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Abstract 
This thesis is concerned with modeling of both space and time variations of Ultra Wide 

Band (UWB) indoor channels. The most common empirically determined amplitude 

distribution in many UWB environments is Nakagami distribution. The latter is 

generalized to stochastic diffusion processes which capture the dynamics of UWB 

channels.  In contrast with the traditional models, the statistics of the proposed models 

are shown to be time varying, but converge in steady state to their static counterparts.  

 

System identification algorithms are used to extract various channel parameters using 

received signal measurement data, which are usually available at the receiver. The 

expectation maximization (EM) algorithm and the Kalman filter (KF) are employed in 

estimating channel parameters as well as the inphase and quadrature components, 

respectively. The proposed algorithms are recursive and therefore can be implemented 

in real time. Further, sufficient conditions for the convergence of the EM algorithm are 

provided. Comparison with recursive Least-square (LS) algorithms is carried out using 

experimental measurements.  

 

Distributed stochastic power control algorithms based on the fixed point theorem and 

stochastic approximations are used to solve for the optimal transmit power problem and 

numerical results are also presented.  

 

A framework which can capture the statistics of the overall received signal and a 

methodology to estimate parameters of the counting process based on the received 

signal is developed. Furthermore, second moment statistics and characteristic functions 

are computed explicitly and considered as an extension of Rice’s shot noise analysis.  

 

Another two important components, input design and model selection are also 

considered. Gel’fand n-widths and Time n-widths are used to represent the inherent 

error introduced by input design. Kolmogorov n-width is used to characterize the 

representation error introduced by model selection. In particular, it is shown that the 

optimal model for reducing the representation error is a finite impulse response (FIR) 

model and the optimal input is an impulse at the start of the observation interval. 
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Introduction 
 
1.1 UWB Radio Channel Models  
 
Ultra-wideband (UWB) communication systems have recently attracted significant 

interest from both the research community and industry since the Federal 

Communications Commission (FCC) allowed limited unlicensed operation of UWB 

devices in the USA [82]. For example, in the digital home of now or in the not far away 

future, people will be sharing photos, music, video, data and voice among networked 

consumer electronics, PCs and mobile devices throughout the home and even remotely. 

What’s more, users will be able to stream video content from a PC or consumer 

electronics device. [81]. 

 

Wireless technology which is designed for short range, high resolution and personal 

area network is a potential candidate for enabling this capability. In recent years, UWB is 

making the transition from laboratories to standardization. This is a key step toward the 

development of real world products [81]. 

 

Recently researchers have made great industry achievements. They built the formation 

of industry working groups that will define the UWB physical layer (PHY) and MAC layer 

and applications that will run on top of the radio platform. In the U.S., the FCC has 

mandated that UWB radio transmission can legally operate in the range from 3.1 GHz to 

10.6 GHz, at a transmit power of 1 dBm/MHz. Japanese regulators have issued the first 

UQWB experimental license allowing the operation of a UWB transmitter in Japan [81]. 

  

UWB communications systems are commonly defined as systems that have either more 

than 20% relative bandwidth or more than 500 MHz absolute bandwidth. One of the 

most promising applications for UWB is sensor networks, where a large number of 

sensor nodes communicate among each other and with central nodes with high reliability. 

UWB systems have a number of advantages that make them attractive for consumer 

communications applications [1]. In particular, UWB systems 

 have potentially low complexity and low cost; 

 have noise-like signal; 
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 are resistant to severe multi-path and jamming; 

 Have very good time domain resolution slowing for location and tracking 

applications [1]. 

 

The low complexity and low cost of UWB systems arises from the essentially baseband 

nature of the signal transmission. Unlike conventional radio systems, the UWB 

transmitter produces a very short time domain pulse, which is able to propagate without 

the need for an additional RF (radio frequency) mixing stage [1, 51].  

 

This thesis is focused on the UWB channels which are very similar to a wideband 

channel as may be experienced in spread spectrum or CDMA systems [27, 35]. The 

main distinguishing feature of an ‘ultra’ wideband channel model is the extremely multi-

path-rich channel profile [1, 2, 5 and 6].  

 

A number of UWB channel models have been proposed in the literature. In [2] an ultra-

wide bandwidth signal propagation experiment is performed in a typical modern office 

building in order to characterize the UWB signal propagation channels. This experiment 

setup is also used outdoors to find out UWB’s suitability to narrowband loss models. The 

results in [3] show that the narrowband loss models can be applied to the UWB case. In 

[4] the author suggests a model for the frequency range below 1 GHz. Further, a 

comprehensive statistical model that is valid for a frequency range from 3-10 GHz is 

proposed in [5]. This model is accepted by the IEEE 802.15.4a task group as standard 

model for evaluation of UWB system proposals. 

 

The real valued model in [6] is based on empirical measurements originally carried out in 

indoor environments in 1987. Due to the clustering phenomena observed at measured 

UWB indoor channels, the model proposed in IEEE 802.15 is derived from the Saleh 

and Valenzuela (SV) model using a log-normal distribution rather than Rayleigh 

distribution for the multi-path gain magnitude. An independent fading mechanism is 

assumed for each ray within the cluster.  In the SV model, both the cluster and ray arrival 

times are modeled independently by a Poisson process [55, 56]. The phase of the 

channel impulse response can be either 0 or π . Therefore the model contains no 

imaginary component.   
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The main goals of the IEEE 802.15 model are the modeling of attenuation and delay 

dispersion. The former subsumes both shadowing and average path loss, while the latter 

describes the power delay profile and the small-scale fading statistics; from this, other 

parameters such as root mean square (rms) delay spread, number of multipath 

components are derived  in [5]. 

 

The model in [6] starts with the physical realization that rays arrive in clusters. The 

cluster arrival times are modeled as Poisson arrival processes with some fixed rateΛ . 

Within each cluster, subsequent rays also arrive according to Poisson processes with 

another fixed rateλ . Typically, each cluster consists of many rays. 

 

The classical SV model also uses a Poisson process for the ray arrival time. Due to the 

discrepancy in the fitting for the indoor residential and indoor and outdoor office 

environments, [8] proposes to model ray arrival times with mixtures of two Poisson 

processes. 

 

For some environments, most notably the industrial environment, a dense arrival of 

Multi-path Component (MPCs) was observed, i.e., each resolvable delay bin contains 

significant energy. In that case, the concept of ray arrival rates loses its meaning and a 

realization of the impulse response based on a tapped delay line model with regular tap 

spacing is to be used [57]. 

 

Different from what previous people have done, this thesis introduces a fresh approach 

in modeling the wireless UWB indoor channels which describes the characteristics of the 

channel more accurately. A more accurate representation of the channel will lead to a 

more appropriate design of the transmit function, power control of the transmitter, choice 

of the modulation schemes, etc.  A better understanding of the channel characteristics 

can help the receiver avoid interferences by other users because it can subtract the 

jammer from the received signals based on the channel information. So a better 

modeling scheme can help the communication system to minimize the interferences.  
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A major specialty of the modeling scheme is treating the attenuation coefficient as a 

diffusion process; while current models usually consider it as a random variable. The 

diffusion process is described by a stochastic differential equation, which can further be 

written in a stochastic state space form. Since the number of unknown parameters of 

state space is finite, it is easier to use, for instance, in channel estimation.  

 

Besides having a channel model, a complete statistical analysis is necessary. The 

statistical analysis helps fully understand the whole system so as to have better system 

design. In previous works, the statistics of the received signal were computed by making 

some important simplifications. First, the channel parameters such as attenuation 

coefficient depend not only on time but also the space, during the computation of various 

statistics. Second, although for deterministic or a fixed sample path, the computation of 

the statistical properties of received signal is not affected by this omission, this is not the 

case when the ensemble statistics are analyzed. Ensemble statistics using a counting 

process as simple as the inhomogeneous Poisson process reveal an additional 

smoothing property associated with each propagation environment, which is expressed 

in terms of the rate of the Poisson process and the attenuations [76].  

 

Although in some works pretty good results with these simplifications are obtained, it is 

because they apply those to some specific wireless environments. In order to fully solve 

the statistical analysis problem, we introduce shot-noise analysis of random noise, 

brought by Rice [36]. In [36], Rice brought in a powerful tool (Campbell’s theorem [36]) to 

fully analyze the statistical properties of wireless fading channels. The statistical analysis 

includes not only the first and second moments of the received signal but also the 

distribution of the number of paths, which has received little attention in the literature.  

 

In this thesis, state space models [52] are used to model the indoor wireless channels 

with a finite number of parameters to identify. A worst case estimation error [75] which 

depends on input and model set is used as the objecting function. We provide the 

optimal input and model set which minimize the worst case estimation error. The 

problem is divided in two parts, one part is input design, and the other is model selection. 

Both input design and model selection are viewed as an optimization problem 

individually. The identification error, optimized over all bounded inputs and all n-
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parameter models, is related to the n-width in the sense of Gel’fand and Kolmogorov [72] 

respectively, two standard notions in metric complexity theory.  

 

 

1.2 Power Control 
 
Power control (PC) is important to improve performance of wireless communication 

systems. The goal of power control is to minimize the power of transmitters in the system 

such that the signal to interference ratio (SIR) of each receiver reaches certain threshold. 

The threshold can be different for different receivers, depending on their propagation 

environments. Power minimization not only increases battery life, but also increases 

overall network capacity [41, 42, 43 and 44]. Users only need to expand sufficient power 

for acceptable reception as determined by their quality of service (QoS) specifications 

that is usually characterized by the SIR [9]. The downlink Power Control is 

straightforward since each link has the same channel gains, while the uplink PC is more 

complex and is the problem we solve in this thesis. 

 

Power Control algorithms (PCA) can be classified as centralized and distributed. 

Centralized PCAs require the information from every node of the network, while the 

distributed PCAs only require the base station to know its own information, such as, its 

Signal to Noise ratio (SNR), which is easily obtained from local measurements. These 

power allocation problems have been treated as an eigenvalue problem of a 

nonnegative matrix [58]. The power is updated iteratively based on the signal to 

interference ratio (SINR) and certain thresholds [26].  

 

Stochastic PCAs (SPCA) that use noisy interference estimates have been introduced in 

[18], where conventional matched filter receivers are used. It is shown in [18] that the 

iterative SPCA, which uses stochastic approximations, converges to the optimal power 

vector under certain assumptions on the step-size sequence. These results were later 

extended to the cases when a nonlinear receiver or a decision feedback receiver is used 

[19]. Much of this previous work deals with discrete time PCAs and static time-invariant 

channel models.  
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A fixed point of a function is a point mapped to itself by the function. Fixed point theorem 

[50] gives the conditions under which case the functions have solutions. In this thesis, 

the distributed PCA based power optimization problem is treated as a fixed point 

problem. The power is updated recursively until the power converges. It is also shown 

that the optimal transmit power is given by the fixed point of a certain function.  

 

In this work, The PCA only requires the received SIR at its intended receiver, while the 

received matched filter output (received SIR) at its intended receiver and the channel 

gain between the transmitter and its intended receiver are required in the SPCA 

presented in [18, 26].   

 

 

1.3 Contributions 

The contributions of the research undertaken here are as follows 

 

1. Application of stochastic differential equations to model UWB wireless indoor channels. 

  

Unlike narrow band short term fading [57], the distribution of each path is characterized 

by Nakagami distribution [5, 8]. Impulse response of the indoor channel can be 

approximated and factorized. Therefore, it can be modeled by stochastic differential 

equations (SDEs) [52].  

 

2. Estimation of UWB channel parameters using Expectation Maximization (EM) 

algorithm.   

  

Several groups of indoor multipath data were provided by UT the Antenna Laboratory. 

Different paths are separated by their statistical properties. The Kalman filter is used to 

estimate inphase, quadrature, envelope of the received signal. The EM algorithm is used 

to identify the model parameters. Moreover, recursive Least-Square (LS) algorithm is 

also discussed and compared to the EM algorithm using experiment data.  

 

3. Development of a PCA based on the Fixed Point theorem. 
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Centralized [58] and Distributed PCAs are developed based on the TV channel models. 

Further, a stochastic PCA is based on fixed point [65] and stochastic approximation is 

discussed. Numerical results are provided and the convergence results are compared.    

 

4. Statistical analysis of  multipath channels.   

 

Develop a framework which can capture the statistics of the overall received signal. We  

assume the analysis with the most general case where the amplitude, phase, arrival 

times and the input signal are random processes; the delays are time-varying, while the 

counting process can be either homogeneous or inhomogeneous Poisson process [55]. 

Statistics such as first and second moments, characteristic function are calculated 

explicitly. Furthermore, we extend the Rice’s shot noise analysis result to our framework.  

 

5. Input design and model selection 

 
Formulate the problem of modeling the wireless channels using two standard 

optimization problems, input design and model selection, with the criterion of minimizing 

the worst case estimation error. These problems are related to n-widths in the sense of 

Gel’fand and Kolmogorov in metric complexity theory. Further, the optimal estimation 

error is calculated based on the Gel’fand and Kolmogorov n-widths.  

 

 

1.4 Thesis Organization 

The thesis is organized as follows 

 

Chapter 2 presents the modeling of UWB indoor wireless channels. A necessary and 

sufficient condition for representing any impulse response in stochastic state space from 

is that it is factorizable into the product of two separate functions of time and space. 

Howerer, in general this is not the case for impulse response of wireless channels. We 

show that the impulse response of wireless channels can be approximated in the mean 

square sense as closely as desired by factorizable impulse responses that can be 

realized by SDEs in state space form. New dynamical spatial and temporal models for 
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the power loss and attenuation coefficient are presented. Furthermore, another TV 

model Autoregressive Moving Average (ARMA) is provided and compared with the 

proposed SED models using experimental data.  

 

Chapter 3 describes the EM algorithm together with the Kalman Filter to estimate system 

parameters in state space form. They are used to estimate the inphase, quadrature, 

envelop and they are suited to Nakagami fading. Simulation and experimental results 

are presented to verify the validity of the model; comparison is shown between the EM 

algorithm and recursive LS algorithm.  Also, the sufficient conditions for the EM algorithm 

to converge are also discussed.  

 

Chapter 4 presents the PCAs based on the dynamical models described in Chapter 2. 

Distributed PCAs are developed based on the TV channel models. Further, a stochastic 

PCA is based on fixed point and stochastic approximation is discussed to minimize the 

total transmitted power.   

 

In Chapter 5 the statistical analysis of the overall received signal is established. This is 

accomplished by extending and adapting accordingly Rice’s shot-noise analysis to 

complex signals using homogeneous or inhomogeneous Poisson processes for 

describing the number of paths. A parameter estimation method and Cramer-Rao Lower 

Bound are also discussed. Campbell’s theorem (established by Rice) is extended to our 

framework in order to calculate the statistics such as the first and second moments of 

the received signals.  

 
In chapter 6 we focus on channel identification problem in discrete time. The objective is 

to minimize the worst case identification error. The worst case identification error can be 

separated to two terms, i.e., inherent error and representation error. The inherent error is 

generated during the information acquisition, while the representation is brought up from 

the information processing. Minimizing the inherent and representation error is related to 

the n-width in the sense of Gel’fand and Kolmogorov.  
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Chapter 2 
 
UWB Indoor Wireless Channel 
Modeling  
 
Small-scale propagation models characterize the rapid fluctuations of the received signal. 

This occurs when the transmitter-receiver separation distance is small. The main 

propagation mechanism for this type of environment is scattering. Signal is scattered at 

the vicinity of the receiver. Many copies of the transmitted signal arrive at the receiver via 

a number of different paths at slightly different times. This phenomenon is called multi-

path in indoor communication [35]. At the receiver, plane waves add vectorially giving 

rise to rapid and severe signal fluctuations. This gives rise to the short-term fading 

channel model, where the term fading refers to the rapid and severe received signal 

fluctuations due to scattering in this type of environment.  

 

 

2.1 Review of Previous UWB Channel Model 
 

A number of UWB channel models [5, 8] have been proposed in the literature. For 

example, the measurement data collected in a series of multipath propagation studies 

can also be used to model UWB path loss. The impact of the link distance on the 

received signal energy can be determined by propagation loss calculations which define 

the fraction of the transmitted power that can be received at a distance d . General 

propagation physics approaches are valid in the case of UWB transmission, which 

means that the longer the distance is, the lower the received signal’s energy is. The 

following equation [1] can be used to fit the measurement data.  

                                  ( ) ( )10P d 10logn d a= +                                                                   (1) 

 where n  corresponds to the path loss factor, d  is the distance and a  is a power 

scaling constant. 
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Further, the IEEE 802.15.3 group for wireless personal area networks and especially its 

channel modeling subcommittee decided to use the so called modified Saleh-Valenzuela 

(SV) model as a reference for UWB channel model [5, 8].  

 

The impulse response (in complex baseband) of the SV model is given in general as  

                        , , ,
0 0

( ) exp( ) ( )
L K

discr k l k l l k l
l k

h t a j t Tφ δ τ
= =

= − −∑∑                                          (2) 

where ,k la  is the tap weight of the thk  component  in the thl  cluster , lT  is the delay of 

the thl  cluster, ,k lτ  is the delay of the thk  MPC relative to the thl  cluster arrival lT . The 

phase ,k lφ  is uniformly distributed, i.e., for a band pass system, the phase is taken as a 

uniformly distributed random variable from the range[ ]0, 2π . Following [7], the number 

of cluster L  is an important parameter of the model. It is assumed to be Poisson-

distributed [55]  

                                  
( ) exp( )( )

!

L

L
L Lpdf L

L
−=                                                                 (3) 

So the mean L completely characterizes the distribution.  

 

In [8], 0,lτ  is taken to be zero. The distribution of the cluster arrival times is given by a 

Poisson process  

                          1 1( | ) exp[ ( )], 0l l l l l lp T T T T l− −= Λ −Λ − >                                                  (4) 

where lΛ  is the cluster arrival rate (assumed to be independent of l ). The classical SV 

model also uses a Poisson process for the ray arrival time. Due to the discrepancy in the 

fitting for the indoor residential and indoor and outdoor office environments, they 

propose to model ray arrival times with mixtures of two Poisson processes as follows 

[5,8 ] 

                         

, ( 1), 1 1 , ( 1), 2 2 , ( 1),( | ) exp[ ( )] ( 1) exp[ ( )], 0k l k l k l k l k l k lp kτ τ βλ λ τ τ β λ λ τ τ− − −= − − + − − − >            (5) 

where β  is the mixture probability, while 1λ  and 2λ  are the ray arrival rates. 

 



 11

Although this model characterizes the UWB environment in certain cases, it is not 

general enough to capture both space and time variation of UWB indoor channels. All 

the channel parameters in this model are random variables. However, in practice, the 

channels are varying, i.e., they are random processes with time-varying statistics. 

Therefore, a model which captures both time and spatial character should be considered.  

  

 

2.2 General Time-varying Model 
 

The general time-varying (TV) model of wireless fading channels is typically represented 

by the following multipath TV low-pass equivalent impulse response [30]: 

( ) ( ) ( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

,

1 1
; , , ,n

N t N t
j t

l n n n n n
n n

H t r t e t I t jQ t tττ τ δ τ τ τ τ δ τ τΦ

= =

= − = + −∑ ∑           (6) 

where ( );lH t τ  is the response of the channel at time t , due to an impulse applied at 

time t τ− , ( )N t  is the random number of multi-path components impinging on the 

receiver, while the set ( ) ( ) ( ){ } ( )
1

, , , ,
N t

n n n n
r t t tτ τ τ

=
Φ   describes the random TV attenuation, 

overall phase shift and arrival time of the different paths, respectively. 

( ) ( ){ } ( )
1

, , ,
N t

n n n
I t Q tτ τ

=
 ( ) ( ) ( ) ( ){ } ( )

1
, cos , , , sin ,

N t
n n n n n
r t t r t tτ τ τ τ

=
Φ Φ   are defined as the 

inphase and quadrature components of each path. Let ( )ls t  be the low pass equivalent 

representation of the transmitted signal, then the low pass equivalent representation of 

the received signal is given by [30] 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( )

,

1
; , n n

N t
j t t

l l l n n l n
n

y t C t s t d r t t e s t tττ τ τ τ τ
∞ Φ

−∞
=

= − = −∑∫                           (7)  

and the multi-path TV band pass impulse response is given by [30] 

 

( ) ( ) ( )
( )

( )( )

( ) ( )( ) ( )( )
( )

,

1

1

; Re ,

, cos , sin

n c

N t
j t j t

n n
n

N t

n c n c n
n

H t r t e e t

I t t Q t t t

τ ωτ τ δ τ τ

τ ω τ ω δ τ τ

Φ

=

=

⎧ ⎫⎪ ⎪⎡ ⎤= −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

= − −

∑

∑
                                      (8) 
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where cω  is the carrier frequency and the band pass representation of the received 

signal is given by 

( ) ( ) ( )( ) ( )( )
( )

1
, cos , sin

N t

n c n c l n
n

y t I t t Q t t s t tτ ω τ ω τ
=

= − −∑                       (9) 

 

It can be seen that all the parameters such as inphase and quadrature component in this 

time-varying impulse response model are random processes and depend on both t  and 

τ . The inphase and quadrature component are general functions of t  and τ . As a 

result, they cannot be specified by a finite number of parameters. In next section we 

show that the impulse response can be approximated in a mean square sense by 

stochastic state space. The latter is completely characterized by a finite number of 

parameters.  

   

 

2.3 Impulse Response Factorization 
 

Now we want to represent the time-varying model in (9) with a stochastic state-space 

form. The following theorem states a necessary and sufficient condition about the 

realization of the impulse response. 

 

Theorem 2.1 [52]: An impulse response ( ; )h t τ  of a system has a state space realization 

if and only if it can be factorized, that is, if there exist two functions ( )g ⋅   and ( )f ⋅  such 

that for all t  and τ  we have 

( ; ) ( ) ( )h t g t fτ τ=                                                          (10) 

It is readily seen from the expression of the impulse response ( );lH t τ  of the channel 

that in general it can not be factorized in the form (10). However, we show that if 

( );lH t τ  has finite energy, i.e., ( ) [ ) [ )( )2; 0, 0,lH t Lτ ∈ ∞ × ∞  (see definition in Appendix 

A) can be approximated as closely as desired by a factorizable impulse response 

function in the following theorem.  
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Theorem 2.2: If the impulse response ( );lH t τ  of the wireless channel in (6) has finite 

energy, it can be approximated as closely as desired by a factorizable impulse response 

in the mean square sense. 

Proof: See Appendix A. 

 

According to the realization theory in [52], ( );lH t τ  can be realized by the following 

linear state equation 

                                              
( ) ( ) ( )
( ) ( ) ( )
x t f t u t
y t g t x t

=
=

                                                                (11) 

However, the realization is not unique; we choose the following form of realization as our 

framework. 

 

Let us denote ( ) ( ){ },I QX t X t  as the state vectors for the inphase and quadrature 

components, respectively, and ( ) ( ){ },I t Q t  are the inphase and quadrature 

components of the channel, then the path can be written in compact form as 

 

        

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

00 0
,

0 0 0

0 0
0 0

I I I II I

Q QQ Q Q Q

I I II I

Q QQ Q Q

dX t X t dW t XA b
dt

A bdX t X t dW t X

X t dW t f tI t C D
C DX t dW t f tQ t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                         (12) 

( ) ( ){ }
0

,I Q t
W t W t

≥
 are independent standard Brownian motions which are independent 

of the initial random variables ( )0IX  and ( )0QX  and ( ) ( ){ }, ; 0I Qf s f s s t≤ ≤  are 

random processes representing the LOS components, respectively. The band pass 

representation of the received signal corresponding to the thj  path is expressed as 
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( ) ( ) ( )( ) ( ) ( )( ) ( )cos sinI I I c Q Q Q c l jy t C X t f t t C X t f t t s tω ω τ⎡ ⎤= + − + −⎣ ⎦               (13) 

 

 

2.4 UWB Indoor Wireless Channel Model 
 

For narrow-band systems, complex Gaussian fading is conventionally used to describe 

the small-scale fading. More precisely, the equivalent complex baseband representation 

consists of Rayleigh-distributed amplitude and uniformly distributed phase. This can be 

related theoretically to the fact that a large number of multi-path components fall into 

each resolvable delay bin, so that the central limit theorem is valid [27]. In UWB systems, 

this is not true anymore and a number of alternative amplitude distributions have been 

proposed in the literature. The most common empirically determined amplitude 

distribution in many UWB environments is Nakagami distribution, which is observed in 

[28] and [29] and considered in the IEEE 802.15.4a standard. Its probability density 

function is given by: 

2 1 22( ) exp
( )

m
mm mf x x x

m
−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟Γ Ω Ω⎝ ⎠ ⎝ ⎠

                                                (14)                              

where 0.5m ≥  is the shape parameter, ( )mΓ  is the gamma function and Ω  controls the 

spread of the distribution. The m -parameter is often modeled as a random variable [6]. 

For integer values of m , the distribution describes m orthogonal independent Rayleigh 

distributed random variables iX  , the probability density function of random variable Y , 

is defined as 2

1=
= ∑

N

i
i

Y X  and is given by a Nakagami distribution with parameter m N= . 

 

The general wireless fading channel can be represented in state space form in terms of 

the inphase and quadrature components for the thi  path as [12], [13] 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

I I I
i I i I i

I I
i I i i

Q Q Q
i Q i Q i

Q Q
i Q i i

dX t A X t dt B dW t

I t C X t f t

dX t A X t dt B dW t

Q t C X t f t

= +

= +

= +

= +

                                           (15) 
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where ( )iI t  and ( )iQ t  are respectively the inphase and quadrature components for the 

thi  path, ( )I
iX t  and ( )Q

iX t  are respectively the state vectors of the inphase and 

quadrature components, ( ){ }
0

I
i t

W t
≥

and ( ){ }
0

Q
i t

W t
≥

 are two independent standard 

Brownian motions which correspond to the inphase and quadrature components 

respectively, ( )I
if t  and ( )Q

if t  are arbitrary functions representing the line-of-sight 

(LOS) of the inphase and quadrature components respectively, and 

[ ]

1

1

0 1 2 1 0

0 1 0 0
0 0 1 0

, ,
0 0 0 1

1 0 0 .

n

I Q I Q

n

I Q

b

A A B B
b

a a a a b

C C

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = = =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= = …

                    (16) 

 

It is shown in [13] that a second order state space model (n = 2) is sufficient to capture 

the dynamics of wireless channel inphase and quadrature components. 

     

In indoor UWB channels, a number of multipath components fall into each resolvable 

delay bin and the resultant received signal amplitude distribution is Nakagami. Thus, the 

UWB state space model together with the received signal level, ( )y t ,  is represented as:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )2

1
( )

i i i i i

N

i i
i

dX t A X t dt B dW t

dX t AX t dt BdW t

y t C t X t s t D t v tτ
=

= +

= +

= − +∑

                                (17) 

where 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

0 1 0

1

0 1 0

1 2

1 2

1 1

2 2

00 1 0 0
0 0 0

, ,
0 0 0 1 0
0 0 0

,

,

0 0 0 0
0 0 0 0

,

0 0

,

,

TI Q
i i i

TI Q
i i i

i

i i i

i i

i i i

T
N

T
N

N

X X t X t

b
a a b

A Bi b
a a b

X t X t X t X t

W t W t W t W t

A B
A B

A B

A

t

W t W t W t

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

=

( ) [ ]
( ) [ ]
( ) ( ) ( )

,

0 0

cos( ) 0 sin( ) 0 ,

cos( ) sin( ) ,

,

N

c c

c c

T

I Q

B

C t t t

D t t t

v t v t v t

ω ω
ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= −

= −

⎡ ⎤= ⎣ ⎦
                                   (18) 

cω  is the carrier frequency, ( )v t  is the measurement noise which is assumed to be 

Gaussian, N  is the number of resolvable delay bins, T  is vector or matrix transpose 

and 1,...,i N= . 

 

The model introduced above has many applications. One of them is indoor channel 

estimation which will be discussed in detail in chapter 3. Since the channel impulse 

response is infinite, it is better to use finite number of parameters to model the channel. 

Furthermore, it can be used for power control in chapter 4.  

 

SDE is not the only way to model the TV processes. There is a large body of literature in 

modeling TV processes such as [83] and [84]. ARMA is one of the processes which are 

widely used. ARMA assume the channel state is completely observable, which in reality 

is not the case due to additive noise and require long observation intervals. Figure 1 

compares the ARMA models with the proposed SDE models using experimental data 

and show that the SDE models are a better fit.  



 17

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de
 (V

)

Measurement
SDE Model
ARMA Model

 
           Figure.1 Comparison using received inphase component measurements between 

proposed SDE and ARMA models  

 

 

Although the estimation process using SDE models may require more computational 

cost than ARMA models, the proposed SDE model shows excellent agreement with 

experimental data.  

 

 

2.5 Ergodicity of the Channel 
 

Ergodicity means averages computed from a sample of a stochastic process can be 

ultimately identified with corresponding ensemble averages [46]. It is an important 

property in classical statistical mechanics. An ergodic communication channel means the 

channel gain process is ergodic, i.e., the time average is equal to the ensemble average. 

In other words, the randomness of the channel gain can be averaged out over time. So 
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long-term constant bit rates can be supported, like the additive white Gaussian noise 

(AWGN) channel.  

 

In some works such as [26], the channel is assumed to be ergodic; however, in general, 

this case is not true. There are several conditions that the channel should satisfy to be 

ergodic. We provide these conditions in this section.  

 

Consider the continuous model in (12), the solution of the this state-space model is given 

by [52] 

( ) ( ) ( ) ( ) ( ) ( )1
0 0 0, ,

L

t

L L L L L L
t

X t t t X t u t B u dW u−⎡ ⎤= Φ + Φ∫⎢ ⎥
⎣ ⎦

                (19) 

where L I=  or Q , ( )0,L t tΦ  is the fundamental matrix, defined by the Peano-Baker 

series  

                   

1

1 2

1 1 1 2 2 1

1 2 3 3 2 1

( , ) ( ) ( ) ( )

( ) ( ) ( )

t t

t

t I A d A A d d

A A A d d d

σ

τ τ τ
σ σ

τ τ τ

τ σ σ σ σ σ σ

σ σ σ σ σ σ

Φ = + +

+ +

∫ ∫ ∫
∫ ∫ ∫

                            (20) 

and ( )0,L t tΦ  satisfies [52] 

( ) ( ) ( )0 0, ,L L Lt t A t t tΦ = Φ  with initial condition ( )0 0,L t t IΦ =  

where I  is the identity matrix. Therefore, the mean of ( )LX t  is:  

( ) ( ) ( )0 0,L L LE X t t t E X t⎡ ⎤ ⎡ ⎤= Φ⎣ ⎦ ⎣ ⎦                                              (21) 

and the covariance matrix of ( )LX t  is:  

( )
[ ]

( ) ( )( ) ( )
0 0

0

0 01 1
0 0

( )
, ( , ) ,

( , ) ( ) , )

L
Tt s TL LTL

L L L L
t t

Var X t
t s t t s t

u t B u du B u u t du− −

⎡ ⎤+
⎢ ⎥= Φ Φ⎢ ⎥Φ Φ∫ ∫⎢ ⎥⎣ ⎦

∑              (22)                              

According to [46], there are two conditions which are sufficient for the stochastic process 

( )LX t   to be ergodic: 

a) Suppose that the covariance function  ( ),
L
t s∑  is continuous for , 0t s ≥ , and that  

0 0

1 ( , ) 0
T T

L
t s dtds

T
→∑∫ ∫ ，as T →∞  
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b) The covariance function ( ),
L
t s∑  should satisfy the relation ( , )

1L

t st s K
t s

α α

β
+<

+ −
∑ , 

where K , α  and β  are constants such that 0K > , 0 2 1α β≤ < <  

 

However, in practice, we may need to discretize the model. Consider the discrete 

version of the state space model  

                    
( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 1, 2,
I I I I

I I I

x t A t x t B t u t
I t C t x t D t u t t

+ = +
= + = …

                                     (23) 

 

The solution of the discretized state space equation is [52] 

                             
0

1

0 0 0( ) ( , ) ( , 1) ( ) ( ), 1
t

I I I
j t

x t t t x t j B j u j t t
−

=

= Φ + Φ + ≥ +∑                  (24) 

Where  0 0( )x x t=  

                                     ( , ) ( 1) ( 2) ( ), 1I t j A t A t A j t jΦ = − − ≥ +             (25) 

 

Therefore, the mean of ( )Ix t  is 

                               

   0 0[ ( )] ( , )I LE x t t t x= Φ                    (26) 

And the covariance matrix of ( )Ix t  is: 

      

  

0 0

0 0

0

( , ) ( , )[ ( )

( , 1) ( ) ( ) ( ) ( ) ( , 1)] ( , )

I
t s

T T T T
I I I I I

j t i s

K s t t t Var x

t j B j u j u i B i s i s s
= =

= Φ +

Φ + Φ + Φ∑ ∑
            (27) 

From [54], for 1, 2,t = … let ( ) C t  be the covariance between the tht  sample mean tM  

and the observation ( )X t   

                           

 
1

1( ) [ ( ), ] ( , )
t

t
s

C t Cov X t M K s t
t =

= = ∑                                             (28) 

The necessary and sufficient condition for the sample means of the stochastic process to 

be ergodic is  
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                                            lim ( ) 0
t
C t

→∞
=                                                                       (29) 

From the conditions mentioned above, a sufficient condition for the channel to be 

ergodic is the state space realization should be uniform exponential stable, i.e., there 

exist finite positive constants γ , λ  such that for any 0t  and 0x , the corresponding 

solution (19) should satisfy [52]. 

                            0( )
0 0( ) ,t tx t e x t tλγ − −≤ ≥                                                     (30) 
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Chapter 3 
 
UWB Indoor Wireless Channel 
Estimation 
 
 
System identification is a common problem in process modeling. It is also an important 

research area in wireless communications. In this chapter, Kalman Filtering together with 

Expectation Maximization (EM) algorithm is used to estimate channel parameters as well 

as the inphase and quadrature components from received signal measurements. The 

data is obtained from the UT Antenna Laboratory.  

 

 

3.1 Kalman Filter Theories 
 
In 1960, R.E.Kalman described a recursive solution to the discrete-data linear filtering 

problem. Currently the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. The Kalman 

filter is a set of mathematical equations that provides an efficient computational 

(recursive) solution of the least-squares method. The filter is very powerful in several 

aspects: it supports estimations of past, present and even future states. It can do so 

even when the precise nature of the modeled system is unknown [40, 59]. 

 

The general problem of estimating an unknown state ( )x t in engineering applications 

involves the cost function [59, 63]  

                          ( ) ( )ˆ( ) ( ) ( | ) ( ) ( | )TJ t E x t x t t x t x t t⎡ ⎤= − −⎣ ⎦                                             (31) 

where ˆ( | )x t t  denotes the estimated state of ( )x t  and ( )E ⋅  is the expectation operator. 

 

The problem is to minimize the estimation error criterion ( )J t  defined in (31). If the 

measurement noise is uncorrelated, zero-mean and white Gaussian, then the Kalman 
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filter is the best linear solution to the above problem. The Kalman filters give the best 

estimate when the objective function is linear. The optimal state estimate ˆ( | )x t t  is 

expressed as  

                                       [ ]ˆ( | ) ( ) | ( )Nx t t E x t Y t=                                                             (32) 

where ( )NY t  is observation data.  

 

• The discrete-time Kalman filter for Rayleigh fading channels [59,61,62] 

  

Kalman filter equations provide solutions for estimating the least-square components of 

the received signal, such as inphase component, quadrature component, envelope 

component and phase component { }2

0
( ), ( ), ( ), ( )

n
n n n n t

I t Q t r t tφ
≥

 

The Kalman filter equations for the Rayleigh channels are given as follows [59, 61]   

 

Initialization conditions 

                                  [ ] 2ˆ(0) (0) , ( (0));x E x Var xσ= =                                                    (33) 

Error Covariance (Riccati Equation): 

      
1

1

2
0

( ) ( ) ( ) ( ) ( )T T T T T T
n n n n nP t AP t A BQB AP t C CP t C DRD CP t A

P σ

−

+ ⎡ ⎤= + − +⎣ ⎦
=

                (34) 

        

In this case (Rayleigh fading channel), 

0
( )

10

1 0 1 0
,

0 1 0 0
10

dBSNR
ER Q

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎦ ⎣ ⎦⎣
, 0E  is a constant and SNR denotes Signal to Noise Ratio. 

Filter Gain 

                         
1

( ) ( ) ( )T T T
n n nK t AP t C CP t C DRD

−
⎡ ⎤= +⎣ ⎦                                               (35) 

The state estimate 

                   [ ]1 1 ˆ( | ) ( | ) ( ) ( ) ( | )n n n n n n n nx t t Ax t t K t y t Cx t t+ + = + −                                        (36) 

Estimations of the inphase and quadrature components 

                           
[ ] [ ]
[ ] [ ]

ˆ ˆ( ) ( ) | ( ) 1 0 0 0 ( | )
ˆ ˆ( ) ( ) | ( ) 0 0 1 0 ( | )
n n N n n

n n N n n

I t E I t Y t x t t

Q t E Q t Y t x t t

= =

= =
                                         (37) 
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Estimation of the square-envelope component: 

                         2 2 2 2 2ˆˆˆ ( ) ( ) ( ) ( ) ( )n n n I n Q nr t I t Q t e t e t= + + +                                                  (38) 

In this equation, 2 ( )I ne t and 2 ( )Q ne t denote the mean square errors (MSEs) and are 

defined as: 

                  2 2 2 2ˆˆ( ) ( ( ) ( )) ( ) ( ( ) ( ))I n n n Q n n ne t E I t I t and e t E Q t Q t⎡ ⎤⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦                      (39) 

 
Estimate of the phase component: 

1
ˆ ( )ˆ( ) tan ˆ( )

n
n

n

Q tt
I t

φ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                  (40) 

 
• The discrete-time Kalman filter of the frequency-selective fading channels can be 

presented as [59, 61, 62] 
 
Error Covariance (Riccati Equation): 

      
1

1

2
0

( ) ( ) ( ) ( ) ( )T T T T T T
n n n n nP t AP t A BQB AP t C CP t C DRD CP t A

P σ

−

+ ⎡ ⎤= + − +⎣ ⎦
=

                (41) 

        

In this case (frequency-selective fading channels), 

0
( )

10

1 0 0 1 0 0
,

10 0 0 1 0 0 1
dBSNR

N N N N

ER Q

× ×

⎡ ⎡⎤ ⎤
⎢ ⎢⎥ ⎥= =⎢ ⎢⎥ ⎥
⎢ ⎢⎥ ⎥⎦ ⎦⎣ ⎣

                                            (42) 

 
Filter Gain 

                     
1

( ) ( ) ( )T T T
n n nK t AP t C CP t C DRD

−
⎡ ⎤= +⎣ ⎦                                                   (43) 

Estimation of the state 

                [ ]1 1 ˆ( | ) ( | ) ( ) ( ) ( | ) ( )n n n n n n n n nx t t Ax t t K t y t Cx t t L t+ + = + − −                                (44) 

Estimations of the inphase and quadrature components on the thi  path:  

      

[ ]

[ ]

ˆ ˆ( ) ( ) | ( ) 0 0 0 0 1 0 0 0 0 0 0 0 ( | )

ˆ ˆ( ) ( ) | ( ) 0 0 0 0 0 0 1 0 0 0 0 0 ( | )

i

i n i n N n n

i

i n i n N n n

I t E I t Y t x t t

Q t E Q t Y t x t t

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

                          (45) 
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Estimate of the square-envelope component: 

                          2 2 2 2 2ˆˆˆ ( ) ( ) ( ) ( ) ( )
i ii n i n i n I n Q nr t I t Q t e t e t= + + +                                               (46) 

In this equation, 2 ( )
iI ne t  and 2 ( )

iQ ne t  denote the mean square errors (MSEs) on the thi  

path and are defined as: 

                   2 2 2 2ˆˆ( ) ( ( ) ( )) ( ) ( ( ) ( ))
i iI n i n i n Q n i n i ne t E I t I t and e t E Q t Q t⎡ ⎤⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦                  (47) 

Estimate of phase component: 

1
ˆ ( )ˆ ( ) tan ˆ ( )
i n

i n
i n

Q tt
I t

φ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠                                                        (48) 

 

Consequently, Kalman filter is used to solve the discrete time Rayleigh fading channels 

and discrete time frequency fading channels, components like inphase, quadrature and 

phase can be estimated from the received signal. These methods will be extended to 

Nakagami fading channels in this chapter to estimate components for indoor multipath 

channels.  

 

 

3.2  Introduction to System Identification 
 
System identification is a process of constructing a mathematical model for a dynamic 

system from observations and prior knowledge (see Figure 2). Least-square or 

maximum likelihood criterion is usually used with some mathematical models and tools. 

Computer programs are often used to find general mathematical descriptions that give 

the best fit to a series of recorded input and output signals. In practical situations, the 

observation process is monitored at discrete times only, but the system identification 

could be determined in either continuous-time or discrete-time. The mathematical 

models via system identification are based on observations, so they are more accurate. 

Also, the process of system identification is fast, predictable and completely universal 

[59, 63]. 
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                            Figure.2      System identification structure 

 

 

System identification is usually formulated as an optimization problem. It is assumed that 

the unknown system is needed to be identified and the adaptive filter is a known system. 

The variable ( )nx t  is usually a random variable [54]. When ( )nx t  is fed to both the 

unknown system and the adaptive filter, the difference between the system response 

( )ny t  and the adaptive filter output ( )nf t  is termed as the error signal ( )ntε . The 

adaptive filter coefficients are updated according to some mathematical algorithms in 

order to minimize ( )ntε . If ( )ntε  is less than a small given number, the adaptive filter 

response is said to give a good estimate of the unknown system [59, 63]. 

 

The algorithms of updating the adaptive filter coefficients are the main subject of system 

identification. Several algorithms with different convergence speed, computational 

complexity, performance and stability, have been considered. For example, the 

maximum likelihood estimation (MLE) is popular for deriving estimators [60, 63]. 

 

• Maximum likelihood estimation (MLE) 

 

Unknown system

Adaptive filter

 
( )nx t

( )ny t

( )nf t

( )ne t
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The basic idea of the MLE is to obtain the most likely values of system parameters for a 

given distribution that best describe the samples. The goal of the MLE is to determine 

the system parameters which maximize the probability of the samples [64]. 

 

Let 1, nX X…  be independent and identically distributed (i.i.d.) samples, 

( )1 2, , , kθ θ θΘ =  denote the k  unknown system parameters needed to be estimated. 

The probability mass function is denoted by ( );f x Θ .  Therefore, the likelihood function 

is expressed as the following equation [64] 

          1 1 2
1

( , | , , ) ( ; ); 1, 2, ,
n

n k i
i

L x x L f x i nθ θ θ
=

= = Θ =∏…                                      (49) 

In the same way, the logarithmic likelihood function of L  is given as 

1
ln ln ( , )

n

i
i

L f x
=

Λ = = Θ∑                                                                (50) 

A necessary condition to maximize Λ  is given by the following equation 

( ) 0; 1,2, ,
i

i k
θ

∂ Λ = =
∂

                                                               (51) 

The above equation is known as the maximum likelihood equation. The system 

parameters ( )1 2, , , kθ θ θΘ =  are obtained by maximizing L  or Λ . 

 

Intuitively, the MLE is a reasonable choice for an estimator, since the parameter 

calculated from the observed sequence is the most likely. In general, the MLE is a good 

point estimator. However, there is one inherent drawback associated with finding the 

maximum of a function and hence the maximum likelihood estimation. That is, how 

sensitive is the estimate to small change in the data, or how to deal with the problem of 

“missing data” problem [64]?  Further, since both the channel states and channel 

parameters are unknown, how can we estimate them only with the measurement? 

Rather than detailing the procedure for solving for the MLE, we specify an algorithm that 

is guaranteed to converge to the MLE in the next section.   
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3.3 Expectation Maximization (EM) Algorithm 
 
This section describes the procedure used to estimate the channel model parameters 

and states associated with the state space model using the EM algorithm [39] combined 

with Kalman filtering [40]. However, for simplicity we consider only the discrete-time 

version of (15) given by 

 

1t t t t t

t t t t t

x A x B w
y C x D v
+ = +
= +

                                                                  (52) 

where n
tx ∈R  is a state vector, d

ty ∈R  is a measurement vector, m
tw ∈R  is state 

noise and d
tv ∈R  is measurement noise. The noise processes tw  and tv  are assumed 

to be independent zero mean and unit variance Gaussian processes. Further, the noises 

are independent of the initial state x0 , which is assumed to be Gaussian distributed.  

 

The unknown system parameters { }, , ,t t t t tA B C Dθ =  as well as the system states tx  are 

estimated through the received signal measurement data { }1 2, ,...,N NY y y y= . The 

methodology used is recursive and based on the EM algorithm together with the Kalman 

filter. The Kalman filter is introduced next [57]. 

 

• Channel state estimation: the Kalman filter  

The Kalman filter estimates the channel states tx  for given system parameter 

{ }, , ,A B C Dθ =  and measurements NY . It is described by the following equations [40]:   

 

( )2
| 1| 1 | 1| 1

| 1 1| 1

0|0 0

ˆ

ˆ

T
t t t t t t t t t

t t t t

x Ax P C D y CAx

x Ax
x m

−
− − − −

− − −

= + −

=

=

                                               (53) 

where 0,1, 2,...,t N=  and |t tP  is given by 
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1 1 2
| 1| 1

1 2 2 2 2
| |

2
| 1 1| 1

T
t t t t

T T
t t t t

T
t t t t

P P A B A

P C D C B B P A B

P AP A B

− − −
− −

− − − − −

− − −

= +

= + −

= +

                                                      (54) 

The channel parameters { }, , ,A B C Dθ =  are estimated using the EM algorithm which is 

introduced next. 

 

• Channel parameter estimation: the EM algorithm 

 

The EM algorithm uses a bank of Kalman filters to yield a maximum likelihood (ML) 

parameter estimate of the Gaussian state space model.  

     

Let { }, , ,A B C Dθ =  denote the system parameters, 0P denotes a fixed probability 

measure; and { };Pθ θ ∈Θ  denotes a family of probability measures induced by the 

system parameters θ . If the original model includes a white noise sequence, then 

{ };Pθ θ ∈Θ  is absolutely continuous with respect to 0P  [39]. Moreover, it is shown that 

under 0P  we have 

1
0 : t t

t t

x w
P

y v
+ =⎧

⎨ =⎩
                                                                   (55) 

 

The EM algorithm is an iterative scheme for computing the ML estimate of the system 

parameters θ , given the data NY . The likelihood function for computing the estimate of 

the parameters θ  based on the observation in NY  is [57] 

                                     ( ) 0
0

N N
dPL E Y
dP

θθ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                      (56) 

And the maximum likelihood estimate is  

                                         ( )arg max NL
θ

θ θ
∈Θ

∈                                                                (57) 

Specifically, each iteration of the EM algorithm consists of two steps: The expectation 

step and the maximization step [57, 64]. 
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The expectation step evaluates the conditional expectation of the log-likelihood function 

given the complete data, which is described by [57, 64] 

( , ) log |
l

l

l N
dPE Y
dP

θ
θ

θ

θ θ
⎧ ⎫⎪ ⎪Λ = ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                            (58) 

where lθ  denote the estimated system parameters at the thl  iteration. The maximization 

step finds: 

( )1 arg max ,l l
θ

θ θ θ+
∈Θ

∈ Λ                                                                (59) 

The expectation and maximization steps are repeated until the sequence of model 

parameters converge by testing 1l lθ θ +−  to be less than the required accuracy. 

     

The EM algorithm is described by the following equations [39] 

 

( ) ( )
( )( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( )
( ) ( )( )( )

1

1
1 1

2
1 1

1

1 1 1 1
1

1

1 1

2
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ˆ | |

1ˆ |

1 |

ˆ | |

1ˆ |

1

N NT T
t t N t t N

t t

N T
t t t t N

t

N TT T T T T T
t t t t t t t t N

t

N NT T
t t N t t N

t t

N T
t t t t N

t

t t

A E x x Y E x x Y

B E x Ax x Ax Y
N

E x x A x x x x A A x x A Y
N

C E y x Y E x x Y

D E y Cx y Cx Y
N

E y y
N

−

−
= =

− −
=

− − − −
=

−

= =

=

⎡ ⎤= ×∑ ∑⎢ ⎥⎣ ⎦

= − −∑

= − − +∑

⎡ ⎤= ×∑ ∑⎢ ⎥⎣ ⎦

= − −∑

= ( ) ( ) ( ) ( )( )( )
1

|
N TT T T T T T

t t t t t t N
t

A y x C C y x C x x C Y
=

− − +∑

            (60) 

 

 

where 2 TB BB= , 2 TD DD=  ( )E ⋅  denotes the expectation operator. These system 

parameters { }2 2ˆ ˆ, , ,A B C D  are computed from the following conditional expectations [39] 
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{ }
{ }
{ }
{ }

(1)

1

(2)
1 1

1
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1 1

1

(4)

1

|
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|

N T
N t t N
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N t t N
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N t t t t N
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L E x Qx Y
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L E x Sy y S x Y
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=

− −
=

=

= ∑

= ∑
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⎡ ⎤= +∑ ⎣ ⎦

                                          (61) 

whereQ , R  and S  are given by 

; , 1, 2,...
2

; , 1, 2,...
2

; 1, 2,... ; 1, 2,..
2

T T
i j j i

T
i j

T
i n

e e e e
Q i j n

e e
R i j n

e eS i m n d

⎧ ⎫+⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫

= = =⎨ ⎬
⎩ ⎭

                                               (62) 

In which ie  is the unit vector in the Euclidean space; that is 1ie =  in the thi  position and 

0  elsewhere. For instance, consider the case 2n m= = , then 1
1

|
N

T
t t N

t
E x x Y−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  can be 

computed as [57] 

( ) (3) (3)
11 12

1 (3) (3)1 21 22

( ) ( )
|

( ) ( )
N T N N

t t N
t N N

L R L R
E x x Y

L R L R−
=

⎡ ⎤
=∑ ⎢ ⎥
⎣ ⎦

                                       (63) 

where ; , 1, 2
2

T
i j

ij

e e
R i j

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

. The other terms in (62) can be computed similarly. 

     

The conditional expectations { }(1) (2) (3) (4), , ,N N N NL L L L  can be estimated from measurements 

NY  as follows 

 

Filter estimate of (1)
NL  [57] 
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{ }
( ) ( )

(1)

1

(1) (1)
| 1 |
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                   (64) 

where ( )Tr ⋅  denotes the matrix trace. In (64), (1)
tr  and (1)

tN  satisfy the following 

recursions: 
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                                 (65) 

Filter estimate of (2)
NL  [57] 
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                   (66) 

Therefore, (2)
NL  can be obtained from ( )1

NL . 

 

Filter estimate of (3)
NL  [57] 
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               (67) 
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In this case, (3)
tr  and (3)

tN  satisfy the following recursions 

( ) ( )
( )
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              (68) 

 
Filter estimate of (4)

NL  [57] 
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                              (69) 

Where (4)
tr  satisfy the following recursions 

(4) 2 (4)
| 1 |

(4) (4)
| 1
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0 1

( ) 2

0

T
t t t t t t
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r A P C D CA r P Syt
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−
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⎧ = − +
⎪⎪ =⎨
⎪ =⎪⎩

                                                 (70) 

Using the filters for ( ) ( 1, 2,3,4)i
NL i =  and the Kalman filter described    

earlier, the system parameters { }, , ,t t t t tA B C Dθ =  can be estimated through the EM 

algorithm described in (61). 

 

Since the original purpose of EM algorithm was to provide the iterative computation of 

maximum likelihood estimates, it is very important to know whether this computation 

converge or not, what is the condition for it to converge, even if it converge, does it 

converge to a global maximum, a local maximum, or a stationary value? 

 

It is mentioned in [70] that using Jensen’s inequality it can be shown that the sequence 

of model estimates { },l l Zθ +∈  from the EM algorithm are such that the sequence of 

likelihood ( , ),l l Zθ θ +Λ ∈  is monotonically increasing with equality if and only if 1l lθ θ+ = . 
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The sufficient conditions for EM algorithm to converge are summarized to the following 

[70, 71]: 

i. The parameter space Θ is a subset of some finite dimensional Euclidean 

space rR  

ii. ( ) ( ){ }0 0: N NL Lθ θ θ θΩ = ∈Θ ≥  is compact for any ( )0NL θ > −∞  

iii. NL  is continuous in Θ and differentiable in the interior of Θ  

iv. The function ( , )lθ θΛ is continuous both in θ and lθ  

Then by [71], the limit of the sequence of EM estimates { }lθ is a stationary point θ of NL . 

Also, ( )N lL θ  converges monotonically to ( )N TL L θ= for some stationary pointθ .  

 
 
3.4 Expectation Maximization (EM) Algorithm based on 

Experiment Data 
 

This section introduces mathematical models for UWB indoor wireless channels based 

on the data measured in the UT’s Antenna Laboratory. Each model is used to identify 

system parameters using EM algorithm together with the Kalman filter. 

 
A simple Gaussian pulse with clean pulse shape and narrow pulse width has been 

chosen as UWB source signal. The experiment setup of the developed system is 

comprised of a 300psec Gaussian pulse (Figure 3) generated by a step-recovery diode 

pulse generator [79]. For pico-second pulses, step-recovery diodes are the best choice 

for the UWB pulse generation because they are not only simple to design, inexpensive, 

but also having low power consumption with relatively high output voltage swings [79].  
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                                         Figure.3   300 psec pulse shape 

 

 

A step by step model of output pulse formation is given in detail to demonstrate the 

source of the distortion. The step-recovery diode has low impedance in the ON state and 

much higher impedance in the OFF state. After fast transition to OFF state, a step signal 

is generated and would propagate towards both the positive x-axis (step ‘A’) and in the 

direction of the short-circuited line arrives at the end and its completely reflected back 

out of phase and is step ‘B’. Finally, step signal ‘A’ and ‘B’ combine to produce a 

Gaussian pulse with a width corresponding to the round trip delay along the short-

circuited stub [79].  

 

The modulation scheme used is on-off keying. The pulse modulates a carrier signal 

centered at 8 GHz, which is then transmitted through an Omni-directional UWB antenna. 

The modulated pulse signal has a 10- dB  bandwidth of approximately 6 GHz, exceeding 

the 500-MHz minimum bandwidth required under the FCC rules governing UWB. Its 
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average output power spectral density satisfies the FCC indoor limit by a margin of more 

than 3 dB  for a majority of the unstable bandwidth. The 8-GHz carrier signal leaks 

through the mixer and is shown as a peak at -16 dBm. This leakage could be 

suppressed by adding a band-notched filter or utilizing a band-notched monopole [78]. 

 

Multiple directional Vivaldi sub-array receiving antennas are located at distinct position in 

an indoor environment to receive to modulated pulse signal. Each received modulated 

Gaussian pulse is amplified through a low noise amplifier (LNA) and then demodulated 

to the I/Q components and stored in a multi-channel Tektronix TDS8200 sampling 

oscilloscope [78].  

 

The Gaussian pulse with the signal-to-noise ratio of approximately 20 dB  was detected 

at a range of up to 3.8m. The sampler has a sensitivity of -45 dBm. The two amplification 

stages increase the signal by 25 dB , while the I/Q down-converter has 8 dB  conversion 

losses. This makes the overall sensitivity of each base station around -62 dBm. The 

dynamic range of the system is limited by the sampler and is over 50 dB  [78]. 

 

 A. Resolvable multipath experiment 

 

Initially, the transmitter was put next to the metal wall. The receiving antenna was placed 

10cm away from the transmitter and then moved along the same direction away from the 

transmitter for 20cm, 50cm, 1m and 2m. Then the transmitter was moved along the 

metal wall 70 cm away from the original place, the receiver repeated the same process. 

The 2D scenario is shown in Figure 4.  

 

Under this situation, the transmitted signal is reflected by the metal wall, the ceiling, the 

floor, or scattered by the corner of the metal table and then come back to the receiver. 

Since there are no dense reflecting sources around the antenna, the coming multipath 

signal can be distinguished very clearly. See Figure 5 

        

From Figure 5 it is very clear that received signal has three paths. They are treated as 

Nakagami fading separately. The measurement data from three paths are amplified by 

1000 and fit to the Nakagami distribution respectively (see Figure 6 to Figure 8).  
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                      Figure.4   2D scenario of indoor measurement 

 

 

The parameters which fit the 1st path are 2.5, 0.28m σ= = , while the parameters fit the 

2nd  path are 4.7, 0.4m σ= = , the 3rd  path are 2.5, 0.18m σ= = . The estimated system 

parameters are computed as follows 
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Figure.5    Resolvable multipath received signal 
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Figure.6 Nakagami distribution fitting the data (1st  path) 
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                     Figure.7 Nakagami distribution fitting the data ( 2nd  path) 
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                       Figure.8 Nakagami distribution fitting the data (3rd  path) 
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The estimated results are the follows 
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Figures 9 to Figure 11 show the compared results between measurement data and 

estimated data for three different paths. 
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Figure.9   EM algorithm measurement vs. estimation for the 1st  path 
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             Figure.10 EM algorithm measurement vs. estimation for the 2nd  path 
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           Figure.11 EM algorithm measurement vs. estimation for the 3rd  path 

 

 

B. Non-resolvable multipath experiment 

 

These experiments were performed by placing the transmitter and receiver in a fixed 

position, while progressively adding metal objects near the transmitter with the purpose 

of creating a harsh multipath environment [79].  

     

Under this situation, the received signal is too dense to distinguish the paths, since the 

paths are close to each other and some paths are combined to one.  

 

The Nakagami distribution given by ,m Ω  can be calculated by its mean and variance. 

The parameters for this measurement are 31.37, 0.0016 10m −= Ω = × .The estimated 

result is Figure 12 



 42

 

0 1 2 3 4 5 6
0

1

2

3

4
x 10-3

Time (Nano-second)

R
ec

ei
ve

d 
S

ig
na

l (
V

ol
t)

Estimated
Measured

2 2.1 2.2 2.3 2.4 2.5

2.8

3

3.2

3.4

3.6

x 10-3

R
ec

ei
ve

d 
S

ig
na

l (
V

ol
t)

 
 

Figure.12 EM algorithm measurement vs. estimation for non-resolvable received signal 

 

 

Although the non-resolvable received signal consists of probably more than one path, 

when it is applied by the EM algorithm, it is treated as one path in order to keep the data 

continuous. Therefore, the estimation error is slightly bigger than the resolvable signal 

(see Figure.13). From figure 13 we notice that resolvable UWB signals has been 

estimated with very high accuracy. Further, from the zoom in figure, we find that the 

estimation algorithm takes little time to converge, from 46 10−× to around 41 10−× .  
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                                Figure.13 EM algorithm’s error for the 1st  path 

 

 

3.5 The Recursive Least-Square Algorithm 
  

In last few sections the Kalman filter and maximum likelihood estimation are 

implemented to estimate the channel parameters recursively. In this section a recursive 

least-square algorithm [60] is introduced.  

 

 Consider the following state space model [60]: 

                                 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1x t A x t B u t t

y t C x t v t

θ θ ω
θ

+ = + +

= +
                                       (73) 

where θ  are unknown parameters needed to be estimated, ( )v t  is measurement noise 

while the ( )tω  is process noise acting on the states.  
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The Kalman filter estimation is given by [60]  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0

12

1

2

1

2

0

1, ,

, ,

, , , 0,

, ,

,

1, ,

, , ,

0,

T

T

T

T T

x t A x t B u t

K t y t C x t

y t C x t x x

K t A P t C R

C P t C R

P t A P t A R

K t C P t C R K t

P

θ θ θ θ

θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ

θ θ
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⎡ ⎤× +⎣ ⎦
+ = +

⎡ ⎤− × +⎣ ⎦
= Π

             (74) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 12, ,T T TR E t t R Ev t v t R E t v tθ ω ω θ θ ω= = = , ( ),K t θ is 

Kalman gain, ( ),P t θ is error covariance, ( ),x t θ is the estimate of the state, ( ),y t θ is 

the estimate of received signal.  

 

The linear regression model is  

                                    ( ) ( )| Ty t tθ ϕ θ=                                                                       (75) 

Therefore consider the following case  

                                 
( ) ( )
( ) ( ) ( ) ( ) ( )

1

| T

t t

y t y t v t t v t

θ θ

θ ϕ θ

+ =

= + = +
                                          (76) 

So the prediction error becomes 

                                  ( ) ( ) ( ), Tt y t tε θ ϕ θ= −                              (77) 

The least-square criterion for the linear regression is [60] 

                                  ( ) ( ) ( ) 2

1

1 1,
2

N
N T

N
t

V Z y t t
N

θ ϕ θ
=

⎡ ⎤= −⎣ ⎦∑                                        (78) 

Since (78) is the quadratic function ofθ , it can be minimized analytically to get the least-

square estimate [60] 

                  ( ) ( ) ( ) ( ) ( )
1

1 1

1 1arg min ,
N N

LS N T
N

t t
V Z t t t y t

N N
θ θ ϕ ϕ ϕ

−

= =

⎡ ⎤= = ⎢ ⎥
⎣ ⎦
∑ ∑                  (79) 
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If the noise ( )v t is white and Gaussian, we apply the Kalman filter to (76), then the 

detailed updating steps are [60] 

                            

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

1

1 1

1 1

1 1 1 1

T

T
t

T T
t

t t L t y t t t

L t P t t t t P t t

P t P t t t t P t t t P t
P t

t

θ θ ϕ θ

ϕ λ ϕ ϕ

ϕ λ ϕ ϕ ϕ
λ

−

−

⎡ ⎤= − + − −⎣ ⎦

⎡ ⎤= − Λ + −⎣ ⎦

⎡ ⎤− − − Λ + − −⎣ ⎦=

            (80) 

where ( ) 1tλ ≡  and ( )2t R tΛ =  

 

However, sometimes the “true” parameter is considered to be random [60]  

                                      ( ) ( ) ( )1t t tθ θ ω+ = +                                                              (81) 

The Kalman filter then gives the estimation as [60]: 
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                           (82) 

 

The simulation results based on the experimental data from the Antenna lab are shown 

in Figure 14 to Figure 16: 
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                       Figure.14   RLS measurement vs. estimation for the 1st  path 
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                  Figure.15   RLS measurement vs. estimation for the 2nd  path 
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                   Figure.16   RLS measurement vs. estimation for the 3rd  path 

 

 

From Figure 17, we can clearly see that although the recursive least-square algorithm 

can roughly capture measurement data, the error is still too big compared to the 

estimation result obtained from the EM algorithm. The error level of EM algorithm is 

around 410−  while the error lever of RLS algorithm is around 310− and the error is 

extremely big at the peak of the signal. One of the possible reasons is the EM algorithm 

takes the expectation outside the maximum likelihood function, which reduce the error in 

some sense.  
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                           Figure.17   RLS Error vs. EM Error for the 1st path 
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Chapter 4 
 
Stochastic Power Control 
Algorithms for Time Varying 
Wireless Channel Networks 
 
A general framework for continuous time power control algorithm (PCA) under time 

varying (TV) long term fading (LTF) wireless channels is developed.  

 

PCAs can be classified as centralized and distributed. Centralized PCAs require the 

information from every node of the network, while the distributed PCAs only require the 

base station to know its own information, such as, its SNR, which is easily obtained from 

local measurements. These power allocation problems have been treated as an 

eigenvalue problem of a nonnegative matrix [41, 58]. The power is updated iteratively 

based on the SINR and certain thresholds [26].  

  

Stochastic PCAs that use noisy interference estimates have been introduced in [18], 

where conventional matched filter receivers are used. It is shown in [18] that the iterative 

stochastic PCA, which uses stochastic approximations, converges to the optimal power 

vector under certain assumptions on the step-size sequence [44, 65].  

 

In time-invariant models, channel parameters are random but do not depend on time and 

remain constant throughout the observation and estimation phase. This contrasts with 

TV models, where the channel dynamics become TV stochastic processes [21]. These 

models take into account relative motion between transmitters and receivers and 

temporal variations of the propagating environment such as moving scatters. They 

exhibit more realistic behavior of wireless networks. In this chapter, we consider 

dynamical TV LTF channel modeling. The dynamics of LTF wireless channels are 

captured by SDEs. The SDE model proposed allows viewing the wireless channel as a 

dynamical system, which shows how the channel evolves in time and space. In addition, 

it allows well-developed tools of adaptive and non-adaptive estimation and identification 



 50

techniques (to estimate the model parameters) to be applied to this class of problems 

[44, 65]. 

 

The correct usage of any PCA and thereby the power optimization of the channel 

models, require the use of TV channel models that capture both temporal and spatial 

variations of the wireless channel. Since few temporal or even spatio-temporal 

dynamical models have so far been investigated with the application of any PCA, the 

suggested dynamical model and PCAs will thus provide a far more realistic and efficient 

optimal control for wireless channels [41-44, 65].  
 
The materials of this chapter have been published in [42-44, 65]. 

 
 
4.1   Time Varying Lognormal Fading Channel Model  
 
Wireless radio channels experience both long-term fading (LTF) and short-term fading 

(STF). LTF is modeled by lognormal distribution and STF are modeled by Rayleigh or 

Rican distribution [35]. In general, LTF and STF are considered as superimposed and 

may be treated separately [35]. In this chapter, we consider dynamical modeling and 

power control for LTF channels which are predominate in suburban areas. The STF case 

has been considered in [45].  

 

The time-invariant power loss (PL) in dB  for a given path is given by [35] 

 

0
0

( )[ ] ( )[ ] 10 log dPL d dB PL d dB Z
d

α
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

                                                   (84) 

where 0d d≥ , 0( )PL d  is the average PL in dB  at a reference distance 0d  from the 

transmitter, α  is the path loss exponent which depends on the propagation medium and 

Z  is a zero-mean Gaussian distributed random variable, which represents the variability 

of the PL due to numerous reflections occurring along the path and possibly any other 

uncertainty of the propagation environment from one observation instant to the next. In 

TV LTF models, the PL becomes a random process denoted by { }
00,

( , )
t

X t τ ττ
≥ ≥

, which is 

a function of both time t  and location represented by τ , where /d cτ = , d  is the path 



 51

length, c  is the speed of light, 0 0 /d cτ =  and 0d  is the reference distance. The process 

{ }
00,

( , )
t

X t τ ττ
≥ ≥

 represents how much power the signal looses at a particular distance as 

a function of time. The signal attenuation is defined by ( , )( , ) kX tS t e ττ , where 

( )ln 10 / 20k = −  [35].  

 

The process ( ),X t τ  is generated by a mean-reverting version of a general linear SDE 

given by [42] 

 

( )
( )0

2
0

( , ) ( , ) ( ( , ) ( , ) ( , ) ( ),

( , ) ( )[ ]; t

dX t t t X t dt t dW t

X t N PL d dB

τ β τ γ τ τ δ τ

τ σ

= − +

=
                   (85) 

where ( ){ } 0t
W t

≥
 is a standard Brownian motion (zero drift, unit variance) which is 

assumed to be independent of ( )0 ,X t τ , ( ; )N μ κ  denotes a Gaussian random variable 

with mean μ  and variance κ  and ( )[ ]PL d dB  is the average path loss in dB . The 

parameter ( ),tγ τ  models the average TV PL at distance d  from transmitter, which 

corresponds to ( )[ ]PL d dB  at d  indexed by t . This model tracks and converges to this 

value as time progresses. The instantaneous drift ( )( , ) ( , ) ( , )t t X tβ τ γ τ τ−  represents 

the effect of pulling the process towards ( ),tγ τ , while ( ),tβ τ  represents the speed of 

adjustment towards this value. Finally, ( )δ τ,t  controls the instantaneous variance or 

volatility of the process for the instantaneous drift. 

Define ( ){ } ( ) ( ) ( ){ }0 0
, , , , , ,

t t
t t t tθ τ β τ γ τ δ τ

≥ ≥
. If the random processes in { } 0

( , )
t

tθ τ
≥

 

are measurable and bounded, then (77) has a unique solution for every ( )0 ,X t τ  given 

by [42] 

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( ) ( )( )0 0

0

, , , ,
0, , , , ,

t
t t u t

t

X t e X t e u u du u dW uβ τ β ττ τ β τ γ τ δ τ− ⎧ ⎫⎪ ⎪= ⋅ + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫      (86) 
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where
0

0([ , ], ) ( , )
t

t
t t u duβ τ β τ∫ . This model captures the temporal and spatial variations 

of the propagation environment as the random parameters ( ){ } 0
,

t
tθ τ

≥
 which can be 

used to model the time and space varying characteristics of the channel. 

 

At every instant of time ( ),X t τ  is Gaussian with mean and variance given by [65] 

[ ] [ ]( ) [ ]( ) ( ) ( )

[ ] [ ]( ) [ ]( ) ( )

0 0

0

0 0

0

0

, , , ,
0

2 , , 2 , , 2 2

( , ) , ,
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t t u t

t

t
t t u t

t
t

E X t e X e u u du

Var X t e e u du

β τ β τ

β τ β τ

τ β τ γ τ

τ δ τ σ

−

−

⎛ ⎞
= ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

∫

∫

                      (87) 

Moreover, the distribution of ( , )( , ) k X tS t e ττ =  is lognormal with mean and variance given 

by 

 

[ ] [ ] [ ]

[ ] [ ] [ ]( )
[ ] [ ]( )

2

2

2

2 ( , ) ( , )
( , ) exp

2

( , ) exp 2 ( , ) 2 ( , )

exp 2 ( , ) ( , )

kE X t k Var X t
E S t

Var S t kE X t k Var X t

kE X t k Var X t

τ τ
τ

τ τ τ

τ τ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠

= +

− +

       (88) 

The mean and variance in (87) and (88) show that the statistics of the communication 

channels vary as a function of both time t  and space τ . 

 

In this section, we consider the uplink channel of a cellular network and we assume that 

users are already assigned to their base stations. Let M  be the number of mobiles 

(users) and N  be the number of base stations. The received signal of the thi  mobile at 

its assigned base station at time t  is given by [65] 

 

( ) ( ) ( ) ( ) ( )
1

M

i j j ij i
j

y t p t s t S t n t
=

= +∑                                                 (89) 
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where ( )jp t  is the transmitted power of mobile j  at time t , which acts as a scaling on 

the information signal ( )js t , ( )in t  is the channel disturbance or noise at the base 

station of mobile i  and ( )ij
S t  is the signal attenuation coefficient between mobile j and 

the base station assigned to mobile i . Therefore, in a cellular network the spatio-

temporal model described in (85) for M  mobiles and N  base stations can be described 

as 

 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )( )0

2
0

, , , , , ,

, [ ] ; , 1 ,

ij ij ij ij ij ij

ij ij t

dX t t t X t dt t dW t

X t N PL d dB i j M

τ β τ γ τ τ δ τ

τ σ

= − +

= ≤ ≤
                 (90) 

and the signal attenuation coefficients ( ),ijS t τ  are generated using the 

relation ( ) ( ),, ijkX t
ijS t e ττ = , where ( )ln 10 / 20k = − . Moreover, correlation between the 

channels in a multi-user/multi-antenna model can be induced by letting the different 

Brownian motions ijW  to be correlated, i.e., ( ) ( ) ( )TE t t tτ⎡ ⎤ = ⋅⎣ ⎦W W Q , where 

( )( ) ( )ijt W tW  and ( )τQ  is some (not necessarily diagonal) matrix that is a function of 

τ  and dies out as τ  becomes large [65].  

 

The TV LTF channel models in (90) are used to generate the link gains of wireless 

networks for the PCA proposed in the next section. 
 
  

4.2   Stochastic PCA in TV Wireless Networks 
 

The aim of the PCAs described here is to minimize the total transmitted power of all 

users while maintaining acceptable QoS for each user. The measure of QoS can be 

defined by the SIR for each link to be larger than a target SIR.  

 

Consider the cellular network described in the previous section, the centralized PC 

problem for time-invariant channels can be stated as follows [45] 
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1( 0,.... 0) 1
min , subject to

, 1

M

M

ip p i

i ii
iM

j ij ij i

p

p g i M
p g

ε
η

≥ ≥ =

≠

≥ ≤ ≤
+

∑

∑

              (91) 

where ip  is the power of mobile i , 0ijg >  is the time-invariant channel gain between 

mobile j  and the base station assigned to mobile i , 0iε >  is the target SIR of mobile i  

and 0iη >  is the noise power level at the base station of mobile i . The generalization to 

(91) for the TV LTF channel models in (85), described using path-wise QoS of each user 

over a time interval [ ]0, T , is given by [26] 
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2 2

2 2 2
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≥
+

∑

∑

                                     (92) 

where {}E ⋅  is the expectation operator, [0, ]t T∈  and 1, ,i M= … . Define 
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F

                                    (93) 

where , 1, ,i j M= … , note that ( )2
ijE S t⎡ ⎤⎣ ⎦  can be calculated from (87) and (88). 

 
 



 55

4.2.1 Fixed Point Problem  
 

If the power control problem in (92) is feasible, then the optimal power satisfies [65] 

( ) ( ) ( ) ( )* *t t t t= +p F p u                          (94) 

where ( )* tp  is the optimal power vector. Expression (94) shows that the optimal power 

is the fixed point of the following function 

( )( ) ( ) ( ) ( )t t t t+Φ p F p u                                                      (95) 

The power vector ( )tp  is assumed to be a continuous and bounded function from [0, ]T  

to M+R , that is, it belongs to the Banach space [77] (see Appendix B) of continuous and 

bounded functions defined on [0, ]T , which is denoted by ([0, ] ; )MTC R , under the 

supremum norm given by 

( )
1/ 2

2

0 1
sup ( )

M

i
t T i

t p t
∞ ≤ ≤ =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑p                                                              (96) 

 Assuming  ( ) ([0, ] ; )Mt T∈u C R  , then the map ( )⋅Φ  is defined as 

( ) ( ) ( ): [0, ] ; [0, ] ;M MT T⋅ →Φ C R C R                                          (97) 

The existence of a fixed point for ( )⋅Φ  is guaranteed by the contraction mapping 

theorem or Banach’s fixed-point theorem [50], which states that if  

                         ( )( ) ( )( ) ( ) ( )1 2 1 2t t k t t
∞ ∞

− ≤ −Φ p Φ p p p                                           (98) 

For some 1k <  and all ( ) ( ) ( )1 2, [0, ] ; Mt t T∈p p C R  , then ( )⋅Φ  has a uniform fixed 

point. Expression (98) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , [0, ] ; Mt t t t k t t t t T
∞ ∞

− ≤ − ∀ ∈F p F p p p p p C R (99) 

which is equivalent to 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )1 2

1 2
1 2

1, , [0, ] ; M
t t t

k t t T
t t

∞

∞

−
≤ < ∀ ∈

−

F p p
p p

p p
C R                     (100) 

Expression (100) holds if and only if the following holds 
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( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )1 2

1 2

1 2

1 2
, [0, ] ;

sup 1
M

t t
t t T

t t t
k

t t
∞

≠
∞∈

−
≤ <

−p p
p p

F p p

p p
C R

                                    (101) 

The LHS in (101) is equal to the induced norm of ( )tF  viewed as a multiplication acting 

from ([0, ] ; )MTC R  into ([0, ] ; )MTC R , i.e., 

( ) 1t k≤ <F                                                                            (102) 

where 

( )
( ) ( )
( )

( ) ( )
[0, ] ;

1

sup
Mt T

t

t t t

∞

∞
∈

≤

=
p

p

F F p
C R

                                                     (103) 

( )tF  is equal to supremum with respect to t  of the largest singular value of ( )tF , that 

is [50] 

( ) ( )( )
[0, ]

sup 1
t T

t tσ
∈

= <F F                                                                  (104) 

where σ ⋅ ( ) denotes the largest singular value of ( )tF . Expression (104) gives a 

sufficient condition on the channels’ attenuation coefficients for the existence of an 

optimal power vector. Expression (104) is satisfied if and only if 

( )( ) 1, [0, ]t t Tσ < ∀ ∈F                                                              (105) 

Thus, if (105) is satisfied, the following continuous time PCA will converge to the minimal 

power 

( ) ( ) ( ) ( )1k kt t t t+ = +p F p u                                                               (106) 

Note that in (106) index k  is the iteration on the continuous time power vector and 

therefore does not represent the time variable as in most PCAs in the literature. 

 

 

4.2.2  Stochastic Approximation  Problem  
 

Consider a set of discrete time strategies { } 0 1 11
( ) , 0 ... ...
i

M

k k ki
p t t t t t T+=

= < < < < < ≤ . 

Equation (92) is equivalent to [43, 44] 
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                              ( )
( )

( ) ( ) ( ) ( ) ( )( )
1

110

1
1 1 1 1 1

min subject to

, ,
k

M
i kit

k I k k k k k k

p t

t t t t t t t
+

+=>

−
+ + + + +≥ × +

∑p

p ΓG G p η
                      (107) 

where 

                  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

( )

1

1

1

2 2
1

22

2
1 1 1 1 1

1 11 1 1

1

, : , 1 , for LTF,

: , 1 , for STF,

: , , , , : ,

, : , , , , ,

0 , if
, :

,

k

k

k

k

k

k

t

ij k k j ij
t

t

j ij
t

t
T

k k M k i k k i
t

I k k k k MM k k

k k
ij k k

g t t s t S t dt i j M

s t H t X t dt i j M

t p t p t t t n t dt

t t diag g t t g t t

i j
t t

g t t

η

+

+

+

+

+ + + +

+ + +

+
+

= ≤ ≤

⎡ ⎤= ≤ ≤⎣ ⎦

= =

=

=
=

∫

∫

∫p

G

G ( )
( ) ( ) ( )( ) ( )

1

1 1 1 1 1

, 1 , ,
, if

, : , , , , , : , , ,
T

k k k k M k k M

i j M
i j

t t t t t t diagη η ε ε+ + +

⎧ ⎫⎪ ⎪ ≤ ≤⎨ ⎬≠⎪ ⎪⎩ ⎭

= =η Γ

           (108) 

and ( )diag ⋅  denotes a diagonal matrix with its argument as diagonal entries. Here 

[ ]1,k kt t +  is a time varying interval such that the channel model does not change 

significantly.  

 

The distributed version of (107) can be written as [43, 44] 

                   ( ) ( )( ) ( ) ( ) ( )1 1
1 1 1 1 1, , ,I k k k k k I k k kt t t t t t t t− −
+ + + + +− ≥I ΓG G p ΓG η                         (109) 

 

Define ( ) ( ) ( )1
1 1 1, , ,−
+ + +k k I k k k kt t t t t tF ΓG G and ( ) ( ) ( )1

1 1 1, ,−
+ + +k k I k k kt t t t tu Γ G η , (109) 

can be written as [43, 44] 

                                ( )( ) ( ) ( )1 1 1, ,k k k k kt t t t t+ + +− ≥I F p u                                                 (110) 

 
We briefly introduce one basic result on stochastic approximation that will be needed 

later in this section. Consider an unknown measurable function ( )h x . A zero point of 

h , x  is defined by ( ) 0=h x  and can be calculated by various rapidly convergent 

methods such as Newton’s method.  
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Assume now that the observation function is provided by ( )⋅h  but subject to an additive 

measurement noise. The thk  measurement is given by [43, 44] 

 

( ) ( )( ) ( )= +k k ky h x ξ                                                              (111) 

where ( )ky  is the observation at the thk  time and ( )kξ  is the zero mean measurement 

error at the thk  time and may be dependent on ( )kx . In 1951, Robbins and Monro [48] 

suggested a method for solution of this and a more general problem, which they called 

the method of stochastic approximation. The purpose of using stochastic approximation 

is to find a zero point x  based on the noisy observation ( )ky . Given an arbitrary initial 

point ( )0x  and an arbitrary sequence of positive numbers ( )a k  such that [43, 44]: 

( ) ( )2

0 0

,
k k
a k a k

∞ ∞

= =

= ∞ < ∞∑ ∑                                                       (112) 

Then, it is shown in [67] that the following approximation sequence, 

( ) ( ) ( ) ( )1k k a k k+ = −x x y                                                   (113) 

converges to the zero point x  of ( )⋅h  with probability one. 

 

Now, since the matrix ( )1,k kt t +F  has non-negative elements and if the SIR targets are 

feasible, then it has been shown that the power vector minimizes the sum of the 

transmitted power, i.e., the power vector ( )1kt +p  that satisfies 

 

( )( ) ( ) ( )1 1 1, , 0k k k k kt t t t t+ + +− − =I F p u                                            (114) 

is the minimum power vector. Since the link gains are random, given ( )1,k kt t +F  and 

( )1,k kt t +u in practice obtained through measurement and the estimation error in these is 

represented by ( )kξ , an additive zero mean random noise. Therefore, applying the 

stochastic approximation algorithm in (113) to (114) we get 
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( ) ( ) ( ) ( )( ) ( ) ( )1 1 1, ,k k k k k k k kt t a t t t t t t+ + +⎡ ⎤= − − −⎣ ⎦p p I F p u                    (115) 

which can be written as 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1 1, ,k k k k k k k k kt a t t a t t t t t t+ + +⎡ ⎤= − + +⎣ ⎦p I p F p u                     (116) 

The distributed version of (116) is: 

 

( ) ( )( ) ( ) ( ) ( )
( ) ( )1 1 i k

i k k i k k i k
i k

t
p t a t p t a t p t

R t
ε

+ = − +                                     (117) 

If the PC problem is feasible, the distributed SPCA in (117) converges to the optimal 

power vector when the step-size sequence satisfies certain conditions. Two different 

types of convergence results are shown in [49] under different choices of the step-size 

sequence. If the step-size sequence satisfies ( )
0

k
k
a t

∞

=

= ∞∑  and ( )2

0
k

k
a t

∞

=

< ∞∑ , then the 

SPCA in (117) converges to the optimal power vector with probability one. However, due 

to the requirement for the SPCA to track TV environments, the iteration step-size 

sequence is not allowed to decrease to zero. So we consider the case where the 

condition ( )2

0
k

k
a t

∞

=

< ∞∑  is violated. This includes the situation where the step-size 

sequence decreases slowly to zero and the situation when the step-size is fixed at a 

small constant. In the first case when ( ) 0ka t →  slowly, the SPCA in (117) converges to 

the optimal power vector in probability. While in the second case the power vector 

clusters around the optimal power [49]. In fact, the error between the power vector and 

the optimal value does not vanish for non-vanishing step-size sequence; this is the price 

paid in order to make the algorithm in (117) able to track TV environments [43, 44].  

 

This algorithm is fully distributed in the sense that each user iteratively updates its power 

level by estimating the received SIR of its own channel. It does not require any 

knowledge of the link gains and state information of other users. It is worth mentioning 

that the proposed distributed SPCA in (117) is different from the algorithm proposed in 

[26] where two parameters, namely, the received SIRs ( )i kR t  and the channel gains 
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( )1,ii k kg t t + , are required to be known, while only ( )i kR t  are required in (117). 

 

The selection of an appropriate [ ]1,k kt t +  will have a significant impact on the system 

performance. For small [ ]1,k kt t + , the power control updates will be more frequent and 

thus convergence will be faster. However, frequent transmission of the feedback on the 

downlink channel will effectively decrease the capacity of the system since more system 

resources will have to be used for power control [43, 44]. 

 
 
4.3 Numerical Results 
    

Consider a network of three users, the channels between different users are ergodic, i.e., 

the expected value of the gain matrix is constant. We assume that 5iε =  and 1iη =  for 

each transmitter. The time and iteration is seperated in the simulation, i.e.,  the optimized 

power value obtained from previous time is used as the initial value of power for the 

current time.  Simulation results are presented in Figure 18 to Figure 19. 

 

From figure (18), it is clear that the transmit power converges under the fixed point 

algorithm. But the power looks more “noisy” because of the existence of noise in the 

data. The stochastic approximation algorithm works more stable than the fixed point 

algorithm since the former algorithm works better at the noisy environment. When the 

step size is smaller, the SA algorithm converges faster. Figure 19 expresses the relation 

between the power and iteration number for the fixed point algorithm. It can be seen that 

the power converges to the optimal power less than five iterations.  
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               Figure.18 Transmit power vs. time by the Fixed Point algorithm  
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                                 Figure 19   Transmit power vs. iteration 
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Chapter 5 
 
Statistical Analysis of Multipath 
Channels 
 
In chapter two UWB indoor channel modeling is discussed. However, in various design 

stages one is also interested in the statistics of the overall received signal. For example, 

one major problem in [8] is how to identify clusters since the position and size of the 

clusters will highly depend on the environment and physical structures. They select the 

cluster region by visual inspection because of the difficulty in developing a robust 

algorithm to identify the cluster region. Also, in UWB localization problem, it is interesting 

to find out which path forms the first peak. [6] claims that the distribution of the cluster 

arrival times satisfies Poisson processes, while in [8], they modified the model from one 

Poisson process to two Poisson processes in order to fit for the data of indoor residential 

environment. 

 

Thus, establishing a framework of the statistics of the overall received signal is 

necessary.  After knowing the distribution information of the received signal such as 

mean, variance, correlation, joint distribution etc., we can understand the channel much 

better and improve receiver design.  

 

However, in most of the work found in the literature [5, 8] authors compute the statistics 

of the channel making some important simplifications [66]. First, they often omit the 

explicit dependence of ir  on τ and thus ( )i tτ , during the computation of various 

statistical properties of the received signal. Although for deterministic, or a fixed sample 

path of  { }( ); 0N s s t≤ ≤ , the computation of the statistical properties of ( ; )lH t τ  is not 

affected by this omission, this is not the case when the ensemble statistics are analyzed. 

Second, they compute the various statistics based solely on a fixed number of paths, 

( )N t N=  due to the difficulty in assuming that { }( ); 0 sN s s T≤ ≤  is a random process. 
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Ensemble statistics are then computed by using sample averages, i.e.，averaging over 

a number of different realizations [66]. 

 

The above omissions are due either to the fact that the models used up to date provided 

a satisfactory performance for the first and second generation wireless communication 

systems or perhaps to the fact that it had not yet been recognized that the shot-noise 

analysis of random noise, brought forward by Rice [36], constitutes a powerful tool in 

putting forward a general framework for investigating the overall statistical properties of 

multipath dispersive fading channels [66].  

 

A shot noise effect [36, 66], refers to the output of a linear random dynamic system 

whose input is a train of impulses arriving at random times distributed according to a 

counting process, which may be as simple as a non-homogeneous Poisson process. 

When the responses associated with each occurrence are described by i.i.d. random 

variables or random processes, then the closed form expressions for the statistics of the 

resulting process can be computed [36]. 

 

 

5.1 Poisson Counting Process 
 
The Poisson process [55] is the simplest process associated with counting random 

number of points. The Poisson counting process is important in at least three aspects 

[55]. First, Poisson process has been proved to be an accurate modeling method in 

many applications. Second, it is a basis for the more complicated counting process.  

  

Definition 5.2.1 [55]: Let ( ) 0{ ; }N t t t≥ be a Poisson counting process, for 0t s t≤ < , the 

increment ( ) ( ),s tN N t N s= −  is Poisson distributed with parameter t sΛ −Λ , so  

               ( ) ( ) ( )1
,Pr ! expn
s t t s t sN n n −⎡ ⎤ ⎡ ⎤= = Λ −Λ − Λ −Λ⎣ ⎦⎣ ⎦ , for 0,1,2,n = …              (118)  

where tΛ  is a nonnegative, non-decreasing function of t . 
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If  tΛ  is an absolutely continuous function of t , it can be expressed as 
0

t

t t
dσλ σΛ ∫ , for 

all 0t t≥ , where tλ  is a nonnegative function of t  for 0t t≥ . We call tλ  the intensity 

function of the process. At any time 0t t≥ , tλ  is the instantaneous average rate of the 

points occurring.  

 

Under the definition, (118) can be rewritten as [55] 

                ( ) ( ) ( )1
,Pr ! exp

nt t

s t s s
N n n d dσ σλ σ λ σ− ⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎢ ⎥⎣ ⎦∫ ∫  , for 0,1,2,n = …        (119) 

 

when the intensity tλ  is a constant independent of time, the corresponding Poisson 

counting process is called Homogeneous Poisson process (HPP) [55]. In this case, 
t

s
dσλ σ∫  is proportional to t s− , which implies that the counting statistics on the interval 

[ , )s t  are the same as those on [ , )s tτ τ+ +  for all τ  such that 0t s τ≤ + . Whenever tλ  

is not a constant, the corresponding Poisson process is called inhomogeneous Poisson 

process [55].  

 

It follows from (119) that, for 0t t s≤ < ,  

                     ( ) ( )Pr 0 1 exp
s

t
N s N t dσλ σ⎡ ⎤⎡ ⎤− > = − −⎣ ⎦ ⎢ ⎥⎣ ⎦∫                                              (120) 

It is clear that the Poisson process rate acts as a filter which models the filtering 

properties of each propagation environment [55]. The number of paths is related to the 

number of Poisson points in that time interval, i.e., if the Poisson process rate is high; the 

number of paths is high.  

 

After discussing the interval characteristics which relates to the number of points 

occurring in arbitrary intervals of time, another important term is the location 

characteristics which relate to the point locations and interpoint spacings. In particular, 

the statistics of the location is an important tool in calculating the corresponding statistics 

of the whole received signals.  Several new concepts will be introduced here in the 

following.  
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Consider Figure 20 [55], the sequence { }nw is the occurrence time sequence; the 

sequence { }nt  is the interarrival time sequence. nt  is the thn  interarrival time, which is 

random.  

 

Consider ( )( )n
wp W  as the joint probability density for the joint probability density for the 

first n  occurrence times ( )1 2, , nw w w w= … . For an inhomogeneous Poisson counting 

process with intensity tλ  on 0[ , )t t , we have [55] 

                    ( ) ( )
0

0 1 2( )
1

exp ,

0,

n

i

n W

W nn t
iw

d t W W W
p W

otherwise

σλ λ σ
=

⎧⎛ ⎞ − ≤ ≤ ≤ ≤⎪⎜ ⎟= ⎨⎝ ⎠
⎪
⎩

∏ ∫                (121) 

The joint occurrence density for a homogeneous Poisson process with constant intensity 

λ  is given by [55] 

                    ( ) ( ) ( )( )0 0 1 2( ) exp ,

0,

n
n nn

w

W t t W W W
p W

otherwise

λ λ⎧ − − ≤ ≤ ≤ ≤⎪= ⎨
⎪⎩

                  (122) 

 

 
                   Figure.20  Waiting and interarrival time sequences [55] 
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The occurrence time sequence 1 2, , nw w w…  for an inhomogeneous Poisson process and 

also for the homogeneous Poisson process, is a Markov sequence with the transition 

density [55] 

                    ( ) ( )1 1| 1| exp
n n n n nw w n n W W Wp W W λ

− −−
⎡ ⎤= − Λ −Λ⎣ ⎦                                              (123) 

where 
0

t

t t
dσλ σΛ ∫ , using the definition of conditional probability densities, we have [55] 

                    ( ) ( )
( ) ( )1

1

( )

| , 1 1 ( 1)| , exp n

n n n n
n

n
Ww

w w w n n Wn W
w

p W
p W W W d

p W σλ λ σ
−

−
− −= = −∫… …                (124)  

 

Since the conditional density of nw  given that i iw W= , for 1, 2, 1i n= −…  is not a 

function of iW , for 1, 2, 2i n= −… , so the occurrence time sequence for inhomogeneous 

Poisson process is a Markov sequence with the transition density given by (124) 

 

The next important quantity is the forward-occurrence density, which is the conditional 

probability density for the thn  interarrival time, nt  given the 1n −  occurrence 

times 1 2, , nw w w… , for 2,3,n = … . Since the inhomogeneous Poisson process is a 

Markov sequence, it implies [55] 

                     
( ) ( )

( )
1, , 1 1, , 1

1

| 1, , 1 | 1 1, , 1

| 1 1

| |

|
n n n n

n n

t w w n w w w n n

w w n n

p T W W p W T W W

p W T W
− −

−

− − −

− −

= +

= +
… …… …                            (125) 

It follows that the forward-occurrence density for a Poisson process is given by [55]  

                      ( ) ( )1, , 1 1 1 1| 1, , 1| exp
n n n n nt w w n W T W T Wp T W W λ

− − − −− + +
⎡ ⎤= − Λ −Λ⎣ ⎦… …                         (126) 

 

Sample function density also plays an important role in problems of statistical inference 

for observed Poisson processes. It is defined as [55] 

                     ( )
( ) ( )

( )( ) ( )0

Pr 0 , 0
;

, , 1w

N t N t
p N t t

p W N t n N t n
σ σ

⎧ ⎡ ⎤= =⎪ ⎣ ⎦⎡ ⎤≤ < ⎨⎣ ⎦ = = ≥⎪⎩
                         (127) 

where  ( )( ) ( ) ( )( )
1 1 2 2, Pr | , , n

w n n wp W N t n N t n w W w W w W p W⎡ ⎤= = = = =⎣ ⎦…  
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The sample function defines the probability of obtaining a particular realization of the 

point process on 0[ , )t t  with ( )N t n= points located, for 1n ≥ , at times 

1 1 2 2, , , n nw W w W w W= = =… .  

 

Follow in (121), (127) and the relation  

          

( ) ( ) ( ) ( )1 1 2 2Pr | , , Pr 0 exp
n

t

n n n W
N t n w W w W w W N t N W dσλ σ+⎡ ⎤⎡ ⎤= = = = = − = = −⎣ ⎦ ⎣ ⎦ ∫…                     

(128) 

the sample-function density of inhomogeneous for N  defined in (127) has the form [55]: 

                  ( ){ }
( ) ( )

( ) ( )

0

0

0

1

exp , 0
;

exp , 1
i

t

t

n t

W t
i

d N t
p N t t

d N t n

σ

σ

λ σ
σ σ

λ λ σ
=

⎧ − =⎪⎪⎡ ⎤≤ < = ⎨⎣ ⎦ ⎛ ⎞⎪ − = ≥⎜ ⎟⎪⎝ ⎠⎩

∫

∏ ∫
                   (129) 

 

One of the applications of the sample function density is to derive a useful additional 

property of the occurrence times. According to (129) and Poisson distribution for ( )N T , 

we can obtain [55] 

                 ( )( ) ( )( )
( ) ( ) ( )

0

1

1

,
| !

Pr i

n Tw
w W t

i

p W N T n
p W N T n n d

N T n σλ λ σ
−

=

= ⎡ ⎤= = = ⎢ ⎥⎡ ⎤= ⎣ ⎦⎣ ⎦
∏ ∫           (130) 

for 0 1 nt W W T≤ ≤ ≤ ≤  

 

Under the condition ( )N T n= , where 1n ≥ ,the n  occurrence times 1 2, , nw w w…  for 

inhomogeneous with intensity tλ  have the same distribution as the order statistics [64] of 

n  independent, identically distributed random variables 1 2, , nτ τ τ…  with the probability 

density being [55] 

                        ( ) ( )
0

1

0,

0,
i

T

t t
d t t Tp t

otherwise

σ
τ

λ λ σ
−⎧ ≤ ≤⎪= ⎨

⎪⎩

∫                                              (131)  
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In summary, we have discussed several important statistical properties of the occurrence 

and interarrival times for a Poisson counting process. First, the joint occurrence time 

density is given. Second, the occurrence time sequence is Markov. Third, given the 

number of points in an interval n , the n  occurrence times have the same distributions as 

the order statistics for n  independent and identically distributed random variables with 

distribution given by (131) [55]. 

 

 

5.2 Poisson Process Parameter Estimation 

 

In the last section, we use the inhomogeneous Poisson process to capture the 

distribution of the number of path in wireless channels. Now we are interested in solving 

the following problem: given the data influenced by the parameters, how to design an 

analysis to perform the estimation and predict the accuracy of the result.  

 

The general problem of estimating the parameters for inhomogeneous Poisson process 

can be stated as follows [55]:  Let ( ) 0{ ; }N t t t≥  be an inhomogeneous Poisson process 

with intensity ( )t Xλ , where λ  a known function of is t  and X , where X  is a vector of 

unknown parameter in the space χ of possible parameter values. Let 
0 ,t TD  be the 

observation data on the interval 0[ , )t T , or the entire path ( ){ }0;N t Tσ σ≤ < . Let 

( )0 , |t TP D X denote the statistics of 
0 ,t TD . The problem is restated as follows: knowing 

( )0 , |t TP D X  for every X χ∈  and a particular set of data, estimate the parameter X . In 

other words, we are trying to determine X , which is an estimate of X .  

 

If the form of the intensity is known, the maximum likelihood estimation can be used. The 

maximum likelihood estimate ( )1 2, , ,ML ML kX X n n n= …  of X  in terms of the observed 

subinterval counts 1 2, , , kn n n… is by definition the value of X  that maximizes the 

probability of having observed 1 2, , , kn n n… . The probability of observing 1 2, , , kn n n…  for 

a given parameter vector X  is given by [55, 64] 
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( ) ( )( ) ( )
1

1 1

1

,
1

Pr ; 1, , | ! exp
ii i

i i
i i

nk t t

t t i i t t
i

N n i k X n X d X dσ σλ σ λ σ
−

− −

−

=

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤= = = −⎨ ⎬⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭
∏ ∫ ∫…    

(132) 

The log-likelihood function is 

              ( ) ( ) ( )( )
0 11

ln i

i

kT t

it t
i

l X X d n X dσ σλ σ λ σ
−=

= − +∑∫ ∫                                            (133) 

In some practical applications, there is no analytic solution for the value of X  

maximizing the likelihood function. Thus, the estimate of X  has to be obtained 

numerically [55].  

 

Theoretically, the maximum likelihood estimate MLX  maximizes the probability of the 

observation, however, in practice, MLX  will not be equal to the actual and unobservable 

value of X . A nonzero error, defined by MLe X X= − , exists in any experiment. We are 

interested in finding a statistical variable which describes this error. The characterization 

will be on the ensemble of errors that result with repetitions of the experiment to collect 

data and generate MLX , i.e., treating e as a random variable. The most complete 

characterization of e  is its probability distribution. However, the distribution of e  is 

difficult to determine analytically and we look for a weaker characterization such as the 

moments of e . The first moment is given by the following [55, 64] 

                                         ( ) |MLb X E X X X⎡ ⎤−⎣ ⎦                                                      (134)   

 

It is named as the bias of the maximum likelihood estimate, the second moment, defined 

as [55, 64] 

                                      ( ) ( )( )'
|ML MLX E X X X X X⎡ ⎤− −⎢ ⎥⎣ ⎦∑                                 (135) 

The second moment is also called the mean square-error matrix. If the bias is zero, the 

error covariance matrix is the same as the mean square error matrix.  

 

Sometimes, even the first and second moments are not easy to determine and it is 

convenient to consider a lower bound on the mean square error matrix for an arbitrary 
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estimate in terms of available data. Then we compare mean square error matrix with this 

bound. Under favorable circumstances the maximum likelihood estimates can achieve 

the lower bound so that its mean square error matrix is the smallest possible using any 

other conceivable estimate with the same data [55, 64].  

 

The lower bound is called Cramer-Rao Lower Bound, introduced in [68] and stated as 

follows. 

 

Theorem 5.3.1 [55]: Let ( ) 0{ ; }N t t t≥ be an inhomogeneous Poisson process with a 

parameterized intensity function ( )t Xλ  for 0t t≥ . Let *X  denote an arbitrary estimate of 

X  based on observations of N  on the interval 0[ , )t T . Then expression (135) satisfies  

           ( ) ( ) ( ) ( ) ( ) ( ) '

' 1b X b X
X b X b X I F X I

X X
−⎡ ⎤ ⎡ ⎤∂ ∂

≥ + + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∑                              (136) 

where ( )b X  is the bias given in (134), ( )b X
X

∂
∂

 is the Jacobin matrix of the bias, I  

denote the identity matrix, ( )F X  is the Fisher information matrix defined by 

          ( ) ( ) ( ) ( )
1 1 1

'
1

1

i i i

i i i

k t t t

t t t
i

X X
F X X d d d

X X
σ σ

σ
λ λ

λ σ σ σ
− − −

−

=

⎡ ⎤ ⎡ ⎤∂ ∂⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ∂ ∂⎣ ⎦ ⎣ ⎦
∑ ∫ ∫ ∫                     (137) 

Equality holds if and only if estimate *X  satisfies 

           ( ) ( ) ( ) ( )* 1b X l X
X X b X I F X

X X
−⎡ ⎤ ⎡ ⎤∂ ∂

= + + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
  for all X                              (138) 

 

Some important remark can be obtained from the previous theorem [55] 

 An estimate having a mean square error matrix satisfying (136) with equality is said 

to be efficient. Suppose there exists and efficient estimate *X . Then, in terms of this 

estimate, it follows that the maximum likelihood estimate MLX will be efficient if and 

only if the bias is zero. Further, if there exists an unbiased, efficient estimate, then 

the maximum likelihood estimate is both unbiased and efficient. 
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  Suppose *X is an unbiased estimate of X , then the mean square error matrix 

satisfies ( ) ( )1X F X−≥∑ . Consider the experiment of collecting data to estimate 

X  is repeated M  times. Denote the estimate of X  based on M  trials by *
MX . 

Then the mean square error matrix for *
MX satisfies ( ) ( ) ( )11/M X M F X−≥∑ . The 

estimated *
MX  is said to be asymptotically efficient if ( ) ( )1

M
M X F X−⎡ ⎤−⎣ ⎦∑ tends 

to zero as M  tends to infinity. It is said to be asymptotically unbiased if ( )b X  tends 

to zero as M  tends to infinity. The maximum likelihood estimate is both 

asymptotically efficient and asymptotically unbiased under relatively weak conditions 

[69]. 

 

 

5.3 Extension of Campbell’s Theorem 
 

Campbell’s theorem [36] gives the information about the average value and the standard 

deviation of the probability distribution of the received signals generated by shot noise. 

In this section we are going to discuss the distribution of the received signals which are 

defined in (7) and (9). In order to simplify the calculation, the received signals can be 

rewritten as  

           ( ) ( ) ( )
( )

( )( )
( )

( ) ( )( )
1 1

, , , ,
s s

i

N T N T
j

l i i l i l i i i i i i i i
i i

y t r e s t h t m m rφτ τ τ τ τ τ φ
= =

= − = =∑ ∑         (139) 

                             ( ) ( )( )
( )

1
, ,

sN T

i i i
i

y t h t mτ τ
=

= ∑                                                               (140) 

 

Assumption 5.4.1 [76]: let ( ) ( ){ }, 0T s c f s s tλ × ≤ ≤ denotes the nonnegative rate of 

the counting process ( ){ }, 0N s s t≤ ≤ , where c  is constant and non-random and ( )f t  

is a time-varying non-random function. For fixed iτ , the random processes 

( )( ), , , 1, 2,3,...l i i ih t m iτ τ =  are i.i.d. having the same distribution and independent 

of ( ){ }, 0N s s t≤ ≤ .  
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The mean of the received signal ( )ly t , is defined by [76] 

                            ( ) ( )( )
( )

1
, ,

sN T

l l i i i
i

y t E h t mτ τ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑                                                       (141) 

The variance is defined in [76] 

                              ( )( ) ( ) ( ) ( ) ( )* *
l l l l lVar y t E y t y t y t y t⎡ ⎤ −⎣ ⎦                                     (142) 

Under the previous assumption, the delay times { }iτ  are independent identically 

distributed with density given by ( ) ( )
( )

0

, 0
s

T
sT

T

t
f t t T

t dt

λ

λ
= ≤ ≤
∫

 (see (131)).  

Hence, ( ),l ky t  is calculated as follows 

    ( ) ( )( ) ( )
( )

( ) ( )( ), 1 0
1

, , , ,
s

s
N T Tk

l k l i i i s l ii
i

y t E h t m N T k f E h t m dτ τ τ τ τ τ
=

=

⎡ ⎤
⎡ ⎤= = =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∫    (143) 

The ensemble average of the received signal is obtained from 

                               ( ) ( ) ( ){ },1
Pl l k sk

E y t y t N T k∞

=
⎡ ⎤ = =⎣ ⎦ ∑                                           (144) 

Similarly, the second moment can be calculated as [76] 

                               ( )( ) ( ) ( ){ }2 2
,1

Pl l k sk
E y t y t N T k∞

=
⎡ ⎤ = =⎢ ⎥⎣ ⎦ ∑                                       (145) 

where  

      

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

22 2
, 1 0

*

0 0
, 1

, ,

, , , ,

s

s s

Tk
l k l s l ii

k T T

i i j j l i i i l i i i
i j
i j

y t E y t N T k f E h t m d

f d f d E h t m h t m

τ τ τ τ

τ τ τ τ τ τ τ τ

=

=
≠

⎡ ⎤ ⎡ ⎤= = = ⎣ ⎦⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∑ ∫

∑ ∫ ∫
                 (146) 

       

( )( ) ( ) ( )( ) ( )( )

( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

22
,

1

22

0

2
1 1

0

s

s
i

l l k s l
k

T
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s T jk i
i l

Var y t y t P N T k y t

f E r s t d
P N T k

f E r e s t dφ

τ τ τ τ

τ τ τ τ

∞

=

∞

= =

= = −

⎧ ⎫⎡ ⎤ − −⎣ ⎦⎪ ⎪
= = ⎨ ⎬

⎪ ⎪⎡ ⎤−⎣ ⎦⎩ ⎭

∑

∫
∑ ∑

∫

                (147) 

 

If the previous assumption is satisfied, then (144) and (147) can be calculated explicitly 
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by the following form which is a generalization of the shot-noise effect discussed by Rice 

[36] 

        ( ) ( ) ( )( ) ( ) ( ) ( )
0 0

, ,s sT T j
l T l T lE y t E h t m d E r e s t dφλ τ τ τ τ λ τ τ τ τ⎡ ⎤ ⎡ ⎤⎡ ⎤ = = −⎣ ⎦ ⎣ ⎦⎣ ⎦∫ ∫     (148) 

                
( )( ) ( ) ( )( )( )

( ) ( ) ( )( )

2

0

22

0

, ,s

s

T

l T l

T

T l

Var y t E h t m d

E r s t d

λ τ τ τ τ

λ τ τ τ τ

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤= −⎣ ⎦

∫

∫
                                            (149) 

 

Follow in the same idea, the correlation of ( )1ly t  and ( )2ly t  can be defined as [76] 
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τ τ τ τ
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= =

∑ ∑
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                     (150) 

 

where  
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(151) 

 

If assumption 5.4.1 was satisfied, the correlation can be calculated explicitly as [76] 
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( ) ( ) ( )( ) ( )( )
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∫ ∫
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   (152) 

 

 

5.4 Distribution and Characteristic function 
  

Distribution and characteristic functions are important statistics for describing the 

received signals. We discuss both of them in this section.  
 

Let I denotes the indicator function. The probability density function is defined by [76] 

                                 ( ) ( ){ },
l l ly l l y t dxf x t dx E I ∈

⎡ ⎤= ⎣ ⎦                                                          (153) 

 

The characteristic function is defined by [76] 

                                  ( ) ( )l

l

ju y t
y u E e ×⎡ ⎤Φ ⎣ ⎦                                                                   (154) 

For fixed ( )sN T k= , the density of ( )ly t  is [76]  

           ( ) ( ){ } ( ) ( )( ){ }, 1
, , ,

l k l l

k
y l l s l i i iy t dx i
f x t dx E I N T k P h t m dxτ τ∈ =

⎡ ⎤= = = ∈⎣ ⎦ ∑             (155) 

For fixed ( )sN T k= , the characteristic function is  
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∏∫ ∫ ∫

∏ ∫

…                                    (156) 

If the assumption 5.4.1 is satisfied, the characteristic function of ( )ly t  can be calculated 
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as [76] 

              ( ) ( ) ( ) ( )( ){ }, ,

0
exp 1s ll

l

T ju h t mju y t
y t E e c f E e dτ ττ τ×× ⎡ ⎤⎡ ⎤Φ = = −⎣ ⎦ ⎣ ⎦∫                          (157) 

and its density function is given by [76] 

                ( ) ( ) ( )( ){ }, ,
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1, exp 1
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s l
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T ju h t mjux
yf x t due c f E e dτ ττ τ

π
∞ ×−
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⎡ ⎤= −⎣ ⎦∫ ∫                     (158) 

The joint characteristic function of ( ) ( )1 ,l l ny t y t…  and their cumulates are obtained from 

[76] 
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          (159) 

Further, we are going to illustrate the generalization of the Gaussianity of shot-noise 

described in [36].  

Define the centered random variables [76] 

                           ( ) ( ) ( )
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The joint-characteristic function of the centered random variables [76] 
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(161) 

(157) can be expanded in power series as 
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(162) 
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Since the order of ( )
ly itσ is proportional to 

1
2c , the order of first item in (162) is 

proportional to 
1
2c , the order of the second item is proportional to 1, the third item is 

proportional to 
1
2c

−
. If we ignore the terms of high order, we can get the following 

approximation [76] 
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  (163) 

Then we substitute (161) with (163),  

( ) ( ) ( ) ( )( )
,

2

1 1 0
1

, ; , exp , ,
2

s

l c

l

nT i
y n n l i

i y i

juju t ju t f E h t m d
t

λ τ τ τ τ
σ=

⎧ ⎫⎡ ⎤⎪ ⎪Φ ≈ − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑∫…                        (164) 

From (164), we can see that joint characteristics function of ,l cy  is quadratic. Further, 

( ) ( ), 1 ,,l c l c ny t y t…  is approximately Gaussian, with zero mean and covariance matrix 

identified. When λ →∞ , ( ) ( ), 0,1 , 1l c jy t N j n≤ ≤∼ .  

               

 

5.5 Numerical Result 
 

Based on the theoretical results in previous sections, some simulation results about 

inhomogeneous Poisson process are provided in this section. The approach is based on 

the observations which have the rate function ( )tλ , the increment t sN N− , 0t s t≤ <  is 

distributed as a Poisson random process with intensity 
0

t

t t
dσλ σΛ = ∫ . Let the cumulative 

distribution function be ( )F t , following from (120),  

                         ( ) ( )( )0
1 exp

t
F t s v dvλ= − − +∫                                                            (165) 

Next the inverse 1F −  is found and then a random variable T  with the distribution F  is 

generated.  
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The simulation is accomplished as follows 

Step 1: Compute the realization of the inhomogeneous Poisson process, which is 

equivalent to compute the occurrence times.  The detailed step is the following: first, set 

0 0T = , second, for 1, 2,i n= … , generate a random variable Y  uniformly distributed on 

( )0,1 , update T  by ( )1
1i iT T F Y−
−= + .  

 

Step 2:  Compute the attenuation coefficient for each path. 

The simulation is shown in Figure 21. 

The first plot in this Figure shows the intensity function ( )tλ , the red lines indicate the 

occurrence times calculated from step 1. The second plot is the signal magnitude based 

on the occurrence times.   
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                          Figure 21 Simulation of inhomogeneous Poisson process 
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Chapter 6 
 
Input Design and Model Selection 
 

This thesis uses state space model to model the UWB indoor wireless channel. In the 

literature [80] Finite Impulse Response (FIR) models are popular in particular in 

communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) 

systems. FIR model can be realized in state space form. In this chapter we show that 

FIR models are optimized in some sense.  Further, after the model is selected, certain 

input can be chosen to minimize the worst identification error. We also show that the 

model selection and input design can be done independently. The model selection is not 

affected by the experiment conditions. Also, the input design is independent of the model 

set.  

 

 

6.1 Introduction to Fast Identification Problem  
 

In general, identification can be divided to two steps [75], one is information acquisition, 

the other is information processing. During the information acquisition, the experiment 

data is collected. Then information processing gives us a representation of the available 

information. In order to achieve fast identification, we should acquire information quickly 

and process it promptly.  

 

Let’s consider the wireless channel as a discrete time stable linear time invariant system 

which is represented by a convolution operator of the following form [75] 

                          ( ) ( ) ( )
0

   ,y t h u t t Z
τ

τ τ
∞

=

− ∈∑                                                          (166) 

Assume ,U Y  represent inputs and outputs spaces respectively. We assume that the set 

U  is contained in [ )2 0,L ∞ . For fixed u U∈ , define the map ( )u h Hu yΦ =  is a linear 

map from impulse response to outputs.  
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In practice, the observations are corrupted by noise, i.e., 

                      ( ) ( ) ( ) ( )
0

,y t h u t v t t Z
τ

τ τ
∞

=

= − + ∈∑                                                       (167) 

(167) can be rewritten in a more compact form as  

                                  ( )uy h v= Φ +                                                                            (168) 

We assume that the a priori knowledge of the channels defined by the set: 

[ ){ }2: 0,aS h h L∈ ∞ ( [ )2 0,L ∞  is defined in Appendix A).  Since the structure of the real 

channel is unknown, the accuracy of the estimate will be measured by the distance 

between the real channel and estimates from the observation in a finite length interval.  

 

Based on the observations ( ) ( ) ( ){ }0 0 0, 1 , , 1y t y t y t T+ + −… , the true kernel is well 

defined in the following set [75] 

                          ( ) ( ) ( ) ( ) ( ) [ )0 0
0

: : , ,aS y h S h u t y t v t t t t T
τ

τ τ
∞

=

⎧ ⎫= ∈ − = + ∀ ∈ +⎨ ⎬
⎩ ⎭

∑       (169) 

( )S y  is called the posterior information set about the real channel. It can be written in a 

more compact form as [75] 

                        ( ) [ ) ( )( ) [ ) ( ){ }0 0 0 0, ,: :a ut t T t t TS y h S P h y P v+ += ∈ Φ − =                              (170) 

 Now we are going to define the worst case error which is to measure the difference [75]: 

            ( )
( )

, : sup
esty h est

h S y
e u h h

∈
= −                                                  (171) 

The optimized estimate can be computed by minimizing the worst case error 

                               ( )
[ ) ( )2 0,

: inf sup
est

y esth L h S y
e u h h

∈ ∞ ∈
= −                                                   (172) 

 

However, if we let the estimate esth  be in [ )2 0,L ∞ , an infinite number of parameters will 

have to be identified to determine the channel, which means it is computationally not 

feasible. In order to achieve fast identification, we minimize the identification error by 

choosing a finite dimensional model set, denoted nX . The model set can be an ARMA 

model, a state space model, etc.  
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If a parameter set nX  is chosen, the minimum identification error becomes [75] 

                            ( )
( )

, inf sup
est n

T
y n esth X h S y
e u X h h

∈ ∈
= −                                                          (173) 

Therefore, the worst case identification error becomes [75] 

                            ( )
( )

, sup sup inf sup
est ntrue a true

T
n esth Xh S v V h S y

e u X h h
∈∈ ∈ ∈

= −                                           (174) 

The main task in this chapter is to minimize the worst case identification error. Some 

new concepts will be introduced to solve this problem.  

 

 

6.2 Partition of the Worst Case Identification Error 
 

The worst case identification error can be separated into two parts, the inherent error 

and representation error, which depend on the input and the model set, respectively.  

 

We introduce the notion of inherent error as follows [75]  

              ( ) ( )( ) ( ) [ ]{ }0 0sup : , , ,T
a uu h h S h t v t t t t Tδ ∈ Φ = ∀ ∈ +                            (175) 

 

The second part is the representation error defined as [75]  

                              ( ), : sup inf
na

a n g Xh S
dist S X h g

∈∈
= −                                                        (176) 

 

The inherent error is due to the information collection such as lack of data and 

incomplete measurement. This error is irreducible no matter what model is chosen and 

what identification algorithm is used. The representation error is due to inaccurately 

representation of the dataset, which represents the loss of information in the data 

processing stage. The worst case identification error is minimized when both of inherent 

and representation errors are minimized [75].  

 

The following theorem gives the lower and upper bounds of the worst case identification 

error ( ),T
ne u X  in terms of the inherent and representation errors.  
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Theorem 6.2.1: If aS and V are convex symmetric subsets of [ )2 0,L ∞  and Y  

respectively, then ( ),T
ne u X  satisfies  

             ( ) ( ){ } ( ) ( ) ( ){ }max , , , 3max , ,T T T
a n n a nu dist S X e u X u dist S Xδ δ≤ ≤         (177) 

Proof: see [75] 

 

The minimum representation and inherent errors are shown in next two sections, from 

which the optimal model and optimal input will be obtained.  

 

 

6.3 Representation Error and Kolmogorov n-Width 
 

By the definition of representation error, the minimum representation error of a n -

dimensional subspace is [72] 

                                [ )( )
[ )

( )
2

2

0,
, 0, : inf ,

n
n a a n

X L
d S L dist S X

⊂ ∞
∞ =                                   (178) 

 

Definition 6.3.1 [72]: Consider the Hilbert space [ )2 0,L ∞  and aS  a subset of [ )2 0,L ∞ . 

The n-Width, in the sense of Kolmogorov, of aS  in [ )2 0,L ∞  is given by  

                                     [ )( )2, 0, inf sup inf
n na

n a X g Xh S
d S L h g

∈∈
∞ −                                      (179) 

where the infimum is taken over all n-dimensional subspace nX  of [ )2 0,L ∞ . If  

                                      [ )( ) [ )2
2

0,
, 0, sup inf

na
n a Lg Xh S
d S L h g

∞∈∈
∞ = −                                   (180) 

If the infimum in (180) is achieved for some subspace nX  of dimension at most n , then 

nX  is said to be optimal subspace for [ )( )2, 0,n ad S L ∞ .  

 

Since the expression of the received signal has a convolution in time domain, it is easier 

to take the z-transform for both sides of (166), i.e., switch the problem to frequency 

domain.  
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Without losing generality, we choose the priori set to be { }2
2: , 1

H
A h h H h= ∈ ≤ , where 

2H  is the class of analytic functions in the unit disk with norm given by [72] 

                                         2

1/ 2
2

0
jH

j
h a

∞

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑                                                              (181) 

where ( )
0

j
j

j
h z a z

∞

=

=∑ . Let μ be a positive measure on a compact set 

K , { }, 1K z r r⊆ ≤ <  we wish to calculate the distance ( )( )2, ,nd A L K dμ  and 

determine the optimal subspaces for nd .  

 

Consider Cauchy’s integral formula [72],  

                                       ( ) ( )2

0

1
2 1

i

i

f e
f z d

ze

θ
π

θ θ
π −=

−∫                                                     (182) 

For z K∈ , set ( )( ) ( )T f z f z= . T  is regarded as a map from 2H  to ( )2 ,L K dμ , then 

[72]  

                               ( )( ) ( ) ( )( )2 2 2, , , ,n nd A L K d d T H L K dμ μ=                                 (183) 

 

According to [72], the nd  is equal to the square root of the eigenvalue which is arranged 

in decreasing order of magnitude to their multiplicity of 'TT , where 'T  is the adjoint of T  

and the n  eigenfunctions of 'TT corresponding to the n  largest eigenvalues span an 

optimal subspace for nd .  

 

Remark: Before calculating nd , we have to determine 'T . 'T  maps ( )2 ,L K dμ  to 2H  

and satisfies 

                                    ( ) ( ) ( )2 2,
, ' ,

L K d H
f Tg T f g

μ
=                                                      (184) 

For all ( )2 ,f L K dμ∈  and 2g H∈ . Further,  

                                   ( )( ) ( ) ( )'
1

i
i

K

f w
T f e d w

we
θ

θ μ=
−∫                                                  (185) 

and  
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                                  ( )( ) ( ) ( )'
1K

f w
TT f z d w

wz
μ=

−∫                                                     (186) 

So the eigenvalue eigenfunction problem becomes 

                                   ( ) ( ) ( )
1K

f w
f z d w

wz
λ μ=

−∫                                                           (187) 

Based on the Theorem 2.2 and Proposition 2.4 in [72], the ( ){ }111, , , i ni nspan re r e θθ −−…  is 

optimal for ( )( )2, ,nd A L K dμ . Since iz re θ= , the ( ){ }111, , , i ni nspan re r e θθ −−…  is optimal 

and corresponds to the FIR models. 

 

 

6.4 Inherent Error and Gel’fand n-Width 
 

Definition 6.4.1 [72, 75]: Let aS  be a subset of [ )2 0,L ∞ . The Gel’fand n-width of aS  in 

[ )2 0,L ∞   is given by  

                              [ )( ) [ )2
2

0,
, 0, inf sup

n n
a

n
a LL h S L

d S L h
∞

∈ ∩
∞                                              (188) 

where the infimum is taken over all subspace nL of [ )2 0,L ∞  of codimension n . A 

subspace is said to be of codimension n  independent bounded linear functions 

1, , nf f… such that [ ) ( ){ }2 0, : 0, 1, ,n
iL h L f h i n= ∈ ∞ = = … . If nL is a subspace of 

codimension at most n  for which [ )( ) [ ){ }2
2

0,
, 0, sup :n n
a aL

d S L h h S L
∞

∞ = ∈ ∩ , then nL  

is called an optimal subspace for the Gel’fand n-width [ )( )2, 0,n
ad S L ∞ . 

 

Definition 6.4.2 [75]: For any n +∈Z  and arbitrary 0t ∈Z , the time n-width is defined as  

                       [ )( ) ( )
[ )2

02

0,

inf 0
, 0,

, 0

n
u Un

a
a L

u n
S L

S n

δ
θ

∈

∞

⎧ >⎪∞ ⎨ =⎪⎩
                                        (189) 
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where
( ) [ ) ( )( ) [ ){ }

[ ) [ )( ){ }
2

2
0 0

0 0 00,

,0,

sup : , 0, ,

sup :

T
a uL

a ut t TL

u h h S h t t t t T

h h S Null P

δ
∞

+∞

∈ Φ = ∀ ∈ +

= ∈ ∩ Φ
                            (190) 

and ( )Null ⋅  represents the null space. The optimal input is the one for which the 

infimum is reached in (189). 

 

The time n-width is the best achieved inherent error with n  consecutive output 

observations. Furthermore, the time n-width and Gel’fand n-width are related to each 

other under some condition. Time n-width is bounded below by Gel’fand n-width in 

certain sense (see [75] Proposition 3.2). 

 

Before introducing the theorem to estimate the Gel’fand n-width, we need the following 

definitions.  

 

Definition 6.4.3 [75]: For any subset S  of [ )2 0,L ∞ , [ )1 2,t tS denotes the subset of 

functions of S in the interval [ )1 2,t t  of Z , i.e., [ ) [ )1 2 1 2, ,t t t tS S P S∩ . For a set of the 

form [ )0,mS , a p-section of [ )0,mS is the intersection with any p -dimensional subspace of 

[ ) [ )
2

0,0, mL ∞ . 

 

Definition 6.4.4 [75]: aS  will be called q -monotone decreasing,1 q≤ ≤ ∞  if every p -

section pX  in [ )0,a mS  satisfies 

                                     
[ ) [ ) [ )

2 2,0, 0,
p a m p mL L

X S −∞ ∞
≥                                                   (191) 

where 1 ,p m p q≤ < < ∞ ≤ ≤ ∞  

 

Next we introduce a theorem which can be used to estimate the Gel’fand n-width.  

 

Theorem 6.4.5 [75]: if the priori set aS  is q-monotone decreasing, ( )1 q≤ ≤ ∞ , then the 
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Gel’fand n-width nd  has bounds 

                        [ ] [ )
[ )( ) [ ) [ )

( )
2 2

2
, ,

0, 0,
, 0, , ,n

a a an n p n
L L

S d S L S p q p+ ∞
∞ ∞
≤ ∞ ≤ ≤ < ∞       (192) 

Moreover, if 

                            [ ) [ ) [ ) [ )2 2, ,
0, 0,

lim a an n p np q L L
S S+ ∞→ ∞ ∞

=                                          (193) 

The [ )( ) [ ) [ )2

2
,

0,
, 0,n
a a n

L
d S L S ∞

∞
∞ =  and the subspace ( ){ }: 0, 0, , 1n

optL h h i i n= = = −…  

is optimal for nd .  

 

Applying theorem 6.4.5, we can get the estimate of time n-width of a q -monotone 

decreasing data set.  

 

Theorem 6.4.6 [75]:  If the priori set aS  is q -monotone decreasing (see [75], page 35), 

then the n-width nθ  has bounds 

                 [ ] [ )
[ )( ) [ ) [ )

( )
2 2

2
, ,

0, 0,
, 0, , ,n

a a an n p n
L L

S S L S p q pθ+ ∞
∞ ∞
≤ ∞ ≤ ≤ < ∞              (194) 

Moreover, if  

                           [ ) [ ) [ ) [ )2 2, ,
0, 0,

lim a an n p np q L L
S S+ ∞→ ∞ ∞

=                                              (195) 

Then [ )( ) [ )( ) [ ) [ )2

2 2
,

0,
, 0, , 0,n n
a a a n

L
S L d S L Sθ ∞

∞
∞ = ∞ =  and an impulse at the start of 

the observation interval is optimal for nθ .  

 

From this theorem, we obtain the principle based on the property of monotone decrease 

of the data sets. For such data set, the optimal input is an impulse at the start of the 

observation interval [75].  
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Chapter 7 
 
Conclusion and Future Work 
 

7.1 Conclusion 

 

This dissertation proposes a new time-varying wireless channel model which captures 

both space and time variation of UWB indoor channels. The distribution of attenuation 

coefficient of received signal of the indoor channels satisfies the Nakagami distribution.  

The dynamics of UWB indoor channels are captured by stochastic diffusion processes 

which are represented by stochastic differential equations. Furthermore, ergodicity 

property of the channel is discussed and certain conditions for it are derived. 

 

System identification is a process of constructing a mathematical model for a dynamic 

system from observations and prior knowledge. MLE is studied and its limitation is 

discussed. The EM algorithm and the Kalman filter are used in estimating channel 

parameters as well as the inphase and quadrature components, respectively. The 

proposed algorithms are recursive and therefore can be implemented in real time. 

 

An optimal Distributed SPCA based on the developed models is proposed. The optimal 

DPCA is shown to reduce to a fixed point problem and solved iteratively using stochastic 

approximation. Numerical results show that there are potentially large gains to be 

achieved by using TV stochastic models and the distributed SPCA provides better power 

stability and consumption than the distributed SPCA. 

 

A framework of the statistics of the overall received signal is established. A connection 

between Rice’s shot-noise analysis and wireless channels is built. Some statistics of the 

receiver signals such as second moment functions are calculated, explicit expressions 

are also provided under certain conditions. Moreover, the number of path is also treated 

as a random process which described by homogeneous or inhomogeneous Poisson 
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process. A parameter estimation method of the Poisson process is provided and the 

Cramer-Rao Lower Bound is also calculated.  

 

The worst case identification error of the wireless channel is divided into two parts, the 

input design and model selection errors. These errors are related to n-widths in the 

sense of Gel’fand and Kolmogorov in metric complexity theory. The results are derived 

for time invariant channels models. It is shown that the optimal model to achieve the 

minimum worst case representation error is the FIR model, while the optimal input to 

minimize the inherent error is an impulse at the start of the observation interval.  

 

 

7.2 Direction for Future Work 

 

This thesis contains several aspects which are worth further study and are listed as 

follows 

1. The UWB channel model is valid for Nakagami distribution and needs to be 

extended to more general indoor channel models.  

 

2. In the power control problem defined in expression (82); to simplify the problem we 

took expectations of the numerator and denominator separately. However, in 

general expectation of the whole expression should be evaluated, which makes the 

problems more complicated to solve.   

 

3. Input design and model selection based on metric complexity need to be extended 

to more general wireless channel modeling, in particular, to time varying impulse 

responses.  

 

4. More general models such as the doubly inhomogeneous Poisson process needs to 

be investigated to derive more realistic models for the number of paths in MPCs. 
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Appendix A 
 
Proof of Theorem 2.2: 
 
Let ( )2 [0, ) [0, )L ∞ × ∞  be the Hilbert space of Lebesgue measurable and square 

integrable complex valued functions defined on [0, ) [0, )∞ × ∞  with the following mean 

square norm 

                        ( )22 2
2

[0, ) [0, )

: ( ; ) , ; ([0, ) [0, ))f f t d dt f t Lτ τ τ
∞ × ∞

= < ∞ ∈ ∞ × ∞∫∫          (A1) 

Likewise define ( )2 [0, )L ∞  as the standard Hilbert space of Lebesgue measurable and 

square integrable complex valued functions defined on [0, )∞  under the norm 

                                    ( )2 2 2
2

0

: ( ) , [0, )x x t dt x L
∞

= ∈ ∞∫                                               (A2) 

The space ( )2 [0, )L ∞  contains all finite energy signals defined on[0, )∞ . 

    The impulse response ( );IRC t τ  of the channel has finite energy in time and space 

and therefore belongs to ( )2 [0, ) [0, )L ∞ × ∞ , that is,  

                                      
22

2
[0, )[0, )

: ( ; )IR IRC C t d dtτ τ
∞ ∞

= < ∞∫∫                                        (A3) 

For fixed n, define the shortest distance minimization in the 
2

i -norm from the impulse 

response ( );IRC t τ to the subspace S , by 

                                        ( )
2

inf ; ( ; )IRs S
C t s tμ τ τ

∈
−                                                 (A4) 

where the subspace S  is defined as 

( ) ( )2 2

1
  ( ) ( ) : ( ) [0, ) , ( ) [0, ) ; integer

n

i i i i
i

S t t L t L nα ϕ τ α ϕ
=

⎧ ⎫∈ ∞ ∈ ∞ ∀⎨ ⎬
⎩ ⎭
∑          (A5) 
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Note that the distance minimization problem (A4) is posed in an infinite dimensional 

space.  

    Since the transmitted and received signals are finite energy signals, the impulse 

response can be viewed as an integral operator mapping transmitted signals in  

( )2 [0, )L ∞  into ( )2 [0, )L ∞ , i.e., if  ( )2 [0, )ls L∈ ∞  then  

              
( ) ( ) ( )

( ) ( )( ) ( )( )
( )
0

2

1

;

, cos ( ) , sin ( ) ([0, ))

l IR l

J t

j c j c l j
j

y t C t s t d

I t t Q t t s t t L

τ τ τ

τ ω τ ω τ

∞

=

= −

= − − ∈ ∞

∫

∑
         (A6) 

It is known that such an operator is compact [72], that is, an operator which maps 

bounded sets into pre-compact sets. The operator T is said to be a Hilbert-Schmidt or a 

trace class 2 operators [73]. Let us denote the class of Hilbert-Schmidt operators acting 

from ( )2 [0, )L ∞  into ( )2 [0, )L ∞ , by 2C  and the Hilbert-Schmidt norm
HS
i . For the 

operator T   

                             
2

[0, )[0, )

( ; )IRHS
T C t d dtτ τ

∞ ∞

= ∫∫                                                         (A7) 

Define the adjoint of T ∗ as the operator acting from ( )2 [0, )L ∞  into ( )2 [0, )L ∞  by 

                                

( )

( )

2
0 0

0 0

1

, ; ( ) ( )

( ) ; ( )

,

IR

IR

Tf g C t f d g t dt

f C t g t dt d

f T g

τ τ τ

τ τ τ

∞ ∞

∞ ∞

∗

< >

=

< >

∫ ∫

∫ ∫                                          (A8) 

showing that  

                               ( )
0

( )( ) ; ( )IRT g C t g t dtτ τ
∞

∗ = ∫                                                           (A9) 
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Using the polar representation of compact operators [73] 1/ 2( )T U T T∗= , where U  is a 

partial isometry and 1/ 2( )T T∗  is the square root of T , which is also a Hilbert-Schmidt 

operator, and admits a spectral factorization of the form [73] 

                                    1/ 2( ) i i i
i

T T λν ν∗ = ⊗∑                                                               (A10)  

where 0iλ >  and 0iλ ↓  as i ↑ ∞  are the eigenvalues of 1/ 2( )T T∗ , and iν  form the 

corresponding orthonormal sequence of eigenvectors, i.e., 1/ 2( ) , 1, 2,i i iT T iν λν∗ = = . 

Putting i iUν ψ= , we can write 

                                         i i i
i

T λν ψ= ⊗∑                                                                  (A11) 

Both { }iν and { }iψ  are orthonormal sequences in ( )2 [0, )L ∞ . The sum (A11) has either 

a finite or countable infinite number of terms. The above representation is unique.  

    Noting that the polar decomposition of 1/ 2( )T U TT∗ ∗ ∗= , a similar argument yields 

                                     1/ 2( ) i i i
i

TT λψ ψ∗ = ⊗∑                                                          (A12) 

and 

                                            i i i
i

T λψ ν∗ = ⊗∑                                                           (A13) 

which shows that { }iψ  from an orthonormal sequence of eigenvectors of 

1/ 2( )TT ∗ corresponding to the eigenvalues iλ . From (A10) and (A13) it follows that 

                                     1/ 2( )i i i iT U T Tψ ψ λ ν∗= =                                                        (A14) 

and 

                                      1/ 2( )i i i iT U TTν ν λψ∗ ∗ ∗= =                                                     (A15) 
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We say that iψ  and iν  constitute a Schmidt pair [74]. In terms of integral operators 

expressions, identities (A14) and (A15) can be written, respectively, as 

                                            ( )
0

( ) ; ( )i IR it C t dν τ ψ τ τ
∞

= ∫                                                 (A16) 

and 

                                            ( )
0

( ) ; ( )i IR it C t t dtψ τ ν
∞

= ∫                                                   (A17) 

In terms of the eigenvalues iλ ’s of T  , the Hilbert-Schmidt norm 
HS
i  is given by [73]  

                                           
22

[0, )[0, )

( ; )i IRHS
i

T C t d dtλ τ τ
∞ ∞

= =∑ ∫∫                     (A18) 

Note that since the operator T  is Hilbert-Schmidt the sum in (A18) is finite. The Hilbert-

Schmidt norm is also induced by the operator inner product defined below.  

    By interpreting each elements of the subspace S  defined in (A5) as a Hilbert-Schmidt 

operator as we did for ( );IRC t τ , we see that S  is the subspace of Hilbert-Schmidt 

operators of rank n , i.e., 

( ) ( ){ }2 2
1

( ) ( ) : ( ) [0, ) , ( ) [0, ) ,n
j j j j j ji

S s f t f t L x Lϑ χ τ χ ϑ
=

= = ⊗ ∈ ∞ ∈ ∞ ∈∑     (A19) 

In addition, the distance minimization (A4) is then the minimal distance from T to Hilbert-

Schmidt operators of rank n . In other terms, we have 

                                            min || ||HSs S
T sμ

∈
= −                                                         (A20) 

The space of Hilbert-Schmidt operators is in fact a Hilbert space with the inner product 

[73], denoted ( , )⋅ ⋅ , if A  and B  are two Hilbert-Schmidt operators defined on ( )2 [0, )L ∞ , 

                                             *( , ) ( )A B tr B A                                                          (A21) 
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where tr  denotes the trace, which in this case is given by the sum of the eigenvalues of 

the operator *B A  which is necessarily finite [73]. Note that the inner product (A21) 

induces the Hilbert-Schmidt norm ( )
1

* 2|| || ( )HSA tr A A= . In the case where A  and B  are 

integral operators with kernels ( , )A t τ  and ( , )B t τ  , respectively, the inner product can 

be realized concretely by 

                                  
0 0

( , ) ( , ) ( , )A B A t B t dtdτ τ τ
∞ ∞

= ∫ ∫                                             (A22) 

The solution to the distance minimization is simply given by the orthogonal projection of 

T  onto S . To compute the latter, note that the eigenvectors of 
1

* 2( )TT  and 
1

* 2( )T T  form 

orthonormal bases (by completing them if necessary) for ( )2 [0, )L ∞  and ( )2 [0, )L ∞ , 

respectively. In terms of the eigenvectors jν  and jψ  the subspace S  can be written as 

                                { , 1, 2, , }j jS Span j nν ψ= ⊗ = ⋅⋅⋅                                               (A23) 

 

Since the shortest distance minimization (A20) is posed in a Hilbert space, by the 

principle of orthogonally it is solved by the orthogonal projection SP  acting from 2C  

onto S . The latter can be computed by first determining the orthogonal projection Pν  

onto { , 1,2, , }jSpan j nν = ⋅⋅⋅ , and the orthogonal projection Pψ  

onto { , 1, 2, , }jSpan j nψ = ⋅⋅⋅ . These projections have finite rank and since jν ’s and jψ ’s 

are orthogonal vectors in ( )2 [0, )L ∞ and ( )2 [0, )L ∞ , respectively, it can be easily verified 

that Pν  and Pψ  are give by 
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                       1 01 1

( )( ) , ( ) ( ( ) ( ) ) ( )
n n

j j j j
j j

P f t f t f t t dt tν ν ν ν ν
∞

= =

= < > =∑ ∑ ∫                 (A24) 

and 

                  2
1 1 0

( )( ) , ( ( ) ( ) ) ( )
n n

j j j j
j j

P G G G dψ τ ψ ψ τ ψ τ τ ψ τ
∞

= =

= < > =∑ ∑ ∫                     (A25) 

The overall orthogonal projection SP  can be computed as  

                                                  SP P Pν ψ= ⊗                                                               (A26) 

That is, if 2W C∈  has spectral decomposition
1 i i ii
uη υ

=
⊗∑ , where 

( ) ( )2 2[0, ) , [0, )i iu L Lυ∈ ∞ ∈ ∞ , then 

                  
1

( )S i S i i
i

PW P uη υ
=

= ⊗∑                                                                              (A27) 

                         
01 1 0

( ) ( ) ( ) ( )
n

i i j j i j j
i j

u t t dt dη ν ν υ τ ψ τ τ ψ
∞

∞

= =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟ ⎜= ⊗⎜ ⎟⎟⎟⎜ ⎜⎜ ⎟⎟⎟⎟⎜⎜ ⎟⎜⎜ ⎟⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑∫ ∫                    (A28) 

                          
1

, scalars
n

j j j j
j

θ ν ψ θ
=

= ⊗ ∃∑                                                               (A29) 

where the last finite sum is obtained thanks to orthogonality, i.e., only the iu ’s and iυ ’s 

that live in the span of jν ’s and jψ ’s, respectively, are retained. For the orthogonality 

property we only need verify that 

                                 ( )( )x y P P x y uν ψ υ⊗ − ⊗ ⊗ ⊥ ⊗                                                 (A30) 

                               ( ) ( )2 2[0, ) , [0, ) ,x L y L u Sυ∈ ∞ ∈ ∞ ⊗ ∈                                    (A31) 

Computing the inner product, we get 

                                    1 2, , 0x P x u y Pν ψ υ< − > < − > =                                              (A32) 
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Because Pν  is the orthogonal projection of ( )2 [0, )L ∞  onto { , 1,2, , }jSpan j nν = ⋅⋅⋅ , and Pψ  

the orthogonal projection of ( )2 [0, )L ∞  onto { , 1, 2, , }jSpan j nψ = ⋅⋅⋅ . The minimizing 

operator os S∈  in (A20) is then given by 

                                         
1

n

o S i i i
i

s P T λν ψ
=

= ⊗∑                                                      (A33) 

and  

                               
1

2 2
2

1

min || ( , ) ( , ) || || || ( )
n

S HS is S
i n

w t s t T P Tμ τ τ λ
∈

= +

= − = − = ∑                  (A34) 

and as n ↑∞ , || || 0S HST P T− . Therefore, the minimizing function ( , )os t τ  in (A4) 

corresponds to the kernel of os , which is given by 

                                        
1

( , ) ( ) ( )
n

o i i i
i

s t tτ λ ν ψ τ
=

=∑                                                      (A37) 

This implies that in the 
2

i -norm ( );IRC t τ  can be approximated to any desired 

accuracy by an impulse response of the form 
1

( ) ( )
n

i i i
i

tλ ν ψ τ
=
∑  which is factorizable by 

putting 

[ ]1 1 2 2( ) : ( ) ( ) ( )n ng t t t tλν λ ν λ ν=    and  [ ]1 2( ) : ( ) ( ) ( ) T
nf t ψ τ ψ τ ψ τ=     (A38) 

where T  denotes the transpose  . 
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Appendix B 
 
Introduction of Banach Space [77]: 
 
Definition B.1: A vector space or linear space over F  (either or ) is a set X  of 
objects called vectors along with an operation +  from X X×  into X  called addition of 
vectors and an operation from X×F  into X  called multiplication of vectors by scalars 
satisfying these conditions: 
 

(1) addition is commutative and associative ; 
(2) there is a zero vector 0 in X , sometimes called the origin of X , such that 

0x x+ =  for each vector x ; 
(3) for each vector x  there is a vector x−  such that ( ) 0x x+ − = ; 

(4) for all scalars α and β  and all vectors x  and y , ( )x y x yα α α⋅ + = ⋅ + ⋅ , 

( ) x x xα β α β+ ⋅ = ⋅ + ⋅ , and ( ) ( )x xα β αβ⋅ ⋅ = ⋅  
(5) for each vector x , 1 x x⋅ =  

 
Definition B.2: Let X  be a vector space. A norm on X  is a real-valued function ⋅  on 
X  such that the following conditions are satisfied by all members x  and y  of X  and 
each scalar α : 
 

(1) 0x ≥ , and 0x =  if and only if 0x = ; 

(2) x xα α= ; 

(3) x y x y+ ≤ +  
 
The ordered pair ( ),X ⋅  is called a normed space or normed vector space or normed 
linear space.  
 
Definition B.3: A Banach norm or complete norm is a norm that induces a complete 
metric. A normed space is a Banach space or complete normed space if its norm is a 
Banach norm.  
 
Example B.1: Let 0c  be the collection of all sequences of scalars that converge to 
0, with the same vector space operations and norm as l∞ . Then 0c  is a Banach 
space since it is a closed subspace of l∞ . 
 
 
 
 
 



 104

Vita 
 
Yanyan Li was born in China on September 27, 1984. She graduated from high school in 

2001. From there, she went to Beijing University of Posts and Telecommunications and 

received her Bachelor degree in Electrical Engineering in 2005.  

She is currently pursuing her doctorate in Electrical Engineering at the University of 

Tennessee, Knoxville.  


	Stochastic Modeling and Estimation of Wireless Channels with Application to Ultra Wide Band Systems
	Recommended Citation

	approvalpage.pdf
	LiYanyan.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


