
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2008

SB-CoRLA: Schema-Based Constructivist Robot
Learning Architecture
Yifan Tang
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Tang, Yifan, "SB-CoRLA: Schema-Based Constructivist Robot Learning Architecture. " PhD diss., University of Tennessee, 2008.
https://trace.tennessee.edu/utk_graddiss/528

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268770939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Yifan Tang entitled "SB-CoRLA: Schema-Based
Constructivist Robot Learning Architecture." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Lynne E. Parker, Major Professor

We have read this dissertation and recommend its acceptance:

Bruce J. MacLennan, Michael W. Berry, Dongjun Lee

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a dissertation written by Yifan Tang entitled “SB-CoRLA:
Schema-Based Constructivist Robot Learning Architecture.” I have examined the final
electronic copy of this dissertation for form and content and recommend that it be ac-
cepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Computer Science.

Lynne E. Parker, Major Professor

We have read this dissertation
and recommend its acceptance:

Bruce J. MacLennan

Michael W. Berry

Dongjun Lee

Accepted for the Council:

Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

SB-CoRLA: Schema-Based Constructivist
Robot Learning Architecture

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yifan Tang

December 2008

Copyright c© 2008 by Yifan Tang.
All rights reserved.

ii

Abstract

This dissertation explores schema-based robot learning. I developed SB-CoRLA (Schema-
Based, Constructivist Robot Learning Architecture) to address the issue of constructivist
robot learning in a schema-based robot system. The SB-CoRLA architecture extends
the previously developed ASyMTRe (Automated Synthesis of Multi-team member Task
solutions through software Reconfiguration) architecture to enable constructivist learning
for multi-robot team tasks. The schema-based ASyMTRe architecture has successfully
solved the problem of automatically synthesizing task solutions based on robot capabilities.
However, it does not include a learning ability. Nothing is learned from past experience;
therefore, each time a new task needs to be assigned to a new team of robots, the search
process for a solution starts anew. Furthermore, it is not possible for the robot to develop
a new behavior.

The complete SB-CoRLA architecture includes off-line learning and online learning
processes. For my dissertation, I implemented a schema chunking process within the
framework of SB-CoRLA that involves off-line evolutionary learning of partial solutions
(also called “chunks”), and online solution search using learned chunks. The chunks are
higher level building blocks than the original schemas. They have similar interfaces to the
original schemas, and can be used in an extended version of the ASyMTRe online solution
searching process.

SB-CoRLA can include other learning processes such as an online learning process
that uses a combination of exploration and a goal-directed feedback evaluation process to
develop new behaviors by modifying and extending existing schemas. The online learning
process is planned for future work.

The significance of this work is the development of an architecture that enables con-
tinuous, constructivist learning by incorporating learning capabilities in a schema-based
robot system, thus allowing robot teams to re-use previous task solutions for both exist-
ing and new tasks, to build up more abstract schema chunks, as well as to develop new
schemas. The schema chunking process can generate solutions in certain situations when
the centralized ASyMTRe cannot find solutions in a timely manner. The chunks can be
re-used for different applications, hence improving the search efficiency.

iii

Contents

1 Introduction 1
1.1 Term Definitions . 3
1.2 Preview of Results and Contributions . 4
1.3 Organization of the Dissertation . 5

2 Related Work 6
2.1 Schema Theory and Information Invariants 6
2.2 ASyMTRe Architecture . 8
2.3 Solution Search Algorithms . 9
2.4 Constructivist Learning . 11

2.4.1 Assimilation related Learning . 11
2.4.2 Accommodation related Learning . 13

3 Approach Overview 15
3.1 Overall SB-CoRLA Architecture . 15
3.2 Overview of Assimilation . 17
3.3 Illustrative Example . 18
3.4 Overview of Accommodation . 20

4 Assimilation 23
4.1 The Search Algorithms . 24

4.1.1 Centralized ASyMTRe (CA) Search Algorithm 24
4.1.2 Randomized ASyMTRe (RA) Search Algorithm 26
4.1.3 Evolutionary Learning (EL) Search Algorithm 26
4.1.4 Comparing CA, RA, and EL . 30

4.2 The Harvesting Process and ECA, the Online Solution Search Process . . . 32
4.3 Limitations of the Chunking Process . 41

5 Results and Discussion 43
5.1 Description of the Applications . 43
5.2 Experimental Design . 46
5.3 Results and Discussion . 47

5.3.1 Comparison of the time requirements among CA, RA, and the chunk-
ing process . 47

5.3.2 Time requirements of off-line learning in the chunking process 48
5.3.3 Quality of solutions generated by chunking 54

iv

5.3.4 Comparison of the solution quality generated by CA, RA, and ECA 58
5.3.5 Comparison between chunking and ASyMTRe 64
5.3.6 Sensitivity tests of EL . 65

5.4 Summary of Findings . 76

6 Conclusions and Future Work 78

Appendix 81

A Chunking Implementation Details 82
A.1 The Graph . 82
A.2 The Schema . 83
A.3 The Procedures in EL . 85
A.4 Preview of ECA v.2 . 88

Bibliography 90

Vita 97

v

List of Tables

3.1 A team of 5 robots and their schemas . 19
3.2 Schemas and their information types . 20

4.1 EL parameters and their default values . 29
4.2 Comparison between CA, RA, and EL . 33

5.1 Number of schemas for applications A, B, C, and D 46
5.2 Time breakdown for CA/RA and the chunking process 47

A.1 The Comm structure . 83
A.2 The Schema structure . 84
A.3 EL command line tags . 87

vi

List of Figures

3.1 SB-CoRLA Architectural Overview . 16
3.2 SB-CoRLA Architecture Implementation . 19
3.3 CA/RA: Potential solutions for a team of 5 robots 21
3.4 CA/RA: Potential solutions, graphical illustration 21
3.5 Online Goal-Directed Feedback-Based Learning Process 22

4.1 Crossover . 31
4.2 First-level chunk . 35
4.3 More complex first-level chunk . 36
4.4 Second-level chunk in text form . 39
4.5 Second-level chunk in graph form . 40
4.6 Hybrid online solution search process . 42

5.1 Possible implementations of applications A, B, C, and D 45
5.2 EL vs. CA and RA: Pre-processing time, application A 48
5.3 CA vs. RA: Pre-processing time, application A 49
5.4 EL vs. CA and RA: Pre-processing time, application B 49
5.5 EL vs. CA and RA: Pre-processing time, application C 50
5.6 EL vs. CA and RA: Pre-processing time, application D 50
5.7 EL vs. CA and RA: Pre-processing time, application D, different axis scale 51
5.8 ECA vs. CA and RA: Time for first online solution, application A 51
5.9 ECA vs. CA and RA: Time for first online solution, application B 52
5.10 ECA vs. CA and RA: Time for first online solution, application C 52
5.11 ECA vs. CA and RA: Time for first online solution, application D 53
5.12 ECA vs. CA and RA: Time for first online solution, application D, different

dimension . 53
5.13 EL: Time to evolve one generation, applications A, B, C, and D 54
5.14 EL: Time for one generation, application A and B 55
5.15 Harvesting time requirement . 56
5.16 Evolutionary Learning development over time 57
5.17 Evolutionary Learning development over time, application B 59
5.18 EL vs. ECA: Number of assigned robots . 60
5.19 EL vs. ECA: Number of assigned robots, application C 61
5.20 EL vs. ECA: Number of assigned robots, application D 61
5.21 ECA, CA, and RA: Solution costs for application A 62
5.22 ECA, CA, and RA: Solution costs for application B 62

vii

5.23 ECA, CA, and RA: Solution costs for application C 63
5.24 ECA, CA, and RA: Solution costs for application D 64
5.25 EL: sensitivity toward connection rate, application A 66
5.26 EL: sensitivity toward connection rate, application B 67
5.27 EL: sensitivity toward connection rate, application C 68
5.28 EL: sensitivity toward connection rate, application D 69
5.29 EL: sensitivity toward weights for fitness value calculation, applications A,

B, C, and D . 70
5.30 EL: sensitivity toward mutation rate, costs 71
5.31 EL: sensitivity toward mutation rate, complexity 72
5.32 EL: sensitivity toward mutation rate, number of assigned robots 73
5.33 EL: Max. number of generations with new parameter setting 74
5.34 EL: Max. number of generations with no improvement, with new parameter

setting . 74
5.35 EL: Sensitivity test of number of generations 75

viii

Chapter 1

Introduction

A computational system is not truly intelligent unless it has the ability to learn from past
experience, and to learn to adapt to new conditions. Implementing learning in a robot
system is necessary for the robot system’s efficiency, stability, and flexibility. In prior
work, F. Tang and Parker [Tang and Parker, 2005a,Tang, 2006] developed the ASyMTRe
approach to automatically generate robot team task solutions for coalitions1 performing
multi-robot tasks. The ASyMTRe approach is inspired by the theory of information in-
variants [Donald, 1995] and schema theory [Arbib, 2003], and finds team task solutions by
configuring the schema building blocks on each robot such that the resulting configuration
achieves the specified task with the lowest cost possible. Because the challenge of locating
a low-cost configuration of schemas across multiple robot team members is an NP-hard
search problem [Tang and Parker, 2005b] (which is also true for other task allocation prob-
lems), the ASyMTRe search algorithm that finds potential coalitions is based loosely on
the findings of Shehory [Shehory and Kraus, 1999], who showed that for non-super-additive
domains, better solutions consist of smaller coalition sizes. These concepts are implemented
in ASyMTRe through heuristics that direct the search toward smaller team solutions first.
Parker and F. Tang showed, through empirical evaluations, that the heuristic-based cen-
tralized ASyMTRe search algorithm generates very good solutions quite quickly for several
types of applications. A major benefit of this approach is that it enables robots to easily
share sensory, computational, and effector capabilities in solving challenging multi-robot
tasks.

My research objective is to extend the ASyMTRe architecture to enable constructivist
learning in the multi-robot team. Constructivist Learning is inspired by the human child
development theory of Piaget [Piaget, 1952]. It is a method for learning new knowledge
and skills based upon past experiences; this type of learning is recognized to be a common
method used by humans from infancy to adulthood for lifelong learning2 [Bruner, 1990].
Constructivist learning in this research refers to the adaptation process through learning
from experience and interaction with the environment. There are two major aspects of

1The coalition search problem is the problem of finding the appropriate combination of single-task robots
that collectively perform multi-robot tasks using instantaneous assignment (taxonomized as ST-MR-IA,
per [Gerkey and Mataric, 2004]).

2This dissertation uses the constructivist learning theory as inspiration. It is not intended to prove the
constructivist theory in any way. I am also aware of the controversy in the psychology research field about
the correctness of this theory.

1

adaptation in constructivist learning [Piaget, 1981]: Assimilation and accommodation,
defined as follows:

• Assimilation conserves forms, or schemes of behaviors. New forms are incorporated
into the system as a new construction, or new assembly, of old forms in the system;

• Accommodation modifies forms based on environmental stimulation.

The SB-CoRLA architecture realizes assimilation through “chunking”, which includes off-
line Evolutionary Learning (EL), schema chunk harvesting, and online solution search
via extended centralized ASyMTRe (ECA) using the harvested chunks. SB-CoRLA also
suggests accommodation through online, goal-directed, feedback evaluation. The basic
building blocks of these learning processes are schemas and chunks. On one hand, the
schemas and chunks implemented in SB-CoRLA have a higher abstraction level than the
basic schemas implemented by Drescher [Drescher, 1991] or by Chaput [Chaput et al.,
2003, Chaput, 2004], and incorporate higher level reasoning and motor skills. On the
other hand, these basic building blocks of SB-CoRLA have a lower abstraction level than
behaviors. Conceptually, though not constructionally, a behavior normally consists of
multiple perceptual schemas, motor schemas, and the coordination among those schemas.
In SB-CoRLA, coordination among the schemas happens through matching information
types. The perceptual schemas and the motor schemas can be connected with each other
in different ways, in order to evoke different behaviors.

Because much of human learning seems to be based on schema building blocks, my
intent is to build upon the schema-based abstraction of ASyMTRe to enable constructivist
robot learning. I believe that collections of schemas, called “chunks”, analogous to the
Sensori-Computational Systems (SCSs) of Donald’s information invariants theory [Donald,
1995], could be learned. Most of the chunks present intermediate solutions of the search
problem3. Ultimately, my research objective is to enable robot teams to learn and build
up chunks constructively, in order to store knowledge from previous search processes, to
incrementally build up more abstract knowledge, and to improve the efficiency for future
online searches.

This dissertation introduces a Schema-Based, Constructivist Robot Learning Archi-
tecture called “SB-CoRLA”. The current solution search strategy of ASyMTRe does not
construct chunks that would be amenable to this constructivist learning process. Thus,
I developed a schema chunking process that has the benefit of facilitating constructivist
learning in multi-robot teams. The schema chunking process includes:

1. an alternative off line search strategy - the Evolutionary Learning algorithm (EL) -
that searches for highly-fit solutions and partial solutions off line, for a given robot
team composition and team task definition;

2. an off line harvesting process that extracts chunks of schemas from the solutions
generated by EL; and

3. an online extended ASyMTRe search algorithm that uses previously learned, relevant
schema chunks to find solutions for another robot team composition and another team
task.

3In this paper, “chunk” and “SCS” are used as synonyms.

2

The chunking process can find a team solution quickly in certain situations when ASyMTRe
cannot find a solution in a timely manner4. Schema chunks can be re-used for different
team tasks, as long as the task definition requires the information types the schema chunks
can provide.

In order to evaluate the chunking process, the following simulations and observations
are performed:

1. The time consumption is compared between the original ASyMTRe and the chunking
process;

2. The development of team solutions is monitored throughout the EL process;

3. The quality of the final solution generated by the chunking process is compared with
the solution generated by original ASyMTRe;

4. The computational complexity for the chunking process is analyzed;

5. The generated chunks and team solutions are reviewed manually to determine their
validity.

1.1 Term Definitions

In this subsection, I define several key terms that are used in the SB-CoRLA architecture.
This subsection can be used as a quick reference guide to terms, if needed. The Schema
is the basic building block of SB-CoRLA, and the Information Type presents the way
of connecting the schemas. A Sensori-Computational System (SCS) is a set of schemas
connected via information types, and the SCS repository is the knowledge base of the
SB-CoRLA architecture.

• Schema: A schema represents a functional capability of the robot. The abstraction
level of a schema is lower than the abstraction level of a behavior, and higher than the
abstraction level of a basic motor or sensing capability of a robot. The SB-CoRLA
architecture utilizes the following categories of schemas: Perceptual Schemas (PS),
Motor Schemas (MS), Communication Schemas (CS), Valuation Schemas (VS), and
Learning Schemas (LS), defined as follows:

– PS: Computational capability to process sensory input

– MS: Action capability

– CS: Communication capability, mostly with other team members

– VS: Computational capability to evaluate feedback

– LS: Computational capability that processes evaluation produced by VS, and
enables behavior modification

Each schema has a unique set of input information types and one single output
information type.

4Neither chunking, nor ASyMTRe, is consistently better than the other one in the simulations, as shown
in the results discussion.

3

• Information Type: The term information type is used to distinguish from data type
[Tang, 2006]. While data type identifies the classification of the data, information
type identifies the semantics of the information. Some examples of information types
are the global position of the robot itself, the global position of another robot, the
relative position of another robot, the goal position, different sensory data, and motor
control commands.

• Environmental Sensor (ES): ESs reflect the sensing capabilities of a robot. Examples
of ES are laser, sonar, camera, GPS, bumper, etc.

• Chunk: Same as Sensori-Computational System. See below.

• Sensori-Computational System (SCS): An SCS, also called a “chunk”, is a set of
schemas connected through matching information types. There are three primary
levels of chunks:

– A first-level chunk is a set of interconnected schemas that collectively provide
one specific information type.

– A second-level chunk is a set of interconnected schemas that collectively provide
all necessary information types for one specific type of robot to accomplish one
specific task.

– A higher-level chunk is a set of interconnected schemas that represents a partial
solution or a complete solution for a robot team task search problem.

• SCS repository: The SCS repository is the knowledge base that stores chunks and
schemas. In an extended version of the SB-CoRLA architecture, there can be two
kinds of SCS repositories: the general SCS repository and the specific SCS repository.

– The general SCS repository stores all known chunks and basic schemas.

– The specific SCS repository stores chunks and basic schemas that are applicable
to a specific robot team configuration.

• Constructivist Learning: Constructivist learning is a method of learning new knowl-
edge and skills based on past experiences. It has two important aspects, assimilation
and accommodation, defined in SB-CoRLA as follows:

– Assimilation reflects the process of incrementally building more complex and
more abstract chunks by assembling existing schemas and chunks;

– Accommodation is the process of developing new schemas and chunks by mod-
ifying existing schemas and chunks based on feedback derived from interaction
with the environment.

• Chunking: The chunking process is the assimilation process implemented in SB-
CoRLA. It includes three steps:

– The off-line Evolutionary Learning process (EL) learns highly-fit team solutions;

– The off-line harvesting process extracts chunks from the EL solutions;

– The online extended ASyMTRe process (ECA) generates team solutions using
previously learned chunks.

4

1.2 Preview of Results and Contributions

The main contribution of this dissertation is the SB-CoRLA architecture - a schema-based,
constructivist learning architecture for robot systems, which includes:

• An off-line evolutionary learning (EL) search algorithm that explores the search space
and generates highly-fit partial and complete solutions for various tasks.

• A new randomized ASyMTRe (RA) algorithm that performs the online search pro-
cess.

• A harvesting technique that extracts chunks from the solutions and partial solutions
generated via EL.

• An SCS repository that archives the schemas and the chunks.

• An extended version of ASyMTRe online solution search process - ECA - that utilizes
the chunks from the SCS repository to generate online solutions.

• Experimental analysis and comparisons of the chunking process, CA, and RA.

• Exploration of the extension of the SB-CoRLA architecture to include online learning.

Learning is important in a robot system primarily because the robot needs to adapt to
unknown environments. The SB-CoRLA architecture enables this adaptation by allowing
the robot to find solutions more efficiently based on learned knowledge, and to develop new
abilities based on past experiences.

The part of SB-CoRLA implemented in this dissertation differs from other robot learn-
ing algorithms in that:

1. it combines off-line schema chunk learning and online solution search using previ-
ously learned chunks, while chunks can be re-used not only for the same task where
they were learned, but also for different tasks where they can provide the required
information types;

2. it is schema-based and utilizes information types to generate information flow within
a robot system; and

3. it implements evolutionary learning that naturally selects highly-fit solutions and
prunes out solutions with lower relevance.

1.3 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 presents a review of the related work
in schema theory and information invariance, the ASyMTRe architecture, solution search-
ing algorithms, and various SB-CoRLA related learning algorithms. Chapter 3 gives
an overview of SB-CoRLA. Chapter 4 describes the assimilation process and Chapter 5
presents the simulation results. Chapter 6 concludes with the main contributions and
discusses future work.

5

Chapter 2

Related Work

Schema theory and information invariants are the inspiration of this research, while
ASyMTRe lays the ground work upon which SB-CoRLA is built. This chapter reviews
background and related work for schema theory, information invariants, and ASyMTRe.
Furthermore, SB-CoRLA enables constructivist learning for more efficient robot team task
solution search. This chapter also reviews related works in solution search algorithms, and
constructivist learning.

2.1 Schema Theory and Information Invariants

Schemas and information types are the basic elements of SB-CoRLA, inspired by schema
theory [Lyons and Arbib, 1989, Arbib, 2003] and information invariants theory [Donald
et al., 1994,Donald et al., 1997], respectively. Schemas in SB-CoRLA modify and extend
the formal definition of Robot Schema presented in [Lyons and Arbib, 1989] by means of
information types and task definitions. Furthermore, SB-CoRLA presents the capabilities
of robots at a different abstraction level than the other research efforts presented in this
section.

The basic building block of SB-CoRLA is the schema. Several researchers have explored
the concept of schemas and developed algorithms using the schema as the basic building
block. Lyons and Arbib [Lyons and Arbib, 1989] were the first researchers to incorporate
schemas into a programming language for robots. Their language, named Robot Schema
(RS), consists of primitive schemas, task schemas, and assemblage schemas. All three
schemas have input and output ports. Each port is associated with a data type. Ports
are connected via matching data types. There are two kinds of primitive schemas: the
sensory schemas collect and process sensory data, while the motor schemas perform robot
motion control. The task schemas contain task definitions about how to connect sensory
schemas and motor schemas, and they are also the connecting schemas between sensory and
motor schemas. The assemblage schemas are interconnected networks of primitive schemas
and task schemas. An example of a very simple assemblage schema consists of one sensory
schema connected to one task schema, which is in turn connected to one motor schema. The
schemas implemented in SB-CoRLA are similar to the schemas in the RS-model, in that
they are connected via matching input and output types. However, schemas in SB-CoRLA
are connected via matching information types, which adds flexibility and abstraction to the

6

algorithm. There are five different kinds of schemas in SB-CoRLA: Perceptual Schemas
(PS), Motor Schemas (MS), Communication Schemas (CS), Learning Schemas (LS), and
Valuation Schemas (VS). ES and PS together are comparable to the primitive sensory
schema in the RS-model, while MS is similar to the primitive motor schema in the RS-
model. There is no task schema in SB-CoRLA. Instead, the task is defined as a set of
information types. The idea of an assemblage schema is implemented in SB-CoRLA as
Sensori-Computational Systems (SCSs), also called “chunks”.

In [Arbib, 2003], Arbib gives an overview of the different theoretical aspects of schemas,
and explores schema theory from the neurological perspective. He points out that schemas
are recursive in the sense that they can be divided into sub-schemas. To handle the coor-
dination of these sub-schemas, he introduces the notion of Coordinated Control Program
(CCP). The CCP coordinates perceptual schemas and motor schemas, and combines sev-
eral sub-schemas into higher-level schemas. Arbib redefines the neuroscience and cognitive
psychological term “working memory” as a short-term memory that holds a range of in-
formation relevant for the upcoming actions. The short-term memory is updated in the
manner of LRFO (Least Recently accessed First Out). Besides the short-term working
memory, the robot can also maintain a long-term memory that stores schemas. This idea
has inspired my concept of the general SCS repository in the assimilation process in SB-
CoRLA.

Arkin [Arkin, 1987,Arkin, 1998] implemented schema-based behavior control for robots.
His approach breaks down behaviors into perceptual schemas and motor schemas. The
motor schemas generate motor control outputs. Several motor schemas are combined to
produce the desired action. Compared with his approach, the schemas used in SB-CoRLA
do not need to have well-defined behavioral functionality, but rather reflect capabilities
that can be used in different behavioral implementations. This characteristic adds to the
flexibility of SB-CoRLA.

Drescher [Drescher, 1991] and Chaput [Chaput et al., 2003, Chaput, 2004] defined
schemas similarly to each other, but differently from the schema definition in SB-CoRLA.
Their schemas consist of an action and a set of variables indicating the environmental
state before and after the action is taken. No distinction is made between different kinds
of schemas. Their research aims to emulate how babies learn to interact with the environ-
ment using inherent basic actions, while SB-CoRLA aims for more efficient robot motion
control. Not only are the schemas defined differently, they are also at different abstraction
levels. The schemas from Drescher and Chaput’s systems are more primitive than the ones
in SB-CoRLA. Because the schemas in SB-CoRLA are more abstract, the search approach
can be more computationally efficient.

The idea of information type is inspired by Donald, et al. [Donald et al., 1994,Donald
et al., 1997], who define information invariants as the process of extracting information
that is necessary to perform a task from the task definition and/or from the sensors. The
goal of their research is to determine what information is required for a robot to accomplish
its tasks, or for a team of robots to accomplish their tasks, and how the robot/robots can
retrieve this information. While their work is analytical, and concentrates on extracting the
information characteristics of a robot task by distributing sensori-computational resources
among collaborating robot team members, SB-CoRLA is constructive, and uses the idea
of information invariants to achieve automated robot collaboration based on the known
information requirements of a robot task.

7

2.2 ASyMTRe Architecture

F. Tang and Parker [Tang and Parker, 2005a,Tang, 2006, Parker and Tang, 2006] devel-
oped the ASyMTRe (Automated Synthesis of Multi-team member Task solutions through
software Reconfiguration) approach to automatically generate robot team task solutions
for coalitions performing multi-robot tasks. The ASyMTRe approach was inspired by the
theory of information invariants [Donald, 1995] and schema theory [Arbib, 2003].

ASyMTRe addresses the coalition search problem, which is the problem of finding the
appropriate combination of single-task robots that collectively perform multi-robot tasks
using instantaneous assignment (taxonomized as ST-MR-IA, per [Gerkey and Mataric,
2004]). In the ASyMTRe approach, the search space of this problem consists of basic
schemas [Arbib, 2003] (ES, PS, MS, and CS), each of which requires and produces certain
input(s) and output(s) called information types, which can be any kind of sensory and com-
putational data. A task is defined as a set of required information types. The ASyMTRe
approach automatically generates task solutions by connecting the schema building blocks
via matching information types on each robot such that the resulting configuration com-
pletes the specified task with the highest utility1 possible. Within the context of the
schema-based abstraction used to define robot capabilities, the challenge of locating a high-
utility configuration of schemas across multiple robot team members is an NP-hard search
problem [Tang and Parker, 2005b]. (This is also a general finding for other task allocation
problems that use abstractions different from the schema-based abstraction [Gerkey and
Mataric, 2004].) The ASyMTRe search algorithm that finds potential coalitions is a heuris-
tic approach based loosely on the findings of Shehory [Shehory and Kraus, 1999], which
showed that for non-super-additive2 domains, better solutions consist of smaller coalition
sizes. These concepts are implemented in ASyMTRe through heuristics that direct the
search toward smaller team solutions first.

The search space is constrained in a variety of ways. The input to a PS must come
from an ES or other PSs. CSs can pass information between PS and/or MS across multiple
robots, thus enabling robots to share information between them. The input to an MS
comes from a PS or a CS. The control of the robot’s motors occurs only through output
from MS.

The inputs and outputs of schemas can be interconnected if their information types
match. The interconnection process can be illustrated through the following example:
Suppose a robot, R, has two schemas, schema SA and schema SB. SA outputs the global
position of R, and SB needs the global position of R as input, in order to compute motor
control commands such as a speed and a turning direction. SA can be connected to SB

via the information type “global position”, to enable SB to produce the information types
“speed” and “turning direction”. The ASyMTRe process of automatically connecting the
schemas through matching information types defines the information flow through a multi-
robot system, thus generating the behavior control for a robot coalition. A major benefit of
this approach is that it enables robots to easily share sensory, computational, and effector
capabilities in solving challenging multi-robot tasks.

1The utility of a solution is calculated as a combination of weighted costs and success probabilities of
active schemas.

2A domain is non-super-additive if the combined effort of separate members does not exceed the sum of
the single effort of the same members.

8

Although ASyMTRe does not include learning, there are many learning possibilities
that can be implemented on the foundation of ASyMTRe. SB-CoRLA addresses two
learning opportunities: Incremental hierarchical learning (assimilation) and exploratory
behavioral learning (accommodation). The assimilation process uses an off-line evolution-
ary search and learning process to gradually generate and store hierarchical schema building
blocks, i.e. to build and reuse sets of interconnected schemas, which can be reused in the
online solution search process, in order to increase the solution search efficiency. The ac-
commodation process modifies the existing schemas using feedback evaluation to generate
different behaviors. SB-CoRLA uses the same basic building blocks as ASyMTRe. The
original schemas and the SCSs in the knowledge base of SB-CoRLA have the same in-
terface as the basic modules in ASyMTRe: they have inputs and outputs in the form of
information types, and can be connected with each other via matching information types.
In the online solution searching process in SB-CoRLA, the centralized ASyMTRe search
algorithm is used to find a solution.

2.3 Solution Search Algorithms

A solution search process evaluates possible solutions based on a problem definition. Some
search algorithms aim to find the optimal solution to a problem, while others aim to find
a feasible solution. The collection of all possible solutions for one problem is called the
“search space” of that specific problem. While brute-force search algorithms search through
the entire search space, heuristic-based search algorithms apply some knowledge about the
search space, in order to reduce the amount of search, or to find a solution sooner.

Centralized ASyMTRe [Tang and Parker, 2005b] is an anytime search process that
aims to find a feasible solution, and to find better solutions given more time. An anytime
algorithm produces online results and improves the result quality if there is more time
for computation. The ASyMTRe approach employs a heuristic-based search algorithm to
find the task solution with the highest utility possible at an early time. Assuming that
smaller coalition teams will produce lower cost and higher utility solutions, the heuristic
consists of two components, both attempting to preserve as many resources as possible at
the beginning of the task assignment process. The first component assigns robots with less
available capabilities to the task first. The second component assigns help to robots by first
choosing robots with fewer capabilities to provide assistance to a requesting robot. Only if
the lower capability robots fail to provide the requested help are higher capability robots
chosen. Aside from this heuristic aspect, centralized ASyMTRe uses a brute-force search
algorithm that searches through all possible task assignment sequences for the robots. In
contrast, SB-CoRLA’s assimilation process implements an evolutionary learning search
approach to explore alternative search techniques for this NP-hard search problem.

Huang and van de Panne [Huang and van de Panne, 1996] created a decision tree search
algorithm to plan for dynamic motions. They reduced the computational complexity of
the search process by exploring only promising branches (branches from nodes with high
evaluation values) of the decision tree instead of performing an exhaustive search, and
by pruning the decision tree and deleting leaves that lead to failed actions to reduce the
search space for subsequent search processes. SB-CoRLA uses a similar principle in the
assimilation process through an indexing system, which inspects promising SCSs first.

9

Hansen, et al. [Hansen et al., 1997] explored the anytime heuristic search. They pro-
posed that non-admissible evaluation functions3 could increase the speed of the search
process, in order to find the first solution faster, and eventually to converge to an optimal
solution. They pointed out that an anytime algorithm should aim to optimize the search
effort, i.e., to optimize the rate of search time to solution improvement. This criterion
cannot be applied to the ASyMTRe search algorithm, because the solution improvement
is unknown.

More recently, Jones, et al. [Jones et al., 2006] applied the “Play” component from
the framework of Skills, Tactics, and Plays (STP) [Bowling et al., 2004] to define tasks
for a robot coalition, and applied their approach called TraderBots, to dynamically assign
tasks to the robots. A play consists of a set of roles that are assigned to different robots,
a collection of actions for each role to accomplish, and evaluation functions to determine
the degree of goal achievement. Each play is assigned a probability of being selected. The
selection of a play happens stochastically, which is beneficial in an adversarial environment.
Like my approach, this approach can automatically assign tasks to each robot, and find a
substitute robot if one robot fails to perform its task. This task assignment occurs at a
higher level than in SB-CoRLA. While each robot is assigned a role in [Jones et al., 2006],
this kind of role assignment is not defined in SB-CoRLA. In SB-CoRLA, task assignment
occurs on the level of information types.

Levner, et al. [Levner et al., 2006] break down a global coordination task into local
search problems by identifying the key skills of successful robots in a specific task domain.
They solved the local search problems using heuristics and state space pruning to improve
the efficiency of the search process. Their approach is task specific, while SB-CoRLA is
more general and can be used across tasks and domains. SB-CoRLA starts with the same
abstraction level as ASyMTRe, then incrementally builds a knowledge base with more
abstract modular components. With the SCS repository, SB-CoRLA aims for non-task
specific search results.

Saffiotti, et al. [Saffiotti and Broxvall, 2005,Saffiotti et al., 2008] combine ambient intel-
ligence4 and autonomous robotics to develop a system called PEIS (Physically Embedded
Intelligent Systems) that consists of simple units that can communicate with each other and
exchange information. A solution of a task is found by connecting the right units to cre-
ate the right information flow. Instead of using sophisticated sensing capabilities, a robot
achieves its goal by retrieving information about the environment and other objects from
communication. Their work is similar to SB-CoRLA in that the units are connected via
matching information. They achieve communication among heterogeneous units through
cooperative perceptual anchoring [Coradeschi and Saffiotti, 2003, LeBlanc and Saffiotti,
2008], while SB-CoRLA uses matching information types. PEIS employs both centralized
and distributed solution configuration [Lundh et al., 2007,Gritti et al., 2007] to search for
a task solution. However their search algorithm differs from SB-CoRLA in that it does
not enable learning from past experience. Furthermore, although PEIS and SB-CoRLA
both address the ST-MR-IA [Gerkey and Mataric, 2004] task allocation problem, PEIS
concentrates on enabling one robot to perform a task with help via information from other

3A heuristic is admissible if it never overestimates the cost of reaching the goal.
4Ambient intelligence refers to a ubiquitous intelligent interface in everyday life, realized by embedded

computing and networking technology in everyday objects.

10

robots/units in the same system, while SB-CoRLA aims for each robot to perform the task.
Finally, the search space of PEIS is much smaller.

In [Wang and de Silva, 2008, Wang and de Silva, 2006, Shan and Tan, 2006, Sheng
et al., 2006, Huntsberger et al., 2003, Stroupe et al., 2005], multi-robot coordination for
specific tasks is explored. Wang, et al. [Wang and de Silva, 2006,Wang and de Silva, 2008]
develop a machine learning algorithm that combines reinforcement learning and genetic
algorithms to perform multi-robot transportation. Their approach uses a probabilistic
arbitrator to select between the output of the reinforcement learning process and the genetic
algorithms process. Shan and Tan [Shan and Tan, 2006] develop a partitioning algorithm
to assign the appropriate robot to a task in a robot-sensor network that performs target
tracking and interception. Sheng, et al. [Sheng et al., 2006] tackle the area exploration task
by implementing a distributed bidding model with consideration of the distance among
the robots. Huntsberger, et al. [Huntsberger et al., 2003, Stroupe et al., 2005] develop
a distributed, behavior-based, multi-robot architecture called “CAMPOUT” to perform
tightly coupled planetary surface exploration. All the previous approaches target specific
multi-robot tasks. In contrast, SB-CoRLA is a general architecture that enables cross
domain robot learning, and is therefore not limited to specific tasks.

2.4 Constructivist Learning

Piaget [Piaget, 1952, Piaget, 1963, Piaget, 1981] laid the groundwork for constructivist
learning in child development by identifying incremental, distinct sensori-motor periods
of intelligence development. He identified two basic processes of intelligence development:
assimilation and accommodation. The assimilation process assembles existing knowledge
in new ways to reflect the external reality. The accommodation process consists of modi-
fication and adjustment of the existing knowledge, in order to reflect the external reality
that cannot be encompassed by the existing knowledge. Similarly, the SB-CoRLA archi-
tecture includes both assimilation and accommodation. While this dissertation concen-
trates on the assimilation process, accommodation will be explored in future work. Brooks
and Mataric [Brooks and Mataric, 1993] defined four robot learning categories: parame-
ter/function learning, environment learning, coordination learning, and behavior learning.
SB-CoRLA aims to implement environment learning through assimilation, and behavior
learning through accommodation.

2.4.1 Assimilation related Learning

Robins and McCallum [Robins and McCallum, 1999] pointed out the importance of the
knowledge consolidation process and suggested the use of pseudo-rehearsal (rehearsing
pseudo data from the base population), in order to preserve the old knowledge and to
prevent catastrophic forgetting, while integrating new knowledge. Their work is an inspi-
ration to the off-line-learning aspect of SB-CoRLA because it is not only important to find
a solution online, but also to preserve the learned knowledge off-line.

Coelho and Grupen [Coelho and Grupen, 2000] developed context-dependent con-
trollers5 to implement biased Q-learning for the “grasp” behavior. Platt, et al. [Platt

5A controller selects, coordinates, and sequences different actions.

11

et al., 2005,Platt et al., 2006] continued their idea of utilizing a local controller instead of a
global controller, and implemented abstract action schemas [Platt et al., 2005] and schema
structured learning [Platt et al., 2006]. An action schema is defined as a set of abstract
states, abstract actions, an abstract policy/controller, and an abstract transition function.
The schema structured approach learns the transition probability between actions and
aims for the best policy to select actions, in order to reach a goal state. Although they
used the term “action schema”, the schema in their system is a generalized representation
of a complete robot behavior, e.g., the behavior “localize-reach-grasp”, and is completely
different than the schema definition used in SB-CoRLA.

Barto, et al. [Barto and Mahadevan, 2003,Konidaris and Barto, 2006b,Konidaris and
Barto, 2006a, Şimşek and Barto, 2006] concentrated on the reward system of hierarchical
reinforcement learning and the portability of the learned skills. In [Konidaris and Barto,
2006b], the researchers implemented an agent-space instead of a problem-space to generate
portable skills. In [Konidaris and Barto, 2006a], a robot motivational framework was devel-
oped to select among different drives based on comparable rewards. In [Şimşek and Barto,
2006], a new reward function was created, intrinsic reward, which records the difference
of external rewards between consecutive time steps, and reflects the internal state of the
robot, in order to promote exploratory behaviors.

Both Grupen and Barto relied on a Markov Decision Process (MDP) as the basic
principle of their algorithms because they tried to find the best control sequence of basic
behaviors. MDP has not been implemented in SB-CoRLA because it is not the action
sequence, but the allocation of robot resources, that is the goal of SB-CoRLA. In the
future, when using the SCS repository to find online solutions, it is imaginable to use
MDP to select among the available SCSs.

As previously mentioned, Drescher [Drescher, 1991] and Chaput [Chaput et al., 2003,
Chaput, 2004] both developed schema-based constructivist learning models to emulate an
infant exploring the environment using basic schemas. Their work concentrated on the
biological verification of the constructivist point of view using very basic level schemas
that reflected the inherent ability of an infant. Unlike their approach, the emphasis of SB-
CoRLA lies in automatically generating robot behaviors by employing higher-level schemas,
aiming for less computational complexity. The definition of schema is also different. While
the schemas in Drescher and Chaput’s work consist of context and result items that reflect
the environment states before and after an action is taken, and the specific actions that
cause the change of the environment, the schemas in SB-CoRLA are similar to the schemas
used in ASyMTRe. The assimilation process in SB-CoRLA is similar to Drescher and
Chaput’s approach of building more complex schemas from the basic schemas.

More recently, Dogar, et al. [Dogar et al., 2007] use a similar principle of learning, called
“affordance”, to implement a similar learning process that combines primitive behaviors
to generate more complex goal-directed behaviors by observing the environmental state
before and after a behavior is taken. They define “affordance” as a relation instance in the
form of (effect, (entity, behavior)). The robot interacts with the environment using basic
behaviors such as “move forward”, “turn right”, and “turn left”, to collect laser sensor
data that reflects the effect of the behaviors on the environment. The algorithm then uses
unsupervised clustering to determine different classes of effects and uses feature selection to
select relevant features of the sensor reading. In the training phase, relation instances are
learned to link current environmental state to desired goal effect through behaviors. These

12

relation instances are then used online to generate a solution to achieve a goal. Unlike SB-
CoRLA, their approach does not deal with multiple robots cooperating. The behavior of
a robot is determined solely based on the environmental state. Their approach mentioned
invariant properties; however, the invariants in their approach apply to the values of the
relevant environmental features, while the information invariants in SB-CoRLA apply to
the information requirement to accomplish a goal.

The assimilation process is also called a “chunking” process, because it assembles the
existing knowledge into a higher hierarchical level of more complex and/or more abstract
knowledge. Doumont [Doumont, 2002] pointed out that people process and memorize
information in chunks and build chunks recursively to establish a hierarchical information
structure. This chunking technique is often used in neural network based temporal sequence
learning to increase efficiency and re-usability [Werbos, 1997, Taylor and Taylor, 2000,
Konishi and Fujii, 2004]. In SB-CoRLA, chunking is also used to enhance efficiency and
re-usability, except at a higher abstraction level, i.e., at the schema level (sensory schema,
motor schema, etc.) instead of at the neural level.

2.4.2 Accommodation related Learning

Tedrake, et al. [Tedrake et al., 2005] combined mechanical design and a statistical actor-
critic algorithm [Konda and Tsitsiklis, 1999] for a bipedal robot to learn to walk by fine-
tuning the control vector based on feedback. In their approach, learning and execution
happen simultaneously. The changes caused by each feedback are rather small, so that the
basic gait of the robot is never broken. Their learning occurs on a lower level than the
schema-based level.

Simonin, et al. [Simonin et al., 2005] used a Bayesian probabilistic model to represent
the correlation between the environment and the possible consequences of the actions of a
robot. They generated motor control commands based on a learned probability distribution
and caused the robot to exhibit different behaviors, such as wall following. Although
the sensori-motor space of the robot is reflected in the probabilistic model, they did not
differentiate between motor schemas and sensory schemas, but rather treated the sensori-
motor behavior as a whole. By separating motor schemas and sensory schemas, SB-CoRLA
gains more flexibility.

Other single-task-single-robot learning algorithms include [Cambron and Peters, 2000,
Hart et al., 2004, Benjamin et al., 2004]. In [Cambron and Peters, 2000], sensory motor
coordination is learned by identifying relevant sensory data through data analysis. In [Hart
et al., 2004], task specific success rates for motor control modules are learned via statistical
data mining.

Oztop, et al. [Oztop et al., 2004] developed a schema-based computational model to
examine the process of behavioral development (developing a new “grasp” behavior based
on the existing “reach” behavior) through active, goal-directed exploration. Their model is
strongly related to the infant motor development research and implements a neural archi-
tecture in each of the schemas. In their work, the schemas are much more complex than the
ones implemented in SB-CoRLA, and they are connected through weight vectors that are
determined by feedback. They started with an original model of schemas and schema con-
nections that reflected the “reaching” behavior. They then induced changes in the weight
vectors that connected the schemas, as well as the schemas themselves, based on the goal

13

definition of what a “grasp” behavior should achieve, by means of population coding based
on the feedback, in order to generate a new, “grasp” behavior. The accommodation process
in SB-CoRLA planned for future work is similar in that it also learns from feedback, and
the changes are also reflected in certain weight vectors. However, SB-CoRLA is different
from their approach because the schema structure is different. The schema in SB-CoRLA
is the same kind of basic module used in ASyMTRe and is not neuron-based.

Henrich, et al. [Schlechter and Henrich, 2006, Deiterding and Henrich, 2007] research
the problem of automatic adaptation using robot sensing data. In [Schlechter and Henrich,
2006], the robot learns threshold values for different behaviors. In [Deiterding and Hen-
rich, 2007], they define four abstraction levels of robot adaptation and perform a series of
experiments to determine promising areas for robot adaptation.

Cherubini, et al. [Cherubini et al., 2007] employ a policy gradient learning technique
to perform both parameter learning and behavior learning [Brooks and Mataric, 1993].
They define a task as a combination of basic behaviors; their goal is to find the best
strategy, which is a composition of basic behaviors, and the best parameter settings for
these behaviors, for a given task. They introduce learning to enhance the performance of
the solution search process. In the training phase, similarities between different strategies
and parameter relevance are learned, which can be used to reduce the online search space.

It is apparent that all behavioral learning algorithms involve feedback evaluation. In
SB-CoRLA, it is also intended for the robot to learn new schemas based on online feedback
and the consequent evaluation process.

14

Chapter 3

Approach Overview

This chapter describes the architecture of SB-CoRLA and gives an illustrative example of
how this approach would be used.

3.1 Overall SB-CoRLA Architecture

Figure 3.1 shows the entire SB-CoRLA architecture. In this approach, a team of robots
are assigned a task. The robot team configuration and task definition are provided. Each
robot has a set of environmental sensors (ESs) that display some sensing capabilities. In
addition, a robot also has some computational capabilities, some communication capabili-
ties, and some motion capabilities. Some robots may have limited capabilities, e.g., limited
sensing capability, limited computational capability, no motion capability, or no communi-
cation capability. The robot capabilities and the robot types are provided in a robot team
configuration file. A task is defined as a set of required information types. For instance, a
box-pushing task can be defined as a set of the following information types: motor control
for pushing direction, motor control for alignment with the box, and information from
other team members about their status, e.g. whether they have just pushed the box. The
task definition is provided in another configuration file.

The capabilities of each robot are encapsuled in different schemas. A parsing process
uses the robot team configuration to extract the available schemas for each robot, including
perceptual schemas (PSs), motor schemas (MSs), and communication schemas (CSs). In
the future, valuation schemas (VSs) and learning schemas (LSs) will be added for the
accommodation process, i.e. the online goal-directed feedback-based learning process. The
parsing process also extracts robot types from the robot team configuration, and extracts
required information types from the task definition. The information extracted by the
parsing process can be used in the off-line evolutionary learning process (EL), the online
extended ASyMTRe solution search process (ECA), and the online goal-directed feedback-
based learning process. It can also be used to identify relevant chunks from the SCS
repositories for the ECA process and the accommodation process.

The general SCS repository is the knowledge base of the system. It stores the original
schemas and the more complex SCSs, or “chunks”. Chunks are generated and utilized
in the assimilation process, also called the “chunking” process. Chunking includes off-
line learning and off-line chunk harvesting, as well as online team solution search using

15

Figure 3.1: SB-CoRLA Architectural Overview

16

chunks. For each specific robot team configuration and task definition, based on the present
robot types and the required information types, a specific SCS repository is created. A
specific SCS repository is a subset of the general SCS repository. Updates in a specific SCS
repository are also stored in the general SCS repository periodically. The data in both
SCS repositories needs to be kept in sync. One possible way is to create read/write locks
for the general SCS repository, so that only one SCS repository can write to the general
SCS repository at a time.

The complete SB-CoRLA architecture consists of three processes: Off-line evolution-
ary learning, online solution searching, and online goal-directed feedback-based learning.
These processes are designed for a continuous learning process. They can work together
or separately.

• The off-line evolutionary learning (EL) process is a part of the assimilation process.
It searches for highly-fit1 robot team solutions for a specific task definition and robot
team configuration. Chunks can be extracted from the off-line solutions to be used
later.

• The online solution searching process generates task solutions for a robot team to
perform a current task. While the previously developed Centralized ASyMTRe (CA)
searches for a team solution using original schemas without considering previously
learned knowledge, an extended version of centralized ASyMTRe (ECA) utilizes pre-
viously learned chunks that are stored in the SCS repository. Since chunks have a
similar interface to the original schemas, they can be used by the online solution
searching process in a similar way to the original schemas. The robot team then
carries out the task solution with the lowest cost.

• The online goal-directed feedback-based learning process collects feedback through
interaction with the environment while a robot or a robot team performs exploration.
The feedback is then used to modify the existing schemas. This part of SB-CoRLA
is not realized in this dissertation, and is part of future work.

3.2 Overview of Assimilation

Figure 3.2 shows the process of assimilation/chunking; this part of the SB-CoRLA ar-
chitecture is the part of the overall SB-CoRLA architecture that is implemented in this
dissertation. In addition to the Centralized ASyMTRe search algorithm (CA) that has been
developed in previous work by Parker and F. Tang [Parker and Tang, 2006], I have devel-
oped three solution search algorithms: a Randomized ASyMTRe search algorithm (RA),
an Evolutionary Learning search algorithm (EL), and an Extended Centralized ASyMTRe
search algorithm (ECA). While CA, RA, and ECA are used for online solution search, EL
is used for off-line learning.

CA and RA are not part of the chunking process. Their simulation results are used to
examine the validity of the chunking process. Both CA and RA generate an exhaustive list
of possible solutions (called “potential solutions”) via combinations of all available schemas,

1The fitness of a solution is calculated with a fitness function. A detailed description of this fitness
function is given in Chapter 4, Section 4.1.

17

then assign each robot in the team one of the solutions based on available schemas on that
robot. A robot team solution is a collection of potential solutions, while each robot is
assigned one potential solution.

The actual chunking process consists of off-line EL, off-line harvesting, and online ECA.
EL does not generate a list of potential solutions. Instead, it generates a graph based on the
available schemas in the robot team and required information types. Each graph represents
a possible robot team solution. This robot team solution can be incomplete, or partial, i.e.
not every robot is guaranteed to be able to provide the required information type. In the
off-line EL process, the possible robot team solutions evolve based on a fitness function.
When the EL process stops, the best solution is chosen for the next step in the chunking
process: harvesting. The harvesting process extracts chunks from the EL solution. The
evaluation process assigns priorities to the chunks. These chunks are stored and can be used
in ECA. Chapter 4 provides more details about the graph, the chunks, and the chunking
process.

3.3 Illustrative Example

To better understand the process of chunking, consider this example: A team of 5 hetero-
geneous robots needs to navigate from their current positions to a goal position. Each of
the robots has a set of sensors and corresponding schemas. Based on the available sen-
sors, each robot is assigned a robot type in advance. Table 3.1 shows the sensors on each
robot and their corresponding schemas, as well as the robot types. The communication
ability, “comm”, is considered a sensor. Each robot also has computational abilities that
are defined as schemas ps2, ps3, and ps4. The functionality of each schema is described as
follows:

• ps1: calculates the robot’s self global position;

• ps2: provides the goal position;

• ps3: calculates global position of another robot;

• ps4: calculates the robot’s self global position according to the detected relative
position and global position of another robot;

• ps5: calculates the relative position of another robot;

• cs: transfers information between different robots; and

• ms: generates motor control signals to move towards the goal.

Each schema has a set of input and output information types. Table 3.2 lists the infor-
mation types associated with each schema for this example. Some schemas require input
information types, such as ps3 and ps4. Other schemas do not require input information
type, such as ps1 and ps5. The meaning of each information type is described as follows:

• f1: self global position;

• f2: another robot’s global position;

18

Figure 3.2: SB-CoRLA Architecture Implementation

Table 3.1: Example of 5 heterogeneous robots: their sensors and corresponding schemas

Robot ID Robot Type Sensor Schema

1 6 comm cs

2 6 comm cs

3 5
gps ps1

comm cs

4 5
gps ps1

comm cs

5 4
laser ps1

camera ps5
comm cs

19

Table 3.2: Input and output information types of different schemas

Schema Input Output

ps1 none f1

ps2 none f4

ps3 f1 and f3 f2

ps4 f2 and f3 f1

ps5 none f3

cs f1 f2

cs f2 f1

ms f1 and f4 f5

• f3: another robot’s relative position.

• f4: goal position

• f5: motor control

The task in SB-CoRLA is defined as a set of required information types. In this example,
the task is defined as one single information type: f1. The goal is to find a connection
of available schemas within and among the robots, in order for each robot to be able to
provide the required information type, f1, for motor schema ms to reach the goal.

It is assumed that configuration files are available for the robot team configuration and
the task definition. The robot team configuration includes robot types, available sensors
on each robot, the schemas associated with each sensor, each schema’s input and output
information types, and the costs of each schema. The task definition contains required
information types for the task. A parsing process is applied to these configuration files to
extract information for the chunking process.

Recall that both CA and RA generate potential solutions and assign a potential solution
to each robot. In this example, there are 5 possible ways to connect the schemas, i.e. 5
potential solutions, in order to provide the required information type. Figure 3.3 shows
the potential solutions generated by CA/RA for this example. The expression “cs & f1”
in square brackets means that the robot gets the information type f1 from another robot
via schema communication. Figure 3.4 shows the graphical illustration of these solutions.

3.4 Overview of Accommodation

The accommodation part of SB-CoRLA is not implemented in this dissertation. In gen-
eral, a robot team can either carry out a team task strictly according to the task solution
generated in the online solution searching process, or perform goal-directed exploration.
In the latter case, online feedback can be collected to perform the online goal-directed,
feedback-based learning. Figure 3.5 shows a possible online goal-directed, feedback-based
learning process. The feedback is processed by the evaluation module, which resides in
different Valuation Schemas (VS). The output of the evaluation module induces modifi-
cations in the original Learning Schemas (LS) through a learning process. I believe that

20

Figure 3.3: Potential solutions for a team of 5 robots, generated by CA/RA.

(a) (b) (c)

(d) (e)

Figure 3.4: Graphical illustration of potential solutions shown in Figure 3.3, for a team of
5 robots, generated by CA/RA.

21

Figure 3.5: Online Goal-Directed Feedback-Based Learning Process

goal-directed exploration can lead to the development of new schemas and new behaviors,
and real feedback from task performance can enhance the existing schemas.

22

Chapter 4

Assimilation

The assimilation process (also called “Chunking”) consists of three major functional com-
ponents:

1. an evolutionary learning search algorithm (EL) to generate off-line robot team solu-
tions;

2. a harvesting process to generate chunks from those solutions; and

3. an online extended ASyMTRe solution search process to use the chunks to generate
solutions.

The EL algorithm finds highly-fit partial solutions and complete solutions based on a fitness
function. A partial solution is a solution where not all the robots in the team can provide
the required information types to accomplish the task. The partial solutions generated by
EL are interesting because they contain chunks that are highly-fit. The harvesting process
identifies chunks from these solutions. The chunks can then be used in the online solution
search process. This chapter describes the assimilation process in detail.

The first objective is to determine if particular search strategies can have the added
benefit of facilitating constructivist learning in multi-robot teams. Because much of human
learning seems to be based on schema building blocks, the intent is to build upon the
schema-based abstraction to enable constructivist learning in multi-robot teams.

Parker and F. Tang [Parker and Tang, 2006] showed, through empirical evaluations, that
the heuristic-based centralized ASyMTRe search algorithm generates very good solutions
very quickly for several types of applications. However, an open question is whether the
ASyMTRe search algorithm for finding coalitions is as good an approximation as possible,
given the NP-hard nature of the search problem. The second objective of developing an
evolutionary learning search algorithm, therefore, is to explore alternative search techniques
for forming coalitions within the schema-based abstraction of robot capabilities. The intent
of this objective is to determine whether other search techniques, such as randomized search
or evolutionary search, can yield better solutions faster than the heuristic-based search
strategy of ASyMTRe for forming multi-robot coalitions.

Since search is a fundamental part of the learning process, the first objective of find-
ing search methods amenable to constructivist learning is closely related with the second
objective of investigating alternative coalition search strategies.

23

To explore alternative search techniques, the centralized version1 of the previously im-
plemented ASyMTRe search algorithm (CA) is compared with two alternative approaches.
The first alternative, labeled “RA” (for Randomized ASyMTRe), makes use of the same
fundamental search algorithm of ASyMTRe, but rather than make a greedy heuristic-based
search of the potential solutions, it randomly selects possible solutions. The second alterna-
tive, labeled “EL” (for Evolutionary Learning), makes use of a genetic algorithm to search
the solution space by repeatedly combining highly-fit partial solutions to generate higher
utility complete solutions.

The EL algorithm is of particular interest to the constructivist learning objective, since
I believe that the highly-fit solutions found in the evolutionary search process can be used
to find building blocks for continual learning. These building blocks are also called chunks,
or SCSs. The plan is to enable robot teams to learn and to build up chunks constructively,
in order to preserve knowledge from previous search processes, and to improve the search
efficiency for future online solution searches. However, I do not want to sacrifice solution
quality in making use of the EL search technique in the off-line evolutionary learning
process, and need to ensure that the solution quality of the EL technique is comparable to
that generated by the CA technique.

The remainder of this chapter is organized as follows. Section 4.1 presents the three
search methods: CA, RA, and EL. Section 4.2 outlines the harvesting process and the
online solution searching process. Section 4.3 discusses the limitations of the chunking
process.

4.1 The Search Algorithms

This section outlines the search approaches used by the three methods — the centralized
ASyMTRe approach (CA), the randomized ASyMTRe approach (RA), and the evolution-
ary learning search approach (EL).

4.1.1 Centralized ASyMTRe (CA) Search Algorithm

As developed by Parker and F. Tang [Parker and Tang, 2006], the centralized ASyMTRe
algorithm (CA) is a two-step, anytime algorithm for searching for the proper connections
of schemas to accomplish the goal task. The first step is to find all potential schema
connections that can provide the required information types for a goal in an individual
robot2. The second step is to instantiate a specific solution on each robot, by sequentially
searching through permutation sequences of individual robots until a simultaneous solution
for all robot team members is found. Algorithm 1 shows the detailed steps of CA. A
heuristic guiding the search is to find solutions for the less capable robots (i.e., robots
that must be part of the solution, but which have fewer schema resources to work with)
first, in order to avoid resource shortages. If multiple alternative solutions are found, a
utility function is used to select the solution with the highest utility. The CA algorithm is
designed to be an anytime algorithm, so that as soon as a valid solution is discovered, it
is made available to the robot team. In terms of computational complexity, for n robots

1F. Tang and Parker also implemented a distributed version of ASyMTRe [Tang and Parker, 2005c,Tang,
2006]. This dissertation focuses on the centralized version.

2These possible connections are called “potential solutions” for the robot in the ASyMTRe approach.

24

Algorithm 1 The Centralized ASyMTRe (CA) search algorithm. (from Parker and F.
Tang [Parker and Tang, 2006])

(R, T, U): the robot team configuration, task, and utility
n: the number of robots in the team
m: the number of potential solutions
k: a constant, which specifies the number of iterations

1. Generate a list of potential solutions of size m by connecting available schemas in
the entire robot team configuration to satisfy the task’s requirements.

2. For each robot Ri, according to its available schemas, generate a list of possible
solutions for that specific robot. This list can contain at most m solutions, so
that there is a 1-to-1 match between the potential solutions of the robot team
configuration and the possible solutions of robot Ri.

3. Sort the list of possible solutions for each robot in descending order of solution
utility.

4. Sort the robot team members in ascending order of their available number of
schemas to generate the first sequential ordering of the robots. [O(nlog(n))]

5. For each robot Ri, according to the current ordering: [O(n)]

• For each potential solution j in the sorted list of possible solutions for robot
Ri: [O(m)]

– If Ri can accomplish the task by itself, assign solution j to Ri. [O(1)]

– Else check the other n−1 robots to see if one can provide the needed in-
formation. If another robot can provide the needed information, assign
solution j to Ri. [O(n)]

• If no solution is assigned to Ri, go to step 7

6. Calculate the team utility U. If U is greater than the utility of the best team
solution thus far, update the best team solution.

7. Generate the next sequential ordering of the robots.

8. Repeat steps 5, 6 and 7 until:

• All possible sequences of the robot team members have been explored.

• Or, after k number of trials.

• Or, after a certain pre-defined period of time.

25

on the team, step 7 of the search process would have to be repeated up to n! times to
completely search the solution space (hence, the reason the problem is NP-hard). Thus,
the CA approach is a greedy search approach that theoretically searches, in an anytime
fashion, all n! permutations of robots, assigning to each robot in order the best solution
found. Although Tang and Parker showed through two applications that CA computes the
first solution very quickly (i.e., in a matter of seconds), it is unclear whether the solutions
found are good approximations to the optimal solution, or whether a solution can be found
quickly for any other application as well.

4.1.2 Randomized ASyMTRe (RA) Search Algorithm

The Randomized ASyMTRe algorithm (RA) uses a very similar two-step, anytime
search algorithm as used by CA. In doing this, the RA approach first generates potential
solutions for each of the robots and then performs a sequential search through each permu-
tation arrangement of robots to assign solutions to individual robots. However, in contrast
to the CA approach, the RA approach does not perform a greedy search when assigning
solutions to robots. Instead, RA selects viable solutions randomly from among all possible
solutions for each robot. Algorithm 2 lays out the details of RA.

4.1.3 Evolutionary Learning (EL) Search Algorithm

The Evolutionary Learning (EL) approach makes use of a genetic algorithm that main-
tains a population of p individuals, each of which represents a configuration of schemas
that may be a possible solution to the robot team coalition task or subtask. Algorithm 3
shows the details of the EL algorithm. Table 4.1 shows the various parameters that must
be defined for EL, and their default values3. In this section, the concept of EL is explained.
Section 6 presents more implementation details for EL.

In the EL approach, an initial population is created that consists of individuals having
random connections of schemas, with the following restrictions: first, schemas can only be
connected if they have matching information types; and second, connections across different
robots can only occur between communications schemas. As the initial population is built,
the number of interconnections between schemas on different robots (which I call inter-robot
connections) and between schemas on the same robot (which I call intra-robot connections)
are governed by two connection rates specified by the user: the inter-robot connection rate,
ρ, and the intra-robot connection rate, κ. Note that these individuals do not necessarily
represent complete solutions, since they may not fully (or even partially) solve the task
given to the robots. This maintenance of partial solutions during the search process is one
of the principal ways in which the EL algorithm differs from the CA and RA algorithms.
These partial solutions contain chunks of schemas that solve important subtasks.

As with any genetic algorithm, the fitness value of each individual, F , is determined
after each new generation is created through either initialization or evolution4:

F = wc · (c/cmax) + wx · x + wq · (q/qmax) + wu · (u/n)

3GA related parameter settings are explored in [Goldberg, 2002].
4See Table 4.1 and Algorithm 3 for parameter definitions.

26

Algorithm 2 RA: The Randomized ASyMTRe search algorithm.

(R, T, U): the robot team configuration, task, and utility
n: the number of robots in the team
m: the number of potential solutions
k: a constant, which specifies the number of iterations

1. Generate a list of potential solutions of size m by connecting schemas to satisfy
the task’s requirements.

2. For each robot Ri, according to its available schemas, generate a list of possible
solutions.

3. Generate the next sequential ordering of the robots.

4. For each robot Ri, according to the current ordering: [O(n)]

• For each randomly selected solution j in the list of potential solutions of
robot Ri: [O(m)]

– If Ri can accomplish the task by itself, assign solution j to Ri. [O(1)]

– Else check the other n−1 robots to see if one can provide the needed in-
formation. If another robot can provide the needed information, assign
solution j to Ri. [O(n)]

• If no solution is assigned to Ri, go to step 6

5. Calculate the team utility U. If U is greater than the utility of the best team
solution thus far, update the best team solution.

6. Repeat steps 3, 4, and 5 until:

• All possible sequences of the robot team members haven been explored.

• Or, after k number of trials.

• Or, after certain pre-defined period of time.

27

Algorithm 3 The Evolutionary Learning (EL) search algorithm (see Table 4.1 for defini-
tion of EL parameters).

(R, T, F): robot team configuration, task, and fitness
n: number of robots in the team
m: number of different kinds of schemas in the system
gmax: max. number of generations
c: aggregated cost of active schemas
x: complexity of an individual solution
q: number of required information types
u: number of robots that can achieve their individual goals
cmax, qmax, umax: max. values for c, q, and u

1. Generate a list of upto nm available schemas based on R.

2. Initialize the first population of size p by connecting the schemas while respecting
the following rules: [O((nm2 + n2)p)]

• For each robot Ri∈R, randomly at rate κ, connect schema Sa to Sb if Sa’s
output information type matches Sb’s input information type.

• Between Ri and each robot Rj∈R (i6=j), randomly at rate ρ, connect CS
schema CSi to CSj if CSi’s output information type matches CSj ’s input
information type.

3. Calculate F for each individual p using the following formula: [O(n2m2p)]

F = wc · (c/cmax) + wx · x + wq · (q/qmax) + wu · (u/n)

4. Repeat for gmax generations

• Select ξ individuals using fitness-proportionate selection or tournament se-
lection for reproduction. [O(n)]

• Randomly at rate γ, perform pairwise crossover on p. [O(n2m2p)]

• Randomly at rate δ, perform single point mutation on p. [O(nmp)]

• Prune each child individual, which is also a partial solution or a complete
solution for R. This process includes eliminating invalid and redundant con-
nections, as well as calculating the fitness values. [O(n2m2p)]

• Record the best solution if its fitness value is better than the best solution
thus far.

• Stop if:
– Every robot can fulfill its individual goal;

– Or, lmax generations have been generated without fitness improvement;

– Or, a time limit is reached.

28

Table 4.1: EL parameters and their default values

Name Description Default

p population size 500.0

ξ number of individuals selected for reproduction 200.0

γ probability for crossover 0.6

δ probability for mutation 0.005

κ intra-robot connection rate 0.8

ρ inter-robot connection rate 0.8

wc weight for the aggregated cost of active schemas; used to calculate
fitness

0.2

wx weight for the complexity; used to calculate fitness 0.4

wq weight for the percentage of information types required by the goal
that are fulfilled; used to calculate fitness

0.0

wu weight for the percentage of robots that can achieve their goals; used
to calculate fitness

0.4

29

In the framework of SB-CoRLA, F depends not only on the aggregated cost of the active
schemas, c, (which is the criterion also used in CA and RA to calculate the cost of the
solution), but also on the complexity of the solution, x, and the degree of goal achievement,
q and u. The value of x is measured by the total number of schema connections for that
solution, and is normalized to the range [0, 1]. The degree of goal achievement is measured
in two ways: 1) by the percentage of information types that are required by the goal
and that are fulfilled (q/qmax), and 2) by the percentage of robots that can fulfill their
individual goals (u/n). F is calculated as a weighted sum of the normalized values of c, x,
q, and u. The weight for each factor is domain-specific and determined by the user.

The evolutionary process for off-line learning in the framework of SB-CoRLA consists
of selection5, single point crossover operations, and single point mutations. In the crossover
operation, a crossover point is a randomly selected connection between two random schemas
Si and Sj in one randomly chosen individual solution. In the crossover process, another
individual solution is randomly chosen to be the other parent, and then the connection
Si→Sj and all the connections that schema Sj are connected to are swapped between the
parents. The connections between schemas are uni-directional, indicating the direction of
information flow. For example, Figure 4.1 shows one crossover process at the crossover
point S1→S5. Mutation is the process of randomly adding or deleting a connection in an
individual solution.

This evolutionary process is repeated over multiple generations until one of the following
conditions is fulfilled:

• every robot can fulfill its individual goal;

• the solution quality has not improved in lmax generations;

• a time limit is reached; or

• gmax generations have been created.

For n robots, m different kinds of schemas, and p individual solutions in each popula-
tion, there are up to mn available schemas in the search space, and up to (mn)2 possible
ways of connecting the schemas. For a maximum of g generations, the EL computational
complexity for initializing a population, performing genetic operations, and pruning and
evaluating the generated solutions is O((mn)2pg).

4.1.4 Comparing CA, RA, and EL

Table 4.2 shows a comparison of some of the key characteristics of the three search strate-
gies. Because none of the three algorithms performs a true exhaustive search of the entire
search space, no global optimum can be guaranteed with any solution. Compared with CA
and RA, EL is more flexible because it can generate partial solutions with progressively
improved quality by building upon previous discoveries, as shown from results presented in
Chapter 5. This ability of the EL algorithm to identify partial solutions and progressively
improve the quality of the solutions without exhaustively searching the entire search space
is important for the ultimate constructivist learning objectives. This is distinct from the

5The user can choose between Fitness Proportionate Selection and Tournament Selection.

30

(a)

(b)

Figure 4.1: (a) Parents before crossover: Solution 1 and Solution 2; (b) Children after
crossover: Solution 1′ and Solution 2′. The solid arrows indicate the uni-directional con-
nections between schemas in the parent solution Solution 1, and the bold dashed arrows
are the connections in Solution 2. The connection between S1 and S5 is randomly chosen
to be the single crossover point. The connections S1→S5 and S6→S3 are swapped from
Solution 2 to Solution 1 to create the child solution Solution 1′. The connections S5→S6

and S6→S7 are swapped from Solution 1 to Solution 2 to create the child solution Solu-
tion 2′. Note that because the connections are uni-directional, connection S3→S4 is not
swapped.

31

CA and RA search processes, which do not have mechanisms for making use of these par-
tial solutions. Instead, the CA algorithm discards these partial solutions (i.e., valid schema
connections that lead to the provision of some, but not all, required information types) that
have been generated during the search process for each permutation arrangement of robots
and starts the search process anew for the next robot sequence. Hence, for the second
research objective of constructivist learning, the CA and RA approaches do not appear
well-suited. On the other hand, the EL approach is shown to be competitive with the CA
and RA approaches, and thus forms a solid foundation upon which to build constructivist
learning techniques.

4.2 The Harvesting Process and ECA, the Online Solution
Search Process

EL generates partial solutions and complete solutions with high fitness value. These so-
lutions contain schema chunks that are valuable building blocks for robot team solutions.
The harvesting process extracts first-level chunks from the solutions generated by EL. Re-
call that a first-level chunk is a set of interconnected schemas that collectively provides one
specific information type. These chunks can be used both in an online search process, and
in a future off-line learning process. Algorithm 4 shows the detailed steps of the harvesting
process.

The solution generated by EL off-line contains interconnected schemas. This solution
can be either a partial solution, i.e., not all the required information types for the task are
fulfilled for all the robots in the team; or a complete solution, i.e., all the required infor-
mation types are fulfilled. To extract first-level chunks from this solution, the harvesting
process first determines the fulfilled information types. For each fulfilled information type,
the harvesting process backtracks the information flow of that information type, and adds
all the involved schemas in one first-level chunk.

After the first-level chunks are extracted, they are then stored in the SCS Repository.
Figure 4.2 shows the general format of chunks with an example first-level chunk. The single
“$” sign indicates the beginning of a chunk, while the double “$” signs indicate the end of
a chunk. The line starting with the single “$” sign contains information about the chunk
ID, the costs of all involved schemas in this chunk, the number of active schemas in this
chunk, the number of outputs this chunk provides, the type of robot that provides this
output(s), and the ID of the robot that provides this output(s). The line starting with
the word “robot” contains information about how many robots are involved in this chunk,
as well as the type of the robots, and their IDs. The other lines start with a name of a
schema, and contain information about which schemas are connected with each other, the
robot type and the robot ID these schemas belong to, and whether or not these schemas
are from a helper robot. In this example, a first-level chunk consisting of one schema, ps1,
is shown. The chunk can be used for robot type 5, and outputs the information type f1.

Figure 4.3 shows a more complex example first-level chunk with more than one robot
involved. The chunk in this example involves 2 robots and 5 active schemas. The robot
type 6 receives help via communication from robot type 4, and outputs information type
f1.

32

Table 4.2: Comparison between Centralized ASyMTRe search algorithm (CA), Random-
ized ASyMTRe search algorithm (RA), and Evolutionary Learning search algorithm (EL)

Method Computational Complexity
Solu-
tion
Quality

Flexi-
ble
Solu-
tion

Progre-
ssive
Im-
prove-
ment

Centralized
ASyMTRe
(CA)

• Search for one robot sequence:
O(mn2)

• Complete search for n! permutation
arrangements of robots: O(mn!)

(m: number of potential solutions, n:
number of robots)

Locally
optimal

No No

Centralized
Randomized
ASyMTRe
(RA)

• Search for one robot sequence:
O(mn2)

• Complete search for n! permutation
arrangements of robots: O(mn!)

(m: number of potential solutions, n:
number of robots)

Locally
optimal

No No

Off-line Evo-
lutionary
Learning
(EL)

• Search for one generation:
O((mn)2p)

• Search for g generations:
O((mn)2pg)

(m: number of distinctive schemas, n:
number of robots, p: number of individ-
ual solutions in the population)

Locally
optimal

Yes Yes

33

Algorithm 4 The Harvesting Process for First-Level Chunks

Input: EL solution
Output: C
C: a set of first-level chunks {C1, C2, ..., Ci, ..., Cn}
fout, fin: output/input information types for an arbitrary schema
Si, Sj: schema that outputs/inputs fout/fin

1. For each fulfilled information type fout from the EL solution, add this information
type to Ci

(a) Let Si = the schema that outputs fout, add Si to Ci

(b) For each fin that Si requires

i. Find Sj that provides fin, add Sj to Ci

ii. Let Si = Sj , repeat step 1b, until

• Si does not require any fin, or

• There exists no Sj that provides fin, in this case add fin to Ci

2. Eliminate identical Ci, store unique Ci

34

(a)

(b)

Figure 4.2: An example of a first-level chunk: (a) All first-level chunks are stored in this
format (Some chunks are more complex and involve multiple robots, as shown in Figure
4.3.); (b) The graphical display for the first-level chunk shown in part (a).

35

(a)

(b)

Figure 4.3: Example of a more complex first-level chunk: (a) This chunk involves two
robots. Robot type 6 is the robot that outputs the information type f1, while robot type
4 helps robot type 6 by providing information through communication schemas. (b) The
graphical display for the first-level chunk shown in part (a).

36

The Extended Centralized ASyMTRe online search process (ECA) utilizes first-level
chunks to find robot team solutions. Algorithm 5 shows the detailed steps of the ECA
process. At first, ECA uses relevant first-level chunks from the SCS Repository to generate
second-level chunks for each robot type in the robot team based on the task definition.
A first-level chunk is relevant for the current search process if: (a) its output information
type is required in the task definition; and (b) it is for a robot type that exists in the
team of robots. To create second-level chunks, the relevant first-level chunks are sorted
first according to the robot type they belong to, then according to the information type
that they provide. ECA combines the first-level chunks that belong to the same robot type
and provide different information types, to generate second-level chunks. Each second-level
chunk provides all required information types for one specific robot type. The task team
solution is a collection of second-level chunks with active schemas, and connections between
the schemas.

The second-level chunks are then sorted in ascending order of costs, number of active
schemas, and the number of involved robots. Second-level chunks with lower costs, fewer
numbers of active schemas, and fewer numbers of involved robots are considered more
desirable. Each robot type has its own sorted list of second-level chunks. ECA then
generates a sequential ordering of the robots according to the robot types, and assigns the
second-level chunks to the robots in order. The sequential ordering is a permutation of all
robot types in the robot team, instead of a permutation of all robot IDs, as implemented in
CA. It is possible to implement an Extended Randomized ASyMTRe online search process
(ERA). The difference between ECA and ERA is that ECA assigns more desirable second-
level chunks first, while ERA assigns them randomly. Figure 4.4 shows an example of three
first-level chunks, and the second-level chunk that ECA generates as a combination of these
three first-level chunks. Figure 4.5 shows the graphical display of these chunks.

There are several differences between CA (or RA) and ECA (or ERA). Firstly, CA
generates potential solutions anew each time it is run. ECA generates second-level chunks
based on previously learned first-level chunks. Secondly, CA generates potential solutions
for individual robots, which is of computational complexity O(n), where n is the number
of robots in the robot team. On the other hand, ECA generates second-level chunks for
different robot types, which is of computational complexity O(m), where m is the number
of robot types in the robot team, m ≤ n. Finally, CA generates the sequential ordering
of the robots based on their IDs (O(n!)), while ECA generates the sequential ordering of
the robots based on their types (O(n!

t1!t2!...ti!...tm!
), where ti is the number of robots of robot

type i in the robot team configuration).
An evaluation process for the first-level chunks is necessary as the SCS Repository

grows, in order to increase the efficiency of ECA (to find relevant first-level chunks, and to
generate second-level chunks), as well as to eliminate less desirable chunks. Currently, the
first-level chunks are stored in the repository in no specific order. One way to implement
an evaluation process could be assigning the first-level chunk index values based on their
costs, number of active schemas, number of involved robots, number of connections between
active schemas, and other factors. ECA could incrementally retrieve more desirable first-
level chunks first, and only retrieve less desirable first-level chunks when necessary. Further
development of this idea can be the subject of future work.

37

Algorithm 5 ECA: The Online Solution Search Process Using First-Level Chunks

Input(R, T , C): robot team configuration, task, first-level chunks
Output(A): robot team solution
Cf : first-level chunk
Cs: second-level chunk

1. For each robot type RTi in R

• Find first-level chunks (Cf) based on T

• Use all combinations of Cf to generate a set of second-level chunks (Cs)

• Eliminate duplicate Cs; as a result, a unique set of Cs remains

• Sort unique Cs in ascending order of costs of active schemas, number of active
schemas, and number of involved robots

2. Generate a new robot type sequential ordering

3. For each robot Ri according to the current ordering, assign the best possible Cs to
Ri

• Update robot ID in Cs

• Find available helper robot if help is necessary

• Update helper robot ID in Cs

4. Record the solution if it is better than the best one generated so far.

5. Repeat steps 2 through 4 until all robot type permutations are visited.

38

(a) (b)

(c)

(d)

Figure 4.4: Example of three first-level chunks and the second-level chunk that is the
combination of these three first-level chunks: (a), (b), and (c) show the first level chunks.
(d) shows the second-level chunk that is a combination of these three first-level chunks.

39

Figure 4.5: The graphical display for the chunks in Figure 4.4: On the left are the three
first-level chunks. In the ECA process, those first-level chunks are combined into a second-
level chunk, which is shown on the right.

40

4.3 Limitations of the Chunking Process

The chunking process consists of EL, harvesting, and ECA. All three processes have certain
limitations. EL has many parameters that need to be set. While the default parameter
settings work well for most of the cases, in some cases, it depends on the expertise of the
user to determine the appropriate settings.

The current harvesting process extracts only first-level chunks and combines them to
create second-level chunks that fulfill a specific task. One can imagine that directly ex-
tracting higher-level chunks might lead to a faster online solution search; however, it will
probably require more off-line learning time.

The ECA process assigns chunks to robots, in order to generate a team task solution.
It cannot handle new information types and new robot types without an additional off-
line learning process. This situation is comparable to a person who learns new skills; this
person would also require some time to figure out how to integrate these skills into his/her
existing skill set. It is possible to overcome this limitation in three different ways:

1. Implement a hybrid, anytime online solution search process that includes CA, RA,
and chunking to search for solutions in parallel. The best available solution from
either CA, RA, or the chunking process can be used to assign the current task to
the robot team. When given more time, a solution with lower costs can be provided.
Figure 4.6 shows an overview of such a hybrid process. Theoretically, including all
three online search processes increases the chance of finding a task solution. However,
robots often have limited computational capacity. Because the simulation results
show that RA outperforms CA in very few cases, it is imaginable to not include RA
in the hybrid online solution search process;

2. Include chunks in the CA algorithm. More specifically, use both chunks and original
schemas in Algorithm 1, step 1, to generate the list of potential solutions used by
CA. Because chunks and schemas have similar interfaces, i.e. they both have input
information types and output information types, they can both be used in a similar
way to build a potential solution. In order to use a chunk, CA needs to check
whether all the schemas involved in the chunk are available in the current robot
team configuration6;

3. Determine similarities between unknown robot types/information types and known
robot types/information types, in order to use existing chunks for new, yet similar
tasks. This can be done using human knowledge and/or an automatic process that
measures the similarities based on different criteria.

6Please refer to A.4 for more implementation details.

41

Figure 4.6: This figure shows the combination of CA, RA, and chunking in finding solutions
online. All three algorithms are run in parallel. The best available solution from either
of these three algorithms within the available time is used to assign the task to the robot
team.

42

Chapter 5

Results and Discussion

This chapter compares the performance of chunking, CA, and RA. In order to do that,
I designed four applications and simulated the performance of each of the algorithms on
these applications. This chapter examines the following issues:

1. Comparison of the time requirements among CA, RA, and the chunking process,
which includes off-line EL, off-line chunk harvesting, and online solution search using
schema chunks;

2. Evaluation of the time requirements of the off-line chunking process;

3. Evaluation of the quality of off-line solutions generated by EL, and whether or not
EL is able to improve solution qualities over time;

4. Comparison of the solution quality generated by CA, RA, and chunking;

5. Comparison of the differences between chunking and ASyMTRe;

6. Evaluation of the sensitivity of EL for different parameter settings.

The rest of this chapter is organized as follows. Section 5.1 and Section 5.2 describe the
simulated applications and the settings used to study the alternative search algorithms,
followed by a discussion of the results in Section 5.3. Section 5.4 summarizes the findings
from these simulations.

5.1 Description of the Applications

I defined four applications and ran various simulations. The applications are:

• A: multi-robot transportation;

• B: box pushing;

• C: robot formation; and

• D: limited resource.

43

In these applications, based on the available sensors, each robot possesses different combi-
nations of perceptual schemas. The objective is to find the best team task solution, i.e. to
determine which combination of sensors, distributed across which robots, constitutes the
highest utility solution for a given task. Figure 5.1 shows examples of implementations of
these applications. A detailed description of each application is given next.

Application A requires robots to help each other (through sharing sensory information)
in determining their current global position. Various methods of sensor sharing are possible
in this application, as implemented by F. Tang and Parker [Tang and Parker, 2005a] on both
physical and simulated robots. A robot can have three different sensors: GPS, laser, and
camera. Each robot also has communication and computation capabilities. For example,
if a robot has a laser, it can use a laser-based perceptual schema to localize itself and
calculate its own global position. If a robot has a camera, it can use a camera-based
perceptual schema to calculate the relative position of another robot within its sensing
range. Using both its own global position and the relative position of another robot, a
robot can calculate the other robot’s global position, and transmit this information via its
communication schema to the other robot.

Application B requires robots to help each other push a box to a goal location. The goal
location is indicated with a colored blob. A robot can use its camera to detect its distance
to the goal. Again, various methods of sensor sharing are possible in this application,
as implemented by F. Tang and Parker [Tang and Parker, 2005a] on both physical and
simulated robots. A robot can have three different sensors: laser, camera, and sonar. Each
robot also has communication and computation capabilities. In this application, if a robot
has a laser, it can apply a laser-based perceptual schema to measure the box’s relative
position to itself, or activate another laser-based perceptual schema to confirm contact
with the box. If a robot has a camera, it can detect the goal location and use a camera-
based perceptual schema to calculate its push direction. With sonar, a robot can apply a
sonar-based perceptual schema to detect the position of the box.

Applications C and D are designed to test the limitations of CA, and are designed as
abstract applications that require certain information flow among the schemas. They are
theoretical tests with abstract sensors. Application C has been implemented on physical
robots in the SDR project [Parker et al., 2004], however not in the framework of schema-
based robot system. Application D has not been implemented on physical robots.

Application C can be thought of as a “robot formation” application, because each robot
needs a certain information type, that only one other robot can provide. Intuitively, this
would cause the robots to maintain a certain formation. This application consists of n
robots. The first robot is the leader of the formation and does not need any information
from the other robots. The ith robot needs a unique information type from the (i − 1)th

robot, indicating the (i − 1)th robot’s position, so that the ith robot can maintain the
formation.

Application D can be thought of as a “limited resource” application, because while a
majority of the robot team can use additional information types from a helper robot to
increase the utility of its solution, only a few members of the robot team can provide these
information types. This application consists of n robots. In this application, except for
the last m robots (robots n, n-1, n-2, ..., n-m+1), all robots can accomplish their tasks
without help from other robots, i.e., without information communicated by other robots.
However, if they can receive external help from other robots, the cost of the solution with

44

Figure 5.1: Possible implementations of applications A, B, C, and D. Application A and
B have been implemented on physical robots by F. Tang and Parker [Tang and Parker,
2005a]. Application C has been implemented on physical robots in the SDR project [Parker
et al., 2004] but not in the framework of schema-based robot systems. Application D has
not been implemented on physical robots.

45

Table 5.1: Number of schemas for applications A, B, C, and D

of robots App. A App. B App. C App. D

5 40 83 22 43

10 85 166 47 83

15 129 249 72 123

20 182 332 97 163

25 226 415 122 203

50 452 833 147 243

100 904 1660 172 283

external help is lower than the cost of the solution without external help. To constrain the
problem, I require that the last m robots must receive external help in order to achieve
their goals. However, only the first h robots (robots 1, 2, ..., h) can offer this external help.
The available external help in a robot team is sufficient to help the last m robots, but is
not enough to fulfill all the requests for external help.

5.2 Experimental Design

The CA and RA algorithms are implemented in C, and chunking is implemented in C++.
All the simulations are run on typical present-day Linux PC machines.

The three search strategies CA, RA, and EL, as well as the complete chunking process,
including EL, chunk harvesting, and ECA, are tested using heterogeneous robot teams of
size ranging from 5 to 25. Occasionally, additional tests are conducted using robot teams of
size 50 and 100. Heterogeneous robot teams are composed by randomly choosing different
available sensors and consequently different schemas for each robot. Unless explicitly men-
tioned, the default parameter settings in Table A.3 are used. Wall clock time is measured
in the precision of 0.01 second.

While the time requirements vary for each simulation run, the generated solutions
are identical for the same parameter settings. Therefore, for the simulations in Section
5.3.1 and 5.3.2 that test the time requirements of the processes, five simulation runs are
performed for each application and robot team configuration. The error bars in the figures
show the standard deviation of the simulation results. The simulation results presented in
Section 5.3.3, 5.3.4, and 5.3.6 that test the solution qualities are from single runs. Table 5.1
shows the number of schemas for each simulation setting that are generated in the parsing
process.

46

Table 5.2: Time breakdown for CA/RA and the chunking (EL + harvesting + ECA)
process

Procedure CA/RA Chunking

Pre-processing Parsing configuration files,
generate lists of potential
solutions

EL (off-line): Parsing configuration
files, initialize the first generation

First online so-
lution

Assign potential solutions to
robots

ECA (online): Assign second-level
chunks to robots according to robot
types

All online solu-
tions

Iterate through permutations
of robot IDs

ECA(online): Iterate through permu-
tations of robot types

Off-line learn-
ing, one gener-
ation

Not applicable EL (off-line): Evaluate, prune, selec-
tion, crossover, mutation

Off-line learn-
ing, harvesting
chunks

Not applicable Harvesting (off-line): Extract first-
level chunks, combine first-level
chunks to generate second-level
chunks

5.3 Results and Discussion

5.3.1 Comparison of the time requirements among CA, RA, and the
chunking process

Figures 5.2 to 5.11 show the processing time comparison and simulation results among CA,
RA, and the chunking process.

While CA and RA are online solution search processes, chunking is a combination of
off-line learning and an online solution search. The processing time can be broken down
into 5 different categories as shown in Table 5.2. While chunking, CA, and RA all need
pre-processing time, the pre-processing procedure is an off-line procedure for chunking,
while it is an online procedure for CA and RA. While chunking uses the pre-processing
time in off-line learning to generate EL solutions and finally chunks to be reused in the
future, CA and RA require pre-processing for each online solution search. In this section,
the EL pre-processing time and the ECA time to generate the first online solution are
compared with CA and RA.

Figure 5.2 shows the pre-processing time comparison for application A among EL, CA,
and RA. Figure 5.3 shows a closer look of the elapsed time for CA and RA. Figures 5.4, 5.5,
and 5.6 show the pre-processing time comparison among EL, CA, and RA, for applications
B, C, and D. In Figure 5.6, the elapsed time for CA and RA go off the chart. In order
to show the entire graph, Figure 5.7 shows the time comparison for application D in an
axis scale different from Figures 5.2, 5.4, and 5.5. EL takes more pre-processing time for
application A, B, and C, while CA and RA take more pre-processing time for application

47

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing EL, CA, and RA: time for pre−processing, application A

EL
CA
RA

(a)

Figure 5.2: Pre-processing time comparison among EL, CA and RA, for application A.
CA and RA are so close that they are indistinguishable on a grey-scale graph. (Each data
point in this figure is the average of five runs.)

D. While the pre-processing time for CA seems constant for application A, it shows a slowly
growing tendency for application B. EL takes the most pre-processing time for application
B, because application B has the most available schemas, and thus the most graph nodes
for graph generation.

Figures 5.8 to 5.11 show comparisons among ECA, CA, and RA of the time required to
find the first online solution for applications A, B, C, and D, respectively. In Figure 5.11,
the elapsed time for CA and RA go off the chart. In order to show the entire graph, Figure
5.12 shows the time comparison for application D in an axis scale different than Figures
5.8, 5.9, and 5.10.

The simulation results show that CA takes more time to generate the first online solu-
tion for applications A, B and C. Both ECA and RA take almost no time (<0.01 second)
to generate the first online solution for application A, B, and C. While ECA takes almost
no time to generate the first online solution for application D, Figure 5.12 shows that CA
cannot generate an online solution for application D for a team of 15+ robots in a timely
manner, and RA cannot generate an online solution for application D for a team of 20+
robots in a timely manner. It takes CA over 2 days to generate the first solution for a team
of 15 robots for application D.

5.3.2 Time requirements of off-line learning in the chunking process

As previously shown in Table 5.2, there are three categories of time requirements for the
off-line learning process: EL pre-processing, EL learning, and harvesting. Subsection 5.3.1
has already discussed the EL pre-processing time requirement. This section will discuss

48

0 5 10 15 20 25 30
0.015

0.02

0.025

0.03

0.035

0.04

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing CA and RA: time for pre−processing, application A

CA
RA

(a)

Figure 5.3: Pre-processing time comparison between CA and RA, for application A. The
simulation results only show data variance at two cases, one by CA for a team of 10 robots,
and one by RA for a team of 20 robots. Please note that in both cases, the variance is as
small as 0.01 second. (Each data point in this figure is the average of five runs.)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing EL, CA, and RA: time for pre−processing, application B

EL
CA
RA

(a)

Figure 5.4: Pre-processing time comparison among EL, CA and RA, for application B. CA
and RA are so close that they are almost indistinguishable on a grey-scale graph. (Each
data point in this figure is the average of five runs.)

49

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing EL, CA, and RA: time for pre−processing, application C

EL
CA
RA

(a)

Figure 5.5: Pre-processing time comparison among EL, CA and RA, for application C.
CA and RA are so close that they are indistinguishable on a grey-scale graph. (Each data
point in this figure is the average of five runs.)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing EL, CA, and RA: time for pre−processing, application D

EL
CA
RA

(a)

Figure 5.6: Pre-processing time comparison among EL, CA and RA, for application D.
CA and RA are so close that they are indistinguishable on a grey-scale graph. (Each data
point in this figure is the average of five runs.)

50

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing EL, CA, and RA: time for pre−processing, application D

EL
CA
RA

(a)

Figure 5.7: Pre-processing time comparison among EL, CA and RA, for application D,
using a different scale than Figures 5.2, 5.4, and 5.5, in order to show the entire graph. CA
and RA are so close that they are indistinguishable on a black-white graph. (Each data
point in this figure is the average of five runs.)

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing ECA, CA, and RA: time for first solution, application A

ECA
CA
RA

(a)

Figure 5.8: Comparison among ECA, CA, and RA of time required to generate first online
solution for application A. The time requirements for ECA and RA are so close that they
appear identical on the graph. (Each data point in this figure is the average of five runs.)

51

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing ECA, CA, and RA: time for first solution, application B

ECA
CA
RA

(a)

Figure 5.9: Comparison among ECA, CA, and RA of time required to generate first online
solution for application B. The time requirements for ECA and RA are so close that they
appear identical on the graph. (Each data point in this figure is the average of five runs.)

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing ECA, CA, and RA: time for first solution, application C

ECA
CA
RA

(a)

Figure 5.10: Comparison among ECA, CA, and RA of time required to generate first online
solution for application C. The time requirements for ECA and RA are so close that they
appear identical on the graph. (Each data point in this figure is the average of five runs.)

52

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing ECA, CA, and RA: time for first solution, application D

ECA
CA
RA

(a)

Figure 5.11: Comparison among ECA, CA, and RA of time required to generate first online
solution for application D. RA does not appear on this graph because it is off the chart
even for 5 robots. (Each data point in this figure is the average of five runs.)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

Comparing ECA, CA, and RA: time for first solution, application D

ECA
CA
RA

RA ends here

CA ends here

(a)

Figure 5.12: Comparison among ECA, CA, and RA of time required to generate first
online solution for application D, using a different scale than Figures 5.8, 5.9, and 5.10.
CA cannot find solutions for teams of size ≥15; RA cannot find solutions for teams of size
≥20. (Each data point in this figure is the average of five runs.)

53

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
EL: time for one generation, application A, B, C, and D

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

B

A

D

C

(a)

Figure 5.13: EL: Time to evolve one evolutionary generation for applications A, B, C, and
D. (Each data point in this figure is the average of five runs.)

the elapsed time for evolving new generations, and time for extracting first-level chunks
from the EL solution. Figure 5.13 shows the time required to evolve one generation for
applications A, B, C, and D. The simulation results show that application A and B require
more time to evolve one generation. In order to further explore the growth of the time for
one generation, additional simulations are conducted for a team of 50 and a team of 100
robots for application A and application B. Figure 5.14 shows the result, which indicates
a polynomial tendency.

All four applications require almost no time (<0.01 second) for the harvesting process
for team of 5 to 25 robots, as shown in Figure 5.15.

5.3.3 Quality of solutions generated by chunking

There are two solutions generated by chunking. The EL solution is generated off-line by
the EL process. The EL solution is used to extract chunks, which are used in the ECA
process to generate online team solutions. In this section, both solutions are examined.

Figure 5.16 shows example simulation results of EL for application A with 25 robots.
In this example, the costs and complexity first increase, then decrease over time during
the search, while the number of robots that can achieve a goal and the solution fitness
increases. Although EL shows improvement of the solutions over time, various parameter
settings may affect the end results of the EL process. It is up to the developer to find
the best set of parameter settings for specific applications. While the fitness value and the
number of successfully assigned robots increase over time, the complexity and the costs
show irregular behavior.

54

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

EL: time for one generation, application A and B

Application A
Application B

(a)

Figure 5.14: EL: Time for one evolutionary generation for application A and application
B. (Each data point in this figure is the average of five runs.)

55

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
EL: time for harvesting, application A

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

(a)

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
EL: time for harvesting, application B

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds
(b)

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
EL: time for harvesting, application C

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

(c)

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
EL: time for harvesting, application D

Number of robots

W
al

l c
lo

ck
 ti

m
e

in
 s

ec
on

ds

(d)

Figure 5.15: Time requirements of the chunking process, for harvesting first level chunks
and to generate second-level chunks based on the harvested first-level chunks. It is measured
within the resolution of 0.01 second. The values appear to be 0, because they are <0.01
second. (Each data point in these figures is the average of five runs.)

56

0 100 200 300 400 500 600
0.85

0.86

0.87

0.88

0.89

0.9

0.91

EL: Fitness value
Application A, 25 robots

Number of generations

F
itn

es
s

va
lu

e

(a)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

EL: Costs of all active schemas
Application A, 25 robots

Number of generations

C
os

ts

(b)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

EL: Complexity
Application A, 25 robots

Number of generations

C
om

pl
ex

ity

(c)

0 100 200 300 400 500 600
16

17

18

19

20

21

22

EL: Number of assigned robots
Application A, 25 robots

Number of generations

N
um

be
r

of
 r

ob
ot

s

(d)

Figure 5.16: For a team of 25 robots and application A, these graphs show, during the EL
process, the change over time of: (a) Fitness value; (b) Cost; (c) Complexity; (d) Number
of robots that can accomplish the task. (Each data point in these figures is the result from
one run that is representative of the typical behavior of this algorithm.)

57

Figure 5.17 shows another example simulation results of EL for application B with 25
robots. In this example, the costs and complexity oscillate for the first 100 generations
during the search. The number of the robots that can achieve a goal also oscillates for the
first 100 generations while the solution fitness increases.

The simulation results show that EL is able to generate solutions with increasing fitness
value. The fitness value is a weighted combination of the costs of all active schemas,
complexity, i.e. connectivity between the schemas, and goal achievement. In the original
algorithm design, goal achievement covers two aspects: 1) the number of robots that are
assigned successfully to perform the task, i.e. all the required information types for these
robots can be fulfilled; and 2) the number of fulfilled information types that are required
by the task definition. However, the number of fulfilled information types did not show any
effect on improving the final results. One possible explanation is that the first aspect has
much more significance than the second aspect. Hence, in the fitness calculation process,
the default weight value is set to zero for the second aspect of goal achievement.

In order to calculate a fitness value in the range of 0 to 1, normalization is used. In
order to normalize complexity and costs, the user needs to estimate the maximum number
of connections between schemas in the graph, as well as the maximum costs of all active
schemas. It is a balancing act to provide the maximum values that are not too high, lest
the normalized value is too small to measure the difference between two solutions. If the
provided maximum values are too low, the program will announce the current maximum
values so that the user can update the parameter settings.

Although EL does not always converge to a complete solution, the chunks extracted
from the EL solution, partial or complete, can be used to generate a complete team task
solution in ECA, the online solution search process. Figure 5.18 shows the number of
robots that can be assigned in the off-line EL solution and in the online ECA solution.
The simulation results show that the default parameter settings do not ensure a complete
solution for application C and application D. Figures 5.19 and 5.20 show the result of
different parameter settings that deliver complete solutions. In Figure 5.19, both the inter-
robot connection rate and the intra-robot connection rate are set to 0.95, instead of the
default value of 0.8. In Figure 5.20, the intra-robot connection rate is set to 1.

5.3.4 Comparison of the solution quality generated by CA, RA, and ECA

CA, RA, and ECA of the assimilation process can deliver complete solutions for robot
teams of 5 to 25 robots for applications A, B, and C. CA and ECA deliver the same
solution, while RA normally delivers a solution with higher costs. Figures 5.21, 5.22, and
5.23 show the results for applications A, B, and C.

Application D poses a challenge for CA and RA. Because of the nature of the limited
resource requirements, a greedy search can only find the solution for specific sequences of
robots. Because the heuristics of CA are designed to search all small solutions first, and
because the number of possible solutions is exponential in the number of robots, CA is not
able to deliver a solution for a team of 15 robots after 2 days of continuous running time
(on typical present-day Linux PC machines). The RA approach is able to find a solution
after 20 minutes for a team of 15 robots for application D, but it is not able to deliver a
solution in a timely manner for 20+ robots. The chunking approach can find solutions for
all teams of 5 to 25 robots for application D, and can find solutions faster than CA and

58

0 50 100 150 200 250 300
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

EL: Fitness value
Application B, 25 robots

Number of generations

F
itn

es
s

va
lu

e

(a)

0 50 100 150 200 250 300
22

23

24

25

26

27

28

29

30

EL: Costs of all active schemas
Application B, 25 robots

Number of generations

C
os

ts

(b)

0 50 100 150 200 250 300
270

280

290

300

310

320

330

340

350

360

370

380

EL: Complexity
Application B, 25 robots

Number of generations

C
om

pl
ex

ity

(c)

0 50 100 150 200 250 300
14

14.5

15

15.5

16

16.5

17

17.5

18

EL: Number of assigned robots
Application B, 25 robots

Number of generations

N
um

be
r

of
 r

ob
ot

s

(d)

Figure 5.17: These graphs show, for a team of 25 robots and application B, during the EL
process, the change over time of: (a) Fitness value; (b) Cost; (c) Complexity; (d) Number
of robots that can accomplish the task. (Each data point in these figures is the result from
one run that is representative of the typical behavior of this algorithm.)

59

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application A

ECA
EL

Desired

(a)

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application B

ECA
EL

Desired

(b)

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application C

ECA
EL

Desired

(c)

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application D

ECA
EL

Desired

(d)

Figure 5.18: These graphs show the number of assigned robots in the off-line EL solution
and in the online ECA solution for: (a) Application A; (b) Application B; (c) Application
C; and (d) Application D. The inter-robot connection rate and the intra-robot connection
rate are set to the default value of 0.8. For application C and application D, ECA and EL
have the same value. (Each data point in these figures is the result from one run that is
representative of the typical behavior of this algorithm.)

60

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application C, intra−robot and inter−robot connection rate = 0.95

ECA and EL

Desired

(a)

Figure 5.19: The number of assigned robots in the off-line EL solution and in the online
ECA solution for application C. The inter-robot connection rate and intra-robot connection
rate are set to 0.95. ECA and EL have the same value. (Each data point in this figure is
the result from one run that is representative of the typical behavior of this algorithm.)

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application D
intra−robot connection rate = 1

ECA and EL

Desired

(a)

Figure 5.20: The number of assigned robots in the off-line EL solution and in the online
ECA solution for application D. The inter-robot connection rate is set to the default value
of 0.8. The intra-robot connection rate is set to 1. ECA and EL have the same value.
(Each data point in this figure is the result from one run that is representative of the
typical behavior of this algorithm.)

61

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Number of robots

C
os

ts

Comparing ECA, CA, and RA: costs of team task solution, application A

ECA and CA
RA

Figure 5.21: ECA, CA, and RA: Solution costs for application A. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

5 10 15 20 25
4

6

8

10

12

14

16

18

20

22

24

Number of robots

C
os

ts

Comparing ECA, CA, and RA: costs of team task solution, application B

ECA and CA
RA

Figure 5.22: ECA, CA, and RA: Solution costs for application B. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

62

5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of robots

C
os

ts

Comparing ECA, CA, and RA: costs of team task solution, application C

ECA, CA, and RA

Figure 5.23: ECA, CA, and RA: Solution costs for application C. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

63

5 10 15 20 25
0

5

10

15

20

25

30

Number of robots

C
os

ts

Comparing ECA, CA, and RA: costs of team task solution, application C

ECA, CA, and RA

CA solution ends here

RA solution ends here

Figure 5.24: ECA, CA, and RA: Solution costs for application D. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

RA. In the cases when CA and RA can produce solutions, they deliver solutions with equal
quality to ECA. Figure 5.24 shows the results for applications D.

5.3.5 Comparison between chunking and ASyMTRe

ASyMTRe and chunking are different in the following ways:

• Chunking generates second-level chunks for each robot type, while ASyMTRe gener-
ates potential solutions for each individual robot;

• Chunking harvests and reuses first-level chunks, while ASyMTRe generates new po-
tential solutions from scratch;

• Chunking uses EL to evolve highly fit chunks, while ASyMTRe either uses greedy
search (CA) or randomized search (RA);

• Chunking provides more concrete team solutions including robot information and
information flow information;

• Chunking can find solutions in cases when ASyMTRe (CA) cannot. However, often
CA can generate a good solution fast.

ASyMTRe generates potential solutions for each robot team. The chunking process
generates second-level chunks for each robot type in the robot team. The simulation
results show that ASyMTRe generates many more potential solutions than the second-
level chunks generated by chunking. The reason is that many potential solutions are not
part of the solutions that EL generates off-line. In this case, the EL process works as an

64

evaluation process to prune out the less relevant chunks. Chunks are less relevant if they
are not often used in an actual solution. With a well-defined fitness function and the right
parameter settings, EL can generate solutions and partial solutions with meaningfully high
fitness values. From these solutions and partial solutions, more relevant chunks can be
extracted.

5.3.6 Sensitivity tests of EL

EL generates different solutions using different parameter settings. Figures 5.25 to 5.28
show the simulation results of EL for different connection rate settings. While the inter-
robot connection rate and/or the intra-robot connection rate range from 0.1 to 1, all the
other parameters are set to default values. These results suggest that the best values
for both the inter-robot connection rate and the intra-robot connection rate are 0.9 for
an arbitrary, previously unknown application, in order to achieve the highest number of
assigned robots.

Figure 5.29 shows the simulation results of EL for different weight settings for fitness
calculation. While the weight for complexity increases from 0 to 0.8 and the weight for
the number of assigned robots decreases from 0.8 to 0, all the other parameters are set
to default values. These results show that EL is sensitive to different parameter settings.
These results suggest that for an arbitrary application, when the weight of costs is 0.2,
the best value for the weight of complexity is 0.1, and the best value for the weight of the
number of assigned robots is 0.7, in order to achieve the highest number of assigned robots.

Figures 5.30 to 5.32 show results of sensitivity tests of EL for a changing mutation rate.
While the mutation rate ranges from 0 to 0.1, all the other parameters are set to default
values. The simulation results show that there is a difference between mutation rate equal
to 0 and mutation rate greater than 0. However, this difference is not always preferable. For
example, Figure 5.32 shows that the number of assigned robots decreases with a mutation
rate greater than 0 for application A for a team of 10 robots, for application B for a team
of 5 to 20 robots, and for application D for a team of 15 to 25 robots.

One potential problem for EL is over-learning. The default setting for the maximum
number of generations (MAX GENERATION) is 100, while the default setting for the
maximum number of generations without improvement (MAX NO IMPROVEMENT) is
20. To test the sensitivity of chunking toward the number of generations, these parame-
ter values are set to 1000 and 200, respectively. The EL process will stop if the number
of generations exceeds 1000, or the number of generations without improvement exceeds
200, whichever comes first. Figure 5.33 shows the simulation results for the number of
generations with the new parameter setting. Figure 5.34 shows the maximum number of
generations without improvement, before a new, improved generation had evolved. The
number of generations without improvement exceeds the default setting 20 in most of the
cases for application A and application B. However, does an increased number of gener-
ations improve the end result? Figure 5.35 compares the results with default parameter
settings and an increased number of generations. Based on the results, improvement can be
observed for Application A, but not for Application B. For both application A and B, the
difference between the two sets of ECA results is very small, while the difference between
the two sets of EL results is larger. This result confirms that chunking is able to extract
useful chunks from EL solutions for online solution search.

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Connection rate

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts
EL: Sensitivity test with varying connection rates

Application A

Inter−rate
Intra−rate
Inter− and Intra−rate

Figure 5.25: This graph shows the simulation results of the number of assigned robots in
the solutions generated by EL for application A, for a team of 15 robots. The solid blue
line shows the simulation results for the inter-robot connection rate, which ranges from
0.1 to 1, while the intra-robot connection rate has the constant default value of 0.8. The
dashed blue line shows the simulation results for the intra-robot connection rate, which
ranges from 0.1 to 1, while the inter-robot connection rate has the constant default value
of 0.8. The dotted red line shows the simulation results for the inter-robot connection
rate and the intra-robot connection rate, both ranging from 0.1 to 1. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

66

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Connection rate

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts
EL: Sensitivity test with varying connection rates

Application B

Inter−rate
Intra−rate
Inter− and Intra−rate

Figure 5.26: This graph shows the simulation results of the number of assigned robots in
the solutions generated by EL for application B, for a team of 15 robots. The solid blue line
shows the simulation results for the inter-robot connection rate, which ranges from 0.1 to
1, while the intra-robot connection rate has the constant default value of 0.8. The dashed
blue line shows the simulation results for the intra-robot connection rate, which ranges
from 0.1 to 1, while the inter-robot connection rate has the constant default value of 0.8.
The dotted red line shows the simulation results for the inter-robot connection rate and
the intra-robot connection rate, both ranging from 0.1 to 1. (Each data point in this figure
is the result from one run that is representative of the typical behavior of this algorithm.)

67

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Connection rate

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts
EL: Sensitivity test with varying connection rates

Application C

Inter−rate
Intra−rate
Inter− and Intra−rate

Figure 5.27: This graph shows the simulation results of the number of assigned robots in
the solutions generated by EL for application C, for a team of 15 robots. The solid blue line
shows the simulation results for the inter-robot connection rate, which ranges from 0.1 to
1, while the intra-robot connection rate has the constant default value of 0.8. The dashed
blue line shows the simulation results for the intra-robot connection rate, which ranges
from 0.1 to 1, while the inter-robot connection rate has the constant default value of 0.8.
The dotted red line shows the simulation results for the inter-robot connection rate and
the intra-robot connection rate, both ranging from 0.1 to 1. (Each data point in this figure
is the result from one run that is representative of the typical behavior of this algorithm.)

68

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Connection rate

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts
EL: Sensitivity test with varying connection rates

Application D

Inter−rate
Intra−rate
Inter− and Intra−rate

Figure 5.28: This graph shows the simulation results of the number of assigned robots in
the solutions generated by EL for application D, for a team of 15 robots. The solid blue
line shows the simulation results for the inter-robot connection rate, which ranges from
0.1 to 1, while the intra-robot connection rate has the constant default value of 0.8. The
dashed blue line shows the simulation results for the intra-robot connection rate, which
ranges from 0.1 to 1, while the inter-robot connection rate has the constant default value
of 0.8. The dotted red line shows the simulation results for the inter-robot connection
rate and the intra-robot connection rate, both ranging from 0.1 to 1. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

EL: Sensitivity test with varying weights for fitness calculation
Application A

Weight for complexity

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

EL: Sensitivity test with varying weights for fitness calculation
Application B

Weight for complexity

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

EL: Sensitivity test with varying weights for fitness calculation
Application C

Weight for complexity

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

EL: Sensitivity test with varying weights for fitness calculation
Application D

Weight for complexity

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

(d)

Figure 5.29: These graphs show the simulation results of the number of assigned robots in
the solutions generated by EL for a team of 15 robots, for applications A, B, C, and D: (a)
Application A; (b) Application B; (c) Application C; (d) Application D. Recall that the
fitness function is: F = wc · (c/cmax) + wx · x + wq · (q/qmax) + wu · (u/n).
In these simulations, the weight for costs(wc) has the constant default value of 0.2, and
the weight for the number of fulfilled information types(wq) has the constant default value
of 0. The weight for complexity(wx) varies from 0 to 0.8, and is shown in the graph. The
weight for the number of assigned robots(wu) also varies from 0 to 0.8. The value of wu is
calculated using wu = 1 − 0.2(wc) − wx, so that all the weights sum up to 1. The graphs
show the results of increasing wx and decreasing wu. (Each data point in these figures is
the result from one run that is representative of the typical behavior of this algorithm.)

70

0 0.02 0.04 0.06 0.08 0.1
0.5

1

1.5

2

2.5

3

3.5

4

Mutation rate

C
os

ts
 o

f a
ct

iv
e

sc
he

m
as

EL: costs of all active schemas for different mutation rates
Application A, B, and D, 5 robots

App. A
App. B
App. D

(a)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

8

9

Mutation rate

C
os

ts
 o

f a
ct

iv
e

sc
he

m
as

EL: costs of all active schemas for different mutation rates
Application A, B, and D, 10 robots

App. A
App. B
App. D

(b)

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

Mutation rate

C
os

ts
 o

f a
ct

iv
e

sc
he

m
as

EL: costs of all active schemas for different mutation rates
Application A, B, and D, 15 robots

App. A
App. B
App. D

(c)

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

16

18

20

Mutation rate

C
os

ts
 o

f a
ct

iv
e

sc
he

m
as

EL: costs of all active schemas for different mutation rates
Application A, B, and D, 20 robots

App. A
App. B
App. D

(d)

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

16

18

Mutation rate

C
os

ts
 o

f a
ct

iv
e

sc
he

m
as

EL: costs of all active schemas for different mutation rates
Application A, B, and D, 25 robots

App. A
App. B
App. D

(e)

Figure 5.30: Costs for all active schemas in the EL solutions for different mutation rates.
(Each data point in these figures is the result from one run that is representative of the
typical behavior of this algorithm.)

71

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

45

Mutation rate

C
om

pl
ex

ity

EL: complexity for different mutation rates
Application A, B, and D, 5 robots

App. A
App. B
App. D

(a)

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100

Mutation rate

C
om

pl
ex

ity

EL: complexity for different mutation rates
Application A, B, and D, 10 robots

App. A
App. B
App. D

(b)

0 0.02 0.04 0.06 0.08 0.1
10

20

30

40

50

60

70

80

90

100

110

Mutation rate

C
om

pl
ex

ity

EL: complexity for different mutation rates
Application A, B, and D, 15 robots

App. A
App. B
App. D

(c)

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

Mutation rate

C
om

pl
ex

ity

EL: complexity for different mutation rates
Application A, B, and D, 20 robots

App. A
App. B
App. D

(d)

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

Mutation rate

C
om

pl
ex

ity

EL: complexity for different mutation rates
Application A, B, and D, 25 robots

App. A
App. B
App. D

(e)

Figure 5.31: Complexity of the EL solutions for different mutation rates. (Each data point
in these figures is the result from one run that is representative of the typical behavior of
this algorithm.)

72

0 0.02 0.04 0.06 0.08 0.1
2

2.5

3

3.5

4

4.5

5

5.5

6

Mutation rate

A
ss

ig
ne

d
ro

bo
ts

EL: Number of successfully assigned robots for different mutation rates
Application A, B, and D, 5 robots

App. A
App. B
App. D

(a)

0 0.02 0.04 0.06 0.08 0.1
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Mutation rate

A
ss

ig
ne

d
ro

bo
ts

EL: Number of successfully assigned robots for different mutation rates
Application A, B, and D, 10 robots

App. A
App. B
App. D

(b)

0 0.02 0.04 0.06 0.08 0.1
8.5

9

9.5

10

10.5

11

11.5

12

Mutation rate

A
ss

ig
ne

d
ro

bo
ts

EL: Number of successfully assigned robots for different mutation rates
Application A, B, and D, 15 robots

App. A
App. B
App. D

(c)

0 0.02 0.04 0.06 0.08 0.1
9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

Mutation rate

A
ss

ig
ne

d
ro

bo
ts

EL: Number of successfully assigned robots for different mutation rates
Application A, B, and D, 20 robots

App. A
App. B
App. D

(d)

0 0.02 0.04 0.06 0.08 0.1
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

Mutation rate

A
ss

ig
ne

d
ro

bo
ts

EL: Number of successfully assigned robots for different mutation rates
Application A, B, and D, 25 robots

App. A
App. B
App. D

(e)

Figure 5.32: Number of assigned robot in the EL solutions for different mutation rates.
(Each data point in these figures is the result from one run that is representative of the
typical behavior of this algorithm.)

73

5 10 15 20 25
100

150

200

250

300

350

400

450

500

550

600

650

Number of robots

N
um

be
r

of
 g

en
er

at
io

ns

EL: Number of all generations
Application A, B, and D

App. A
App. B
App. D

Figure 5.33: Number of generations in the EL process with new parameter setting:
MAX GENERATION = 1000 instead of 100, MAX NO IMPROVEMENT = 200 instead
of 20. (Each data point in this figure is the result from one run that is representative of
the typical behavior of this algorithm.)

5 10 15 20 25

0

20

40

60

80

100

120

140

160

180

200

Number of robots

N
um

be
r

of
 g

en
er

at
io

ns

EL: Max. number of generations without improvement
Application A, B, and D

App. A
App. B
App. D

Figure 5.34: Number of generations with no improvement in the EL process with new para-
meter setting: MAX GENERATION = 1000 instead of 100, MAX NO IMPROVEMENT
= 200 instead of 20. The EL process will stop if the number of generations exceeds 1000,
or the number of generations without improvement exceeds 200. (Each data point in
this figure is the result from one run that is representative of the typical behavior of this
algorithm.)

74

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application A

ECA with more generations
EL with more generations
ECA with default generations
EL with default generations

(a)

5 10 15 20 25
0

5

10

15

20

25

Number of robots in the robot team

N
um

be
r

of
 a

ss
ig

ne
d

ro
bo

ts

EL and ECA in the chunking process:
Number of successfully assigned robots

Application B

ECA with more generations
EL with more generations
ECA with default generations
EL with default generations

(b)

Figure 5.35: Number of assigned robots for different parameter settings of
MAX GENERATION (1000 and 100) and MAX NO IMPROVEMENT (200 and 20): (a)
Application A, chunking with higher number of generations can assign more robots both
in the EL and in the ECA process for a team of 10 robots, and for a team of 15 robots; (b)
Application B, chunking with higher number of generations can assign more robots in EL
in the most cases. However, chunking with higher number of generations can assign less
robots in ECA for 5 robots. (Each data point in these figures is the result from one run
that is representative of the typical behavior of this algorithm.)

75

5.4 Summary of Findings

In all the simulated applications, the online search performance of ECA is always faster
than CA and RA. For the more complicated application D, ECA finds solutions in the same
small amount of time, while the time requirement for CA and RA grows exponentially. All
three approaches require some pre-processing. While CA and RA perform pre-processing
online, chunking performs pre-processing off-line. Chunking needs more pre-processing
time than CA and RA for applications A, B, and C. In relatively simple applications
like applications A, B, and C, the pre-processing time is insignificant, but for a more
complicated application like application D, the benefit of the chunking approach becomes
apparent, because the pre-processing time of chunking is still less than a second, while it
increases exponentially for CA and RA.

The time requirement for the off-line chunking process includes evolving new genera-
tions and harvesting chunks. The time requirement for new generations increases quadrat-
ically, while the time requirement for harvesting is insignificantly small.

The simulations also show that EL is able to increase the solution fitness over time. It is
not always able to produce a complete solution off-line, but it is able to produce highly-fit
chunks, which, when used in the ECA process, can sometimes produce a complete online
solution. CA and ECA produce similar solutions for the simpler applications A, B, and C,
while RA normally delivers a solution with higher costs. For application D, in the cases
when CA and RA can produce solutions in a timely manner, they deliver solutions with
equal quality to ECA.

The simulations show that ASyMTRe generates many more potential solutions than the
number of second-level chunks generated by EL, because EL is using a filter to prune out the
less relevant chunks. During the simulation, parameter adjustment is needed for application
D, while the default parameter settings seem to work well for simpler applications. After
adjusting the parameters, it is possible to find a complete team solution. The knowledge
of proper parameter settings is a limitation of the chunking approach. It depends on the
user’s expertise to determine how the parameters should be set.

In summary, none of the approaches among CA, RA, and chunking always outper-
forms the other ones. The simulation results suggest that chunking may be preferable for
more complex problems that involve more resource constraints, while CA and RA may be
preferable for simpler applications that involve fewer resource constraints. The simulation
results show that chunking is able to produce useful chunks that significantly increase the
efficiency of the online search process versus the CA approach, i.e., using the chunks, ECA
finds an initial team task solution faster than CA in all four applications. For simple tasks,
the time to find an initial team task solution is comparable for chunking and RA, but
chunking produces lower cost solutions. Hence for tasks where the chunks can be re-used,
chunking will most likely always be preferable to CA and RA. However, for tasks where
new chunks need to be generated, it may be best to run the CA and chunking algorithms
concurrently, since it is difficult to determine in advance whether chunking’s faster online
search performance will outweigh its greater start up time in finding chunks. RA need not
be included in a hybrid approach because it generates higher cost solutions than either CA
or chunking, and while it has a considerable relative speed advantage over CA, its speed
in absolute terms is not sufficient to warrant running all three approaches in parallel.

76

Overall, chunking holds considerable promise as an approach for assigning tasks to
robots. First, its excellent online search performance suggests that it is producing high-
quality chunks, and hence is a promising approach for continuous learning. Second, its
excellent performance on the more complex task, coupled with the fact that robots will
be asked to perform increasingly complex tasks in the future, suggest that ultimately,
combining off-line chunking and online search may be a more viable approach than online
search alone.

77

Chapter 6

Conclusions and Future Work

In this dissertation, I have laid out a Schema-Based Constructivist Robot Learning Archi-
tecture (SB-CoRLA) that is closely related to the ASyMTRe algorithm. I have identified
different learning processes in SB-CoRLA for enabling learning through Assimilation and
Accommodation, and implemented the Assimilation process. Specifically, I have developed
three new algorithms:

1. An off-line algorithm (EL) that uses a genetic algorithm to develop highly-fit robot
team solutions;

2. An off-line harvesting algorithm that extracts first-level chunks from the highly-fit
off-line robot team solution; and

3. An online solution search algorithm (ECA) that combines first-level chunks to gen-
erate second-level chunks, as well as to assign the second-level chunks to a team of
robots.

Accommodation is not implemented in this dissertation.
ASyMTRe automatically generates task solutions based on robot capabilities in the

form of schemas. It generates solutions by connecting schemas via matching information
types. However, it does not learn from past experience and restarts the search process from
scratch every time a solution is needed. SB-CoRLA builds on the groundwork of schema-
based robot system. It implements a genetic algorithm in off-line evolutionary learning (EL)
to learn useful knowledge about the schema connections, called “chunks”, that are part of a
highly-fit solution. In EL, each solution is an individual in a population and is represented
as a graph. The vertices represents schemas, while the edges represent connections between
schemas via matching information types. Throughout the EL process, new solutions are
generated by recombining subgraphs from existing solutions via crossover, and by changing
connections between the vertices via mutation. A fitness function is used to measure the
fitness of the solution and is defined as weighted sum of the number of assigned robots,
the complexity which is the number of connections between schemas, and the costs of all
active schemas. In the harvesting process, first-level chunks are generated by backtracking
each complete information flow that provides an information type that is required by the
task definition. In the online solution search process (ECA), relevant first-level chunks are
selected based on the robot team configuration and the task definition. These first-level

78

chunks are combined into second-level chunks, which represent complete solutions for each
robot type. ECA then assigns the second-level chunks to the robots to generate a robot
team solution. ECA iterates through robot types in the robot team. CA iterates through
the robot IDs in the robot team. ECA and CA both have exponential time complexity.
CA generates the sequential ordering of the robots based on their IDs (O(n!)), while ECA
generates the sequential ordering of the robots based on their types (O(n!

t1!t2!...ti!...tm!
), where

ti is number of robots of robot type i in the robot team configuration).
To evaluate the efficiency of the algorithms, I implemented four simulated tasks and

ran various simulations to test ECA with teams of 5 to 25 robots, and to test EL and
harvesting with teams of 5 to 100 robots. The simulation results suggest that in practice
EL performs quadratically, while harvesting essentially requires constant time, despite the
fact that, theoretically, big-O performance of harvesting is linear in the number of edges
of the graph. ECA requires insignificantly little time to generate a first online solution,
but the big-O performance of ECA for all iterations of robot types is exponential. The
simulation results also suggest that the pre-processing time for EL and harvesting are
competitive with the pre-processing time for the CA and RA algorithm, and that for more
complicated tasks, EL may significantly outperform CA and RA algorithm. Finally, ECA
consistently finds an initial solution more quickly than CA and RA. The simulation results
seem to confirm the viability of the implemented assimilation process in the framework of
SB-CoRLA.

As such, this dissertation provides a foundation for continuous learning in a schema-
based robot system. In order to realize its potential in the future, there are several promis-
ing research directions to be explored:

• Developing SCS repository with an indexing system: In this dissertation, the number
of chunks is small enough that searching through all the chunks is quite efficient. As
the size of the repository grows, it may no longer be feasible to completely search the
repository to find the relevant chunks. In this case, it is essential to have an indexing
system that will retrieve the most relevant chunks. Furthermore, this indexing system
can also be used to prune the SCS repository and to clean out less relevant chunks.

• Gaining more insight for parameter settings: As the simulation results show, the
parameter settings for EL can change the final outcome of the team solution. Exten-
sive experimentation will probably be required to determine the correlation between
certain parameter settings and application characteristics, in order to generate high
quality solutions.

• Including human knowledge: The chunking process cannot deal with new robot types
and new information types. Ordinarily, in order to integrate new robot types and new
information types in the existing SCS repository, the EL process is needed. However,
an experienced user might be able to find similar robot types and information types
in the existing SCS repository and substitute the new with the old. It is also interest-
ing to explore whether there are fully automated ways to perform this substitution
process.

• Generating higher-level chunks: The current chunking process generates first-level
chunks and second-level chunks. In order to increase search efficiency and to perform

79

more sophisticated learning, it is important to explore algorithms that could create
higher-level chunks. However, the complexity of such an algorithm could increase
considerably.

• Implementing accommodation: Constructivist learning emphasizes the importance
of both assimilation learning and accommodation learning. This dissertation has
implemented the assimilation aspect of SB-CoRLA. Accommodation differs from as-
similation in that it is an online learning process, rather than an off-line learning
process. While assimilation learns new combinations of existing skills, accommo-
dation learns new skills through modification of old skills by interacting with the
environment. Therefore, accommodation presents a different set of challenges. A
promising approach could be goal-directed feedback-based learning.

80

Appendix

81

Appendix A

Chunking Implementation Details

In this section I list some important implementation details.These details are implemented
to make the chunking process, especially the evolutionary learning process (EL) cleaner,
more understandable, and more efficient.

A.1 The Graph

A graph structure, in adjacency list format, is used to represent an individual team solution.
In EL, each generation consists of a number of individual team solutions, i.e. a number of
graphs. Each graph has as many nodes as the number of available schemas in the robot
team. Each graph node is indexed with a unique integer. A Graph node structure is used
to define a node. The Graph node structure contains the following information:

• The ID of the robot that this graph node belongs to;

• The type of the robot that this node belongs to. That robot type is determined by
the available sensors on a robot;

• The name of the schema that this node represents;

• The costs of the schema that this node represents;

• A pointer to the schema that this node represents; and

• A list of communication input and output information types, if the node is a com-
munication schema.

A Vertex structure is used to represent the connections in the graph. Each graph
has two lists of vertices, one for the actual connections among the nodes, the other for
backward tracing of the actual connections to increase computational efficiency. Each
vertex is indexed with a unique graph node index, and maintains a list of ChunkNode
structures to record information about other graph nodes that are connected to this graph
node. The ChunkNode structure contains the following information:

• The graph node index;

• The ID of the robot that this node belongs to;

82

Table A.1: The Comm structure that represents a CS

Variable Description

string input input information type

string output output information type

double prob success probability of the schema

double cost costs of the schema

• The type of the robot that this node belongs to;

• A boolean variable indicating whether or not this robot helps another robot; and

• A pointer to the schema that this node represents.

In addition to the nodes representing available schemas, there is another kind of node,
called a goal node. The goal node represents the team task. It takes the required informa-
tion types as inputs and does not provide any output. Each robot has its own goal node.
When all inputs are satisfied for a robot’s goal node, this robot is considered successfully
assigned.

A.2 The Schema

There are two different schema types in the implementation: a) the CS, and b) the rest
(PS and MS). CS has a different data structure and needs to be referred to differently than
PS and MS. Table A.1 shows the content of the Comm structure that is used for CS. Table
A.2 shows the content of the Schema structure that is used for PS and MS.

In SB-CoRLA, there are two kinds of CS:

• The schema cs on a helper robot transmits information to a robot that needs help;
and

• The schema cs2 on a robot that needs help receives information transmitted by a
helper robot.

Both cs and cs2 have one input and one output.
In the original ASyMTRe implementation, PS and MS can have different sets of multiple

input information types and multiple output information types. In SB-CoRLA, PS and
MS have a unique set of inputs and output. In the original ASyMTRe, PS and MS can
have multiple outputs. In SB-CoRLA, PS and MS can have only one output. Those two
changes are necessary to keep the graph structure for EL clean. Without those changes,
the forward and backward tracing within the graph would be much more complicated and
not clearly manageable. For example, if one schema can have two different sets of input
information types, the corresponding graph node needs to keep track of these two sets of
information types. In order to check whether or not all the required information types of
this schema are provided, two separate tests need to be made, one for each set. It makes
more sense to maintain two different schemas and two different corresponding graph nodes

83

Table A.2: The Schema structure that represents PS and MS

Variable Description

string name schema name

int id unique id for each schema, to differentiate
schemas with same name

int sensornum number of sensors that are associated with
this schema

vector<string> sensor name of the sensors

int inputnum number of input information types that this
schema requires

vector<string> input input information types

vector<string> output output information type

double prob success probability of the schema

double cost costs of the schema

84

in this case, instead of one schema with two sets of information types. Similar consideration
about multiple output information types leads to the design decision about having PS and
MS with a single output information type.

A.3 The Procedures in EL

EL consists of initialization, selection, crossover, mutation, evaluation, and pruning pro-
cedures. One design decision is to record the most fit individual from each generation
based on the fitness of a valid team solution, instead of the fitness of the individual “as is”.
Therefore the pruning procedure is created to generate valid team task solutions, either
complete or partial, based on the population evolved throughout the EL process.

Both the evaluation and the pruning procedures identify incomplete information flows
in a solution. An information flow consists of connections between schemas. An informa-
tion flow is incomplete when not all required input information types are satisfied for all
involved schemas. The evaluation process calculates the fitness value of a team solution
without deleting incomplete information flows. Pruning deletes incomplete information
flows and information flows that do not lead to a goal node. The tricky part is to backtrack
the information flow, in order to determine whether an information flow is complete for
providing an information type. While the evaluation procedure simply checks the validity
of an information flow, the pruning procedure deletes connections between nodes when the
information flow is not complete, even though the node connection is valid. For example, if
node1 → node2 → node3 → goal is a complete chain of nodes connected with each other to
provide a certain information type required by the task, and node2 → node3 → goal exists
in the solution, the evaluation procedure calculates the fitness value for the team solution
“as is”, while the pruning procedure deletes the connection between node3 and goal.

For each generation, two sets of populations are created1: a) a population before apply-
ing the pruning procedure, the un-pruned population, and b) a population after applying
the pruning procedure, the pruned population. The pruned population is used to find the
most fit team task solution in this generation. The un-pruned population is used for the
selection, crossover, and mutation procedures to create a new generation. It is not enough
to only use the pruned population because, although some information flow is incomplete,
it could still be a part of a highly-fit, complete information flow chain. It is therefore
necessary to use the un-pruned population in the EL process.

Since information type can be provided in different ways, there are sometimes redun-
dant information flows in the final solution. A method in EL named delete alternate ways
eliminates the redundancy randomly. It is not possible to perform greedy elimination, i.e.,
to eliminate the information flow with higher costs, because a node can be accountable
to multiple information flows. During testing, I have found that sometimes it is better to
turn off this method, since it can lead to no solution being found.

1A design decision is to perform pruning for every generation. However, the simulation results show
that the fitness value of the best solution for each generation does not fluctuate over several generations.
It is thus worth considering to reduce the frequency of pruning, e.g. to perform pruning once every 10
generations, in order to reduce the computational costs.

85

The user can use command line tags to vary many parameter settings for the EL process.
Table A.3 shows the tag name, the parameter name and description, as well as their default
settings, which are determined through testing.

In the following I explain the different EL parameters in detail:

• -n, NUM R: The number of robots in a robot team configuration;

• -s, SUM SCHEMA: The number of all available schemas in the robot team configu-
ration; also the number of all nodes in the graph, including the goal node;

• -f, NEED SUM SCHEMA: In order to run the program for the EL process, the user
needs to know the value of the parameter SUM SCHEMA. One way to calculate it
is to run the same program with this tag set to 1;

• -k, CONNECT RATE: Determines how likely two schemas from the same robot with
matching information types will be connected;

• -o, CS CONNECT RATE: Determines how likely two CSs from different robots with
matching information types will be connected;

• -g, MAX GENERATION: The EL process stops after evolving this number of gen-
erations;

• -j, MAX NO IMPROVEMENT: The EL process stops after the population has
evolved this number of generations and the fitness value of the best solution in the
population has not improved;

• -a, MSS: Defines how many robots can work together in a team;

• -b, MTH: Each robot can help a limited number of robots. This parameter defines
the maximum number of robots that one robot can help;

• -p, POPULATION: The number of individuals, i.e., graphs representing task team
solutions, in each population;

• -v, FP NOT TM: For the selection process and the crossover process, the user can
choose between fitness proportionate selection and tournament selection. The same
selection method will then be used for both selection and crossover. Previous experi-
ence has shown that tournament selection is appropriate when the user wants more
diversity in the population;

• -w, TM SELECTION RATE: If the tournament selection is chosen, the user can use
this tag to determine the probability of choosing the more fit solution out of two;

• -r, CROSSOVER RATE: Determines how likely a crossover will take place;

• -m, MUTATION RATE: Determines how likely a mutation will take place;

The following are weight factors for calculating the fitness value of a team task solution:

• -c, WEIGHT COST: The weight for the costs of all active schemas;

86

Table A.3: EL command line tags, parameter names, parameter descriptions, and default
settings

Tag Var. Name Description Default

n int NUM R number of robots 5.0

s int SUM SCHEMA number of schemas 500.0

f int NEED SUM SCHEMA =1 if needed to calculate
SUM SCHEMA

0.0

k double CONNECT RATE probability for intra-robot
connection

0.8

o double CS CONNECT RATE probability for inter-robot
connection

0.8

g int MAX GENERATION max. number of generations 100.0

j int
MAX NO IMPROVEMENT

max. number of generations
without improvement

20.0

a int MSS max. sub-team size 3.0

b int MTH max. number of robots that
one robot can help

3.0

p int POPULATION number of individuals in each
generation

500.0

v int FP NOT TM choose between fitness propor-
tionate (=1) and tournament
selection (=0)

1.0

w double
TM SELECTION RATE

probability of choosing the
more fit solution in tourna-
ment selection

0.8

r double CROSSOVER RATE probability of crossover 0.6

m double MUTATION RATE probability of mutation 0.005

c double WEIGHT COST for fitness calculation 0.2

x double
WEIGHT COMPLEXITY

for fitness calculation 0.4

q double WEIGHT UTILITY for fitness calculation 0.0

u double WEIGHT UTILITY2 for fitness calculation 0.4

d double MAX COST max. cost for team solution 30.0

y int MAX COMPLEXITY max. complexity for team so-
lution

200.0

t int MAX UTILITY max. utility for team solution 50.0

e double MAX SENSOR COST max. cost for a sensor 30.0

87

• -x, WEIGHT COMPLEXITY: The weight for the number of all active connections
between schemas;

• -q, WEIGHT UTILITY: Recall that a task is defined as a set of required information
types. This is the weight for the number of fulfilled required information types, i.e.,
complete information flows that lead to a required information type. The simulations
have shown that this factor has less effect on the result than the others;

• -u, WEIGHT UTILITY2: The weight for the number of robots that can provide all
the required information types.

The following are variables that define the maximum values used to normalize different
factors for calculating the fitness value of a team task solution:

• -d, MAX COST: The maximum cost of all active schemas;

• -y, MAX COMPLEXITY: Maximum number of active connections between schemas;

• -t, MAX UTILITY: The maximum number of fulfilled required information types;

• -e, MAX SENSOR COST: The maximum cost for a single sensor. The maximum
number of robots that can provide all the required information types is the same
number as NUM R, i.e., the number of robots in the robot team.

A.4 Preview of ECA v.2

The current ECA can only handle chunks. For a robot team composition and a task
definition, ECA finds relevant first-level chunks from the SCS repository based on the
robot types and the information types, and combine them into second-level chunks. In
order for the chunking process to be able to use both basic schemas and chunks in the
online solution search process, ECA v.2 is proposed for future work. This section lays out
the basic steps of ECA v.2:

1. Parsing: Find relevant chunks and schemas based on robot team configuration and
task definition;

2. Generating potential solutions: Create a list of potential solutions using both chunks
and schemas while keeping a record of whether a potential solution contains chunks.
Each potential solution is a graph in the form of adjacency list, which is very similar
to the format of second-level chunks. One possible implementation is to first connect
all valid connections in the initialization process of EL, then to extract all first-level
chunks from the graph after pruning, and finally to combine the first-level chunks
into second-level chunks. It might or might not be beneficial to keep track of robot
types in this process. Furthermore, CA uses one list of potential solutions for all
robots in the team; it is better to keep one list of applicable potential solutions for
each individual robot based on their capabilities, i.e. available schemas;

3. Online solution search: Sort the potential solutions in ascending order of costs and
perform a greedy search for all permutations of robot IDs. It is worth exploring

88

whether potential solutions containing chunks should be preferred, regardless of their
costs.

89

Bibliography

90

Bibliography

[Arbib, 2003] Arbib, M. A. (2003). Schema theory. In Arbib, M. A., editor, The Handbook
of Brain Theory and Neural Networks, pages 993–998. MIT Press, Cambridge, MA, USA.

[Arkin, 1987] Arkin, R. C. (1987). Motor schema based navigation for a mobile robot:
an approach to programming by behavior. In Proceedings of the IEEE Conference on
Robotics and Automation, pages 264–271.

[Arkin, 1998] Arkin, R. C. (1998). Behavior-based robotics. MIT Press.

[Barto and Mahadevan, 2003] Barto, A. G. and Mahadevan, S. (2003). Recent advances
in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(4):341–379.

[Benjamin et al., 2004] Benjamin, D. P., Lyons, D., and Lonsdale, D. (2004). Adapt: A
cognitive architecture for robotics. In Proceedings 2004 International Conference on
Cognitive Modeling, Pittsburgh, PA.

[Bowling et al., 2004] Bowling, M., Browning, B., and Veloso, M. (2004). Plays as ef-
fective multiagent plans enabling opponent-adaptive play selection. In Proceedings of
International Conference on Automated Planning and Scheduling (ICAPS’04).

[Brooks and Mataric, 1993] Brooks, R. A. and Mataric, M. J. (1993). Robot Learning,
chapter 8. Kluwer Academic Publishers, Boston, Dordrecht, London.

[Bruner, 1990] Bruner, J. (1990). Acts of Meaning. Harvard University Press.

[Cambron and Peters, 2000] Cambron, M. and Peters, R. A. (2000). Sensory motor control
for grasping in a humanoid robot. In Proceedings 2000 IEEE International Conference
on Systems, Man and Cybernetics, Nashville, TN.

[Chaput, 2004] Chaput, H. H. (2004). The constructivist learning architecture: A model
of cognitive development for robust autonomous robots. PhD thesis, The Department of
Computer Sciences, The University of Texas at Austin.

[Chaput et al., 2003] Chaput, H. H., Kuipers, B., and Miikkulainen, R. (2003). Construc-
tivist learning: a neural implementation of the schema mechanism. In Proceedings of
WSOM ’03: Workshop on Self-Organizing Maps, Kitakyushu, Japan.

[Cherubini et al., 2007] Cherubini, A., Giannone, F., Iocchi, L., and Palamara, P. (2007).
An extended policy gradient algorithm for robot task learning. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4121–4126.

91

[Coelho and Grupen, 2000] Coelho, J. and Grupen, R. (2000). Learning in non-stationary
conditions: a control theoretic approach. In Proceedings 17th International Conf. on
Machine Learning, pages 151–158. Morgan Kaufmann, San Francisco, CA.

[Coradeschi and Saffiotti, 2003] Coradeschi, S. and Saffiotti, A. (2003). An introduction to
the anchoring problem. Robotics and Autonomous Systems. Special issue on perceptual
anchoring, 43(2-3):85–96.

[Deiterding and Henrich, 2007] Deiterding, J. and Henrich, D. (2007). Automatic adap-
tation of sensor-based robots. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1828–1833.

[Dogar et al., 2007] Dogar, M., Cakmak, M., Ugur, E., and Sahin, E. (2007). From prim-
itive behaviors to goal-directed behavior using affordances. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 729–734.

[Donald, 1995] Donald, B. R. (1995). On information invariants in robotics. Artificial
Intelligence, 72(1-2):217–304.

[Donald et al., 1994] Donald, B. R., Jennings, J., and Rus, D. (1994). Analyzing teams of
cooperating mobile robots. Technical Report TR94-1429, Dept. of Computer Science,
Dartmouth College.

[Donald et al., 1997] Donald, B. R., Jennings, J., and Rus, D. (1997). Information in-
variants for distributed manipulation. The International Journal of Robotics Research,
16(5):673–702.

[Doumont, 2002] Doumont, J. (2002). Magical numbers: the seven-plus-minus-two myth.
IEEE Transactions on Professional Communication, 45(2):123–127.

[Drescher, 1991] Drescher, G. (1991). Made-up minds: a constructivist approach to artifi-
cial intelligence. MIT Press.

[Gerkey and Mataric, 2004] Gerkey, B. P. and Mataric, M. J. (2004). A formal analysis
and taxonomy of task allocation in multi-robot systems. Intl. J. of Robotics Research,
23(9):939–954.

[Goldberg, 2002] Goldberg, D. (2002). The Design of Innovation (Genetic Algorithms and
Evolutionary Computation). Springer.

[Gritti et al., 2007] Gritti, M., Broxvall, M., and Saffiotti, A. (2007). Reactive self-
configuration of an ecology of robots. In Proc. of the ICRA-07 Workshop on Network
Robot Systems, Roma, Italy.

[Gureckis and Love, 2004] Gureckis, T. M. and Love, B. C. (2004). Common mechanisms
in infant and adult category learning. Infancy, 5(2):173–198.

[Hansen et al., 1997] Hansen, E. A., Zilberstein, S., and Danilchenko, V. A. (1997). Any-
time heuristic search: first results. Technical Report 97-50, Computer Science Depart-
ment, University of Massachusetts.

92

[Hart et al., 2004] Hart, S., Grupen, R., and Jensen, D. (2004). A relational representation
for generalized knowledge in robotic tasks. Technical Report 04-101, Computer Science
Department, University of Massachusetts Amherst.

[Huang and van de Panne, 1996] Huang, P. S. and van de Panne, M. (1996). A planning
algorithm for dynamic motions. In Computer Animation and Simulation ’96, pages
169–182.

[Huntsberger et al., 2003] Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D.,
Aghazarian, H., Ganino, A., Garrett, M., Joshi, S., and Schenker, P. (2003). Campout: a
control architecture for tightly coupled coordination of multirobot systems for planetary
surface exploration. IEEE Transactions on Systems, Man and Cybernetics, Part A,
33(5):550–559.

[Jones et al., 2006] Jones, E., Browning, B., Dias, M. B., Argall, B., Veloso, M., and
Stentz, A. (2006). Dynamically formed heterogeneous robot teams performing tightly-
coordinated tasks. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, pages 570 – 575, Orlando, FL.

[Konda and Tsitsiklis, 1999] Konda, V. R. and Tsitsiklis, J. N. (1999). Actor-critic algo-
rithms. In Advances in Neural Information Processing Systems 12, NIPS Conference,
pages 1008–1014, Denver, Colorado, USA.

[Konidaris and Barto, 2006a] Konidaris, G. D. and Barto, A. G. (2006a). An adaptive
robot motivational system. In Animals to Animats 9: Proceedings of the 9th International
Conference on Simulation of Adaptive Behavior, CNR, Roma, Italy.

[Konidaris and Barto, 2006b] Konidaris, G. D. and Barto, A. G. (2006b). Building
portable options: skill transfer in reinforcement learning. Technical Report UM-CS-
2006-17, University of Massachusetts Department of Computer Science Technical Re-
port.

[Konishi and Fujii, 2004] Konishi, Y. and Fujii, R. H. (2004). Incremental learning of
temporal sequences using state memory and a resource allocating network. In Proceedings
of the IEEE International Joint Conference on Neural Networks, pages 2889– 2893.

[LeBlanc and Saffiotti, 2008] LeBlanc, . K. and Saffiotti, A. (2008). Cooperative anchoring
in heterogeneous multi-robot systems. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), Pasadena, CA.

[Levner et al., 2006] Levner, I., Kovarsky, A., and Zhang, H. (2006). Heuristic search for
coordinating robot agents in adversarial domains. In Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pages 563–569, Orlando, FL.

[Lundh et al., 2007] Lundh, R., Karlsson, L., and Saffiotti, A. (2007). Plan-based con-
figuration of an ecology of robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), Roma, Italy.

[Lyons and Arbib, 1989] Lyons, D. M. and Arbib, M. A. (1989). A formal model of com-
putation for sensory-based robotics. IEEE Transactions on Robotics and Automation,
5(3):280–293.

93

[Mahadevan and Connell, 1991] Mahadevan, S. and Connell, J. (1991). Automatic pro-
gramming of behavior-based robots using reinforcement learning. In National Conference
on Artificial Intelligence, pages 768–773.

[Newell and Simon, 1963] Newell, A. and Simon, H. A. (1963). Gps, a program that sim-
ulates human thought. In Feigenbaum, E. A. and Feldman, J., editors, Computers and
Thought. New York: McGraw-Hill.

[Oztop et al., 2004] Oztop, E., Bradley, N. S., and Arbib, M. A. (2004). Infant grasp
learning: a computational model. Experimental Brain Research, 158(4):480–503.

[Parker et al., 2004] Parker, L. E., Kannan, B., Tang, F., and Bailey, M. (2004). Tightly-
coupled navigation assistance in heterogeneous multi-robot teams. In Proceedings of
IEEE International Conference on Intelligent Robots and Systems (IROS), Sendai,
Japan.

[Parker and Tang, 2006] Parker, L. E. and Tang, F. (2006). Building multi-robot coalitions
through automated task solution synthesis. Proceedings of the IEEE, special issue on
Multi-Robot Systems, 94(7):1289–1305.

[Piaget, 1952] Piaget, J. (1952). The psychology of intelligence. London: Routledge and
Kegan Paul LTD.

[Piaget, 1963] Piaget, J. (1963). The origins of intelligence in children. New York: The
Norton Library, W. W. Norton and Company Inc.

[Piaget, 1981] Piaget, J. (1981). Intelligence and affectivity: their relationship during child
development. Annual Reviews Inc., Palo Alto, California, USA.

[Platt et al., 2005] Platt, R., Fagg, A., and Grupen, R. (2005). Reusing schematic grasping
policies. In Proceedings of IEEE-RAS International Conference on Humanoid Robots,
Tsukuba, Japan.

[Platt et al., 2006] Platt, R., Grupen, R., and Fagg, A. (2006). Improving grasp skills using
schema structured learning. In Proceedings of International Conference on Development
and Learning, Bloomington, Indiana.

[Robins and McCallum, 1999] Robins, A. and McCallum, A. (1999). The consolidation of
learning during sleep: comparing the pseudorehearsal and unlearning accounts. Neural
Networks, 12(7-8):1191–1206.

[Saffiotti and Broxvall, 2005] Saffiotti, A. and Broxvall, M. (2005). Peis ecologies: Ambient
intelligence meets autonomous robotics. In Proc. of the sOc-EUSAI conference on Smart
Objects and Ambient Intelligence, Grenoble, France.

[Saffiotti et al., 2008] Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R.,
Rashid, J., Seo, B., and Cho, Y. (2008). The peis-ecology project: vision and results.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nice,
France.

94

[Schlechter and Henrich, 2006] Schlechter, A. and Henrich, D. (2006). Discontinuity de-
tection for force-based manipulation. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), pages 1378–1783.

[Shan and Tan, 2006] Shan, X. and Tan, J. (2006). Multi-robot coordination for elusive
target interception aided by sensor networks. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5540–5545.

[Shehory and Kraus, 1999] Shehory, O. and Kraus, S. (1999). Feasible formation of coali-
tions among autonomous agents in non-super-additive environments. Computational
Intelligence, 15(3).

[Sheng et al., 2006] Sheng, W., Yang, Q., Tan, J., and Xi, N. (2006). Distributed multi-
robot coordination in area exploration. Robotics and Autonomous Systems, 54(12):945–
955.

[Simonin et al., 2005] Simonin, E., Diard, J., and Bessiere, P. (2005). Learning bayesian
models of sensorimotor interaction: from random exploration toward the discovery of
new behaviors. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1226–1231.

[Şimşek and Barto, 2006] Şimşek, Ö. and Barto, A. G. (2006). An intrinsic reward mech-
anism for efficient exploration. In Proceedings of the Twenty-Third International Con-
ference on Machine Learning.

[Stroupe et al., 2005] Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., and Robin-
son, M. (2005). Behavior-based multi-robot collaboration for autonomous construction
tasks. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 1495-1500.

[Tang, 2006] Tang, F. (2006). ASyMTRe: Building coalitions for heterogeneous multi-robot
teams. PhD thesis, The Department of Computer Science, The University of Tennessee.

[Tang and Parker, 2005a] Tang, F. and Parker, L. E. (2005a). ASyMTRe: automated
synthesis of multi-robot task solutions through software reconfiguration. In Proceedings
of IEEE International Conference on Robotics and Automation(ICRA).

[Tang and Parker, 2005b] Tang, F. and Parker, L. E. (2005b). Coalescing multi-robot
teams through ASyMTRe: A formal analysis. In Proceedings of IEEE International
Conference on Advanced Robotics (ICAR).

[Tang and Parker, 2005c] Tang, F. and Parker, L. E. (2005c). Distributed multi-robot
coalitions through ASyMTRe-D. In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[Tang and Parker, 2006] Tang, F. and Parker, L. E. (2006). Layering coalition formation
with task allocation. In Proceedings of the AAAI Workshop: Auction Mechanisms for
Robot Coordination.

95

[Tang and Parker, 2008] Tang, Y. and Parker, L. E. (2008). Towards schema-based, con-
structivist robot learning: Validating an evolutionary search algorithm for schema chunk-
ing. In Proceedings of the IEEE Conference on Robotics and Automation.

[Taylor and Taylor, 2000] Taylor, N. R. and Taylor, J. G. (2000). Is there more to TSSG
than associative chaining (chunking and all that)? In Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks (IJCNN’00), pages 217–222.

[Tedrake et al., 2005] Tedrake, R., Zhang, T. W., and Seung, H. S. (2005). Learning to
walk in 20 minutes. In Proceedings of the Fourteenth Yale Workshop on Adaptive and
Learning Systems, Yale University, New Haven, CT.

[Wang and de Silva, 2006] Wang, Y. and de Silva, C. (2006). Cooperative transportation
by multiple robots with machine learning. In Proc. of the IEEE Congress on Evolutionary
Computation (CEC), pages 3050–3056.

[Wang and de Silva, 2008] Wang, Y. and de Silva, C. W. (2008). A machine-learning ap-
proach to multi-robot coordination. Engineering Applications of Artificial Intelligence,
21(3):470–484.

[Werbos, 1997] Werbos, P. J. (1997). A hybrid hierarchical neural-AI model of mammal-
like intelligence. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, ’Computational Cybernetics and Simulation’, pages 1442–1444, Or-
lando, FL, USA.

96

Vita

Yifan Tang joined the Department of Computer Science at the University of Tennessee-
Knoxville (UTK) as Graduate Student in August 2002. She received the M.S. degree in
computer science from UTK. She has also received a Diploma Kauffrau (equivalent to
MBA) from the Tuebingen University in Germany and an M.S. degree in computer science
from Minnesota State University, Mankato.

She has been working with Dr. Parker since she joined the Distributed Intelligent Lab-
oratory at UTK in 2003. She worked on the Software for Distributed Robotics project
funded by DARPA from 2003 to 2005. Her dissertation research is to develop a contin-
uous robot learning architecture inspired by human constructivist learning. Her research
interests include machine learning, data mining, and educational robotics. She is a student
member of IEEE and ACM.

97

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2008

	SB-CoRLA: Schema-Based Constructivist Robot Learning Architecture
	Yifan Tang
	Recommended Citation

	Untitled

