
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2007 

Ecological Indicator Development, Integration and Knowledge Ecological Indicator Development, Integration and Knowledge 

Mapping Mapping 

Aaron Dean Peacock 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Earth Sciences Commons, and the Environmental Monitoring Commons 

Recommended Citation Recommended Citation 
Peacock, Aaron Dean, "Ecological Indicator Development, Integration and Knowledge Mapping. " PhD 
diss., University of Tennessee, 2007. 
https://trace.tennessee.edu/utk_graddiss/262 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=trace.tennessee.edu%2Futk_graddiss%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=trace.tennessee.edu%2Futk_graddiss%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Aaron Dean Peacock entitled "Ecological 

Indicator Development, Integration and Knowledge Mapping." I have examined the final 

electronic copy of this dissertation for form and content and recommend that it be accepted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Plants, Soils, and Insects. 

Michael Essington, Major Professor 

We have read this dissertation and recommend its acceptance: 

Virginia Dale, Arnold Saxton, Daniel Yoder 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council: 
 
I am submitting herewith a dissertation written by Aaron Dean Peacock entitled 
“Ecological Indicator Development, Integration and Knowledge Mapping.” I have 
examined the final electronic copy of this dissertation for form and content and 
recommend that it be accepted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy, with a major in the Plants, Soils, and Insects. 
 
 
      Michael Essington, 
      Major Professor 
 
 
 
 
 
 
We have read this dissertation 
and recommend its acceptance: 
 
 
Virginia Dale  
 
Arnold Saxton  
 
Daniel Yoder 
 
 
 
 
 
 
 
 
 
      Acceptance for the Council: 
 
       
                        Linda Painter
         Interim Dean of the Graduate School 
 
 

(Original signatures are on file with official student records.) 



 

ECOLOGICAL INDICATOR DEVELOPMENT, 
 

INTEGRATION AND KNOWLEDGE MAPPING 
 

 

 

 

 

A Dissertation 

Presented for the 

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

Aaron Dean Peacock 

May 2007 

 



Dedication 
 

This dissertation is dedicated to David Cleveland White, who was tragically taken from 
our laboratory family by an auto accident on October 25, 2006.  I could write a book 
about my boss and friend, there were so many stories. 
 

 

 

 

 

 

 

 ii



Acknowledgements 
 

The author would like to acknowledge Michael Essington, for all of the great 

conversations over the years, and for helping an unconventional student negotiate the UT 

system.  The author acknowledges Virginia Dale, for her encouragement to pursue a 

Ph.D., and for all of her support in this project, without her guidance this work would not 

have been possible.  The author would like to thank Arnold Saxton for all of the 

statistical help (since 1998), and Daniel Yoder for his perspective on tough issues.  The 

author also acknowledges Sarah MacNaughton for assistance in the early part of this 

project and her comments on the draft, James Cantu for all of his efforts in the field, in 

the lab, and pinch hitting at a presentation when the author was ill.  Thanks go to Taryn 

Arthur for collecting and organizing much of the data used in this work, without her 

efforts the author would still be chasing numbers.  The author would like to acknowledge 

the help of Suzanne Beyeler and Patty Kosky in the field and Jonas Almeida for 

suggestions regarding artificial neural networks. The author would like to thank Chuck 

Garten for his insight into soil systems and data analysis, and David B. Hedrick for 

science and editing assistance.  The author would also like to thank everyone at the 

Center for Biomarker Analysis, they will be missed.  The project was funded by a 

contract from the Conservation Program of the Strategic Environmental Research and 

Development Program (SERDP) with Oak Ridge National Laboratory (ORNL) under  

subcontract 4500012011, Indicators of Ecological Change. ORNL is managed by UT-

Battelle, LLC for the U. S. Department of Energy under contract DE-AC05-00OR22725.   

 

 iii



 

Abstract 
 

The overall goals of this project were: (1) to develop a microbiological ecological 

indicator that would describe military land disturbance, (2) integrate previously collected 

ecological indicator data from five separate research teams, and (3) produce knowledge 

maps with the resulting information that illustrates how the selected indicators are 

involved in ecosystem processes. To address goal one, soil samples were obtained from 

four levels of military traffic (reference, light, moderate, and heavy) with an additional 

set of samples taken from previously damaged areas.  Using the soil microbial biomass 

and community composition as ecological indicators, reproducible changes showed 

increasing traffic disturbance decreases soil viable biomass, biomarkers for 

microeukaryotes and Gram-negative bacteria, while increasing the proportions of aerobic 

Gram-positive bacterial and actinomycete biomarkers. To address the second goal, 

ecological indicator data was collected by five separate research teams.  Land-

management categories (LMCs) were developed that described the uses or causes of the 

ecological effect from military use(s) of land.  A mechanism of multiple solutions was 

developed that combined the results and tested the efficacy of the proposed indicators.  

Results from the integration effort showed that Soil A horizon depth and soil compaction 

were important soil physical indicators of military land disturbance.  Soil Nitrogen and 

Carbon content were important soil chemical indicators of land use.  Soil mineralization 

rate, soil respiration, microbial composition and Beta Glucosidase activity were important 

microbiological indicators.  Important plant indicators included tree stand age, canopy 
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cover, understory cover, plant life form and legumes.  To address the third goal several 

knowledge maps were developed, and the results from the integration of indicator data 

were pooled and studied for the relationships between them.  By displaying the indicators 

in this fashion, it was hoped that the knowledge of what the indicators represent to the 

functioning of the ecological system could be understood.  For the practitioner, this 

knowledge should lead to actionable products or at least a better understanding of what is 

being measured and how it relates to broader ecosystem dynamics. 
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Chapter 1 

Background and Introduction 

 

Background  

 Lester Brown, president of the Earth Policy Institute, states that the global 

economy is outgrowing the capacity of the earth to support it (Brown, 2006).  Brown 

goes on to state that as a result of the world’s preoccupation with output, humanity is 

consuming renewable resources faster than they can regenerate.   Falling water tables, 

shrinking forests, deteriorating grasslands, collapsing fisheries and eroding soils are 

combining to challenge the human capability to understand and interact with the 

environment in a sustainable way.  Whether or not people agree with the motives or 

tactics of people like Mr. Brown, there is a level of truth to his message.  As a result of 

increasing population and other pressures, there has been a steady increase in the 

intensity and use of land resources.  The use of the land resources can take many forms, 

from agriculture and mining to recreation.  However, because of the increased intensity 

of land use and the realization that the land is a finite resource, it is incumbent upon 

society to manage the land in a sustainable way.  This concern may be all the more 

important when and if oil becomes more limited and humanity must then rely on the land 

to provide not only food, fiber, and clean water, but also fuel for our economies.   

 If humanity expects those who are responsible for managing land to do so in a 

sustainable manner, then society must provide the tools they need to perform the job.  

This work describes the exploration and validation of terrestrial ecosystem ecological 
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indicators that can be used in sustainable land management programs.  The focus of the 

work is on ecological indicators, defined as the parameters that can inform about the 

condition of the environment, provide early warning signals of changes, and diagnose the 

cause of problems (Dale and Beyeler, 2001).  This work is intended to have broad 

application to terrestrial environments and land usage.  A decision was made to conduct 

this study using military land-use sustainability and monitoring because the military is 

dealing with many land use problems that are reflective of land use challenges in general.   

Military trainers and land managers are responsible for the planning, use and 

maintenance of lands designated for the preparation of military personnel for war.  In the 

conduct of war there is, by definition, destruction of property and resources.  In order to 

simulate war for training purposes, some land resources are often used in ways that are 

not environmentally sustainable.  Recently, issues related to base realignment and closure 

(BRAC) policies have had the effect of concentrating more military training on fewer 

installations.  In addition to the loss of bases for training, The US Army Corp of 

Engineers states that “Heavier and faster vehicles, longer combat engagement distances, 

increased mechanization, combined armed exercises, and testing for advanced weapons 

systems and other materiel have increased environmental impacts on U.S. Army 

installations” (USCERL, 2006).  The reduction in training area and environmental 

degradation due to overuse of remaining land resources lessen the realism of a natural 

environment in combat training situations (USCERL, 1997).  In extreme cases, heavily 

eroded land can become dangerous for use by tactical vehicles and may need to be 

remediated by various means at great expense.  During remediation activities, the land 

resources are not available for military training.   The loss or mismanagement of land 
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resources on military bases can result in criticism from the public that the Armed Forces 

are not capable stewards (Lindsey-Poland, 2000), but the most dangerous result for the 

country is inadequately trained troops. 

 According to the Range and Training Land Assessment Technical Reference 

Manual (Bern et al., 2006) military training can cause several types of land disturbance 

and environmental degradation.  Some examples of environmental problems associated 

with military training include: 

• Soil compaction. 

• Soil erosion. 

• Siltation of waterways and wetlands. 

• Increased flooding. 

• Loss of wildlife habitat. 

• Loss of biodiversity. 

• Loss of groundcover. 

• Invasion by non native plant species. 

• Impacts on Threatened and Endangered Species (TES) and other species of 

concern. 

The Army and other services are required under the National Environmental Policy Act 

of 1969 (NEPA) to avoid short- and long-term impacts to the environment caused by 

military training.  The Army has also set its own regulation, Army Regulation 200-2, to 

deal with environmental impacts of military training, and it essentially seconds the NEPA 

regulation.  Regardless of any regulation, it is in the best interest of the Department of 
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Defense to preserve and even enhance land resources for the use and realistic training of 

military personnel.  

 The Army realizes the importance of managing land use in order to provide 

training and has established the Sustainable Range Program (SRP).  The SRP serves as 

the executive program and defines methods for how the Army manages and uses land 

resources to meet training responsibilities.  At the present time, the Range and Training 

Land Program (RTLP) and the Integrated Training Area Management Program (ITAM) 

are the central programs within the SRP.  These central programs are, in turn, integrated 

with facilities management, environmental management, munitions management and 

other functions such as safety programs in order to provide availability and accessibility 

of Army training lands (Bern et al., 2006).  

 The ITAM program includes the Range and Training Land Assessment (RTLA) 

program.  The RTLA and its predecessor, the Land Condition Trend Analysis (LCTA) 

program (Diersing et al., 1992), have been the Army’s designated technical authority for 

ecological monitoring on military lands since 1984.  Originally the RTLA program was 

established as a top-down program that provided national level assessments of land 

condition and inventories of natural resources on military lands.  The emphasis was on 

long-term monitoring of ecological trends and on data collection activities.  Although one 

of the original objectives of the RTLA was that “The data would be able to evaluate the 

capability of lands to support sustained military use” (Bern et al., 2006), in practice this 

goal was not achieved.  Many installations collected data, but these data were not used 

for management decisions (Dale, personal communication).  Those working with the 

RTLA have recognized this problem, as in section 1.2 of the current RTLA technical 
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manual it states: “Since its inception, the emphasis of the RTLA has been on data 

collection.  Prior to 2000, on most installations RTLA data was not used extensively for 

reporting, problem solving, and adaptive management.  Few or no reporting 

requirements partially resulted in a high proportion of the RTLA being expended on data 

collection, rather than on data management, evaluation, analysis, and site-specific 

applications.  As a result, data collected provided limited feedback to support adaptive 

resource management, mission sustainability, and evaluation of the monitoring design 

and methods” (Bern et al., 2006).   

Recently, the RTLA program managers have focused on providing a 

decentralized installation-level approach to monitoring, and there is evidence that 

individual installations are adapting the approaches described in the RTLA to specific 

problems such as sustainability.  Currently the RTLA provides a wealth of highly detailed 

information on many ecological methods such as resource monitoring, sampling, data 

management, and data interpretation.   

 In order to address the knowledge gaps that had arisen from the current standard 

operating procedure for the sustainable use of military lands, the Strategic Environmental 

Research and Development Program (SERDP) hosted a workshop in 1997 titled “The 

Management-Scale Ecosystem Research Workshop.”  Participants at the workshop were 

tasked with identifying critical issues related to understanding ecosystem status and 

military use.  The main issues identified included: 

• Ecosystem health or change indicators. 

• Thresholds of disturbance.  

• Biogeochemical cycles and processes. 
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• Ecosystem processes as they relate to multiple temporal and spatial scales.  

As a consequence of the workshop, SERDP’s Ecosystem Management Program (SEMP) 

was established.  The purpose of SEMP was to address relevant Department of Defense 

(DoD) ecosystem sustainability research.  SEMP developed a Statement of Need (SON) 

based on the results of the ecosystem workshop and solicited competitive responses.  

After scientific peer review and a Technical Advisory Committee (TAC) review, five  

research teams representing several universities and two government research institutions 

were selected to perform research.  The research was divided into two main categories, 

with the first being “Determination of Indicators of Ecological Change.”  The main 

objective for these projects was to identify indicators signaling ecological change on 

military bases along disturbance gradients caused by military training.  The second 

research category was titled “Ecological Disturbance in the Context of Military 

Landscapes.”  The main objective of this group was to develop the knowledge base that 

identified ecological thresholds required to implement adaptive ecosystem management 

approaches for military lands and waters (SERDP, 2002).  The present research integrates 

and extends the results from the SEMP program by distilling the ecological indicator data 

and investigating the role the indicators play in the ecosystem. 

 

Introduction 

Ecological Indicators for Environmental Monitoring 

 Ecological indicators are parameters that can be used to assess the condition of an 

environment (Dale and Beyeler, 2001).   Ecological indicators can take many forms and 
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can provide information about several different aspects of the environment, such as 

function or response to stresses.   Some examples of ecological indicators that have been 

used for military land management include percent bare ground, soil surface loss or 

degradation, annual biomass production, and plant functional or structural groups (Pyke 

et al., 2002).  Perhaps the most critical decision for land managers is choosing the right 

indicators for the ecosystem they are trying to understand and manage.  An important 

point to consider is that “Ecosystem management requires the identification of ecological 

attributes that are indicative of critical processes of an ecosystem and that can be altered 

by management actions”.  

 There are some general and overarching princples for land management that can 

aid in the selection of candidate indicators.  In an Ecological Society of America report, 

Dale et al. (2000) describe five ecological princples and their implications for land use.  

Each of these is described in detail below. 

1. Time Principle: Ecological processes function at many time scales, some long 

and some short, and ecosystems change through time. 

Ecological succession is a good illustration of this principle.  Originally a landscape is 

colonized by species that dominate for a time, and then give way to another group of 

species.  Eventually, a climax community is established that can be supported by, and is 

reflective of, the constraints of that ecosystem.  During succession, there are ecologically 

relevant reactions occurring at different time scales; e.g., microbial metabolic reactions in 

the soil and rhizosphere may be accomplished in minutes or seconds, but soil formation 

can take centuries. 
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2. Species Principle: Particular species and networks of interacting species have 

key, broad-scale ecosystem level effects. 

There are several different types of species including indicator, keystone, ecological 

engineers, umbrella, and linkage species.  Each of these species types can interact with 

the environment in different ways.  Ecological monitoring based on a particular species 

type provides different information for the management of military lands.  It follows that 

identifying the important species (as indicators) can aid in the exposition of ecosystem 

function or lack thereof.   

3. Place Principle: Local climatic, hydrologic, edaphic, and geomorphologic factors 

as well as biotic interactions strongly affect ecological processes and the 

abundance and distribution of species at any one place. 

Niche spaces are influenced or controlled by the available resources provided by the 

environment in a particular location.  In most cases, the environment dictates what types 

of species can exist.  At a geochemical level, carbon, nutrient, and energy cycles are 

highly influenced by the particular environment.  For example, a Boreal forest is very 

different in production and structure from a forest located in a temperate zone, and any 

monitoring program must take this princple into account. 

4. Disturbance Principle: The type, intensity and duration of disturbance shape the 

characteristics of populations, communities, and ecosystems. 

This princple is most important when considering the management of military lands.  

Small and temporary disturbances may interfere with ecological systems, whereas large 

and/or chronic disturbances can completely reshape them and result in a loss of 

sustainability.   
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5. Landscape Principle: The size, shape and spatial relationships of land-cover types 

influence the dynamics of populations, communities and ecosystems. 

This principle also has relevance to military land use.  Military bases are usually discrete 

land areas with arbitrary borders.  Within the bases there may be training areas that are 

not conducive for a given purpose due to the size and or shape of the property.   

 Taken together, these five princples provide a framework for understanding those 

processes (in a general sense) that a robust set of ecological indicators should measure 

and ultimately describe; namely structure, function and composition.  The identification, 

development and application of ecological indicators for a given purpose such as military 

land use will be extremely complex.  As such, the value of any set of ecological 

indicators will vary depending on management goals and strategies.   

 There are also several challenges when considering specific ecological indicators 

for monitoring purposes.  Dale and Beyeler (2001) list several attributes of effective 

ecological indicators for monitoring programs: 

• Are easily measured. 

• Are sensitive to stresses on the system. 

• Respond to stress in a predictable manner. 

• Are anticipatory, i.e., signify an impending change in key characteristics of the 

ecological system. 

• Predict changes that can be averted by management actions 

• Are integrative: the full suite of indicators provides a measure of coverage of the 

key gradients across the ecological system (e.g. soils, vegetation types, 

temperature, etc.) 
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• Have a known response to natural disturbances, anthropogenic stresses, and 

changes over time. 

• Have a low variability in response. 

Identifying an indicator that would satisfy all of these criteria would be extremely 

difficult if not impossible.  However, it is not expected that any single indicator can or 

will be able to meet all criteria, so a suite of indicators should be employed that best 

addresses management needs.  It is also important to state at this time that not all relevant 

indicators have been assessed in this dissertation.  For example, as this work progressed it 

became apparent that soil erosion was a critical process at Fort Benning.  Jawdy (2003) 

measured erosion rate and found it was a useful ecological indicator of soil quality, 

because when soils are eroding quickly it is impossible to maintain the healthy status of 

other indicators.  When the soil is eroding the support of all of the primary production 

and nutrient cycling are likewise degraded, and then other measured indicators decline in 

quality, as an example soil organic matter declines with more erosion.   

 

Data Analysis for Environmental Monitoring 

Another important issue in ecological indicator development for monitoring 

programs is to decide what ecological indicators to use and how to integrate them into 

land management.  As an example, at several Army installations there already exist 

extensive ecological data collected from past and current monitoring programs and 

various scientific efforts.  Although these efforts may provide good data, they may not 

relate to the management goals established by land managers.  Data, models and 

information produced by scientists and others often fail to meet the needs of land 
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managers (Jones et al., 1999; Rayner et al., 2001; Steel et al., 2001), so a program or 

method that can relate ecological indicators to management goals for land use is 

paramount to program success and sustainability. 

In order to address the disconnect between ecological indicators, land 

management, and land management goals, Wolfe and Dale (2006a; 2006b) developed an 

approach that identifies a series of land management categories for military installations 

that encompass land-management goals and are relevant to the management of military 

lands.  The creation of land-management categories was a necessary step in the 

establishment of land-use goals and, once specified, have provided land managers with 

the data they need to allocate resources.  

The work of Wolfe and Dale was only the first step in a process to identify and 

validate ecological indicators that would have meaning for military land managers.  What 

remained to be developed was a method to identify and integrate the relevant ecological 

indicators from a pool of candidate indicators.  The data for these indicators can originate 

from several different data sources and were, in a word, ‘disordered’.  The structure and 

shape of the data make the use of basic statistical models unreliable.  New thought as to 

how data integration should take place was needed.  

 

Data Visualization and Validation 

 Once ecological indicators that are relevant to the management and sustainability 

of military lands have been identified and integrated, there remains a need to justify and 

present the results in a manner that the managers can identify.  There are several different 

methods one could choose to accomplish this.  Conceptual Ecological Models can be 
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very helpful in synthesizing what is known about an ecosystem and also in identifying 

attributes to monitor changes in those systems over time (Bern et al., 2006).  The type of 

model that is developed depends upon the management goals for the site.  Information 

provided in a Nature Conservancy Report (The Nature Conservancy, 1994), and papers 

from Peacock et al., (2001a) and Gross (2003) allowed the authors of the Bern et al. 

(2006) to state that conceptual models can: 

• Store information and capture institutional knowledge. 

• Provide users with predictive capabilities and scenario-building information. 

• Identify priority conservation targets, processes, stressors, and threats (actual or 

potential) affecting them. 

• Help managers and scientists understand ecosystem dynamics, responses to 

stressors (natural and anthropogenic), and ranges of natural variability. 

• Identify links between state/ecosystem components, drivers, stressors, system 

responses, and monitoring attributes. 

• Facilitate evaluation of monitoring data. 

• Provide a framework for interpreting monitoring results in an adaptive 

management context and for prioritizing actions. 

• Document assumptions, knowledge, experience, and unknowns/information gaps. 

• Be valuable tools for a variety of audiences. 

• Help identify thresholds of condition that may be difficult or impossible to 

reverse. 
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Conceptual models do not need to be complex, and management-oriented conceptual 

models are routinely used to help direct management and monitoring activities.  Perhaps 

one of the most important aspects of a conceptual model is the ability to illustrate the 

relationship between an indicator and the ecosystem.  Models can also provide context 

for monitoring activities, development and land-management. 

 Another way to validate data is to use a technique known as Knowledge Mapping.  

The purpose of Knowledge Mapping is to visualize a network of operational relationships 

between objects in a complex system, in our case indicators within the ecosystem under 

study.  This visualization aids in the charting of cause-and-effect connections within a 

given system.  For military land management, we can consider the measured ecological 

indicators as facts, the definition of which is an assertion or measurement that can be 

proven by experiment, observation or demonstration (Van Warren, 2004).  These facts 

lead to a more holistic ecosystem view that combines what is known about an indicator 

and how that indicator relates to the ecosystem in the context of military use.   

 According to Rewerts et al. (2004) the primary processes of ecosystem knowledge 

and mapping are: 

• Inventory knowledge and data. 

Development of knowledge inventory can be done through direct observation, literature 

review or by other means that compiles known facts about the ecosystem under study. 

• Map relationships. 

Visualization tools such as dynamic concept maps, tree graphs, and thematic branching 

can be used as a way to interact with the ecosystem knowledge and data.  Information 

and knowledge derived from the indicators in varying ordinations and dimensions can 
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include the usual fundamental types of visualization, such as spatial data displayed in 

two, three, or temporal dimensions, tabular and statistical data, and process types of 

concepts.   

• Capture processes into computable components. 

This feature provides mechanisms and protocols for modeling efforts and also show 

where more data or knowledge is needed for modeling to be successful.   

• Provide a framework for adaptive management. 

The computable components and the models that are generated from them can provide 

land managers with the ability to implement adaptive management practices and other 

functions that aid in the stewardship of military lands.   

As was stated previously, there is too often a disparity in connecting the science 

of ecology with those who need to apply it.  Knowledge Mapping can be a way to display 

data so that relationships may be explored and adaptive management enhanced.  

Knowledge Mapping of ecological indicators may also be used as a tool to bridge 

knowledge gaps and enhance the understanding of those whose job it is to manage land 

resources.  With a good knowledge map managers can visualize ecological system 

properties and relate those properties to ecological principles of land management. 

 

Research Objectives 

There has been extensive research on the development and use of ecological 

indicators for military land management and sustainability (Bern et al., 2006 and 

references therein; Diersing et al., 1992 and references therein).  However, there are still 
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many gaps in the identification, integration and application of indicators for monitoring 

purposes as evidenced by the establishment of SERDPs Ecosystem Management 

Program.  Previously, the majority of ecological indicators for monitoring programs have 

focused on biodiversity of terrestrial macroorganisms that have a long period of recovery 

and require professionals to identify and assess the data.  Microorganisms that can be 

quantitatively monitored with chemical biomarkers have been largely overlooked despite 

their complete integration into and dependency with the macro-world (Zak et al., 1994; 

Lee, 1991).  Also, Current monitoring programs rely on indicators from published studies 

that may not deal directly with the causes of military disturbance or may not be 

applicable because of differences in ecosystem function or land management goals.  

Specific knowledge of the impacts of military disturbance to land resources and the 

relationship to land management goals are therefore needed to close the gaps in current 

monitoring systems.   Additionally, there is a need to present ecological data in a way that 

military land managers and trainers can understand in order to connect the ecological 

indicators with ecosystem function and sustainability for military training. 

These observations have produced several questions and have led to the following 

study objectives: 

1. To test the hypothesis that a suite of microbial ecological indicators would 

distinguish between the management of military lands. 

2. To develop a method for the integration of disparate or legacy ecological 

indicator data for the management of military lands. 
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3. To extract relevant facts from the preceding two objectives and develop a 

Knowledge Map/Conceptual Model that illustrates and explores the relationships 

between the ecological indicators and military training impacts. 

Although these objectives are closely related, they are quite distinct, and in order to 

accomplish them a phased approach to the research was necessary.  In Phase I, a series of 

field sites was selected that were representative of several different environmental 

impacts caused by military use, as well as reference control areas.  Representative soil 

samples were taken from each of the selected sites.  The soil was extracted and analyzed 

for phospholipid fatty acid (PLFA) content, which provided an index of the soil microbial 

community biomass, composition and metabolic status. The aim of the experiment was to 

discover if soil PLFA (soil microbial community) could provide indicators to ultimately 

predict different types of military land use.  We chose lipid biomarkers to assay the soil 

microbial community because lipids can be quantitatively extracted from almost any 

sample matrix, and analyzed by the mature techniques of chromatography and mass 

spectroscopy.  Accurate quantitative data representative of an entire microbial 

community allows the application of statistics or other models to authenticate differences 

across an environment or between treatments.   

In Phase II, ecological indicator data previously collected by the five SEMP research 

teams was compiled, integrated as far as possible, and then screened through a data 

mining approach that used variable selection techniques combined with a multiple 

models solution to elucidate ecological indicators (predictors) that were best able to 

discriminate between different military land uses.  In Phase III, the indicators that made it 

through the relevance screen were used as inputs in a Knowledge Map/Conceptual 
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Model.  The purpose of this effort was to validate the chosen indicators by the use of 

innovative visualization, presentation, and modeling capabilities in order to gain a better 

understanding of ecosystem dynamics on military managed landscapes. 

 

Questions of Scale 

 There were two critical questions relating to scale in this study.  The first question 

was over what time scale are military impacts important for management and indicators, 

and second, at what physical scale is land management important?  For this study we 

assessed indicators over several different temporal and physical scales.  Figure 1-1 

illustrates the types of indicators that were assessed and the relevant scales.  For our 

purposes it was considered that the military would require sustainability, and in that case 

relevant time scales would be in years, not decades.  Moreover as a matter of design this 

work focused on plot-level indicators.  Other researchers have focused on watershed or 

landscape-level indicators.     

 

Chapter Organization 

 The objectives of this study were fairly diverse and required a broad approach, so 

each chapter deals with particular objectives separately.  The present chapter has 

addressed the background, justification and objectives for this work.  The second chapter 

addresses the first objective and details the development and testing of soil microbial 

PLFA as a source of ecological indicators of military training disturbances.  The third 

chapter focuses on the development of a method to extract useable ecological indicators  
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Figure 1-1.  Spacial-temporal scaling of ecological indicators.  
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from legacy and other relevant data.  In chapter four the indicators that have been 

researched and validated are incorporated into a Knowledge Map/Conceptual Model.   



Chapter 2 

Development of Ecological Indicators 

This chapter is a revised version of the paper “Soil Microbial Biomass and Community 
Composition Along an Anthropogenic Disturbance Gradient Within a Longleaf Pine 
Habitat” published in the journal Ecological Indicators in 2001 by Aaron D. Peacock, 
Sarah J. Macnaughton, James M. Cantu, Virginia H. Dale and David C. White: 
 

Peacock, A.D., S.J. Macnaughton, J.M. Cantu, V.H. Dale, and D.C. White. 
2001. Soil Microbial Biomass and Community Composition Along an 
Anthropogenic Disturbance Gradient Within a Longleaf Pine Habitat.  
Ecological Indicators 1:113-121. 

 
My use of the term “we” in this chapter denotes myself and coauthors.  My primary 
contributions to this paper included (1) selection of the topic and development of the 
problem into a work relevant to my study of ecological indicators, (2) microbial PLFA 
chemical, biological and statistical analyses, (3) most of the gathering and interpretation 
of literature, (4) the cartographic work, (5) compiling my co-author’s inputs, (6) most of 
the writing, and (7) addressing comments from reviewers.  
 

Introduction 

As was discussed in the preceding chapter, managers at military installations 

provide land for training of military personnel.  Often, such activities are inconsistent 

with sustainable land use practices.  Therefore, an effective ecological monitoring 

program capable of quantifying and predicting land use status is essential to ensuring the 

long-term viability of these training areas.  Further, the identification and development of 

ecological indicators that can be used in monitoring programs is critical to the success of 

monitoring efforts.  To that end, the first objective of this effort is to identify and develop 

a suite of microbiological ecological indicators useful for the management of military 

lands that encompasses the ecological principles and guidelines set forth in the Ecological 
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Society of America Report “Ecological Principles and Guidelines for Managing the Use 

of Land” (Dale et al., 2000). 

Previously, the majority of ecological indicators for monitoring programs have 

focused on biodiversity of terrestrial macroorganisms that have a long period of recovery 

and require professionals to identify and assess the data.  Microorganisms that can be 

quantitatively monitored with chemical biomarkers have been largely overlooked despite 

their complete integration into and dependency with the macro-world (Zak et al., 1994; 

Lee, 1991).  Soil microbial biomarkers satisfy the five ecological principals of land use 

management as described by Dale et al. (2000), and are listed in the previous chapter.   

Microbial biomass in soil has a turnover time of less than a year and reacts 

quickly to changes in nutrients, moisture, temperature and soil organic matter content and 

quality (Paul, 1984).  Viable microbial biomass is integral for nutrient storage and 

cycling (Rice et al., 1996), soil aggregate formation (Tisdall and Oades, 1982; Blanco-

Canqui and Lal, 2004), and other ecological factors such as filtering, buffering, and gene 

reserves (Blum, 1998).  Soil microbial biomass and community composition have been 

shown to be sensitive indicators of changes in nutrient type (Peacock et al., 2001b; 

Kirchner et al., 1993), botanical composition (Borga et al., 1994), pollutant toxicity 

(Stephen et al., 1999), and climate change (Zogg et al., 1997).  Because the microbial 

community integrates the physical and chemical aspects of the soil and responds to 

anthropogenic activities, it can be considered a biological indicator of soil quality (Rice et 

al., 1996).  The viable microbial biomass, community composition, and nutritional status 

of soil can be readily measured by analysis of extracted lipid biomarkers, providing 

rational endpoints for many disturbance/recovery processes (White et al., 1998). 
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 We chose lipid biomarkers to assay the soil microbial community because lipids 

can be quantitatively extracted from almost any sample matrix, and analyzed by the 

mature techniques of chromatography and mass spectroscopy.  Accurate quantitative data 

representative of an entire microbial community allows the application of statistics or 

other models to authenticate differences across an environment or between treatments.  

 Total viable biomass is an important parameter in describing microbial 

communities.  The viable microbial biomass increases with the availability of 

metabolizable substrates (such as litter) and may decrease after their exhaustion.  The 

rates of biogeochemical transformations such as carbon dioxide production, carbon 

sequestration, or contaminant detoxification in soils are all proportional to the viable 

microbial biomass.   

 The viable biomass is simply the total weight of the living organisms.  In macro-

ecology (non-microbial ecology), the technology for the enumeration of organisms can be 

as simple as a pen and notepad to record the number of plants or animals observed within 

a defined area.  In microbial ecology, however, the very small size of the organisms, their 

huge numbers and relative absence of defining morphology require more sophisticated 

techniques.    

 

Polar Lipid Fatty Acids  

 All intact cell walls contain polar lipids, which in microbes are primarily 

phospholipids.  With cell death, exogenous and endogenous phospholipases rapidly 

transform the polar lipids in the cell membranes to neutral lipid diglycerides by removing 

polar phosphate-containing head groups (Tollefson and McKercher, 1983).  Studies have 
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shown that diglycerides disappear in soils less rapidly than phospholipids, as diglycerides 

are detectible in many natural environments (White and Ringelberg, 1996).  Since the 

lipid recovery procedure involves extensive solvent extraction and product concentration, 

there are few environments to which the biomass measurement cannot be applied.  

Samples from an enormous variety of matrices have been analyzed for microbial lipid 

content, including soils (Bossio and Scow, 1998; Bossio et al., 1998; Cox et al., 1994; 

Frostegaard et al., 1991), soil rhizosphere (Tunlid et al., 1985), clinical specimens 

(Nichols et al., 1985), ice cores (Palmisano et al., 1988), sediments (Federle et al., 1983; 

Findlay et al., 1989; Findlay et al., 1990; Guckert et al., 1985; Kieft et al., 1994; Parkes et 

al., 1992; Smith et al., 1989; White, 1995), subsurface materials (Balkwill et al., 1988; 

Smith et al., 1986; White and Ringelberg 1995; 1996), bioprocessing units (Hedrick et 

al., 1991; Mikell et al., 1987), rocks (Amy et al., 1994), estuarine fungi (White et al., 

1980), and groundwater well collection devices (Peacock et al., 2004). 

 In this phase of the study, we investigated the soil microbial biomass and 

community composition (as measured by PLFA) as ecological indicators of change along 

an anthropogenic disturbance gradient.  The disturbance gradient included the duration 

and type of traffic in military training areas in a longleaf pine habitat.  The hypothesis 

was that duration and intensity of disturbance (traffic) in the longleaf pine ecosystem 

would be reflected in changes in the soil microbial community biomass and composition.   

Disturbance effects between transects were identified with 2 different data 

analysis techniques - a linear discriminant analysis based on 17 PLFA variables, and a 

non-linear artificial neural network analysis which used all 61 PLFA variables and the 
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biomass.  Herein we compare these two computational analyses and assess the use of 

PLFA as an ecological indicator for use in a monitoring program.   

   

Materials and Methods 

Study Site  

 The study was conducted at the Fort Benning Army Installation located in the 

lower Piedmont Region of central Georgia and Alabama, six miles southeast of 

Columbus, Georgia.  The post consists of approximately 73,650 hectares of river valley 

terraces and rolling terrain.  The climate at Fort Benning is humid and mild, with rainfall 

occurring regularly throughout the year.   Annual precipitation averages 105 cm, with 

October being the driest month.   

 

Soils at Fort Benning 

Soils at Fort Benning are highly weathered Ultisols (Jones and Davo, 1997).  

Most of these soils are of Coastal Plain origin, however the base includes some minor 

inclusions of alluviums derived from the Piedmont ecological unit to the north.  The two 

dominant Coastal Plain ecological units that cover most of the installation are Sand Hills 

and Upper Loam Hills.  The major soil series associated with these soil units are Ailey 

loamy coarse sand (loamy, kaolinitic, thermic arenic kanhapludults), Cowarts loamy sand 

(fine-loamy, kaolinitic, thermic arenic kanhapludults), Nankin sandy clay loam 

(kaolinitic, thermic arenic kanhapludults), Pelion loamy sand (fine-loamy, kaolinitic, 

thermic fragiaquic kanhapludults), Troup and Troup loamy sand (loamy, kaolinitic, 

thermic grossarenic kandiudults), Vaucluse and Vaucluse sandy loam (fine-loamy, 
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kaolinitic, thermic fragic kanhapludults).  Sands and loamy sands are common on upland 

sites while sandy loams and sandy clay loams are commonly found in the valleys and 

riparian areas (Garten, 2004).  A detailed soil cover map is provided in Appendix 1, and a 

companion file (Soils.pdf) contains additional soils information. 

 This study encompassed training areas that have been subjected to a range of 

military traffic. Disturbance of the soil ecosystem due to training includes the direct 

removal or damage of vegetation, digging, and soil dislocation and compaction from 

vehicles, erosion, and sedimentation. The degree and extent of the impacts of training 

activities within a compartment are dependent upon the type of activity, number of 

personnel being trained, and how frequently the compartment is exposed to activity.  

Furthermore, training activity typically occurs irregularly throughout a compartment, 

creating localized gradients of disturbance within individual compartments.   

 

Soil Sampling 

Soils for this study were collected from upland sites.  The sites were chosen 

specifically because that is where most of the military training and disturbances occur.  

Soil cores were collected in the Autumn of 1999.  To avoid cross contamination, the soil 

corers were washed in solvent (methanol) and sterile distilled water, and dried prior to 

each sampling.  Cores were approximately 20 cm in depth and 2 cm in diameter.  For 

each core, the depth of sample and the presence/absence of an A horizon was recorded.  

Five samples were taken from separate plots at each transect (14 transects x 5 = 70 

samples, Table 2.1).  Of the transects selected, three were reference transects (with stand 

ages of 28, 68, and 74 years); three were heavy usage (undergoing tracked vehicle 

 25



 

 

 

 

 

 

Table 2-1.  Experimental Design.  

Transect # of Samples Disturbance
A 5 Reference 
E 5 Reference 
M 5 Reference 
D 5 Light 
L 5 Light 
N 5 Light 
C 5 Moderate 
I 5 Moderate 
K 5 Moderate 
B 5 Heavy 
H 5 Heavy 
J 5 Heavy 
F 5 Remediated 
G 5 Remediated 
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training); three were moderate usage (areas adjacent to tracked vehicle training); three 

were light usage (infantry training), and two came from a site currently undergoing 

remediation (previous heavy disturbance, currently trees and groundcover planted and no 

usage).  Samples were stored at –80oC prior to analysis. 

 

PLFA Analysis  

PLFA analysis was performed using previously reported precautions (White and 

Ringelberg, 1998).  Soil samples (5 g) were extracted with the single-phase chloroform- 

methanol-buffer system of Bligh and Dyer (1954), as modified by White et al. (1979).  

The total lipid extract was fractionated into neutral lipids, glycolipids, and polar lipids by 

silicic acid column chromatography (Guckert et al., 1985).  All results presented in this 

chapter are for the polar lipid fraction.  The polar lipids were transesterified to the fatty 

acid methyl esters (FAMEs) by a mild alkaline methanolysis (Guckert et al., 1985). 

 The FAMEs were analyzed by capillary gas chromatography with flame 

ionization detection on a Hewlett-Packard 5890 Series 2 chromatograph with a 50 m non-

polar column (0.2 mm I.D., 0.11 μm film thickness).  Preliminary peak identification was 

by comparison of retention times with known standards.  Definitive identification of 

peaks was accomplished by gas chromatography/mass spectroscopy of selected samples 

using a Hewlett-Packard 6890 series gas chromatograph interfaced to a 5973 mass 

selective detector using a 20 m non-polar column (0.1 mm I.D., 0.1 μm film thickness).   

Fatty acids were named according to the convention of Gunstone and Herslöf 

(1992),  X:YωZ, where “X” stands for the number of carbon atoms in the chain, “Y” for 

the number of unsaturations, and “Z” the number of carbon atoms from the terminal 
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methyl end of the molecule to the first unsaturation encountered.  Prefixes: “i” = iso-

branched, “a” = anteiso-branched, “10me” = methyl branch on the tenth carbon from the 

carboxylate end, “Br” = branched at unknown location, and “Cy” = cyclopropyl.  The 

suffixes “c” and “t” stand for the cis and trans geometric isomers of the unsaturation 

respectively.  When different fatty acids had the same designation, they were 

distinguished by lower-case letters suffixes; a, b, etc.   

 

Statistical Analysis 

Biomass (pmol/g PLFA) and relative proportion (mol%) of specific PLFA were 

used to test the null hypothesis that degree of land disturbance would not influence the 

composition of the soil microbial communities.  To test that hypothesis, an analysis of 

variance (ANOVA) using the General Linear Model STATISTICA procedure (Statsoft 

Inc. Tulsa, OK) was used for a completely randomized design with five treatments.  The 

values reported are least square means of 15 replicates, except in the case of the transect 

undergoing remediation, which contained 10 replicates (total n=70).  Standard errors of 

the means were determined.  Differences in the mean proportions of PLFA in each 

treatment were tested using Tukey’s Honest-Significant-Difference procedure.   A 

hierarchical cluster analysis (Ward’s method, 1-Pearson r) was used to discover how the 

PLFAs that differed significantly with treatment were clustered.   

A linear discriminant analysis with cross-validation (SAS Institute Cary, NC) was 

chosen to classify the observations into one of the 4 usage classes (n=60, 15 observations 

in each group) based on the degree of land disturbance.  Only those PLFA that comprised 

at least 1% of any profile were included in the analysis.  Therefore, fatty acids that may 
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have been unreliably quantified were not included.  Before statistical analysis, arcsine 

square root transformation was applied to the mole percent PLFA data.  After truncation, 

a one-way ANOVA was conducted on the remaining PLFAs, and those that differed 

significantly with usage were included in the model.   

 

Artificial Neural Network Analysis:  

Neural network (NN) identification was performed with early stopping by cross-

validation and topology optimization by bootstrapping (selection criteria: median cross-

validated error) using the microCortex web-based neural computing environment 

(www.microCortex.com) (Almeida, 2002).  The relative importance of each input 

parameter in predicting the target values was calculated by performing sensitivity 

analysis on the trained NN (Masters, 1993).  In this study, sensitivity of an output 

parameter Outj=1,2,...,nj (for nj output parameters) to an input parameter Ini=1,2,...,ni (for ni 

input parameters) was defined as the normalized ratio between variations caused in Outj 

by variations introduced in Inj and is represented by the following equation:  

 

NSi,jc =  (dOutj,c / d Ini,c)(Ini, c/ Outj,c ) 

Si = [ Σj=1,2, ..., nj; c=1,2, ... ,nc ( NSi,jc ) ] / [Σ i=1,2, ..., ni; j=1,2, ... nj; c=1,2, ..., nc ( NSi,jc ) ]  

 (eq. 1) 

 

i= 1, 2, ..., ni;  input index 

j= 1, 2, ..., nj;  output index 

c= 1, 2, ..., nc;  sample (case) index 
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The normalized sensitivity for an individual profile c, NSi,jc was calculated for 

every combination of input, i, and output parameters, j, and for every profile (for nc 

profiles). The overall sensitivity to an input, Si, was determined by taking the average 

over all profiles and all binary outputs used to classify them.  Finally, the sensitivity 

values obtained were represented as relative values, calculated as a percent of the sum of 

all sensitivities (Eq1, Si) (Masters, 1993).   

 

Results 

Degree of military land use significantly influenced the microbial biomass 

estimates (PLFA).  Specifically, the microbial biomass for the highly-trafficked soil was 

reduced relative to other disturbance categories (p<0.05, Figure 2-1).  If it is assumed that 

1 pmole of PLFA is equivalent to 2.5 x 104 bacterial cells (Balkwill et al., 1988; Pinkart 

et al., 2000), then bacterial density in the soils ranged from approximately 7.7 x 108 cells 

g-1 in the reference soil to 3.8 x 107 cells g-1 in the heavily trafficked soil.  The soil 

currently undergoing restoration contained an average of 5.8 x 108 cells g-1 with a 

corresponding high variability.  PLFA analysis identified 61 fatty acids, all of which are 

commonly found in soil environments (Peacock et al., 2001a).  Of the 61 fatty acids 

detected and quantified, 28 were highly significant according to a one-way ANOVA 

(p<0.001), illustrating differences between land use.  Mean separations were conducted 

on the 28 PLFAs using Tukey’s Honest-Significant-Difference procedure and the results 

are presented in Table 2-2.  Generally, the short-chain normal saturated PLFA (14:0, 

15:0, and 16:0) decreased with increasing traffic, while the longer chain normal saturated 

PLFA (18:0 and 20:0) increased with increasing traffic. 
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Figure 2-1. Microbial biomass PLFA.  Samples were taken from four disturbance 
categories and areas undergoing remediation.  P < 0.05. 
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Table 2-2.  Mean Relative Proportions (Mole %) of PLFA’s by Treatment.  In each row 
treatments followed by the same letter are not different at α = 0.05. 

PLFA  Reference Light Moderate Heavy Remediated
General 

14:0 0.53 a 0.50 a 0.46 a 0.18 b 0.40 a 
15:0 0.65 a 0.57 a 0.58 a 0.26 b 0.51 a 
16:0 12.8 a 12.81 a 13.31 a 10.08 b 13.31 a 
18:0 3.04 c 3.47 c 4.20 b 5.12 a 3.42 c 
20:0 0.96 b 0.81 b 1.06 b 1.63 a 0.76 b 

Gram-negative bacteria 
15:1 0.08 a 0.09 a 0.09 a 0.02 b 0.06 ab 
16:1ω7c 2.79 a 2.57 ac 2.29 bc 1.99 b 2.73 ac 
16:1ω5c 1.90 a 1.82 a 1.96 a 1.52 a 2.49 b 
17:1 0.16 ab 0.18 a 0.10 b 0.06 c 0.11 abc 
18:1ω5c 0.89 a 0.96 a 0.89 a 0.35 b 0.95 a 
Cy19:0 12.84 a 13.53 a 10.33 b 11.34 ab 8.92 b 

Eukaryote (plant and fungal) 
18:2ω6 5.74 a 5.90 a 3.63 b 1.00 c 6.51 a 
18:1ω9c 8.49 a 8.32 a 7.79 a 6.08 b 8.71 a 
20:3ω3 0.08 a 0.09 a 0.07 ab 0.01 b 0.08 a 
20sat 2.08 a 2.08 a 1.32 b 0 b 0.01 b 
poly20a 0.13 a 0.16 a 0.03 b 0.02 b 0.02 b 
poly20b 0.18 ab 0.34 a 0.28 a 0.07 b 0.35 a 

Actinomycetes type 
i14:0 0.19 a 0.13 a 0.15 a 0.03 b 0.19 a 
Br16:0a 0.80 b 1.06 b 1.23 b 3.89 a 0.92 b 
Br16:0b 0.16 a 0.12 a 0.07 ab 0.01 b 0.07 ab 
i16:0 3.22 ab 2.84 b 3.86 a 3.36 ab 3.51 ab 
i17:1ω7c 1.44 b 1.49 ab 1.82 a 1.73 ab 1.60 ab 
10Me16:0 3.87 b 3.96 b 4.46 ab 4.82 a 4.13 ab 
i17:0 2.17 c 2.24 c 3.76 b 4.79 a 2.95 c 
a17:0 2.14 b 2.10 b 2.70 a 2.96 a 2.67 a 
17:0 0.64 c 0.71 bc 0.76 b 0.88 a 0.67 bc 
i10Me16:0 1.26 c 1.34 c 3.35 b 6.04 a 1.93 c 
12Me18:0 0.68 c 0.66 c 1.45 b 2.43 a 1.48 b 
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 Monounsaturated and polyunsaturated PLFAs decreased with increasing traffic, 

whereas the methyl-branched saturated PLFAs increased with increasing traffic.  An 

exploratory hierarchical cluster analysis (Ward’s method, 1-Pearson r) was conducted 

using the 28 PLFAs that are significantly different by disturbance category (Figure 2.2).  

Two primary clusters emerged.  The first contained predominantly short-chain saturated, 

monounsaturated, and polyunsaturated PLFA, while the second contained long-chain 

saturates, methyl-branched monounsaturated, and saturated PLFA.  A secondary cluster 

derived from the first primary cluster contained short-chain normal saturated and 16 

carbon monounsaturates.   The remaining secondary clusters contained mostly 18 to 20 

carbon mono and polyunsaturates.  Secondary clusters derived from the second primary 

cluster included long-chain normal saturates and methyl branched fatty acids.  

A linear discriminant analysis with cross-validation was chosen to classify the 

observations into one of four classes (n=60, 15 observations in each group) based on the 

degree of land disturbance.  The first task was to reduce the number of variables to be 

included in the model.  Only those PLFA that comprised at least 1% of any profile were 

included in the analysis, so fatty acids that may have been unreliably quantified were not 

included.  Before statistical analysis, an arcsine square root transformation was applied to 

the mole percent PLFA data.  Arcsine square root transformations have been used for 

many years to transform proportions to make them more suitable for statistical analysis 

(Studebaker, 1985).  After this truncation, a one-way ANOVA was conducted on the 

remaining PLFAs, and those that differed significantly with disturbance category were 

included in the model.  The resulting model included 17 descriptor variables (Table 2-3).  

Wilks’ Lambda for the model was .032 (P<.001).  Overall, the error estimates for the 
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Figure 2-2. Cluster analysis of significant PLFA variables (mol%).  Two primary clusters 
merged, the first contained primarily PLFAs indicative of eukaryote microorganisms 

 

e
(polyunsaturates) and Gram-negative bacteria (monounsaturates); While the second 
contained PLFA indicative of Actinomycetes (methyl-branched saturates). 
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Table 2-3.  PLFA included in the discriminant model. 

Normal  
Saturates 

Terminally 
Branched 

Mono- 
unsaturated Cyclopropyl Mid-Chain 

Branched Other 

17:0 a15:0 16:1ω7c Cy17:0 br16:0a i17:1ω7c
18:0 i16:0 18:1ω9c Cy19:0 10Me16:0 18:2ω6 
20sat i17:0   i10Me16:0  

 a17:0   10Me18:0  
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model were 33%, and the generalized distance between groups is reported in Table 2-4.  

Only the reference and trafficked treatments were used to construct the model. Once the 

model was complete, the ten observations taken from the remediated transects were 

classified.  One observation was classified as a reference, three as lightly trafficked, and 

six as moderately trafficked.   

A non-linear Artificial Neural Network discriminant analysis (ANN) was 

performed using the biomass estimates and all of the 61 PLFA variables.  Ninety percent 

of the data was used to train the ANN and the remaining ten percent for validation.  The 

resulting ANN included five hidden nodes and resulted in an r2 of 0.97.  The correct 

classification of profiles for this model was 66%, and six of the PLFAs had sensitivity 

values above 3%.  As with the linear discriminant model, once the ANN model was 

complete, it was used to classify the observations from the remediated transects.  Four of 

the observations were classified as reference, two as moderate, and four as heavily 

trafficked. 

 

Discussion 

 The four categories of military traffic in this study has been previously shown to 

vary in the amount and diversity of the floristic component (Dale et al., 2002).  In 

addition, soil carbon and nitrogen concentrations and stocks, as well as the carbon to 

nitrogen ratios, differed significantly with degree of traffic (Garten et al., 2003).  Soil 

compaction due to the amount of traffic was also significantly different along the 

disturbance gradient (Garten et al., 2003).   
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Table 2-4.  Number of observations and percent classified into usage based on 17 PLFAs 
that were significantly affected by disturbance category. 

 Reference Light Moderate Heavy Total 
Reference 11 4 0 0 15 

% 73.33 26.67 0 0 100 
Light 6 8 1 0 15 

% 40 53.33 6.67 0 100 
Moderate 0 2 11 2 15 

% 0 13.33 73.33 13.33 100 
Heavy 0 1 4 10 15 

% 0 6.67 26.67 66.67 100 
Error Count Estimates 

 Reference Light Moderate Heavy  
Rate % 26.6 46.6 26.6 33.3 33.3 
Priors % 25 25 25 25  
Generalized Squared Distance 
 Reference Light Moderate Heavy  
Reference 0 5.65 40.47 77.8  

Light 5.65 0 23.22 52.95  
Moderate 40.47 23.22 0 11.85  

Heavy 77.8 52.95 11.85 0  
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  Myers et al., (2001) states, “Microbial metabolism in soil is limited by the 

availability and types of organic substrates, and therefore it is plausible that ecosystems 

which differ floristically will produce litter with chemically distinct substrates that will 

differentially foster microbial growth.”  Soil microbial community composition and 

biomass differed along the gradient as measured by the PLFA analysis.  Biomass content 

in these soils decreased with increasing traffic and was significantly lower in highly 

trafficked soil (Figure 2-1).  Specific PLFA components can be related to certain subsets 

of the microbial community, and PLFA patterns can be used to monitor changes in the 

community composition. Using the ANOVA results (Table 2.2), the reference and the 

lightly trafficked soil contained on average more PLFAs indicative of Eukaryotes 

(including plant associated PLFAs) and Gram-negative bacteria (Wilkinson, 1988), while 

the more trafficked soils contained relatively more PLFAs associated with actinomyctes 

(O'Leary and Wilkinson, 1988; Verma and Khuller, 1983).  The cluster analysis (Figure 

2.2), using variable clustering, illustrates this point.  Over the disturbance gradient, when 

PLFA markers for eukaryotes and Gram-negative bacteria were high, the PLFAs 

indicative of the actinomycetes were low.   Monounsaturated PLFAs are indicative of 

predominantly Gram-negative bacteria (White et al., 1996).  An increase in the amount 

and type of carbon sources has been shown to increase monounsaturated PLFAs  

(Peacock et al., 2001a; Bossio and Skow, 1998; Macnaughton et al., 1999).  The loss of 

monounsaturated PLFAs with traffic indicates a loss of these types of bacteria.  

Terminally branched saturated PLFA in aerobic environments are indicative of Gram-

positive bacteria, including Arthrobacter and Bacillus spp. (White et al., 1996).  Many of 

these types of bacteria are spore formers and can exist in environments that are lower in 
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overall organic carbon content and higher metabolic refractiveness (Boylen and Ensign, 

1970; Keynan and Sandler, 1983).  Mid-chain branched saturated PLFA are primarily 

indicative of actinomycete type bacteria in surface soils.  It has been stated that since 

these bacteria grow conidia, they are able to better survive in relatively harsh soil 

environments (desiccation and heat).  This may give these bacteria a competitive 

advantage in the heavily trafficked areas (Alexander, 1998).  Polyunsaturated PLFA 

shows significant decreases due to traffic and indicates the loss of fungi and microbial 

grazers that follows the loss of bacterial microorganisms. 

Analysis of the soil microbial community PLFA in a predictive linear 

discriminant model was successful in distinguishing the amount of traffic a soil received.  

Inspecting the generalized squared distance results from the linear discriminant analysis 

revealed that the reference and lightly trafficked soils were very close in terms of the 

microbial community composition (Table 2.4).  In comparison, the moderate and heavily 

trafficked soils were very different.  Indeed, when observations were classified during 

model validation, most of the misclassifications were between the reference and lightly 

trafficked soils.   

To more fully explore the relationships between the soil disturbance and the 

microbial community composition, without assumptions of normal distributions or linear 

relationships, a non-linear artificial neural network discriminant model was applied to the 

data.  The overall predictive effectiveness for correct profile classification for the model 

was 66%, which was the same as for the linear discriminant model.  However, the ANN 

was constructed and optimized using all of the 61 PLFAs and included the biomass 

parameter.  As with the linear analysis, most of the misclassifications occurred between 
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traffic categories that were close (i.e., moderate being more similar in disturbance to 

heavy).  However, when the ANN was used to predict the status of the remediated 

transects, eight of the ten samples were classified as either reference or heavy traffic.  

Inspection of the novelty indexes from the prediction outputs showed that the input 

vectors from the remediated transects were very different from the data used to train the 

ANN.  This result is not surprising, as when the soil is remediated it does not escalate 

through states of succession in the same way it descended by disturbance.  In other 

words, in this case there is not a sliding scale on which the ecosystem recovery can be 

measured, but a new community succession is taken, initiated by the remediation efforts 

(planting of groundcover and trees).   

The subtlety of the hysteresis between disturbance and recovery was not detected 

with the linear discriminant model, which showed no bias toward extreme classifications.  

With the linear discriminant analysis, most samples undergoing remediation were 

classified as either moderate or light usage, with one sample being classified as reference.  

Since this analysis was linear and only used 17 descriptor variables, the resultant 

predictions may be of a more general nature, whereas the ANN used the complete matrix 

in which to base predictions.  The amount of data available for the parametric statistical 

analysis constrained the number of descriptors used.  Regardless, the predictions of the 

linear analysis could be accepted and used to aid stakeholders in management of the land 

use. 

The collection, processing and analysis of the PLFA data allowed us to assess the use 

of soil microbial community as effective indicators for monitoring programs.  As 
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mentioned in the Introduction, Dale and Beyeler (2001) list several attributes of effective 

ecological indicators for monitoring programs, and we will discuss each in turn. 

• Are easily measured.  The collection of samples required for the soil 

microbial PLFA analysis is straightforward and does not require any 

special training.  Laboratory analysis requires a gas chromatograph and 

mass spectrometer and provides confidence in the identification of PLFAs. 

• Are sensitive to stresses on the system.  The results of this phase of the 

research indicate that soil microbial PLFAs are sensitive to stresses on 

land use due to military disturbance. 

• Respond in a predictable manner.  There have been several published 

journal articles listed in this work as well as others that demonstrate a 

consistent response to disturbance of the soil microbial community as 

measured by PLFA.  Generally with a reduction in soil quality there is a 

reduction in the amount of monounsaturated PLFA and a corresponding 

increase in terminally branched saturated PLFA as well as other specific 

biomarkers.  However it is impossible to know if this response is 

universal. 

• Are anticipatory, i.e., signify an impending change in key characteristics 

of the ecological system.  The models presented in this work show that it is 

possible to use soil microbial PLFA to predict without prior knowledge 

the degree of military land use.  However, more study would be needed in 

order to verify the applicability of these techniques to signify impending 

change. 
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• Predict changes that can be averted by management actions.  The 

response to the criteria here is similar to the above.  More research is 

needed to see if PLFA can predict and respond to change. 

• Are integrative: the full suite of indicators provides a measure of coverage 

of the key gradients across the ecological system (e.g. soils, vegetation 

types, temperature, etc.).  All of the soils across the spectrum of military 

land uses at Fort Benning contain microbial communities and as such are 

fully integrated across all of the key ecological gradients in these systems.   

• Have a known response to natural disturbances, anthropogenic stresses 

and changes over time.  In the case of disturbance, soil PLFA has been 

shown to be a sensitive ecological indicator, but elucidation of the nature 

of the disturbance (whether natural or anthropogenic) will require more 

research. 

• Have a low variability in response.  Soil microbial PLFA responds in a 

predictable manner to land disturbance and results have shown the 

responses to be consistent across many environments such as those listed 

in the introduction.  The magnitude of the response both in biomass and 

community composition correlate with the amount of the disturbance.   

 

Conclusion   

The goal of this project was to explore the possibility of using the soil microbial 

community as an ecological indicator signaling the degree of environmental degradation 
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along a military disturbance gradient.  The analysis based on the soil PLFA was 

successful, reflected above-ground changes, and provided an index of the degree of land 

disturbance (traffic) the soil received.   

Both linear discriminant and non-linear ANN analysis were able to adequately 

classify the degree of disturbance.  However, there were drawbacks when the ANN and 

linear discriminant models were used to predict stages of soil recovery in remediated 

transects.  The linear discriminant model was shown to be a fairly robust but perhaps 

coarse measure of remediative efforts.  The ANN was sufficiently sensitive to detect 

subtleties in recovery not detected with the linear discriminant analysis, but in current 

form could not be relied on to classify remediated samples.  The inclusion of data 

reflecting remediation in these models could make them capable of monitoring the more 

complex process of soil degradation and recovery.   
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Chapter 3 

Integration of Ecological Indicators 

 

Introduction 

 Land use has been defined as “the purpose to which land is put to use by humans” 

(Dale et al., 2000).  Some general land-use categories include agriculture, forestry, 

mining and settlement.  The way a given land asset is administered by humans is defined 

as land management (Dale et al., 2000).  Some examples of land management decisions 

include tillage versus no-till agriculture, open cast versus drift mining, and various 

forestry harvesting methods.  In each of these examples, the people responsible for the 

administration of the land assets decide how to use limited and often non-renewable 

resources.  Central to the management of land resources are the management goals (or 

endpoints) for which the land resource is to be used (Dale and Haeuber, 2000).  However, 

there has often been a disconnect between land management, land use, and land 

management goals (Wolfe and Dale, 2006a).  Frequently this disconnect is exacerbated 

by the methods and procedures used for monitoring the land resources.  

 A major challenge for land managers is to decide what ecological variable or 

variables to measure to indicate that land is being used commensurate with land 

management goals, or in other words, how to monitor degradation or improvement in 

land resources (Dale and Beyeler, 2001).  Much data has been and is currently being 

collected that relates to land management, such as the Environmental Protection Agency 

(EPA) requirements for various land resources, or the Land Condition Trend Analysis 
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(LCTA) data collected for military bases (Diersing et al., 1992), but this information is 

not always appropriate or useful in the context of land use or land-management goals.  

There are several reasons why this information collected under various mandates may not 

be suitable for coherent land management.  Many of the programs that are currently used 

were not designed to answer questions about land-management goals.  For example, the 

LCTA used at military installations was established to assess long-term trends in 

ecological data, but the LCTA approach does not address the day-to-day or month-to-

month land-use issues that arise at these installations, and is not flexible.  In order to 

address the disconnect between land management, land use, and land management goals, 

we have developed a two-step approach that (1) identifies land management categories 

that encompass land management goals and (2) selects ecological variables that best 

predict these management categories.  The creation of land-management categories is a 

necessary step in the establishment of land-use goals and, once specified, provide land 

managers with the data they need to allocate resources.  The approach is first described 

and then illustrated by an example of its use at Fort Benning, Georgia.  This chapter 

focuses specifically on the procedure used to select indicators that differentiate the land- 

management categories.  

 

Overview of Approach 

 Data, models, and information (peer reviewed publications) produced by 

scientists often fail to meet the needs of land managers (Jones et al., 1999; Steel et al., 

2001; Rayner et al., 2001), and this usually occurs because the goals of the groups are not 

compatible.  In order to connect land management with accurate data about current land 

 45



conditions we developed a method to select specific indicators of land suitability.  The 

overall approach was to screen the indicators that best discriminated between the land-

management categories and involved three steps:  

 

1.  Use a Delphi approach to establish land-management categories.  

2.  Collect potential indicator data by category.  

3.  Screen selected indicators against the land-management categories. 

 

Figure 3-1 illustrates the steps of this method.  The first step involves the use of a 

modified Delphi process to query resource managers and scientists regarding current land 

use and land-management practices.  In order to address the disconnect and to set the 

groundwork for future integration and screening efforts, Wolfe and Dale (2006a; 2006b) 

developed an iterative Delphi process to facilitate integration between ecological 

scientists and land managers.  The Delphi method is an approach that seeks to establish a 

group opinion, and was originally developed in the 1960s (Soderstrom, 1981; Fontana 

and Frey 1994).  Participants were asked a round of questions to elicit information.  This 

process was iterated until a consensus was achieved.  The participants were queried 

separately to avoid problems with group interactions.  The goal of the Delphi process in 

this case was to identify Land-Management Categories.  These categories were derived 

from land use goals coupled with the current impact from diverse uses.  Because the 

categories were initially set by the perspective of the resource managers, it was 

anticipated that the results would then have meaning to these managers. 
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Resource managers and

scientists

Land 
management 
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Attributes that 
differentiate land 
management 
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2. Collect data 
on potential ecological 

Indicators by land 
management 

categories

3. Conduct variable 
selection to determine 

predictors of land 
management categories

 

Figure 3-1.  The three steps in determining which ecological attributes best differentiate 

Land Management Categories using the Dephi Method.   
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 Once the Land-Management Categories had been established, the second step in 

the process was to collect ecological indicator data by category.  The type of data 

collected may differ from region to region, but would most likely include soil physical 

and chemical parameters, plant abundance and diversity, animal abundance and diversity, 

and other data that are known to be useful to land managers in a given ecosystem.  In our 

case, the choice of potential indicators drew from the hypothesis that a suite of indicators 

could best explain land-use conditions (Dale et al., 2004). 

 The third part of the approach was to take the assembled indicator data describing 

the different Land-Management Categories, and to distill the collected information into a 

suite of indicators that best described the particular category.  One of the basics of 

science is to seek the simplest solution, and we used a multiple solutions approach (Lee et 

al., 2002) to elucidate important indicators as they relate to Land Management 

Categories.  Using the distilled data, a manager would be able to monitor degradation or 

improvement within Land-Management Categories and hence be able to better manage 

the land.  Herein we describe this selection process for data appropriate for differentiating 

between Land-Management Categories that can be used by resource managers at Fort 

Benning, GA. 

 

Land-Management Categories at Fort Benning, Georgia 

Managers at military installations are responsible for allocating a finite amount of 

land resources for the use and training of military personnel.  Military training often 

requires the use of ordnance or engineering activities that are inconsistent with 

sustainable land-use practices, therefore an effective monitoring program that accurately 
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assesses the status of land resources becomes integral to ensuring the long-term viability 

of those lands for training purposes.  In a broad sense, managers at military installations 

must address the issue of competition for limited resources and provide the stewardship 

necessary to the continued mission of troop readiness.   

Several ecological disturbances occur at Fort Benning, including military training 

and testing, timber harvest and thinning, natural and anthropogenic fire, insect outbreaks, 

and the spread of introduced invasive species (USAIC, 2001).  External activities also 

impact Fort Benning, including changes in surrounding land-use, encroachment, and 

general climatic changes (heating or cooling) that may lead to changes in precipitation or 

other climatic effects (Turner and Meyer, 1994; Efroymson et al., 2005).  A viable and 

relevant set of ecological indicators could provide managers with early warning of 

abnormal conditions of resources, data to better understand the dynamic nature and 

condition of installation ecosystems, data to meet legal and Congressional mandates, and 

a means of measuring suitability of land for training purposes or for a go/no-go decision 

for continued training in a certain area (Davis, 1997). 

 

Methods 

Study Site 

The studies were conducted at the Fort Benning Army Installation located in the 

lower Piedmont Region of central Georgia and Alabama, six miles southeast of 

Columbus, Georgia.  The installation consists of approximately 736 square kilometers of 

river valley terraces and rolling terrain.  The climate at Fort Benning is humid and mild, 

with rainfall occurring regularly throughout the year.  Annual precipitation averages 105 

 49



 50

cm, with October being the driest month.  Most of the soils at the base are heavily 

weathered Ultisols, as detailed in chapter 2 (USAIC, 2001). 

 

Land Management Categories 

 Land-Management Categories were established for the base according to the work 

of Wolfe and Dale (Wolfe and Dale, 2006a; 2006b).  Table 3-1 (reprinted from Wolfe 

and Dale, 2006a) summarizes the Land-Management Categories as defined from the 

matrix consisting of goals and endpoints, impacts from use, and frequency of use.  This 

matrix shows the three major land management goals and endpoints for Fort Benning and 

subgoals as compared to the cause of predominant ecological effect from military use of 

the land.  Each element in the matrix denotes a Land-Management Category.  The Land-

Management Categories are not in themselves land management goals, but are 

determined by them.  The Land-Management Categories are further delineated by the 

frequency of use each category may receive.  The establishment of Land-Management 

Categories allowed the assessment of the ecological indicators for this project.   The end 

result of the effort of Wolfe and Dale (2006a) was a multidimensional matrix of Land-

Management Categories that included the cause of predominant ecological impact of 

military land use, land management goals and endpoints, and frequency of use.  The 

Land-Management Categories provided a common framework for synthesizing diverse 

data from several research projects, and the approach allowed specific field plots to be 

assigned to a unique Land-Management Category, regardless of whether those plots had 

been used differently or were currently used for multiple purposes.   



Table 3-1.  Land-management categories as determined by military training and land management practices. 
(From Wolfe and Dale, 2006a)  Key  ‘0’ = military uses do NOT occur in areas managed in specified ways.  ‘I’ and ‘F’ = the 
relative frequency with which military uses occur in areas managed in specified ways (I = infrequent and F = frequent).  ‘+’ = 
land management options in areas not used by the military.   

Cause of predominant ecological effect from military use(s) of land 
Land management goals          

and endpoints 
Designated 

bivouac 
areas 

Drop or 
landing 
zones 

No 
military 

effect 

Admin-
strative 

use 

Tracked 
vehicles

Wheeled 
vehicles 

Foot 
traffic

Firing 
ranges

Impact 
areas 

1. Minimally managed areas 
1.1 Wetlands I,F I, F I 0 0 0 0 + 0 
1.2 Vegetation on steep slopes I, F I, F I 0 0 0 0 + 0 
1.3 Forests in impact zones  0 0 0 0 0 I,F 0 + 0 

2. Managed to restore and preserve upland forest 
2.1 Upland forests           

2.1.a Long leaf dominance I I,F I, F 0 0 0 0 + 0 
2.1.b Mixed pine           
2.1.c Scrub oak pine mix           

2.2 RCW mgmt clusters I  I I,F 0 0 0 0 + 0 
2.3 Sensitive area designated by 0 0 I,F 0 0 0 0 + 0       signs 

3. Managed to maintain an altered ecological state 
3.1 Intensive military use areas  F F 0 I,F F 0 0 0 0 
3.2 Wildlife openings 0 I I 0 0 0 I + 0 
3.3 Mowed fields 0 I I,F 0 I,F 0 I,F + 0 
3.4 Roads (paved and unpaved) I, F I, F I, F 0 0 0 0 + 0 
3.5 Built environment 0 0 0 0 0 0 0 0 + 
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Table 3-1.  Continued.  Wet = Wetland, Ste = Steep Slope, For = Forest, Up = Upland, Rcw = Red Cockaded Woodpecker, 
Mil = Military, Rd = Road, Wld = Wildlife openings, Mow = Mowed, Tr = Tracked vehicle, Wh = Wheeled, Ft = Foot, Imp = 
Impact, Fir = Firing, F = Frequent, I= Infrequent 
  Cause of predominant ecological effect from military use(s) of land 

Land management goals Tracked 
vehicles

Wheeled 
vehicles 

Foot 
traffic 

Designated 
bivouac 

areas 

Firing 
ranges 

Impact 
areas 

Drop 
zones 

No 
effect

Admini-
strative 

use 
1. Minimally managed areas 

1.1 Wetlands WetTrI 
WetTrF

WetWhI 
WetWhF WetFtI 0 0 0 0 Wet+ 0 

1.2 Vegetation on steep slopes SteTrI 
SteTrF

SteWhI 
SteWhF SteFtI 0 0 0 0 Ste+ 0 

1.3 Forests in impact zones  0 0 0 0 0 ForImpI 
ForImpF 0 For+ 0 

2. Actively managed to restore and preserve upland forest 

2.1 Upland forest UpltrI UplWhI 
UplWhF 

UplFtI 
UplFTF 0 0 0 0 Upl+ 0 

2.2 RCW mgmt clusters RcwTrkI RcwWhI RcwFtI 
RcwFtF 0 0 0 0 Rcw+ 0 

2.3 Sensitive area designated  
      by signs 0 0 SenFtI 

SenFtF 0 0 0 0 Sen+ 0 

3. Managed to maintain an altered ecological state 

3.1 Intensive military use areas MilTrkF MilWhF 0 MilBivI 
MilBivF MilFirF 0 0 0 0 

3.2 Wildlife openings 0 WldWhI WldFI 0 0 0 WldDrpI Wld+ 0 

3.3 Mowed fields 0 MowWhI MowFtI 
MowFtF 0 MowFirI 

MowFirF 0 MowDrpI Mow+ 0 

3.4 Roads (paved and  
      unpaved) 

RdtrI 
RdTrF

RdWhI 
RdWhF 

RdFtI 
RdFtF 0 0 0 0 Rd+ 0 

3.5 Built areas 0 0 0 0 0 0 0 0 Ba 
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Data Collected on Ecological Attributes 

The data consisted of environmental indicators representing soil, plant, and 

microbial data at the plot level from various plot and point locations at Fort Benning.  

Strategic Environmental Research Development Programs, Ecosystem Management 

Program (SERDP SEMP, defined in Chapter 1) sponsored the projects that produced the 

data used in this analysis.  Environmental indicator data were available from the SEMP 

Data Repository (https://sempdata.erdc.usace.army.mil/) and consisted of 13 separate 

datasets containing 4,283 total observations on 112 indicators.  Each indicator is 

characterized by descriptive statistics in Table 3-2 Parts A to C.  The details on all 

indicators including methods of collection, measurement units, and investigator 

justification are provided in Appendix 1.   

 

Variable Selection Approach 

 From the pool of candidate indicators, several variable selection techniques were 

used to identify a subset of important ecological indicators that best discriminated the 

Land-Management Categories.  The selection method had 4 steps: (1) data exploration, 

using descriptive and general statistics; (2) matrix conditioning, including filtering 

outliers, imputing missing values and transforming variables where necessary; (3) 

variable selection using Regression, Neural Network and Decision Tree models; and (4) 

the assessment and scoring of output to identify common traits of important indicators 

that were strong discriminators of the Land-Management Categories.

https://sempdata.erdc.usace.army.mil/
https://sempdata.erdc.usace.army.mil/
https://sempdata.erdc.usace.army.mil/
https://sempdata.erdc.usace.army.mil/
https://sempdata.erdc.usace.army.mil/
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Table 3-2 Indicator properties as collected by the SEMP research teams.  N = number of observations, Min. = minimum 
value, Max. = maximum value, Std. Dev. = standard deviation. 
Data 
Set1 Indicator2 N Mean Min. Max. Lower 

Quartile Median Upper 
Quartile Range Std. 

Dev. 
Shapiro-
Wilk W

Trans-
formation 

P1 Soil Depth (cm) 216 0.8 0 4 0 0.5 1.5 4 0.9 0.844   
P2 Lang 1,080 8 0 20 4 7 11 20 5 0.965   
P3 NO3-N 144 3.24 1.11 7.74 1.93 3.08 4.42 6.63 1.45 0.938   
P3 NH4-N 108 10.35 4.87 32.51 7.14 8.96 12.70 27.64 4.71 0.851   
P3 MBC 144 163.7 4.3 1,308.9 49.9 106.4 216.0 1,304.6 182.8 0.720   
P3 SOM 144 3.08 0.43 26.70 1.60 2.27 3.51 26.27 2.99 0.606 log 
P4 ftac 252 69.8 30.3 148.4 58.3 67.4 78.3 118.1 16.3 0.955   
P4 fdiv 252 78.9 54 95 74 80 84 41 7.6 0.983   
P4 btac 252 40.1 0.6 114.8 21.5 39.5 54.9 114.2 22.1 0.978   
P4 bdiv 252 54.5 2 90 44 57 68 88 18.5 0.962   
P5 ammonium 414 0.04 0.00 4.84 0.00 0.00 0.00 4.84 0.30 0.122 Binary 
P5 nitrate 414 0.32 0.00 25.94 0.00 0.00 0.00 25.94 1.73 0.174 Binary 
P5 phosphorus 414 0.03 0.00 2.66 0.00 0.00 0.00 2.66 0.21 0.101 Binary 
P5 sulfate 414 27.8 2.7 233.2 10.6 19.4 34.3 230.4 28.9 0.667   
S1 SoilDEPTH 384 0.65 0.00 6.50 0.00 0.00 1.00 6.50 0.96 0.724   
S1 OrgLMass 256 47.4 2.6 238.7 24.3 37.7 56.5 236.1 37.5 0.762   
S1 Massm2 256 957 53 4,823 491 761 1,142 4,770 757 0.762   
S1 treesha 35 336 132 822 219 278 440 690 162 0.885   
S1 treesacre 35 136 53 333 89 112 178 280 66 0.885   
S1 Percover 32 0.413 0.120 0.657 0.340 0.392 0.511 0.537 0.138 0.965   
S1 OrgLayerN 221 0.703 0.176 1.230 0.556 0.700 0.821 1.054 0.195 0.995   
S1 NO3 128 0.052 0.000 0.830 0.000 0.021 0.063 0.830 0.120 0.402 log 
S1 NH3 128 0.82 0.00 6.13 0.15 0.52 1.14 6.13 1.00 0.755   

(continued next page) 
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Table 3-2, continued.   
Data 
Set1 Indicator2 N Mean Min. Max. Lower 

Quartile Median Upper 
Quartile Range Std. 

Dev. 
Shapiro-
Wilk W

Trans-
formation 

S1 NO32 128 0.88 0.00 15.32 0.00 0.06 0.81 15.32 2.03 0.478 log 
S1 NH32 128 1.94 0.00 19.68 0.12 0.70 2.54 19.68 2.84 0.682 log 
S1 NO3M1 128 0.83 -0.17 14.49 0.00 0.04 0.74 14.66 1.95 0.488 log 
S1 NH3M1 128 1.12 -1.72 17.60 -0.09 0.29 1.64 19.32 2.50 0.700 log 
S1 NO33 128 4.51 0.00 29.60 0.00 1.75 6.92 29.60 6.10 0.759 log 
S1 NH33 128 2.90 0.00 26.97 0.28 0.99 4.23 26.97 4.27 0.683 log 
S1 NO3M2 128 4.46 -0.17 28.76 0.00 1.71 6.91 28.93 6.05 0.761 log 
S1 NH3M2 128 2.07 -2.93 24.90 -0.21 0.64 3.03 27.83 3.90 0.738 log 
S1 totalN 128 6.53 -0.69 28.82 2.18 5.18 9.26 29.51 6.18 0.864   
O1 O-HORgN/m2 119 6.2 0.0 28.4 2.8 5.2 9.1 28.4 5.2 0.908   
O1 0-10gN/m2 123 61 0 213 39 55 84 213 35 0.957   
O1 0-10g/cm3 123 1.24 0.83 1.71 1.06 1.20 1.41 0.88 0.23 0.957   
O1 00-10[C]% 123 1.45 0.04 4.69 0.91 1.34 1.81 4.65 0.92 0.926   
O1 O-HORgC/m2 119 336 0 1,064 164 352 477 1,064 230 0.950   
O1 0-10gC/m2 123 1,620 63 4,030 1,153 1,546 2,089 3,967 830 0.968   
O1 0-20gPOM-C/m2 123 795 25 2,225 506 762 1,060 2,200 453 0.968   
O1 0-20gMOM-C/m2 123 1,622 92 4,146 1,174 1,484 1,999 4,054 853 0.942   
O1 0-10[N]% 123 0.05 0.00 0.20 0.03 0.05 0.07 0.20 0.04 0.926   
O1 O-HORC:N 101 61.2 25.1 145.9 45.4 53.6 71.4 120.8 25.3 0.869   
O1 0-10C:N 119 29.3 3.1 123.0 22.0 28.5 34.1 119.9 13.4 0.773 log 
O1 T0ugNO3N/g 123 0.16 -0.09 1.84 0.00 0.07 0.20 1.93 0.29 0.573 log 
O1 T0ugNH4N/g 123 2.23 0.05 19.31 0.93 1.46 2.45 19.26 2.52 0.628 log 
O1 T0ugTOTN/g 123 2.39 0.26 19.97 1.10 1.68 2.67 19.71 2.51 0.608 log 
O1 MOM[C]% 123 2.78 0.22 10.17 1.12 2.16 3.95 9.95 2.10 0.887   

(continued next page) 
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Table 3-2, continued.   
Data 
Set1 Indicator2 N Mean Min. Max. Lower 

Quartile Median Upper 
Quartile Range Std. 

Dev. 
Shapiro-
Wilk W

Trans-
formation 

O1 MOM[N]% 123 0.14 0.02 0.41 0.07 0.12 0.17 0.39 0.08 0.909   
O1 fPOM-C 123 0.32 0.14 0.60 0.26 0.33 0.39 0.47 0.10 0.989   
O1 O-HORg/cm2 118 0.09 0.00 0.31 0.04 0.09 0.13 0.31 0.06 0.962   
O1 NMINRATE 123 4.44 -13.56 40.30 0.57 2.43 6.55 53.86 7.21 0.777 log 
O2 Acanthaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.202 None/Binary
O2 Aizoceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.098 None/Binary
O2 Amaranthaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.314 None/Binary
O2 Anacardiacea 70 0.007 -0.003 0.090 0.000 0.005 0.005 0.093 0.014 0.528 None/Binary
O2 Aquifoliaceae 70 0.009 0.000 0.625 0.000 0.000 0.000 0.625 0.075 0.106 None/Binary
O2 Boraginaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.098 None/Binary
O2 Cactaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.158 None/Binary
O2 Campanulaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.158 None/Binary
O2 Caryophyllaceae 70 0.000 0.000 0.010 0.000 0.000 0.000 0.010 0.001 0.201 None/Binary
O2 Cistaceae 70 0.001 0.000 0.005 0.000 0.000 0.000 0.005 0.002 0.519 None/Binary
O2 Compositae 70 0.116 0.000 0.885 0.010 0.033 0.120 0.885 0.194 0.635 None/Binary
O2 Convolvulaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.282 None/Binary
O2 Cyperaceae 70 0.001 0.000 0.030 0.000 0.000 0.000 0.030 0.005 0.195 None/Binary
O2 Ebenaceae 70 0.004 0.000 0.030 0.000 0.005 0.005 0.030 0.007 0.509 None/Binary
O2 Ericacae 70 0.038 -0.073 0.380 0.000 0.000 0.015 0.453 0.086 0.559 None/Binary
O2 Euphorbiaceae 70 0.001 0.000 0.005 0.000 0.000 0.000 0.005 0.002 0.473 None/Binary
O2 Fagaceae 70 0.006 0.000 0.185 0.000 0.000 0.005 0.185 0.023 0.249 None/Binary
O2 Graminae 70 0.427 0.000 5.005 0.040 0.200 0.440 5.005 0.845 0.439 None/Binary
O2 Hamamelidaceae 70 0.020 -0.008 0.625 0.000 0.000 0.000 0.633 0.084 0.260 None/Binary
O2 Hypericaceae 70 0.004 0.000 0.060 0.000 0.000 0.005 0.060 0.010 0.484 None/Binary

(continued next page) 
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Table 3-2, continued.   
Data 
Set1 Indicator2 N Mean Min. Max. Lower 

Quartile Median Upper 
Quartile Range Std. 

Dev. 
Shapiro-
Wilk W Transformation

O2 Juglandaceae 70 0.001 0.000 0.030 0.000 0.000 0.000 0.030 0.004 0.229 None/Binary 
O2 Lamiaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.098 None/Binary 
O2 Lauraceae 70 0.002 0.000 0.085 0.000 0.000 0.000 0.085 0.010 0.175 None/Binary 
O2 Leguminosae 70 0.025 0.000 0.130 0.000 0.015 0.035 0.130 0.033 0.741 None/Binary 
O2 Liliaceae 70 0.009 0.000 0.380 0.000 0.000 0.005 0.380 0.045 0.154 None/Binary 
O2 Loganiaceae 70 0.001 0.000 0.005 0.000 0.000 0.000 0.005 0.002 0.505 None/Binary 
O2 Myricaceae 70 0.001 0.000 0.030 0.000 0.000 0.000 0.030 0.005 0.213 None/Binary 
O2 Passifloraceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.098 None/Binary 
O2 Pinaceae 70 0.008 0.000 0.195 0.000 0.000 0.005 0.195 0.028 0.324 None/Binary 
O2 Polypodiaceae 70 0.019 0.000 0.375 0.000 0.000 0.000 0.375 0.070 0.301 None/Binary 
O2 Rosaceae 70 0.014 0.000 0.085 0.000 0.005 0.015 0.085 0.019 0.682 None/Binary 
O2 Rubiaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.098 None/Binary 
O2 Scopulariaceae 70 0.001 0.000 0.010 0.000 0.000 0.000 0.010 0.002 0.425 None/Binary 
O2 Solanaceae 70 0.001 0.000 0.005 0.000 0.000 0.000 0.005 0.002 0.490 None/Binary 
O2 Violaceae 70 0.000 0.000 0.008 0.000 0.000 0.000 0.008 0.001 0.209 None/Binary 
O2 Vitaceae 70 0.000 0.000 0.005 0.000 0.000 0.000 0.005 0.001 0.205 None/Binary 
O3 BD 70 1.43 1.02 1.72 1.32 1.45 1.54 0.70 0.16 0.977  
O3 SOIL-C 70 175 20 511 95 176 229 491 101 0.960  
O3 SOIL-N 70 6.6 0.9 14.8 4.4 6.0 8.0 13.9 2.9 0.925  
O3 C:N 70 28 4 68 18 26 37 64 14 0.967  
O3 DepthA 70 2.1 0.0 12.0 0.0 0.0 4.0 12.0 3.1 0.721 
O3 oldtree 70 35.7 0.0 120.0 0.0 7.5 80.0 120.0 43.1 0.768 
O3 Ccover 70 13.8 0.0 44.5 0.0 2.2 27.3 44.5 16.3 0.774 
O3 Ucover 70 48.9 0.0 100.0 23.0 57.0 69.0 100.0 28.1 0.911  

(continued next page) 
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Table 3-2, continued.   
Data 
Set1 Indicator2 N Mean Min. Max. Lower 

Quartile Median Upper 
Quartile Range Std. 

Dev. 
Shapiro-
Wilk W

Trans-
formation 

O3 Urich 70 20.6 0.0 39.0 11.0 24.0 29.0 39.0 11.1 0.920  
O3 Thero 70 4.16 0.00 17.00 2.00 3.00 5.00 17.00 3.92 0.827  
O3 Cypto 70 19.94 0.00 44.00 10.00 20.50 30.00 44.00 11.78 0.955  
O3 Hemic 70 8.19 0.00 24.00 2.00 8.50 13.00 24.00 6.94 0.921  
O3 Chamae 70 3.11 0.00 11.00 0.00 3.00 5.00 11.00 2.75 0.896  
O3 Phanero 70 12.24 0.00 56.00 1.00 10.50 20.00 56.00 11.93 0.878  
O4 pmolgram 70 19,027 152 106,024 2,402 16,925 27,770 105,871 19,137 0.790  
O4 Nsats 70 21.2 16.7 28.3 20.0 21.0 22.0 11.6 1.9 0.955  
O4 MBSats 70 17.4 9.9 35.5 13.6 15.8 20.1 25.6 5.1 0.901  
O4 TBSats 70 15.9 10.1 22.3 14.3 15.8 17.7 12.3 2.5 0.994  
O4 Bmonos 70 3.6 2.4 7.4 3.2 3.5 3.9 5.0 0.7 0.818  
O4 Monos 70 36.4 24.6 44.4 34.2 36.5 39.1 19.8 4.0 0.975  
O4 Polys 70 5.6 0.6 13.5 3.1 5.6 7.5 12.9 3.0 0.973  
FL1 TC 298 36.8 0.5 290.1 5.3 10.6 51.7 289.6 56.0 0.656  
FL1 SoilResp 220 2.62 0.00 18.79 0.27 0.67 4.25 18.79 3.95 0.678  
FL1 BetaGlActiv 230 7.6 -0.2 46.4 3.4 4.9 9.8 46.6 7.7 0.740  
FL2 A Horizon 40 2.4 0.0 8.3 0.7 2.2 3.4 8.3 2.2 0.900  

 
1Data set: P = Prescott College Group, S = Savannah River Ecology Laboratory Group, O = Oak Ridge National Laboratory 
Group, FL = University of Florida Group.  Numbers after the group designation are specific data set identifiers.  For example 
Prescott College provided five data sets P1 to P5.   
 
2Indicator denotes the type of ecological indicator.  Indicator definition, units of measure and justification are defined in 
Appendix 1.



 
 
 
 
 
  Although the framework of Land-Management Categories facilitated the 

comparison of multiple indicators across research teams, there were concerns about how 

to perform the indicator (variable) selection.  Concerns included: (1) Land-Management 

Categories were retroactively applied to the plots at Fort Benning, and the data collected 

were not intended to explain Land-Management Categories; (2) Land-Management 

Categories were not equally distributed across the base, and the sampling across Land-

Management Categories was not even; (3) not all indicators were equally reasonable for 

all Land-Management Categories; and (4) all Land-Management Categories were not 

equally important to resource managers.   

In order to compensate for the shortcomings in the data, a strategy was 

implemented using multiple solutions by employing several parametric and 

nonparametric indicator selection techniques.  The underlying assumptions of this 

approach were that a combination of indicators would give more reliable guidance than 

any single indicator, and that multiple selection techniques would make the best use of 

the data available.  The hypothesis was that certain important ecological indicators would 

discriminate between Land-Management Categories with different levels of military 

activity and associated ecological impacts.  Once organized, the important indicators 

could be identified for each Land-Management Category and used in a management 

program.   
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Descriptive Statistics and Matrix Conditioning 

Each indicator was assessed with a series of descriptive statistics to ascertain the 

shape of the distribution and frequency of values.  Histograms were plotted and a 

Shapiro-Wilk W statistic was computed for each variable.  If the Shapiro-Wilk W test 

result was < 0.7, showing non-normality (A. Saxton, Personal Communication), then a 

transformation of the variable was performed and the distribution of the variable was 

again assessed until a suitable transformation was found (Table 3-2 Parts A-C).  Outliers 

were filtered at five standard deviations from the mean.  If it was found that values 

representing acceptable data were beyond the first filter, then the filter was broadened to 

accommodate that data.  Mean imputation was used in two of the datasets in order to 

keep as many observations as possible for model generation and assessment. 

 

Regression 

Logistic Regression (Dreiseitl and Ohno-Machado, 2002) was performed using 

SAS Enterprise Miner 4.2 software (SAS Cary, NC).  Forward, stepwise, and standard 

variable selection were used to screen indicators against the Land-Management 

Categories.  All regression models used LOGIT as the link function and deviation coding.  

Forward and Stepwise selection criteria were set at the significance level of 0.05 for entry 

and/or to stay in the model.  Indicators from the regression analysis were considered 

important if the overall predictive model was significant at 0.05 and the individual 

indicator was also significant at 0.05. 
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Neural Network 

Neural network (NN) identification was performed with early stopping by cross-

validation and topology optimization by bootstrapping (selection criteria: median cross-

validated error) using the microCortex web-based neural computing environment 

( 2www.microCortex.com) (Almeida, 2002).  NN models were considered relevant if the r  

statistic for any trained NN (for any Land-Management Category) was greater than 0.6.  

The relative importance of each input parameter in predicting the target values was 

calculated by performing sensitivity analysis on the trained NN (Masters, 1993).  In this 

study, sensitivity of an output parameter Out =j 1,2,...,nj (for nj output parameters) to an input 

parameter In =  (for ni 1,2,...,ni i input parameters) was defined as the normalized ratio between 

variations caused in Out  by variations introduced in Inj j and is represented by the 

following equation:  

 

NSi,jc =  (dOut  / d In )(In / Outj,c i,c i, c j,c ) 

 = [ Σ ( NSSi j=1,2, ..., nj; c=1,2, ... ,nc i,jc ) ] / [Σ i=1,2, ..., ni; j=1,2, ... nj; c=1,2, ..., nc ( NSi,jc ) ]  

 (eq. 1) 

 

i= 1, 2, ..., ni;  input index 

j= 1, 2, ..., nj;  output index 

c= 1, 2, ..., nc;  sample (case) index 
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The normalized sensitivity for an individual profile c, NSi,jc was calculated for 

every combination of input i and output parameter j, and for every profile (for nc 

profiles). The overall sensitivity to an input Si was determined by taking the average over 

all profiles and all binary outputs used to classify them.  Finally, the sensitivity values 

obtained were represented as relative values, calculated as a percent value of the sum of 

all sensitivities (eq.1, Si) (Masters, 1993).  If the indicator sensitivity was greater than 

10%, then it was considered important and scored.  

 

Decision Tree 

The Tree-growing algorithms (Answer Tree v3.1 SPSS Chicago, IL), Exhaustive 

Chi-squared Automatic Interaction Detector (Kass 1980; Biggs et al., 1991), and 

Classification and Regression Trees (C&RT) (Breiman et al., 1984) were used to select a 

subset of predictors from the indicator data that predicted the Land-Management 

Category.  Indicators resulting from the decision rules from Tree models were considered 

relevant if the model had a misclassification rate less than or equal to 40%.  

 

Results Scoring 

A strategy of multiple solutions employing several parametric and nonparametric 

indicator selection techniques as described above was used to elucidate which indicators 

best discriminate the Land-Management Categories.  In order to summarize the indicator 

selection outcomes, a selection score was calculated from the union of or intersection 

between indicator results.  If a given indicator was significant (as defined above) within a 
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given overall significant model, then it was scored.  The selection score was calculated as 

the sum of the number of models (union of or intersection between) for which a given 

indicator was significant.  The maximum selection score an indicator could receive was 

six, because that was the number of indicator selection techniques used.  Higher selection 

scores for indicators within data sets are interpreted as meaning those indicators are more 

robust in regards to defining the Land-Management Categories.  

 

Results  

Variable Selection 

The variable selection analyses resulted in several strong ecological indicators describing 

the Land-Management Categories.  Table 3-3 shows the results of the indicator selection 

techniques.  Three types of ecological indicator data were available for this analysis and 

included: (1) soil physical, chemical and microbiological parameters; (2) plant family and 

life form; and (3) cover data (individual indicators are described in Appendix 1).  Soil 

physical and chemical variables that received high selection scores (>3) included soil “A” 

horizon depth, compaction, organic matter, organic layer N, NH3, Total N, N 

mineralization rate, total carbon and % carbon.  Soil microbiological indicators that 

received high selection scores included biomarkers for fungi, Gram-negative Eubacteria, 

soil microbial respiration and beta-glucosidase activity.  Plant family and life form 

indicators that received high selection scores were the family Leguminosae, possibly 

Rosaceae, and the plant life forms Therophyte, Cyptophyte, Hemicryptophyte and  
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Table 3-3 Indicator selection scores for Land-Management Categories (LMCs) 
adequately represented by each research team.   

Regression Tree 1Data Set (LMC) 2Indicator 
Standard Backward Step

ANN 
CHAID C&RT

4Score

P1 (UplFtI, RcwFtI, 
MilTrF) Soil A Horizon Depth 3X NA NA ~ X X 5 

P2 (UplFtI, RcwFtI, 
MilTrF) Soil Compaction X NA NA ~ X X 5 

P3 Soil Nitrate    X X X 3 
P3 Soil Ammonium X  X   X X 4 
P3 

(UplFtI, RcwFtI, 
MilTrF) 

Soil Organic Matter X X X X X X 6 
P4 Bacteria Ttl Activity X X X ~ ~ ~ 3 
P4 Bacteria Func. Div. X X X ~ ~ ~ 3 
P4 

(UplFtI, RcwFtI, 
MilTrF) 

Fungi Func. Div. X X X ~ ~ ~ 3 
P5 NL: nitrate    X ~ ~ ~ 1 
P5 

(UplFtI, RcwFtI, 
MilTrF) NL: sulfate X     ~ ~ ~ 1 

S1 SoilDEPTH X X X  X X 5 
S1 treesacre    X   1 
S1 OrgLayerN X X X X   4 
S1 NH3 X X X  X X 5 
S1 

(UplWhI, UplTrI) 

totalN X X X X X X 6 
S2 (UplWhI, UplTrI) NMINRATE X NA NA ~ X X 5 
O1 O-HORgN/m2 X X     2 
O1 0-10g/cm3 X   X   2 
O1 00-10[C]% X X    X 3 
O1 O-HORgC/m2 X X     2 
O1 0-10gC/m2 X X     2 
O1 0-20gPOM-C/m2       X 1 
O1 0-20gMOM-C/m2 X X   X  3 
O1 0-10[N]%   X     1 
O1 O-HORC:N     X   1 
O1 0-10C:N X   X   2 
O1 T0ugNH4N/g    X    1 
O1 MOM[C]% X      1 
O1 MOM[N]% X X     2 
O1 fPOM-C     X X  2 
O1 O-HORg/cm2 X      1 
O1 

(MilTrF, UplTrI, 
WetFtI) 

NMINRATE X X   X     3 
O2 Cistaceae  ~ ~ X   1 
O2 Compositae  ~ ~ X  X 2 
O2 

(Upl+, MilTrF, 
MilWhF, WldDrpI, 

UplFtF) Ericacae  ~ ~   X 1 
(continued next page) 
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Table 3-3, continued. 
Regression Tree 1Data Set (LMC) 2Indicator 

Standard Backward Step
ANN 

CHAID C&RT
4Score

O2 Graminae X ~ ~ X   2 
O2 Hypericaceae  ~ ~  X  1 
O2 Leguminosae X ~ ~ X X X 4 
O2 Loganiaceae  ~ ~ X   1 
O2 

(Upl+, MilTrF, 
MilWhF, WldDrpI, 

UplFtF) 
Rosaceae X ~ ~ X     2 

O3 BD  X X X   3 
O3 SOIL-C   X    1 
O3 SOIL-N X X X    3 
O3 C:N  X     1 
O3 DepthA      X 1 
O3 oldtree  X   X X 3 
O3 Ccover X X  X  X 4 
O3 Ucover X X X X  X 5 
O3 Urich X X     2 
O3 Thero X X X X   4 
O3 Cypto X X X X X  5 
O3 Hemic X X X X X  5 
O3 Chamae X X X X   4 
O3 

(Upl+, MilTrF, 
MilWhF, WldDrpI, 

UplFtF) 

Phanero X X X       3 
O4 pmolgram X X ~   X 3 
O4 Nsats   ~ X   1 
O4 TBSats   ~ X  X 2 
O4 Bmonos   ~ X   1 
O4 Monos X X ~ X  X 4 
O4 

(Upl+, MilTrF, 
MilWhF, WldDrpI, 

UplFtF) 

Polys X X ~ X X X 5 
FL1 TC X X X X X  5 
FL1 SoilResp X X X X X X 6 
FL1 

(MilWhF, MilTrkF, 
UplFtI, WetTrkF, 

Wet+, Upl+) BetaGlActiv X X X X X X 6 
FL2   A Horizon X N/A N/A ~ ~ ~ 1 

1Abbreviations for data set codes in legend to Table 3-2, and for LMCs in Table 3-1B.  
2Indicator definitions, units of measure and justification are defined in Appendix 1. 
3X = selected indicator was significant in a significant model. ~ = selected model was not 
stable and calculation not possible. N/A = model was not applicable. A blank space 
means that indicator was not significant for that model. 
4Score = The total number of significant models in which a given indicator was 
significant.  The maximum score an indicator can receive is six. 



 
 
 
 
 
Chamaephyte.  Understory cover, overstory cover and tree stand characteristics also 

scored well in the ability to discriminate between Land-Management Categories.  

 

Discussion  

 Circumstances necessitated an uncommon approach for the selection of indicators 

that best discriminated Land-Management Categories.  There were two key components 

to this work, (1) the development of Land-Management Categories and (2) variable 

screening by multiple solutions.  Although the data for this effort were not collected in a 

fashion compatible with traditional statistical techniques, variable screening by multiple 

solutions meant it was possible to integrate the separate research efforts and score the 

results.  The use of selection scores provided a straightforward method to compare 

indicators, which was important in obtaining unambiguous results.     

Similar indicators were measured by several different research teams, which 

provided an internal control for the method.  Similar indicators measured by different 

teams scored similarly in the indicator selection process, which supported the validity of 

the selection process.  Soil “A” horizon depth scored high in two out of three data sets 

where it was measured.  Soil horizons are layers of soil or soil material that are 

approximately parallel to the land surface and differ from adjacent related layers by 

chemical, physical or biological properties.  The soil “A” horizon is a mineral horizon in 

which the emphasized feature is the accumulation of humified organic matter intimately 
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associated with the mineral fraction, and develops partially from organic matter 

accumulation (Boul et al., 1994).   

 Soil compaction was found to be an important indicator of Land Management 

Categories and is defined as the volume change produced by momentary load application 

on the soil (Bradford and Peterson, 2000).  Many of the LMC’s at Fort Benning are 

defined by the amount of military traffic they receive.  The traffic consists of dismounted 

infantry (foot traffic), wheeled vehicles, and tracked vehicles.  Soil compaction decreases 

void space, increases bulk density, and decreases compressibility and permeability.  Soil 

compaction may also alter the growth of trees in forest systems and affect the water 

regime and organic matter content (Greacen and Sands, 1980). 

 Soil organic matter (SOM) is defined as the sum of all natural and thermally 

altered biologically derived organic material found in the soil or on the soil surface 

irrespective of its source, whether it is living or dead, or stage of decomposition, but 

excludes the aboveground portion of living plants (Baldock and Nelson, 2000).  As 

defined, the amount and quality of SOM is determined by the inputs of the plant and 

animal community and has been linked to the resilience of ecosystems to disturbance 

(Szabolcs, 1994).  SOM serves as a reservoir of metabolic energy, a source of 

macronutrients, and stabilizes soil structure.  The amount and quality of SOM in the soils 

at Fort Benning were found to be important in discriminating the Land-Management 

Categories.  Several measures of soil carbon and nitrogen, which are integral parts of the 

SOM, were also diagnostic for discriminating Land-Management Categories at Fort 

Benning.   
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 Soil microbiological properties were also found to be good indicators of Land-

Management Categories (Peacock et al., 2001a).  Soil microbiological activity as defined 

by Soil Respiration, although shown to be variable (Raich and Tufekciogul, 2000), is 

directly related to nutrient cycling and photosynthetic activity (Högberg et al., 2001) and 

was important in discriminating Land-Management Categories.  Additionally, N 

mineralization rate (the transformation of organic to inorganic N forms (Norten, 2000)) 

was also found to be a good predictor of Land-Management Categories.   Beta 

glucosidase activity was assessed at several point and plot locations at Fort Benning.  

Beta glucosidase activity has been linked to soil microbial activity and numbers (Taylor 

et al., 2002) and has been studied as a potential indicator for effects of agriculture on 

ecological systems (Bandick and Dick, 1999).   

 Several plant-associated indicators were also very useful in discriminating the 

Land-Management Categories.  Understory cover, overstory cover, and tree stand 

characteristics were indicative of differences in these categories. That these measures are 

important is not surprising, as cover data are intuitive and have been widely used as 

indicators (Thysell and Carey, 2000, and references therein).  The plant family 

Leguminosae, which support nitrogen fixation, has been shown to add to the quality and 

amount of soil organic matter (Robles and Burke, 1997) and was an important indicator.  

Plant life form (Therophyte, Cryptophyte, Hemicryptophyte and Chamaephyte) was also 

a good predictor of land use (Dale et al., 2002).   
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Conclusions  

Data limitations required a new approach to integrating disparate data from 

several research teams at Fort Benning.  In order to solve the particular problem of 

relating land management to current challenges, Wolfe and Dale (2006a; 2006b) 

developed a matrix of Land-Management Categories that enabled a statistical multiple 

solutions approach to assess which ecological indicators would be the best candidates for 

inclusion in a relevant monitoring program.  Since the ecological indicator information 

was spread over several data sets, a method had to be established to integrate and compile 

the results.  The approach of multiple solutions with scoring allowed us to compare the 

fitness of each indicator for the prediction of Land-Management Categories without the 

limitations of other more traditional statistical methods.  Ecological indicator data 

available for this analysis included: (1) soil physical, chemical and microbiological 

parameters; (2) plant family and life form; and (3) cover data.  Soil physical and chemical 

variables that received high selection scores included soil “A” horizon depth, 

compaction, organic matter, organic layer N, NH3, total N, N mineralization rate, total 

carbon and % carbon.  Soil microbiological indicators that received high selection scores 

included biomarkers for fungi, Gram-negative Eubacteria, soil microbial respiration and 

β-glucosidase activity.  Plant family and life form indicators that received high selection 

scores were the family Leguminosae, possibly Rosaceae, and the plant life forms 

Therophyte, Cyptophyte, Hemicryptophyte and Chamaephyte.  Understory cover, 

overstory cover and tree stand characteristics also scored well in the ability to 
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discriminate between Land-Management Categories. The results and insights gained from 

this effort appear to be consistent with other work in ecological indicators.   

This approach fulfilled the expectations for these data and it is assumed the same 

approach could be used at other sites where there are existing data that were not collected 

in a way commensurate with traditional statistical methods. 
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Chapter 4 

Ecological Knowledge Management:  

Visualization of Ecological Indicators 

 

Background 

Knowledge or knowledge management can be defined as turning data (raw 

material) into information (finished products) and from there into knowledge (actionable 

products) (Spiegler, 2000).  The objective of this part of the work was to use the results 

from the soil microbial analysis (Chapter 2) and legacy data integration (Chapter 3) to 

extend the understanding of the ecological dynamics and management impacts as they 

relate to the screened ecological indicators.  The outcome is intended as a framework for 

visualizing and distilling the ecological indicators.  This approach is, in a broad sense, 

defined as ecological knowledge management.  The purpose of ecological knowledge 

management is to improve our ability to bring to bear general scientific knowledge, 

combined with available specific facts and data, to the decision maker to illuminate their 

choices and improve their ability to share their opinions with others.  There are several 

steps to the knowledge management method:  

1. Identify the relevant ecological indicators. 

2. Define the identified relevant indicators and provide context. 

3. Describe how the indicators respond to stress in the given ecosystem.  

4. Define the relationships between relevant indicators. 
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Once these steps have been taken, a visual display of the information and mapping of the 

relationships between the indicators can take place.  The mapping has the potential to 

increase the understanding of ecosystem functioning and corresponding ecosystem 

management decisions. 

 In chapters two and three, several ecological indicators were identified that are 

potentially useful in land management.  That effort accomplished the first step in the 

knowledge management system.  The relevant identified indicators were grouped into 

four categories as described: 

 

1. Soil physical indicators. The identified indicators in this group included soil 

compaction and the depth of the ‘A’ horizon. 

2. Soil chemical indicators.  The identified indicators in this group included soil 

nitrogen (several measured forms), organic carbon (several measured forms) and 

organic matter. 

3. Soil microbial/biochemical indicators.  This group of indicators included 

microbial community biomass and composition, soil respiration, nitrogen 

mineralization rate and β-glucosidase activity. 

4. Floristic/vegetative indicators.  Indicators in this group are comprised of canopy 

cover, understory cover, plant life forms and one plant family (legumes).  

 

To continue with the knowledge management process, each identified ecological 

indicator is addressed in turn. 
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Soil Physical Indicator; Soil Compaction 

 Definition and background.  Soil compaction is defined as the process by which 

the soil grains are rearranged by mechanical means, resulting in decreased void space and 

increased bulk density (Soil Science Society of America, 2006).  Compaction literally 

squeezes out pore space (the part of the soil that is occupied by water and gas).  

Generally, larger pores that best carry air and water are lost first.  Stiegler (2006) states 

that the result of compaction on the soil is slower water infiltration, poor aeration, and 

more erosion.  Any texture of soil is susceptible to compaction, but soils made up of a 

mixture of grain sizes will compact more than a soil of a single grain size.  Soil moisture 

has the most influence on the amount of compaction a soil can receive under a given 

pressure.  When a soil is wet, the water acts as a lubricant, facilitating the movement of 

soil particles, so generally the higher the soil moisture content the lower the pressure 

needed to cause compaction.  The amount of organic matter in soils also plays a part in 

the compaction, as generally the more organic matter a soil contains the less susceptible it 

is to compaction.   

 

 Response to Stress.   There is an increase in soil compaction with increased 

military traffic and training intensity.  Figure 4-1 shows the measured amounts of soil 

compaction for three different land management categories.  These land management 

categories are on the extreme ends of the land use spectrum, with frequent tracked 

vehicle use having a mean measure of just over 10, while the infrequent upland foot 

traffic mean value is about 6.5.  Since not all traffic was measured, it is assumed the other 

land management categories fall somewhere between these values for the same soil type.
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Figure 4-1. Soil compaction for three land use categories.  Higher values indicate more 
soil compaction, n = 240 for each point and the x axis is treatment.  Confidence limits for 
mean: 95%.  MilTrF = frequent military tracked vehicles, RcwFtI = RCW managed 
infrequent foot traffic, and UpFtI = upland with infrequent foot traffic.  
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  Relationships and feedback to other identified measured indicators.  

Increased soil compaction can have many effects on ecosystem properties, 

 

• Reduced leaf litter (Waltert et al., 2002). 

• Lower amount of fine roots and soil organic matter (Waltert et al., 2002). 

• Loss of ground cover vegetation (Waltert et al., 2002). 

• Lower rate of decomposition of organic matter and N mineralization (Breland 

and Hansen, 1996). 

• Increase in gaseous losses of N (Breland and Hansen, 1996). 

• Loss of plant species diversity (Dale et al., 2002). 

 

In a sense, the soil compaction measure is more a cause of differences in our measured 

indicators rather than an indicator in and of itself.   

 

Soil Physical Indicator; Soil “A” Horizon Depth 

 Definition and Background.  Soil horizons are layers of soil or soil material that 

are approximately parallel to the land surface and differ from adjacent related layers by 

chemical, physical or biological properties.  The soil “A” horizon is a mineral horizon 

directly under an organic horizon (litter), and the emphasized feature is the accumulation 

of humified organic matter intimately associated with the mineral fraction and developed 

partially from organic matter accumulation (Boul et al., 1994). 

Soils scientists use five soil forming factors to explain how soils are developed (Boul 

et al., 1994).   
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1. Parent material:  Parent material is the starting component of a soil, it may be 

rock, volcanic emissions, silt carried onto a floodplain, or derived from other 

sources.  The parent material influences soil formation by its composition, rate of 

weathering, nutrients and particle size. 

2. Climate: Soil formation varies depending upon temperature, moisture and wind. 

3. Topography: Slope and aspect can effect soil formation.  Steep soils are more 

susceptible to erosion and may be thinner.  Soils at the bottom of a slope may be 

thicker due to deposits from upslope.  Steep slopes facing the sun are warmer 

then those not so situated, which may increase organic matter decomposition 

rates.   

4. Biological Factors: Plants, animals, microbes and humans effect soil formation.  

Plants open channels in the soil with root formation and add carbon, nitrogen and 

other nutrients.  Microbes in many cases can control chemical exchanges in soils.  

Animals and humans mix soils and add organic matter through their wastes.  

5. Time:  The development of soils is continuous and the interplay of the other soil 

forming factors over time constitutes soil formation.  

 

 The development of soil horizons proceeds faster in warm, humid and forested 

conditions where there is enough water to move material through soil profiles.  The depth 

of the soil “A” horizon is influenced by additions of organic matter and suspended 

particulates, and through soil loss by leaching and erosion.  Figure 4-2 shows an 

illustration of standard soil horizons.  
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Figure 4-2.  Illustrations of typical soil horizons.  Left illustration accessed at 

www.cals.arizona.edu , right illustration accessed at www.mo15.nrcs.usda.gov .  
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 Response to Stress.  With increased land use, the inputs of organic matter and 

other particulates that increase or maintain the depth of the “A” horizon are reduced, and 

removal of organic matter and soil colloids are increased.  The result is a net decrease in 

the soil “A” horizon with increased land use.  Figure 4-3A and 4-3B shows the depth of 

the soil “A” horizon for five separate land management categories.  The soils that 

received more traffic, e.g. MilTrF, MilWhF and WldD, have significantly smaller “A” 

horizon depth.     

 

 Relationships and feedback to other identified measured indicators.  The 

reduction in the depth of the “A” horizon is a result of the loss of carbon inputs.  The 

related indicators are: 

• Canopy cover 

• Understory cover 

• Plant diversity 

The loss of canopy cover and/or understory cover also causes a loss of SOM and its 

constituents (C and N), and a loss of bacterial biomass and activity per unit area.   

 

Soil Chemical Indicators: Soil Organic Matter, C and N  

 Definition and background.  Soil organic matter (SOM) is defined as the sum of 

all natural and thermally altered biologically derived organic material found in the soil or 

on the soil surface, irrespective of its source, whether it is living or dead, and independent 

of its stage of decomposition, but excluding the aboveground portion of plants (Baldock 
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Figure 4-3.  Two independent measures of the depth of the soil “A” horizon.  Confidence 
level for mean: 95%.  Upl+ = upland forest untrafficked, MilTrF = frequent military 
tracked vehicles, MilWhF = frequent military wheeled vehicles, UplFtF = upland forest 
frequent foot traffic, and WldDrpI = wildlife openings infrequent dropzone. 
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 and Nelson, 2000).  Soil organic matter has been found to contain approximately 50 to 

58% carbon, 34 to 49% oxygen, 3.3 to 4.8% hydrogen and 3.7 to 4.1% nitrogen (Sparks, 

1995).  Sulfur(s) and phosphorus are also minor constituents of SOM, but SOM is the soil 

fraction where these elements are principally located (Essington, 2004).  The amounts of 

SOM in the “A” horizons of mineral soils can range from 0.5 to 5% by weight, and it 

contains up to 90% of the total soil N.   

 Baldock and Nelson (2000) have identified several properties and functions of 

SOM: 

 

• Reservoir of metabolic energy:  SOM provides the physiological energy to drive 

system processes. 

• Source of macronutrients:  Mineralization of SOM impacts the amount of plant-

available N, P, and S.  

• Ecosystem resilience:  The amount of SOM-associated nutrients can act as a 

buffer for natural or anthropogenic disturbances in the soil system. 

• Stimulation and inhibition of enzyme activities and plant and microbial growth:  

Soil enzyme activity can be stimulated or inhibited by the presence of soil organic 

material. 

• Stabilization of soil structure:  The structure of the “A” horizon is most strongly 

influenced by biological factors, and soil aggregates are usually held together by 

SOM-mineral complexes. 

• Water retention:  SOM can hold up to 20 times its mass in water, and impacts soil 

structure and pore geometry. 
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• Low solubility:  Protects soil carbon from leaching out of the soil profile. 

• Color:  The dark color of SOM can effect soil thermal properties. 

• Cation exchange capacity:  SOM is highly reactive, which enhances the retention 

of cations and micronutrients. 

• Buffering capacity and pH effects:  In alkaline and slightly acidic soils, SOM can 

act as a buffer and maintain acceptable pH conditions. 

• Chelation of metals:  SOM can form stable complexes with metals and trace 

elements and reduce the loss of micronutrients.  SOM can also reduce the toxicity 

of metals and enhance the availability of P. 

• Interactions with xenobiotics:  SOM can enhance the biodegradability and 

persistence of many pollutants in the soil. 

 

 Response to Stress.  On a stable landscape, the amount of SOM (C and N) in the 

soil is a function of the balance between the rate of deposition of plant residues and the 

rate of utilization of the C and N by soil microbes.  Other factors influencing the amount 

of SOM in the soil are erosion and leaching, which increase with more intensive land use.  

Figure 4-4 shows the percent organic carbon for three different military land uses as 

measured at Fort Benning, Georgia.  The most intensive land use (MilTrF) contained the 

least amount of organic soil carbon, while the infrequently trafficked wetland soil 

(WetFtI) contained approximately 13 times more organic soil carbon.  The soil nitrogen 

content (Figure 4-5) mirrors that of the carbon, with the highest level occurring in the 

lightly trafficked wetland soil and the lowest in the heavily trafficked soil.  There is an  
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Figure 4-4.  Percent soil organic carbon in the 0 to 10 cm horizon.  Confidence level for 
mean: 95%.  MilTrkF = frequent military tracked vehicles, UplFtI = upland forest 
infrequent foot traffic, WetFtI = wetland infrequent foot traffic. 
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Figure 4-5.  Percent soil nitrogen in the 0 to 10 cm horizon.  Confidence level for mean: 
95%.  MilTrkF = frequent military tracked vehicles, UplFtI = upland forest infrequent 
foot traffic, WetFtI = wetland infrequent foot traffic. 

 83



overall loss of SOM carbon and nitrogen in response to stress (military traffic) in the 

system under study.  

 

 Relationships and feedback to other identified measured indicators.  The 

relationships of soil organic matter to the other measured indicators are essentially the 

same as those of the soil “A” horizon.  SOM is related to the amount and diversity of 

canopy and understory cover, activity and composition of the microbial community and 

the soil forming factors. 

 

Soil Microbial & Biochemical Indicators; Microbial Community Composition, 

Respiration, N Mineralization Rate and Beta-Glucosidase Activity 

 Definition and background.  The soil microbial biomass is the total amount of 

living microorganisms in the soil and contains mesofauna (e.g., nematodes), microfauna 

(e.g., protozoa) and microbes (e.g., bacteria, archea, fungi, and algae) (Essington, 2004).  

As reviewed in chapter two of this work, soil microbial biomass can react quickly to 

conditions of nutrients, moisture, temperature.  

 

 Response to Stress.  In general, there is a decrease in microbial biomass with 

traffic disturbances at Fort Benning (Peacock et al., 2001a).  Community composition is 

also impacted due to disturbance.  For example, in areas where there is plenty of organic 

soil carbon, there appears to a healthy population of Gram-negative bacteria, but with 

more disturbed soils there is an increase in Actinomycetes (Peacock et al., 2001a).  Soil 

microbial activity is also impacted by disturbance.  Microbial activity as measured by β-
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glucosidase production is depressed in soils that are highly disturbed (Prenger, personal 

communication) as are N mineralization rates (Garten and Ashwood, 2004a, 2004b) 

(Figure 4-6). 

 

 Relationships and feedback to other identified measured indicators.  The soil 

microbial community is intimately associated with the properties of SOM and its 

associated inputs (plant diversity, overstory and understory cover) and is the focal point 

through which many chemical transformations must pass.  As such, soil microbes are the 

facilitators of the in-ground portion of the carbon and nitrogen cycles.  Soil microbes are 

responsible for nitrogen mineralization and denitrification as well as the transformation 

of carbon into CO2 and soil humic fractions.  

 

Floristic & Vegetative Indicators; Canopy & Understory Cover, Plant Life Form and 

Legumes 

 Definition and background.  Canopy cover measures the amount of cover over a 

plot (e.g., trees in a forest).  Understory cover is defined as the percentage of an area’s 

understory vegetation under one meter in height.  Plant life form measures the amount of 

understory cover in an area (plot level) by the Raunkiaer (1934) life form system and the 

forms can be divided into Phanerophytes (trees and shrubs), Therophytes (annuals), 

Chamaephytes (plants with their buds slightly above the ground) and Chamaephytes or 

Hemicryptophytes (plants with dormant buds at ground level).  Legumes (Leguminosae) 

are plants from the bean or pea family, containing about 18,000 species and 650 genera.  

Legumes are a significant component of most terrestrial ecosystems, for many Legumes 
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Figure 4-6.  Soil nitrogen mineralization rate.  Confidence level for mean: 95%.  MilTrkF 
= frequent military tracked vehicles, UplFtI = upland forest infrequent foot traffic, and 
WetFtI = wetland infrequent foot traffic. 
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are nitrogen fixers through a symbiotic process with Rhizobium bacteria (Hickey and 

King, 1997).  Canopy cover is indicative of changes in ecosystem processes over 

decades, and understory vegetation cover and plant life form or family indicators measure 

changes over years to decades. 

 Plants have been used as indicator organisms since the beginning of modern 

ecological monitoring (Hall and Grinnell, 1919).  Plant communities and biomass provide 

a ready measure of differentiation between many land uses and do not require any special 

tools for analysis besides the knowledge of the person making identifications.  Plant 

communities respond to temperature, moisture, soil condition, disturbances and several 

other ecological variables. 

 

 Response to stress.  Dale et al. (2002) reported at Fort Benning that canopy and 

understory cover decreases with increased training activities (Figure 4-7).  Neither 

measure of plant cover discriminated the extremes of training intensity.  In order to 

achieve a higher resolution between treatments, a plant life-form measure was used. 

Cryptophytes were the most abundant of all categories studied, except in lightly-

trafficked areas (Figure 4-8A).  Phanerophytes (Figure 4-8B) were the most abundant in 

light training areas while Therophytes (Figure 4-8C) were least abundant in lighter 

training areas.  Chamaephytes were least numerous in moderately trafficked sites and 

sites undergoing remediation (Figure 4-9A).  Heavily tracked sites did not support 

Chamaephytes or Hemicryptophytes (Figure 4-9B).  Legumes were most abundant in low 

traffic areas (Figure 4-10) and were sensitive to disturbance.   
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Figure 4-7.  A. Understory cover and B. Canopy cover.  Confidence level for mean: 95%.  
Upl+ = upland forest untrafficed, MilTrF = frequent military tracked vehicles, MilWhF = 
frequent military wheeled vehicles, UplFtF = upland forest frequent foot traffic, and 
WldDrpI = wildlife openings infrequent dropzoneFigure  
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Figure 4-8.  Distribution of plants by life form. A. Cryptophytes and B. Phanerophytes.  
Confidence level for mean: 95%.  Upl+ = upland forest untrafficed, MilTrF = frequent 
military tracked vehicles, MilWhF = frequent military wheeled vehicles, UplFtF = upland 
forest frequent foot traffic, and WldDrpI = wildlife openings infrequent dropzone. 
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Figure 4-8 Continued. C, Percent cover for Therophytes in five Land-Management-
Categories.  Confidence level for mean: 95%.  Upl+ = upland forest untrafficed, MilTrF 
= frequent military tracked vehicles, MilWhF = frequent military wheeled vehicles, 
UplFtF = upland forest frequent foot traffic, and WldDrpI = wildlife openings infrequent 
dropzone. 
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Figure 4-9.  Cover of plants by life form.  A. Chamaephytes.  B. Hemicrytophytes.  
Percent cover in five Land-Management-Categories.  Confidence level for mean: 95%.  
Upl+ = upland forest untrafficed, MilTrF = frequent military tracked vehicles, MilWhF = 
frequent military wheeled vehicles, UplFtF = upland forest frequent foot traffic, and 
WldDrpI = wildlife openings infrequent dropzone. 
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Figure 4-10.  Legumes percent cover for five Land-Management-Categories.  Confidence 
level for mean: 95%.  Upl+ = upland forest untrafficed, MilTrF = frequent military 
tracked vehicles, MilWhF = frequent military wheeled vehicles, UplFtF = upland forest 
frequent foot traffic, and WldDrpI = wildlife openings infrequent dropzone. 
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 Relationships and feedback to other identified measured indicators.  

Vegetation can influence soil organic C and N levels as a result of the amount, type, and 

biodegradability of plant residues returned to the soil.  Soil N levels are also influenced 

by the uptake from plants.  These effects are most profound in the “A” horizon since 

concentrations of organic C below this horizon are due mainly to pedogenic processes 

(Volkoff and Cerri, 1988).  Plant material can be thought of as the parent material for soil 

organic C, and varies in composition and concentration across the landscape.  Soil 

microbial biomass, composition and activity are also closely linked to the type and 

amount of plant residues and exudates (Zak et al., 2003).   

 

Erosion Statement 

 Through the course of this study over 100 candidate ecological indicators 

measured by several research teams, were screened for relevance and possible use in an 

ecological monitoring program.  The results of these analyses have also illustrated that 

other ecological indicators or processes that were not measured as a part of this work are 

critical to the sustainability of land for military training or other uses.  Erosion plays a 

dominant role in the continuing health of this ecological system.  According to Jawdy, 

(2003, and references therein) erosion degrades soil quality quickly because it affects the 

most productive portion of the soil, the surface layer.  The organic rich surface layer is 

critical for plant growth because plant roots depend on its loose texture, high porosity, 

and nutrient richness.  If this layer is removed the soil is less able to support plants, retain 

and cycle nutrients, filter pollutants, and regulate water flow.  As a consequence, if the 

soil is eroded, it is lost and it does not matter what else is monitored, because there will 
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be nothing but weathered rock.  In this sense all of the indicators in this study are related 

to or affected by erosion. 

 

Knowledge Mapping 

 The concept of knowledge is as old as human thought.  In the Theaetetus (369 

BC), Plato has Socrates pose the question, “What is knowledge?”  There were three 

answers provided, the first being that knowledge is perception.  The second answer was 

that knowledge is true belief, and the third answer was that knowledge is true belief with 

an account (logos).  After a lengthy discussion all attempts to define knowledge failed, 

and the story ends when Socrates leaves to face his accusers in the courtroom.    

For our purposes, knowledge or knowledge management can be viewed as turning 

data (raw material) into information (finished products) and from there into knowledge 

(actionable products) (Spiegler, 2000).  In other words, data becomes information when it 

adds values in some way, and information becomes knowledge when it adds insight, 

abstractive value or better understanding: in this case an ecological system and the place 

of the measured indicators in that system.  Knowledge can thus be gained by 

visualization techniques.  

 Figure 4-11 maps the selected indicators in relation to the carbon and nitrogen 

cycle in a functioning ecosystem.  Wail et al. (1999) and Garten and Ashwood (2004b) 

have suggested that the biogeochemical cycles of C and N connect all of the biotic and 

abiotic components of an ecosystem to one another in a holistic fashion.  Figure 4-11 was 

intended to illustrate to land managers and those who may not be familiar with 

geochemical cycles how the different indicator types correspond to these critical soil  
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sustaining processes.  The illustration of the cycle shows the processes that transform 

CO2 and N into organic matter and then return of the photosynthetically fixed C and N to 

mineral forms via biological mineralization.  Using the color code allows the reader to 

relate given types of measured ecological indicators (plant, chemical, microbial or 

physical) to a specific ecosystem process, and further illustrates how those processes are 

related to and dependent upon other parts of the process.  Understanding the system at a 

functional level provides a base of understanding for more complicated concepts such as 

modeling or sustainability paradigms.   

 Figure 4-12 adds to the base of knowledge from Figure 4-11 and presents a 

conceptual model of the soil horizon building process.  This model illustrates the mass 

balance relationships within the ecological system.  As long as inputs in the form of 

biomass to the soil are maintained, or exceed the outputs, the soil should remain stable 

and provide required services.  However, if the inputs from the overlying plant 

community do not balance the losses from the soil system due to erosion and leaching, 

then soil quality will decline over time.  Figure 4-12 also shows the relationship between 

military traffic and the soil building process.  As traffic increases, plants are damaged or 

removed, and over time there is less addition of organic matter (as plant residue) to the 

soil.  Increased traffic also causes soil compaction and erosion.  Without some mitigating 

influence, the soil quality will eventually degrade.  Figure 4-12 may seem elementary and 

redundant, but this is the level of understanding of someone who does not work with 

these systems and processes on a daily basis.  In order for scientists to make sure the 

message is clear and understood, complicated concepts must be distilled to their essence.   
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Figure 4-12.  Conceptual model of the soil building process.  Pane A shows a balanced 
soil system and Pane B shows the loss of organic matter and an increase in removal of 
soil and OM from the system due to traffic disturbance.   
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Figure 4-13 maps the relationships of the previously selected ecological indicators to the 

soil maintenance process.  By displaying the indicators in this fashion, it is hoped that the 

knowledge of what the indicators represent to the functioning of the ecological system 

can be understood.  For the practitioner, this knowledge should lead to actionable 

products or at the least a better understanding of what is being measured and how it 

relates to broader ecosystem dynamics.  For the manager that may or may not be familiar 

with ecological function the figure illustrates the relationships between the given 

indicators and how they are dependent on each other.   
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Figure 4-13.  Knowledge map of the soil building process.   
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Chapter 5 

Conclusions and Next Steps 

 

The stated objectives of this work were: 

1. To test the hypothesis that a suite of microbial ecological indicators would 

distinguish between the management (use) of military lands. 

2. To develop a method for the integration of disparate or legacy ecological 

indicator data for the management of military lands. 

3. To extract relevant facts from the preceding two objectives and develop a 

Knowledge Map/Conceptual Model that illustrates and explores the relationships 

between the ecological indicators and military training impacts. 

 

In order to address the objectives the research was divided into three distinct phases.  

In Phase I, a series of field sites was selected that were representative of several different 

environmental impacts caused by military use, as well as reference control areas.  

Representative soil samples were taken from each of the selected sites.  The soil was 

extracted and analyzed for phospholipid fatty acid (PLFA) content, which provided an 

index of the soil microbial community biomass, composition and metabolic status. The 

aim of the experiment was to discover if soil PLFA (the soil microbial community) could 

provide indicators to ultimately predict different types of military land use or 

degradation.  Accurate, quantitative data representative of an entire microbial community 
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allowed the application of discriminant and neural network models to authenticate 

differences across the environment and between treatments and was successful. 

In Phase II, ecological indicator data previously collected by the five SEMP 

research teams was compiled, integrated as far as possible, and then screened through a 

data mining approach that used variable selection techniques combined with a multiple 

models solution to elucidate which ecological indicators (predictors) were best able to 

discriminate between different military land uses.  Soil physical and chemical variables 

that received high selection scores included soil “A” horizon depth, compaction, organic 

matter, organic layer N, NH3, Total N, N mineralization rate, total carbon and % carbon.  

Soil microbiological indicators that received high selection scores included biomarkers 

for fungi, Gram-negative Eubacteria, soil microbial respiration and β-glucosidase 

activity.  Plant family and life form indicators that received high selection scores were the 

family Leguminosae, possibly Rosaceae, and the plant life forms Therophyte, 

Cyptophyte, Hemicryptophyte and Chamaephyte.  Understory cover, overstory cover and 

tree stand characteristics also scored well in the ability to discriminate between Land-

Management Categories. The results and insights gained from this effort appear to be 

consistent with other work in ecological indicators.   

In Phase III, the indicators that made it through the relevance screen were used as 

inputs in Knowledge Maps.  The purpose of the effort was to validate the chosen 

indicators by the use of visualization, presentation, and modeling capabilities in order to 

gain a better understanding of ecosystem dynamics on military managed landscapes.  

This effort showed the relationship between the above-ground and below-ground systems 

and how they are related to and dependent upon the other.  It is hoped that the 
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information provided can aid in the education of land managers and also provide the tools 

necessary for them to accomplish the goal of sustainability.     

Next Steps 

If the military wants to maintain training areas in perpetuity, then it must develop 

guidelines that take into account the mass balance aspect of soil stability.  Of all the 

ecological indicators measured for this work, soil organic matter content was perhaps the 

key most important in predicting amount and type of military land use.  There were 

several measured forms of SOM used in this study (organic layer N, NH3, Total N, N 

mineralization rate, total carbon and % carbon).  Once these ecological indicators have 

been identified there is the question of what to do next.  Concurrent with this project, 

Garten and Ashwood (2004a, 2004b) used simple models of soil C and N dynamics to 

predict recovery thresholds from degraded soils at Fort Benning.  They surmised that 

although ecosystem rehabilitation could be less complex than restoration, especially if 

monocultures are used, that there are likely thresholds associated with soil quality that 

may be the root cause that determines the success of land rehabilitation.  This concept is 

important for the military because it goes to the heart of sustainability.  We have already 

established that SOM is important through not just the work included here, but from 

many other researchers.   

Wail et al. (1999) proposed that biogeochemical cycles of C and N connect all of 

the abiotic and biotic components of ecological systems to one another in a holistic way.  

Garten and Ashwood authored a simple model of soil C and N dynamics to predict 

thresholds to soil recovery on degraded landscapes at Fort Benning, Georgia.  There were 

four factors important to the development of thresholds to soil recovery: (1) initial 
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amounts of aboveground biomass, (2) initial C stocks (i.e. soil quality), (3) relative 

recovery rates of biomass, and (4) soil sand content.  In this work it was discovered that 

initial C stocks in the soil influenced the predicted patterns of landscape or ecological 

recovery.  Calculations with the model also indicated that the reestablishment of 

vegetation on barren sites to a level of future desired condition is not possible with low 

initial soil carbon levels.  The work of Garten and Ashwood demonstrate the practical 

utility of quantified ecological indicators such as SOM and what these indicators mean 

for sustainability. 

This project has produced a suite of quantifiable ecological indicators for the 

management of land and mapped the interactions and relationships between them.  This 

project has also illustrated and defined how the identified ecological indicators are 

involved in the processes which either build or degrade soil over time.  By using the 

selected indicators within a mass balance framework, it is believed that land managers 

will be able to better manage land resources for sustainability. 
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Appendix 1. Fort Benning, Georgia Soil Cover Map 
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Appendix 2.  Ecological Indicators 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College 

Ant Community 
Structure 

The ground/litter ant 
community species 

composition and their 
relative abundances  

Systematic clusters of 
pit-fall traps along 

perpendicular transects 
with a random 

orientation; pit-fall traps 
are 9 oz. plastic cups 

abundances 
of all ant 
species 

Ant community 
structure (relative 

population sizes and 
species 

composition) 

Integrates the 
response of a very 
important animal 

community to 
ecosystem type, 
condition, and 

relative disturbance; 
very critical for our 

integrated ecological 
indicator set  

It is a difficult and time 
consuming task to identify and 
count ants in the lab; typically 

over 100,000 ants are identified 
and counted; taxonomy is 

currently in a very dynamic 
state, making it very difficult to 

keep up with the “correct 
scientific nomenclature”; 

requires assistance from specific 
ant taxa specialists from all over 
the country; for optimal benefits 

as a stand-alone or integrated 
indicator requires specialized 
knowledge and experience in 

multivariate analyses  

SREL % Ground Cover 
Vegetation 

% coverage of 
vegetation less than 

1.4m high 

This % cover was 
derived from a 6 meter 

line transect at 25 points 
in each 100  m and 100 
m plot, and thus is not 

an ocular estimate based 
on a circular plot or 
square quadrat - The 
'cover' would be any 
cover at a point along 

the transect (all species 
combined). 

% Plant colonization 
of an area 

It acts as an 
integrated 

measurement for 
positive 

environmental 
properties enabling 

plant growth. 

Can be canopy-dependent past a 
certain tree density, and 
dependent on understory 

tolerance, complicating broad 
across-site comparisons. 

UF Herbaceous Vegetation 
Cover 

Aerial herbaceous 
vegetation cover 

Estimated using foliar 
ocular observation in 
two independent m2 

quadrats within a 10 m 
x 10 m plot 

% Ground cover, 
primary production 

Indicator of recent 
disturbance level  and 

recovery 
 

ORNL1 Total Understory Cover 
Percentage cover of all 
understory vegetation 

(<1 m in height) 

Visual estimation within 
5 m radius plots set 

along transects within 
training classifications 

% 

Response of total 
vegetation to 

various levels of 
training intensity 

Total cover may 
differ in its 

ecological response 
to environmental 

disturbance 

Dale et al. 2002 article in 
Ecological Indicators 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College Bare Ground % of bare ground 

Estimated from % bare 
ground in 0.58 m2 
circular quadrats 

systematically-random 
located on 4 

perpendicular transects 
with a random 

orientation 

% Lack of surface 
litter 

A composite 
indicator for the 

direct loss of 
vegetation in all 

vegetation strata; a 
good stand-alone 

indicator; very 
critical for our 

integrated ecological 
indicator set  

 

ORNL1 Ground Cover (Bare) % exposed soil 

Visual estimation within 
5 m radius plots set 

along transects within 
training classifications 

% 

Response of 
vegetation to 

various levels of 
training intensity 

% bare ground may 
differ in response to 

environmental 
disturbance 

Dale et al. 2002 article in 
Ecological Indicators 

ORNL1 Ground Cover (Litter) % cover of litter on 
ground surface 

Visual estimation within 
5m radius plots set 

along transects within 
training classifications 

% 

Response of 
vegetation to 

various levels of 
training intensity 

% litter may differ in 
response to 

environmental 
disturbance 

Dale et al. 2002 article in 
Ecological Indicators 

UF Herbaceous community 
Structure  

Vegetation cover by 
species 

Estimated using foliar 
ocular observation and 
species identification in 
2- 1 m2 quadrats within 

a 10 m2 plot 

 
Species composition 

of herbaceous 
community 

Relative contribution 
of weedy, invasive 

species versus 
disturbance sensitive 

species gives 
indication of level of 
disturbance and time 

since disturbance 

 

ORNL1 Understory Cover by 
Family 

% cover of understory 
plants by taxonomic 

family 

Visual estimation by 
Braun-Blanquet cover 

category within 5m 
radius plots set along 

transects within training 
classifications 

% 

Response of 
vegetation to 

various levels of 
training intensity by 

family 

Taxonomic families 
may differ in their 

ecological response 
to environmental 

disturbance 

Dale et al. 2002 article in 
Ecological Indicators 

ORNL1 Understory Cover by 
Life Form 

% cover of understory 
plants by Raunkiaer life 

form 

Visual estimation by 
Braun-Blanquet cover 

category within 5m 
radius plots set along 

transects within training 
classifications 

% 

Response of 
vegetation to 

various levels of 
training intensity by 

lifeforms 

Raunkiaer lifeforms 
may differ in their 

ecological response 
to environmental 

disturbance 

Dale et al. 2002 article in 
Ecological Indicators 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL1 Overstory Cover Amount of canopy 
cover above plot 

Average of four 
measures of canopy 

densiometer readings 
within each 5m radius 

plots set along transects 
within training 
classifications 

% 

Amount of clear sky 
viewable 

hemispherically 
above plot 

Measure of 
photosynthetically 
active radiation for 

understory 

Dale et al. 2002 article in 
Ecological Indicators 

SREL Tree Density number of trees within 
study site in trees per ha 

4 trees at each of 25 
points in each 100meter 
x 100-meter stand were 
measured (diameter and 
distance to the point).  

Point quarter 
calculations were done 

to provide tree/ha 
estimates for each stand. 

no./area Density of trees 

It is the density of 
trees in the stands 

and influences light 
for understory, litter 
amount and quality 

and many other stand 
characteristics. 

 

ORNL1 DBH of Trees Greater 
than 5 cm 

Diameter at breast 
height of trees 

DBH tape within 5 m 
radius plots set along 

transects within training 
classifications 

m^2 Stand basal area Inter-tree competition 
and shading 

Dale et al. 2002 article in 
Ecological Indicators 

ORNL1 Stand Age Maximum stand age 

Greatest of two 
perpendicular increment 
bores from the 4 largest 
trees near each transect 

within a training 
classifications 

years Age of oldest tree in 
transect 

Time since last stand-
clearing disturbance 

Dale et al. 2002 article in 
Ecological Indicators 

Prescott 
College Soil A-Horizon Depth 

Thickness of A-
Horizon, depending on 

varying specific 
definitions, includes Oa 
layer, and may include 

Oe layer  

Surface litter is brushed 
away and a small garden 
trowel is used to remove 

a soil plug, based on 
color change the A-
Horizon thickness is 

measured with a 
stainless steel metric 

ruler   

 Soil integrity and 
erosion losses 

Our research is 
developing the theme 
that soil integrity is a 

major indicator of 
ecosystem condition; 
a good stand-alone 

indicator; very 
critical for our 

integrated ecological 
indicator set  

It is important for measurement 
reliability and consistency that a 
SINGLE investigator conduct all 
the readings.  This indicator may 

be influenced by other soil 
properties (e.g., texture), forest 

community type, and 
physiography.  Therefore, we are 

investigating this important 
aspect. 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

SREL Soil A-Horizon Depth Depth of soil A-horizon 

12 random A-depth 
measurements in each 
100 m x 100 m stand 

were recorded.  
Measurements were 

done in the field using a 
cm ruler and soil corer. 

cm Depth of A soil 
horizon 

It is the development 
of soil A layer which 

is a cumulative 
indicator of soil 

development and 
quality over longer 

time periods 

 

UF Soil A-Horizon Depth 

Mineral horizon formed 
at the surface or below 

an O horizon and 
containing accumulated 

decomposed organic 
matter 

By visual estimation of 
A horizon development 

using a 1 inch soil 
probe. 

cm Soil carbon and soil 
structural integrity 

Indicates recent 
disturbance, erosion, 

mixing of soil 
horizons 

Can be difficult to distinguish in 
very low carbon systems. There 
may be more than one A-horizon 

(i.e. buried A horizons) 

ORNL1 Soil A-Horizon Depth Thickness of A-Horizon 

Soil probe used to 
obtain sample. Depth of 
A horizon measured in 
field with a ruler from 
bottom of surface litter 

layer (if present) to 
change in color 

indicating bottom of A 
horizon  

cm Amount of 
undisturbed soil  

Quantitative measure 
of disturbance 

Dale et al. 2002 article in 
Ecological Indicators 

Prescott 
College Soil Compaction Self-explanatory Lang Penetrometer, 

Lang Penetrometer, Inc.  Relative compaction 
of soil surface 

Direct indicator of 
degree of vehicle 
activity, relative 

habitat disturbance, 
ecosystem relevance 
for biological activity 
and water infiltration; 
very critical for our 

integrated ecological 
indicator set  

This indicator is influenced by 
other soil properties (e.g., 

texture), and possibly also forest 
community type, and 

physiography.  Therefore, we are 
investigating this important 

aspect. 

ORNL2 Soil Density Grams of dry soil per 
cubic centimeter of soil 

Determine the dry mass 
of a known volume of 

soil 
g/cc Soil compaction 

High soil density 
inhibits root growth 

and the infiltration of 
water 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

UF Soil Respiration Aerobic carbon 
mineralization  

CO2 production 
determined in soil 

slurries incubated at 
standard temperature 

(30oC) by GC (Zibilske, 
1994) 

μg CO2 / (g 
soil x hour) 

Competence of soil 
microbiota to 

mineralize carbon; 
quality of soil 
carbon stocks 

Undisturbed soil will 
have higher overall 

respiration than 
eroded soils, but may 
have lower ratio of 

CO2 production/unit 
total carbon 

CO2 production is dependent on 
both the quantity and quality of 

soil carbon stores 

UF Soil Total Carbon Total carbon content of 
soil 

Total carbon; dry 
combustion method 

(Nelson and Sommers, 
1996). 

g C / kg dry 
soil g C /kg dry soil  

Carbon is an 
indicator of primary 
productivity inputs 
and soil structure, 

and is an important 
determinant of soil 

fertility. 

 

ORNL2 Soil Carbon Conc. Grams of carbon per 
gram of dry soil 

Measured by 
combustion of the soil 

sample (elemental 
analysis) in a LECO 

CN-2000 

% dry mass 
Soil carbon is 

related to organic 
matter 

Organic matter 
imparts many 

favorable qualities to 
soil (nutrients, soil 

structure, water 
retention, etc.) 

Our combustion methods (high 
temperature combustion) give 
total soil carbon (both organic 

and inorganic) 

ORNL1 Soil Carbon Conc. Grams of carbon per 
gram of dry soil 

Measured by 
combustion of the soil 

sample (elemental 
analysis) in a LECO 

CN-2000 

% dry mass 
Soil carbon is 

related to organic 
matter 

Organic matter 
imparts many 

favorable qualities to 
soil (nutrients, soil 

structure, water 
retention, etc.) 

Our combustion methods (high 
temperature combustion) give 
total soil carbon (both organic 

and inorganic) 

ORNL2 Carbon Conc. in MOM 

Conc. of carbon in the 
silt and clay fractions 

from mineral soil 
samples 

Mineral-associated 
organic matter is 

physically separated 
from mineral soil by wet 

sieving after soil 
dispersion and the dry 

MOM (silt and clay size 
fractions) is analyzed on 

an elemental analyzer 
for its carbon 
concentration 

g C / sq.m. 

Carbon associated 
with mineral-

associated organic 
matter is generally 
considered to be 

more humified than 
POM-C 

MOM-C has a longer 
mean residence time 
in the soil than POM-

C and is a less 
favorable energy 

source for some soil 
microorganisms 

Amounts of MOM-C are 
generally greater than POM-C 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL2 Soil Carbon Stocks 
Grams of carbon per 

unit area of ground to a 
specified soil depth 

Calculated as the 
product of soil density 

and soil carbon 
concentration 

g C / sq.m. 
Amounts of soil 

organic matter on an 
area basis 

Organic matter 
imparts many 

favorable qualities to 
soil (nutrients, soil 

structure, water 
retention, etc.)  

Soil carbon stocks depend on the 
depth over which the stock is 

calculated 

ORNL1 Soil Carbon 
Grams of carbon per 

unit area of ground to a 
specified soil depth 

Calculated as the 
product of soil density 

and soil carbon 
concentration 

mg C / sq. 
cm 

Amounts of soil 
organic matter on an 

area basis 

Organic matter 
imparts many 

favorable qualities to 
soil (nutrients, soil 

structure, water 
retention, etc.)  

Soil carbon stocks depend on the 
depth over which the stock is 

calculated 

ORNL2 Carbon Stock in POM 

Mass of soil carbon 
found in particulate 

organic matter present 
in the mineral soil 

Particulate organic 
matter is physically 

separated from mineral 
soil samples by wet 

sieving after soil 
dispersion and the dry 

POM (sand size 
fraction) is analyzed on 
an elemental analyzer 

for its carbon 
concentration; the stock 

is calculated as a 
product of POM amount 

and carbon 
concentration in POM 

g C / sq. m 

Carbon in 
particulate organic 
matter is generally 

free or released 
from soil macro-

aggregates; it is thus 
considered to be 

more readily 
available as a 

carbon source for 
heterotrophic soil 

microorganisms that 
promote soil carbon 

mineralization 

Amounts of 
particulate organic 

matter are generally 
regarded as a good 

indicator of soil 
quality (i.e., a readily 

available pool of 
labile soil carbon to 

support soil 
microorganisms) 

This measurement is only done 
on mineral soil samples (not O-

horizons) 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL2 Carbon Stock in MOM 

Mass of soil carbon in 
mineral-associated 

organic matter from the 
mineral soil 

Mineral-associated 
organic matter is 

physically separated 
from mineral soil by wet 

sieving after soil 
dispersion and the dry 

MOM (silt and clay size 
fractions) is analyzed on 

an elemental analyzer 
for its carbon 

concentration; the stock 
is calculated as a 

product of concentration 
and amount of mineral-

associated organic 
matter 

g C / sq. m 

It is an amount 
rather than a 

concentration; 
carbon associated 

with mineral-
associated organic 
matter is generally 
considered to be 

more humified than 
POM-C 

MOM-C has a longer 
mean residence time 
in the soil than POM-

C and is a less 
favorable energy 

source for some soil 
microorganisms 

Should correlate with carbon 
concentration in mineral-
associated organic matter 

ORNL2 Fraction of Soil Carbon 
in POM 

Fraction of total soil 
carbon (to a specified 

soil depth) in particulate 
organic matter 

Calculated -- it is the 
amount of carbon in 

POM normalized by the 
total soil carbon stock 

fraction of 
total soil 
carbon 

Relative amounts of 
labile soil carbon 

pool in the mineral 
soil 

Amounts of 
particulate organic 

matter are generally 
regarded as a good 

indicator of soil 
quality (i.e., a readily 

available pool of 
labile soil carbon to 

support soil 
microorganisms) 

 

ORNL2 Soil Nitrogen Conc. Grams of nitrogen per 
gram of dry soil 

Measured by 
combustion of the soil 

sample (elemental 
analysis) in a LECO 

CN-2000 

% dry mass 
The concentration 
of a critical plant 
nutrient in soil 

Nitrogen is usually 
the single most 
important soil 
nutrient that 

constrains biomass 
production 

Soil nitrogen generally declines 
with increasing soil depth 

ORNL1 Soil Nitrogen Conc. Grams of nitrogen per 
gram of dry soil 

Measured by 
combustion of the soil 

sample (elemental 
analysis) in a LECO 

CN-2000 

% dry mass 
The concentration 
of a critical plant 
nutrient in soil 

Nitrogen is usually 
the single most 
important soil 
nutrient that 

constrains biomass 
production 

Soil nitrogen generally declines 
with increasing soil depth 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL2 Nitrogen Conc. in MOM 

Concentration of 
nitrogen in the silt and 

clay fractions from 
mineral soil samples 

Mineral-associated 
organic matter is 

physically separated 
from mineral soil by wet 

sieving after soil 
dispersion and the dry 

MOM (silt and clay size 
fractions) is analyzed on 

an elemental analyzer 
for its nitrogen 
concentration 

% dry mass 

A pool of soil 
nitrogen with a 

relatively long mean 
residence time 

Under some 
conditions, MOM 

can be an important 
source of slow-

release soil nitrogen 

 

ORNL2 Soil Nitrogen Stocks 
Grams of nitrogen per 
unit area of ground to a 

specified soil depth 

Calculated as the 
product of soil density 

and soil nitrogen 
concentration 

g N / sq. m 
The amount of soil 
nitrogen (total soil 

nitrogen) 

N\itrogen is the 
single most important 

soil nutrient that 
constrains biomass 

production 

Soil nitrogen stocks depend on 
the depth over which the stock is 

calculated 

ORNL1 Soil Nitrogen 
Grams of nitrogen per 
unit area of ground to a 

specified soil depth 

Calculated as the 
product of soil density 

and soil nitrogen 
concentration 

mg N / sq. 
cm 

The amount of soil 
nitrogen (total soil 

nitrogen) 

Nitrogen is the single 
most important soil 

nutrient that 
constrains biomass 

production 

Soil nitrogen stocks depend on 
the depth over which the stock is 

calculated 

ORNL2 Soil C:N Ratios 
Ratio of soil carbon 
concentration to soil 

nitrogen concentration 

Calculated from soil 
carbon and nitrogen 
concentration data 

none (ratio) 
The amount of soil 
carbon relative to 

nitrogen 

High soil C:N ratios 
indicate that soil 
microbes are N 

limited rather than C 
limited and so N is 
immobilized during 
microbe growth; low 

soil C:N ratios 
indicate that soil 

microbes are more C 
liimited than N 

limited and so N is 
released 

(mineralized) during 
decomposition of soil 

organic matter 

Soil C:N ratios generally decline 
with soil depth 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College Soil Nitrate Soil concentration of 

nitrate and ammonium  

Systematic-random 
collection of soil 

samples, composited, 
lab analysis   

 

Absolute and 
relative amounts of 

nitrate and 
ammonium in the 

soil 

Nitrogen has been 
identified as an 

important integrator 
of ecosystem 

condition, 
successional stage, 
and productivity; 
often the limiting 
macro-nutrient in 

terrestrial 
ecosystems; most 

critical for our 
integrated ecological 

indicator set 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

SREL Soil Extractable N Extractable mineral 
nitrogen in soil 

A hammer corer (AMS, 
American Falls, ID) was 
used to extract two soil 
cores (15.2 cm deep by 

5.1 cm diameter) 
beneath each organic 

layer sample at 4 
random points in each 

100m x 100m plot.  The 
cores were stored at 5 

oC until processing.  In 
the laboratory, one of 
each pair was passed 

through a 6.3 mm sieve; 
roots were sorted and 

removed from the soil.  
A subsample of the 

sieved soil (ca. 10 g) 
was extracted using 2 M 

KCl (10 ml soln:1 g 
soil).  The solution was 
shaken mechanically for 
two hours and allowed 
to clear overnight at 4 
oC.  The clear extract 
was pipetted off for 
NO3-N and NH4-N 

analysis using 
automated colorimetry 
(Alpkem FS3000) with 
a detection limit of 0.01 

ppm.   

μg/g soil Extractable mineral 
nitrogen in the soil 

It is the current level 
of extractable 

nitrogen for the soil.  
 

ORNL2 Extractable Soil Nitrate-
N 

Grams of nitrate-N that 
can be extracted from 

the mineral soil 

Soils are extracted with 
2 molar potassium 

chloride and nitrate-N is 
displaced from anion 
adsorption sites in the 

soil 

μg N / g soil 

A chemically 
available form of 
soil nitrogen that 
may indicate the 

availability of 
nitrate-N to plant 

roots 

Soil nitrate is highly 
mobile and readily 
leached from the 

plant rhizosphere if it 
is not immobilized by 
soil microorganisms 
or taken up by plant 

roots 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

SREL Soil Potential N 

Defined as mineral 
nitrogen production in 
the laboratory.  It is a 
potential estimate and 

the exact definition 
depends on the time 
interval and mineral 
nitrogen components 

used in the calculations.  

See attached μg/g soil 

Potential mineral 
nitrogen in the soil 
based on laboratory 
incubations under 

favorable conditions 

It is the potential 
nitrogen production 

for the soil and 
represents the 
production of 

nitrogen available 
from soil components 

under favorable 
conditions. 

 

ORNL2 Potential Net Soil 
Nitrogen Mineral-ization 

Potential for 
transformation of 

organic soil nitrogen to 
inorganic soil nitrogen 

Laboratory incubations 
over a specified period 
of time to determine the 
production of inorganic 

soil nitrogen during 
decomposition of 

organic matter 

μg N / (g soil 
x wk) 

The relative 
availability of soil 
nitrogen to plants 

and the net potential 
of the soil to 

produce inorganic 
soil nitrogen 

Soil nitrogen 
mineralization is the 
primary process by 
which nitrogen is 
made available to 

plant roots 

This is measurement is net 
production of nitrogen and may 

not reflect gross rates under field 
conditions 

ORNL2 Potential Net Soil 
Nitrification 

Potential for 
transformation of 

ammonium nitrogen to 
nitrate nitrogen in 

mineral soil samples 

Laboratory incubations 
over a specified period 
of time to determine the 

production of nitrate 
during decomposition of 

organic matter 

μg N / (g soil 
x wk) 

The relative activity 
of nitrifiers in the 

soil 

Nitrification 
produces nitrate from 

ammonium and 
nitrate is a highly 

mobile and leachable 
form of soil nitrogen 

Nitrification is an aerobic 
process 

ORNL2 Extractable Inorganic 
Soil Nitrogen 

Grams of inorganic soil 
nitrogen that can be 
extracted from the 

mineral soil 

Soils are extracted with 
2 molar potassium 

chloride 
μg N / g soil 

Chemically 
available forms of 

soil nitrogen (a 
relative measure of 

soil nitrogen 
availability to plant 

roots) 

Soil nitrogen is the 
primary nutrient 

limiting plant growth 

This is the sum of extractable 
soil ammonium and extractable 

soil nitrate; most of the soil 
nitrogen is organically bound so 

extractable pools are usually 
very small relative to total soil 

nitrogen 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College Soil Ammonium Soil concentration of 

ammonium  

Systematic-random 
collection of soil 

samples, composited, 
lab analysis   

 

Absolute and 
relative amounts of 

nitrate and 
ammonium in the 

soil 

Nitrogen has been 
identified as an 

important integrator 
of ecosystem 

condition, 
successional stage, 
and productivity; 
often the limiting 
macro-nutrient in 

terrestrial 
ecosystems; most 

critical for our 
integrated ecological 

indicator set 

 

ORNL2 Extractable Soil 
Ammonium-N 

Grams of ammonium-N 
that can be extracted 
from the mineral soil 

Soils are extracted with 
2 molar potassium 

chloride and 
ammonium-N is 

displaced from cation 
adsorption sites on the 

soil 

μg N / g soil 

A chemically 
available form of 
soil nitrogen that 
may indicate the 

availability of 
ammonium-N to 

plant roots 

Some plant roots 
preferentially absorb 
ammonium nitrogen 

Ammonium-N is not very 
mobile in soils (because it is a 

cation) 

Prescott 
College Soil Organic Matter Organic matter in the 

soil 

Based on soil samples 
collected for nitrogen 

analysis; loss of weight 
on ignition  

 

Absolute and 
relative amounts of 
organic matter and 
carbon in the soil  

Soil carbon and 
organic content is 
directly linked to 

biological 
productivity and 

ecosystem condition; 
very critical for our 

integrated ecological 
indicator set  
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

SREL Soil Organic Layer Mass 
Oven dry mass of 

pooled organic layers 
Oi, Oe and Oa. 

From a destructive 
harvest of pooled 

organic layers in the 
field. A circular 

sampling guide of 495 
cm2 was laid on the soil 
surface.  Clippers were 
used to cut around the 

perimeter of the guide to 
the mineral soil surface.  
All organic layer sample 
was removed up to the 
mineral soil interface.  
Surface organic layer 

samples were collected 
at 8 random points in 

each study site.  

g/m2 
Mass of organic 
layer on an aerial 

basis 

It acts as an 
integrated 

measurement for 
litter input, 

decomposition, 
erosion and fire for a 

plot  

Can be canopy-dependent and is 
also dependent on fire, quality of 
litter produced and other factors 

ORNL2 O-Horizon Dry Mass Grams of O-horizon per 
unit area 

The O-horizon is 
removed from a known 
area of ground and its 

dry mass is determined 

g dry mass / 
m2 

It can represent 
several different 

things but is 
basically a measure 

of the balance 
between litter inputs 

and litter 
decomposition 

O-horizons promote 
water retention and 

help prevent erosion; 
O-horizons are an 

important source of 
nutrients for plant 

roots and they 
provide protection for 

decomposer 
organisms that help 
breakdown litter for 
the supply of plant 

nutrients 

O-horizons can be partially or 
completely lost as a result of 

ground fires 

SREL Soil Organic Layer %N 
% N composition of 
pooled organic layer 

samples 

See organic layer mass.  
Physical sample ground 
in a Wiley mill then a 
subsample was ground 
in a Spex ball mill then 
analyzed for nitrogen 
using a CHN analyzer  

% Nitrogen content of 
organic layer 

It acts as an 
integrated 

measurement for 
quality of litter inputs 

and the pool of 
nitrogen.  

Can be canopy-dependent for 
both density and species. 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL2 O-Horizon Nitrogen 
Stock 

Grams of nitrogen 
present in the O-horizon 
per unit area of ground 

Calculated as the 
product of O-horizon 

nitrogen concentration 
and O-horizon dry mass 

g N / sq. m 

An important 
nitrogen pool that is 
released to supply 
plant nutrients as 

the litter 
decomposes 

Plant growth on 
sandy, nutrient poor 

soils is highly 
dependent on 

recycling of nitrogen 
through the O-

horizon 

Nitrogen can be lost from the 
system during ground fires that 

consume the O-horizon thus 
contributing to even greater 
nitrogen limitations on plant 

growth 

ORNL2 O-Horizon Carbon Stock 
Grams of carbon 

present in the O-horizon 
per unit area of ground 

Calculated as the 
product of O-horizon 
carbon concentration 

and O-horizon dry mass 

g C / sq. m 
The amount of soil 

carbon in the O-
horizon 

It is directly 
correlated with the 
amount of surface 

organic matter which 
can be important in 
water retention and 
an important source 
of nutrients for plant 

growth and soil 
microorganisms 

This pool can be lost from the 
system during ground fires or 

transformed to highly refractory 
forms of soil carbon (charcoal) 

ORNL2 O-Horizon C:N Ratio 
Ratio of O-horizon C 
concentration to O-

horizon N concentration 

Calculated from O-
horizon C and N 
concentrations 

none (ratio) 

Generally believed 
to be a measure of 
litter quality; litter 
with a high C:N 
ratio undergoes 

slow initial rates of 
decomposition 

because N limits 
decomposer activity 
while litter with a 

low C:N ratio 
undergoes high 
initial rates of 

decomposition (i.e., 
decomposition and 
release of nutrients 

proceeds more 
quickly in litters 
with a low C:N 

ratio) 

It can indicate the 
rate at which litter 

will decompose and 
the rate at which 

nutrients are released 
to the mineral soil 

Although the literature is 
conflicting; litter C:N ratios are 
sometimes a good predictor of 

litter decomposition  

Prescott 
College 

Microbial Biomass 
Carbon   mg MBC/g 

soil 

The amount of 
microbial carbon in 

the soil 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL1 Soil Microbes: Biomass 

We are measuring the 
total amount of 

microbial biomass (as 
PLFA) in the soil. 

Quantitative measure of 
the phospholipid fatty 
acid content of the soil 
is extracted, purified 
and anayzed by GC.  

pmol/g dry 
soil 

The viable PLFA 
content of the soil. 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   

Prescott 
College Bacteria Total Activity 

We are measuring the 
total activity and 

functional diversity of 
the fungal and bacterial 

communities 

Systematic-random soil 
samples are composited 

and taken to the lab 
where they are tested 

with BioLog and 
FungiLog protocols 

 

Relative degree of 
bacteria and fungal 
activity to a wide 
range of nutrient 

substrates    

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems they 
represent critical 

integrators of 
ecosystem structure 
and dynamics; most 

critical for our 
integrated ecological 

indicator set   

Cannot readily use this indicator 
by itself without its integration 

with soil chemistry and physical 
environmental metrics 

Prescott 
College 

Bacteria Functional 
Diversity 

We are measuring the 
total activity and 

functional diversity of 
the fungal and bacterial 

communities 

Systematic-random soil 
samples are composited 

and taken to the lab 
where they are tested 

with BioLog and 
FungiLog protocols 

substrate 
richness & 
utilization 

Ability of soil 
bacteria to use 

carbon 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems they 
represent critical 

integrators of 
ecosystem structure 
and dynamics; most 

critical for our 
integrated ecological 

indicator set   

Cannot readily use this indicator 
by itself without its integration 

with soil chemistry and physical 
environmental metrics 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College Fungi Total Activity 

We are measuring the 
total activity and 

functional diversity of 
the fungal and bacterial 

communities 

Systematic-random soil 
samples are composited 

and taken to the lab 
where they are tested 

with BioLog and 
FungiLog protocols 

 

Relative degree of 
bacteria and fungal 
activity to a wide 
range of nutrient 

substrates    

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems they 
represent critical 

integrators of 
ecosystem structure 
and dynamics; most 

critical for our 
integrated ecological 

indicator set   

Cannot readily use this indicator 
by itself without its integration 

with soil chemistry and physical 
environmental metrics 

Prescott 
College 

Fungi Functional 
Diversity 

We are measuring the 
total activity and 

functional diversity of 
the fungal and bacterial 

communities 

Systematic-random soil 
samples are composited 

and taken to the lab 
where they are tested 

with BioLog and 
FungiLog protocols 

substrate 
richness & 
utilization 

Ability of soil fungi 
to use carbon 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems they 
represent critical 

integrators of 
ecosystem structure 
and dynamics; most 

critical for our 
integrated ecological 

indicator set   

Cannot readily use this indicator 
by itself without its integration 

with soil chemistry and physical 
environmental metrics 

ORNL1 
Soil Microbes 
Biomarkers for 

Microeukaryotes 

We are measuring the 
biomass of the 

microeukaryotes like 
fungi etc. 

Specific PLFA 
(polyunsaturates) which 

are indicative of 
microeukaryotes are 

extracted and analyzed 

pmol/g dry 
soil 

Amount of the 
group of PLFA in 

picomols 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   

ORNL1 
Soil Microbes 
Community 
Composition 

Measuring distribution 
of different classes of 

microbes 

Specific classes of 
PLFA are extracted and 

quantified. 
mole % 

Amount of the 
group of PLFA in 

picomols 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

ORNL1 Soil Microbes 
Actinomycetes 

Measures PLFA specifc 
of Actinomycetes  

Specific class of PLFA 
(Mid-Chain Branched 
saturates) are extracted 

and quantified. 

pmol/g dry 
soil 

Amount of the 
group of PLFA in 

picomols 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   

ORNL1 Soil Microbes Gram-
Negative 

Measures PLFA 
specific for Gram-
negative eubacteria 

Specific class of PLFA 
(Monounsaturates) is 

extracted, purified and 
analyzed.  

pmol/g dry 
soil 

Amount of the 
group of PLFA in 

picomols 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   

ORNL1 Soil Microbes Gram-
Positive Bacteria 

Measures PLFA 
specific for Firmicutes 

Specific class of PLFA 
(Terminally branched 
saturated) is extracted, 
purified and analyzed.  

pmol/g dry 
soil 

Amount of the 
group of PLFA in 

picomols 

Because bacteria and 
fungi are involved in 
decomposition and 

nutrient cycling in all 
ecosystems, they 
represent critical 

integrators of 
ecosystem structure 

and dynamics 

Must be analyzed as part of a 
complete PLFA suite.   

UF Beta-Glucosidase 
Activity 

Activity of soil 
ectoenzyme involved in 

cellulose degradation 

Measured in aqueous 
soil dilutions by 

production of methyl-
umbelliferone from the 

artificial substrate 
MUF-glucoside 

(Sinsabaugh et al., 
1997) 

μmole / (g 
dry soil x 

hour) 

Competence of soil 
to degrade cellulose; 

microbiological 
activity. 

An indicator of 
microbial nutrient 

cycling 

Varies seasonally due to 
temperature, moisture, carbon 

inputs from leaf fall, etc. 
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Inst. Indicator Brief Description How the Indicator Is 
Measured Units What It Measures Why the Indicator 

Is Important 
Notes, Clarifications, 

References, or Caveats 

Prescott 
College 

Nutrient Leakage: 
Nitrate 

The measurement of 
leachate ions ½ m 
below soil surface      

Water collected from 
field lysimeters; ion 

concentrations 
measured in lab 

 

Anions and cations 
that are being 

leached from top 
soil 

Direct measure of the 
loss or “leakage” of 

major and minor 
nutrients from soils; 
very critical for our 

integrated ecological 
indicator set  

Particularly useful in 
combination with other 

indicators; for most informative 
results this indicator requires the 

use of an independent site-
specific specialized calibration 
technique developed by a team 

member    

Prescott 
College 

Nutrient Leakage: 
Ammonium 

The measurement of 
leachate ions ½ m 
below soil surface      

Water collected from 
field lysimeters; ion 

concentrations 
measured in lab 

 

Anions and cations 
that are being 

leached from top 
soil 

Direct measure of the 
loss or “leakage” of 

major and minor 
nutrients from soils; 
very critical for our 

integrated ecological 
indicator set  

Particularly useful in 
combination with other 

indicators; for most informative 
results this indicator requires the 

use of an independent site-
specific specialized calibration 
technique developed by a team 

member    

Prescott 
College 

Nutrient Leakage: 
Phosphate 

The measurement of 
leachate ions ½ m 
below soil surface      

Water collected from 
field lysimeters; ion 

concentrations 
measured in lab 

 

Anions and cations 
that are being 

leached from top 
soil 

Direct measure of the 
loss or “leakage” of 

major and minor 
nutrients from soils; 
very critical for our 

integrated ecological 
indicator set  

Particularly useful in 
combination with other 

indicators; for most informative 
results this indicator requires the 

use of an independent site-
specific specialized calibration 
technique developed by a team 

member    

Prescott 
College 

Nutrient Leakage: 
Sulfate 

The measurement of 
leachate ions ½ m 
below soil surface      

Water collected from 
field lysimeters; ion 

concentrations 
measured in lab 

 

Anions and cations 
that are being 

leached from top 
soil 

Direct measure of the 
loss or “leakage” of 

major and minor 
nutrients from soils; 
very critical for our 

integrated ecological 
indicator set  

Particularly useful in 
combination with other 

indicators; for most informative 
results this indicator requires the 

use of an independent site-
specific specialized calibration 
technique developed by a team 

member    
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