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ABSTRACT 

Herpetic stromal keratitis (HSK) is an immunoinflammatory corneal lesion caused by 

herpes simplex virus (HSV) infection. One of the dire consequences of which is blindness 

resulting from tissue destructive immunopathological reaction in corneal stroma.  The lesion is 

considered to be orchestrated mainly by CD4+ T cells of Th1 phenotype. Studies on two animal 

models viz. immunocompetent and immunodeficient, shed light on the issues on specificity of the 

cells which at least in immunocomprised TCR transgenic animals were shown to be activated in a 

bystander manner. However, initial infiltration by innate immune cells in response to replicating 

virus set the stage for the chronic inflammation in the corneal stroma. Paradoxically, these cells 

are also critical in the control of virus in the cornea.   

The first part (Part I) of this dissertation focuses on the understanding of HSV-1 induced 

immunoinflammatory processes in the cornea and trigeminal ganglia including the secondary 

lymphoid tissues and the involvement of regulatory mechanisms. The next three parts (Part II-IV) 

focus on the control of the inflammatory lesion and anti-inflammatory mechanisms that are 

activated following virus infection in the lymphoid organs and cornea. Results in Part II evaluate 

the immunotherapeutic potential of regulatory T cells in controlling the progression of the 

inflammatory lesions after ocular HSV infection. Results of the third section show that 

sequestration of T effector cells in the lymphoid organs and limited access to site of inflammation 

using a drug FTY720 after HSV infection resulted in diminished severity of SK and expansion of 

antigen-specific regulatory T cells that could contribute to the diminution of lesion severity. The 

fourth section describes the role of a previously unexplored inhibitory interaction between a Th1 

specific cell surface marker, TIM-3 and its ligand galectin-9 in the causation of the viral induced 
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corneal immunopathology. The administration of galectin-9 seemed to be an effective approach to 

terminate Th1 responses and promote regulatory cells activity thereby controlling the severity of 

lesions. 

In this study, experiments were designed to control the progression of the ongoing 

inflammatory reaction in the cornea in order to evaluate some of the therapeutic strategies for 

HSK.  
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Etiology and epidemiology of SK 

Herpetic Stromal Keratitis is an immunoblinding ocular lesion in normally transparent 

cornea and is caused by herpes simplex virus (HSV) infection. It is the most common cause of 

infectious blindness in the developed world. As per recent studies, the incidence of the disease 

lies between 4.1 -20.7 /100,000 of the population per year in the western world (1). Recent 

changes in the life style and behavior among the population presents a typical incidence pattern 

of herpes viral infections with more people being tested seropositive for HSV-2 than for HSV-1 

(2). The incidence of HSK in the younger population, where it tends to be more severe, is on the 

rise in developing countries and is further complicated by factors such as malnutrition, co-

infections and lack of accessibility to available treatments (3). Ocular lesions in human are 

mostly caused by recurrent activation of HSV 1 from the trigeminal ganglion (TG) and reflects 

the interaction between viral and host factors (2). The incidence of HSK by primary infection is 

three times lower than by recurrent infection. Because of unknown reasons, frequent cases of 

HSV 2 induced HSK occur in neonates but such are rare in adult population. 

HSV can establish both productive and latent infection depending on the cell type 

infected. The non-neuronal cells allow the replication of viral genome while in sensory neuronal 

cells replication is limited and the virus tries to establish latency that can be life long. Classically, 

the life cycle of HSV in the host is divided into four stages: entry, spread, establishment of 

latency and reactivation. After the primary infection of the skin or mucosal surfaces with HSV, it 

spreads to the neuronal cell bodies where latency is established (4). Recent studies have 

established that maintenance of latency is dominantly achieved by both viral encoded factors 

such as miRNAs (5) or the host immune mechanism involving CD8+ T cells responses (6). 

Depending upon the psychological, physical or the immune status of host, virus gets periodically 
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activated from latency in TG and released to the periphery. After reactivation, virus has a 

tendency to migrate to the initial site of infection and causes different types of painful 

inflammatory reactions depending on the involvement of tissue. But if the site of predilection 

happens to be eye, it causes either a sub-clinical or clinical inflammation in the epithelium that 

could be mitigated by anti-virals or a more severe chronic immunoinflammatory syndrome 

especially in the stroma where the reaction is called herpetic stromal keratitis or HSK that 

impairs vision and may lead to blindness if left unattended (3). HSV infections could also 

potentially result in viral retinitis and/or encephalitis in both immunosuppressive and 

immunocompetent individuals (3).  Major symptoms of HSK lesions includes but not limited to 

corneal necrosis, ulceration and scaring, stromal edema and neovascularization that may 

necessitate corneal transplantation (7). These lesions are primarily orchestrated by CD4+ T cells, 

the antigen-specificity of which remains poorly defined.  

 

Animal models and pathogenesis of SK 

Most of the studies directed to elucidate the pathogenesis of HSK were performed on 

animal models for human HSK. While for primary infection, mouse is the most studied animal 

model, the rabbit is the preferred animal model for recurring infection. However similar type of 

lesions occurs after primary or the recurrent infection (8). Understanding progressing events that 

finally lead to corneal inflammation has mainly come from primary ocular infection in mice. 

Several strains of mice including both immunocompromised and immunocompetent animals 

such as BALB/c, C57BL6, CAL-20, 129/SVEV have been described for studying HSK (9).  In 

immunocompetent animals SK lesions are evident within 6-7 days after ocular infection with 

HSV 1 that peak in severity between 15-21 days. The lesions are primarily contributed by CD4+ 
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T cells that are detected in abundance at day 7-8 pi and most of which are likely to be HSV 

reactive.  Another model is a TCR transgenic mice on a RAG–/– background, which were shown 

to develop SK upon ocular infection with HSV, even though their CD4+ T cells were almost all 

reactive with OVA323-339 peptide and not detectably cross-reactive with HSV antigens (10). The 

CD4+ T cells in the ocular lesions of such animals were shown to react with the KJ1.26 mAb noted 

by others to react with the TCR of H-2d CD4+ T cells that recognize the OVA323-339 peptide (11). 

Since this KJ+ TCR had no demonstrable reactivity with HSV, it was thought that the activation 

of KJ+ CD4+ T cells was not TCR mediated but involved activation by one or more cytokines 

(12). This model was referred to as a bystander model of SK (13). Yet another model that has 

been characterized is SK induced in SCID animals after reconstitution with CD4+ but not CD8+ 

T cells isolated from either HSV immune or naïve animals (14-16). All these animal models 

present typical SK lesions characterized by corneal haze, edema, necrosis, ulceration and 

neovascularization.  

Ocular infection with HSV 1 in immunocompetent animals is followed by initial 

replication of virus especially in the corneal epithelium for up to 5-6 days. Live viral particles 

and the transcribed mRNA copies of viral genes could be detected from the corneal swabs during 

this time but not beyond 7 days post infection using conventional viral titration and RT-PCR 

assays respectively (1). However, viral DNA could be detected in the cornea even up to 21 days 

post infection (pi) the time when the disease is at its peak and spontaneous healing may start in a 

minority of animals. The nature and pathophysiological significance of the persisting viral 

genomic DNA species in terms of their transcriptional and translational efficiency to make viral 

proteins is not yet elucidated. The studies focused on these aspects would shed light on some of 

the previously unknown players in the causation of SK. After the initial phase of viral infection 
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and replication in the cornea, there is a prominent infiltration of inflammatory cells near the 

corneal epithelium that mainly consists of neutrophils (PMN) (17).  These cells could potentially 

exert anti-viral defense by producing nitric oxides, reactive oxygen species, TNF-α, IFN-γ or 

perhaps just by engulfing viral particles. Furthermore, the kinetics of their infiltration correlated 

with the clearance of replicating virus from the cornea as shown in Fig.1.1 (All figures are 

supplied in appendix following the main part). Other studies where neutrophils were depleted 

prior to ocular HSV infection showed a delay in viral clearance from the cornea (18). In addition 

to their role in viral clearance, they may also provide conducive conditions for the ensuing 

inflammatory response by releasing mediators such as IL-1β, IL-8 (MIP-1α) and IL-12 and TNF-

α. Neutrophil secreted NO could unmask corneal antigens that can be continuous source for the 

influx of reactive T cells. The matrix metelloproteinases such as MMP-9 breaks stromal matrix 

and along with neutrophil or perhaps stromal cell secreted VEGF-A contribute to the 

neovascularisation of usually avascular cornea. VEGF-A protein expression is evident in the 

cornea within 24 hrs and is mainly produced by epithelial cells or the stromal cells after ocular 

HSV infection. IL-1 and IL-6 produced by infiltrating inflammatory cells are the subsequent 

inducers of VEGF. Inhibition of angiogenesis by targeting MMP-9 and VEGF by siRNA 

approach were shown to reduce the extent of neovascularization (19, 20). Some additional 

angiokines such as bFGF, E-L-R motif containing chemokines (MIP-2) are also upregulated in 

cornea after HSV infection (21). In addition to PMNs, other cells such as DCs, NK cells, γδ-T 

cells, macrophages etc. could contribute both towards viral clearance and the subsequent 

inflammation by secreting type I IFNs, and other cytokines as well as chemokines such as IL-6, 

IL-1β, IL-12, MIP-2, TNF-α, IFN-γ, IL-23, IL-17 etc (1). Once the vascular bed is formed, there 

is continuous infiltration of cells because of leakage of newly formed vessels.  IL-1 and IL-6 
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were shown to be the critical cytokines to initiate the subsequent inflammatory events and could 

be produced by epithelial cells initially after viral infection. HSV DNA and perhaps some of its 

other components expressing PAMPs can activate PRR such as toll like receptors (TLRs)-2,4 

and 9 on the innate cells which provide stimulation for the activation of the NFκB pathway (22) .  

CpG motifs derived from viral DNA in the cornea could stimulate TLR 9 and induce IL-1 and 

IL-6 that contribute to the immunopathological lesions along with an efficient induction of 

adaptive immune response (23). IL-6 could be produced by un-infected cells by IL-1 stimulation 

in a paracrine manner which in turn trigger MIP-2 (also known as CXCL8) production that is 

involved in the attraction of PMNs. COX-2, is another important mediator of inflammation that 

could be induced by IL-1 in the cornea and acts through production of PGE2 (24). Recent studies 

have shown the important role of TNF-α in the causation of SK with animals lacking in this 

cytokine were unable to control the virus in cornea and thus exhibited enhanced lesion severity 

(25).   

IL-12 produced by PMNs, macrophages and Langerhans DCs was shown to be another 

important candidate cytokine involved in the pathogenesis of SK (26, 27). It is involved in the 

downstream production of IFN-γ by macrophages, NK cells, neutrophils and CD4+ T cells. Both 

proinflammatory and anti-inflammatory activities have been attributed to IFN-γ. It aids in the 

PMN influx by upregulating PECAM-1 and ICAM-1 on corneal epithelial cells (28, 29), 

endothelium cells and keratocytes needed for the exit of inflammatory cells. It also helps to 

prime the CD4+ T cell responses by up regulating MHC II on antigen presenting cells. The most 

important anti-inflammatory activity of IFN-γ is attributed to its potential of inducing anti-

angiogenesis factors including, but probably not limited to, IP-10 (30).  Its role in promoting 

Foxp3+ regulatory T cells induction was also described recently (31-33).  IL-23/IL-17 axis is 
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another recently identified pathway involved in pathogenesis of various types of autoimmune 

inflammatory lesions. IL-23 produced by innate cells such as DCs is responsible for the 

stabilization of cells with the Th17 phenotype. IL-17 produced by inflammatory Th17 or perhaps 

fibroblast or neutrophils help recruit more PMNs. The role of IFN-γ producing Th1 cells is well 

studied in SK pathogenesis but a precise role of Th17 cells has not yet been described. In mouse 

SK lesion CD4+ T cell outnumbers CD8+ T cells but the reasons for their preferential 

accumulation remains unclear (34). The inflammatory reaction in the trigeminal ganglion has a 

preponderance of CD8+ T cells in addition to CD4+ T cells. The antigen-specificity of CD4+ T 

cells that infiltrate cornea remains largely unknown because of a lack of specific CD4+ T cells 

epitope derived from HSV or the tetramer. It is anticipated that CD4+ T cells that infiltrate into 

cornea initially constitute a population enriched in HSV reactivity. Later on lesions would be 

dominated by bystander cell populations. Because of less stringent requirements of antigenic 

stimulation of Th17 cells (35) , it is possible that the role of these cells in the pathogenesis of SK 

predominates in the later stages of inflammation where viral antigen availability is limited. Thus, 

one valid hypothesis could be that the acute phase is mainly dominated by Th1 cells while the 

chronicity of lesion is maintained by Th17 cells. Some of our initial observations support this 

hypothesis (unpublished observations).  

 

Current Treatment options 

Anti-virals and anti-inflammatory agents 

SK is a sight-threatening and difficult to control inflammatory reaction in the cornea. 

Currently, there is a dearth of agents which are approved for treating keratitis. Major classes of 
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drugs in use are either anti-virals or/and anti-inflammatories which include corticosteroids as 

well as non-steroidal anti-inflammatory drugs such as Cyclooxygenase-2 (COX-2) blockers (9, 

36, 37). However, neither is beyond adverse effects. Viral species develop resistance to the anti-

virals especially in immunocompromised individuals if used for prolonged periods of time (38, 

39). Similarly use of corticosteroids might result in numerous adverse effects (40, 41). In some 

patients corticosteroid may enhance HSV-1 replication thereby exacerbating HSK lesions (42).  

 

Future therapies 

  Targets for future therapies have mainly come from animal studies. Some of the studies 

in the mouse model of HSK have demonstrated that cytokine and chemokine blockers such as 

the IL-1 receptor antagonist are effective in controlling the severity of lesions (43).  Inhibiting 

the transcription of genes for angiogenesis factor VEGF-A using siRNA approach was shown to 

be effective in reducing HSK lesions in the mouse (20). However, the mechanism by which it 

worked remains poorly understood. A recent report suggested a non-specific inhibition of 

angiogenesis by all ds RNA segments which stimulate TLR-3 and thereby induce production of 

IFN-γ (44). IFN-γ has been shown to have anti-angiogenesis activities. Other strategies that 

targeted the angiogenesis response included use of a recombinant Salmonella typhimurium 

containing a plasmid that encoded VEGFR-2 (45). This strategy induced anti-VEGFR-2 CD8+ T 

cells that targeted pathological endothelial cells and inhibited neovascularization. However, the 

adverse effects because of non-specific killing of endothelial cells are expected. Several other 

approaches that made use of some components of HSV genome such as gB, gD (46-49) or the 

live mutant of vhs-/ICP8- HSV strain (50)  have been shown to reduce the incidence of HSK. 

Various vaccine strategies along with the use of modifiers such as CpG, heat shock proteins 
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(hsps) etc have been described that enhanced the efficacy of HSV specific immune response (51, 

52). The importance of vaccines has been envisaged because none of the anti-virals available is 

able to prevent the establishment of latency. Therefore, there is an increasing need of designing 

newer therapeutic vaccines and study their efficacy in terms of neurosurveillance and preventing 

reactivation of virus from the TG. A therapeutic agent BAY 57-1293, a helicase-primase 

inhibitor when used orally on daily basis showed some effects on reducing the reactivation of 

virus from latent TG and a subsequent dampening effects on virus replication in cornea that 

reduced  the lesion severity. 

Other recently identified novel immunotherapeutic molecules are being studied to add to 

the options for treating SK. One of them is apoprotein E (apopE) mimetic dimer peptide 

(apoEdp) and was shown to possess anti-viral and anti-inflammatory activities against ocular 

HSV infection when topical treatment begun 24 hr post infection and continued until day 10 

(53). Another agent include topical treatment with >0.1% of cyclosporine that had some level of 

efficacy in diminishing the corneal haze in mice (54).  

Regulatory T cells as an immunotherapeutic  

Another subset of T lymphocytes that infiltrate the cornea is CD4+CD25+Foxp3+ 

regulatory T cells (Tregs).  In addition to other mechanisms such as the cytokine IL-10 (15, 55) 

Treg are shown to be involved in controlling the ongoing inflammatory processes in the cornea 

(15). In addition, these cells might help in the resolution of the clinical lesions. Studies suggest 

that depletion of Treg from the mice prior to infection results in more severe SK lesions (15). 

Sakaguchi et al.’s seminal observations in the mid-1990s (56) reawakened interest in Tregs and 

opened up the prospect of using these cells immunotherapeutically. Most of the Foxp3+ Tregs are 

considered to be thymus-derived and are largely reactive to a range of self Ags (57). These cells 
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are involved in preventing and constraining autoimmunity, however the cells of the same 

phenotype may also participate in responses to foreign antigens and tumors. Indeed, regulatory 

cells may function beneficially to control tissue damage caused by auto reactivity, allergies and 

allotransplants, as well as responses to many tissue damaging pathogens (55). For therapeutic 

purposes, it would be preferable to use Tregs of known Ag specificity so as to increase potency 

and avoid potential side effects of inhibiting desirable immune responses. Some have expanded 

specific self-reactive Tregs in vitro and demonstrated in vivo efficacy using adoptive transfer 

approaches. This has been a “hot topic” recently in the Treg field since it is particularly relevant 

in terms of devising useful ways of manipulating the response therapeutically.  

Strategies to cause conversion of conventional cells into Tregs 

That the conversion of conventional CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs 

can be accomplished was appreciated some time ago by the Horwitz and Wahl groups who 

showed that TGF-β stimulation was a key event for the conversion process. Thus, the addition of 

TGF-β and IL-2 in TCR stimulated naïve CD4+ T cells either from human or mice can result in 

Foxp3+ Tregs induction (58, 59). When such converted cells were administered in vivo, they 

could suppress the proliferation of naïve CD4+ T cells and prevented dust-mite induced allergic 

pathogenesis in lungs (59). The feasibility of in vivo conversion of Foxp3+ regulatory T cells 

from conventional CD4+T cells in periphery was shown in a TCR tg mouse model in which 

minute doses of a peptide were directed to certain types of dendritic cells (DCs) which were 

minimally activated (60, 61).  Addition of TGF-β and IL-2 enhanced the conversion efficiency. 

These cells could further be expanded by immunization with the cognate antigen and were highly 

suppressive. A recent study suggested that exosomes like particles (ELPs),  which are also a 

source of  TGF-β, released from the thymus could play an important role in the peripheral 
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generation of Tregs (62). Foxp3 could be induced in Foxp3-CD4+T cells by administration a 

copolymer-1 (COP-1) in patients suffering from multiple sclerosis. The administration of COP-1 

expanded regulatory T cells and these cells exhibited potent suppressive activity. The mechanism 

by which the induction of Foxp3 could be achieved was found to be dependent on the production 

of IFN-γ and TGF-β (63). A paradoxical situation where pro-inflammatory cytokines could 

induce anti-inflammatory regulatory T cells put forward a paradigm that the body has an inherent 

mechanism of dealing with excessive inflammation. The role of IFN-γ in induction of Foxp3 was 

also confirmed in other studies (31-33). The induction and enhancement of suppressive activity 

of Tregs by IFN-γ was found to be dependent upon STAT-1 signaling and production of NO (32, 

64). NO is also produced by inflammatory innate cells such as neutrophils and myeloid 

suppressor cells (65, 66). It would be interesting to investigate if these cells have some role in the 

generation, maintenance or the expansion of Tregs. A role of another proinflammatory cytokine, 

TNF-α, in promotion of Treg responses was described recently (67). Tregs have been shown to 

have higher expression of TNFR-2 and the signal transduced by TNF-α in Tregs enhanced their 

proliferation and suppressive activity by up-regulating the expression of IL-2 receptor alpha 

chain (CD25) and Foxp3 (67, 68).  

In addition to TGF-β, other anti-inflammatory molecules such as Thrombospondin-1 

(TSP) when interacts with its CD47 receptor promotes the generation of human regulatory T 

cells (69). TSP is predominantly secreted by platelets and APC, and plays a major role in 

inhibiting angiogenesis, tumor cell growth and promoting apoptosis (70). Various domains of 

TSP exert both stimulatory and inhibitory effects on T cells via two TSP receptors, i.e., α4β1 and 

CD47, respectively. However, intact TSP is predominantly an inhibitor of TCR signal 

transduction (71) and IL-12 responsiveness of naive and adult T cells (72). TSP has also been 
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shown to be the main activator of TGF-β (28). Ligation of Thrombospodin to CD47 expressed on 

activated CD4+ T cells rendered them anergic and imparted a regulatory phenotype that was 

accompanied by upregulation of CTLA-4, Foxp3, GITR, CD25 and OX40. The suppressive 

mechanism by these cells was contact dependent but TGF-β independent (69). 

 Intravenous immunoglobulin (IVIG) therapy is practiced as tolerance  inducing strategy 

but recent studies have shown that one of the mechanism by which these therapeutic regimen 

could achieve tolerance is by inducing Foxp3+ regulatory T cells (73). The presence of Treg 

epitopes also called as ‘Tregitopes’, in the constant region of Ig provided some explanation as to 

why Tregs were expanded in these patients. Tregitopes could stimulate the proliferation of Tregs 

(74). Administration of tryptophan catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO) 

expressing leukemia cells in the spleens could expand Treg population thereby inducing a state 

of tolerance (75). 

An essential role of Tregs in maintaining maternal tolerance to the fetus during 

pregnancy has been explored recently (76, 77). Estrogen is one of the hormones which is highly 

expressed during pregnancy and plays an important role in establishment of pregnancy by 

activating blastocyst and initial implantation (77). Conventional CD4+CD25- cells expressed the 

receptor for estrogen (ER). When estrogen is bound to ER on these conventional T cells, it 

induced Foxp3+ expression and the cells attained the ability to suppress proliferation of TCR 

stimulated responder CD+4 T cells in in vitro assays by producing TGF-β or IL-10. The 

conversion process was inhibited when a specific inhibitor (ICI 182780) of estrogen receptor was 

added in the cultures (76-78). These studies put Tregs on the center stage for maintaining the 

maternal tolerance to fetus.    
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Another immunomodulating neuropeptide, α–melatonin stimulating hormone (α-MSH) 

was shown to promote the generation of regulatory T cells in synergy with TGF-β (79, 80). The 

cells generated by this protocol produced TGF-β and exhibited suppressive activity in an antigen 

specific manner when transferred in vivo and prevented progression of experimental 

autoimmune uvoretinitis (EAU). 

Role of antigen presenting cells and co-stimulatory molecules in the conversion process 

Almost all of the conversion studies have made use of APCs or the micro beads coated 

with antibodies to co-stimulatory molecules in the cultures of TCR stimulated CD4+ T cells, 

however, the requirement of individual costimulatory or inhibitory interaction pair between 

stimulated T cells and APCs remained largely unexplored until recently. Studies in recent years 

have investigated the role of some of the costimulatory or inhibitory interaction pair of molecules 

in the peripheral generation of Tregs. The first molecule that was shown to have a pivotal role in 

the conversion process was B7. Thus, conversion of transferred conventional CD4+ T cells into 

CD4+CD25+ Tregs could be achieved in wild type congenic animals but not in B7-/- animals 

(81). Another inhibitory molecule Cytotoxic T lymphocyte antigen-4 (CTLA-4), a member of 

CD28-family of molecules and is expressed on TCR and anti-CD28 stimulated CD4+ T cells. 

The major function of this molecule is to suppress the functioning of CD4+ T cells by competing 

with CD28 for binding to B7.1 and B7.2 molecules (82) and decreasing the contact time of APCs 

with CD4+ T cells (83). CTLA-4 Ig fusion protein has been used as an immunosuppressive agent 

in some autoimmunities such as rheumatoid arthritis and transplant rejection. Recently, it has 

become evident the addition of CTLA-4xIg in TCR stimulated cultures could convert  

CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs having potent suppressive activity. 

Furthermore, Tregs population expanded in vivo when CTLA-4Ig was administered (84). The 
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conversion and the expansion process were dependent on the presence of APCs and inhibited by 

the addition of anti-B7.2 blocking antibody.  This study further attested to the involvement of B7 

molecules in the conversion process. PD-1 and PDL-1 inhibitory signal was also found to play 

important role in the conversion of conventional CD4+ T cells into Tregs ((85),our unpublished 

observation). Thus, it was shown that CD8a+ DCs were more efficient than CD8a- DCs in 

converting CD4+T cells into Tregs.  It was further shown that DCs taken out from PDL-1 

knockout animals were less efficient in converting TCR stimulated CD4+CD25- T cells into 

CD4+CD25+Foxp3+ regulatory T cells in presence of TGF-β. Furthermore, administration of 

anti-PDL1 but not anti-PDL-2 antibody significantly inhibited the induction of Foxp3 ex vivo 

(85). The overall numbers of Foxp3+ Tregs were not found to be significantly different in either 

PD-1 or PDL-1 knockout animals as compared to wild type counterparts ((86), our unpublished 

observations). This observation could be explained in terms of the operation of compensatory 

mechanisms, which could have enhanced the Treg numbers, in the absence of signaling through 

PD-1. Some specialized subsets of CD103+DCs isolated from the gut express enzymes such as 

retinal dehydrogenase that permit the conversion of vitamin A into retinoic acid (87-89). 

Furthermore, retinoic acid along with TGF-β act as a factor that drives the conversion of TCR 

stimulated Foxp3- conventional T cells into Foxp3+ regulatory cells. Retinoic acid may also drive 

the conversion of human cells although in this instance the co-addition of TBF-β is not required 

(90). Apart from promoting the conversion of Tregs, antigen presenting cells through ligation of 

some co stimulatory pair of molecule inhibit the process of conversion. Thus, OX40/OX40L 

interaction pair inhibited TGF-β dependent conversion of TCR stimulated CD4+ T cells into 

Tregs. At the same time it promoted the proliferation of effector T cells (91). Another molecule, 

galectin-9, a natural product of many cell types has been found to have a Treg generation 
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promoting activity. Thus, animals lacking galectin-9 had reduced numbers of Tregs and addition 

of galectin-9 promoted TGF-β induced conversion of conventional T cells to become Foxp3+ 

(92). In part IV of this dissertation, we have shown that galectin-9 could promote Treg 

generation even in the presence of inflammatory milieu.  

Until recently, neurons were thought to have an immuno-regulatory functions but their 

expression of B7 and TGF-β provided a mechanistic explanation of their being highly immuno-

regulatory. Thus neurons expressing B7 and TGF-β could confer a regulatory phenotype to 

interacting CD4+ T cells by inducing Foxp3 in them (93). 

Involvement of T cell intrinsic mechanisms in the conversion process 

TGF-β signaling in naïve cells stimulated through their TCR is transduced by either of 

SMAD proteins (SMAD2, 3 or 4) or through p38 MAP kinase pathway. Signalling through 

SMAD proteins led to the upregulation of all TGF-β dependent genes and thus imparted T cells a 

regulatory phenotype (94). At the same time signaling through TGF-β also activated the p38 

MAP kinase pathway and inhibition of this pathway by specific inhibitor, SB203580, prevented 

the conversion of CD+CD25-  T cells into Foxp3+ Tregs (94). However, in already differentiated 

Tregs, this treatment did not affect the suppressive activity suggesting that signalling through 

p38 is important in the initial stages of differentiation. Another group of proteins that were found 

to have an important role in promoting expansion of regulatory T cells are members of GTP 

binding proteins family. These include protein product encoded by Ras genes (N-Ras, K-Ras, 

and H-Ras) and have diverse intracellular signaling functions including the control of cell 

differentiation, proliferation, growth, and apoptosis (95). These proteins are considered as 

switch-signals and act by cycling between inactive-GDP or active-GTP conformations (96). The 

final signaling event through these proteins is activation of ERK/MAP kinase pathway that in 
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turn activates T cells. The inhibition of N-Ras and K-Ras genes by  shRNA  and small molecule 

inhibitors such as farnesylthiosalycylic acid, led to increased expression of Foxp3 in CD4+ T 

cells that was accompanied by enhanced suppressive activity (97). An importance of another 

signaling molecule STAT 3 in the conversion of Tregs and maintenance of their activity was 

realized recently where ablation of STAT-3 using shRNA or neutralizing antibody led to 

decreased conversion of CD4+CD25- T cells into Tregs and animals failed to prevent occurrence 

of acute graft-vs-host disease (98). A dominant role of CTLA-4 in maintaining the suppressive 

activity of CD4+CD25+Foxp3+Tregs have been demonstrated recently (99). Thus selective 

depletion of CTLA-4 gene in Tregs resulted in fatal autoimmune disease in animals (99). GRAIL 

(gene related to anergy in lymphocytes), a ubiquitin-protein necessary for the induction of anergy 

in CD4+ T cells was found to be highly up regulated in Foxp3+ Tregs and the forced expression 

of this molecule in T cell line could impart them a suppressive phenotype in the absence of 

Foxp3 expression (100)  

 Signalling through IL-2 has been shown to be a critical event in the generation of Tregs 

(101). In the absence of IL-2 signalling other cytokines such as IL-7, and IL-15 can have some 

compensatory role in the promotion of Treg generation and expansion (102).  

Epigenetic control of Foxp3 locus in regulatory T cells 

 The role of the microenvironment constituted by cytokines such as TGF-β, IL-2, IFN-γ, 

TNF-α etc. in the induction of Foxp3 in a cell type that is committed to become regulatory is 

well known from the studies over many years (59, 60). But little is known  about the stability of 

phenotype attained by these cells as compared to thymus derived natural Tregs.  The epigenetic 

mechanism that include histone modifications and selective demethylation in CpG motifs have 

been shown to play pivotal role in stable cellular lineages of one type or the other. These events 
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impart heritability fixed expression patterns of distinct genes in the cell (103-105). The 

involvement of these mechanisms in the commitment of regulatory T cells is not clearly known 

at this time and is a current area of active research in the biology of Tregs. Some studies have 

attested to the importance of DNA demethylation, acetylation of histone proteins such as H3, H4 

and trimethylation of H3 in the conserved regions in foxp3 locus in Tregs but not in conventional 

CD4+CD25- cells (106). These modifications were also shown by human CD4+CD25hi Tregs 

suggesting the evolutionary importance of these events that allow persistent expression of Foxp3 

and thus a regulatory phenotype. TGF-β induced Tregs show a weakly demethylated CpG motifs 

within conserved region of foxp3 locus that might not impart them a stable phenotype. Futher 

support for these studies came from recent observation where the use of agents that either 

inhibited DNA methylation of CpG motifs such as azacytidine or deacetylation of certain histone 

protein such as Trichostatin A (TSA) or valproic acid (VPA). This resulted in promotion of 

Foxp3 expression even in absence the of TGF-β but also enhanced their suppressive activity 

(107, 108).  The appropriately modified foxp3 gene further regulates Treg specific characteristics 

such as anergy and suppressive functions by suppressing transcriptional and promotor binding 

activity of protein such as activator protein 1 (AP-1) by interacting with phosphorylated c-Jun 

(109). In adition, the functional Foxp3 protein in a cell actively repress transcription of genes by 

recruiting distinct histone acetyl transferases and histone deacetylases (110). In Tregs, foxp3 

physically interacts with transcription factors such as acute myeloid leukemia 1 (AML-1) and  

Runt-related transcription factor 1 (Runx1) which are required for the transcription of IL-2 and  

IFN-γ  and thus regulate the production of these cytokines (111). 
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Resistance of Tregs to T cell depleting regimens 

 Many studies have advocated the differential susceptibility of Tregs to depletion and 

apoptosis inducing strategies. Thus, it was shown that TCR stimulated Tregs were less 

susceptible to Fas-Fas-L induced apoptosis than TCR stimulated conventional CD4+CD25- T 

cells. However, the susceptibility followed a reverse trend for naïve cells (112).  The efficacy of 

anti-thymocyte globulin therapy for depleting peripheral lymphocytes in order to maintain 

tolerance in the patients suffering from auto immunities or those who received transplants has 

been demonstrated. This therapy depleted T effector cells but the the population of Tregs was 

spared (113). Furthermore, ex vivo treatment with anti-thymocyte globulin induced and 

expanded Treg populations (114). Nur77, a protein of the nuclear receptor family, has been 

shown to promote apoptosis of thymocytes during negative selection of autoreactive thymocytes. 

However, Tregs were found to be resistant to Nur77 mediated apoptosis (115). Another reagent 

that has been studied for inducing tolerance in autoimmiunities such as EAE and type 1 diabetes, 

is anti-CD3 monoclonal antibody. Its administration in patients reduced the streptozocin induced 

diabetes and Th1 type of immune response at the same time it increased the expression of latency 

associated peptide on CD4+ T cells (116). The use of this antibody not only prevented the 

development of diabetes but also reversed the disease (117). A very recent study on lupus, an 

auto-antibody mediated autoimmune disease, reported the efficacy of nasal administration of 

anti-CD3  antibody in inhibiting the progression of the lesions development and at the same time 

inducing IL-10 secreting CD4+CD25-LAP+ Regulatory T Cell (118).  

Strategies to inhibit the suppressive activity and the conversion process of Tregs 

Regulatory T cells are one of the important players in the maintenance of peripheral 

tolerance and preventing excessive tissue damage as a result of an inflammatory reaction. 
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However, there are situations where their activity needs to be regulated. Enhancing tumor 

immunity, anti-microbial immune response, vaccine efficacy etc. are some of the examples 

where excessive Treg response might hinder in the generation of effective immune response. 

Therefore, under such circumstances, the activity of Tregs needs to be blunted. Some of the 

factor that have been shown to negatively regulate Tregs are cytokines IL-6, IL-12, IL-21 etc 

(119, 120). Curiously, adding inflammatory cytokines such as IL-6 in cultures thought to be 

suitable for generation of Tregs resulted in the induction of T cells that produced IL-17 and were 

found to be responsible for excessive CNS inflammation (121). Additionally, it was shown that 

IL-21 could initiate an alternate pathway of induction of Th17 cells in the absence of IL-6  and 

also inhibited the activity of Tregs (122). Signaling through some TLRs such as TLR-9 and 

TLR4 abrogated the activity of Tregs (119, 123). Accordingly, it was shown that gut micro floral 

CpG DNA by activating TLR-9 inhibit the process of Foxp3 generation  and enhanced the 

immune response to oral infection (123).   AKT was shown to be a critical pathway that inhibited 

de novo differentiation of regulatory T cells by changing the transcription signature molecules 

associated with the Tregs phenotype in undifferentiated CD4+ T cells. It did not affect the Foxp3 

expression in already differentiated cells (124).  The forced expression of AKT or the agents 

which could increase its expression could be used to reduce the numbers of Tregs. Another 

pathway that was shown to inhibit Treg function and differentiation is OX40/OX40L pair (125). 

Thus it was shown that CD4+ T cells isolated from OX40L Tg mice were highly resistant to 

conversion into Foxp3+ Tregs and these animals have large numbers of memory T cells 

(CD44hiCD62L-) which were not only resistant to conversion into Tregs but actively inhibited 

the conversion of naïve CD4+ T cells to become Foxp3+ by inducing producing IFN-γ and 

inducing T-bet. In addition, some studies showed that function of Tregs could be abrogated by 
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inducing signaling through OX40L (125). Accordingly, it was shown that administration of anti-

OX40 agonist antibody into tumors, which is enriched in OX40L+ Foxp3+ Tregs, led to rejection 

of tumors provided sufficient numbers of CD8+ T cells were present  (126). Signalling 

transduced through some of the T cell surface receptors could modulate the conversion process 

and the activity of Tregs. It was shown that an agonist antibody against TIM-1, a T cell specific 

surface marker deprogrammed the Tregs,  inhibited the  conversion of CD4+CD25- cells into 

Tregs and enhanced the function of effector T cells thereby preventing allogenic transplant 

tolerance (127). In a recent study in renal transplant patients, use of a pharmacological agent,  

calcineurin inhibitors (CNI), reduced the numbers of Tregs in peripheral blood while rapamycin  

treatment preserved their numbers (128). 

The agents described in this section could be used to turn the activity of Tregs off in 

situations where they have undesirable effects.      

 

Conclusions 

SK is a chronic immunoinflammatory lesion in cornea with a complex pathogenesis. 

Discoveries of novel pathways and molecular participants in the pathogenesis would provide 

new targets for designing therapeutics. Based on the previous knowledge of the key player and 

events involved in the development of SK, strategies that target one or more of the key events 

need to be investigated. Some of these approaches include inhibition of excessive immune 

response generation, limiting the access of T effectors to the inflammatory sites in the cornea by 

preventing their exit from lymphoid organs, or delivering an inhibitory or lethal signal to the 

cells at the site of inflammation to treat the disease.   
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The work described in this dissertation evaluated the effects of some of these strategies 

on modulating SK lesion.  Tregs specific to a well know OVA antigen were generated and 

characterized. The functional polyspecificity of in vitro generated Tregs was evaluated in HSV 

induced immunopathology in three separate models of SK. In a second approach cells were 

sequestered in the lymphoid organs using a small molecule, FTY720, that acts as an agonist to 

sphingosine receptors and temporarily down regulates their expression so that cells are 

sequestered in lymph nodes and do not migrate to inflammatory site in the cornea. The prolonged 

use of this drug generated antigen-specific Tregs that were also shown to regulate the severity of 

SK lesion previously (15) . In the last approach cells were induced to undergo apoptosis in vivo 

at the site of inflammation using a recently discovered molecule, galectin-9, that delivers a lethal 

signal to Th1 effector cells through a surface molecule TIM-3 and a positive signal to regulatory 

T cells. These approaches could be used individually or in combination with other existing 

therapies ro resolve SK with minimal unwanted side effects.  
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Figure 1. 1 Principal events in herpetic SK pathogenesis 
Following ocular HSV infection replicating virus could be detected in the cornea till 5-7 days p.i. 

Early inflammatory response in the cornea is dominated by the polymorphonuclear leukocytes 

(PMN). Infiltration of PMNs into the cornea is be characterized by a typical biphasic influx.  

Angiogenesis or the process of new blood vessel development from the existing limbal vessels 

starts at 24h p.i. and peaks around 15 days p.i.  Influx of pathogenic CD4+ T lymphocytes occurs 

in the clinical phase around 7-9 days p.i. 

 

 

 

Clinical phase 
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IN-VITRO GENERATED ANTIGEN-SPECIFIC 

CD4+CD25+FOXP3+ REGULATORY T CELLS CONTROL 
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Research described in this chapter is a slightly modified version of an article that in accepted for 

publication in Journal of Virology by Sharvan Sehrawat, Susmit Suvas, Pranita P Sarangi, Amol 

Suryawanshi and Barry T Rouse 

 

Sehrawat S, Suvas S, Sarangi PP, Suryawanshi A and Rouse BT. In vitro generated antigen-

specific CD4+CD25+Foxp3+ regulatory T cells control the severity of HSV-induced ocular 

immunoinflammatory lesions J Virol:  2008 : 82(14); 6838-6851. Copyright © 2008, American 

Society for Microbiology. 

 

In this chapter “our” and “we” refers to me and co-authors. My contribution in the paper includes 

(1) Selection of the topic (2) Compiling and interpretation of the literature (3) Designing 

experiments (4) understanding the literature and interpretation of the results (5) providing 

comprehensible structure to the paper (6) Preparation of graphs and figures (7) Writing and 

editing 

 

Abstract 

Generating and using regulatory T cells to modulate inflammatory disease represents a 

valuable approach to therapy but not yet been applied as a means to control viral induced 

immunopathological reactions. In this report we developed a simplified technique that used 

unfractionated splenocytes as a precursor population and showed that stimulation under 

optimized conditions for 5 days with solid phase anti-CD3 mAb in the presence of TGF-β and 

IL-2 could induce up to 90% of CD4+ T cells to become Foxp3+ and able to mediate suppression 

in vitro. CD11c+ DCs were intricately involved in the conversion process and once modified in 
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the presence of TGF-β could convert Foxp3-CD4+ cells into Foxp3+CD4+cells by producing 

TGF-β. The converted cells had undergone cell division and the majority of them expressed 

activation markers along with surface molecules that would facilitate their migration into tissue 

sites. The primary reason for our study was to determine if such in vitro converted Tregs could 

be used in vivo to influence the outcome of a virus induced immunoinflamatory lesion in the eye 

caused by HSV infection. We could show in three separate models of herpetic stromal keratitis 

(SK) that adoptive transfers of in vitro converted Treg effectively diminished lesion severity 

especially when given in the initial phases of infection. The suppression effect in vivo appeared 

to be polyspecific. The protocol we have developed could provide a useful additional approach 

to control virus-induced inflammatory disease. 

 

Introduction 

Numerous types of regulatory T cells were reported to control the immune responses to 

both self and foreign antigens (1). Impediments in regulatory T cell function can cause disease 

conditions (2). The best known example is the multiple-organ autoimmune disorders that occur 

in humans as well as in experimental animals when the gene for Foxp3 transcription factor is 

mutated (3, 4). Functional inactivation of Foxp3 gene alters the development and 

immunosuppressive activity of the natural regulatory CD4+ T cell population. In recent years, 

naturally occurring Foxp3+ regulatory T cells were shown as the key cell type that maintains 

peripheral tolerance (5). Additionally, these cells also regulate pathogen and allergen induced 

inflammatory responses and boosting their functional activity may represent a valuable 

therapeutic approach to blunt transplant rejection. Previously, it was reported that depletion of 

nTregs prior to ocular infection with HSV-1, increased the severity of immunoinflammatory 
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lesions in the cornea (6). However, it would be valuable to know if Tregs can modulate virus 

induced ongoing immunoinflammatory reactions and influence the disease progression.  

In this report, we took advantage of the recent observations that Foxp3+ T cells with 

regulatory function can be generated from conventional T cells by appropriate in vitro activation 

conditions (7-12). We modified the existing method to develop a simple in vitro technique to 

generate Ova-specific Foxp3+ regulatory CD4+ T cells from CD4+Foxp3- cells. We then 

determined the ability of in vitro generated Tregs to modulate the severity of an ocular 

immunoinflammatory reaction caused by infection with Herpes simplex virus (HSV) in 

conventional and bystander models of HSV-1 induced stromal keratitis. Our results showed that 

adoptive transfer of in vitro generated Ova-specific Foxp3+ Tregs diminished lesion expression 

in three different models of herpetic stromal keratitis (SK) in both an antigen-specific as well as 

non-specific manner.  

 

Materials and methods 

Mice, Virus, cell lines  

 Female 6- to 8-wk-old BALB/c DO11.10 RAG2-/- mice were purchased from Taconic, 

Thy1.2+ BALB/c  and CB.17 SCID mice were purchased from Charles River and Thy1.1+ 

BALB/c mice were a kind gift from Dr. D. Woodland (Trudeau Institute, Saranac Lake, NY). All 

animals were housed in the animal facilities at the University of Tennessee. BALB/c DO11.10 

RAG2-/- and CB.17 SCID mice were kept in our specific pathogen-free facility where food, 

water, bedding, and instruments were autoclaved and all manipulations were done in a laminar 

flow hood. All experimental procedures were in complete agreement with the Association for 

Research in Vision and Ophthalmology resolution on the use of animals in research. HSV-I RE 
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Hendricks and HSV-I KOS was propagated and titrated on Vero cells (ATCC CCL81) using 

standard protocols. The virus was stored in aliquots at -80°C until use.  

Corneal HSV-1 infection and clinical observations  

Corneal infections of un-manipulated BALB/c mice and DO11.10RAG2-/- animals and 

adoptively transferred with iTregs were conducted under deep anesthesia. HSV RE and HSV 

KOS were used for inducing keratitis lesions in immunocompetent BALB/c and DO11.10RAG2-

/- animals, respectively. Sometimes Tregs were adoptively transferred in previously infected 

animals. Mice were scarified on their corneas with a 27-gauge needle, and a 3-µl drop containing 

the required viral dose was applied to the eye. The eyes were examined on different days 

postinfection (p.i.) with a slit-lamp biomicroscope (Kowa, Nagoya, Japan), and the clinical 

severity of keratitis and angiogenesis of individually scored mice was recorded. The scoring 

system was as follows: 0, normal eye; +1, mild corneal haze; +2, moderate corneal opacity or but 

iris visible; +3, severe corneal opacity, iris invisible; +4, opaque cornea, ulcer formation; and +5, 

necrotizing SK. The angiogenesis was scored as described previously (13). 

Antibodies and reagents  

CD4-APC (RM4-5), Thy1.1-PerCP (OX-7), DO11.10-PE (KJ1.26), CD25-FITC (7D4), 

GITR-FITC (DTA-1), Folate Receptor 4-FITC (eBio12A5), CD62L-FITC (MEL-14), CD103-

FITC (M290), CD62L-APC (MEL-14) CD49d-PE (MFR4.B), ICAM-1-PE ( 3E2), ICOS-PE, 

PDL-1-PE (MIH5), PD-1-FITC (J43), Foxp3-PE(FJK-16s), Foxp3-FITC (FJK-16s), CD69-FITC 

(H1.2F3), CCR7-PE (4B12), CD11c-PE (HL3), anti-IFN- -FITC, anti-IL-10-FITC anti-IL-17-

PE were purchased from BD PharMingen (San Diego, CA). Recombinant human TGFβ-1, anti-

TGF β1,2,3 antibody (1D11) and anti IL-10 antibodies (AB-417-NA)  were obtained from R&D.  

anti-CD3 (145.2C11), anti-CD28 (37.51) were from  BD Bioscience. Anti-PD1 antibody (J43) 
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and anti-ICOS antibody (7E.17G9) were from ebioscience. Recobinant human IL-2 was obtained 

from Hemagen. OVA323-339 peptide was obtained from Genscript. CFSE was obtained from 

Molecular Probe and used at a final concentration of 0.5 µM for 15 min. at 370C in PBS. 

In vitro generation of CD4+CD25+Foxp3+ regulatory T cells  

Splenocytes isolated from DO11.10Rag2-/- mice were fractionated into CD4+ and CD4- T 

cells using CD4+ T cell isolation kit. 1x106 of T depleted SPCs were pulsed with various doses 

(2µM, 1µM, 0.62µM, 0.31µM and 0.15µM) of OVA peptide for 2 hours at 370C and washed 

three times thereafter. Ova pulsed cells were then cocultured in 1:1 ratio with purified 

CD4+CD25-Foxp3- cells in the presence of 10ng/ml of rTGF-β, and 25U of IL-2 for five days at 

370C and thereafter the cells were characterized by Flow cytometry. To discount the possibility 

of residual ova peptide transfer along with transferred Tregs for subsequent in vivo experiments, 

Ova specific Tregs were also generated with plate-bound anti-CD3 mAb. To this end, 

0.125µg/ml of anti-CD3 mAb in a volume of 200 µl was coated overnight in 48 well flat 

bottomed plate in 0.1M Na2HPO4 buffer, pH 9.0. Before establishing culture of splenocytes with 

the cocktail of various cytokines, plates were washed three times with medium after which 

splenocytes were cultured as described above but in the absence of ova peptide.  Total 

splenocytes were isolated from DO11.10RAG2-/- animals and red blood cells were lysed using 

RBC lysing buffer. 2x106/ml of SPCs were cultured with various concentrations of recombinant 

hTGF-β1 (5ng, 10ng or 15ng), IL-2 (100, 50, 25U) and anti-CD3 antibody in a checker board 

fashion. The cultures were incubated for varying periods ranging from day 4 to day 7 at 370C in 

a humidified CO2 incubator to find the optimum dose of all constituents in the cocktail and the 

incubation periods that yielded a maximum percentage of induced Tregs. In certain experiments, 
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splenocytes were cultured in 6 well culture plates to generate Tregs in bulk. The generated Tregs 

were phenotypically characterized by flow cytometry. 

Purification of cells 

 CD4+ and CD4- T cells were purified from naïve DO11.10 RAG2 -/- mice using CD4+ T 

cells isolation kits (Miltenyi Biotec). In addition, CD4+ and CD4- T cells were also purified from 

in vitro cultures for some in vivo experiments. CD11c+ DCs were isolated on magnetic beads 

columns (Miltenyi Biotec) after 48 hours of in vitro cultures system either from those that 

contained the culture medium that resulted in Foxp3+ T cell conversion or medium that lacked 

TGF-β. CD4+CD25+ and CD4+CD25- T cells were isolated from in vitro cultures using CD4+ 

regulatory T cell isolation kit (Miltenyi Biotec).  The depletion of T cells from splenocytes was 

achieved by using Thy1.2 microbeads (Miltenyi Biotec). All purification procedures were 

performed as per the manufacturers’ instruction.   

In vitro suppression assay  

In vitro suppression assays were performed to assess and compare the inhibitory activity 

of iTregs and splenic nTregs against anti-CD3 stimulated CD4+CD25- T cells. To assess the 

suppressive activity of iTregs, CD4+CD25+ T cells were purified from splenocytes cultured for 5 

days in the presence or absence of recombinant TGF-β1. CD4+CD25- T cells were isolated from 

pooled spleens and LNs of DO11.10RAG2-/- and labeled with 0.5µM of CFSE. T depleted 

splenocytes were isolated from spleens of DO11.10RAG2-/- using Thy1.2 microbeads and 

irradiated before use in the suppression assays. CFSE labeled CD4+CD25- T cells (5x104) were 

cultured in the presence of soluble anti-CD3 mAb (1.0µg/ml) and irradiated splenocytes (1x105)  

with sequentially diluted CD4+CD25+ T from either culture in 96-well round-bottomed plates. 
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After 72 hours, dilution of CFSE was analyzed by flow cytometry. The gate was applied on 

CD4+CFSE+ T cells and the intensity of CFSE staining was analyzed. 

To compare the suppressive activity of iTregs with splenic nTregs, iTregs were isolated 

from the in vitro culture system and CD4+CD25+ cells isolated from the pooled spleens of 

BALB/c animals. CD4+CD25- T cells isolated from pooled spleens and LNs of Thy1.1 BALB/c 

animals and labeled with 0.5µM CFSE. Cultures were set up as described above and the dilution 

of CFSE in Thy1.1+CD4+ gated cells was analyzed.   

Measurement of in vivo activity of iTregs 

Three different systems were used for measuring the in vivo activity of in vitro generated 

Tregs. In the first series of experiments, cultured splenocytes containing 5x105 of 

CD4+CD25+Foxp3+ T cells were adoptively transferred i.v. in DO11.10 RAG2-/- mice one day 

prior or six days after ocular infection with  5x105 pfu of HSV I KOS and the lesion were scored 

every alternate day beginning at day 4.  At day 11, mice were sacrificed and cells recovered from 

cornea, DLN and spleen were analysed by flow cytometry.  

In the second set of experiments, 5x106 of isolated CD4+CD25- T cells from BALB/c 

animals were transferred with or without 1x106 of either nTregs or OVA Tregs into SCID 

animals which were then infected with ocular HSV I (5x105 pfu). The SK lesion progression and 

angiogenesis was monitored for 12 days. To look for the proliferation of lesion orchestrating 

CD4+ T cells, CFSE labeled CD4+CD25- T cells from BALB/c animals were transferred alone or 

with iTregs or nTregs. These animals were infected 24hrs later with 5x105 pfu of HSV I (RE).  

After 7 days of transfer, the proliferation of CD4+CFSE+ T cells was analyzed by dilution of 

CFSE.  
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Finally, experiments were done to look for the disease modulatory activity of Tregs in 

immunocompetent BALB/c animals. Five different doses (2x106, 1x106, 5x105, 2x105 and 5x104) 

of Foxp3+ T cells were adoptively transferred i.v.  in BALB/c animals one day prior to the ocular 

HSV RE (5x105 pfu) infection. The disease severity was recorded for 15 days post infection. A 

minimum dose of Tregs which could inhibit the disease progression in these animals was used 

for subsequent studies where cells were transferred one day before, three days or 6 days post 

infection. Animals were sacrificed at different time intervals to collect and analyze lymphoid and 

non-lymphoid tissues. 

Flow cytometric analysis  

Cell preparation Single-cell suspensions were prepared from the cornea, draining 

cervical lymph nodes (DLN), and spleen of mice at different time points p.i. Corneas were 

excised, pooled group wise and digested with 60 U/ml Liberase (Roche Diagnostics) for 60 min 

at 37°C in a humidified atmosphere of 5% CO2 as described earlier (6). After incubation, the 

corneas were disrupted by grinding with a syringe plunger on a cell strainer and a single-cell 

suspension was made in complete RPMI 1640 medium. 

Staining for flow cytometry The single-cell suspension obtained from LNs, spleen, and 

corneal samples were stained for different cell surface molecules for FACS. All steps were 

performed at 40C.Briefly, a total of 1 x 106 cells were first blocked with an unconjugated anti-

CD32/CD16 mAb for 30 min. in FACS buffer.  After washing with FACS buffer, fluorochrome-

labeled respective Abs was added for 30 min. Finally, the cells were washed three times and 

resuspended in 1% paraformaldehyde.  

To enumerate the number of IFN-γ producing T cells, intracellular cytokine staining was 

performed as previously described (26). In brief, 106 freshly isolated splenocytes and lymph node 
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cells were cultured in U bottom 96-well plates. Cells were left untreated, stimulated with 2 MOI 

of UV inactivated HSV I and incubated overnight at 37°C in 5% CO2. Brefeldin A (10 µg/ml) 

was added for the last five hours of the culture period.  After this period, cell surface staining was 

performed, followed by intracellular cytokine staining using a Cytofix/Cytoperm kit (BD 

PharMingen) in accordance with the manufacturer's recommendations. The Ab used was anti-

IFN-γ-FITC and anti-IL-17-PE. The fixed cells were resuspended in 1% paraformaldehyde and 

acquired with BD FACSCalibur. The data were analyzed using the CellQuestPro 3.1 (BD 

Biosciences) or Flowjo software.  

BrDU incorporation assay  

BrDU analysis was performed as described earlier (14). Briefly, mice were divided into 

four groups: naïve, naïve + iTregs, infected and infected + iTregs. 5x105 iTregs were transferred 

a day before ocular infection and animals were then fed BrDU in drinking water at 1mg/ml for 

10 days after adoptive transfer of iTregs and ocular HSV 1 infection. After 10 days, host 

CD4+Foxp3+ and CD4+Foxp3- cells that incorporated BrDU were analysed by staining with anti-

BrDU antibody using an APC BrDU flow kit from BD Pharmingen as per the manufacturers’ 

instructions.  

Statistical analysis 

  To calculate the statistical significance for disease severity between different groups, 

unpaired two-tailed Student's t test was performed. All other analyses for statistically significant 

differences were performed with Student's t test. P ≤ 0.001 = *** P ≤ 0.01 = ** and P ≤ 0.05 = * 

were considered significant. Results are expressed as mean ± SD. For some experiments, as 

mentioned in the fig. legends, one way ANOVA test was applied. 
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Results 

In vitro Generation of Ova-specific Treg (iTregs) 

In initial experiments, splenic cells from naive DO11.10 Rag2-/- animals were 

fractionated on MACS columns into the T cell fraction (greater than 95% KJ+ CD4+ and hence 

OVA-specific) as well as the non T cell fraction. These non-T cells were pulsed with various 

concentrations of the OVA323-339 peptide and used to stimulate the T cell fraction in a 1:1 ratio. 

The culture medium contained IL-2 (25U/ml) as well as human recombinant TGF-β (10ng/ml), 

conditions expected to be suitable to induce Foxp3+ T cells from conventional precursors (7, 10). 

Using these conditions, we observed that after a 5 day culture period up to 70% (range 50-70%) 

of the surviving cells in the culture were Foxp3+. The dose of ova peptide that gave maximum 

conversion efficiency was 0.31μM. 

To simplify matters, we also cultured unfractionated DO11.10 Rag2-/- naive splenocytes 

in culture plates that had been pre-incubated with various concentrations of rat anti-mouse CD3 

antibody. In preliminary experiments using 0.3μg/ml to sensitize plates and the same TGF-β and 

IL-2 concentrations described above, up to 75% ( range 70-75%) of cells were observed to be 

Foxp3+ after 5 days stimulation (Fig. 2.1A). When peptide (0.31μM) was used for stimulation 

instead of anti-CD3, up to 45% (range 30-45%) of CD4+ T cells became Foxp3 (data not shown). 

Subsequently, the system was optimized by using varying concentrations of anti-CD3 and TGF-

β, but using the same amount of IL-2. As shown in figure 2.1B and C, a concentration of 

0.125μg/ml of anti-CD3 and 10 ng/ml of TGF-β turned out to be optimal. With the optimal 

conditions, the frequency of CD4+ T cells that were Foxp3+ ranged from 80% to 90% of the 

CD4+ T cells in different experiments (Fig. 2.1D). These conditions were chosen for subsequent 
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experiments in which in vitro converted cells were used in vivo in an attempt to modulate HSV 

induced ocular inflammatory lesions.  During the conversion process, the Foxp3+ T cells 

underwent division (one to six times) although some converted cells must have died since the 

overall yield of Foxp3+ cells was usually around two fold the number of input Foxp3-CD4+ T 

cells (Fig 2.1E).  

Phenotypic Characterization of iTregs 

Using optimal Foxp3 conversion conditions, cultures were terminated at various times 

after initiation not only to establish the time when conversion was at its maximum, but also to 

measure the expression of additional phenotypes on the Foxp3+ T cells that could play a role in 

their migratory and functional properties in vivo. The results are expressed in fig 2.2A. Maximal 

frequencies of Foxp3 expression were evident after 5 days and these frequencies sometimes 

exceeded 90% of the surviving CD4+ T cells. 

As shown in fig. 2.2B, most of the Foxp3+ T cells at the end of the culture period were 

CD103+, a molecule important for migration into tissue sites (15). This, as well as some other 

markers, was present on only a minor population of the CD4+Foxp3+ nTreg population isolated 

from spleens of naïve immunocompetant mice (Fig 2.2B). Additional phenotypic markers 

present on the majority of the in vitro converted Foxp3+ T cells at the end of the culture period 

included CD25, GITR, folate receptor 4 (FR4), PD1, ICOS, ICAM-1, CD62L, CD49d, CCR7 

and CCR5. Their higher level (mean fluorescence intensity and percent positive) of expression 

on the in vitro converted Tregs compared to nTregs indicated that the in vitro converted cells 

were in a more activated state and more endowed with surface molecules that would permit 

tissue migration (Fig 2.2B and 2C).  
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TGF-β modified CD103+CD11c+ DCs are involved in Foxp3 induction 

 It was of interest to note that the expression of some phenotypic markers observed at the 

end of the culture period was not evident on those Foxp3+ cells that had been converted early 

during culture. The striking example of this was CD103, a molecule involved in tissue homing in 

vivo (15). Curiously after two days of culture, the majority of CD11c+ dendritic cells (DCs) were 

already CD103+ but only a minor fraction (up to 2-5%) of CD4+Foxp3+ was CD103+ (Fig 2.3A 

and B). The dendritic cells isolated from cultures lacking TGF-β, after two days, did not show 

this phenotype. We suspected that the CD103+ DCs could be the cells that were mainly 

responsible for causing the majority of CD4+Foxp3+ conversion observed in our culture system. 

In support of this notion, we could demonstrate that the DCs isolated from cultures after two 

days, could be used to drive Foxp3 expression in de novo cultures of purified CD4+CD25-Foxp3- 

T cells that were TCR stimulated in the presence of IL-2, but  without additional TGF-β in the 

culture system. Accordingly, CD11c+ cells were isolated by positive selection from 2 day 

stimulated splenocytes with anti-CD3, IL-2 and TGF-β (conversion medium). In addition, 

CD11c+ cells were isolated from similar cultures that lacked TGF-β. The purity of CD11c+ DCs 

was between 85 to 90% in different experiments.   

As shown in Fig.2.3C, the addition of CD11c+ cells from cultures with the conversion 

medium caused up to 50% of CD4+ cells to become Foxp3+ after 4 days further stimulation in the 

absence of TGF-β. In contrast, CD11c+ cells from the two day culture that lacked TGF-β failed 

to induce significant numbers of Foxp3+ converted cells in the secondary cultures. We interpret 

these experiments to mean that the CD11c+ cells were intricately involved in the in vitro 

conversion process perhaps by being modified in their function during the initial culture period. 

This modification could include acting as a source of TGF-β. Thus, the addition of anti-TGF-β 
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antibody either in primary or secondary cultures markedly inhibited the induction of Foxp3 in 

purified Foxp3-CD25-CD4+ (Fig 2.3C). Furthermore, the DCs isolated after two days in the 

conversion system had higher TGF-β mRNA levels than did DCs stimulated under non 

converting conditions (data not shown).    

Functional activity of Foxp3 converted cells  

 At the end of the 5 days culture period, CD25+CD4+ T cells were isolated from both 

cultures stimulated with the conversion medium as well as cultures that were stimulated in the 

presence of IL-2 but without TGF-β. These cultures without TGF-β failed to generate significant 

numbers of Foxp3+CD4+ T cells as already stated. Both sets of CD25+ cells were added to anti-

CD3 stimulated naïve CD4+CD25- OVA-specific T cells isolated from pooled spleens and LNs 

of DO11.10Rag2-/- mice and irradiated T depleted splenocytes from the same strain of mice, to 

measure their anti-proliferation activity. As shown in Fig. 2.4A, only the Foxp3+ containing 

population showed a dose dependent suppressive activity.  Experiments were also performed to 

determine possible mechanisms involved in the suppressive activity of iTregs. Neutralizing 

antibodies to either TGF-β, IL-10, ICOS or PD-1 were added in suppression assays. The 

suppressive activity was only diminished significantly when PD-1 blocking antibody was added 

to the cultures (Fig. 2.4B. We interpret these experiments to mean that the suppression did not 

involve either TGF-β or IL-10 cytokines and that PD-1 engagement was likely involved in the 

suppression mechanism as previously observed by others (16).   

In a second approach, CD25+CD4+ T cells from in vitro conversion cultures  and splenic 

CD25+CD4+ nTregs isolated from immunocompetant BALB/c animals were compared for their 

ability to suppress the proliferation of CD25-CD4+ T cells. The latter were isolated from pooled 

spleens and LNs of naïve Thy1.1 BALB/c animals (hence polyspecific population) stimulated 
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with anti-CD3 antibody and T depleted irradiated splenocytes as a source of APCs. Proliferation 

of Thy1.1+CD4+ T cells was analyzed by dilution of CFSE. In such experiments, the Ova-

specific converted cells showed activity that was somewhat enhanced compared to the nTreg 

population (Fig 2.4C).  

In vivo activity of in vitro converted cells in ocularly infected DO11.10RAG2-/- mice 

The major objective of our investigation was to determine if in vitro converted 

Foxp3+cells could influence the severity of ocular immunoinflammatory lesions induced in mice 

by HSV infection. The first model used TCR transgenic mice on a RAG-/- background which 

were shown previously to develop stromal keratitis (SK) upon ocular infection with HSV even 

though their CD4+ T cells were almost all reactive with OVA323-339 peptide and not detectably 

cross-reactive with HSV antigens (17).The  T Cells in the ocular lesions of such animals were 

shown to react with the KJ1-26 monoclonal antibody noted by others to react with the TCR of H-

2d CD4+ T cells that recognize the OVA323-339 peptide (18). Since this KJ+ TCR had no 

demonstrable reactivity with HSV, we surmised that the activation of KJ+CD4+ T cells was not 

TCR mediated but involved activation  by one or more cytokines (19). We have referred to this 

as a bystander model of SK (11).  

As already described the Foxp3 converted cells in the in vitro system used in this 

communication were all KJ+ and hence OVA-specific. Consequently, we speculated that such 

cells adoptively transferred into the infected DO11.10RAG2-/- animals should modulate the 

severity of the ocular lesions. To test this, DO11.10 RAG2-/- mice were ocularly infected with 

5x105 pfu of HSV KOS (which routinely induces SK in these animals) and some were given 

intravenously 5x105 Foxp3 converted cells either 24hrs before or at 6 day p.i. The severity of 
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lesions was then followed in control and adoptive transfer recipients over a 11-12 day 

observation period (animals began to die after day 11 from herpetic encephalitis). 

The cumulative results of three similar experiments are shown in Fig 2.5A, and B.  As is 

evident, the average severity of ocular lesions was significantly reduced in animals that received 

cells 24 hours before infection. Similarly, lesion severity was also reduced significantly in the 

day 6 recipients. Samples were collected from both groups of animals to determine if the 

adoptively transferred Foxp3+ T cells could be demonstrated in the recipient tissues. It became 

possible to detect transferred cells since the DO11.10 RAG2-/- animals do not have detectable 

Foxp3+ cells even following infection with HSV. The results of such experiments revealed that 

both in day-1 and day -6 transfer recipients, appreciable numbers of Foxp3+ cells could be 

demonstrated by FACS analysis of collagenase digested ocular samples as well as in the draining 

LN and spleen (Fig 2.5C). Reduced percentages as well as absolute numbers of PMNs such as 

neutrophils (CD11b+Gr1+) were found in the corneal tissues of transfer recipients as compared to 

control animals (Fig 2.5D).These experiments clearly demonstrated that the in vitro Foxp3 

converted cells may function in vivo to diminish herpetic lesions although  in the model studied 

we could not establish how the inhibition was achieved or if this occurred by the action of 

Foxp3+ cells in the ocular tissue themselves or in the DLN in some way. It remains unclear how 

HSV infection causes SK in the DO11.10RAG2-/- model but we suspect the mechanism involves 

the activation of CD4+ T cells by inflammatory mediators generated by the infection. In support 

of this, CD4+ T cells collected from lymphoid tissues as well as cornea showed high frequencies 

of CD69+ cells indicating they are activated. Transfer of iTregs into such animals significantly 

reduced the frequencies of activated cells (data not shown). 
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Inhibitory effects of Treg on SK in reconstituted SCID mice 

Whereas SCID animals ocularly infected with HSV fail to develop SK lesions, they do so 

if reconstituted with CD4+CD25- T cells even if such cells are taken from naïve animals (6). In a 

previous study, we demonstrated that SK severity in such animals was inhibited if CD4+CD25+ T 

cells were cotransferred with the CD4+CD25- population. As shown in Fig. 2.6A, this 

observation was repeated but in addition we were able to show that Ova-specific iTregs were 

equally capable of modulating lesion severity. This occurred despite the fact the iTregs 

population was KJ+ and hence ova-specific. Such experiments indicate that iTregs may act in a 

bystander inhibitory fashion but how such an effect was mediated requires further exploration. 

The effect appeared to involve inhibition of proliferation of effectors. This was shown in 

experiments wherein CFSE labeled CD4+CD25- (effectors) cells were transferred alone or with 

either iTregs or nTregs in SCID animals 24 hrs before ocular HSV I infection.  As shown in Fig. 

2.6B, the frequencies of proliferating cells, when measured at day 7 p.i., were reduced in 

recipients of both iTregs and nTregs as indicated by dilution of CFSE. 

Inhibition of SK by iTregs in immunocompetent BALB/c animals  

The final approach used to measure the efficacy of in vitro converted Foxp3+ T cells was 

to use the immunocompetent ocularly infected BALB/c animals as the transfer recipients. In 

these experiments, animals were infected with 5x105 pfu of HSV RE, a dose which was expected 

to cause lesions in the majority of recipients and the outcome was compared in control animals 

with those given different numbers of in vitro converted cells day-1 prior to infection. The 

numbers of donor cells varied from 2x106 to 5x104 of Foxp3+ T cells which it must be 

emphasized were KJ+ and hence Ova-specific. The results of a representative experiment are 

shown in Fig 2.7A.  As can be seen, lesions were markedly reduced in recipients given 2x106 
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donor cells but inhibition was also significant in those that received 5 fold less cells. Using the 

5x105 donor cell dose for transfer, we also compared the suppressive effects of donor cells that 

were fractionated into CD4+ and CD4- populations prior to transfer. As is evident in Fig 2.7B, 

only the CD4+ fraction suppressed lesion severity in the BALB/c recipient animals.  

 In subsequent experiments, HSV infected BALB/c animals were given adoptive transfers 

of Foxp3+ converted cells (5x105 Foxp3+ cells) either one day before,  or 3 or 6 days p.i. Animals 

were then scored for both the extent of angiogenesis and SK lesion severity scores over a 15 day 

observation period. The data in Fig 2.7C and D, show the cumulative data of individual animal 

scores of three separate experiments. As is evident, significant levels of inhibition occurred in the 

early transfer recipients. Transfers at day 6 provided suppression in some animals but overall the 

results were not significant especially at day 15 p.i. probably because of lower sample size and 

large variations. Interestingly, transfer of Tregs at day 3 invariably failed to produce suppression 

of SK or levels of angiogenesis. This might be explained by the fact that levels of 

proinflammatory cytokines, such as IL-6 are high at this time in the DLN and cornea (Fig 2.7E) 

Thus cytokines such as IL-6 are known to blunt the function of Tregs (20). Inhibition could be 

achieved in the day 3 transfer model if ten fold more cells were transferred on day 3 (Fig 2.7F 

and G). Conceivably, the inhibition was evident because insufficient IL-6 was present to blunt 

the function of all of the transferred Tregs, but  this issue needs to be formally explained.     

Our data demonstrate that early transfer of Foxp3 converted OVA-specific T cells are 

fully capable of inhibiting lesions caused by HSV provided sufficient cells are transferred and if 

performed early after infection. It is far from clear how the Treg which are OVA-specific, act 

against an inflammatory lesion caused by HSV or in fact where the inhibitory effect is mediated. 

Experiments showed that adoptively transferred cells (based on determining the KJ+ markers) 
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could be demonstrated to be present at least in appreciable numbers in the eye as well as 

lymphoid tissues at 16 day post transfer (Fig 2.8A). In long term studies, transferred cells (2-3% 

of recovered CD4+ T cells) could be found in corneal tissues even after three month post transfer 

but such cells  were undetectable in lymphoid tissues at this time point (data not shown). It 

would be interesting to investigate if corneal resident iTregs could prevent the recurrence of 

stromal keratitis.  

Although some adoptively transferred iTregs could be demonstrated in ocular tissues, 

their polyspecific suppressive activity could be mediated mainly in lymphoid tissues. Thus, one 

consequence of HSV infection is an increase in the spleen size as well as the DLN. Curiously, as 

shown in the Fig. 2.8B and C, the spleen size and total cellularity in iTreg recipients was reduced 

approaching near to that of normal animals depending on the number of iTregs given. In 

addition, iTregs recipients showed lower numbers of HSV-specific IFN-γ producing CD4+ T 

cells (Fig 2.8D), those principally responsible for mediating SK (21) than was evident in control 

infected animals that did not receive iTregs. Accordingly one outcome of the early iTreg transfer 

was suppression of the response of CD4+ T cells to HSV although how this was achieved 

mechanistically remains to be explained. Regulatory cells transferred at day 6 had no effect on 

the magnitude of the anti-HSV immune response (data not shown). 

We considered the possibility that iTreg adoptive transfers might serve to inhibit the 

division of host effectors while at the same time causing the expansion of the hosts’ own nTregs 

as was reported in a diabetes model by the Steinman group (22). To support such a possibility, 

we performed adoptive transfers with KJ+Treg and then compared the proliferative capacity of 

the host’s CD4+Foxp3+ and Foxp3- populations. Our results showed reduced proliferative 

responses of host CD4+Foxp3- cells compared to infected controls not given iTregs, but an 
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increase in the proliferative response of the host CD4+Foxp3+ population. Thus, the donor 

KJ+Tregs appeared to mediate the suppression in at least two ways. These included inhibitory 

effects on the host effectors as well as an expansion of the host’s own nTregs population. 

Curiously, the donor KJ+ cells themselves underwent proliferation in the host which may also 

help explain how the minimal cell transfers were effective at modulating lesions.  

 

Discussion 

In this report we have confirmed the observations of others that Foxp3+ regulatory T cells 

can be generated in vitro from Foxp3- naïve CD4+ cells (7, 10). We developed a simplified 

technique that used unfractionated splenocytes as a precursor population and showed that 

stimulation under optimized conditions for 5 days with solid phase anti-CD3 mAb in the 

presence of TGF-β and IL-2 could induce up to 90% of CD4+ T cells to become Foxp3+ and able 

to mediate suppression in vitro. The converted cells had undergone cell division and the majority 

of them expressed activation markers along with surface molecules that would facilitate their 

migration into tissue sites. The primary reason for our study was to determine if such in vitro 

converted Tregs could be used in vivo to influence the outcome of a virus induced 

immunoinflammatory lesion in the eye caused by HSV infection. We could show in 3 separate 

models of herpetic stromal keratitis (SK) that adoptive transfers of in vitro converted Treg 

effectively diminished lesion severity especially when given in the initial phases of infection. 

The protocol we have developed, which is novel for a viral induced inflammatory disease, could 

provide a useful additional approach to control a chronic virus induced lesion.  

 Previous studies on adoptive transfers with in vitro converted Tregs have focused on the 

control of autoimmune lesions or to facilitate the acceptance of transplants (23-27). Moreover, 
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the techniques used to produce the Treg populations were usually complex requiring purification 

of both responders and stimulators to achieve success. We have found that unfractionated 

splenocytes can suffice as a responder population. In our case, these were transgenic T cells from 

naïve DO11.10 RAG2-/- mice which normally lack a population of Foxp3+ T cells (28). The T 

cells from such animals are predominantly CD4+ and express a TCR that recognizes the ova 

peptide that can be conveniently identified with the KJ26 monoclonal antibody. We could 

generate Foxp3+KJ+ cells either by stimulating splenocytes with ova peptide in the presence of 

TGF-β and IL-2, or more effectively by stimulating with solid phase anti-CD3 mAb. It was not 

necessary to use additional costimulators such as anti-CD28 as is used in most other studies (7, 

10, 29). The Foxp3 conversion process involved cell division and appeared to depend on the 

presence of APC that responded initially to the TGF-β. Thus, we could show that 2 day 

stimulation of splenocytes in the conversion medium caused CD11c+ cells in the culture to 

become CD103+. Moreover, such cells could be used to drive Foxp3 expression in TCR 

stimulated cultures of naive CD4+Foxp3- T cells without the addition of TGF-β to cultures. We 

interpret these observations to mean that the CD103+CD11c+cells could be a source of TGF-β 

and possibly costimulation to the CD4+ cells that convert to become Foxp3+. Curiously, recent 

studies on Foxp3 conversion in the gut had demonstrated an essential role of CD103+ TGF-β 

producing dendritic cells (30-34).  

 The principal objective of our studies was to explore the value of adoptive transfers with 

regulatory T cells as a means to influence the pathogenesis of a viral induced 

immunoinflamatory lesion. In prior studies, we had shown that lesions caused by HSV infection 

in the eye were more severe in animals depleted of nTregs (6) so it was anticipated that adoptive 

transfers of Tregs might prove valuable to suppress the severity of SK lesions. However, as is 
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well known when using Treg therapeutically to control autoimmunity, the most potent Treg 

populations are those that are reactive with the same antigens as the effectors cells that drive the 

lesions (22, 23, 25). Unfortunately, we have no simple means of generating HSV-specific Tregs 

in vitro although this issue is under further investigation. There is, however, an SK model using 

TCR transgenic x Rag or SCID mice where the animals’ T cells lack demonstrable cross-

reactivity with HSV (17). Nonetheless, they develop stromal inflammatory lesions upon ocular 

infection with HSV. This has been referred to as the bystander model of SK (19). Using this 

model we could show that the adoptive transfer of in vitro generated Foxp3+KJ+ T cells could 

inhibit the severity of SK in HSV infected DO11.10RAG2-/- mice wherein  lesions are 

orchestrated by CD4+ effectors that are also KJ+ (19). In this instance therefore, the Treg control 

could be antigen-specific.  

Inhibition was most effective when the Tregs were given around the time of infection but 

significant effects were also evident in animals in which therapy was delayed until day 6. We 

consider this latter observation particularly interesting since it indicates that the adoptive transfer 

of Treg may represent a potential means of controlling ongoing viral inflammatory disease. We 

suspect that even greater efficacy in the day 6 therapeutic model could be observed if animals 

were kept alive for longer than the usual time of their dying of herpetic encephalitis (around day 

11). We are currently pursuing such experiments in animals treated with anti-virals or protected 

by neutralizing antibody. In longer living animals multiple Treg administration will also be 

feasible, perhaps a necessary protocol to fully control lesions.  

 Unexpectedly, we were also able to show that in vitro generated Ova-specific Foxp3+ 

Tregs could modulate lesions in HSV infected BALB/c mice where certainly the CD4+ T cells 

involved in orchestrating lesions were not KJ+ and ova specific. Such observations could mean 
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that adoptively transferred Tregs can act non-specifically. This could be possible since the cells 

used for adoptive transfer were highly activated and in fact showed enhanced regulatory effects 

in vitro compared to nTregs isolated from normal animals. In fact if the iTregs were transferred a 

week or more in animals prior to infection, control was not achieved (data not shown). During 

this time we presume that cells may have lost their activation status although this issue needs to 

be investigated. 

Evidence for a non-specific regulatory effect of the in vitro converted Tregs was also 

seen in a second model of SK.  In this model, SK can be induced in ocularly infected SCID mice 

as long as they are provided with adoptive transfers of normal or HSV immune CD4+ T cells (6). 

We could demonstrate that co-transfer of the Ova-specific converted Tregs along with the 

polyspecific CD4+ CD25- T cells resulted in significantly reduced lesions. These results provide 

evidence of non-specific bystander regulatory effects since the lesion-inducing effector cells 

would not be reactive to Ova peptide. Others too, have reported instances where Tregs could 

mediate bystander suppression (35-37). This is especially evident for regulatory cells that are 

abundant producers of cytokines such as IL-10 (26). However, we suspect that the bystander 

suppression effect in our system may not involve IL-10 because only a minor fraction of the cells 

could be shown to be IL-10 producers and the suppressive activity in vitro was found largely 

independent of cytokines. Nevertheless, this issue requires further investigation.  

Although our results demonstrate that in vitro converted Tregs could suppress the 

severity of SK lesions, the location and mechanism by which the inhibition occurs in vivo 

remains unclear. Thus, the cell population expressed several molecules that permitted the cells to 

access tissue sites as well as lymphoid tissue. In fact, adoptively transferred cells could be 

demonstrated at both the ocular inflammatory site as well as in lymphoid tissues. Some reports 
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advocate that TGF-β generated Foxp3+ cells have only a short life span in vivo (26, 38). This was 

not our experience since some KJ+Foxp3+ cells could still be recovered from the eyes of BALB/c 

mice three months after their administration. Finding cells in the eye does not mean that they 

exert their regulatory effect in that tissue. In fact, we strongly suspect that the suppressive effects 

of the early cell transfers were mediated mainly in lymphoid tissues where the effector T cell 

response to the virus is being generated. Thus recipients of such transfers had reduced HSV-

specific effector CD4+ T cell responses. Moreover, few if any effector T cells appear in the 

stroma until 6 or 7 days post infection (39).  

Another interesting observation was that the viral-induced immunopathology was 

suppressed by quite small numbers of adoptively transferred iTregs. Conceivably, the iTregs 

could in some way be causing the host’s own nTregs to become activated and suppressive as has 

been suggested to occur with similar studies in a diabetes model (22). In this model, control of 

pancreatic inflammation appeared to be mediated by the increased population of host derived 

Tregs in the tissue. In fact, donor cells were not demonstrable in the recipient tissues. In our 

system we, could demonstrate the presence of transferred cells in the target tissues but, in 

addition we noted that host nTregs underwent increased proliferation in iTreg adoptive transfer 

recipients compared to controls. Such host nTregs could conceivably contribute to the 

suppression of lesions as ongoing studies are attempting to demonstrate. 

 Finally, although the results were variable we could demonstrate that even in the BALB/c 

model that transfer of Tregs at 6 days p.i., around the time of major access of effector T cells into 

the corneal stroma, could suppress lesion severity. Transfer of Treg at this time period had no 

effect on the magnitude of the anti HSV immune response which is approaching its peak at this 

time. Conceivably the suppressive activity of such transfers could result from effects in the 
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tissues themselves. It may be that multiple transfers would be a more effective way of controlling 

ongoing lesions as we are currently investigating. 
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Figure 2. 1 In vitro generation of Foxp3+CD4+ T cells from OVA-specific precursor Foxp3- 

CD4+ T cells. 

A. Splenocytes from DO11.10RAG2-/- mice were cultured in the presence of 0.3μg/ml of anti-

CD3 antibody, 25U of rIL-2 and the indicated concentrations of TGF-β. More than 99 percent of 

CD4+ T cells were KJ1-26 positive (gated on CD4+ T cells). After five days of culture, cells were 

analyzed for the expression of CD4 and Foxp3. Using these conditions approx. 75% of CD4+ T 

cells became Foxp3+. 

B. Dose response curve for Foxp3 induction with various conc. of anti-CD3 antibody, 10ng/ml 

of TGF-β and 25U of IL-2 is shown.  A dose of 0.125μg/ml of anti-CD3 antibody (plate bound) 

was found to be optimal.  

C. Dose response histogram for Foxp3 induction with various conc. of TGF-β, 25U of IL-2 and 

0.125μg/ml of anti-CD3 is shown.  At a dose of 10ng/ml of TGF-β 80 to 90 % of CD4+ T cells 

converted to become Foxp3+.   

D. Representative histograms for gated CD4+ T cells are shown to show the Foxp3 induction 

using optimal conditions (0.125μg/ml of plate bound anti-CD3 antibody, 25U of IL-2, 10ng/ml 

of TGF-β).  

E. Splenocytes from DO11.10RAG2-/- animals were CFSE labeled and cultured with plate 

bound anti-CD3, IL-2 and TGF-β for five days. After five days cells were stained with CD4 and 

Foxp3. CFSE dilution and Foxp3 expression was shown in gated CD4+ T cells.  TGF-β induced 

CD4+CD25+Foxp3+ T cells proliferate extensively. 
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Figure 2. 2 Phenotypic characterization of in vitro generated Foxp3+ T cells. 

A. Representative FACS plots out of three similar experiments are shown for the kinetic analysis 

of Foxp3 induction in CD4+CD25-Foxp3- T cells in in vitro cultures. Maximum conversion was 

observed at day 5 after initiation of culture. (Gated on CD4+ T cells). B. Expression of surface 

markers on in vitro converted Foxp3+ cells was compared with that of nTregs isolated from 

spleens of naïve immunocompetent animals. Representative histograms are shown. (CD4+Foxp3+ 

T cells were gated, doted lines represent isotype control, solid lines represent expression on 

nTregs and solid but bold lines represent expression on iTregs). C. Bar diagram of percent 

positive of Foxp3+ nTregs and iTregs for various surface markers is shown.  
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Figure 2. 3 Splenic CD11c+ DCs are intricately involved in causing conversion of Foxp3- T 

cells into Foxp3+ CD4+ T cells. 

Kinetics of CD103 expression on CD4+Foxp3+ T cells (A) and CD11c+ DCs (B) in in vitro 

conversion culture is shown. The expression of CD103 was observed earlier on DCs than on 

CD4+Foxp3+T cells. C. CD11c+ DCs were purified from 48hr splenocyte cultures in presence of 

anti-CD3, IL-2 and either without TGF-β as used in (C(a)) or with TGF-β as used in (C(b) and 

(C(d)) or with TGF-β + anti-TGF-β as used in (C(c)). These DCs were then co-cultured in 1:5 

ratios with anti-CD3 stimulated purified CD4+CD25-Foxp3- T cells isolated from naïve 

DO11.10RAG2-/- animals in presence of IL-2 alone or with anti-TGF-β antibody. 

Representative FACS plot showing Foxp3 induction when the DCs were isolated from primary 

culture with no TGF-β (C(a)), primary culture in presence of TGF-β (C(b)), primary cultures in 

presence of TGF-β and anti-TGF-β  and when DCs were from primary culture with TGF-β but 

anti-TGF-β antibody was added in secondary cultures. 
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Figure 2. 4 In vitro generated Tregs inhibit the proliferation of antigen-specific and 

polyspecific CD4+CD25- T cells.  

CD25+CD4+ T cells were isolated from both cultures stimulated with the conversion medium 

(Tregs) as well as cultures that were stimulated in the presence of IL-2 only (“control cells”). 

Additionally, CD4+CD25+ T cells were also isolated from pooled spleens and LNs of BALB/c 

animals.  These cells, in two fold serial dilutions, were used in suppression assays against the 

cultures of anti-CD3 antibody stimulated CFSE labeled CD4+CD25-T (1x105) cells from naïve 

DO11.10RAG2-/- (i.e. to measure antigen-specific effect) and Thy1.1 BALB/c animals (i.e. to 

measure polyspecific effect) with irradiated T depleted splenocytes (2x105) from homologous 

system as described in Material and Methods section. 

A. The extent of CFSE dilution as an indication of suppressive activity of in vitro generated 

CD4+CD25+ regulatory T cells against anti-CD3 stimulated labeled CD4+CD25- T cells from 

naïve DO.11.10 RAG2-/- animals is shown. Of the CD4+CD25+ T cells, about 90% and 3% were 

Foxp3+ from cultures in the presence or absence of TGF-β, respectively. A first gate was applied 

on CD4+ T cells and then extent of CFSE dilution in CD4+CFSE+ T cells was analyzed. 

B. Blocking antibodies to either TGF-β (10μg/ml) or IL-10 (10μg/ml) or PD-1 (10μg/ml), or 

ICOS (10μg/ml) were added to the suppression cultures and the extent of division of CFSE in 

labeled cells was determined. Representative FACS plots at two dilutions of Tregs to Teffectors 

are shown for PD-1 and ICOS neutralized cultures. Dashed line represents dilution of CFSE 

when no Tregs were added, solid line represents dilution of CFSE when Tregs were added, solid 

but bold line represents dilution of CFSE when along with Tregs either anti-PD1 or anti-ICOS 

antibodies were added. 
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C. Representative histograms indicating CFSE dilution in the Thy1.1 gated population is shown.  

CD4+CD25+ T cells were isolated from iTreg culture, control cells and splenic nTregs from 

BALB/c animals and were used against anti-CD3 stimulated labeled CD4+CD25- T cells from 

Thy1.1 animals. The markers show the percentages of cells that underwent less than two 

divisions. 
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Figure 2. 5 In vitro generated OVA Tregs control SK severity in a bystander disease model. 

 5x105 Foxp3+CD4+ T cells were adoptively transferred to DO11.10 RAG2-/- animals 24 hours 

before or 6 days post ocular HSV I infection. The disease severity and angiogenesis was 

recorded. 

A. Gross eye pictures of control and transfer recipient animals from a representative experiment 

when 5x105 Foxp3+ cells were transferred 24 hours before infection are shown.    

B. Cumulative data on SK severity and angiogenesis from different experiments at 11 days p.i. is 

shown. 5x105 Foxp3+ T cells were transferred 24 hours before or 6 days post infection. P values 

were calculated with one way ANOVA using a Dunnet post test settings. 

C. Distribution of adoptively transferred Foxp3+ T cells in lymphoid organs (spleen and draining 

cervical LN) and ocular tissues at 11 dpi is shown.  

D. Representative FACS plots showing the infiltration of neutrophils (CD11b+Gr1+) in 

collegenase digested cornea from control and transfer recipient animals given 5x105 Foxp3+ cells 

were transferred 24 hours before infection are shown. Absolute numbers of neutrophils/cornea 

are shown in parenthesis.    
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Figure 2. 6 Co-transfer of in vitro generated Tregs with polyspecific CD4+CD25- T cells in 

SCID animals reduces the severity of SK. 

1x106 CD4+CD25+ T cells isolated from in vitro cultures and splenic nTregs (CD4+CD25+ T 

cells) from naïve BALB/c animals were co transferred with 5x106 CD4+CD25- T cells 24 hours 

before ocular HSV I infection (5x105 pfu). The disease severity and angiogenesis was recorded 

over a 12 days period. 

A. The SK lesion scores and angiogenesis at 12 days p.i. are shown. 

B. Proliferation of polyspecific CFSE labeled CD4+CD25- T cells in spleen and DLN in the 

presence iTregs or splenic nTregs is shown.  
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Figure 2. 7 In vitro generated OVA-specific Tregs diminishes the severity of SK in 

immunocompetent BALB/c transfer recipients in a dose dependent manner. 

 A. Indicated doses of unfractionated Foxp3+ T cells were adoptively transferred in BALB/c 

animals 24 hours before ocular HSV infection and the disease severity was monitored until day 

15. A bar diagram indicating the average SK lesion scores at different doses of  transferred 

Foxp3+ cells at 15 days p.i. is shown. P values were calculated with one way ANOVA using a 

Dunnet post test settings taking no Tregs as a control. B. 5x105 of fractionated CD4+ and non-

CD4+ cells isolated from in vitro conversion cultures were transferred in BALB/c animals.  

Average lesion scores is shown at 15 days p.i. Only CD4+ T cells could control the severity of 

SK. Student’s t test (unpaired) was used for calculating the level of significance 

C. 5x105 Foxp3+ cells were transferred 24 hours before, 3 days or 6 days p.i.  and SK severity 

was recorded. Lesion scores and angiogenesis is shown at 10 days p.i. and 15 days p.i. No SK 

modulatory activity was shown by Tregs at 3 dpi transfer. P values were calculated with one way 

ANOVA using a Dunnet post test settings. 

D. Eye pictures of control and iTregs transfer recipient animals from a representative experiment 

when 5x105 and 1x106 Foxp3+ cells were transferred 24 hours before infection are shown.  E. 

The kinetics of the levels of proinflammatory cytokine IL-6 in cornea and DLN after ocular HSV 

I infection as determined by sandwich ELISA is shown. F-G. Indicated doses of iTregs were 

transferred at 3dpi in BALb/c animals and lesion severity  (F) and angiogenesis (F) were 

recorded at day 15 and compared with one way ANOVA using a Dunnet post test settings.  
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Figure 2. 8 Adoptively transferred Foxp3+KJ1.26+T cells were present in lymphoid and 

ocular tissues and diminished HSV-specific CD4+ T cell immune response. 

BALB/c animals were given 5x105 of  iTregs before 24 hrs or 3 days or 6 days p.i. of ocular 

HSV infection and 15 days pi DLNs, spleens and ocular tissues were examined for the presence 

of CD+Foxp3+ and KJ+ T cells. A. Representative FACS plots are shown.  B-D. BALB/c animals 

were given indicated numbers of iTregs before 24 hrs of ocular HSV infection and 15 days pi 

immune parameters were studied  B. Spleen size as an indication of generated immune response 

is shown in control and iTreg recipient animals. C. Total cellularity in the spleen (blank bars) and 

DLN (filled bars) of controls and Treg recipient animals is shown. D. Total number of IFN-

γ+CD4+ T cells in Spleen and LN of control and Treg recipients is shown. E-F. 5x105 iTregs 

were transferred into 12 animals which were then divided into four groups: naive, naïve + iTregs, 

Infected and Infected + iTregs. Animals in Naïve + iTregs and Infected + iTregs were given 

5x105 iTregs. After 24 hrs, animals from Infected and Infected + iTregs were infected with HSV 

1. All animals were given BrDU in DW for next 10 days. After 10 days spleens and draining 

cervical LNs were analyzed for the frequencies of host CD4+Foxp3+ or CD4+Foxp3- and donor 

CD4+KJ1-26+Foxp3+ cells that incorporated BrDU. Representative FACS plots for host cells (E) 

and donor cells (F) are shown.  
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PART-III 

ANTI-INFLAMMATORY EFFECTS OF FTY720 

AGAINST VIRAL INDUCED IMMUNOPATHOLOGY: 

ROLE OF DRUG INDUCED CONVERSION OF T CELLS 

TO BECOME FOXP3+ REGULATORS 
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This chapter is a slight modification of the research paper published in 2008 in The Journal of 

immunology by Sharvan Sehrawat and Barry T Rouse. 

 

Sehrawat, S and B. T. Rouse 2008. Anti-Inflammatory Effects of FTY720 Against Viral Induced 

Immunopathology: Role of Drug Induced Conversion of T Cells to Become Foxp3+ Regulators. 

J. Immunol. 180(11): 7636-47. Copyright © 2008 by The American Association of 

Immunologists, Inc. 

 

In this chapter ‘we’ and ‘our’ refer to co-author and me. My contributions in the paper include(1) 

Selection of the topic (2) Data analysis and interpretation (3) planning experiments (4) compiling 

and interpretation of literature (5) understanding how results fit into literature (6) providing 

structure to the paper (7) making graphs and figures (8) writing and editing 

 

Abstract 

FTY720 has been used to control inflammatory lesions but the mechanisms by which the 

drug acts in vivo are poorly understood. They may result primarily from effects on lymphocyte 

and dendritic cell homing to lymphoid and inflammatory sites. We demonstrate that FTY720 

may also act by causing the conversion of antigen stimulated non-regulatory CD4+ T cells to 

Foxp3+CD4+ regulatory T cells and enhances their suppressive activity. In a model in which 

mice were ocularly infected with HSV, daily treatment with FTY720 resulted in significantly 

diminished ocular lesions. The treated animals showed increased frequencies of Foxp3+ T cells 

in lymphoid organs and at two inflammatory sites viz. cornea and trigeminal ganglia. In a second 

series of experiments, immunized DO11.10RAG2-/- animals, normally lacking endogenous 
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Foxp3+ T cells, given FTY720 treatment developed high frequencies of Foxp3+ regulatory T 

cells in lymph nodes. Some converted cells persisted in treated animals for several weeks after 

drug administration was discontinued. Finally, FTY720 could effectively induce Foxp3 

expressing cells from Foxp3- cells in vitro, an effect inhibited by anti-TGF-β or  the 

proinflammatory cytokine IL-6. Accordingly, the anti-inflammatory effects of FTY720 could be 

mediated at least in part by its ability to cause the conversion of antigen stimulated conventional 

T cells to become Foxp3+ regulators. The use of FTY720 along with antigen administration 

could represent a useful therapeutic means to selectively expand antigen-specific regulators 

which could be valuable in many clinical situations such as allotransplants, some autoimmunties 

as well as with some chronic infections.  

 

Introduction 

The fungal metabolite drug FTY720, 2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-

diol, has been shown to control some autoimmunities and allergic diseases as well as to suppress 

transplant rejection and graft-vs-host disease (1). The drug is currently in phase III clinical for the 

treatment of multiple sclerosis (2). FTY720, upon phosphorylation, is known to mimic the action 

of sphingosine-1-phosphate (S1P) and acts as an agonist for four of the five S1P receptors (3). 

One outcome of such binding to lymphocytes is a change in their trafficking patterns, with cells 

migrating more into lymph nodes (LN) and their egress being impeded (4, 5). This may result in 

lymphopenia and limited access of lesion-orchestrating lymphocytes to inflammatory sites (6). 

Additionally, FTY720 may hamper dendritic cell migration into LNs as well as cytokine 

production, effects that could result in immunosuppression (7). There is also evidence that 
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FTY720 treatment may serve to increase the function of regulatory T cells (Tregs) (8, 9). 

Accordingly, it was shown that the exposure of CD4+CD25+ T cells from mice to the 

phosphorylated form of FTY720 resulted in their enhanced suppressive activity in an Ag-specific 

manner. Additionally, in a model of Th1-induced autoimmunity, animals treated with FTY720 

showed control over the onset and development of colitis. In the same study, an increase in the 

Foxp3 mRNA at the site of inflammation was also noted, but preferential migration of Foxp3+ T 

cells from elsewhere could not be excluded (9).  

In the present report, we have sought to determine whether FTY720 could cause the 

conversion of conventional Foxp3– T cells to Foxp3+ Tregs. In a model of virus-induced 

inflammatory disease caused by HSV infection of the mouse cornea, treatment with FTY720 

resulted in significantly diminished lesions. Furthermore, treated animals developed an expanded 

population of Foxp3+CD4+ T cells, although in this model it was not possible to define whether 

these cells were derived from preexisting Foxp3+ T cells or were converts from the Foxp3– 

nonregulatory CD4+ T cells. More direct evidence that FTY720 could function to cause the 

conversion of TCR-stimulated cells to Foxp3+ regulators was obtained in a TCR transgenic x 

RAG2–/– model, which lacked Foxp3+ T cells (10). Treatment of such animals after immunization 

with cognate Ag recognized by the TCR resulted in the induction of substantial numbers of 

Foxp3+ cells that were shown to express regulatory activity in vitro. Experiments in vitro with 

conventional T cells also showed that TCR activation in the presence of FTY720 and IL-2 

resulted in the conversion of most surviving cells into Foxp3+ T cells. This conversion did not 

require the addition of TGF-β in the cultures, although the mechanism by which FTY720 

induced the conversion appeared to depend on TGF-β because the process was inhibited when 

anti-TGF-β Ab was added to cultures.  
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Our results show that an additional means by which FTY720 succeeds in controlling 

inflammatory reactions is to cause the conversion of conventional T cells to become Foxp3+ 

regulators. The use of the drug along with Ag stimulation would represent a valuable means to 

achieve the selective expansion of a population of regulatory cells, which would be useful in 

clinical situations such as some autoimmunities, allotransplantation, and allergic diseases, as well 

as in some chronic infections. 

 

Materials and Methods 

Mice, virus, biological and pharmacological reagents  

Female 6- to 8-wk-old BALB/c DO11.10RAG2–/– mice were purchased from Taconic 

Farms, and Thy1.2+ BALB/c and CB.17 SCID mice were purchased from Charles River 

Laboratories. Foxp3-GFP knock-in animals were kindly provided by Dr. M. Oukka of Harvard 

Medical School. All animals were housed in Association for Assessment and Accreditation of 

Laboratory Animal Care-approved animal facilities. BALB/c DO11.10RAG2–/– and CB.17 SCID 

mice were kept in our specific-pathogen free facility. HSV-1 RE was provided by Dr. Robert 

Hendricks (University of Pittsburgh). It was propagated and titrated on Vero cells (ATCC 

CCL81) using standard protocols. The virus was stored in aliquots at –80°C until use. All Abs 

were purchased from BD Pharmingen unless otherwise stated. The Abs used for flow cytometery 

were DO11.10-PE (KJ1–26), CD4-APC (RM4–5), CD25-FITC (7D4), Foxp3-PE (FJK-16s), 

CD62L-FITC (MEL-14), CD103-FITC (M290), glucocorticoid-induced TNF receptor (GITR)-

FITC (DTA-1), CD45-APC (30-F11), and annexin V-APC. CD4-FITC (H129.9) was used for 

confocal microscopy. rhTGF-β1, rIL-6, anti-TGF-β1, 2, 3 Ab (1D11), and anti-CTLA-4 Ab 

(clone 6382) were obtained from R&D Systems. Anti-CD3 (145.2C11) and anti-CD28 (37.51) 
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were from BD Biosciences. rhIL-2 was obtained from Hemagen Diagnostics and FTY720 from 

Calbiochem. FTY720 was dissolved in ethanol at a concentration of 10 mg/ml, and before 

injecting into mice, a fresh solution was made in distilled water. For in vitro assays, FTY720 was 

dissolved in ethanol at 10 mg/ml concentration, and further dilution was made in RPMI 1640 

medium without additives at the time of use. SEW2871 and S1P were obtained from Cayman 

Chemical and were dissolved in DMSO and 0.3 N NaOH, respectively. OVA323–339 peptide was 

obtained from GenScript. CFSE was obtained from Molecular Probes and used at a final 

concentration of 0.5 µM for 15 min at 37°C in PBS. 

Corneal HSV-1 infections, clinical observations and treatment of mice with FTY720 

Six- to 8-wk-old BALB/c mice were ocularly infected under deep anesthesia with 5 x 105 

PFU HSV RE and divided randomly into four groups. Aminals in each group were treated with 

three doses (0.3, 1.0, and 3.0 mg/kg body weight (BW)) of FTY720 i.p. daily starting from 24 h 

postinfection (PI) until day 15 PI, respectively. In some experiments, FTY720 treatment of 

infected animals was done until day 5 or day 9. Mice were observed for the development and 

progression of herpetic stromal keratitis (SK) lesions and angiogenesis from day 5 until day 15, 

as described elsewhere (11). The eyes were examined on different days PI and the clinical 

severity of keratitis and angiogenesis of individually scored mice was recorded. The scoring 

system was as follows: 0, normal eye; 1, mild corneal haze; 2, moderate corneal opacity, iris 

visible; 3, severe corneal opacity, iris invisible; 4, opaque cornea, ulcer formation; and 5, 

necrotizing SK. All experiments were repeated at least three times. All experimental procedures 

were in complete agreement with the Association for Research in Vision and Ophthalmology 

resolution on the use of animals in research. 
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Induction of Foxp3 in Foxp3-CD4+ T cells by FTY720 in-vivo in immunized DO11.10 

RAG2-/- mice 

Six- to 8-wk-old DO11.10RAG2–/– mice were immunized i.p. with 50–100 µg of 

OVA323–339 in CFA and divided into four groups. Animals in three groups were given 0.3, 1, and 

3 mg/kg BW of FTY720 i.p., respectively, every alternate day for 15 days while the fourth group 

was given same volume of diluent. Another group of mice was injected with PBS with CFA and 

was given the above-mentioned doses of FTY720. Additionally, some immunized and FTY720- 

(0.3 mg/kg BW) treated animals (n = 3) were given 250 µg of anti-TGF-β (1D11) Ab i.p. at days 

3, 6, and 10. For some experiments, immunized animals were also treated with SEW2871 (0.3, 1, 

and 5 mg/kg BW) following the same protocols as those with FTY720. For some of the 

experiments, DO11.10RAG2–/– mice were immunized in the foot pad with 5 µg of OVA 

emulsified with CFA in 30 µl volume. Lymphoid tissue samples were collected at different 

intervals and analyzed for the expression of Foxp3, CD25, and CD4+ T cells. 

In-vitro suppression assay 

DO11.10RAG2–/– mice were immunized with an emulsion of OVA323–339 and CFA and 

treated with FTY720 as described in the previous section. In vitro suppression assays were done 

with CD4+CD25+ T cells isolated from the proximal (iliac and mesenteric) and distal (cervical, 

axillary, and superficial inguinal) LNs of immunized and FTY720-treated DO11.10RAG2–/– mice 

using homologous CD4+CD25– T cells and T-depleted splenocytes. Additionally, to examine the 

enhancement of suppressive activity of Tregs by FTY720, DO11.10 animals were immunized 

and some were treated with FTY720 for 15 days. CD4+CD25+ T cells were isolated from pooled 

LNs (cervical, axillary, superficial inguinal, mesenteric, and iliac) of all of these animal groups 

using a regulatory T cell isolation kit (Miltenyi Biotec) as per the manufacturer’s instructions. 



 97

CD4+CD25– T cells were isolated either from pooled LNs (cervical, axillary, superficial inguinal, 

mesenteric, and iliac) and spleens of naive DO11.10RAG2–/– mice or from those of DO11.10 

animals and labeled with CFSE (0.5 µM). CD4+CD25– T cells (1 x 105) from either 

DO11.10RAG2–/– or DO11.10 mice were cultured with a 2-fold serial dilution of CD4+CD25+ T 

cells and 2 x 105 irradiated Thy1.2-depleted splenocytes isolated from either DO11.10RAG2–/– or 

DO11.10 mice, respectively, in the presence of 1 µg/ml soluble anti-CD3. Dilution of CFSE in 

stained CD4+ T cells was analyzed by flow cytometry after 72 h of incubation. For analysis of 

CFSE dilution, the first gate was applied on CD4+ T cells. Of these cells, CFSE+CD4+ T cells 

were then gated and the dilution of the intensity of CFSE was analyzed. In some of the 

experiments, 1 µCi of tritiated thymidine was added after 48 h of incubation, and levels of 

incorporation were measured 16 h later in a PerkinElmer Top Counter. 

In vitro generation of Foxp3+ T cells 

A modification of Chen et al.’s in vitro culture system (12) was developed for the 

induction of Foxp3 in naive precursor CD4+CD25– T cells isolated from DO11.10RAG2–/– mice, 

which lack their own Foxp3+ T cells (10). Total splenocytes (2 x 106) after RBC lysis and several 

washings were cultured in 1 ml volume with previously optimized doses of plate-bound anti-CD3 

Ab (0.125 µg/ml in 200 µl volume), rIL-2 (25 U/ml), and TGF-β (10 ng/ml) for 5 days at 37°C in 

a 5% CO2 incubator in 48-well plates. In other cultures, in place of TGF-β, various 

concentrations of FTY720 added daily along with IL-2 (25 U/ml) were used. In some of the 

experiments, CD4+CD25– T cells purified from DO11.10RAG2–/– animals and T-depleted 

irradiated splenocytes were cultured with plate-bound anti-CD3, 1 µg/ml soluble anti-CD28 Ab, 

rIL-2, and FTY720 (10 ng/ml added daily). After 5 days, cells were characterized phenotypically 

by flow cytometry. In some experiments, the induction of Foxp3 in Foxp3–CD4+ T cells was 
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analyzed at different time points after the initiation of culture. Some of the cultures began with 

CFSE-labeled splenocytes. In such cultures, dilution of CFSE was analyzed after 5 days of 

incubation. In some experiments involving Foxp3 induction, anti-TGF-β1, 2, 3 Ab at a 

concentration of 15 µg/ml was used to effectively neutralize TGF-β production (13). In other 

experiments, rIL-6 (35 ng/ml) was used in an attempt to abrogate Foxp3 induction (14). For some 

experiments, various doses of SEW2871 (1, 10, and 100 ng/ml) and S1P (10–6, 10–7, 10–8 M) 

were added every 24 h instead of FTY720 into the cultures of splenocytes. 

Cell sorting and transfer  

CD4+ T cells were first purified from Foxp3-GFP knock-in animals using a CD4+ T cell 

isolation kit, and 2 x 106 cells were transferred into nine CB.17 SCID animals. One group of 

three animals was then treated with 0.3 mg/kg BW of FTY720 and another group with 3 mg/kg 

BW for 15 days daily. All animals were subsequently analyzed for the proportion of GFP+CD4+ 

and GFP–CD4+ T cells in various lymphoid tissues. In some experiments, purified CD4+ T cells 

were sorted into Foxp3-GFP+ and GFP–CD4+ T cells by a FACSVantage cell sorter (BD 

Biosciences) and were then activated in vitro for 2 days using anti-CD3 and anti-CD28 mAbs in 

the presence of IL-2. These cells were then mixed in 1:10 ratio (GFP+ and GFP–) and 2 x 106 

cells transferred into CB.17 SCID animals, which were then treated with FTY720 and analyzed 

as described above.  

Flow cytometry 

In vitro cultured cells, LN cells, splenocytes, peripheral blood cells, and peritoneal 

exudate cells were first blocked with anti-CD32/16 mAb for 30 min and then were reacted with 

fluorochrome-labeled Abs as per the manufacturer’s instructions. For Foxp3 staining, a kit from 

eBioscience was used. Annexin V staining was done using a kit from BD Biosciences. For some 
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of the experiments, corneas and trigeminal ganglias (TGs) were excised, pooled groupwise, and 

digested with 60 U/ml Liberase (Roche Diagnostics) for 60 min at 37°C in a humidified 

atmosphere of 5% CO2 as described earlier (15). After incubation, the corneas and TGs were 

disrupted by grinding with a syringe plunger on a cell strainer, and a single-cell suspension was 

made in complete RPMI 1640 medium. Cells were then stained as described above and were 

acquired and analyzed by flow cytometery on a BD FACSCalibur using CellQuest Pro or FlowJo 

softwares. 

Immunflorescence and ELISA 

Eyes were removed and frozen in OCT compound at 15 days p.i. Six-micrometer-thick 

sections were cut, air dried, and fixed in cold acetone for 5 min. The sections were then blocked 

with 3% BSA and analyzed by confocal microscopy for the presence of CD4+ T cells.  

The concentrations of TGF-β and IL-17 produced in in vitro cultures were quantified by 

sandwich ELISA using kits from R&D Systems. Culture supernatants were acidified before use 

in the TGF-β ELISA.  

Statistical analysis 

Statistical significance was determined by Student’s t test. A p value of <0.05 was 

regarded as a significant difference between groups *, p 0.05; **, p 0.01; ***, p 0.001. 

GraphPad Prism software was used to calculate the statistical significance. 

 

Results 

FTY720 administration diminishes the severity of herpes virus induced ocular lesions 

We evaluated the disease-modulating activity of FTY720 against SK induced by ocular 

infection by HSV. As is evident in Fig. 3.1, A and B, infected animals treated daily with various 
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doses (0.3, 1, and 3 mg/kg BW) of FTY720 (starting 24 h PI and continued until the experiments 

were terminated on day 15) developed significantly fewer stromal lesions and angiogenesis than 

did untreated infected controls in a dose-dependent manner, with maximum suppression being 

evident at 3 mg/kg BW dose of FTY720. For most of the subsequent experiments, a dose of 3 

mg/kg BW was used. The kinetics of lesions and angiogenesis expression at a dose of 3 mg/kg 

BW are shown in Fig. 3.1, C and D. The incidence of infected eyes with a lesion severity score of 

3.0 was significantly higher in controls as compared with FTY720-treated animals (Fig. 3.1E). 

An analysis of serial corneal sections by confocal microscopy revealed diminished CD4+ T cell 

infiltration in FTY720-treated animals compared with untreated controls (Fig. 3.1F). Four 

corneas from eyes with scores representing the group average were pooled from both treated and 

control animals at day 10 and day 16 PI. These were analyzed by flow cytometry (after 

collagenase digestion) for the presence of CD4+ T cells. Such experiments were done separately 

at least three times and the data are shown in Fig. 3.1, G and H, at 16 days PI (DPI). Reduced 

total numbers of CD4+ T cells were present in FTY720-treated animals, but the proportion of the 

CD4+ T cells that were Foxp3+ was increased (Fig. 3.1, G and H). In the same experiment, 

infiltration of CD4+ T cells was found to be reduced in the trigeminal ganglion while the 

proportion of Foxp3+ T cells increased, showing that FTY720 treatment decreases the infiltration 

of CD4+Foxp3– T cells but increases that of CD4+Foxp3+ at both sites of inflammation caused by 

HSV-1. 

FTY720 treatment after infection results in increased frequencies of CD4+CD25+Foxp3+ T 

cells 

That CD4+ T cell infiltrates were diminished and lesions suppressed in treated animals 

could well be the consequence of the known ability of FTY720 to limit access of inflammatory T 
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cells to lesion sites (6). However, as mentioned above, in ocular tissues there was an increased 

frequency of Foxp3+ T cells in treated animals. Accordingly, the anti-inflammatory effect of 

FTY720 might be mediated, at least in part, by a differential effect on Foxp3+ T cells. To assess 

this possibility, spleens and LNs were collected at different time points PI from treated and 

control animals to quantify and measure the phenotypes of CD4+ T cells. The results of a typical 

experiment when the animals were treated with 0.3 (Fig. 3.2B) and 3.0 mg/kg BW (Fig. 3.2, A 

and B) are depicted. As is apparent at both days 9 and 16 PI, Foxp3+CD4+CD25+ T cells were 

increased in frequency in both the draining cervical LN as well as distal LNs, but not in the 

spleen, especially at the early time point (Fig. 3.2, A and B). These frequency differences were 

more apparent at earlier time points and were in fact already evident by 5 days PI (see Fig. 3.3). 

Other experiments also measured and compared the expression of additional phenotypic markers 

involved in lymphocyte homing on both Foxp3+ and Foxp3–CD4+ T cells of treated and control 

LN cells. Of the markers measured (CD62L, CD103, and CD49d), the most dramatic differences 

were observed with CD103 expression on Foxp3+ (but not Foxp3–) cells. Expression was 

increased 6- to 7-fold in both draining LN and spleen on Foxp3+ cells from treated animals (Fig. 

3.2C). This observation could explain why Foxp3+ cells were enriched in the ocular and TG 

inflammatory tissues of treated animals, because CD103 is known to be a tissue-homing 

molecule (16). Another homing molecule, CD49d, shown previously to be expressed on most 

inflammatory cells that infiltrate the eye (15), showed no significant changes in expression levels 

as a consequence of FTY720 treatment (Fig. 3.2C). 

Additional experiments measured the numbers of Foxp3+ and Foxp3–CD4+ T cells 

recoverable from the spleen and LNs at various times after infection of control and FTY720-

treated animals. In such experiments, FTY720 treatment resulted in decreased numbers of CD4+ 
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T cells, especially in the draining LNs and spleen, but the ratio of Foxp3+:Foxp3– cells increased 

(Fig. 3.3A). These results could mean either that FTY720 caused greater retention of Foxp3+ cells 

than conventional T cells in LNs (an unexpected outcome because Foxp3+ cells were reported by 

others to express low levels of the S1P receptors involved in LN retention (5)) or that events such 

as differential apoptosis or the conversion of some TCR stimulated Foxp3– into Foxp3+ cells. To 

look for the preferential retention of Foxp3+ cells over Foxp3– cells in lymphoid organs under the 

influence of FTY720 treatment, CD4+ T cells (having both fractions of CD4+Foxp3+ and 

CD4+Foxp3–) purified from Foxp3-GFP knock-in animals were transferred into SCID animals, 

which were then treated with two different doses (0.3 and 3 mg/kg BW) of FTY720 daily for 15 

days. The lymphoid organs were analyzed after 15 days for the proportion of GFP+ and GFP– 

CD4 T cells. Such experiments showed a trend for the preferential retention of Foxp3+ cells over 

Foxp3–CD4 T cells, but the differences were not significant (Fig. 3.3B). This result could be 

because Foxp3+ T cells could undergo more homeostatic proliferation than Foxp3–CD4+T cells 

under the influence of FTY720. In some of the experiments, sorted Foxp3+ and Foxp3– CD4+ T 

cells were separately activated in vitro for 2 days in the presence of anti-CD3, anti-CD28 mAbs, 

and IL-2 and were then transferred in a 1:10 ratio (Foxp3+-Foxp3–) into SCID recipients. 

Subsequently, the proportions of Foxp3– and Foxp3+ cells were analyzed in lymphoid tissues 

after 15 days of FTY720 treatment. Such experiments revealed no significant differences in the 

proportions of Foxp3– and Foxp3+ T CD4+ T cells in the FTY720-treated and control animals, 

indicating that differential retention of either cell types in the lymphoid organs did not occur 

(data not shown).  

Looking at the differential apoptosis of Foxp3– cells over Foxp3+ cells, we used Foxp3-

GFP knock-in mice that were infected with HSV-1, with some being treated with FTY720 (either 
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0.3 or 3.0 mg/kg BW). After 15 days, draining and distal (superficial inguinal) LNs were 

analyzed for evidence of apoptosis in Foxp3+ and Foxp3–CD4+ T cells. We could find no 

evidence for differential apoptosis of either Foxp3– or Foxp3+ cells in treated vs control animals 

(Fig. 3.3C). However, a trend in increased apoptosis of Foxp3–CD4+ T cells was observed in the 

nondraining LNs, which could result from the suppressive effects of Tregs on effector T cells, as 

the former are present more abundantly in the nondraining LNs than in draining cervical LNs. In 

a separate experiment, when HSV-1-infected animals were treated with FTY720 after day 8 PI, a 

time when viral Ags were no longer present, we did not find increased frequencies of 

Foxp3+CD4+ T cells. This finding could support the idea that FTY720 causes the conversion of 

TCR-stimulated conventional T cells to become Foxp3+ regulators 

Animals without Foxp3+ T cells exposed to antigen in the presence of FTY720 develop 

Foxp3+ T cells 

Evidence that TCR-stimulated Foxp3–CD4+ T cells may convert to Foxp3+ regulatory 

cells was obtained in TCR transgenic x RAG2 –/– mice, which are well known to lack Foxp3+ T 

cells (10). This observation was also confirmed in our studies (Fig. 3.4A). In these experiments, 

DO11.10RAG2–/– mice were immunized i.p. with OVA323–339 peptide in CFA, and some animals 

were additionally treated on alternate days with various doses (0.3, 1.0, or 3.0 mg/kg BW) of 

FTY720 starting 24 h after immunization. Experiments were usually terminated on day 15 to 

assess the presence of Foxp3+CD4+ T cells in various lymphoid tissues. Whereas a few Foxp3+ T 

cells were induced in immunized but untreated animals, Foxp3+ cells accounted for a major 

percentage of CD4+ T cells in those animals given FTY720 (Fig. 3.4A). In fact, such cells were 

present in surprisingly high frequencies (Fig. 3.4B) both in LNs proximal to the site of 

immunization (iliac and mesenteric) as well as in distal (cervical, axillary, and superficial 
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inguinal) LNs. The increase in Foxp3+ T cell percentages followed a dose dependency of 

FTY720 treatment, with the highest frequencies being observed at 3 mg/kg BW. Among CD4+ T 

cells, the average frequencies of Foxp3+CD4+ T cells were 63% in cervical (range 55–75%), 60% 

in axillary (range 52–65%), 48% in superficial inguinal (range 36–52%), 15% in iliac (range 12–

25%), and 10% in mesenteric (range 6.8–15%) LNs (Fig. 3.4B). Lesser frequencies of 

CD4+Foxp3+ T cells were evident in the spleen (range 2–6%) (Fig. 3.4, A and B). The absolute 

numbers of Foxp3+ T cells in various organs vary, but they were significantly higher in cervical, 

axillary, and superficial inguinal LNs of FTY720-treated animals as compared with controls (Fig. 

3.4C). Some experiments were terminated at day 5 after FTY720 treatment. Some converted 

cells were already present at this time (up to 20% of CD4+ T cells were Foxp3+). In other 

experiments, lymphoid tissues were examined at 40 DPI (FTY720 treatment ended at day 30) 

and at day 75 PI (FTY720 treatment ended at day 15). In such animals up to 20–30% and 5–10%, 

respectively, of CD4+ T cells were Foxp3+ in all lymphoid organs including the spleen, indicating 

that the converted cells may redistribute among all LNs and spleen in the absence of FTY720 

treatment and persist for a prolonged period.  

Some experiments were performed with DO11.10RAG2–/– mice to investigate the 

mechanisms involved in the induction of Tregs with FTY720. Thus, DO11.10RAG2–/– mice 

immunized with OVA peptide were treated every alternate day with SEW2871 (0.3, 1 and 5 

mg/kg BW), a specific agonist of the S1P1 receptor. After 15 days, animals were sacrificed and 

lymphoid tissues were analyzed for CD4, CD25, and Foxp3. As shown in Fig. 4.4D, animals 

develop increased frequencies of Foxp3+ T cells as compared with untreated animals, but these 

frequencies were far less than those found in FTY720-treated animals. This may be because 

FTY720 engages more than just the S1P1 receptor. Additional experiments were done to see 
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whether TGF-β blocking in vivo could have some effects on the accumulation of Tregs. Anti-

TGF-β1, 2, 3 mAb (250 µg/ml) was injected i.p. at days 3, 6, and 10 in immunized and FTY720-

treated animals. Lymphoid tissues were collected after 15 days and analyzed for 

CD4+CD25+Foxp3+ T cells. TGF-β-neutralized animals developed significantly fewer Tregs as 

compared with control animals (Fig. 3.4B).  

Curiously, the highest frequencies of Foxp3+CD4+ T cells induced in immunized 

FTY720-treated animals were usually in LNs that were not considered as draining LNs to the 

immunization site. This pattern of events was also evident as early as 5–7 days after 

immunization and was also seen when the site of immunization was in the neck region (data not 

shown). At present, we have no explanation for these observations, but they may reflect Ag 

dissemination to distal sites, especially following i.p. immunization along with inhibition of 

Tregs by inflammatory cytokines that are likely to be more abundant in the local LNs. In 

additional experiments, Ag was given in the foot pad, which we surmised might limit the spread 

of Ag to distal LNs. However, even with these experiments, increased frequencies of Foxp3+ T 

cells were found in non-draining LNs (36 ± 8% in CLN, 28 ± 4% in sup Ig LN) as compared 

with draining popliteal LNs (10 ± 4.3%). Understanding why distal tissues develop more Foxp3+ 

cells requires further investigation.  

In vivo converted Foxp3+CD25+CD4+ T cells express regulatory activity 

To demonstrate that FTY720-converted Foxp3+ cells in DO11.10RAG2–/– mice expressed 

regulatory activity in vitro, CD4+CD25+ T cells were isolated from both the proximal and distal 

LNs 15 days after immunization of FTY720-treated animals. Of these CD25+ cells, >90% were 

additionally Foxp3+ (Fig. 3.5A). As is evident from Fig.3.5B, the CD4+CD25+ T cells isolated 

from both proximal and distal LNs suppressed in a dose-dependent manner the proliferation of 
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anti-CD3-stimulated, CFSE-labeled CD4+CD25– T cells isolated from pooled spleens and LNs of 

DO11.10RAG2–/– naive animals. It was interesting to observe differences in the levels of CD25 

on Foxp3+ T cells among proximal and distal LNs, with cells isolated from distal LNs showing 

lower levels of CD25 expression. This observation might be explained by the differential 

availability of cytokines in the draining vs non-draining LNs that drive CD25 expression, but 

these issues require further investigation. Despite differences in CD25 levels, the in vitro 

suppressive activity of Tregs isolated from these sites was not significantly different. 

Experiments were also done to compare the in vitro regulatory activity of CD4+CD25+ T cells 

isolated from immunized and immunized plus FTY720-treated immunocompetant animals, which 

do have naturally occurring Tregs. For this purpose, DO11.10 animals were used. CD4+CD25+ T 

cells were isolated and pooled from cervical, axillary, superficial inguinal, mesenteric, and iliac 

LNs of both groups. Approximately 80% of these cells also expressed Foxp3 (Fig. 3.5C). The 

responder cells (CD4+CD25–) were isolated from pooled spleens and LNs of DO11.10 naive 

animals. As shown Fig. 3.5D, the CD4+CD25+ T cell population from FTY720-treated animals 

showed higher in vitro activity than did those from untreated animals in a dose-dependent 

manner. Thus, in addition to expanding the population of Tregs, the cells also appear to show 

enhanced regulatory activity when measured in vitro. In a previous report, FTY720 treatment of 

CD4+CD25+ Tregs in vitro was shown to enhance their regulatory activity (8). 

FTY720 can induce Foxp3 expression in antigen stimulated CD4+ T cells in vitro 

Our above in vivo experiments indicate that CD4+ T cells may be converted to express 

Foxp3 and become regulatory when Ag stimulated in the presence of FTY720. To establish more 

directly whether FTY720 can cause Foxp3– cells to convert to Foxp3+, in vitro experiments were 

performed. In such experiments, whole splenocytes from naive DO11.10RAG2–/– animals were 
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stimulated with plate-bound anti-CD3 either in the presence of optimal amounts of TGF-β (our 

unpublished data) or with varying concentrations of FTY720, both along with human rIL-2. 

FTY720, which is less stable in aqueous solution, was added to the cultures every 24 h. As 

shown in Fig. 3.6A, 77% (range for >10 experiments of 75–94%) of viable CD4+ T cells became 

Foxp3+ after 5 days of culture in the presence of TGF-β. In cultures containing FTY720, 54% 

(range for five experiments of 30–55%) of CD4+ T cells became Foxp3+. The optimal FTY720 

concentration was found to be 10 ng/ml when added daily (Fig. 3.6B). The in vitro-generated 

Foxp3+ T cells were also analyzed for other phenotypic markers. Most cells were additionally 

CD25+, CD62Lhigh, and GITR+, showing essentially the same phenotype as TGF-β-converted 

cells (Fig. 3.6E). However, the expression of CD103 was delayed, and maximal numbers of 

Foxp3+ cells become CD103+ after 6 days of incubation. In some experiments, cells were tested 

for Foxp3 conversion at different times after culture initiation. As shown in Fig. 3.6C, some 

conversion could be detected at day 2, but numbers increased over the culture period, reflecting 

perhaps the conversion of a new subpopulation each time the FTY720 was added. However, the 

observation could also reflect the proliferation of already converted cells. That proliferation of 

Foxp3+ cells was occurring was shown when CFSE-labeled splenocytes were stimulated with 

anti-CD3 and IL-2 in the presence of FTY720. The newly differentiated Foxp3+ T cells 

underwent multiple rounds of divisions (Fig. 3.6D). Therefore, FTY720 in the presence of IL-2 

causes differentiation as well as proliferation of Tregs in vitro. 

FTY720 mediated Foxp3 induction is TGF-β dependent 

 At present, we have no understanding as to the mechanism by which FTY720 induces 

TCR-stimulated T cells to express Foxp3. It is known, however, that FTY720 binding to the S1P1 

receptor may trigger some downstream events that are in common with those induced by TGF-β 
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(17, 18). The results expressed in Fig. 7A indicate that the mechanism by which FTY720 acts 

may in fact involve TGF-β. Thus, the addition of neutralizing anti-TGF-β1, 2, 3 Abs to culture 

stimulated with FTY720 markedly inhibited the percentage of CD4+ T cells that became Foxp3+ 

(Fig. 3.7, A and B). Additionally, supernatants of FTY720-stimulated cultures were shown to 

contain higher concentrations of TGF-β than the control supernatants, an effect that was 

dependent on the dose of FTY720 used (Fig. 3.7C). Accordingly, the mechanism by which 

FTY720 induces Foxp3 expression in CD4+ T cells may proceed via the induction of TGF-β. The 

source of TGF-β in the splenocyte culture seems to be accessory cells, as no conversion was 

observed when purified populations of CD4+ T cells were stimulated with anti-CD3 and anti-

CD28 Abs in the presence of FTY720 and IL-2 (data not shown). This notion was further 

supported by experiments wherein neutralization of CTLA-4 was achieved using anti-CTLA-4 

Ab in the FTY720 induction cultures. With CTLA-4 neutralization, the frequencies of cells 

expressing Foxp3 were reduced significantly (Fig. 3.7B). However, the cell type involved in 

secreting TGF-β remains to be identified.  

It has been suggested that proinflammatory cytokines such as IL-6 could neutralize the 

effect of Foxp3 induction and, along with TGF-β, induce the IL-17-producing cells (14). 

Therefore, we examined the effect of IL-6 addition in the FTY720 Foxp3-converted cultures. In 

such experiments, the addition of IL-6 to such FTY720-induced cultures markedly reduced the 

formation of Foxp3+ T cells, while at the same time such addition led to the induction of some 

cells in the cultures that produced IL-17 (Fig. 3.7, B and D). The observation that IL-6, and 

perhaps other inflammatory cytokines, may inhibit the induction of Foxp3+ T cells may explain 

in part why the frequency of Foxp3+ cells in the draining LNs, where cytokines are more likely to 
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be present especially early after infection or immunization, was less than in some distal LNs. 

These issues are under further investigation.  

Some experiments were done to investigate the role of other S1P receptor agonists such 

as SEW2871 and S1P in the Foxp3 induction process. These compounds were added daily to the 

in vitro cultures of anti-CD3- and IL-2-stimulated splenocytes, which were then analyzed after 5 

days for the expression of Foxp3+ in CD4+ T cells. Such experiments showed a small but 

significant increase in the Foxp3+ T cells with SEW2871 treatment, but these numbers were not 

significant with S1P (Fig. 3.7E).  

 

Discussion 

The present report documents the efficacy of FTY720 in inhibiting the severity of 

immunoinflammatory lesions caused by ocular infection with HSV. Our results showed that the 

use of the drug after infection significantly reduced disease, an effect that could be the 

consequence of the well-documented ability of FTY720 to retain T cells and some other cell 

types in LNs, thereby diminishing their access to tissue sites of inflammation (6). However, we 

also noted an expansion of Foxp3+ Tregs in the FTY720-treated animals, which could also 

explain, at least in part, the reduced lesions in the FTY720-treated animals because SK lesion 

severity is known to be influenced by naturally occurring Tregs (15). We interpreted our 

observations to mean that the source of the expanded Foxp3+ population could represent 

conversion of Ag-stimulated conventional CD4+ T cells to become Foxp3+ and regulatory in 

function.  

More direct evidence that FTY720 could cause the conversion of Foxp3– to Foxp3+ T 

cells was obtained by additional in vivo and in vitro studies. The in vivo evidence came from the 
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use of TCR transgenic x RAG2–/– mice, which are known to possess few if any Foxp3+ Tregs 

(10). Exposure of such animals to Ag along with FTY720 treatment resulted in the development 

of high frequencies of Foxp3+CD4+ T cells in many LNs. Finally, the most convincing evidence 

that exposure of Ag-stimulated Foxp3–CD4+ T cells could be converted by exposure to FTY720 

to become Foxp3+ Treg came from in vitro studies. Accordingly, the addition of FTY720 daily to 

TCR-stimulated Foxp3– T cells in the presence of IL-2 resulted in the conversion of substantial 

numbers of cells to Foxp3+ over a 5-day culture period. This conversion did not require the 

addition of extraneous TGF-β, although the conversion process could involve the induction of 

TGF-β because the addition of anti-TGF-β Ab to cultures markedly diminished the production of 

Foxp3+ T cells. The effect of TGF-β neutralization on accumulation of Foxp3+ T cells was also 

evident in in vivo experiments. The use of FTY720 given along with Ag could represent a useful 

way to achieve the selective expansion of Ag-specific regulators, which could be valuable in 

many clinical situations such as allotransplants, some autoimmunities, as well as with some 

chronic infections.  

One curious observation we made in both FTY720-treated HSV infected and immunized 

DO11.10RAG2–/– animals was that the frequency of Foxp3+ T cells was usually higher in LNs 

distal to the site of infection or immunization than was evident in the proximal LNs, which likely 

took up most of the Ag. At present, we have no explanation for this observation, but it could 

reflect differential redistribution of Foxp3+ and CD4+ effectors from the proximal LN site of 

induction. This might occur, as others have reported that naturally occurring Tregs express lower 

levels of the S1P receptors involved in LN retention than other T cell subsets (8). This could 

mean that Tregs are less likely than activated effectors to be retained in the proximal LNs, 

especially during FTY720 treatment, and hence are more able to disseminate to other sites. An 
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alternative idea is that Tregs at proximal sites may be partially blunted by proinflammatory 

cytokines that could be present at higher concentrations in proximal LNs, especially early after 

infection and immunization. A third explanation may relate to the levels of Ag available to 

induce Foxp3+ Tregs at proximal and distal sites. In this context, others have shown that very low 

levels of Ag may be more effective at inducing Foxp3+ Tregs than are higher doses (19, 20). 

Such low levels, possibly conveyed there by dendritic cells, are likely to be present at distal sites 

compared with those in the proximal LN. Additional experiments are under way in an attempt to 

explain high frequencies of Foxp3+-converted cells in distal LNs.  

Although our in vitro studies demonstrate that FTY720 may induce the conversion of 

TCR-stimulated conventional T cells into Foxp3+ regulators, the mechanism by which this occurs 

remains to be explained. The conversion process did not require the addition of TGF-β, but the 

mechanism could involve the induction of TGF-β either in the converting T cells themselves or, 

as we consider more likely, in accessory cells in the cultures. Such accessory cells might also be 

responsible for phosphorylation of the drug, which appears to be a necessary step for it to bind 

effectively to the S1P receptors (3, 21). We are currently attempting to determine which cells 

types in our culture system act as the source of the sphingosine kinases involved in the FTY720 

phosphorylation or whether this activity is independent of the phosphorylation state of the drug, 

as has been reported for some activities of FTY720 (22).  

Our studies also indicate that one means by which the FTY720-induced Foxp3 

conversion occurred could involve TGF-β induction as an intermediate step. In support of this, 

fluids in FTY720-treated cultures contained higher levels of TGF-β than found in control 

cultures. Moreover, the addition of neutralizing Abs to TGF-β markedly diminished the FTY720-

induced conversion process. It was also of interest that in cultures that contained IL-6, but no 
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TGF-β, the addition of FTY720 resulted in the induction of increased amounts of IL-17 

production compared with cultures lacking FTY720. This observation may also argue that 

FTY720 functions by causing the production of TGF-β from some cell types, because this 

cytokine, along with IL-6, is known to be a stimulus for Th-17 cell induction (14). The 

observation might also mean that FTY720 will be a better inducer of Foxp3+ Tregs if used when 

levels of proinflammatory cytokines are low.  

Sakaguchi et al.’s seminal observations in the mid-1990s (23) reawakened interest in 

Tregs and opened up the prospect of using these cells immunotherapeutically. However, in 

normal individuals, most Foxp3+ Tregs are considered to be thymus-derived and are largely 

reactive to a range of self Ags (24). For therapeutic purposes, it would be preferable to use Tregs 

of known Ag specificity so as to increase potency and avoid potential side effects of inhibiting 

desirable immune responses (25). Some have expanded specific self-reactive Tregs in vitro and 

demonstrated in vivo efficacy using adoptive transfer approaches (25). Such approaches, 

however, are cumbersome and extremely expensive. A better way would be to expand the Treg 

population in vivo to the Ag of choice. This may be accomplished by approaches such as the one 

we have described in the present report wherein Foxp3+ cells with regulatory function are 

converted from conventional Ag-stimulated nonregulatory precursors. That such conversion can 

be accomplished was appreciated some time ago by the Horwitz and Wahl groups who showed 

that TGF-β stimulation was a key event for the conversion process (12, 26). This was supported 

by elegant studies from Bettelli and colleagues, who defined in vitro conditions to generate Ag-

specific Foxp3+ Tregs as well as proinflammatory IL-17-producing cells (14). More recently, 

several independent groups observed that retinoic acid may also be involved in the Foxp3 

conversion process (13, 27, 28, 29). At least with mouse T cells, conversion by retinoic acid 
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additionally requires TGF-β stimulation (13, 27, 28, 29), but this may not be the case with human 

cells (30). Recently, other molecules have also been shown to facilitate the conversion of Ag-

stimulated conventional T cells to become Foxp3+ regulators (31, 32).  

We would argue that the approach we have described in this report represents a valuable 

one in terms of therapy for chronic inflammatory diseases. Thus, as is well known, FTY720 has a 

potent anti-inflammatory activity because of its known effect on lymphocyte sequestration (4). 

However, its ability to expand and activate Foxp3+ Tregs to an Ag of choice could prove 

particularly useful, because this should avoid the unwanted side effects that polyclonal Treg 

populations might exert. It will be particularly important to determine how long FTY720-

converted cells remain in the body as functional regulators after treatment has been discontinued. 

So far, we have only studied animals up to 10 wk posttreatment and found that some cells with 

the converted phenotype are still present. Further long-term studies are currently under way.  
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Figure 3. 1 FTY720 treatment diminishes SK lesion severity and increases the 

representation of Foxp3+CD4+ T cells at inflammatory sites 

BALB/c mice were infected ocularly with 5x105 HSV I (RE) and some were additionally treated 

with FTY720 daily from 24 hrs until day 15 p.i. as described in Materials and Methods. Lesion 

severity (A) and angiogenesis (B) were scored. The lesion severity and angiogenesis were 

diminished in FTY720 treated animals. The incidence of HSK 15dpi is shown (positive if score ≥ 

3.0) (C). D. Representative corneal sections were stained for CD4+ T cells (see arrows) and 

analyzed by confocal microscopy 15dpi. (E) Single cell suspension was made from the cornea 

and trigeminal ganglias (TGs) digested with liberase and stained for Foxp3, CD4 and CD45 

(leukocyte marker) 10 days post infection.  Representative FACS plots from pooled corneas (left 

panel) and TGs (right panel) of control and FTY720 treated animals are shown (Gated on 

CD45+CD4+ cells). The proportions of Foxp3+CD4+ T cells was increased both in corneas and 

TGs of FTY720 treated animals  
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Figure 3. 2 FTY720 treatment early after ocular HSV infection increases the frequencies 

and alters the phenotype of CD4+CD25+Foxp3+ T cells in lymphoid organs.  

Lymphoid organs (spleens and LNs) from control and FTY720-treated BALB/c animals (as in 

Fig. 1) were processed at day 9 and day 16 PI and analyzed by flow cytometry. A, Representative 

FACS plots for the staining of CD4, CD25, and Foxp3 from spleen and draining (cervical), and 

distal (superficial inguinal) LNs of control and FTY720-treated (3 mg/kg BW) animals are 

shown at days 9 (left panel) and 16 PI (right panel) (gated on CD4+ T cells). B, Relative 

frequencies of CD4+CD25+Foxp3+ T cells in spleen and draining (cervical) and distal (superficial 

inguinal) LNs as measured by flow cytometry at 9 (left panel) and 16 DPI (right panel) are 

shown. The frequencies of CD4+CD25+Foxp3+ T cells are increased in the lymphoid organs. The 

statistical significance was determined by Student’s t test. C, Expression of CD62L, CD103, and 

CD49d was examined at day 16 PI on Foxp3+ and Foxp3–CD4+ T cells obtained from the spleens 

and draining LNs of control and FTY720-treated animals (as in Fig. 2A) by flow cytometry. 

FTY720 treatment changes the expression pattern of some of the homing molecules specifically 

on Foxp3+ T cells. 
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Figure 3. 3 FTY720 treatment increases the representation of Foxp3+ T cells over 

CD4+Foxp3– T cells in the lymphoid organs. 

 A, Ratios of absolute numbers of Foxp3+CD4+ T cells and Foxp3–CD4+ T cells in spleen, 

cervical LNs, and superficial inguinal LNs at days 5, 10, and 16 are shown. B, CD4+ T cells (2 x 

106) (containing both Foxp3+ and Foxp3–) from Foxp3-GFP knock-in animals were transferred 

into SCID animals, which were then treated with FTY720 (0.3 and 3.0 mg/kg BW) daily for 15 

days, and lymphoid organs were then analyzed for percentages of GFP+CD4+ and GFP–CD4+ T 

cells. No significant differences were found in treated and untreated animals. C, Foxp3-GFP 

knock-in animals were infected with HSV-1 (5 x 103 PFU) ocularly and treated with FTY720 

(0.3 and 3.0 mg/kg BW) for 15 days. On day 16, draining cervical (upper panel) and distal 

superficial inguinal (lower panel) LNs were analyzed for evidence of annexin V+GFP+ and GFP–

CD4+ T cells. Representative FACS plots from three animals studied are shown. 
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Figure 3. 4 FTY720 administration along with Ag immunization induces Foxp3 expression 

in CD4+ T cells in vivo. 

DO11.10RAG2–/– mice were immunized i.p. with OVA in CFA and some (n = 6–7/group) were 

additionally treated with FTY720 (0.3, 1.0, and 3.0 mg/kg BW) on alternate days starting from 

24 h postimmunization and continued until day 15. At 16 days of treatment, spleen and proximal 

(iliac and mesenteric) and distal (cervical, axillary, and superficial inguinal) LNs were isolated 

and analyzed for CD4+CD25+Foxp3+ T cells by flow cytometry (gated on CD4+ T cells). A, 

Representative FACS plots for percentages of CD4+CD25+Foxp3+ T cells from six to seven 

different experiments are shown when animals were treated with 3.0 mg/kg BW of FTY720. B, 

Bar diagram for percentages of CD4+Foxp3+ T cells from six to seven different experiments is 

shown. Three animals immunized and FTY720-treated (0.3 mg/kg BW) were additionally given 

250 µg of anti-TGF-β Ab at days 3, 6, and 10 and percentages of CD4+Foxp3+ T cells in 

lymphoid organs analyzed at 15 day are shown. C, Absolute numbers of CD4+Foxp3+ T cells in 

lymphoid tissues of immunized controls and immunized plus FTY720-treated (0.3 and 3.0 mg/kg 

BW) animals are shown. D, DO11.10RAG2–/– animals were immunized and treated with 

SEW2871 (0.5, 1.0, and 5.0 mg/kg BW) as described for FTY720 treatment. After 15 days, 

percentages of Foxp3+CD4+ T cells in various lymphoid tissues were analyzed. 
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Figure 3. 5. FTY720-induced Foxp3+CD25+CD4+ T cells are immunosuppressive. 

CD4+CD25+ T cells were isolated from immunized and immunized plus FTY720-treated 

DO11.10RAG2–/– and DO11.10 animals were used in suppression assays against the cultures of 

CD4+CD25– T cells from naive DO11.10RAG2–/– and DO11.10 mice, respectively, stimulated 

with anti-CD3 Ab as described in Materials and Methods. 

In A and B, DO11.10RAG2–/– animals were used; in C and D, DO11.10 animals were used. A, 

CD4+CD25+ T cells were purified from pooled proximal (iliac and mesenteric) and distal 

(cervical, axillary, and superficial inguinal) LNs of FTY720-treated immunized DO11.10RAG2–

/– animals to the extent of 90% (left panel). FACS plot for purified CD4+CD25+ cells from 

proximal LNs is shown. A representative histogram of CD4+CD25+ T cells that were Foxp3+ is 

shown (right panel). Ninety to 95% of CD4+CD25+ T cells were Foxp3+ from both pooled 

proximal and distal LNs. Isotype control staining is shown (middle panel). B, Representative 

FACS plots are shown to demonstrate the suppressive activity of CD4+CD25+ T cells from 

immunized and FTY720-treated DO11.10RAG2–/– animals. CD4+CD25– T cells showing that 

intensity of CFSE is decreased when these cells were cocultured with CD4+CD25+ T cells at 1:1 

and 1:4 ratios (Treg-to-effector T cells) from proximal (prox) LN (upper panel) and distal (dis) 

LN (middle panel). Lower panel, Overlap of FACS plot for comparison of suppressive activity of 

Tregs isolated from draining LNs and peripheral LNs. C, Proportions of Foxp3+ T cells among 

CD4+CD25+ T cells isolated from immunized and immunized plus FTY720-treated animals are 

shown. D, Inhibition of CD4+CD25– T cell proliferation in presence of CD4+CD25+ T cells from 

immunized and immunized plus FTY720-treated animals is shown (% inhibition = cpm of 

CD4+CD25– T cells – cpm of CD4+CD25– T cells and CD4+CD25– coculture/cpm of 

CD4+CD25– T cells x 100). 
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Figure 3. 6 In vitro generation and phenotypic characterization of FTY720-induced Foxp3+ 

T cells.  

A, Splenocytes were cultured in the presence of 25 U of rIL-2 and the indicated concentrations of 

TGF-β as a positive control or FTY720. More than 99% of CD4+ T cells were KJ1–26 positive 

(gated on CD4+ T cells). After 5 days of culture, cells were analyzed for the expression of CD4, 

Foxp3, and CD25. B, Dose response histogram for Foxp3 induction with FTY720 from a typical 

experiment is shown. A dose of 10 ng/ml FTY720 when added daily in the culture was found to 

convert optimally Foxp3– cells into Foxp3+CD4+ T cells. C, Kinetic analysis of in vitro induction 

of Foxp3 in CD4+CD25–Foxp3– T cells with TGF-β (10 ng/ml) and FTY720 (10 ng/ml) is 

shown. Representative FACS plots of three similar experiments are shown. D, Splenocytes from 

DO11.10RAG2–/– animals were CFSE labeled and cultured with plate-bound anti-CD3, IL-2, and 

FTY720 or TGF-β as a positive control for 5 days. After 5 days, cells were stained with CD4 and 

Foxp3. CFSE dilution and Foxp3 expression were shown in gated CD4+ T cells. FTY720-

induced CD4+CD25+Foxp3+ T cells proliferate extensively. E, The phenotype of in vitro-

generated Foxp3+ T cells by FTY720 and TGF-β as percentage positive for indicated surface 

marker is shown. 
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Figure 3. 7 TGF-β is involved in FTY720-mediated Foxp3 induction in CD4+Foxp3– cells.  

A, Anti-TGF-β1, 2, 3 Abs or IL-6 was added in the splenocyte cultures in the presence of TGF-β 

(upper panel) and FTY720 (lower panel), and surviving CD4+ T cells were analyzed for Foxp3 

expression (CD4 gate). B, Percentages of Foxp3+ cells of CD4+ T cells are shown in splenocyte 

cultures added with anti-TGF-β (20 µg/ml), IL-6 (35 ng/ml), and anti-CTLA-4 Ab (20 µg/ml). C, 

Dose response bar diagram of TGF-β concentration in culture supernatants of splenocytes added 

with different doses of FTY720 is shown. D, IL-17 concentrations from culture supernatants of 

splenocytes in the presence of IL-2 only and IL-2 with TGF-β or TGF-β + IL-6 or FTY720 or 

FTY720 + IL-6 as measured by sandwich ELISA are shown. E, Bar diagram showing the 

percentages of Foxp3+ cells induced with TGF-β, FTY720, SEW2871, and S1P is shown. 
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PART IV 

ROLE OF TIM-3/GALECTIN-9 INHIBITORY 

INTERACTION IN VIRAL INDUCED 

IMMUNOPATHOLOGY: SHIFTING THE BALANCE 

TOWARDS REGULATORS 
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Research described in this chapter is from a paper submitted for publication in Journal of 

Imunology by Sharvan Sehrawat, Amol Suryawanshi, Mitsuomi Hirashima and Barry T. Rouse.  

 

Sehrawat S, Suryawanshi A, Hirashima M and Rouse BT. Role of TIM-3/galectin-9 inhibitory 

interaction in viral induced immunopathology: Shifting the balance towards regulators. (Journal 

of Immunology-Submitted) 

 

In this chapter “our” and “we” refers to me and co-authors. My contribution in the paper includes 

(1) Selection of the topic (2) Compiling and interpretation of the literature (3) Designing 

experiments (4) understanding the literature and interpretation of the results (5) providing 

comprehensible structure to the paper (6) Preparation of graphs and figures (7) Writing and 

editing 

 

Abstract 

Controlling chronic immunoinflammatory diseases such as lesions in eye caused by 

infection with herpes simplex virus (HSV) represents a major therapeutic challenge. Since CD4+ 

T cells are the primary orchestrators of lesions caused by HSV, targeting activated CD4+ T cell 

subsets and increasing the representation of cells that express regulatory function would be a 

logical therapeutic approach. We show in this report that this outcome can be achieved by 

therapy, systemic or local, with the lectin-family member galectin-9. This molecule, which is a 

natural product of many cell types, acts as a ligand to the inhibitory molecule TIM-3 that is 

expressed by activated but not naïve T cells. We show that 50% or more of T cells in ocular 
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lesions caused by HSV in mice express TIM-3 and that blocking signals from its natural ligand 

with a monoclonal antibody results in more severe lesions. More importantly the provision of 

additional galectin-9, either systemically or more effectively by local subconjuctival 

administration, diminished the severity of SK lesions as well as the extent of corneal 

neovascularization. Multiple mechanisms were involved in inhibitory effects. These included 

apoptosis of the orchestrating effector T cells with consequent reduction of proinflammatory 

cytokines, an increase in the representation of two separate subtypes of regulatory cells as well as 

inhibitory effects on the production of molecules involved in neovascularization, an essential 

component of SK pathogenesis. Our results indicate that galectin-9 therapy may represent a 

useful approach to control HSV induced lesions, the commonest cause of infectious blindness in 

the Western World. 

 

Introduction 

One of the dire consequences of herpes simplex virus (HSV) infection is blindness 

resulting from infection in the eye and a subsequent chronic inflammatory reaction in the corneal 

stroma. This lesion is considered to be immunopathological orchestrated by T lymphocytes that 

recognize peptides derived from viral proteins or perhaps  from altered self proteins of the 

damaged cornea (1, 2). Currently, herpetic stromal keratitis (HSK) is mainly controlled by 

combinations of drugs that include antivirals and steroids with the latter being administered for 

prolonged periods of time (3). Future therapies are expected to emerge from a better 

understanding of the disease pathogenesis so that critical steps can be counteracted more 

precisely. Identifying such steps has come mainly from studies in animal models, especially the 



 138

mouse, where lesions that closely resemble those in humans can routinely be induced following 

primary infection with appropriate strains of virus (4). Such studies have revealed a critical role 

of CD4+ T cells of the Th1 subset as mediators of lesions (5, 6). In consequence, either 

preventing the access of Th1 cells to the eye or blunting their activity once at ocular sites 

represents potentially a valuable form of therapy. Recent studies on some autoimmune lesions 

caused by pathogenic T cells have indicated that one means of terminating the activity of such T 

cells is to engage receptors expressed by activated cells that deliver an inhibitory or lethal signal 

to the cell (7-11). This effect was achieved in some situations by engaging the TIM-3 (T cell 

immunoglobulin and mucin-3) receptor, a member of  the T cell immunoglobulin and mucin 

family  of proteins, with its recently identified ligand galectin-9 (8). Accordingly, the resolution 

of autoimmune lesions in collagen arthritis (a CD4+ Th1 subset mediated autoimmune lesion) 

occurred following treatment with galectin-9 (12). Some measure of control was also achieved 

with galectin-9 treatment in other immunoinflammatory lesions such as experimental 

autoimmune encephalomyelitis and graft versus host disease (8, 13, 14). To our knowledge, a 

role for TIM-3 galectin-9 interaction in controlling inflammatory lesions caused by microbial 

agents has yet to be explored. The present studies were designed, therefore, to evaluate if lesions 

in the eye caused by HSV were subject to control by manipulating the TIM-3/galectin-9 system 

on one or more cell types involved in causing HSK.   

Our studies demonstrate that galectin-9 and TIM-3 interaction does influence the 

expression of lesions in the eye following ocular infection with HSV. Accordingly, lesions were 

significantly more severe if the signals delivered to TIM-3 were interrupted using anti-TIM-3 

antibody. Moreover if galectin-9 was supplied in excess, either by systemic or local 

administration, lesion severity, which included particularly the extent of ocular 
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neovascularization, was diminished. The mechanisms by which galectin-9 acted in vivo were 

likely multiple. These included induction of apoptosis of pathogenic effector Th1 cells, induction 

or the expansion of two types of regulatory cells as well as the diminished production of some 

factors involved in corneal neovascularization.  Influencing the function of the TIM-3/galectin-9 

pathway holds promise as a means to control the severity of HSK lesions. 

 

Materials and Methods 

Mice, Virus, cell lines  

Female 6- to 8-wk-old C57B/6 mice were purchased from Harlane Sprague-Dawley 

(Indianapolis, IN). GFP-Foxp3 Knock-in mice were a kind gift from Dr. M. Oukka of Brigham 

and Women Hospital, Harvard Medical School. All animals were housed in the animal facilities 

at the University of Tennessee. BALB/c DO11.10 RAG2-/- mice were purchased from Taconic 

Farm and kept in our specific pathogen-free facility where food, water, bedding, and instruments 

were autoclaved. All manipulations were done in a laminar flow hood. All experimental 

procedures were in complete agreement with the Association for Research in Vision and 

Ophthalmology resolution on the use of animals in research. HSV-I RE Tumpey and HSV-I RE 

Hendricks was propagated and titrated on Vero cells (ATCC CCL81) using standard protocols. 

The virus was stored in aliquots at -80°C until use.  

Antibodies and reagents  

CD4-APC (RM4-5), DO11.10-PE (KJ1.26), CD25-FITC (7D4), CD103-FITC (M290), 

CD62L-APC (MEL-14), CD44-FITC (1M7), Foxp3-PE(FJK-16s), Foxp3-FITC (FJK-16s), 

CD69-FITC (H1.2F3), CD11c-PE (HL3), CD11c-APC (HL3), anti-IFN- -FITC, anti-IL-17-PE, 

CD11b-PerCP ( M1/70), Gr1-PE (RB6-8C5), Gr1-FITC (RB6-8C5), F4/80-FITC (BM8), Ly6C-
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FITC (AL-21 ), anti-CD3 (145.2C11), and anti-CD28 mAb (37.51) were purchased from BD 

PharMingen (San Diego, CA). Anti-TIM3-APC (cat.# FAB1529A), anti-TIM-3-PE (cat.# 

FAB1529P), recombinant IL-6 and recombinant human TGF-β1 were obtained from R & D. 

Anti-TIM-3 monoclonal antibody (RMT2-23) and rat IgG2a isotype control antibody (2A3) was 

obtained from Bio-X-cell, West Lebanon, NH. Mouse and human recombinant galectin-9 was 

provided by Gal Pharma, Japan. Galectin-3 was obtained from Sigma Chemical Co. 

Recombinant human IL-2 and OVA323-339 peptide were obtained from Hemagen and Genscript 

respectively. CFSE was obtained from Molecular Probe and used at a final concentration of 0.5 

µM for 15 min. at 370C in PBS. 

Corneal HSV-1 infection and clinical observations  

Corneal infections of C57B/6 mice were conducted under deep anesthesia. Mice were 

scarified on their corneas with a 27-gauge needle, and a 3-µl drop containing the required viral 

dose was applied to the eye. The eyes were examined on different days postinfection (p.i.) with a 

slit-lamp biomicroscope (Kowa, Nagoya, Japan), and the clinical severity of keratitis and 

angiogenesis of individually scored mice was recorded as described elsewhere (15, 16). 

Treatment of animals with anti-TIM-3 antibody and galectin-9 

 Six- to 8-wk-old C57B/6 mice were ocularly infected under deep anesthesia with either 

5x105 PFU HSV RE Hendricks or 5x103 PFU of HSV I RE Tumpey and divided randomly into 

groups. One group of animals infected with HSV I RE Hendricks was administered with 100µg 

of anti-TIM-3 antibody intraperitoneally (i.p.) every alternate day starting from day 3 until day 

13 p.i. Animals in control group were given isotype control antibody following same regimen. 

Animals infected with HSV I RE Tumpey were given galectin-9 (10µg, 50µg or 100µg) ip 

starting from day 3 until day 13 daily while control animals received diluent. In some 
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experiments, 6-8µl of galectin-9 (1, 5 or 10µg) was injected sub conjuctivally into eye daily 

starting either from day 4 or from day 8 until day 13.  Galectin-9 was concentrated using Amicon 

ultracentriguge devices (Millipore). Tubes were treated with N/10 NaOH and washed with sterile 

PBS before using. Mice were observed for the development and progression of herpetic stromal 

keratitis (SK) lesions and angiogenesis from day 5 until day 14, as described elsewhere (15, 16). 

Most of the experiments were repeated at least three times unless stated 

In vitro differentiation of CD4+CD25+Foxp3+ regulatory T cells and Th17 cells  

Splenocytes isolated from DO11.10Rag2-/- mice were used as the precursor population 

for induction of Foxp3 in CD4+ T cells as described elsewhere (17). Briefly,  2x106 of total 

splenocytes after RBC lysis and several washings were cultured in 1 ml volume with previously 

optimized doses of plate-bound anti-CD3 Ab (0.125 µg/ml in 200 µl volume), rIL-2 (25-100 

U/ml), and TGF-β (2.5 to 10 ng/ml) for 5 days at 37°C in a 5% CO2 incubator in 48-well plates. 

In some cultures in addition to IL-2, TGF-β either alone or in combination with various 

concentrations of Galectin-9 was added. After 5 days, cells were characterized phenotypically by 

flow cytometry.  

For the differentiation of CD4+ T cells into Th17 cells, splenocytes isolated from 

DO11.10 Rag2-/- mice were cultured with 10 µg/ml of OVA323-339 peptide, TGF-β (2.5 to 10 

ng/ml), IL-2 (25U) and IL-6 (30-60 ng/ml) for five days. To look for the effect of galectin-9 on 

Th17 cells, various concentration of galectin-9 or galectin-3 were added into cultures at the 

beginning. After 5 days, cells were analyzed by intracellular cytokine staining for the production 

of IL-17 and IFN-γ using BD bioscience kit. Foxp3 intranuclear staining was done using a kit 

from eBioscience.  
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Proliferation assays 

 Splenocytes and DLN cells isolated from control and galectin-9 treated HSV infected 

animals 14 dpi were labeled with 0.5µM of CFSE at 370C for 10 minutes. 5x105 of labeled cells 

were cultured in presence of IL-2 (100U/ml), anti-CD3 (1µg/ml) and anti-CD28 (1µg/ml) mAb 

for three days. After three days of incubation, dilution of CFSE was analyzed in stained Foxp3- 

and Foxp3+ CD4+ T cells.  

Ex vivo apoptosis assay 

Draining lymph node cells and splenocytes isolated from uninfected and HSV infected 

C57B/6 mice at 8 dpi were incubated with various concentrations of galectin-9 and galectin-3 for 

8 hrs in 96 well flat bottomed plates in humidified incubators in presence of 5% CO2. After 

incubation period was over cells, were stained for annexin V using a kit from BD Bioscience. 

Additionally, cells were also co-stained for TIM-3 and Annexin V. Stained cells were analyzed 

immediately by flow cytometry.   

In vitro assays for VEGF production  

A mouse stromal fibroblast cell line (MKT-1) kindly gifted by Dr Winston Kao, 

Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, was used for studying 

the effect of galectin-9 on VEGF production. The cells were cultured in 10% DMEM and plated 

onto 24 well tissue culture plates. The cells at more than 90% confluency were infected with 

5MOI of HSV KOS for one hour. Thereafter, galectin-9 was added into the cells at various 

concentrations. Untreated but infected cells served as positive control for these experiments. In 

initial experiments cells were harvested at different times and stored in RNA stabilizing solution 

obtained from Quiagen.  For most of the subsequent experiments cells were harvested after 12 

hrs.  
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Real time RT-PCR  

RNA was extracted from the cells stored in RNA later using RNeasy mini kit (Quiagen). 

Total cDNA was made with 1µg of RNA using oligod(T) primer.  Real time PCR was performed 

using SYBR Green PCR Master Mix with iQ5 Real-Time PCR Detection System (BioRad, 

Hercules, CA). VEGF expression levels of each samples were normalized to HPRT using ∆Ct 

calculations. Relative VEGF expression between control and experimental groups were 

calculated using 2-∆∆Ct formula. The sequences of the primers were: VEGF 5’-

ACACAGGACCGCTTGAAGAT-3’ and 5’-CTGCACCCACGACAGAAG-3’. HPRT 5’-

GACCGGTCCCGTCATGC-3’ and 5’-TCATAACCTGGTTCATCATCGC-3’. 

ELISA 

The corneal samples were pooled group wise and homogenized using a tissue 

homogenizer (Pellet pestle mortar, Kontes). The concentrations of various cytokines and VEGF 

was measured by sandwich ELISA kits from eBioscience (IL-6), and BD Bioscience (IL-12, 

TGF-β) and Quantikine (VEGF-A). For TGF-β quantitation, samples were first acidified as per 

manufacturer’s instructions.  

Flow cytometric analysis  

Cell preparation Single-cell suspensions were prepared from the cornea, draining 

cervical lymph nodes (DLN), and spleen of mice at different time points p.i. Corneas and 

trigeminal ganglia were excised, pooled group wise and digested with 60 U/ml Liberase (Roche 

Diagnostics) for 60 min at 37°C in a humidified atmosphere of 5% CO2 as described earlier (17, 

18). After incubation, the corneas and trigeminal ganglia were disrupted by grinding with a 

syringe plunger on a cell strainer and a single-cell suspension was made in complete RPMI 1640 

medium. 
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Staining for flow cytometry The single-cell suspension obtained from LNs, spleen, and 

corneal samples were stained for different cell surface molecules for FACS. All steps were 

performed at 40C. Briefly, a total of 1x106 cells were first blocked with an unconjugated anti-

CD32/CD16 mAb for 30 min. in FACS buffer.  After washing with FACS buffer, fluorochrome-

labeled respective Abs was added for 30 min. Finally, the cells were washed three times and 

resuspended in 1% paraformaldehyde.  

To enumerate the number of IFN-γ and TNF-α producing T cells, intracellular cytokine 

staining was performed as previously described (18). In brief, 106 freshly isolated splenocytes, 

lymph node cells were cultured in U bottom 96-well plates. Cells were left untreated or 

stimulated with 2 MOI of UV inactivated HSV I and incubated overnight at 37°C in 5% CO2. 

Brefeldin A (10 µg/ml) was added for the last five hours of the culture period.  After this period, 

cell surface staining was performed, followed by intracellular cytokine staining using a 

Cytofix/Cytoperm kit (BD PharMingen) in accordance with the manufacturer's 

recommendations. The Ab used were anti-IFN-γ-PE and anti-TNF-α-FITC. The fixed cells were 

resuspended in 1% paraformaldehyde.  For in vitro induced cultures, cells were stimulated with 

PMA (50ng) and ionomycin (500ng) for 5 hours in presence of brefeldin A (10 µg/ml). 

Subsequently, cells were first stained as described above for surface CD4 and intracellular 

cytokines (IL-17 or IFN-γ). The stained samples were acquired with BD FACSCalibur and the 

data were analyzed using the Flowjo software.  

Statistical analysis  

Most of the analyses for determining the level of significance were performed using 

Student's t test. P ≤ 0.001 = *** P ≤ 0.01 = ** and P ≤ 0.05 = * were considered significant. 
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Results are expressed as mean ± SD. For some experiments, as mentioned in the fig. legends, one 

way ANOVA test was applied. 

 

Results 

TIM-3 expression is up regulated on T cells after HSV infection 

  As a prelude to exploring the value of manipulating TIM-3/galectin-9 interaction to 

influence the outcome of stromal keratitis, mice were ocularly infected with HSV and the 

expression pattern of TIM-3 on CD4+T cells was measured at various times in lymphoid tissues, 

as well as the eye and trigeminal ganglion. Naïve animals lack inflammatory cells in the corneal 

stroma but invasion by many cell types, including CD4+ T cells, is fully evident by day 8 p.i. At 

this time, replicating virus is usually cleared, although the extent of the ocular inflammatory 

response usually continues to progress and peaks in severity between 15 to 21 days (5). 

Spontaneous regression, especially to a fully resolved state, usually does not occur without 

treatment. The results in fig 4.1A and D record the frequency and numbers of CD4+TIM-3+ T 

cells in the draining lymph nodes (DLN) and spleens at various times after HSV infection. In 

naïve animals, few CD4+ T cells expressed TIM-3 (between 0.5 to 3.0% in different 

experiments) and many that do were Foxp3+ (around 30 % of CD4+TIM-3+) (Fig 4.1C). By day 

8, significant increases in the frequencies of TIM-3+CD4+ T cells were evident in both lymph 

nodes and spleen. The pattern was similar on day 15 but by day 40 had declined markedly. 

Analysis of lymph node and spleen cells at the time of peak responses revealed that most of  the 

TIM-3+CD4+ T cells expressed the activation marker CD44hi (Fig 4.1B). Although we lack the 
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reagents to prove it, we suspect that the increased populations of TIM-3+CD4+ T cells were HSV 

specific cells. 

 Ocular as well as trigeminal ganglion samples were also analysed using tissue pools 

from several animals after collagenase digestion (Fig. 4.1E). At both time points examined, 

around 50% of CD4+ T cells were TIM-3+. Taken together these results demonstrate that TIM-3 

is up regulated on CD4+ T cells following HSV infection. This was especially evident at the 

inflammatory ocular and trigeminal ganglia sites.  

TIM-3 signaling may control stromal keratitis lesion severity 

Studies on autoinflammatory lesions have indicated that TIM-3 signaling may represent a 

mechanism by which lesions are regulated under physiological conditions (8, 11, 19). The results 

expressed in figures 2A and B indicate that a similar situation likely occurs with HSV induced 

ocular lesions. This was shown by comparing the outcome of ocular infection in mice given a 

TIM-3 blocking monoclonal antibody (mAb) with those that received an isotype control mAb. 

Treatment was begun 24 hours pi and the severity of HSK, as well as the extent of 

neovascularization, compared over a 15 day observation period. The results were clear cut and 

supported the notion that blocking TIM-3 led to enhanced HSV lesions and increased levels of 

neovascularization (Fig. 4.2A and B). In two separate experiments involving 14 eyes, positive 

SK lesions (a scores of ≥ 2) were evident earlier in mice that received anti-TIM-3 (8 out of 14 

eyes positive at day 7) than those given the isotype control Ab (0 out of 14 eyes at day 7). 

Lesions also became significantly more severe in anti-TIM-3 recipients with a higher percentage 

of eyes showing positive lesions overall (12 out of 14 with scores of ≥ 2 and 10 out of 14 with a 

score of ≥ 3 ) compared to isotype control Ab recipients (2 out of 14 with scores of ≥ 3) at day 

14. A similar pattern of events was noted with the neovascularization scores. 
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At day 15, experiments were terminated and corneas were pooled and collagen digested 

to enumerate and phenotype the recovered cells. In addition, lymph nodes and spleens were 

collected from animals with positive lesions to measure HSV specific immune responses. As 

seen in figure 4.2C and D, the number of both CD4+ T cells and granulocytes was far greater in 

the ocular samples from anti-TIM-3 treated animals than controls (a more than 10 fold increase 

in CD4+ T cells and granulocytes). With regard to phenotype, the frequency of CD4+ T cells that 

were TIM-3+ was far higher in the anti-TIM-3 MAb group (72% in one experiment) than in 

controls (35%). The reason for this observation was not clear, but conceivably it could have 

reflected the finding that the magnitude of anti-HSV CD4+ T cell responses was higher in the 

anti-TIM-3 MAb treated animals (Fig 4.2E and F). Thus cells isolated from individual spleens 

and draining LNs at 15 days p.i. of control Ab and TIM-3 antibody recipients, when stimulated 

with HSV antigens and the numbers of IFN-γ and TNF-α producing cells measured, revealed a 

2.5 fold increase in the frequencies and numbers of each of the cytokine producing cell 

populations in anti-TIM-3 treated animals (Fig. 4.2E and F) 

These results indicated that TIM-3 signaling of CD4+ T cells in lymphoid organs or 

perhaps corneal lesions via its ligand under natural conditions may serve to regulate the extent of 

stromal keratitis and that this may proceed at least in part by influencing the magnitude of the 

immune response. 

Galectin-9 Administration suppresses HSK lesions 

Recently galectin-9 was shown to be the natural ligand of TIM-3 and that signaling via 

galectin-9, at least to some T cell subsets, may cause them to undergo apoptosis (8). To evaluate 

if the administration of galectin-9 could influence the expression of HSK, two types of 

experiments were preformed in HSV ocularly infected mice. Animals were either treated i.p. 
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with different doses of galectin-9 starting at day 4 or were given different doses of the drug 

injected subconjunctively starting at day 4 or day 8 until mice were sacrificed to evaluate 

different parameter at day 15. Both treatment modalities inhibited SK lesions as well as the 

extent of neovascularization, but the efficacy of the local subconjunctival administration was the 

greater (Fig 4.3A, B and C). The results shown in figure 4.3A demonstrated that following 

systemic administration, significant levels of lesion inhibition were only observed at the highest 

doses of galectin-9 evaluated (100µg) but a trend for suppressed lesions was evident at lower 

doses.  

With local administration of galectin-9, a dose dependent inhibition of SK lesions and 

neovascularization also occurred with the differences compared to controls even more apparent 

then observed with systemic administration (Fig 4.3B and C). Accordingly, in animals given 

galectin-9 locally starting on day 4, lesions were reduced almost 3 fold on average compared to 

untreated controls with these differences being highly significant (p ≥ 0.01 ). The numbers of 

CD4+TIM-3+ cells recovered from eyes were significantly reduced compared to untreated 

controls (Fig 4.4A). In addition the frequencies and numbers of PMNs were reduced 6-7 fold as a 

consequence of galectin-9 treatment (Fig 4.4B and C). Along with clinical changes occurring in 

response to local galectin-9 treatment, the levels of cytokines as well as the angiogenesis factor 

VEGF were measured in pooled corneal extracts. As shown in Fig 4.4D, whereas levels of the 

proinflammatory cytokines IL-6 and IL-12 were less, TGF-β levels were higher than in controls. 

VEGF levels were also lower in galectin-9 treated pooled samples. 

Of notable interest, if local treatment was begun on day 8, the time when lesions become 

clinically evident, they failed to progress and even slightly diminished in severity compared to 

untreated animals (Fig 4.3F). Furthermore, as shown in fig. 4.4E, pooled corneal samples from 
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treated animals had lower levels of proinflammatory (IL-6) and higher levels of anti-

inflammatory (TGF-β). These data strongly indicate that TIM-3/galectin-9 interaction serves to 

induce resolution of viral immunoinflammatory lesions.  

Possible mechanisms by which galectin-9 therapy functions 

Induction of apoptosis of TIM-3+CD4+ T cells 

Prior in vitro studies have indicated that galectin-9 triggering of proinflammatory CD4+ T 

cells causes them to undergo apoptosis (8). Since in the HSK model, lesions appeared to be 

mainly orchestrated by IFN-γ producing CD4+ T cells (6), lesions could be reduced if 

orchestrating T cells were destroyed. We attempted to demonstrate such an effect in vivo by 

examining single cell suspensions from lymphoid organs by flow cytometry or tissue sections of 

treated eyes for signs of apoptotic cells. Such could not be demonstrated (data not shown). 

However, it was evident that the total numbers of CD4+ T cells as well as HSV-specific 

CD4+IFN-γ+ T cells were significantly reduced in animals treated systemically with galectin-9 

which could have been the consequence of apoptosis (Fig 4.5A). In addition, we were able to 

demonstrate CD4+ T cells that express TIM-3 as a consequence of HSV infection in vivo could 

be induced to undergo apoptosis when exposed to galectin-9 in vitro (Fig 4.5B-D).  

As TIM-3 expression was also evident on about 10-15% of Foxp3+CD4+ T in lymphoid 

organs, we investigated if these cells are also susceptible to killing by galectin-9 ligation. Thus, 

DLN cells were isolated from either infected or uninfected GFP-Foxp3 knock-in animals and 

treated with various doses of galectin-9 in vitro for eight hours.  As shown in fig 4.5B, while 

more than 90% of CD4+TIM-3+Foxp3- cells underwent apoptosis, less than 10% of CD4+TIM-

3+Foxp3+ T cells were annexin V+. Furthermore, CD4+TIM-3+Foxp3+ T cells showed minimal 

level of expression of annexin V on their surface as measured by the mean fluorescence 
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intensity. This could mean that as a consequence of galectin-9 treatment with Foxp3+ cells 

showing more resistance to apoptosis, the ratio of Tregs: Teffector would increase perhaps 

accounting in part for the anti-inflammatory effect of galectin-9. 

Expansion or induction of Foxp3+ Tregs  

Prior experiments have established that the severity of HSK lesions can be modulated by 

Foxp3+ regulatory T cells either induced in vivo or by adoptive transfers of such cells (15, 17). 

There is some indirect evidence that galectin-9 could be involved in the induction of Foxp3+ 

cells since such cells were reduced in numbers in galectin-9 knockout animals (12). To 

determine if galectin-9 administration to HSV infected animals had any influence on the Treg 

response, experiments were done in which animals were infected with HSV after which from day 

4 to day 14 one group was injected systemically with a dose of galectin-9 shown to be effective 

at diminishing lesion severity and the other group received diluent. Experiments were terminated 

on day 15 and the cell types in individual DLN and spleen were collected to quantify CD4+ T 

cells that were Foxp3+. As shown in Fig. 4.5E and F, significant increases (P ≥ 0.05) in the 

frequencies and numbers of CD4+Foxp3+ T cells were evident in the spleens of galectin-9 treated 

animals. Additionally the numbers of Foxp3+ cells in the DLNs of galectin-9 treated animals 

were also increased, but the numbers compared to controls were not significant. This effect of 

galectin-9 treatment might be the consequence of expansion of preexisting Foxp3+ cells or 

perhaps conversion of some Foxp3- cells to become Foxp3+. 

 Evidence that galectin-9 could be causing some expansion of Foxp3+ cells was shown by 

comparing the proliferative capacity in vitro of Foxp3+ cells from control and galectin-9 treated 

animals. As shown in fig. 4.5G, CFSE dilution in Foxp3+ cells TCR stimulated for 3 days, in the 

presence of IL-2 was greater in the cell population from galectin-9 treated animals than from 
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controls. Curiously, the effect of galectin-9 treatment on the response of Foxp3- cells was to 

diminish their proliferation capacity compared to that occurring in the same cell population from 

controls. These observations support the concept that the enrichment of Foxp3+ cells in galectin-

9 treated animals could in part be explained by expansion of previously Foxp3+ cells.   

Galectin-9 may promote Foxp3+ Treg conversion and limit Th17 generation in vitro 

 To directly assess whether or not galectin-9 can cause some TCR stimulated conventional 

T cells to become Foxp3+, an in vitro culture system was used which in previous studies 

demonstrated Foxp3+ conversion (17). Briefly, splenocytes from DO11.10 RAG-/- animals (that 

lack Treg) were stimulated in vitro with plate bound anti-CD3 antibody, optimal amounts of IL-2 

and various doses of galectin-9. TGF-β at optimal amounts was used instead of galectin-9 as a 

positive control system for Foxp3+ Treg induction. In such experiments galectin-9 did cause 

significant numbers of cells to convert to become Foxp3+ although the conversion was around 

four to five fold less effective than occurred with TGF-β (Fig. 4.6A and B). When experiments 

were done using suboptimal amounts of TGF-β, the addition of galectin-9 increased the 

conversion beyond the various doses of galectin-9 in the absence of TGF-β. This observation 

may mean that galectin-9 might be inducing TGF-β in the cultures which in turn could enhance 

the conversion efficiency although this needs to be formally confirmed. 

 In another approach splenocytes from DO11.10 RAG-/- animals, were cultured in 

conditions that resulted in the induction of Th17 cells. Basically such cultures were OVA323-339 

stimulated whole splenocytes in the presence of IL-2, TGF-β and IL-6. Curiously, the addition of 

galectin-9 in these cultures inhibited the induction of Th17 cells in a dose dependent manner (Fig 

4.6C and D). It was of particular interest to note that the addition of galectin-9 in these cultures 

increased the production of Foxp3+ cells up to four fold. The results could mean, however, that 
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the anti-inflammatory effects of galectin-9 will not be negated by the presence of 

proinflammatroy cytokines such as IL-6 in the inflamed tissue. We did not investigate the 

mechanism of Th17 suppression, but conceivably it could involve galectin-9 apoptosis signals 

delivered to TIM-3 expressed by developing Th17 cells. We are currently attempting to verify 

this. 

Expansion of Myeloid suppressor cells 

It was of interest to note that galectin-9 treated animals, as compared to control animals 

showed significantly expanded populations of CD11b+ cells especially in the spleens (Fig. 4.7A 

and B). As shown in the fig 4.7C-E, a significant proportion of these cells also expressed 

Gr1lo,F4/80+ and Ly6Chi a phenotype possessed by myeloid suppressor cells which have been 

shown to inhibit the function of conventional CD4+ and CD8+ T cells (20, 21).  Interestingly, the 

frequencies of cells of this phenotype also increased in when galectin-9 treatment was performed 

locally in the corneas of infected animals (Fig. 4.4B and C).  Future studies will attempt to 

measure if the myeloid suppressor cells play any regulatory effect in HSK. 

Taken together our results may indicate that a consequence of galectin-9 therapy is that 

there is an overall increase in the frequency of regulatory cells that include both Foxp3+ Tregs 

and CD11b+Gr1loF4/80+Ly6Chi myeloid suppressor cells. Expanded population of Foxp3+ Tregs 

may represent conversion of conventional cells to become Treg and perhaps reflect a 

disappearance of CD4+ Th1 cells because many TIM-3+ cells are triggered to die by apoptosis. 

Galectin-9 may also inhibit the production of angiogenic factors 

 As indicated above, galectin-9 treatment of HSV infected mice also led to a reduction in 

the extent of ocular neovascularization. Indeed there was a trend for the effect on this necessary 

step in HSK pathogenesis to be greater than was observed on SK lesion severity (Fig 4.3D). This 
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effect could be explained by the fact that some angiogenic factors derive from the inflammatory 

cells themselves and these responses were reduced in galectin-9 treated animals. Alternatively, 

galectin-9 might have some direct inhibitory effects on cells in the eye that produce angiogenesis 

factors in response to infection. To mimic the latter possibility, the effects of galectin-9 on the 

induced production of VEGF-A mRNA in stromal fibroblast cell line was measured. These cells 

can be induced to produce the angiogenic factor VEGF-A upon exposure to IL-6 or HSV 

infection (22). Experiments were performed in which MKT-1 cells were exposed to a high 

multiplicity of HSV-KOS (5MOI) which resulted in cells upregulating VEGF-A mRNA (Fig. 

4.8). This increase which reached 1800 fold in some instance, was suppressed up to 100 fold by 

galectin-9. Similar doses of galectin-3 were almost without inhibitory effects. These results 

support the possibility that galectin-9 can function as an angiogenesis factor inhibitor although it 

must mediate its function by binding to a receptor distinct from TIM 3 since the latter molecule 

was not detectable on the MKT-1 cells (data not shown). 

 

Discussion 

Controlling chronic immunoinflammatory diseases represents a major therapeutic 

challenge. Such an example is lesions in the eye caused by HSV infection which commonly 

result in blindness. These lesions are strongly suspected to result from T cell mediated responses 

to the infection. Since the main T cell subset responsible for orchestrating lesions of stromal 

keratitis appear to be CD4+ T cells of Th1 type with perhaps some involvement by Th17CD4+ T 

cells, a logical approach to therapy would be to suppress or delete the function of activated CD4+ 

T cell subsets and increase the representation of cells that express regulatory  function. We show 

in this report that this outcome can be achieved by therapy systemic or local with the lectin 
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family member galectin-9. This molecule, which is natural product of cell types such as several 

cells of innate immune system, endothelial, epithelia cells etc., acts as a ligand to the inhibitory 

molecule TIM-3 that is expressed by activated but not  naïve T cells. We show that 50% or more 

of T cells in ocular lesions caused by HSV in mice express TIM-3 and that blocking signals from 

its natural ligand with a monoclonal antibody results in more severe lesions. More importantly, 

however, the provision of additional galectin-9 either systemically or more effectively by local 

subconjuctival administration diminished the lesion severity of SK lesions as were the extent of 

corneal neovascularization. The mechanisms by which the galectin-9 therapy functioned were 

shown to be multiple. These involved apoptosis of the orchestrating effecter T cells with 

consequent reduction of proinflammatory cytokines, an increase in the representation of two 

separate subtypes of regulatory cells as well as inhibitory effect on the production of molecules 

involved in ocular neovascularization, an essential component of HSK pathogenesis. Our results 

indicate that galectin-9 therapy may represent a useful approach to control HSV induced lesions, 

the commonest infectious cause of blindness in the Western World.  

A number of previous reports have shown that activated T cells, both CD4+ and CD8+ T 

cells (8, 13), may up regulate TIM-3 and that the engagement of the receptor with its ligand 

galectin-9 causes cells to undergo apoptosis (23). Since galectin-9 is a product of several cell 

types with its production increased upon exposure to some cytokines released from activated T 

cells, the TIM-3/galectin-9 interaction may represent a physiological means by which effector T 

cell responses are terminated (8, 11). Thus the severity of some autoimmune inflammatory 

responses may be more severe in galectin-9 knock out animals (12). Also of therapeutic 

relevance, it has been observed that administration of galectin-9 may suppress the severity of 

some autoimmunities even when given quite late in the disease process (12). Our studies too, 
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which we believe are the first to investigate the relevance of TIM-3/galectin-9 in a chronic viral 

induced inflammatory disease, galectin-9 administration caused the suppression of HSK lesions 

even when the drug was given 8 days after virus infection. At this stage, virus is usually no 

longer present in the eye although without treatment lesions continue to advance in severity and 

usually do not resolve spontaneously. In some instances we observed that galectin-9 therapy did 

cause almost complete resolution. 

 We presume that the efficacy of galectin-9 therapy resulted from causing apoptosis of the 

CD4+ T cells responsible for orchestrating lesions. However, we failed to show any evidence of 

T cell apoptosis in vivo which may not be too surprising since apoptotic cells are rapidly 

phagocytosed in vivo (24, 25). We could readily show apoptosis of TIM-3+ cells in populations 

of lymphoid cells taken from HSV infected animals when exposed to galectin-9 in vitro. 

However in such experiments, many TIM-3 positive cells resisted apoptosis even at highest 

doses of galectin-9 investigated. Curiously, in our in vitro studies we observed that TIM-

3+Foxp3+CD4+ T cells showed more resistance to galectin-9 induced apoptosis than did Foxp3-

CD4+TIM-3+ T cells. The molecular explanation for this interesting observation is currently 

under further investigation. However, if it turns out that Foxp3+ regulatory T cells are more 

resistant to galectin-9 induced apoptosis in vivo, this might explain why the treatment resulted in 

suppressed SK lesions. Thus, as we have shown previously, the Treg response serves to 

modulate the severity of SK lesions (18). Differential susceptibility of T effectors to Treg would 

result in Treg enrichment. In line with this, we did observe that frequencies of Foxp3+ T cells in 

lymphoid tissues as well as ocular inflammatory populations were increased in galectin-9 treated 

infected animals. That galectin-9 administration may result in the apparent induction of Foxp3+ 
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regulatory T cells was also reported recently by Seki et al although the mechanisms responsible 

for the effect were not investigated (12).  

 In our studies, we observed that galectin-9 could affect the Treg responses by mediating 

at least two effects in addition to the differential susceptibility to apoptosis. Accordingly, we 

could show that the proliferative capacity in vitro of  TCR stimulated Foxp3 cells was greater in 

population taken from galectin-9 treated compared to control animals. However, perhaps of more 

importance we could also demonstrate that galectin-9 was able to induce conventional naïve 

TCR stimulated CD4+ T cells to convert to become Foxp3+. This was shown using TCR 

transgenic T cells TCR stimulated in vitro in the presence of galectin-9. Significant levels of 

conversion were observed, although this was less than that could be achieved with optimal doses 

of TGF-β. In fact our results could mean that the galectin-9 conversion effect involved the 

production of TGF-β, since when cells were stimulated in the presence of suboptimal levels of 

TGF-β, galectin-9 addition caused higher levels of conversion than could be achieved with 

galectin-9 or TGF-β alone. However, at present other possibilities can not be ruled out.  

Whether or not galectin-9 administration succeeds in converting conventional cells to 

become Foxp3+ and their expansion in vivo is currently under investigation. If it does occur, it 

might help explain why some parasitic infections appear to be potent inducers of Treg response, 

which in turn play an important role during pathogenesis (26, 27). Thus, many parasites express 

high levels of lectins that include galectin-9 in their surface components (27). Furthermore, 

galectin-9 is expressed abundantly in the gut mucosa (28) which is a site where the peripheral 

generation of regulatory T cells readily occurs (29-31). The presence of galectin-9 may help 

counteract an inflammatory environment that favors the induction of Th17 cells as we were able 

to demonstrate in our in vitro studies. 
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 Whereas previous reports have noted that the TIM-3/galectin-9 interaction can have a 

notable effect on inflammatory cell function, any effect on angiogenesis was not noted. In our 

study, we observed that galectin-9 administration had an even greater effect on angiogenesis than 

it did on the severity of the SK lesions. The reasons for this may be that galectin-9 may be 

inhibiting the production of angiogenesis factors such as VEGF responsible for causing the new 

blood vessel development that plays an essential part of SK pathogenesis. Exactly how galectin-9 

causes its inhibitory effects on angiogenesis factor induction still require further investigation. Of 

particular interest in our model systems, we demonstrated an inhibitory effect of galectin-9 on 

the induced production of VEGF from cells that lacked demonstrable TIM-3. 

 Taken together our results are consistent with the observation that the TIM-3/galectin-9 

interaction plays a critical role at influencing the expression of HSV induced ocular lesions. It 

seems likely that the interaction affects lesion severity under normal circumstances since lesions 

become more severe if signals from endogenous galectin-9 are blocked with anti-TIM-3 mAb. 

Moreover, the interaction can be exploited for therapeutic purposes since treatment with 

galectin-9 can diminish lesions and can even result in their resolution. The mechanisms by which 

therapy succeeds are multiple and involve a change in balance between proinflammatory effector 

cells and regulators as well as effects on the production of angiogenesis factors responsible for 

causing neovascularization of the eye. 
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Figure 4. 1 Kinetic analysis of TIM-3 expression on CD4+ T cells after ocular HSV 

infection.  

C57B/6 mice were infected with 5x103 of HSV. Three animals were sacrificed at each indicated 

time point and their spleens and draining cervical LN cells were analyzed for surface expression 

of CD4 and TIM-3 by flow cytometry. A. Histogram showing the percent of CD4+TIM-3+ T 

cells in spleen and DLN at indicated time points is shown. Data are shown from one 

representative experiment.  B. Dot plot shows the expression of TIM-3 on CD4+CD44hi T cells. 

C. The expression of TIM-3 on CD4+Foxp3-GFP+ and CD4+Foxp3-GFP- from uninfected and 

HSV infected animals at 8dpi. D. Absolute numbers of TIM-3+CD4+ T cells in spleen and DLNs 

at indicated time point are shown. The expression of TIM-3 on CD4+ T cells isolated from 

inflamed pooled corneas and trigeminal ganglia at day 8 and day 15 post infection is shown. All 

kinetic experiments were repeated at least two times. 
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Figure 4. 2 Effect of TIM-3 blockade on corneal inflammation and CD4+ T cell immune 

response.  

C57B/6 animals (n=8) infected with 5x105 PFU of HSV were given either anti-TIM-3 

monoclonal antibody (n=4) or isotype control antibody (n=4) every alternate day starting from 

day 3 until day 13. The disease progression and immune parameters at day 14 were analyzed. A. 

The SK lesion severity and magnitude of angiogenesis is shown. B. Cumulative scores of lesion 

severity and angiogenesis at 14 days post infection. C. Percentages and phenotype (surface TIM-

3) of CD4+ T cells in the corneas of control (upper panel) and antibody treated  (lower panel) 

animals is shown D. CD11b+Gr1+ PMN infiltrated into cornea of control  (upper panel) and  

antibody treated (lower panel) animals is shown. E. HSV-specific CD4+ T immune response in 

control and anti-TIM-3 antibody treated animals is shown at day 14. Dot plots depicting the 

percentages of IFN-γ+ TNF-α+ CD4+ T cells is shown. F. Total number of HSV-specific 

CD4+IFN-γ + and CD4+IFN-γ+TNF-α+ T cells in spleen and DLN at day 14 is shown. The 

experiments were repeated three times. Student ‘t’ test was used to calculate the level of 

significance. 
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Figure 4. 3 Effect of galectin-9 treatment on the severity of SK. 

C57B/6 animals (n=12) infected with 5x103 PFU of HSV were treated with galectin-9 (10μg, 

50μg and 100μg) daily starting from day 4 until day 14. A. Lesion and angiogenesis scores of 

control and galectin-9 treated animals at day 14 are shown. B. C57B/6 animals (n=9) infected 

with 5x103 PFU of HSV were injected subconjuctivally with 1µg, 5µg or 10µg of galectin-9 

daily starting from day 4 until day 13. Lesion and angiogenesis scores of control and treated 

animals at day 14 are shown. C. The comparative lesion scores of HSV infected animals at 14 

dpi when treated with galectin-9 either 10μg sub-conjuctivally or 100μg i.p. is shown D. The 

comparative reduction in lesion severity and angiogenesis scores of HSV infected animals 

treated locally with 10µg of galectin-9 daily is shown. E. Therapeutic effect of galectin-9 (10µg) 

administration on SK in C57B/6 animals infected (n=8) with 5x103 PFU of HSV. Kinetics of 

lesion and angiogenesis expression in control and galectin-9 treated animals (8-14 days pi) at 15 

dpi is shown. All experiments were repeated at least three times. Data was analysed using one 

way ANOVA test with Dunnett’s post settings except in E where Student ‘t’ test was used. 
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Figure 4. 4 Effect of galectin-9 treatment on cellular infiltration and cytokine levels in 

corneas of HSV infected animals.  

C57B/6 animals infected with 5x103 PFU of HSV were given 10μg of galectin-9 

subconjuctivally daily starting from day 4 until day 13 as described  above in Fig 3B. A. Total 

numbers of CD4+  and CD4+TIM-3+ T cells in the corneas of control and galectin-9 treated 

animals is shown at day 14. B-C. The frequencies and numbers of infiltrated PMNs 

(CD11b+Gr1hi) and a cell type akin to MSCs (CD11b+Gr1lo) is shown in control and galectin-9 

treated animals.  D. Levels of cytokines (IL-6, TGF-β and IL-12) and angiokine (VEGF-A) in 

pooled corneal samples each consisting of four cornea/group isolated from control and galectin-9 

treated animals as analyzed by sandwich ELISA are shown. E. Levels of IL-6 and TGF-β in 

pooled corneal samples isolated from control and therapeutically treated HSV infected animals 

are shown. Experiments were repeated twice. Statistical levels of significance were estimated by 

Student’s ‘t’ test 
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Figure 4. 5 Differential effect of galectin-9 therapy on regulatory T cells and effector CD4+ 

T cells in HSV infected animals.  

A. Total numbers of CD4+ T cells and CD4+IFN-γ+ T cells in the DLNs and spleens of control 

and galectin-9 treated (systemic) animals in shown. B-D. Induction of apoptosis of CD4+Foxp3-

TIM-3+ T cells by galectin-9. Cells isolated from cervical LNs of HSV infected Foxp3-GFP 

knock in animals (day 8) and uninfected animals were cultured in the presence of PBS, galectin-

3 and galectin-9 for 8 hours and thereafter stained for annexin-V, B. Annexin-V+CD4+Foxp3- 

and Foxp3+ T cells isolated from infected (upper panel) and uninfected (lower panel) animals 

incubated with PBS and galectin-9 animals is shown. C. The bar diagram showing the 

percentages of annexin-V+ cells under indicated conditions is shown. D. Co-staining of CD4+ T 

cells for annexin-V and TIM-3 is shown. E-G. Proliferative responses of Foxp3- and 

Foxp3+CD4+ T cells in HSV infected animals after galectin-9 therapy. Frequencies (E) and 

absolute numbers (F) of CD4+Foxp3+ T cells in the spleens (E and F) and DLNs (F) of control 

and galectin-9 treated animals are shown. G. DLN cells isolated from control and galectin-9 

treated animals were labeled with CFSE and their proliferative response in the presence of anti-

CD3 and anti-CD28 were analyzed after 3 days. CD4+ gated population analyzed for the dilution 

of CFSE in Foxp3+ and Foxp3- CD4+ T cells from control (thin line) and galectin-9 treated (thick 

line) animals  is shown. 
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Figure 4. 6 Effects of galectin-9 treatment on the generation of CD4+Foxp3+ regulatory T 

cells and Th17 cells in vitro.  

Splenocytes isolated from DO11.10RAG2-/- animals were cultured with IL-2 alone, IL-2+TGF-

β 2ng/ml, IL-2+Galectin-9, IL-2+TGF-β+galectin-9, IL-2+TGF-β +IL-6 with or without 

galectin-9. A. Representative FACS plots from more than 6 experiments showing the Foxp3 

induction in TCR stimulated CD4+ T cells isolated from DO11.10RAG2-/- animals under 

indicated conditions. B.  The bar diagram shows the percentage of CD4+ T cells expressing 

Foxp3 under indicated conditions. The levels of significance was calculated by ANOVA test C. 

Cells were cultured under Th17 differentiating conditions (IL-2+TGF-β +IL-6) with or without 

galectin-9. The dot plots show the inhibitory effects on the generation of Th17 cells (upper 

panel) and the stimulatory effects on the generation of Foxp3+ T cells (lower panel) of various 

doses of galectin-9 in in vitro cultures. D.  The bar diagram shows the percentages of Th17 or 

Foxp3+ Tregs induced under indicated conditions. The experiments were repeated at least four 

times and the level of significance was determined by Student ‘t’ test. 
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Figure 4. 7 Effects of galectin-9 administration on CD11b+  myeloid suppressor cells.  

C57B/6 animals infected with 5x103 PFU of HSV were treated i.p. with 100μg of galectin-9 

daily starting from day 4 until day 14 as described in Fig 4.3A and CD11b+ cells from control 

and galectin-9 treated animals were phenotypically characterized at day 15 post infection. A-B. 

FACS plots (A) and bar diagram (B) depicting the percentages of CD11b+ cells in the spleens of 

control and galectin-9 treated animals at day 14 are shown. C-D. Phenotypic characterization of 

CD11b+ cells from control and galectin-9 treated animals with respect to the expression of Gr1, 

F4/80, CD11c and Ly6C is shown. C.  Bold lines in hitograms in D show the expression of the 

indicated marker on CD11b+Gr1lo gated population while thin lines show the expression of 

indicated surface molecules on CD11b+Gr1hi gated population from the spleens of galectin-9 

treated animals. E. Total numbers of cells in gated CD11b+Gr1hi and CD11b+Gr1lo cells in the 

spleens of control and galectin-9 treated animals as shown in C. Student ‘t’ test was used to 

calculate significance level between groups. 
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Figure 4. 8 Effects of galectin-9 on VEGF-A production. 
MKT (stromal fibroblast cell line) cells were used to observe the effect of galecetin-9 on VEGF 

production. The cells were infected with 5MOI of HSV KOS and were then treated with various 

doses of galectin-9. A VEGF-A mRNA expression was measured at 6 hours and 12 hours from 

control and galectin-9 (1μg, 10μg and 50μg/ml) treated cells as normalized with HPRT 

expression is shown. One was ANOVA was used to calculate the level of significance. 
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