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ABSTRACT 

Some basic concepts about traffic which are correct in theory may be 

misinterpreted in practice.  Such misinterpretations may lead to a different 

direction from the ideal operation.  This four-part dissertation is designated to 

examine fundamental concepts in traffic operation, and to validate the impact of 

randomness on control delays, cycle-length optimization, control types, and the 

peak-hour factor. 

Control delays experienced by drivers is a critical performance measure 

on interrupted-flow traffic which involves movements at slower speeds and stops 

on intersection approaches, as vehicles move up in the queue or slow down 

upstream of an intersection.  Since the basic term of control delay in a signalized 

intersection was originally from queueing analyses within a cycle, results from 

such models may be inaccurate due to the neglect of inter-cycle traffic variation.  

Besides, traffic is rare varying on the clock.  Therefore, the peak-hour factor will 

be inaccurate to a certain degree if peak periods are placed on the clock.   

All parts of this dissertation, except the first and the last, are independent 

papers for different professional journals, and are summarized as follows. Part II 

of this dissertation, “Impacts of Inter-Cycle Demand Fluctuations on Delay”, 

distinguishes between intra- and inter-cycle demand fluctuations and recognizes 

the potentially significant impact of delay underestimation when inter-cycle 

demand fluctuation is unaccounted for, as in all previous models.  “Short or Long 

… which is Better? A Probabilistic Approach towards Cycle Length Optimization” 

in the third part of this dissertation proposes a framework to determine the 
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optimal or near-optimal cycle length for signalized intersections based on the 

criterion with minimal control delays.  The fourth part with title “A Trade-Off 

Framework for Determining the Best Control at an Intersection” in this 

dissertation uses the same criterion with minimal control delays to assist decision 

makers in the trade-off between signals and stop signs for an intersection.  Part 

V of this dissertation, “Impacts of Misplaced Peak Intervals on PHFs”, argues 

about the significant difference among different ways to define the peak intervals, 

and distinguishes the differences between the “real” and “on the clock” peak-hour 

factors.  
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INTRODUCTION 

Randomness is the nature of traffic.  In addition, it varies over time and at 

different sites.  Even though there are models to describe and analyze traffic, it is 

still a challenge to have a common recommendation for all kinds of conditions 

due to the randomness of traffic.  Moreover, some basic assumptions, which are 

correct in theory, may be misinterpreted in practice.  This four-part dissertation is 

designated to examine some fundamental concepts in traffic operation, and to 

evaluate the impact of randomness on delay, cycle-length optimization, control 

types, and peak-hour factor.  In short, because of the randomness of traffic, inter-

cycle demand fluctuation should be considered on the average delay estimation.  

Because of the randomness of traffic, the expectation of average delay should be 

considered on deciding the  “just right” cycle length for a pre-timed operation.  

Because of the randomness of traffic, the average delay for the intersection 

should be considered on the trade-off among control types.  Because of the 

randomness of traffic, the peak-hour factor should not be derived from an “on the 

clock” basis. 

Control delays experienced by drivers is a critical performance measure 

on interrupted-flow traffic which involves movements at slower speeds and stops 

on intersection approaches, as vehicles move up in the queue or slow down 

upstream of an intersection.  Since the basic term of control delay in a signalized 

intersection was originally from queueing analyses within a cycle, results from 

such models may be inaccurate because of the inter-cycle traffic variation.  Part 

II of this dissertation, “Impacts of Inter-Cycle Demand Fluctuations on Delay”, 
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distinguishes between intra- and inter-cycle demand fluctuations and recognizes 

the potentially significant impact of delay underestimation when inter-cycle 

demand fluctuation is unaccounted for, as in all previous models.  “Short or Long 

… which is Better? A Probabilistic Approach towards Cycle Length Optimization” 

in the third part of this dissertation proposes a framework to determine the 

optimal or near-optimal cycle length for signalized intersections based on the 

criterion with minimal control delays.  The fourth part with title “A Trade-Off 

Framework for Determining the Best Control at an Intersection” in this 

dissertation uses the same criterion with minimal control delays to assist decision 

makers in the trade-off between signals and stop signs for an intersection.  Part 

V of this dissertation, “Impacts of Misplaced Peak Intervals on PHFs”, argues 

about the significant difference among different ways to define the peak intervals, 

and distinguishes the differences between the “real” and “on the clock” peak-hour 

factors.  All of these parts are independent papers for different professional 

journals, and are summarized as follows. 

Impacts of Inter-Cycle Demand Fluctuations on Delay 

According to Newell (1965), the simplest models of traffic flow through 

intersections were considered by Clayton in 1941 and perhaps by other 

researchers even earlier.  In these early queueing models, vehicles were 

assumed to arrive at regularly spaced time intervals with a mean time-headway 

of 1/q, where q is the average flow rate over a certain time period.  The vehicles 

form a queue during the red phase, R, at a traffic light and then during the 

subsequent green phase, G, depart at regularly spaced intervals with a time-
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headway of 1/s until either the end of the green time or when the queue has fully 

dissipated.  The assumption that traffic arrivals and departures are uniformly 

distributed is an important part of Webster’s work (Webster 1958), which 

attempts to attribute the average vehicular delay at signalized intersection to 

three main components, or terms, i.e. uniform delay, random delay, and empirical 

errors.  A very similar formulation for delay estimation is later employed by the 

1985 edition (TRB 1985) and subsequent updates of the Highway Capacity 

Manual (HCM) (TRB 1994, 1997, 2000).  The first term in each of these delay 

formulae represents uniform delay, which can be and is derived from simple 

queueing-based analysis.  By assuming uniform arrivals within a signal cycle, or 

intra-cycle, and by ignoring the discrete nature of vehicles, traffic can be 

considered as a continuous flow arriving at a uniform rate of q.  At some point in 

time the flow is dammed up for a period of R; it is then released at a rate of s until 

the build-up has dissipated.  Therefore, with all the simplicity in its algebraic form, 

the first term of Webster’s delay model has stood the test of time. 

Because neither the world nor traffic at a signalized intersection is 

deterministic, researchers have endeavored to introduce stochastic terms into 

delay models in order to estimate delay more realistically.  To this end, the 

second term of Webster’s model makes some allowance for the random nature 

of the arrivals.  In a rather subtle and largely unnoticed manner, that the random 

nature of vehicular arrivals within a cycle (intra-cycle) and that among cycles 

(inter-cycle) can be considered identical and are, thus, represented with identical 

statistical distribution.  In fact no delay model, Webster’s or else, distinguished 
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inter-cycle and intra-cycle randomness until Han and Li (2007) while 

readdressing the cycle-length optimization problem with Monte Carlo simulations.  

One of the benefits of this implied assumption is one could simplify the analysis 

and treat the entire study period of, say, an hour as a single signal cycle with the 

same average demand of q throughout.  The flip side, however, is the errors this 

assumption introduces when inter-cycle randomness exists.  Since unused 

capacity at a signalized intersection cannot be carried over from one cycle to 

succeeding ones, if inter-cycle demand fluctuation exists, the delay model has to 

be formulated to address the factor of randomness beyond the boundary of a 

single signal cycle. 

Many studies have analyzed the impact of fluctuating demand on average 

delay, but none has distinguished the randomness of demand within and among 

cycles.  Akcelik and Rouphail (1993) applied symmetrical triangular and parabolic 

functions to represent demand over the total flow period.  Heidemann (1994) 

assumed the number of vehicles arriving during a time interval to follow the 

Poisson arrival process and the arrivals for different but equal-length time 

intervals to be identically and independently distributed (IID).  However, he did 

not approach the subject from a signal-cycle perspective, and he did not consider 

non-identical distribution cases from one interval to the next.  While many studies 

on delay at signalized intersections have considered demand fluctuation within a 

cycle (intra-cycle), they have often implicitly treated demand over multiple cycles 

(inter-cycle) to be the same and, consequently, have reduced the analysis for a 

longer period, e.g. 15 minutes, to a single cycle.  Therefore, it has to be 
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distinguished between intra- and inter-cycle demand fluctuations and then 

recognized the potentially significant impact of delay underestimation when inter-

cycle demand fluctuation is unaccounted for, as in all previous models. 

Since unutilized capacity at a signalized intersection cannot be saved or 

carried over to be used by succeeding cycles when demand surges due to 

fluctuation, the pattern of inter-cycle demand variance is important.  Simulation 

results demonstrate that different patterns of inter-cycle demand variance can 

result in different levels of average delay.  The importance of inter-cycle demand 

variance on delay analysis is pointed out, especially under heavy traffic 

conditions.  That is, not only the intra-cycle demand variance but also the inter-

cycle demand fluctuation has a significant impact on the delay at a signalized 

intersection.  Neglecting inter-cycle demand variance may lead to significant 

inaccuracy and, hence, suboptimal signal timing decisions. 

A Probabilistic Approach towards Cycle Length Optimization 

Since the introduction of automatic traffic signals in 1926, signal-timing 

optimization has become a classic problem, but not always a satisfactorily 

solvable one, mainly because of demand fluctuation over time.  The fact is that if 

demand were constant or largely predictable, signal-timing optimization would be 

eminently solvable, indeed trivial.  However, in practice, this problem is not at all 

easy to solve, and there has been little agreement among experts.  There have 

been practitioners in favor of long cycle durations (e.g. more than 150 seconds) 

because less lost time is observed over a period, say an hour, of time; yet there 

are also proponents for snappier cycle durations (e.g. less than 60 seconds) to 
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avoid the buildup of queues.  To help clarify this issue, this paper will examine 

how cycle length should be chosen, whether short or long or neither, for fixed 

time signals in isolated intersections when all other factors are unchanging.  

(Actuation and other adaptive means that vary cycle length in real time have the 

potential to address this issue but would also bring much complexity into this 

matter, so they are not here addressed.)  Vehicular delay as a result of traffic 

signals has been commonly identified as a primary measure of motorists’ 

perception of how well a signalized intersection operates.  Therefore, timing 

optimization often involves the minimization of vehicular delay.  It is common to 

balance volume to capacity, or v/c, ratios of critical movements for this purpose.  

To keep matters simple, early studies often assumed uniform arrival at 

intersections (e.g. Clayton 1941; Wardrop, 1952; Webster, 1958; Newell, 1965).  

The first attempts at analytical models of fixed-cycle traffic signals were by 

Beckmann et al. (1956) and Newell (1956).  Newell proposed a model in which 

arrival headways were independently and identically distributed (IID) random 

variables of arbitrary distribution while departures were regularly spaced during 

the green.  It is noteworthy that these classic works were conducted based on 

queuing analysis within a single cycle and, hence, dealt only with intra-cycle 

demand fluctuations.  This was the reason why some researchers, e.g. Han 

(1996), considered these early works to be based on time-stationary 

assumptions.  Subsequent studies modeled delay using various approaches. 

Akcelik and Rouphail (1993) considered symmetrical triangular and parabolic 

functions as variable demand functions during the analysis period and proposed 
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a delay model that was suitable for variable demand conditions.  Heidemann 

(1994) assumed that the number of vehicles arriving during each time interval 

was considered to be stochastic, and the arrival distributions for different time 

intervals were assumed to be identical and stochastically independent.  Han 

(1996) may have been the earliest to report that when traffic demands are 

different in successive time periods, the signal settings that are optimal for each 

individual period are only local solutions to the problem.  He developed a 

sequential optimization technique to minimize the total intersection delay over 

successive periods by searching for the optimal signal timings. But one of the 

primary assumptions in his work was that the traffic demand, though varying from 

one period to the next, stayed constant in each individual period. 

Although each was valuable, none of these studies formally addressed the 

effects of inter-cycle as well as intra-cycle fluctuations of traffic demand.  The 

issue here is that inter-cycle fluctuation will affect the result of delay analysis 

because unused capacity that is due to a momentary drop in demand from one 

cycle is capacity that is lost forever and cannot be reclaimed to help future 

temporary surges in demand.  To properly represent this in queueing analysis 

and, hence, obtain better delay estimation, there should be multiple piecewise 

segments instead of a single straight line when demand is aggregated over time.  

This representation of fluctuating demand would lead to different, most likely 

higher, delay values, and subsequently a different optimization scheme. 

A probabilistic approach is employed to consider cycle-length optimization 

for isolated intersections and attempted to answer the question of whether 
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shorter or longer cycles are “better.”  With mathematical formulations and Monte 

Carlo simulations, the authors established that certain “just right” cycle lengths 

could be derived following a five-step optimization framework.  A hypothetical 

example was then presented to demonstrate how the framework functions with 

ensuing analyses and discussions on sensitivity of the solution, expected LOS, 

and potential cycle failures.  The major contribution of this paper is the proposed 

framework for optimizing cycle length under stochastic inter- and intra-cycle 

demand levels based on the expectation function of delay.  When deployed, this 

framework can aid traffic engineers in choosing the desirable cycle length for 

minimal delay or for any, reasonable, LOS requirements. 

A Trade-Off for Determining the Best Control at an Intersection 

To assign the right of way at an intersection is definitely a complex issue 

because numerous factors are involved.  That is why engineering judgments or 

studies are necessary for such a situation, even though there are already 

massive amounts of research dedicated to traffic signal or stop signs 

respectively.  Since both traffic signals and stop signs are supposed to serve 

users in a more efficient way, a framework for the trade-off between a traffic 

signal and a stop sign will be very useful for traffic engineers.  However, very little 

literature mentioned the trade-off between signals and stop signs for an 

intersection, either qualitatively or quantitatively.  There is an exhibition (Exhibit 

10-15) to forecast the likely intersection control types in HCM 2000.  

Unfortunately, the reference for that exhibit is incorrect, and therefore it can not 

provide any further information in order to validate the trade-off decision.  If the 
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traffic patterns will not change with different control types at an intersection, 

some of turning points on the exhibit will get confusing results, especially in 

higher traffic volume conditions.  There are eight warrants (FHWA, 2004) for 

justifying traffic control signals in chapter 4C of the Manual on Uniform Traffic 

Control Devices 2003 edition (MUTCD 2003).  The first three warrants are 

relative to vehicular volumes, and they may raise the same questions as the 

Exhibit 10-15 did, because the conditions are quite similar to those on the Exhibit 

10-15 in HCM 2000, especially in Warrant 3. 

Even though the thresholds of level of service (LOS) for different control 

types at an intersection are different, control delay is the same cornerstone of 

LOS for both signal control and stop-controlled intersections.  Richardson (1987) 

proposed an iterative method and used the Pollaczek-Khintchine formula to 

estimate delays of AWSC intersections, based on an M/G/1 model of queuing 

process.  Although the subject delay in his model is a function of subject, 

conflicting, and opposing flow rate, statistical analysis suggests that this model 

might provide a credible estimate of delay (Kyte and List, 1999).  Eck and Biega 

(1988) concluded that four-way stop sign control at low-volume residential street 

intersections should be changed to two-way stop sign control, because the use of 

two-way stop sign control in place of four-way stop sign control minimizes delay 

and road user costs.  Chan et al. (1989) proposed a response-surface model with 

four determinants, i.e. traffic volume, volume split, percentage of left-turns, and 

street width, to estimate average delay at an AWSC intersection.  One of their 

findings is highly controversial in relation to that by Zion et al. (1989), that is, the 
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more imbalanced the volume split is, the smaller the delay.  Zion et al. (1989) 

tested delay models, which proposed by Richardson (1987) and by Chan et al. 

(1989), with field data for AWSC intersections.  What they found are that delay 

increases as the intersecting volume increases; intersections with balanced 

volumes have lower delays than those without; and the percentage of left turns 

has a noticeable effect on delay. 

Besides AWSC, a two-way stop-controlled (TWSC) intersection is another, 

and maybe more efficient, type of assigning the right-of-way with the stop sign at 

the intersection.  Byrd and Stafford (1984) examined the operational 

characteristics of traffic controls at low-volume, low-speed intersections with 

unwarranted four-way stop sign control.  Then they suggested that unless an 

accident problem susceptible to correction by four-way stop sign control exists, 

the unwarranted use of four-way stop sign control results in unnecessary delay 

and road user costs to the driving public and that the intersection traffic control 

should be changed to two-way stop sign control.  In order to clarify the trade-off 

among signal, AWSC, and TWSC, a trade-off framework to evaluate these three 

control types at an intersection is proposed in this paper.  The average delay 

models for signalized and unsignalized intersections in HCM 2000 are used as 

the basis of the framework. 

A hypothetical intersection with two-way, two-lane for each direction is 

examined by the framework.  According to the simulations, the feasible areas for 

both TWSC and AWSC are not rectangle but polygon because they depend upon 

the contour of average control delay.  Since the sensitivities of the average 
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control delay for different control types differ from each other with different traffic 

patterns, to facilitate the trade-off among different control types is the most 

important function for the framework.  The sensitivities can be checked very 

easily through the framework.  Based on results in the hypothetical intersection, 

where the two-way flow rate is less than 600 vph in the major street, 350 vph or 

less in the minor street, and 10% left-turn traffic for each direction, an AWSC 

may be a better choice than others since the average control delay for an AWSC 

is lowest and less sensitive than others in that scenario. 

Impacts of Misplaced Peak Intervals on PHFs 

Traffic in a road network is varying all the time and the variation is rarely 

on the clock.  In most cases, analyses focus on the peak hour of traffic for a 

certain approach because it represents the most critical period for operations and 

has the highest capacity requirements.  However, to define the peak hour as well 

as the worst 15 minutes in practice raises inaccuracy if the traffic variation was 

not treated properly.  According to the HCM 2000 (TRB, 2000), the selection of 

an analysis period must consider the impact on design and operations of higher 

volume hours that are not accommodated.  It also mentioned that the design for 

a smaller range, say a 5-minute interval, of the peak flow rate would result in 

substantial excess capacity during the rest of the peak hour; and the design for a 

larger range, say an 1-hour interval, of the peak flow rate would result in 

oversaturated conditions for a substantial portion of the hour.  Since most of the 

procedures in the HCM 2000 are based on peak 15-minute flow rates, the peak 

hour factor is defined as the ratio of total hourly volume to the peak 15 minute 
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flow rate within the hour.  Nevertheless, it did not mention what would happen if 

there is a higher peak 15-minute interval outside the peak hour.  Such situations 

occurred in real data when they are closely examined. 

Even though traffic varying over time is common sense, the variability of 

peak hour factor has been investigated recently.  Tarko and Perez-Cartagena 

(2005) investigated the variability of PHF overtime and across locations, and 

found that the day-to-day variability is as strong as the site-to-site variability.  

They recommend that PHF be estimated on the basis of several days of vehicle 

counting to improve the precision of the average PHF estimate.  Notwithstanding 

the spatial difference, even the variation of traffic within a day will not be the 

same within another day.  That is, the peak hour for tomorrow may not start at 

the exactly same time as today. 

For some reasons, practitioners employ the literal meaning of the peak-

hour in several ways.  Most of the time, they classify the peak hour on the clock, 

e.g. from 7 a.m. to 8 a.m. or 4:30 p.m. to 5:30 p.m.  There is nothing wrong if the 

hourly, half-hourly, or even 15-minute traffic volume is the only data we had.  But 

such an aggregation may shift the peak hour from the “real” one to a certain 

degree.  When the resolution of data is increased, the difference between the 

peak hour on the clock and the “real” peak hour should be noticed.  Most modern 

detectors can collect traffic data every thirty seconds.  Therefore, the peak hour 

may start at 7:11:30 a.m. based on the data more precisely. 

The object of this paper is to investigate the impact of the misplaced peak 

hour and peak 15 minutes on the PHF.  By comparing different methods locating 
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the peak intervals, the “on the clock” approach may provide an inaccurate 

estimation of PHF.  Real traffic count data, which were collected by the 

Minnesota Department of Transportation, at a 30-second interval from over 4,000 

loop detectors located around the Twin Cities Metro freeways, are also used for 

the analysis.  It is shown that the PHFs by search are significantly different from 

those by ‘on the clock’, and that the peak intervals should be located to a more 

precise period with higher resolution data. 
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This part is a slightly revised version of a paper with the same title 

submitted to Journal of Transportation Engineering by Lee Han, Jan-Mou Li, and 

Tom Urbanik: 

Han, L., Li, J.-M., and Urbanik, T., 2007. Impacts of Inter-Cycle Demand 

Fluctuations on Delay. Journal of Transportation Engineering. 

My primary contributions to this paper include (1) development of the 

problem into a work relevant to my doctoral research study, (2) development of 

experimental setup, (3) most of the gathering and interpretation of literature, (4) 

performing the laboratory experiments, (5) interpretation and analysis of test 

results, (6) most of the writing. 
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ABSTRACT 

This paper demonstrates that in addition to intra-cycle demand fluctuation, which 

is already a consideration in many delay models, inter-cycle demand variance 

also impacts average delay at signalized intersections.  Webster-type delay 

models treat demand fluctuation over the whole analysis period, often 15 minutes 

or longer, as if it were just within a single cycle.  Such an approach is fine if used 

judiciously, one might presume.  However, results from Monte Carlo simulations 

with the Incremental Queue Accumulation (IQA) method indicate that Webster-

type delay models will underestimate the average delay under heavy traffic 

conditions. 

Since unutilized capacity at a signalized intersection cannot be saved or 

carried over to be used by succeeding cycles when demand surges due to 

normal fluctuation, better understanding of the patterns of inter-cycle demand 

variance is important.  Simulation results demonstrate that different patterns of 

inter-cycle demand variance can result in different levels of average delay.  A 

low-to-high demand pattern will cause a higher average delay than a high-to-low 

pattern would, even though the overall demand level is exactly the same.  It is 

therefore clear that neglecting inter-cycle demand variance may lead to 

significant inaccuracy and, hence, suboptimal signal timing decisions. 
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INTRODUCTION 

Queueing theory has been the primary basis of delay analysis at signalized 

intersections.  According to Newell (Newell 1965), the simplest models of traffic 

flow through intersections were considered by Clayton in 1941 and perhaps by 

other researchers even earlier.  In these early queueing models, vehicles were 

assumed to arrive at regularly spaced time intervals with a mean time-headway 

of 1/q, where q is the average flow rate over a certain time period.  The vehicles 

form a queue during the red phase, R, at a traffic light and then during the 

subsequent green phase, G, depart at regularly spaced intervals with a time-

headway of 1/s until either the end of the green time or when the queue has fully 

dissipated. 

The assumption that traffic arrivals and departures are uniformly 

distributed is an important part of Webster’s work (Webster 1958), which 

attempts to attribute the average vehicular delay at signalized intersection to 

three main components, or terms, i.e. uniform delay, random delay, and empirical 

errors.  A very similar formulation for delay estimation is later employed by the 

1985 edition (TRB 1985) and subsequent updates of the Highway Capacity 

Manual (HCM) (TRB 1994, 1997, 2000).   

The first term in each of these delay formulae represents uniform delay, 

which can be and is derived from simple queueing-based analysis.  By assuming 

uniform arrivals within a signal cycle, or intra-cycle, and by ignoring the discrete 

nature of vehicles, traffic can be considered as a continuous flow arriving at a 
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uniform rate of q.  At some point in time the flow is dammed up for a period of R; 

it is then released at a rate of s until the build-up has dissipated.  A tool in the 

form of queue accumulation diagram, QAD, as depicted in Figure 2.1, has been 

quite useful for such analyses.  The first term of Webster’s delay model, with all 

the simplicity in its algebraic form, has stood the test of time. 

Because neither the world nor traffic at a signalized intersection is 

deterministic, researchers have endeavored to introduce stochastic terms into 

delay models in order to estimate delay more realistically.  To this end, the 

second term of Webster’s model makes some allowance for the random nature 

of the arrivals. 

Webster further employed Monte Carlo simulations to devise a third term 

to fit a wide range of flow conditions.  According to the description in Appendix 2 

of Webster’s report (Webster 1958), the randomness of the arrivals was 

assumed. 

“Traffic is assumed to arrive at the intersection at random.  In fact, 

the actual distribution obtained from observations on the road could 

be used but random traffic has the advantage that it can be 

generated artificially using tables of random numbers to derive the 

intervals between successive vehicles.” 

This implies, in a rather subtle and largely unnoticed manner, that the random 

nature of vehicular arrivals within a cycle (intra-cycle) and that among cycles 

(inter-cycle) can be considered identical and are, thus, represented with identical  
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Figure 2.1.  Queueing diagram and QAD with an initial queue at t = 0 
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statistical distribution.  In fact no delay model, Webster’s or else, distinguished 

inter-cycle and intra-cycle randomness until Han and Li (2007) while 

readdressing the cycle-length optimization problem with Monte Carlo simulations.  

One of the benefits of this implied assumption is one could simplify the analysis 

and treat the entire study period of, say, an hour as a single signal cycle with the 

same average demand of q throughout.  The flip side, however, is the errors this 

assumption introduces when inter-cycle randomness exists.  Since unused 

capacity at a signalized intersection cannot be carried over from one cycle to 

succeeding ones, if inter-cycle demand fluctuation exists, the delay model has to 

be formulated to address the factor of randomness beyond the boundary of a 

single signal cycle. 

Many studies have analyzed the impact of fluctuating demand on average 

delay, but none has distinguished the randomness of demand within and among 

cycles.  Akcelik and Rouphail (1993) applied symmetrical triangular and parabolic 

functions to represent demand over the total flow period.  Heidemann (1994) 

assumed the number of vehicles arriving during a time interval to follow the 

Poisson arrival process and the arrivals for different but equal-length time 

intervals to be identically and independently distributed (iid).  However, he did not 

approach the subject from a signal-cycle perspective, and he did not consider 

non-identical distribution cases from one interval to the next.  Han (1996) 

proposed a similar approach to handle time-varying demands where the overall 

analysis period (usually 1 hour) is divided into a sequence of sub-periods (usually 

5 to 15 minutes) with traffic demands constant throughout all sub-periods.  While 
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many studies on delay at signalized intersections have considered demand 

fluctuation within a cycle (intra-cycle), they have often implicitly treated demand 

over multiple cycles (inter-cycle) to be the same and, consequently, have 

reduced the analysis for a longer period, e.g. 15 minutes, to a single cycle. 

This paper distinguishes between intra- and inter-cycle demand 

fluctuations (see Figure 2.2) and recognizes the potentially significant impact of 

delay underestimation when inter-cycle demand fluctuation is unaccounted for, 

as in all previous models. 

The remainder of this paper presents the approach used to analyze the 

inter-cycle demand fluctuations; the Monte Carlo simulations performed, with 

detailed descriptions of various scenarios; the results, observations, and 

discussions of the analyses; and the conclusions. 
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Figure 2.2.  Demand fluctuations seen at different time scales 

(Adapted with modifications from TRB’s HCM 2000 Exhibit 16-6) 
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ANALYTICAL CONTEMPLATION 

Queueing analysis is employed to assess the impact of inter-cycle demand 

fluctuations on delay, in comparison with the case of intra-cycle demand 

fluctuations already studied by earlier researchers.  Following Newell’s fluid 

model, let A(τ) be the cumulative number of arrivals at time τ and let D(τ) be the 

cumulative number of departures at time τ.  Then for the single cycle depicted in 

Figure 2.1, A(τ), D(τ), and Q(τ) can all be derived for any given τ within that 

single cycle. 

Under previous assumptions, the total delay of all vehicles in the queue 

during the cycle, R+G, is the area under the QAD curve in Figure 2.1.  This is 

what the first term in Webster’s model was based on.  When the randomness 

was added to the arrival, i.e. assuming q follows a certain kind of stochastic 

distribution, a Webster-type of delay model could be derived.  Since Webster-

type delay models were derived from a single cycle, the assumption of 

randomness was really for the entire analysis period.  If the analysis period were 

60 seconds, the arrival curve would look like the one in Figure 2.3(a); if the 

period were 15 minutes, the arrival curve (based on the assumption that the 

entire period had a single stochastic distribution and a fixed mean) would 

resemble the one in Figure 2.3(b). 

Unfortunately, empirical data have shown that demand does not remain 

nearly stationary over a long period of 15 minutes.  In fact, Figure 2.2 is closer to  
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Figure 2.3.  Demand variations within a one-minute cycle and for 15 minutes 

 

what may actually occur.  With an average flow rate of 1,000 vph over the 15-

minute period, each individual minute (and perhaps cycle) will have a different 

average demand for that minute (or cycle) as a result of the stochastic fluctuation 

of demand over time. 

The delay for 15 one-minute cycles, each with an identical demand rate of 

1,000 vph, will differ (greatly in fact) from the delay for 15 one-minute cycles with 

non-identical demand rates of 861, 935, 1049…1203 vph, even though the 

average demand (over 15 minutes) for both cases is the same at 1,000 vph. 

Another way to look at this problem is this:  Let A1(τ) represent the arrival 

curve in the first period; q1 follows a certain distribution, say N(μ1, ).  Let As 2
1 2(τ) 
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represent the arrival curve in the succeeding period, with q2 following a slightly 

different distribution, e.g. N(μ2, ).  When the single cycle approach is employed 

to analyze the whole (two-cycle) period, there can be a third arrival function, 

A

s 2
2

3(τ).  Even if q3 also follows normal distribution, e.g. N(μ3, ), it cannot be the 

summation of q

s 2
3

1 and q2. That is, μ3 will not equal to μ1+μ2, and  will not equal 

to + . 

s 2
3

s 2
1 s 2

2

Figure 2.4 further illustrates this situation.  Case 1 shows a common 

approach that basically extends the same average demand rate from a single 

cycle to the whole analysis period.  In Case 2, the arrival rate is shown to have 

changed over time, even though the average arrival rates for both cases are 

identical over the whole analysis period.  Considering average delay, the two 

cases will be different and may very well have different levels of service (LOS).  

The average delay in Case 2 will be larger than that in Case 1.  In fact, Case 2 

may experience some cycle failures towards the latter part of the analysis period. 

The reason inter-cycle variance, as opposed to the intra-cycle variance 

that has been studied quite thoroughly, should be emphasized is this: The 

underutilized capacity cannot be “saved” for or carried over to succeeding cycles 

where the capacity would be needed when demand surges randomly.  In order to 

obtain realistic estimates of average delay, one may average out the varying 

demand within a cycle by some statistical methods, but one cannot and should 

not do the same for varying demand in the case of inter-cycle fluctuations.  That 

is, delay models which were derived from the queueing analysis within a single  
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Figure 2.4.  Two cases of different demand patterns 

 

cycle, e.g. Webster and Webster-like models, should not be extended to an 

analysis period beyond a single cycle unless inter-cycle demand fluctuation is 

minimal to nonexistent.  Failing this, the Webster type model, when misused, will 

underestimate average delay and potentially lead to incorrect LOS projection. 

The impacts of inter-cycle demand variance can also be result from the 

patterns of the variance.  Figure 2.5 shows two different demand patterns; each 

consists of two different arrival rates, i.e., μH and μL, within the analysis period, 

although the overall arrival rate for both cases is the same, μA.  The average  
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Figure 2.5.  Low-to-high and high-to-low demand patterns 

 

arrival rates are from low to high for one case and high to low for the other.  If T 

equals the cycle length, then the average delay can be approximated by using μA 

as the demand for both cases.  But if T is a longer duration of, say, 15 minutes or 

even an hour, which spans over many cycles, the average delay may be quite 

different. 
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VERIFICATION WITH MONTE CARLO SIMULATIONS 

To verify the concerns posed in the previous section, several scenarios were 

designed to examine the impact of inter-cycle variation on average delay via 

Monte Carlo simulation.  The results from the simulation are compared to those 

from Webster and from the HCM 2000 delay models, as detailed below.  The 

Incremental Queue Accumulation (IQA) method was employed to calculate the 

delay within the system. 

Webster’s Delay Model 

Webster’s model, which is based on a single-cycle analysis, is expressed as 

follows: 

 
( )
( ) ( )

2
l

æ öf - l f
ç ÷+ -

- l è ø
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2 3

2+5
2

1 X
d = 0.65 X

2 1 X 2q 1 - X q
 (1) 

where 

d = average delay per vehicle; 

φ = cycle length (s); 

λ = proportion of the cycle, which is effectively green of the phase under 

consideration (i.e. ge/φ); 

ge = effective green time (in seconds or s); 

q = traffic demand; 

s = saturation flow rate; 

 33



 

X = lane group demand/capacity, or v/c, ratio or degree of saturation; 

this is the ratio of the actual flow to the maximum flow that can pass 

through the intersection and is given by X = q/λs. 

HCM 2000 Delay Model 

When an initial queue is nonexistent, the HCM 2000 model for average control 

delay per vehicle for a given lane group can be simplified as 
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where 

d = control delay per vehicle (in seconds); 

P = proportion of vehicles arriving on green; 

T = duration of analysis period (in hours); 

k = incremental delay factor; 

I = upstream filtering/metering adjustment factor; 

c = lane group capacity (vehicles per hour or vph); 

PF = uniform delay progression adjustment factor, which accounts for 

effects of signal progression. 

Some Assumptions 

Normal, Pearson Type III, and negative exponential time-headway distributions 

for high, intermediate, and low demand conditions, respectively (May 1990), were 
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used for the Monte Carlo simulation runs.  Other assumptions include the 

following: 

1. The site is an isolated signalized intersection of two one-way one-lane 

roads; 

2. Arrivals in the two approaches are assumed to be similar so that delay 

in only one approach needs to be simulated; 

3. A pre-timed, two-phases signal control is running with cycle length 60 

seconds with an effective green time of 30 seconds, and an effective 

red of 30 seconds; and 

4. At the onset of effective green time, queued vehicles discharge at a 

saturation flow rate, s, of 1,800 vph, or 0.5 vehicle/second.   

Since traffic is assumed to arrive at the intersection randomly, further 

assumptions for the HCM 2000 delay model include these: 

1. Arrival type is 3;  

2. Each approach sustains a 4 second/cycle lost time; 

3. Uniform delay progression adjustment factor PF =1; 

4. Incremental delay factor k = 0.5 for pre-timed controller settings; 

5. No upstream filtering/metering exists, so the adjustment factor I = 1. 

Incremental Queue Accumulation (IQA) Method 

The Incremental Queue Accumulation (IQA) method originally proposed by 

Strong and Rouphail (2006) was used to implement the HCM model with more 

flexibility.  It extends the usability of the HCM to better reflect conditions 

commonly found in the field without the plethora of limiting assumptions that are 
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required by the current HCM 2000 method.  This method suggests that equal-

sized time slices be used, adding/subtracting the number of arrivals/departures 

during each time slice to the queue at the start of the time slice and resulting in 

the queue at the end of the time slice.  Even though the concept of the IQA 

method is intuitive, some characteristics of this method are introduced here due 

to its novelty.  The method 

1. uses equal-sized time slices during the analysis period; 

2. examines the queue accumulation every time slice; 

3. calculates the uniform delay component; 

4. is consistent with the model in HCM 2000 and Webster’s model; and 

5. is fully capable of handling variable arrival rates in different parts of the 

cycle; 

The IQA method is a more generalized approach to calculating the queue 

accumulation area using multiple trapezoids, and it simplifies the calculation of 

trapezoids, which represent the periods of time during the cycle when the inflow 

and outflow rates are not changing.  Because the boundaries of each time slice 

fall squarely on points where signal status and traffic flow rate change, IQA is 

considered suitable for this research and was used for the purpose. 

To calculate average delay in oversaturated or successive cycle failure 

conditions, one has to estimate and project the delay for queued vehicles that 

could not depart by the end of the analysis period.  At the end of the analysis 

period, or time T, as shown in Figure 2.6, it is evident that a non-trivial number of  
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Figure 2.6.  A case of oversaturation 

 

queued vehicles, Q(T), have to depart after T.  The total delay for each of these 

queued vehicles was estimated based on their projected departure times. 

Simulation of Hypothetical Cases 

Traditional Webster-type delay models do not consider inter-cycle demand 

changes, even though many of them do consider intra-cycle demand fluctuation.  

This approach is fine if the analysis period is limited to a single cycle and is not 

extended to a longer period, or if demand holds relatively steady throughout the 

analysis period and is not like those in Figure 2.2. To test how Webster and HCM 

2000 delay models may be “off” when inter-cycle demand fluctuation is a factor, 
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three very simple and, obviously, hypothetical demand patterns were designed 

for this purpose (see Figure 2.7).  All of the three patterns share the exact 

average demand over the analysis period, with Case 1 representing the 

traditional straight-line approach showing no inter-cycle variance throughout the 

analysis period, while Cases 2 and 3 each have exactly one change in demand 

level during the analysis period.  In Case 2, the mean of arrival rate for the first 

section is lower than that in the second section.  In contrast, the mean of arrival 

rate for the first section of Case 3 is higher than that in the second section.  To 

further simplify the analysis and simulation, the two sections in both Cases 2 and 

3 were assumed to be of the same length of time.  Simulated vehicle arrivals in 
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Figure 2.7.  Three different demand patterns with the same average demand 
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each case were generated according to the mean-time headway as listed in 

Table 2.1.  Three demand levels of 300, 600, and 900 vph were used to 

represent light, intermediate, and heavy traffic conditions, respectively. 

For the simplest case of a longer-than-one-cycle analysis period, a two-

cycle analysis was selected in which the first section mentioned previously would 

be the first cycle, and the second section is the second cycle.  In addition, 

analysis periods of 15 minutes, which is typical to HCM 2000, 30 minutes, and 60 

minutes were also used for comparison purposes. 

Results and Discussions 

Table 2.2 tabulates the results from Monte Carlo simulation, for Cases 1, 2, and 

3, and from Webster and HCM 2000 models under the prescribed hypothetical 

conditions.  The first impression is that neither the results from Case 1 nor those 

from the Webster model changed at all as the analysis period T increased from 2 

minutes to 60 minutes.  This verifies what was presented previously, that like 

Case 1, Webster model does not consider any inter-cycle demand fluctuations. 

The results from Cases 2 and 3 do show higher levels of average delay 

than those from Case 1 as a result of a single inter-cycle demand change.  The  

 

Table 2.1. Mean Time-Headway (in seconds) under Different Demand Levels 

CASE 1 CASE 2 CASE 3 
DEMAND  1ST 

SECTION 
2ND 

SECTION 
1ST 

SECTION 
2ND 

SECTION 
300 VPH 12 15 10 10 15 
600 VPH 6 9 4.5 4.5 9 
900 VPH 4 6 3 3 6 
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Table 2.2. Average Delay Estimated by Different Models 

T 
(MIN) DEMAND 

CASE 1 
(UNIFORM

) 
*WEBSTE

R* 
HCM200

0 
CASE 2 
(LOW-
HIGH) 

CASE 3 
(HIGH-
LOW) 

300 vph  6.00  9.00  9.98  6.30  6.30 
600 vph  10.20  11.25  14.67  12.11  12.60 2 
900 vph  14.93  >15.73  25.95  17.07  19.93 
300 vph  6.00  9.00  10.00  6.16  6.44 
600 vph  10.20  11.25  15.15  12.73  13.06 15 
900 vph  14.93  >15.73  45.00  43.80  68.90 
300 vph  6.00  9.00  10.00  6.30  6.30 
600 vph  10.20  11.25  15.20  12.97  12.97 30 
900 vph  14.93  >15.73  57.43  86.07  124.33 
300 vph  6.00  9.00  10.00  6.30  6.30 
600 vph  10.20  11.25  15.22  12.97  12.97 60 
900 vph  14.93  >15.73  75.00  161.07  236.83 

*The value of 15.73 seconds was calculated under a demand of 899 vph.  

 

increases in delay, however, were not significant in light (an increase of merely 

5%) and intermediate (an increase between 19 and 27%) flow conditions.  The 

results did not worsen as T increased.  The reason is that the fluctuation of 

demand from one cycle to the next, under light and intermediate traffic, never 

reached the same serious tandem cycle-failure situation as those in Figure 2.6.  

Therefore, the average delay never quite got out of control. 

 Results from Webster and HCM 2000 models, in general, are higher than 

those from the three cases under light and intermediate traffic.  Under heavy 

traffic condition, HCM 2000 projects higher delay than Case 1, Webster, and 

even Cases 2 and 3 for T = 0.0333 hour.  It is unclear why HCM 2000 yields 

significant higher delay than the other models, though. 
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 Under heavy traffic, i.e. 900 vph, as T increases, results from Cases 2 and 

3 reflect serious cycle-failures and, hence, increasingly undesirable delay levels, 

which eventually reached an increase of 979% for Case 2 and one of 1487% for 

Case 3 in comparison with Case 1, when T = 1 hour. 

 The fact that the resultant delay from HCM 2000 under heavy traffic 

increases as T goes from 2 to 60 minutes indicates some attempt to account for 

inter-cycle demand fluctuation.  The values of the estimated delay, which are 

significantly lower than those from Cases 2 and 3 when T is large, may indicate 

that the simple inclusion of T in the model’s second term in a linear fashion is 

insufficient; or, perhaps, the explanation is as simple as the result of 

oversimplification in the design of the two cases.  More complicated and realistic 

cases will have to be designed to test this thoroughly. 

 Between Cases 2 and 3, it is clear that Case 2, which squandered away 

unused capacity during the first half of the analysis period, resulting in a 47% 

higher level of delay than that of Case 3, which had its cycle-failures in the first 

half of T, but had extra capacity in the second half available to accommodate the 

queued traffic. 
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CONCLUSIONS 

Not only the intra-cycle demand variance but also the inter-cycle demand 

fluctuation has a significant impact on the delay at a signalized intersection.  

Webster-type delay models treat the variance over the whole analysis period as if 

it were within a single cycle.  Such an approach is fine if used judiciously.  

Simulation results indicate, however, that this type of delay model will 

underestimate the average delay under heavy traffic conditions. 

Since unutilized capacity at a signalized intersection cannot be saved or 

carried over to be used by succeeding cycles when demand surges due to 

fluctuation, the pattern of inter-cycle demand variance is important.  Simulation 

results demonstrate that different patterns of inter-cycle demand variance can 

result in different levels of average delay.  A low-to-high demand pattern will 

cause a higher average delay than a high-to-low pattern would, even though the 

overall demand level is exactly the same. 

This paper points out the importance of inter-cycle demand variance on 

delay analysis, especially under heavy traffic conditions.  Neglecting inter-cycle 

demand variance may lead to significant inaccuracy and, hence, suboptimal 

signal timing decisions.  Further research is needed to investigate the patterns of 

inter-cycle demand variance in the real world and to revise existing delay models 

to handle inter-cycle demand fluctuations. 
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PART III. SHORT OR LONG … WHICH IS BETTER? 
A PROBABILISTIC APPROACH TOWARDS CYCLE LENGTH 

OPTIMIZATION 

 46



 

This part is a slightly revised version of a paper with the same title 

presented in TRB 86th Annual Meeting, and also accepted to be published in 

Transportation Research Report by Lee Han and Jan-Mou Li: 

Han, L. and Li, J.-M., 2007. Short or Long … which is Better?  A 

Probabilistic Approach towards Cycle Length Optimization. TRB 86th 

Annual Meeting Compendium of Papers CD-ROM. TRB, National 

Research Council, Washington, DC. 

My primary contributions to this paper include (1) development of the 

problem into a work relevant to my doctoral research study, (2) development of 

experimental setup, (3) most of the gathering and interpretation of literature, (4) 

performing the laboratory experiments, (5) interpretation and analysis of test 

results, (6) most of the writing. 
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ABSTRACT 

Traffic-signal timing would be a trivial undertaking if demand were constant and 

uniform.  Once stochastic factors and demand fluctuation are taken into 

consideration, however, the optimization of signal timing becomes challenging if 

not impossible, even for an isolated, fixed-time signal.  To answer the question of 

whether a longer cycle, e.g. more than 150 seconds, or a shorter one, e.g. less 

than 60 seconds, is better under fluctuating demand conditions, this paper 

employs a probabilistic approach to studying minimal average delay by the use of 

mathematical formulations and Monte Carlo simulations.  The idea is to select a 

cycle length that is small enough to insure low delay and, hence, level of service, 

yet still provide adequate capacity to handle most of the fluctuating demand 

conditions. 

A five-step framework is presented for carrying out the analyses, which 

are demonstrated using a hypothetical example.  Subsequent sensitivity 

analyses, level-of-service assessment, and cycle failure rate estimation were 

conducted based on random demand and are presented herein.  Conclusions of 

the paper include 1) the introduction of fluctuating demand level increases the 

average delay in general; 2) longer cycle lengths do not yield optimal delay 

results; and 3) with extremely short cycle lengths, delay is usually high due to a 

lack of capacity and, hence, guarantees frequent cycle failures.  A major 

contribution of this paper is a proposed framework for optimizing cycle length 

under stochastic inter- and intra-cycle demand levels based on the expectation 
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function of delay.  When deployed, this framework can aid traffic engineers in 

choosing the desirable cycle length for minimal delay or for any, reasonable, LOS 

requirements. 
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INTRODUCTION 

Since the introduction of automatic traffic signals in 1926, signal-timing 

optimization has become a classic problem, but not always a satisfactorily 

solvable one, mainly because of demand fluctuation over time.  The fact is that if 

demand were constant or largely predictable, signal-timing optimization would be 

eminently solvable, indeed trivial.  However, in practice, this problem is not at all 

easy to solve, and there has been little agreement among experts.  There have 

been practitioners in favor of long cycle durations (e.g. more than 150 seconds) 

because less lost time is observed over a period, say an hour, of time; yet there 

are also proponents for snappier cycle durations (e.g. less than 60 seconds) to 

avoid the buildup of queues.  To help clarify this issue, this paper will examine 

how cycle length should be chosen, whether short or long or neither, for fixed 

time signals in isolated intersections when all other factors are unchanging.  

(Actuation and other adaptive means that vary cycle length in real time have the 

potential to address this issue but would also bring much complexity into this 

matter, so they are not here addressed.) 

Vehicular delay as a result of traffic signals has been commonly identified 

as a primary measure of motorists’ perception of how well a signalized 

intersection operates.  Therefore, timing optimization often involves the 

minimization of vehicular delay.  It is common to balance volume to capacity, or 

v/c, ratios of critical movements for this purpose.  For example, Webster’s 

optimal cycle length formulation (Webster, 1958) can be expressed as: 
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 Xw = 5 1.5
1 ci

i

L
y

+
−∑

, Xmin ≤ Xw ≤ Xmax (1) 

where  

Xw  is the optimal cycle length per Webster;  

L  is the total lost time;  

ci
i

y∑  is intersection critical flow ratio, i.e. the approach volume divided by 

saturation flow rate, for critical movements or lane groups i; and  

Xmin and Xmax are the practical boundaries of cycle lengths. 

 

To keep matters simple, early studies often assumed uniform arrival at 

intersections (Webster, 1958).  According to Newell (1965), Clayton may have 

been the first to propose the earliest and simplest models of traffic flow through 

intersections (Clayton, 1941), and Wardrop seems to have been the first to report 

any calculations of random delays at signal-controlled intersections (Wardrop, 

1952).  The most extensive work on this subject was conducted by Webster 

(1958), who derived formulas for the average delay by fitting curves to data with 

Monte Carlo simulations. 

The first attempts at analytical models of fixed-cycle traffic signals were by 

Beckmann et al. (1956) and Newell (1956).  Newell proposed a model in which 

arrival headways were independently and identically distributed (IID) random 

variables of arbitrary distribution while departures were regularly spaced during 

the green.  It is noteworthy that these classic works were conducted based on 
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queuing analysis within a single cycle and, hence, dealt only with intra-cycle 

demand fluctuations.  This was the reason why some researchers, e.g. Han 

(1996), considered these early works to be based on time-stationary 

assumptions. 

Subsequent studies modeled delay using various approaches. Akcelik and 

Rouphail (1993) considered symmetrical triangular and parabolic functions as 

variable demand functions during the analysis period and proposed a delay 

model that was suitable for variable demand conditions.  Heidemann (1994) 

assumed that the number of vehicles arriving during each time interval was 

considered to be stochastic, and the arrival distributions for different time 

intervals were assumed to be identical and stochastically independent. 

Han may have been the earliest to report that when traffic demands are 

different in successive time periods, the signal settings that are optimal for each 

individual period are only local solutions to the problem.  He developed a 

sequential optimization technique to minimize the total intersection delay over 

successive periods by searching for the optimal signal timings. But one of the 

primary assumptions in his work was that the traffic demand, though varying from 

one period to the next, stayed constant in each individual period.  Chang and Lin 

(2000) pointed out that conventional signal-control strategies were inadequate 

because the designed and “optimized” timing is only considered for the next 

single cycle after the current one, instead of for the entire congestion period. 

They proposed a timing-decision methodology that minimized total intersection 

delay during the entire oversaturated period, not just for a single cycle.  However, 

 52



 

they did not specifically address demand variation over the entire congestion 

period. 

Although each was valuable, none of these studies formally addressed the 

effects of inter-cycle as well as intra-cycle fluctuations of traffic demand.  The 

issue here is that inter-cycle fluctuation will affect the result of delay analysis 

because unused capacity that is due to a momentary drop in demand from one 

cycle is capacity that is lost forever and cannot be reclaimed to help future 

temporary surges in demand.  To properly represent this in queueing analysis 

and, hence, obtain better delay estimation, there should be multiple piecewise 

segments instead of a single straight line (e.g., 1,000 vph) when demand is 

aggregated over time (depicted in Figure 3.1).  This representation of fluctuating 

demand would lead to different, most likely higher, delay values, and 

subsequently a different optimization scheme. 
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Figure 3.1.  Demand fluctuations observed at different time scales 

(HCM 2000 Exhibit 16-6, curtsey of TRB) 
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THE ANALYTICAL FRAMEWORK 

The framework proposed herein uses an expectation function to quantify the 

variability of demand in the Highway Capacity Manual (TRB, 2000), or HCM, 

delay function.  Each uncertain variable is considered as a random variable with 

an appropriate probability distribution, mean, and variance. Since delay is a 

function of the input variables, the resultant delay value also takes on the 

characteristics of a random variable with expectation and variance that can be 

calculated based on those of the input variables. 

To ensure easy adoptability, this framework was designed to cope with 

demand fluctuation and to minimize average delay without resorting to any 

actuated hardware or algorithms. Since the basic relationships among delay, 

demand, and cycle length had been studied for some time, several models have 

been proposed and used to date. There are some differences in random terms 

and empirical correction terms in these models (e.g. Webster, 1958; Newell, 

1956; Han, 1996; Akcelik and Rouphail, 1993; and Heidemann,1994), but the 

primary parts of the relationships are the same.  Among these models, HCM 

2000 delay function is the most commonly accepted and used: 

 d = d1(PF) + d2 + d3 (2) 

where 

d = control delay per vehicle (usually in seconds/vehicle or s/v); 

d1 = uniform control delay assuming uniform arrivals; 

PF = uniform delay progression adjustment factor, which accounts for effects of 

signal progression; 
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d2 = incremental delay to account for effect of random arrivals and 

oversaturation queues, adjusted for duration of analysis period and type of 

signal control; this delay component assumes that there is no initial queue 

for lane group at start of analysis period; and 

d3 = initial queue delay, which accounts for delay to all vehicles in analysis 

period due to initial queue at start of analysis period. 

 

If there is no initial queue, then d3 equals 0, and the function of average 

delay in HCM 2000 can be expanded as: 

 
( )

( ) ( )
φ

φ

φ φ

⎛ ⎞
⎜ ⎟ ⎡ ⎤⎝ ⎠

⎢ ⎥
⎢ ⎥⎣ ⎦

2
e

2pa

e e

g0.5 1 - 1 - P f 8kIXd = +900T X - 1 + X - 1 +g g cT1 - m in 1,X 1 -
 (3) 

where 

d = control delay per vehicle (in seconds); 

ge  = effective green time (in seconds or s); 

φ = cycle length (s); 

X  = lane group demand/capacity, or v/c, ratio or degree of saturation; 

P  = proportion of vehicles arriving on green; 

fP  = supplemental platoon adjustment factor; 

T  = duration of analysis period (in hour); 

k  = incremental delay factor; 

I  = upstream filtering/metering adjustment factor; 

c  = lane group capacity (vehicles per hour or vph). 
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There are a few “hidden” variables, including demand, v, hidden within the 

degree of saturation or X, and cycle length, φ, within the term of lane group 

capacity, c.  If the effective green time for a lane group is given by ge = φ/2 - L, 

and L represents the lost time, then the proportion (λ) of the cycle, which is 

effectively green of the phase under consideration, can be expressed as λ = ge/φ 

= (φ-2L)/2(.  If we represent the saturation flow rate for a subject lane group, then 

the lane group capacity will be  

c = s ge/( = s(0.5-L/(); and the degree of saturation can be expressed as  

X = v/c = 2v(/s((-2L).  Substituting these into Equation 3, one can see the 

relationship of delay as a function of cycle length and demand: 

d = 

( ) ( )
( )φ φ

φφ φ
φ

Pa
0.5 ×( +2L) × 1 - P f2v2 - m in(1, )× - 2L

s - 2L

 + 

( ) ( ) ( ) φφ φ φ φ
φ

⎡ ⎤
⎡ ⎤⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

22900T 32kIv2v - s - 2L + 2v - s - 2L +
s - 2L T

 (4) 

With a simple hypothetical example of traffic demand following normal 

distribution N(720, 722), or a mean of 720 vphpl and a standard deviation of 72 

vphpl, and a 50-50 split of the signal, Figure 3.2 illustrates the probabilistic 

distribution of average delay as a function of different cycle lengths.  In general, 

as cycle length decreases, delay also decreases. However, since capacity also 

decreases with the cycle length, when the fluctuating demand exceeds the now 

nearly inadequate capacity, delay increases drastically. 
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Figure 3.2.  Basic probabilistic relationship between cycle length and demand. 

 

The idea here, then, is to select a cycle length that is small enough to 

result in low delay yet will still provide adequate capacity to handle most of the 

fluctuating demand conditions. 

According to the delay model, the particular cycle length φ* that minimizes 

average delay under a certain demand vc can be derived by setting the derivative 

of delay with respect to the cycle time equals zero:  

 
φ
∂
∂

d =0  (5) 

If demand were constant, one could solve for the optimal cycle length for various 

demand values, as depicted in Figure 3.3, where each dashed line represents a  
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Figure 3.3.  Average delay as a function of cycle length 

 

demand level (between 432 and 1008 vphpl) and where the loci are optimal 

solutions attainable by solving an array of Equation 5.  In reality, however, 

demand fluctuates over time, not only within a cycle but also among cycles.  The 

optimal solution yielding the least amount of delay for a demand of 500 vph 

suddenly becomes woefully inadequate when the demand momentarily jumps to 

1,000 vph for a minute or so.  On the other hand, the optimal solution for a 

demand of 1,000 vph would unnecessarily exact a higher average delay if the 

demand were to drop momentarily to 500 vph.  Under the assumption of fixed-
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time signal plans, the traffic engineer might just set the cycle length based on the 

solution to Equation 5 and hope for the best.  Yet a better alterative is to study 

the probabilistic nature of the fluctuating demand and then select a cycle length 

that will accommodate the demand at least, say, 95% of the time. 

For any given cycle length selected by the traffic engineer, the expected 

average delay can be expressed in terms of the deterministic delay function and 

the probabilistic distribution of the fluctuating demand: 

 [ ] ( ) ( )φ φ φ
∞

∫s d s p0
E d | = = f ,v f v dv  (6) 

where 

φs = a selected cycle length 

v = demand, a random variable 

fd(φ, v) = the average delay as a function of cycle length and demand 

fp(v) = the probability density function of demand, v 

 

Now, as the traffic engineer tries out different cycle lengths, the expected 

average delay is now also a function of cycle length: 

 [ ] ( ) ( )φ
∞

∫ d p0
E d = f ,v f v dv  (7) 

To optimize the average delay under varying demand conditions, one 

would solve Equation 8: 

 [ ]
φ

∂
∂
E d

=0  (8) 

The analytical solution is a complex one.  But since the equation is a 

strictly convex function, as shown in Figure 3.3, the solution can be approached 
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numerically.  A numerical analysis-based implementation procedure using this 

analytical framework is presented in the next section. 
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IMPLEMENTATION PROCEDURE 

With a typical personal computer, numerical solutions to the cycle length 

optimization problem can be obtained.  The following procedure, which consists 

of five easy steps, employs Monte Carlo simulation as a tool for the purpose. 

Similar approaches with other numerical tools would also work. 

Step 1. Analysis Duration Selection.  Traffic demand fluctuates 

throughout the day.  Depending on the study period at hand, whether a.m. 

peak, p.m. peak, midday, Sunday noon, or other periods, different 

stochastic characters may manifest differently. 

Step 2. Demand Fluctuation Assessment.  In order to properly 

represent the stochastic nature of the traffic demand during the study 

period, one has to collect some field data and, subsequently, analyze the 

demand data with statistical techniques. Some statistical approaches, e.g. 

kernel density estimation (Goldberg, 1988), may be employed.  Obviously, 

a better representation of the demand distribution is likely to lead to a 

better estimation of delay.  

Step 3. Delay Model Selection.  A number of delay models have been 

developed over the years.  The most commonly used by practitioners is 

the average delay equation in HCM 2000. In addition to traffic demand, 

several parameters must be provided for this model.  Since isolated 

intersection is the aim of this study, parameters associated with arrival 
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pattern, platooning, and upstream signals, i.e. P, fPA, and I, should take on 

default values. 

Step 4. Expected Delay Calculation.  Equation 7 is the primary formula 

for this step.  A simple series of Monte Carlo simulations can be employed 

to numerically approach the expectation and standard deviation of 

average delay.  The cycle length associated with minimized average delay 

will also result through this process. 

Step 5. Optimal Cycle Length Determination. After the cycle length for 

minimal average delay is identified, professional judgment still needs to be 

exercised. In particular, the traffic engineer should carefully choose a 

tolerance level of the cycle failure rate, say 1% of all cycles, before the 

implementation of the result.  Otherwise, a higher ratio of cycle failure may 

occur. 

The following section will demonstrate how a hypothetical scenario might be 

optimized. 
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SOLUTION DEMONSTRATION 

Hypothetical Scenario 

To simplify a rather complex process, the hypothetical case involves a single 

traffic signal standing at the intersection of two one-way, one-lane roads.  The 

analysis is to be carried out for a.m. peak, roughly between 7:00 and 9:00 a.m., 

with multiple analysis periods of 15 minutes, i.e. T = 0.25.  The demand for either 

direction is assumed to follow normal distribution with a mean of 720 vph and a 

standard deviation of 72, or v ~ N(720, 722).  The average delay function in HCM 

2000 will be the delay model for this case with no initial queues, i.e. d3 in 

Equation 2 equals 0. 

The scenario assumes a saturation flow rate of 1,800 vphpl.  The lost time 

per cycle per approach is assumed to be 4 seconds, per HCM 2000.  Based on a 

queueing process with random arrivals and uniform service time equivalent to the 

lane group capacity, the incremental delay factor for the delay function was set to 

0.5.  Since the progression adjustment factor depends on proportion of vehicles 

arriving on green, proportion of green time available, and supplemental 

adjustment factor for platoon arriving during green, for random arrivals (arrival 

type 3), the metering adjustment factor (or upstream filtering), the platoon ratio, 

and the supplemental adjustment factor for platoon arriving during green were 

set to the default values of 1.  Under these assumptions, the v/c ratio should fall 

between 0.72 and 1.28 for 99% of the time. 
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Monte Carlo Simulation and Results 

Monte Carlo simulation, which has been widely employed for traffic analysis (e.g. 

Watling, 1996; Chen et al., 2002; and Tarko and Tracz, 2000), is used for this 

study.  Even though the expectation function of average delay is complex in its 

mathematical form, its values can be calculated based on the parameters given 

herein.  The basic logic for the calculation involves generating a random demand 

level, calculating average delay values for this particular demand level with an 

array of the cycle lengths under consideration, and repeating the process for 

numerous times.  In fact, 100,000 demand samples were randomly generated, to 

mimic the actual distribution, for this purpose.  The resultant relationship between 

delay and cycle is shown in Figure 3.4, where the convexity of the expectation 

function is evident.  With extremely short cycle lengths (less than 40 seconds), 

delay is high due to a lack of capacity and, hence, it is guaranteed that there will 

be frequent cycle failures.  The minimal average delay of about 37.5 seconds is 

reached at a cycle length of around 75 seconds.  

Figure 3.4 also shows that an increase of cycle length beyond 75 seconds 

would push the delay value even higher.  The numerous parallel vertical lines 

represent the results from 10,000 simulations under each cycle length.  The thick 

line is the average delay of all outcomes for each cycle length case.  

Sensitivity Analyses 

It should be noted that the minimal average delay of 37.5 seconds at 75 seconds 

of cycle length is slightly higher than the HCM 2000 solution, via Equation 5, of 

 65



 

20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150
Cycle time (sec.) vs. Expectation of average delay (s/veh)

Cycle Time (sec.)

E
xp

ec
ta

tio
n 

of
 a

ve
ra

ge
 d

el
ay

 (s
/v

eh
)

μ of Demand =720

σ of Demand =72

The minimized expectation of average delay under such demands =37.4898

It will occure as the cycle length =75

20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150
Cycle time (sec.) vs. Expectation of average delay (s/veh)

Cycle Time (sec.)

E
xp

ec
ta

tio
n 

of
 a

ve
ra

ge
 d

el
ay

 (s
/v

eh
)

μ of Demand =720

σ of Demand =72

The minimized expectation of average delay under such demands =37.4898

It will occure as the cycle length =75

 

Figure 3.4.  Expectation and distribution of average delay 

 

33.5 seconds' average delay at a cycle length around 70 seconds if the demand 

were a constant 720 vph.  The introduction of fluctuating demand level into 

Equation 5 increases the average delay in general. 

A series of sensitivity analyses was conducted for different demand and 

variance levels.  Table 3.1 summarizes cases with the same average demand of 

720 vph but different standard deviations, i.e. 72, 81, 90, 99, and 108 vph.  It is 

clear that increasing the magnitude of demand fluctuation, while the average  
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Table 3.1 Sensitivity Analysis Results 

Average Demand 
v, in vph 

Std. Deviation of 
Demand 
σ, in vph 

Expected Delay 
E(d), in seconds 

Cycle Length 
φ*, in seconds 

720 0 33.5 70 
720 72 37.5 75 
720 81 38.5 76 
720 90 39.5 77 
720 99 40.5 78 
720 108 41.5 79 
720 90 39.5 77 
810 90 59.6 95 
900 90 89.3 113 

 

demand stays the same, results in a higher expectation of delay and a slight 

increase in optimal cycle length. 

Holding the standard deviation the same, at 90 vph, and increasing the 

demand from 720 to 810 to 900 vph, the study saw significant increase in 

minimal average delay.  It appears that minimal delay is more sensitive to 

average demand than the standard deviation, as one would expect.  But delay 

does increase as a direct result of increase in either case. 

Design for Extremities 

Since each individual vertical line in Figure 3.4 represents the outcomes of 

10,000 “runs,” a statistical understanding of the overall outcomes can be 

explored.  Figure 3.2 illustrates the overall shape of the distributions, where each 

slice of the 3D form at a given cycle length shows the probabilistic distribution of 

delay based on fluctuating demand.  As such, one could connect the 95-

percentile points of individual slices and form a 95% line, as seen in Figure 3.5, 

representing delay as  
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Figure 3.5.  Percentile of delay distribution and level of service  
(for the hypothetical scenario) 

 

a function of cycle length when demand has fluctuated to such a high level that 

only 5% of the time could it be any higher.  Similarly, lines for 90%, 80%, and so 

on could also be constructed. 

Some practitioners argue that a cycle length larger than the optimal one 

should be used to accommodate higher than usual demand conditions due to 

fluctuation.  Figure 3.5 provides a tool for such purpose, as does Table 3.2.  One 

could choose to accommodate demand at 95% or other levels if one is seriously 

worried about cycle failure under extreme demand surge conditions.  It should be  
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Table 3.2. Percentiles of Demands Targeted and Associated Cycle Length 
(for the hypothetical scenario) 

Percentiles of 
Demands Cycle Length Associated Expectation 

of Average Delay 
95th 99 39.2 
90th 94 38.6 
80th 85 37.8 
70th 79 37.6 

Optimal Case 75 37.5 
60th 74 37.5 
50th 70 37.6 
40th 65 38.0 
30th 62 38.4 
20th 57 39.5 
10th 52 41.3 

 

expected, however, that a longer cycle length geared towards higher demand 

conditions will inevitably yield an average delay higher than the minimal one. 

Level of Service Expectations 

Since level of service (LOS) is also based on delay, or more precisely control 

delay, one can also gain a sense of how an intersection may operate in a 

probabilistic sense. For instance, if the traffic engineer has decided to go with a 

cycle length of 75 seconds, Figure 3.5 would suggest that the intersection LOS 

has a 52% probability to be equal or better than C, 39% probability to be D, and 

9% to be E or worse. 

This is quite different from solving Equation 5 and obtaining a singular 

delay of 33.5 seconds and a LOS of C, but perhaps more useful and insightful. If 

the engineer should decide to adopt different cycle lengths of, say, 45, 60, 90, or 

105 seconds, the results from this analysis (see Table 3.3) would provide a more 

informative picture of the effects of cycle length choices. 
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Table 3.3. LOS Probability as a Function of Cycle Length 
(for the hypothetical scenario) 

LOS φ = 45 φ = 60 φ = 75 φ = 90 φ = 105 
C or Better 49% 55% 52% 48% 39% 

D 33% 33% 39% 45% 52% 
E 14% 11% 19% 07% 09% 
F 04% 01% 00% 00% 00% 

 

For decision–making purposes, Table 3.3 also provides an overall 

perspective of various “what-ifs” as alternatives can be chosen to achieve 

different objectives.  For example, if the traffic engineers were more concerned 

about reducing the probability for LOS E or worse conditions, he might choose a 

cycle length of 90 seconds instead of the optimal 75 seconds.  Similarly, if a 

cycle length allowing the largest possible portion of the motorists to enjoy LOS C 

or better is desired, then the traffic engineer could adopt a cycle length of 60 

seconds. 

Cycle Failure Probabilities 

Based on HCM 2000, cycle failure occurs when a given green phase does not 

serve queued vehicles and an overflow situation occurs.  Although this may not 

always be a serious problem in theory, as suggested by HCM 2000 that 

“individual cycle failures may begin to appear at LOS C,” most traffic engineers 

would try to avoid the frequent occurrence of such events. 

In the demonstration scenario, where the demand follows N(720,722), the 

probability of cycle failure, when cycle length is set to 75 seconds, is about 0.5%.  

A similar scenario with a demand following N(810,812) would have a much larger 

8% probability of cycle failure, mainly due to the high average demand. 
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Perhaps the probability of cycle failure could be used, in addition to delay, 

as a secondary measure of effectiveness (MOE) in future traffic signal-timing 

analysis. 
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CONCLUSIONS 

This paper employs a probabilistic approach to consider cycle-length optimization 

for isolated intersections and attempted to answer the question of whether 

shorter or longer cycles are “better.”  With mathematical formulations and Monte 

Carlo simulations, the authors established that certain “just right” cycle lengths 

could be derived following a five-step optimization framework.  A hypothetical 

example was then presented to demonstrate how the framework functions with 

ensuing analyses and discussions on sensitivity of the solution, expected LOS, 

and potential cycle failures.  It is the intent of the authors to call attention to the 

following points: 

• The introduction of fluctuating demand level increases the average delay 

in general; 

• Longer cycle lengths of, say, more than 150 seconds in the presented 

case, do not yield optimal delay results; because the delay will increase 

with the cycle length due to the basic relation among demand, cycle 

length, and the delay (as shown in Figure 3.3). 

• Very short cycles, much shorter than the optimal, will increase delay 

dramatically due to a lack of capacity.  The consequence often includes 

cycle failure. 

• A probabilistic approach to delay calculation, while more cumbersome 

than a straightforward fixed-demand and one-delay-value process, is more 

realistic and insightful; and 
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• The framework developed in the paper could be employed for better signal 

timing purposes. 

A major contribution of this paper is a proposed framework for optimizing 

cycle length under stochastic inter- and intra-cycle demand levels based on the 

expectation function of delay.  When deployed, this framework can aid traffic 

engineers in choosing the desirable cycle length for minimal delay or for any, 

reasonable, LOS requirements. 
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RECOMMENDATIONS 

A rather simplistic hypothetical case was employed to demonstrate the utility of 

the proposed framework.  To follow up this study, three future tasks have been 

identified.  First, more realistic, and complex, signal control cases should be 

tested under this framework.  Would the conclusions hold when pedestrians, left 

turn movements, and even multiple lanes compromise the promising results? 

All delay calculations were based on HCM delay model, a commonly 

accepted one among many other delay models.  Future studies using other 

models in comparison with real-world cycle length experiments would be 

desirable. 

Finally, as identified in the paper, tabulation in the format of Table 3.3 can 

serve as a useful decision tool for traffic engineers.  A closer look into how this 

tool may be used and improved is planned for the follow-up effort of this study. 
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PART IV. A TRADE-OFF FRAMEWORK FOR DETERMINING THE 
BEST CONTROL AT AN INTERSECTION 
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This part is a slightly revised version of a journal paper by Lee Han and 

Jan-Mou Li with the same title that will be submitted for review in 2007. 

Han, L. and Li, J.-M., 2007.  A Trade-Off Framework for Determining the 

Best Control at an Intersection. To be submitted for review. 

My primary contributions to this paper include (1) development of the 

problem into a work relevant to my doctoral research study, (2) development of 

experimental setup, (3) most of the gathering and interpretation of literature, (4) 

performing the laboratory experiments, (5) interpretation and analysis of test 

results, (6) most of the writing. 
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ABSTRACT 

Although there are warrants for signal, guidance and criteria for stop signs, how 

to determine an appropriate control type for an intersection is rarely discussed in 

literature.  The trade-off can be accomplished by integrating information from 

several sources.  Several models with different parameters, including traffic 

volume, can estimate the average control delay for an approach under a given 

condition.  This paper proposes a framework based on the average control delay 

to determine the best control type for an intersection. 

Since the sensitivities of the average control delay for different control 

types differ from each other in different traffic patterns, to facilitate the trade-off 

among control types is the most important function for the framework.  Based on 

the simulations at the hypothetical intersection, an AWSC may be a better choice 

than a signal in which the two-way flow rate is less 600 vph in the major street, 

350 vph or less in the minor street, and 10% left-turn traffic for each direction.  It 

is recommended for the traffic condition not only because of the average control 

delay but also because of the sensitivity.  It is worthwhile to notice that the 

sensitivities can be checked very easily through the framework. 
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INTRODUCTION 

The most popular ways to assign the right of way at an intersection is to install 

either traffic signals or stop signs.  It is definitely a complex issue because 

numerous factors are involved.  That is why engineering judgments or studies 

are necessary for such an installation, even though there are already massive 

amounts of research dedicated to traffic signal or stop signs respectively.  Since 

both traffic signals and stop signs are supposed to serve users in a more efficient 

way, a framework for the trade-off between a traffic signal and a stop sign will be 

very useful for traffic engineers.  However, very little literature mentioned the 

trade-off between signals and stop signs for an intersection, either qualitatively or 

quantitatively. 

Exhibit 10-15 (Figure 4.1) in Highway Capacity Manual 2000 edition (HCM 

2000) (TRB, 2000) may be the most popular resource which can be referenced 

to make a decision about the control type at an intersection.  According to the 

description in HCM 2000, it is used to forecast the likely intersection control types 

for future facilities.  Unfortunately, the reference for that exhibit is incorrect, and 

therefore it can not provide any further information in order to validate the trade-

off decision.  If the traffic patterns will not change with different control types at 

an intersection, some of turning points on the exhibit will get confusing results, 

especially in higher traffic volume conditions.  Table 4.1 shows the average 

control delays by Highway Capacity Software 2000 (HCS 2000) for a hypothetical  
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Figure 4.1. The Exhibit 10-15 in HCM 2000 
Note: According to HCM 2000, it is adapted from Traffic Control Devices 

Handbook 1983 (FHWA, 1983), pp. 4–18. 
 
 
 
 
 

Table 4.1. Average Control Delays for a Hypothetical Intersection with Through-
Traffic Only 

 
                 Type 
Volume**  Signal* AWSC TWSC 

(2000,150) 170.50 241.77 151.80 
(1800,150) 116.10 179.73 84.95 
(1600,150) 67.00 121.12 47.20 
(1000,300) 16.40 28.15 20.20 
(600,600) 13.20 18.49 16.40 
(600,300) 12.50 11.81 9.20 
(400,400) 11.70 10.57 7.75 

*  The cycle length for the signal operation is 60 seconds. 
** Peak-Hour two-way volumes for the major street and the minor street are 

shown in parentheses (major, minor). 
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intersection with through traffic only.  Even though the cycle lengths are the same 

instead of optimal for different combinations of volumes, the average control 

delays for the signalized intersection are significantly lower than those with stop 

signs, when two-way traffic volumes in the major street are over 1000 and those 

in minor street are under 150. 

There are eight warrants (FHWA, 2004) for justifying traffic control signals 

in chapter 4C of the Manual on Uniform Traffic Control Devices 2003 edition 

(MUTCD 2003).  The first three warrants are relative to vehicular volumes.  Since 

the manual has evolved over years, the warrants represents a threshold 

condition in the overall assessment of whether a traffic control signal may be 

justified based on a comprehensive engineering evaluation of the intersection’s 

operations and safety benefits.  They may raise the same questions as the 

Exhibit 10-15 did, because the conditions are quite similar to those on the Exhibit 

10-15 in HCM 2000, especially in Warrant 3. 

For both HCM 2000 and MUTCD 2003, delay is a very important measure 

on evaluating the performance of an intersection.  Even though the thresholds of 

level of service (LOS) for different control types at an intersection are different 

(Table 4.2), control delay is the same cornerstone of LOS for both signal control 

and stop-controlled intersections.  There are models (e.g. Webster, 1958; Akcelik 

and Rouphail, 1993; TRB, 2000) to estimate the control delay at a signalized 

intersection.  According to Han and Li (2007), all of these models agreed that the 

average delay will increase dramatically when the cycle length reduces below a  
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Table 4.2. Definitions of LOS for Signalized, TWSC, and AWSC Intersections 
 

Level of 
Service 

Signal TWSC AWSC 

A ≤10 0-10 0-10 
B >10-20 >10-15 >10-15 
C >20-35 >15-25 >15-25 
D >35-55 >25-35 >25-35 
E >55-80 >35-50 >35-50 
F >80 >50 >50 

* The unit for average control delay is second per vehicle 
Source: Adapted from Highway Capacity Manual 2000 edition; data for Signal is 

from the Exhibit 16-2 in p. 16–2, data for TWSC is from the Exhibit 17-2 
in p. 17–2, data for AWSC is from the Exhibit 17-22 in p. 17–32 

 

certain threshold under a given demand.  That is, optimal performance in a 

signalized intersection may be reached by a shorter cycle length, but not an 

extreme one, because some constraints, e.g. the lost time, may prevent 

extremely short cycle lengths from a better service (less delay) for an 

intersection. 

According to McKinley (2001), one of the conditions for installing a traffic 

control signals is that an all-way stop-controlled (AWSC) intersection must be 

experienced increased delay and congestion.  He also mentioned that the safest 

intersection control, assuming reasonable compliance with the law, is the AWSC, 

even though it is also the most inefficient type of intersection control in most 

cases.  Even though extensive research is being done into the performance of 

stop-controlled intersections, arguing for “the most inefficient type” quantitatively 

is still a challenge.  Sampson (1999) proposed the 4Q/6Q warrant to justify a 

signal.  He argued the warrant based on queue is sensitive to a wide range of 

variables, e.g. site geometry and visibility, turning volume, and speeds.  
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However, such a warrant can not be used for planning purposes.  That is why the 

average control delay is used as the criterion in this paper to compare the 

performance at an intersection between with signal control and with stop control. 

Richardson (1987) argues that delays at an AWSC intersection are the 

result of a set of complex interactions between the flows on all approaches to the 

intersection.  He proposed an iterative method and used the Pollaczek-

Khintchine formula to estimate delays of AWSC intersections, based on an M/G/1 

model of queuing process.  Although the subject delay in his model is a function 

of subject, conflicting, and opposing flow rate, statistical analysis suggests that 

this model might provide a credible estimate of delay (Kyte and List, 1999).  

According to the analysis by Kyte and Marek (1989), Richardson’s queuing 

model provides good estimates of vehicle delay for subject flow rates up to 400 

to 450 vehicles per hour (vph), but the model will give poor results once the flow 

rates over this threshold. 

Eck and Biega (1988) conducted a before-and-after analysis in order to 

evaluate the TWSC and AWSC at low-volume intersections in residential areas. 

In general, they concluded that four-way stop sign control at low-volume 

residential street intersections should be changed to two-way stop sign control, 

because the use of two-way stop sign control in place of four-way stop sign 

control minimizes delay and road user costs.  Chan et al. (1989) proposed a 

response-surface model with four determinants, i.e. traffic volume, volume split, 

percentage of left-turns, and street width, to estimate average delay at an AWSC 

intersection.  One of their findings is highly controversial in relation to that by Zion 
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et al. (1989), that is, the more imbalanced the volume split is, the smaller the 

delay.  Zion et al. (1989) tested delay models, which proposed by Richardson 

(1987) and by Chan et al. (1989), with field data for AWSC intersections.  What 

they found are that delay increases as the intersecting volume increases; 

intersections with balanced volumes have lower delays than those without; and 

the percentage of left turns has a noticeable effect on delay.  

Besides AWSC, a two-way stop-controlled (TWSC) intersection is another, 

and maybe more efficient, type of assigning the right-of-way with the stop sign at 

the intersection.  Byrd and Stafford (1984) examined the operational 

characteristics of traffic controls at low-volume, low-speed intersections with 

unwarranted four-way stop sign control.  Then they suggested that unless an 

accident problem susceptible to correction by four-way stop sign control exists, 

the unwarranted use of four-way stop sign control results in unnecessary delay 

and road user costs to the driving public and that the intersection traffic control 

should be changed to two-way stop sign control. 

Kyte et al. (1997a, 1997b) conducted research about the capacity and 

level of service at unsignalized intersections.  In the second volume of the final 

report (1997b), they proposed the saturation headway at an AWSC intersection 

is dependent on the degree of conflict, the geometry, the directional movements 

of the interacting movements, and vehicle types.  In the ninth chapter in the first 

volume of the final report (1997a), a comparison is made between the peak hour 

signal warrant of the MUTCD (FHWA, 1988) and the recommended capacity and 

LOS procedure.  They did not reach a similar result to what Byrd and Stafford 
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(1984) did.  Under their assumptions, they found that AWSC control is best 

applied when a balanced volume distribution on the major and minor street of 

intermediate magnitude is achieved; there is a fairly good correlation between the 

MUTCD (FHWA, 1988) signal peak hour warrants and the result obtained based 

on the operational assessment through the HCM (TRB, 1994) delay models.  The 

most interesting achievement of their works is the figure related to optimum 

control type at an intersection based on the minimum average intersection delay 

and a five-second significant difference level.  It looks just like the Exhibit 10-15 

in HCM 2000, especially the area for AWSC. 

Even though there are models to estimate the delay or capacity for stop-

controlled intersections, some results were really confusing.  Furthermore, there 

is still a shortage of the comparison of performance between stop-controlled and 

signal-controlled at an intersection.  In order to clarify the trade-off among signal, 

AWSC, and TWSC, a trade-off framework to evaluate these three control types 

at an intersection is proposed in this paper.  The average delay models for 

signalized and unsignalized intersections in HCM 2000 are used as the basis of 

the framework.  Because combinations of traffic conditions at intersections are 

infinite, it is impossible to enumerate all possible combinations for the decision.  

Simulation results show that the intersection average delay will reach the lowest 

bound under symmetrical flows.   Turning effect can be shown in sensitivity 

analyses with a certain model.  Based on the framework, a stop sign is proper to 

cases of the two-way volume on both the major and minor street under about 500 

vehicles per hour.  This recommendation is quite different from the Exhibit 10-15. 
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The rest of this paper is organized as follows.  The employment of 

methodologies, including delay models and sensitivity analyses, will be 

introduced and discussed in the coming section.  Results from hypothetical 

scenarios, with no turns, left-turn involved, and approach-based, are shown in 

section three.  Section four is designated to the findings according to the results, 

recommendations and discussions.  Conclusions, such as a new trade-off 

framework, and no AWSC, are brought to the last section.    
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METHODOLOGY 

While many methods are currently available to estimate the delays incurred at 

intersection approaches, either signal controlled or stop controlled, to achieve 

comparable results based on a common foundation is the most important 

criterion to choose proper models.  That is, the definition and the calculation of 

the average control delay should be at the least same, even though assumptions 

and limitations may slightly differ from each model.  Models in HCM 2000 and 

those in software packages (e.g. VISSIM) may meet this criterion in their own 

domain respectively, but they may not have the same foundation to calculate the 

average control delay in cases.  Since models in HCM 2000 definitely meet the 

criterion, and may be the most popular methods to process the estimations in 

practice, they are used in this paper to illustrate the framework. 

According to HCM 2000 (TRB, 2000), the control delay involves 

movements at slower speeds and stops on intersection approaches, as vehicles 

move up in the queue or slow down upstream of an intersection.  The definition 

and use of control delay, including initial deceleration delay, queue move-up 

time, stopped delay, and final acceleration delay, is consistent between traffic 

signals and stop signs in HCM 2000.  Drivers frequently reduce speed when a 

downstream signal is red or there is a queue at the downstream intersection 

approach.  Control delay requires the determination of a realistic average speed 

for each roadway segment.  Any estimate of the average travel speed on urban 

streets implies the effects of control delay.  At two-way stop-controlled and all-
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way stop-controlled intersections, control delay is the total elapsed time from a 

vehicle joining the queue until its departure from the stopped position at the head 

of the queue.  The control delay also includes the time required to decelerate to a 

stop and to accelerate to the free-flow speed. 

Twenty-five parameters in three categories (geometric, traffic, and 

signalization conditions) are required to conduct an operational analysis for 

signalized intersections, if the approach in HCM 2000 is employed.  Eighteen of 

these parameters have suggested default values.  The saturation flow rate, which 

is used in the model, is the flow in vehicles per hour that can be accommodated 

by the lane group assuming that the green phase were displayed 100 percent of 

the time.  It is the most complicated parameter, because twelve other 

parameters, excluding the base saturation flow rate per lane, are related to this 

parameter.  Therefore, the most geometric conditions and part of the traffic 

conditions in a site may be properly reflected by the saturation flow rate. 

The values derived from the delay model in HCM 2000 represent the 

average delay experienced by all vehicles that arrive in the analysis period, and it 

is worthwhile to notice that, including delays incurred beyond the analysis period 

when the lane group is oversaturated.  It is special because a general queueing 

analysis will not consider the delay incurred beyond the analysis period, whether 

the system is under-saturated or oversaturated.  The compact form of the delay 

model for signalized intersections is expressed by Equation 1.  It is used to 

estimate the average control delay per vehicle for a given lane group. 

 d = d1(PF) + d2 + d3 (1) 
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where 

d = control delay per vehicle (usually in seconds/vehicle or s/v); 

d1 = uniform control delay assuming uniform arrivals; 

PF = uniform delay progression adjustment factor, which accounts for 

effects of signal progression; 

d2 = incremental delay to account for effect of random arrivals and 

oversaturation queues, adjusted for duration of analysis period and 

type of signal control; this delay component assumes that there is no 

initial queue for lane group at start of analysis period; and 

d3 = initial queue delay, which accounts for delay to all vehicles in 

analysis period due to initial queue at start of analysis period. 

If an initial queue is nonexistent, then d3 equals 0; and the delay model for 

signalized intersections in HCM 2000 can be expanded as: 
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where 

d = control delay per vehicle (usually in seconds/vehicle or s/v); 

ge  = effective green time (in seconds or s); 

φ = cycle length (s); 

X  = lane group demand/capacity, or v/c, ratio or degree of saturation; 

P  = proportion of vehicles arriving on green; 

fP  = supplemental platoon adjustment factor; 
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T  = duration of analysis period (in hour); 

k  = incremental delay factor; 

I  = upstream filtering/metering adjustment factor; 

c  = lane group capacity (vehicles per hour or vph). 

The stop-controlled approaches are referred to as the minor street 

approaches at TWSC intersections; and those are not controlled by stop signs 

are referred to the major street approaches.  Average control delay for a minor 

movement is a function of the capacity of the approach and the degree of 

saturation.  According to HCM 2000 (TRB, 2000), the analytical model used to 

estimate control delay at TWSC intersections assumes that the demand is less 

than capacity for the period of analysis.  If the degree of saturation is greater than 

about 0.9, average control delay is significantly affected by the length of the 

analysis period.  Based on the recommendation of HCM 2000, the analysis 

period may be fifteen minutes in many cases.  If demand exceeds capacity 

during a fifteen-minute period, the delay results calculated by the procedure may 

not be accurate.  In such a case, the period of analysis should be lengthened to 

include the period of oversaturation.  The control delay model for TWSC 

intersections in HCM 2000 can be expressed as Equation 3. 
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where 
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d = control delay per vehicle (usually in seconds/vehicle or s/v); 

vx = flow rate for movement x (veh/h); 

cm,x = capacity of movement x (veh/h); 

T  = analysis time period (in hour); 

In Equation 3, the constant, 5 s/veh, accounts for the deceleration of vehicles 

from free-flow speed to the speed of vehicles in queue and the acceleration of 

vehicles from the stop line to free-flow speed. 

AWSC intersections require every vehicle to stop at the intersection before 

proceeding.  Since every driver has to stop, the judgment as to whether to 

proceed into the intersection is a function of traffic conditions on the other 

approaches.  Flows at AWSC intersections are determined by a consensus of 

right-of-way that alternates between the north-south and east-west streams (for a 

single-lane approach) or proceeds in turn to each intersection approach (for a 

multilane approach).  The headways between consecutively departing subject 

approach vehicles depend on the degree of conflict between these vehicles and 

the vehicles on the other intersection approaches, and also depend on the 

vehicle type and the turning maneuver.  The degree of conflict is a particular 

concept in taking headways into account at AWSC intersections.  It is a function 

of the number of vehicles faced by the subject approach vehicle and of the 

number of lanes on the intersection approaches.  The control delay model for 

AWSC intersections in HCM 2000 can be expressed as Equation 4. 

 ( ) ( )2900 1 1 5
450

d
s

h xd t T x x
T

⎡ ⎤
= + − + − + +⎢ ⎥

⎣ ⎦
 (4) 
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where 

d = control delay per vehicle (usually in seconds/vehicle or s/v); 

ts = service time (s); 

x = degree of utilization (vhd/3600); 

v = flow rate the approach (veh/h); 

hd  = departure headway (s); 

T  = analysis time period (in hour); 

Since an iterative process to calculate the departure headway is used, with the 

initial value of 3.2 seconds, the calculations are repeated until departure 

headway for each lane change by less than 0.1 second from the previous 

iteration. 
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SIMULATION RESULTS 

Even though a few minor differences in the calculation of control delay exist 

between models for signalized and unsignalized intersections in HCM 2000, the 

models are good enough to be a foundation of the trade-off decision because the 

definition of control delay is consistent among these models.  The control delay 

with models in HCM 2000 will be estimated by two ways here.  One is to use the 

mathematical form of models with proper parameter settings in MATLAB, which 

is a software package for computation, visualization, and programming.  Another 

is to employ the Highway Capacity Software (HCS 2000), which implements the 

procedures defined in the HCM 2000.  Both of these two ways should reach the 

same estimations if the input parameters are exactly the same.  In comparison, 

HCS 2000 is more like a calculator, easy to use but hard to do simulation with 

wide range variation of parameters. 

Since there are many factors which may affect the control delay, the traffic 

flow rate is concerning most in the framework.  In order to distinguish the impact 

of the traffic flow rate on the control delay from different control types, a 

hypothetical site with two-way, two-lane for both directions is used to illustrate the 

framework.  During the simulation, parameters except the traffic flow rate remain 

the same.  For more comparable results, two-way volume is used to specify the 

traffic flow rate.  The range of two-way volume will vary from 100 veh/h to 600 

veh/h for the minor street, and from 100 veh/h to 800 veh/h for the major street.  

To consider when volumes exceed this range is unnecessary in this framework 
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because there is no way to reduce the average control delay in a stop sign 

controlled intersection.  That is, signal control is the only option for such 

intersections.   

Five scenarios are simulated to show the sensitivities: through traffic only, 

5 %, 10%, 15%, and 20% left-turn traffic.  In the case of signal control, the cycle 

length is always 60 seconds with equal split and four seconds in Yellow.  The 

criterion for decision making is the average control delay for the whole 

intersection.  For the cases in TWSC intersections, a weighted average control 

delay based on the flow rate is used for the whole intersection since left-turn 

traffic causes delay in the major street.  Two primary assumptions for all 

simulations in this paper are that there is no initial queue, and the traffic flow rate 

will not change with different control types. 

 Examination of the Exhibit 10-15 in HCM 2000 

At the beginning of this paper, the through-traffic-only case in Table 4.1 shows 

there are problems in the Exhibit 10-15 in HCM 2000.  It is worthwhile to have 

more complicated tests to validate the problems in the exhibit.  Table 4.3 consists 

of four sub tables which represents 5%, 10%, 15%, and 20% left-turn traffic 

respectively for some critical volumes in the exhibit.  Peak-Hour two-way 

volumes for the major and the minor street are shown in parentheses as (major, 

minor), and equal traffic volume for both ways are assumed.  For example, 

(2000, 150) represents there are 2000 vehicles per hour for both ways, i.e. 1000 

veh/h for each way, in the major street, and 150 vehicles per hour both ways, i.e. 

75 veh/h for each way, in the minor street. 
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Table 4.3. Average Control Delays for the Intersection with Left-Turn Traffic 
5%LT Signal AWSC  TWSC  10%LT Signal AWSC  TWSC 
(2000,150) 253.60 243.08 N/A  (2000,150) 382.00 243.32 N/A 
(1800,150) 170.70 180.87 N/A  (1800,150) 270.80 181.07 N/A 
(1600,150) 97.30 122.08 130.85  (1600,150) 168.50 122.22 N/A 
(1000,300) 17.20 28.64 36.75  (1000,300) 18.30 28.69 60.15
(600,600) 13.30 18.59 30.10  (600,600) 13.50 18.69 48.10
(600,300) 12.60 11.87 14.20  (600,300) 12.70 11.89 15.45
(400,400) 11.80 10.60 12.15  (400,400) 11.80 10.63 12.85
         
15%LT Signal AWSC  TWSC  20%LT Signal AWSC  TWSC 
(2000,150) 493.30 245.67 N/A  (2000,150) 556.70 246.98 N/A 
(1800,150) 361.70 183.14 N/A  (1800,150) 431.60 184.29 N/A 
(1600,150) 239.30 123.96 N/A  (1600,150) 301.10 124.92 N/A 
(1000,300) 20.40 29.19 109.25  (1000,300) 24.40 29.24 184.20
(600,600) 13.80 18.80 76.40  (600,600) 14.20 18.90 112.30
(600,300) 12.90 11.95 17.15  (600,300) 13.20 11.96 19.00
(400,400) 11.90 10.66 13.60  (400,400) 12.00 10.69 14.45

Notes: 
1. The cycle length for the signal operation is 60 seconds. 
2. Peak-Hour two-way volumes for the major street and the minor street are 

shown in parentheses (major, minor). 
 

The average control delays for the whole intersection, which are estimated 

under a range of traffic volumes with the three control types at the hypothetical 

intersection, are shown in cells.  Over capacity in the minor street causes some 

N/A in the tables since the HCS 2000 can not perform a calculation under such 

situations.  It is extremely hard to find a gap for vehicles in the minor street to go 

through or join the traffic in the major street, even though the delays in the major 

street are still low in those cases. 

Comparisons among Signal, TWSC, and AWSC 

The contours of the average control delays, in seconds, for the whole intersection 

in the hypothetical site are shown in Figure 4.2.  Two types of control at the 

intersection are considered in this figure.  Solid contour lines here represent the 
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average control delay which resulted from the signal control; the two-way stop 

sign brought about the dot contour lines.  Four sub figures which illustrated 

different percentage of left-turn traffic are shown in Figure 4.2 for sensitivity 

analyses.  Each sub figure here consists of different traffic flow rate in the major 

and minor street with a certain percentage of left-turn traffic.   

The contour intervals for different control types are different here because 

the sensitivities are different in the plotted area.  For the two-way stop sign 

control, the intervals, from 10 to 50, are based on the definition of level of service  
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Figure 4.2. Contours of Average Delay For Signal Control and TWSC 
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in Table 4.2.  Constant interval is used in the cases of signal control because 

those contours, from 10 to 14, can cover almost the whole area in the figure.  

The comparison between signal control and AWSC are shown in Figure 

4.3 which consists of four sub figures with different percentage of left-turn traffic.  

They are similar to those in Figure 4.2 but with AWSC instead TWSC.  Dashed 

contour lines in this figure set represent the average control delay which results 

from the AWSC, while those affected by the signal control are presented in solid 

contour lines.  It is worthwhile to notice that different contour intervals are used 

for different control types due to the differences of sensitivity.  For the all-way 

stop sign control, the intervals, from 10 to 50, are based on the definition of level  
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Figure 4.3. Contours of Average Delay For Signal Control and AWSC 
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of service in Table 4.2.  Constant interval is used in the cases of signal control for 

the same reason as it was mentioned for Figure 4.2. 

Figure 4.4 is designated for the comparison between TWSC and AWSC.  

Four sub figures represent the contour lines under different percentage of left-

turn traffic, just as Figures 4.2 and 4.3 did.  Even though the range of contours 

for TWSC (from 10 to 50) and AWSC (from 10 to 25) are different, the contour 

intervals are exactly the same in Figure 4.4 because the definition of level of 

service, either for TWSC (dot lines) or for AWSC (dashed lines), are exactly the 

same. 
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Figure 4.4. Contours of Average Delay (in Seconds) For TWSC and AWSC 
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An Elegant Case – Symmetric Traffic Flow Rate 

In Figures 4.2, 4.3, and 4.4, there is always a line segment in each sub figure 

which consists of the average control delays under a symmetric traffic flow rate 

condition.  That is, the traffic flow rate in both the major and the minor street are 

exactly the same, including the percentage of left-turn traffic.  Although such a 

situation is exceptionally rare in reality, it is quite interesting in theory because 

the average control delays are always higher than it when the traffic flow rates in 

the major and minor street are not symmetric.  In short, it is the lowest bound of 

the average control delay for given traffic flow rates in the major and the minor 

street. 

Figure 4.5 shows all the lowest bound of the average control delay for 

each control type, with different percentages of left-turn traffic in four sub figures.  

For the consistency in labeling different control types, the dashed lines represent 

the delay by AWSC, the solid lines are for the signal control, and the dot lines are 

for the TWSC.  For a closer observation on the intersection of those average 

control delay functions in Figure 4.5, the range of traffic flow rate is from 100 

veh/h to 550 veh/h in all of the sub figures.  It is appropriate enough for the 

decision making because all functions for the average control delay here are 

monotonic increasing. 
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Figure 4.5. Average Delays (in Seconds) Under Symmetric Flow 

Signalized Intersections Only 

The signal control is the only option which may improve the performance by 

adjusting parameters to accommodate the traffic flow.  Different sites may have 

different geometric and traffic conditions.  However, most of those conditions 

may be reflected properly in the parameter of saturation flow rate.  The 

suggested value of saturation flow rate for an ideal lane in HCM 2000 is 1900 

vehicles per hour.  The more complicated conditions exist in a site, the lower 

value of saturation flow rate should be used for the estimation.  The percentage 

of left-turn traffic may not be an issue any more because the smaller value of 

saturation flow rate already reflected it properly. 

In order to learn about the sensitivity and the range of the average control 

delay in signalized intersections, four sub figures with different situation flow 
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rates are shown in Figure 4.6.  Parameters for the pre-timed signal operation, 

except saturation flow rate, will not change with different traffic flow rates.  

Constant contour intervals make the sensitivity more observable.  It is worthwhile 

to remind again that the hypothetical site is an intersection with two-way, two-

lane for both directions.  Otherwise, the values of average control delay in the 

figures may be higher than those in real situation. 
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Figure 4.6. Average Delays at Signalized Intersection under Different Saturation 
Flow Rate 
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FINDINGS AND DISCUSSIONS 

Examination of the Exhibit 10-15 in HCM 2000 

According to Tables 4.1 and 4.3, the Exhibit 10-15 in HCM 2000 is inappropriate 

to determine an appropriate control for an intersection.  For example, the 

recommended area for TWSC should be adjusted and shrunk dramatically for the 

hypothetical site.  Among the three control types, only in a through-traffic case 

does a TWSC bring the lowest average control delay for the whole intersection.  

But this case is exceptionally rare in reality.  If there is left-turn traffic, a TWSC 

may lead to some over-capacity situations in the minor street.  In practice, those 

situations mean that it is extremely hard to find a gap for vehicles in the minor 

street to go through or join the traffic in the major street, even though the delays 

in the major street are still acceptable. 

Furthermore, the Exhibit seems to promise that the user can make the 

decision just on the basis of the traffic volume on the major and minor street.  

Without any consideration of turning traffic, it will not realistic even if all other 

factors are neglected.  There is also no information about the signal operations, 

which may optimize the performance under a given traffic flow rate.  Since the 

Exhibit is too simple to be used, a framework based on the average control delay 

for the whole intersection is suggested to determine the best control type at an 

intersection.  Such a framework may not be able to provide the exactly optimal 

solution for a site, but the searching space of the optimum can be shrunk 

dramatically by the framework. 
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Comparisons among Signal, TWSC, and AWSC 

The most important observation on all of Figures 4.2, 4.3, and 4.4 should be the 

nonlinear sensitivities of the average control delay by signal, TWSC, and AWSC 

respectively.  Since the sensitivities are not linear, making a trade-off in the 

higher sensitivity area should be more carefully though out.  Different sensitivities 

for different control types can be distinguished easily by these figures.  Even with 

different percentages of left-turn traffic, the signal control for the hypothetical site 

still has the most gentle and lowest sensitivity within the plotted area.  The 

average control delay by TWSC is more sensitive than the other two control 

types, especially in higher traffic flow rate areas.  The sensitivity of average 

control delay by AWSC is more sensitive than that by signal control but less 

sensitive than that by TWSC. 

The trade-off among control types for the hypothetical site can be easily 

decided upon by such a framework.  After one determines the traffic flow rate in 

both the major and minor street, and the percentage of left-turn traffic, then the 

most appropriate option will be suggested based on the average control delay.  

The framework is also useful when the level of service (LOS) is used as the 

criterion, because boundaries of the related LOS are shown in each figure.  For 

example, the area LOS F, where the average control delay exceeds 50 seconds, 

for the TWSC can be found on the upper-right corner in each sub figure of Figure 

4.2. 

According to Figure 4.4, the LOS will be C for the whole intersection, if a 

TWSC is used in where the two-way flow rate is less 650 vph in the major street, 
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450 vph or less in the minor street, and 10% left-turn traffic for each direction.  It 

is worthwhile to notice that the feasible area is not a rectangle but a polygon 

because it depends upon the contour of average control delay.  For the same or 

a better LOS, an AWSC could be used where the two-way flow rate is less 750 

vph in the major street, 550 vph or less in the minor street, and 10% left-turn 

traffic for each direction.  If the installation and maintenance costs do not matter, 

based on Figure 4.2, LOS B or better can be anticipated by using a signal control 

within the testing traffic flow rate range. 

Since the sensitivities of the average control delay for different control 

types differ from each other in different traffic patterns, to facilitate the trade-off 

among different control types is the most important function for the framework.  

Based on Figure 4.3, an AWSC may be a better choice than a signal where the 

two-way flow rate is less 600 vph in the major street, 350 vph or less in the minor 

street, and 10% left-turn traffic for each direction.  Again, the feasible area is not 

a rectangle but a polygon.  The reason an AWSC is recommended for the traffic 

condition is that the average control delay for an AWSC is less sensitive than a 

signal in the intersection.  Also, the sensitivities can be checked very easily 

through the framework. 

The possibility of optimization by signal control may be an interesting 

topic, because signal control is the only control type which may achieve an 

optimal operation by adjusting the attributes, e.g. cycle length or green time split.  

That is, the framework uses a pretimed signal operation, but does not consider 

other alternatives with more complicated signal operations.  However, since the 
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installation and maintenance costs for the signal operation are much higher than 

for stop signs, the optimization of signal control should be considered only after 

the stop sign is clearly not providing a good performance at the intersection. 

Since the average control delay by TWSC is more sensitive than the 

others, TWSC should be used in very limited situations.  Although vehicles in the 

major street may not stop in most cases under the TWSC, those in the minor 

street may wait for a long time.  Actually, the average control delays for vehicles 

in the minor street are almost twice as long as the delays for the whole 

intersection in higher traffic volume situations.  That is why the average control 

delay for the whole intersection, instead of a certain approach, is used as the 

criterion.  In the hypothetical site, it is better to assign the right of way to every 

direction when the traffic flow rate in the minor street exceeds 600 vehicles per 

hour.  If the TWSC is used in such a case with 5% left turn traffic, the average 

control delay for vehicles in the minor street will exceed 50 seconds. 

The Elegant Case – Symmetric Traffic Flow Rate 

Because of the monotonic increasing patterns in the average control delays for 

all three control types, the case of symmetric traffic flow rate is a very useful and 

elegant tool.  Under such a case, the traffic flow rate in both the major and the 

minor street are exactly the same, including the percentage of left-turn traffic.  

According to Figures 4.2, 4.3, and 4.4, the cases with symmetric flow rate always 

reach the minimum of average control delay along a given traffic flow rate in the 

minor street.  It is exceptionally rare in reality, but it is very useful for decision 

making.  If the traffic flow pattern will not change with different control types, such 
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a case can be used to decide the lowest bound and the basic relation among 

control types. 

The character of “lower volume, lower sensitivity” is shown in Figure 4.5.  

It also verifies that AWSC is better to use in symmetric traffic cases, about 500 

vehicles per hour with 5% left turn traffic for each direction at the hypothetical 

site.  The results are similar to those of Kyte and Marek (1989).  Delay increases 

at a very slow rate for low traffic flow rates, up to subject flow rates of 400 to 500 

vph.  At this point, delay begins to increase exponentially, especially in the case 

of TWSC.  Under the symmetric traffic cases, AWSC may be a better control type 

than TWSC; otherwise, according to Figure 4.4, TWSC will be recommended, 

just as Byrd and Stafford (1984) did. 

Signalized Intersections Only 

Figure 4.6 is another basic tool to facilitate the trade-off.  Although the 

sensitivities of the average control delay are different in each sub figure, those 

contours which do not cross over each other indicate the pattern of monotonic 

increase when the traffic flow rate in the minor street is over 200 vehicles per 

hour.  This pattern is important because it verifies that the case of symmetric or 

near symmetric traffic flow may have the minimal average control delay once the 

traffic flow rate in the minor street is known.  The shape of the contours may 

change slightly when the parameters of signal operation are adjusted for 

optimization. 

In the hypothetical site, the average control delay is more sensitive and the area 

between 10 and 20 is also shrunk when the saturation flow rate is decreasing.  
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This phenomenon supports that the traffic flow pattern can be reflected by the 

saturation flow rate because it is consistent with Figures 4.2 and 4.3.  That is, the 

turning effect reduces the saturation flow rate in the hypothetical site. 
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CONCLUSIONS 

Since there is a lack of necessary information, the exhibit 10-15 in HCM2000 is 

inappropriate to determine the best control type for an intersection.  The trade-off 

among signal control, TWSC, and AWSC which is based on traffic volume only 

will lead to an improper decision.  Several models with different parameters, 

including traffic volume, can estimate the average control delay for an approach 

under a given condition.  A framework based on the average control delay is 

proposed to determine the best control type for an intersection. 

A hypothetical intersection with two-way, two-lane for each direction is 

examined by the framework.  Based on the simulation results, the LOS will be C 

for the whole intersection, if a TWSC is used in where the two-way flow rate is 

less 650 vph in the major street, 450 vph or less in the minor street, and 10% left-

turn traffic for each direction.  It is worthwhile to notice that the feasible area is 

not a rectangle but a polygon because it depends upon the contour of average 

control delay.  For the same or a better LOS, an AWSC could be used where the 

two-way flow rate is less 750 vph in the major street, 550 vph or less in the minor 

street, and 10% left-turn traffic for each direction.  If the installation and 

maintenance costs do not matter, LOS B or better can be anticipated by using a 

signal control within the testing traffic flow rate range. 

Since the sensitivities of the average control delay for different control 

types differ from each other in different traffic patterns, to facilitate the trade-off 

among different control types is the most important function for the framework.  
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Based on the simulation results for the hypothetical intersection, an AWSC may 

be a better choice than a signal where the two-way flow rate is less 600 vph in 

the major street, 350 vph or less in the minor street, and 10% left-turn traffic for 

each direction.  Again, the feasible area is not a rectangle but a polygon.  The 

reason an AWSC is recommended for the traffic condition is that the average 

control delay for an AWSC is less sensitive than a signal in the intersection.  

Also, the sensitivities can be checked very easily through the framework. 
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PART V. IMPACTS OF MISPLACED PEAK INTERVALS ON PHFS 
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This part is a slightly revised version of a journal paper by Lee Han and 
Jan-Mou Li with the same title that will be submitted for review in 2007. 

Han, L. and Li, J.-M., 2007.  Impacts of Misplaced Peak Intervals on 

PHFs. To be submitted for review. 

My primary contributions to this paper include (1) development of the 

problem into a work relevant to my doctoral research study, (2) development of 

experimental setup, (3) most of the gathering and interpretation of literature, (4) 

performing the laboratory experiments, (5) interpretation and analysis of test 

results, (6) most of the writing. 
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ABSTRACT 

The peak-hour factor (PHF), which represents the relationship between the 

busiest 15-min flow rate and the fully hourly volume, is applied to determine 

design-hour flow rates.  An inadequate PHF may result in substantial excess 

capacity the rest of the time or result in oversaturated conditions for a substantial 

portion during the peak hour.  Although several default values are suggested in 

the Highway Capacity Manual 2000 for different traffic conditions, local data are 

still recommended to use for a precise estimation, because the traffic varies, 

depending on time and site.  Furthermore, the peak intervals can hardly be 

located on the clock.  The impacts of misplaced peak intervals on the PHF are 

investigated with simulations and real data in this paper.  By comparing different 

methods locating the peak intervals, the “on the clock” approach may provide an 

inaccurate estimation of PHF.  According to the results, based on the Wilcoxon 

Signed-Rank Test and the mean absolute percentage error, the misplacements 

did occur and impact the PHFs, if either lower resolution data or “on the clock” 

approaches were used.  It is recommended that the PHF should be calculated 

with searching the peak intervals through local, higher resolution data for obtain 

the most accurate estimation. 
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INTRODUCTION 

Traffic in a road network is varying all the time and the variation is rarely on the 

clock.  In most cases, analyses focus on the peak hour of traffic for a certain 

approach because it represents the most critical period for operations and has 

the highest capacity requirements.  Since the annual average daily traffic (AADT) 

is used for planning applications, the peak hour factor (PHF) is one of the three 

important factors to convert the hourly volumes into the volume rate during the 

busiest 15 minutes of the hour.  However, to define the peak hour as well as the 

worst 15 minutes in practice raises inaccuracy if the traffic variation was not 

treated properly. 

According to the Highway Capacity Manual 2000 edition (HCM 2000) 

(TRB, 2000), the selection of an analysis period must consider the impact on 

design and operations of higher volume hours that are not accommodated.  It 

also mentioned that the design for a smaller range, say a 5-minute interval, of the 

peak flow rate would result in substantial excess capacity during the rest of the 

peak hour; and the design for a larger range, say an 1-hour interval, of the peak 

flow rate would result in oversaturated conditions for a substantial portion of the 

hour.  Since most of the procedures in the HCM 2000 are based on peak 15-

minute flow rates, the peak hour factor is defined as the ratio of total hourly 

volume to the peak 15 minute flow rate within the hour.  However, it did not 

mention what would happen if there is a higher peak 15-minute interval outside 
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the peak hour.  Such situations occurred in real data when they are closely 

examined.  

Traffic patterns vary in response to local travel habits and environments.  

It indicates the need for local data on which to base informed judgments.  Even 

though traffic varying over time is common sense, the variability of peak hour 

factor has been investigated recently.  Tarko and Perez-Cartagena (2005) 

investigated the variability of PHF overtime and across locations, and found that 

the day-to-day variability is as strong as the site-to-site variability.  They 

recommend that PHF be estimated on the basis of several days of vehicle 

counting to improve the precision of the average PHF estimate.  Notwithstanding 

the spatial difference, even the variation of traffic within a day will not be the 

same within another day.  That is, the peak hour for tomorrow may not start at 

the exactly same time as today. 

For some reasons, practitioners employ the literal meaning of the peak-

hour in several ways.  Most of the time, they classify the peak hour on the clock, 

e.g. from 7 a.m. to 8 a.m. or 4:30 p.m. to 5:30 p.m.  There is nothing wrong if the 

hourly, half-hourly, or even 15-minute traffic volume is the only data we had.  But 

such an aggregation may shift the peak hour from the “real” one to a certain 

degree.  When the resolution of data is increased, the difference between the 

peak hour on the clock and the “real” peak hour should be noticed.  Most modern 

detectors can collect traffic data every thirty seconds.  Therefore, the peak hour 

may start at 7:11:30 a.m. based on the data more precisely. 
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The object of this paper is to investigate the impact of the misplaced peak hour 

and peak 15 minutes on the PHF.  By comparing different methods locating the 

peak intervals, the “on the clock” approach may provide an inaccurate estimation 

of PHF.  With 5,000 simulations in each of the truncated Normal distribution and 

the Poisson distribution, the varying locations of peak 15-min intervals during a 

peak hour are examined.  Real traffic count data, which were collected by the 

Minnesota Department of Transportation, at a 30-second interval from over 4,000 

loop detectors located around the Twin Cities Metro freeways, are also used for 

the analysis.  It is shown that there are impacts on the PHF by the misplacement, 

and the phenomenon of which the higher peak 15-minute interval is outside the 

peak hour occurred.  By the Wilcoxon Signed-Rank Test, the PHFs by search are 

significantly different from those by ‘on the clock’.  The results show that the peak 

hour should be located to a more precise period with higher resolution data.  

Otherwise, extra errors should be considered, and then the PHF can have a 

better estimation on the traffic situation. 
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METHODOLOGY 

Definition of Peak-Hour Factor (PHF) 

According to HCM 2000, the peak-hour factor (PHF) represents the variation in 

traffic flow within an hour.  PHF is the ratio of total hourly volume to the peak flow 

rate within the hour, computed by Equation 1: 

  
  (   

Hourly volumePHF
Peak flow rate within the hour

=
)

 (1) 

 

If 15-min periods are used, PHF is the ratio of total hourly volume to four 

times the highest 15-min volume within the peak hour.  Under such a 

circumstance, the PHF may be computed by Equation 2: 

 
154

VPHF
V

=
×

 (2)  

where 

PHF = peak-hour factor, 

V = hourly volume (veh/h), and 

V15  = volume during the peak 15-min interval of the peak hour (veh/15 

min). 

 

How to locate the peak hour or the peak 15 minutes is the questionable 

part, even though the definition of PHF is quite straight.  “On the clock” is a 

method to locate them.  That is, the peak hour always covers an entire hour, e.g. 

from 7 a.m. to 8 a.m., because the aggregation of traffic volumes during the hour 
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is higher than the other 23 hours.  Also, the peak 15-min interval will be from 12 

to 3, 3 to 6, 6 to 9, or 9 to 12 by this method.  With such a method, the peak hour 

and related peak 15-min traffic volume can be computed by Equations 3 and 4.  

The advantage of this method is that it can be operated with the aggregation of 

traffic volumes every 15 minutes.  It is good for historical periods when there was 

no way to collect data more precisely. 

 ( )max , 0,1, , 23p iV V i= = K  (3) 

 ( )15 max , 1,2,3,4p jV V k= =  (4) 

where 

Vp  = the peak-hour traffic volume in a day (veh/h), 

Vi  = the ith hourly traffic volumes on the clock in a day (veh/h), 

Vp15  = the peak 15-min traffic volume within the peak hour (veh/15 min), 

Vj  = the jth quarterly traffic volumes within the hour on the clock (veh/15 

min). 

Another method to locate the peak hour or peak 15 minutes is to shift the 

aggregation every time interval with higher resolution data.  If data were collected 

every 30 seconds, then each aggregation of 120 such data points can represent 

an hour, and each aggregation of 30 such data can represent a 15-minute 

interval.  That is, there are 2760 possible starting points of the peak hour, and 90 

possible starting points of the peak 15-min interval within the peak hour.  

Assuming the 30-second data are given, the peak hour and related peak 15-min 

traffic volume can be computed by Equations 5 and 6 with this strategy: 
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  (5) 
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max , 1,2, , 2761
i

p i
i

V v i
+⎛ ⎞

= =⎜ ⎟
⎝ ⎠
∑ K

  (6) 
29

15 max , 1, 2, ,91
j

p j
j

V v j
+⎛ ⎞

= =⎜ ⎟
⎝ ⎠
∑ K

 

where 

Vp  = the peak-hour traffic volume in a day (veh/h), 

vi  = the ith 30-second traffic volume in a day (veh/30 sec), 

Vp15  = the peak-15 min traffic volume within the peak hour (veh/15 min), 

vj  = the jth 30-second traffic volume within the hour (veh/30 sec), 

Monte Carlo Simulation 

Monte Carlo simulation (Fishman, 1996; Robert and Casella, 1999) is a 

stochastic technique based on the use of random numbers and probability 

statistics to investigate complex problems.  The primary components of a Monte 

Carlo simulation include a probability distribution function, a random number 

generator, and a sampling rule.  In this study, the technique is used to generate 

time headways to simulate the arrival within a peak hour, in order to observe the 

varying locations of the peak 15-min interval during the peak hour.  With 5,000 

runs in each of the truncated Normal distribution and the Poisson distribution, a 

large number of cases show the significant differences between different PHF 

computing methods.  
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Significance Tests – The Wilcoxon Signed-Rank Test 

Since two methods to compute the PHF with the same data are considered, 

paired-samples T test might be a popular way to compare means.  However, 

because the source population from which the differences have been drawn can 

not be assumed to have a normal distribution, the Wilcoxon signed-rank test 

(Sheskin, 2007) is the more appropriate approach to use here instead of the 

paired-samples T test.  The Wilcoxon signed-rank test considers information 

about both the sign of the differences and the magnitude of the differences 

between pairs, if the two variables are similarly distributed, the number of positive 

and negative differences will not differ significantly.  Assumptions for the 

Wilcoxon signed-rank test include: 

• Each pair of values is drawn independently of all other pairs. 

• Each difference between a pair comes from a continuous population 

and is symmetric about a common median. 

The Wilcoxon signed-rank test, sometimes called the Wilcoxon matched-

pairs test, is a nonparametric test, and begins by transforming each instance of 

difference into its absolute value.  The instances without difference are deleted 

and then those differences are ranked in an ascendant sequence with the related 

signs.  Assuming S is the smaller of the sum of ranks either for positive 

differences or for the negative differences, if S is equal or less than the critical 

value in a table of the distribution of Wilcoxon signed-rank test, then the two 

samples differ from each other significantly. 
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Measurement of the Difference - Mean Absolute Percentage Error (MAPE) 

Mean absolute percentage error (also known as MAPE) is a measure of 

accuracy in a fitted value in statistics, specifically the trend in a time series 

analysis (e.g. Nikolopoulos et al., 2007). It usually expresses accuracy as a 

percentage and can be computed by Equation 7.  

 
1

1 n
i i

i i

A FMAPE
n A=

−
= ∑  (7) 

where 

Ai  = the ith based (real) value, 

Fi  = the ith referred (forecasting) value, and 

n  = the sample size. 

The mean absolute percentage error (MAPE) is also often useful for 

reporting the difference between samples, because it is expressed in generic 

percentage terms which are strictly positive.  Since the randomness of traffic and 

the PHF is a ratio dependent upon the computational method, MAPE can 

distinguish the difference between those PHF values by different methods. 
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RESULTS 

In order to distinguish the impact of misplacing the peak 15 minutes on the value 

of PHF, results from hypothetical cases are examined first.  The truncated 

Normal and the Poisson distributions are employed to generate time headways 

within a hypothetical peak hour.  According to May (1990), a Normal distribution 

with mean 2 seconds and standard deviation 0.6 is used for a high traffic volume 

case.  Since headway less than 0.5 second is unreasonable, the Normal 

distribution will be truncated on grounds of this criterion.  The possibility below 

0.5 second in such a distribution will be 0.0062.  Furthermore, two more Normal 

distributions with the same mean 2 seconds, but different standard deviations, 1 

and 2, are used for comparisons.  They are also truncated once headway is 

lower than 0.5 seconds; the possibility of the truncation is 0.0668 for the case 

with standard deviation 1, and 0.2266 for 2. 

Samples of the arrival, with different Normal distributions used to generate 

headways, are demonstrated in Figure 5.1.  In the figure, subfigure (a) is an 

example following the Normal distribution with mean 2 seconds and standard 

deviation 0.6; subfigure (b) is an example following the Normal distribution with 

mean 2 seconds and standard deviation 1; and subfigure (c) is an example 

following the Normal distribution with mean 2 seconds and standard deviation 2.  

The period for the simulation is an hour, say from 7:00 a.m. to 8:00 a.m., since 

the peak-hour traffic is simulated.  The arrival (dot lines in the figure) during this  
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Figure 5.1. Samples from (a) N(2,0.6), (b) N(2,1) , (c) N(2,2) 

 

period is aggregated every 30 seconds.  Solid lines in the figure represent the 

‘real’ peak 15-min flow rates within the peak hour by search.  The PHF by search 

is computed with Equation 6, to find the peak 15-min traffic volume, and Equation 

2, to do the computation of PHF.  On the other hand, the PHF on the clock is 

computed with Equation 4, to find the peak 15-minute traffic volume, and 

Equation 2, to do the computation of PHF. 

Statistics for the simulations with Normal distributions are listed in Table 

5.1.  The values in the 2nd and 3rd column are the average PHF of the 5000 runs 

with search and ‘on the clock’ methods respectively.  The fourth column is the  
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Table 5.1. Results from Monte Carlo Simulations with Truncated Normal 
Distributions 

Samples PHF by search PHF on the 
clock 

MAPE Asymp. Sig. (2-
tailed) 

N(2, 0.6) 0.9708 0.9860 0.0081 0.000 
N(2, 1) 0.9688 0.9798 0.0112 0.000 
N(2, 2) 0.9542 0.9704 0.0166 0.000 
 

mean absolute percentage error of PHF by the two methods with 5000 

simulations.  Values in the last column are all zero, which is the p-value of the 

Wilcoxon Signed-Rank Test. 

Another kind of distribution, the Poisson, is commonly used (e.g. Little, 

1961; Tarko and Perez-Cartagena, 2005) to generate the traffic counts within a 

certain period.  The Poisson distribution is a discrete probability distribution that 

expresses the probability of a number of events occurring in a fixed period of 

time if these events occur with a known average rate, and are independent of the 

time since the last event.  Samples of the arrival, with different Poisson 

distributions used to generate headways, are demonstrated in Figure 5.2.  In the 

figure, subfigure (a) is an example following a Poisson distribution with mean 2 

seconds; subfigure (b) is an example following a Poisson distribution with mean 3 

seconds; and subfigure (c) is an example following a Poisson distribution with 

mean 4 seconds.  Since the peak-hour traffic is simulated, the period for the 

simulation is also an hour.  The arrival (dot lines in the figure) during this period is 

aggregated every 30 seconds.  Again, solid lines in the figure are the ‘real’ peak 

15-min flow rates within the peak hour by search.  The computations of PHFs 

with Poisson distributions are the same as those with Normal distributions. 
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(a) PHF=0.94415 by search; PHF=0.95613 on the clock; APE=0.012526
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(b) PHF=0.94203 by search; PHF=0.9806 on the clock; APE=0.039337

Th
e 

nu
m

be
r o

f v
eh

ic
le

s 
in

 3
0 

se
co

nd
s

Time

07:00:00 07:10:00 07:20:00 07:30:00 07:40:00 07:50:00 08:00:00
5

10

15

20

25
(c) PHF=0.93878 by search; PHF=0.96234 on the clock; APE=0.02449
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Figure 5.2. Samples from (a) Poisson(2), (b) Poisson(3) , (c) Poisson(4) 

 

Statistics for the simulation with Poisson distributions are listed in Table 

5.2.  The structure is the same as Table 5.1.  Values in the 2nd and 3rd column 

are the average PHF of the 5000 runs with search and ‘on the clock’ methods 

respectively.  The fourth column is the mean absolute percentage error of PHF 

by the two methods with 5000 simulations.  Values in the last column are all zero, 

which is the p-value of the Wilcoxon Signed-Rank Test. 

Traffic data on every Tuesday, Wednesday, and Thursday (from January 

2, 2007 until April 5, 2007), collected by detectors #2437, #2473, and #5124, are 

used for the analysis.  These detectors were chosen randomly from over 4,000  
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Table 5.2. Results from 5000-run Monte Carlo Simulations with Poisson 
Distributions 

Samples PHF by 
search 

PHF on the 
clock 

MAPE Asymp. Sig. (2-
tailed) 

Poisson(λ=2) 0.9525 0.9706 0.0185 0.000 
Poisson(λ=3) 0.9516 0.9695 0.0184 0.000 
Poisson(λ=4) 0.9508 0.9687 0.0184 0.000 

 

loop detectors located around the Twin Cities Metro freeways; and the data were 

collected every 30 seconds by the Minnesota Department of Transportation.  

Figure 5.3 demonstrates the variation of traffic over April 5, 2007, according to 

detector #2437.  It is interesting to notice that there are dramatic drops in traffic 

within both morning and evening peak hours.  Such a drop may affect the 

location of peak 15-min intervals, especially when the search algorithm is 

employed. 

The misplaced peak hour and peak 15-min intervals can be observed in 

Figure 5.4.  The data are from detector #5124 on January 2, 2007.  Four cases 

with different combinations of the location of peak intervals are considered; 

subfigure (a) demonstrates the situation with both the peak hour and the peak  

15-min interval searched in the day; subfigure (b) shows the situation with 

a searched peak hour and the peak 15-min interval searched within the peak 

hour; subfigure (c) illustrated the situation by locating the peak hour on the clock 

and searching the peak 15-min interval within the peak hour; subfigure (d) 

depicted the situation including both the peak hour and the peak 15-min interval 

are on the clock.  Even though the period for all of the subfigures is an hour, the 

start and end time in subfigures (a) and (b) obviously differ from the others.  For  
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Figure 5.3. Samples from Real Data 
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Figure 5.4. A sample with peak intervals from detector #5124 on January 2, 2007 
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consistency with Figures 5.1 and 5.2, the dot lines in Figure 5.4 represent the 

arrival during this period, aggregated every 30 seconds, and the solid lines are 

the peak 15-min flow rates within the peak hour.  There is a solid line for the 

whole period in subfigure (a), which indicates the peak 15-min interval is not 

entirely located within the peak hour. 

Results from all forty-two days’ data are shown in Table 5.3.  The first four 

rows of data represent the different cases mentioned in the previous paragraph.  

Values in the 1st row (as titled PHFR) are the PHFs computed in case (a); case 

(b) is in the 2nd row (as titled PHFRin); case (c) is in the 3rd row (as titled 

PHFAin); and case (d) is in the 4th row (as titled PHFA).  Based on the 

comparison with the PHFs in case (d), the rest of the six rows are listed.  That is, 

values in the 5th row (as titled MAPE 1) are the MAPEs between case (a) and 

case (d); the MAPEs between case(b) and case (d) are in the 6th row (as titled 

MAPE 2); the MAPEs between case(c) and case (d) are in the 7th row (as titled 

MAPE 3).  With the same sequence, the p-values of the Wilcoxon Signed-Rank 

Test, representing 2-tailed asymptotic significance, are listed from the 8th row to 

the 10th row. 
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Table 5.3. Statistics from Real Data 
 #2437 #2473 #5124 
PHFR 0.9159 0.8801 0.9083 
PHFRin 0.9195 0.8810 0.9106 
PHFAin 0.8714 0.8312 0.8900 
PHFA 0.9079 0.8638 0.8975 
MAPE 1 0.0224 0.0511 0.0290 
MAPE 2 0.0196 0.0502 0.0312 
MAPE 3 0.0288 0.0376 0.0196 
p-value 1 0.000 0.036 0.041 
p-value 2 0.000 0.025 0.018 
p-value 3 0.000 0.000 0.000 

Note: 
1. APE1: PHFA vs. PHFR; APE2: PHFA vs. PHFRin; APE3: PHFA vs. 
PHFAin 
2. p-value 1: PHFA vs. PHFR; p-value 2: PHFA vs. PHFRin; p-value 3: 

PHFA vs. PHFAin 
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DISCUSSION 

Misplaced Peak Intervals 

According to the results shown in the previous section, the misplaced peak 

intervals did occur and impact the accuracy of PHFs.  The most powerful proof is 

the p-values of the Wilcoxon Signed-Rank Test between the PHFs computed by 

different methods, although the MAPEs and average PHFs computed by different 

methods show small differences in value.  The p-values indicate that there are 

statistically significant differences between the results by different methods.  

Such misplacement occurs for the peak 15-min interval and also the peak hour.  

Furthermore, the phenomenon of another higher peak 15-min interval not entirely 

located within the peak hour is observed in the real data; and these are not rare 

instances, 4 days on detector #2437, 1 day on #2473, and 5 days on #5124 

(during 42 days). 

The misplacement can also be observed directly by the different PHFs 

computed by different methods.  If there is no misplaced peak interval, neither 

the peak hour nor the peak 15 minutes, the PHFs should be the same.  Since the 

peak hour and peak 15 minutes can hardly start and end on the clock, the peak 

intervals, especial the peak 15-min interval, should be located by search instead 

of located on the clock.  Otherwise, misplacement occurs and impacts the 

precision of PHF. 
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Local Data are Recommended 

Values of the average PHF on the clock are higher than those by search in 

hypothetical cases, but they are lower in the cases with real data.  There is 

nothing wrong with this situation; it just indicates the traffic patterns varying over 

time and on different sites, as shown by Tarko and Perez-Cartagena (2005).  

Mathematically, the PHF by search should be smaller than that on the clock 

because the “real” peak 15-min traffic volume should be larger than that on the 

clock.   Since the peak hour located by different methods may not be at the same 

place with the real data, to compare the values bases on different grounds may 

not provide a clearer insight.  When the values are compared by pair, i.e. PHFR 

vs. PHFRin or PHFA vs. PHFAin, higher values are observed in the cases of ‘on 

the clock’ and within the hour by search. 

The values of MAPE indicate the average differences between a pair of 

PHFs.  Although it does not provide information about whether it is exceeded or 

shortened, it is still good to notice that there are errors between the pair.  It is 

really hard to provide an overall estimation of the difference for cases because 

the traffic patterns are quite different.  For example, values on the 7th row (as 

titled MAPE 3) in Table 5.3 show the difference between the searched and “on 

the clock” peak 15 minutes within an “on the clock” peak hour, they can range 

from 0.0196 to 0.0376 in different sites.  It might be that the reasons for several 

default or recommended PHF values can be found in HCM 2000.  For example, 

the statement of “PHFs in urban areas generally range between 0.80 to 0.98” can 

be found on page 8-9; the default value for PHF in Exhibit 10-12 is 0.92, but 0.90 
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in Exhibit A10-1; and it is 0.95 for congested conditions, 0.92 for urban areas, 

and 0.88 for rural areas on page 13-12 when there is an absence of field 

measurements. 

The PHF is applied to determine design-hour flow rates, whether the 

design-hour is measured, established from the analysis of peaking patterns, or 

based on modeled demand.  An inadequate design may result in substantial 

excess capacity the rest of the time or result in oversaturated conditions for a 

substantial portion during the peak hour.  Local traffic data with higher resolution 

should be used to compute the PHF according to the results.  When the 30-

second interval data is used, traffic variation can be observed more clearly.  Then 

it is obvious that there is no better way to get an estimation of the flow rate than 

using local, higher resolution data. 
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CONCLUSIONS 

Since the peak intervals, either the peak hour or the peak 15 minutes, can hardly 

be located on the clock, the misplacement may bring an inaccurate PHF.  By 

comparison with searching the “real” peak intervals, the misplaced peak intervals 

did occur and impact PHFs, if either lower resolution data or “on the clock” 

approaches were used.  All p-values of the Wilcoxon Signed-Rank Test show 

that there are statistically significant differences between different methods to 

locate the peak intervals.  Results from simulations in which traffic is simulated 

within a peak hour clearly address the impact of misplaced peak 15-min intervals 

on the PHF.  Real data from 3 detectors randomly chosen from over 4000 

detectors in the Twin Cities Metro area were also examined with four 

combinations of different methods to locate the peak intervals.  All statistics 

support the recommendation of using local, higher resolution data to compute the 

PHF. 
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CONCLUSIONS 

In order to validate the impact of randomness on the average delay, cycle-

length optimization, control types, and the peak-hour factor, this dissertation 

developed four individual investigations, examining some fundamental concepts 

in traffic operation.  Each investigation results in a paper, which is included in this 

report.  Since traffic varies over time and at different sites, it is a challenge to 

have a common recommendation for all kinds of conditions.  State-of-the-art 

contributions to the profession as presented in each of the papers are 

summarized as follows. 

In the first paper, “Impacts of Inter-Cycle Demand Fluctuations on Delay”, 

the importance of inter-cycle demand fluctuations on delay estimation are figured 

out, especially under heavy traffic conditions; since the unutilized capacity at a 

signalized intersection cannot be saved or carried over to be used by succeeding 

cycles.  This paper demonstrates that different patterns of inter-cycle demand 

variance can result in different levels of delay estimation.  It also points out that 

delay will be underestimated if Webster-type delay models are used, because 

those models treat the variance over the whole analysis period as constant for 

every signal cycle during the period. 

In the second paper, “Short or Long … which is Better? A Probabilistic 

Approach towards Cycle Length Optimization”, a five-step optimization 

framework to derive certain “just right” cycle lengths for a pre-timed signal 

operation is established.  The probability of cycle failure as a secondary measure 

of effectiveness in traffic signal-timing analysis is proposed according to 
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simulation results in the paper.  It also illustrates that longer cycle lengths may 

not yield optimal delay results; and very short cycles will increase delay 

dramatically due to a lack of capacity.  The probabilistic approach to delay 

calculation, while more cumbersome than a straightforward fixed-demand and 

one-delay-value process, was found to be more realistic and insightful. 

In the third paper, “A Trade-Off Framework for Determining the Best 

Control at an Intersection”, the trade-off framework based upon the traffic pattern 

to determine the “best” control type for an intersection is established.  The 

average delay for the intersection is proposed to be a primary measure of 

effectiveness in the trade-off among different control types for an intersection.  In 

order to facilitate such a decision, the sensitivities of the average delay for 

different control types at a hypothetical intersection under different traffic patterns 

are illustrated in this paper.  In comparison to warrants in MUTCD, the framework 

provides a more realistic and insightful way to decide the control types for an 

intersection. 

In the fourth paper, “Impacts of Misplaced Peak Intervals on PHFs”, it is 

identified that the “on the clock” PHF may be improper to determine design-hour 

flow rates; because a design based on a higher flow rate may result in 

substantial excess capacity during the rest of the peak hour; instead, a design 

based on a lower volume may result in oversaturated conditions for a substantial 

portion of the hour.  Based on the Wilcoxon Signed-Rank tests, there are 

significant differences among different ways to define peak intervals. In order to 

reach a more proper PHF, it is recommended to use local, higher resolution 
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traffic count data.  That is, the aggregation of higher resolution data may 

eliminate the variation and then lead to an improper PHF. 
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