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Abstract 
 

Chitosan is a non-toxic and biodegradable biopolymer derived from naturally occurring 

chitin. It has excellent metal binding and anti-microbial properties which could be beneficial in 

air and water filtration applications.  Nanofibers have distinctly high surface area to volume 

ratio.  

Electrospinning is a process by which nano-sized polymer fibers can be produced using 

an electrostatically driven jet of polymer solution. The fibers are collected as a non-woven mat 

and offer a high surface area to volume ratio.   

Electrospinning of pure chitosan is hindered by its limited solubility in aqueous acids and 

high molecular weight with high degree of inter and intra chain hydrogen bonding. We have 

been able to form nanometer sized fibers without bead defects by electrospinning Chitosan 

blends with different polymers like poly (ethylene oxide) and poly (acrylamide) with up to 95% 

chitosan in blend fibers. The electrospinning apparatus was modified so at to be able heat 

solutions during electrospinning which helps in expanding the processing window. Fiber 

formation is controlled by polymer molecular weight, blend ratios, polymer concentration and 

spinning solution temperature. 

Surface chemistry of these blend fibers was characterized using XPS. XPS data validated 

that chitosan content on fiber surface was a function of % chitosan in blend, degree of 

deacetylation of chitosan, and fiber diameter. A theoretical model was developed which 

predicted the binding properties of chitosan fibers with known fiber diameter, % chitosan in 

blend and degree of deacetylation. Surface properties of blend fibers showed a strong correlation 

with the structure and morphology of the fibers and higher chromium binding capacities 

compared to similar blend ratio chitosan films were observed. A nanofibrous filter media has 

been fabricated by electrospinning a layer of chitosan nanofibers onto a non-woven spun bonded 

poly propylene fabric. These coated filter media have been tested for their metal binding and 

anti-microbial properties and results showed applicability towards effectively filtering heavy 

metals and bacteria from waste media. The filtration performance of these nanofibrous filter 

media have been tested against latex polystyrene beads and aerosol particles and filtration 

efficiencies of these media were a function of pore size, fiber diameter and size of filtrate. 
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1. Introduction 
 

With growing environmental concerns for global warming there is an urgent requirement 

for cleaner air and water around the world which has sparked immense interest in the 

development of high efficiency filters. Fibrous media in the form of non-wovens have been 

widely used for filtration applications. Non-woven filter are made of randomly laid down micron 

sized fibers which provide a physical sized based separation mechanism for the filtration of air 

and water borne contaminants1. Non-woven nanofibrous filter media (nanofiber is defined as 

having diameter < 0.5 µm by non-woven’s industry2) would offer a unique advantage as they 

have high specific surface area, good interconnectivity of pores, and ease of incorporation of 

specific functionality on the surface effectively filtering out contaminants by both physical and 

chemical mechanisms. A number of companies are developing nanofibrous filter media like 

Donaldson Company (Ultra-Web and Fibra-Web), Finetex MatsTM, Amisol EA Air Filters2. 

Chitosan, a polycation, is a non toxic, biodegradable polysaccharide derived from 

naturally occurring chitin. Chitin is the second most abundant polysaccharide found in the 

exoskeleton of crustaceans, crab and shrimp shells, insects and fungal mycelia3,4. Chitinous 

biopolymers have also been found in wastes of mushroom like Agaricus bisporus (most 

consumed variety of mushroom in USA)5. Based on the mushroom waste generated annually 

mushrooms could yield up to 1000 metric tons of crude fungal chitin. Chitosan is a copolymer of 

N-acetyl-D-glucosamine and D-glucosamine, and the D-glucosamine content is dependent on the 

degree of deacetylation (DDA) of chitin to chitosan. Chitosan has several unique properties; it is 

anti microbial and inhibits the growth of a wide variety of fungi, yeasts and bacteria 6. It can also 

bind toxic metal ions which can be beneficial for use in air and water filtration applications7.  

Electrospinning is a process by which sub-micron sized polymer fibers can be produced 

using an electrostatically driven jet of polymer solution8. The fibers are collected as a non-woven 

mat. Electrospun nanofiber mats offer a distinctly high surface area to mass ratio (typically 

ranging from 40-100 m2/g, compared to 0.05-10 m2/g for micron sized spunbonded or melt 

blown non-wovens) which can be beneficial in a variety of applications.  Electrospun fibers can 

have varied applications and have been used in areas like protective textiles, electronic sensors, 

scaffolds for tissue engineering, drug delivery substrates, air and water filtration etc9. 
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The goal of this study is to fabricate a nanofibrous filter media which is capable of 

filtering out toxic pollutants from air and liquid media. Chitosan based nanofibrous filter media 

would take advantage of both physical and chemical mechanisms to effectively filter out toxic 

pollutants from air and liquid media, delivering the next generation of non-toxic, 

environmentally benign filter media made from naturally occurring biodegradable materials.  

1.1 Literature Review 

1.1.1. Chitosan – Structure, Properties and Applications. 

Chitosan is obtained from chitin by the deacetylation of chitin or removal of the acetyl 

linkage using conc. NaOH. Figure 1.1 shows the structure of chitin and chitosan and process of 

deacetylation of chitin to form chitosan10. Chitosan is a copolymer of N-acetyl-D-glucosamine 

and D-glucosamine. The sugar backbone of chitosan consist of β-1, 4-linked D-glucosamine. In 

its structure, chitosan is very similar to cellulose, except for the amino group that replaces the 

hydroxyl group on the C-2 position11. The D-glucosamine content which affects the properties of 

chitosan is related to the degree of conversion or degree of deacetylation (DDA) of chitin to 

chitosan. A 100% DDA chitosan indicates 100% conversion of chitin to chitosan whereas a 0% 

DDA chitosan is essentially chitin. An 80% DDA chitosan would contain 20% N-acetyl-D-

glucosamine and 80% D-glucosamine linkages. 

 

 
Figure 1.1 Structure of Chitin and Chitosan 
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Natural biopolymers like chitin have usually very high molecular weights (usually larger 

than one million Daltons)12. Molecular weight of chitosan varies and is dependent on the raw 

material sources, and method of preparation. At high temperature (> 280°C) chitosan begins to 

undergo thermal degradation. Typically pyrolysis of polysaccharides is accompanied by a 

random split of the glycosidic bonds and further decomposition leading to formation of acetic 

acid, butyric acid and other fatty acids 13. Increased dissolved oxygen, shear degradation due to 

hydrodynamic forces can also contribute to the thermal degradation of chitosan11. Chitin is a 

highly crystalline hydrophobic polysaccharide and insoluble in most organic solvents; however 

chitosan is soluble in aqueous organic acids. Chitosan can be easily modified by utilizing the 

reactivity of the primary amino group and the primary (-OH) and secondary (-CH2OH) hydroxyl 

groups. Some of the commonly synthesized and used derivatives of chitosan are quaternary 

chitosan salts, N-carboxyalkyl chitosan, N-Acylychitosan etc14.  

The major physical characteristics that affect the functional properties of chitosan are its 

molecular weight and crystallinity15. The crystallinity of chitosan is dependent on the source of 

chitin from which it is extracted and can be found in three forms i.e. α-chitin (shrimp and crab 

shells), β-chitin (squid pen) and γ-chitin (stomach cuticles of cephalopoda). The most commonly 

available chitin is α-chitin16.With increase in molecular weight, crystallinity increases due to 

tighter packing of chains leading to increase in mechanical properties of chitosan films17. Stevens 

et.al17 showed that films made from same molecular weight chitosan and varying DDA showed 

an increase in % crystallinity with increasing DDA.  

Chitosan is protonated at pH < 6.5 and becomes positively charged polycation as shown 

in equation 1. The number of positively charged –NH3
+ groups on the chitosan backbone is a 

function of the degree of deacetylation, and solution pH which is related to the pKa of the 

solution as shown in equation 1. A higher degree of deacetylation would lead to a larger number 

of positively charged groups on the chitosan backbone. At 50% protonation, pH=pKa. Sorlier 

et.al18 have studied the effect of pH and degree of deacetylation (DDA) on chitosan solution pKa 

and found that for varying DDA from 5%-75%, pKa varies between 6.3 and 7.2. 
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Chitosan has been widely used as a metal chelating agent in industry and metal binding 

occurs due to the ionic bonding between the dissociated metal ion in solution and NH3
+ ion on 

the chitosan fiber surface and also the available –NH2 and –OH sites on chitosan backbone can 

serve as coordination sites for metal ions.19 Numerous mechanisms have been proposed to 

explain the binding of metal ions by chitosan and it has been widely accepted that amine sites are 

the main reactive sites for interaction with metal ions16.  Table 1.1 summarizes the metal binding 

capacity of chitosan for various heavy metal ions20-22.  The interaction between chitosan and 

hexavalent chromium has been extensively studied and an adsorption capacity of 273 mg Cr/g 

chitosan was achieved for chitosan flakes. It was found that absorption capacity was strongly 

related to pH, at pH = 3 sorption was almost 90% and was reduced to 10% at pH = 7.0 with an 

initial chromium concentration of 5 mg/l22. The total number of amine sites in the chitosan 

molecule may not be available for metal sorption as some of them may be involved in forming 

inter and intra-molecular hydrogen bonds, and binding can also be influenced by the residual 

crystallinity of the polymer. 

 

Table 1.1 Adsorption capacities (mg/g) of chitosan for various heavy metal ions 

Material Cr6+ Ni2+ Pb2+ Hg2+ Zn2+ Cu2+ Cd2+ Pt6+

Chitosan powder 273 2.4 16.36 815 75 222 5.93  

Non-crosslinked chitosan beads 80     85   

Crosslinked chitosan beads 50     60  280
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The adsorption of metal ions by chitosan has been modeled and data has been fitted to 

various adsorption isotherms like Langmuir, Freundlich and Langmuir-Freundlich16. However 

since these models were “force fitted” they were valid only over a small concentration range. A 

simplified equilibrium model has been proposed by Juang et.al23 who have modeled the 

absorption behavior based on the competing reaction between proton and metal ions (as shown in 

equation 2)23 for the same amino acid binding groups. Protonation constant of chitosan was 

measured (log KH) by studying the sorption of various metal ions like Cu2+, Ni2+ and Zn2+ and 

found to be in accordance with literature which validated the model.  

     

  ,  

    

 , , 

                                                                                                                                              (2) 

      

 

          

/  

where C and q are concentration of species in aqueous and solid phases respectively. 

 

Cross linking chitosan using epichlorohydrin or glutaraldehyde improves the stability of 

chitosan at low pH. However, it leads to reduction in binding capacity compared to uncross 

linked chitosan validating the hypothesis that electrostatic attraction between amino sites and 

metal ions was the dominant mechanism for metal binding of chitosan21 as cross linking leads to 

reduction in number of available –NH2 available for binding. The adsorption of metal ions by 

chitosan is also affected by the physical properties of chitosan like its molecular weight and 

crystallinity24. Milot et.al24 have studied the effect of crystallinity and molecular weight on the 

molybdate sorption by chitosan. They found that the sorption capacity decreased with increased 

crystallinity whereas there was no clear correlation between molecular weight and sorption 
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capacity. Increased crystallinity hinders the number of available amine sites due to the tight 

packing of the structure caused by increased inter and intra-chain hydrogen bonding  between 

chitosan chains25. The metal binding capacity data shown in Table 1.1 also suggest a size effect. 

Chitosan flakes, which have a higher surface area to mass ratio compared to chitosan beads, 

exhibit higher binding capacities. The affinity of chitosan for heavy metal ions has been 

summarized in the literature to be Pd>Au>Hg>Pt>Cu>Ni >Zn>Mn>Pb>Co>Cr>Cd>Ag26, 27.  

The antibacterial properties of chitosan are also due to the interaction between the 

positively charged amide groups on the chitosan backbone and negatively charged components 

in the microbial cell membranes. Binding between chitosan and cell wall components alters the 

barrier properties and prevents entry of nutrients or causes leakage of intracellular components28 

both of which lead to death of the cell. The factors that affect the anti-microbial effectiveness of 

chitosan are similar to those that affect its metal binding capacity like degree of deacetylation, 

pH, molecular weight, crystallinity, and microbial buffer solution temperature29. Shimojoh et.al30 

have studied the effect of molecular weight (constant DDA) and test microorganism on the 

antibacterial activity of chitosan. They found that chitosan with MW 220,000 was most effective 

whereas chitosan with MW 10,000 was least effective in its bactericidal activities; however 

bactericidal activity of chitosan with MW 70,000 was better for some test bacteria compared to 

chitosan with MW 426,000. No clear correlation has been developed between molecular weight 

and antibacterial activity although it is generally accepted that increased molecular weight leads 

to improvement in antibacterial properties29. Liu et.al31 studied the effect of molecular weight, 

degree of deacetylation and pH on the antibacterial activity of chitosan and carboxymethylated 

chitosan. They found that with increasing molecular weight up to 91,600 the activity increased 

however upon further increase of molecular weight it actually decreased due to increase in inter 

and intrachain hydrogen bonding in chitosan which reduces the amount of available –NH3
+ sites. 

The antibacterial activity was directly proportional to degree of deacetylation and the 

antibacterial activity was highest at pH = 6.3 above which it was minimal due to poor solubility 

and de-protonation of chitosan in the medium. For pH < 6.3 the activity gradually decreased till 

pH = 4.0 and then increased31. The carboxymethylated chitosan showed higher antibacterial 

properties then chitosan. Liu et.al attribute that to the inter and intramolecular attraction between 

the carboxyl and amide groups leading to an increase in the number of –NH3
+ sites. The 

temperature of the buffer medium also affects the antimicrobial activity as studied by Tsai et.al32. 
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They found that at buffer solution temperatures between 25°C and 37°C the E-coli cells were 

completely killed within 5hr and 1hr respectively, however at low temperature  (4°C and 15°C) 

the activity was lowered for 5hrs after which it stabilized indicating poor interaction between 

chitosan and E-coli at low temperatures32. 

Owing to its polycationic nature and excellent metal binding and antimicrobial properties 

chitosan has been used for a wide variety of applications ranging from the medical industry to 

cosmetics to the water purification industry14. Chitin/chitosan can be obtained in variety of 

shapes and forms like powders, flakes, fibers, hollow fibers, sponges and scaffolds26. Some of 

the key areas where the use of chitosan has matured are: 

a. Biomedical Applications: Chitosan gels have been extensively used as a drug release 

substrate because it is easily degradable, nontoxic, and biocompatible. Various drugs like 

aspirin, diazepam, ibuprofen, insulin and diclofenac sodium have been incorporated in 

chitosan matrix of various shapes and forms like gel beads, coatings, spherical agglomerates, 

microspheres etc.33 Chitosan has also found use in making artificial kidneys, wound healing 

dressings, making artificial skin, orthopedics, dentistry, cosmetics, ocular bandage lenses 

etc.14, 33 Researchers at the British Textile Technology Group (BTTG) have patented a 

method to develop chitin based fibrous dressings; the chitin/chitosan used for this work was 

obtained from micro fungi instead of shrimp shells. The fibrous wound dressing were made 

using paper making wet laid technology34.   

b. Chromatographic Separations: The polycationic nature of chitosan makes it highly useful as a 

packing material in chromatography columns as it can interact with organic substances like 

proteins and also with transition metal ions to achieve desired seperations35. 

c. Food and Nutrition: Chitosan can also bind fat and has been used to make dietary weight loss 

tablets which are commercially available in Europe. Chitosan has also been widely used in 

food packaging industry as it is non-toxic, biodegradable, and good oxygen and water vapor 

permeability.  

d. Water Engineering: One of the major applications of chitosan is in the purification of waste 

water. Chitin/chitosan has been widely used as a flocculating agent to remove heavy metal 

ions from waste water streams owing to its excellent metal adsorption capacity as discussed 

earlier. 
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e. Textile Industry: Textiles made from or coated with chitosan have been developed and used 

for their anti-microbial and metal chelating properties.  Chitin/chitosan fibers have been 

made using wet spinning of polymer solutions in 2% acetic acid. Formation of chitin/chitosan 

fibers is limited by its poor solubility in most common organic solvents and its thermal 

degradation before melting making it difficult to process using conventional fiber forming 

methods like fiber spinning, melt blowing etc. Chitosan coated fabrics have been studied for 

their antimicrobial efficacy. Tseng et.al36 studied the effect of chitosan-citric acid coating on 

wool fabrics and found that oxidized woolen fabrics formed crosslink’s with chitosan and the 

coated fabrics did achieve bactericidal properties. The effect of chitosan coatings on cotton 

fabrics was studied by Hudson et.al37 who have also observed the efficiency of these kind of 

antimicrobial coatings against both gram negative and gram positive bacteria. The absorption 

and release of silver and zinc ions on chitosan fibers has been studied for their anti-microbial 

and wound healing applications respectively38. Chitosan fibers were prepared by wet 

spinning process and were treated with different concentration solution of AgNO3 and ZnCl2. 

Results showed that absorption of Ag and Zn ions was a function of concentration of 

solutions and immersion time and the process was reversible i.e. if the fibers were place in 

saline solutions the ions would be desorbed. Chitosan fibers showed a 77% reduction in E-

coli whereas chitosan fibers with Ag particles showed 100% reduction in E-coli38.  

 

1.1.2. Electrospinning 

Electrospinning of polymers has grown to be a field of keen interest with various research 

groups taking advantage of this relatively easy and inexpensive method of fabricating fibers in 

the micro to nano meter range. It is a process by which sub-micron sized polymer fibers can be 

produced using an electrostatically driven jet of polymer solution8. The fibers are collected as a 

non-woven mat. Electrospun nanofiber mats offer a distinctly high surface area to mass ratio 

(typically ranging from 40-100 m2/g) which can be beneficial in filtration applications.  Figure 

1.2 shows plot of surface area to mass ratio v/s fiber diameter of textile materials39. 
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Figure 1.2  Surface area to mass ratio of electrospun fibers vs. fiber diameter. 

 

The fundamental principle underlying the process of electrospinning is that a spherically 

charged droplet of a low molecular weight conducting liquid under vacuum is under the 

influence of two forces, 1) the disintegrative electrostatic repulsive force and 2) the surface 

tension acting on the droplets which tends to hold the droplet in spherical shape. Under 

equilibrium conditions the two forces balance each other as depicted in Figure 1.3a. However 

when the charge acting on the droplet is increased the electrostatic repulsive force acting on the 

droplet overcomes the forces of surface tension and the droplet breaks up into smaller particles 

(Figure 1.3b). This phenomenon is called as electrospraying and has been used for spray painting 

and coating technologies. Envisioning the same effects on a high molecular weight polymer 

solution that has sufficiently high number of chain entanglements the breakage of the charged 

droplet under the right conditions of applied electric field and solution viscosity could lead to 

formation of a steady jet which would ultimately form into a fiber. For any polymer solvent 

system to be successfully electrospun, it should be able to form a charged polymer fluid jet40, 

which is formed when the viscous forces acting on the polymer droplet are high enough to 

overcome the forces of surface tension. The formed charged polymer fluid jet after travelling a 

certain distance (~3 mm) undergoes a bending instability followed by a complex chaotic 

whipping motion41 wherein the solvent evaporates and polymeric fibers are formed and collected 

on the grounded target.    
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Figure 1.3 Effect of increased electric field on charged particle (a) Particle under equilibrium (b) 

Electrospraying 

 

For electrospinning, the viscosity of the solution (which is a direct result of the 

concentration of polymer in solvent and its molecular weight) is the most critical parameter. If 

polymer concentration is lower than the critical chain overlap concentration c* the charged 

polymer jet breaks into droplets or electrospraying occurs. As the concentration is increased 

above c* formation of fibers with bead like defects is observed and ultimately at the 

entanglement limit (c>>c*), uniform beadless nanofibers are obtained42 as shown in Figure 1.4. 

The critical chain overlap concentration is inversely proportional to the intrinsic viscosity42 i.e. 

c*~ [η]-1. Shenoy et.al have developed a relationship wherein prior knowledge of the 

entanglement and weight average molecular weight (Me,Mw) of a polymer could help in 

predicting the requisite polymer concentration for fiber formation in a polymer-good solvent 

system43. They calculated the entanglement number (ne) which is ratio of weight average 

molecular weight and entanglement molecular weight of polymer in good solvent. Knowing the 

entanglement number and performing series of experiments for different polymer solvent 

systems they have been able to understand and predict the effect Me on fiber formation. 

According to their model when ne < 2 only beads are formed, if 2< ne<4 we get bead + fiber 

formation and when ne > 4 only fibers are formed. 
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Figure 1.4 Effect of concentration on viscosity and spinnability of PMMA-DMF systems.42 

 

The effect of electric charge on liquid droplets has been studied historically dating back 

to the 19th century. In 1882 Lord Raleigh studied the instability of electrically charged liquid 

droplets and showed that the electrostatic force overcomes the surface tension which tends to act 

in the opposite direction when the droplet is sufficiently charged44. Taylor45 studied the 

disintegration of water drops, and he theoretically demonstrated that a conical interface between 

two fluids could exist in equilibrium in an electric field. The droplets were found to have 

elongated at the onset of instability and its end formed into a conical shape which has semi-

vertical angles close to 49.3 degrees, thus the first suggestions to the development of a Taylor 

cone which has been discussed by later researchers as the key to fiber formation during 

electrospinning. 

In 1934 Anton Formhals patented an invention46 related to a process and apparatus that 

was designed for the production of artificial filaments by the use of an electrical field on liquids, 

which contain dissolved solid materials like cellulose acetate. The solutions are passed into an 

electric field formed between electrodes in a thin stream or in drops in order to separate them 

into a plurality of threads. In 1971 the first polymer fibers by electrospinning were produced by 

Bumgarten et.al47 , he studied the formation of micro fibers of acrylic by electrospinning. He 

determined the limits of spin-ability of polyacrylonitrile in dimethylformamide solvent and also 
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observed a relationship between fiber diameter and solution viscosity. In 1981 Larrondo and 

Manley performed similar work on polymer melts and they observed that the fiber diameter 

decreased with increasing melt temperature. Given the relationship between melt temperature 

and viscosity they were able to draw a qualitative correlation between diameter and viscosity48.  

In the last decade, science and technology has seen the advent of nanotechnology and 

nanosystems wherein the requirements are to fabricate smaller and smaller devices. This era of 

nanotechnology has helped to regain interest in the field of electrospinning with researchers 

across the globe trying to spin various polymer systems. In 1995 Doshi et.al8 published the 

electrospinning of polyethylene oxide and described the electrospinning process and its effects 

on the fiber morphology and possible applications of the fibers. They found that viscosity below 

800 cp polymer solution was too dilute to form a stable jet and the jet broke, at a viscosity of 

higher then 4000 cp it was too difficult to form fibers due to the drying of the solution at the tip. 

Fong et.al49 studied the influence of polymer concentration, solvents used, tip-target distance, 

and flow rate on the formation of beaded fibers during the electrospinning of PEO.  They found 

that the viscoelasticity of the solution, charge carried by the jet and surface tension of the 

solution were the key factors that influenced the formation of beads during electrospinning. 

Deitzel et.al50  have evaluated systematically the effects of two important processing parameters, 

spinning voltage and solution concentration on the fibers formed. They found that spinning 

voltage strongly correlated with the formation of bead defects in the fibers, and their 

measurements can be used to signal the onset of the processing voltage at which the bead defect 

density increases substantially. Solution concentration has also been found to most strongly 

affect the fiber size, with fiber diameter increasing with increasing solution concentration 

according to a power law relationship. In another study by Deitzel et.al51 they tried to control the 

deposition area of the electrospun PEO fibers by using multiple field electrospinning apparatus 

which was used by applying a secondary external electric field of the same polarity as the surface 

charge on the jet. This mechanism allows for greater control over the deposition of the 

electrospun fiber on a surface and for collection of the electrospun fibers in other forms than 

non-woven mats. A novel hybrid methodology which combines traditional polymer processing 

techniques like twin screw extrusion with electrospinning has been proposed by Wang et.al52. 

They have made electrospun nanofibers of polycaprolactone containing uniformly dispersed β-

tricalcium phosphate nanoparticles. The twin screw extruder is used to facilitate uniform mixing 
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of the nanoparticles with the electrospinning polymer solution and results showed that the 

particles were uniformly dispersed in the fibers whose size ranged from 200-2000 nm52. This 

unique method can be advantageous for making composite nanofibers incorporated with 

nanoclay, carbon nanotubes, and drugs with uniform mixing. Recently researchers in Germany 

have reported an unexpected result of forming nanoscaled fibers up to 25 nm from a polymer 

solution during standard spin coating process. They explained the fiber formation relied on the 

Raleigh-Taylor instability of the spin coated liquid film that arose due to a competition of the 

centrifugal force and the Laplace force induced by the curvature of the rotating chuck53.  

Both electrostatic and fluid dynamic instabilities can contribute to the basic operation of 

the process. The bending instabilities that occur during electrospinning have been studied and 

mathematically modeled by Reneker et.al40. After the jet travels, straightforward unsteadiness 

appears in the form of loops. The jet does not bend but it also forms lateral excursions that grow 

into spiraling loop. New bending instabilities arise when the jet is thin enough and stress 

relaxation of the viscoelastic stress has taken place indicating splitting and splaying of the fibers 

and formation of a Taylor cone. Another group led by Rutledge also studied electrospinning with 

regards to electrically forced jet and instabilities and proposed a stability theory for electrified 

fluid jets54, 55. A series of papers demonstrates that an essential mechanism of electrospinning is a 

rapidly whipping fluid jet. This whipping action of the fluid jet was shown well by Reneker et.al 
41 in their paper on electrospun nanogarlands of polycaprolactone. They found that electrically 

driven bending instability in the electrospinning of polycaprolactone results in the contact and 

merging of segments in different loops of the electrospinning jet while the jet is in flight. These 

contacts limit the lateral expansion of the jet path suggesting that no splitting and splaying from a 

single jet occurs during electrospinning and only a single jet of fibers undergoes a whipping 

action as it approaches the target (Figure 1.5).  

Several attempts have been made to model and predict the phenomena of electrospinning. 

Spivak and Dzenis56 modeled and predicted the radius and motion of a weakly conductive 

viscous jet accelerated by an external electric field taking into account the inertial, hydrostatic, 

viscous, electrical and surface tension forces. The polymer fluid was described by a non-linear 

rheological constitutive equation (Ostwald-deWaele law) and a one-dimensional equation for jet 

radius was derived and analyzed. The model predictions were found to be in agreement with 

experimental observations. 
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Figure 1.5 Whipping action of electrospun fibers of polycaprolactone captured by a fast shutter 

speed digital camera, observed that no splitting and splaying of the jet occurs41. 

 

Yarin et.al40 have studied and explained the formation of the charged electrical jet after 

exiting the syringe and formation of bending instabilities during its complex motion between the 

syringe and target. Initially the jet travels in a straight line but as the motion of the jet is affected 

by the lateral forces acting on the jet a bending instability developed and grew. The jet was being 

continuously stretched as it travelled further due to repulsive forces between charges carried with 

the jet, however instead of continuing in a straight line the jet began to loop and the loops grew 

larger in diameter as the jet travelled further and became thinner. Creation of these multiple 

loops occurred within a finite region as the jet travels. The cycle of bending instabilities repeated 

itself until all the solvent had been evaporated and the jet dried out. They concluded that 

electrostatic interactions between individual charge elements in the jet and between charge 

elements and the macroscopic electric field were primarily responsible for initiation and 

perpetuation of the bending instability. 

To control the spread of the Taylor cone and diameter of the bending instabilities Deitzel 

et.al51 created an electrospinning apparatus which had charged circular copper rings placed in 

between the solution ejecting syringe and the fiber collection target as shown in Figure 1.6.  
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Figure 1.6 Schematic of multiple field line electrospinning apparatus (left), simulated electric 

field distribution in a multiple feed set-up (right)51. 

 

 

It can be seen that the charged copper rings referred to as an ‘electrostatic lens’ helped converge 

the charged electric jet along the center of the applied electric field hence controlling the spread 

of the fibers. Several other researchers54, 55 have also modeled the electrospinning phenomenon 

and tried to explain it using various theories like electrohydrodynamics of electrified fluid jets57, 

58. They came up with a number of predictive phase diagrams which could predict the onset of 

bending instability or whipping motion as function of the applied electric field and solution 

conductivity. 

Most of the research carried out in electrospinning in the past decade or more has focused 

primarily on electrospinning of different types of synthetic and biopolymer systems, and scale up 

of the process for mass production of the fibers and has been well summarized in many review 

papers published on electrospinning9, 59-65. Electrospinning process conditions and effect of 

above mentioned process parameters has been widely studied and optimized to form nanometer 

sized uniform fibers of most commonly used synthetic polymers like polycarbonate66, 

polystyrene67,nylon-665, 68, poly(vinyl alcohol)69, polyaniline70, poly(methymethacrylate)71, 

polyacrylamide72, 73 etc.. From the above it can be deduced that the principle factors that govern 

fiber formation during electrospinning of any polymer-solvent system are: 

a) Physical properties of polymer and solvent i.e. molecular weight, solubility etc: 
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One of the earliest and highly cited works that studied the effect of solution parameters 

(conductivity, surface tension, and viscosity) and applied electric field on fiber formation 

summarized that with increase in viscosity, solution conductivity, applied electric field and 

reduction in surface tension beadless fiber formation was favored 49. Increasing the solution 

conductivity by adding NaCl led to an increase in net charge density and formation of thinner 

beadless fibers49. Addition of ethanol to PEO/water system increased the volatility of the 

solvent reducing the surface tension and improving the spinnability49.  

b) Applied electric field: 

Fong et.al49 found that a certain critical voltage was required to charge and elongate the 

polymer droplet and onset of the bending instabilities, voltages higher than the critical 

voltage led to further extension and thinning of the charged jet and formation of thin bead 

less fibers. Using a biased AC or “AC-DC” electric supply highly aligned electrospun 

nanofiber mats can be obtained74. 

c) Distance between charged syringe and collecting target:  

The distance between the syringe and the target also plays a critical role in fiber formation. A 

greater distance gives more time for solvent evaporation and leads to formation of thinner 

beadless fibers75. 

d) Flow rate of polymer solution:  

The solution flow rate also affects fiber formation, if the solution flow rate is faster than the 

rate at which it can be charged it leads to formation of large beads and an instability in the 

system75. 

e) Ambient parameters like humidity during electrospinning: 

Stephens et.al67 studied the effect of moisture on surface microstructure of electrospun fibers, 

they observed that as the humidity of the electrospinning environment was increased 

microspheres or surface pores were being formed on electrospun polystyrene fiber surface. 

The size shape and number of pores could be controlled by the solvent and relative humidity 

of the electrospinning chamber.  The mechanism of pore formation was attributed to 

formation of breath figures on surface of electrospinning jet. As the solvent is evaporating 

water molecules are condensing on the jet surface and when the jet dries and solidifies to 

form fiber it leaves behind a cup shaped pore on the surface of the fiber67. 

f) Motion and design of electrospinning target: 
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The mechanical and molecular alignment of electrospun fibers can be controlled by 

modifying the target used to collect the fibers. The use of a rotating drum as a target leads to 

formation of mechanically and molecularly aligned electrospun polyacrylonitrile fibers76, 77. 

g) Spinning solution temperature: 

Another way of varying or reducing the solution viscosity of electrospinning polymer 

solutions which has proven to be useful in electrospinning naturally occurring high molecular 

weight biopolymers is heating the polymer solution during electrospinning. Researchers have 

investigated the effect of blowing hot air around the needle carrying the polymer solution. 

This modified electrospinning process has been termed as “electroblowing” by Um et.al78. 

The hot air heats the solution which reduces the viscosity and aids in fiber formation. The 

blown air also helps to further stretch the polymer jet and increase the spin-draw ratio. 

Hyaluronic acid which is a naturally occurring biopolymer and relatively difficult to spin 

because of its high molecular weight, inter/intra chain hydrogen bonding, and high solution 

viscosity was easily electrospun using this hot air modified apparatus using aqueous 

hydrochloric acid as a solvent78, 79. The modified electrospinning apparatus used in this study 

by Um et.al78 is as shown Figure 1.7. They measured the temperature of the hot air using a 

thermocouple at three points marked (A) point where air came out of the air tube, (B) point 

where air came out of the gap near the spinneret and (C) point where solution droplet came 

out around the spinneret. Experiment trials showed that point C was the most accurate 

prediction of actual temperature of electrospinning solution; hence temperature read by 

thermocouple C was recorded. 

Lu et.al80 studied the electrospinning of polyacrylonitrile using DMF as a solvent at 

elevated temperatures using an apparatus as shown in figure 1.8, they used a jacket type heat 

exchanger around the syringe to heat the electrospinning solution. The solution temperature 

was measured at the needle end using a thermocouple as they observed a temperature 

gradient along the length of the needle due to its “one dimensional fin” geometry. During the 

spinning process they encountered problems with maintaining a stable jet and formation of a 

Taylor cone. A high temperature saturated DMF vapor is introduced around the jet which 

helps prevent the drying of the jet as the temperature at the end of the needle reaches the 

boiling point of the solvent. Effect of needle length was also studied on the fiber formation 

during electrospinning.  
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Figure 1.7 Schematic of heated electrospinning unit design by Um et.al78 to electrospin 

Hyaluronic acid. 

 

 
Figure 1.8 Schematic set-up of high temperature electrospinning unit by Lu et.al80. 

 

With an increase in needle diameter an increase in size of Taylor cone and electrified jet were 

observed, along with an increase in fiber diameter from 256 to 502 nm (needle diameter 

increased from 0.57 to 2.77 mm) and lower drawability and lessbirefringence. They found 

that high temperature spinning was an alternate way of modifying solution properties to form 

thinner fibers with lower crystalline order but with higher chain orientation. With increased 

temperature the viscosity and surface tension of solution decreased with increase in 
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conductivity. Also, at higher temperatures a strong viscosity dependence of fiber diameter 

was observed (@ 32.2°C df = η0
0.74; @ 88.7°C df = η0

0.52) 

 

Electrospinning is a truly versatile process and can be modified to produce fibers with 

different size, shape and components. Polymer blends can also be electrospun to produce 

polymer fibers with desired morphology like bi-component fibers or core-sheath fibers or co-

continuous fibers. Bi-component fibers of poly(vinyl chloride)/Estane and poly(vinyl 

chloride)/poly (vinylidiene fluoride) have been successfully fabricated as described by Gupta 

et.al81. Fibers produced by this method were a mixture of both polymers, however a single fiber 

was not a blend of both polymers as in the experimental set-up used, the two polymer solutions 

came into contact only at the tip of the needle. Polymer blend solutions have also been widely 

electrospun. Feng82 studied the phase morphology of blend solutions of polycarbonate/poly(vinyl 

chloride), he did not find any phase separation in the formed fibers and attributed it to dominance 

of kinetic effects (rapid solution evaporation) over thermodynamic factors (time of mixing, 

molecular weight difference) which favor phase separation. Wei et.al83 studied numerous 

polymeric blend systems and found that the right combination of solubility parameter difference, 

polymer molecular weight, and blend molecular weight ratios which facilitate higher chain 

mobility would lead to formation of core-sheath structures. Nanofibers of blends of 

polybutadiene/polycarbonate (25:75) spun using tetrahydrofuran as solvent showed core sheath 

morphology83. Polymers difficult to electrospin by themselves can also be spun by blending them 

with easily electrospinnable polymers like poly(ethylene oxide) (PEO). Fibers of 1 µm diameter 

have been fabricated by blending PEO and poly-3-dodecylthiophene (P3DDT, an electronic 

polymer used for sensors etc.)84. The formed fibers were characterized for their phase 

morphology using fluorescence imaging as P3DDT shows an emission signal of fluorescence, 

which revealed presence of P3DDT core surrounded by PEO. The PEO sheath was then removed 

by washing the fibers with acetonitrile which selectively dissolves PEO leaving behind 

structurally intact P3DDT fibers84. 

Lim et.al85 studied the effect of crystalline morphology on the tensile properties of 

electrospun nanofibers. Fibers were electrospun from 10, 12 and 14 wt% polycaprolactone in a 

solvent mixture of dichloromethane and N-N-dimethylformamide.  Nanofibers formed from 
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polymer solutions of lower concentration have higher degree of molecular orientation and 

crystallinity, and have superior strength and stiffness. 

Nanofibers having anti-bacterial properties have been fabricated by electrospinning of 

polyelectrolytes. Electrospinning of polyelectrolytes like poly(2-(dimethylamino)ethyl 

methacrylate hydrochloride)(PDMAEMA.HCL) has been studied and ultrathin fibers with 

diameter 2-3 orders of magnitude less then neutral polymers were obtained86. Fiber formation 

was correlated to the rheological properties of these polyelectrolyte solutions and it was observed 

that addition of NaCl reduced the concentration required to form fibers86.These polyelectrolyte 

fibers can be used for protective clothing as they have anti-bacterial properties86. Polyurethane 

cationomers (PUC) containing different amounts of quaternary ammonium groups have been 

synthesized by Youk et.al87 and successfully electrospun into nanofiber mats. The PUC 

nanofibers showed greater than 99.9% reduction in colonies when tested against Staphylococcus 

aureus and Escherichia Coli microorganisms87. Antimicrobial nanofibers with up to 5 log 

reduction in activity (after 120 mins of contact) have been fabricated using photo-cross-linked 

poly (vinyl pyrolidone) and poly(ethylene oxide) nanofibers containing complex bound iodine88. 

SEM images of these nanofibrous membranes showed that no bacteria were attached to the 

surface of the fibers and it was concluded that bacteria were killed as soon as they came in 

contact with iodine vapors88. Electrospun nylon-6 nanofibers containing N-halamine additives 

have shown up to 8 log reduction in Staphylococcus aureus and Escherichia Coli micro 

organisms in a short period of contact time (40 mins). N-halamine was directly added to nylon-

6/formic acid solutions and fibers obtained showed uniform distribution of N-halamine on 

surface of fiber65.  

 

1.1.3. Electrospinning of Biopolymers 

As this study involves the electrospinning of a biopolymer chitosan, detailed review of 

electrospinning of biopolymers is presented herewith. Biopolymers can be defined as 

macromolecules which are obtained from natural sources. They include polysaccharides 

(cellulose, chitin, chitosan, dextran, alginate), proteins (collagen, gelatin, fibrinogen, elastin, 

silk), DNA etc. Electrospinning of biodegradable polymers and biopolymers has generated a lot 

of interest89-92 in recent years. Electrospun biopolymer based nanofibrous structures meet the 

essential design criteria of an ideal tissue engineered design scaffold based upon its structure 
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which acts as an excellent substrate to support and guide cell growth93-95. Electrospun fibers 

made of different synthetic biodegradable and biocompatible polymers like polyurethane96-99, 

poly (glycolic acid)100, polycaprolactone95 etc have been made using common organic solvents 

like chloroform, N,N-dimethylformamide, tetrahydrofuran etc. and demonstrated to be useful for 

wound cleansing, healing, cell growth, cell proliferation and scaffolds for tissue engineering.  

Electrospinning of cellulose 

Cellulose is the most abundant natural, renewable, biodegradable polymer. Cellulose and 

cellulose derivatives (cellulose acetate) have been widely electrospun with potential applications 

in biomedical industry, composites and filtration62, 101-105. Common solvents used for 

electrospinning cellulose are mixtures of N-methylmorpholine oxide (NMMO)/water or lithium 

chloride/N,N di-methylacetamide106. For both solvent systems it was necessary to apply a post 

processing step of coagulation with water to obtain sub-micron sized stable cellulosic fibers. 

Cellulose acetate has been electrospun using acetone, acetic acid and N,N-dimethylacetamide as 

solvent105, and these have been deacetylated using NaOH to obtain sub-micron sized cellulose 

fibers. Rutledge et.al have fabricated bactericidal cellulose acetate fibers containing 

chlorhexidine. Bactericidal efficiency up to 99.9% was achieved against E.coli and S.epidermidis 

microorganisms103. Cellulose acetate nanofibers containing AgNO3 when irradiated with UV 

light led to formation of Ag coated anti-microbial nanofibers. 99.9% reduction in both gram 

negative (E. coli,K. pneumoniae and P. aeruginosa) and gram-positive (S. aureus) test micro-

organisms was observed when in contact for over 18 hrs with Ag coated cellulose acetate 

nanofibers102.  

Electrospinning of chitin/chitosan 

Electrospinning of chitosan is limited by its poor solubility in most organic solvents. It is 

only practically soluble in aqueous acid solutions. Some success has been achieved in 

electrospinning of chitosan out of acetic acid107 and using environmentally harmful and toxic 

solvent like trifluroacetic acid62, 104 wherein fibers formed readily dissolved in aqueous solutions 

and had to be glutaraldehyde cross linked using amide linkages to preserve their structural 

integrity. Chitosan nanofibers have also been made from deacetylation of chitin fibers spun using 

1,1,1,3,3,3-hexafluoro-2-propanol108 (HFIP) as a solvent. Electrospun fibers made of structurally 

modified N-carboxyethylchitosan109 and quartenized chitosan110 have been made by blending 

chitosan with poly(vinyl alcohol) and poly(vinylpyrrolidone) and fibers formed have shown 
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antimicrobial activity against pathogenic microorganisms (98.8% reduction after 90 mins 

contact). Most of the other work in this area has been related to spinning chitosan blends with 

synthetic polymers like PEO and poly (vinyl alcohol) (PVA)111, 112 ; wherein beaded fibers were 

obtained at (66:34) or lower loading of chitosan: synthetic polymer in blend solutions. Duan 

et.al113 studied the electrospinning of chitosan/PEO blends and found that both microfibers and 

ultrafine fibers (fiber diameter 80-180 nm) were obtained with solutions containing higher ratio 

of PEO. XPS analysis of fiber surface showed that microfibers (fiber diameter in microns) had 

only PEO on the surface whereas the ultrafine fibers had both chitosan and PEO on the surface. 

Lou et.al114 electrospun chitosan/PEO (60:40) blend fibers and studied the attachment of 

Osteosarcoma cells (MG63) on the fiber surface. Chitosan blend fibers did not exhibit 

cytotoxicity thus providing a favorable substrate for cell growth and proliferation. Table 1.2 

summarizes the various known studies of electrospinning of chitosan and chitosan containing 

blends, most of these studies are targeted at potential use of chitosan nanofibers as tissue 

engineering scaffolds or other biomedical applications. 

Electrospinning of other polysaccharides 

Nanofibers of alginate/PEO blends have been successfully electrospun by Bhattarai 

et.al123. The nanofiber network has mechanical properties comparable to cartilage and 

demonstrated cellular compatibility with chondrocytes. Hyaluronic acid nanofibers have been 

electrospun as described earlier using a heat assisted electrospinning apparatus. It has varied 

applications as drug implants, ocular lens protective material etc. Another polysaccharide 

electrospun is dextran which is obtained from bacteria and has been used for delivery of drugs, 

proteins and imaging agents. It has been electrospun using mixture of water, dimethylformamide 

(DMF) and dimethyl sulfoxide (DMSO) as solvent. Proteins like Bovine Serum Albumin up to 

10 wt% could be easily incorporated into electrospun dextran nanofibers124. 

Electrospinning of Collagen 

Collagen is the main structural component of the extracellular matrix. Bowlin et.al89 have 

electrospun type I and type III collagen using HFIP solvent. Cellular studies were conducted on 

these electrospun scaffolds and encouraging results demonstrated their use for the bioengineering 

of cartilage. Collagen/elastin blends have been electrospun and studied as materials for making 

vascular grafts125. Gelation a natural biopolymer obtained by the hydrolysis of collagen has been 

electrospun by blending with polycaprolactone using trifluoroethanol as solvent126. Collagen has 
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been blended with chitosan and nanofibers formed showed intermolecular interaction between 

blend fibers possibly producing new materials for biomedical applications127. 

Electrospinning of Silk 

Silk, a material commonly used for textiles and obtained from silkworms, contains a 

fibrous protein termed fibroin which has attracted attention for biomedical applications as it has 

excellent mechanical properties, is anti-inflammatory, biocompatible and biodegradable128. Silk 

and silk/chitin blends have been electrospun using HFIP as a solvent128, 129. Fibers showed good 

cytocompatibility. Bowlin et.al90 and Wnek et.al69 have studied the feasibility of electrospinning 

fibrinogen for tissue engineering and wound dressing applications respectively. The solvent for 

electrospinning was HFIP and the nanofiber mats showed excellent mechanical integrity and 

strength. Elastic modulus of a 6*6 cm nanofiber mat of 0.7 mm thickness was found to be 

80MPa with a peak stress of 2 MPa compared to a 110nm diameter poly(glycolic acid) 

electrospun nanofiber of similar dimensions which showed a modulus of 60 MPa and peak stress 

of 5 MPa69. 

Electrospinning of other proteins 

Milk proteins like casein and other enzyme proteins which cannot be normally processed 

into fibrous forms have been easily fabricated into nanofibers by blending with synthetic 

polymers like PEO and PVA. Xie et.al130 showed that ultrafine nanofibers of these enzyme 

containing proteins were prepared and showed enhanced catalytic activity towards hydrolyzing 

olive oil then cast films of same material, due to increase in surface area. Egg albumin a highly 

functional food protein has been electrospun by blending with PEO using formic acid as a 

solvent, fiber formation was a function of polymer blend ratios and fibers were formed with as 

little as 1:0.1 (Egg Albumin:PEO) blend ratio131. Zein is a prolamine, the major storage protein 

of corn, which comprises about 45–50% of its protein content. It has been widely used a coating 

material for food or tablets to protect foods from stomach acids. Recently electrospinning of Zein 

has been explored and nanofibers of zein and zein/Hyaluronic acid blends have been electrospun 

using alcohol and acetic acid as solvents132, 133. Other proteins explored for their 

electrospinnability are wheat protein134 which is a polydisperse plant protein and has been used 

in the food industry to strengthen dough networks.  It has been electrospun using HFIP as a 

solvent. 
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Table 1.2 Summary of known studies of electrospun chitosan/chitosan blends 

Polymer (s) Molecular Wt Degree of 

deacetylation 

Solvent Electrospinning 

Conditions 

Ref 

Chitosan 10  3210kDa 78% TFA/MC 15 kV, 15 cm 104 

Chitosan 10 210kDa 78% TFA 15 kV, 15 cm 104 

Chitosan 70kDa 

191-130kDa 

74% 

83% 

TFA 26 kV, 6.4 cm, 

1.2 ml/h 

62 

Chitosan 210kDa 91% TFA/MC 25 kV, 15 cm, 

2ml/h 

115 

Chitosan  95% TFA/MC 25kV, 20 cm 116 

Chitosan 106kDa 54% aq. AA 3-5 kV/cm, 20 

µl/min 

107 

Chitosan10/PVA 

Chitosan100/PVA 

210kDa 

1300kDa 

78% 

77% 

aq. AA 15kV, 15cm 104 

Chitosan/PVA 1600kDa 82.5% aq.AA 18kV, 25cm 112 

Chitosan/PVA 120kDa 82.5% aq.Acrylic 

acid 

22kV, 12cm 117 

Chitosan/PEO   aq.AA 15 kV, 20 cm, 

0.1 ml/h 

113 

Chitosan/PEO 190kDa 85% aq.AA 20-25 kV,17-20 

cm 

111 

Chitosan/UHMWPEO 190kDa /5000kDa 85% aq.AA  118 

Chitosan/Collagen 100kDa/1000kDa 85% TFA/HFIP 20kV, 130cm, 

0.8ml/h 

119 

Chitosan/Silk fibroin 220kDa 86% FA 16kV, 8cm, 1 

ml/h 

120 

Hexanoyl Chitosan 576kDa 88% Chloroform 8-18kV,12cm 121 

Carboxymethyl 

Chitosan 

40-405kDa 84.7% water 10-15kV, 17-

20cm 

122 

(TFA-trifluoroacetic acid; MC-dichloromethane; AA-acetic acid; HFIP-hexafluoroisopropanol; 

PVA-poly(vinylalcohol); PEO-poly(ethyleneoxide; UHMW – ultrahighmolecularweight)) 
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Electrospinning of Deoxyribonucleic Acid (DNA) 

DNA, a nucleic acid which is known to contain genetic specificity of biological 

developments of all living organisms, has also been electrospun. Reneker et.al135 first 

demonstrated the electrospinnability of DNA fibers using a 0.3 -1.5 % fibrous calf thymus Na-

DNA (MW:109 g/mol) in a mixture of H2O/ethanol (7:3) . Similar observations were found by 

Takahashi et.al who observed the spun DNA fibers using AFM136. Liu et.al have electrospun 

DNA fibers from mixtures of DNA/PEO137. Craighead et.al138 also electrospun DNA/PEO 

blends and showed upon spinning, the DNA molecules were stretched and could be released 

from the fiber. Plasmidic DNA was incorporated in a PLA-bPEG-b-PLA block co-polymer and 

electrospun into nanofibers, and its release characteristics over 20 days was studied139. It was 

found that DNA released was structurally intact, capable of cellular transfection and successfully 

encoded the protein beta-galactosidase. DNA nanofibers can also be prepared by surface 

functionalization of nanofibers made from synthetic polymers. Polystyrene nanofibers have been 

functionalized using a layer-by-layer method with various substrates like polyelectrolytes, DNA 

and gold to form functionalized nanofibers with specific applications as biosensors, catalysis 

etc140.  

 

1.1.4. Nanofibrous Filter media 

Nanofibrous non-woven media offer the distinct advantage of high surface area to 

volume ratio; they have low basis weight, high permeability and small pore size that make them 

suitable for wide range of air and water filtration applications. Using electrospinning to fabricate 

nanofibrous filter media we can easily control the fiber diameter, filter thickness and porosity. 

Barhate et.al141 have shown that by optimizing the applied electric field, tip-target distance and 

fiber collection method the porosity, fiber size and thickness of electrospun poly(acrylonitrile) 

fiber mats can be controlled which in turn can control their filtration performance. The present 

use of nanofibrous filter media is limited to prefiltration, due to its small pore size and lack of 

self-supporting mechanical strength1. Figure 1.9142 shows the size of the common particulate 

media, micro organisms and other pollutants. While particulates up to 0.3µm can be easily 

filtered using conventional micron size non-woven filter media made by conventional non-

woven processing techniques like melt blowing, there is a need in industry for media which can 

trap particles of smaller sizes143. Nanofibrous filter media can play an important role in dealing 
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with these small contaminant sizes (< 0.3 µm) as they have high porosity, interconnected open 

pore size, high permeability for fluids and high specific surface area1. 

Nanofibers have been extensively used for air filtration in commercial, industrial and 

defense applications over the past two decades. Donaldson Company Inc. is one of the major 

companies which has pioneered the application of nanofibrous filter media for air purification. 

Pulse-clean cartridges incorporating micron sized cellulosic media, cellulosic/synthetic blend 

media and nanofibrous cellulosic media were tested and compared for filtration performance. 

The nanofibrous cellulosic media showed the lowest pressure drop144. As pore size and fiber size 

are reduced, the pressure drop is expected to increase, but due to interception and inertial 

impaction, nanofibers tend to exhibit better filtration efficiencies at same or lower pressure drops 

compared to micron sized filter media.  For interaction of particulates with nanofibers the effect 

of slip flow at the fiber surface has to be considered145.  

 

 
Figure 1.9 Size ranges of typical air and water borne pollutants 
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Filtration theory generally assumes that when a particulate media comes in contact with 

fiber surface “no-slip” condition occurs at point of contact between particle and fiber i.e. air 

velocity is zero at that point. However, Graham et.al.145 have shown that as fiber size is reduced 

(< 0.5 microns) slip flow must be considered and diffusion of particles along with interception 

and inertial impaction lead to higher filtration efficiencies. At high face velocities impaction is 

the dominant filtration mechanism for nanofibers whereas at lower face velocities 

collection/filtration is by diffusion146. The Knudsen number (Kn) is used to describe the 

molecular movements of the fluid at the fiber surface, and is defined as the ratio of mean free 

path of the air (λ = 0.0666 * 10-6 m) to the mean value of the radius of the fibers (Rf)141. 

Depending on Kn four different flow regimes can be defined around a fiber (1) Continuum 

regime (Kn<10-3), (2) Slip flow regime (10-3<Kn<0.25), (3) Free molecule regime (Kn > 10) and 

(4) transient region (0.25 < Kn<10)147. 

  

 

Figure 1.10 shows the various interaction mechanisms dominating at different particulate 

sizes143. Hence nanofibrous filter media offer unique opportunity for physical (size based) and 

chemical (adsorption or diffusion) based separations. 

As the electrospinning process has matured and different synthetic polymers have been 

electrospun researchers have started developing their products for varied applications such as for 

aerosol particulate filtering39, 148, high efficiency particulate air filters (HEPA)146, antimicrobial 

air filter102, 149, coalescence oil filter150 and catalytic filters for recycling and reusing highly 

specific catalysts like enzymes39.  

 

 
Figure 1.10 Operative particle size in various interaction mechanisms 
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Ahn et.al146 tested electrospun Nylon-6 nanofibers for aerosol filtration against 

commercially available HEPA filters. The normal criteria for HEPA filter performance is they 

have efficiency of 99.97% to filter 0.3 µm particles at 5 cm/s face velocity. The electrospun 

Nylon-6 nanofibers had 99.993% efficiency which is superior filtration efficiency than HEPA 

filters. One drawback of the nanofibers was that they exhibited higher pressure drop than the 

HEPA filters. However, to achieve the same filtration performance, a substantially lower 

nanofiber basis weight was required (HEPA filter: basis weight = 78.2 g/m2,thickness = 500 µm, 

pore size = 1.7 µm; Espun Nylon 6 filter: basis weight = 10.75 g/m2, thickness = 100 µm, pore 

size = 0.24 µm)146. Wang et.al151 studied the filtration performance of electrospun 

poly(vinylalcohol) nanofibers spun on top of a spunbonded and melt blown polypropylene. The 

filtration performance of these nanofibrous filter media was tested against 0.6 µm NaCl aerosol 

particles. The spun bond (fiber diameter = 13 µm, pore size = 41 µm) layer had a 6% filtration 

efficiency, whereas the melt blown layer (fiber diameter = 4 µm) had a 30% filtration efficiency. 

When a 0.5 g/m2 electrospun layer (fiber diameter = 0.2 µm, pore size = 0.74 µm) was placed on 

top of spun bond layer the filtration performance improved from 6 to 20% and was 100% when 

weight of e-spun layer was 2.8 g/m2. When the same e-spun fiber mat was place on top of the 

melt blown layer the performance ramped up from 13 % to 60% at 0.5 g/m2 (e-spun fiber) to 100 

% at 2.4 g/m2 (e-spun fiber)151. Similar results were obtained by Harlin et.al152 who studied the 

effect on filtration performance of an electrospun layer of polyamide-66 fibers on a spun bond 

substrate. They concluded that filtration efficiency increased with incorporation of as little as 

0.02 g/m2 nanofiber layer and was up to 90% with 0.5 g/m2 nanofiber coating for sub-micron 

sized aerosol particles. However, a drawback of coating an electrospun layer is that it could be 

easily delaminated from the substrate and was mechanically weak hence a top protective layer of 

spun bond or melt blown material would impart mechanical strength to the composite filter152. 

Okuyama et.al153 studied the filtration performance of electrospun poly(acrylonitrile) fibers (270-

400 nm size range) against NaCl aerosol particles (< 80nm in size). Filter quality factor or figure 

of merit (Equation 3a) along with the single fiber collection efficiency was found to be 

independent of thickness of nanofiber mat and function of nanofiber diameter and packing 

density. Higher figure of merit or quality factor is indicative of better filter performance.  
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ln

∆ … … … … … … … … … . . 3  

where Q is the quality factor, P is penetration of aerosol particles through the filter and ∆p is 

pressure drop across filter 

 

Wang et.al2 have also studied the effect of particulate size, nanofiber solidity and fiber diameter 

on the quality factor and filtration efficiency on a single nanofiber layer on a substrate. Fiber 

solidity is defined as shown by   Equation 3b. 

 4 … … … … … … … … … 3  

 where α is the nanofiber solidity, df is fiber diameter  and h is distance between two nanofibers 

 

Experimental results proved that with increasing fiber solidity filtration efficiency and pressure 

drop increased2. The figure of merit (which is a function of particle size and fiber diameter) 

decreases with increased solidity for small particles; whereas for particles near the penetrating 

size increasing solidity increases figure of merit. Nanofiber performance was compared against 

standard glass fiber media of 0.053 cm thickness, fiber diameter = 1.9 µm and 0.05 solidity, 

nanofibers had better figure of merit for particles larger than 100 nm compared to glass fiber 

filters.  

The single fiber collector efficiency was modeled based on theory proposed Kirsh and 

results were in agreement with experimentally observed data153. Maze et.al147 simulated the 

filtration performance of nanofiber webs at reduced pressures. The nanofibers were modeled as 

straight cylinders, assuming that fibers lie horizontally on the web and do not bend at cross over 

points, a complex 3-D web generation algorithm was developed to model the nanofibers taking 

into consideration the orientation distribution of the fibers. Figure 1.11 shows top view of the 

virtual electrospun fiber mats of varying diameters147. With increasing diameter the surface pore 

size increased.  
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Figure 1.11  Top view of three virtual electrospun fiber-webs made of fibers with a diameter of 

(a) 50 nm, (b) 100 nm, and (c) 200 nm147.  

 

Filtration efficiency at const. pressure drop and thickness but varying fiber diameter was 

modeled. Reduction in fiber diameter led to increase in filtration efficiency. The effect of 

Brownian diffusion and interception mechanism on nanofiber of 100 nm diameter with varying 

particulate size was modeled and is as shown in Figure 1.12, with increasing particle diameter 

Brownian diffusion decreases whereas capture by interception increases147. 
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Figure 1.12 Collection efficiency of web of different diameter but constant pressure drop and 

thickness (top),The influence of capture due to Brownian diffusion is separated from that due to 

interception for the web of 100 nm (bottom)147. 

 

With increase in air temperature of the air/aerosol particulates the collection efficiency increased 

due to presence of a stronger Brownian diffusion at higher temperatures. Cake formation which 

is similar to membrane fouling was also studied and was found to be faster if larger sized 

challenge particles were used147. 
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Recently, fabrication of chloridized PVC electrospun nanofiber membranes have been 

fabricated by Sang et.al.154 which can bind up to 5mg/g fiber heavy metal ions like Cu2+,Cd2+ and 

Pb2+. They also showed that use of Micellar-enhanced filtration (MEF) method to adsorb heavy 

metal ions from waste water streams by the nanofibrous membranes. In MEF the contaminant 

ions (size on order of 0.1 nm) which are normally permeable to filtration membranes can be 

made impermeable by forming their large size impermeable micelles by adding surfactants to the 

waste water stream154.  

Electrospun membranes using polyvinylidene fluoride were fabricated using a mixture of 

N,N-dimethylacetamide and acetone (1:1) as solvent and tested for their liquid filtration 

efficiencies against different sized polystyrene (PS) latex particles155. The formed nanofiber 

membranes had pore size in 10 – 4 micron size range, and a 91% separation was achieved for 

5µm sized PS latex particles155. The same group also investigated the use of electrospun 

polysulfone membranes as pre-filter material prior to ultrafiltration. The electrospun polysulfone 

membranes could remove 99% of 10, 8 and 7 µm sized PS particles without fouling. Irreversible 

fouling occurred for particles < 2 µm, below 0.5 µm sized particles the filter behaved as a “cake 

filter”156 and was clouded with PS particles. Electrospun fibers obtained from recycled 

polystyrene were mixed with conventional micron sized glass fiber filter media to separate water 

droplets from an emulsion of water in oil150, separation efficiency increased from 60% to 91% 

with addition of 0.09 g electrospun polystyrene nanofiber layer. Conventional ultrafiltration or 

nanofiltration membranes for water filtration are based on porous membranes which exhibit a 

low flux rate, Yoon et.al.157 have tested a composite electrospun nanofibrous filtration membrane 

which exhibited a magnitude higher in flux rate while achieving the same 99 % rejection. Their 

composite membrane composed of a base layer non-woven polyester substrate (fiber diameter = 

10 µm), a two-layer with reducing fiber diameter electrospun PAN nanofiber mat (fiber diameter 

layer 1 = 100 nm, layer 2 = 800 nm), and a chitosan coating layer on top. The chitosan layer was 

added as it would allow water to permeate through the membrane and prevent fouling of the 

nanofibrous filter media157. Chitosan/poly(ethylene terephthalate) (PET) and chitin/PET 

nanofibrous mats (chitosan/chitin content = 10wt%) with fiber diameters in the order of 200 – 

800 nm have been fabricated using electrospinning using aq.acetic acid solvent158. The two types 

of nanofiber mats were tested for bacterial inhibition of Staphylococcus aureus and Klebsiella 

pneumonia micro organism by soaking the fiber mats in known bacteria solution for 18 hrs. 

32 
 



PET/chitosan fibers exhibited the greatest growth inhibition (up to 90%) of the two bacteria, 

followed by the PET/chitin fibers (60%) and pure PET fibers which did not show any growth 

inhibition. 

 

1.2 Project Goals 

The objective of this research is to fabricate chitosan based nanofibrous filter media 

which can be used for air and water filtration. To achieve this goal the research will be divided 

into two parts: 

1. Controlled fabrication of nanometer sized non-woven fiber mats of chitosan using 

electrospinning – understanding of process – structure relationship 

In this part of the research, the goal is to identify and establish the processing conditions 

necessary for the fabrication of beadless chitosan nanofibers. After beadless nanofiber mats have 

been made they will be tested for their anti-microbial and metal binding properties. To assist in 

chitosan nanofiber formation blends of chitosan with other synthetic polymers like poly(ethylene 

oxide) (PEO) and poly(acryl amide)(PAAm) will be made. PEO was selected because it is 

soluble in water, has shown to produce ultrafine fibers using electrospinning159, and has 

properties similar to many polysaccharides i.e. it has a linear structure and can form hydrogen 

bonds with other polymers. PAAm is another type of high molecular weight hydrophilic 

synthetic polymer which possesses –NH2 similar to chitosan and cationic polyacrylamides. The 

latter have been investigated for their antimicrobial activity160,161, but electrospinning of 

polyacrylamides has not been widely investigated162. Figure 1.13 shows the structure of PEO, 

and PAAm46. 

(a) (b)  

O
OHH

x

CH2 CH

C

NH2O

x

Figure 1.13 Structural formula of (a) PEO, (b) PAAm 
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The effect of the following material/process properties need to be studied and optimized for 

nanoscaled bead less fiber formation: 

• Chitosan/Synthetic Polymer blend ratios. 

• Chitosan and Synthetic Polymers Molecular Weight: 

 High Molecular Weight (HMW) Chitosan (Mv ~ 1400 kDa) with varying degree of 

deacetylation (DDA) (80%, 71%, 61%). 

 Low Molecular Weight (LMW) Chitosan (Mv ~ 100 kDa) with 70 – 80 % DDA.  

 HMW and LMW PEO (Mw – 900kDa, Mw – 300 kDa). 

 PAAm (Mw ~ 5000 kDa). 

• Hot air flow-rate and temperature. 

Effect of fiber structure and chemistry (chitosan content, fiber diameter, % DDA and varying 

blend polymer) on chromium (Cr(VI)) binding and anti-microbial properties will be studied. A 

model correlating the fiber structure and surface chemistry with (Cr(VI)) binding will be 

presented. 

 

2. Fabrication and testing of nanofibrous filter media. 

In this second and concluding part of the research, non-woven fiber mats produced and 

identified as potential candidates for filtration applications (based on structure, metal binding 

efficiency and anti-microbial efficiency) will be used to fabricate a chitosan based nanofiltration 

membrane. A two-layer nanofibrous filter media will be fabricated using a base layer of spun 

bonded polypropylene (PP) non-woven fiber mat, and an electrospun layer of chitosan nanofiber 

mat (produced in step 1). Spunbonded PP fiber mats are being chosen because it can effectively 

serve as a substrate for the thin electrospun nanofiber layer for filtration testing. Spunbonded PP 

would help provide mechanical integrity to the nanofiber layer. The fabricated nanofibrous filter 

media will be tested for its physical (based on size like aerosols, PS beads) and chemical 

(chromium, bacteria) filtration efficiencies. Figure 1.14 provides a flow-chart of the overall 

project objectives. 
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Figure 1.14 Summary of overall research plan.  
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2. Experimental Techniques 
 

2.1 Filter Fabrication 

2.1.1. Materials. 

Chitosan with two different molecular weights was used. Chitosan of molecular weight 

Mv = 1400 kDa (HMW) with varying degree of deactylation (DDA) i.e. 80%DDA, 70% DDA, 

and 67% DDA was used as received from Primex Inc. Chitosan of lower molecular weight Mw = 

100 kDa (LMW) and 83% degree of deactylation was used as received from Sigma. The DDA 

(HMW & LMW) and molecular weight (LMW) values of chitosan were obtained from the 

manufacturer and the molecular weight of HMW chitosan was determined by solution-viscosity 

method. Acid hydrolysis of chitosan was done to further reduce the molecular weight of HMW 

chitosan following a procedure similar to that of Liu et.al163, and chitosan with varying molecular 

weights (300 kDa, 80 kDa, 20 kDa) was obtained. The basic procedure for acid hydrolysis for 

chitosan is (1) Dissolve 2% HMW Chitosan in conc. HCl @ 0°C for 4 hours, (2) Hydrolyze 

chitosan at room temperature for different times (1 hr, 3 hrs and 8 hrs) to get different MW 

chitosan, (3) The reaction was stopped by cooling solution to 0°C and adjusting solution pH to 

4.5 with cold 12M NaOH. (4) Obtained solid chitosan mass was filtered and freeze dried to 

obtain chitosan powder. Figure 2.1 shows reduction in molecular weight of HMW chitosan with 

increasing hydrolysis time.  

 

 
Figure 2.1 Viscosity average molecular weight (Mv) of HCl hydrolyzed chitosan 
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Two different molecular weights of polyethylene oxide (HMW Mw = 900 kDa and LMW 

Mw = 300kDa) were used as received from Scientific Polymer Inc. Polyacrylamide of molecular 

weight Mw = 5000 kDa was used as received from Scientific Polymer Inc. The solvents for 

electrospinning i.e. acetic acid (AA), hydrochloric acid (HCl) and trifluroacetic acid (TFA) were 

used as received from Sigma. Other chemical used in  this study like urea, Brij-35 surfactant etc. 

were used as received from Sigma. To fabricate composite nanofibers, spun bonded 

polypropylene (PP) of 35 g/m2 basis weight was used as received from The University of 

Tennessee Non-Woven Research Lab. 

 

2.1.2. Electrospinning. 

The electrospinning apparatus consisted of a metered flow pump (Harvard Apparatus 

Pump II), a high D.C voltage supply (Gamma High Voltage Research, Inc. Model HV ES 

30P/DAM), and aluminum foils as targets for fiber collection. Figure 2.2 shows the schematic 

outline and the actual electrospinning set up used for this study. An air assisted heating unit was  

designed similar to one described by Chun and coworkers78 to heat the polymer solution while it 

was being ejected through the needle by passing hot air around the needle at flow rates up to 75 

ft3/hr, and temperatures ranging from room temperature (25°C) to 70°C. The temperature of the 

heated air was controlled using a variac, while the flow rate was controlled using a rotameter. 

Temperature of the hot air was measured using a thermocouple at location as shown in Figure 

2.2. The variac power required to attain desired air temperature was calibrated before beginning 

the experiments, and variac settings for different temperatures were established. During 

calibration the temperature of the hot air was also measured near the tip of the needle using 

another thermocouple, and compared with the reference temperature measured at location shown 

in Figure 2.2. Temperature at the end of the needle was slightly lower (~ 5°C) than at reference 

location. In this study, the polymer solutions were electrospun at hot air temperatures of 41°C 

and 70°C which corresponds to approximately 35°C and 61°C as measured at the end of the 

needle. Electrospinning solutions were prepared by dissolving the required polymers on wt% 

basis in the solvent and stirring the solutions for 24 hours to make a well mixed homogenous 

solution. While making electrospinning solutions, the strength of the acid solvent was adjusted to 

maximize solubility of polymer in solution. The solution was then ejected through a syringe 
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(Popper & Sons,7935) using a syringe flow pump at feed rate of 0.08 ml/min and applying a 

voltage of 30 kV and tip-target distance of 10 cm. 

 

 
Figure 2.2 Schematic layout of electrospinning set-up (top), actual (bottom) electrospinning set-

up. 

 

38 
 



2.1.3. Nanofibrous filter fabrication. 

The nanofibrous filter media (Figure 2.3) was fabricated by electrospinning the chitosan 

solutions directly onto a spunbonded PP. Circular discs of 47 mm diameter were cut from these 

composite fibrous media for testing metal binding, anti-microbial filtration and polystyrene 

particle filtration efficiencies. For measuring aerosol filtration efficiency a mat size of 7 * 7 

inches was required. 

2.2 Structural Characterization 

2.2.1 SEM/Image Processing 

The electrospun fiber mat was characterized using a field emission scanning electron 

microscope (FESEM, LEO 1525) to study the fiber morphology. The SEM samples were sputter 

coated with gold to prevent charging during SEM imaging (Figure 2.4). Image processing 

software ImageJ (NIH) was used to measure the fiber diameter from the SEM micrographs. For 

each sample, fiber diameter was measured at 60 different points. The bead density of the fibers 

was also measured using the ImageJ image processing software using the SEM micrographs. 

Contrast between the beads and the fibers was sufficient to allow measurement of the fraction of 

area covered by beads using the analyze particle routine in the software. Measurements were 

done for three different images for each sample. 

 

 
Figure 2.3 Schematic layout of electrospun nanofibrous filter membrane 
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Figure 2.4 FESEM - LEO 1525 (left), gold sputter coated electrospun fiber samples for SEM 

imaging (right). 

 

2.2.2 Polymer Rheology 

Shear viscosity of electrospinning solutions was measured using a TA instruments (AR 

2000) rheometer. Solutions were subjected to a step shear rate of 0.01 sec-1 to 100 sec-1 and zero-

shear viscosity (η0) and rate index (n) of the solution was calculated by fitting the data to a 

Carreau model which describes relationship between viscosity and shear rate for psuedoplastic 

fluids164.  
1

1 /  

where η is the apparent viscosity, η0 is the zero shear rate viscosity, η∞ is the infinite shear rate 

viscosity, k  is a time related to the terminal relaxation time, γ is the shear rate and n is the rate 

index. 

The viscosity average molecular weight of HMW and acid hydrolyzed chitosan was 

measured using dilute solution viscosity measurements using a Canon-Fenske viscometer. A 

mixture of 0.1M CH3COOH-0.2M NaCl was used as a solvent to prepare chitosan solutions with 

varying concentrations from 1*10-3 g/ml to 2.5*10-4 g/ml. The viscosity average molecular 

weight was determined using the Mark-Houwink equation112:  

[η] = 1.81*10-3Mv
0.93 
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2.2.3 Thermal Analysis – TGA 

The compositional analysis of the fiber mats was done using a Mettler Toledo 

(TGA/SDTA 851e) thermo gravimetric analyzer (TGA). Electrospun fiber mat samples were 

weighed (typical weights in range of 1-3mg) and heated at 10°C/min from 40°C to 500°C and 

weight loss for each polymer fraction in the fiber measured by taking first order derivative of the 

raw weight loss TGA curves obtained and then calculating area under the respective polymer 

degradation temperature peak.  

2.3 Surface Properties Characterization 

2.3.1. XPS 

The surface chemistry of the electrospun fibers was characterized using a Thermo 

Scientific K-alpha X-ray photoelectron spectrophotometer (XPS). Electrospun fiber mat samples 

were stuck on the XPS sample holder using a double sided carbon tape. X-rays from an Al K-

alpha (1480 eV) monochromatic source were used. A spot size of 400 microns (maximum 

allowable) was used to scan the surface of the samples so as to account for surface variations and 

get a better average of data. A surface scan of the sample was done to identify the chemical 

moieties on the sample surface, a high resolution scan for “C”, “N” and “O” was done to identify 

the elemental peaks with changing % chitosan in blend fiber, varying chitosan DDA, varying 

fiber diameter, varying chitosan molecular weight, varying blend polymer and after metal 

binding of espun chitosan blend fibers (average of 30 scans). XPS data was analyzed using 

Thermo Avantage V 3.74 software to calculate atom % of various elements found on espun fiber 

sample surface. Peak fitting was done on the high resolution elemental scans (average of 10 

scans) to obtain surface chemistry information. Reference scans of pure chitosan films cast from 

1% HCl, pure PEO, PAAm films cast from water and pure PEO, PAAm electrospun fibers were 

also taken. The atom% values obtained from XPS were converted to weight fraction of chitosan 

present on fiber surface by using the ratio of atomic % “C” to atomic % “N” measured for the 

blend samples with the atomic fractions measured using the pure polymer samples. To correct 

for the surface charging effect, the C1s electron binding energy was shifted to characteristic 

value 285.0 eV165 obtained from literature for all spectra and the flood gun was turned on.  
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2.3.2. Metal binding 

The metal binding properties of the electrospun fiber mats were measured using the 

NIOSH manual of analytical methods (NMAM)166. Chromium solution (5 mg/L) was made by 

diluting the standard 1 mg/ml K2CrO4 solution purchased from Sigma. Weighed amounts of 

electrospun fibers were washed with acetone to remove presence of any residual acetic acid 

solvent to prevent the dissolution of the mat in aqueous solution. The washed mats were then 

soaked in 25 ml of 5 mg/L chromium solution and continuously shaken for 3 hours. Solutions 

containing chromium with no fibers were used as control. After 3 hours, 1 ml of fiber-soaked 

sample solution was taken and added to 7 ml of 0.5 N sulphuric acid (H2SO4). 

Diphenylcarbazide solution (0.5 ml) was added to above solution (as an indicator) and volume 

was adjusted to 25 ml by adding 0.5 N H2SO4. The chromium ion absorbance of these solutions 

was measured at 540 nm using a Shimadzu UV-Vis spectrophotometer (UV2102 PC,Shimadzu). 

Before each experiment, the spectrophotometer was calibrated and standard curves obtained by 

measuring absorbance for solutions prepared with known chromium concentrations (0 mg/L to 

0.2 mg/L). For the electrospun fiber mats metal binding was determined by reading the 

chromium concentration at measured absorbance from the standard curves and then calculating 

the metal binding capacity on weight basis i.e. mg chromium/g chitosan. Measurements were 

done in triplicates. Figure 2.5 shows the effect of indicator on color change in chromium 

solutions (dark pink solutions indicate high chromium concentration). 

 

 
 

Figure 2.5 The effect of indicator on color change in chromium solutions 
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2.3.3. Anti-Microbial 

The antimicrobial properties of the electrospun fiber mats were determined using 

Escherichia coli K-12, as the test microorganism. Escherichia coli K-12 was grown in Brain 

Heart Infusion (BHI; Difco) broth for 48 hours at 35°C. Test fibers of known weight were then 

submerged into culture tubes containing 9 ml sterile phosphate buffer (0.05 M, pH=7.08) 

inoculated with ca. 106 CFU/ml bacteria, and mixed by vortexing and incubating for 6 hours at 

25°C. Phosphate buffer with the same E. coli K-12 inoculum but with no fiber was used as 

positive control and phosphate buffer with fiber but no inoculum as the negative control. The 

survival of E. coli K-12 was determined using the pour-plate method on Trypticase Soy Agar 

(TSA) medium167. All measurements were performed with 3 replications. Figure 2.6 shows 

surviving E.coli K-12 on agar media after 24 hours of incubation. The reduction in E.coli count 

was repor c oted as log redu ti n which is defined as:  

log log   . log   .  

where, 1 log reduction is equivalent to 90% reduction in bacteria, 2 log is 99% reduction, 3 log is 

99.9% reduction and so on. 

 

 
Figure 2.6 Surviving E.coli on agar media 
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2.4 Filter Media Characterization 

To study the filtration performance of the electrospun chitosan fiber mats fabricated and 

characterized as mentioned above, a dynamic filtration efficiency study was performed as 

described below. 

 

2.4.1 Filter Media Structural Characterization 

The basis weight (g/m2 or gsm) of the nanofibrous filter media was measured using 

ASTM standard D 3776-96. Basically a nanofiber mat of known area was weighed and the basis 

weight was calculated by taking ratio of mass over surface area. 

The porosity of the nanofibrous filter media was measured using a PMI capillary flow 

porometer (Porous Materials Inc.), a wetting liquid GalwickTM (Porous Materials Inc.) was used 

as a wetting liquid to spontaneously fill the pores in the nanofibrous membrane. The maximum 

pore detected was measured which is defined as the largest pore size detected as gas flow begins 

through a wetted sample at bubble point pressure. The complete pore analysis was difficult to 

achieve as the nanofibrous mat was delaminating even at low pressure.  

The air permeability which can be another measure of the porosity of the nanofibrous 

membrane was measured according to ASTM D737-96 using a Textest FX 3300.  

 

2.4.2 Metal Binding 

A dynamic filtration test was set-up as shown in Figure 2.7. The set-up basically 

consisted of a filtration flask, filtration funnel and a fritted glass filter support of 47 mm 

diameter. The filtration unit was used as received from Millipore (Millipore 47mm All-Glass  

Vacuum Filter Holder, XX15 047 00). The composite fiber membranes fabricated as mentioned 

in section 2.1.3 were place on top of the filter support and the assembly was clamped. 100 ml of 

chromium solution (conc. = 5 mg/l) was passed through the filter membrane for ten consecutive 

times. After each pass of 100 ml chromium solution 1 ml of solution was removed from the 

sample and analyzed for chromium content using the method as described in section 2.3.2. A 

slight vacuum of ~ 1 mm Hg was applied to maintain a filtration time of 2 mins.  
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Figure 2.7 Set-up of the dynamic filtration test 

 

2.4.3 Anti-Microbial 

A dynamic filtration test was set-up similar to the one shown in Figure 2.7. Initially 100 

ml of 7 log concentration of Escherichia coli K-12 test microorganism was passed through the 

filter membrane once. However the nanofiber membrane was overwhelmed by the high initial 

concentration of bacteria and was completely blocked and even after 3 hrs and applying high 

vacuum the solution could not filter through. Further tests were conducted by using lower 

concentration i.e. 4 log of Escherichia coli K-12 test microorganism. The anti-microbial efficacy 

of the filter membrane was determined in the same way as outlined in section 2.3.3.  

 

2.4.4 Polystyrene latex beads 

The liquid filtration efficiency of the nanofibrous filter media was assessed by passing 10 

ml of 200 ppm 3 µm diameter polystyrene latex beads which were obtained from Sigma. The 

concentration of polystyrene latex beads in water was measured using a Shimadzu UV-Vis 

spectrophotometer (UV2102 PC, Shimadzu) at 490 nm wavelength. Stock solutions of varying 

ppm of PS latex beads were prepared and a master curve of concentration v/s absorbance was 

obtained using the UV-Vis. The concentration of the filtrate was calculated from the known 
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absorbance value obtained by UV-Vis measurements of the filtrate solution. Measurements were 

done in replicates of three. 

 

2.4.5 Aerosol Filtration 

The aerosol filtration efficiency was measured using a TSI Corp. model 8130 automated 

filtration testing unit at UTNRL. NaCl aerosol particles of 0.26 µm mean diameter, 0.075 µm 

count median diameter and concentration of 15 to 20 mg/m3 were used. The penetration and 

pressure drop across the 7*7 inch chitosan based nanofibrous filter media was measured. 

 

2.5 Statistical Data Analysis 

Various data collected for structural and filtration performance of nanofibrous filter were 

analyzed using the one-way Anova Tukey-Kramer test to see if there was statistical difference in 

means between different sample groups using the JMP 6.0 statistical analysis software.  
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3. Fiber Formation – Results & Discussion 
 

3.1 Pure Chitosan Electrospinning 

3.1.1. Effect of Solvents and Spinning Solution temperature. 

The solubility of chitosan in aqueous acids is very low; for the HMW chitosan the 

solution started to gel above 2 wt% and for the LMW chitosan the solution started to gel above 6 

wt%. Formation of a gel is detrimental for electrospinning as the applied electrical force cannot 

overcome the high viscosity of the solution, and a stable jet required for the onset of 

electrospinning cannot form. The critical chain concentration of both the high and low molecular 

weight chitosan was calculated using the intrinsic viscosity values obtained. For HMW chitosan 

it was found to be 0.001 g/cc or 0.1 wt% (taking specific gravity of acetic acid to be 1.05 g/cc) 

and for LMW chitosan was 0.0116 g/cc or 1.2 wt%. Initial studies were done on electrospinning 

of pure chitosan using the 80% DDA HMW chitosan and LMW chitosan. Electrospinning of 

both these materials at varying concentrations in varying strengths of acetic acid (10% - 90%), 

hydrochloric acid (0.03N – 0.5N) and trifluroacetic acid (50%) did not result in fiber formation 

even when spun at higher temperatures (41°C,70°C) as shown in Figure 3.1. Amongst the three 

solvents tried initially, further studies were carried out with acetic acid as it was seen as the most 

promising candidate based on the shape of particles along with appearance of fibrils and the 

desire to stay away from more toxic solvents like TFA.  

 

 
Figure 3.1 SEM images of the pure electrospun chitosan samples 1.4 wt% HMW chitosan spun 

from 50% acetic acid (left), 5 wt% LMW chitosan spun from 90% Acetic Acid (right). 
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3.1.2. Effect of molecular weight, addition of urea and salt . 

Acid hydrolysis of chitosan was done to further reduce the molecular weight of HMW 

chitosan following a procedure similar to that of Liu et.al163, and chitosan with varying molecular 

weights (300 kDa, 80 kDa, 20 kDa) was obtained. Electrospinning of these different molecular 

weights of chitosan also did not result in fiber formation. In order to reduce the amount of inter- 

and intra-chain hydrogen bonding in chitosan, urea was added which has been shown to disrupt 

hydrogen bonding in other polysaccharides168. Salt (NaCl) was also added to the electrospinning 

solution, as it is known that addition of salt helps increase solution conductivity and improve 

spinnability of polymer solutions49, 86. Figure 3.2 summarizes the effect of molecular weight, 

addition of urea and salt on the spinnability of chitosan solutions. 

 

 
Figure 3.2 SEM images of the pure electrospun chitosan samples (a) 1.2 wt% HMW chitosan 

with 1.4 wt% Urea spun from 90% Acetic Acid (b) 6 wt% LMW chitosan + 0.3 wt% NaCl spun 

from 10% Acetic Acid(c) Hydrolyzed chitosan (Mv – 80 kDa) spun from 10% Acetic Acid (d) 

Hydrolyzed chitosan (Mv – 20 kDa) spun from 80% Acetic Acid 
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Table 3.1 Summary of processing condition for electrospinning of pure chitosan 

 

Type of Chitosan 

(Molecular 

weight) 

Solvent Spinning Solution 

Temperature (°C) 

Polymer Concentration 

HMW Chitosan  

(Mv - 1400 kDa) 

0.03N HCl 25, 40, 70 0.6 – 1.5 wt% 

0.1N HCl 25, 40, 70 0.1 - 2 wt% 

0.5N HCl 25, 40, 70 1.5 wt% 

50% TFA 25, 40, 70 1.5 wt% 

90% AA 25, 40, 70 1.2 wt% + 1.5 wt% Urea 

90% AA 25, 40, 70 1.5 wt% 

LMW Chitosan  

(Mv - 100 kDa) 

0.1N HCl 25, 40, 70 1.7 wt% 

90% AA 25, 40, 70 5 wt% with addition of salt 

30% AA 25, 40, 70 6 wt%  with addition of salt 

Hydrolyzed 

Chitosan  

(Mv – 300kDa) 

80% AA 25 5 wt % 

Hydrolyzed 

Chitosan  

(Mv – 80kDa) 

90% AA 25 4 wt% 

Hydrolyzed 

Chitosan  

(Mv – 20kDa) 

80% AA 25 5 wt %, 6 wt%  

Table 3.1 presents a summary of processing conditions that were studied, none of which 

resulted in fiber formation instead forming electrosprayed solution droplets.  Hence, amongst the 

many challenges for electrospinning of chitosan is its limited solubility window in aqueous acids 

before gel formation, and strong inter and intra-chain hydrogen bonding between chains. To 

overcome the increased viscosity effect at higher concentrations the electrospinning apparatus 

was modified as described earlier to heat the solution during electrospinning with the goal of 

reducing solution viscosity at high chitosan concentrations and forming defect free fibers.  
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3.2 Electrospinning of Chitosan/PEO blends. 

As electrospinning of chitosan did not result in the formation a non-woven fiber mat, 

PEO was added to the chitosan solutions. Blend solutions were prepared with varying weight 

fractions of PEO in the blend from 10% to 25%. PEO is partially soluble in acetic acid but 

completely soluble in water so as PEO content in blend solution increased, the strength of acid 

was reduced to enable complete dissolution of polymer. Chitosan/PEO blend fiber mats were 

produced by optimizing the effect of weight fraction PEO in the blend, molecular weight, and 

spinning solution temperature with the goal of forming nanoscale, beadless non-woven fiber 

mats with high chitosan content. All chitosan/PEO blend solutions discussed henceforth were 

electrospun at room temperature unless otherwise noted. 

 

3.2.1 Effect of blend ratios and molecular weight. 

Chitosan, when blended with as low as 10% PEO, resulted in the formation of non-woven 

mats of fibers. Figure 3.3 shows SEM images of HMW chitosan blended with HMW PEO with 

increasing % PEO in the blend. It can be seen with increasing % PEO, fiber diameter increases 

and number of bead defects is reduced. Figure 3.4 shows SEM images of LMW chitosan blended 

with varying % HMW PEO and a similar trend is seen. Figure 3.5 shows a plot of fiber diameter 

of electrospun fibers vs. % PEO in the blend solutions. From the fiber diameter data it can be 

seen that with increasing % PEO, fiber diameter increases which could be due to higher 

concentration of polymer in solution with increased PEO content. The concentration of polymers 

in solution was determined by studying solubility of polymer blends at different blend ratios and 

optimizing them so as to be able to form solutions which could form a stable jet which would 

lead to formation of fibers. At constant polymer concentration, viscosity of solution decreases 

with increased PEO content and reduced strength of acetic acid. Fibers formed using high 

molecular weight chitosan are thinner compared to those obtained using low molecular weight 

chitosan; this can be attributed to higher solution concentration of low molecular chitosan blends. 

The increased solution viscosity for LMW blends as seen in Table 3.2 is mainly a polymer 

concentration or solubility effect as LMW chitosan is more soluble then HMW chitosan. 

However it is difficult to establish any trend of fiber diameter v/s solution viscosity from the 

electrospinning solutions viscosity data because of difference in strength of solvents and polymer 

concentration amongst the various spinnable chitosan blends. Increasing the fraction of PEO in 
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the polymer blend also leads to reduction in number of bead defects because PEO helps in 

breaking down the inter- and intra-chain hydrogen bonding in chitosan by attaching itself onto 

the chitosan backbone by forming new hydrogen bonding between its –O– groups and water 

molecules and increasing solution chain entanglements111. The increase in chain entanglements is 

seen by decrease in rate index (n) with increasing PEO fraction in blend169,170.  

 

 
Figure 3.3 SEM images of HMW chitosan: HMW PEO blend fibers (a) 1.33 wt% HMW 

chitosan: HMW PEO (90:10) (b) 1.6 wt% HMW chitosan: HMW PEO (75:25) (c) 2.00 wt% 

HMW chitosan: HMW PEO (50:50). 
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Figure 3.4 SEM images of LMW chitosan: HMW PEO blend fibers (a)4.5 wt% LMW chitosan: 

HMW PEO (90:10) (b) 4.5 wt% LMW chitosan: HMW PEO (75:25). 
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Figure 3.5 Fiber Diameter v/s % PEO (Error bars represent standard deviation (n=60), letters 

indicate significant difference at p<0.05, wt% in parentheses indicate total polymer wt% in 

solution) 

 

Table 3.2 Zero-Shear (η0) Viscosity of Chitosan/PEO blends 

Sample η0 
(Pa-s) 

n 
(rate index) 

1.33 wt% Pure HMW Chitosan in 75% AA 3.709 0.386 
1.33 wt% HMW Chitosan: HMW PEO (90:10) in 75% AA 3.230 0.347 
1.6wt% HMW Chitosan: HMW PEO (75:25) in 90% AA 5.986 0.394 
4.5wt% LMW Chitosan: HMW PEO (90:10) in 50% AA 29.44 0.405 
4.5wt% LMW Chitosab: HMW PEO (75:25) in 60% AA 21.36 0.383 
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Figure 3.6 shows SEM images of HMW chitosan blended with HMW PEO and LMW 

PEO. Average fiber diameter (n=60) for HMW chitosan: HMW PEO blends was 117 nm 

(±52nm) and for HMW chitosan: LMW PEO blends was 91 nm (±39 nm). Fibers are formed 

with as low as 10% PEO for HMW Chitosan/PEO blends. Spinning of solutions with ≤ 1 wt% 

total polymer concentration leads to electrospraying and above 2 wt% the solution is too viscous.  

Similarly for LMW chitosan blends, spinning solutions with ≤ 4 wt% total polymer 

concentration result in electrospraying and above 5 wt%, high viscosity prevents stable 

electrospinning. Hence it can be seen that the spinnability window for chitosan solutions is very 

narrow and dependent on % PEO in the blend and total concentration of polymer in solution. 

 

 
 

Figure 3.6 SEM images of (a) 1.33 wt% HMW chitosan: HMW PEO (90:10) blend fibers (b) 
2.00wt% HMW chitosan: LMW PEO (90:10)  
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3.2.2 Effect of spinning solution temperature. 

Solutions were electrospun at higher temperatures by blowing hot air around the feed 

needle. Figure 3.7 shows SEM micrographs of electrospun fibers of 1.33wt% HMW Chitosan: 

HMW PEO (95:5) electrospun by blowing air at 25 ft3/hr at room temperature (25°C), 40°C and 

71°C. It can be seen that as temperature increases, less defective fibers are obtained as indicated 

by lower bead density values at higher temperatures as shown in Figure 3.8. The increased 

temperature reduces the solution viscosity and the flowing air helps increase the spin-draw ratio, 

both of which together lead to further stretching of the unstable polymer jet during the whipping 

motion and aiding in the formation of beadless fibers. As air flow and temperature (71°C) are 

increased, there would be faster evaporation of solvent which would lead to increase in 

concentration of polymer solution exiting the syringe and formation of slightly thicker fibers. 

The effect of air flow rate on fiber formation was also studied, and as shown in SEM images of 

Figure 3.9 changing air flow from 25 ft3/hr to 75 ft3/hr did not have a significant effect on bead 

density compared to air temperature but increased air flow at higher temperatures led to a slight 

increase in fiber diameter.  

 

 
Figure 3.7 SEM images of 1.33 wt% HMW chitosan: HMW PEO (95:5) blend fibers at different 
spinning solution temperature and constant air flow rate of 25 ft3/hr 
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Figure 3.8 Bead density of various HMW chitosan: HMW PEO blend fibers at different spinning 
solution temperature and constant air flow of 25 ft3/hr (Error bars represent standard deviation 
(n=3), letters indicate significant difference at p<0.05) 
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Figure 3.9 SEM images of 1.33 wt% HMW chitosan: HMW PEO (90:10) blend fibers at 
different air flow rates and 41°C air temperature (top)and fiber diameter of 1.33 wt% HMW 
chitosan: HMW PEO (90:10) blend fibers at different air flow rates and air temperature (bottom). 
(Error bars represent standard deviation (n=60), letters indicate significant difference at p<0.05) 
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3.2.3 Compositional analyses of electrospun chitosan/PEO blend fibers. 

TGA analysis of the blend fibers confirmed the presence of both polymer fractions in the 

blend. Pure chitosan was found to thermally decompose at ~ 240°C and pure PEO at ~ 305°C. 

The thermal decomposition curves for the blend fibers showed distinct peaks for degradation 

temperatures of the two blend polymers as shown in Figure 3.10. In case of chitosan however 

complete weight loss is not achieved and there is residual polymer present (~ 45%) as can be 

seen in the raw weight loss curves of Figure 3.10a. Hence, only a fraction of the total chitosan in 

the fiber is obtained while measuring area under the chitosan peak and remaining unburnt 

material has to be added to this fraction to get total chitosan content in fiber. The estimated 

polymer fractions from the TGA scans are close to blend polymer ratios in solution as shown in 

Table 3.3. 

 

Table 3.3 Calculated blend ratios in Chitosan/PEO blend fibers from TGA 

Sample % Chitosan in Solution % Chitosan in fiber 
HMW Chitosan : HMW PEO 95 97 
HMW Chitosan : HMW PEO 90 97 
HMW Chitosan : HMW PEO 75 73 
HMW Chitosan : HMW PEO 50 45 
LMW Chitosan : HMW PEO 90 98 
LMW Chitosan : HMW PEO 75 69 
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Figure 3.10 TGA analysis of chitosan/PEO fibers (a) Raw TGA scans showing presence of 

unburnt chitosan (b) First order derivative of TGA scans (blend ratios shown in paranthesis). 
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3.3 Electrospinning of Chitosan/PAAm blends 

Chitosan/PAAm blend solutions were prepared with the goal of forming fibers with 

maximum chitosan content in the blend. Blend solutions were prepared by dissolving both 

polymer fractions in dilute acetic acid solutions.  

 

3.3.1 Effect of molecular weight. 

Initial studies at room temperature showed that both high and low molecular weight 

chitosan/PAAm blend fibers were formed with 75 % chitosan content, but higher chitosan % did 

not lead to uniform fiber formation due to an unstable jet. As shown in Figure 3.11, fibers 

obtained with LMWChitosan/PAAm blends were thicker (421 nm ± 153) compared to HMW 

chitosan/PAAm blends (132 nm ± 55) due to higher solution concentration resulting in higher 

viscosity (η0 for HMWChitosan/PAAm (75:25) blends = 7.503 Pa.s; η0 for 

LMWChitosan/PAAm (75:25) blends = 15.58 Pa.s) . To produce fibers with increased chitosan 

content, hot air was blown around the charged needle at various temperatures. Blowing of hot air 

helps reduce solution viscosity and increase evaporation rate of the solvent.79 If temperature is 

increased closer to the boiling points of the solvent, drying of the jet could cause a large 

localized increase in viscosity at the tip of the needle. For this reason, we limited the maximum 

air temperature to 70°C in this study. The air-blowing rate helps improve fiber formation as it 

improves the spin-draw ratio allowing further stretching of the charged polymer jet during the 

whipping process.78 

 

  
Figure 3.11: SEM images of (left)1.4 wt%  HMWChitosan:PAAm (75:25) (right) 2.85 wt% 

LMW Chitosan:PAAm (75:25) blends. 
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3.3.2 Effect of polymer blend ratios and spinning solution temperature. 

Blend solutions were prepared with reducing weight fractions of chitosan in blend 

starting with 95% chitosan and ranging down to that required for formation of nanometer sized, 

uniform, beadless fibers. Figure 3.12 summarizes the effect of blend ratios and spinning solution 

temperature on fiber formation. It can be seen that with increasing temperature, the fiber 

diameter increases slightly and the bead density decreases. SEM images of electrospun solutions 

containing 95% chitosan (Figures 3.12a) show poor fiber formation at room temperature, and 

very few fibers are collected on the target. As the temperature is increased (Figures 3.12bc) fiber 

formation is improved with bead less fibers formed at 70°C. When chitosan content was reduced 

to 90% (Figures 3.12def) with increasing spinning temperature, the transformation from beaded 

fibers to uniform bead free fibers is seen. Further reduction to 75% chitosan in the blend leads to 

formation of bead free fibers at room temperature (Figure 3.12g). As spinning temperature is 

increased (Figures 3.12hi), an increase in fiber diameter is seen. At higher temperature there is a 

faster evaporation of solvent leading to faster drying of the charged jet and increased chain 

entanglements which is validated by the reduction in rate index of solutions at constant blend 

ratio with increasing temperature as shown in Table 3.4.170 Table 3.4 also details the zero-shear 

viscosity data of chitosan/PAAm blend solutions at different processing conditions. Renekar et.al 

have observed that spinning highly volatile polymer solutions leads to formation of polymer skin 

on the outside of the jet, subsequently leading to formation of a flat ribbon like structure.171 SEM 

images of the Chitosan/PAAm fibers formed at high temperature also show some flat ribbon 

shaped fibers which would contribute to the apparent increase in fiber diameter at higher 

temperatures. The chitosan molecule is rigid in nature due to its high inter and intra-chain 

hydrogen bonding. Addition of a synthetic polymer helps break down some of these by forming 

new hydrogen bonds between chitosan and the synthetic polymer, and with reduced chitosan 

content fiber formation is improved.111 With increasing solution temperature (for constant 

chitosan %), the overall viscosity of the solution decreases which along with the blown air helps 

in formation of uniform defect free fibers as the charged jet upon exiting the needle is further 

stretched, elongated and stabilized during the chaotic whipping motion that occurs as the jet 

travels to the target. There is no discernable trend in viscosity as a function of chitosan % at 

constant solution temperature, due to competing effects of higher molecular weight of PAAm 

compared to chitosan and hydrogen bonding between chitosan and PAAm chains. Air flow rate 
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was kept constant at 25ft3/hr as it has been previously seen (section 3.2.2) that increasing it to 

70ft3/hr did not have significant effect on fiber formation.172 Figure 3.13 and Figure 3.14 shows 

quantitatively the fiber diameter and bead density data, respectively, of electrospun 

chitosan/PAAm solutions at different blend ratios and increasing spinning solution temperatures. 

 

 
Figure 3.12 SEM images of 1.4 wt% HMWChitosan: PAAm blends at different blend ratios and 

hot air blown at 25ft3/hr at different temperatures (fig 3.12a,3.12b,3.12c are HMWChitosan: 

PAAm (95:05) blend ratio, 3.12d,3.12e,3.12f are HMWChitosan: PAAm (90:10) blend ratio, and 

3.12g,3.12h,3.12i are HMWChitosan: PAAm (75:25) blend ratio fibers) 
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Table 3.4 Zero-Shear Viscosity (η0) of Chitosan/PAAm blends 

Sample Solution Temperature 
(°C) 

η0 
(Pa-s) 

n 
 

1.4 wt% HMW Chitosan:PAAm(95:5)  
in 50% AA 

25 3.208 0.3561 
40 1.539 0.3089 
70 0.611 0.2229 

1.4 wt% HMW Chitosan:PAAm(90:10)  
in 50% AA 

25 4.325 0.3691 
40 2.486 0.2961 
70 0.780 0.2589 

1.4 wt% HMW Chitosan:PAAm(75:25)  
in 50% AA 

25 3.446 0.895 
40 2.082 0.3208 
70 0.6863 0.2476 

 

 

 

 

Figure 3.13 Fiber diameter of 1.4 wt% HMW chitosan: HMW PAAm blend fibers at different air 

temperature. (Error bars represent standard deviation (n=60), letters indicate significant 

difference at p<0.05) 
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Figure 3.14 Bead density of 1.4 wt% HMW chitosan: HMW PAAm blend fibers at different air 

temperature. (Error bars represent standard deviation (n=3), letters indicate significant difference 

at p<0.05) 

 

3.3.3 Compositional analyses of chitosan/PAAm blend fibers. 

TGA analysis of the blend fibers confirmed the presence of both polymer fractions in the 

blend (Figure 3.15). Pure chitosan was found to thermally decompose at ~ 240°C and pure 

PAAm shows two degradation peaks one at ~ 240°C (due to melting of polymer chains and onset 

of degradation ) and other broad peak at 350°C (due to further polymer degradation).173 For both 

pure chitosan and PAAm the raw TGA curve shows presence of unburnt material residue. It is 

difficult to quantify the exact fractions of both polymers in fiber due to overlapping peaks (~ 

240°C) of both polymers. The TGA curve for the 90% and 75% chitosan blend fibers showed 

absence or very small PAAm peak at 350°C. This suggests that there is possibly a low PAAm 

and higher chitosan content in the electrospun fibers (compared to the spinning solutions), and 
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our previous work (Section 3.2.3) quantifies that the fraction of polymers in fibers and blend 

solutions is not significantly altered during electrospinning.172  

 

 
 

Figure 3.15 TGA analysis of Chitosan: PAAm blend fibers (a) raw TGA scans showing presence 

of unburnt polymer (b) first order derivative of TGA scans. 
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4. Surface Characterization – Results & Discussion 
 

4.1 Proposed model correlating fiber surface area with surface amide content. 

The advantage of using chitosan based nanofibrous filter media for metal binding and 

anti-microbial applications is that they offer high surface area to mass ratio, essentially offering 

higher filtration efficiencies at lower material loadings. As binding is mainly a surface 

phenomenon, the maximum binding efficiency of chromium by the electrospun nanofibers would 

be dependent on the physical shape and size of the fiber and its surface chemistry. To correlate 

the fiber size, surface chemistry with its maximum binding capacity a model has been developed. 

The model can serve as a tool to predict the chromium (VI) binding capacity of chitosan or 

chitosan/blend nanofibers as a function of fiber size, % chitosan in blend fiber, and degree of 

deacetylation of chitosan. To develop the model the following assumptions and data from 

literature were used: 

• In the chitosan used in this study the degree of protonation of chitosan is 50% and solution 

pH ~ 6.5 (as has also been experimentally validated) i.e. 50% of the amide groups on the 

chitosan fiber surface are protonated. 

• At pH = 6.5 and 5 mg/L concentration, K2CrO4 dissociates forming chromate ion (CrO4
-2) as 

quoted in literature and shown in Figure 4.122. 

 

 
Figure 4.1 Distribution of hexavalent chromium species as a function of pH.22 
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Figure 4.2 Interaction between Cr (VI) and protonated amine in chitosan.174 

 

• Binding between positively charged amide group and negatively charged chromate ion takes 

place as shown in Figure 4.2.174 i.e. one protonated amine is linked to one chromate ion.  

• At equilibrium i.e. when reaction reaches steady state and maximum number of chromate 

ions that can be bound are bound by the chitosan, 96.4% chromium is bound by chitosan at 

pH = 4 whereas after 3 hrs it is 93% and after 20 mins (for dynamic filtration studies 10 

passes of 2 mins each) binding is ~ 36% as shown in Figure 4.3.22 Our binding experiments 

were done at pH = 7 at which the binding kinetics should be similar, however binding 

capacity will be different because of different degree of protonation. 

 

 
 

Figure 4.3  Reaction kinetics of Cr(VI) binding22 
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• Chitosan chains crystallize in an orthorhombic unit cell with dimensions a = 0.828 nm, b = 

0.865 nm and c = 1.043 nm (fiber axis) as shown in Figure 4.4.175 Each unit cell contains 4 

glucosamine units with two –NH2 groups facing outward (towards fiber surface) and two 

inward (i.e. amino groups arranged alternately in the 2 and 4 position). As 50 % amino 

groups are protonated there is one protonated amine per 0.865*1.043 nm2 area of chitosan 

crystal i.e. one protonated amine per 0.8991 nm2. The crystals are packed in a way as shown 

in Figure 4.5 with fiber length parallel to the c direction. 

 

 
Figure 4.4 Orthorhombic chitosan unit cell.175 

 

 
Figure 4.5 Packing of chitosan unit cell in fiber. 
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• The actual surface density of protonated amines is lower because chitosan is semi-crystalline 

or amorphous in nature. Theoretical density of 80% DDA chitosan is 1.51 g/cc, whereas the 

theoretical density of 100% amorphous chitosan is 1.5 g/cc. While calculating the # of 

protonated amines per square cm on fiber surface the percent difference between theoretical 

density and amorphous density of chitosan has to be accounted. The chitosan used for this 

study is nearly 100% amorphous as measured by our coworkers Li et.al.176  

 

Model 

Surface area to mass ratio of electrospun fiber is given by the equation: 

 
  

   
     

2 
   

 
  

2
 

where ρ is density of chitosan in g/cc and r is radius of fiber in cm. 

We know there is one protonated amine per 8.991E-15 cm2 for a 100% DDA, 100% crystalline 

chitosan. Therefore, for an electrospun fiber with known radius, % DDA and % chitosan in blend 

fiber. 

#     
1

2 .

1
8.991 10 % %    

 

 where ρtheo. is the theoretical density or density of 100 % crystalline chitosan calculated for 

chitosan with varying degree of deacetylation(from appendix 1). 

Knowing that our chitosan is highly amorphous the actual number of protonated amines per 

square centimeter should be lower than that calculated using the above equation. Hence, a 

correction for the density has to be done.  

#  .
/

 

Since, one chromate ion is bound by one protonated amine and considering “x” is extent of 

reaction after known time (“x” value can be obtained from Figure 4.3) 
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# of bound chromate ions = (x)(# of protonated amines). 

Therefore mg c san will b  hromium bound per gram chito e:

 
  #  

  
 

 
 #  

111.9961
6.023 10  

Figure 4.6 and 4.7 show the effects of % chitosan in blend fiber (80% DDA chitosan) and % 

DDA (at 90% chitosan in blend fiber) on the Cr (VI) binding capacity respectively. (Calculations 

are shown in appendix 2&3). It can be seen that in both cases with varying % chitosan and % 

DDA as fiber diameter increases (> 400 nm) the effect of fiber diameter on binding capacity 

plateaus off i.e. fabricated electrospun fibers should have fiber diameter < 400 nm to effectively 

serve their purpose for metal binding. Results from this developed model will be compared with 

experimental data in chapters 5 and 6 for the electrospun chitosan/PEO and chitosan/PAAm 

nanofiber mats. 

 

 
Figure 4.6 Effect of % Chitosan in blend fiber on Cr (VI) binding capacity. 
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Figure 4.7 Effect of % DDA (90% chitosan in blend fiber) on Cr (VI) binding capacity. 

 

4.2 XPS results 

To understand the surface composition of electrospun fibers fabricated from 

chitosan/PEO and chitosan/PAAm polymer blend solutions, x-ray photoelectron spectroscopy 

(XPS) analysis of surface of electrospun fiber mats was done using procedure as described in 

section 2.3.1. XPS analysis of pure 80%DDA HMW chitosan films solvent cast from 1% HCl, 

pure PEO solvent cast from water, and pure PAAm solvent cast from water were used as 

standards for the three different polymers. Apart from the XPS scans of pure film samples for 

PEO and PAAm, XPS analysis was done of electrospun fiber samples of pure PEO and pure 

PAAm and compared to the film samples to study effect of film vs. fiber morphology on XPS 

results.  Atomic % of the three main elemental peaks i.e. carbon, hydrogen and oxygen obtained 

from the XPS analysis of blend fibers was compared to those that can be derived theoretically 

knowing the chemical structure of the repeating unit of the individual polymers to calculate the 

weight fraction of chitosan present on fiber surface (detailed calculations are shown in Appendix 

4). Figure 4.8 shows the survey scan of chitosan, PEO and PAAm for pure polymer films. The 

survey scan shows the expected C, N, O peaks for chitosan, PAAm and C,O peaks for PEO. The 

atomic % values are shown in Table 4.1. It can be seen from the data in Table 4.1 that the surface 

elemental composition as obtained from XPS for the pure polymers is in close agreement with 
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those obtained theoretically from the structure of their repeat units. The concentration of C1s 

peak is higher than the theoretical value and this could be because of surface contaminants, 

similar results have been obtained for surface analysis of the three polymers in literature177-179. 

The increase in C1s concentration for chitosan fiber samples could also be because of residual 

acetic acid present on the fibers. If we assume that for every chitosan repeat unit there is a half 

molecule of CH3COO- which is weakly associated with the fiber surface then the theoretical 

“C/N” ratio would increase from 6.4 to 7.4. The aluminum peak in the electrospun PAAm fiber 

sample is from the aluminum pan substrate on which the fibers were spun. The huge difference 

in surface composition in PEO fibers and films is because PEO fibers were spun on PP substrate 

and as the espun fiber layer is very open and may not have uniformly covered the PP layer the 

majority signal came from the underlying PP substrate (XPS of pure PP non-woven shows 90.54 

atom% C and 9.46 atom % O180). 

Figure 4.9 shows the “C”, “N”, and “O” elemental scans for the pure chitosan film. The 

elemental scans are in agreement with those obtained by Matienzo et.al177. Peak fitting of the 

carbon curve shows presence of four different signals. A rule of thumb for identifying the C1s 

peak is that the more electronegative the carbon atom is the higher its binding energy181. The 

structure of chitosan is very complex and Matienzo et.al have correlated each of the four 

different carbon signals with structure of glucosamine and N-acetyl glucosamine units that make 

up chitosan. The carbons at C2, C6 from glucosamine along with the C2,C6, and C8 from N-

acetyl glucosamine make up one carbon environment (30.08%, 285.0 eV) consisting of C-C or 

C-H linkages. The carbons at C3, C4 and C5 of both glucosamine and N-acetyl glucosamine 

make up a second carbon environment (51.37%, 286.66 eV) consisting of C-OH, C-O linkages. 

The carbons at C1 “O-C-O” makes up the third environment (16.32%, 288.25 eV) whereas the 

carbons at C7 (H2N-C=O) in the N-acetyl glucosamine  makes up the fourth environment 

(2.2%,289.43 eV). The nitrogen curve also shows two peaks corresponding to the 58.48% 

protonated amine (400.3 eV) and 41.52% unprotonated amine (398.3 eV).177 The oxygen curve 

shows presence of three regions contributed by the carbonyl groups, ether linkage and hydroxyl 

groups present in chitosan. The elemental scans for the other two polymers PEO and PAAm also 

show expected peaks as shown in Figure 4.10 and 4.11 respectively. The C1s peak from PEO 

shows three different regions at 283.4, 284.97 and 287.22 eV. The peak at 284.97 eV and 287.22 

eV can be attributed to the C-C, and C-O linkages present in PEO respectively. In insulating 
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samples a small peak is seen at lower binding energies (~283 eV) and this is not attributed to any 

chemical group in the structure but to charging effects on the sample surface182. The O1s peak in 

PEO shows a single peak at 531.0 eV. 179The C1s peak from PAAm shows two distinct regions 

at 285 eV and 288.1 eV the former corresponding to the C-C,C-H linkages and latter to the 

acetyl amine linkage. The N1s peak in PAAm shows a very small protonated peak (8.19%). The 

O1s peak is also as seen in literature at 531 eV.178.  

 

Table 4.1 Surface atomic composition of pure polymers obtained from their structure and 
XPS analysis. 

Sample Atom % 
“C/N” ratio C1s N1s O1s Cl2p Al 

80% DDA HMW  
chitosan 

theoretical 56.14 8.77 35.08   6.4 
from XPS (film) 61.11 5.6 28.18 5.11  10.92 

Pure PEO 
theoretical 66.67  33.33   ∞ 

from XPS (film) 66.77  32.39 0.11  ∞ 
from XPS (fiber) 96.26  3.74   ∞ 

Pure PAAm 
theoretical 60 20 20   3 

from XPS (film) 67.17 13.73 18.56 0.54  4.89 
from XPS (fiber) 61.24 12.48 22.68 0.45 3.14 4.91 

 

 
Figure 4.8 Survey XPS spectra of (a) pure chitosan, (b) pure PEO, and (c) pure PAAm film. 
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XPS scans of chitosan/PEO and chitosan/PAAm blend fibers were done with goal of 

understanding the effect of the following variables on surface chitosan content: 

• % chitosan in blend solution. 

• Chitosan % DDA at constant % chitosan in blend solution. 

• Fiber diameter of electrospun fiber at constant chitosan % in solution. 

• Chitosan molecular weight. 

• XPS scans were also taken on samples after metal binding to compare surface chemistry 

before and after Cr(VI) binding experiments. 

 

 

 
Figure 4.9 High resolution "C","N',"O" elemental scans 
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Figure 4.10 Elemental "C" and "O" scans of pure PEO films 

 

 
Figure 4.11 Elemental "C',"N","O" scans of pure PAAm film 

75 
 



4.2.1 XPS – Chitosan/PEO blends. 

Table 4.2 shows the atom% data as function of increasing PEO content in both HMW and 

LMW chitosan: PEO blend fibers. Figure 4.12 shows a plot of the surface nitrogen composition 

(atom %) as obtained from XPS vs. the chitosan concentration (wt %) in solution. It can be seen 

that with decreasing chitosan content the atom % N is decreasing or surface content of chitosan 

is decreasing. Also it can be seen that blend solutions made using higher molecular weight 

(HMW) chitosan have higher surface nitrogen content then low molecular weight chitosan 

blends for same blend ratios.  Figure 4.13 shows the C1s and N1s elemental XPS scans. The pure 

chitosan has broad peak which by curve fitting (discussed earlier Figure 4.9) shows presence of 

four different types of carbon bonds in chitosan. As % chitosan in blend solution decreases the 

chitosan peak starts to lose its characteristic shape and evolves in to a broad peak which begins 

to narrow as concentration approaches that of pure PEO (which has a narrower C1s peak, Figure 

4.10) in blend solution. As the peak at higher binding energies are attributed to the (H2N-C=O) 

linkage in chitosan with decreasing chitosan content this peak disappears and peak begin to 

narrow. The N1s peak for pure chitosan shows two peaks but for the blend samples the 

protonated peak is not self evident and decreasing in size.  

 

 
Figure 4.12 Surface nitrogen (atom %) vs. chitosan wt % in blend solution. 
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Table 4.2 Surface atomic composition of chitosan/PEO blends. 

Sample % Chitosan Atom% C/N ratio C1s N1s O1s 

HMWChitosanPEO blends 

95 63.13 5.81 31.06 10.87 
90 65.58 4.44 29.97 14.77 
75 66.48 2.41 31.11 27.59 
50 70.05 0.39 29.55 179.62 

LMWChitosanPEO blends 90 61.54 4.79 33.67 12.85 
75 66.97 1.04 31.99 64.39 

 

 
Figure 4.13 C1s (left) and N1s (right) elemental scans of chitosan/PEO blend fibers with 

decreasing % chitosan in blend fiber. 

 

Calculation of surface chitosan wt% 

From the structure of the chitosan and PEO repeat units it is known for pure 80% DDA 

chitosan theoretically there are 6.4 atoms of carbon and 1 atom of nitrogen per chitosan repeat 

unit, and for each PEO repeat unit there are 2 atoms of carbon and 0 atoms of nitrogen.  

Let Nn be number of nitrogen atoms and Nc be number of carbon atoms in chitosan/PEO 

blend fibers and the C/N (carbon/nitrogen) ratio is Nc/Nn or “r”. From XPS we know “r” and 

knowing that theoretically for each chitosan repeat unit there 6.4 atoms of carbon and 1 atom of 

nitrogen, and for each PEO repeat unit there are 2 atoms of carbon and 0 atoms of nitrogen we 
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can obtain surface chitosan concentration in weight basis. Surface chitosan wt% calculated using 

this hypothesis will be referred to as “calculations based on theoretical # of C”. 
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169.4 7.67 3

 

 

 

However as seen from XPS results of pure chitosan films the “C/N” ratio for 80% DDA pure 

chitosan film is 10.91 compared to theoretical value of  6.4. As the XPS detects excess carbon 

peaks due to surface contamination the above equations will not be able to accurately predict 

surface chitosan wt% of the blend fibers. To get a better estimate of surface chitosan wt% instead 

of using theoretical values of # of C and N atoms we use the values of obtained from the atom % 
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values from XPS for pure chitosan and PEO. Hence, # of C atoms per chitosan repeat unit is 6.96 

and # of C atoms per PEO repeat unit is 2.0. Therefore using the data from XPS surface analysis 

the surface weight % of chitosan is given by the following equation. Surface chitosan wt% 

calculated using this hypothesis will be referred to as “calculations based on experimental # of 

C”. 

  
169.4 6.96 

  
44 2  

 

  
169.4 0.64  

 

  
169.4 6.96 1   

44 2 
  

169.4 0.64
 

 

  
0.045

0.00378 0.0043
 

 

 

Figure 4.14 shows the calculated surface chitosan wt% (calculated both by theoretical 

and experimental # of C) vs. the wt % of chitosan in blend solution. It is safe to say that the real 

surface chitosan wt % would lie between the calculated values using the experiment # of C and 

theoretical # of C i.e. for 95 wt % chitosan in blend solution surface chitosan composition would 

be between 63 and 100 wt% and for 50 wt% chitosan in blend solution surface chitosan 

composition would be between 4 and 7 wt% (calculations shown in Appendix 4).  

As PEO content in blend solution increases, the amount of chitosan decreases non-

linearly indicating possibly some kind of phase separation taking place during the spinning 

process. Ming et.al83 have extensively studied the morphology development in electrospun fibers 

made using polymer blends. They have concluded that phase morphology of blend solutions is 

strongly dependant on the molecular weights of the two blend polymers, their viscosity 

differences, the solubility parameter difference between the components, and the interfacial 

tension between the two components. While studying the electrospinning of polybutadiene (PB, 
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Mw = 420 kDa) and polycarbonate (PC, Mw = 20 kDa) blend solutions they found that at PB 

concentrations up to 50% very fine co-continuous phase morphologies were observed on fiber 

surface i.e. there wasn’t sufficient time for phase separation because of the domination of the 

higher molecular weight PB chains in the mixture. As the concentration of PC increased > 75% 

the more mobile PC chains moved outward and the higher molecular weight less mobile PB 

chains stayed in the center forming a core-sheath structure. Looking at the XPS results and 

change in surface wt% of chitosan at 50% chitosan in blend solution (for 50 wt% HMWchitosan 

in solution surface chitosan content is between 4-7 wt%) there could be phase separation and 

formation of core-sheath structure with formation of chitosan core (Mv of HMW chitosan is 

1400 kDa) and PEO (Mw = 900 kDa) sheath. For the LMW chitosan (Mw = 100 kDa) PEO 

blends this effect appears to start at 75 wt% chitosan in solution (for 75 wt% LMW chitosan in 

solution surface chitosan content is between 12-20 wt%) because chitosan is more viscous then 

PEO but PEO molecular weight is higher and the competing kinetic and thermodynamic effects 

could lead to formation of a core sheath morphology on fiber surface.83 Another indication that 

there is a phase morphology difference between HMW and LMW chitosan/PEO blends is that 

for LMW blends the surface nitrogen concentration is always lower for same blend 

compositions. This suggests that the molecular weight of blend mixtures influences the phase 

morphology of the fibers. The solubility parameter of chitosan, PEO, acetic acid and water was 

calculated using the group-contribution method as described by Hoftyzer and Van Krevelen183. 

This method takes into account the contribution of dispersive forces (Fdi), polar forces (Fpi) and 

hydrogen bonding (Ehi) in determining the solubility parameter (δt) which is given by the 

following equation. 

 

∑ ∑ / ∑ / /

 

 

The solubility parameter for chitosan, PEO, acetic acid and water are 45.6, 22.86, 21.4 and 47.8 

J1/2/cm3/2 respectively. The large difference in solubility parameter between PEO and chitosan 

further suggests the possibility of phase seperation in fibers with higher PEO content. 

Table 4.3 shows the atom% data of HMWchitosan: PEO (90:10) blend fibers with 

increasing fiber diameter before and after metal binding. Figure 4.15 and 4.16 shows the surface 
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nitrogen content and calculated surface chitosan wt% with increasing fiber diameter. It can be 

seen that at constant blend ratio with increasing fiber diameter there is no clear trend in surface 

nitrogen content and surface chitosan concentration. Fibers of varying fiber diameter were 

obtained by addition of non-ionic surfactant Brij-35 or varying strength of acetic acid solution 

(explained in detail in Chapter 6, section 6.1). Our collaborators at University of Massachusetts, 

Amherst have observed that for fibers fabricated using 2mM Brij-35 surfactant the fiber chitosan 

content was reduced by more than half compared to fibers without addition of Brij-35.184 This 

reduction in chitosan wt% in fiber by addition of Brij-35 (fiber diameter = 130 nm) would lead to 

decrease in surface chitosan or nitrogen content as seen Figure 4.15 and 4.16. After binding 

experiments, the surface nitrogen content is decreasing due to the electrostatic interaction of 

nitrogen with chromate; however it was surprising not to see any chromium peak in the XPS 

scans of samples after binding. Looking at the “C/O” (carbon/oxygen) ratio before and after 

metal binding it is seen that the C/O ratio increases after binding experiments. The C/O ratio for 

pure chitosan is 1.6 and pure PEO is 2. This increase in C/O ratio after binding suggests that 

upon binding the surface of fibers is rich in PEO. During the experiment PEO could be 

dissolving from the fibers and forming a film-like layer on fiber surface up on drying of the mats 

prior to XPS measurements. This could be a possibility why the chromium peak is not seen in the 

samples after metal binding samples.  Dambies et.al181 also have studied the surface chemistry of 

chitosan beads before and after metal binding. They studied three types of samples; native 

chitosan beads, grounded beads (mechanically crushing the native chitosan beads to mix the 

surface and bulk chitosan to get rid of contaminants) and cross-linked beads. They did not see 

any chromium peak for native chitosan beads after Cr(VI) binding experiments and a small 

chromium (1~ 2 atom%) Cr2p3/2 was observed for the other two samples at 577.3 eV binding 

energy. However, they did observe that the nitrogen peak was shifting more to the protonated 

side as seen with our samples (Table 4.4).  
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Table 4.3 Surface atomic composition of HMWchitosan: PEO (90:10) blends with different 

fiber diameter before and after metal binding. 

 
Fiber 

Diameter 
(nm) 

Atom% 
C/N ratio C/O ratio C1s N1s O1s 

Before Cr(VI) binding 
80 66.19 3.46 30.1 19.13 2.19 
113 65.58 4.44 29.97 14.77 2.18 
130 72.49 1.67 25.84 43.41 2.81 

After Cr(VI) binding 
80 71.33 2.76 25.42 25.84 2.76 
113 73.72 3.89 21.86 18.95 3.37 
130 86.63 1.51 11.17 57.37 7.75 

 

 

 
Figure 4.14 Calculated surface chitosan wt% vs. chitosan wt% in solution. 
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Table 4.4 Surface protonated N1s (atom %) before and after metal binding. 

 Fiber diameter (nm)/ %DDA Protonated N1s (atom%) 
before metal binding after metal binding

Different 
diameter 

90% 
chitosan/PEO 

blends 

80 10.48 86.12 

113 76.99 31.12 

130 13.39 56.76 

Different 
DDA 90% 

chitosan/PEO 
blends 

80 76.99 31.12 

70 2.92 8.62 

67 10.12 12.59 
 

 

 
Figure 4.15 Surface nitrogen composition (atom%) vs. fiber diameter for HMWChitosan:PEO 

(90:10) blend fibers. 
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Figure 4.16 Surface chitosan wt% with increasing fiber diameter in HMWchitosan:PEO (90:10) 

blend solutions before and after metal binding. 

 

Table 4.5 Surface atomic composition of HMWchitosan:PEO (90:10) blends with different 

%DDA chitosan before and after metal binding. 

 %DDA Atom% C/N ratio C/O ratio C1s N1s O1s 
Before 
Cr(VI) 
binding 

80 65.58 4.44 29.97 14.77 2.19 
70 64.21 4.03 31.75 15.93 2.02 
67 65.73 3.69 30.33 17.81 2.17 

After 
Cr(VI) 
binding 

80 73.72 3.89 21.86 18.95 3.37 
70 66.62 4.86 27.86 13.71 2.39 
67 66.31 4.78 28.12 13.87 2.36 

 

Table 4.5 shows the atom% data of HMWchitosan: PEO (90:10) blend fibers fabricated 

using chitosan of varying % DDA before and after metal binding. Before binding it can be seen 

that with decreasing % DDA the surface nitrogen content decreases as expected theoretically (as 

%DDA decreases from 80 to 70 to 67, atom% N decreases theoretically from 8.26 to 8.06 to 8 

respectively). The surface chitosan % is however not affected by the chitosan DDA, all blends 

have 90% chitosan in solution and the XPS data also shows that surface chitosan content is also  
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Figure 4.17 Surface chitosan (wt%) with decreasing % DDA chitosan in HMWchitosan:PEO 

(90:10) blend solutions before and after metal binding. 

 

similar (Figure 4.17)). As seen in case of samples of varying fiber diameter after metal binding 

the surface nitrogen concentration decreases and the C/O ratio increases (Table 4.4).  

 

4.2.2 XPS – Chitosan/PAAm blends. 

The elemental C1s and N1s XPS scans are as shown in Figure 4.18. It can be seen that 

similar to chitosan/PEO blends in Figure 4.13 with decreasing % chitosan in blend solution the 

C1s and N1s peak lose their definite shoulder peaks and just broaden like the pure PAAm film 

peaks. Pure PAAm N1s peak does not show the presence of a prominent protonated peak like the 

pure chitosan film. Curve fitting of the pure PAAm N1s peak (Figure 4.11) shows presence of 2 

atom % protonated nitrogen. It can be seen that as expected with increasing % PAAm in blend 

solution the surface nitrogen content increases and the C/N ratio decreases (Table 4.6) however 

an increase in nitrogen atom % will not translate into enhanced surface activity as the amide 

linkage from PAAm is not easily protonated.185  
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Figure 4.18 C1s (left) and N1s (right) elemental scans of chitosan/PAAm blend fibers with 

decreasing % chitosan in blend fiber. 

 

Calculation of surface chitosan wt% 

As in case of chitosan/PEO blends similar analysis to calculate chitosan weight fraction 

in chitosan/PAAm blends is done. Let Nn be number of nitrogen atoms and Nc be number of 

carbon atoms in chitosan/PAAm blend fibers and the C/N ratio which Nc/Nn or “r”. From XPS 

we know “r” and knowing that theoretically for each chitosan repeat unit there 6.4 atoms of 

carbon and 1 atom of nitrogen, and for each PAAm repeat unit there are 3 atoms of carbon and 1 

atom of nitrogen we can obtain surface chitosan concentration in weight basis. Surface chitosan 

wt% calculated using this hypothesis will be referred to as “calculations based on theoretical # of 

C”.  

  
.     #       

  
 #        .    

  
.     #       

  
.     #        

 

86 
 



87 
 

  
169.4 6.4

  
72 3  

 

  
169.4 1

  
72 1  

 

  
169.4 6.4 1   

72 3 
  

169.4 1 1   
72 1 

 

  
0.042 0.0138

0.00388 0.0079
 

 

However as seen from XPS results of pure chitosan films the “C/N” ratio for 80% DDA pure 

chitosan film is 10.91 compared to theoretical 6.4 and therefore the above equations will not be 

able to accurately predict surface chitosan wt%.  To get a better estimate of surface chitosan wt% 

instead of using theoretical values of # of C and N atoms we use the values obtained from XPS 

for pure chitosan and PAAm. Hence, # of C atoms per chitosan repeat unit is 6.96 and # of C 

atoms per PAAm repeat unit is 3.36. Therefore using the data from XPS surface analysis the 

weight of chitosan is given by the following equations. Surface chitosan wt% calculated using 

this hypothesis will b r f C”. e refe red to as “calculations based on experimental # o

  
169.4 6.96

  
72 3.36  

 

  
169.4 0.64

  
72 0.69  

 

  
169.4 6.96 1   

72 3.36 
  

169.4 0.64 1   
72 0.69 

 

 

  
0.0468 0.0096

0.0056 0.0058
 



 

Actually while calculating the surface chitosan wt% using the theoretical “C” and “N” atomic 

values we see that results show surface chitosan content is always greater than 100% which is 

practically impossible, hence we need to use the method using values from XPS scans of pure 

chitosan and PAAm films (Figure 4.19). The surface chitosan concentration is closer to the ideal 

surface chitosan concentration (i.e. if solution chitosan content = surface chitosan content) 

compared to chitosan/PEO blends. The solubility parameter for chitosan, PAAm, acetic acid and 

water are 45.6, 30.6, 21.4 and 47.8 J1/2/cm3/2 respectively as calculated by the Hoftyzer and Van 

Krevelen method described earlier. Solubility parameter of PAAm and chitosan are closer in 

magnitude compared to chitosan/PEO blends suggesting greater chances of mixing in 

chitosan/PAAm blends. 

The surface atomic composition of electrospun fibers of chitosan/PAAm blends is as 

shown in Table 4.6. The surface chitosan content (Figure 4.19) also decreases with increasing 

fiber diameter for all blend ratios; similar to what has been observed for chitosan/PEO blends. 

However the surface chitosan content is in closer agreement with original chitosan concentration 

in solution then what was observed for chitosan/PEO blends. Figure 4.20 and Figure 4.21 shows 

a plot of surface nitrogen concentration (atom %) with decreasing % chitosan in blend solutions 

and increasing fiber diameter respectively. The surface nitrogen content increases with 

decreasing PAAm content and increasing fiber diameter. However this increase in surface 

nitrogen content does not necessarily mean increased surface properties because the protonated 

component N peak decreases with decreasing % chitosan in blend solution (Table 4.7). 
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Table 4.6 Surface atomic composition of chitosan:PAAm blends with decreasing chitosan 

content spun at different spinning temperatures to obtain different diameter fibers. 

%Chitosan in 
solution 

Spinning solution 
temperature (°C) 

Fiber diameter 
(nm) 

Atom % C/N ratio C1s N1s O1s 
100 %  Pure Chitosan film 61.11 5.6 28.18 10.91 

95 RT 155.58 74.74 6.27 20.61 11.92 
95 40 162.41 62.75 6.04 30.83 10.39 
95 70 286.49 61.4 6.43 29.94 9.55 
90 RT 50.85 62.44 6.79 30.2 9.20 
90 40 63.58 61.18 6.93 30.59 8.83 
90 70 306.67 61.48 6.94 31.01 8.86 
75 RT 131.61 63.72 7.62 28.1 8.36 
75 40 304.69 62.7 7.82 28.69 8.02 
75 70 315.00 61.23 8.94 29.31 6.85 
0% Pure PAAm film 67.17 13.73 18.56 4.89 

 

 

 

 
Figure 4.19 Surface chitosan wt % for chitosan:PAAm blend solutions with increasing % 

chitosan in solution.  
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Table 4.7 Surface protonated N1s (atom %) content with varying blend ratios and 

fiber diameter for Chitosan:PAAm blends 

%Chitosan in 
solution 

Spinning solution 
temperature (°C) 

Fiber diameter 
(nm) 

Protonated N1s 
(atom %) 

100 %  Pure Chitosan film 58.48 
95 RT 155.58 10.76 
95 40 162.41 9.18 
95 70 286.49 12.77 
90 RT 50.85 10.5 
90 40 63.58 8.88 
90 70 306.67 9 
75 RT 131.61 25.89 
75 40 304.69 35.85 
75 70 315.00 35.34 
0% Pure PAAm film 8.19 

 

 
 

Figure 4.20 Surface nitrogen atom% for chitosan:PAAm blend solutions with increasing % 

chitosan in solution. 
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Figure 4.21 Surface nitrogen atom% for chitosan:PAAm blend solutions with increasing fiber 

diameter. 

 

4.2.3 Summary – XPS chitosan blend fibers. 

The surface XPS analysis of chitosan blend fibers with both PEO and PAAm show 

similar results. From the XPS analysis of blend fiber samples it can be concluded that: 

• With increasing % PEO in blend solution surface nitrogen content decreases. 

• With increasing % PAAm in blend solution overall surface nitrogen increases, however 

protonated nitrogen peak decreases. 

• With increasing fiber diameter the surface chitosan content decreases. 

• Chitosan % DDA does not have any effect on surface chitosan content, but as expected the 

nitrogen content decreases slightly with decreasing % DDA. 

• Surface nitrogen concentration is always lower for LMW chitosan blends compared to 

HMW chitosan blends. 

• After metal binding experiments the surface un-protonated nitrogen content decreases but 

no chromium peaks are seen. 
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5. Surface Properties – Results & Discussion 
 

5.1 Metal binding - Chitosan/PEO blends. 

The Cr (VI) binding properties of chitosan/PEO blend fibers were studied using the 

procedure outlined in section 2.3.2. Effect of chitosan content in electrospun chitosan/PEO blend 

nanofibers, molecular weight of chitosan, and degree of deacetylation of chitosan were studied 

on the metal binding efficiency of chitosan/PEO blend nanofibers. 

 

5.1.1 Effect of chitosan/PEO blend ratios and molecular weight of chitosan. 

 Metal binding occurs due to the electrostatic attraction between the dissociated CrO4
2- 

ion in solution and NH3
+ ion on the chitosan fiber surface186. No significant change in pH of 5 

mg/L K2CrO4 solutions upon immersion of chitosan/PEO blend fibers was observed. The pH of 

the prepared K2CrO4 solution was 7.3. After immersion of HMW chitosan/PEO (90:10) fibers 

for 3 hours, the pH decreased to 7.0 (80% DDA), 6.8 (70% DDA), and 6.7 (67% DDA). Hence, 

it is safe to assume that all metal binding took place at pH ~ 6.5 – 7.0 and as known from 

literature chitosan is 50% protonated at pH ~ 6.5.22 

Figure 5.1 shows the amount of chromium bound (mg Cr per g chitosan) for blend fibers 

with different chitosan: PEO blend ratios. HMW chitosan: PEO (90:10) blends show the highest 

amount of Cr bound per g chitosan. It can be observed that metal binding is strongly related to 

the % chitosan in the blend solution, and molecular weight of chitosan. With decreasing % 

chitosan in blend fiber, the binding capacity of the fibers decreased. As discussed in section 4.2.1 

with decreasing chitosan % in blend solution fiber surface nitrogen atom % decreased which 

would offer fewer binding sites for Cr (VI) binding resulting in lower binding capacities. Figure 

5.2 shows the binding capacity of HMWchitosan:PEO blends with varying % chitosan in blend 

solution plotted as function of surface nitrogen atom %. The binding capacity of blends made 

using high molecular weight chitosan was seen to be higher. High molecular weight chitosan 

would offer higher number of available –NH3
+ sites for metal binding for similar surface area 

fibers (XPS results in Figure 4.12 also show surface nitrogen concentration is higher for HMW 

blends compared to LMW blends at same blend ratio) due to longer chain lengths and higher 

degree of protonation187. The high binding capacity observed for HMW chitosan fibers could 
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also be result of thinner fibers providing higher surface (Figure 3.5) compared to LMW chitosan 

blends. To rule out the possibility of association of PEO with the metal ions a 3 wt% electrospun 

HMW PEO fiber mat was also tested for metal binding and the results showed no binding.  

 

 
Figure 5.1 Metal binding of chitosan/PEO blend fibers at different % of chitosan in solution 

(Error bars represent standard deviation (n=3), letters indicate significant difference at p<0.05) 

 
Figure 5.2 Metal binding of HMWchitosan:PEO blend fibers at different % of chitosan in 

solution as function surface nitrogen atom % (Error bars represent standard deviation (n=3), 

letters indicate significant difference at p<0.05) 
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5.1.2 Effect of degree of deacetylation of chitosan. 

The effect of degree of deacetylation on the metal binding capacity of chitosan/PEO 

(90:10) blend fibers was also studied. Solutions of 1.33 wt% HMW chitosan of varying degrees 

of deacetylation (80% DDA, 70% DDA and 67%DDA) with PEO in 75% acetic acid were 

electrospun to form non-woven mats. From the SEM images in Figure 5.3 it can be seen that at 

67% DDA we did not get a uniform fiber mat as obtained at 70 and 80% DDA suggesting the 

influence of degree of deacetylation on fiber formation; increased DDA from 67% to 70% led to 

improved fiber formation with increased fiber diameter. Similar results have been obtained with 

chitosan/poly (vinyl alcohol) blends in which using chitosan of increasing degree of 

deacetylation lead to more uniform beadless fiber mat formation112. The metal binding capacity 

as shown in Figure 5.2 was highest at 80% DDA as expected because of the increase in number 

of available –NH3
+ sites for metal binding (as shown in Table 4.5) and there was no significant 

statistical difference between the 67% (7.35 mg chromium/g chitosan) and 70% DDA (4.44 mg 

chromium/ g chitosan) chitosan/PEO blend fibers. The slight increase at 67% DDA (45.5 nm) 

could be due to thinner fibers formed compared to 70% DDA (62.4 nm) resulting in increased 

surface area. The metal binding capacity in chitosan blend fibers is significantly higher than that 

observed for similar blend ratio chitosan/PEO blend films188. A 93 µm thick LMW 

Chitosan/PEO (90:10) blend film showed binding capacity of 0.44 mg chromium/g chitosan. 

Electrospun fibers exhibit greater binding capacity due to the high surface area to mass offered 

by the fibers compared to films. 
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Figure 5.3 SEM images and metal binding of HMW chitosan: HMW PEO (90:10) blend fibers at 

different DDA (Error bars represent standard deviation (n=3), letters indicate significant 

difference at p<0.05). 
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5.1.3 Comparison of experimental results with model developed in Chapter 4. 

Figure 5.4 shows the comparison of mg chromium/g chitosan values of the 

experimentally observed data, and that calculated using the model developed in section 4.1. All 

the data are being compared at similar fiber diameters. It can be seen that the experimental data 

is mostly higher than the calculated values from the model. This is understandable because in 

reality the degree of protonation of chitosan in solution can be higher than the assumed 50%. In 

the model data it seems that 80% DDA chitosan has lower binding capacity than 67 or 70% 

DDA chitosan, this is because 80% DDA chitosan fibers have diameter of 117 nm compared to 

45.5 and 62.4 nm for 67 and 70% DDA respectively. For this range of fiber diameters the effect 

of fiber size is more pronounced then the effect of % DDA. Similar observations can be made for 

the effect of % chitosan in blend fiber. Fiber diameter of fibers made using 90% and 75% 

chitosan in blend solution is statistically same (Figure 3.5). The theoretical binding capacity also 

looks to be similar (3.76 and 3.13 mg chromium/ g chitosan for 90% and 75% chitosan in blend 

fiber respectively) compared to very low theoretical binding capacity shown by 315 nm thick 50 

% chitosan blend fibers. Chromium ions can be bound by forming either ionic or coordination 

bonds with hydroxyl or un-protonated amine sites (as has been suggested by Guibal16) in solution 

contributing to the increased binding capacity observed experimentally compared to the model 

results. As these experiments are conducted in aqueous media another possibility for high 

binding results observed experimentally is that since chitosan is partially soluble in water and 

PEO is completely soluble during the testing the fiber surface could be disintegrating. Upon 

interaction with water, the surface chitosan chains may be swelling leading to diffusion of 

chromium to the bulk of the fiber causing increase in binding capacity due to the additional 

availability of binding sites. This effect will be further discussed in Chapter 6 wherein we have 

studied the dynamic filtration of these espun chitosan coated filtration membranes. 
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Figure 5.4 Comparison of experimental and calculated values for Cr (VI) binding capacity as 

function of % chitosan in blend (top), and % DDA (bottom). (Error bars represent standard 

deviation (n=3), letters indicate significant difference at p<0.05). 
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5.2 Metal binding - Chitosan/PAAm blends. 

As the effect of % DDA in chitosan had been studied in Cr (VI) binding studies of 

chitosan/PEO blends. For chitosan/PAAm blends only the effect of % chitosan in blend fiber, 

molecular weight of chitosan and fiber diameter of chitosan/PAAm blend fibers (formed by 

spinning solutions at varying temperatures, section 3.3.2) was studied. 

Figure 5.5 shows the Cr (VI) binding capacity vs. % chitosan in blend of chitosan/PAAm 

blend nanofibers. The results once again show that the blends containing higher molecular 

weight chitosan and higher % chitosan in blend fiber show greater binding capacity. Figure 5.6 

shows the Cr (VI) binding capacity vs. fiber diameter for 1.4 wt% HMW Chitosan:PAAm 

(90:10) blend fibers formed by spinning the solution at varying temperatures. Also plotted on the 

secondary axis is the surface nitrogen atom % vs the fiber diameter. It can be seen that with 

increasing fiber diameter the surface nitrogen content does not change, hence the binding 

capacity remain unaffected by change in diameter. These results contradict the predicted values 

from the model and belief that with increasing fiber diameter or decreased surface area to mass 

ratio binding capacity should be decreased, but in the model also major change in binding 

capacity with fiber diameter occurs at diameters above 300 nm. 

 

 
Figure 5.5 Metal binding of chitosan/PAAm blend fibers at varying % chitosan in blend fiber 

(Error bars represent standard deviation (Error bars represent standard deviation (n=3), letters 

indicate significant difference at p<0.05, n=3) 
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Figure 5.6 Cr (VI) binding capacity (primary axis), surface nitrogen atom % (secondary axis) vs. 

fiber diameter for 1.4 wt% HMW Chitosan:PAAm (90:10) blend fibers formed by spinning the 

solution at varying temperatures. (Error bars represent standard deviation (n=3), letters indicate 

significant difference at p<0.05, n=3) 

 

5.3 Anti-microbial properties of Chitosan/PEO blends. 

The anti-microbial properties of chitosan/PEO blend fibers were measured using the 

procedure outlined in section 2.3.3. Chitosan fibers exhibit anti-microbial properties due to the 

positively charged NH3
+ on the surface which can bind to the negatively charged components of 

the bacterial cell wall and inhibit the growth of the cell and eventually kill the micro organism. 

Effect of chitosan content in electrospun chitosan/PEO blend nanofibers, molecular weight of 

chitosan, and degree of deacetylation of chitosan were studied on anti-microbial performance of 

chitosan/PEO blend nanofibers. 

In anti-microbial studies usually the reduction in microbial activity is reported on log 

basis however since all our analysis so far has been based on weight of chitosan we have also 

plotted data based on reduction in bacteria divided by weight of film. Figure 5.7 shows a plot of 

effect of % chitosan in blend fiber and molecular weight of chitosan in blend fiber on the anti-

microbial effectiveness of chitosan/PEO blend fibers. As the weight of all the fiber mats studied 

was not same, the weight of the fiber mats is being plotted on the secondary y-axis to better 

correlate the anti-microbial properties with fiber structure and composition. We see a 2.5-3.0 log 
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reduction in cfu (colony forming unit) indicating a bacteriostatic effect, this value is similar to 

ones obtained for 35 µm thick films of chitosan:PEO blends with similar blend ratios, but the 

mass of chitosan in films was up to 10 times higher than that in the fibers.188  There is no 

statistical difference in log reduction with increasing PEO content. To better understand the anti-

microbial data # of cfu (colony forming units) reduced per g of chitosan was calculated and 

plotted as shown in Figure 5.7. When the anti-microbial test data is normalized to weight (Figure 

5.8) then we can observe a trend that with increasing % PEO in blend fiber and decreasing 

molecular weight of chitosan leads to reduction in anti-microbial properties. The effect of 

molecular weight on anti-bacterial activity of chitosan is not fully understood, some groups have 

suggested there is a threshold molecular weight ~ 220 kDa until which the anti-microbial activity 

increases with increasing chitosan molecular weight. However upon exceeding this threshold 

molecular weight the anti-microbial activity decreases because they believe the molecules pack 

more densely leading to increased inter and intra-molecular hydrogen bonding utilizing some of 

the available protonated amine sites.30 Figure 5.8 shows a plot of effect of increasing chitosan % 

DDA for 1.33 wt% HMW chitosan: PEO (90:10) blend fibers. Figure 5.9 shows the same data 

normalized to the weight of the fibers i.e. # cfu reduced per gram of chitosan is plotted against 

DDA. Although one would expect an increase in anti-microbial activity with increasing % DDA 

because of the increase of # of available protonated amine sites, results from Figures 5.9 and 

5.10 show the contrary. The slight decrease in anti-microbial activity with increasing % DDA 

could be because fibers formed at 80% DDA have larger fiber diameter (118 nm) compared to 

the fibers formed using 70 and 67% DDA (62 and 45 nm respectively). This increase in fiber 

diameter would lead to greater reduction in # available of protonated –NH3
+ amine sites then 

would be increased by increasing % DDA. The # of available protonated –NH3
+ sites at 

respective fiber diameters and % DDA for the 80% DDA and 70% DDA chitosan as calculated 

by our model (Appendix 3) are 2.15E+19 and 3.52E+19 which means the thinner 70% DDA 

chitosan fibers have higher number of protonated amine sites which could result in better anti-

microbial activity. 

During all the anti-microbial tests a positive control of bacteria with no fiber sample, and 

negative control of fibers with no bacteria was also tested for 6 hrs to make sure that bacteria did 

not grow on its own. Pure PEO fibers were also tested for their anti-microbial efficiency and 

were found to have ~ 0 log reduction. 
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Figure 5.7 Effect of % chitosan in blend fiber and molecular weight of chitosan in blend fiber on 

the anti-microbial effectiveness of chitosan/PEO blend fibers. (Error bars represent standard 

deviation (n=3), letters indicate significant difference at p<0.05, n=3) 

 

 
Figure 5.8 Effect of % chitosan in blend fiber and molecular weight of chitosan in blend fiber on 

the anti-microbial effectiveness of chitosan/PEO blend fibers. (Error bars represent standard 

deviation (n=3), letters indicate significant difference at p<0.05, n=3) 
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Figure 5.9 Anti-microbial activity of HMW Chitosan:PEO (90:10) blend fibers as function of 

chitosan % DDA. (Error bars represent standard deviation (n=3), letters indicate significant 

difference at p<0.05, n=3) 

 

Figure 5.10 Reduction in # of cfu/g of chitosan for HMW Chitosan:PEO (90:10) blend fibers 

made with increasing chitosan % DDA. (Error bars represent standard deviation (n=3), letters 

indicate significant difference at p<0.05, n=3) 
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5.4 Anti-microbial properties of Chitosan/PAAm blends. 

The effect of % chitosan in blend and molecular weight of chitosan used for fabricating 

the fibers on the anti-microbial effectiveness of chitosan/PAAm blend fibers was studied. All 

samples used were of nearly same weight to make a more direct comparison of results. Table 5.1 

summarizes the anti-microbial efficiencies of chitosan/PAAm fibers. From the data it can be  

observed that for all samples there was ~ 3 log reduction in bacteria after 6 hrs. The # of cfu 

reduced per g of chitosan has also been tabulated in Table 5.1. It can be seen that at same blend 

ratio with increasing fiber diameter and decreasing chitosan molecular weight there was decrease 

in anti-microbial efficiency. The physical structure of the fiber mats also after 6 hrs of testing 

had disintegrated compared to the chitosan/PEO fibers as PAAm is highly hydrophilic which 

could have affected the test and the results.  

 

Table 5.1 Anti-microbial properties of Chitosan/PAAm blend nanofibers 

Sample 
log reduction (cfu/ml) Fiber Diameter 

(nm) 

cfu / 

(g chitosan)  Average Std.Dev 

1.4 wt% HMW Chitosan:PAAm 

(90:10) espun @ 70°C 
3.34 0.12 305 2.14E+13 

1.4 wt% HMW Chitosan:PAAm 

(75:25) espun @ 25°C 
3.11 0.35 132 2.61E+13 

1.4 wt% HMW Chitosan:PAAm 

(75:25) espun @ 70°C 
3.17 0.19 328 2.47E+13 

2.85wt%LMW Chitosan:PAAm 

(75:25) espun @ 70°C 
3.15 0.04 421 1.96E+13 
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5.5 Summary – Surface properties of chitosan blend fibers. 

These results validate the theory that protonated amine sites are the main reason for the 

anti-microbial and metal binding properties of chitosan blend fibers. Increased metal binding and 

anti-microbial properties are seen for both chitosan/PEO and chitosan/PAAm blend fibers with: 

• Increased % chitosan in blend fiber. 

• Fibers fabricated using higher molecular weight chitosan. 

• Reduced fiber diameter or increased surface area to mass ratio. 

• Chitosan with increased % DDA. 

Therefore, in the second part of this research wherein these electrospun mats would be 

tested for their filtration properties by spinning onto a spunbonded PP substrate, mats of 

chitosan/PEO and chitosan/PAAm blends were fabricated with 90% chitosan in blend solution 

and using only high molecular weight chitosan. 
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6. Filter Performance – Results & Discussion 
 

The goal of this research is to develop chitosan based nanofibrous filtration media which 

possess enhanced filtration efficiencies owing to the positive charge on filter fiber surface and 

size effect of nanofibers. As seen in Chapter 5, nanofibers with higher chitosan % in blend 

solution (90%), higher molecular weight (HMW Chitosan) and higher degree of deacetylation 

(80% DDA) exhibited the highest metal binding and anti-microbial efficiencies for both 

chitosan/PEO and chitosan/PAAm blends.  

 

6.1 Fabrication of chitosan blends nanofibrous filter media. 

A nanofibrous filter media comprising of a top layer of chitosan blend nanofibers 

electrospun on a spunbonded non-woven polypropylene (PP) fiber substrate was fabricated by 

method as described in section 2.1.3. Spunbonded PP was used a substrate to provide mechanical 

and structural support to the thin layered electrospun nanofibers. Initially melt-blown nonwoven 

PP mats were chosen as substrate material as melt-blown mats have thinner fibers and lower pore 

size compared to spunbonded nonwovens (Fiber diameter and pore size of melt blown PP = 3.2 

µm (±1.17 µm), 13.83 µm respectively, fiber diameter and pore size of spun bonded PP = 19.6 

µm (±1.33 µm), 47.46 µm respectively). However, as seen in Figure 6.1 it was not possible to 

electrospin a continuous layer of chitosan fibers on melt-blown PP webs, possibly due to the 

dense nature of the PP mat acting as an insulator and repelling the charged electrospun fibers 

away to the surrounding metallic aluminum plate on which it was laid. The melt-blown PP fibers 

were unsuccessfully coated with gold, coated with chitosan and/or acetic acid to change the 

surface charge and get a uniform layer of electrospun fibers (Figure 6.1). 

 

 
Figure 6.1 SEM images of 1.33 wt% HMW chitosan:PEO (90:10) fibers spun on (a) MB PP 

substrate, (b) 1% acetic acid coated MB PP substrate, (c) gold sputter coated MB PP substrate. 
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Electrospinning of chitosan blend solutions on spunbonded PP substrates led to 

successful fabrication of chitosan based nanofibrous filter media. Filter media of both HMW 

chitosan/PEO and HMW chitosan/PAAm blends were fabricated with 90% chitosan in blend 

solution, varying espun layer web density or gsm (which can be achieved by spinning for 

different time intervals), varying fiber diameter and different DDA chitosan (only for 

chitosan:PEO blends).  

To obtain varying fiber diameter HMW chitosan:PEO blends the strength of the acid 

solution was varied and a non-ionic surfactant Brij-35 (polyoxyethyleneglycol dodecyl ether) 

was used. Our collaborators at University of Massachusetts, Amherst, Kriegel et.al184 have 

shown that increasing strength of acid reduces solution surface tension with an  increase in 

solution viscosity and addition of 2mM brij-35 leads to increase in solution viscosity with slight 

increase in solution conductivity and surface tension. Thicker fibers are formed by spinning 1.33 

wt% HMW chitosan:PEO (90:10) blends with increasing strength of acetic acid from 75% to 

90% and addition of 2mM brij-35 as shown in Figure 6.2 and 6.3. To obtain HMW 

chitosan:PAAm (90:10) fibers (Figure 6.4) of varying fiber diameter solutions were made and 

electrospun as described in section 3.3.2 (i.e. by spinning at different solution temperatures). 

 

 
Figure 6.2 SEM images of 1.33 wt% HMW chitosan:PEO (90:10) fibers spun on spunbonded PP 

(a) using 75% acetic acid, (b) using 90% acetic acid, (c) using 75% acetic acid + 2mM brij-35. 
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Figure 6.3 Increase in fiber diameter with strength of acid in solvent and addition of surfactant 

(Error bars represent standard deviation (n=60), letters indicate significant difference at p<0.05) 

 

 
Figure 6.4 SEM images of 1.4 wt% HMW chitosan:PAAm (90:10) fibers spun on spunbonded 

PP (a) @ RT, (b) @ 40°C, (c) @ 70°C. 
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Figure 6.5 mg chromium bound/g chitosan for HMW chitosan:PEO blends after each pass for 10 

passes. (Error bars represent standard deviation (n=3)) 

 

6.2 Metal binding efficiency of chitosan blends nanofibrous filter media. 

6.2.1 Effect of fiber diameter and fiber media gsm. 

The dynamic metal binding properties of chitosan blend fiber mats were measured using 

the procedure described in section 2.4.2. 100 ml of 5 mg/l K2CrO4 solution was passed through 

chitosan nanofibrous filter media ten consecutive times and samples were taken after each pass 

to see reduction in solution chromium concentration. Figure 6.5 shows the binding capacity 

achieved after each pass using 1.5 gsm 1.33 wt% HMW chitosan: PEO (90:10) blend fiber mats. 

It can be seen that with increasing pass number binding efficiency increased. Therefore, for all 

tests further on mg chromium bound per gram chitosan fiber was calculated after 5th and 10th 

pass. 

Figure 6.6 shows the Cr (VI) binding capacity of HMW chitosan: PEO blend fibers as 

function of fiber diameter using 0.5 gsm and 1 gsm chitosan nanofibers. It can be seen with 

increasing fiber diameter binding capacity decreases or remains statistically unchanged. Figure 

6.7 shows a plot of binding capacity of 1 gsm HMWchitosan:PEO (90:10) blend fibers with 

varying fiber diameter plotted along with surface nitrogen concentration (atom %). It can be seen 

that surface nitrogen content remains unchanged with increasing fiber diameter as explained in 

section 4.2.1.The binding capacity is statistically similar but shows a decreasing trend with 

increasing fiber diameter. Our predicted model (Figure 4.6) shows that there is a 30 % drop in 
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binding capacity between the fiber diameters studied which is well within the standard deviation 

of the obtained results. 

 

 
Figure 6.6 Effect of fiber diameter on binding capacity of different gsm HMW chitosan:PEO 

(90:10) nanofibrous filter media. (Error bars represent standard deviation (n=3), letters indicate 

significant difference at p<0.05) 

 

 
Figure 6.7 Cr(VI) binding capacity and surface nitrogen content vs. fiber diameter for 1 gsm 

HMWchitosan:PEO (90:10) blend nanofibrous filter media. (Error bars represent standard 

deviation (n=3)) 
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Figure 6.8 shows the binding capacity as function of fiber diameter for 1gsm HMW 

chitosan: PAAm (90:10) blend fibers and there is no statistical difference in binding capacity 

with increasing fiber diameter. Figure 6.9 shows the plot of binding capacity of 1 gsm 

HMWchitosan:PAAm (90:10) blend fibers along with their surface nitrogen concentration. It can 

be seen that with increasing fiber diameter surface nitrogen content does not change, which can 

explain indifference in binding capacity values with increasing fiber diameter. Our predicted 

model (Figure 4.6) shows that there is a 20 % drop in binding capacity between the fiber 

diameters studied which is well within the standard deviation of the obtained results. According 

to the model the effect of fiber diameter is higher when diameter is between 50 – 150 nm above 

which the effects of % chitosan in blend solution and chitosan % DDA seem to have a greater 

affect on the binding properties. 

 

 
Figure 6.8 Effect of fiber diameter on binding capacity of different gsm HMW chitosan:PAAm 

(90:10) nanofibrous filter media. (Error bars represent standard deviation (n=3), letters indicate 

significant difference at p<0.05) 
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Figure 6.9 Cr(VI) binding capacity and surface nitrogen content vs. fiber diameter for 1 gsm 

HMWchitosan:PAAm (90:10) blend nanofibrous filter media. (Error bars represent standard 

deviation (n=3)) 

 

Figure 6.10 and 6.11 shows the binding capacity of HMW chitosan:PEO (90:10) and 

HMW chitosan: PAAm nanofibrous filter media of increasing basis weight (gsm) respectively 

(constant fiber diameter). It is observed that with increasing gsm for both blend fibers a slight 

decrease in binding capacity is observed which is statistically mostly insignificant. However it is 

difficult to comprehend the reason for this slight decrease in binding capacity with increasing 

web gsm. The % chromium bound does not change with increasing fiber mat gsm (% chromium 

bound after 10 passes for 0.5 gsm web = 5.67%, 1 gsm web = 6.77% and 1.5 gsm web = 5.4%) 

which means that the binding efficiency of the fibers is constant irrespective of the basis weight 

of the mat. The binding activity could be restricted only to the top layers of the espun fiber mat 

and as will be explained later and shown in Figure 6.12 upon drying of these samples a film is 

formed on the surface of the fibers. The formation of this film could restrict the binding of 

chromium to the top few layers forming channels on the fiber surface which would prevent 

solution effectively wetting the entire depth of the fiber mat. 
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Figure 6.10 Effect of gsm on binding capacity of HMW chitosan:PEO (90:10) nanofibrous filter 

media. (Error bars represent standard deviation (n=3), letters indicate significant difference at 

p<0.05) 

 
Figure 6.11 Effect of gsm on binding capacity of HMW chitosan:PAAm (90:10) nanofibrous 

filter media. (Error bars represent standard deviation (n=3), letters indicate significant difference 

at p<0.05) 
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Figure 6.12 SEM images of 1.33 wt% HMW chitosan:PEO (90:10) (left) and 1.4 wt% HMW 

chitosan: PAAm (90:10) (right) nanofibrous filter media after washing with water. 

 

Looking at the nanofibrous filter media after repeated washing with water using SEM and 

testing surface composition with XPS it is seen that although a fibrous structure is distinctly 

visible it is covered by a layer of polymer film. This film could be the incomplete dissolution of 

the PEO/PAAm from the fibers in solution which upon drying form a film like structure on top 

of the chitosan nanofibers (Figure 6.12). The surface composition of this layer is as shown in 

Table 6.1. Looking at the surface nitrogen composition of the films for both the 

HMWchitosan:PEO (90:10) and HMWchitosan:PAAm (90:10) blend fibers it looks like that the 

film like layer seen is rich in chitosan. The calculated surface chitosan wt% (calculated as shown 

in Chapter 4) was found to be 83% for chitosan/PEO blend and 132 % for chitosan/PAAm 

blends.  As has been suggested earlier in section 5.1.3 that during the binding experiments in 

aqueous medium, chitosan is being partially dissolved in water along with PEO and PAAm. This 

dissolution of material leads to swelling or partial dissolution of fibrous structure allowing the 

diffusion of chromium ions to the bulk of the fiber and opening up additional NH3
+ sites for 

binding. Upon drying of this wet nanofibrous filter media, formation of polymer film like layer 

appears on top of the electrospun fiber. This may be a potential reason why we cannot trace Cr 

content after metal binding experiments using XPS as the Cr bound fibers may be shielded by 

this polymer film like layer. The formation of this film could also negate the effect of fiber 

diameter on binding properties as has been seen in Figure 6.7 and 6.9. The swelling of the fiber 

surface could lead to opening of the fiber structure formation of film like layer and diffusion of 

chromium ions to the bulk of the fiber reducing the impact of surface chitosan on binding. 
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Table 6.1 Surface composition of electrospun nanofibrous layer shown in Figure 6.12. 

Element  

Surface 

composition 

HMWchitosan

:PEO (90:10) 

fibers/film 

(atom %) 

Surface 

composition 

HMWchitosan

:PAAm (90:10) 

fibers/film 

(atom %) 

Surface 

composition 

of pure 

chitosan film 

(atom %) 

Surface 

composition 

of pure PEO 

film  

(atom %) 

Surface 

composition 

of pure 

PAAm film 

(atom %) 

N 4.83 4.03 5.6  13.73 

O 28.42 20.61 28.18 32.39 18.56 

C 65.86 74.74 61.11 66.77 67.17 

C/N 13.63 18.54 10.91 ∞ 4.89 

 

6.2.2 Effect of chitosan % DDA. 

Figure 6.13 shows the binding capacity of these nanofibrous filter media with increasing 

% DDA. As has been seen earlier in Figure 5.2, binding capacity increased with increased % 

DDA even in the dynamic filtration studies.  For the 67% and 70% DDA chitosan blend fibrous 

media there is no increase in binding between 5 and 10 passes as can be seen in the 80% DDA 

sample. Fibrous media fabricated with lower % DDA chitosan could be getting saturated before 

or after pass # 5 compared to the 80% DDA chitosan fibrous media.  

Comparing metal binding results between the dynamic filtration tests obtained after 20 

mins of contact between fibers and metal solution and those discussed in section 5.1 after 3 hrs, 

it can be seen that higher binding capacity per g of chitosan fiber is observed in the dynamic 

filtration tests. This could be because of lower weight of fiber mats used in the dynamic tests (wt 

of filter mats used in dynamic studies is ~ 0.7 – 2.5 g, weight of mats used in section 5.1 > 3 g). 

Figure 6.14 shows a cross-section view of a 1.5 gsm espun chitosan/PEO blend nanofiber mat on 

top of 36.5 gsm PP spunbonded web. The thickness of the nanofiber layer is ~ 3 microns. In the 

literature it has been reported that the binding experiment reaches equilibrium after 12 hrs and 

after 20 mins only 36 % of available chromium  has been bound by chitosan (i.e. 37.5 % of 

maximum chromium ions that can be bound have been bound).22 Our studies show that after 20 

mins only ~ 7-10% of chitosan is bound whereas in results discussed in section 5.1 the binding 

efficiency after 3 hrs testing is ~ 15 – 30%. The binding capacity after 20 mins in dynamic 
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filtration tests is approximately 40 % of the maximum binding capacity (i.e. binding capacity 

after 3 hrs) which is similar to literature (Figure 4.3). This validates our assumption in Chapter 4 

that the binding kinetics are independent of solution pH and mass of absorbent. The binding 

capacities observed are significantly (up to 5 magnitudes) higher than those predicted by the 

model for same sized, blend ratio and %DDA chitosan blend fibers. Our model only accounts for 

the protonated amine sites on the surface of the fiber but the experimental results and swelling of 

the fibers leading to formation of film like structure suggest that there is diffusion of chromium 

through the fiber surface which allows it to bind to protonated amines present in the bulk of the 

fiber.  

 

 
Figure 6.13 Effect of chitosan % DDA on binding capacity of varying DDA HMW chitosan:PEO 

(90:10) nanofibrous filter media. (Error bars represent standard deviation (n=3), letters indicate 

significant difference at p<0.05) 
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Figure 6.14 SEM cross-section image of 1.5 gsm HMW chitosan: PEO (90:10) espun 

nanofibrous membrane on spunbonded PP substrate. 

 

6.3 Anti-microbial properties of chitosan blends nanofibrous filter media. 

The dynamic anti-microbial properties of chitosan blends nanofibrous filter media were 

tested using procedure as outlined in section 2.4.3. As had been mentioned earlier, the 

concentration of Escherichia coli K-12 (107 cfu/ml) test microorganism had to be reduced (104 

cfu/ml) compared to the tests run in section 5.3 as the bacteria overwhelmed the nanofibrous mat 

(Figure 6.15) and no solution passed through the filter membrane even after 3 hrs. The fiber mat 

looks like a film after testing because before SEM imaging the sample had to be sterilized which 

could have melted the polymer fibers partially and formed film on surface. 

Figure 6.16 shows the effect of fiber diameter, nanofiber gsm and chitosan DDA on anti-

microbial activity of HMW chitosan:PEO (90:10) blend fibers after 1 pass of 104 cfu/ml of E-

coli K-12. It can be seen that < 0.5 log reduction in bacteria is observed for all samples after ~ 2 

mins of contact of fiber with bacterial solution. To understand the kinetics of the anti-microbial 

activity of chitosan we did a time dependant test wherein bacterial survival after 2mins, 15 mins, 

30 mins, 1hr, 2 hr, 4 hr and 6 hr was measured for 1 gsm HMW chitosan:PEO (90:10) blend 

fibers soaked in 107 cfu/ml bacteria solution and results are shown in Figure 6.17. It can be seen 

that up to 2 hrs there is < 1 log reduction in bacteria and increased activity > 2 log really happens 

after 4 hrs.  Whatever reduction in bacteria was seen in the dynamic filtration test is due to the 

size effect of the nanofiber which can trap the approximately 0.5 micron sized E-coli bacteria.  
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Figure 6.15 SEM image of HMW chitosan:PEO (90:10) nanofibrous filter before and after 

passing 100 ml of 107 cfu/ml E-coli bacteria.  

 

 
Figure 6.16  Log reduction in E-coli test micro-organism after 1 pass of 100 ml bacteria solution 

through different gsm, diameter and %DDA chitosan/PEO nanofibrous filter media. (Error bars 

represent standard deviation (n=3)) 
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Figure 6.17 Log reduction in E-coli test micro-organism after soaking 1gsm HMW chitosan/PEO 

(90:10) nanofibrous filter media for different times in bacteria solution. (Error bars represent 

standard deviation (n=3)) 

 

6.4 Latex PS bead filtration efficiency of chitosan blends nanofibrous media. 

The applicability of chitosan based nanofibrous filter media to effectively filter out heavy 

metal ions and micro-organism from pollutant water streams based on the polycationic nature of 

chitosan has been demonstrated. The particle filtration efficiency of chitosan based nanofibrous 

filter media was characterized by passing 10 ml of 3 micron sized 200 ppm polystyrene beads 

through filter media of varying fiber diameter and fiber gsm.  

Figure 6.18 shows the SEM images of HMW chitosan/PEO (90:10) blend nanofibrous 

filter media before and after passing PS beads. It can be seen that the fiber mats appear to be torn 

after filtration. The mechanical integrity of the mat could have been affected by the pressure 

exerted by the applied vacuum (~ 2 mm Hg) on the filter membrane during the experiment. 

Figure 6.19 shows the filtration efficiency of HMW chitosan/PEO (90:10) blend nanofibrous 

filter media of varying fiber gsm and fiber diameter. With increasing fiber diameter, the PS bead 

filtration efficiency decreased. This could be due to higher maximum pore size observed with 

increasing fiber diameter (measured max. pore size of 1 gsm 65 nm diameter fiber = 1.95 µm, 

measured max. pore size of 1 gsm 110 nm diameter fiber = 2.5 µm). The maximum pore size 
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was measured as described in section 2.4.1. A filtration experiment was conducted without 

applying vacuum to the filter media for filtration and varying the fiber media gsm. A 1 gsm 

nanofibrous filter media of 92 nm fiber diameter and 1.562 microns maximum pore size 

achieved a 50% filtration efficiency and a similar 3 gsm nanofibrous filter media exhibited 70% 

filtration efficiency.  

 

 
Figure 6.18 SEM images of 1 gsm HMW chitosan:PEO nanofibrous filter media before and after 

passing 10 ml of 200 ppm 3 µm PS beads. 

 

 
Figure 6.19 PS bead removal efficiency of varying fiber diameter and fiber gsm HMW 

chitosan:PEO nanofibrous filter media. 
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Gopal et.al in literature have reported high filtration efficiencies up to 92 % for 1 micron 

sized  PS bead particles156 using a set-up which had better control over the pressure exerted on 

the nanofibrous membrane. However, our results obtained do attest to the fact that the chitosan 

based nanofibrous filter media can effectively filter out particulate media based on size as well as 

chemical nature of the contaminants. 

 

6.5 Aerosol filtration efficiency of chitosan blends nanofibrous media. 

To study the airborne particulate filtration efficiency based on the size of the nanofibers, 

the aerosol filtration efficiency (Figure 6.20) of 1 gsm HMW chitosan: PEO (90:10) fibers of 

varying fiber diameters were studied according to the procedure described in section 2.4.4. It can 

be seen that with increasing fiber diameter the filtration efficiency decreased because the 

maximum pore size and air permeability increased (Table 6.2). These results show similar trend 

with those observed for other tested electrospun nanofiber media in literature147, 153. The filtration 

efficiency values are similar to those obtained by Wang et.al151 (55 % filtration efficiency against 

0.6 µm NaCl aerosol particles using a 1 gsm 200 nm diameter and 1.76 µm maximum pore size 

electrospun poly(vinylalcohol) nanofibers). SEM images of the fiber sample before and after 

filtration showed no damage to the electrospun layer (Figure 6.21). 

 

 
Figure 6.20 Aerosol filtration efficiency and maximum pore size of 1 gsm HMW chitosan:PEO 

(90:10) nanofibrous filter media. (Error bars represent standard deviation (n=3)) 
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Table 6.2 Air permeability data of 1 gsm HMW chitosan:PEO blend fibers  

Fiber Diameter (nm) Air Permeability (cfm) 

64.87 1.29 (± 0.39) 

91.04 1.21(± 0.35) 

109.84 4.23(± 0.65) 

 

 

 
Figure 6.21 SEM images of 1 gsm HMW chitosan:PEO nanofibrous filter media before and after 

aerosol filtration studies. 
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7. Conclusions 
 

The work presented herewith demonstrates the applicability of chitosan based 

nanofibrous filter media to effectively filter out heavy metal ions, pathogenic micro-organisms, 

and contaminant particulate media from both air and water media. Chitosan based nanofibrous 

filter media offers the distinct advantage of using both size and surface chemistry of fibers to 

achieve desired filtration properties compared to nanofibrous filter media fabricated from other 

synthetic polymers. 

Electrospinning of pure chitosan was hindered by its low solubility window in aqueous 

acid solutions, high degree of inter and intra-chain hydrogen bonding and high solution viscosity. 

Addition of other synthetic polymers like PEO and PAAm greatly improved the spinnability of 

chitosan. Fiber formation was strongly dependant on % chitosan in blend solution, viscosity of 

blend solution (controlled by concentration of polymer in solution, strength of acid and 

temperature of spinning solution) and synthetic polymer used in blend solution.  

We were able to obtain fairly uniform sized electrospun fibers by making blend solutions 

of both high and low molecular weight chitosan with PEO with very low fractions of PEO (5 %) 

in the blend solution using acetic acid as the solvent. Fiber formation and size was influenced by 

blend ratio of the two polymers, polymer concentration, polymer molecular weight and solvent. 

Heating of the polymer solution with hot air helped improve spinnability by reducing the bead 

like defects in the formed fibers and enabling the formation of fibers with as low as 5% PEO in 

the blend solution. TGA analysis of the fibers confirmed the presence of both polymers in the 

fibers and their blend ratio remained unaltered. Uniform bead-less fibers (fiber diameter ~ 100 

nm) were formed with 10% PEO in blend solution by spinning the solution at 70°C. 

The advantage of heating the polymer solution during the spinning process was more 

pronounced for obtaining bead-less fibers of chitosan/PAAm blends. Room temperature spinning 

solutions were able to form beaded fibers at 75 % chitosan in blend solution, however heating 

the solution to 70°C enabled us to spin HMWchitosan:PAAm (90:10) blend solutions with ~ 300 

nm fiber diameter and < 2% bead density. 

A theoretical model was developed to study the change in surface concentration of 

protonated amine sites and predict maximum Cr (VI) binding efficiency of chitosan nanofibers 

with respect to fiber diameter, % chitosan in blend solution, and %DDA of chitosan. The model 
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predicted that size of the fiber (> 400 nm) had a greater effect on binding capacity compared to 

% chitosan in blend solution or chitosan % DDA. However, for smaller sized fibers % chitosan 

in blend solution affected the binding efficiency of chitosan blend fibers. 

XPS analysis of chitosan blend fibers show that with decreasing % chitosan in blend 

solution the surface nitrogen concentration decreases for chitosan/PEO blend solutions as 

expected. From the surface atomic compositions of blend fibers obtained using XPS we were 

able to calculate the surface chitosan composition (wt %) which decreased with decreasing 

chitosan in blend solutions. However as % chitosan in solution decreased the % chitosan in fiber 

surface decreased in a non-linear fashion with only 4-7 wt % chitosan on fiber surface for 

chitosan:PEO (50:50) blend fibers. For chitosan/PAAm blend fibers although surface nitrogen 

concentration increased with decreasing chitosan content it did not lead to increase in surface 

properties. The amide linkage in polyacrylamide is not easily protonated like chitosan as has 

been shown by the XPS data.  

Chitosan blend nanofibers were highly effective in binding Cr(VI) metal ions and binding 

efficiency was a function of % chitosan in blend solution, molecular of weight, % DDA of 

chitosan and synthetic polymer used in blend solutions. Results showed similar trend in binding 

efficiency when compared with theoretically developed model. The metal binding capacity in 

chitosan blend fibers is significantly higher than that observed for similar blend ratio 

chitosan/PEO blend films188. A 93 µm thick Chitosan/PEO (90:10) blend film showed binding 

capacity of 0.44 mg chromium/g chitosan whereas the same blend ratio fibers showed 16 mg 

chromium/g chitosan binding capacity. Electrospun fibers exhibit greater binding capacity due to 

the high surface area to mass offered by the fibers compared to films.  

Chitosan blend nanofibers showed 2-3 log reduction in E-coli K-12 micro-organism and 

reduction efficiency was a function of % chitosan in blend solution. This value is similar to ones 

obtained for 35 µm thick films of chitosan:PEO blends with similar blend ratios, but the mass of 

chitosan in films was up to 10 times higher than that in the fibers. 

Nanofibrous filter media using chitosan based electrospun nanofibers were successfully 

fabricated by electrospinning onto spunbonded PP non-woven substrates. Dynamic metal 

binding efficiencies using as little 0.5 gsm of nanofibrous filter media showed promising results 

(binding capacity up to 35 mg chromium/ g chitosan) for commercial applicability of these 

filters. The nanofibrous filter media however was unable to achieve desired anti-microbial 
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effectiveness because of the slow reaction between the protonated amine in chitosan and 

negative components of the bacterial cell wall. Air and water filtration efficiencies of the 

nanofibrous filter media measured using aerosol and PS beads suspended in water respectively 

showed high efficiencies which correlated with the fibrous media size and shape. However the 

nanofibrous layer lacked mechanical strength to with stand pressure applied during the PS bead 

filtration which affected the results. 

Electrospun chitosan based nanofibrous filter media definitely offers great potential as a 

pre-filter material owing to its excellent metal-binding capacities, anti-microbial properties and 

physical filtration efficiencies. 

7.1 Future Work. 

The future work towards the optimization of the development of chitosan based nanofibrous 

filter media with maximum metal binding and anti-microbial properties can be: 

1. The XPS data of the blend nanofibers suggest that surface chitosan concentration is different 

from the bulk and using transmission electron microscopy phase imaging or atomic force 

microscopy (force modulation mode) or dynamic mechanical analysis methods further 

studies should be done to try and understand phase morphology development occurring 

during the spinning process in the fibers. 

2. Consistently higher binding efficiencies then those predicted by the model indicate that 

binding occurs by diffusion of chromium through the fibers potentially by swelling of the 

polymers. The binding mechanism needs to be further studied probably by varying initial 

chromium concentrations in solution. 

3. SEM images of nanofibrous filter media washed with water or even after metal binding 

experiments show the formation of a film like layer. Although XPS analysis of the surface 

indicates that the film is rich in chitosan, studies need to be done to understand the film 

formation and its prevention by either cross-linking the chitosan or making fibers of chitosan 

blends with hydrophobic polymers. 

4. As seen in the PS latex beads test, mechanical integrity of the nanofiber layer is weak. A 

potential way of overcoming this problem in the future would be to develop a sandwich filter 

with a top layer of melt blown PP, a middle layer of the electrospun chitosan and a bottom 

substrate layer of spun bonded PP.  

124 
 



5. The economic viability of chitosan nanofibrous filter media lie with its regeneration capacity. 

The Cr(VI) binding mechanism is a reversible process and studies need to be done to 

understand this reverse reaction for the electrospun fibers i.e. if we can desorb the absorbed 

heavy metal ions by increasing solution pH and reuse the fibers.  

6. Binding and anti-microbial studies can be extended to other metal species and gram negative 

or gram positive bacteria. The effect of different metal ions or micro-organisms, and effect of 

solution pH can be studied on nanofibrous filter media performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

125 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

References 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 
 



References. 
 

1. Kaur, S.; Gopal, R.; Ng, W. J.; Ramakrishna, S.; Matsuura, T., Next-generation fibrous media for 
water treatment. Mrs Bulletin 2008, 33, (1), 21-26. 

2. Wang, J.; Kim, S. C.; Pui, D. Y., Investigation of the figure of merit for filters with a single 
nanofiber layer on a substrate. Journal of Aerosol Science 2008, 39, (4), 323-334. 

3. Cauchie, H. M., Chitin production by arthropods in the hydrosphere. Hydrobiologia 2002, 470, 
(1-3), 63-96. 

4. Roberts, G. A. F., Chitin Chemistry. The MacMillan Press Ltd: London, 1992. 
5. Wu, T.; Zivanovic, S.; Draughon, F. A.; Sams, C. E., Chitin and chitosan - Value-added products 

from mushroom waste. Journal of Agricultural and Food Chemistry 2004, 52, (26), 7905-7910. 
6. Angelova, N. M., N.; Rashkov, I.; Maximova, V.; Bogdanova, S.; Domard, A., Preparation and 

properties of modified chitosan films for drug release. Journal of Bioactive and Compatible 
Polymers 1995, 10, (4), 285-98. 

7. Selmer-Olsen, E. R., H. C.; Pehrson, R., A novel treatment process for dairy wastewater with 
chitosan produced from shrimp-shell waste. Water Science and Technology 1996, 34, 33-40. 

8. Doshi, J.; Reneker, D. H., ELECTROSPINNING PROCESS AND APPLICATIONS OF 
ELECTROSPUN FIBERS. Journal of Electrostatics 1995, 35, (2-3), 151-160. 

9. Subbiah, T.; Bhat, G. S.; Tock, R. W.; Pararneswaran, S.; Ramkumar, S. S., Electrospinning of 
nanofibers. Journal of Applied Polymer Science 2005, 96, (2), 557-569. 

10. Formhals, A. Method and Apparatus for Spinning. 2,160,962, 1939. 
11. Goosen, M., Application of Chitin and Chitosan,. Technomic Publishing Co: Lancaster-Basel, 

PA, 1997. 
12. Gupta, K. C.; Kumar, M., An overview on chitin and chitosan applications with an emphasis on 

controlled drug release formulations. Journal of Macromolecular Science-Reviews in 
Macromolecular Chemistry and Physics 2000, C40, (4), 273-308. 

13. Neto, C. G. T.; Giacometti, J. A.; Job, A. E.; Ferreira, F. C.; Fonseca, J. L. C.; Pereira, M. R., 
Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers 2005, 62, (2), 97-103. 

14. Dutta, P. K.; Ravikumar, M. N.; Dutta, J., Chitin and chitosan for versatile applications. Journal 
of Macromolecular Science-Polymer Reviews 2002, C42, (3), 307-354. 

15. Chen, R. H.; Hwa, H. D., Effect of molecular weight of chitosan with the same degree of 
deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. 
Carbohydrate Polymers 1996, 29, (4), 353-358. 

16. Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review. Separation and 
Purification Technology 2004, 38, (1), 43-74. 

17. Trung, T. S.; Thein-Han, W. W.; Qui, N. T.; Ng, C. H.; Stevens, W. F., Functional characteristics 
of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresource 
Technology 2006, 97, (4), 659-663. 

18. Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A., Relation between the Degree of Acetylation 
and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules 2001, 2, (3), 765-
772. 

19. Kawamura, Y.; Mitsuhashi, M.; Tanibe, H.; Yoshida, H., Adsorption of metal ions on 
polyaminated highly porous chitosan chelating resin. Ind. Eng. Chem. Res. 1993, 32, (2), 386-
391. 

127 
 



20. Babel, S.; Kurniawan, T. A., Low-cost adsorbents for heavy metals uptake from contaminated 
water: a review. Journal of Hazardous Materials 2003, 97, (1-3), 219-243. 

21. Schmuhl, R.; Krieg, H. M.; Keizer, K., Adsorption of Cu(II) and Cr(VI) ions by chitosan: 
Kinetics and equilibrium studies. Water Sa 2001, 27, (1), 1-7. 

22. Udaybhaskar, P.; Iyengar, L.; Rao, A., HEXAVALENT CHROMIUM INTERACTION WITH 
CHITOSAN. Journal of Applied Polymer Science 1990, 39, (3), 739-747. 

23. Juang, R.-S.; Shiau, R.-C., Metal removal from aqueous solutions using chitosan-enhanced 
membrane filtration. Journal of Membrane Science 2000, 165, (2), 159-167. 

24. Milot, C.; McBrien, J.; Allen, S.; Guibal, E., Influence of physicochemical and structural 
characteristics of chitosan flakes on molybdate sorption. Journal of Applied Polymer Science 
1998, 68, (4), 571-580. 

25. Guibal, E.; Jansson-Charrier, M.; Saucedo, I.; Cloirec, P. L., Enhancement of Metal Ion Sorption 
Performances of Chitosan: Effect of the Structure on the Diffusion Properties. Langmuir 1995, 
11, (2), 591-598. 

26. Krajewska, B., Membrane-based processes performed with use of chitin/chitosan materials. 
Separation and Purification Technology 2005, 41, (3), 305-312. 

27. Krajewska, B., Diffusion of metal ions through gel chitosan membranes. Reactive and 
Functional Polymers 2001, 47, (1), 37-47. 

28. Helander, I. M.; Nurmiaho-Lassila, E. L.; Ahvenainen, R.; Rhoades, J.; Roller, S., Chitosan 
disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International 
Journal of Food Microbiology 2001, 71, (2-3), 235-244. 

29. Lim, S. H.; Hudson, S. M., Review of chitosan and its derivatives as antimicrobial agents and 
their uses as textile chemicals. Journal of Macromolecular Science-Polymer Reviews 2003, C43, 
(2), 223-269. 

30. Shimojoh, M.; Masaki, K.; Kurita, K.; Fukushima, K., Bactericidal effects of chitosan from squid 
pens on oral streptococci. Nippon Nogeikagaku Kaishi-Journal of the Japan Society for 
Bioscience Biotechnology and Agrochemistry 1996, 70, (7), 787-792. 

31. Liu, X. F.; Guan, Y. L.; Yang, D. Z.; Li, Z.; De Yao, K., Antibacterial action of chitosan and 
carboxymethylated chitosan. Journal of Applied Polymer Science 2001, 79, (7), 1324-1335. 

32. Tsai, G. J.; Su, W. H., Antibacterial activity of shrimp chitosan against Escherichia coli. Journal 
of Food Protection 1999, 62, (3), 239-243. 

33. Singh, D. K.; Ray, A. R., Biomedical applications of chitin, chitosan, and their derivatives. 
Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 2000, 
C40, (1), 69-83. 

34. Brian, S.; Paul, H.; David, W. Nonwoven fabric containing microfungal hyphae fibres 1985. 
35. Townsley.Pm, Chromatography of Tobacco Mosaic Virus (Tmv) on Chitin Columns. Nature 

1961, 191, (478), 626-&. 
36. Hsieh, S. H.; Huang, Z. K.; Huang, Z. Z.; Tseng, Z. S., Antimicrobial and physical properties of 

woolen fabrics cured with citric acid and chitosan. Journal of Applied Polymer Science 2004, 94, 
(5), 1999-2007. 

37. El-Tahlawy, K. F.; El-Bendary, M. A.; Elhendawy, A. G.; Hudson, S. M., The antimicrobial 
activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate 
Polymers 2005, 60, (4), 421-430. 

38. Qin, Y. M.; Zhu, C. J.; Chen, J.; Chen, Y. Z.; Zhang, C., The absorption and release of silver and 
zinc ions by chitosan fibers. Journal of Applied Polymer Science 2006, 101, (1), 766-771. 

128 
 



39. Gibson, P.; Schreuder-Gibson, H.; Rivin, D., Transport properties of porous membranes based 
on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 
2001, 187-188, 469-481. 

40. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically 
charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics 2000, 87, 
(9), 4531-4547. 

41. Reneker, D. H.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A. L., Nanofiber garlands of 
polycaprolactone by electrospinning. Polymer 2002, 43, (25), 6785-6794. 

42. Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L., Electrospinning of linear homopolymers of 
poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular 
weight and concentration in a good solvent. Polymer 2005, 46, (13), 4799-4810. 

43. Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E., Role of chain entanglements on fiber 
formation during electrospinning of polymer solutions: good solvent, non-specific polymer-
polymer interaction limit. Polymer 2005, 46, (10), 3372-3384. 

44. Raleigh, L., London,Edinburgh, and Dublin Phil. Mag. J. 1882, 44, 184-186. 
45. Taylor, G. I., Proceedings of the Royal Society,London 1964, 280, 383-397. 
46. Formhals, A. Process and Apparatus for Preparing Artificial Threads. 1,975,504, 1934. 
47. Baumgart.Pk, ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS. Journal of 

Colloid and Interface Science 1971, 36, (1), 71-&. 
48. Larrondo, L.; Manley, R. S. J., ELECTROSTATIC FIBER SPINNING FROM POLYMER 

MELTS .2. EXAMINATION OF THE FLOW FIELD IN AN ELECTRICALLY DRIVEN JET. 
Journal of Polymer Science Part B-Polymer Physics 1981, 19, (6), 921-932. 

49. Fong, H.; Chun, I.; Reneker, D. H., Beaded nanofibers formed during electrospinning. Polymer 
1999, 40, (16), 4585-4592. 

50. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., The effect of processing variables on the 
morphology of electrospun nanofibers and textiles. Polymer 2001, 42, (1), 261-272. 

51. Deitzel, J. M.; Kleinmeyer, J. D.; Hirvonen, J. K.; Tan, N. C. B., Controlled deposition of 
electrospun poly(ethylene oxide) fibers. Polymer 2001, 42, (19), 8163-8170. 

52. Cevat, E.; Dilhan, M. K.; Hongjun, W., A hybrid twin screw extrusion/electrospinning method to 
process nanoparticle-incorporated electrospun nanofibres. Nanotechnology 2008, (16), 165302. 

53. Weitz, R. T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K., Polymer nanofibers via 
nozzle-free centrifugal spinning. Nano Letters 2008, 8, (4), 1187-1191. 

54. Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Experimental characterization of 
electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42, (25), 9955-9967. 

55. Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Electrospinning: A whipping 
fluid jet generates submicron polymer fibers. Applied Physics Letters 2001, 78, (8), 1149-1151. 

56. Spivak, A. F.; Dzenis, Y. A.; Reneker, D. H., A model of steady state jet in the electrospinning 
process. Mechanics Research Communications 2000, 27, (1), 37-42. 

57. Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced 
jets. I. Stability theory. Physics of Fluids 2001, 13, (8), 2201-2220. 

58. Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced 
jets. II. Applications. Physics of Fluids 2001, 13, (8), 2221-2236. 

59. Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by 
electrospinning and their applications in nanocomposites. Composites Science and Technology 
2003, 63, (15), 2223-2253. 

129 
 



60. Teo, W. E.; Ramakrishna, S., A review on electrospinning design and nanofibre assemblies. 
Nanotechnology 2006, 17, (14), R89-R106. 

61. Reneker, D. H.; Yarin, A. L.; Zussman, E.; Xu, H., Electrospinning of nanofibers from polymer 
solutions and melts. In Advances in Applied Mechanics, Vol 41, Elsevier Academic Press Inc: 
San Diego, 2007; pp 43-195. 

62. Schiffman, J. D.; Schauer, C. L., Cross-linking chitosan nanofibers. Biomacromolecules 2007, 8, 
(2), 594-601. 

63. Greiner, A.; Wendorff, J. H., Electrospinning: A fascinating method for the preparation of 
ultrathin fibres. Angewandte Chemie-International Edition 2007, 46, (30), 5670-5703. 

64. Li, D.; Xia, Y. N., Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials 
2004, 16, (14), 1151-1170. 

65. Tan, K.; Obendorf, S. K., Fabrication and evaluation of electrospun nanofibrous antimicrobial 
nylon 6 membranes. Journal of Membrane Science 2007, 305, (1-2), 287-298. 

66. Krishnappa, R. V. N.; Desai, K.; Sung, C. M., Morphological study of electrospun 
polycarbonates as a function of the solvent and processing voltage. Journal of Materials Science 
2003, 38, (11), 2357-2365. 

67. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling surface 
morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the 
electrospinning process. Macromolecules 2004, 37, (2), 573-578. 

68. Fong, H.; Liu, W. D.; Wang, C. S.; Vaia, R. A., Generation of electrospun fibers of nylon 6 and 
nylon 6-montmorillonite nanocomposite. Polymer 2002, 43, (3), 775-780. 

69. Yao, L.; Haas, T. W.; Guiseppi-Elie, A.; Bowlin, G. L.; Simpson, D. G.; Wnek, G. E., 
Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chemistry of 
Materials 2003, 15, (9), 1860-1864. 

70. Desai, K.; Sung, C. M., Electrospinning and phase characterization of polyaniline/polymethyl 
methacrylate blends. Abstracts of Papers of the American Chemical Society 2003, 226, U442-
U442. 

71. Deitzel, J. M.; Kosik, W.; McKnight, S. H.; Tan, N. C. B.; DeSimone, J. M.; Crette, S., 
Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 2002, 43, (3), 
1025-1029. 

72. Y. Y. Zhao, Q. B. Y. X. F. L. C. W. Y. W., Study on correlation of morphology of electrospun 
products of polyacrylamide with ultrahigh molecular weight. Journal of Polymer Science Part B: 
Polymer Physics 2005, 43, (16), 2190-2195. 

73. Vetcher, A. A.; Gearheart, R.; Morozov, V. N., Correlation of morphology of electrospun fibers 
with rheology of linear polyacrylamide solution. Polymer Journal 2007, 39, (8), 878-881. 

74. Sarkar, S.; Deevi, S.; Tepper, G., Biased AC electrospinning of aligned polymer nanofibers. 
Macromolecular Rapid Communications 2007, 28, (9), 1034-1039. 

75. Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J., 2005, - 41, (- 3), - 432. 
76. Fennessey, S. F.; Farris, R. J., Fabrication of aligned and molecularly oriented electrospun 

polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams. Polymer 2004, 
45, (12), 4217-4225. 

77. Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G., Continuous electrospinning of aligned 
polymer nanofibers onto a wire drum collector. Nano Letters 2004, 4, (11), 2215-2218. 

78. Um, I. C.; Fang, D. F.; Hsiao, B. S.; Okamoto, A.; Chu, B., Electro-spinning and electro-blowing 
of hyaluronic acid. Biomacromolecules 2004, 5, (4), 1428-1436. 

130 
 



79. Wang, X. F.; Um, I. C.; Fang, D. F.; Okamoto, A.; Hsiao, B. S.; Chu, B., Formation of water-
resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post 
treatments. Polymer 2005, 46, (13), 4853-4867. 

80. Wang, C.; Chien, H. S.; Hsu, C. H.; Wang, Y. C.; Wang, C. T.; Lu, H. A., Electrospinning of 
polyacrylonitrile solutions at elevated temperatures. Macromolecules 2007, 40, (22), 7973-7983. 

81. Gupta, P.; Wilkes, G. L., Some investigations on the fiber formation by utilizing a side-by-side 
bicomponent electrospinning approach. Polymer 2003, 44, (20), 6353-6359. 

82. Feng, K. An investigation on phase behavior and orientation factor of electrospun nanofibers. 
The University of Tennessee, Knoxville, 2005. 

83. Wei, M.; Kang, B. W.; Sung, C. M.; Mead, J., Core-sheath structure in electrospun nanofibers 
from polymer blends. Macromolecular Materials and Engineering 2006, 291, (11), 1307-1314. 

84. Bianco, A.; Bertarelli, C.; Frisk, S.; Rabolt, J. F.; Gallazzi, M. C.; Zerbi, G., Electrospun 
polyalkylthiophene/polyethyleneoxide fibers: Optical characterization. Synthetic Metals 2007, 
157, (6-7), 276-281. 

85. Lim, C. T.; Tan, E. P. S.; Ng, S. Y., Effects of crystalline morphology on the tensile properties of 
electrospun polymer nanofibers. Applied Physics Letters 2008, 92, (14). 

86. McKee, M. G.; Hunley, M. T.; Layman, J. M.; Long, T. E., Solution rheological behavior and 
electrospinning of cationic polyelectrolytes. Macromolecules 2006, 39, (2), 575-583. 

87. Jeong, E. H.; Yang, J.; Youk, J. H., Preparation of polyurethane cationomer nanofiber mats for 
use in antimicrobial nanofilter applications. Materials Letters 2007, 61, (18), 3991-3994. 

88. Ignatova, M.; Markova, N.; Manolova, N.; Rashkov, I., Antibacterial and antimycotic activity of 
a cross-linked electrospun poly(vinyl pyrrolidone)-iodine complex and a poly(ethylene 
oxide)/poly(vinyl pyrrolidone)-iodine complex. Journal of Biomaterials Science-Polymer 
Edition 2008, 19, (3), 373-386. 

89. Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of collagen 
nanofibers. Biomacromolecules 2002, 3, (2), 232-238. 

90. McManus, M. C.; Boland, E. D.; Simpson, D. G.; Barnes, C. P.; Bowlin, G. L., Electrospun 
fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of 
Biomedical Materials Research Part A 2007, 81A, (2), 299-309. 

91. Wang, Y. K.; Yong, T.; Ramakrishna, S., Nanofibres and their influence on cells for tissue 
regeneration. Australian Journal of Chemistry 2005, 58, (10), 704-712. 

92. Zhang, Y. Z.; Huang, Z. M.; Xu, X. J.; Lim, C. T.; Ramakrishna, S., Preparation of core-shell 
structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chemistry of 
Materials 2004, 16, (18), 3406-3409. 

93. Jing, Z.; Xu, X. Y.; Chen, X. S.; Liang, Q. Z.; Bian, X. C.; Yang, L. X.; Jing, X. B., 
Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release 2003, 92, (3), 
227-231. 

94. Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Van Dijck, A.; Mensch, J.; Noppe, M.; 
Brewster, M. E., Incorporation of drugs in an amorphous state into electrospun nanofibers 
composed of a water-insoluble, nonbiodegradable polymer. Journal of Controlled Release 2003, 
92, (3), 349-360. 

95. Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P., A biodegradable nanofiber scaffold by 
electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, (12), 2077-
2082. 

96. Pedicini, A.; Farris, R. J., Mechanical behavior of electrospun polyurethane. Polymer 2003, 44, 
(22), 6857-6862. 

131 
 



97. Tsai, P. P.; Roth, J. R.; Chen, W. W., Strength, surface energy, and ageing of meltblown and 
electrospun nylon and polyurethane (PU) fabrics treated by a one atmosphere uniform glow 
discharge plasma (OAUGDP (TM)). Textile Research Journal 2005, 75, (12), 819-825. 

98. Khil, M. S.; Cha, D. I.; Kim, H. Y.; Kim, I. S.; Bhattarai, N., Electrospun nanofibrous 
polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B-
Applied Biomaterials 2003, 67B, (2), 675-679. 

99. Zhuo, H. T.; Hu, J. L.; Chen, S. J., Electrospun polyurethane nanofibres having shape memory 
effect. Materials Letters 2008, 62, (14), 2078-2080. 

100. Boland, E. D.; Wnek, G. E.; Simpson, D. G.; Pawlowski, K. J.; Bowlin, G. L., Tailoring tissue 
engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) 
electrospinning. Journal of Macromolecular Science-Pure and Applied Chemistry 2001, 38, (12), 
1231-1243. 

101. Liu, H. Q.; Hsieh, Y. L., Surface methacrylation and graft copolymerization of ultrafine cellulose 
fibers. Journal of Polymer Science Part B-Polymer Physics 2003, 41, (9), 953-964. 

102. Son, W. K.; Youk, J. H.; Park, W. H., Antimicrobial cellulose acetate nanofibers containing 
silver nanoparticles. Carbohydrate Polymers 2006, 65, (4), 430-434. 

103. Chen, L.; Bromberg, L.; Hatton, T. A.; Rutledge, G. C., Electrospun cellulose acetate fibers 
containing chlorhexidine as a bactericide. Polymer 2008, 49, (5), 1266-1275. 

104. Ohkawa, K.; Cha, D. I.; Kim, H.; Nishida, A.; Yamamoto, H., Electrospinning of chitosan. 
Macromolecular Rapid Communications 2004, 25, (18), 1600-1605. 

105. Haiqing Liu, Y.-L. H., Ultrafine fibrous cellulose membranes from electrospinning of cellulose 
acetate. Journal of Polymer Science Part B: Polymer Physics 2002, 40, (18), 2119-2129. 

106. Kim, C. W.; Kim, D. S.; Kang, S. Y.; Marquez, M.; Joo, Y. L., Structural studies of electrospun 
cellulose nanofibers. Polymer 2006, 47, (14), 5097-5107. 

107. Geng, X. Y.; Kwon, O. H.; Jang, J. H., Electrospinning of chitosan dissolved in concentrated 
acetic acid solution. Biomaterials 2005, 26, (27), 5427-5432. 

108. Min, B. M.; Lee, S. W.; Lim, J. N.; You, Y.; Lee, T. S.; Kang, P. H.; Park, W. H., Chitin and 
chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 
2004, 45, (21), 7137-7142. 

109. Mincheva, R.; Manolova, N.; Paneva, D.; Rashkov, I., Preparation of polyelectrolyte-containing 
nanofibers by electrospinning in the presence of a non-ionogenic water-soluble polymer. Journal 
of Bioactive and Compatible Polymers 2005, 20, (5), 419-435. 

110. Ignatova, M.; Manolova, N.; Rashkov, I., Novel antibacterial fibers of quaternized chitosan and 
poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal 2007, 43, (4), 
1112-1122. 

111. Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F. A.; Zhang, M. Q., Electrospun chitosan-
based nanofibers and their cellular compatibility. Biomaterials 2005, 26, (31), 6176-6184. 

112. Li, L.; Hsieh, Y. L., Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate 
Research 2006, 341, (3), 374-381. 

113. Duan, B.; Dong, C. H.; Yuan, X. Y.; Yao, K. D., Electrospinning of chitosan solutions in acetic 
acid with poly(ethylene oxide). Journal of Biomaterials Science-Polymer Edition 2004, 15, (6), 
797-811. 

114. Lou, C. W.; Lin, J. H.; Yen, K. C.; Lu, C. T.; Lee, C. Y., Preparation of polyethylene by 
electrospinning and the oxide/chitosan fiber membranes evaluation of biocompatibility. Textile 
Research Journal 2008, 78, (3), 254-257. 

132 
 



115. Matsuda, A.; Kagata, G.; Kino, R.; Tanaka, J., Preparation of chitosan nanofiber tube by 
electrospinning. Journal of Nanoscience and Nanotechnology 2007, 7, (3), 852-855. 

116. Sangsanoh, P.; Supaphol, P., Stability improvement of electrospun chitosan nanofibrous 
membranes in neutral or weak basic aqueous solutions. Biomacromolecules 2006, 7, (10), 2710-
2714. 

117. Zhou, Y. S.; Yang, D. Z.; Nie, J., Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid 
aqueous solutions. Journal of Applied Polymer Science 2006, 102, (6), 5692-5697. 

118. Zhang, Y. Z.; Su, B.; Ramakrishna, S.; Lim, C. T., Chitosan Nanofibers from an Easily 
Electrospinnable UHMWPEO-Doped Chitosan Solution System. Biomacromolecules 2008, 9, 
(1), 136-141. 

119. Chen, Z. G.; Mo, X. M.; Qing, F. L., Electrospinning of collagen-chitosan complex. Materials 
Letters 2007, 61, (16), 3490-3494. 

120. Park, K. E.; Jung, S. Y.; Lee, S. J.; Min, B. M.; Park, W. H., Biomimetic nanofibrous scaffolds: 
Preparation and characterization of chitin/silk fibroin blend nanofibers. International Journal of 
Biological Macromolecules 2006, 38, (3-5), 165-173. 

121. Neamnark, A.; Rujiravanit, R.; Supaphol, P., Electrospinning of hexanoyl chitosan. 
Carbohydrate Polymers 2006, 66, (3), 298-305. 

122. Jian, D.; You-Lo, H., Nanofibrous membranes from aqueous electrospinning of carboxymethyl 
chitosan. Nanotechnology 2008, (12), 125707. 

123. Bhattarai, N.; Li, Z. S.; Edmondson, D.; Zhang, M. Q., Alginate-based nanofibrous scaffolds: 
Structural, mechanical, and biological properties. Advanced Materials 2006, 18, (11), 1463-+. 

124. Jiang, H. L.; Fang, D. F.; Hsiao, B. S.; Chu, B.; Chen, W. L., Optimization and characterization 
of dextran membranes prepared by electrospinning. Biomacromolecules 2004, 5, (2), 326-333. 

125. Boland, E. D.; Matthews, J. A.; Pawlowski, K. J.; Simpson, D. G.; Wnek, G. E.; Bowlin, G. L., 
Electrospinning collagen and elastin: Preliminary vascular tissue engineering. Frontiers in 
Bioscience 2004, 9, 1422-1432. 

126. Zhang, Y. Z.; Ouyang, H. W.; Lim, C. T.; Ramakrishna, S.; Huang, Z. M., Electrospinning of 
gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials 
Research Part B-Applied Biomaterials 2005, 72B, (1), 156-165. 

127. Chen, Z. G.; Mo, X. M.; He, C. L.; Wang, H. S., Intermolecular interactions in electrospun 
collagen-chitosan complex nanofibers. Carbohydrate Polymers 2008, 72, (3), 410-418. 

128. Yoo, C. R.; Yeo, I. S.; Park, K. E.; Park, J. H.; Lee, S. J.; Park, W. H.; Min, B. M., Effect of 
chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal 
keratinocytes. International Journal of Biological Macromolecules 2008, 42, (4), 324-334. 

129. Wang, M.; Yu, J. H.; Kaplan, D. L.; Rutledge, G. C., Production of submicron diameter silk 
fibers under benign processing conditions by two-fluid electrospinning. Macromolecules 2006, 
39, (3), 1102-1107. 

130. Xie, J. B.; Hsieh, Y. L., Ultra-high surface fibrous membranes from electrospinning of natural 
proteins: casein and lipase enzyme. Journal of Materials Science 2003, 38, (10), 2125-2133. 

131. Wongsasulak, S.; Kit, K. M.; McClements, D. J.; Yoovidhya, T.; Weiss, J., The effect of solution 
properties on the morphology of ultrafine electrospun egg albumen-PEO composite fibers. 
Polymer 2007, 48, (2), 448-457. 

132. Torres-Giner, S.; Gimenez, E.; Lagarona, J. M., Characterization of the morphology and thermal 
properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids 
2008, 22, (4), 601-614. 

133 
 



133. Yao, C.; Li, X. S.; Song, T. Y., Fabrication of zein/hyaluronic acid fibrous membranes by 
electrospinning. Journal of Biomaterials Science-Polymer Edition 2007, 18, (6), 731-742. 

134. Woerdeman, D. L.; Shenoy, S.; Breger, D., Role of chain entanglements in the electrospinning of 
wheat protein-poly(vinyl alcohol) blends. Journal of Adhesion 2007, 83, (8), 785-798. 

135. Fang, X.; Reneker, D. H., DNA fibers by electrospinning. Journal of Macromolecular Science-
Physics 1997, B36, (2), 169-173. 

136. Ohkawa, K.; Ando, M.; Shirakabe, Y.; Takahashi, Y.; Yamada, M.; Shirai, H.; Yamamoto, H., 
Preparing chitosan-poly(acrylic acid) composite fibers by self-assembly at an aqueous solution 
interface. Textile Research Journal 2002, 72, (2), 120-124. 

137. Dayal, P.; Liu, J.; Kumar, S.; Kyu, T., Experimental and Theoretical Investigations of Porous 
Structure Formation in Electrospun Fibers. Macromolecules 2007, 40, (21), 7689-7694. 

138. Bellan, L. M.; Cross, J. D.; Strychalski, E. A.; Moran-Mirabal, J.; Craighead, H. G., Individually 
resolved DNA molecules stretched and embedded in electrospun polymer nanofibers. Nano 
Letters 2006, 6, (11), 2526-2530. 

139. Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M., Development of a nanostructured 
DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal 
of Controlled Release 2003, 89, (2), 341-353. 

140. Muller, K.; Quinn, J. F.; Johnston, A. P. R.; Becker, M.; Greiner, A.; Caruso, F., Polyelectrolyte 
functionalization of electrospun fibers. Chemistry of Materials 2006, 18, (9), 2397-2403. 

141. Barhate, R. S.; Loong, C. K.; Ramakrishna, S., Preparation and characterization of nanofibrous 
filtering media. Journal of Membrane Science 2006, 283, (1-2), 209-218. 

142.   http://208.106.133.230/www.dukescientific.com/pages/page38fa.html?s=979&ss=1298&t=988. 
In. 

143. Barhate, R. S.; Ramakrishna, S., Nanofibrous filtering media: Filtration problems and solutions 
from tiny materials. Journal of Membrane Science 2007, 296, (1-2), 1-8. 

144. Kosmider, K.; Scott, J., Polymeric nanofibres exhibit an enhanced air filtration performance. 
Filtration & Separation 2002, 39, (6), 20-22. 

145. Kristine Graham; Ming Ouyang; Tom Raether; Tim Grafe; Bruce McDonald; Knauf, P. In 
Polymeric Nanofibers in Air Filtration Applications, Fifteenth Annual Technical Conference & 
Expo of the American Filtration & Separations Society, Galveston,TX, April 9-12, 2002; 
Galveston,TX, 2002. 

146. Ahn, Y. C.; Park, S. K.; Kim, G. T.; Hwang, Y. J.; Lee, C. G.; Shin, H. S.; Lee, J. K., 
Development of high efficiency nanofilters made of nanofibers. Current Applied Physics 2006, 
6, (6), 1030-1035. 

147. Maze, B.; Vahedi Tafreshi, H.; Wang, Q.; Pourdeyhimi, B., A simulation of unsteady-state 
filtration via nanofiber media at reduced operating pressures. Journal of Aerosol Science 2007, 
38, (5), 550-571. 

148. Podgorski, A.; Balazy, A.; Gradon, L., Application of nanofibers to improve the filtration 
efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering 
Science 2006, 61, (20), 6804-6815. 

149. Schreuder-Gibson, H. L.; Truong, Q.; Walker, J. E.; Owens, J. R.; Wander, J. D.; Jones, W. E., 
Chemical and biological protection and detection in fabrics for protective clothing. Mrs Bulletin 
2003, 28, (8), 574-578. 

150. C. Shin, G. G. C., Water-in-oil coalescence in micro-nanofiber composite filters. AIChE Journal 
2004, 50, (2), 343-350. 

134 
 

http://208.106.133.230/www.dukescientific.com/pages/page38fa.html?s=979&ss=1298&t=988


151. Qin, X.-H.; Wang, S.-Y., Filtration properties of electrospinning nanofibers. Journal of Applied 
Polymer Science 2006, 102, (2), 1285-1290. 

152. Heikkila, P.; Sipila, A.; Peltola, M.; Harlin, A.; Taipale, A., Electrospun PA-66 coating on textile 
surfaces. Textile Research Journal 2007, 77, (11), 864-870. 

153. Yun, K. M.; Hogan Jr, C. J.; Matsubayashi, Y.; Kawabe, M.; Iskandar, F.; Okuyama, K., 
Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science 2007, 62, 
(17), 4751-4759. 

154. Sang, Y.; Li, F.; Gu, Q.; Liang, C.; Chen, J., Heavy metal-contaminated groundwater treatment 
by a novel nanofiber membrane. Desalination 2008, 223, (1-3), 349-360. 

155. Gopal, R.; Kaur, S.; Ma, Z. W.; Chan, C.; Ramakrishna, S.; Matsuura, T., Electrospun 
nanofibrous filtration membrane. Journal of Membrane Science 2006, 281, (1-2), 581-586. 

156. Gopal, R.; Kaur, S.; Feng, C. Y.; Chan, C.; Ramakrishna, S.; Tabe, S.; Matsuura, T., Electrospun 
nanofibrous polysulfone membranes as pre-filters: Particulate removal. Journal of Membrane 
Science 2007, 289, (1-2), 210-219. 

157. Yoon, K.; Kim, K.; Wang, X. F.; Fang, D. F.; Hsiao, B. S.; Chu, B., High flux ultrafiltration 
membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 
2006, 47, (7), 2434-2441. 

158. Kyung-Hye Jung; Huh, M.-W.; Jiang, W. M.; Hee, Y. S.; Bae, H. J.-S.; Hudson, S. M.; Kang, I.-
K., Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an 
electrospinning technique. Journal of Applied Polymer Science 2007, 105, (5), 2816-2823. 

159. Fong, H.; Reneker, D. H., Elastomeric nanofibers of styrene-butadiene-styrene triblock 
copolymer. Journal of Polymer Science Part B-Polymer Physics 1999, 37, (24), 3488-3493. 

160. Gao, B. J.; Lv, Y. X.; Jiu, H. F., Synthesis and properties of cationic polyacrylamide containing 
pyridine quaternary salt. Polymer International 2003, 52, (9), 1468-1473. 

161. Gao, B. J.; He, S. X.; Guo, J. F.; Wang, R. X., Antibacterial property and mechanism of 
copolymer of acrylamide and quaternary salt of 4-vinyl pyridine. Journal of Applied Polymer 
Science 2006, 100, (2), 1531-1537. 

162. Zhao, Y. Y.; Yang, Q. B.; Lu, X. F.; Wang, C.; Wei, Y., Study on correlation of morphology of 
electrospun products of polyacrylamide with ultrahigh molecular weight. Journal of Polymer 
Science Part B-Polymer Physics 2005, 43, (16), 2190-2195. 

163. Liu, N.; Chen, X. G.; Park, H. J.; Liu, C. G.; Liu, C. S.; Meng, X. H.; Yu, L. J., Effect of MW 
and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate 
Polymers 2006, 64, (1), 60-65. 

164. Carreau, P.; Kee, D.; Chabra, P., Rheology of polymeric systems: Principles and applications. 
Hanser Publishers: Munich,Germany 1997. 

165. Arof, A. K.; Morni, N. M.; Yarmo, M. A., Evidence of lithium-nitrogen interaction in chitosan-
based films from X-ray photoelectron spectroscopy. Materials Science and Engineering B 1998, 
55, (1-2), 130-133. 

166. Method 7600. 4 ed.; NIOSH Manual of Analytical Methods (NMAM),National Institute of 
Occupational Safety and Health: 1994; Vol. 4. 

167. Swanson, K. M. J.; Petran, R. L.; Hanlin, J. H. Culture Methods for Enumeration of 
Microorganisms; American Public Health Association; Washington, DC, 2001. 

168. Cho, J.; Heuzey, M. C.; Begin, A.; Carreau, P. J., Effect of urea on solution behavior and heat-
induced gelation of chitosan-beta-glycerophosphate. Carbohydrate Polymers 2006, 63, (4), 507-
518. 

135 
 



169. Li, Q. X.; Song, B. Z.; Yang, Z. Q.; Fan, H. L., Electrolytic conductivity behaviors and solution 
conformations of chitosan in different acid solutions. Carbohydrate Polymers 2006, 63, (2), 272-
282. 

170. Cho, J. Y.; Heuzey, M. C.; Begin, A.; Carreau, P. J., Viscoelastic properties of chitosan 
solutions: Effect of concentration and ionic strength. Journal of Food Engineering 2006, 74, (4), 
500-515. 

171. Sureeporn Koombhongse; Liu, W.; Reneker, D. H., Flat polymer ribbons and other shapes by 
electrospinning. Journal of Polymer Science Part B: Polymer Physics 2001, 39, (21), 2598-2606. 

172. Desai, K.; Kit, K.; Li, J.; Zivanovic, S., Morphological and Surface Properties of Electrospun 
Chitosan Nanofibers. Biomacromolecules 2008, 9, (3), 1000-1006. 

173. Chaobo Xiao; Lu, Y.; Jing, Z.; Zhang, L., Study on physical properties of blend films from 
gelatin and polyacrylamide solutions. Journal of Applied Polymer Science 2002, 83, (5), 949-
955. 

174. Rojas, G.; Silva, J.; Flores, J. A.; Rodriguez, A.; Ly, M.; Maldonado, H., Adsorption of 
chromium onto cross-linked chitosan. Separation and Purification Technology 2005, 44, (1), 31-
36. 

175. Yui, T.; Imada, K.; Okuyama, K.; Obata, Y.; Suzuki, K.; Ogawa, K., Molecular and crystal 
structure of the anhydrous form of chitosan. Macromolecules 1994, 27, (26), 7601-7605. 

176. Zivanovic, S.; Li, J.; Davidson, P. M.; Kit, K., Physical, Mechanical, and Antibacterial 
Properties of Chitosan/PEO Blend Films. Biomacromolecules 2007, 8, (5), 1505-1510. 

177. Matienzo, L. J.; Winnacker, S. K., Dry processes for surface modification of a biopolymer: 
Chitosan. Macromolecular Materials and Engineering 2002, 287, (12), 871-880. 

178. Chen, Z. J.; Lu, X. L.; Chan, C. M.; Mi, Y. L., Manipulating the surface properties of 
polyacrylamide with nitrogen plasma. European Polymer Journal 2006, 42, (11), 2914-2920. 

179. Thomas, H. R.; O'Malley, J. J., Surface Studies on Multicomponent Polymer Systems by X-ray 
Photoelectron Spectroscopy. Polystyrene/Poly(ethylene oxide) Diblock Copolymers. 
Macromolecules 1979, 12, (2), 323-329. 

180. Zhang, C.-H.; Yang, F.-l.; Wang, W.-J.; Chen, B., Preparation and characterization of 
hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl 
alcohol). Separation and Purification Technology 2008, 61, (3), 276-286. 

181. Dambies, L.; Guimon, C.; Yiacoumi, S.; Guibal, E., Characterization of metal ion interactions 
with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical 
and Engineering Aspects 2000, 177, (2-3), 203-214. 

182. Rjeb, A.; Letarte, S.; Tajounte, L.; El Idrissi, M. C.; Adnot, A.; Roy, D.; Claire, Y.; Kaloustian, 
J., Polypropylene natural aging studied by X-ray photoelectron spectroscopy. Journal of Electron 
Spectroscopy and Related Phenomena 2000, 107, (3), 221-230. 

183. Krevelen, D. W. V., Properties of Polymers. Third ed.; Elsevier Science Publishing Company 
Inc.: New York, 1990. 

184. Kriegel, C.; Weiss, J.; Kit, K., Influence of surfactants on electrospinning of chitosan-
poly(ethylene oxide) blend nanofibers. Abstracts of Papers of the American Chemical Society 
2008, (042). 

185. Deng, Y.; Dixon, J. B.; White, G. N.; Loeppert, R. H.; Juo, A. S. R., Bonding between 
polyacrylamide and smectite. Colloids and Surfaces A: Physicochemical and Engineering 
Aspects 2006, 281, (1-3), 82-91. 

136 
 



186. Qian, S. H.; Huang, G. Q.; Jiang, J. S.; He, F.; Wang, Y. T., Studies of adsorption behavior of 
crosslinked chitosan for Cr(VI), Se(VI). Journal of Applied Polymer Science 2000, 77, (14), 
3216-3219. 

187. Wang, Q. Z.; Chen, X. G.; Liu, N.; Wang, S. X.; Liu, C. S.; Meng, X. H.; Liu, C. G., Protonation 
constants of chitosan with different molecular weight and degree of deacetylation. Carbohydrate 
Polymers 2006, 65, (2), 194-201. 

188. Li, J.; Zivanovic, S.; Davidson, M.; Kit, K., Surface properties of chitosan/PEO blend films as 
affected by film preparation method. Abstracts of Papers of the American Chemical Society 
2007, 234. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

137 
 



 
 

 

 

 

 

 

 

 

 

 

 

Appendices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

138 
 



Appendix 1 
 

Chitosan density calculations 

Chitosan DDA Wt of rpt unit 

(g/mole) 

Vol. of 

chitosan unit 

cell (cc) 

Density 

(g/cc) 

Difference in density 

between amorphous and 

crystalline chitosan 

80%DDA  169.4 7.44427E-22 1.511258036 0.007449446 

70%DDA 173.6 7.44427E-22 1.548727243 0.031462766 

67%DDA 174.86 7.44427E-22 1.559968005 0.038441818 
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Appendix 2 
 
Model Calculations – Effect of % chitosan on metal binding as function of fiber diameter for 

80% DDA chitosan blend fibers (theoretical density of chitosan (from appendix 1) = 1.51 g/cc). 

 
95% Chitosan blend fibers  
 
diameter 

of fiber 

(nm) 

for 95% Chitosan blend 

fiber surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after density 

correction)  

max NH3+  

ions being 

reacted 

mass of 

chromate 

(g) 

mass of 

chromium 

(mg) 

50 5.03E+05 5.59E+19 5.57E+19 5.34E+19 9.94E-03 9.94 

100 2.51E+05 2.80E+19 2.78E+19 2.67E+19 4.97E-03 4.97 

200 1.26E+05 1.40E+19 1.39E+19 1.34E+19 2.48E-03 2.48 

400 6.29E+04 6.99E+18 6.96E+18 6.68E+18 1.24E-03 1.24 

600 4.19E+04 4.66E+18 4.64E+18 4.45E+18 8.28E-04 0.83 

800 3.14E+04 3.50E+18 3.48E+18 3.34E+18 6.21E-04 0.62 

1000 2.51E+04 2.80E+18 2.78E+18 2.67E+18 4.97E-04 0.50 

1200 2.10E+04 2.33E+18 2.32E+18 2.23E+18 4.14E-04 0.41 

1400 1.80E+04 2.00E+18 1.99E+18 1.91E+18 3.55E-04 0.35 

1600 1.57E+04 1.75E+18 1.74E+18 1.67E+18 3.10E-04 0.31 

1800 1.40E+04 1.55E+18 1.55E+18 1.48E+18 2.76E-04 0.28 

2000 1.26E+04 1.40E+18 1.39E+18 1.34E+18 2.48E-04 0.25 
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90% Chitosan blend fibers  
diameter 

of fiber 

(nm) 

for 90% Chitosan blend 

fiber surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromate 

(g) 

mass of 

chromium 

(mg) 

50 4.76E+05 5.30E+19 5.27E+19 5.06E+19 9.41E-03 9.41 

100 2.38E+05 2.65E+19 2.64E+19 2.53E+19 4.71E-03 4.71 

200 1.19E+05 1.32E+19 1.32E+19 1.27E+19 2.35E-03 2.35 

400 5.96E+04 6.62E+18 6.59E+18 6.33E+18 1.18E-03 1.18 

600 3.97E+04 4.42E+18 4.39E+18 4.22E+18 7.84E-04 0.78 

800 2.98E+04 3.31E+18 3.30E+18 3.16E+18 5.88E-04 0.59 

1000 2.38E+04 2.65E+18 2.64E+18 2.53E+18 4.71E-04 0.47 

1200 1.99E+04 2.21E+18 2.20E+18 2.11E+18 3.92E-04 0.39 

1400 1.70E+04 1.89E+18 1.88E+18 1.81E+18 3.36E-04 0.34 

1600 1.49E+04 1.66E+18 1.65E+18 1.58E+18 2.94E-04 0.29 

1800 1.32E+04 1.47E+18 1.46E+18 1.41E+18 2.61E-04 0.26 

2000 1.19E+04 1.32E+18 1.32E+18 1.27E+18 2.35E-04 0.24 

 

75% Chitosan blend fibers  
diameter 

of fiber 

(nm) 

for 75% Chitosan blend 

fiber surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromiu

m (g) 

mass of 

chromium 

(mg) 

50 3.97E+05 4.42E+19 4.39E+19 4.22E+19 7.84E-03 7.84 

100 1.99E+05 2.21E+19 2.20E+19 2.11E+19 3.92E-03 3.92 

200 9.93E+04 1.10E+19 1.10E+19 1.05E+19 1.96E-03 1.96 

400 4.96E+04 5.52E+18 5.49E+18 5.27E+18 9.80E-04 0.98 

600 3.31E+04 3.68E+18 3.66E+18 3.52E+18 6.54E-04 0.65 

800 2.48E+04 2.76E+18 2.75E+18 2.64E+18 4.90E-04 0.49 

1000 1.99E+04 2.21E+18 2.20E+18 2.11E+18 3.92E-04 0.39 

1200 1.65E+04 1.84E+18 1.83E+18 1.76E+18 3.27E-04 0.33 

1400 1.42E+04 1.58E+18 1.57E+18 1.51E+18 2.80E-04 0.28 

1600 1.24E+04 1.38E+18 1.37E+18 1.32E+18 2.45E-04 0.25 

1800 1.10E+04 1.23E+18 1.22E+18 1.17E+18 2.18E-04 0.22 

2000 9.93E+03 1.10E+18 1.10E+18 1.05E+18 1.96E-04 0.20 
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50% Chitosan blend fibers 
diameter of 

fiber (nm) 

for 50% 

Chitosan 

blend fiber 

surface area 

of chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromium (g) 

mass of 

chromium 

(mg) 

50 2.65E+05 2.94E+19 2.93E+19 2.81E+19 5.23E-03 5.23 

100 1.32E+05 1.47E+19 1.46E+19 1.41E+19 2.61E-03 2.61 

200 6.62E+04 7.36E+18 7.32E+18 7.03E+18 1.31E-03 1.31 

400 3.31E+04 3.68E+18 3.66E+18 3.52E+18 6.54E-04 0.65 

600 2.21E+04 2.45E+18 2.44E+18 2.34E+18 4.36E-04 0.44 

800 1.65E+04 1.84E+18 1.83E+18 1.76E+18 3.27E-04 0.33 

1000 1.32E+04 1.47E+18 1.46E+18 1.41E+18 2.61E-04 0.26 

1200 1.10E+04 1.23E+18 1.22E+18 1.17E+18 2.18E-04 0.22 

1400 9.45E+03 1.05E+18 1.05E+18 1.00E+18 1.87E-04 0.19 

1600 8.27E+03 9.20E+17 9.15E+17 8.79E+17 1.63E-04 0.16 

1800 7.35E+03 8.18E+17 8.14E+17 7.81E+17 1.45E-04 0.15 

2000 6.62E+03 7.36E+17 7.32E+17 7.03E+17 1.31E-04 0.13 
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Appendix 3 
 
Model Calculations – Effect of chitosan DDA on metal binding as function of fiber diameter for 

90% chitosan blend fibers. 

 

80% DDA chitosan  
Theoretical density of chitosan: 1.51 g/cc (appendix 1) 
 
diameter 

of fiber 

(nm) 

for 90% Chitosan blend 

fiber surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromate 

(g) 

mass of 

chromium 

(mg) 

50 4.76E+05 5.30E+19 5.27E+19 5.06E+19 9.41E-03 9.41 

100 2.38E+05 2.65E+19 2.64E+19 2.53E+19 4.71E-03 4.71 

200 1.19E+05 1.32E+19 1.32E+19 1.27E+19 2.35E-03 2.35 

400 5.96E+04 6.62E+18 6.59E+18 6.33E+18 1.18E-03 1.18 

600 3.97E+04 4.42E+18 4.39E+18 4.22E+18 7.84E-04 0.78 

800 2.98E+04 3.31E+18 3.30E+18 3.16E+18 5.88E-04 0.59 

1000 2.38E+04 2.65E+18 2.64E+18 2.53E+18 4.71E-04 0.47 

1200 1.99E+04 2.21E+18 2.20E+18 2.11E+18 3.92E-04 0.39 

1400 1.70E+04 1.89E+18 1.88E+18 1.81E+18 3.36E-04 0.34 

1600 1.49E+04 1.66E+18 1.65E+18 1.58E+18 2.94E-04 0.29 

1800 1.32E+04 1.47E+18 1.46E+18 1.41E+18 2.61E-04 0.26 

2000 1.19E+04 1.32E+18 1.32E+18 1.27E+18 2.35E-04 0.24 

 
 

 

 

 

 

 

 

 

 

 

 

143 
 



70% DDA chitosan  
Theoretical density of chitosan: 1.55 g/cc (appendix 1) 
 
diameter of fiber (nm) Surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after 

density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromium 

(g) 

mass of 

chromium 

(mg) 

50 4.6E+05 5.2E+19 5.062E+19 4.859E+19 9.0E-03 9.04 

100 2.3E+05 2.6E+19 2.531E+19 2.430E+19 4.5E-03 4.52 

200 1.2E+05 1.3E+19 1.265E+19 1.215E+19 2.3E-03 2.26 

400 5.8E+04 6.5E+18 6.327E+18 6.074E+18 1.1E-03 1.13 

600 3.9E+04 4.3E+18 4.218E+18 4.050E+18 7.5E-04 0.75 

800 2.9E+04 3.2E+18 3.164E+18 3.037E+18 5.6E-04 0.56 

1000 2.3E+04 2.6E+18 2.531E+18 2.430E+18 4.5E-04 0.45 

1200 1.9E+04 2.2E+18 2.109E+18 2.025E+18 3.8E-04 0.38 

1400 1.7E+04 1.8E+18 1.808E+18 1.736E+18 3.2E-04 0.32 

1600 1.5E+04 1.6E+18 1.582E+18 1.519E+18 2.8E-04 0.28 

1800 1.3E+04 1.4E+18 1.406E+18 1.350E+18 2.5E-04 0.25 

2000 1.2E+04 1.3E+18 1.265E+18 1.215E+18 2.3E-04 0.23 
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67% DDA chitosan  
Theoretical density of chitosan: 1.56 g/cc (appendix 1) 
diameter of fiber (nm) Surface area of 

chitosan/g  

NH3+  ions 

for 100% 

crystalline 

NH3+ions 

(after 

density 

correction) 

max NH3+  

ions being 

reacted 

mass of 

chromiu

m (g) 

mass of 

chromiu

m (mg) 

50 4.6E+05 5.1E+19 5.001E+19 4.801E+19 8.9E-03 8.93 

100 2.3E+05 2.6E+19 2.501E+19 2.401E+19 4.5E-03 4.46 

200 1.2E+05 1.3E+19 1.250E+19 1.200E+19 2.2E-03 2.23 

400 5.8E+04 6.4E+18 6.252E+18 6.001E+18 1.1E-03 1.12 

600 3.8E+04 4.3E+18 4.168E+18 4.001E+18 7.4E-04 0.74 

800 2.9E+04 3.2E+18 3.126E+18 3.001E+18 5.6E-04 0.56 

1000 2.3E+04 2.6E+18 2.501E+18 2.401E+18 4.5E-04 0.45 

1200 1.9E+04 2.1E+18 2.084E+18 2.000E+18 3.7E-04 0.37 

1400 1.6E+04 1.8E+18 1.786E+18 1.715E+18 3.2E-04 0.32 

1600 1.4E+04 1.6E+18 1.563E+18 1.500E+18 2.8E-04 0.28 

1800 1.3E+04 1.4E+18 1.389E+18 1.334E+18 2.5E-04 0.25 

2000 1.2E+04 1.3E+18 1.250E+18 1.200E+18 2.2E-04 0.22 
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Appendix 4 
 

Theoretical chitosan elemental composition 

 80%DDA chitosan 70%DDA chitosan 67%DDA chitosan 

Element  moles At. % moles At. % moles At. % 

N 1 8.77 1 8.403 1 8.34 

O 4 35.08 4.3 36.13 4.33 36.11 

C 6.4 56.14 6.6 55.46 6.66 55.55 

C/N 6.4  6.6  6.66  

C/O 1.6  1.53  1.54  

 

Theoretical PEO elemental composition 

Element  moles At. %  

N 0 0 

O 1 33.33 

C 2 66.67 

C/N infinite  

C/O 2  

 

Theoretical PAAm elemental composition 

Element  moles At. % 

N 1 20 

O 1 20 

C 3 60 

C/N 3  

C/O 3  
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80% DDA pure chitosan film cast from HCl. 

Element Peak BE At. % 

N1s 399.6 5.6 

O1s 530.99 28.18 

C1s 284.37 61.11 

Cl2p 196.49 5.11 

C/O 2.17  

C/N 10.91  

 

Pure PEO film cast from water 

Element Peak BE At. % 

O1s 530.83 32.39 

C1s 284.28 66.77 

Ca2p ??? 346.32 0.53 

Cl2p ??? 196.76 0.31 

C/O 2.07  

 

Pure PEO espun fiber on non-woven PP 

Element Peak BE At. %  

O1s 531.24 3.74 

C1s 283.72 96.26 

 

Pure PAAm film cast from water 

Element Peak BE At. %  

N1s 398.05 13.73 

O1s 530.11 18.56 

C1s 283.98 67.17 

Cl2p ??? 196.28 0.54 

C/O 3.619073  

C/N 4.892207  
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Pure PAAm espun fiber 

Element Peak BE At. %  

N1s 398.13 12.48 

O1s 530.28 22.68 

C1s 284.08 61.24 

Al 73.75 3.14 

Cl2p ??? 197.18 0.45 

C/O 2.700176  

C/N 4.907051  

 

Calculated surface chitosan wt% for Chitosan/PEO blends with decreasing % chitosan in 

blend solution and using different molecular weight chitosan 

Chitosan 

molecular wt 

% Chitosan in 

Blend 
C/N 

wt fraction chitosan in fiber 

using theoretical # of 

C 

using experimental # 

of C 

HMW 

95 10.87 0.63 1.00 

90 14.77 0.48 0.77 

75 27.59 0.27 0.44 

50 179.62 0.04 0.07 

LMW 

95    

90 12.85 0.54 0.87 

75 64.39 0.12 0.20 

50    
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Calculated surface chitosan wt% for Chitosan/PEO blends with decreasing % DDA 

chitosan in blend solution in HMWChitosan:PEO (90:10) blends 

 

 % DDA C/N 

wt fraction chitosan in fiber 

using theoretical # of 

C 

using experimental # 

of C 

before Cr (VI) 

binding 

80%DDA 14.77 0.48 0.77 

70%DDA 15.93 0.46 0.72 

67%DDA 17.81 0.41 0.65 

after  Cr (VI) 

binding 

80%DDA 18.95 0.38 0.62 

70%DDA 13.71 0.52  

67%DDA 13.87 0.52  

 

 

 

 

Calculated surface chitosan wt% for Chitosan/PEO blends with varying fiber diameter 

(FD) in 80% DDA HMWChitosan:PEO (90:10) blends 

 

 % DDA C/N 

wt fraction chitosan in fiber 

using theoretical # of 

C 

using experimental # 

of C 

9010 diff.FD 

before 

80 19.13 0.38 0.61 

113 14.77 0.48 0.77 

130 43.41 0.17 0.29 

9010 diff.FD 

after 

80 25.84 0.28 0.47 

113 18.95 0.38 0.62 

130 57.37 0.13 0.22 
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Calculated surface chitosan wt% for Chitosan/PAAm blends 

% Chitosan in 

solution 

Spinning 

solution 

temperature 

(°C) 

Fiber 

Diameter 

(nm) 

C/N from 

XPS 

wt fraction chitosan in fiber 

using 

theoretical # of 

C  

using 

experimental # 

of C 

95 RT 155.58 9.87 1.27 0.91 

95 40 162.41 10.39 1.30 0.96 

95 70 286.49 9.55 1.25 0.88 

90 RT 50.85 9.20 1.23 0.85 

90 40 63.58 8.83 1.21 0.80 

90 70 306.67 8.86 1.21 0.81 

75 RT 131.61 8.36 1.18 0.75 

75 40 304.49 8.02 1.15 0.70 

75 70 315.00 6.85 1.05 0.50 
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