 

 

1. Heat Capacity studies using analogs of DHF: In the case of DHF binding, there is a 

possibility that the interaction of the glutamate tail of DHF with the K32 residue of the 

enzyme may be contributing to the observed enthalpy of –13.3 kcal at 25oC (chapter 2, 

(8)). When DHP (analog of DHF lacking the glutamate tail) is used as a substrate, the 

enthalpy change was decreased (-9.5 kcal) (8). This suggested that the glutamate tail was 
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contributing to the more negative enthalpy. Therefore, it would be interesting to 

determine the heat capacity change for binding of DHP to enzyme•NADPH complex. If a 

lower heat capacity is obtained, it will suggest that interactions of the glutamate tail of 

DHF with the K32 residues on the protein or restructuring of water molecules around the 

pABA-glu tail of the ligand are contributing to the heat capacity.  

 

2. Contribution to Heat Capacity from Solvent Reorganization: Various examples can be 

seen in the literature where the contribution of heat capacity upon ligand binding is due to 

reorganization of water. For example Chervenak and Toone studied the thermodynamics 

of association of different systems such as protein-carbohydrate, protein-peptide, protein-

nucleic acid and small molecule-small molecule interactions in both H2O and D2O (21). 

They observed that in each interaction the enthalpy of binding in D2O was decreased 

relative to H2O, with ΔΔH ranging from 0.4 to 1.8 kcal/mol. This experiment was 

performed at different temperatures and a linear relationship between the ΔΔH observed 

for binding in H2O and D2O suggested that solvent reorganization is responsible for part 

to all of the observed heat capacity change.  

 

In R67 DHFR, osmolyte experiments have shown that water is involved in ligand 

binding. Also, results from earlier experiments indirectly suggest that water molecules in 

R67 DHFR may be providing some of the binding enthalpy. For example, a study was 

performed by Hicks et al., in which folate was titrated into an enzyme•NADPH mixture 

in the presence of various concentrations of NaCl (4). A titration in enthalpy was 

observed, but no change was observed in ΔG. This strongly suggested that water may be 

involved. Recently, experiments performed by Feng and Howell (manuscript accepted) 

also show similar results. In brief, the experiment involved titration of DHF into a 
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mixture of NADP+ and a Q67H: 1+2+3+4 plus K32M: 1+3 mutant. It was surprising to 

see no significant change in the enthalpy as mutation of K32 to methionine has removed 

the possibility of an ionic interaction with the glutamate tail of DHF. This again supports 

the earlier observation that solvent molecules and/ or ring stacking could be contributing 

to the binding enthalpy.  

 

To investigate this, a similar approach (as used by Chervenak and Toone) can be taken in 

R67 DHFR where enthalpy binding is monitored in D2O as well as H2O. However, before 

performing such experiments one assumption that needs to be made is that neither the 

protein nor the protein-ligand complex change conformation in the presence of H2O or 

D2O.  

 

3. Molecular Dynamic Simulations: MD simulation is a powerful tool for monitoring 

binding and catalytic events. Using a suitable model, a time series of structures and their 

trajectories can be examined to look for clues as to what is occurring in solution 

experiments. In the case of ligand binding to enzyme, MD simulations provide a window 

for observing the conformations of enzyme that are most conducive to ligand binding. 

For example, MD simulations have been performed in the case of pig heart lactate 

dehydrogenase (LDH) to explore the variation in enzyme structure upon binding of the 

substrate and cofactor (22). Solvated binary (enzyme + cofactor) and ternary (enzyme + 

substrate + cofactor) complexes were studied using 2.48 ns simulations. Results obtained 

indicated both open and closed conformations, which suggested subtle protein and water 

rearrangements. Additionally, a large ΔCp was observed that could be attributed to 

rearrangements taking place for ligand binding into the deep binding pocket of the 

protein. 
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MD simulations also have been carried starting with the R67 DHFR•folate•NADP+ 

structure  (Beahm and Guo, personal communication). The folate was reduced to DHF in 

silico and to this, a proton was added to the N5 position to obtain HDHF (using the 

parameters by Garcia-Vilocia) (23). Similarly, NADP+ was changed to NADPH. The 

resultant R67 DHFR•HDHF•NADPH complex was then solvated and energy 

minimizations were performed to obtain a stable structure. A set of atoms was treated by 

the quantum mechanics (QM) approach, while the rest of the molecule was treated by a 

molecular mechanics (MM) force field. An umbrella sampling method (24) (used in 

CHARMM) (25) along with the weighted histogram analysis method (WHAM) (26) can 

help determine changes in free energy (potential of mean force) for the hydride transfer 

step. Therefore, this structure can be used to help determine the involvement of water 

molecules in ligand binding in R67 DHFR. Simulations using the binary complex of 

enzyme•NADPH as well as the ternary complex of enzyme•HDHF•NADPH could 

provide a clue on the role of water molecules in the binding of NADPH and DHF 

respectively. 

 

Is There A Direct Interaction Between K32 Or K33 Residues With Folate?  
 
 
X-ray and NMR studies indicate that the pABA-glu tail of DHF is disordered (11, 27, 28). 

Additionally, docking of DHF and molecular dynamic simulations (personal communication, 

Robert Beahm and Hong Guo) also predict the pABA-glu tail is mobile and can have transient 

interactions with symmetry related K32 residues on either side of the pore. Mutagenesis and salt 

effect studies have also suggested that the carboxylate residues on the glutamate tail of the 

substrate dihydrofolate can interact ionically with the lysine residue(s) (4). There is no direct 

evidence that the interaction involves K32 or (even possibly K33). Additionally, whether this 
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interaction is an ionic interaction and/ or a solvent separated ion pair (SSIP) is not well 

understood. Knowledge of these interactions is essential as enzyme efficiency is usually 

correlated with the correct positioning of the substrate in the ground state (6, 8). 

 

One approach to investigate whether a direct interaction occurs between K32 and the glutamate 

tail of folate would be to chemically crosslink folate with the enzyme. Once crosslinked, the 

amino acid residue participating in the crosslink could be identified. These studies are currently 

being undertaken in the laboratory using a zero length crosslinker, EDC (1-ethyl-3- (3-

dimethylaminopropyl) carbodiimide). This compound links the primary amine group to form an 

acylisourea intermediate, which then targets the carboxylic acid group (29). The primary amine 

groups that can be targeted in R67 DHFR are the K32, K33 residues and the N-terminus.  Since 

the N-terminus can be deleted without any loss of activity and does not play any role in ligand 

binding, N-terminal truncated R67 DHFR can be generated after crosslinking to show 

involvement of the N-terminus. The crosslinking between the K32 residue and folate or between 

the K33 residue and folate can potentially be determined using mass-finger printing analysis or by 

sequencing the amino acids using Edman degradation. 

 

These experiments will help evaluate if direct ionic interactions can form between the amino 

group of lysine and the carboxylate group of the folate. Alternatively, crosslinking experiments 

can be performed with the K33M mutant of R67 DHFR. If crosslinking of folate is observed, it 

will indirectly indicate that folate interacts with the K32 residue. 
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Stoichiometry Of Binding Of Folate To R67 DHFR 
 
 
An advantage of the crosslinking experiments is that the number of folates crosslinked to the 

enzyme can also be determined. One method would be to incorporate radiolabeled folate (3H or 

14C) during the crosslinking reaction with DHFR. The amount of folate crosslinked to the protein 

can then be determined on the basis of the radioactivity count. In summary, our preliminary 

crosslinking studies strongly suggest that there is an interaction between folate and K32, which is 

(at least part of the time), direct in nature. These studies combined with mass spectrometry can 

provide valuable information on the specific interaction of the glutamate tail with the lysine 

residue of R67 DHFR and also the stoichiometry of folate binding in a binary complex. 

 
 
Future Experiments To Understand The Structure-Function Of The Glutamate Tail 

Of Dihydrofolate 

 
The crystal structure of R67 DHFR bound to folate is available and provides information on the 

orientation of the pteridine ring (27). However, no electron density is observed for the pABA-

glutamate moiety of folate, indicating that the tail is disordered. Another crystal structure by 

Krahn et al is also available that contains NADP+ and DHF bound to the enzyme (12). This 

structure proposes that the cofactor forms hydrogen bonds with the backbone atoms of symmetry 

related I68 residues via a carboxamide group, while the N3 and O4 atoms of the substrate form 

interactions with I68 residues. Results from NMR studies also provide information on the 

residues involved in ligand binding. Information on how ligands bind is also available from 

ligand binding studies using the various analogs of folate and NADPH (6). However, certain 

features of ligand binding are not completely understood. We will discuss these aspects with a 

possible approach to understanding them as described below: 
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1. NADPH bound to R67 DHFR possesses a syn conformation between the nicotinamide 

and ribose rings, which is in contrast to the orientation observed for all other reductases. 

Therefore, it would be interesting to perform MD simulations of the cofactor with the 

nicotinamide ring and ribose rings locked in an anti conformation (when bound to the 

enzyme) and the energetics of binding can be determined. 

2. Results from X-ray crystallography, NMR and MD simulations suggest that the pABA-

glu tail is disordered. Also, the glutamate moiety of the pABA glu tail is present in the L-

conformation. Therefore, it would be interesting to investigate if replacing the L-form of 

glutamate with the D-form has any effect on the binding of DHF. Additionally, MD 

simulations with the modified substrate can also be performed to determine the contact 

made by this substrate versus the natural substrate with the glutamate tail in the L-form.   

3. Another experiment that can be performed with the glutamate tail is to decrease the 

length of the tail, while maintaining the total charge of -2. This can be achieved by using 

an analog in which the glutamate is replaced by aspartate. Evaluation of the binding 

properties of this substrate as well as effect on enzyme catalysis would provide 

information on the importance of the length of the pABA glu tail for binding and 

catalysis.  

 

Importance Of The Carboxylate Moieties Of Glutamate In DHF Binding And 

Catalysis 

 
The glutamic acid tail of DHF possesses two carboxylate moieties and R67 DHFR possesses 2 

lysines in or near the active site pore (K32 and K33) on each monomer. Docking, molecular 

dynamic simulations, crystal structure analysis, salt effect and mutagenesis studies have proposed 

K32 is the important contact for binding and K33 helps establish a positive electrostatic potential 
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that aids binding (30). Inhibition studies using folate-histidine and folate-ornithine show minimal 

effects on the Ki of folate, suggesting that the α-carboxylate moiety of the glutamic acid tail of 

folate may be important in interacting with the lysine residue(s) (6). On the other hand, molecular 

dynamic simulations predict that both the carboxylate moieties form intermittent contacts with the 

lysine residues (Robert Beahm and Hong Guo, personal communication) (figure 2). Another 

avenue for investigating how the DHF tail interacts with R67 DHFR is to utilize folate 

derivatives. Folate can be modified at either the α- or the γ-carboxylate positions by various 

amines such as a non-charged molecule of methylamine (MA). The resultant modified folates 

would therefore include singly modified folates as well as doubly modified folates. Of these, the 

singly modified folate would include two isomers: one in which the α-carboxylate position of 

glutamic acid is conjugated to MA and the other in which the γ-carboxylate position of the 

glutamic acid is conjugated to MA (31). The three different species of modified can be identified 

and separated (from each other and the unmodified folate) on the basis of their pKas using ion 

exchange chromatography. The effect of these isoforms on the binding and catalysis of R67 

DHFR can then be monitored using kinetics. Specifically, Ki experiments will help determine if 

one carboxylate group is more critical than the other in forming interactions with the lysine 

residue. The singly modified folates can further be reduced to their respective dihydro forms and 

used as substrates to determine the Km and kcat of the reaction. 

 

In contrast to the singly modified folate, the doubly modified will be devoid of any negative charge 

on the glutamic acid tail. This should result in decreased interactions with the lysine residues on the 

protein leading to weaker binding of the substrate. As discussed earlier, the Q67H: 1+2+3+4 K32M: 

1+3 asymmetric multimutant (Feng and Howell, manuscript accepted) shows tighter binding of DHF 

as compared to the parent K32M: 1+3 asymmetric mutant. Even though, lysine 32 residues (in gene 

copies 1 and 3) are no longer present to form contacts with DHF, the Q67H mutation allows 
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Figure 2: Molecular dynamic simulation describing the interaction of the glutamate tail of 

dihydrofolate with lysine residues from different monomers. A snapshot at 240-280 pico 

seconds is shown wherein the α and γ carboxylate groups of the glutamate tail of DHF form 

contacts with the lysine 32 residues of monomer B and C of R67 DHFR. The distance between 

the α- carboxylate group and lysine 32 (of monomer B) is 1.54Å. On the other hand, the distance 

between the γ-carboxylate to the bridging water is 1.71Å and that between lysine 32 (of monomer 

C) and the bridging water is 3.46Å at this time point in the MD simulation (Robert Beahm and 

Hong Guo, personal communication). 
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additional ring stacking between the Q67H residues and the pteridine ring, resulting in tighter 

binding of DHF. When folate lacking the negatively charged groups is isolated, it can be reduced to 

the dihydro form. This can then be used as a substrate with the wild type enzyme and/ or the Q67H: 

1+2+3+4 mutant. We may expect to see similar results as for binding of unmodified DHF to the 

K32M: 1+3 mutant and/ or the Q67H: 1+2+3+4 plus K32M: 1+3 mutant.  

 

Redesigning The Active Site Of An Enzyme 

 
The van’t Hoff, Arrhenius plots and osmolyte experiments reported in this thesis provide 

information on how the ligands and transition state bind and the role of water in ligand binding. 

Since R67 DHFR has a single active site pore that can bind both ligands, the binding surface is 

promiscuous in nature. Using steady state kinetics, the catalytic efficiency of R67 DHFR has been 

determined to be 1.8 * 105 s-1 M-1 (for kcat/Km(NADPH)) and 1.2 * 105 s-1 M-1 (for kcat/Km(DHF)) (32)   

These values are lower than diffusion limited enzymes which possess kcat/Km values in the range 

of 107 to 108 s-1 M-1 (33). 

 

Enzyme engineering involves improving or modifying enzymes to obtain desired binding and 

catalytic properties. Penning and Jez have discussed the following factors that must be considered 

for redesigning an enzyme (34): (1) Can the substrate specificity be changed without altering the 

catalytic efficiency and the overall reaction mechanism of the enzyme? (2) Can the 

stereochemistry of the substrate, cofactor or product be inverted? (3) Can alteration of the active 

site introduce catalysis of a new chemical reaction? (4) And finally, can the cofactor specificity 

be changed (for example from NADPH to NADH)? 
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In order to achieve the desired result (as described above), two complementary strategies are 

available: rational design and directed evolution. Rational design involves making changes in the 

amino acid sequence based on detailed knowledge of the protein structure (substitution of amino 

acids or changes in secondary structure to generate enzymes with desired properties). (35). This 

approach has been used for the generation of a superoxide dismutase with high catalytic 

efficiency (36). In the case of   isocitrate dehydrogenase and isopropylmalate dehydrogenases, 

coenzyme specificities have been reversed using the rational design approach (37-40). Other 

examples involving redesign of the enzyme to attain better substrate specificity and /or catalytic 

efficiency are aspartate aminotransferase (41) and  lactate dehydrogenase (42). However, many 

attempts using this approach have failed indicating that amino acid replacements should not be 

the only criterion when redesigning enzymes. Chen et al., have proposed that many cycles of 

mutagenesis are required to improve the properties of enzymes (39). 

 

The site directed mutagenesis approach has been used in R67 DHFR (as described earlier) to 

identify the critical residues involved in ligand binding and catalysis (2-5, 7, 9, 43). One such 

example is the asymmetric K32M: 1+3 mutant which places two mutations on the same side of 

the pore (7). This mutant shows an increased Km for DHF as well as NADPH binding. This likely 

indicates that NADPH has a preference for binding to the wild type side of the pore, while DHF 

binds to the mutant half of the pore. Therefore, addition of the K32M: 1+3 mutations results in 

the generation of different specificities for the substrate and cofactor for binding to half of the 

pore. Another example is that of the Q67H: 1+2+3+4 plus K32M: 1+3 multimutant in which the 

addition of the Q67H: 1+2+3+4 mutations to the K32M: 1+3 mutant resulted in tighter binding of 

DHF (table 1). Therefore the Q67HfullK32Mhalf mutant rescues the weak binding of DHF (Feng 

and Howell, manuscript accepted).  
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Table 1. Comparison of kinetic parameters for Q67H, Y69F and K32M asymmetric 

mutants of Quad3 DHFR. 

              

              a Q67Hhalf K32Mhalf = Q67H: 1+2+3+4 plus K32M: 1+3 

\b Q67Hhalf K32Mhalf = Q67H: 1+4 plus K32M: 1+3 

 

 

 

 

 

 

 

 

 

R67 DHFR Variant kcat (sec-1) Km (DHF) (μM) 
 

Km (NADPH) (μM) 
 

Quad3 0.81 ± 0.02 6.7 ± 0.4 
 

3.4 ± 0.4 
 

Q67H: 1+4 0.15 ± 0.01 2.6 ± 0.5 
 

0.95 ± 0.14 
 

Q67H: 1+2+3+4 0.10 ± 0.01 0.13 ± 0.02 
 

0.026 ± 0.004 
 

K32M: 1+3 ≥3.7  ≥ 400  
 

≥ 145 
  

a Q67Hhalf K32Mhalf
 1.7 ± 0.04 11 ± 0.7 

 
29 ± 2 

 

b Q67Hfull K32Mhalf
 0.49 ± 0.01 14 ± 0.9 

 
9.6 ± 2.8 
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Directed evolution, on the other hand, does not require information on how enzyme structure 

relates to its function. In this technique, error-prone PCR is used to create a library of 

mutagenized genes. Another technique that can be used is phage display.  Genetic screening can 

then be employed to select for mutants with new and improved properties. In other words, this 

technique involves mimicking the natural evolution process. The usefulness of this technique is 

that it searches through sequence space to obtain the desired result. This is advantageous in 

proteins where a clear prediction on how to engineer a protein cannot be made due to lack of 

structural or mechanistic information. One limitation of this technique is the requirement of an 

efficient screening method to identify a large number of potential mutants. 

 

In R67 DHFR, combinatorial mutagenesis has been carried out, where 16 principal amino 

acids (encoded by residues 66 to 69 in all four monomers) that constitute the active site 

were mutated. Out of 5000 combinatorially mutated active site variants, three variants 

were selected due to their ability to confer TMP resistance (44). When they were 

kinetically characterized, it was observed that the kcat and Km values were similar to those 

of the wild type enzyme, indicating that the catalytic efficiency was not affected despite 

many mutations. This effect is in contrast to that obtained by single point mutations. 

Directed evolution can also be applied to other R67 DHFR variants such that an enzyme 

with a higher catalytic efficiency is generated. For example, the Q67H mutant has a good 

catalytic efficiency and tight DHF and NADPH binding (3, 43). Can random mutations 

be introduced around at valine 66, isoleucine 68 and tyrosine 69, such that a mutant with 

a higher catalytic efficiency is obtained? In this way, evolution in nature can be 

mimicked to obtain a more efficient enzyme. 
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Drug Design 

 
Structure based drug design methods identify favorable and unfavorable interactions between the 

ligand and protein so as to maximize beneficial interactions that increase binding affinity. 

Therefore based on the structural determinants for ligand binding, we can design ligands that can 

inhibit the catalytic reaction of R67 DHFR.  For example, since the pABA-glutamate tail of DHF 

is disordered, we can perhaps replace it by a moiety that is more rigid and also makes contacts 

with the lysine residue. One such moiety can be the NADPH tail region itself. This moiety 

contains phosphate groups that form ionic interactions with the lysine residues in the enzyme. 

Therefore, a chimeric substrate can be generated with potentially improved binding 

characteristics. Chimeric substrates have been employed in other instances in designing inhibitors 

that can effectively inhibit the enzyme (45). 

 

From Chapter 2, temperature dependent studies have been performed to determine the energetics 

of ligand binding in the ground state and transition state. Results from these studies suggest that 

the entropy of binding is increased in the transition state as compared to the ground state. 

Therefore, the ligands likely reorient themselves to gain access to the transition state. Analogs 

mimicking the transition state can serve as potent inhibitors as they bind more tightly to the 

enzyme (46). For example, immucillin-H is a transition state analogue of the enzyme purine 

nucleoside phosphorylase (PNP) (47, 48). Using kinetic isotope effects Vern Schramm 

demonstrated that DADMe-immucillin-H is a more potent inhibitor of human-PNP as compared 

to immucillinH (47, 48). Moreover, DADMe-immucillin-H is 8 times more specific towards 

human PNP as compared to bovine PNP. Therefore, kinetic isotope effects along with molecular 

dynamic simulations can aid in providing detailed information on the transition state, which can 

be used for designing inhibitors for R67 DHFR. 
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As discussed in chapter 3, water molecules are involved in DHF and NADPH binding in R67 

DHFR. In general, water molecules involved in ligand binding can be classified into two 

categories: those that are readily displaced by binding of ligands and those that are ‘conserved’ 

and never displaced (49). The latter category of tightly bound, conserved water molecules can be 

considered as an integral part of the protein, which provide hydrogen-bonding contacts for ligand 

binding to the enzyme. Using this information, different types of inhibitors can be designed. An 

example of an inhibitor utilizing a water molecule for binding is KNI-272 (an inhibitor of HIV-1 

protease), one of the key targets for the treatment of AIDS (50). KNI-272 makes contacts with 

HIV-1 protease to the enzyme via a bridging water molecule (as shown by the crystal structure). 

On the other hand, DMP450 is an inhibitor of HIV-1 protease which uses a carbonyl group to 

maintain its hydrogen-bonding network with the protein, and it does so by excluding water 

molecules. The displacement of a key water molecule by insertion of a carbonyl group should be 

entropically unfavorable (due to desolvation cost for the carbonyl group). However, this does not 

occur as DMP-450 contains two less carbonyl groups as compared to KNI-272. Thus, the overall 

desolvation cost for DMP-450 is low resulting in favorable binding. 

 

In R67 DHFR, water is required for binding of DHF (chapter 3). Also MD simulations predict 

that one of the possible ways in which the disordered tail of DHF can interact with the K32 

residue on the protein is via a solvent separated ion-pair (Beahm and Guo, personal 

communication). Moreover, weaker binding affinity as well as decrease in binding enthalpy has 

been observed when the length of the pABA-glu tail of DHF is shortened (6). A parallel study 

using the K32M: 1+3 asymmetric mutant also showed weak binding affinity of DHF (7). 

However, when Q67H mutations were added to the K32M: 1+3 construct  (Q67H: 1+2+3+4 plus 

K32M: 1+3 multimutant), tighter binding of DHF was observed as well as a large, negative 

binding enthalpy (Feng and Howell, manuscript accepted). Observation of a binding enthalpy in 
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the absence of ionic interactions of the DHF tail with the K32 residue of R67 DHFR suggests that 

water and/or ring stacking may be providing the binding enthalpy. Overall, these observations 

indirectly suggest that water molecules are playing important role in interaction of DHF with the 

protein. 

 

For drug design, it would be interesting to identify conserved water molecules involved in DHF 

and/ or NADPH binding. Crystallography studies have been performed in R67 DHFR and have 

provided information on water molecules involved in substrate and cofactor binding. For 

example, a crystal structure of the Q67H mutant of R67 DHFR in complex with NADP+ shows a 

number of water molecules mediating interactions between the cofactor and the enzyme (51). Of 

these, binding of NADPH to the apo enzyme causes displacement of water 149. However, the 

symmetry related water 149 in the vacant paired site remains and is proposed to form hydrogen-

bonding interactions with the O7 atom of NADPH. Thus the symmetry related water 149 plays an 

important role in mediating interactions of the NADPH with R67 DHFR. When the second 

molecule of NADPH binds, this water molecule is also displaced and hence the weaker binding 

affinity observed. Therefore, loss of hydrogen bonding interactions by water 149 in both bound 

cofactor molecules, may explain the negative cooperativity observed for binding of 2 NADPH 

molecules.  

 

For designing a mimic of NADPH, water 149 can be considered. Ligands can be designed that 

will form interactions with this conserved water molecule so as to form tight interactions with the 

enzyme. Alternatively ligands can be designed that will mimic the hydrogen bonding interactions 

of the conserved water by excluding it. A similar approach can be used to design inhibitors 

mimicking the substrate, DHF.  
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