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BRIEF ABSTRACT 

Prognostics and Health Management (PHM) is a general term that encompasses 

methods used to evaluate system health, predict the onset of failure, and mitigate the risks 

associated with the degraded behavior. Multitudes of health monitoring techniques 

facilitating the detection and classification of the onset of failure have been developed for 

commercial and military applications. PHM system designers are currently focused on 

developing prognostic techniques and integrating diagnostic/prognostic approaches at the 

system level. This dissertation introduces a prognostic framework, which integrates 

several methodologies that are necessary for the general application of PHM to a variety 

of systems. A method is developed to represent the multidimensional system health status 

in the form of a scalar quantity called a health indicator. This method is able to indicate 

the effectiveness of the health indicator in terms of how well or how poorly the health 

indicator can distinguish healthy and faulty system exemplars. A usefulness criterion was 

developed which allows the practitioner to evaluate the practicability of using a particular 

prognostic model along with observed degradation evidence data. The criterion of 

usefulness is based on comparing the model uncertainty imposed primarily by 

imperfectness of degradation evidence data against the uncertainty associated with the 

time-to-failure prediction based on average reliability characteristics of the system. This 

dissertation identifies the major contributors to prognostic uncertainty and analyzes their 

effects. Further study of two important contributions resulted in the development of 

uncertainty management techniques to improve PHM performance. An analysis of 

uncertainty effects attributed to the random nature of the critical degradation threshold, , 

was performed. An analysis of uncertainty effects attributed to the presence of 

unobservable failure mechanisms affecting the system degradation process along with 

observable failure mechanisms was performed. A method was developed to reduce the 

effects of uncertainty on a prognostic model. This dissertation provides a method to 

incorporate prognostic information into optimization techniques aimed at finding an 

optimal control policy for equipment performing in an uncertain environment. 



 iv 

ABSTRACT 

Prognostics and Health Management (PHM) is a general term that encompasses 

methods used to evaluate system health, predict the onset of failure, and mitigate the risks 

associated with the degraded behavior.  The term was coined by the U.S. military to 

include diagnostics, prognostics, and health management.  

Multitudes of health monitoring techniques facilitating the detection and 

classification of the onset of failure have been developed for commercial and military 

applications. However, the techniques have traditionally focused on fault detection and 

isolation (FDI). PHM system designers are currently focused on developing prognostic 

techniques and integrating diagnostic/prognostic approaches at the system level.  Of 

primary interest is the ability to detect degradation, identify failure modes, and predict 

how they evolve in time, given the current system health status in the form of various 

diagnostic measurements. PHM systems should also update their prediction in an online 

manner.  

A systematic approach to fault detection/isolation/ and prognosis problems should 

be available for practitioners to meet the need for PHM systems that can be integrated 

into various engineering systems and that can function autonomously.  This dissertation 

introduces a prognostic framework, which integrates several methodologies that are 

necessary for the general application of PHM to a variety of systems. One of the major 

hurdles in providing a usable PHM system is the fusion of multidimensional health status 

indicators. To solve this problem, a method is developed to represent the 

multidimensional system health status in the form of a scalar quantity called a health 

indicator. Reducing the dimensionality of the vector representing the system health status 

greatly facilitates development and practical use of prognostic models in the PHM 

framework. This method is able to indicate the effectiveness of the health indicator in 

terms of how well or how poorly the health indicator can distinguish healthy and faulty 

system exemplars. Using this method, the practitioner is able to intelligently select 

diagnostic information (degradation evidence) pertinent to the failure mechanisms 

present in the system of interest.  
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A multitude of prognostic models are currently being researched, but there is little 

guidance on which types of PHM systems should be used for different applications in 

which various types of sensed information are available.  To fill this gap, a usefulness 

criterion was developed which allows the practitioner to evaluate the practicability of 

using a particular prognostic model along with observed degradation evidence data. The 

criterion of usefulness is based on comparing the model uncertainty imposed primarily by 

imperfectness of degradation evidence data against the uncertainty associated with the 

time-to-failure prediction based on average reliability characteristics of the system. Using 

the criterion of usefulness, the practitioner, who is oftentimes limited in the accuracy of 

the sensory equipment, is able to assess the expected benefit of using a given prognostic 

model with the uncertain diagnostic information. In the cases where the practitioner lacks 

prior knowledge of the failure mechanism characteristics, for instance, degradation rates, 

the criterion of usefulness is used as an indicator of how many degradation evidence data 

should be collected on the system of interest to provide a reasonable remaining useful life 

prediction. 

The management of uncertainty in prognostic systems has become increasingly 

important as researchers are moving from general prognostic model ideas to actual 

applications.  This dissertation identifies the major contributors to prognostic uncertainty 

and analyzes their effects.  Further study of two important contributions resulted in the 

development of uncertainty management techniques to improve PHM performance. First, 

an analysis of uncertainty effects attributed to the random nature of the critical 

degradation threshold, which is an important prognostic model parameter, was 

performed. The revealed dependency between uncertainty in the critical degradation 

threshold and the model prediction uncertainty allows the practitioner to formulate 

practical requirements for a given prognostic model in terms of a maximum allowed 

critical threshold uncertainty.   Next, an analysis of uncertainty effects attributed to the 

presence of unobservable failure mechanisms affecting the system degradation process 

along with observable failure mechanisms was performed. A method was developed to 

reduce the effects of uncertainty on a prognostic model. The method transforms the 

characteristic timescale in a prognostic model built on degradation data observed in the 
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presence of unobservable failure modes. The use of the transformed timescale effectively 

causes the prognostic model to approximate damage due to unobservable failure modes 

as a linear function of time. 

The last element of a PHM system is to use the information to make informed 

decisions.  These decisions are usually related to maintenance scheduling, but operational 

decisions may be even more important in critical applications.   Lastly, this dissertation 

provides a method to incorporate prognostic information into optimization techniques 

aimed at finding an optimal operational control policy for equipment performing in an 

uncertain environment. The use of prognostic information greatly facilitates the search 

for an optimal control strategy in the case where limited information is available 

regarding the system dynamics and environmental conditions.   Reinforcement learning 

techniques are employed and the integration of prognostic information provides vastly 

superior performance over strategies that do not use prognostics. 
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1.  INTRODUCTION 

1.1. Background 

Real predictive capabilities are the important element among many interrelated 

functions and routines involved in Prognostics and Health Management (PHM). The term 

PHM pertains to methods that allow the practitioner to evaluate a system's actual 

health/damage conditions, and to predict the onset of failure, and mitigate the risks 

associated with an abnormal system behavior. 

In published literature, PHM is traditionally considered to consist of three major 

components, which are Detection, Diagnostics and Prognostics. While the detection and 

diagnostics (isolation) portions have been well established for several past decades, the 

prognostics-related techniques have recently attracted much attention in many research 

studies. The reason for the growing interest in the development of prognostic methods is 

that the prognostic requirements for modern engineering systems and mission- and 

safety-critical components have become quite ambitious and present many challenges to 

the system design teams. 

PHM has emerged as an alternative to traditional reliability prediction, run-to-

failure functioning, and fixed-time scheduled maintenance. Traditional approaches to 

systems and components reliability should be questioned, since in many engineering 

applications the intrinsic lifespan of components and interconnections becomes 

significantly shorter than that of the systems within which they are used (Wilkinson et al. 

2004).  For example, the assumptions of essentially unlimited life and constant failure 

rate for electronics should be reviewed. System designers traditionally assume that the 

rising portion of the well-known "bathtub" reliability curve is unreachable enough to be 

out of concern in life cycle operations.  This assumption has been historically correct, 

since the components’ lifetime has been longer than the entire system's expected life. The 

advent of electronic components whose life is not longer than the system life makes the 

constant failure rate assumption invalid (Huber 2002). 
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In maintaining a fleet of complex engineering systems, one can identify many 

needs such as maximum asset availability, very low rate of “Returned Tested OK” 

components, minimum or no periodic inspections, low number of spare items, accurate 

parts lifespan tracking, minimum false alarms, etc. (Hess et al. 2005).   Maintainers need 

to have the ability to accurately predict future health status and to anticipate problems and 

maintenance routines before downtime events. Predictive capabilities would let the 

maintainer perform a very beneficial maintenance strategy based on a "not on-failure nor 

per-schedule" basis. Some of the benefits provided by such an "on-condition" based 

maintenance are 

- less time spent on inspection, 

- better ability to plan maintenance,  

- improved fault detection, 

- increased asset availability. 

Condition Based Maintenance (CBM), which is founded in root cause analysis, 

allows accurate physics-based diagnostic and prognostic determinations for nuclear plant 

equipment to be derived. Some research studies for understanding and controlling the 

aging processes of safety-critical nuclear plant components are currently in progress 

(Bond et al. 2000, Bond et al. 2002). 

1.2. Original Contributions 

The original contributions of this work lead to a systematic approach for 

developing data-driven (empirical) models and methods aimed at performing the tasks 

constituting the PHM framework. Although several approaches to the PHM 

implementation have been categorized in recently published literature, the proposed work 

considers degradation-based reliability assessment and prediction models.  

This dissertation contains the following original contributions: 

1. A method to represent a multidimensional health status of the system in the form 

of a scalar quantity called a health indicator. Reducing the dimensionality of the 



 3 

vector representing the system health status greatly facilitates development and 

practical use of prognostic models in the PHM framework.  

2. The criterion of usefulness, which allows the practitioner to evaluate the 

practicability of using a particular prognostic model along with observed 

degradation evidence data. The criterion of usefulness is based on comparing the 

model uncertainty imposed primarily by imperfectness of degradation evidence 

data against the uncertainty associated with the time-to-failure prediction based on 

average reliability characteristics of the system. 

3. An analysis of uncertainty effects attributed to randomness in the critical 

degradation threshold, which is an important parameter of a prognostic model. 

The revealed dependency between uncertainty in the critical degradation 

threshold and the model prediction uncertainty allows the practitioner to 

formulate practical requirements for a given prognostic model in terms of a 

maximum allowed critical threshold uncertainty.  

4. An analysis of uncertainty effects attributed to the presence of unobservable 

failure mechanisms affecting the system degradation process along with 

observable failure mechanisms. A method has been developed to reduce the 

uncertainty effects upon a prognostic model.  

5. A method to incorporate prognostic information into optimization techniques 

aimed at finding an optimal operational control policy for equipment performing 

in an uncertain environment. The use of prognostic information greatly facilitates 

the search for an optimal control strategy in the case where limited information is 

available regarding the system dynamics and environmental conditions. 

1.3. Organization of Document 

The remainder of the dissertation is organized as follows. Chapter 2 gives a 

literature survey of common methods and models engaged in PHM offerings.  
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Chapter 3 introduces the notion of a degradation parameter. A few aspects of 

using a degradation parameter in the prognostic framework are discussed. A method to 

evaluate the appropriatness of a degradation parameter is developed.  

Chapter 4 presents the uncertainty analysis performed with respect to the 

following sources of uncertainty that are commonly present in a prognostic model:  

- imperfectness of reliability-related observations,  

- randomness in the critical degradation threshold, and 

- uncertainty effects due to unobservable failure mechanisms. 

It also includes a method to mitigate the effect of uncertainty due to unobservable 

failure modes.  

Chapter 5 discusses the use of prognostic information for finding an optimal 

operational control policy for equipment performing in uncertain environment and 

Chapter 6 concludes the dissertation and presents recommendations for future work. 
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2.  LITERATURE REVIEW 

This section provides a literature survey of the most common approaches and 

models used for Prognostics and Health Management in complex engineering systems. 

The survey will give a brief description of traditional reliability theory-based approaches, 

life consumption monitoring methods, stochastic modeling, and machine learning 

techniques aimed at making a remaining useful life (RUL) prognosis. 

2.1. Introduction  

A simple form of prognostics known as reliability analysis has been widely used 

for decades. The commonly utilized definition of engineering reliability is "Reliability is 

the probability of a device performing its purpose adequately for the period of time 

intended under operating conditions encountered" (Barlow 1998). Traditional engineering 

reliability concerns 1) analysis of failure data, 2) decisions regarding planned 

maintenance, 3) prediction regarding preliminary design (Barlow 1998), (Barlow 1975), 

(Martz 1982).  

Failure data analysis is based on gathering information about how long the item 

operates before failure. Statistics collected from a large sample of similar items are 

estimated to draw conclusions regarding time-to-failure for a typical item. In reliability 

analysis, the object's lifetime is modeled considering only a static probability distribution 

that does not take into account condition data observed at the particular object of interest. 

The lifetime probability distribution,   

)()|( tTPtF ≤=Θ  (2.1.1) 

where t is some time, T is a random variable representing failure time, and ΘΘΘΘ is a vector 

of parameters, is the simplest probabilistic model for lifetime in reliability analysis. Often 

times the lifetime probability distribution is defined as the complement of the survival 

function 

)|(1)|( Θ−=Θ tStF  (2.1.2) 
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where S( t|Θ ) is the probability that the failure time is later than some specified time.  

S(t | Θ) = P(T>t) (2.1.3)   

Given that the object of interest has not failed before the time t', one can use the 

conditional lifetime distribution. 

),'|(),'|( Θ≥≤=Θ≥ tTtTPtTtF  (2.1.4)  

Based on the conditional distribution, the following expression is termed the 

expected residual life. 

),'|()( Θ≥−= tTtTEtr  (2.1.5)  

The estimation of the expected residual life is performed given the fact that the 

object of interest has survived at a certain point of time. Any additional information 

regarding condition-monitoring observations can complement the parameterization of the 

model (Vlok 2002). A detailed review of the reliability data-analysis methods using 

degradation measurements rather than time-to-failure data is given in (Lu et al. 1993).  In 

the following discussions, prognostics is defined as methodologies to predict remaining 

useful life (RUL), time to failure (TTF), or probability of failure (POF). 

2.2. Cumulative Damage Models  

The idea of using degradation measurements in assessing the item's reliability was 

pioneered by Gertsbakh and Kordonskiy (Gertsbakh 1969). A rigorous probabilistically 

founded description of degradation models is given by Bogdanoff and Kozin (Bogdanoff 

1985). In this comprehensive study, the authors introduce a cumulative damage model. 

The cumulative damage is defined to be the irreversible accumulation of damage in 

components under a cyclical usage pattern. Although only mechanical components and 

usage are considered, the authors point out that the cumulative damage model is 

applicable to a variety of systems exhibiting any kind of wear accumulation.  
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The developed approach, which is called a "phenomenological model", does not 

explain the nature of failure, which is rarely understood completely in many real-world 

cases. Rather, the phenomenological model describes observable failure behavior. 

In modeling the cumulative damage process, the emphasis is made on the 

following sources of variability. 

- Random initial level of observed component damage. 

- Different severity and order of the loads in successive duty cycles. 

- Variable states of damage at the moment of retirement. 

- Imperfections in inspection procedures causing additional variability in 

retirement times. 

The authors propose using finite state Markov Chains (MC) to model the damage 

accumulation process over an item's lifetime under cyclic loadings. The possible levels of 

damage are represented by a finite set of numbers encompassing the state space of the 

Markov chain. The only allowed transitions are those that lead the MC to higher states. 

This reflects the fact that the degraded component cannot improve its health condition. 

Although both discrete time and continuous MC are considered, the authors stress 

that the discrete time models are preferable because, from the engineering standpoint, the 

cumulative damage evolution is best described in terms of the number of load cycles 

(duty cycles) to which the system or component has been subjected.  

The sources of variability are modeled using parameters of the defined MC. 

Variability in the initial state is given as a probability distribution over the initial state of 

the MC. Variability in the severity and magnitude of loadings is modeled by varying the 

transition probabilities with time and the cumulative damage state. Random states of 

damage at retirement and imperfect inspections are modeled by probability distributions 

defined over the damage states of the MC.  

If a unit step restriction for the damage increments is assumed, the damage 

accumulation model is a pure birth process (Gross 1998), in which the damage 

accumulation process begins at State 1, then moves through States 2, 3,...b-1, and finally 
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ends up at State b (the failure state). A study of such processes is given in (Solovyev, 

1972), which considers the use of birth-and-death processes in the renewal theory, which 

is an important part of the reliability analysis.  

The study (Bogdanoff 1985) applies the proposed cumulative damage model to 

nine data sets of lifetime data. The real-world data sets are analyzed and modeled. The 

modeling routine usually begins with estimating the two parameters of the gamma 

distribution, either using the maximum likelihood method or the method of moments. If 

the estimated TTF distribution is not in accordance with the empirical distribution 

function, the model is extended. In all demonstrated examples, an adequate model was 

found. In most of the data sets, the simplest 2-parameter model was found to be 

sufficiently good to model the time-to-failure distribution function. However, a complex 

16-parameter model was required to model the fatigue crack growth data (Virkler 1978). 

The authors also discuss how the cumulative damage model can be manipulated to 

predict a typical item's behavior under spectrum loading and accelerated lifetime testing.  

Although the study does not point out how the proposed cumulative damage 

model can be used to predict a particular item's remaining useful lifetime, the 

mathematical formalism thoroughly described in the book can be adopted in a prognostic 

framework, which will be shown in Section 4.2. 

A study performed by Myotyri et al. (Myotyri 2006) makes use of Markov Chain-

based cumulative damage models. The developed model utilizes condition monitoring 

measurement data in prediction of a technical system's lifetime. The degradation of the 

system is represented as a stochastic process. A suitable conditional probability 

distribution serves as a model of the relationship between degradation state and condition 

monitoring measurements. The estimated degradation state is successively updated using 

a Bayesian rule as new measurement data become available. A generalized stochastic 

filtering approach to the RUL prediction problem is considered in (Pulkkinen 1991).  

A key component of the stochastic model is a transition probability matrix for the 

discrete state Markov process. In the performed study the transition probability matrix is 

estimated using a deterministic model based on the Paris-Ergodan equation (Paris 1963), 
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which mathematically describes a crack growth process. Thus, the proposed model is 

based on information obtained from a specifically defined relationship rather than from a 

generalized source of information. The examples shown in the study are based in 

simulated data related to the crack length processes that are well studied in reliability 

literature. It remains unclear how the proposed method could be applied to the cases in 

which no deterministic model of the underlying phenomenon is available. The authors 

claim that the study will proceed by developing methods of estimating the model 

parameters from practical data rather than from a deterministic model. Also, validation of 

the proposed approach is claimed to be of primary interest in future research.  

2.3. Integrating Condition Monitoring Information 

The use of condition monitoring measurements in prediction of a system's 

remaining useful life has attracted much attention in electronics reliability, which is a 

field in which it is traditionally believed to be difficult to conduct degradation diagnostic 

and prognostic procedures. A review of the research in the field of prognostics and health 

management (PHM) for electronics is given in (Vichare 2006). The paper briefly 

describes the most up-to-date available methods for diagnostics such as built-in tests, 

canary devices, and mathematical methods dealing with failure precursors. The emphasis 

in the paper is on a prognostics technique based on the life consumption monitoring 

(LCM) methodology introduced by Ramakrishnan and Pecht (Ramakrishnanand 2003) 

The LCM methodology combines in-situ measured loads with physics-based stress and 

damage models to assess the life consumed.  

2.3.1. Life Consumption Monitoring  

A brief review of the LCM procedure is given in (Mishra 2004).  The LCM is 

defined to be a prognostic methodology that consists of the following steps: 

1. Failure modes, mechanisms and effects analysis,  

2. Virtual reliability assessment, 

3. Monitoring critical parameters, 
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4. Raw data simplification, 

5. Stress and damage analysis, and 

6. RUL prognosis. 

Each step is briefly described and references to the mathematical models involved 

are given. Two case studies were performed to demonstrate the proposed methodology. 

The objects of interest in both studies were two identical printed circuit boards (PCB) 

placed under the hood of a car. The PCBs were subject to various stress conditions. 

Temperature and vibration were identified to be the strongest affecting factors. A failure 

modes and mechanisms analysis revealed seven different failure modes such as electrical 

short between traces, short between windings in the inductors populating the PCBs, and 

change in electrical resistance due to solder joint degradation.  

Virtual reliability assessment revealed that the failure mode having the shortest 

time-to-failure was solder joint fatigue. The conducted assessment predicted 34 days to 

failure based on solder joint fatigue.  The paper thoroughly describes the experiment 

design and obtained results; however, the following points need more clear explanation. 

The authors define the failure moment to be an occurrence of fifteen "resistance 

spikes", which is an intermittent change in resistance of a solder joint. The choice of this 

number seems to be arbitrary. The authors assumed that the tested PCB became 

inoperable after occurrence of 15 spikes. A probabilistic justification of this threshold 

level was not given. Also, the sensitivity of the entire prognostic model with respect to 

the chosen threshold parameter was not determined. 

The remaining useful life estimation was performed in an iterative manner. The 

life consumed on a particular day was subtracted from the estimated remaining life on the 

previous day, as suggested by the following equation. 

RL(n) = RL(n – 1) – Damage(n),  (2.3.1.1) 

where RL(n) is the estimated remaining life on Day n, and Damage(n) is the damage 

accumulated during Day n. The paper does not mention the initial value of remaining life 

RL(0) used in the iterative formula. According to the figures pictorially shown in the 
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paper, the initial estimates of remaining useful life were 57 and 65 days for the first and 

second case, respectively. However, it is unclear how exactly these estimates were 

obtained. Needless to say, in an iterative procedure the initial value is of primary 

importance in terms of numerical accuracy.  

One more example of the usage of in-situ measured loads for electronics lifetime 

prediction is given by Pecht (Pecht 2004). The study presents a statistical characterization 

of the temperature profile usage of a notebook computer. Temperature measurements of 

the CPU heat sink and the HDD were taken for several months. The measurement data 

were analyzed statistically in terms of a probability density distribution of the following 

parameters. 

- Absolute temperature values, 

- Temperature cycle magnitude, and 

- Temperature ramp rate. 

A few deviations of the actual temperature loads from the worst-case operating 

conditions were found, for which the modern thermal management solutions are 

optimized. 

Particularly, "the CPU heat sink was found to be 13°C and 8°C lower than its 

maximum rating (75°C) over 90% and 95% of the monitored time, respectively".  The 

conclusion made here is that the findings can contribute to the design of a less-energy 

consuming thermal management scheme. 

It was discovered that in around 1% of the observed temperature cycles, the 

temperature cycle magnitude (50°C) exceeded the standards for computer and consumer 

equipment (which are 30°C and 20°C, respectively).  In the authors' opinion, "such a 

discrepancy between standardized and actual conditions provides a strong motivation for 

monitoring actual product application environments".  

The obtained temperature ramp rate distribution also exhibited deviations from 

the worst-case ramp rate specifications. It was concluded that monitoring the actual ramp 

rate distribution would allow more accurate prediction of solder joint fatigue life.  



 12 

The author's conclusions would be more convincing if the measurements were 

taken over several exemplars of notebook computers. This would allow the authors to 

make a statistically significant estimation of the deviations between the actually observed 

and standard-specified conditions. In the case of CPU heat sink temperature, a deviation 

of 12-16% seems reasonably conservative since the CPU usage observed in the 

experimentation was not as intensive as it could be in long-running computations using 

100% of CPU time. The conclusions made upon the other parameter distributions seem 

arguable in terms of their statistical significance since the deviations in the estimated 

distributions can be due to the characteristics of the particular usage profile observed in 

the experimentation. 

2.3.2. Machine Learning Techniques 

In recently published prognostics research, a great deal of attention has been 

focused on the use of machine learning techniques such as artificial neural networks, 

fuzzy logic-based models, classification and pattern recognition methods (He 2006), 

(Zanardelli 2003), (Wegerich 2003), (Wang 2001), (Brotheron 2002).  

A variety of neural network modifications have been applied to construct a 

prognostic framework. Wang and Vachtsevanos (Wang 2001) use dynamic wavelet 

neural networks as the prognostic system reasoner. A combination of radial basis 

function neural networks and rule extractors is applied to gas turbine engine prognostics 

by Brotheron (Brotheron 2002). Research performed by Byington (Byington 2003) 

makes use of polynomial neural networks that are trained on vibration data obtained from 

helicopter gearboxes. A Bayesian belief network is a main tool in Health Management 

System for avionics proposed by Parker (Parker 1993).  

Chinnam (Chinnam 1999) proposes an approach that allows "determination of a 

component's reliability as it degrades with time". The proposed approach makes use of 

finite-duration impulse response neural networks (FIR-NN) for modeling degradation 

measures. Variation in the degradation measures is modeled using self-organized maps 

(SOM) (Haykin 1999). The paper emphasizes that the end user's interest is in the 



 13 

reliability characteristics of a particular component rather than the population-average 

characteristics of a typical component. 

An illustrative example of high-speed twist drills is given to demonstrate that the 

dispersion in the drill-bits lifetime is extensively large even though the tested drills came 

from the same manufacturer in the same box. The author claims that, in the presence of 

large variability in the drills lifetime, the end user would benefit from an online 

estimation of the component's reliability.  

To justify the use of feed-forward neural networks (FFNN) for the degradation 

data analysis the author states that the FFNN are very effective for function 

approximation and time-series forecasting. Inherent properties of FFNNs, such as their 

ability to adapt to changes in environment via retraining, are claimed to be one of the 

motivations for using FFNN for individual reliability assessment.  

To facilitate dispersion characteristic modeling, the proposed model makes use of 

self-organizing maps. It is stated that the use of SOMs allows one to estimate the 

prediction uncertainty without making the assumption of constant variance, which is 

known in statistics as a homoscedacity assumption. In fact, constant variance 

assumptions are made within each domain partitioned by the SOM. 

The reliability prediction model is formulated to be a non-linear auto-regressive 

scheme: 

ys = f(ys-1, ys-2, … ys-p) + εs (2.3.2.1) 

The FIR-NN is designed to predict ys, given the past p measurements. The 

proposed structure of the FIR-NN tends to be rather complicated since the designed 

neural network is claimed to have an ability to input many separate degradation signals 

and provide different prediction orders.  

A few assumptions are made in the proposed reliability prediction model. The 

most important assumption is that the FIR-NN residuals are Gaussian distributed. Upon 

this assumption the further conclusions regarding the predicted reliability are drawn. 
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Namely, the predicted reliability function is expressed in the integral form on the 

degradation measure: 

[ ]�=≥
*

0

)(ˆ)|(
y

fcf dyTygTTtR  (2.3.2.2) 

where Tc is the current time instant, Tf is the failure time, y* is the critical threshold 

exceeding which indicates the failure, and )(ˆ ty  is the output of the FIR-NN. The function 

g(y) is the probability density function of )(ˆ ty , which is assumed to be the Gaussian 

function.  

A real-world example is given to demonstrate the proposed technique. A series of 

drilling tests was conducted using 16 drill-bits.  The obtained drill-bit's lifetime data and 

performance related measurements were used to train the FIR-NN for time-series 

forecasting. Two physical quantities, namely, thrust-force and torque, were chosen to be 

the performance indicators (degradation measures). The critical threshold values for the 

chosen degradation measures were taken to be precisely determined. The thrust-torque 

signatures from 12 randomly selected drill-bits were used to train the MIR-NN; the other 

4 exemplars were used for testing purposes.  

The description of the obtained results exhibits some degree of inconsistency that 

causes their engineering interpretation to be difficult. The performance of the tested drill-

bits is monitored with respect to the number of holes a drill-bit has made. The choice of 

this type of duty cycle seems to be very reasonable, since the practitioner's primary 

interest is to know how many duty cycles the drill-bit will survive. However, the final 

results, presenting a conditional performance reliability of the tested specimens, are given 

with respect to a number of time intervals, whose relationship to the number of duty 

cycles is not clearly stated.  

The estimated conditional performance reliability for the specimens is given 

without quantifying the associated uncertainty. This fact also makes the usage of the 

obtained results in an engineering application difficult. In other words, the practitioner is 

not supplied with the confidence level at which the provided results can be trusted.  
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Another serious drawback of the proposed methodology is the fact that the author 

does not pay much attention to the problem of overfitting, which is common for machine 

learning techniques such as neural networks. In the neural network-based analysis, 

neglecting the overfitting phenomena can cause significant deterioration in terms of the 

validity of the neural network generalization results.  

Another example of the usage of neural networks to solve the reliability 

prediction problem is given in (Girish 2003).  Girish et al. investigate an artificial neural 

network (ANN)-based methodology to predict system remaining useful life. As pointed 

out by the authors, the major motivation of using an ANN-based approach is that neural 

networks can usually be used without any assumptions regarding the functional form of 

the underlying model. Although this no-assumption feature of ANN-based methods 

makes them different from model-fitting methods, the proposed model includes an 

autoregressive component to simulate autocorrelation effects that can be observed in 

degradation data.  

A multilayer feed-forward network is used for mapping the estimates of the 

distribution parameters of the degradation process. The degradation process is treated as a 

stochastic process, whose parameters are to be estimated. A set of artificial data is used to 

test and validate the proposed ANN-based technique. The data are generated according to 

the following expression 

Yt = a Yt-1 + εt + ekt  (2.3.2.3) 

where Yt is the degradation parameter value at time t,  εt is the error term that is normally 

distributed with mean �ε and variance σ�2. The non-linear component ekt represents a 

deterministic trend observed in the degradation process. The parameter a is an 

autoregressive process parameter.  

Two different ANNs are used to estimate the mean and variance of the artificial 

degradation data. The ANN input includes four variables that are time t and the lag terms 

Yt-1, Yt-2, Yt-3. In other words, the proposed method is based on a time-delay-input neural 

network (Wasserman 1989). The objective is to provide a mapping of the time series 
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patterns that show autocorrelation properties and a time dependency as well. A detailed 

illustration of this type of problem can be found in Stern (Stern 1996).  

2.3.3. Model Based Prognostic Approaches  

Due to inherent drawbacks of artificial neural networks, such as a tendency to 

overfit data, difficulties in quantifying the model uncertainty, and an absence of strictly 

formulated methods to select the optimal network architecture, many researchers have 

focused their attention onto model-based approaches to solve the RUL prediction 

problem (Loecher 2003), (Xu 2005), (Carey 1991). Bankert et al. (Bankert 1995) propose 

a model-based diagnosis and prognosis methodology for rotating machinery. A rotor 

dynamics model is integrated with expert system-based interpretative capabilities to 

perform a predictive analysis of mechanical vibration data. 

A new general purpose machinery diagnostic/prognostic algorithm for tracking 

and predicting evolving damage is developed in (Chelidze 2001). The algorithm makes 

use of available "macroscopic" observable quantities. The damage is considered to be a 

hierarchical dynamic system consisting of a directly observable subsystem featuring fast 

dynamic behavior and a hidden "slow" subsystem describing damage evolution. The 

method provides damage diagnostics and failure prognostics given only measurements 

from the "fast" component and a model of the slow component. The developed, and then 

extended, methodology is applied experimentally to an electromechanical system with a 

faulty supply battery (Chelidze 2004).  

Carey and Koenig (Carey, 1991) perform a case study involving degradation of an 

integrated logic family (ILF). The ILF is a component of a Supervisory Logic Circuit, 

which is used in submarine cables. The case study is performed to evaluate the 

degradation of an important parameter of ILF. The degradation parameter is taken to be a 

propagation delay. If the propagation delay of a logic gate exceeds some threshold value, 

the logic circuit may fail in the system application. To predict changes in the ILF 

propagation delay characteristics, the authors utilize the following nonlinear regression 

model 
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where y0 and yn are the propagation delays measured at t=0 and t=n, respectively, and εn 

is a normally distributed random variable with zero mean and standard deviation of σ.  Θ 

and λ are the model parameters to be estimated. 

Parameter Θ is assumed to be related to the concentration of impurities that are 

piled up at the sensitive area of the logical gate. Numerically, Θ represents the maximum 

change in propagation delay that will be reached after all impurities have diffused. Using 

the nonlinear regression model (2.3.3.1) one can predict the degradation level (the 

propagation delay) at any point in time. The extrapolation results shown in the paper are 

in accordance with the assumptions made with respect to the physical model of the aging 

process. 

Another important assumption made in the paper is that the parameter Θ changes 

as temperature increases. This assumption is of importance since the degradation 

observations are taken at accelerated temperature stress conditions whereas the ultimate 

goal is to assess the degradation at the normal operating temperature level. The following 

regression model is proposed to describe the relationship between Θ and the temperature 

level. 
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where Θij is the maximum degradation to be reached by the j-th test device from the i-th 

temperature group, Ti is the value of temperature for the i-th group, k is Boltzmann's 

constant, A, and B are unknown coefficients to be estimated, η ij is a random variable 

representing unobserved variability of the Θij. Essentially, equation (2.3.3.2) is deduced 

from the Arrhenius Law (Laidler 1993). 

It should be noted that the Θij involved in Equ. (2.3.3.2) is not an observable 

quantity but an unknown parameter. One has to use the estimates of the Θij obtained from 

the regression model (2.3.3.1) as an input for the regression equation (2.3.3.2). Having 
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estimated parameters A and B one is able to estimate the maximum degradation at the 

normal operating temperature level. Though the regression model (2.3.3.2) is evaluated 

on only three different temperature levels, the estimated confidence interval of the 

degradation at the normal temperature level allows the authors to conclude that the 

degradation of propagation delay observed at the normal temperature condition causes no 

concern for the reliability of the circuit.  

Xu and Zhao (Xu 2005) make use of a logistic function to define a probabilistic 

measure used to quantify a likelihood of a failure given the degradation level of an object. 

The authors point out that there are many products, such as semiconductors, mechanical 

systems and microelectronics that exhibit a degradation failure mode. The degradation 

failure mode essentially means that there is some important degradation parameter 

gradually moving upward to a predefined threshold level. The degradation-based analysis 

is especially helpful when the number of hard failures observed in life data is few to 

none. 

The paper considers a vector x of degradation measures: 

x = (x1, x2, …xm)  (2.3.3.3) 

A degradation failure event is defined to be  
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m
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1=
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where di is the critical threshold value for the degradation measure. Since Equation 

(2.3.3.4) defines a failure event in discrete manner, the authors use a logistic function to 

quantify the probability of a failure given the degradation vector x defined in (2.3.3.3) 
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The authors present an example where the given data set is of the following form: 
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{ Object ID, Degradation Parameter x1, Degradation Parameter x2, Failure Status}  
(2.3.3.6) 

The last column named Failure Status is populated with a boolean quantity 

indicating whether a failure has occurred (1 corresponding to a failure occurrence, 0 

corresponding to no failure event). 

Given the set of degradation data one has to estimate the coefficients 

ββββ=(β1,β2…βm). Having obtained estimates of the ββββ one is in possession of the 

probabilistic measure to evaluate the likelihood of a failure. 

To describe the dynamics of the degradation process the authors make use of a 

state-space model of the following form  

),( sxH
dt

dx =  (2.3.3.7) 

where x is a vector of degradation parameters, and s is a vector of random stress factors 

that affect the evolution of the degradation process. The paper considers the linear form 

of H(x,s). The results of the case study related to the reliability of light emitting diodes 

(LEDs) are presented in the paper. The proposed techniques are applied to evaluate the 

stress effect on LEDs and to predict their reliability under operating conditions. The 

degradation parameter is obviously chosen to be an LED's light intensity. A sample of 

LEDs is tested under three different stress levels that are the current of the LED.  

Particularly, an automatic accelerated testing setup is designed to continuously 

monitor the failure times and the applied factors such as the current through the LED. 

Although the proposed method is able to take into account several degradation 

parameters, only one degradation measure is utilized in the case study. The temperature 

stress factor remains constant in all performed tests.  

The data obtained from testing under stress levels 40 mA and 35 mA are used to 

estimate the model parameters. The data obtained at the third stress level of 28 mA are 

used to validate the model. A statistically sufficient number of 192 exemplars are 

involved in testing at each stress level. The reliability model is evaluated using simplified 
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equations derived from (2.3.3.5), (2.3.3.7) and the light intensity degradation data 

obtained in the performed testing. The authors present the estimated reliability of LEDs at 

the stress factor of 28 mA. However, the validity and uncertainty assessment of the 

presented results are not given in the paper.  

2.4. Concluding Remarks 

This section has reviewed several approaches to the problem of reliability 

assessment and prediction. Various mathematical techniques were shown to be applied to 

lifetime data as well as to degradation measurement data. Most of the reviewed 

techniques make use of a degradation evidence indicator, which is either an observable 

quantity or inferred value reflecting how the item's performance degradation evolves with 

respect to time units or duty cycles. In some cases the reliability prediction model is 

based on a deterministically formulated law of physics. Other methods give a purely 

stochastic description of the degradation process.  

Purely stochastic approaches assume the degradation evolution to be a random 

process with certain parameters. The rigorously developed mathematical formalism 

related to random processes and Markov chain models allows one to estimate time-to-

failure values as well as associated uncertainty. However, a major drawback of the purely 

stochastic methods is that degradation data exhibiting a complex behavior of degradation 

indicators require too many stochastic parameters to be estimated.  

It has been shown that several machine learning methods, such as a variety of 

artificial neural networks, have been widely used to model complex relationships 

observed in reliability testing. However, quantifying uncertainty of the reliability 

prediction provided by a neural network is often a nontrivial task. More traditional 

machine learning techniques, such as regression methods, give an easy-to-understand 

interpretation of result uncertainty, but require strict assumptions in regards to 

distributions and dependencies observed in the available data. 

In the following chapter the notion of a degradation parameter will be discussed. 

A method to represent a multidimensional health status of the system is introduced. The 
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following chapter also introduces the major components of the generic prognostic 

framework developed in the course of this work. An illustrative example is given to 

demonstrate a typical workflow of a PHM system designer developing a prognostic 

model. Major types of prognostic models are outlined. These are a linear growth model, 

and stochastic damage accumulation model.  
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3.  DESCRIPTION OF PROGNOSTIC MODELS  

The main motivation of using degradation data in the reliability analysis is that it 

allows the practitioner to evaluate the system reliability model in the absence of a large 

amount of failure data. The lack of failure data is the common situation for a) highly 

reliable components, such as electronic elements, and b) the cases where running the 

component to a failure is impractical or unsafe.  

Another important aspect of degradation-based reliability assessment is that 

degradation data can be used as a descriptor of a particular degradation profile, thus 

providing an individualized reliability assessment and prognosis. Of practical importance 

is the ability to assess and predict the reliability attributes of the system or component at 

hand. The traditional reliability analysis is mostly based on statistical characteristics, such 

as central moments and low-level quantiles of the probability distribution function (PDF) 

formed by available failure data. The assumption made in the traditional reliability 

analysis is that the conditions, at which the systems or components operate, are relatively 

homogeneous such that the systems are considered to be a population of items possessing 

similar reliability properties. The assumed similarity among the population items implies 

that the reliability properties evaluated as statistical quantities are mostly relevant to the 

averaged item placed in the averaged operational environment. The individual 

characteristics tend to be lost in the statistical treatment of the entire population of items.  

Degradation-based reliability assessment makes use of the data collected when the 

operating component is undergoing some degradation of its operational characteristics 

due to some failure modes. Although the component has not failed yet, it shows some 

indications of its degraded operational characteristics, which can be considered as a fault. 

The degradation or damage tends to accumulate in time. Damage accumulation is defined 

to be the irreversible degradation process that takes place throughout an item's lifespan, 

and ultimately causes the item to fail. The definition of the accumulated damage includes 

a variety of phenomena such as corrosion, wear, creep, fatigue, electrolysis, electro-

migration, etc. The particular phenomenon to which the damage accumulation is due is 
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called a failure mechanism. In many practical situations the item exhibits a mixture of 

failure mechanisms causing the damage accumulation. However, this study assumes the 

damage accumulation model to be due to the dominant failure mechanism, which 

produces the fastest damage accumulation rate. The damage accumulation model is 

considered as a "replacement of the complex physical reality by some more idealized 

(approximate) hypothetical system" (Bartlett 1975).  

When developing such a model several issues should be considered. First, the 

damage accumulation model should be able to describe the item's behavior in terms of its 

operational state. The model should include as few parameters as possible, but the 

number of included parameters should be sufficient to encompass the failure mechanisms 

in a complete fashion. A model with unnecessary complexity will tend to generalize 

poorly. Secondly, the model should be easy to implement computationally and lastly the 

model should be interpretable in terms of known physical laws. 

Considering the damage accumulation model, one's primary interest is the 

evolution in time of the damage accumulated in the item under operational loadings. Of 

specific interest is the time to reach a predefined level of damage at which the system or 

component no longer meets it specifications. This time is called the failure time or the 

item's lifetime. As soon as the component acquires some critical amount of damage the 

component is said to fail in providing its function and requires an immediate replacement.  

It is possible to use the term "degradation model" in describing the damage 

accumulation model outlined above. In the following sections, the terms "damage 

accumulation" and "degradation" will be used synonymously. Hence the important 

element of the degradation-based reliability analysis is the notion of a critical degradation 

threshold.  

The advantages of using the degradation-based reliability prediction is primarily 

pertinent to the possibility of performing an individually-oriented reliability prognosis. 

Having observed the degradation profile of a given component placed in particular 

operational conditions, one is able to predict the reliability characteristics such as the 

component's remaining useful life and the probability of failure for any given time 
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instant. However, the ability to predict the individual remaining useful life is achieved at 

the expense of having some mathematical, usually probabilistic, model for describing the 

future progression of the degradation process.  

This section outlines major approaches to degradation-based reliability 

assessment and prognosis. In Section 1, the notion of a degradation parameter is defined. 

Section 2 introduces a method to evaluate the degradation parameter, given a 

multidimensional vector of health indicators observed at the system of interest.  

3.1. Notion of Degradation Parameter 

The main aspects of a generic prognostic framework can be outlined as follows. 

At the basis lies a failure mechanism that affects the component's functionality within 

some characteristic timescale and eventually causes the component to fail. The 

characteristic timescale can be expressed in calendar or usage time, numbers of duty 

cycles, or any other units expressing the component's characteristic age.  

The failure mechanism is expected to manifest itself as an observable 

phenomenon. The indications of the fault progression can be directly observable in the 

form of quantities closely related to the failure mode. If there are no observable measures 

pertinent to the failure mode, the indications can be quantified through the use of various 

observable variables that are distantly related to the failure mode.  

The failure progression is to be modeled via the usage of a suitable mathematical 

model, which is usually of a probabilistic nature. One uses historical data observed on the 

component of interest or analogous items in past to a) evaluate the assumed model, b) 

verify the assumptions and c) produce RUL prognosis. Since the mathematical model 

serves for prediction purposes, it is usually called a prognostic model.  

Although the prognostic model can be of various forms, it is practical to assume 

that the model operates in a two-dimensional space R2: (T,D), where  T is the 

characteristic timescale, and D is a quantity characterizing the component's ability to 

perform its specified functions properly. The time variable T is assumed to be an 
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independent parameter. D is a dependent parameter called a degradation or prognostic 

parameter.  

The essence of the prognostic parameter is that its value is stochastically related 

to the probability of failure. Let �(t) denote a random parameter associated with the 

component reliability. Let � denote the lifespan of the component; �' is the history of 

measurements of the �(t) taken up to time t. The parameter �(t) is called prognostic 

parameter if the following equation holds.  
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where � is a certain function which relates the prognostic parameter �(t) to the 

conditional probability of failure P. Equation (3.1.1) implies that the conditional 

probability of failure depends only on the currently observed value of �(t) rather than on 

the entire history of �(t). Generally speaking, �(t) can be considered as a generalized 

failure rate. (Gertsbakh 1977) 

The basic idea behind the usage of degradation data for reliability prediction is 

that components sampled from the population tend to degrade differently even if placed 

in identical operational conditions. In particular, the components tend to degrade at 

different degradation rates. If the degradation rates are identical for the entire population, 

the use of a degradation-based prognostic framework will not derive any benefit 

compared to the case of using the traditional failure time-based approach. In such a case 

tracking the degradation parameter does not bring any useful information since the 

degradation paths for different items are identical to each other. This situation is similar 

to the failure time based reliability analysis which essentially uses the component's age as 

the prognostic parameter, �(t) � t. In the terms of degradation-based prognostic model, it 

appears as a degradation path which progresses linearly with the slope value of 1 for each 

item in the population.  

Being capable to monitor indications of the component degradation, one can 

determine the component's individual response to the various stressors affecting the 

component reliability. Combining prior knowledge of failure mechanisms contributing to 
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the component degradation and the component individual degradation profile, one 

predicts reliability characteristics pertinent to the particular component at hand. The 

reliability prognosis is no longer treated as a quantity characterizing an average item 

taken from the population, but rather it produces a reliability estimate for a specific 

component of interest.  

The definition of the prognostic parameter given in Equation (3.1.1) requires that 

there is some value of the prognostic parameter, called the critical threshold, exceeding 

which the component exhibits the probability of failure such that it is no longer safe to 

continue operation. In many applications the critical threshold is considered to be a 

strictly defined value. This assumption greatly simplifies the reliability computation, and 

provides a reasonable model for the critical reliability conditions encountered in real-

world applications.  In some cases the critical threshold cannot be strictly determined. For 

example, if the designer is not aware of the precise level of degradation that causes a 

failure, it is appropriate to represent the critical threshold as a probability distribution 

function that reflects the designer’s vague knowledge about possible critical values.  

Additionally, the system or component may be used in a variety of applications each of 

which requires some particular level of critical degradation. In such a case, it seems 

reasonable to define the critical threshold as a range of critical values having certain 

probabilities. The aspects related to randomness in the critical degradation threshold are 

considered in Chapter 4. In the following section a method for degradation parameter 

selection is proposed.  

3.2. Selection of Degradation Parameter 

Degradation models are based on probabilistic treatment of a collection of 

degradation paths formed by the dominant failure mechanism that degrades the 

component reliability. Degradation paths evolve in the space of a degradation measure 

(indicator) that quantifies the unit’s ability to operate in accordance with its 

specifications. In the literature, sometimes several degradation indicators are considered 

to quantify the component reliability. To simplify the analysis, the degradation indicators 
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are usually grouped together to form the health indicator (status), which is usually a 

scalar rather than a vector quantity.  

One of the major difficulties in implementing the generic prognostic framework is 

to find a practically suitable and mathematically tractable representation of the 

degradation (damage accumulation) processes. In a simple case, the representation is 

defined in terms of one-dimensional Markov-type stochastic process. In reality, complex 

systems are rarely described well enough with a one-dimensional parameter. Usually the 

state of a system is given in the form of a multidimensional process. 

( ))(),...(),()( 21 tttt nηηη=�  (3.2.1) 

Of practical interest is to develop a strategy in which the practitioner would be 

able to perform CBM routines given observations of the multidimensional vector process 

ηηηη(t). One possible way to accomplish this task is to find interdependencies among the 

stochastic processes populating the vector process ηηηη(t). For example, if some processes 

ηk(t) are functionally dependent on the others included in ηηηη(t), it is possible to reduce the 

dimensionality of the vector process ηηηη(t), since only a few independent processes of the 

vector process ηηηη(t) provide useful information.  

However, in reality, such a dimensionality reduction can be difficult because of 

the high complexity of the interdependencies, or it may be impossible due to the 

complete independency of the considered processes.  

Another solution to the problem is to consider the processes ηk(t) separately. 

Assuming that each process ηk reflects a damage process affecting a certain part of the 

system, one monitors damage in the system parts separately. Thus, maintenance decisions 

are made independently. For example, a system consisting of two major parts may need 

to have two preventive maintenance schedules developed for the two parts independently.  

However, performing several preventive maintenance schedules on a piece of 

equipment could be difficult and impractical, since each component in the 

multidimensional stochastic process ηηηη(t) would require its own probabilistic model. This 

issue tends to be even more complicated since, in reality, the practitioner can never 



 28 

observe the multidimensional state of the system perfectly. Observations made on the 

system of interest are usually disturbed by various random factors such as measurement 

noise, partial repairs, random breakages, etc.   

Formally speaking, the difficulties attributed to the use of a multidimensional 

state description are due to the fact that a simple notion of critical threshold, which was 

discussed in previous sections, is replaced with a more complex notion of critical 

multidimensional region. Dealing with multidimensional entities could lead to a) high-

level uncertainties due to imperfect observations available to assess the multidimensional 

model, and b) an intensive computational burden, which could be highly undesirable in 

on-line applications.  

A simple, yet practical, solution would be to make maintenance decisions 

primarily regarding one single parameter reflecting the overall “health” status of the 

system. Such a parameter should account for all the degradation processes ηk(t) taking 

place in the system. The multidimensional vector ηηηη(t) should be replaced by a scalar 

process r(t), which is a function of the vector components ηk(t), k = 1,2,…n:  

r (t) = φ(η1(t),η2(t),…ηn(t))  (3.2.2) 

The scalar process r(t) is expected to inherit the properties of the vector process 

ηηηη(t) in the sense that observing the process r(t) the operator is able to assess the current 

health condition of the system as well as if they observe the multidimensional process 

η(t). The important attribute that ensures the ability of the process r(t) to reflect the 

system health status is the ability to discriminate failed systems from non-failed (healthy) 

systems. This leads to the idea of using discriminant analysis to find a good 

transformation of the vector process ηηηη(t) to a scalar process r(t). (Gertsbakh 2000) 

proposed to use a linear transformation chosen in a certain manner to evaluate a scalar 

health indicator. The key idea of using the linear discriminative analysis is outlined as 

follows.  
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Consider a population of systems that is divided into two subpopulations A and B 

corresponding to healthy and failed exemplars. For each exemplar there is an n-

dimensional vector snapshot indicating its health status in a particular time instant t. 

xj(t) = (xj1, xj2, … xjn)  (3.2.3) 

Each part of the population includes a certain number of exemplars, xk
A, xl

B, 

k=1,2,…NA,  l=1,2,…NB.  

The vector health status snapshot is replaced by a linear combination of the 

elements xji.  
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n

i
jiij

xwr
1

  (3.2.4) 

The scalar value of rj can be thought of as a weighted average of the elements xji, 

which are the degradation indicators attributed to particular components of the system. 

The idea of linear transformation is illustrated in Figure 1, which shows a 2-

dimensional case of the vector process ηηηη(t) = (η1(t), η2(t)).  

 

Figure 1. A schematic representation of the vector w that provides a direction, upon 

which the 2-dimensional vectors of the system health status are projected. 
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The linear transformation (3.2.4) is essentially a geometric projection onto some 

line collinear to the vector w = (w1, w2, …wn). Obviously there are many possible choices 

for the direction of the vector w. However, following the linear discrimination ideas, one 

seeks the direction that would allow for the best discriminative capability of the new 

transformed scalar health index r(t).  

Studies performed by Fisher (Fisher 1936) suggest that the direction w should be 

chosen such that the following ratio is maximized  
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  (3.2.5) 

where �A, �B are the mean values (the mass centers) of Subpopulations A,B, respectively; 

SA,SB are the variances of the samples belonging to Subpopulations A,B. Therefore, the 

optimal direction w, that linearly discriminates the parts A and B is that which maximizes 

Equation 3.2.5.  

It is well known that the maximum of D is attained if the vector w takes the following 
value. 

BA

BA

SS +
−= µµ

w   (3.2.6) 

Another approach to the problem of discriminating healthy and failed exemplars 

within a population is to apply a more general technique, which is the Neyman-Pearson 

lemma (Hoel, 1971). The Neyman-Pearson lemma states that the likelihood-ratio test 

which rejects hypothesis H0 in favor of hypothesis H1 when  

k
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1

0   (3.2.7) 

is the most powerful test of size α (Tamhane 2000) 

In practice the likelihood-ratio test is used in the following manner. Let 

Subpopulations A and B have some probabilistic properties characterized by the density 

functions pA(x) and pB(x). Given a vector xq, one computes the likelihood ratio  
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If the computed ratio exceeds some predefined level, K, whose magnitude 

depends on the test’s size α, one accepts the hypothesis that the vector xq was observed at 

an exemplar belonging to Subpopulation A.  

However, it should be noted that the maximal power of the likelihood ratio test is 

achieved if the probabilistic characteristics pA, pB of Subpopulations A and B are known 

precisely. In practice, it is difficult to estimate density functions of multidimensional data 

populations, especially if one has limited data available for estimation.  

A method to discriminate multidimensional data that reflect the system health 

status is developed in this work as follows. A non-linear classifier, such as a Support 

Vector Machine (SVM)-based technique, is applied to construct a classifier, which 

produces a scalar feature value indicating whether or not a query multidimensional vector 

x is observed at an exemplar belonging to the population of healthy systems. A SVM-

based classifier is a function which returns positive or negative values for vectors 

belonging to the primary or alternative hypothesis class, respectively.  

The following is the algorithmic representation of the maintenance routine based 

on using a SVM-based discriminator.  

 
Step 1. (Collection Phase) One collects observations of the vector process ηηηη(t) on two 

samples of the systems. Sample A is composed of systems that exhibit little 

degradation and can be considered as “brand new”. Sample B is composed of the 

systems that have accumulated a significant amount of degradation and can be 

considered as being close to failure. It should be noted that the collected data are 

accompanied with qualitative labels indicating the health status of the monitored 

system, for instance, “good” and “faulty”. These qualitative labels are provided by 

experts or via off-line inspections that are allowed to be performed in Step 1. Step 

1 is essentially a preparation phase for acquiring of initial knowledge that will be 

used as a basis (training information) for the online SVM classifier. The more 
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information about the degradation mechanisms that is acquired in Step 1, the 

better the results that are obtained in the following steps.  

 

Step 2 (Training Phase). One evaluates the SVM classifier parameters using the data 

collected in Step 1. Essentially this step includes adjusting the SVM parameters 

(training). Having optimized the SVM parameters, one may need to validate the 

SVM classifier with respect to its ability to discriminate multidimensional health 

status vectors. Applying the SVM model to an observed n-dimensional vector x, 

one reduces the observation x to one-dimensional feature value r. A validation 

dataset composed of vectors not used for training of the SVM classifier is utilized 

to evaluate the discriminative ability of the scalar health indicator r(t). Figure 2 

shows an comparative example of the histograms of r(t) values computed on 

Samples A and B, which were introduced in Step 1. 

A good health indicator makes a large margin between the new and degraded 

exemplars, whereas the overlap in the health indicator values index shown in Figure 2b 

makes it difficult to distinguish exemplars in terms of their health indicator r(t).  

 

 

 

Figure 2. Typical examples of a good (a) and poor (b) discriminative capabilities of a 

classifier. 

A A 

B B 
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Step 3. (Selection of Prognostic Model) One seeks an appropriate probabilistic 

description of the scalar process r(t). The range of possible candidates is usually 

wide, starting from linear regression models to stochastic high-order Markovian 

models. Since the process r(t) is of one-dimension it is relatively straightforward 

to find out which type of model is best suited for the observed realizations of the 

process r(t). Having defined the probabilistic model for r(t), one introduces set-

points for the model. For instance, the first set-point can be the level, exceeding 

which the process r(t) indicates that the system needs preventive maintenance; 

however, it is still able to function. The second set-point is the level, exceeding 

which the process r(t) indicates that the system’s health status is critical, and the 

system cannot continue functioning within its specifications. The specific values 

for the set-points are usually case-dependent.  

  

Step 4. (Monitoring Phase) One monitors the health status of the system through 

observing the multidimensional vector process ηηηη(t) of the system in operation. 

Applying the SVM-based transformation defined in Step 2, one evaluates a one-

dimensional health indicator r(t). The values of r(t) computed through the 

system’s lifespan forms a trajectory in a two-dimensional space of t and r.  

The observed trajectory of the health indicator r(t) provides information that is 

used to make a prognosis of remaining useful life of the system. The prognosis is 

made via evaluating the prognostic model defined in Step 3. The RUL prognosis 

is utilized for a multitude of purposes primarily aimed to increase assets 

availability, reduce cost associated with maintenance etc. As soon as the observed 

process r(t) passes the first set-point, preventive maintenance is requested for the 

particular system where the r(t) is observed.  

 
The proposed method for evaluating the scalar system health indicator r(t) has 

advantages over the linear discriminator proposed in (Gertsbakh 2000) in the sense that 

the margin area, which divides healthy and faulty exemplars, can appear to be non-linear. 
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Figure 3. A schematic representation of linear and non-linear discriminators. 

The cause of the margin non-linearity can be explained in the following 

qualitative example. Consider a system whose health status is characterized with two 

indicators, η1 and η2 (Figure 3). Essentially, the health indicators η1 and η2 correspond to 

two failure mechanisms �1, �2 observed in the system of interest. The values of η1 and 

η2 numerically quantify the extent at which the failure mechanisms �1, �2 affect the 

system overall health status.  

The blue-colored dashed line is a linear discriminator, which performs acceptably 

well in the cases where values of either η1 or η2 are relatively large. Such cases 

correspond to the situations where only one of the failure mechanisms H1 and H2 is 

dominating in the system degradation process.  

It should be noted that the linear discriminator is expected to work perfectly if the 

overall damage effect the system receives while in operation is, in fact, a linear 

combination of the degradation mechanisms η1 and η2, as given in the following 

equation: 

D(t) = α1*η1(t) + α2*η2(t),    0<=α1,2,  α1+α2 = 1  (3.2.9) 

where D(t) is the overall degradation effect the system is receiving due to the failure 

mechanisms.  

ηηηη1 

ηηηη2 

B 

A 
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However, in the case where η1 and η2 both exhibit moderately large values, the 

linear discriminator performs poorly since the true discriminator curve is fairly nonlinear 

(the red-colored dashed curve). The nonlinearity is due to the fact that if both failure 

mechanisms appear in a moderately large extent, the degradation effects imposed by the 

failure modes tend to be amplified because of the failure mechanisms interaction.  

Numerically this situation can be expressed as a nonlinear relationship between 

the overall damage effect and the degradation indicators η1 and η2.  

D(t) = α1*η1(t) + α2*η2(t) + α3* f(η1,η2) ,    0<=α1,2,3,  α1+α2 +α3= 1   (3.2.10) 

Where f(η1,η2) is a non-linear function of the degradation indicators.  

As can be seen, the nonlinear term in (3.2.10) introduces a good deal of 

nonlinearity in the behavior of the system with respect to the critical degradation level. 
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Figure 4. An example of a non-linear margin between healthy and faulty exemplars. The 

example is based on real-world data  
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The following example illustrates the use of a non-linear classificator applied to 

real-world data.  

Consider a drilling machine performing a drilling campaign. The operational 

status of the drilling machine is expressed in terms of 31 parameters; a few of them are 

given below.  

•  Hydraulic Unit (HU) Pressure 

•  HU Target Pressure 

•  HU Current 

•  HU Motor RPM  

•  Annular Pressure 

•  Borehole Pressure 

•  Acceleration Sensors X,Y,Z 

•  Magnetometers X,Y,Z 

•  Voltage At Alternator 

•  Temperature 

•  Stick Slip 

The operational parameters are continuously monitored and collected, while the 

drilling machine is operating.  

While in operation, the drilling machine may experience certain faulty conditions, 

which manifest themselves through the presence of abnormal values in the operational 

parameters. It has been revealed that a certain fault manifests itself mostly in two 

particular operational parameters. These are HU Current (I_RIB), and HU Motor RPM 

(RPM_RIB).  

Figure 4 shows the values of the parameters plotted against each other. Blue-

colored circles indicate the states where the drilling machine health status was found to 

be normal. Red-colored crosses indicate the states where the fault was detected, and the 

drilling machine health status was no longer normal.  
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The data shown in Figure 4 were collected on 4 different drilling machines 

through their operational lifespan. All drilling machines experienced the same type of 

fault. Although the total number of observations collected on each drilling machine is a 

large quantity, 5 datapoints were selected as the most representative vectors for normal 

and abnormal conditions. Thus each drilling machine has provided 10 data points 

depicted in Figure 4. An SVM-based classifier is applied to the data to evaluate the 

feature value (system health indicator), according to which one can distinguish healthy 

and faulty drilling machines.  

The scalar health indicator r(t) evolves in the domain of values returned by the 

SVM model. The values of r(t) are shown in Figure 4 as contour curves. The value of 1 is 

the first set-point indicating the need for preventive maintenance. Values of r(t) lesser 

than -1 clearly indicate that the drilling machine is in a faulty state, and should not be 

operated further.  

However, the suggested values for the set-points should be adjusted taking into 

account the temporal behavior of the scalar health indicator r(t). In some cases, faulty 

conditions occur in an abrupt manner such that there is not a state that would correspond 

to a “close-to-fault” condition. In the presented example the scalar health indicator based 

on two operational parameters I_RIB and RPM_RIB exhibits this type of abruptly 

changing behavior, which is shown in Figure 5.  The blue curve depicts the temporal 

behavior of the feature value r(t) evaluated for the drilling machine.  

The observations in the left-hand side of the plot are situated above the level of 1, 

which corresponds to normal operational conditions. In the sample interval of 93300 to 

93400 the feature value clearly exhibits a decrease below the setpoint of -1, which 

indicates the onset of fault.  

As can be seen the values of r(t) do not demonstrate any gradually changing 

behavior. The appearance of the health indicator r(t) suggests that the occurred fault 

makes the drilling machine proceed into a faulty state immediately. 
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Figure 5. A typical temporal behavior of the scalar system health status.  

3.3. Reliability Prediction Approaches  

This section provides general recommendations regarding the selection of a 

prognostic model.   

A generic prognostic routine is composed of the following tasks: 

- Collect statistical data on the system of interest and the analogous systems. 

- Choose a prognostic model to be used for prediction.  

- Process the data collected on the system of interest as well as on the analogous 

systems to estimate unknown parameters of the selected prognostic model. 

- Make a reliability prognosis for a given time instant.  

The generic prognostic framework is pictorially shown in Figure 6. Statistical data 

related to the object of interest are obtained through collecting various measurements that 

will be used to evaluate the technical degradation parameter η(t). These measurements, 

called degradation evidence data, are of major interest in the course of prognostics. 

Statistical data collected on analogous objects usually bring additional information 

related to the underlying failure mechanism. The presence of any kind of a priori  

information associated with the objects similar to the to-be-predicted one significantly 

facilitates the selection of the prognostic model.  
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An evolution of the degradation parameter is usually represented in the form of a 

time-series: 

D = {Y(t 1), Y(t2), … Y(tk) }. (3.3.1) 

Additional degradation data observed over analogous objects are represented as follows 

Dj
add  = {Y j(t1), Y

j(t2), … Yj(tn) }, (3.3.2) 

where j is the index of the object and n is usually greater than k. 

Generally speaking, the object of interest may undergo several distinct failure 

modes exhibiting different types of degradation evidence data. The presence of different 

failure modes in the object of interest causes the simple time-series based representation 

of the degradation evidence data to not be sufficient. However, in many cases it is 

reasonable to assume that only one failure mode is dominating, so that the observed 

degradation evidence data are attributed to the dominant failure mode. This assumption 

should be made cautiously since in making a long-term RUL prediction the dominant 

failure mode may change.  

The choice of the prognostic model is of primary importance in the prognostic 

framework. A poorly chosen prognostic model will never produce a good prognosis. In 

choosing the prognostic function one should take into account the following: 

- In what manner the degradation process tends to behave, (gradually or abruptly 

changing).  

- How much variability in the given data can be explained by the to-be-selected 

model. This aspect is often referred to as computational complexity of the model. 

- How well the degradation process can be described by a mathematical apparatus, 

on which the prognostic model is based.  

If the degradation process is poorly understood, one may prefer a simple algebraic 

form for the prognostic model; otherwise a more complicated form can be chosen, for 

example, a system of differential equations, or a stochastic Markov process. 
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Also, a great deal of attention should be given to any kind of uncertainties 

involved into the degradation evidence data. The uncertainties may include the effect of 

uncontrollable factors, measurement noise, errors associated with inferring unobservable 

parameters, etc. Figure 7 shows a simple classification of prognostic functions. 

3.3.1. Generic Mathematical Approaches for Prognostics  

Mathematical models employed in the prognostics framework are usually aimed 

at dealing with a time-series-based representation of degradation evidence data. The 

methods, which will be considered in this section, differ from each other in the ways they 

take into account any prior information, the amount of input information, the functional 

form of modeled relationships, etc. 

3.3.1.1.Weighted Average Methods  

The weighted average methods are closely related to filtration techniques. The 

predicted value is computed as a weighted sum of the degradation evidence data observed 

to date: 
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where Wi is the weight of the ith observation, and  
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If W i = k
1  for each i, the predicted value of Equ. (3.3.1.1.1) is an average of the 

preceding k measurements. If the weights are calculated according to the following rules, 

W1 = a, W2 = a(1 – a), … Wk = a(1 – a)k (3.3.1.1.3) 

for a < 1, the weighted average method becomes an exponential smoothing prediction.  



 41 

Estimation of 
the prognostic parameters

A priory Knowledge

Prognostic Model

RUL Prognosis

Data collected on 
the object of interest

Historical Data collected on 
analogous objects

Prognosis Requirements and
Specifications

 

Figure 6. A generic prognostic framework 
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Figure 7. Classification of Prognostic Functions. 
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The weakness of the weighted average method is that only one time-series can be 

used to predict future values. The data collected over other objects similar to the one at 

hand turns out to be useless. However, one can apply a similarity operator (Hui, 2003), 

(Wegerich, 2004) to all available data to refine the weighting coefficients in Equ. 

(3.3.1.1.1). 

3.3.1.2.Kalman Filtering based Methods  

Usage of a Kalman filtering technique requires a solid knowledge of the 

underlying degradation mechanisms in the object of interest. The prognostic problem is 

formulated as follows. There is a model of the degradation parameter dynamics  

)()()()( tUtGtYtF
dt

dY +=  (3.3.1.2.1) 

where F(t) characterizes the dynamic behavior of the degradation parameter Y(t), 

G(t) characterizes the pattern of the input control signal U(t). The only observable values 

are the measurements Z(t) contaminated by noise. 

Z(t) = H(t)Y(t) + ε(t) (3.3.1.2.2) 

where H(t) is a measurement model describing a relationship between the unobservable 

values of Y(t) and observable measurements Z(t), and ε(t) is the stochastic noise with 

known parameters.  

Given a series of observations Z(t), curttt ≤≤0 , one needs to find )(ˆ ttY cur ∆+  such 

that the mean value of the estimate is equal to the true value of )( ttY cur ∆+  and the 

variance of the error is minimized. 

[ ])()](ˆ[ ttYEttYE curcur ∆+=∆+  (3.3.1.2.3) 

min)]()(ˆ[ →∆+−∆+ ttYttYVar curcur  (3.3.1.2.4) 
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Ref. (Luo, 2003) gives an example of the use of Kalman filtering techniques to 

predict remaining useful life of an automotive suspension system, whose degradation 

modes are well understood and can be modeled with differential equations. 

3.3.1.3.Extrapolation-based Methods 

A regression function η(t) describes a behavior of a degradation evidence 

parameter 

η(t) = E[ Y(t) ]  (3.3.1.3.1) 

where η(t) is a prognostic trend. In the RUL prediction framework, the function η(t) is 

defined to be an approximating curve that provides the best fit of the collected 

measurements. The parameters of η(t) are determined using a mean-squared-error-based 

criterion. 

A prognosis is made through extrapolation of η(t) in a moment of time in the 

future. Hence, the function η(t) is considered to be a prognostic function. Usually, the 

prognostic function η(t) is characterized by a vector of coefficients α . In the cases in 

which the functional form of ),( αη t is known to be linear with respect to the vector α , 

the prognostic function can be written in the following form. 
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where ci(t), 1<i<n,  are pre-determined basis functions. It is possible to analytically obtain 

estimates of the coefficients αi, and variance of the predicted Y(t).  

If the functional form of the prognostic trend is unknown, one has to choose the 

best-suited type of trend. To make a proper choice one needs to use the information found 

in the moment values such as conditional expected values E [ Y(t) | Y1, Y2, … Yk ] and 

conditional variance Var[ Y(t) | Y1, Y2, … Yk ]. These statistics reflect the evolution of 

the degradation process in time. Approximation is performed using all available 

realizations of the degradation process.  
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3.3.2. Generalized Representation of A Prognostic Model 

In developing a prognostic framework, one has to define a collection of candidate 

models that reflect the revealed properties and characteristics of the analyzed degradation 

process. The generic form of a candidate model can be expressed as the following. 

M = { ),(, itiW βΨ  },  i = 1,2,… L  (3.3.2.1) 

where Ψ is an operator defining the manner in which the model's components are 

interacting, ),( itiW β  is the ith  component of the model M, iβ  is a vector of parameters 

attributed to the ith component Wi, and L is the number of components constituting the 

model M.  

In a prediction model there are at least two major components: process-related 

and noise-related components. The former brings the information directly associated with 

the degradation mechanisms taking place in the object, the latter accounts for various 

types of noise present in available observations.  

The process-related component ),( pp tW β  can include several subcomponents that 

reflect the evolution of the mean value and central moments (variance, skewness, 

kurtosis) of the degradation process under surveillance. Also, the process-related 

component can take into account random abrupt changes in the degradation process' 

characteristics as well as a stationary process noise. 

The noise-related component accounts for a stationary random noise and outliers 

observed in measurements. Usually, outliers are to be removed during early pre-

processing stages.  

In practice it is difficult to differentiate stationary process noise from stationary 

random noise. Hence, it is reasonable to consider the two noise components as one single 

element accounting for a stationary random noise even though the components are due to 

completely different phenomena.  

Abrupt changes in the process characteristics may not be of interest in long-term 

prediction. However, short-term prediction is greatly affected by rapidly changing 
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degradation parameters. An excellent study devoted to detection of abrupt changes in 

time-series data can be found in (Basseville, 1993).  

Even if the practitioner is interested in a long-term RUL prediction, in the cases 

where the prognostic model should account for several degradation modes, it is required 

to pay attention to abrupt changes in the process. Such a multimodal prognostic model 

should be able to switch between the various degradation modes as soon as a rapid 

change in parameters becomes evident.  

Table 1 concludes the description of the components that may be included in a 

prognostic model. 

The deterministic component η(t,αααα) approximates the conditional expected value 

E [Y(t) | Y1, Y2, … Yn ] of the degradation process within the time interval (t1, t2, … tn) 

corresponding to the observed measurements as well as within the prediction time 

interval tn< t < thor, where thor is the prognosis horizon value. The deterministic 

component usually takes the following form  

η(t,αααα) = �
=

m

i

tiFi
1

)(α ,    t1 < t < thor  (3.3.2.2) 

where Fi(t) is a basis function. A good candidate for the basis functions is a system of 

polynomial functions. 

{ F0(t) = 1, F1(t) = t, … Fm (t) = tm }  (3.3.2.3) 

The order of the polynomial of the deterministic component (3.3.2.2) is usually limited 

by the second order. A more complex deterministic component can introduce unwanted 

effects similar to the data-overfitting phenomenon that causes an estimator to have poor 

generalization abilities. 
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Table 1 Components of the prognostic model. 

Component Description 

η(t,αααα) 
A deterministic component describing how the expected 
value of the degradation parameter evolves in time t. 

εσ(t) 
A random component characterizing how the second 
central moment (variance) of the degradation parameter 
evolves in time 

εS(t) 
A random component characterizing how the skewness 
of the degradation parameter evolves in time 

εK(t) 
A random component characterizing how the 
normalized fourth central moment (kurtosis) of the 
degradation parameter evolves in time 

 
 

In most cases the following generic model will be sufficient to produce a good 

result. 

Y(t) = η(t,αααα) + εσ(t)   (3.3.2.4) 

where E[εσ(t)] = 0, Var[εσ(t)] = const, Skewness[εσ(t)] = const, Kurtosis[εσ(t)] = const.  

The stochastic component is zero-centered. The moment characteristics of the 

stochastic component are not changing in time. 

3.4. Illustrative Example 

The methods described in the preceding subsections were applied to simulated 

data. The following example considers predicting remaining useful life of electronic 

power supplies employed in high-end computer systems. A set of power supplies 

underwent accelerated aging tests. Each power supply was tested under cyclic 

temperature load. The temperature range and the rate of change were within the 

specification values. The values of the output parameters (such as output current, voltage, 

and inside temperature) were monitored and collected for a few months.  
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These tests revealed that a certain power supply fault causes the power supply to 

fail to provide an output voltage within the specified range. Specifically, the fault 

presents itself as abrupt and rapid transients in output voltage. The abrupt transients are 

observed only when the temperature profile exhibits a non-zero gradient.  

Eventually the rapid transients or spikes appear frequent and large in their 

magnitudes so that the power supply undergoes an unrecoverable failure. Figure 8 shows 

two samples of real-world measurements taken at the faulty power supplies.  The end of 

the shown measurements corresponds to the moment of the unrecoverable failure. 

As can be seen, the magnitude of the spikes can be as large as about 50% of the 

nominal voltage value. Such severe deviations from the specification eventually lead to 

the power supply’s failing. 

Assuming that the statistical properties of a sequence of spikes are known, a 

sizable group of voltage measurements showing abrupt transients similar to the ones 

observed at the real-world power supplies were simulated. Specifically, the following 

assumption was made. The number of spikes occurring within a temperature cycle is a 

random variable distributed according to the Poisson distribution:  

Pλ(n) = 
!n

en λλ −

 (3.4.1) 

This assumption is justified as follows. The probability that a spike occurs in a 

faulty power supply during a small time unit, such as a second, is relatively small. The 

number of the time units elapsed during a temperature cycle is quite large since a 

temperature cycle takes usually about 2 hours in the experiment settings. In the field 

conditions a temperature cycle may take even longer. Hence, it can be concluded that the 

number of spikes occurring during a temperature cycle is a Poisson distributed random 

variable. 

The parameter λ = λ(t) is chosen to be a monotonically increasing value that 

reflects the gradual degradation of the simulated power supply. In other words, the 

sequence of voltage measurements is assumed to be a non-stationary Poisson process. 
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The number of observed events (spikes) in a time interval depends upon the length of the 

interval as well as upon the interval's location on the time axis.  

The degradation indicator Y(tk) is chosen to be a weighted average of deviations 

from the nominal voltage value.  

Y(tk) = 

�

�

=

=

∆

k

i
ik

i

k

i
ik

w

dw

1

1   (3.4.2) 

where id∆  is a deviation of the voltage measurement observed at ti. 

nomii ddd −=∆   (3.4.3) 

wki is a weighting coefficient calculated according to  

wki = �
�

�
�
�

� −−
h

tt ikexp ,  ik tt >  (3.4.4) 

where h is a parameter regulating how many historical data points should be accounted. 
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Figure 8. Real-world data obtained from power supplies 
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If the output voltage of the power supply under consideration does not exhibit any 

significant deviations from the nominal level, the defined degradation indicator is near 

zero since the small deviations are likely to be due to measurement noise, which is 

assumed zero-mean. Figure 9 shows a typical degradation indicator computed on the 

simulated measurements.  

Analysis of the simulated measurements allows for making an appropriate choice 

of a link function, which will be used to perform a least squares fit of the degradation 

indicator data. In this example, a log function is a good candidate to provide an adequate 

prediction model. Figure 10 shows the degradation indicator along with the fitted 

prediction model whose mathematical expression is given below: 

p(t) = 4.55 (t–206.5)  (3.4.5) 

Figure 10 shows the prognostic trend computed at the moment of time when the 

fault indication data are available entirely, i.e. the black-dotted prognostic trend 

corresponds to the time of failure.  

In many real-world cases the failure threshold value is not specified in advance. 

Making use of available historical data one is able to determine the threshold value in a 

probabilistic manner.  

3.5. Linear Growth Model of Cumulative Damage 

The simplest form of the damage accumulation model is a linear relationship 

between the accumulated damage and the time units characterizing the usage of the item. 

The time units used in the model can be calendar time, usage time, units of cyclic usage 

such as the number of temperature cycles the item has suffered, or some other units that 

may be related to wear such as cumulative loading. Usually the time units to use in the 

model are determined by the time measure with respect to which the observations are 

made. For example, a well-known data set of fatigue crack growth from Virkler et al.  

(Virkler 1978) has time units expressed in the number of load oscillations applied to the 

tested specimens. 



 50 

200 201 202 203 204 205 206 207
0

0.005

0.01

0.015

0.02

0.025

0.03

Time Units

D
eg

ra
da

tio
n

Degradation Indicator, p(t)

 

Figure 9. Degradation Indicator computed on the simulated measurements. 
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Figure 10. Degradation Indicator and Prognostic Trend. 
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Although a linear model is assumed, the degradation model can be of any 

monotonically increasing function. A monotonic transformation is performed to linearize 

the non-linear model. The selection of the model form should be guided by past 

experience.  Several assumptions are made for use of the linear degradation model: 

•  The mean degradation rate is constant.  

•  The damage accumulation process is monotonic.  

•  A failure occurs as soon as the degradation level exceeds some predefined failure 

threshold Y*.  

The linear degradation model is assumed to be of the following form 

Y(t) = β1t + β0 (3.5.1) 

where β1 is the degradation rate, β0 is the initial level of the item's damage, and t is a time 

unit. Value Y(t) is the accumulated damage (degradation) observed at time t. An item's 

lifetime is defined to be the time T such that Y(T) = Y*, the failure threshold. 

Since there is no random component dependent on t in (3.5.1), the time to failure 

(T) can be computed exactly for the linear model, given the values of the β1 and β0. 

T = (Y*–β0) / β1 (3.5.2) 

In a more realistic setting, the degradation model is subject to random deviations, 

which are due to the random influence of external factors and measurement errors. 

However, it is reasonable to assume that the mean degradation rate remains constant. An 

item's lifespan can be partitioned into three main zones with respect to the degradation 

rate. The zones are pictorially shown in Figure 11.  One should be aware that different 

components have different degradation profiles and this one is chosen for its simplicity 

and wide range of application.  This profile has a relationship to the bathtub curve, which 

is a profile for a failure rate.  The increasing degradation may be thought to be related to 

the increasing failure rate that occurs during infant mortality and wear out.  However, the 

wear out failure mode is assumed to be the only mode of concern in this study. 
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Figure 11. A typical profile of accumulated degradation. 

Zone 1 corresponds to intensive degradation, which takes place at the load 

accommodation phase. A brand new item accommodates itself to the loading conditions 

in which the item is placed. Zone 1 is characterized by a monotonically decreasing rate of 

degradation. However, the absolute values of degradation rate are higher than that 

observed in Zone 2. 

Zone 2 corresponds to a steady-state wear process. While in this zone the item 

acquires certain stable characteristics that allow it to bear the applied loadings in a steady 

manner. Zone 2 is usually the longest portion of the item's lifetime.   

Zone 3 is a zone of catastrophic wear. The rate of wear increases drastically due 

to a qualitative jump in the item's properties. After accumulating the damage in Zone 2, 

the item wears out its resource, which is basically a quantitative process reflecting the 

monotonic degradation of the item. Having accumulated a certain level of damage, the 

item undergoes a qualitative change, which is usually of structural nature. The qualitative 

change in the item's properties causes a change in the underlying degradation 

mechanisms. The degradation rate abruptly becomes much larger than that of steady-state 

wear. Usually being at Zone 3 is considered as a failure state for an item. The item 
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undergoing catastrophic wear is no longer capable to function properly. An example of 

this type of wear would be a bearing that is pitted. 

Since the constant degradation rate zone takes the longest time in the item's 

lifespan, the primary interest of this study is an item's behavior within Zone 2. In 

applying the linear model (3.5.1) to an individual profile of damage accumulation, the 

following terms are used: "degradation parameter" and "degradation pathway". The 

degradation parameter is a scalar value associated with the degradation level at a given 

point of time, Y(t). The degradation pathway reflects an evolution of the degradation 

parameter in time. Usually the degradation pathway is represented in the form of a time-

series: 

Y = { Y(t1), Y(t2), … Y(tn) } (3.5.3) 

A typical linear degradation pathway is shown in Figure 12. The random 

fluctuations about the mean degradation line are usually attributed to random external 

factors and measurement errors. In this particular example the mean degradation pathway 

depicted as a dotted line is estimated using a least-squares criterion. 
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Figure 12. A degradation path is subject to random deviations that are due to process and 

measurement noise sources. 
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In the traditional reliability field the main assumptions made in regard to the 

degradation pathways are that there are no statistically significant differences among the 

degradation pathways observed for a population of tested items. Assuming homogeneity 

of the population, one is able to evaluate characteristics of the time-to-failure distribution, 

such as mean, median, modes, and variance. These characteristics are basically 

population-averaged estimates of the reliability parameters.  A statistical difference in the 

items due to manufacturing or material differences can be integrated into the model 

(Ebeling, 2005). 

Recent advances in computer and sensor technologies allow the practitioner to 

monitor critical parameters of the item in field. Measurements associated with the 

degradation level can be available for a wide range of equipment (Sunghyun 2005), 

(Lieberzeit, 2006). Even though it is not always possible to directly observe degradation 

parameter values, a variety of machine learning techniques enable inferring the 

degradation parameter values at an acceptable level of certainty (Biswas 2006),(Romano 

1997). Using modern sensor and micro-processing equipment it is possible to estimate 

parameters of the degradation pathway in an on-line manner. 

Having an ability to assess the degradation level and rate for an individual item, 

the practitioner is able to perform a time-to-failure prognosis for this particular item. It 

should be noted that the prognosis made with respect to an individual item is subject to a 

degree of uncertainty. Needless to say, the individual prognosis makes sense if, and only 

if, it will provide the practitioner with an uncertainty better than that associated with the 

population-average-based prognosis. 

3.6. Generalized Cumulative Shock Models 

The generalized cumulative shock model is the most general mathematical 

representation of the degradation processes, which evolves in time primarily in a random 

manner. The generalized cumulative shock model has been considered in the reliability 

analysis literature for decades (Sumita 1985), (Gut 1990) and is defined as follows.  
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Let {N(t), t>0} be a point process with sequence of jump times T1, T2,… Each 

jump time Ti has a corresponding random variable Ci. The stochastic process {X(t), t � 0} 

�
=

=
)(

1

)(
tN

i
iCtX  (3.6.1) 

is called a cumulative shock model. In this setting, the value of Ci is the magnitude of the 

shock arrived in time Ti. Figure 13 illustrates a typical cumulative stochastic process X(t). 

From the reliability analysis perspective, of primary interest is the random time 

L(x) when the accumulated shock magnitude X(t) exceeds a given critical threshold x for 

the first time: 

L(x) = inf { t, X(t) > x}  (3.6.2) 

Gut has proven in (Gut, 1990) that the distribution of L(x) approaches the normal 

distribution with the following parameters, if the value of x is relatively large:  

�
�

�
�
�

�
xxNxL

3

2
,~)(
ν
γ

ν
µ  (3.6.3) 

where � = E(T), ν = E(C), γ2 = Var( �C – ν T) 

 

 

Figure 13. A typical cumulative shock model path with positive increments. 
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Essentially the normal distribution in (3.6.3) is a limiting case for the TTF 

distribution implied by a cumulative shock model. The analytical expression for the 

limiting normal distribution (3.6.3) is of practical importance since it provides 

information on the time-to-failure distribution for an arbitrary cumulative shock model. 

In reliability analysis the probability distribution given in (3.6.3) has been known as the 

Birnbaum-Saunders distribution, which was originally developed to model the rupture 

time of metals exposed to fluctuating stress and tension (Birnbaum 1967). 

The theoretical result provided by Gut (Gut 1990) suggests that any cumulative 

shock (damage) model implies a TTF distribution that is close to the normal distribution 

if the critical threshold value is large compared to the damage increments. The mean and 

variance of the TTF distribution depend on the stochastic parameters of the point process 

N(t) and the random shock magnitude Ci. 

The following subsection outlines the stochastic model of cumulative damage, 

which is a practical modification of the generalized shock models.  

3.7. Stochastic Model of Cumulative Damage  

The stochastic model of cumulative damage was originally introduced by 

Bogdanoff and Kozin in (Bogdanoff 1985). Cumulative damage is defined to be the 

irreversible accumulation of damage in components under a cyclical usage pattern. The 

cumulative damage model is applicable to a variety of systems exhibiting any kind of 

wear accumulation. The cumulative damage evolution is best described in terms of the 

number of load cycles (duty cycles), to which the system or component has been 

subjected.  

3.7.1. A Stationary Markov Chain-based Model of Cumulative Damage  

A finite Markov chain is used to model the degradation accumulation process 

over the unit’s lifetime under cyclic loadings. The possible levels of degradation are 

represented by a finite set of numbers encompassing the state space of the Markov chain. 

The only allowed transitions are those that lead the MC to higher damage states. This 

reflects the fact that the degrading component cannot improve its state.  
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The simplest cumulative damage model has two parameters. These are the 

transition probability q and the critical damage state Y*. The transition probability q 

characterizes the probability that the damage state receives a unit-size degradation 

increase during a duty cycle. State Y* is the critical threshold which causes system failure. 

The unit-size restriction on the damage increment implies that the time-to-failure is 

distributed according to a gamma distribution with the shape parameter k and the scale 

parameter � (Tamhane 2000). 

The model is based on a Markov chain (MC) representation of the stochastic 

process imitating the damage accumulation process. The Markov chain transition 

probability q characterizes the probability that the damage state receives a unit-size 

increase during a duty cycle. The unit-size restriction implies that the time-to-failure is 

distributed according to a gamma distribution with two parameters k and Θ. The 

probability density function (PDF) of the gamma distribution is given by 

0,
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t
tktf k

k
 (3.7.1.1) 

where k>0 is the shape parameter, Θ > 0 is the scale parameter. 

The Markov Chain-based model of cumulative damage covers many models well 

known in reliability analysis. The simplest cumulative damage model has two 

parameters. The damage accumulation is assumed to be a stationary Poisson process 

beginning at X(0) = 0, which implies that there is no variation in initial damage. The 

failure is assumed to occur as soon as the MC enters State b. State b and the transition 

probability, p, are the two parameters of the cumulative damage model. In this case, the 

time-to-failure is distributed according to a gamma distribution with two parameters.  

A generalization of the outlined Poisson process can be derived in the following 

manner.  The damage process evolves as a Poisson process of rate λ1 up to State k<b. 

Then, it evolves as a Poisson process at rate λ2 up to State b, where failure occurs. In this 

case, the time-to-failure distribution is the sum of two independent gamma distributions. 

It should be noted that a Poisson process is usually defined in terms of the rate λ whereas 
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the cumulative damage model is described by the transition probability q. A relationship 

between the quantities can be established as follows. 

q = λτ + o(τ) (3.7.1.2) 

whereτ is the time duration of a duty cycle, o(τ) is a little-o notation. 

3.7.2. Use of Degradation Evidence Data in the cumulative damage model 

Condition-monitoring observations can complement the parameterization of a 

prognostic model. Reliability case studies using condition-monitoring measurements can 

be found in (Vlok 2002), (Carey 1991). A detailed review of the reliability data-analysis 

methods involving condition measurements rather than time-to-failure data is given in 

(Lu 1993).  

The stochastic cumulative damage model outlined in the previous subsection is 

primarily focused on using time-to-failure data. However, the inherent properties of the 

stochastic model allow for utilizing degradation evidence data. Given time-to-failure 

data, one estimates the parameters of the gamma distribution characterizing the reliability 

characteristics of the population. The estimated parameters, such as the mean, median 

and variance, are basic prognostic quantities used to predict remaining useful life of a 

typical item belonging to the population. However, the RUL prognosis based upon the 

estimated distribution parameters values is of a static nature since it takes into account 

only the most general aspects of the item's reliability.  

If one is able to accurately assess the item's current damage state, an RUL 

prediction more certain than the population-average estimates can be obtained. In the 

following the usage of condition-monitoring measurements in the cumulative damage 

model is outlined. 

Damage is assumed to be a discrete quantity taking the values from Set d = 

{1,2,3,… b}, where State b represents a failure state. The damage evolves in the domain 

of duty cycles. A duty cycle is defined to be a repetitive interval of operation, during 

which a unit-size damage may accumulate. For example, duty cycles may be given as 

calendar time units (days, weeks, months), operational time (time in air, mileage), and 
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usage intervals (number of in-field missions, fuel cycles etc).  The damage model is 

hence a finite-state and discrete-time process.  

Let q be the probability that damage takes a unit increment during a duty cycle. 

The probability that damage remains unchanged is obviously equal to p = 1 – q. Damage 

increases one unit at a time until State b is reached. Once State b is attained, a state of 

failure is declared and the cumulative damage process is stopped. The probability q is 

assumed to be constant through the entire evolution of damage. This assumption seems 

reasonable if the only available reliability information is time-to-failure data observed 

over a sample of similar items. No other data regarding the trajectory form of degradation 

evolution are available.  

Since the failure event is defined to be the time of entering State b, the time-to-

failure is taken to be a random variable distributed according to a gamma distribution, 

whose PDF is given by (3.7.1). 

Apparently, the gamma distribution parameters can be rewritten in accordance 

with the parameters of the cumulative damage model as follows  

k = b ,  
q

1=Θ  (3.7.2.1) 

The mean time-to-failure (MTTF) is expressed using the gamma distribution parameters  

q

b
kMTTF =Θ=   (3.7.2.2) 

The variance of time-to-failure (TTF) is also easily expressed using the gamma 

distribution parameters. 

2

2)(
q

b
kTTFVar =Θ=   (3.7.2.3) 

Although the variance gives a reasonable representation of uncertainty associated 

with the predicted time-to-failure, it seems more appropriate to use a percentile-based 

representation for uncertainty since the gamma distribution tends to be skewed in the case 
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of small values of b. The following interval-based representation of uncertainty is used in 

this work:  

PIα = [ Pα/2(b,1/q)  P1-α/2(b,1/q) ] (3.7.2.4) 

where PIα is the (1–α)×100% prediction interval, Pα(b,1/q) is the αth percentile of the 

gamma distribution with parameters b and 1/q.  

The developed model is extended with one additional parameter if one is able to 

observe the current damage state of the item. Let yobs be the observed current damage 

state of the item. Taking into account the new parameter one can rewrite the mean time-

to-failure and the (1-α)×100% prediction interval as follows. 

q
obsyb

MTTF
−=  (3.7.2.5) 

PIα = [ Pα/2(b–yobs, 1/q)  P1-α/2(b–yobs, 1/q) ] (3.7.2.6) 

Figure 14 illustrates how the RUL prediction is affected by taking into account 

the unit's current state of damage. The shaded area represents 95% prediction intervals 

(PI) for the individual RUL obtained using equations (3.7.2.5-3.7.2.6). The dashed lines 

are the RUL prediction intervals calculated using population average reliability 

characteristics. It can be easily seen that the individual RUL prognosis tends to be more 

certain than the average reliability characteristics of the population. At the early phase of 

the item's operational life the individual RUL prognosis is essentially the same as the 

population mean time-to-failure. Uncertainty of the initial RUL prediction also coincides 

with that of the population-based prediction. However, as time proceeds, the RUL 

prediction becomes more certain compared to the population-based prediction intervals.  

It is noteworthy that the individual RUL prediction uncertainty depicted in Figure 

14 as a shaded area is only due to variability of operational conditions and randomness of 

the item's inherent properties. In other words, there is no uncertainty associated with the 

parameters of the cumulative damage model (b, q, yobs).  
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Figure 14 Remaining Useful Life Prediction Intervals calculated using the current 

damage state of the item. 

The RUL prediction uncertainty pictorially shown in Figure 14 is the best 

uncertainty achievable in the given cumulative damage model. Any additional source of 

variability causes the final RUL prediction to be more uncertain.  

3.8. Concluding Remarks 

The criteria and conditions upon which an individual time-to-failure prognosis 

will give a more certain prediction compared to the population-distribution-based 

prognosis are of primary interest in performing the remaining useful life (RUL) 

estimation. 

The major sources of uncertainty encountered in performing prognostic routines 

are outlined in the next chapter. An uncertainty analysis regarding the uncertainty effects 

upon a prognostic model is performed. Also, the next chapter introduces the criterion, 

upon which the practitioner can decide whether the individual degradation pathway will 

provide an RUL prognosis more certain than that based on the population average 

characteristics.  
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4.  UNCERTAINTY ANALYSIS OF PROGNOSTIC MODELS 

The following are the sources of uncertainty which are usually encountered in 

degradation-based reliability modeling:  

•  Variability of the severity and order of duty cycles loads.  

•  Variability of the initial level of component degradation. 

•  Variability of the degradation state, which is considered to be critical and 

unsafe for any further use of the component. 

•  Uncertainties in inspection routines. 

Randomness of the severity and order of duty cycles loads is usually the main 

contributor to the end result uncertainty since the duty cycles loads are likely to be driven 

by completely random phenomena such as environmental conditions (temperature, 

humidity, etc.), and operational conditions imposed by the operating regimes that are 

performed to accomplish the mission. For example, each item may have its own 

particular environmental and loading conditions. Thus, the item's pathways may exhibit 

significantly different degradation rates. In practice, one can encounter a situation in 

which the degradation pathways are subject to a great deal of variation even if the 

external factors tend to be relatively stable. In such cases the major source of variability 

is usually due to the complex internal structure of the materials in which the degradation 

process¸ such as corrosion, creep of metals, etc., takes place. Various particularities of the 

item's internal properties cause the degradation process to vary from item to item 

regardless of the external conditions. 

Essentially this modeling uncertainty contributor is the goal of a prognostic 

model. If the prognostic model is able to reasonably reflect the random behavior of the 

driving forces for the degradation process, the model is expected to provide a good 

prediction of the reliability characteristics in the future. 
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Uncertainties in the initial and terminal states of the component's lifespan are 

closely related to each other, since they quantify the lack of knowledge of the component 

degradation state at different phases of its operational life. The item's initial level of 

damage is determined by such factors as differing material intrinsic properties, 

installation procedures, storage history, and any prior usage.  

In many practical situations the initial degradation state is assumed to be of minor 

importance since brand-new items usually exhibit a relatively small variation of the initial 

inherent properties. Diversity in the reliability characteristics tends to manifest itself 

mostly through the variability of the degradation rates.  

4.1. Uncertain Measurements of Degradation Parameter 

Of practical interest is the uncertainty associated with the condition monitoring 

observations reflecting the current damage state of the item, yobs. This type of uncertainty 

is usually determined by the accuracy of monitoring sensor equipment that provides 

health condition metrics. 

Although uncertainty in inspection procedures can be thought of as an uncertainty 

source similar to the initial and terminal states uncertainties, the origin of the imperfect 

inspection procedures can be different from that of the initial and terminal states variance. 

Measurement sensor limitations cause the degradation state estimation to be uncertain. 

Uncertainty in the estimate of the current degradation state can significantly deteriorate 

the end result prediction. A reliability prediction model is expected to have a critical level 

of uncertainty in measurements such that the prediction model supplied with highly 

uncertain measurements is not able to provide a prediction which would be more certain 

than that provided by the population average reliability characteristics such as the mean 

time-to-failure and the associated standard deviation. 

Assuming that the current damage state yobs is given with some degree of 

uncertainty one has to deal with additional source of variability in assessing the final 

RUL prediction uncertainty. The next section introduces a usefulness criterion for 

degradation evidence data. 



 64 

4.1.1. Criterion of Usefulness 

Given a stochastic model of cumulative damage one needs to know which 

certainty level should be attained in measuring the current system "health" status to 

produce an RUL prediction more certain than the population average characteristics. 

The following criterion is developed to assess usefulness of using current "health" 

condition measurements to predict the system remaining useful life:  

C(t) = 
P

RUL

U

tU )(
 (4.1.1.1) 

where URUL(t) is the uncertainty associated with the RUL prediction that takes into 

account the current damage state at time t, Up is the uncertainty associated with the 

population average time-to-failure. The latter quantity is usually constant and not time-

dependent, whereas the former quantity depends on time since it includes the current 

damage state yobs, which gradually changes through the system’s lifespan. 

Apparently, if the criterion value is less than unity the individual RUL prediction 

produces a result more certain than the population-based reliability characteristics. The 

values close to unity indicate that the individually made prognosis is comparable to the 

average time-to-failure in terms of certainty. If the criterion value happens to be larger 

than unity, the current health condition observations do not benefit the RUL prognosis 

with respect to certainty. 

The criterion can be rewritten in terms of the Markov chain-based cumulative 

damage model parameters as follows. 

( ) ( )
( ) ( )qbPqbP

qtybPqtybP
tC

/1,/1,

/1),(/1),(
)(

2/2/1

2/2/1

αα

αα

−
−−−=

−

−  (4.1.1.2) 

where Pα(b,1/q) is the αth percentile of the gamma distribution with parameters b and 1/q, 

y(t) is the damage state observed  at time t. The following section gives a simulated data 

example illustrating the behavior of the developed criterion at different levels of 

degradation state uncertainty. 
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4.1.1.1.Illustrative Example  

This section presents an example of using the cumulative damage model along 

with the observed current damage state of the system. The following particular values of 

the cumulative damage model are estimated from the reliability data published in 

(Bogdanoff, 1985): 

b = 38,  q = 0.0933 (4.1.1.1.1) 

The data represent lifetimes of test specimens of aluminum strips subjected to 

cyclic loadings at certain amplitude. The total number of 101 specimens is enough to 

claim that the parameters (4.1.1.1.1) are estimated certainly. One duty cycle of the 

lifetime data is taken to be 1000 deflections applied to a specimen.  

The estimated parameters imply that the damage space is of 38 different levels of 

damage from 1 through 38. The probability that the item suffers a unit-size damage 

during a duty cycle is equal to 0.0933. Figure 15 shows the RUL prediction intervals 

provided by the cumulative damage model having uncertain estimates of the current 

damage state. The uncertainty associated with the measurements of the current damage 

state is expressed in terms of relative accuracy, which is given by 

AR = %100×
b

err
 (4.1.1.1.2) 

where b is the critical threshold value, which is the maximum achievable damage state; 

err is the absolute error in estimating the current damage state, ,...}2,1,0{ ±±∈err .  

Figure 15(a) represents the case where the current damage state is determined at 

relative accuracy of 5.3%. Figure 15 (b) and 15(c) show the prediction intervals for the 

cases where the relative accuracy is 10.5% and 18.4%, respectively. 

It can be easily seen that a relative accuracy as low as 5.3% hardly affects the 

RUL prediction.  The uncertain estimates of the current damage state have more 

influence on the RUL prediction at the moments of time close to the failure.  However, 

the RUL uncertainty still remains significantly better than that of the population-based 

time-to-failure estimate. 
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In the case of larger uncertainty, the individual RUL prediction becomes as 

uncertain as the population average reliability characteristics. Figure 15(b) shows such a 

case. For this particular cumulative damage model the relative uncertainty of 10.5% 

causes the individual RUL prediction to be comparable to the population-average 

reliability parameters. 

For measurement uncertainty larger than 10%, the cumulative damage model 

cannot provide a reasonable RUL estimate since the total prediction uncertainty is nearly 

twice as larger as that of  the population-average estimates.  

Figure 16 summarizes the usefulness criterion values calculated at different levels 

of uncertainty. The horizontal line indicates the unity level for the usefulness criterion. 

Being above the unity level the usefulness criterion suggests that the RUL prognosis 

should be based upon the population-average reliability estimates rather than upon an 

individually made prediction.  A criterion value below the unity level indicates that the 

usage of individual health condition data is beneficial in terms of RUL prediction 

uncertainty.  

The simulation was performed for several levels of measurement uncertainty. 

From visual analysis of Figure 16, it can be concluded that a measurement uncertainty 

less than 20% does not significantly deteriorate the RUL prognosis. However, if one 

measures the current health condition of an item at the uncertainty level of 20% or higher, 

the usage of condition health measurements does not benefit the RUL prognosis in terms 

of certainty. It should be noted that the particular values of the usefulness criterion were 

found in conjunction with this particular model of cumulative damage. 
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a) 

 
b) 

 
c) 

Figure 15. The RUL prediction intervals calculated taking into account the uncertainty 

associated with the current damage state. 
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Figure 16. The usefulness criterion evaluated at several  levels of current damage state 

uncertainty. 
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4.1.2. Usefulness Criterion for a Linear Degradation Model 

A linear functional form of an item's degradation pathway is given by  

Y(t) = β1t + β0 (4.1.2.1) 

Y* denotes the critical threshold of the degradation parameter:  

Y* = Y(T*) (4.1.2.2) 

Time T* is defined to be the time of failure for a particular item.  To take into 

account the first two variability sources the parameters of the linear degradation model 

(4.1.2.1) are taken to be random variables representing random deviations among the 

items model. The simple assumption in regard the random parameters is that they are 

Gaussian with mean �β = [ ]
10 ββ µµ , and covariance 	
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ββββ ~ N(�β, ΣΣΣΣβ) (4.1.2.3) 

A degradation pathway may exhibit random deviations from the linear model. The 

random deviations can be due to a process noise and random measurement errors. In 

practice it is difficult to differentiate these noise sources. Hence, it is reasonable to 

consider the two noise components as one single element accounting for all kinds of 

random deviations.  

The degradation model accounting for the random component is given by 

Y(t) = β1t + β0 + ε(t) (4.1.2.4) 

where ε(t) is a random Gaussian variable,  ε ~ N(0, σε
2) 

Figure 17 shows a typical example of a collection of degradation pathways. The 

times that the degradation pathways cross the critical threshold form a time-to-failure 

distribution, which gives the experimenter an estimate of the time-to-failure and 

associated prediction uncertainty. The mean-time-to-failure and its 95% confidence 

interval are shown in Figure 17 by the dotted vertical lines. 
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Figure 17. Collection of degradation pathways (random processes) forms a time-to-

failure distribution if the failure event is defined to be the time moment of crossing the 

critical threshold 

The model uncertainty associated with the critical threshold is assumed to be 

negligible. Uncertainty effects attributed to the random threshold will be considered in 

Section 4.2. In this setting, it is intuitively understandable that the potential benefit of an 

individual prognosis completely depends upon the uncertainty associated with the entire 

collection of degradation pathways ( )
21

22 , ββ σσ  and that of a single degradation trend 

(σε
2).  A large variance in a single trend may cause extrapolated values to have a 

prediction interval as large as the variability of the entire collection of degradation 

pathways. Such a situation is shown in Figure 18. The greenish colored area includes 

95% of the degradation pathways observed from the population. The light blue colored 

area is 95% prediction intervals computed on the particular degradation pathway 

(prognostic trend). 

As can be seen, the uncertainty in the RUL prognosis based upon the individual 

prognostic trend is comparable to the uncertainty of the RUL prognosis based upon the 

entire collection of degradation pathways. 
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Figure 18 The TTF prediction based upon the individual degradation pathway (the blue 

shaded area) turns out to be as uncertain as the population average time-to-failure (the 

green shaded area). 

A discussion of similar issues related to lifetime data uncertainties is given in 

(Gertsbakh, 1967). The authors use the term "signal-to-noise ratio", which is the ratio of 

mean lifetime to standard deviation of lifetime. The signal-to-noise ratio serves as a 

criterion in determining if a deterministic model should be used to make the time-to-

failure prediction. Large values of the signal-to-noise ratio imply that the random 

fluctuations from the mean are minor so that a deterministic model is appropriate for 

time-to-failure prediction. Otherwise, a stochastic model is more appropriate since it 

accounts for random fluctuations that affect the item's degradation. 

The cross-section of the green-shaded area along the axis Y (Figure 18 and Figure 

19) can be expressed as 

U2
Y= (t1-α, n )

2( )
21

22
ββ σσ +t  (4.1.2.5) 

where t1-α, n is (1–α)th  percentile of the t-distribution with the degree of freedom n, which 

is the number of pathways observed. 
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Equation 4.1.2.5 determines the uncertainty associated with the mean degradation 

level attained by an average item up to time t. The uncertainty associated with an 

individual degradation pathway is given by  

Uk
2 = (t1-α, k)

2 σ2
ε  ( I  + Xp V Xp

T  ) (4.1.2.6) 

where t1-α, k is (1–α)th  percentile of the t-distribution with the degree of freedom k, k is 

the number of available observations on the individual pathway, V is the inverse 

covariance matrix computed according to V = (XTX)-1, and X is the design matrix of 

available measurements on the individual pathway: 

T

nttt
X 	




�
�


�
=

�

�

21

111
 (4.1.2.7) 

Xp = [1 tp] is the query point for which the uncertainty Uk is calculated.  

It is reasonable to assume that the ratio of the two uncertainties (4.1.2.8) can serve 

as a criterion to determine if an individual degradation pathway produces a RUL 

prediction that is more certain than the population average time-to-failure:  

 

 

UY(t) 

Time, t 

D
eg

ra
d

at
io

n 

 

Figure 19. The uncertainty associated with the collection of degradation paths 
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C = Uk / UY  (4.1.2.8) 

If C > 1, the individual degradation pathway uncertainty is larger than the 

population average uncertainty. This situation can be due to a relatively large value of σε 

or a great deal of uncertainty related to the term XpVXp
T. In the latter case it can be 

expected that more informative observations of the individual degradation process will 

bring new information sufficient to make a more certain prediction.  

An example of a typical behavior of the usefulness criterion is shown in Figure 

20. The ratio is evaluated at different moments of time. At the times when few data are 

available the uncertainty ratio is greater than unity, which implies that the population-

average prognosis will produce a more certain result. At time t = 3.18 one has such a 

number of informative observations that an individual degradation-based prediction made 

for a time moment later than approximately 3.5 will be certain more than the population-

average prediction. 

4.1.3. A Bayesian Method to Reduce Uncertainty Effects due to Imperfect 
Measurements. 

This section introduces a Bayesian method developed to reduce uncertainty 

effects due to imperfect measurements of the system health status. The method is 

developed in conjunction with a linear degradation model. 

The linear degradation model is assumed to be of the following form.  

y = β1t + β0 + ε(t), ε(t) ~ N(0, σε
2) (4.1.3.1) 

where β1 is the average degradation rate, which is assumed to be constant, and β0 is the 

initial level of damage attained by the item. The vector notation ][ 10 βββ =  is used 

further in the remainder of this section. The random component ε(t) represents a 

stationary random noise attributed to measurement errors and random fluctuations of the 

degradation rate. These two random components are given as one stochastic element 

since they are difficult to differentiate.  
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Figure 20. The uncertainty criterion calculated at different time moments. 

The elements of the vector ββββ are of a random nature attributed to the randomness 

observed among the items. The random fluctuations in β0 correspond to random level of 

initial damage in the item. The random fluctuations in β1 correspond to a stochastic 

nature of the item's inherent properties that determine the item's behavior with respect to 

degradation mechanisms.  

Having observed the measurements constituting the particular item's degradation 

pathway Yk = {yi: i=1,2,…n} one is able to assess the item's damage accumulation model 

given by Equation 4.1.3.1. Since the stochastic component ε in the model (4.1.3.1) is 

assumed to be Gaussian, the estimate of ββββ is obtained using the least-squares criterion:  

( )( )2

1
01minarg �

=
+−=

n

i
ii ty ββ

β
�  (4.1.3.2) 

Ordinary least squares (OLS) solution to the minimization problem (4.1.3.2) is given by 

=ˆ (XTX)-1(XTY), (4.1.3.3) 

where the design matrix X is of the following form 
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T

nttt
X 	
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=
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21

111
 (4.1.3.4) 

The prediction for a query point Xp = [1 tp] is made according to the following expression 

of a (1–α)-level prediction interval: 

Yp = ppSnp XXtX V'1ˆ
2/,2 +± − α  (4.1.3.5) 

where, tn-2, α/2 is (1–α)th percentile of the Student-t distribution with n-2 degrees of 

freedom ,  V = (XTX)-1,  s is an estimate of σε. 

The prediction given by Equation 4.1.3.5 is derived from the following properties 

of the least-squares regression coefficients (Tamhane 2000) 

( )ˆ =E , ( )
XX

Var
T

2
ˆ εσβ =  (4.1.3.6) 

An early prediction of the failure time is subject to a great deal of uncertainty 

since the data available at the time point when the impending failure indicators just 

become evident do not suffice to produce a narrow prediction interval in accordance with 

Equation 4.1.3.5. Such a situation is shown in Figure 21. The thick blue-colored curve is 

the degradation pathway observed to this point for the particular item. The cyan-colored 

curve is the pathway along which the item's degradation will proceed. As can be seen, the 

OLS prediction, which is shown by the green-colored line, gives a relatively good point 

estimate of the time moment when the item's degradation exceeds the threshold. 

However, the 95% prediction interval associated with the estimate turns out to be nearly 

twice as large as that computed using the population-average statistics from Figure 21.  

The vertical dotted lines indicate the estimate of the population-average time to failure 

and its 95% confidence interval. 

In the case shown in Figure 21 the degradation pathway data observed for the 

individual item is of no use in terms of obtaining an accurate individual RUL prognosis. 

Random fluctuations in the individual degradation rate are the main factor contributing to 

the individual prognosis uncertainty. The obvious approach to make the RUL prediction 
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more certain is to use prior information about the probabilistic parameters characterizing 

randomness of the degradation rate β1 and the initial damage level β0.  

The prior information source is usually given in the form of a collection of 

historical measurements Dhist taken over several items akin to the to-be-predicted 

exemplar. The Dhist is usually a collection of measurements obtained from laboratory 

testing or in-field telemetry equipment. The Dhist can be represented as a NK × matrix if 

the same number of measurements are sampled from each item (N is the number of 

measurements per item, K is the number of observed items). In general, the number of 

observations may vary for different exemplars. 

The collected information is used to estimate the mean value and variation of the 

degradation rates observed on the collection of items. The following equation assumes 

that the parameters ββββ are normally distributed with mean β  and covariance βΣ : 

 

 

Figure 21. The vertical dotted lines indicate the estimate of the mean time failure 

obtained from the population-based estimation.  
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ββββ ~ ( )ββ Σ,N  (4.1.3.7) 

The natural estimates of the parameters are the sample mean and variance 

calculated on historical data Dhist.: 

�
=

=
K

i
i

K 1

1ˆ ββ  (4.1.3.8) 

where βi is an estimate of the model parameters ββββ for the i-th exemplar from the 

collective database Dhist. The sample variance is given by 

( ) ( )βββββ −−
−

= ~~

1

12 T

K
S  (4.1.3.9) 

where β~ = [ββββ1, ββββ2, … ββββK]T is a K × 2 matrix of estimated parameters ββββi = [βi0 βi1]
T of the 

initial damage level and the degradation rate at the collection of items similar to the to-

be-predicted object. Usually the number of items K can be large enough to provide 

accurate estimates of the parameters ββ Σ, .  

Using the estimates, Equ. 4.1.3.8, and 4.1.3.9, one is able to use the estimated 

parameters as a prior knowledge in the degradation model given by Equ. (4.1.3.1). The 

mathematical formalism used to integrate the prior parameters into the linear model is 

Bayesian Linear Regression. This technique is described in the following subsection.  

4.1.3.1.Bayesian Linear Regression 

The objective of the Bayesian methodology is to construct a model for the 

relationship between parameters ΘΘΘΘ and observable data Y, and to estimate the probability 

distribution of parameters given the data Y. Also, Bayesian analysis can provide the 

predicted distribution of unobserved data.  

Bayesian analysis starts with a model for the joint probability distribution of ΘΘΘΘ 

and Y, p(ΘΘΘΘ,Y). The simplest example of such a model is the normally distributed 

population, in which p(ΘΘΘΘ,Y) is the Gaussian probability distribution function with mean 
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and variance given by the parameter ΘΘΘΘ = (�, σ2). Y is a sample of independent 

measurements. The p(ΘΘΘΘ,Y) can be decomposed into two elements: 

p(ΘΘΘΘ,Y) = p(ΘΘΘΘ) p(Y|ΘΘΘΘ) (4.1.3.1.1) 

Conventionally, p(ΘΘΘΘ) is called the prior distribution of ΘΘΘΘ, p(Y | ΘΘΘΘ) is called the 

likelihood function, which is the probability of observing the data Y given a particular 

value of ΘΘΘΘ. The well-known Bayes theorem gives the posterior probability distribution 

p(ΘΘΘΘ | Y): 

p(ΘΘΘΘ | Y) = p(ΘΘΘΘ) p(Y|ΘΘΘΘ) / p(Y) (4.1.3.1.2) 

where p(Y) is the integral of p(ΘΘΘΘ) p(Y|ΘΘΘΘ) over all possible values of ΘΘΘΘ.  

To perform the Bayesian analysis it is convenient to represent the linear 

regression model in the following form: 

( ) ( )ββ �X�X��Y ,~,, N  (4.1.3.1.3) 

Given parameters ββββ and ΣΣΣΣβ and predictors X, the distribution of the response Y is 

a normal distribution with the mean value of Xββββ and variance ΣΣΣΣβ. If a univariate response 

is considered, the variance matrix is taken to be equal σ2.  

The next step is to formulate the prior distribution of the parameters ββββ and σ2. A 

commonly adopted approach is to use a non-informative prior distribution: 

p(ββββ,σ2) ∝  1/σ2  (4.1.3.1.4) 

When using a non-informative prior, one assumes that the joint probability 

distribution of the parameters is a flat surface with a level proportional to 1/σ2. In 

Bayesian analysis-related literature, it is stated that the choice of a non-informative prior 

does not greatly affect the outcome in many real-world cases (Gelman 1998). The effect 

of a large prior σ2 tends to be overshadowed by that of the likelihood function computed 

over many informative observations. The posterior distribution of ββββ given σ2 is expressed 

as  
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ββββ | σ2, Y ~ N( βE, Vβσ2 ) (4.1.3.1.5) 

where  βE = (XT X)-1 XTY,  Vβ = (XT X)-1. 

The marginal posterior distribution of σ2 is  

σ2 | Y ~ Inverse χ2 (n-k, s2)  (4.1.3.1.6) 

where n is the number of observations and k is the number of parameters to be estimated. 

The inverse χ2 distribution (Hogg 1978) is defined by two parameters, which are the 

degrees of freedom ν and the scale factor γ2. The density probability function of the 

inverse chi-square distribution is given by 

( ) 2/1
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2/2
2 2
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2/

)2/(
),;(

ν

ν
νγ

ν
νγγν

+

�
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Γ
=

x

x
xf  (4.1.3.1.7) 

where x > 0, ν is the degree of freedom, γ2 is the scale factor. The inverse chi-square 

probability distribution characterizes the random variable  

y = 
x

νγ 2

 (4.1.3.1.8) 

where x is a chi-square distributed random variable with ν degrees of freedom, x ~ χ2(ν) 

The scale factor s2 in (4.1.3.1.6) is estimated according to 

s2 = ( ) ( )E

T

Ekn
ββ XYXY −−

−
1

 (4.1.3.1.9) 

The marginal posterior distribution of the parameters ββββ given the data Y is  

ββββ | Y ~ Student t (n-k, βE, s2) (4.1.3.1.10) 

where Student_t(k, �, σ2) is the Student's t-distribution characterizing the random 

variable  

T = 
nS

x

n

n µ−
 (4.1.3.1.11) 
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where nx  is the sample mean, Sn is the sample variance. The sample is assumed to be 

taken from the normal distributed population N(�,σ2). 

The predictive distribution given a new predictor point Xp is characterized by the 

following mean and variance. 

E[Yp| Y] = Xp ββββE  (4.1.3.1.12) 

Var(Yp| σ2, Y) = (I  + XpVβXp
T) σ2  (4.1.3.1.13) 

where I  is an identity matrix. The variance is essentially of two components: Iσ2, which 

is the sampling variance characterizing randomness in the available observations, and 

XpVβXp
T σ2, which is the uncertainty associated with the estimates of ββββ. The marginal 

posterior distribution of Yp is given by  

Yp | Y ~ Student_t (n-k, XpββββE, (I  + XpVβXp
T) σ2 ) (4.1.3.1.14) 

As can be seen, the OLS estimates obtained through the classical regression 

analysis are similar to those computed according to the Bayesian approach with a non-

informative prior. However, the Bayesian regression analysis is aimed at estimating a 

conditional posterior distribution for the parameters and a predictive distribution for the 

model, whereas the classical regression analysis is focused on calculating point estimates 

for parameters and predictions as well as the variances of those estimates. Although 

classical regression analysis derives the formula through maximization of a likelihood 

function for model errors, the computations turn out to be similar. The classical estimates 

of ββββ and σ2 are equal to ββββE and s2, respectively. The standard error estimate for ββββ is Vβs
2.  

If one possesses two different sources of information regarding the phenomenon 

under study, it makes sense to combine the information sources into a single model to 

estimate parameters and compute predictions. In terms of the damage accumulation 

model considered in this study, the different sources are the collective historical data 

observed over a fleet of items and the degradation indicator data observed at a particular 

item. Possessing information drawn from the collective database of historical 
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measurements, one is able to formulate and then make use of an informative prior in the 

Bayesian regression framework.  

The Bayesian linear regression with an informative prior assumes two statistically 

independent data sets to be the prior and the likelihood data set.  Conveniently, the 

informative prior distributions take the following form: 

ββββ | h ~  N(ββββ, h-1V ) (4.1.3.1.15) 

h ~ Γ (ν/2,  νs2 / 2 ) (4.1.3.1.16) 

where h = 1/σ2,  ν = n-k,  Γ (a, b ) is a gamma distribution with 2 parameters. The gamma 

distribution is represented by the following probability density function (Tamhane, 

2000): 

)(
),,(

/
1
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e
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a

Γ
=Γ

−
−  (4.1.3.1.17) 

where a>0 is the shape parameter and b > 0 is the scale parameter. 

The underscore notation indicates a parameter for a prior; the upperscore notation 

indicates a parameter for a posterior. The defined prior distributions (4.1.3.1.15), 

(4.1.3.1.16) constitute a conjugate prior, which is such a distribution that being combined 

with the likelihood produces a posterior distribution belonging to the same family of 

distributions as the prior. In addition to being a conjugate prior, the distributions 

(4.1.3.1.15) and (4.1.3.1.16) are a natural prior in the sense that the defined prior is of the 

same form as the likelihood function.  The natural conjugate prior is given by  

ββββ, h ~ NG (ββββ, V, ν/2 , νs2/2 ) (4.1.3.1.18) 

where NG(a,b,c,d) denotes a normal-gamma joint distribution of the parameters ββββ and h. 

The posterior distribution of the parameters given data Y is the following. 

ββββ, h | Y  ~  ( )2/,2/,, 2sNG ννV�  (4.1.3.1.19) 

where  
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ββ

ννν  (4.1.3.1.21) 

The following subsection presents an example illustrating the usage of the 

Bayesian approach to the RUL prediction for the linear damage accumulation model 

(4.1.3.1). The priors for the model parameters β0 and β1 are estimated from the historical 

measurements.  

4.1.3.2.Example  

To simulate the historical measurements, 20 degradation pathways are generated 

using the following parameters: 

ββββ ~ N [ ] [ ]( )I22 1.008.0,2.12.0 , ε ~ N(0, 0.32) (4.1.3.2.1) 

Observing a particular item's degradation pathway, one needs to extrapolate the 

trend to estimate the time of failure. A relatively small number of informative 

observations available at the early phase of the monitoring routine do not allow for an 

accurate evaluation of the linear model. As can be seen in Figure 22a, not taking into 

account the historical data observed on other items causes the TTF prediction to be 

greatly uncertain when compared to the uncertainty associated with the Bayesian 

prediction.  As more observations become available the effect of the prior information 

becomes weaker. At some point the effect of informative observations outweighs the 

prior information, so that the OLS regression prediction becomes identical to that of 

Bayesian regression, as shown in Figure 22b. 

To perform a comparison in a quantitative manner, Figure 23 shows the TTF 

predictions along with their confidence intervals. The population average TTF prediction 

remains unchanged since it does not take into account the health condition measurements 

taken at a particular item. The OLS regression TTF prediction is quite uncertain before t 

= 4. In this case, there is no reason to use the OLS regression-based TTF prediction 
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before t = 2.5 since it is outperformed by that based on the population average TTF. 

However, the Bayesian regression TTF prediction provides a result as certain as the 

average population based TTF even if few observations are available (t<2).  

As the data collection proceeds, the difference between the OLS and Bayesian 

regression predictions becomes smaller. As time nears the actual failure, the two methods 

provide essentially equal results. The following section considers the notion of a critical 

degradation threshold given in a probabilistic manner. The uncertainty effect imposed by 

a stochastically defined critical threshold upon the end result prediction is quantified. 

4.2. Random Deviations in Failure Threshold 

If the precise critical threshold value is not readily available, one has to estimate it 

using any available reliability data.  When estimating the model parameters that include 

the critical threshold, one deals with variability in the available data. Since the variability 

tends to propagate into the estimates, the estimation of the critical threshold is often 

imperfect.  A probabilistic representation of the critical threshold is the only way to 

numerically express the actual knowledge of the threshold. 

The uncertainty associated with the critical threshold is one of the major 

contributors to uncertainty associated with the RUL estimate provided by the prognostic 

model. Since uncertainty-related issues are a crucial part of reliability prediction 

modeling, a particular emphasis should be made in modeling the uncertainty associated 

with the degradation/health status, which is considered to be critical. Many models used 

in degradation data analysis make use of the notion of a critical threshold. Oftentimes the 

critical threshold is assumed to be deterministic, primarily because this assumption 

simplifies the reliability computation.  

Although a deterministic representation of the critical threshold can be absolutely 

reasonable in some cases, there are situations where a probabilistic description is likely to 

be more appropriate.  For example, if the designer is not aware of the precise level of 

degradation that causes a failure it is appropriate to represent the critical threshold as a 

PDF that reflects the designer’s vague knowledge about possible critical values.   
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Figure 22. OLS prediction versus Bayesian prediction. a) Few observations are available; 

b) Many observations are available 
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Figure 23. Time-to-Failure values calculated according to three different methods: 

Population-based Average TTF, OLS regression based TTF and Bayesian regression 

based TTF. 

Additionally, the system or component may be used in a variety of applications 

each of which requires some particular level of critical degradation. In such a case, it 

seems reasonable to define the critical threshold as a range of critical values having 

certain probabilities.  

Consider the critical threshold as a random variable distributed according to a 

certain probability distribution function. Knowledge of the distribution function may 

come from technical specifications, expert opinions, engineering judgment, experimental 

data observed in a laboratory and/or in-field testing.  

Let FY(y) be the cumulative distribution function (CDF) of the random critical threshold.  

]*Pr[)(
*

yYyF
Y

<=  (4.2.1) 

where Y* is the random threshold value for degradation y. 
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is the probability density function (PDF) of the random threshold Y*. 

Let RM( t | �, Y*) denote the reliability function predicted by the degradation 

model M(�, Y*), which has a vector of parameters �, and critical threshold value Y*. For 

the sake of brevity, the parameter vector � will be skipped in the remainder, since the 

effect of other parameters is beyond the dissertation’s scope. 

Obviously, to take into account the randomness of the critical threshold, one 

needs to integrate the parameter Y* out of the reliability function RM( t | �, Y*),  as 

shown in the following expression. 

dyyfytRtR
y

YMM �
∈

×=
Y

)()|()(
*

 (4.2.3) 

where Y is the domain of all possible threshold values. 

Uncertainty effects attributed to the random critical threshold will be investigated 

in the cases of three degradation models. These are  

1.  Markov chain (MC)-based cumulative damage model,  

2.  Weiner process with drift, and a 

3.  Linear Path Model with lognormal random coefficients. 

Each of the models belongs to the family of cumulative degradation models, in 

which degradation is assumed to accumulate through the unit’s lifespan. The cumulative 

degradation eventually causes the unit’s failure.  

4.2.1. A Markov-Chain based Model 

The uncertainty associated with the threshold Y* is to be expressed as a discrete 

probability mass function. If the user has an unbiased estimate of the mean threshold 

value, it is reasonable to use a symmetric probability mass function. 
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To quantify the effect of the uncertain threshold upon the TTF prediction, the TTF 

distribution that accounts for the uncertain threshold is given as follows: 

�
∞
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** )()|()(
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kYPkYtFtF  (4.2.1.1) 

where P(Y* = k) is the probability that the critical threshold value is equal to k,  F(t |Y*=k) 

is the TTF CDF predicted by the MC-based model with the deterministic threshold value 

of k. 

The probability mass function (PMF) characterizing the threshold uncertainty is 

taken to be a function resembling the Gaussian normal distribution as shown in Figure 

24. 

The expression for the time-to-failure CDF that takes into account the uncertainty 

in the threshold is given by: 
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Figure 24. The non-skewed probability mass function that is used to represent the 

uncertainty associated with the unbiased estimate of the critical threshold. 
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where γ(y,t) is the incomplete gamma function, Γ(y) is the gamma function.  
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1 )exp()( dxxxy y     (4.2.1.3) 

4.2.2. General Path Model (Random Log-normal Coefficients) 

A brief description of the general path model is given as follows. The observed 

sample degradation yij of unit i at time tj is 

yij = D(tij,ββββi) + εij  (4.2.2.1) 

where D(tij,ββββi) = D(tij, β1i, β2i, … βki) is the actual degradation level of Unit i at time tij, 

and εij is a normally distributed variable representing random deviations for Unit i. The 

vector ββββi = [β1i, β2i, …βki ]  is composed of unknown parameters characterizing the 

degradation of Unit i. Some of the parameters ββββi are random from unit to unit. The 

randomness is attributed to unit-to-unit variability within the population. On the other 

hand, some of the parameters ββββi can remain constant for all units, thus representing 

properties common for the entire population. 

Let Df denote the critical degradation level, exceeding which, the unit is said to 

fail. The critical level can be defined as a precise level of degradation if one is able to 

accurately define the failure event in terms of the degradation metric. For example, a light 

emitting diode is said to fail if its emitting power drops below some percent of the initial 

power (Fukuda 1988). This type of failure event is called a soft failure.  

In some situations, failure events cannot be easily defined in terms of a 

degradation measure. In such cases, the item just stops working. Failure events do not 

occur at the same level of degradation because of unit-to-unit variability in the 

population. In this case, the general path model should provide a probability distribution 

for the critical level Df.  

Given the model for D(t) one is able to derive a failure-time probability 

distribution implied by the general path model: 
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F(t) = Pr[T < t] = Pr[D(t,β1,β2, … βk) > Df) ] (4.2.2.2) 

In this example a linear degradation model of the following form is considered. 

D(t) = β1 + β2t  (4.2.2.3) 

where β1 is the constant parameter representing the initial degradation in the unit. The 

initial degradation level is assumed to be identical for each unit in the population. In 

practice this assumption is reasonable if the initial degradation variability is small 

compared to the variability in operating conditions the items will encounter in their 

operational life. β2 is the random parameter representing the degradation rate, which 

varies from unit-to-unit. The distribution of the β2 is taken to be lognormal, since the 

lognormal distribution assumption allows for deriving a closed-form expression for the 

TTF distribution.  

As shown in (Meeker 1998), the linear degradation model with a lognormal rate 

implies that the failure times are distributed according to a lognormal distribution given 

by: 
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where t>0, and (�,σ) are the parameters of the lognormal degradation rate distribution, 

and Φnorm(x) is the standard normal CDF (Abramowitz, 1972). 

As can be seen in (4.2.2.4) the TTF distribution is also lognormal with the 

parameters log(Df – β1) – � and σ. Assuming the critical threshold to be random one 

comes up with the following expression for the TTF distribution, 
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where fDf(y) is the probability density function of the random threshold. 
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4.2.3. A Wiener process-based model   

A stochastic process {W(t), t � 0} is called a Wiener process with drift if the 

following expression holds: 

)()( tXttW += µ  (4.2.3.1)  

where { X(t), t � 0 } is a Wiener process with σ2 = Var(X(1)). The constant � is called 

drift parameter. 

Wiener processes with drift are used for modeling degradation parameters, (Tseng 

2004), (Whitmore 1995), (Doksum 1992), as well as for other applications such as 

maintenance cost of engineering systems, modeling physical noise processes. A strict 

mathematical description of Weiner processes may be found in (Beichelt 2002). As can 

be concluded from Equ.(4.2.3.1), the Wiener process with drift is a superposition of a 

Wiener process X(t) and a function m(t) = �t representing a deterministic linear trend.  

Let y denote the critical level, entering which the Wiener process with drift 

undergoes a failure event at time Ty. Since the process increments are independent and 

Gaussian, the probability densities of Ty and y are related as follows: 
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Thus, the probability density of Ty is given by 
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The probability density (4.2.3.3) represents that of the inverse Gaussian 

distribution with parameters �, σ2, and y. The CDF of the inverse Gaussian distribution 

takes the following form 
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The expected value and variance of Ty are given by  
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The distribution of Ty that takes into account the uncertainty in the critical 

threshold value y is given by 

�
∞

×=
0

)(),,|(),|( dyyfytFtF
yT σµσµ  (4.2.3.6) 

where f(y) is the probability density of the critical threshold. 

The outlined MC-based model and Weiner process with drift can be represented 

in the form of a general cumulative shock model.  This is a generalization of degradation-

based reliability models, in which degradation is thought of as a damage accumulation 

process evolving stochastically in time and the damage measure domain.  

The cumulative damage models outlined in the previous subsections are expected 

to produce similar TTF distributions if the model parameters are chosen such that the 

time between damage occurrences is distributed similarly for the models. The mean and 

variance of damage increments are also chosen to be almost the same for the models.  

Resemblance of the TTF distributions in the cumulative damage models implies 

that the effect of randomness in the threshold is expected to be approximately the same 

for the cumulative damage models under the assumption of identical threshold 

uncertainty. In the next subsection a numerical experiment is presented to confirm this 

conclusion. 

4.2.4. Numerical Experiment 

This section presents experimental results illustrating the effect of the critical 

threshold uncertainty in the cumulative damage models outlined in the previous section. 

Three different types of degradation models are chosen to evaluate the relative 

uncertainty in the predicted TTF distribution given the relative uncertainty in the critical 

threshold for each model. The reference point in the experimentation is taken to be the 

TTF distribution provided by the degradation models with a strictly defined threshold. 
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Because of different model structures, the model parameters are model-to-model 

different. However, the model parameters are selected such that the values of mean time-

to-failure and variance are to be approximately the same for each model. Figure 25 shows 

that the reference TTF distributions are almost identical for the tested models.  

To characterize the uncertainty in the critical threshold, the value of relative 

uncertainty, UY, is defined as follows: 

*Y
U Y

Y

σ=  (4.2.4.1) 

where Y* is the deterministic critical threshold value in the reference model, σY is the 

standard deviation of the random threshold having the mean value of Y*.  

The objective of the experiment is to evaluate the relative uncertainty, UTTF, of the 

TTF prediction made by the degradation model with a random threshold: 

TTF

TTF
TTFU

*σ
σ=  (4.2.4.2) 

where σ*
TTF is the standard deviation of the TTF distribution provided by the reference 

model, σTTF is the standard deviation of the TTF distribution provided by the model with 

a random threshold. 

Figure 26 shows the numerical results quantifying the relationship between the 

uncertainty in the critical threshold and the uncertainty associated with the predicted 

time-to-failure. As can be seen, the tested models have shown approximately identical 

functional forms that quantify the effect of a random threshold. The Weiner process with 

drift was revealed to be slightly less sensitive to the randomness in the threshold. 

However, the difference of 4% that was shown by this model could be attributed to the 

imperfections in the numerical integration.  
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Figure 25. The reference TTF probability densities calculated for the models with a 

deterministic critical threshold. The vertical black-dotted line indicates the mean time-to-

failure, which is identical for the all depicted TTF distributions. 
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Figure 26. The functional relationship between the relative uncertainty in the critical 

threshold and the prediction uncertainty associated with the TTF distribution 
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The results shown in Figure 26 suggest that the manner in which the random 

threshold affects the TTF prediction does not depend on the particular configuration of 

the assumed degradation model. The major factor that determines the effect of a random 

threshold is the shape of the TTF distribution implied by the degradation model, as 

shown in Equations 4.2.1.1, 4.2.2.5, and 4.2.3.6. 

The obtained experimental result is in accordance with the analytical derivations 

presented in (Gut 1990) where it was shown that for a cumulative stochastic process, the 

distribution of the first passage time approaches the normal distribution with certain 

parameters if the critical failure threshold is relatively large (see Equ. 3.6.3). 

From the perspective of general cumulative shock models, the tested models can 

be considered in the following manner. The parameters of the Markov chain-based model 

are rewritten as follows  

E(T) = �, Var(T) = �2,  E(C) = 1, Var(C) = 0  (4.2.4.3) 

Put in words, the time between shocks tends to be distributed exponentially with 

the mean of � and variance �2, where � is the MC model parameter (see Equ. 4.2.1.2). 

The shock magnitude is a deterministic value of 1. According to the limiting distribution 

(3.6.3) the TTF distribution is given by 

),(~)( 2xxNxL ΘΘ   (4.2.4.4) 

where x is the critical threshold value. The distribution parameters given in (4.2.4.4) are 

in total accordance with the mean and variance parameters of the gamma distribution 

(4.2.1.2) characterizing the TTF in the MC-based model. 

The parameters of the Weiner process with drift can be rewritten as follows:  

E(T) = 1, Var(T) = 0,  E(C) = �drift,  Var(C) = σ2
W   (4.2.4.5) 

Put in words, the time between shocks is assumed to be deterministic and unit-

sized. The magnitude of shocks is normally distributed with the mean equal to the drift 

parameter and the variance equal to the variance of the Weiner process. The limiting TTF 

distribution is of the following form 
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where x is the critical threshold value. The distribution mean and variance parameters are 

in accordance with the parameters of the inverse Gaussian distribution, which 

characterizes the first time the Wiener process with drift exceeds the value of x. 

Equations 4.2.4.4 and 4.2.4.6 essentially show that the MC-based degradation 

model and the Wiener process with drift produce TTF distributions whose dependences 

upon the critical threshold x are identical. Particularly, the dependence is linear with 

respect to the TTF mean and variance.  

The linear path model with lognormal random coefficients exhibits a stochastic 

behavior more complex than that of the Markov chain-based model and the Weiner 

process with drift since the variance of random shock magnitude happens to be not 

stationary in time, which makes the analysis more difficult compared to the other tested 

models.  

From the identical dependences upon the critical threshold it follows that Equ. 

4.2.3 produces identical results for the cumulative degradation models, which possess 

similar uncertainty in their critical thresholds, and their other parameters are chosen such 

that the mean values of time-to-failure and variances are approximately the same.   

Concluding this section the following statements are made. The investigated 

degradation models have been considered as general shock models. This mathematical 

treatment has allowed for deriving a limiting time-to-failure distribution implied by the 

models. The limiting distribution has been shown to be the same for the models under the 

assumption of identical mean time-to-failure and variance. Particularly, the limiting 

distribution is the normal distribution with certain parameters, also known in reliability 

analysis as the Birnbaum-Saunders distribution, describing the rupture time of metals 

exposed to fluctuating stress and tension. 
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Since the degradation models tend to have asymptotically identical time-to-failure 

distributions, the effect of threshold randomness is approximately the same for the 

models.  

4.3. Uncertainty due to Hidden Failure Mechanisms 

This section is concerned with uncertainty issues related to degradation-based 

reliability models that exhibit a certain pattern in the degradation data available for model 

evaluation. The essence of the issues to be investigated is illustrated in the following 

qualitative example.  

4.3.1. Illustrative Example  

Consider an electronic power supply deteriorating due to two failure mechanisms 

that are described as follows. An internal defect reinforced by various external stress 

factors such as temperature and vibration, initiates a crack in the printable circuit board 

(PCB) so that the crack propagation tends to affect a vitally important electronic 

component residing on the PCB near the propagating crack. The crack propagates mostly 

due to temperature gradients suffered by the power supply. The temperature gradients 

cause certain spots on the PCB to undergo mechanical stresses, which, in turn, cause the 

crack growth. Eventually the propagated crack deteriorates the electronic element’s 

functioning so that the power supply is no longer capable to provide its output voltage 

within the specified range. This failure will be attributed to Failure Mechanism 1 (FM1). 

The second failure mechanism is related to corrosion processes mostly affecting 

the solder joints populating the PCB. Any severely corroded solder joint may cause the 

power supply to fail (Vichare and Pecht 2006). This failure type will be attributed to 

Failure Mechanism 2 (FM2).  

The outlined failure mechanisms are assumed to be different with respect to their 

observability. In the case of FM1 the mechanical stress reinforcing the crack growth 

manifests itself as an occurrence of random spikes in the output voltage. By measuring 

the voltage spikes frequency and magnitude, one is able to assess the damage acquired by 

the PCB due to FM1. The assumption made here is that the spike magnitudes and 
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frequencies are correlated with the crack length. The longer the crack length, the more 

severe the effect upon the electronic component output voltage. Also there is assumed to 

be a critical crack length, exceeding which the crack causes the power supply to cease its 

proper functioning, since the output voltage is no longer stable.  

In the case of FM2,one is not able to perceive online any information related to the 

level of degradation (corrosion) in the solder joints. The degree at which the corrosion 

has deteriorated the power supply reliability can be revealed only after a thorough offline 

inspection, which is usually impractical to perform on a not-yet-failed item.  

The absence of perceivable information in regards to FM2 can hinder the 

reliability modeling. Figure 27a shows the degradation paths observed in reliability 

testing of real-world electronic power supplies (Hines and Usynin 2006). Each of the 

depicted degradation paths has ended with a failure event.  

To develop a reliability prediction model, one needs to define a critical 

degradation threshold, exceeding which, the component is said to fail. If the precise value 

of the critical degradation threshold is unknown in the initial development phase, it has to 

be estimated from available degradation and failure observations. However, as shown in 

Figure 27a the degradation paths can exhibit a great deal of variability in the critical 

degradation values corresponding to the observed failure moments (Data Points PS1, 

PS2, and PS3). 

As can be seen in Figure 27a, the reason for the large variability in the critical 

threshold is the fact that Power Supply 3 has degraded in a manner significantly different 

from those observed at PS1 and PS2. The deviated degradation path can be easily 

declared to be an outlier since a) its appearance differs from the majority of the tested 

items (even though the majority is only two items: PS1, PS2), b) the presence of such an 

anomalous degradation pattern can complicate the reliability model development in the 

sense that the model would have to account for this unusual degradation path, probably at 

the expense of the model predictive accuracy.  
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Figure 27. The degradation paths observed from electronic power supplies (a). The 

triangle and square marks represent imagined power supplies failure points (b). The 

square-marked failure points are grouped near PS1 and PS2. The triangle-marked failure 

points are distributed between PS3 and PS2 
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However the small number of degradation paths obtained in this experiment does 

not allow one to decide if the PS3 degradation path can be disregarded in the reliability 

model development because of being an outlier. 

If additional degradation paths, which terminated with a failure, were available, 

and these extra failure observations were situated near the PS1 and PS2 failure points (as 

is shown in Figure 27b by the black square marks), the PS3 degradation path would 

clearly be classified as an outlier. On the other hand, if the extra observations were 

evenly distributed between the PS3 failure point and those corresponding to PS1, PS2 (as 

shown in Figure 27b by black triangle marks), neglecting the PS3 data would result in an 

unreasonable loss of information. 

If the PS3 data are not to be disregarded, the observed deviation in the PS3 

degradation pattern can be explained by the presence of failure mechanism FM2 

associated with corrosion in the solder joints of power supplies PS1 and PS2. The 

degradation measure (accumulated damage) shown in Figure 27 reflects only the damage 

the power supplies have acquired due to FM1. The damage due to FM2 cannot be 

accounted for in the observed degradation paths since FM2 is unobservable. Although the 

FM2 cannot be observed, the damage imposed by this hidden failure mode may 

eventually cause the power supply to fail. From this perspective, the failure mode FM2 

manifests its presence only through the failure events.  

The power supplies (real and imagined), whose failure data points are situated at 

the right-lower side of Figure 27b are likely to have acquired damage mostly due to FM2, 

since the damage accumulated due to FM1 is relatively low, and the lifetimes of these 

power supplies are relatively large. Corrosion processes are known to proceed in the 

calendar time domain so that the calendar age of the power supplies is expected to be 

related to FM2, in the sense that the calendar age is positively correlated with the 

probability of failure due to FM2. However, since FM2 is unobservable, there is not any 

numerically expressed evidence of the degradation imposed by FM2. Hence, in 

developing the power supply reliability model, one has to deal with degradation data that 

do not indicate degradation due to FM2. 
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The degradation data depicted in Figure 27b show significant variability in the 

critical damage levels at which the power supplies experienced failure. This variance will 

primarily affect the estimation of the critical damage level for the degradation-based 

reliability model.   

In this example it is difficult to claim with certainty that the PS3 degradation path 

in Figure 27b is an outlier. In this situation, the important decision to make is whether to 

disregard the possible outlier and continue the reliability modeling only with the data that 

are well fitted to the assumed model, or to adjust the reliability model so that the odd 

looking data will be a piece of information useful for the reliability prediction. 

This work proposes a methodology to deal with such situations where the 

empirical degradation threshold tends to be uncertain because of variability in 

degradation and failure data as shown in Figure 27. The study is performed in the 

framework of shock models that have been used in the reliability analysis for decades 

(Esary and Marshall, 1973). However the proposed approach is quite general, and can be 

applied to any degradation-based technique, that utilizes the notion of critical degradation 

threshold.  

4.3.2. A method to mitigate uncertainty effects due to unobservable failure modes 

Consider a component subject to several degradation processes, or failure mechanisms, 

eventually leading to component hard failure. The degradation effects imposed by the 

failure mechanisms upon the component’s reliability are assumed to be approximately 

equal in their magnitude so that it is difficult to distinguish a dominant failure mode. 

However, the failure mechanisms can be differentiated with respect their observability.  

A failure mechanism is called observable if its effect can be measured directly or 

inferred through the use of various degradation indicators. For example, an opto-isolator 

is one of a few critical elements in a switch mode power supply (SMPS). The degradation 

progression for this component can be detected and tracked through the usage of 

resonance measurements and the value of current transfer ratio (CTR), which is 

correlated with the failure progression (Judkins, 2007). 
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A failure mechanism is called unobservable if its effect upon the component’s 

reliability cannot be measured or even detected because of sensor equipment limitations, 

or the impracticality of diagnostic and detection routines. While in operation, the 

component does not manifest the presence of such a failure mechanism in a perceivable 

manner. The presence and effects of unobservable failure mechanisms can be confirmed 

and investigated only in a post-mortem analysis.   Unobservable failure mechanisms are 

assumed to make a significant contribution to the component’s degradation and fault 

progression. 

Let F denote a set of various failure mechanisms that simultaneously affect the 

component’s reliability: 

},...,,{ 321 nFFFF=F  (4.3.2.1) 

Assume that there is a value of k such that a subset },...,,{ 321 kiiiiobs FFFF=F  is a set 

of observable failure mechanisms, and },...,,{ 321 nkkk iiiihid FFFF +++=F  is a subset of 

unobservable (hidden) failure mechanisms.  

Each failure mechanism imposes a certain degradation effect upon the 

component’s reliability. The degradation effect Di imposed by a particular failure 

mechanism Fi can be thought of as a function that quantifies the amount of damage 

suffered by the component solely due to the failure mechanism: 

Di = f(Ti, Fi) (4.3.2.2) 

where Ti is the timescale associated with the failure mechanism Fi. Apparently, different 

failure modes can evolve in different timescales. For example, corrosion processes tend 

to degrade the component in the calendar age timescale, whereas temperature stress-

related damage worsens the component’s reliability in the operational age timescale. 

In this study the overall degradation effect is assumed to be additive so that it is 

represented by the following expression 
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It should be noted that in the case of multiplicative damage, one should perform 

the log-transformation to use the additive model given in Equation 4.3.2.3.  

Since some of the Di are unobservable, the damage effects can be grouped 

according to their observability. 

hid

k

i

itotal DDD +=�
=1

 (4.3.2.4) 

where Dhid is the total degradation effect imposed by the unobservable failure 

mechanisms. For the sake of brevity, this term is called the hidden damage. The value of 

hidden damage is assumed to be completely unknown and unobservable.  

The presence of the unknown term Dhid can be treated as a source of uncertainty 

in the reliability prediction problem. The influence of the unknown hidden damage 

cannot be neglected since it is assumed that there is no dominant failure mechanism, so 

that all of the degradation contributors (observable and hidden as well) play equally 

important roles in the component deterioration. The uncertainty effect of the hidden 

damage is illustrated in the following qualitative example.  

Assume that the item exhibits two degradation modes F1 and F2. F1 is observable, 

whereas F2 is unobservable. The degradation due to the assumed failure mechanisms 

accumulates linearly in time. The item fails as soon as the total component’s damage 

Dtotal = D1+D2 exceeds a certain critical threshold D*, whose value is unknown. Figure 28 

shows the observed and true degradation paths, (OA’ and OA, respectively) for a 

particular item, which has suffered some damage due to F1 and F2.  

The solid line OA’ depicts the observable damage D1 accumulated in the item. 

The dotted line OA depicts the true (total) damage Dtotal accumulated in the item. 

The point A on the critical threshold line is the apparent moment of failure. 

However, since the only observable damage is due to F1, one observes the failure moment 

at the end point A’, thus, concluding that the critical damage level is that corresponding 

to the point A’, which seems to be significantly lower than the true critical threshold.  
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Figure 28. A schematic representation of two observable degradation paths OA’ and OB’ 

and their true (yet unobservable) counterparts OA and OB. 

This underestimation can be explained by the fact that the item under 

consideration happens to suffer mostly from failure mode F2. The ordinates of the points 

along the degradation path OA’ are significantly lower than those of the points along the 

true degradation path OA. 

Degradation paths OB and OB’ correspond to an item that suffers mostly due to 

failure mode F1. The major portion of the total damage accumulated in this item is 

observable. Hence the distance between the observed failure point B’ and the true failure 

point B is not significant.  

To conclude this qualitative example the following statement is made. The 

presence of unobservable failure modes introduces uncertainty in the critical degradation 

level estimation, since the damage levels observed in the moments of failure tend to vary 

because of variability in the ratio of observable to unobservable failure mechanisms 

affecting the components.  

The problem posed in this study is to reduce the uncertainty effect resulting from 

the presence of unobservable failure mechanisms in the component degradation process. 

The uncertainty effect is investigated in the framework of reliability shock models that 

will be outlined in the following subsection.  
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The notion of warning setpoint and critical degradation zone is defined as follows. 

The level of cumulative damage at which the component has the probability of failure 

(POF), which is assumed to be critical, is called a warning setpoint. Having reached the 

warning setpoint the component immediately needs preventive maintenance. The notion 

of warning setpoint is primarily important for determining an optimal preventive 

maintenance policy. 

The critical degradation zone includes the degradation levels starting with the 

warning setpoint and ending at the damage level where all items from the population are 

expected to fail. The defined notions of warning setpoint and critical degradation zone are 

going to be useful in the following subsection that will introduce the methodology. 

4.3.3. Optimal Transformation of Degradation Measure 

Consider a degradation-based reliability shock model M(T, D), which evolves in the 

timescale T, and D is defined to be a probability distribution of the critical degradation 

threshold. The parameters of D are to be estimated from available failure data.  

Let � denote the set of available failure data of the following form 

� = { (t1, d1), (t2, d2), … (tk, dk) } (4.3.25) 

where (ti, di) denotes the time and damage level attained by the component i at the failure 

moment.  

Assuming that the critical degradation threshold is to be described by the 

probabilistic model D, one estimates the threshold distribution parameters as the sample 

mean and variance according to the following formulae:  
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It is intuitively understandable that a large value of variance in the critical 

degradation threshold can deteriorate the prediction provided by the model M.  In 

particular, a large variance in the estimate of the critical threshold forces the practitioner 

to set the warning point too low, thus reducing the component’s service life. This 
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uncertainty effect cannot be smoothed or eliminated completely if the critical threshold 

variance is mostly due to fully random deviations in the failure moments. However, if the 

failure data pattern exhibit some systematic regularity, a certain transformation of the 

available data can be made to reduce the variability in the critical degradation threshold.  

The presence of regularity in the failure data can emanate from various origins 

which are difficult to classify and they are usually highly case-dependent. This research 

considers regularity due to hidden degradation effects imposed by unobservable failure 

mechanisms. If the component is subject to at least two different failure modes, and one 

of the failure modes is unobservable, the degradation data observed on the component 

may look like that shown in Figure 29. The small circles in Figure 29 represent the time 

instants and damage levels attained by some components at their failure moments. The 

origin and particular features of these data will be discussed in detail in the numerical 

example section.  

The degradation data shown in Figure 29 exhibit a certain regular pattern in the 

failure moments. The items surviving a large number of duty cycles tend to acquire a 

relatively small amount of damage compared to the items surviving a short number of 

duty cycles. Hence the failure points form a data cloud inclined downward.  

One possible explanation for this appearance can be that the items situated in the 

right-hand side of Figure 29 (long age survivors) have acquired critical degradation 

mostly due to the unobservable failure mode. Therefore, their degradation level di at the 

failure moment is relatively low since the observable degradation mode happened to be a 

minor contributor to the item failure. On the opposite side, the items that are short 

survivors (situated in the left-hand side of Figure 29) have acquired critical damage 

mostly due the observable failure mode.  

Apparently such regularity in failure data introduces a great deal of variability 

into the degradation-based reliability model, effectively enlarging the critical degradation 

zone, which is depicted as a range of damage levels confined between the dotted lines. 
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Figure 29. The real-world degradation data exhibiting a certain regularity. 

The large critical degradation zone effectively lowers the warning setpoint, 

approximately depicted by the lower dotted line.  

A data transformation method to a new coordinate system is developed to reduce 

the variability in the critical degradation zone. If failure data exhibit some linearity in the 

original coordinate system (T, D), a Principal Component Analysis (PCA)-based 

transformation can be applied to reveal the new coordinate system (T’, D’), the usage of 

which will be more beneficial in terms of the end result uncertainty.  

PCA is a useful statistical technique for finding patterns in high-dimensional data. 

Essentially PCA is an applied-linear-algebra-based method which provides a simple, non-

parametric approach for extracting relevant information from confusing data sets. The 

main question a PCA-based method addresses can be formulated as follows. Is it possible 

to find a linear combination of the original coordinate basis that best represents the given 

data (Shlens 2005)? 
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Let X be the original data set, where each column is a multidimensional data 

point. If X is an m×n matrix, the number of available data points in X is n; the 

dimensionality of the data is m. In this setting the PCA transformation is given by  

YT = XTW = V� (4.3.2.7) 

where V�WT is the singular value decomposition (SVD) of X, and Y is the matrix of 

transformed data re-expressed in the new coordinate system. 

Given the data set �, one performs the PCA transformation to come up with 

transformed failure data of the following form:  

�’ = { (t i’,di’) }, i =1,2,…k (4.3.2.8) 

It is well known that PCA transforms data so that the data will have the largest 

variance along the first transformed coordinate, the second largest variance will be along 

the second transformed coordinate and so forth. Since the considered data set � is two-

dimensional, the second transformed coordinate d’ produces the smallest variance in the 

data. This obviously follows from the fact that the largest variance in the 2-dimensional 

data set �’ is along the first transformed coordinate t’.  

Therefore having performed PCA over the original degradation data � one has 

the degradation data set �’ such that the transformed degradation measure d’ has a 

minimal possible variability in the given data. Having the minimal variability in the 

degradation measure is highly beneficial for the reliability modeling. The practical 

benefits of the minimal variance will be illustrated in the numerical example section. 

The performed PCA transformation can be discussed from the perspective of 

failure mode observability. According to the PCA definition (Equation 4.3.2.7) the 

transformed degradation measure is represented as  

dwtwd 2212' +=  (4.3.2.9) 

where wij is an element of the 2×2 matrix W. As can be seen, the degradation measure d’ 

is a linear combination of the observable degradation measure d and the time measure t. 

Obviously the term w22d accounts for the degradation that is explicitly present in the 
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original data set �. The term w12t can be thought of as a linear approximation for the 

damage acquired due to unobservable failure mechanisms twtDhid 12)(ˆ = . 

Goodness of such a linear approximation depends on the regularity pattern the 

failure data exhibit in the original coordinate system (t, d). If the exhibited regularity is 

linear, the PCA transformation is expected to provide a good approximation to the 

unobservable degradation effects (Equation 4.3.2.4). 

In the case of a non-linear pattern in the degradation data, the developed 

methodology can be generalized through the use of kernel principal component analysis 

(KPCA). However, this generalized non-linear approach is out of this dissertation’s scope 

and will be considered in future research.  

The next subsection presents an example where the developed methodology is 

applied to real-world data. The example also discusses the practical benefits derived from 

the usage of transformed degradation data. 

4.3.4. Numerical Example 

This example considers the fatigue test data originally discussed in (Gertsbakh 

2000). A sample of 30 steel specimens was subjected to a series of loading tests until they 

failed because of fatigue. Each loading test consisted of 5000 fatigue cycles. The 

magnitude of fatigue loads was chosen such that a specimen underwent 5000αi low-load 

cycles and 5000(1–αi) high-load cycles in one loading test. Thus the value of αi 

represents the ratio of low-load cycles to the total number of cycles applied to Specimen i 

within one load test. 

The entire sample was divided into 6 groups Gk k=1,2,..6, each of which was 

characterized with a certain ratio of αk.  

Table 2 summarizes the steel specimens failure data. As can be seen the ratio αk 

varies from 0.05 to 0.95.  

In this study the loading regimes (high-load and low-load) are considered to be 

two distinct failure mechanisms observed in the tested specimens. Let HL and LL denote 
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the failure mechanisms associated with high-load and low-load cycles respectively. In 

this experimentation the cycle frequency is assumed to be 1 load cycle per time unit so 

that the model timescale is expressed in numbers of cycles.  

To apply a shock model-based approach, the loading cycles are assumed to 

deliver a certain amount of damage to the specimens.  Although the original data do not 

provide any information in regards to how much damage a high- or low-load cycle 

delivers, for the sake of simplicity the damage delivered by a high-load cycle is assumed 

to be unit-size. Damage delivered by a low-load cycle is assumed to be unknown 

(unobservable). 

The failure mechanism HL is assumed to be observable. In other words, the 

damage delivered by high-load cycles is measurable. The failure mechanism LL is 

assumed to be unobservable due to, for instance, certain limitations in sensor equipment 

incapable of picking up the degradation indicators of the low-load cycle damage. 

Table 2.  The fatigue data adopted from (Gertsbakh 2000). The numbers of cycles are 

given in thousands (× 103) 

i αi 
Low-
load 

High-
load 

i αi 
Low-
load 

High-
load 

1 0.95 256.8 13.5 16 0.40 32.0 45.7 
2  235.8 11.6 17  48.0 70.4 
3  370.15 19.25 18  42.0 61.5 
4  335.1 17.5 19  42.0 60.6 
5  380.3 20.0 20  54.0 80.4 
6 0.80 153.0 38.0 21 0.20 10.0 37.5 
7  176.2 44.0 22  16.0 62.7 
8  160.3 40.0 23  12.0 45.3 
9  156.0 39.0 24  19.0 72.6 
10  103.0 25.0 25  11.0 42.0 
11 0.60 84.0 54.4 26 0.05 3.0 53.9 
12  81.0 52.3 27  3.75 68.55 
13  90.0 59.9 28  4.25 77.95 
14  57.0 37.3 29  3.32 57.95 
15  66.0 42.7 30  2.75 51.25 
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The original data do not provide information as to how the fatigue damage in the 

specimens evolves in time. In the absence of any knowledge of the damage progression it 

is assumed that damage accumulates linearly. If this assumption turns out to be 

unrealistic, the methodology will not suffer, primarily because this assumption of 

linearity is important only for assessing the efficiency of the particular reliability 

prediction model, as will be shown later in this section.  

From the assumptions, it follows that the original data can be represented as 

shown in Figure 30. The abscissa represents the total number of load cycles survived by 

the specimens; the ordinate represents the observable accumulated damage (degradation) 

which according to the assumption of the unit-size damage increments is the number of 

high-load cycles suffered by the specimens.  

Since the LL damage is assumed unobservable, it is impossible to take into 

account the effect of the unobservable damage upon the reliability prediction. Computing 

the mean and variance of the critical degradation values (Equation 4.3.2.6) and assuming 

the critical probability failure to be 0.025, which corresponds to the 2σ offset in the case 

of Gaussian distribution, one can estimate the warning setpoint.  

Warning Setpoint = 8.7×103  (4.3.4.1) 

The meaning of the warning setpoint is that any specimen exhibiting the damage 

level of 8.7×103 has a POF of 0.025, assumed to be unsafe for continuing the specimen’s 

operation. Thus, being at the warning setpoint is the indication that the specimen 

immediately requires preventive maintenance.  

To assess the efficiency of performing preventive maintenance given a value of 

the warning setpoint, the average useful lifetime metric is introduced.  The average useful 

lifetime metric is defined to be the mean value of a specimen’s lifespan given the 

specimen is to be replaced as soon as its observed degradation reaches the predefined 

warning setpoint. Figure 30 shows the times of crossing the estimated critical warning 

setpoint as small squares lined up along the lower dotted line representing the warning 

setpoint.  The times  corresponding to the small squares would be the useful lifetimes of 
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the specimens if they were taken out of service as soon as their observed degradation 

exceeded the warning setpoint given in Equation 4.3.4.1.  

If a PCA-based orthogonal transformation is applied to the data, the transformed 

warning setpoint will appear as shown in Figure 30 by the dashed line inclined 

downward. 

The times of performing preventive maintenance are depicted as triangle marks 

lined up along the transformed warning setpoint level. As can be seen the specimens’ 

useful lifespan tends to increase since the transformed warning setpoint takes into 

account the degradation acquired by the specimen and the time the specimen has been in 

operation as well.  

To quantitatively compare the replacement policies suggested by the original and 

transformed data, Table 3 summarizes the efficiency metrics corresponding to the 

replacement policies. The efficiency metric (the average useful life) evaluated for the 

transformed-data-based policy turns out to be significantly better (longer) than that 

evaluated for the reliability model built on the original untransformed data. 

As can be seen in Table 3, the PCA-based transformation significantly improves 

the average useful life of the steel specimens. If one follows the preventive maintenance 

policy based on the warning setpoint evaluated from the transformed data, the expected 

useful life of the components is almost twice as long as the useful life derived from 

following the policy based on the original data. 

 

Table 3. The average useful lifetime provided by the preventive maintenance 

policies based on the original data and transformed data. 

 Original Data  Transformed Data 

Avg. Service Lifetime 
[# of cycles] 46.5×103 87.0×103 
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Figure 30. The fatigue data are depicted as degradation paths. The square marks depict 

the replacement times based on the original warning setpoint (Equ.4.3.4.1). The triangle 

marks depict the replacement times based on the transformed warning setpoint. 

This significant improvement is explained primarily by the fact that the 

transformed data exhibit a minimal possible variance in the critical threshold. The 

minimal variation in the model failure threshold in turn provides the most accurate 

prediction of the TTF distribution, which provides the best achievable preventive 

maintenance strategy based on the notion of warning setpoint. 

The following concludes this section. The presence of unobservable degradation 

mechanisms can manifest itself as a certain regular pattern in the failure data. The regular 

pattern can introduce a great deal of variability into the estimated critical threshold 

involved in the reliability prediction model. A methodology has been developed to reduce 

possible uncertainty effects of failure data regularity upon the reliability model. The key 

idea of the methodology is to find a proper data transformation to produce a coordinate 

system, in which the failure data exhibit minimum variance in the critical degradation 

threshold. The expected benefit of using the transformed failure data lies in the fact that 
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the transformation accounts for the regular pattern in the original failure data so that the 

effect of the regularity in the transformed data is reduced as much as possible. 

The case where the regularity is of a linear nature has been illustrated by a 

numerical example involving real-world data. In the example, a PCA-based 

transformation was applied to the data. The benefit of using the PCA transformed data 

was assessed by calculating the efficiency metric, which was defined to be an average 

useful life. The reliability model built on the PCA transformed failure data has provided 

an efficiency metric value almost twice that provided by the model using the original 

failure data.  
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5.  USE OF PROGNOSTIC INFORMATION FOR  
OPTIMAL OPERATIONAL CONTROL 

Most of the published studies devoted to various aspects of PHM have been 

concerned with health monitoring technologies aimed at scheduling service and 

maintenance for systems according to their condition as opposed to a fixed time table. 

Considering capabilities to continuously assess and predict reliability aspects of the 

system, the practitioner may be interested in how the PHM information can improve the 

system control in terms of availability and cost reduction. 

The research field related to the use of prognostic models for optimal control 

remains wide-open. Some researchers and practitioners have outlined the main directions 

to follow and issues to address in regards to the prognostics-based optimal control (Tang, 

2006), (Davis, 2006). However, there has been a significant lack of specific control 

methods and approaches which would be suitable for dealing with uncertain conditions 

imposed by highly random environmental conditions, variability in operational loadings 

and imperfect prognostic models.  

In the presence of a variety of diagnostic information available online, it would be 

highly desirable to develop methods and approaches for incorporating prognostic 

information into the optimal control of the system. The following qualitative example 

illustrates the idea of prognostic-based control.  

Consider a system assigned to complete some mission subject to some time 

constraints. The system performance is numerically quantified by the system 

performance rate, which can be thought of as the metric characterizing how fast the 

system is able to accomplish the mission. Quality-related aspects of accomplishing the 

mission are out of this simple example’s scope.   

The system is assumed to be subject to degradation. While in operation, the 

system degrades at some degradation rate, which is a function of a) the system’s current 

performance rate, and b) the current environmental conditions.  
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The performance rate, at which the system is operating in particular 

environmental conditions, imposes some degradation rate that shapes the system 

degradation profile. Apparently severe environmental conditions and a high-performance 

rate will cause the system to degrade faster. On the contrary, normal environmental 

conditions and moderate performance rates cause the system to degrade relatively slowly.  

The environmental conditions evolve independently from the system and are 

assumed to be totally random and uncontrollable. The performance rate is assumed to be 

the only means to control the system performance.  

In this setting, the practitioner wants to accomplish the mission in the required 

time at the lowest expense in terms of degradation acquired by the system.  Running the 

system at a high performance rate minimizes the time needed to finish the mission, thus 

meeting the time constraints. However, the high performance rate imposes a high 

degradation rate, especially in the case of severe environmental conditions. This can 

cause the system to fail due to wear-out before the mission is accomplished. On the other 

hand, a low or moderate performance rate can hinder the mission progress, and 

eventually cause the system to fail in accomplishing the mission if the time constraints 

are not met. It can be concluded that one should find an optimal performance rate, 

following which the system will meet the reliability requirements and time-related 

constraints as well. 

Since the degradation rate is subject to random fluctuations, there is no single 

value of the optimal performance rate that would provide an acceptable result for any 

sequence of encountered environmental conditions. Rather, the practitioner needs to have 

an optimal control policy that would optimally select a control action (the performance 

rate) for each combination of environmental condition and degradation level the system 

has attained. 

The general idea outlined in this discussion will be elucidated in more detail 

through the following practical examples. 
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Example 1 

A commercial aircraft engine is expected to provide a certain number of “on-

wing” hours, which is thought of as the mission to accomplish. Monitoring certain health 

parameters such as Exhaust Gas Temperature (EGT) margin on a particular engine, the 

airline operator wants to find Life Extending Control (LEC) to extend the useful life of an 

engine by modifying control logic or control hardware to smooth dominating life-

consuming factors (Wiseman, 2001). One possible method to implement LEC is to 

improve Active Clearance Control (ACC) systems, which may be beneficial, by 

compensating for deterioration. The objective is to find a control policy, following which 

the ACC system prolongs the engine useful life in a long-term run. 

Example 2 

A drilling machine is going to be employed in a drilling campaign, whose work 

volume may be defined in terms of the total depth of boreholes to drill. The drilling 

campaign is to be performed in several runs, which can be thought of as duty cycles. In 

each run the drilling machine is supposed to complete a certain work volume. The 

drilling machine acquires certain damage mostly due to wear-out during each run. The 

magnitude of damage the drilling machine acquires within a duty cycle depends on the 

rotational speed and other various performance metrics. Additionally, random 

environmental conditions may introduce stochastic deviations in the damage 

accumulation process. On the average, the damage accumulation rate tends to be 

proportional to the performance rate of the drilling machine. This relationship results in 

the following contradiction. While performing at a high performance speed, the drilling 

machine is expected to complete the drilling campaign in a short time; however, the 

degradation may accumulate so intensively that the drilling machine will fail before it 

completes the campaign.  

The objective is to find a policy that would suggest which performance regime 

should be taken in a particular run to guarantee a successful completion of the entire 

drilling campaign. 
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Example 3 

Treatments for acutely infected HIV patients utilize certain types of drugs, whose 

usage has proven to be successful for reducing and maintaining viral loads below the 

detection limit (Ernst, 2004). However, the long-term effects of using the drugs exhibit 

substantial complications. Concerns about the long-term use of the drugs have brought 

attention for the need of a drug-scheduling policy. An ideal drug-scheduling policy would 

bring the patient’s immune system into a balanced state that allows for maintaining the 

immune control over the virus without using any drug. This balance state can be thought 

of as the mission goal..  The transfer into the balance state (the mission completion) 

should be performed with minimal drug-related effects for the patient. Apparently, the 

minimization of drug-related effects can be thought of as preservation of the patient’s 

health/degradation status. 

The systems considered in each of the three examples share one particular feature: 

the presence of highly uncertain environment. However, despite the uncertainty, the 

practitioner seeks an optimal control policy, which would ensure that the mission is 

completed successfully.  This dissertation proposes a method in which prognostic 

information derived for the system of interest can be efficiently used in the search for an 

optimal control policy.  

5.1. Methodology 

This section formally introduces the problem of finding an optimal control policy 

for a system performing in an uncertain environment. The problem is formulated in 

general terms as well as in a more elaborate form.  

Consider a system with discrete time dynamics given by 

,...2,1,0),,(1 ==+ ttatsfts  (5.1.1) 

where for all t, st is the system state belonging to State Space S, and at is the control 

action belonging to Action Space A.  
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Let c(s,a) be a real-valued cost function, and γ is a discount factor (0 	 γ < 1). 

Given a stationary control policy σ(•): S → A, the following equation defines the 

discounted infinite horizon cost function associated with γ: 
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sscsJ σγσ  (5.1.2) 

The objective is to find an optimal policy σ*  such that the cost function J(s) is 

minimized over all st. 

To evaluate the optimal policy σ* , one usually does not have to know the system 

dynamics precisely (Equ. 5.1.1) since a reinforcement learning (RL)-based approach is 

used to solve the problem. The only available piece of information could be a finite set of 

system trajectories observed in the past and the associated cost function c(s,a). If system 

trajectories are not readily available, the RL routine has to learn the system dynamics 

from the direct interaction with the environment. The learning process can take place in a 

simulated environment or real-world settings. However, learning in real-world 

environment is employed usually if some information about system dynamics has been 

already acquired from simulations.  

Given this type of information RL techniques compute an approximation *σ̂  to 

the optimal stationary control policy σ* . The exact solution, which is the truly optimal 

policy σ*, cannot be found given this limited information on the system dynamics.  

The above problem formulation is in general terms. In the next subsection, a more 

elaborate representation will be given. 

5.1.1. Minimal-Control-Effort Problem  

Consider the following model design. One has to complete a mission whose 

progress status Wt is characterized numerically with a range of 0 to 100 percent. For the 

sake of simplicity the range is assumed to be discrete. 

0},100,...2,1,0{ >∈ tWt  (5.1.1.1) 
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where t is a time in a certain timescale usually expressed in duty cycles. A duty cycle is 

defined to be a repetitive interval of operation. Thus, t is essentially the number of duty 

cycles completed since the mission start moment. 

The mission is to be accomplished utilizing a system which performs the mission-

related task at some performance rates: 

},...,{ 21 kperform www=W  (5.1.1.2) 

The performance rate wi is defined to be the portion of the total mission-related 

work volume performed within a duty cycle.  

i

i
i t

W
w

∆
∆=  (5.1.1.3) 

where ∆ti is the time length of the i-th duty cycle, ∆Wi is the mission-related work 

volume performed in the course of the i-th duty cycle.  

The system is controlled in terms of its performance rate. Having received a 

control action ai, the system will be performing the next duty cycle at the performance 

rate wi: 

},...,{ 21 kaaa=A  (5.1.1.4) 

where A is the set of all possible control actions the system can potentially receive.  

Control actions are taken in a discrete manner only upon completion of a duty 

cycle and before the next duty cycle proceeds. Control actions taken consequently during 

the course of the mission are called a sequence of control actions  

),...,(
21 niii aaaA =  (5.1.1.5) 

where aij is the control action taken at the j-th duty cycle.  

The rule that prescribes a control action to be taken in a particular duty cycle in 

the course of the mission performance, is referred to as a control policy.   
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The system is assumed to be subject to degradation due to its usage during the 

mission. Similar to the mission progress, the system health/degradation state is 

characterized with a numerical range of 0 to 100 percent, where 0 corresponds to an 

initial “no-degradation” state, and 100% corresponds to a failure state, where the system 

is not able to perform any longer:  

0},100,...2,1,0{ >∈ tD t  (5.1.1.6) 

Degradation accumulates at rates which are assumed to be a function of the 

performance rate. Apparently, the system is expected to degrade fast when it is 

performing at a high performance rate. Moderate performance rates tend to impose lower 

degradation rates. However, the precise relationship between the performance and 

degradation rates is assumed to be unknown. The uncertainty can be due to random 

deviations in the degradation rates caused by stochastic factors such as environmental 

conditions. 

The qualitative description of the model design is summarized in the following 

equations. The system dynamics is given by Equation (5.1.1), where st = {Wt, wt, Dt, dt} 

is the system state at time t. The precise form of the function f(st,at) is assumed to be 

unknown. 

The mission is said to be accomplished if the mission progress status is greater 

than or equal to 100%, while the degradation status is less than 100%. Usually a time 

constraint complements the definition of the successful completion time. 

{ }lim100100:inf TtDWtT ttcompletion ≤∧<∧≥=   (5.1.1.7) 

where Tcompletion is the mission completion time, Tlim is the maximum time allowed to 

complete the mission. 

The mission is said to fail if the mission progress status is less than 100%, while 

the system degradation exceeds 100% or the time constraint is not met. The failure time 

Tfail is defined as follows: 
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[ ] [ ]{ }lim100100100:inf TtWDWtT tttfail >∧<∨∧<= ≥  (5.1.1.8) 

The objective is to find a control policy σ*, which guarantees that the mission 

will be completed within the specified time limit Tlim and without exceeding the 

degradation threshold.  

The stated problem can be thought of as a minimum-control-effort problem with a 

time constraint. This type of problem has been extensively studied in the optimal control 

theory literature (Kirk, 1998). However, in the formulated setting an optimal control 

theory-based approach cannot be applied because of uncertainty in the functional 

dependency between the performance and degradation rates. The parametric degradation 

rate model can be unspecified and unknown because of the high complexity of the 

degradation mechanisms taking place in the system of interest.  

In the absence of a strictly defined parametric model it seems appropriate to use a 

reinforcement learning (RL) approach, which is a goal-directed learning method based on 

interaction (Sutton 1998). In the following subsection the idea behind RL approaches is 

outlined.  

5.1.2. Reinforcement Learning  

An RL method considers a goal-seeking agent performing within an uncertain 

environment, which may affect the agent's status in some, possibly random, manner. The 

agent seeks to achieve a goal despite a complete unawareness of the environment it is 

placed in. Generally speaking, RL is an algorithmic technique to solve stochastic optimal 

control problems via a trial-and-error approach (Ernst 2004). 

An RL method involves four main components: a policy, a reward function, a 

value function, and optionally a model for the environment.  

A policy determines which control action should be taken by the agent in a given 

time moment. A policy can be thought of as a mapping from the observed states of 

environment to actions to be taken. The policy is the major component of an RL agent 

since the policy suffices to fully determine the agent’s behavior.  
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A reward function determines the goal to achieve in a RL problem. A reward 

function assigns a scalar value, a reward, to each state-action pair potentially encountered 

by the agent. The reward assigned to a particular state-action pair indicates its inherent 

goodness with respect to the goal the agent seeks. Pursuing the goal, the agent wants to 

maximize the total reward it receives in a long term run.  

A value function specifies the total amount of reward the agent expects to receive 

in the future if it starts at a particular state. As opposed to the reward function indicating 

immediate attractiveness of the states, the value function indicates a long-term 

attractiveness of particular states. 

A model for the environment is used for planning, which implies some form of 

considering possible future states before they are actually encountered. The presence of a 

model for the environment in an RL-based approach is optional. Early RL systems were 

fully trial-and-errors learners. However, it has been recognized that RL techniques are 

tightly related to dynamic programming methods, which utilize models. Modern RL 

systems enjoy various types of models mimicking the environmental behavior. In the 

context of this paper, a model for the environment is defined rather vaguely or not given 

at all.  

The agent wants to maximize a long term reward signal.  Interacting with the 

environment the agent is acquiring information, which is received in the form of so-called 

experience tuples. An experience tuple consists of the following elements: the current 

state (s), the control action taken (a), the instantaneous reward received (r) and the next 

state (s’) attained due to the performed action.  

One of the attractive features of an RL-based approach is that a close-to-optimal 

control policy can be learnt directly from historical data reflecting the trajectories along 

which the system of interest progresses (Ernst 2004). Another option is to learn the 

optimal policy directly from interaction with the environment.  
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A thorough survey of RL techniques, including temporal difference (TD) 

learning, the SARSA algorithm, and aspects of exploration versus exploitation can be 

found in (Kaebling, 1996). 

5.1.3. Use of Prognostic Information in an RL routine 

This section introduces a method to use prognostic information to facilitate an 

RL-based search for an optimal control policy.  

The RL agent in this study follows an on-policy version of Q learning (SARSA) 

with the following update rule for the Q-table: 

Q(s,a) ← Q(s,a) + η(r + γQ(s’,a’) – Q(s,a))  (5.1.3.1) 

where s is the current RL agent state, a is the action taken in State s, r is the immediate 

reward received for the pair of (s,a), s’ and a’ are the next state and action to take. The 

value of γ is called a discount factor, (0 	 γ < 1). η is the learning rate which tends to 

decrease in time for convergence (0 	 η<1).  

Equation (5.1.3.1) reduces the difference between the current Q value and the 

estimate from the previous step. This approach is called a temporal difference algorithm. 

However, Equation (5.1.3.1) updates only the previous value of state-action pair. To 

account for past visits eligibility traces are used in the update equation.  

Visiting a state-action pair (s,a), the RL agent sets the eligibility trace for the pair 

(s,a) to 1. The eligibility values of all other pairs are multiplied by γλ, where λ is called 

the trace decay parameter. The state-action pairs, that the RL agent has never visited, 

have eligibilities equal to 0. The visited state-action pairs have non-zero eligibilities 

decaying in time. The SARSA algorithm takes the following form:  
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 5.1.3.2 

where δ is the temporal error, e(s,a) is an eligibility of the pair (s,a). 
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The update rule (5.1.3.2) accounts for all eligible state-action pairs. The update 

value depends on how far the state-action pairs have occurred in the past. In the literature 

this algorithm is called SARSA(λ), since the decay parameter λ determines how many 

previous steps are taken into account. If λ = 0, only one-step is accounted. If λ = 1, all 

previous made steps receives a credit. In the numerical experiment the following values 

of the RL parameters are used to guarantee convergence: 

γ = 0.9,  λ = 0.9, η = 0.9 (5.1.3.3) 

For the above formulated problem the RL method makes use of a reward function 

defined as follows. The RL agent receives a positive reward if the system has completed 

the mission in time, and the degradation status remains below the critical level. A 

negative reward is given to the RL agent if the mission fails due to exceeding the 

degradation threshold or/and the mission time limit. In both cases, the reward is assigned 

only after the mission is completed, either successfully or not successfully.  

The reward function is extended in the following manner.  Performing the mission 

task, the system equipped with a PHM component provides the practitioner with 

prognostic information that is used to evaluate the probability of a successful mission 

completion. If the prognosis that is obtained after the system performs a particular action 

in a particular state suggests that the anticipated failure time is closer than the anticipated 

completion time, the RL agent receives a negative reward for the particular pair of state 

and action. The reward is positive if the estimated remaining useful life exceeds the 

anticipated completion time. 

In other words, the RL agent receives an immediate reward based on the 

prognostic information derived from the current system state and the intrinsic reliability 

properties of the system. Receiving the immediate prognostics-driven reward is expected 

to improve the RL routine in terms of convergence time and the end result quality. 

The use of prognostic information can be thought of as introducing prior 

knowledge about the system dynamics into the model-free RL routine. Even if some 

knowledge of the system dynamic is available beforehand, prognostics can complement 
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the available information with the data observed or inferred at the system at hand, thus, 

providing information about individual features potentially affecting the mission 

accomplishment. The following section presents experimental results obtained in 

numerical simulations. 

5.2.  Numerical Results 

This section describes the numerical simulation performed to illustrate the 

benefits of using prognostic information in the reinforcement learning routine.  For the 

sake of simplicity, the problem stated in the previous section is to be reformulated as 

follows.  

A unit is assigned to perform a mission whose completion progress is expressed 

as an integer within the range of 0 to 30. The unit can operate at 4 different performance 

rates summarized in Table 4. 

The unit is subject to damage accumulation (degradation), whose rate is assumed 

to be a function of the performance rate. In the numerical simulation the following values 

of degradation and performance rates are used. However, this relationship is assumed to 

be unknown to the RL routine.  

The time allowed to be spent to accomplish the mission is constrained to Tlimit = 

14 duty cycles. The mission is said to fail due to extensive degradation if the unit’s 

degradation exceeds the damage level of 30, while the mission progress status is still less 

than 30. If the mission progress status attains the value of 30, but the time constraint Tlim  

is not met, the mission is said to fail as well.  

Table 4. The relationship between the performance and degradation rates. 

Performance Rates, wt 1 2 3 4 
Degradation Rates, dt 2 1 3 6 
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The operator controls the mission progression through varying the unit’s 

performance rate. Having received a control action to perform in a duty cycle the unit 

completes a certain volume of the mission-related task, and acquires a certain amount of 

damage (degradation) during the duty cycle.  

The operator is interested in having a control policy, which guarantees that the 

mission will be accomplished while the specified time limit and reliability-related 

requirements are met. Since the model dynamics (Table 4) are assumed to be unknown, 

the RL routine is to be performed in a model-free setting. 

The system state, st, is assumed to contain the following attributes  

- Mission Progress, Wt 

- Degradation State, Dt 

- Performance Rate, wt 

- Degradation Rate,  dt 

For each state one should select a control action ai ∈  A, which determines the 

performance rate at which the unit will perform in the next duty cycle.  

The Q-table, the key component of the RL routine, keeps values for 

30×30×4×4×4=57600 possible pairs of states and control actions (si,aj) the unit can 

potentially undergo performing the mission. Being in a particular state the unit can 

proceed at one of four possible performance rates. This means that the Q-table has the 

dimensionality of 14400 × 4.  

Starting with completely random Q-values, which implies a completely random 

control policy, the RL routine is to learn an acceptable control policy.  

The reward function employed in the numerical simulation is defined as follows.  

If the unit has completed the mission successfully, the reward is positive and equals the 

difference between the time constraint Tlim and the actual completion time. If the unit fails 

to complete the mission, the reward is negative and equals the work volume that yet 

remains to be done: 
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This definition of the reward function causes the RL routine to favor control 

policies that provide a fast and successful completion of the mission, and not to favor 

those that lead to the mission failure accompanied with the unit's intensive degradation.  

Prognostic information derived on the unit complements the reward function in 

the following manner. Performing the mission one makes a prognosis regarding what 

would be the anticipated time of the mission completion, and anticipated failure time. If 

the anticipated failure time happens to be less than the anticipated completion time, the 

reward function generates a negative reward. In other words, a state and control action 

pair that produces such an undesirable prognosis is not going to be included in the control 

policy, since the reward is negative.  

Another important aspect of the considered model is the uncertainty associated 

with the degradation observed at the unit. Until now, it has been assumed that the 

relationship between the performance and degradation rates is deterministic as shown in 

Table 4. This means that performing the mission task at any particular performance rate 

causes the unit to degrade at a particular deterministic degradation rate. However, in 

reality this may not hold true, since various random factors can affect the degradation 

process. For example, due to environmental condition variations, a particular 

performance rate value can lead to a degradation rate value that would vary in different 

environmental conditions. Performing the mission task in severe environmental 

conditions is expected to cause the unit to degrade at a greater extent. Since 

environmental conditions usually are uncontrollable and random in their nature, in this 

study the effect of random environmental factors is treated as a random noise 

contaminating the relationship between the performance and degradation rates. Having 

selected the unit's performance rate for the coming duty cycle the operator expects to 

observe some random value of damage (degradation) acquired in the duty cycle. 

The prognostic model adopted in the numerical simulation is a linear regression-

based technique that is applied to evaluate the mean degradation rate exhibited by the 
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unit. The prognostic information used by the RL agent is the 5th percentile of the 

estimated time-to-failure (TTF) distribution.  

In each duty cycle, the 5th percentile, α0.05, of the TTF distribution is compared 

against the 95th percentile, β0.95, of the anticipated-completion-time distribution, which is 

estimated via a linear regression method as well (see Figure 31). The immediate reward is 

positive, if α0.05 – β0.95 > 0, otherwise the reward is negative. 

Table 5 summarizes the experimental results obtained in the numerical 

simulation. Simulations are performed at 4 different levels of degradation rate variability. 

These levels of relative variability are 0%, 12%, 16% and 25%. Each case is approached 

with two RL routines, one of which is using prognostic information to compliment the 

reward function, whereas the other RL routine is not using prognostic information.  

 

 

 

Figure 31. The schematic representation of prognostic information used in the 

experiment. 
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Table 5. The experimental results obtained in the numerical simulation. 

 

 

 Figures of Merit 

Probability of Completion, Ps Mean Completion Time, Tcomplete 
Mean Health Status at  
Completion Time, Hs 

Variability 
Level in 

Degradation 
Rates Random 

No 
Prognostics 

Prognostics Random 
No 
Prognostics 

Prognostics Random 
No 
Prognostics 

Prognosti
cs 

No Variability 0.23 0.96 1.0 13.4(1.4) 12.5(0.9) 14.0(0) 2.9(2.1) 1.1 (1) 5.4 (0.9) 

Little  0.22 0.91 0.96 13.4(1.4) 12.3 (1.2) 12.6(0.8) 2.9(2.2) 3.7 (1.4) 5.7 (2.2) 

Moderate  0.22 0.71 0.91 13.3(1.5) 12.4 (1.4) 12.6(1.4) 2.9(2.2) 3.5 (2.4) 5.0 (1.8) 

Large  0.25 0.57 0.61 13.3(1.4) 13.6 (1.1) 13.3(1.2) 3.0(2.4) 4.3 (2.5) 4.5 (2.3) 
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To evaluate the derived control policy performance three figures of merit are 

proposed. These are the probability of successful mission completion Ps, Mean 

Completion Time Tcomplete, Mean Health Status Hs at the mission completion moment. As 

a reference point in the policy evaluation a completely random policy is introduced. The 

random policy forces the agent to take control actions in a completely random fashion.  

Following a perfect control policy the operator expects a) to have a close-to-one 

probability of successful mission completion; b) the mission's completion time is 

expected to be short; and c) the unit's health status is expected to be preserved as high as 

possible at the mission completion moment. 

As can be seen the control policies found by RL provide a probability of 

successful completion approximately 5 times larger than that based on random control 

actions. This fact indicates that the implemented RL technique is able to find a 

satisfactory control policy. The figures of merit evaluated for the random control policy 

turn out to be almost equal for all levels of variability engaged in the experiment, whereas 

the learned control policies show a dependency on the variability levels. One possible 

explanation for this fact is that variability attributed to the random control actions 

outweighs the variability attributed to the system model (the unit’s degradation rates).  

Comparing the values of Ps for the learned control policies one can see that the 

control policies derived using prognostics information provide higher probabilities of 

successful completion than those policies that do not use prognostic information. 

However, the difference in this figure of merit, Ps, is significant only in the case of 

moderate variability in degradation rates. This fact can be explained by the following.  

If the relationship between performance and degradation rates is deterministic, the 

RL agent is able to perfectly learn the model, and come up with a good control policy 

without using any complementary data such as prognostic information. The slight 

difference in the values of Ps shown in Table 5 reflects the fact that the use of prognostic 

information quickens the learning process so that the RL agent reinforced with prognostic 

information is able to find a good control policy faster than those not using prognostics. If 

the RL routine without prognostics continued learning for a longer time, a control policy 
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providing Ps close to 1 would be probably derived. However, in reality, a long learning 

time could be impractical or safety critical. The ability to shorten the learning time is 

considered to be a significant benefit derived from using prognostic information. Figure 

32 illustrates the learning time spent by the RL routines with and without prognostic 

information. 

As can be seen the use of prognostic information greatly facilitates the RL routine 

in terms of convergence time. Using prognostics the RL routine converges to an 

acceptably good policy after approximately 70 training episodes. The RL routine not 

using prognostics exhibits some convergence as well. However, the learned policy seems 

less acceptable since the average reward is less than that provided by the prognostics-

based policy. 

In the case of highly variable degradation rates (the bottom line in Table 5) the 

small difference in the probabilities of successful completion can likely be explained as 

due to the prognostic information in these highly noisy models being too uncertain to 

bring benefits for deriving a good control policy. The prognostic model used in the 

simulation has a limited ability to handle high-level random noise in input data, which 

results in prediction uncertainty large enough that the prognostic information becomes 

useless. Another benefit of using prognostics in the course of RL is that the RL-based 

policies tend to provide a higher level of remaining health status, Hs, upon completion the 

mission. This means that the prognostics-based control policies preserve the system 

health status to a greater extent than those not using prognostics. 

The tested policies have not shown a significant difference in the mean 

completion time metric. However, the values of Tcomplete shown by the prognostics-based 

control policy are slightly less variable than those Tcomplete shown by “no-prognostics” 

policies. The experiment has revealed that Probability of Completion exhibits a relatively 

complex behavior in the sense that the largest difference between the tested RL routines 

is observed in the case of moderately variable models. The extreme cases where the 

model variability is low or large have not shown a significant difference between the 

control policies found by the tested RL routines.  
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Figure 32. A typical sequence of rewards obtained in the course of reinforcement learning 

by the agent that does not use prognostic information (a), and does use prognostic 

information (b).  
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A prognostic model can be characterized in terms of its informational capacity 

(computational complexity). This metric is likely to be dependent on the model accuracy, 

precision, the number of parameters, etc. On the other hand, the model that formulates the 

setting, in which one should find an optimal control policy, is also characterized in terms 

of its informational capacity (computational complexity).  

The informational capacity of such a model is likely to be dependent on the type 

of functional dependencies prevailing among the model entities, the level of random 

noise in the model processes, etc. For example, the model can feature a highly non-linear 

relationship between the performance and degradation rates, or extensively high 

variability in the degradation rate values.  

From this perspective the following statement is made. There should be a match 

in terms of computational complexity between the prognostic model employed in the 

search for optimal control policy and the model describing the setting where the control 

policy is going to be used. A simple prognostic model may not be able to provide a 

prognosis that is good enough to be useful for finding the optimal control policy. On the 

other hand, a simple control model can be easily learned by the RL method without using 

any prognostic model. A more detailed investigation of this aspect will be investigated in 

the future. 

5.3. Concluding Remarks 

A method to incorporate prognostic information into the reinforcement learning 

routine has been developed. Using prognostic information one can a) improve the RL 

routine in terms of convergence time, which is a critical issue in real-world applications, 

and b) reduce uncertainty associated with the derived control policy in terms of stability 

of system trajectories along which the system proceeds achieving the mission objectives. 
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6.  CONCLUSIONS AND RECOMMENDATIONS  
FOR FUTURE WORK 

This dissertation described a generic prognostic framework developed to provide 

general guidelines to PHM system designers and practitioners interested in using 

degradation evidence data for reliability condition assessment and prediction. Within the 

prognostic framework, the following methodologies were developed: 

1. A method to represent a multidimensional health status of the system in the form 

of a scalar quantity called a health indicator was developed. Reducing the 

dimensionality of the vector representing the system health status greatly 

facilitates development and practical use of prognostic models in the PHM 

framework. The method is capable of indicating the effectiveness of the health 

indicator in terms of how well or poor the health indicator can distinguish healthy 

and faulty system exemplars. Using this method, the practitioner is able to 

intelligently select diagnostic information (degradation evidence) pertinent to the 

failure mechanisms present in the system of interest. 

2. A usefulness criterion, which allows the practitioner to evaluate the practicability 

of using a particular prognostic model along with observed degradation evidence 

data was developed. The criterion of usefulness is based on comparing the model 

uncertainty imposed primarily by imperfectness of degradation evidence data 

against the uncertainty associated with the time-to-failure prediction based on 

average reliability characteristics of the system. Using the criterion of usefulness, 

the practitioner, who is oftentimes limited in accuracy of the sensory equipment, 

is able to assess the expected benefit of using a given prognostic model with the 

uncertain diagnostic information. In the cases where the practitioner lacks a priori 

knowledge of the failure mechanism characteristics, for instance, degradation 

rates, the criterion of usefulness is used as an indicator of how many degradation 

evidence data should be collected on the system of interest to provide a 

reasonable RUL prediction. 
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3. An analysis of the uncertainty effects attributed to randomness in the critical 

degradation threshold, which is an important parameter of a prognostic model was 

performed. The revealed dependency between uncertainty in the critical 

degradation threshold and the model prediction uncertainty allows the practitioner 

to formulate practical requirements for a given prognostic model in terms of a 

maximum allowed critical threshold uncertainty. 

4. An analysis of uncertainty effects attributed to the presence of unobservable 

failure mechanisms affecting the system degradation process along with 

observable failure mechanisms was performed. A method was developed to 

reduce the uncertainty effects upon a prognostic model. The method transforms 

the characteristic timescale in a prognostic model built on degradation data 

observed in the presence of unobservable failure modes. The use of the 

transformed timescale effectively causes the prognostic model to approximate 

damage due to unobservable failure modes as a linear function of time. 

5. A method to incorporate prognostic information into optimization techniques 

aimed at finding an optimal operational control policy for equipment performing 

in an uncertain environment was developed. The use of prognostic information 

greatly facilitates the search for an optimal control strategy in the case where 

limited information is available regarding the system dynamics and environmental 

conditions.  

Through the development of these methods, which are used to select the correct 

prognostic architecture, manage the effects of uncertainty, produce a health status 

indicator from multidimensional data, and provide optimal operational control when the 

system is degraded practitioners will be able to effectively employ prognostic techniques 

to a multitude of applications.  The current gaps in prognostic technologies were 

identified and techniques were developed to ease the application of prognostic 

technologies.   

There are still several modifications of the framework that would provide 

additional benefit.  These extensions could encompass additional approaches such as  
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1. A method to fuse information supplied from various sources pertinent to 

reliability characteristics of the object of interest. The method would smartly 

manage the uncertainty associated with the information sources. The end result 

uncertainty should not be greater than those of the information sources involved 

into the information fusion. The Bayesian technique developed in this work is 

able to process two informational sources, which are degradation evidence data 

and prior knowledge of degradation rates, in conjunction with a linear degradation 

model. A promising area of future research would be to extend the Bayesian 

technique to process a multitude of data and knowledge sources available from 

past experience, engineering judgment, empirical evidence, etc.    

 

2. A reliability prediction method that would use empirical degradation evidence 

data along with a non-parametric empirical model that represents degradation 

process dynamics. A well known technique to combine system dynamics and 

empirical data is the Kalman filter. However, to apply the Kalman filter, one 

needs to know the system dynamics explicitly. Using a non-parametric empirical 

model for the system dynamics, one would be able to fuse information brought by 

the system dynamics model and empirical evidence observed at a particular object 

of interests.  

PHM techniques are still in their infancy stage of general application; however, in 

the future these techniques could provide the "holy grail" to equipment and system 

survivability. 
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Appendix 1. The MATLAB Code used to model a Markov chain based degradation 
model. 

function [X, T] = simulateTrends(t,b,q,n); 
% Simulates a collection of degradation paths  
% INPUT: t is a timescale, usually t = 0:1:100 
% b is the critical damage state (critical threshol d value) 
% q is the probability of receiving a unit-size dam age in a duty 
cycle 
% may be either scalar or vector quantity 
% n is the number of paths to generate  
% OUTPUT: X is a matrix of n generated paths 
%  T is a vector of failure times (the times when a  path 
crosses the threshold b) 
 
 
X = []; 
for k=1:n 
    x = modelATrend(t,b,q); 
    X(:,k) = x; 
end 
 
T = []; 
for k=1:size(X,2) 
    indx = find(X(:,k) == b); 
    if ~isempty(indx) 
        T(end+1) = t(indx(1)); 
    end 
end 
%-------------------------------------------------- -------------------- 
function [x] = modelATrend(t,b,q); 
% Simulates a degradation path 
% INPUT:  
% t is a timescale, usually t = 0:1:100 
% b is the critical damage state (critical threshol d value) 
% q is the probability of receiving a unit-size dam age in a duty cycle 
% OUTPUT: x is a degradation path 
n = length(t); 
x = zeros(n,1); 
r = rand(n,1);     
x(1) = 1; 
if length(q) == 1 
    for i=1:n-1 
        if r(i) <= q 
            x(i+1) = x(i)+1; 
        else 
            x(i+1) = x(i); 
        end 
    end 
else 
    for i=1:n-1 
        if r(i) <= q(x(i)) 
            if x(i) + 1 <= b 
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                x(i+1) = x(i)+1; 
            else 
                x(i+1) = x(i); 
            end 
        else 
            x(i+1) = x(i); 
        end 
    end 
end 
%-------------------------------------------------- -------------------- 

Appendix 2. The MATLAB Code used to model an RL agent. 

% An example of a reinforcement learning-based cont rol policy 
% 
 
global QTable ETable CompletionReward PrognosisRewa rd DegradationLimit 
MissionLimit; 
 
 
test = 1; 
reliability = []; 
duration = []; 
Rewards = []; 
Prcnt = []; 
success = 0; 
 
E = 1; % dummy  
P = [ 1  2 3 4 ];    % the performance rates 
D = [ 2  1 2 6 ];    % the degradation rates 
e0 = 1; 
CompletionReward = 10; 
PrognosisReward = 5; 
DegradationLimit = 30;  % the critical degradation threshold  
MissionLimit = 30;      % the full ammount of work   
 
numOfEnvCond = length(e0); 
numOfActions = length(P); 
N = MissionLimit + 10; 
% try to open a mat-file with the Q-table saved in previous training 
episodes 
fid = fopen('qtab2.mat','r');    
if fid < 0 
 % if there is no Q-table, initialize the Q-table r andomly. 
    if test == 0 
        fprintf('qtab2 not found. Initializing...\n '); 
        QTable = rand(N,N, numOfActions, 
numOfEnvCond*numOfActions,numOfEnvCond,numOfActions );    % init the Q-
table 
    else 
        disp('Test Mode is on. There is no QTable.' ); 
        return; 
    end 
else 
    fprintf('QTable2 found. Loading...\n') 
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    fclose(fid); 
    load qtab2 
end 
IdxTable = zeros(N,N,numOfActions, numOfEnvCond*num OfActions, 
numOfEnvCond,numOfActions); % init the E-table     
episodes = 0; 
 
 
% the main loop on the number of episodes 
while(1)    
    s = initState(); 
    % Zerofy the eligibility traces 
    ETable = zeros(N,N,numOfActions, numOfEnvCond*n umOfActions, 
numOfEnvCond,  numOfActions);     
 % the initial action 
    currentAction = actionToDo(s, episodes, numOfAc tions, P, D, test);   
    steps = 1; 
    x = []; 
    j = []; 
    x(steps) = s.degradation; 
    j(steps) = s.missionProgress;     
    EpisodeRewards = []; 
    % the loop for a training episode 
    while(1)    
        next_s = doAction(currentAction, s, E,D,P);  
        next_s = observeState(next_s); 
        nextAction = actionToDo(next_s, episodes, n umOfActions, P, D, 
test); 
        % get the reward for the current state and action 
        [reward completion] = getReward(next_s, tes t); 
        EpisodeRewards(end+1) = reward; 
        % update the Q-table if the test mode is on , otherwise skip the 
update. 
        if test == 0 
            [QTable, ETable] = updateQTable(s, curr entAction, reward, 
next_s, nextAction, P,D); 
        end 
        s = next_s;         
        currentAction = nextAction; 
        steps = steps+1; 
        j(steps) = s.missionProgress; 
        x(steps) = s.degradation; 
        % if the episode is over (either succesfull y or not), leave the 
loop 
        if completion == 1 
            break; 
        end 
    end 
    fprintf('steps=%f; reward=%f\n',steps, reward);  
    episodes = episodes+1; 
    Rewards(end+1) = reward; 
    % track the training process statistics 
    if test == 1 && reward > 0  
        success = success + 1; 
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        reliability(end+1) = s.missionProgress - s. degradation; 
        duration(end+1) = size(s.history,1); 
        Prcnt(end+1) = success/episodes; 
        subplot(2,1,1); 
        plot(Prcnt);  
        subplot(2,1,2);         
        plot(duration,'b.'); 
        drawnow; 
    end 
    if test == 0 
        fprintf('%d episodes done\n',episodes); 
        plot(x,'r','linewidth',2); hold on; 
        plot(j,'b','linewidth',2); 
        plot([0 16], MissionLimit*ones(1,2),'r-.');  
        axis([0 16 0 MissionLimit*1.1]); hold off; 
        title(sprintf('test=%d;epis.=%2.0f;steps=%2 .2f; 
reward=%2.2f\n',test,episodes, steps, reward)); 
        drawnow; 
    end 
 % save the Q-table every 10 training episodes 
    if mod(episodes,10) == 0 && test == 0 
        disp('Saving the QTable...'); 
        save qtab2 QTable 
    end 
    if test == 0 && episodes > 400 
        break; 
    end 
end 
plot(Rewards,'b.'); 
%-------------------------------------------------- -------------------- 
function [s_new] = doAction(action, s, E, D, P); 
% the function does the action suggested by the con trol policy 
% INPUT: action is the action to do 
%   s is the current state 
%   E is the transition matrix characterizing the 
environment  
%   D is the vector of degradation rates 
%   P is the vector of performance rates 
% OUTPUT: s_new is the new state the system goes af ter the action is 
taken. 
% 
 
global DegradationLimit MissionLimit; 
 
s_new = s; 
%r = rand; 
%cs = cumsum(E(s.env,:)); 
%idx = find(r < cs); 
%s_new.env = idx(1); 
 
s_new.PRateIdx = (action); 
s_new.DRateIdx = (action); 
s_new.history(end+1,:) = [s.missionProgress s.degra dation]; 
s_new.missionProgress = s.missionProgress + P(s_new .PRateIdx); 
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r = randn; 
level = 4; 
if s.degradation + D(s_new.DRateIdx) + r * D(s_new. DRateIdx)/level <= 
DegradationLimit 
    s_new.degradation = s.degradation + D(s_new.DRa teIdx) + r * 
D(s_new.DRateIdx)/level; 
else 
    s_new.degradation = DegradationLimit + 2; 
end 
%-------------------------------------------------- -------------------- 
function [reward completion] = getReward(s, test); 
global CompletionReward PrognosisReward Degradation Limit MissionLimit; 
% The function assigns a reward value to the RL age nt 
%  INPUT:  
% s is the current RL agent state 
% test is a flag indicating wether or not the test mode is on 
%  OUTPUT:   
% reward is the value of reward 
% completion is a flag indicating the mission compl etion 
 
completion = 0; 
reward = 0; 
if s.missionProgress >= MissionLimit && s.degradati on <= 
DegradationLimit 
    completion = 1;     
    y = s.history(:,1); 
    reward = 20 - size(y,1); 
    return; 
elseif s.degradation > DegradationLimit 
    reward = s.missionProgress - s.degradation; 
    completion = 1; 
    return;     
end 
 
if test == 0 
y = s.history(:,1); 
if length(y) > 5 
    x = [0:1:length(y)-1]' ; 
    xtst = [0:1:100]'; 
    [beta dev stats] = glmfit(x,y,'normal'); 
    [yhat ylo yhi] = glmval(beta, xtst, 'identity', stats); 
    [CompletionTime1, ystar, indx] = findCrossingTi me(yhat+yhi, 
DegradationLimit, xtst); 
    [CompletionTime2, ystar, indx] = findCrossingTi me(yhat-ylo, 
DegradationLimit, xtst); 
    if CompletionTime1 > 14 
        reward = -PrognosisReward; 
        return; 
    end 
    y2 = s.history(:,2); 
    [beta dev stats] = glmfit(x,y2,'normal'); 
    [yhat2 ylo2 yhi2] = glmval(beta, xtst, 'identit y',stats); 
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    [FailureTime1, ystar, indx] = findCrossingTime( yhat2+yhi2, 
MissionLimit, xtst); 
    [FailureTime2, ystar, indx] = findCrossingTime( yhat2-ylo2, 
MissionLimit, xtst); 
    Measure = FailureTime1 - CompletionTime2; 
    if Measure > 0  
        reward = PrognosisReward; 
    end 
end 
end 
%-------------------------------------------------- -------------------- 
function [s] = initState(); 
% initializes the RL agent state 
 
s.missionProgress = 1; 
s.degradation = 1; 
s.PRateIdx = 2; 
s.DRateIdx = 2; 
s.history = [s.missionProgress s.degradation]; 
s.env = 1; 
%-------------------------------------------------- -------------------- 
function sObs = observeState(s) 
% returns the state observation (sObs) given the cu rrent state s. 
 
sObs = s; 
sObs.missionProgress = round(s.missionProgress); 
sObs.degradation = round(s.degradation); 
%-------------------------------------------------- -------------------- 
function [QTable, ETable] = updateQTable(s, current Action, reward, 
next_s, nextAction, P, D); 
% the function updates the Q-table using eligibilit y traces E 
% INPUT:  s - the current state  
% currentAction is the action performed in the curr ent state 
% reward is the reward assigned to the RL agent 
% next_s is the next state  
% nextAction is the action to be taken in the next state 
% D is the vector of degradation rates 
% P is the vector of performance rates 
 
global QTable ETable; 
 
lambda = 0.9; 
gamma = 0.9; 
eta = 0.9; 
 
next_Qval = 
QTable(next_s.missionProgress,next_s.degradation,ne xt_s.PRateIdx,next_s
.DRateIdx,next_s.env,nextAction); 
Qval = QTable(s.missionProgress,s.degradation, s.PR ateIdx, s.DRateIdx, 
s.env, currentAction); 
TD = reward + gamma * next_Qval - Qval; 
ETable(s.missionProgress,s.degradation, s.PRateIdx,  s.DRateIdx, s.env, 
currentAction) = 1; 
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QTable = QTable + (eta * TD) .* ETable; 
ETable = lambda.*ETable; 
 
%-------------------------------------------------- -------------------- 

Appendix 3. An example of a linear degradation model.  

% this is an example of a linear degradation model 
Nt = 50;           % the number of simulated observ ations in a 
degradation path 
t = linspace(0,12,Nt)'; % the observations are equi distant in time 
RedLev = 10;        % the critical degradation thre shold 
N = 500;      % the number of degradtion paths to s imulate 
B0 = [0.2 0.08];    % the probabilistic parameters for the intersect, 
[Mean SD] 
B1 = [1.2 0.1];     % the probabilistic parameters for the slope, [Mean 
SD] 
 
% generate N paths 
y = sampleFunctions(t,N,'linear',B0,B1);   
sigma = .3; 
y = y +  randn(size(y))*sigma;  % contaminate the p aths with noise 
 
% find the time momnents of crossing the critical t hrehsold RedLev 
Tstar = []; 
for i=1:N 
    [crossingTime, ystar, indx] = findCrossingTime( y(:,i), RedLev, t); 
    Tstar(i) = crossingTime; 
end 
Tstar(find(isinf(Tstar))) = [];   % get rid of inf values 
 
% this portion of code requires the KDE toolbox ava ilable in the 
Internet 
k = kde(Tstar,'rot'); 
p = evaluate(k,t'); 
MTTF = mean(k);     % calculate the mean time to fa ilure 
 
% find the 2.5-th and 97.5-th percentiles of the ti me-to-failure 
distribution 
alpha = 0.95; 
P = cumsum(p)/sum(p); 
[Tup, Pstar, indxUp] = findCrossingTime(P, alpha+(1 -alpha)/2, t); 
[Tlo, Pstar, indxLo] = findCrossingTime(P, (1-alpha )/2, t); 
 
figure 
plot(t,P); hold on; 
a=axis; 
plot(ones(1,2)*MTTF,a(3:4),'k:'); 
plot(ones(1,2)*Tup,a(3:4),'b:'); 
plot(ones(1,2)*Tlo,a(3:4),'b:'); 
 
 
% take the k-th degradation path, and make a predic tion 
k=2; 
beta = regress(y(1:1:end,k), [ones(size(t)) t]); 
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yhat = [ones(size(t)) t]*beta; 
 
figure 
plot(t,y(:,k),'b','linewidth',2); hold on; 
a = axis; 
axis([a(1:2) -0.5 a(4)]); 
plot(a(1:2),RedLev*ones(1,2),'r-.','linewidth',2); 
plot(t,yhat,'m:','linewidth',2); hold on; 
plot(a(1:2),zeros(1,2),'k:','linewidth',1); 
xlabel('Time'); 
ylabel('Degradation'); 
legend('Degr.Path','Critical Level'); 
 
figure 
plot(t(1:3:end),y(1:3:end,1:50:end),'b'); hold on; 
plot(t,RedLev+20*p,'k'); 
a = axis; 
plot(a(1:2),RedLev*ones(1,2),'r-.','linewidth',3); 
plot(a(1:2),zeros(1,2),'k:','linewidth',1); 
plot(Tstar,RedLev*(ones(1,length(Tstar))),'r*'); 
plot(ones(1,2)*MTTF,a(3:4),'k:'); 
plot(ones(1,2)*Tup,a(3:4),'b:'); 
plot(ones(1,2)*Tlo,a(3:4),'b:'); 
plot(t,mean(y'),'r') 
xlabel('Time'); 
ylabel('Degradation'); 
legend(); 
 
T = [ones(size(t)) t]; 
b = regress( mean(y')', T); 
 
b1 = []; 
for i=1:size(y,2) 
    b1(:,i) = regress( y(:,i), T); 
end 
 
% set the prior values of the degradation rate (Bpr ior) and associated 
stand. deviation  
Bprior = mean(b1')' 
Sprior = std(b1')' 
  
%-------------------------------------------------- -------------- 
 

Appendix 4. An example of a Bayesian linear regression.  

% this is an example of Bayesian linear regression 
 
k = 33; 
alpha = 0.05;   % (1-alpha)*100% confidence  
t_future = linspace(0,24,2*Nt)'; 
[failureTime, ystar, indx] = findCrossingTime(y(:,k ), RedLev, t); 
trueTTF = [];  olsTTF = []; bayesTTF = []; 
startIndx = 5; 
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for i=startIndx:1:Nt 
    handydata = 1:i; 
    X = t(handydata); 
    Y = y(handydata,k); 
    X1 = [ones(size(X)) X]; 
    N1 = size(X,1); P1 = size(X1,2); 
    [b bint r rint stats] = regress(Y,X1); 
    Yhat = X1*b; 
    e = Y - Yhat;     
    s2 = sumsqr(e)/(N1-P1); 
    Sxx = sumsqr(X-mean(X)); 
     
    ta = tinv(1-alpha/2,N1-(P1+1)); 
    T_future = [ones(size(t_future)) t_future];     
    yfuture = T_future*b; 
    V = inv(X1'*X1); 
    ylo = yfuture - ta*sqrt(s2)*sqrt(1+diag(T_futur e*V*T_future')); 
    yhi = yfuture + ta*sqrt(s2)*sqrt(1+diag(T_futur e*V*T_future'));    
 
    Thi_i = findCrossingTime(ylo, RedLev, t_future) ; 
    Tlo_i = findCrossingTime(yhi, RedLev, t_future) ;     
    T_i = findCrossingTime(yfuture, RedLev, t_futur e);         
     
% Bayesian Approach-------------------------------- --------------------
----------- 
    Sigma = diag(Sprior.^2); 
    Bprior = Bprior; 
   
    Vprior = Sigma./sigma^2; 
    Vpost = inv(inv(Vprior) + X1'*X1); 
    Bpost = Vpost*(inv(Vprior)*Bprior + (X1'*X1)*b) ; 
    NuSprior = (Nt-P1)*sigma^2; 
    NuSpost = NuSprior + (N1-P1)*s2 + diag(inv(Vpri or+X1'*X1)).*(b-
Bprior).^2; 
    VarBpost = Vpost.*NuSpost(1)/(N1-P1); 
    Spost = NuSpost(1)/Nt; 
 
    % make a prediction  
    y_b = T_future*Bpost; 
    yhi_b = y_b+tinv(1-alpha/2,Nt+N1-
P1)*sqrt(Spost.*diag(eye(size(T_future,1)) + 
T_future*VarBpost*T_future')); 
    ylo_b = y_b-tinv(1-alpha/2,Nt+N1-
P1)*sqrt(Spost.*diag(eye(size(T_future,1)) + 
T_future*VarBpost*T_future'));     
    %---------------------------------------------- ----------------- 
    bayesFailureTime = findCrossingTime(y_b, RedLev , t_future); 
    bayesFailureTimeHi = findCrossingTime(yhi_b, Re dLev, t_future);     
    bayesFailureTimeLo = findCrossingTime(ylo_b, Re dLev, t_future);         
    olsFailureTime = findCrossingTime(yfuture, RedL ev, t_future);     
    olsFailureTimeHi = findCrossingTime(yhi, RedLev , t_future);         
    olsFailureTimeLo = findCrossingTime(ylo, RedLev , t_future);             
     
    % draw a plot if i = {6, 8, 10, 14} 
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    if i == 8 || i==10 || i==6 || i==14  
    hndl =[]; 
    u1 = sigma^2*diag(eye(length(T_future)) + T_fut ure*V*T_future'); 
    u2 = (B1(2)^2)*t_future.^2 +B0(2)^2; 
    utmp = (u1./u2); 
    hndl(1) = plot(t_future(1:i), utmp(1:i),'b'); h old on;     
    plot(t_future(i), utmp(i),'bo');     
    plot(t_future(i+1:end), utmp(i+1:end),'b:'); 
    a = axis; 
    hndl(3) = plot(a(1:2), ones(1,2),'r-.'); 
    hold on; 
    xlabel('Time Units');  ylabel('Uncertainty Rati o'); 
    t(i) 
    axis([a(1:2) 0 10]); 
    end 
    trueTTF(i) = failureTime-t(i); 
    bayesTTF(i,:) = [bayesFailureTime bayesFailureT imeHi 
bayesFailureTimeLo] ; 
    olsTTF(i,:) = [olsFailureTime olsFailureTimeHi olsFailureTimeLo]; 
    drawnow; 
end 
 
olsTTF = olsTTF - repmat(t,1,3); 
bayesTTF = bayesTTF - repmat(t,1,3); 
popTTF = repmat([MTTF Tup Tlo],length(t),1) - repma t(t,1,3); 
hndl = []; 
figure 
hndl(1) = 
plot(t(startIndx:end),trueTTF(startIndx:end),'b:',' linewidth',2); hold 
on; 
hndl(2) = 
plot(t(startIndx:end),bayesTTF(startIndx:end,1),'m' ,'linewidth',2); 
hndl(3) = plot(t(startIndx:end),olsTTF(startIndx:en d,1),'g-
.','linewidth',2); 
hndl(4) = plot(t(startIndx:end),popTTF(startIndx:en d,1),'k-
.','linewidth',2); 
a = axis; 
plot(a(1:2),zeros(1,2),'k:'); 
plot(t(startIndx)*ones(1,2),a(3:4),'k:'); 
axis([a(1) 8.5 -1 9]); 
 
indx = t([startIndx:end end:-1:startIndx])'; 
indx1 = [bayesTTF(startIndx:end,3)' bayesTTF(end:-1 :startIndx,2)']'; 
indx1(find(isinf(indx1)==1)) = 100; 
fill(indx,indx1,'m', 'FaceAlpha', 0.2, 'EdgeColor',  'none' ); 
indx2 = [olsTTF(startIndx:end,3)' olsTTF(end:-1:sta rtIndx,2)']'; 
indx2(find(isinf(indx2)==1)) = 100; 
fill(indx,indx2,'g', 'FaceAlpha', 0.2, 'EdgeColor',  'none' ); 
indx3 = [popTTF(startIndx:end,3)' popTTF(end:-1:sta rtIndx,2)']'; 
fill(indx,indx3,'k', 'FaceAlpha', 0.1, 'EdgeColor',  'none' ); 
xlabel('Time, hrs'); ylabel('Time-to-Failure, hrs') ; 
legend(hndl,'True TTF','Bayesian Estimate','OLS Est imate','Population-
based TTF'); 
title('True and Estimated Time-to-Failure'); 
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Appendix 5. An example of the Bayesian prediction  

k = 33; 
alpha = 0.05;   % (1-alpha)*100% confidence  
t_future = linspace(0,24,2*Nt)'; 
[failureTime, ystar, indx] = findCrossingTime(y(:,k ), RedLev, t); 
trueTTF = [];  olsTTF = []; bayesTTF = []; 
startIndx = 5; 
 
for i=startIndx:1:Nt 
    handydata = 1:i; 
    X = t(handydata); 
    Y = y(handydata,k); 
    X1 = [ones(size(X)) X]; 
    N1 = size(X,1); P1 = size(X1,2); 
    [b bint r rint stats] = regress(Y,X1); 
    Yhat = X1*b; 
    e = Y - Yhat;     
    s2 = sumsqr(e)/(N1-P1); 
    Sxx = sumsqr(X-mean(X)); 
    ta = tinv(1-alpha/2,N1-(P1+1)); 
    T_future = [ones(size(t_future)) t_future];     
    yfuture = T_future*b; 
    V = inv(X1'*X1); 
    ylo = yfuture - ta*sqrt(s2)*sqrt(1+diag(T_futur e*V*T_future')); 
    yhi = yfuture + ta*sqrt(s2)*sqrt(1+diag(T_futur e*V*T_future'));    
    Thi_i = findCrossingTime(ylo, RedLev, t_future) ; 
    Tlo_i = findCrossingTime(yhi, RedLev, t_future) ;     
    T_i = findCrossingTime(yfuture, RedLev, t_futur e);         
     
% Bayesian Approach-------------------------------- -------------------- 
    Sigma = diag(Sprior.^2); 
    Bprior = Bprior; 
    Vprior = Sigma./sigma^2; 
    Vpost = inv(inv(Vprior) + X1'*X1); 
    Bpost = Vpost*(inv(Vprior)*Bprior + (X1'*X1)*b) ; 
    NuSprior = (Nt-P1)*sigma^2; 
    NuSpost = NuSprior+(N1-P1)*s2+diag(inv(Vprior+X 1'*X1)).*(b-
Bprior).^2; 
    VarBpost = Vpost.*NuSpost(1)/(N1-P1); 
    Spost = NuSpost(1)/Nt; 
    % Make a prediction  
    y_b = T_future*Bpost; 
    yhi_b = y_b+tinv(1-alpha/2,Nt+N1-
P1)*sqrt(Spost.*diag(eye(size(T_future,1)) + 
T_future*VarBpost*T_future')); 
    ylo_b = y_b-tinv(1-alpha/2,Nt+N1-
P1)*sqrt(Spost.*diag(eye(size(T_future,1)) + 
T_future*VarBpost*T_future'));     
    %---------------------------------------------- ----------------- 
    bayesFailureTime = findCrossingTime(y_b, RedLev , t_future); 
    bayesFailureTimeHi = findCrossingTime(yhi_b, Re dLev, t_future);     
    bayesFailureTimeLo = findCrossingTime(ylo_b, Re dLev, t_future);         
    olsFailureTime = findCrossingTime(yfuture, RedL ev, t_future);     
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    olsFailureTimeHi = findCrossingTime(yhi, RedLev , t_future);         
    olsFailureTimeLo = findCrossingTime(ylo, RedLev , t_future);             
     
 hndl = [];     
 hndl(2) =  plot(t,y(:,k),'c'); hold on;     
    indx = t_future([1:3:end end:-3:1])'; 
    indx1 = [yhi(1:3:end)' ylo(end:-3:1)']'; 
    fill(indx,indx1,[.42 .72 .90], 'FaceAlpha',0.3, 'EdgeColor','none'); 
    indx2 = [yhi_b(1:3:end)' ylo_b(end:-3:1)']'; 
    fill(indx,indx2,[.90 .72 .42], 'FaceAlpha', 0.9 9, 'EdgeColor', 
'none' ); 
    hndl(3) = plot(t_future,yfuture,'g','linewidth' ,2); 
    hndl(1) = plot(X,Y,'b','linewidth',3); hold on;     
    hndl(4)=    plot(t_future,y_b,'m','linewidth',2 );         
    plot(t_future,ylo_b,'g:');         
    plot(t_future,yhi_b,'g:');             
    plot(t_future,ylo,'k:'); 
    plot(t_future,yhi,'k:'); 
    axis([0 15 0 15]); 
    a = axis; 
 hndl(5) = plot(a(1:2),RedLev*ones(1,2),'r-.','line width',4);    % 
threshold level 
    plot(ones(1,2)*MTTF,a(3:4),'k:','linewidth',2);  
    plot(ones(1,2)*Tup,a(3:4),'b:','linewidth',2); 
    plot(ones(1,2)*Tlo,a(3:4),'b:','linewidth',2); 
    indx1 = [0 Tlo Tup 0]; 
    indx2 = [B0(1)+2*B0(2) RedLev RedLev B0(1)-2*B0 (2)]; 
    hold off; 
    trueTTF(i) = failureTime-t(i); 
    bayesTTF(i,:) = [bayesFailureTime bayesFailureT imeHi 
bayesFailureTimeLo] ; 
    olsTTF(i,:) = [olsFailureTime olsFailureTimeHi olsFailureTimeLo]; 
    legend(hndl,'Observed Pathway','Future Pathway' ,'OLS 
Prediction','Bayesian Prediction','Threshold'); 
    xlabel('Time, t'); ylabel('Degradation, Y(t)');  
%    title(sprintf('Time=%2.2f, Size:%d',t(i),N1));  
    drawnow; 
    pause 
end 
 
olsTTF = olsTTF - repmat(t,1,3); 
bayesTTF = bayesTTF - repmat(t,1,3); 
popTTF = repmat([MTTF Tup Tlo],length(t),1) - repma t(t,1,3); 
 
figure 
hndl(1) = 
plot(t(startIndx:end),trueTTF(startIndx:end),'b:',' linewidth',2);hold 
on; 
hndl(2) = 
plot(t(startIndx:end),bayesTTF(startIndx:end,1),'m' ,'linewidth',2); 
hndl(3) = plot(t(startIndx:end),olsTTF(startIndx:en d,1),'g-
.','linewidth',2); 
hndl(4) = plot(t(startIndx:end),popTTF(startIndx:en d,1),'k-
.','linewidth',2); 
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a = axis; 
plot(a(1:2),zeros(1,2),'k:'); 
plot(t(startIndx)*ones(1,2),a(3:4),'k:'); 
axis([a(1) 8.5 -1 9]); 
 
indx = t([startIndx:end end:-1:startIndx])'; 
indx1 = [bayesTTF(startIndx:end,3)' bayesTTF(end:-1 :startIndx,2)']'; 
indx1(find(isinf(indx1)==1)) = 100; 
fill(indx,indx1,'m', 'FaceAlpha', 0.2, 'EdgeColor',  'none' ); 
indx2 = [olsTTF(startIndx:end,3)' olsTTF(end:-1:sta rtIndx,2)']'; 
indx2(find(isinf(indx2)==1)) = 100; 
fill(indx,indx2,'g', 'FaceAlpha', 0.2, 'EdgeColor',  'none' ); 
indx3 = [popTTF(startIndx:end,3)' popTTF(end:-1:sta rtIndx,2)']'; 
fill(indx,indx3,'k', 'FaceAlpha', 0.1, 'EdgeColor',  'none' ); 
xlabel('Time, hrs'); ylabel('Time-to-Failure, hrs') ; 
legend(hndl,'True TTF','Bayesian Estimate','OLS Est imate','Population-
based TTF'); 
title('True and Estimated Time-to-Failure'); 
return 
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