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Abstract

A new class of accelerating structures employing a uniformly twisted waveguide is investigated.
Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown
that such a twisted waveguide can support waves that travel at a speed slower than the speed
of light c. The slow-wave properties of twisted structures are of interest because these slow-wave
electromagnetic fields can be used in applications such as electron traveling wave tubes and linear
particle accelerators.

Since there is no exact closed form solution for the electromagnetic fields within a twisted
waveguide or cavity, several previously proposed approximate methods are examined, and more
efficient approaches are developed. It is found that the existing perturbation theory methods
yield adequate results for slowly twisted structures; however, our efforts here are geared toward
analyzing rapidly twisted structures using modified finite difference methods specially suited for
twisted structures.

Although the method can handle general twisted structures, three particular cross sections are
selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is
analyzed as a reference case. This is because its shape is simple and perturbation theory already
gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched
circular cross section is investigated, since its longitudinal cross section is comparable to the well
known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a
“dumbbell” shaped cross section is analyzed because of its similarity to the well-known TESLA-type
accelerating cavity, which is of great importance because of its wide acceptance as a superconducting
cavity.

To validate the results of the developed theory and our extensive simulations, the newly devel-
oped numerical models are compared to commercial codes. Also, several prototypes are developed
employing the three basic shapes discussed previously. Bench measurements are performed on
the prototype cavities to evaluate dispersion by measuring the field distribution along these cavi-
ties. The measurement results are compared to the simulations and theoretical results, and good
agreement is shown. Once validated, the developed models are used to design twisted accelerating
structures with specific phase velocities and good accelerating performance.

iv



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Description of Twisted Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Twisted Geometry 8

2.1 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Construction of a Helical Volume . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Coordinate System Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Helical Analogs to Non-Twisted Structures . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Electromagnetic Modes in Twisted Structures . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Field Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Analysis Methods 18

3.1 Straight Waveguide Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Analytic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Perturbation Theory (Rectangular Guide) . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Helical Groove Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 3D numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Boundary Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Time Stepping and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 2D numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 2D NFDTD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 2D NFDFD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Extension to Arbitrary Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



4 Result Validation 44

4.1 Existing Electromagnetics Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Experimental Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 The Twisted Cavity as an Accelerating Structure 52

5.1 Quantities of Interest for Accelerating Cavities . . . . . . . . . . . . . . . . . . . . . 53
5.2 Advantages of Twisted Accelerating Structures . . . . . . . . . . . . . . . . . . . . . 54
5.3 Twisted Disk-Loaded Accelerating Structure . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 The Disk-loaded Accelerating Structure: an Optimization Case Study . . . . . . . . 62
5.5 Twisted Elliptical (TESLA-type) Accelerating Structure . . . . . . . . . . . . . . . . 66

6 Experimental Investigation 76

6.1 Twisted Rectangular Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Twisted Disk-Loaded Analog Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Twisted TESLA-type Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion 94

Bibliography 96

Appendices 101

A Selected Relevant Publications 102

B Analysis of Rapidly Twisted Hollow Waveguides: Submitted to MTT Transac-

tions 103

C Applications of Twisted Hollow Waveguides as Accelerating Structures 114

Vita 124

vi



List of Tables

1.1 Comparison of accelerating performance of several structures . . . . . . . . . . . . . 3

4.1 Results for 3D NFDTD simulation of twisted waveguide . . . . . . . . . . . . . . . . 46

5.1 Parameters for the SLAC accelerating cavities . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Comparison of disk loaded accelerating structures . . . . . . . . . . . . . . . . . . . . 60
5.3 Parameters for the SNS medium beta (beam beta = 0.61) accelerating cavity . . . . 72
5.4 Comparison of TESLA-type accelerating structures . . . . . . . . . . . . . . . . . . . 74

6.1 Experimentally measured first four TE modes for the twisted rectangular prototype
compared to 3D simulation method results. . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Short and long prototype resonant frequencies compared to 2D simulation method
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Parameters for twisted analog to disk-loaded accelerating cavity . . . . . . . . . . . . 84

vii



List of Figures

1.1 Superconducting elliptical (TESLA) accelerating cavity. (from [1].) . . . . . . . . . . 2
1.2 A simple twisted rectangular geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Twisted rectangular waveguide: longitudinal cross section . . . . . . . . . . . . . . . 5

2.1 End view of a twisted rectangular waveguide structure. Note that the cross section
at each plane is a (rotated) rectangle. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 An arbitrary straight waveguide and its transverse helical analog . . . . . . . . . . . 13
2.3 A conventional disk-loaded slow-wave structure . . . . . . . . . . . . . . . . . . . . . 13
2.4 A longitudinal helical analog to the disk-loaded slow-wave structure. (a) shows the

transverse cross section, while (b) shows a cutaway view of the 3D twisted structure. 14

3.1 Example of a staircase mesh approximating a circular domain. . . . . . . . . . . . . 20
3.2 Typical dispersion curve of a twisted rectangular waveguide (solid line), compared

to that of its transverse straight analog (dashed line), and the TEM limit (dotted
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Helical groove waveguide geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Longitudinal cross section of the general helical groove waveguide problem . . . . . . 27
3.5 Cross sections for varying number of grooves . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Dispersion curves for double helical groove waveguide. . . . . . . . . . . . . . . . . . 30
3.7 log plot of magnitude of Ey at sample point using NFDTD simulation showing late-

time instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Stability domain for Jameson method time integrator . . . . . . . . . . . . . . . . . 37
3.9 “Collapsed” Yee grid used in the second order 2DNFDTD method. . . . . . . . . . . 39
3.10 Cascaded coordinate transformation used to analyze arbitrary twisted structures. . . 41
3.11 Keyhole cross section and corresponding mesh. . . . . . . . . . . . . . . . . . . . . . 43

4.1 Dispersion relationship for 8.16 cm by 3.63 cm rectangular waveguide with twist rate
of 30 R

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Simulated Ey multiplied by raised cosine window function, and corresponding spec-

trum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



4.3 Cutoff frequencies predicted for 8.16 cm by 3.63 cm rectangular waveguide. . . . . . 49
4.4 Cutoff frequencies predicted for a single helical groove waveguide with varying twist

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Construction of the outline for a TESLA-type accelerating cavity . . . . . . . . . . . 53
5.2 CST Simulation: Electric field in the SLAC Accelerating structure . . . . . . . . . . 57
5.3 CST Simulation: Electric field in the longitudinal helical analog to the SLAC Accel-

erating structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 CST Simulation of Twisted SLAC-type cavity: Electric field with increased outer

radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Magnitude of Ez for on-axis and off-axis particles: CST simulation . . . . . . . . . . 61
5.6 Predicted dispersion curves of the disk loaded twisted equivalent using the 2D fre-

quency domain method for varying twist rates. . . . . . . . . . . . . . . . . . . . . . 65
5.7 Simulated effect of changing the inner radius on R

Q . . . . . . . . . . . . . . . . . . . . 67
5.8 Simulated frequency as a function of twist rate. (Phase velocity held equal to c.) . . 68
5.9 Simulated effect of changing m on R

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.10 Twisted cross section for longitudinal helical analog to TESLA structure. . . . . . . 70
5.11 Longitudinal cross section of twisted TESLA-type cavity. . . . . . . . . . . . . . . . 71
5.12 CST simulation of an SNS superconducting three-cell half-cavity. . . . . . . . . . . . 73
5.13 Electric field along a cross section of a helical TESLA-type cavity. . . . . . . . . . . 75

6.1 Bead and test setup for bead pull measurements. . . . . . . . . . . . . . . . . . . . . 77
6.2 Twisted rectangular waveguide prototype. . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 |S21| for the twisted rectangular prototype showing resonances. . . . . . . . . . . . . 81
6.4 Dispersion curves showing measured and predicted resonant frequencies for twisted

rectangular cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 Bead pull measurement of the large twisted rectangular prototype for third mode.

Measurements for other modes were similar, except with different number of cycles. . 83
6.6 Large twisted disk-loaded waveguide prototype. . . . . . . . . . . . . . . . . . . . . . 85
6.7 Measured transmission spectrum of twisted analog of the disk-loaded cavity, showing

resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.8 Measured field in the twisted analog of the disk-loaded cavity. . . . . . . . . . . . . . 87
6.9 Predicted and measured dispersion curves for two modes of a twisted analog to a

disk-loaded cavity. The mode with higher frequency is the TM accelerating mode.
The x’s are experimental points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.10 Large twisted TESLA-type waveguide prototype. . . . . . . . . . . . . . . . . . . . . 90
6.11 Measured transmission spectrum of twisted analog of the elliptical cavity, showing

resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



6.12 Measured field in the twisted analog of the elliptical cavity. . . . . . . . . . . . . . . 93
6.13 Predicted and measured dispersion curves for the accelerating mode of an elliptical

twisted guide. The x’s are experimental points. . . . . . . . . . . . . . . . . . . . . . 93

x



Chapter 1

Introduction

1.1 Background

It is a well known fact that straight hollow waveguides with a uniform cross section will only
support electromagnetic waves whose phase velocity is greater than the speed of light. At the same
time, many useful microwave devices depend on the interaction of charged particles with a certain
electromagnetic mode. Such interaction can only happen effectively when the particles and the
wave travel at almost the same speed. This is one reason why there has been interest in slow-wave
electromagnetic structures, which support waves traveling at speeds slower than c.

A simple method for slowing the wave using a TM mode in a waveguide partially loaded with
dielectric material has been thoroughly investigated [2–4]. Yet, the addition of dielectric material to
the waveguide presents several challenges. It makes achieving a good vacuum much harder because
of possible outgassing from the material. Also, dielectrics can be problematic if superconducting
cavities are needed, since any dielectric has higher loss that can spoil the extremely high cavity Q.
Therefore, slow wave structures with no dielectric loading are needed for superconducting cavities.

A conventional method for slowing the wave that is more well-suited for superconducting accel-
erators is to use a corrugated structure with nonuniform cross section. This is the idea behind many
modern accelerating cavities, including the well-known disk-loaded accelerating cavity [5] and the
elliptical, or TESLA type accelerating cavity [6]. (This accelerating structure is shown in Figure
1.1.) In these structures, the cross section gets wider and smaller along the axis of propagation,
adding reactive loading and effectively slowing the wave. Although typical accelerators are operated
in a standing wave mode, either standing wave or traveling wave modes can be of interest in these
slow wave structures. Such a corrugated structure has often been treated as a chain of coupled L-C
tank resonators, which provides a useful single-mode approximation if a full EM simulation (FE or
FDTD) is not used (see [7], for example).

Although structures with nonuniform cross section are very useful for accelerators and traveling

1



Figure 1.1: Superconducting elliptical (TESLA) accelerating cavity. (from [1].)
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wave tubes, they also have some drawbacks. First, the manufacturing process often involves very
difficult machining and welding to create the smooth finish necessary. This makes the cost of such
cavities and waveguides a serious problem. Secondly, the electromagnetic wave will not propagate
“smoothly” down the corrugated structures as it would with a straight waveguide (i.e. an e−jβz

dependence cannot be assumed for the fields). Instead, the intensity of the wave would vary along
the length of the guide, which adds complexity to the beam-wave interaction problem.

In this dissertation, I consider whether a uniform waveguide that is twisted along its axis could
be used to address these difficulties. It has long been known that a twisted structure can be a slow
wave structure, and a preliminary investigation into the feasibility of twisted guides as accelerating
structures was undertaken by Kang [8]. Such a guide could be used without the problem of dielectric
loading, and may also be easier to manufacture because of its uniform cross section.

Higher order mode (HOM) resonance is also an important and often problematic attribute
of RF cavity structures, especially when they are used with charged particles. Any cavity or
waveguide through which charged particles travel will support many higher order mode resonances
in addition to the accelerating mode. Because higher order modes can interact with particles to
cause instabilities in the beam, HOM dampers are often used to remove those HOMs that are
dangerous to the particles. However, the HOMs may not always couple out successfully, since the
boundary conditions that satisfy the resonance of the fundamental accelerating mode may not work
favorably to the removal of certain HOMs. In other words, although HOM dampers are used to
remove the HOMs, the coupling of many HOMs to the dampers can not be completely assured; some
trapped modes may still exist inside the structure [9]. It is believed that the uniform cross section
of a twisted waveguide may enable the HOMs to be coupled to the outside more easily, giving a
better chance of HOM damping. Trapped HOM characteristics of twisted guides are investigated
in this research.

Table 1.1 gives a comparison between several types of structures in terms of their performance
as accelerating cavities. It is clear that finding a cavity that can meet all of the design criteria is
a difficult task. We will investigate the twisted guide in detail to determine its performance with
respect to these metrics.

Table 1.1: Comparison of accelerating performance of several structures

Supports Vacuum/ Manufacturability
slow waves Superconducting

performance
Straight Guide no good simple

Dielectric loaded guide yes poor moderate
Reactively loaded cavity yes good difficult

Twisted guide yes good potentially simple

3



The modes supported by the twisted waveguides are obviously not simple TE or TM modes
if a conventional orthogonal coordinates system is referenced. Determining the electromagnetic
modal fields that are supported in the cavity/waveguide structure is important, since both the
desired operating mode and other harmful modes can exist. The TM-like modes may be used
for acceleration of charged particles. Other TE-like modes or hybrid modes need to be assessed
to completely characterize the properties of the structure to be used with charged particles. The
pass-band characteristics of the slow wave twisted waveguide structure also need to be investigated.
These pass-band characteristics are important in the conventional corrugated or reactively loaded
structures when selecting the operating mode and predicting the performance of the cavity struc-
tures. Pass-band characteristics also determine the matching of the phase velocity of the wave to
the velocity of the particle. These properties of twisted waveguides are investigated in this research.

In this research, the design of twisted waveguides and cavities is focused on from the point of
view of microwave engineering. The dynamics of the beam-wave interaction is not investigated,
but rather left as an area of future research and investigation. In other words, the detailed effects
of the beam on the cavity fields are not considered, and the exact influence of the cavity fields on
particle dynamics is not considered.

1.2 Description of Twisted Structure

As previously mentioned, we are considering a twisted waveguide formed by extruding a certain
cross section along a straight line while twisting. A simple example of a twisted rectangular guide
is shown in Figure 1.2. A transverse cross section at any point on the axis of the guide will be a
perfect rectangle. However, a longitudinal cross section will yield a much different shape, shown in
Figure 1.3. This type of waveguide or cavity offers the possibility of much simpler manufacturing,
as it could be formed through an extrusion or molding process without the need for multiple pieces
joined together by difficult and expensive welds.

An analysis of twisted rectangular waveguides has been previously carried out by Lewin [10]
and by Yabe and Mushiake [11, 12], who showed that such a twisted rectangular waveguide can
support both slow and fast wave modes. In each of [10–12], perturbation theory is used to analyze
the propagation characteristics of the dominant quasi-TE mode in the waveguide. It is well-known
that in general, the more rapid the twist rate, the slower the phase velocity of the wave.

Obviously, the rectangular cross section is only one possible design based on a commonly used
hollow waveguide. Any non-circular cross section will generate a nontrivial shape when twisted
along the axis of propagation, which has the potential to produce slow-wave effects. However, this
research will concentrate more on a few simple representative cross sectional shapes in order to give
some examples of how the general methods proposed here can be applied.

4



Figure 1.2: A simple twisted rectangular geometry

Figure 1.3: Twisted rectangular waveguide: longitudinal cross section
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1.3 Contributions

In this dissertation, an overview of the twisted geometry and the modeling challenges associated
with it is given. Then, it is shown how the finite difference method was chosen as the best way
to analyze twisted guides. The specifics of the numerical implementation are discussed in detail.
The developed methods are validated using commercial code, previously investigated special cases,
and by experiment. Finally, these new methods are used to develop design guidelines for practical
twisted accelerating structures.

Specifically, the contributions of the present research include the following:

i. Investigations on the accuracy limits of the existing perturbation theory and mode
matching approaches.

ii. Investigation of similarities and differences between twisted waveguides and cavities,
and conventional corrugated cell-type accelerating cavities.

iii. Development of a 3D fully nonorthogonal finite difference numerical scheme for the
twisted rectangular waveguide, which could be generalized to non-rectangular geome-
tries.

iv. Development of a 2D fully nonorthogonal finite difference time domain scheme or
schemes for the twisted rectangular waveguide, which could be generalized to non-
rectangular geometries.

v. Development of a 2D fully nonorthogonal finite difference frequency domain scheme
or schemes for the twisted rectangular waveguide, which could be generalized to non-
rectangular geometries.

vi. Experimental investigation of a few types of twisted geometries, including measurement
of dispersion curves and internal electromagnetic fields.

vii. Investigation of end effects on twisted cavities of finite length.

viii. Development of design guidelines for accelerator cavities. Specifically, determining how
to construct a helical slow wave structure that will produce a certain lowering of the
phase velocity. A few other design factors for accelerating cavities will be considered in
this research.

This research represents the first time an in-depth design method has been presented for a
twisted accelerating structure, which is shown to have great promise. The design study was made
possible by the novel approach of applying a 2D mesh to solve twisted structures, which signif-
icantly reduces computational effort compared to standard 3D methods. Also, the method of

6



handling boundary conditions to ensure late-time stability without sacrificing accuracy is new to
this approach.
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Chapter 2

Twisted Geometry

In this chapter, the theoretical foundation for the analysis of twisted structures is developed, and
notation is introduced. The mathematics of differential geometry used in this section are well-
known. However, the rules of differential geometry allow the development of an exact straight
equivalent to any twisted structure through the use of anisotropic materials, which is new. The
details of this equivalent and its consequences are discussed.

2.1 Mathematical Description

2.1.1 Construction of a Helical Volume

Let us assume that we have a 2D cross section defined by some implicit function of x and y, i.e.
f(x, y) < L for some constant L. An arbitrary straight cavity can be constructed by specifying a
volume

f(x, y) < L (2.1)

zmin < z < zmax.

An arbitrary straight waveguide can be obtained by letting zmin → −∞ and zmax → +∞. In either
case, it is assumed that the boundaries of the structure are perfectly conducting walls.

Now, we introduce the twisted (or helicoidal) coordinate transform employed by Lewin [10].
This is given by

x′ = x cos pz + y sin pz (2.2)

y′ = y cos pz − x sin pz

z′ = z.

8



Here, p is some constant twist rate. A twisted cavity can now be defined simply by

f(x′, y′) < L (2.3)

zmin < z′ < zmax.

A twisted waveguide can be defined by sending the z limits to infinity. It should be noted that
the transverse cross section of such a helical waveguide or cavity (i.e. cut across a z = constant

boundary) will always yield the same shape, although rotated about the line x = 0, y = 0. In this
sense, the structure has a uniform cross section, only rotated along the axis. An end view of a
twisted structure would reveal a circular inner hole. Figure 2.1 shows an end view of a twisted
rectangular waveguide with the cross section shown at several different planes down the length of
the guide.

2.1.2 Coordinate System Details

As discussed in [11, 12], the coordinate transformation of Equation 2.2 is not orthogonal. Its
analysis will require the covariant and contravariant basis vectors to be defined. In keeping with
the conventional notation of differential geometry, we will sometimes refer to the coordinate x′ as
x1, y′ as x2, and z′ as x3. The corresponding covariant basis vectors will be denoted by e1, e2, and
e3, and can be defined at any point in space using

e1 =
∂r
∂x1

(2.4)

e2 =
∂r
∂x2

e3 =
∂r
∂x3

.

Here, r is an arbitrary vector. These basis vectors can be computed easily if the coordinate
transform is defined. For example,

∂r
∂x1

=
∂r
∂x

∂x

∂x1
+
∂r
∂y

∂y

∂x1
+
∂r
∂z

∂z

∂x1
(2.5)

= x̂
∂x

∂x1
+ ŷ

∂y

∂x1
+ ẑ

∂z

∂x1
.

x̂, ŷ, and ẑ are the ordinary Cartesian basis vectors. The other basis vectors can be computed in
a similar fashion. The dot products between the basis vectors can now be computed as well. Since
the coordinate system of interest is nonorthogonal, there should be no expectation that ei ·ej = δij .
Instead, the covariant metric tensor must be defined

gij = ei · ej (2.6)

9



Figure 2.1: End view of a twisted rectangular waveguide structure. Note that the cross section at
each plane is a (rotated) rectangle.
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The matrix [gij ] will be symmetric, not just for the twisted coordinate system, but for any other
curvilinear coordinate system. In the case of orthogonal coordinates, [gij ] should also be diagonal.
For the twisted coordinate system of Equation 2.2, it can be shown from basic differential geometry
that

[gij ] =




1 0 −py′
0 1 px′

−py′ px′ p2(x′2 + y′2) + 1


 . (2.7)

Note that as p tends to 0, [gij ] becomes the identity matrix, which is expected since in this case,
the original Cartesian coordinate system is recovered.

In addition to the covariant basis vectors defined above, our analysis must also make use of
contravariant basis vectors. These can be defined using

e1 = ∇x1 (2.8)

e2 = ∇x2

e3 = ∇x3.

Following the usual convention, superscripts are used to refer to contravariant quantities, whereas
subscripts are used to refer to covariant quantities. These contravariant vectors are perpendicular to
surfaces of constant x1, x2, and x3. The dot products of these vectors are given by the contravariant
tensor metric.

gij = ei · ej (2.9)

By differential geometry, we have the relations

[gij ]
[
gij
]

= I (2.10)

ei · ej = δij . (2.11)

For more details, refer to any classic text on differential geometry, such as [13].
It is possible to represent any vector as a linear combination of either covariant or contravariant

basis vectors, and in the analysis to follow, it will be necessary to use both representations. For
example, the electric field E can be expressed as

E = E1e1 + E2e2 + E3e3 (2.12)

E = E1e1 + E2e2 + E3e3

along covariant and contravariant basis vectors, respectively. It is also possible to convert between
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covariant and contravariant vector representations, as the components transform as

Ei = gijE
j , Ei = gijEj . (2.13)

Here, the Einstein summation convention is used, meaning that a sum over the index j is assumed.
(This summing convention will be assumed throughout this text, unless otherwise stated.) Ob-
viously, converting covariant components to contravariant components can be done in the same
manner, using the elements of

[
gij
]

instead.

2.2 Helical Analogs to Non-Twisted Structures

Using the transformation of Equation 2.2, it is possible to define a twisted structure which is
analogous to a straight structure in that an arbitrary cross section in the transverse plane will yield
the same shape. Figure 2.2 shows an arbitrary straight waveguide, and its corresponding twisted
analog after applying the coordinate transformation. These analogs are important in defining the
electromagnetic properties of a structure, since we expect that in the limit as p→ 0, we will recover
the same fields as those in the straight waveguide or cavity. We will refer to these structures as
transverse helical analogs. Comparisons between a given straight waveguide and its transverse
helical analog are performed in this research.

There is also another important analog between twisted and non-twisted structures that is useful
for comparing a rotationally symmetric slow wave structure to a twisted structure. Consider, for
example, a disk-loaded slow-wave waveguide. A longitudinal cutaway view of such a structure is
shown in Figure 2.3. If we define a “keyhole” transverse cross section as shown in Figure 2.4a, we
can use this 2D cross section to generate a twisted geometry as discussed above. Upon examining
the longitudinal cross section of this geometry in Figure 2.4b, it can be seen to be identical to the
disk-loaded structure. Therefore, these structures will be referred to as longitudinal helical analogs.

As may be inferred intuitively, it can also be shown mathematically that the total volume of a
straight cavity is the same as the volume of its transverse helical analog; similarly, the total volume
of a rotationally symmetric cavity is the same as the volume of its longitudinal helical analog. The
fact that the volume is automatically the same between a helical structure and its analog further
facilitates a meaningful comparison.

A longitudinal helical analog can be constructed in the following fashion. Assume we have a
rotationally symmetric structure defined by

ρ < g(z), (2.14)

where g is some periodic function with periodicity ∆z. We define a 2D transverse cross section in

12



Figure 2.2: An arbitrary straight waveguide and its transverse helical analog

Figure 2.3: A conventional disk-loaded slow-wave structure
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Figure 2.4: A longitudinal helical analog to the disk-loaded slow-wave structure. (a) shows the
transverse cross section, while (b) shows a cutaway view of the 3D twisted structure.
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polar coordinates (ρ, φ).

ρ(x, y) < g

(
φ(x, y)∆z

π

)
(2.15)

and set the twist rate
p =

π

∆z
. (2.16)

The transformation of Equation 2.2 is then used to generate the analog. The longitudinal heli-
cal analog also allows some interesting comparisons to be made between twisted and rotationally
symmetric non-twisted structures, as both can be used as slow wave structures.

The longitudinal helical analog defined above is not unique. It is easily observed that any two
dimensional profile defined by

ρ(x, y) < g

(
mφ(x, y)∆z

2π

)
(2.17)

and twist rate
p =

2π
m∆z

(2.18)

has an identical longitudinal cross section to the original rotationally symmetric structure for any
even integer m. Although the longitudinal cross section of the generated structure will be the same
for any even integer m, the slow wave performance may be quite different with different m values,
which will be shown later on.

2.3 Electromagnetic Modes in Twisted Structures

2.3.1 Boundary Conditions

If we again use the twisted Cartesian coordinate system of Equation 2.2, the boundary conditions
assuming perfectly conducting walls can be expressed simply. For the electric field, we have Et = 0,
indicating that only a normal component of the electric field is allowed. Assume, for example, that
an x1 = x′ = constant boundary is under consideration. Since the basis vector e1 is normal to this
surface already, the contravariant basis vector representation is the natural choice, immediately
yielding

E = E1e1 (2.19)

E2 = E3 = 0.

By permuting the indices, the boundary conditions for the y′ = constant and z′ = constant surfaces
can be obtained in a similar fashion.

For the magnetic field, the perfectly conducting boundary condition requires that the normal
component of H be zero. This indicates that the field must lie entirely along the basis vectors that
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are tangential to the surface. If an x′ boundary is considered, the covariant basis vectors e2 and
e3 are tangential to the boundary surface. This gives

H = H2e2 +H3e3 (2.20)

H1 = 0.

2.3.2 Field Representation

Because the twisted waveguides under consideration are periodic in z, Floquet’s theorem predicts
that the fields will also have the same periodicity, except for a multiplicative phase factor. In this
case, the period of the twisted waveguide will be 2π/p. However, for the case of a uniformly twisted
waveguide, it turns out that an even stronger statement can be made.

Assume the fields at some z = z0 are known. Moving a distance dz along the axis of the twisted
structure, the structure is exactly the same except for some rotation of angle p dz. Therefore, as
shown in [14] for structures having “screw symmetry”, the fields should be the same except for
a phase factor φdz. This relation holds true for any dz, not just dz = 2π/p. In particular, we
can send dz to zero and discover that for an infinite twisted waveguide, the variation of the fields
along the axis of propagation involves only simple phase variation. In other words, except for the
constant rotation of the fields, the z dependence can be factored out as e−jβz for some β. In terms
of the twisted coordinates,

E(x′, y′, z′) = E0(x′, y′)e−jβz
′

(2.21)

In Equation 2.21, it was possible to replace e−jβz with e−jβz
′
, since z and z′ are numerically

equal. Similar relations hold for H. Thus, if a twisted coordinate system is used, the fields can
be represented in much the same fashion as for an infinite straight waveguide. Another (more
mathematical) way of showing this equivalence between straight and twisted fields in waveguides
will be shown in Section 3.1. Obviously, these relations will not hold precisely if the structure
is not infinite in extent. If a finite waveguide or cavity is considered, end effects must be taken
into account, but the infinite approximation is often good enough to be very useful. Also, if a
twisted cavity is considered instead of a waveguide, sin and cos functions should be used for the z′

dependence rather than exponentials.
In addition to simplifying the analysis greatly, this property of the uniformity of the fields along

the axis of propagation also provides practical advantages for several types of slow-wave structures.
Whereas in a conventional slow-wave structure (like a corrugated or iris-loaded waveguide) the
magnitude of the fields varies along the axis, there is no magnitude variation in an infinite twisted
structure – only a phase variation. These advantages will be explored in greater detail later.
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2.4 Summary

The geometry of twisted structures has been investigated. It is found that by using a coordinate
transform, the boundary conditions can be expressed in a very simple fashion. Moreover, the
coordinate transform offers a simple way to represent the fields in a twisted structure, allowing
the longitudinal dependence of the fields to be factored out. This separation of the longitudinal
coordinate will be key to the development of numerical methods to solve twisted structures.

The concept of helical analogs to nontwisted structures has been introduced. The two major
analogs that we considered are transverse helical analogs and longitudinal helical analogs. For
a transverse helical analog, the cross section in any transverse plane will be a twisted version
of the corresponding cross section of the straight reference structure. For a longitudinal helical
analog, the cross section in any longitudinal plane will be identical to the rotationally symmetric
reference structure. These analogs are tools that will give us some intuition when comparing twisted
waveguides and cavities to other, more well-known structures.
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Chapter 3

Analysis Methods

Both analytic and numerical methods exist for the solution of twisted waveguides and cavities.
Several analytic methods already exist based on the perturbation theory of [10–12] or field matching
in a periodic structure [15–17]. Such methods yield closed form solutions for a limited class of
these twisted structures, and can give some physical insight into the propagation characteristics of
twisted structures. However, since these methods can only be used to solve a relatively small class
of problems, numerical methods will also be investigated.

The numerical methods for investigating twisted waveguides and cavities can be divided into
two main groups: 2D methods and 3D methods. 2D methods make use of assumed longitudinal
dependence of the fields, and thus will yield good results for very long waveguides or cavities. In
2D analysis, end effects cannot be taken into account. On the other hand, 3D methods allow the
calculation of the fields everywhere in the three dimensional domain including all end effects, at
the expense of many more calculation points.

In this section, existing analytic and numerical methods will be investigated. The shortcomings
of existing methods are presented, and new techniques are developed that address the limitations
of these existing methods.

3.1 Straight Waveguide Equivalent

It has been recently pointed out by Shyroki [18] that there exists an exact equivalent for twisted and
bent waveguide structures, based on the coordinate transformation properties discussed by Nicolet,
Zolla, Agha, and Guenneau [19,20]. The essence of this transformation is to replace the twisted (or
bent) waveguide with a straight waveguide whose transverse cross section is identical to the twisted
one, but whose volume is filled with a nonuniform anisotropic material. This alone does not make
the problem any easier, but for uniformly twisted structures it will be shown that the anisotropic
permeability and permittivity are not functions of the z coordinate (i.e. not z-dependent). This
allows much of the same machinery previously used to solve two-dimensional propagation problems
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to be brought to bear on twisted waveguide problems.
Shyroki’s recent research [18], which was done independently of this research, bears a number

of similarities to the proposed methods, yet there are several areas of difference as well. First, [18]
provides no experimental validation of the given theoretical results. Second, the application of two
or three dimensional finite-difference time domain methods to solve twisted waveguide problems is
not discussed, only frequency domain methods. Also, the handling of non-rectangular cross sections
is not explicitly considered.

As an example for the twisted rectangular waveguide of interest, the coordinate system of
Equation 2.2 is used and the boundary surfaces can be expressed as

x′ = 0, x′ = a (3.1)

y′ = 0, y′ = b

Obviously, other twisted cross sections can be analyzed by defining a different twisted coordinate
system or by using Equation 2.2 and a “staircase-type” mesh. An example of such a staircase
mesh is shown in Figure 3.1 for a circular shape. Any non-rectangular cross section in [18] must
be treated using a staircase-type mesh. However, such a mesh has been shown be less accurate
than a curvilinear mesh for a given mesh size [21]. Later on, we will discuss how the present
numerical scheme can be used to solve twisted guides of arbitrary cross sections without resorting
to a staircase-type mesh.

The problem now becomes one of computing the spatial derivatives used to find ∇ × E and
∇ ×H. It has been shown in [22] that the curl in nonorthogonal curvilinear coordinates can be
expressed in a very similar fashion to Cartesian coordinates:

∇×A = g−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

A1 A2 A3

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.2)

g is simply the determinant of the covariant metric tensor [gij ]. However, this formula gives the
contravariant components of the curl. Since the formula requires the input vector field A to be
expressed in covariant components, a conversion will be necessary at each time stage.

The simple form of Equation 3.2 suggests an interesting equivalent structure which may be used
to solve curved and twisted structures by transforming them to a straight structure. Maxwell’s
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Figure 3.1: Example of a staircase mesh approximating a circular domain.
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equations in empty space are first expressed along a contravariant basis:

(∇×E) · ei = −µ0
∂H i

∂t
(3.3)

(∇×H) · ei = ε0
∂Ei

∂t
.

Then, using Equation 3.2,

1√
g
∇c,i (E1, E2, E3) = −µ0

∂H i

∂t
(3.4)

1√
g
∇c,i (H1, H2, H3) = ε0

∂Ei

∂t

where ∇c,i returns the i component of the Cartesian curl operator operating on the following three
components. Thus, we have

1√
g
∇c,i (E1, E2, E3) = −µ0

∂Hjg
ij

∂t
(3.5)

= −µ0g
ij ∂Hj

∂t
1√
g
∇c,i (H1, H2, H3) = ε0

∂Ejg
ij

∂t
(3.6)

= ε0g
ij ∂Ej
∂t

.

If we substitute

µ̄ij = µ0g
ij√g (3.7)

ε̄ij = ε0g
ij√g,

the problem becomes one of solving Maxwell’s equations in ordinary Cartesian coordinates in a
nontwisted structure, but subject to an anisotropic permittivity and permeability. The x, y, and
z components of the solution fields correspond to the covariant components of the fields in the
original twisted structure. This transformation makes the problem more intuitive by connecting it
to another class of electromagnetic problems. Also, note that the spatial variation in the material
parameters depends only on the metric tensor. Since the metric tensor for the twisted coordinate
system is given by Equation 2.7, which only depends on the transformed x and y coordinates, the
material has no variation along the longitudinal direction, as mentioned earlier.

Assuming the fields can be solved in this manner, the results can be converted back into Carte-
sian coordinates as follows. In the transformed (straight waveguide) problem, we can express
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E = E1e1 + E2e2 + E3e3. (3.8)

Taking dot products of this equation with x̂, ŷ, and ẑ results in



Ex

Ey

Ez


 =




e1 · x̂ e2 · x̂ e3 · x̂
e1 · ŷ e2 · ŷ e3 · ŷ
e1 · ẑ e2 · ẑ e3 · ẑ






E1

E2

E3


 . (3.9)

By the definition of the contravariant basis vector

ei = ∇x′i, (3.10)

we can rewrite (3.9) as



Ex

Ey

Ez


 =




∂x′

∂x
∂y′

∂x
∂z′

∂x
∂x′

∂y
∂y′

∂y
∂z′

∂y
∂x′

∂z
∂y′

∂z
∂z′

∂z






E1

E2

E3


 =




cos(pz′) − sin(pz′) 0
sin(pz′) cos(pz′) 0
py′ −px′ 1






E1

E2

E3


 . (3.11)

3.2 Analytic methods

3.2.1 Perturbation Theory (Rectangular Guide)

Lewin originally developed a solution for electromagnetic fields in a slowly twisted rectangular
(and square) waveguide [10]. Because a slow twist rate was assumed, perturbation theory can be
used since the fields are close to the fields in a transverse straight analog (in this case a straight
rectangular waveguide). Only the dominant TE-like mode was investigated. Yabe and Mushiake
later refined Lewin’s original theory, correctly pointing out that the dominant TE-like mode in a
straight waveguide becomes a hybrid mode when the waveguide is twisted [11]. Depending on the
twist rate and the frequency, the wave can be either slow or fast. The formulas in [12] typically
give dispersion curves similar to that in Figure 3.2. The dispersion curve is compared to the curve
for a straight rectangular waveguide.

There are a few general observations that can be made from these dispersion curves. First, the
cutoff frequency of the dominant TE-like mode in a straight waveguide will be lower than that of
its transverse helical analog. Also, for low frequencies, the dominant TE-like mode of a twisted
waveguide travels faster than the analogous mode in a straight waveguide. However, at higher
frequencies, the dominant mode will be slower in the twisted structure and, at some point, the
curve crosses the TEM asymptote – indicating slow-wave operation. In general, the higher the
twist rate, the sooner the dispersion curve crosses the TEM limit and the lower the frequency at
which the waveguide becomes slow wave.
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Figure 3.2: Typical dispersion curve of a twisted rectangular waveguide (solid line), compared to
that of its transverse straight analog (dashed line), and the TEM limit (dotted line).
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However, the perturbation theory approach also has additional serious limitations. First, the
more rapid the twist rate, the less accurate the perturbation theory predictions found in [10]
and [11,12]. This is due to the fact that the perturbation parameter p becomes large for rapid twist
rates, so higher order corrections to the fields would have to be taken into account. Yet, the case of
rapid twist rate is of interest in slow-wave applications, and so this case is investigated here. The
precise range of twist rates over which perturbation theory is valid will be discussed in detail in
Chapter 4. In this dissertation, when we speak of “slow twist rates”, we refer to those cases where
perturbation theory is generally valid, meaning that the product of the twist rate and the largest
cross sectional dimension is less than 1.

Another limitation of Lewin’s theory is that it is only suited for analyzing the dominant TE-like
mode in an infinite rectangular twisted guide. Unfortunately, the dominant TE-like mode will have
little practical application in accelerator applications since Ez, the z component of the electric field,
will be very small. However, it should be noted that microwave undulators or deflecting cavities
may use TE-like modes to produce a transverse deflection of the charged particle beam (without
accelerating the particles). Finally, the perturbation theory approach cannot take end effects into
account in a twisted cavity of finite length. As a result, it is necessary to have a more general
theory of wave propagation in these twisted structures.

3.2.2 Helical Groove Waveguides

One type of rapidly twisted structure that has been examined analytically is the helical groove
slow-wave structure, shown in Figure 3.3. Investigated by Flouds and Mansell in [15], the structure
was of interest as a slow-wave structure for traveling wave tubes (TWT). The analysis was later
extended by Wang, Yu, and Wei to include ridges in the step [16]. The theory was also extended to
grooves of more arbitrary shape [17]. A single TE mode was assumed to exist in the groove region,
and the pitch angle of the helix was assumed to be small (which corresponds to a high value for the
twist rate p). In the center region, cylindrical solutions to the wave equation are assumed, and the
coefficients are solved by matching the electric and magnetic fields at the opening of the groove.
The result of this analysis is a theoretical prediction of the dispersion curves of the helical groove
waveguide.

Note that this helical groove structure is very similar but not identical to the longitudinal
helical analog to the disk-loaded waveguide structure shown in Figure 2.4. Since the disk-loaded
waveguide is frequently used in particle accelerator applications, an extension of the theory of [15]
is undertaken. We define the cross section using the method in Section 2.2. In this case, the
transverse cross section of the helical structure should be defined in polar coordinates (ρ, φ) as

ρ < g

(
Ngφlcell

2π

)
(3.12)
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Figure 3.3: Helical groove waveguide geometry
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where

g(z) =





ra, 0 < z <
∆z
Ng
− w

rb,
∆z
Ng
− w < z <

∆z
Ng

(3.13)

Here, ra is the disk radius, w is the groove width, rb is the cell radius, ∆z is the length of one
complete twist, and Ng is the number of distinct grooves. It is assumed that g(z) is periodic with

period
∆z
Ng

. This mathematically defines the “keyhole” cross section. The curve swept out in

the longitudinal cross section is shown in Figure 3.4, while Figure 3.5 shows the transverses and
longitudinal cross sections for 1 < Ng < 4. For the case Ng = 1, the helical groove waveguide of
Flouds and Mansell is recovered. For any even integer Ng, the longitudinal cross section is identical
to the disk-loaded waveguide. Our aim here is to extend this analysis for any Ng. Obviously, this
method will only yield solutions for a limited type of cross section, but it is useful as a representative
case of twisted guides.

Following the method of Wang, Yu, and Wei [16], we begin by expanding the fields in the
cylindrical interaction region in terms of space harmonics:

EIz =
∞∑

n=−∞,n multiple of Ng

AInγ
2
nJn(γnr)ej(nφ−βnz) (3.14)

EIr = ±j
∞∑

n=−∞,n multiple of Ng

[
AInγnβnJ

′
n(γnr)−BI

n

nωµ0

r
Jn(γnr)

]
ej(nφ−βnz)

EIφ = ∓
∞∑

n=−∞,n multiple of Ng

[
AIn

nβn
r
Jn(γnr)−BI

nωµ0γnJ
′
n(γnr)

]
ej(nφ−βnz)

HI
z = j

∞∑

n=−∞,n multiple of Ng

BI
nγ

2
nJn(γnr)ej(nφ−βnz)

HI
r = ±

∞∑

n=−∞,n multiple of Ng

[
AIn

nk2

rωµ0
Jn(γnr)−BI

nγnβnJ
′
n(γnr)

]
ej(nφ−βnz)

HI
φ = ±j

∞∑

n=−∞,n multiple of Ng

[
AIn

k2γn
ωµ0

J ′n(γnr)−BI
n

nβn
r
Jn(γnr)

]
ej(nφ−βnz).

Here,

βn = β0 +
2nπ
∆z

. (3.15)

These expressions are identical to those in Wang, Yu, and Wei except that here only those harmonics
with values of n that are multiples of Ng are allowed. This is because for the symmetric multi-

groove structure, Floquet’s Theorem demands that the fields must be periodic with period
∆z
Ng
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Cylindrical interaction region

Figure 3.4: Longitudinal cross section of the general helical groove waveguide problem
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Figure 3.5: Cross sections for varying number of grooves
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rather than the original period ∆z.

In the groove regions, we assume a single TE mode whose electric field lies perpendicular to the
groove, in a direction denoted by ξ, which will have a component along both the φ and z directions
in cylindrical coordinates. In other words, we employ the coordinate transformation

ρ = r (3.16)

φ = θ

z = ξ +
θ

2π
∆z.

(3.17)

Using this transformation and resolving the components along appropriate unit vectors, the fields
in the first groove can be expressed:

EG1
ξ = [BgYν(kr)−AgJν(kr)] e−jνθ (3.18)

HG1
r =

ν

rωµ0
[BgYν(kr)−AgJν(kr)] e−jνθ

HG1
θ = −j k

ωµ0

[
BgY ′ν(kr)−AgJ ′ν(kr)

]
e−jνθ

EG1
r = EG1

θ = HG1
ξ = 0,

where
ν =

β0∆z
2π

. (3.19)

Here, we have resolved along the contravariant ξ unit vector and the covariant θ unit vector in
order to ensure their orthogonality. Once the fields in the first groove are expressed, the fields in
each additional groove can be determined from Floquet’s Theorem:

EGi = EG1e−jβ0∆z(i−1)/Ng . (3.20)

Matching the fields in the groove regions to the fields in the cylindrical interaction region at r = ra,

EIz = EGi
ξ cosψ (3.21)

EIφ = −EGi
ξ sinψ,

where ψ, the pitch angle at radius ra, is related to the twist rate p by

tanψ =
∆z

2πra
. (3.22)

In order to match the electric fields at the interface, the fields on both sides of the matching
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conditions are tested with the basis functions

em = e−j(β0z+2πmz/∆z−mφ), (3.23)

leading to

AIm =
[BgYν(kra)−AgJν(kra)] sin [(m+ ν)πw/∆z] cosψ

π(m+ ν)β2
ρmJm(βρmra)

Ng∑

i=1

ej2πm(i−1)/Ng (3.24)

BI
m =

[BgYν(kra)−AgJν(kra)] sin [(m+ ν)πw/∆z]
[
tanψβ2

ρm +mβm/ra
]

cosψ
π(m+ ν)ωµ0β3

ρmJ
′
m(βρmra)

×

Ng∑

i=1

ej2πm(i−1)/Ng ,

where
β2
ρm = k2 − β2

m. (3.25)

As in [16], we also enforce the condition that the average magnetic field across the groove region is
continuous ∫

groove i interface

(
HI
φ cosψ +HI

z sinψ
)
dz =

∫

groove i interface
HGi
θ dz. (3.26)

Combined with the boundary condition for a vanishing electric field at the outside of the groove

EG1
ξ |r=rb = [BgYν(krb)−AgJν(krb)] e−jνθ = 0, (3.27)

the following condition is obtained:

∞∑

n=−∞,n multiple of Ng

w

∆z

[
sin
(
βn

w
2

)

βn
w
2

]2 [
k cos2 ψ

βρn

]
(3.28)

[
J ′n (βρnra)
Jn (βρnra)

− 1
(kβρn)2

Jn (βρnra)
J ′n (βρnra)

(
β2
ρn tanψ +

nβn
ra

)2
]

=
1
Ng

Y ′ν (kra) Jν (krb)− J ′ν (kra)Yν (krb)
Yν (kra) Jν (krb)− Jν (kra)Yν (krb)

.

In this derivation, we have here assumed that the pitch angle ψ � 1. Equation 3.28 can be used
to calculate the dispersion relationship for the Ng order helical groove waveguide structure. The
results for a double helical groove waveguide (whose cross section is identical to a disk-loaded
waveguide) are shown in Figure 3.6. For this test case, ψ = 0.196, ra = 8mm, rb = 15mm, and
d = 2.5mm. The predicted dispersion curve is shown along side a CST numerical electromagnetic
simulation of the same structure. For this case, the values from theory are close to those predicted
by CST simulation (less than 1% frequency difference). A detailed study of the agreement between
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Figure 3.6: Dispersion curves for double helical groove waveguide.
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CST simulation, field matching theory, and the developed numerical code will be given in Chapter
4.

However, this theoretical model based on field matching also has limitations. First, the groove(s)
has to be narrow enough to assume a single TE mode in the groove region. This may not be the
case in the disk-loaded structure, where the groove region is very wide compared to the disk region.
Also, just as the perturbation theory is expected to break down for high values of p, the helical
groove waveguide theory is expected to break down for low values of p, since one of the underlying
assumptions made in the theory is that the pitch angle is small [16]. Therefore, although a great
deal of physical insight may be gained by these analytic methods, there is also a need for more
generic numerical methods that can be used to solve a wider class of problems.

In the coming sections, we will detail the development of two and three dimensional codes in
the time and frequency domain. It will be shown that 3D codes are best for cavity problems when
end effects need to be taken into account, while 2D codes are better for solving infinite twisted
structures. The time domain solvers can be used to solve many modes at the same time, given some
arbitrary initial condition. An FFT can be performed on the time domain results to determine
the frequency of a mode of interest. Then, that frequency can be used as an initial guess in the
frequency domain method. The frequency domain solvers can be used to directly calculate the
eigenmodes of the twisted structures.

3.3 3D numerical methods

First, we examine 3D methods for solving a twisted geometry. Commercial software packages could
be used to analyze twisted structures, but these often have difficulty meshing more rapidly twisted
structures and converge sporadically. Also, it is anticipated that code specifically designed for a
twisted geometry will be suited to solve those structures more efficiently than a more general solver.

This research focused mainly on the Non-orthogonal Finite Difference Time Domain method,
or NFDTD, first proposed by Holland in 1993 [23] and later extended to a variety of problems in
electromagnetics [24]. This method has the advantages of being able to simultaneously solve for a
range of frequencies, being extendable to arbitrary orders, having a completely explicit updating
scheme, and having a very simple form similar to the classical FDTD method.

Since the nonorthogonal curl operator can be reduced to the normal Cartesian curl operator
followed by a simple matrix multiplication, finite differences can be used to compute the necessary
spatial derivatives. However, a normal Yee grid cannot be used for this computation. This is
because in a staggered Yee mesh, only one component of the curl is needed at each point in the
grid. The field points necessary to compute that component of the curl are conveniently located
adjacent to the point at which the curl is needed. In the present formulation, however, all three
components of the curl are needed at every point in the updating scheme. As a result, other grids
should be used such as the uniform grid, whose properties are investigated in [25]. An unstaggered
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collocated grid has already been utilized in a 2D implementation of the NFDTD algorithm with
good success [26]. It is proposed to use this unstaggered collocated grid in conjunction with the
NFDTD method in the present research.

The finite differences could also be extended to obtain fourth order accuracy in space (rather
than the second order accuracy normally obtained by the classical FDTD scheme). A 3D fourth
order scheme has already been developed by the author and his collaborators, and has shown very
promising results [27].

3.3.1 Boundary Treatment

A significant problem with the NFDTD method is the potential for a late-time instability if the
analysis needs to be carried out for a long time [28]. A typical late-time instability is shown in Figure
3.7. It was shown by Hao and Railton that the late-time instability could be reduced by using
a normal Cartesian grid except around the boundary, where the distorted mesh is retained [29].
However, the late-time instability was still not completely eliminated by this approach.

Schuhmann and Weiland showed that this problem was due to the asymmetric evaluation of
the metric tensor matrix [30]. His solution was to retain the spatial interpolation, but change the
way the metric tensor was evaluated.

Around the same time, Thoma and Weiland offered a proof for the stability of the spatial
discretization method for a domain loaded with anisotropic material [31]. Assume that the field
vectors have been vectorized, and the curl operators have been appropriately discretized, leading
to the well-known Maxwell Grid Equations (MGE’s) used in the finite-integration technique [32]:

Ce = −ḃ (3.29)

CTh = −ḋ,

where d, e, b, and h are the discrete vectorized representations of the fields. (The fact that the curl
operator acting on the electric field is the transpose of the curl operator acting on the magnetic
field is essential to the demonstration of stability.) The corresponding discrete material relations
are

d = Dεe (3.30)

b = Dµh,

where Dε and Dµ are matrix operators corresponding to the discretized permittivity and permeabil-
ity of the material, respectively. In [31], Thoma and Weiland showed that the spatial discretization
scheme is stable if the curl operators were related by a transpose as in Equation 3.29, and the mate-
rial operators were symmetric. The late-time stability of the scheme was demonstrated theoretically
by proving non-increasing total field energy.
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Figure 3.7: log plot of magnitude of Ey at sample point using NFDTD simulation showing late-time
instability.
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An alternative to this approach is to use the nonuniform, unstaggered mesh developed by Liu
and Janaswamy [25, 26]. Forward differences are employed for the electric field, while backward
differences are employed for the magnetic field. For a classic second order scheme,

dEi
dxj

=
Ei(xj + h)− Ei(xj)

h
(3.31)

dHi

dxj
=
Hi(xj)−Hi(xj − h)

h
.

Liu [25] demonstrated that the dissipative errors from the forward and backward difference oper-
ators cancel each other out in such a way that the resulting wave operator is accurate to second
order and has no dissipative error. It is easily demonstrated that for this mesh structure, the mate-
rial operators are symmetric if the metric tensor is symmetric at every point, which is guaranteed
from the definition of the metric tensor. However, a challenge presents itself around a perfectly
conducting boundary, since enforcing the transpose condition on the curl operators is nontrivial.
This condition requires, for example, that if the computation of (∇×E)x (i, j, k) involves a term
mEy(i, j, k + 1) for some constant m, then the computation of (∇×H)y (i, j, k + 1) must have a
term mHx(i, j, k). For interior points, where Equation 3.31 applies, this condition is satisfied au-
tomatically. Near a perfectly conducting boundary, the computation of ∇×H is typically altered
to enforce the boundary condition on the electric field. If a perfectly conducting boundary exists
at i = Nx,

(∇×E)y (Nx − 1, j, k) (3.32)

=
Ex(Nx − 1, j, k + 1)− Ex(Nx − 1, j, k)

∆z

− 0− Ez(Nx − 1, j, k)
∆x

,

(∇×H)z (Nx, j, k)

=
Hy(Nx, j, k + 1)−Hy(Nx − 1, j, k)

∆x

− Hx(Nx, j, k)−Hx(Nx, j − 1, k)
∆y

.

Since (∇×H)z (Nx, j, k) involves a term −Hy(Nx−1,j,k)
∆x but (∇×E)y (Nx − 1, j, k) does not have

a −Ez(Nx,j,k)
∆x term, the transpose condition is not satisfied, and there is no guarantee of stability

around the boundary. Clearly, another method for enforcing the boundary conditions must be
implemented. To do this, a careful examination of the boundary condition is necessary around a
conducting boundary, namely

(∇×H)x =
dDx

dt
= ε1j

dEj
dt

= ε11dEx
dt

, (3.33)
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for an x = constant boundary, leading to the updating formula

dEx
dt

=
1
ε11

(∇×H)x =
1

ε0
√
gg11

(∇×H)x. (3.34)

The contravariant metric tensor component g11 can be obtained by calculating the (1, 1) component
of [gij ]−1. Writing in terms of the covariant metric tensor,

dEx
dt

=
1

ε0
√
g

(3.35)

×
(
g11 +

g12g21g33 + g13g22g31 − g12g31g23 − g13g21g23

g23g32 − g22g33

)

× (∇×H)x.

Making use of the symmetry of the metric tensor,

dEx
dt

=
1

ε0
√
g

(3.36)

×
(
g11 +

g2
21g33 + g2

31g22 − 2g21g31g23

g2
32 − g22g33

)
(∇×H)x.

Using this relation, the material parameters can be modified along the boundary:

[ε]−1 =




1
ε0
√
g

(
g11 + g221g33+g231g22−2g21g31g23

g232−g22g33

)
0 0

0 0 0
0 0 0


 . (3.37)

In practice, a very small number is used for the zero elements of this matrix in order to ensure
that the material operator D−1

ε remains invertible. Now, since the boundary condition around the
boundary is satisfied implicitly, the expression for the curl of E around the boundary can be

(∇×E)y (Nx − 1, j, k) (3.38)

=
Ex(Nx − 1, j, k + 1)− Ex(Nx − 1, j, k)

∆z

− Ez(Nx, j, k)− Ez(Nx − 1, j, k)
∆x

,

satisfying the transpose condition and ensuring stability. This modification of the material param-
eters around a conducting boundary in an unstaggered collocated nonorthogonal FDTD scheme to
ensure stability is novel to this approach, and has not been done by others.
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3.3.2 Time Stepping and Stability

The time stepping algorithm commonly used for the FDTD algorithm is the leap frog method, which
is second order accurate in time. Although there is no rigorous mathematical proof of stability
available for a twisted coordinate system, it has been shown in [28] that for a skew nonorthogonal
coordinate system,

∆t ≤ 1

c
√

gij

∆xi∆xj

. (3.39)

This relation does not hold when the coordinate lines are curved, but it can provide a reasonable
estimate in regions where the lines are not severely curved.

It has been demonstrated by the author and his collaborators [27] that the CFL stability
condition on the time step can be weakened by a factor of 2

√
2 by implementing the fourth order,

four stage Jameson method time integrator. The stability domain is shown in Figure 3.8. As long
as the eigenvalues of the discrete curl operator remain within the region enclosed in the complex
domain, stability will be ensured. Used in conjunction with the fourth order spatial derivatives
discussed earlier, the Jameson method time integrator can provide fourth order accuracy.

3.4 2D numerical methods

For physically long twisted structures where end effects can be neglected, a 2D method should be
used to solve twisted structures. For this, we introduce two complementary simulation techniques,
the 2D NFDTD method, or non-orthogonal finite difference time domain method, and the 2D
NFDFD method, or non-orthogonal finite difference frequency domain method.

3.4.1 2D NFDTD Method

Simulating periodic structures in the time domain presents a challenge, because the phase shift
boundary conditions on the ends of the propagating structure are in the frequency domain. Ordi-
narily, to translate the phase shift condition into the time domain, data points are needed for many
previous time steps around the boundary, adding complexity to the algorithm. More recently, a
scheme has been developed by Harms, Mittra, and Ko [33, 34] to implement a periodic boundary
condition using a combination of sin and cos excitations, which eliminates the need for storage of
many previous time steps. This method comes at a cost of having to essentially run two separate
but coupled FDTD algorithms side by side, one for the sin response, and the other for the cos
response.

However, for the twisted guide, the algorithm can be simplified much further, since the period
can essentially be reduced to zero if the appropriate coordinate system is chosen, giving a 2D mesh.
A 2D FDTD algorithm was proposed by Xiao, Vahldieck, and Jin for the efficient solution of straight
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Figure 3.8: Stability domain for Jameson method time integrator
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waveguide propagation problems [35], [36]. This should not be confused with a conventional 2D
FDTD method where the fields are assumed to be uniform in one direction. Here, the idea is to
assume a solution of the form

E(x, y, z, t) = <
{

E1(x, y, t)e−jβz
}

(3.40)

H(x, y, z, t) = <
{

H1(x, y, t)e−jβz
}
.

<{} represents the real part. The value of β is a running variable from 0 to ∞. Each value of
β will result in a number of modes with different frequencies. This technique allows dispersion
curves to be obtained efficiently for a large number of modes. We do this by running a number
of simulations while sweeping the value of β. Then, instead of the z derivatives being calculated
in the conventional sense using finite differences, they are calculated using an exact formula by
multiplying that field component by −jβ. Although this means that the computations will now
involve complex quantities rather than the purely real computations of the classical FDTD method,
the mesh can now be reduced from three dimensions to two.

It was shown in [36] that the disadvantages of complex computations could be eliminated by
adding a factor of j in the representation of Ez, Hx, and Hy, making all field quantities real even for
anisotropic permittivities. The original fields in three dimensions can be recovered by substituting
the computed solutions in for E1 and H1 in Equation 3.41 and solving for E and H. Although not
explicitly stated in [36], the real nature of the time domain fields is only preserved if the permittivity
tensor elements ε13 = ε23 = ε31 = ε32 = 0, so for the twisted case, complex arithmetic must still be
used.

It must be pointed out that we cannot solve twisted waveguide problems directly in Cartesian
coordinates using this method, since the fields do not strictly satisfy Equation 3.41. However, if a
helical coordinate system is introduced, the fields could indeed have this form and a 2D method
could be employed. The anisotropic equivalent problem discussed in Section 3.1 provides another
way of thinking about this: it allows the twisted structure to be solved as a straight structure with
anisotropic and nonuniform µ̄ and ε̄. Of course, as soon as the structure is transformed into a long
straight structure, Equation 3.41 holds, and 2D solution methods are valid. The finite difference
operators along each of the nonorthogonal coordinate axes can be defined using the coefficients
derived by Liu for an orthogonal coordinate system [25]. For the second order case, this mesh
reduces to a “collapsed” version of the Yee grid, discussed by Xiao and Vahldieckin [36]. This mesh
is shown in Figure 3.9.

3.4.2 2D NFDFD Method

The Finite Difference Frequency Domain method was investigated in detail by Lui and Chen [37].
In it, the fields are assumed to be harmonic in time and in the z direction, so the explicit time
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Figure 3.9: “Collapsed” Yee grid used in the second order 2DNFDTD method.
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updating scheme of the FDTD method is eliminated completely and replaced by an eigenvalue
problem. In it, all six field components are solved for directly. Later, it was found that the number
of actual solved field components and the number of nonzero matrix elements could be reduced
significantly [38], [39]. The solution of curved waveguides using 2D FDFD has previously been
attempted by Lavranos and Kyriacou [40]. However, their formulation depended on an orthogonal
coordinate system and the ability to separate the field into axial and transverse components, which
was mentioned in [40] to be invalid for high curvature rates (or small curvature radii).

By contrast, this research proposes to solve the twisted structure in nonorthogonal coordinates
which is based on an exact equivalent, and does not make any simplifying assumptions that would
be invalid for high twist rates. To use this method to solve the Maxwell equations for a twisted
waveguide structure, the vector Helmholtz equation in general curvilinear coordinates is derived.
Using the anisotropic equivalent structure defined by Equation 3.7 and solving in Cartesian coor-
dinates, the Maxwell curl equations become

1√
g

[gij ]∇× Ē = −jωµ0H̄ (3.41)

1√
g

[gij ]∇× H̄ = −ωε0Ē, (3.42)

from which we can also write from Equation 3.42,

∇× H̄ =
√
gjωε0[gij ]Ē. (3.43)

Taking the curl of Equation 3.41,

∇×
(

1√
g

[gij ]∇× Ē
)

= ∇×
(
−jωµ0H̄

)
(3.44)

= −jωµ0∇× H̄

= −jωµ0
√
gjωε0[gij ]Ē

= ω2µ0ε0
√
g[gij ]Ē

= k2
0

√
g[gij ]Ē

which leads to the eigensystem

1
g

[gij ]∇×
(
[gij ]∇× Ē

)
= k2

0Ē. (3.45)

In this scheme, three vector components have to be computed at each grid point. For example,
if a 20 by 20 grid was employed to solve a twisted square waveguide, the dimension of the system
would be 20×20×3 = 1200, and the total number of matrix elements would be 12002 = 1.44×106.
Fortunately, the use of finite differences assures us that the matrix will likely be sparse. If the
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sparsity of the matrix is taken into account, it can drastically reduce memory and calculation time.

3.5 Extension to Arbitrary Cross Sections

Thus far, we have only considered twisted waveguides of rectangular cross sections. Fortunately, our
choice of a twisted coordinate system allows a simple cascaded coordinate transform that permits
a solution to arbitrary twisted guides. The coordinate transform of Equation 2.2 is combined with
a planar transform

x′ = x′(u, v) (3.46)

y′ = y′(u, v)

z′ = w,

giving

x = x′(u, v) cos pw − y′(u, v) sin pw (3.47)

y = y′(u, v) cos pw + x′(u, v) sin pw

z = w

for the overall transformation. This cascaded transform is illustrated in Figure 3.10. The functions
u and v can be derived using finite differences from any commercial or freeware software package
capable of generating 2D structured planar meshes. We have made use of a free utility called
UNAMALLA [41] to generate such meshes. The covariant metric tensor for this cascaded transform
can be obtained using the well-known rule

(gij)u = (gmn)x′
∂x′m

∂ui
∂x′n

∂uj
. (3.48)

(x, y, z) (x’, y’, z’) (u, v, w)

Figure 3.10: Cascaded coordinate transformation used to analyze arbitrary twisted structures.
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Here, (gmn)x′ is the metric tensor for the transform from cartesian coordinates to the primed
coordinates (in this case, Equation 2.2). For such arbitrary cross sections,

[gij ] = (3.49)



x′u
2 + y′u

2 x′ux
′
v + y′uy

′
v px′y′u − py′x′u

x′ux
′
v + y′uy

′
v x′v

2 + y′v
2 px′y′v − py′x′v

px′y′u − py′x′u px′y′v − py′x′v 1 + p2(x′2 + y′2)


 .

Since the mesh generation program outputs the coordinates of each point on the grid, u and
v at each mesh point are known. The derivatives x′u, x′v, y

′
u, and y′v are calculated using finite

differences. Such a simple form of the metric tensor is a consequence of the particular helical
coordinate system chosen. Also, note again that the longitudinal coordinate does not appear in the
metric tensor, allowing two dimensional methods to be used. From here, the relations of Equation
3.7 can be used to calculate the material properties of the transformed guide.

Such a planar transformation is demonstrated for the twisted “keyhole” structure. The cross
section, along with the generated UNAMALLA mesh, is shown in Figure 3.11.

3.6 Summary

A number of numerical methods have been presented that are capable of solving both slowly and
rapidly twisted structures. 3D codes give good results for closed (cavity) problems where end effects
are significant, while 2D codes are much faster and can give good results for infinite structures or
for closed structures that are long enough that end effects are not as significant. Both the 2D and
3D codes can be used in either the time or frequency domain. The time domain code allows one to
select an initial condition guess that is close to the desired eigenmode and to solve for many modes
simultaneously. An FFT can then be performed to extract frequency domain data, which in turn
can serve as an initial guess for the frequency domain solver. The frequency domain solver is the
appropriate choice when solving for specific eigenmodes of the twisted structure.

When used in conjunction, the time and frequency domain numerical methods based on a
straight equivalent waveguide can be used to solve twisted guides of any arbitrary cross section.
Therefore, these numerical techniques are more generally applicable than other methods of solving
twisted guides (like the perturbation theory and mode matching approaches), which are applicable
only for limited cross sectional shapes. They are also more efficient then existing commercial codes
for solving twisted guides because they are specifically designed to handle the challenges associated
with rapidly twisted geometries.
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Figure 3.11: Keyhole cross section and corresponding mesh.
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Chapter 4

Result Validation

Accurate electromagnetic simulation results are important in designing accelerating cavities. Typi-
cally, resonant frequencies should be within a couple percent of their predicted values from simula-
tion. In practice, accelerating cavities must be fine tuned either through mechanical deformation or
active devices such as ferrite tuners. This is because of mechanical errors introduced by manufac-
turing tolerances. To further complicate matters, Lorentz forces due to the high accelerating fields
within the cavity cause periodic deformations of the cavity shape. Such forces make it impossible to
exactly tune the cavities without active tuning elements. Nevertheless, electromagnetic simulation
should provide a very good initial guess for the cavity frequency.

Since exact closed-form expressions for the electromagnetic fields in a twisted cavity or wave-
guide do not exist, computing the error of any given method is not a trivial problem. Therefore, we
will use several separate methods to validate results. Although there is some degree of error present
in each individual validation method, taken together these methods give substantial credence to
the validity of the model in question.

First, we validate the code by comparing it to other well-known software packages such as CST
Microwave Studio [42] for cases when we anticipate the commercial code will perform well. Then,
we validate the code by comparing the results to analytic expressions that are valid for very specific
twisted geometries. Finally, we perform experimental investigation.

4.1 Existing Electromagnetics Software

In this section, we compare our code to CST Microwave studio for the case of a twisted rectangular
guide of moderate twist rate. For such rates, perturbation theory will fail, and it would be quite
difficult to derive any analytic expression. To test the numerical method for such a case, a moderate
twist rate is chosen such that the CST software is still anticipated to be accurate. We choose
dimensions of 8.16 cm by 3.63 cm. Since CST and other commercial software cannot support a
continuously varying twist rate, a fixed twist rate of 30 R

m was selected. At this twist rate, there
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is already significant difference between the developed 2D code and the results of the perturbation
theory.

Figure 4.1 shows that for this moderate twist rate, the results of CST and the results provided
by the 2D FDFD code align nearly perfectly. This particular simulation was carried out using a
50 X 50 mesh with our developed code. The fact that agreement is so good lends credibility to
the proposed numerical model and its effectiveness at solving twisted guides with slow to moderate
twist rates.

4.2 Special Cases

For the first special case, we discuss validating our numerical methods through a comparison with
the results of Lewin and of Yabe and Mushiake. Since these methods are based on perturbation
theory, with the twist rate as the perturbation parameter, we expect to see good agreement between
[10] and [12] and the present theory at slow twist rates.

To test the time-domain code, a five inch section of uniformly twisted X-band waveguide was
simulated. The twist rate was 49.47 R

m . This corresponds to one complete twist over the five inch
length. An initial condition was chosen to excite the dominant mode of interest. The accuracy was
checked by performing an FFT on the electric field at a sample point and comparing to the resonant
frequencies predicted by the perturbation theory results developed by Yabe and Mushiake [12]. Only
the first three TE-like modes were tested. Since the twist rate is fairly low, the perturbation theory
results are expected to be relatively accurate. The comparison results are shown in Table 4.1, and
the time domain fields and the spectrum are shown in Figure 4.2.

The simulation was carried out to a final time of 6 × 10−8 sec, and an 18 by 8 by 100 mesh
was used. No late-time instability was observed during the simulation. A raised cosine window
function was used for the FFT. The frequency of the resonances was determined by locating each
of the peaks of the spectrum.

The perturbation theory predictions are only valid for the dominant TE10-like mode of the
twisted waveguide, so the complete spectrum of the twisted cavity cannot be obtained by the
theory in [11, 12]. However, the resonant frequencies corresponding to TE10n modes of the cavity
can be obtained by setting

βz =
nπ

L
, (4.1)

where L is the cavity length. The ω versus β relationship predicted by perturbation theory can
then be used to calculate the resonant frequencies. Note that although the metal walls on either
end of the cavity will introduce some end effects not accounted for in the theory, the results of
Table 4.1 demonstrate that this effect does not significantly alter the result (at least for this value
of twist rate).

Another trial was devised in which an arbitrary rectangular waveguide is twisted at different
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Figure 4.1: Dispersion relationship for 8.16 cm by 3.63 cm rectangular waveguide with twist rate
of 30 R

m .

Table 4.1: Results for 3D NFDTD simulation of twisted waveguide

Mode 1 Mode 2 Mode 3
Perturbation Theory 6.9684 GHz 7.2348 GHz 7.6580 GHz

3D NFDTD code 6.9849 GHz 7.2526 GHz 7.6771 GHz
% difference 0.237% 0.246% 0.249%

Straight waveguide (known) 6.6626 GHz 6.9692 GHz 7.4522 GHz
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Figure 4.2: Simulated Ey multiplied by raised cosine window function, and corresponding spectrum.
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rates and the cutoff frequency is calculated. The cutoff frequency is easily obtained using the
2D finite-difference time domain and 2D finite-difference frequency domain techniques discussed in
Chapter 3. One must simply set the propagation constant β = 0 and solve for the frequency of the
TE10-like mode. The comparison for an 8.16 cm by 3.63 cm waveguide is shown in Figure 4.3.

The results of this trial show that at low twist rates, the developed numerical models yield
results that are very close to those of the perturbation theory methods. However, at higher twist
rates the agreement is not as good; this is expected, since the perturbation techniques were never
intended to be used for rapidly twisted cases.

A second special case is that of the helical groove waveguide. The theory of this rapidly twisted
structure was given in [15] and refined to any number of grooves in Section 3.2.2. For this case, we
expect to see good agreement for rapid twist rates. For this case, we used a single helical groove.
The inner radius was 8 mm and the outer radius was 15 mm. The angle subtended by the “notch”
section in the twisted cross section was 90◦. For this structure, we compared the cutoff frequency of
the dominant TE10-like mode predicted by the present 2D code to the predictions of helical groove
theory and CST commercial software. For the commercial code, a periodic boundary condition
was established over one half twist, and a 0◦ phase shift was implemented between the phase shift
boundaries to simulate the cutoff condition. The 2D FDFD code was run with a 25 X 25 mesh, a
50 X 50 mesh, and a 75 X 75 mesh. The comparison is shown in Figure 4.4.

Here, we can see that as the mesh is refined, the results approach the helical groove theory for
rapid twist rates. Also, the results of CST are very good for slow to moderate twist rates, but
become inaccurate for high twist rates. For extremely rapid twist rates, CST fails altogether with
a mesh generation error. It is difficult to give a definitive rule regarding how many mesh points
are needed for a good simulation. In general, it will depend greatly on the judicious choice of a
structured mesh. In practice, one should run several cases with varying degrees of mesh refinement
to determine when convergence has been achieved.

4.3 Experimental Investigation

The final method that is used for result validation is experimental investigation. The measurement
results are so important that a separate chapter (Chapter 6) is devoted to their discussion. Obvi-
ously, there are errors present in the experiment as well (mechanical tolerance, losses, probes, etc.),
yet close agreement with experiment is a crucial test of the validity of any electromagnetic model.

4.4 Summary

In this chapter, we have validated the accuracy of the developed numerical techniques by comparing
the results to commercial software [42] as well as two special cases where analytic expressions are
available. Specifically, good agreement was obtained with the perturbation theory [10–12] for
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rectangular guides at low twist rates and with field matching theory [15, 16] for helical groove
waveguides at high twist rates. A detailed experimental investigation is undertaken in Chapter 6.

These validation results indicate that the developed numerical models of Chapter 3 can give
accurate results for arbitrary cross sections for both slowly and rapidly twisted structures. The
results of the validation study also provide an idea of the limits of accuracy for the perturbation
theory and field matching techniques for solving twisted guides. The validation study also showed
the limitations of commercial electromagnetic codes.
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Chapter 5

The Twisted Cavity as an

Accelerating Structure

One of the important potential applications for twisted cavities is in the area of particle acceler-
ators. The idea of a twisted waveguide accelerating structure was proposed by Kang in 2000 [8].
Normally, reactive loading is employed in accelerating cavities in order to slow the phase velocity
of the electromagnetic wave [5] [6]. However, since these types of cavities all have a non-uniform
cross section, they tend to be difficult to machine, requiring complicated welding or brazing pro-
cesses which increase the total cost. It was demonstrated that the twisted waveguide, possessing a
uniform (although constantly rotating) cross section, also offers the potential to support slow-wave
modes. In this research, a detailed comparison is to be made between several conventional acceler-
ating structures and their longitudinal helical analogs. This is possible because most accelerating
structures are rotationally symmetric or very nearly so.

In considering accelerator applications, only TM modes are of interest. This is because only
TM modes have a z component to the electric field, which is effective in producing an accelerating
force on a charged particle. TE modes have been considered for producing a transverse force on the
particle (useful for undulators and wigglers), but for the present we will focus on the accelerating
TM modes.

Our analysis shall concentrate mainly on two types of twisted accelerating prototypes. The
first is the longitudinal helical analog of the disk-loaded accelerating structure. This is essentially
a disk-loaded structure whose geometry is shown in Figure 2.3. The second is analogous to the
TESLA-type superconducting cavity used as a medium-beta superconducting cavity at the Spal-
lation Neutron Source (SNS). The cross section of a TESLA type accelerating cavity is shown in
Figure 5.1. The outline is constructed by connecting two sets of ellipses with tangent lines. This
outline then defines the ρ vs z profile of the rotationally symmetric accelerating cavity in cylindrical
coordinates.
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Figure 5.1: Construction of the outline for a TESLA-type accelerating cavity

5.1 Quantities of Interest for Accelerating Cavities

In comparing cavity types, it is necessary to compute several standard figures of merit commonly
used in accelerating structures. The first quantity of interest is the accelerating gradient, which is
the maximum |Ez| on the z axis of the cavity. A higher accelerating gradient corresponds to more
accelerating force exerted on the particle. The accelerating gradient is usually normalized to some
other accelerator parameter, like total stored energy, to make it more useful.

The accelerating voltage can be computed as an integral of |Ez| along the z axis of the cavity.

Vacc =
∫ Lcavity

0
|Ez| dz, ρ = 0. (5.1)

We also define the particle beta as
β =

vparticle
c

. (5.2)

If the input power to the cavity P is known and stored energy U is known, then

Q =
ωU

P
(5.3)

R =
V 2
acc

2P
(5.4)

R

Q
=

V 2
acc

2ωU
(5.5)

where R = Rshunt is commonly called the shunt impedance, or the resistance of the equivalent
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parallel RLC circuit corresponding to the accelerating cavity. Of these, the quantity
R

Q
is of

particular interest as a figure of merit, since it is not directly dependent on the dissipated power
P . It will depend, therefore, purely on the geometry of the cavity rather than the material of the
cavity. Loosely speaking, it describes how much accelerating voltage can be obtained with a given

amount of energy stored in the cavity. Typically, the value of
R

Q
scales linearly with the cavity

length for a given cavity geometry, so it is also useful to normalize
R

Q
to the length:

R

Ql
=

V 2
acc

2ωUl
(5.6)

In this chapter, we will also speak of accelerating modes defined by the amount of phase shift of
the fundamental space harmonic per unit cell. For example, in a π mode of operation, the electric
field in each cell is offset from the neighboring two cells by a phase shift of 180◦ or π radians. In a
twisted structure, it is also possible to define a “cell” by the amount of twisting required to map
the transverse cross section back onto itself. As such, we will loosely use the same nomenclature
for accelerating modes in a twisted structure as is commonly applied to nontwisted accelerating
structures.

Another important parameter is the transit time factor T , which provides a correction to the
acceleration of a particle due to the time-variation of the fields in a cavity. Note that in Equation
5.1, Ez is assumed to be the magnitude of the z component of the time-harmonic field Ē. In
reality, this field will change with time as the particle physically moves down the accelerator, so a
correction factor is needed. T can have any value between 0 and 1. The total kinetic energy (K.E.)
gained by a particle in the cavity is

∆K.E. = qVaccT, (5.7)

where q is the charge of the particle.

5.2 Advantages of Twisted Accelerating Structures

There are a number of advantages of twisted accelerating structures over periodic reactively loaded
ones. In a periodic structure, the fields can be expressed by an infinite Floquet expansion. For
example,

E =
∞∑

n=−∞
En(x, y)ejβnz (5.8)

where
βn = β0 +

2πn
∆z

. (5.9)
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However, in the twisted coordinate system of (2.2), we have En = 0 for all n 6= 0, due to the fact that
the waveguide becomes equivalent to a straight waveguide under the coordinate transformation.
Thus, only a single space harmonic is present. In conventional coordinates (cylindrical or cartesian),
an infinite number of space harmonics will still be needed, but along the z axis (which coincides
with the z axis of the twisted coordinate system) all higher space harmonics must vanish:

En(x = 0, y = 0) = 0, n 6= 0. (5.10)

The implication of this is that along the axis of an infinite twisted structure there is no variation
in the magnitude of the fields – only in the phase. This distinguishes the twisted guide from
conventional slow-wave structures (like corrugated or iris-loaded waveguides). Since only the E0

harmonic travels synchronously with the particle beam and acts cumulatively to accelerate the
particles, the elimination of other harmonics is very desirable, and it could be accomplished using
the twisted structure. In terms of the transit time factor T , this implies that T = 1 for twisted
accelerating structures for an on-axis particle.

A second advantage of twisted accelerating structures involves what are known as “trapped
modes”. Higher order trapped modes are troublesome in most conventional periodically loaded
accelerating structures because of the appearance of stop-bands in the dispersion characteristic.
When beam energy is deposited in such a stop band, the excited fields cannot propagate out of the
structure to higher-order mode dampers, and they can remain “trapped” in the accelerating cavity.
Such modes are particularly problematic in superconducting cavities, because the large Q values
allow these unwanted resonances to continue for a long time before finally decaying due to wall
losses. In the case of the twisted guide, however, there are no stop bands above the cutoff frequency
of the fundamental propagating mode. In essence, these modes can be thought of to continue on to
infinitely high values of β by virtue of the straight waveguide equivalent. This means that undesired
modes will be able to propagate out of the structure and be damped by higher order mode (HOM)
dampers.

A third observation relates to mode spacing in these accelerating structures. Many periodically
loaded accelerating cavities operate very efficiently close to π mode, or 180 degrees of phase shift
per unit cell. However, near the point on the dispersion curve where β = π

∆z , the group velocity
(calculated as dω

dβ ) typically approaches zero. This prohibits effective operation, since nearby un-
wanted modes would be excited very easily. One solution to eliminate the problem of zero group
velocity at π mode is the deliberate creation of confluent pass bands, with the point of confluence
judiciously selected as the point of the desired π mode operation [43]. However, this requirement
places a significant constraint on the design of the periodic accelerating structure. In the case of
the twisted waveguide no such problem exists, as the group velocity remains nonzero for all values
of the phase constant β.

55



5.3 Twisted Disk-Loaded Accelerating Structure

Consider the SLAC two-mile accelerating structure, which was designed to accelerate electrons.
Since the electron has such a small mass to charge ratio, it can be accelerated to relativistic
velocities very quickly. Thus, the SLAC cavities were designed assuming the particle bunch is
traveling at the speed of light (beam beta = 1), and the phase velocity of the electromagnetic wave
is matched to this speed. A longitudinal helical analog for a disk-loaded accelerating structure was
defined in Section 2.2. The transverse cross section of such a structure is the keyhole shape shown
in Figure 2.4. The parameters of the original SLAC disk-loaded structure are shown in Table 5.1.

Each cavity consists of a number of “cells” which are separated from one another by an iris (or
disk). A CST simulation of a 3-cell variation of this disk-loaded structure reveals the accelerating
mode of interest. Figure 5.2 shows the simulated electric field distribution in a longitudinal cross
section. The eigenmode simulation has been normalized such that the stored energy in this 3-cell
cavity is 1 Joule. An electron traveling along the z axis would be synchronized with the EM wave
in such a way that Ez is always negative, producing a force in the positive z direction, adding to

the kinetic energy of the particle. The phase shift for this 3-cell cavity is
2π
3
·3 = 2π. The three-cell

cavity is a good approximation to an infinite structure, since the electric field is directed mostly
along the z axis, so the presence of an electric wall at the z boundaries will not significantly perturb
the fields. The CST simulated resonant frequency, 2.826 GHz, is very close to the design value of
2.856 GHz. If the phase shift for the cavity is θ, the phase velocity of the wave can be calculated

as vph =
ω

βz
=

2πfLcavity
θ

= 2.967 × 108m
s ≈ c. Also note that the accelerating mode is not the

dominant mode, which is usually the case for an accelerating cavity. (In this case, CST predicts
that the mode of interest is Mode 3.)

We now turn to the longitudinal helical analog to this structure. This analog was defined in
Section 3.2.2. The twist rate parameter p is found using Equation 2.18 to be 89.76 radiansm . Entering
this structure into CST and simulating, we obtain the electric field shown in Figure 5.3. If Mode 8

Table 5.1: Parameters for the SLAC accelerating cavities

Parameter Value Unit
Frequency 2.856 GHz

Length 3.048 m
Cell radius 4.13 cm
Iris radius 1.135 cm
Cell length 3.5 cm

Phase advance per cell 2π
3 Radians

Disk thickness 0.584 cm
Quality factor 13,000
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Figure 5.2: CST Simulation: Electric field in the SLAC Accelerating structure
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Figure 5.3: CST Simulation: Electric field in the longitudinal helical analog to the SLAC Acceler-
ating structure
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is examined, it is found that the electric field profile is directed along the z axis, and thus may be
useful for particle acceleration.

However, the resonant frequency of the accelerating mode has changed to 3.67 GHz. This
implies that the phase velocity of the wave is no longer c, but somewhat greater. In this case,
vph = 3.854 × 108m

s ≈ 1.3c. Therefore, the exact longitudinal helical analog will not give the
desired accelerating mode, but the structure will have to be modified slightly to bring the phase
velocity back down to c. This indicates that the procedure discussed in Section 2.2 for creating a
twisted structure analog does not preserve the resonant frequency of the original structure. The
parameters of the cavity must be altered slightly, and numerical methods must be used to predict
the precise resonant frequency.

As another point of interest, the CST simulation of the disk-loaded accelerating structure took
48 seconds on a 3.6 GHz Pentium(R) 4 CPU with 2.5 GB of RAM, whereas the simulation of its
longitudinal helical analog took 1 hour 31 min. (The same solver parameters were used for both
simulations.) This is an indication of the tremendous difficulty conventional simulation softwares
have with twisted structures and the need for more efficient simulation methods for these structures.

To lower the frequency (and thus the phase velocity), the cavity should be adjusted to be larger.
However, the length of the cavity should not increase, because then both ω and β would decrease.
Instead, only rcell is increased, lowering ω and keeping β fixed, thus lowering vph. Choosing rcell =
5.493 cm, CST simulation now predicts a mode with resonant frequency of 2.84 GHz, corresponding
to a phase velocity of 2.98× 108m

s for the electromagnetic wave in the cavity. This mode is shown

in Figure 5.4 and appears to have roughly
2π
3

phase advance per cell. Note that periodic boundary
conditions were used for the walls in the z direction. When metal walls are used instead, the
frequency changes to 3.046 GHz. Intuitively, we expect that as the cavity length gets longer (i.e.
more cells are used), the resonant frequency will approach the solution using periodic boundary

conditions. Table 5.2 compares values of fres, Vacc,
R

Q
, and vph for the original SLAC structure, its

longitudinal helical analog, and a helical structure whose outer radius has been increased to 5.493
cm. In these simulations, periodic boundary conditions were assumed for the end walls.

We also investigate the claim that at the center of the guide, only the fundamental (accelerating)
space harmonic is present. A periodic boundary condition was established at the ends of the twisted
structure. The Microwave Studio solution represents a standing wave rather than a traveling wave
solution. Such a solution can be easily constructed from two counterpropagating traveling wave
solutions. The z component of the electric field is plotted in Figure 5.5 for a particle on the z-axis,
a particle 0.6 cm off axis, and a particle 0.9 cm off axis. Very far from the center of the guide near
the groove region, it is easily seen that the field does not vary sinusoidally with the longitudinal
coordinate z, indicating that many space harmonics are present in this region. On the other hand,
close to the center of the guide, the field variation is sinusoidal as all space harmonics except the
fundamental disappear. This verifies the claim of single space harmonic operation.
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Figure 5.4: CST Simulation of Twisted SLAC-type cavity: Electric field with increased outer radius

Table 5.2: Comparison of disk loaded accelerating structures

Original SLAC Helical Helical analog, increased
cavity analog outer diameter

Frequency (GHz) 2.82 3.63 2.83
Vacc(V) 3.99× 106 3.63× 106 2.16× 106

U (Joules) 1 1 1
R
Q

(ohms) 448.6 287.9 131.3

vph

(m
s

)
2.96× 108 381× 108 2.97× 108
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Figure 5.5: Magnitude of Ez for on-axis and off-axis particles: CST simulation
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5.4 The Disk-loaded Accelerating Structure: an Optimization Case

Study

To illustrate a typical design procedure for a twisted accelerating cavity, we demonstrate in this
section how the developed model of twisted waveguides can be used to produce valuable design data
for practical accelerators. We begin with the twisted disk-loaded structure just discussed. While
there are infinite number of possible cross sections, this shape can be particularly instructive due to
its simplicity. Other cavity shapes, such as the twisted elliptical cavity, can be thought of (at least
to first order approximation) as a disk-loaded analog with rounded edges. We hold this transverse
cross section constant, and require that the phase velocity of the mode of interest be equal to the
speed of light. We allow the twist rate to vary, and also permit the frequency to change, as long as
β changes so as to keep vph = ω

β the same. Say that the quantity we desire to optimize is R
Q .

The two dimensional frequency domain method is well-suited for this problem, since eigenmodes
can be extracted easily by numerical eigen decomposition of the system matrix. For each twist rate,
the value of β is first selected as to make the phase velocity c. This is done using many successive
simulations and an iterative numerical root finding method (MATLAB’s fzero function). At this
point, the eigenvector can be extracted and the R

Q value calculated. When this is performed for a
variety of different twist rates, an appropriate twist rate can be chosen to ensure a high R

Q .
To calculate R

Q , we need to know the accelerating voltage as well as the total stored energy in
the system (and of course the frequency, which we already know from the eigenvalue). For the 2D
method, we do this for an infinitesimally small slice of the twisted guide of length dl, effectively
giving R

Q per unit length.

R

Qdl
=

(Vacc/dl)2

2ω(dU/dl)
(5.11)

=
(Ez)2

2ω(dU/dl)
.

Next, we show that the energy stored per unit length in the twisted structure is the same whether
calculated in cartesian coordinates or in twisted coordinates. In the original (nontransformed)
system,

dE =
1
2
(
D̄ · Ē + B̄ · H̄

)
dxdydz (5.12)

=
1
2

(
ε
∣∣Ē
∣∣2 + µ

∣∣H̄
∣∣2
)
dxdydz.

The cartesian field components can be converted into components in the curvilinear coordinate
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system using 

Ex

Ey

Ez


 =

[
∂(x′, y′, z′)
∂(x, y, z)

]T


E1

E2

E3


 = JT



E1

E2

E3


 , (5.13)

where J is recognized as the Jacobian matrix of the transformation. Then,

dE =
1
2


ε0

∑

i


∑

j

JTijEj




2

+ µ0

∑

i


∑

j

JTijHj




2
 dxdydz (5.14)

=
1
2


ε0

∑

i,j,k

JTijJ
T
ikEjEk + µ0

∑

i,j,k

JTijJ
T
ikHjHk


 dxdydz

=
1
2


ε0

∑

j,k

EjEk
∑

i

JTijJ
T
ik + µ0

∑

j,k

HjHk

∑

i

JTijJ
T
ik


 dxdydz

=
1
2


ε0

∑

j,k

EjEk
∑

i

JjiJ
T
ik + µ0

∑

j,k

HjHk

∑

i

JjiJ
T
ik


 dxdydz

=
1
2


ε0

∑

j,k

EjEkg
jk + µ0

∑

j,k

HjHkg
jk


 dxdydz.

We can also relate the differential volume element dxdydz to dx′dy′dz′ using

dxdydz =
∣∣∣∣
∂(x, y, z)
∂(x′, y′, z′)

∣∣∣∣ dx′dy′dz′ =
√
gdx′dy′dz′, (5.15)

where g = det([gij ]). This gives

dE =
1
2


ε0

∑

j,k

EjEkg
jk + µ0

∑

j,k

HjHkg
jk


√gdx′dy′dz′. (5.16)

Next, we derive an expression for the energy in the transformed structure.

dE =
1
2
(
D̄ · Ē + B̄ · H̄

)
dx′dy′dz′ (5.17)

=
1
2
(
[ε]Ē · Ē + [µ]H̄ · H̄

)
dx′dy′dz′.

Using the equivalent permittivity and permeability of Equation 3.7,

dE =
1
2


∑

i

∑

j

√
gε0g

ijEjEi +
∑

i

∑

j

√
gµ0g

ijHjHi


 dx′dy′dz′. (5.18)
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This is the same expression as Equation 5.16, indicating that the energy (or energy per unit length,
as the case may be) calculated in the transformed coordinates is the same as in cartesian coordinates.
This simplifies computation of quantities such as R

Q using the proposed numerical methods.
The other quantity to be evaluated is the z component of the electric field on the center axis of

the twisted guide. (This is used to calculate Vacc.) To do this, we utilize Equation 5.13 to obtain
the component of the field along the cartesian z axis. We consider the generalized coordinate
transformation of Equation 3.47. For this coordinate system,

∂(u, v, w)
∂(x, y, z)

(5.19)

=
1

x′uy′v − y′ux′v




y′v cos pw + x′v sin pw y′v sin pw − x′v cos pw p(x′x′v + y′y′v)
−x′u sin pw − y′u cos pw x′u cos pw − y′u sin pw −p(x′x′u + y′y′u)

0 0 x′uy
′
v − y′ux′v


 .

Conveniently, at the center of the guide (where x′ = y′ = 0), this yields the relation

Ez|x′=y′=0 = E3|x′=y′=0. (5.20)

If a two dimensional method is used, this leads to the formula

R

Ql
=

(E3|x′=y′=0)2

ω

∫ ∫ 
ε0

∑

i,j

gijEiEj + µ0

∑

i,j

gijHiHj


√gdudv

(5.21)

To calculate the actual R
Q value, the above formula should be multiplied by the length of the

waveguide or cavity. This is because (neglecting end effects) the energy per unit length in the
longitudinal direction is constant along the guide length.

We utilize this simple formula, combined with the two dimensional nonorthogonal finite differ-
ence frequency domain method to optimize a disk-loaded accelerating structure for R

Q performance.
Since the optimization requires many evaluations for different values of twist and propagation con-
stant, the speed of the two dimensional method is a distinct advantage. Each simulation takes less
than one second for a 25 by 25 mesh on a 1.86 GHz Intel processor. The dispersion curves for
varying twist rates are shown in Figure 5.6.

In the current study, it was investigated how to maximize the value of RQ with respect to the rate
of twisting for the twisted analog to the disk-loaded accelerating structure. We assumed that the
structure was constrained to have a phase velocity equal to c for accelerating relativistic particles.
For each value of the twist rate p, the frequency was adjusted in simulation in order to satisfy the
phase velocity constraint. For the twisted analog to the disk loaded accelerating structure, we show
R
Q performance for inner radii of 0.7 cm, 1.135 cm (design value), and 1.5 cm. This is shown as a
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Figure 5.6: Predicted dispersion curves of the disk loaded twisted equivalent using the 2D frequency
domain method for varying twist rates.
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function of the twist rate in Figure 5.7. For the design case of 1.135 cm inner radius, the frequency
should be adjusted as a function of the twist rate as shown in Figure 5.8.

In conventional accelerator cavities, a small iris radius is desirable for higher shunt impedances,
but has the drawback that it decreases the maximum allowable size of the beam; so a design tradeoff
is often needed. For the experimental prototype, the twist rate was only 89.76 Rad

m , so in practice a
relatively higher value for the twist rate will yield higher values of R

Q . However, Figure 5.7 indicates
that while the R

Q can be increased somewhat by choosing a smaller inner radius, at low twist rates,
a larger radius can actually be desirable.

We then investigated changing the parameter m in Equation 2.17. For a given twist rate,
changing m leads to either compressing or expanding the longitudinal cross sectional shape in the
axial direction. For even values of m, the cross section will be identical to that of a disk loaded
cavity. For odd values of m, the cross section would be a “staggered” version of the original cross
section. Again, we hold all other parameters constant, and show the effect of changing m on R

Q

as a function of the twist rate. We considered values of m ranging from 1 to 3, with m = 2 the
design value. The results are presented in Figure 5.9. In general, the value of m does not effect
the R

Q value significantly except at high twist rates. However, higher values of m lead to a more
complex structure and may be more difficult to manufacture. Generally, then, lower m values are
preferable.

5.5 Twisted Elliptical (TESLA-type) Accelerating Structure

The TESLA (Tera electron-volt Energy Superconducting Linear Accelerator) cavity was designed
to optimize performance for superconducting acceleratorating structures. The longitudinal cross
section of a TESLA-type cavity is shown in Figure 5.1. The major and minor radii of the ellipses,
the distance from each ellipse to the center axis, and the spacing of the ellipses along the z axis
vary between accelerator designs.

To construct the longitudinal helical analog, we again follow the procedure in Section 2.2. The
twisted cross section in this case resembles a “dumbell” shape, and is shown in Figure 5.10. This
cross section, when rotated uniformly, gives the twisted structure shown in Figure 5.11.

The superconducting accelerator at the SNS currently employs two elliptical cavity designs;
one for medium particle beta, and one for high particle beta. The medium beta cavity is selected
for comparison with its longitudinal helical analog. Table 5.3 gives some important parameters of
this SNS structure. A CST simulation of the fields in the cavity is shown in Figure 5.12. The
operating frequency is 805 MHz. Only half of a full six-cell SNS cavity is simulated, making use of
the symmetry of the structure which assures that Ex ≈ Ey ≈ 0 along the equator of each cell.

Upon simulating the longitudinal helical analog of the SNS cavity, it is discovered that the
frequency is higher than the frequency of the normal SNS cavity (as was the case for the longitudinal
helical analog of the SLAC-type cavity). Again, this change in frequency would result in a faster
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Figure 5.8: Simulated frequency as a function of twist rate. (Phase velocity held equal to c.)
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Figure 5.10: Twisted cross section for longitudinal helical analog to TESLA structure.
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Figure 5.11: Longitudinal cross section of twisted TESLA-type cavity.
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Table 5.3: Parameters for the SNS medium beta (beam beta = 0.61) accelerating cavity

Parameter Value Unit
Frequency 805 MHz

Length per Cell 11.36 cm
Inner radius 4.3 cm
Outer radius 16.396 cm

Phase advance per cell π Radians

72



Figure 5.12: CST simulation of an SNS superconducting three-cell half-cavity.
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phase velocity for the wave, so a slight redesign is necessary. In this case, the outer radius of the
structure was increased from 16.4 cm to 22.16 cm, bringing the frequency down close to the original
805 MHz.

Some accelerating parameters of interest are shown in Table 5.4. Here, the original SNS medium
beta superconducting accelerating cavity [44] is compared with its longitudinal helical analog as
well as a variation with a larger diameter. The fields for the enlarged longitudinal helical analog
are shown in Figure 5.13.

Table 5.4: Comparison of TESLA-type accelerating structures

Original SNS Helical LCS LCS analog, increased
cavity analog outer diameter

Frequency (MHz) 805 1059 797
Vacc(V) 2.21× 106 1.08× 106 7.88× 105

U (Joules) 2 1 1
R
Q

(ohms) 242.2 88.3 62.0

vph

(m
s

)
1.83× 108 2.41× 108 1.81× 108
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Figure 5.13: Electric field along a cross section of a helical TESLA-type cavity.
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Chapter 6

Experimental Investigation

The properties of twisted structures are investigated by fabricating and measuring three types
of twisted cavities. The prototypes were printed using a 3-D SLA printer. The structure was
first printed layer by layer using a photo-curable liquid resin. It was then hardened using UV
radiation. The inner surface and the flanges were then electroplated with copper to ensure electrical
conductivity. The disadvantage of the SLA printing method is that due to its finite layer thickness,
fine ridges can be seen on the surface. However, this can be tolerated for 2.8 GHz operation.

To measure the structures, shorting walls are introduced to form a cavity resonator whose
resonant frequencies can be measured and compared with simulation results. With two probes
located at different places throughout the structure, S21 can be measured and from this the resonant
frequencies can be obtained. Moreover, the electric field distribution along the axis of the structure
can be measured through a technique known as “bead pulling” (see [45], for example). In this
method, a small hollow cylindrical conductor is pulled through the cavity via a small hole. As the
metallic bead moves, it interacts with the electric field and causes a change in resonant frequency
proportional to the strength of the electric field at the location of the bead. Such a measurement
system has been prepared and is shown in Figure 6.1.

For these measurements, the bead used was a small needle whose volume was calculated to be
∆V = 1.12× 10−9m3. The needle had length l = 3.6mm and diameter d = 0.63mm. This leads to
an aspect ratio of 5.71. According to [46], for l/d � 1, the metallic cylinder can be considered to
be a spheroid of major axis l/2 and minor axis d/2. Making this approximation, we calculate the
eccentricity

e =

√
1− d2

l2
= 0.985. (6.1)

From here, the depolarization is calculated using [46].

L‖ =
1 + e2

e3

(
1
2

ln
1 + e

1− e − e
)
, (6.2)
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Figure 6.1: Bead and test setup for bead pull measurements.
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from which we have the depolarization factor

F1 =
1

3L‖
. (6.3)

Finally, the R
Q is calculated from the formula

R

Q
=

1
3πf0∆V F1ε0



(∫ √

∆f
f0

cos kz dz

)2

(6.4)

+

(∫ √
∆f
f0

sin kz dz

)2

 ,

which is the same as the formula given in [46], except for a factor of 2 which is due to the fact that
we used the definition

R

Q
=
V 2
acc

2ωU
, (6.5)

where Vacc is the on-axis accelerating voltage and U is the stored energy. ∆f was measured indirectly
through measuring the phase of the transmission coefficient S21 and using the approximation

∆f
f0

=
tan(∠S21)

2QL
, (6.6)

where QL is the measured (loaded) Q of the cavity. Since ∆f is proportional to E2
z , it always has

the same sign. To calculate
√

∆f
f0

, then, requires that the correct branch of the square root be
judiciously chosen. To do this, we examined the ∆f data and found points where it was nearly
zero and the corresponding intervals in between such zero points. Every other interval was then
multiplied by −1 to recover the appropriate sign for

√
∆f
f0

.
To investigate whether end effects played a significant role in the twisted cavity, two identical

prototypes were made of each type. The two prototypes could be joined together using the attached
flanges in order to make a new prototype that was twice as long as the individual ones. By so
increasing the length of the cavity, it could be seen whether there was any significant difference in
the resonant frequencies and directly attribute any such differences to end effects.

6.1 Twisted Rectangular Prototype

A twisted rectangular prototype was designed to work near 2.8 GHz. Each prototype has cross-
sectional dimensions 3.214” by 1.429” and has two complete twists over a length of 8.929”. Figure
6.2 shows this completed prototype.

Initial measurements were taken on this prototype by placing a copper plate on each end of
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Figure 6.2: Twisted rectangular waveguide prototype.
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the waveguide, effectively turning it into a resonant cavity as described above. Two small probes
were inserted in the end plates, and a vector network analyzer was used to measure S21 over a
wide range of frequencies. The maxima of |S21| correspond to the resonant modes of the cavity
structure. Figure 6.3 shows S21 over the range of frequencies spanning the first four TE-type modes
of the resonant cavity. The frequencies and Q values for these modes are shown in Table 6.1. These
measurements were used to validate the newly developed three dimensional NFDTD solver. The
measured frequencies are compared with simulation results and found to be within 0.5% of each
other. An 18 X 8 X 50 grid was employed, and the simulation was allowed to run to 50 ns.

Since the cavity is rather short, end effects were found to limit the effectiveness of the two
dimensional code for this case. This is because the 2D code solves the structure as if it were
infinite. (For this particular prototype, the 2D codes yielded up to 1.8% frequency deviation from
experiment.) Therefore, to further validate the effectiveness of the 2D code, the two identical
prototypes were placed together to make one twisted guide that was twice as long (now with
4 complete twists). The measurement results for the short and long cavities as well as the 2D
NFDTD and 2D NFDFD results are shown in Table 6.2. A 72 X 32 mesh was used.

The trend in the experimental results of Table 6.2 indicates that as the cavity gets longer, the
measured resonant frequency approaches the predictions of the 2D methods, as expected. In the
limiting case of an infinite structure, end effects should become negligible, and it is expected that
the 2D method will perform quite well. The dispersion curves for the short prototype are shown in
Figure 6.4.

Clearly for this (rather rapid) twist rate, the perturbation theory method fails to provide ade-
quate results. This is to be expected, of course, since perturbation theory was designed to work only
when the twist rate is small. Among the other simulation methods presented here, the 3D methods
outperform the 2D methods. This could be explained by the finite length of the prototypes. The
short twisted rectangular prototype has only two complete twists, so end effects introduced by the
copper end walls could play a significant role in the electromagnetics of the resonator. The longer
prototype has twice as many turns, so end effects should be reduced to some extent. It is for such
long structures that the 2D codes begin to show their real advantage.

The bead pull measurement system was tested on this rectangular twisted structure. Figure 6.5
shows an example of the measurement results for the third mode (at 2.95 GHz). The three distinct
minima in arg (S21) indicate the three half cycles of the electric field magnitude along the length
of the cavity. These minima correspond to the positions along the cavity at which the magnitude
of the electric field is the greatest. The irregularities on both edges of the cavity are evidence of
the role of end effects. Thus, the bead pull system can be useful in identifying individual modes.
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Figure 6.3: |S21| for the twisted rectangular prototype showing resonances.

Table 6.1: Experimentally measured first four TE modes for the twisted rectangular prototype
compared to 3D simulation method results.

Measured Q Simulation Frequency Deviation from
frequency (3D NFDTD) experiment

Mode 1 2.747 GHz 7001 2.734 GHz 0.47%
Mode 2 2.820 GHz 3977 2.808 GHz 0.43%
Mode 3 2.947 GHz 1921 2.940 GHz 0.24%
Mode 4 3.139 GHz 1003 3.135 GHz 0.13%

81



Table 6.2: Short and long prototype resonant frequencies compared to 2D simulation method
results.

Short prototype Long prototype 2DNFDTD 2DNFDFD
frequency frequency
2.747 GHz 2.743 GHz 2.734 GHz 2.735 GHz
2.820 GHz 2.808 GHz 2.794 GHz 2.794 GHz
2.947 GHz 2.932 GHz 2.907 GHz 2.906 GHz
3.139 GHz 3.119 GHz 3.083 GHz 3.082 GHz
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Figure 6.4: Dispersion curves showing measured and predicted resonant frequencies for twisted
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Figure 6.5: Bead pull measurement of the large twisted rectangular prototype for third mode.
Measurements for other modes were similar, except with different number of cycles.
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6.2 Twisted Disk-Loaded Analog Prototype

A twisted version of a disk-loaded waveguide has also been designed. The base design was taken
directly from SLAC, although the outer radius was increased as discussed in Section 5.3 in order to
bring the phase velocity of the mode of interest down to c. Table 6.3 gives the physical parameters
of the twisted disk loaded equivalent. The 2.8 GHz disk loaded prototype is shown in Figure 6.6.
The measurements were performed using two prototypes joined end-to-end to achieve six complete
twists.

First, the spectrum of the cavity was obtained by measuring |S21| on a network analyzer. The
results are given in Figure 6.7. Since many modes were present in this spectrum, bead pull
measurements were performed on many different modes to determine the intensity of the electric
field on the axis of the guide. Since the mode of interest here is the 2π

3 mode, the bead pull
measurement should reveal two complete cycles over the six cell cavity. This mode was indeed
found, and the bead pull results are shown in Figure 6.8. Note again that the phase advance per 1

2

turn is determined by the number of twists in a structure, and is not directly related to the phase
advance defined in conventional corrugated structures.

The appearance of the electric field along the cavity axis is seen to be roughly sinusoidal in
the center of the cavity. Since theory predicts the existence of only one space harmonic along the
center axis, and hence a simple sinusoidal variation of the electric field, a sinusoidal curve was
designed to fit the measured data and is shown alongside the data in Figure 6.8. The sinusoid fit
has distribution

y = A sin(kz + φ), (6.7)

where
k =

ω

βc
. (6.8)

Here, β is the relativistic quantity that is equal to 1 for the twisted analog of the disk-loaded cavity.
The other constants, A and φ, are chosen to best fit the measured data. These data show that the
electric field has a sinusoidal appearance close to the center of the cavity, while end effects cause a
deviation close to the cavity end walls. This is expected from our analysis results.

Table 6.3: Parameters for twisted analog to disk-loaded accelerating cavity

Parameter Value Unit
Outer radius 5.493 cm
Inner radius 1.135 cm
Twist Rate 89.76 Radians/m

Phase advance per 1
2 turn 2π

3 Radians
Notch angle 30 Degrees
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Figure 6.6: Large twisted disk-loaded waveguide prototype.
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Figure 6.7: Measured transmission spectrum of twisted analog of the disk-loaded cavity, showing
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Figure 6.8: Measured field in the twisted analog of the disk-loaded cavity.
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Using bead pull measurements for several surrounding modes as well, it was possible to deter-
mine the value of the phase constant for each mode as well as the frequency. This allowed us to
construct the dispersion curves for several different modes and compare to the dispersion curves
predicted by the developed numerical model. The comparison is shown in Figure 6.9.

Since the disk loaded twisted equivalent has potential accelerator application, the R
Q value

was determined experimentally. The measured R
Q was for a standing wave pattern, while in the

simulation we assumed a traveling wave. If a standing wave mode is considered a sum of two
traveling wave modes, it is obvious that only the forward traveling wave (traveling synchronously
with the particle) contributes to the acceleration, and thus to the value of Vacc. However, the energy
of the wave will reflect both the forward and backward components. As a result, the traveling wave
R
Q is twice the standing wave value. Thus, to calculate the traveling wave R

Ql , the measured R
Q was

multiplied by 2 and taken over the length of the cavity.
Using this method to calculate R

Q for the accelerating mode, a measured R
Ql of 776 Ω/m was

obtained, while simulation predicted 716 Ω/m. There are several sources of measurement error. The
formulas given in [46] (and repeated in Equation 6.4) are only valid if all other field components
except Ez are zero, which is a good approximation, but may not be exactly the case for the
measured twisted structures. Temperature drift during the measurement and uncertainty regarding
the precise value of the form factor for the perturbing metal bead also contributed some error. In
addition, end effects may play a role, causing an increase of the field strength close to the metal end
walls of the cavity. This would cause the measured R

Ql to be more than what would be predicted
assuming the twisted structure was infinite in length, explaining why the measured R

Ql values to be
higher than predicted for an infinite structure.

The problem of reducing end effects requires careful consideration. Although not addressed in
detail here, it has been shown previously [8] that in some cases the end effects can be mitigated by
introducing a curved boundary surface as the end wall. Another approach is to eliminate the end
walls and leave them open to a waveguide interface, which then has to be properly matched to the
twisted structure. These considerations are beyond the scope of the present research.

6.3 Twisted TESLA-type Prototype

An elliptical twisted cavity based on the TESLA design was constructed. The base design was
the same as for the SNS medium beta superconducting cavity (although the dimensions have been
scaled for 2.8 GHz operation (the original frequency was 805 MHz). Also, the outer diameter of the
cavity has been increased, as discussed in Section 5.5. Thus, the phase velocity and beam beta is
the same for the prototype as for the original SNS cavity. This facilitates a more direct comparison
between cavity types. Figure 6.10 shows the 2.8 GHz TESLA-type prototype.

Carrying out the measurements in the same way as for the disk-loaded equivalent, we first
measured the spectrum. The transmission is shown in Figure 6.11. Since the mode of interest here
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Figure 6.9: Predicted and measured dispersion curves for two modes of a twisted analog to a
disk-loaded cavity. The mode with higher frequency is the TM accelerating mode. The x’s are
experimental points.
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Figure 6.10: Large twisted TESLA-type waveguide prototype.
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Figure 6.11: Measured transmission spectrum of twisted analog of the elliptical cavity, showing
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is the π mode, the bead pull measurement should reveal eight complete cycles over the six cell
cavity. This mode was found, and the bead pull results are shown in Figure 6.12.

The dispersion curve for the accelerating mode is shown in Figure 6.13. Many additional
resonances were observed other than the ones shown in Figure 6.13, but their relatively low Q
values afforded by the rough cavity walls and other experimental factors prohibited an accurate
bead pull measurement of these modes. However, the data points gathered for the accelerating
mode of interest show good agreement with theory.

The R
Q of the structure was measured using the same technique as before, and a value of 248

Ω/m was obtained, compared to a simulated value of 223 Ω/m.

6.4 Summary

Three types of twisted prototypes were designed and fabricated, and a number of measurements
were performed. The spectrum for each prototype was obtained by transmission measurement using
a network analyzer. The resonant frequencies were obtained in this manner. Several modes were
then selected for bead pull measurements, which allowed an investigation of the intensity of the
electric field on the axis of the twisted guide. The measured electric field distributions confirmed
the prediction from theory that only a fundamental space harmonic is present on the axis of the
guide.

The bead pull results also provided a value for the phase constant for each mode. This allowed
the dispersion curves to be experimentally obtained and compared with numerical simulation.
There was generally excellent agreement between measurement and simulation, further validating
the accuracy of the numerical model. The bead pull results also allowed the correct accelerating
mode to be selected. This accelerating mode was evaluated for R

Q performance, and good agreement
was obtained between measured results and those predicted by numerical simulation.
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Figure 6.12: Measured field in the twisted analog of the elliptical cavity.
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Figure 6.13: Predicted and measured dispersion curves for the accelerating mode of an elliptical
twisted guide. The x’s are experimental points.
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Chapter 7

Conclusion

Twisted waveguides of various cross-sectional geometries were considered and analyzed. In partic-
ular, the slow-wave and dispersion properties of twisted structures were investigated. It was shown
that a twisted waveguide can support waves that travel at speeds slower than c. The structures
considered here have many potential applications in electron traveling wave tubes, linear particle
accelerators, undulators, and wigglers.

Since there is no closed form solution for the electromagnetic fields within a twisted waveguide
or cavity, several previously proposed approximate methods were analyzed, and new numerical
methods were developed that could be generalized to arbitrary cross sections. Finite difference-
based numerical methods were developed in both the time and frequency domains, and in 2D and
3D. 3D methods have advantages for analyzing short structures, where end effects play less of a role
in determining the overall electromagnetic properties of the structure. 2D methods, on the other
hand, are capable of simulating an infinite twisted structure much more efficiently. The time domain
methods that have been developed have the advantage of being simple, completely explicit, and
capable of solving many modes simultaneously given an initial condition. The frequency domain
method, on the other hand, is not in danger of instability, and is capable of directly extracting the
eigenmodes of the guides.

Twisted waveguides and cavities offer a number of advantages as accelerating structures. In
designing a good accelerating cavity, it is very important to maximize the accelerating space har-
monic with respect to all other harmonics, which do not contribute to acceleration and can have
detrimental effects on the beam. A twisted guide, on the other hand, has no higher space har-
monics on the beam axis. Also, the twisted guide could offer much improved handling of higher
order trapped accelerating modes, since such modes can propagate freely out of the twisted guide
and into the higher order mode dampers. This is a consequence of the uniform cross section of the
guide. Finally, the group velocity at π mode can be nonzero, improving mode spacing.

Three particular cross sections were selected for analysis. First, a twisted rectangular cavity is
analyzed as a reference case. This is because the shape is simple and perturbation theory already
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gives a good approximate solution for slow twists. Secondly, a symmetrically notched circular cross
section is investigated, since its longitudinal cross section is comparable to the well known disk-
loaded cavity (used in many accelerator designs, including SLAC). Also, the notched cross section
can be analyzed analytically to some extent using periodic structure theory and field matching.
Finally, a “dumbbell” shaped cross section is analyzed because of its similarity to the well-known
TESLA-type elliptical accelerating cavity.

To validate the results of the theory and simulations, several prototypes were developed em-
ploying these three basic shapes. These prototypes were designed for operation at 2.8 GHz. Mea-
surements were performed on the prototype cavities to determine the field distributions within
the cavities and the dispersion characteristics. These measurements indicated that there is good
agreement between theory and experimental data in terms of resonant frequencies, dispersion char-
acteristics, and axial electric field strength.
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Analysis of Rapidly Twisted Hollow Waveguides
Joshua L. Wilson, Student Member, IEEE, Cheng Wang, Aly E. Fathy, Fellow, IEEE,

and Yoon W. Kang, Senior Member, IEEE

Abstract—The propagation characteristics of twisted hollow
waveguides are considered, and various analysis methods are
proposed. It is shown that a twisted hollow waveguide can
support waves that travel at a speed slower than the speed of
light c. These modes are of particular interest, as slow-wave
structures have many potential applications in accelerators and
electron traveling wave tubes. Since there is no exact closed form
solution for the electromagnetic fields within a twisted waveguide
or cavity, several previously proposed approximate methods are
examined. It is found that the existing perturbation theory meth-
ods yield adequate results for slowly twisted structures; however,
our efforts here are geared toward analyzing rapidly twisted
structures using newly developed finite difference methods. To
validate the results of the theory and simulations, rapidly twisted
cavity prototypes have been designed, fabricated and measured.
These measurement results are compared to simulated results,
and very good agreement has been demonstrated.

I. INTRODUCTION

IT is a well known fact that straight hollow waveguides with
a uniform cross section will only support modes whose

phase velocity is greater than c. At the same time, many
useful microwave devices depend on the interaction of charged
particles with an electromagnetic wave. This is one reason
why there has been interest in slow-wave electromagnetic
structures, which support waves traveling at speeds slower than
c.

We consider a twisted waveguide, formed by extruding any
cross section along a straight line while twisting. Such a
waveguide is unique in that, like a straight guide, the cross
section is uniform along the axis of the guide, yet unlike a
straight guide, it has the capacity to support both slow and
fast modes. As a result, twisted or helical structures have
been considered for their application in traveling wave tubes
and particle accelerators [1], [2]. Such twisted structures could
potentially be easier to manufacture than other types of slow-
wave structures (such as dielectric loaded structures).

Analysis of twisted rectangular waveguides has been carried
out before by Lewin [3] and by Yabe, Mushiake, and Nishio
[4], [5]. In each of these papers, perturbation theory is used to
analyze the propagation characteristics of the dominant quasi-
TE mode in the waveguide. The perturbation theory approach
is very well suited for analyzing the dominant TE mode in
infinite twisted guides with small twist rates. However, this
model is not well-suited for rapidly twisted waveguides. This
is because perturbation theory assumes

k2 − β2 =
π2

a2

(
1 + α1p+ α2p

2 + · · ·
)
, (1)

Joshua Wilson, Cheng Wang, and Aly E. Fathy are with the University of
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Yoon Kang is with the Spallation Neutron Source (SNS) at Oak Ridge
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for some twist rate p, where all higher terms past order p2 are
dropped from the expansion. In this paper, when we speak of
“slow twist rates”, we refer to those cases where perturbation
theory is valid, generally meaning that the product of the twist
rate and the largest cross sectional dimension is less than 1.

At high twist rates, then, it becomes necessary to look
beyond perturbation methods to arrive at the correct solution.
In many cases, the case of rapid twist rate is of more interest
in slow-wave applications, since rapidly twisted guides can
produce more slowing of the electromagnetic wave. Also,
the perturbation theory approach cannot take end effects into
account in a twisted cavity of finite length. This could lead to
errors in the calculation of the fields near the end walls of the
cavity.

Therefore, it is imperative to develop new methods to
analyze rapidly twisted guides. For example, it has been
recently pointed out by Shyroki [6] that there exists an
exact equivalent for twisted and bent waveguide structures,
based on the coordinate transformation properties discussed
by Nicolet, Zolla, Agha, and Guenneau [7], [8]. Working
independently of Shyroki, the authors have developed similar
techniques to address this problem, and this method has been
extended to include arbitrary cross sections without the need
for a staircase-type mesh. We also introduce a new stable
two-dimensional nonorthogonal finite difference time domain
method for solving twisted guides and present experimental
verification of the results.

In this paper, we will present an overview and a mathemati-
cal description of helical geometries. From there, a coordinate
transform is applied to derive three numerical methods for the
solution of twisted guides: a three dimensional time domain
method for simulation of twisted cavities of finite length, a two
dimensional time domain method for efficient, simultaneous
simulation of multiple modes in an infinite twisted structure,
and a two-dimensional frequency domain method for individ-
ual eigenmode calculations. It is shown how these methods
can be used to easily solve twisted guides of arbitrary cross
section. Finally, experimental data are presented and compared
to our methods and the predictions of perturbation theory.

II. OVERVIEW OF TWISTED STRUCTURES

Twisted structures are a special case of the more general
class of periodic structures. However, twisted waveguides and
cavities possess certain additional properties which are not true
of other periodic structures, such as disk-loaded waveguides
or other periodically loaded straight guides. These properties
allow the transformation of the twisted structure into an equiv-
alent straight structure with uniform cross section. The essence
of the transformation is to replace the twisted (or bent) empty
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Fig. 1. A straight equivalent (left) to an arbitrary uniformly twisted waveguide
(right).

waveguide with a straight waveguide whose cross section
is the same, but whose volume is filled with a nonuniform
anisotropic material [6]. The fact that the equivalent guide
is straight greatly simplifies the implementation of boundary
conditions. Also, for uniformly twisted structures, it can be
shown that the anisotropic permeability and permittivity do
not involve the z coordinate. This allows much of the same
machinery previously used to solve two-dimensional propa-
gation problems to be brought to bear on twisted waveguide
problems.

A. Defining a Twisted Geometry

Let us assume that we have a 2D cross section defined by
some implicit function of x and y. An arbitrary straight cavity
can be constructed by specifying a volume

f(x, y) < δ (2)
zmin < z < zmax,

for some constant δ. It is assumed that the boundaries of the
structure are perfectly conducting walls.

Now, we introduce the twisted (or helicoidal) coordinate
transform employed by Lewin [3].

x′ = x cos pz + y sin pz (3)
y′ = y cos pz − x sin pz
z′ = z

Here, p is some constant twist rate, usually expressed in
radians per meter, or R

m . A twisted cavity can now be defined
simply by

f(x′, y′) < δ (4)
zmin < z′ < zmax.

It should be noted that the transverse cross section of such a
helical waveguide or cavity (i.e. cut across a z = constant
boundary) will always yield the same shape, although rotated
about the line x = 0, y = 0. In this sense, the structure has
a uniform cross section. Fig. 1 shows an arbitrary twisted
waveguide, and its corresponding straight equivalent after
applying the coordinate transformation. We will first focus on
twisted waveguides and cavities of rectangular cross section,
and later extend the theory to arbitrary cross sections.

B. Twisted Coordinate System

As discussed in [4], the coordinate transformation (3) is
not orthogonal. Its analysis will require the covariant and
contravariant basis vectors to be defined. In keeping with
the conventional notation of differential geometry, we will
sometimes refer to the coordinate x′ as x1, y′ as x2, and z′

as x3. The corresponding contravariant basis vectors will be
denoted as e1, e2, and e3, and the covariant vectors as e1, e2,
and e3. Following the usual convention, superscripts are used
to refer to contravariant quantities, whereas subscripts are used
to refer to covariant quantities. Since the coordinate system of
interest is nonorthogonal, there should be no expectation that
ei · ej = δij . Instead, the covariant metric tensor must be
defined

gij = ei · ej . (5)

For the twisted coordinate system of (3), it can be shown
from basic differential geometry that

[gij ] =




1 0 −py′
0 1 px′

−py′ px′ p2(x′2 + y′2) + 1


 , (6)

from which we note that z′, the transformed longitudinal
coordinate, does not appear in the metric tensor. Note that
as p tends to 0, [gij ] becomes the identity matrix, which is
expected since in this case, the original Cartesian coordinate
system is recovered. Following Nicolet and Shyroki [7], [8],
[6], we define a straight equivalent waveguide by loading with
a nonuniform material dictated by the metric tensor.

µij = µ0g
ij√g (7)

εij = ε0g
ij√g,

Here, g is the determinant of the metric tensor. Also, gij is
the contravariant metric tensor, which is related to (6) by an
inverse relationship:

[gij ]
−1 =

[
gij
]
. (8)

In this way, the problem becomes one of solving Maxwell’s
equations in ordinary Cartesian coordinates in a non-twisted
structure, but subject to an anisotropic and nonuniform per-
mittivity and permeability. For (6), the value of g turns out to
be one, which can often be used to simplify many expressions
involving the material loading.

In the transformed (straight waveguide) problem, the com-
ponents (Ex, Ey, Ez) and (Hx, Hy, Hz) are equal to the
covariant components (E1, E2, E3) and (H1, H2, H3) in the
physical problem. Note that this permittivity and permeability
vary with position, but do not involve z′, the transformed
longitudinal coordinate. Assuming the fields can be solved in
this manner, the results can be converted back into Cartesian
coordinates by multiplying the appropriate Jacobian. For a
detailed discussion of the mathematical foundations of the
“equivalent waveguide” concept, the reader is directed to the
works of Nicolet, Shyroki, and Chandezon [7], [8], [6], [9].
(Ward and Pendry [10] also made use of a similar transforma-
tion to simplify calculation of photonic Green’s functions.)
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III. THREE DIMENSIONAL FINITE-DIFFERENCE TIME
DOMAIN ANALYSIS

In this section, we will apply the transformation discussed
in the previous section to devolop a three dimensional finite-
difference time domain solver. The ability to transform a
twisted structure into a straight rectangular domain indicates
that a finite difference technique over a structured grid is well-
suited to solve the problem, since the boundary conditions
can be very simple. We developed an accurate and stable
method that could be used for twisted guides. Unfortunately, a
standard implementation of the finite-difference time domain
(FDTD) technique is impossible here because, for example,
in order to calculate E at any point, it is necessary to know
all three components of D at that point due to the material
anisotropy. In a staggered mesh this is very difficult. However,
Holland [11] proposed a remedy for this situation by spatially
interpolating the necessary field components. Unfortunately,
this approach was found to have late-time instability problems.
Schuhmann and Weiland [12] showed that this problem was
due to the asymmetric evaluation of the metric tensor matrix.
Their solution was to retain the spatial interpolation, but
change the way the metric tensor was evaluated.

Around the same time, Thoma and Weiland [13] offered a
mathematical proof for the stability of the spatial discretization
method for a domain loaded with anisotropic material. Assume
that the field vectors have been vectorized, and the curl
operators have been appropriately discretized, leading to the
well-known Maxwell Grid Equations (MGE’s) used in the
finite-integration technique [14]:

Ce = −ḃ (9)

CTh = −ḋ,

where d, e, b, and h are the discrete vectorized representations
of the fields. As mentioned in [13], the fact that the curl
operator acting on the electric field is the transpose of the
curl operator acting on the magnetic field is essential to the
demonstration of stability. The corresponding discrete material
relations are

d = Dεe (10)
b = Dµh,

where Dε and Dµ are matrix operators corresponding to
the discretized permittivity and permeability of the material,
respectively. It was shown [13] that the spatial discretization
scheme is stable if the curl operators were related by a trans-
pose as in (9) (as mentioned earlier), and the material operators
were symmetric. The late-time stability of the scheme was
demonstrated theoretically (and numerically) by proving non-
increasing total field energy.

An alternative to this approach is to use the nonuniform,
unstaggered mesh developed by Liu and Janaswamy [15], [16].
Forward differences are employed for the electric field, while
backward differences are employed for the magnetic field. For

a classic second order scheme,

dEi
dxj

=
Ei(xj + h)− Ei(xj)

h
(11)

dHi

dxj
=
Hi(xj)−Hi(xj − h)

h

Liu [15] demonstrated that the dissipative errors from the
forward and backward difference operators cancel each other
out in such a way that the resulting wave operator is accurate
to second order and has no dissipative error. It is easily
demonstrated that for this mesh structure, the material opera-
tors are symmetric if the metric tensor is symmetric at every
point, which is guaranteed from the definition of the metric
tensor. However, a challenge presents itself around a perfectly
conducting boundary, since enforcing the transpose condition
on the curl operators is nontrivial. This condition requires,
for example, that if the computation of (∇×E)x (i, j, k)
involves a term mEy(i, j, k + 1) for some constant m, then
the computation of (∇×H)y (i, j, k + 1) must have a term
mHx(i, j, k). For interior points, where (11) applies, this con-
dition is satisfied automatically. Near a perfectly conducting
boundary, the computation of ∇ × H is typically altered
to enforce the boundary condition on the electric field. If a
perfectly conducting boundary exists at i = Nx,

(∇×E)y (Nx − 1, j, k) (12)

=
Ex(Nx − 1, j, k + 1)− Ex(Nx − 1, j, k)

∆z

− 0− Ez(Nx − 1, j, k)
∆x

,

(∇×H)z (Nx, j, k)

=
Hy(Nx, j, k + 1)−Hy(Nx − 1, j, k)

∆x

− Hx(Nx, j, k)−Hx(Nx, j − 1, k)
∆y

.

Since (∇×H)z (Nx, j, k) involves a term −Hy(Nx−1,j,k)
∆x but

(∇×E)y (Nx−1, j, k) does not have a −Ez(Nx,j,k)
∆x term, the

transpose condition is not satisfied, and there is no guarantee
of stability around the boundary. Clearly, another method for
enforcing the boundary conditions must be implemented. To
do this, a careful examination of the boundary condition is
necessary around a conducting boundary, namely

(∇×H)x =
dDx

dt
= ε1j

dEj
dt

= ε11 dEx
dt

, (13)

for an x = constant boundary, leading to the updating
formula

dEx
dt

=
1
ε11

(∇×H)x =
1

ε0
√
gg11

(∇×H)x. (14)

Using this relation, the material parameters can be modified
along the boundary:

[ε]−1 =




1
ε0
√
gg11 0 0
0 0 0
0 0 0


 . (15)

Since the covariant components gij are normally computed at
each mesh point, we can express g11 by calculating the (1, 1)
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component of [gij ]−1 and simplifying by making use of the
symmetry of the metric tensor.

[ε]−1 =




1
ε0
√
g

(
g11 + g221g33+g231g22−2g21g31g23

g232−g22g33

)
0 0

0 0 0
0 0 0


 .

(16)

In practice, a very small number is used for the zero elements
of this matrix in order to ensure that the material operator D−1

ε

remains invertible. Now, since the boundary condition around
the boundary is satisfied implicitly, the expression for the curl
of E around the boundary can be

(∇×E)y (Nx − 1, j, k) (17)

=
Ex(Nx − 1, j, k + 1)− Ex(Nx − 1, j, k)

∆z

− Ez(Nx, j, k)− Ez(Nx − 1, j, k)
∆x

,

satisfying the transpose condition and ensuring stability. This
modification of the material parameters around a conducting
boundary in an unstaggered collocated nonorthogonal FDTD
scheme to ensure stability is novel to this approach, and has
not been done by others.

With the material matrices derived in this fashion and using
the normal cartesian curl operators, the grid equations of (9)
can be updated at each time step using an appropriate time
integrator (such as leap frog for a second order scheme).
The result is a scheme rather similar to the nonorthogonal
FDTD method [11], but not subject to the troubling late-time
instability phenomena. The Courant stability criteria for the
time step cannot be expressed by a simple formula, as was the
case for rectangular grids. However, an upper bound can be set
using formulas given in [17]. The authors have designed both
second order schemes (employing classic second order spatial
differences and leap frog time integration) and fourth order
schemes (employing a fourth order spatial difference operator
and RK4 based time integration). In both cases, stable and
efficient operation has been achieved.

To check the late-time numerical stability, the total cavity
energy was computed over time for a simulation of a twisted
rectangular cavity (the one discussed later in this paper). The
results can be shown in Fig. 2 for up to 8 × 106 time steps.
Although the total energy can be seen to fluctuate over time,
no late-time instability has ever been observed with this tech-
nique, either with a second or a fourth order implementation.
The energy fluctuations are due to the inherent error of the
time integrator, as evidenced by the fact that the fluctuations
can be reduced arbitrarily by decreasing the time step and/or
using a higher order integrator such as RK4.

The three dimensional solver is excellent for solving twisted
cavities of finite length. However, for solving infinite twisted
guides (or even very long twisted cavities where end effects
can be neglected), the algorithm can be made much more
efficient by using a two dimensional mesh, rather than a three
dimensional one.
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Fig. 2. Cavity energy versus time showing late time stability of the proposed
3D scheme.

IV. TWO DIMENSIONAL FINITE-DIFFERENCE ANALYSIS

As mentioned previously, the twisted structure is a specific
type of periodic structure, so it is natural to turn to solvers that
use periodic boundary conditions. However, for the twisted
guide, the algorithm can be simplified much further, since the
period can essentially be reduced to zero if the appropriate
coordinate system is chosen, giving a 2D mesh in the limiting
case.

A 2D finite element solver for TE modes in twisted waveg-
uides was proposed by Igarashi and Honma [18]. This solver
works well for slowly twisted guides, where the modes can
still be regarded as basically TE or TM independently. Strictly
speaking, however, TE and TM modes do not exist in a
twisted waveguide (as shown by Yabe and Mushiake [4]). A
hybrid mode is needed to satisfy the boundary conditions, and
this becomes particularly critical as the twist rate becomes
relatively large and there is significant deviation from the
straight waveguide case. Therefore, we applied finite differ-
ence techniques to the straight waveguide equivalent problem.
(A finite element approach also using the straight equivalent
can be found in [19].)

A 2D FDTD algorithm for the efficient solution of straight
waveguide propagation problems was proposed by Xiao and
Vahldieck [20]. This should not be confused with the con-
ventional 2D FDTD method where the fields are assumed to
be uniform in one direction. Here, the idea is to assume a
complex solution of the form

E = E1(x, y, t)e−jβz (18)
H = H1(x, y, t)e−jβz.

Here, we are solving only one traveling wave mode solution
of the twisted guide problem at a time. Any such modes can
exist independently, since they perfectly satisfy the boundary
conditions. Instead of the z derivatives being calculated in the
conventional sense using finite differences, they are calculated
by multiplying that field component by −jβ. In this manner,
the quantities E1 and H1 can be updated using a time
integrator. Although this means that the computations will
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now involve complex quantities rather than the purely real
computations of the classical FDTD method, the mesh can be
reduced from three dimensions to two. A simple uniform mesh
can be used if the material properties are modified around the
conducting boundary surface, as discussed above.

A. Time Domain Implementation

Assuming field solutions of the form (18), a time domain
solver can easily be derived using the same uniform mesh
concept employed for the 3D case, but reduced to two di-
mensions. The real time-domain fields at any point (x, y, z)
in the equivalent straight structure can be recovered from the
complex solution using

E(x, y, z, t) = <
{
E1(x, y, t)e−jβz

}
(19)

H(x, y, z, t) = <
{
H1(x, y, t)e−jβz

}
.

<{} represents the real part. The value of β is a running
variable from 0 to∞. Each value of β will result in a number
of modes with different frequencies. This technique allows
dispersion curves to be obtained efficiently for a large number
of modes. We do this by running a number of simulations
while sweeping the value of β. A multimode initial condition
is used, and an FFT is performed on the output fields of each
simulation to obtain the frequencies of the modes.

A sample spectrum obtained by two dimensional time
domain analysis of a twisted rectangular waveguide is shown
in Fig. 3. As previously mentioned, a mixed-mode initial
condition was purposefully chosen to produce a broad spec-
trum of excited modes. Like the three dimensional method we
developed, there was no late-time instability observed in the
results produced by this method. The mode with the lowest
frequency is the dominant TE-like mode that is investigated
experimentally later in this paper.

We demonstrated that a two dimensional time-domain
method can be used to solve for the fields and the fre-
quencies of many modes in a rapidly twisted structure over
a wide range of frequencies simultaneously. However, the
time-domain solver is not capable of directly extracting the
eigenmodes of the twisted waveguide, so we also discuss an
implementation in the frequency domain.

B. Frequency Domain Implementation

The Finite Difference Frequency Domain method has been
discussed by Lui and Chen [21]. In it, the fields are assumed
to be harmonic in time and in the z direction, so the explicit
time updating scheme of the FDTD method is eliminated
completely and replaced by an eigenvalue problem. In it, all
six field components are solved for directly. Later, it was
found that the number of actual solved field components and
the number of nonzero matrix elements could be reduced
significantly [22], [23]. The solution of curved waveguides
using 2D FDFD has previously been attempted by Lavranos
and Kyriacou [24]. However, their formulation depended on
an orthogonal coordinate system and the ability to separate
the field into axial and transverse components, which was
mentioned in [24] to be invalid for high curvature rates (or

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

frequency (GHz)

n
o
rm

a
liz

e
d
 s

p
e
c
tr

a
l 
p
o
w

e
r

10

dominant
mode 
(TE    like)

modes
order
higher

Fig. 3. Sample spectrum obtained by 2D time domain simulation of a twisted
rectangular guide.

small curvature radii). Thus, the extension of their work to
rapidly twisted waveguides is problematic.

By contrast, this research proposes to solve the twisted
structure in nonorthogonal coordinates which is based on
an exact equivalent, and does not make any simplifying
assumptions that would be invalid for high twist rates. To
use this method to solve the Maxwell equations for a twisted
waveguide structure, the vector Helmholtz equation in gen-
eral curvilinear coordinates is derived. Using the anisotropic
equivalent structure and solving the transformed problem in
Cartesian coordinates, the Maxwell curl equations become

1√
g

[gij ]∇×E = −jωµ0H (20)

1√
g

[gij ]∇×H = jωε0E, (21)

which leads to the eigensystem

1√
g

[gij ]∇×
(

1√
g

[gij ]∇×E

)
= k2

0E. (22)

In this scheme, three vector components have to be com-
puted at each grid point. For example, if a 20 by 20 grid was
employed to solve a twisted square waveguide, the dimension
of the system would be 20 × 20 × 3 = 1200, and the total
number of matrix elements would be 12002 = 1.44 × 106.
Fortunately, the use of finite differences assures us that the
matrix will likely be sparse. If the sparsity of the matrix
is taken into account, it can drastically reduce memory and
calculation time. If the field components are vectorized as
in the Maxwell Grid Equations, the same matrix operators
can be used to calculate both the frequency and time domain
solutions. It is difficult to give a definitive rule regarding
how many mesh points are needed for a good simulation.
In general, it will depend greatly on the judicious choice of
a structured mesh. In practice, one should run several cases
with varying degrees of mesh refinement to determine when
convergence has been achieved.
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(x, y, z) (x’, y’, z’) (u, v, w)

Fig. 4. Cascaded coordinate transformation used to analyze arbitrary twisted
structures.

V. TWISTED GUIDES OF ARBITRARY CROSS SECTION

Thus far, we have only considered twisted waveguides
of rectangular cross section. Fortunately, our choice of a
twisted coordinate system allows a simple cascaded coordinate
transform that permits a solution to arbitrary twisted guides.
The coordinate transform of (3) is combined with a planar
transform

x′ = x′(u, v) (23)
y′ = y′(u, v)
z′ = w.

The coordinates (u, v, w) are arranged in a cartesian grid. This
cascaded transform is illustrated in Fig. 4. The functions u and
v can be derived using finite differences from any commer-
cial or freeware software package capable of generating 2D
structured planar meshes. The authors have made use of a
free utility called UNAMALLA to generate such meshes [25].
The covariant metric tensor for this cascaded transform can
be obtained using the rule

(gij)u = (gmn)x′
∂x′m

∂ui
∂x′n

∂uj
. (24)

Here, (gmn)x′ is the metric tensor for the transform from
cartesian coordinates to the primed coordinates (in this case,
(3)), and the labels ui correspond to (u, v, w). Under this
transformation,

[gij ] = (25)



x′u
2 + y′u

2
x′ux

′
v + y′uy

′
v px′y′u − py′x′u

x′ux
′
v + y′uy

′
v x′v

2 + y′v
2

px′y′v − py′x′v
px′y′u − py′x′u px′y′v − py′x′v 1 + p2(x′2 + y′2)


 .

Also, note again that the longitudinal coordinate does not
appear in the metric tensor, allowing two dimensional methods
to be used. Since typical mesh generation programs output the
coordinates of each point on the grid, x′ and y′ are known
at each mesh point. The derivatives x′u, x′v , y′u, and y′v are
calculated using finite differences. From here, the relations
of (7) can be used to calculate the material properties of the
transformed guide.

One particular case of interest in slow wave applications
is the twisted “keyhole” structure, whose longitudinal cross
section is identical to a disk loaded waveguide. The cross
section, along with the generated UNAMALLA mesh, is
shown in Fig. 5. This twisted structure is similar to the “helical
groove waveguide” discussed by Flouds and Mansell [26]
which has application in traveling wave tubes. (In fact, the

Fig. 5. Keyhole cross section and corresponding mesh.

present theory also provides a method for accurately solving
that structure as well.)

VI. COMPARISON AND DISCUSSION

In this section, an example twisted rectangular waveguide
is considered. The waveguide has cross-sectional dimensions
of 8.16 cm by 3.63 cm. We will use this case to discuss
the results of the present numerical methods in light of the
findings of Lewin, Yabe, Nishio, and Mushiake. To determine
at what value of twist rate there is significant deviation, we
calculate the expressions given in [5] for Lewin’s theory
and that presented by Yabe et. al. The cutoff frequencies
predicted by these two perturbation methods are compared to
the results of the developed two dimensional finite difference
frequency domain method, employing a 50 by 50 grid. The
finite difference calculation was done using MATLAB on
a 1.86 GHz Intel(R) Core(TM)2 CPU. Calculating the first
five eigenmodes took 14 seconds and used roughly 55MB of
memory. The comparison to perturbation theory is shown in
Fig. 6.

For low values of twist rate, all three theories are found to
be in excellent agreement. As the twist rate increases, however,
the results of Lewin begin to be less accurate than those of
Yabe et. al.. This is because Lewin formulated his theory
assuming simple TE waveguide modes, whereas the more
accurate theory presented by Yabe et. al. assumes a hybrid
mode which satisfies the boundary conditions of the twisted
guide. Measurement results were given in [5], and these
showed good experimental agreement at low twist rates. If
the waveguide structures measured in Yabe’s paper are scaled
up to the same physical size as the waveguides investigated
here, the twist rates are all below 13Rm . Fig. 6 shows that at
this twist rate, the theory of [5] is still in close agreement with
the finite difference method presented here.

However, as the twist rate becomes even more rapid, all per-
turbation methods appear to be inadequate. This phenomenon
explains the drastic difference between the perturbation theory
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Fig. 6. Cutoff frequencies predicted for 8.16 cm by 3.63 cm rectangular
waveguide.

predictions and our measured results for the rapidly twisted
rectangular cavity. This result is to be expected, since pertur-
bation theory neglects higher order correction terms for rapid
twists. In order to verify the accuracy of the methods applied
to rapidly twisted structures, it becomes necessary to turn to
commercial software (such as HFSS or CST) or experimental
validation.

VII. EXPERIMENTAL VERIFICATION

To validate the developed three dimensional finite difference
method, a twisted rectangular cavity prototype with the same
cross sectional dimensions as in the previous section was
designed to work near 2.8 GHz. The cavity has two complete
twists over a length of 22.7 cm. For this case (p = 55.4Rm ),
Fig. 6 shows that perturbation methods clearly will not suffice.
The prototype was printed using an SLA (Stereolithography
Apparatus) technique and then copper plated on the inside.
This method can allow the rectangular cross section to be
accurately preserved even for large twist rates. Fig. 7 shows the
completed prototype. This particular prototype was selected
because of its moderately high twist rate, enabling the accuracy
of the newly proposed methods to be compared with the
existing perturbation theory method.

Measurements were taken on this prototype by placing a
copper plate on each end of the waveguide, effectively turning
it into a resonant cavity. Two small probes were inserted in
the end plates, and a vector network analyzer was used to
measure the transmission coefficient S21 over a wide range of
frequencies. The maxima of |S21| correspond to the resonant
modes of the cavity structure. Fig. 8 shows S21 over the range
of frequencies spanning the first four TE-like modes of the
resonant cavity. The frequencies and Q values for these modes
are shown in Table I.

Since the cavity is rather electrically short, end effects
were found to limit the effectiveness of the two dimensional
code for this case. A straight rectangular waveguide can be
converted into a cavity by introducing shorting plates without
affecting the eigenmodes (since the tangential electric field
of TE modes in the waveguide naturally vanishes each half

Fig. 7. Twisted rectangular waveguide prototype.

cycle). Unfortunately the same cannot be said of a twisted
rectangular guide, so some perturbation in the mode will be
introduced by the metal wall.

An 18 X 8 X 50 grid was employed for the 3D solver,
and the simulation was allowed to run to 50 ns. The phase
constant was selected by establishing an initial condition
that contained a particular number of half-cycle variations
in the longitudinal direction. The frequency of the resonant
mode was then obtained through the use of an FFT. These
frequencies were then compared to the measured frequencies
and found to be within 0.5% of each other. By comparison, the
error using the perturbation theory equations given by Yabe,
Mushiake, and Nishio in [5] was more than 8% for each of
the modes.

For the 2D method, using a 72 X 32 2D mesh, the code
yielded up to 1.8% frequency deviation from experiment.
Again, the 2D code solves the structure as if it were infinite.
Therefore, to further validate the effectiveness of the 2D code,
another prototype was constructed that was identical to the
first, except twice as long, now with 4 complete twists. The
measurement results for the short and long cavities as well as
the 2D NFDTD and 2D NFDFD results are shown in Table
II.

The trend in the experimental results of Table II indicates
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TABLE I
EXPERIMENTALLY MEASURED FIRST FOUR TE-LIKE MODES FOR THE SHORT TWISTED RECTANGULAR PROTOTYPE COMPARED TO 3D SIMULATION

RESULTS.

Measured frequency Q Simulation Frequency (3D FDTD) Deviation from Experiment
Mode 1 2.747 GHz 7001 2.734 GHz 0.47%
Mode 2 2.820 GHz 3977 2.808 GHz 0.43%
Mode 3 2.947 GHz 1921 2.940 GHz 0.24%
Mode 4 3.139 GHz 1003 3.135 GHz 0.13%

TABLE II
SHORT AND LONG PROTOTYPE RESONANT FREQUENCIES COMPARED TO 2D SIMULATION METHOD RESULTS.

Short Prototype Frequency Long Prototype Frequency 2DNFDTD 2DNFDFD
2.747 GHz 2.743 GHz 2.734 GHz 2.735 GHz
2.820 GHz 2.808 GHz 2.794 GHz 2.794 GHz
2.947 GHz 2.932 GHz 2.907 GHz 2.906 GHz
3.139 GHz 3.119 GHz 3.083 GHz 3.082 GHz
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Fig. 8. Measured |S21| for the short twisted rectangular prototype showing
resonances.

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

10 20 30 40 50 60beta (R/m)

fr
e
q

u
e
n

c
y
 (

G
H

z
)

experiment 2DNFDTD Yabe, Mushiake

2DNFDFD 3DNFDTD

Fig. 9. Dispersion curves showing measured and predicted resonant frequen-
cies for twisted rectangular cavity. (beta is the phase constant.)

that as the cavity gets physically longer, the measured resonant
frequency approaches the predictions of the 2D methods, as
expected. In the limiting case of an infinite structure, end
effects should become negligible, and it is expected that the
2D method will perform quite well.

The experimental cavity results were used to generate dis-
persion curves. These are compared to the various simulation
methods we developed in Fig. 9.

To test the two-dimensional methods for twisted guides of
arbitrary cross section, a keyhole cross section was defined
in the transverse plane, as in Fig. 5. Since this structure has
potential application for particle acceleration purposes, a TM
mode near 2.8 GHz was chosen for analysis. A prototype
was constructed with three complete twists over a length of
21 cm. This particular design was chosen so that the phase
velocity of the wave would be exactly c, which is necessary for
most electron accelerators and traveling wave tubes in which
particles move at relativistic velocities extremely close to the
speed of light. The measured frequency was 2.8135 GHz. For
a 25 by 25 grid, the 2D frequency domain method yielded a
resonant frequency of 2.8159 GHz while the 2D time domain
method gave 2.8158 GHz. The fact that the measured results
are very close to prediction indicates that for this TM mode,
the perturbations caused by the end walls are small (at least
for that value of twist rate).

In order to ensure that the mode measured was indeed the
mode predicted by the model, the phase constant was measured
and compared with the β value used in the simulation. Here,
the mode of interest has two complete cycles over the length
of the cavity for an expected β = 59.84Radm . To experimen-
tally measure β, a bead pull measurement was performed to
measure the magnitude of the electric field on the axis of the
guide. In this perturbational technique, a probe is placed at
each end of the cavity. The transmission is measured at the
resonant frequency while a small metallic bead is passed along
the cavity axis. The very small shift in resonant frequency
(measured as a change in the phase of the transmission) is
proportional to the square of the magnitude of the electric
field at the bead position. The interested reader is directed to
[27], [28] for a detailed discussion of this well-known method.

The results of the bead pull are shown in Fig. 10. The
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Fig. 10. Bead pull measurement of a 2.8 GHz TM mode of the “keyhole”
twisted structure

Fig. 11. CST simulation of the “keyhole” twisted structure

horizontal axis shows the bead position along the axis. The plot
reveals four distinct minima in the phase of the transmission
(corresponding to maxima in the electric field strength). This is
consistent with the expectation that the resonant mode has two
complete cycles over the cavity length. The small difference
between the two middle peaks is likely due to measurement
error.

The cavity was also simulated in CST Microwave Studio
(Version 2006) [29] (a commercial EM simulation tool which
can perform well for slow to moderate twist rates). The
predicted resonant frequency was 2.817 GHz, very close to
the measured resonant frequency. The electric field is shown
in Fig. 11, which indicates four maxima in the magnitude
of the electric field along the cavity axis, just as measured
in the bead pull. The measured phase velocity, calculated
from the measured resonant frequency and phase constant, is
2.95× 108m

s . This offers great practical promise, since many
disk loaded structures with similar longitudinal cross section
to this twisted structure are designed to accelerate electrons at
near relativistic velocities.

Both the CST results and the bead pull measurements indi-
cate that the intensity of the electric field increases close to the
end walls of the cavity. This is to be expected, since these walls
will cause a perturbation of the mode that would otherwise
exist in an infinite twisted waveguide. The three dimensional
method must be used if the effects of the end walls cannot
be neglected. Analysis of the TM accelerating mode using
the proposed techniques is very efficient. For example, using
the 2D frequency domain technique, calculation of each mode
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Fig. 12. Predicted dispersion curves of the “keyhole” twisted structure using
the 2D frequency domain method for varying twist rates.

for a 25 by 25 grid takes less than 1 second on a 1.86 GHz
Intel processor running MATLAB. This allows detailed studies
to be performed regarding the dispersion characteristics of a
twisted guide, among other things. For this “keyhole” design,
the dispersion curves for a variety of twist rates is shown
in Fig. 12. It is interesting to note that unlike a TE mode
in a twisted rectangular guide, the cutoff frequency is seen to
decrease as the twist rate increases. Perturbation theory applied
to the dominant mode of a twisted rectangular guide predicts
the opposite effect (i.e. an increase of the cutoff frequency with
increasing twist rate) [5]. This gives one example of how the
present method can be readily applied to do very rapid design
and optimization of twisted slow wave structures. In addition
to dispersion information, other useful figures of merit can be
extracted from the eigenmodes of the 2D frequency domain
solutions.

VIII. CONCLUSION

The problem of rapidly twisted structures has been analyzed
in detail. The existing perturbation theory methods were found
to be quite accurate for low twist rates, but faster twist
rates required new models to be developed. Efficient three
dimensional and two dimensional numerical techniques have
been proposed to solve this problem. These methods are based
on an exact straight equivalent waveguide with anisotropic
permittivity and permeability that do not vary along the longi-
tudinal direction. This uniformity along the axis of the twisted
guide enables the use of conventional 2D nonorthogonal finite
difference time and frequency domain solvers.

This work expands the previous work done by Shyroki [6]
by treating arbitrary cross sections without the need for a
staircase-type mesh and developing a stable two-dimensional
(and three dimensional) nonorthogonal finite difference time
domain method to solve twisted guides. Arbitrary cross sec-
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tions can be analyzed simply using these techniques if a
two dimensional structured grid can be created. In addition,
good agreement with experimental measurements has been
achieved. Moreover, the contributions of end effects to the
twisted cavities are investigated experimentally by construct-
ing both long and short twisted prototypes. The experimental
data suggests that the 2D methods in both the time and
frequency domain become accurate when the twisted structure
is very long.

The accuracy and efficiency of these methods will pro-
vide an attractive way of designing slow-wave structures
for accelerators and traveling wave tubes. It is possible to
predict accurately the slowing of the electromagnetic wave,
the dispersion relationship, mode characteristics, and higher
order modes for such devices. The reduced complexity of
these methods circumvents meshing problems associated with
existing numerical solvers for very rapidly twisted geometries.
As a result, the solutions are obtained in a very efficient
fashion.
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Abstract—A new class of accelerating structures employing a
uniformly twisted waveguide is considered. Such a twisted helical
structure can be designed to have a specified longitudinal cross
section. The design of twisted accelerating structures is discussed
with regard to particle velocity and strength of the accelerating
field. It is shown how to choose a cross section and twist rate
in order to produce a given amount of wave slowing. Obtained
wave velocities range from the speed of light, c, to 61% the speed
of light, while R

Q
values of over 1,000 have been achieved. A

novel two dimensional finite difference based solver is employed
to analyze the twisted structures considered. Two twisted cavity
prototypes are fabricated and measured, and excellent agreement
is obtained between measured and predicted values.

I. INTRODUCTION

ACCELERATING structures exploit the interaction of an
electromagnetic wave with a charged particle to increase

the kinetic energy of the particle. In order to accomplish
this, the velocity of the wave must be matched to that of
the particle. This precludes the use of any simple hollow
waveguide structure, as these all support waves that travel
faster than c.

The problem of slowing the phase velocity of an electro-
magnetic wave to c or below has been a topic of extensive
investigation. For example, a simple method that has been
thoroghly investigated involves using a TM mode in a waveg-
uide partially loaded with dielectric material [1], [2], [3].
Dielectric loaded accelerating structures show great promise
in damping of higher order modes [1], yet the presence of
the dielectric presents challenges in areas of manufacturing
cost and vacuum conditioning. Also, application of dielectric
loaded cavities to superconducting accelerators is not practical.

The standard approach to slowing the EM wave has been to
introduce periodic reactive loading to the hollow waveguide
or cavity. This can be done by using periodically spaced
irises as in the conventional disk-loaded accelerating structure
(see [4] for a typical design) or by using some smoothly
corrugated guide as in the elliptical TESLA-type cavity [5].
Whatever the nature of the reactive loading, the result is a
slow-wave periodic structure whose phase velocity is matched
to the particle. However, the non-uniform cross section of these
cavities gives rise to troubling trapped modes which can cause
beam instabilities, fields whose magnitudes vary significantly
along the axis, and added manufacturing costs.

Here, we discuss the accelerator application of a uniformly
twisted hollow waveguide and compare with conventional

Yoon Kang is with the Spallation Neutron Source (SNS) at Oak Ridge
National Laboratory

accelerating cavities. Because the uniformly twisted guide is
geometrically self-similar along a continuous helical path, it
deserves consideration as a special class of periodic structure
and possesses unique features making it an interesting candi-
date for accelerating structures.

The idea of a twisted waveguide accelerating structure
was proposed in a previous paper [6]. In that paper, it was
shown that a twisted waveguide could support electromagnetic
waves that traveled with a phase velocity less than c. Since
this type of structure has a uniform cross section, it can
be fabricated without welding or brazing unlike reactively
loaded accelerating structures. In [6], MAFIA code was used
to simulate the twisted waveguide using stacked waveguide
slices. In this paper, we extend the analysis of the twisted
waveguides using a specially designed two-dimensional sim-
ulation method [7]. Although ordinary EM codes (such as
MAFIA) can yield accurate results, the custom code we have
developed specifically for twisted guies can run much faster
and facilitate easier optimizations.

An important design consideration is the optimization of the
shunt impedance R, defined as

R =
V 2

2P
, (1)

where V is the on-axis accelerating potential and P is the
dissipated power. Because this parameter is dependent on the
material of the cavity walls, the shunt impedance is often
normalized to the quality factor Q. Thus, the value of R

Q is an
important figure of merit for a cavity geometry. Often, when
dealing with waveguides or long cavities, R

Q is normalized to
the length, making R

Ql a useful figure of merit if l is the cavity
length.

In this paper, we discuss the helical geometry specifically
as it compares to ordinary rotationally symmetric accelerat-
ing structures. Then, the electromagnetic modes of twisted
structures are analyzed and discussed. Prototypes of twisted
accelerating structures are presented, and experimental results
are compared to theory. The dispersion characteristics of
twisted guides are discussed with relation to conventional
periodically loaded accelerating structures. Finally, we present
some practical design considerations for twisted accelerating
guides.

II. TWISTED GEOMETRY

The mathematical definition of a twisted volume was given
in a previous paper [7], where we utilized the twisted (or
helicoidal) coordinate transform employed by Lewin [8].
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Fig. 1. A twisted analog to the disk-loaded slow-wave structure

x′ = x cos pz + y sin pz (2)
y′ = y cos pz − x sin pz
z′ = z

Here, p is some constant twist rate. We consider that a
twisted structure can be designed to have any desired longitu-
dinal cross section by appropriately selecting a transverse cross
section to be twisted. Thus, all the well-known accelerator
geometries (iris-loaded, elliptical, etc.) have twisted analogs
whose longitudinal cross section is identical.

Such a twisted analog can be constructed in the following
fashion. Assume we have a rotationally symmetric structure
defined by

ρ < g(z), (3)

where g is some periodic function with periodicity ∆z. We
define a 2D transverse cross section in polar coordinates (ρ, φ)

ρ(x, y) < g

(
φ(x, y)∆z

π

)
(4)

and set the twist rate
p =

π

∆z
. (5)

The transformation of Equation 2 is then used to generate
the analog. The twisted analog also allows some interesting
comparisons to be made between twisted and rotationally
symmetric non-twisted structures, as both can be used as slow
wave structures.

The twisted analog defined above is not unique. It is easily
observed that any two dimensional profile defined by

ρ(x, y) < g

(
mφ(x, y)∆z

2π

)
(6)

and twist rate
p =

2π
m∆z

(7)

has identical longitudinal cross section to the original rotation-
ally symmetric structure for any even integer m. An example
of such a twisted analog is shown in Fig. 1. In this case, the
“keyhole” cross section of (a) is extruded along a twisted path
to form the volume (b), whose longitudinal cross section is
identical to a disk-loaded accelerating structure.

In this study, two twisted structures are compared to their
rotationally symmetric analogs. The first is the “keyhole”
structure just described, and the second is an analog to
the elliptical TESLA-style cavity, specifically related to the
medium beta superconducting cavity at the Spallation Neutron
Source (SNS) [9].

III. ELECTROMAGNETIC MODES IN TWISTED
WAVEGUIDES

Because the twisted waveguides under consideration are
periodic in z, Floquet’s theorem predicts that the fields will
also have the same periodicity, except for a multiplicative
phase factor. In this case, the period of the twisted waveguide
will be 2π/p. However, for the case of a uniformly twisted
waveguide, it turns out that one can make an even stronger
statement.

Assume the fields at some z = z0 are known. Moving
a distance dz along the axis of the twisted structure, the
structure is exactly the same except for some rotation of angle
p dz. Therefore, as shown in [10] for structures having “screw
symmetry”, the fields intuitively should be the same except
for a phase factor. This relation holds true for any dz, not
just dz = 2π/p. In particular, we can send dz to zero and
discover that for an infinite twisted waveguide, the variation
of the fields along the axis of propagation involves only simple
phase variation. In other words, except for the constant rotation
of the fields, the z dependence can be factored out as e−jβz

for some phase constant β. In terms of the twisted coordinates,

E(x′, y′, z′) = E0(x′, y′)e−jβz
′

(8)

This separation of the z dependence for twisted guides is
significant, since it cannot generally be done for periodic
structures. In Equation 8, it was possible to replace e−jβz

with e−jβz
′
, since z and z′ are numerically equal. Similar

relations hold for H . Thus, if a twisted coordinate system
is used, the fields in a twisted waveguide can be represented
in exactly the same fashion as for an infinite straight waveg-
uide. A more mathematical way of showing this equivalence
between straight and twisted fields involves an equivalent
straight waveguide loaded with some anisotropic material.
This equivalent was given approximately in [6], and an exact
equivalent is given in [11], [7]. The anisotropic material
equivalent also shows that one can make a twisted structure
effectively “look” like a dielectric loaded structure without
having the undesirable effects associated with real dielectrics.

In addition to simplifying the analysis greatly, this property
of the uniformity of the fields along the axis of propagation
also provides practical advantages for accelerating structures.
In a periodic structure, the fields can be expressed by an
infinite Floquet expansion. For example,

E =
∞∑

n=−∞
En(x, y)ejβnz (9)

where
βn = β0 +

2πn
∆z

. (10)

However, in the twisted coordinate system of (2), we have
En = 0 for all n 6= 0, due to the fact that the waveguide
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TABLE I
PARAMETERS FOR TWISTED ANALOG TO DISK-LOADED ACCELERATING

CAVITY

Parameter Value Unit
Outer radius 5.493 cm
Inner radius 1.135 cm
Twist Rate 89.76 Radians/m

Phase advance per 1
2

turn 2π
3

Radians
Notch angle 30 Degrees

becomes equivalent to a straight waveguide under the coor-
dinate transformation. Thus, only a single space harmonic is
present. In conventional coordinates (cylindrical or cartesian),
an infinite number of space harmonics will still be needed,
but along the z axis (which coincides with the z axis of the
twisted coordinate transform) all higher space harmonics must
vanish:

En(x = 0, y = 0) = 0, n 6= 0. (11)

The implication of this is that along the axis of an infinite
twisted structure there is no variation in the magnitude of
the fields – only in the phase. This distinguishes the twisted
guide from conventional slow-wave structures (like corrugated
or iris-loaded waveguides). Since only the E0 harmonic travels
synchronously with the particle beam and acts cumulatively to
accelerate the particles, the elimination of other harmonics is
very desirable, and it could be accomplished using the twisted
structure.

A word should be said here regarding a well-known twisted
structure already used in traveling wave devices, namely the
helix traveling wave tube. Although such a slow-wave device
shares much in common with the twisted waveguides we are
proposing, there are also some notable differences. First, the
helix is an open waveguide structure meaning that the fields
do not drop to zero outside the structure but rather decay
exponentially, roughly following a modified Bessel function
of the second kind. This presents a problem at high power,
where these fields may not be negligible. Second, the radial
component of the wavenumber h =

√
β2 − k2

0 , which dictates
the decay rate for the fields outside the helix, approaches zero
as the phase velocity of the wave approaches c, indicating that
the helix becomes inefficient at relativistic velocities.

To demonstrate the slow-wave capabilities of twisted struc-
tures, we again consider the shape of Fig. 1. To design
a practical accelerating structure having this geometry, we
started out with the dimensions of the well-known SLAC
accelerating cavity [4]. It was found, however, that the twisted
analog had phase velocity greater than c. To lower the phase
velocity, the outer diameter of the cavity was increased until
the velocity was c. The physical parameters of this structure
are given in Table I.

The notch angle referred to in Table I is the angle of the
notch in the “keyhole” transverse cross section. This example
shows how a twisted structure can easily be compared to a
non-twisted rotationally symmetric structure. For example, in
the SLAC accelerating cavity, the phase advance per cell is
2π
3 . Similarly, one can consider one half twist of the twisted

waveguide as a “cell” and define a 2π
3 mode in the same way.

Fig. 2. Electric field of twisted analog of a disk-loaded cavity: CST
simulation

0 2 4 6 8 10 12

z position (cm)

|E
z|

on axis

0.6cm off axis

0.9cm off axis

Fig. 3. Magnitude of Ez for on-axis and off-axis particles: CST simulation

A visual representation of the fields in such a structure
is provided using CST Microwave Studio simulation [12],
and is shown in Fig. 2. A periodic boundary condition was
established at the ends of the twisted structure. The Microwave
Studio solution represents a standing wave rather than a trav-
eling wave solution. Such a solution can be easily constructed
from two counterpropagating traveling wave solutions. The
vector electric field is shown as arrows in the figure. The z
component of the electric field is plotted in Fig. 3 for a particle
on the z-axis, a particle 0.6 cm off axis, and a particle 0.9 cm
off axis. Very far from the center of the guide near the groove
region, it is easily seen that the field does not vary sinusoidally
with the longitudinal coordinate z, indicating that many space
harmonics are present in this region. On the other hand, close
to the center of the guide, the field variation is sinusoidal as
all space harmonics except the fundamental disappear.
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Fig. 4. Fabricated “keyhole” cross-section prototype

IV. EXPERIMENTAL INVESTIGATION

A twisted cavity prototype for the “keyhole” structure
with the dimensions in Table I was printed using an SLA
(Stereolithography Apparatus) process. The inside surface was
electroplated with copper. The prototype is shown in Fig. 4.
Two identical prototypes were made and placed end to end for
a total of three complete twists. The structures were terminated
with copper shorting plates to form a cavity resonator. A
small probe was inserted through each shorting plate, and the
transmission was measured to determine the cavity resonances.
A bead pull measurement was also performed to determine
the value of the phase constant for each of the resonances.
The theory of the bead pull technique is discussed in [13],
[14], [15] and summarized in Appendix A. This measurement
allowed us to determine the variation of the electric field along
the cavity axis, from which the phase constant could easily
be extracted. Knowing the resonant frequency and the phase
constant for each resonant mode, it is now possible to compare
the dispersion characteristics to those predicted by theory [7].
The comparison is shown in Fig. 5. There is generally good
agreement between the experimental and theoretical results.
The discrepancies are likely caused by disturbances introduced
by the end walls, which perturb the cavity fields from what
they would otherwise be in an infinite twisted guide.

A twisted analog to an elliptical (TESLA-style) cavity is
also considered. This design was accomplished in the same
way as the disk-loaded analog design, by using (4)-(5). It
was found necessary to increase the outer radius in order to
ensure that the relativistic β = v

c = 0.61, which is the same
as the SNS medium-beta superconducting cavity. (Note that
this β is different from the phase constant discussed earlier.)
The final prototype design had inner radius 1.24 cm, outer
radius 3.37 cm, and twist rate 96.2 Rad/m. Fig. 6 shows the
“dumbbell” shape of the transverse cross section of this slow

0 20 40 60 80 100
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2

2.5

3

3.5

Beta (R/m)

fr
eq

 (
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H
z)

Fig. 5. Predicted and measured dispersion curves for two modes of a twisted
analog to a disk-loaded cavity. The mode with higher frequency is the TM
accelerating mode. The x’s are experimental points.

Fig. 6. Cross section and cutaway view of the twisted elliptical prototype.

wave structure, and a cutaway view showing the longitudinal
cross section, which is identical to the well-known TESLA-
type elliptical profile. Again, two identical prototypes were
fabricated, and when placed end to end provide four complete
twists. The prototype is shown in Fig. 7, and the dispersion
curve for the accelerating mode is shown in Fig. 8. Many
additional resonances were observed other than the ones shown
in Fig. 8, but their relatively low Q values afforded by the
rough cavity walls and other experimental factors prohibited
an accurate bead pull measurement of these modes. However,
the data points gathered for the accelerating mode of interest
show good agreement with theory.

In addition to the dispersion characteristics, the profile of
the electric field gathered from the bead pull measurement
was analyzed, and experimental R

Q values for each of the
two prototypes were obtained. The z component of the axial
electric field is proportional to the root of the change in
resonant frequency due to the bead at each position (see
Appendix A). These measurements are shown for the twisted
analog to the disk-loaded and elliptical cavities in Figs. 9 and
10, respectively.

The appearance of the electric field along the cavity axis
is seen to be roughly sinusoidal in the center of the cavity.
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Fig. 7. Fabricated elliptical cross-section prototype
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Fig. 8. Predicted and measured dispersion curves for the accelerating mode
of an elliptical twisted guide. The x’s are experimental points.

Since theory predicts the existence of only one space harmonic
along the center axis, and hence a simple sinusoidal variation
of the electric field, a sinusoidal curve was designed to fit the
measured data and is shown alongside the data in Figs. 9 and
10. The sinusoid has distribution

y = A sin(kz + φ), (12)

where
k =

ω

βc
. (13)

Here, β is the relativistic quantity that is equal to 1 for the
twisted analog of the disk-loaded cavity and 0.61 for that of
the elliptical cavity. The other constants, A and φ, are chosen
to best fit the measured data. These data show that the electric
field has a sinusoidal appearance close to the center of the
cavity, while end effects cause a deviation close to the cavity
end walls.

Using the techniques of [15], the R
Ql of the twisted structures

were found. Table II shows a comparison between measured

0 5 10 15 20 25
−4

−2

0

2

4
x 10

−3

distance (cm)

(∆
 f/

f 0)1/
2

 

 Measured Fit

Fig. 9. Measured field in the twisted analog of the disk-loaded cavity.
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Fig. 10. Measured field in the twisted elliptical cavity.

and predicted values. There are several sources of measure-
ment error. The formulas given in [15] (and repeated in
Appendix A) are only valid if all other field components
except Ez are zero, which may not be exactly the case for
the measured twisted structures. Temperature drift during the
measurement and uncertainty regarding the precise value of
the form factor for the perturbing metal bead also contributed
some error. In addition, end effects may play a role, causing
an increase of the field strength close to the metal end walls
of the cavity. This would cause the measured R

Q to be more
than what would be predicted assuming the cavity was infinite
in length, explaining why the measured R

Q values to be higher
than predicted for an infinite structure. This is particularly the
case with the elliptical structure, where edge effects are seen
from Fig. 10 to be quite pronounced.

The problem of reducing end effects requires careful con-
sideration. Although not addressed in detail here, we have
shown previously that in some cases the end effects can be
mitigated by introducing a curved boundary surface as the
end wall [6]. Another approach is to eliminate the end walls
and leave them open to a waveguide interface, which then
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has to be properly matched to the twisted structure. These
considerations are beyond the scope of the present paper.

TABLE II
COMPARISON OF MEASURED AND PREDICTED R

Q
VALUES FOR TWO

TWISTED PROTOTYPES

Cavity type Measured R
Ql

Predicted (Infinite Structure) R
Ql

Disk-loaded 776 Ω/m 716 Ω/m
Elliptical 248 Ω/m 223 Ω/m

V. DISCUSSION OF DISPERSION CHARACTERISTICS

In this section, we will discuss two desirable features of the
dispersion characteristics that are unique to twisted guides.
First, we would show that the dispersion characteristics are
particularly desirable in the prevention of higher order trapped
modes. Second, we demonstrate that the problem of mode
separation can be dealt with more easily than in non-twisted
periodic geometries.

Higher order trapped modes are troublesome in most con-
ventional periodically loaded accelerating structures because
of the appearance of stop-bands in the dispersion charac-
teristic. When beam energy is deposited in such a stop
band, the excited fields cannot propagate out of the structure
to higher-order mode dampers and remain “trapped” in the
accelerating cavity. Such modes are particularly problematic
in superconducting cavities, because the large Q values allow
these unwanted resonances to continue for a long time before
finally decaying due to wall losses. In the case of the twisted
guide, however, there are no stop bands above the cutoff
frequency of the fundamental propagating mode. Although this
may not be apparent from the appearance of Figs. 5 and 8,
these figures show only the first branch of the propagating
modes (i.e. those whose phase constant is between 0 and π

∆z ).
In reality, these modes can be thought of to continue on to
infinitely high values of β by virtue of the straight waveguide
equivalent.

A second observation relates to mode spacing in these
accelerating structures. Many periodically loaded accelerating
cavities operate very efficiently close to π mode, or 180
degrees of phase shift per unit cell. However, near the point
on the dispersion curve where β = π

∆z , the group velocity
(calculated as dω

dβ ) typically approaches zero. This prohibits
effective operation, since nearby unwanted modes would be
excited very easily. One solution to eliminate the problem of
zero group velocity at π mode is the deliberate creation of
confluent pass bands, with the point of confluence judiciously
selected as the point of the desired π mode operation [16].
However, this requirement places a significant constraint on
the design of the periodic accelerating structure. In the case
of the twisted waveguide no such problem exists, as the group
velocity remains nonzero for all values of the phase constant
β.

VI. DESIGN CONSIDERATIONS

In our discussion of practical design consideration, we will
consider mainly variations on the twisted analogs to the disk-
loaded accelerating structure. While there are infinite number
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Fig. 11. Simulated effect of changing the inner radius on R
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Fig. 12. Simulated frequency as a function of twist rate. (Phase velocity
held equal to c.)

of possible cross sections, this shape can be particularly
instructive due to its simplicity. Other cavity shapes, such as
the twisted elliptical cavity, can be thought of (at least to first
order approximation) as a disk-loaded analog with rounded
edges.

In the current study, it was investigated how to maximize the
value of R

Q with respect to the rate of twisting for the twisted
analog to the disk-loaded accelerating structure. We assumed
that the structure was constrained to have a phase velocity
equal to c for accelerating relativistic particles. For each value
of the twist rate p, the frequency was adjusted in simulation in
order to satisfy the phase velocity constraint. RQ was calculated
from simulation using the technique found in Appendix B. For
the twisted analog to the disk loaded accelerating structure,
we show R

Q performance for inner radii of 0.7 cm, 1.135 cm
(design value), and 1.5 cm. This is shown as a function of the
twist rate in Fig. 11.

For the design case of 1.135 cm inner radius, the frequency
should be adjusted as a function of the twist rate as shown in
Fig. 12.

In conventional accelerator cavities, a small iris radius is
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Fig. 13. Simulated effect of changing m on R
Q

.

desirable for higher shunt impedances, but has the drawback
that it decreases the maximum allowable size of the beam;
so a design tradeoff is often needed. For the experimental
prototype, the twist rate was only 89.76 Rad

m , so in practice
a relatively higher value for the twist rate will yield higher
values of R

Q .
We consider the effect of a varying cross section on these

curves. Two parameters in particular are varied: the inner
radius of the notch (corresponding to the iris radius of the
disk loaded analog) and the value of m in Eq. 6.

The figure indicates that while the R
Q can be increased

somewhat by choosing a smaller inner radius, at low twist
rates, a larger radius can actually be desirable.

We then investigated changing the parameter m in Eq. 6.
For a given twist rate, changing m leads to either compressing
or expanding the longitudinal cross sectional shape in the axial
direction. For even values of m, the cross section will be
identical to that of a disk loaded cavity. For odd values of m,
the cross section would be a “staggered” version of the original
cross section. Again, we hold all other parameters constant,
and show the effect of changing m on R

Q as a function of
the twist rate. We considered values of m ranging from 1 to
3, with m = 2 the design value. The results are presented
in Fig. 13. In general, the value of m does not effect the R

Q
value significantly except at high twist rates. However, higher
values of m lead to a more complex structure and may be more
difficult to manufacture. Generally, then, lower m values are
preferable.

VII. CONCLUSION

We investigated a new type of accelerating structure con-
sisting of a uniformly twisted waveguide. Using the simple
method presented in this paper, it is possible to construct a
twisted accelerating structure whose longitudinal cross section
matches a predefined shape. Twisted structures have been suc-
cessfully modeled using a theory presented in a previous paper,
and experimental measurements on two twisted accelerating
cavity candidates indicate excellent agreement with theory.

Fig. 14. Bead pull measurement setup, showing the metallic needle (barely
visible at the cavity entrance) and fishing line going through the copper end
plate of the twisted cavity. The cable in the photograph is connected to a
small probe which is used to measure S21.

It has been demonstrated that twisted waveguides are able
to slow an electromagnetic wave to velocities below c without
the introduction of problematic dielectrics or open structures.
These slow wave modes permit interaction with an electron
or ion beam. Twisted structures also offer the possibility
of uniform acceleration of on-axis particles because of the
vanishing of all higher order space harmonics along the center
axis of the guide.

APPENDIX A
BEAD PULL MEASUREMENTS AND R

Q DETERMINATION

To measure the electric field along the axis of the twisted
cavities and calculate their R

Q , a bead pull measurement was
carried out. A small metallic needle was threaded by a fishing
line and moved through the cavity by a stepper motor and
pulley system. Two small holes on the copper end walls
accommodated the needle and line. The bead and line is shown
at the entrance to the twisted cavity in Fig. 14.

The needle’s volume was calculated to be ∆V = 1.12 ×
10−9m3. The needle had length l = 3.6mm and diameter
d = 0.63mm. This leads to an aspect ratio of 5.71. According
to [15], for l/d � 1, the metallic cylinder can be considered
to be a spheroid of major axis l/2 and minor axis d/2. Making
this approximation, we calculate the eccentricity

e =

√
1− d2

l2
= 0.985. (14)

From here, the depolarization L‖ is calculated using [15].

L‖ =
1 + e2

e3

(
1
2

ln
1 + e

1− e − e
)
, (15)

from which we have the depolarization factor

F1 =
1

3L‖
. (16)
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Finally, the R
Q is calculated from the formula

R

Q
=

1
3πf0∆V F1ε0



(∫ √

∆f
f0

cos kz dz

)2

(17)

+

(∫ √
∆f
f0

sin kz dz

)2

 ,

which is the same as the formula given in [15], except for a
factor of 2 which is due to the fact that we used the definition

R

Q
=
V 2
acc

2ωU
, (18)

where Vacc is the on-axis accelerating voltage and U is the
stored energy. ∆f was measured indirectly through measuring
the phase of the transmission coefficient S21 and using the
approximation

∆f
f0

=
tan(6 S21)

2QL
, (19)

where QL is the measured (loaded) Q of the cavity. Since
∆f is proportional to E2

z , it always has the same sign. To
calculate

√
∆f
f0

, then, requires that the correct branch of the
square root be judiciously chosen. To do this, we examined
the ∆f data and found points where it was nearly zero
and the corresponding intervals in between such zero points.
Every other interval was then multiplied by −1 to achieve the
sinusoidal appearance of Figs. 9 and 10.

The measured R
Q was for a standing wave pattern, while

in the simulation we assumed a traveling wave. If a standing
wave mode is considered a sum of two traveling wave modes,
it is obvious that only the forward traveling wave (traveling
synchronously with the particle) contributes to the accelera-
tion, and thus to the value of Vacc. However, the energy of the
wave will reflect both the forward and backward components.
As a result, the traveling wave R

Q is twice the standing wave
value. Thus, to calculate the traveling wave R

Ql , the measured
R
Q was multiplied by 2 and taken over the length of the cavity.

APPENDIX B
NUMERICAL SIMULATION DETAILS

The twisted accelerating structures were simulated using
the two dimensional methods found in [7], specifically the
two-dimensional finite-difference frequency domain method.
The frequency domain method permits direct extraction of
the eigenvectors given a propagation constant β. For each
twisted cross section, a two-dimensional structured mesh was
generated using the computer code UNAMALLA [17]. We
then use the coordinates of the structured mesh to compute
the metric tensor components [7]:

[gij ] = (20)


x2
x′ + y2

x′ xx′xy′ + yx′yy′ pxyx′ − pyxx′

xx′xy′ + yyx′yy′ x2
y′ + y2

y′ pxyy′ − pyxy′

pxyx′ − pyxx′ pxyy′ − pyxy′ 1 + p2(x2 + y2)


 .

At each point in the rectangular x′ − y′ domain, the physical
coordinates x and y are given by the mesh generation program,

and the partial derivatives in the equation above can then
be approximated using finite differences. For the simulations
in this paper, a 51X51 mesh was employed and reasonable
convergence was achieved.

The R
Q value can be computed from the simulated traveling

wave eigenmode if the energy per unit length U/l is calculated.
Then, the following formula is utilized:

R

Q
=
|Ez,axis|2
2ω(U/l)

(21)

or

R

Ql
=
|Ez,axis|2

2ω(U)

=
|E3,axis|2

ω

∫∫ 


3∑

j,k=1

ε0g
jkEjEk + µ0g

jkHjHk


√gdx′dy′

.

Here, Ei and Hi represent the i covariant component of
the respective fields in the transformed coordinate system,
gij correspond to the components of the contravariant metric
tensor, and g is the determinant of the covariant metric tensor.
(21) is valid at the center of the guide, where E3 = Ez .
The expression for the total energy per unit length U , which
appears in the denominator, is the same whether derived
in twisted or Cartesian coordinates. The integration is then
performed over the rectangular x′ − y′ cross section in the
transformed coordinate system. The method was analyzed by
comparing results to CST for the case of an infinite twisted
disk loaded analog of the same type as the measured prototype
except with a slightly more rapid twist rate of 150 Rad/m. An
agreement to within 6.7 % was achieved.
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