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ABSTRACT 
My doctoral research has focused on the development of surface plasmon 

resonance (SPR) reflectance imaging technique to detect near-field transport properties 

such as concentration, temperature, and salinity in micro/nano fluidic phenomena in 

label-free, real-time, and full-field manner. 

 A label-free visualization technique based on surface plasmon resonance (SPR) 

reflectance sensing is presented for real-time and full-field mapping of microscale 

concentration and temperature fields. The key idea is that the SPR reflectance sensitivity 

varies with the refractive index of the near-wall region of the test mixture fluid. The Fresnel 

equation, based on Kretschmann’s theory, correlates the SPR reflectance with the refractive 

index of the test medium, and then, the refractive index correlates with the mixture 

concentration or temperature. The basic operation principle is summarized and the 

laboratory-developed SPR imaging/analyzing system is described with the measurement 

sensitivity, uncertainties and detection limitations of the implemented SPR reflectance 

imaging. Total five proposed uses of SPR reflectance imaging technique are presented: (1) 

micromixing concentration field development of ethanol penetrating into water contained 

in a micro-channel, (2) full-field detection of the near-wall salinity profiles for 

convective/diffusion of saline droplet into water, (3) full-field and real-time surface 

plasmon resonance imaging thermometry, (4) correlation of near-field refractive index of 

nanofluids with surface plasmon resonance reflectance, and (5) unveiling hidden complex 

cavities formed during nanocrystalline self-assembly.  

Keywords: Surface Plasmon Resonance (SPR), Transport properties, Micro/nano fluidics, 

Concentration, Salinity, Temperature, Hidden cavity, Nanoparticles, Effective Refractive 

Index, TIR, Evanescence 
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CHAPTER 1 

Introduction 

 

1.1 Surface Plasmon Resonance (SPR) 
The use of foreign trace particles, such as fluorescence dyes or liquid crystal 

particles [1], in measuring fluidic concentrations and temperature fields can alter the flow 

properties because of the physical and dynamical intrusiveness by themselves. The level 

of the experimental bias will be more substantial for microscale experiments because of 

the increased intrusiveness with decreasing length scales. Label-free imaging, therefore, 

is desirable to provide more accurate examination of microfluidic and thermal fields.  

Of the many techniques that have been examined for the purpose of measuring 

microfluidic and thermal fields—including differential interference contrast (DIC) 

imaging, dark-field imaging, phase contrast imaging, shearing interferometry [2] and 

reflected light microscopy techniques, and detecting temperature fileds-including 

thermocouple (TC), and laser induced fluorescence (LIF) [3], surface plasmon resonance 

(SPR) reflectance variation is considered to be most sensitive, label-free, full-field and 

real-time detection tool to visualize the refractive index of a mixture and the variation of 

temperature fields.  

The evanescent wave field of total internal reflection (TIR) is amplified along the 

interface between the noble metal (Ag, Au, Cu, Al) film layer and the test fluid (Fig. 1.1a) 

[4,5]. When the p-polarization wave-vector of the TIR light matches the surface plasmon 

wave vector at a certain incident angle, called the SPR angle, SP excitation and 

amplification occur (Fig. 1.1b). This phenomenon is called Surface Plasmon Resonance 

(SPR) [6,7]. The history about SPR phenomena is well described in reference [6]. In 

return, the intensity of the TIR light is greatly reduced as most of the incoming photons 

are converted to the electron energy of SP waves entering the thin metal film and exiting 

as amplified SPR. The magnitude of the p-polarized SPR reflectance is extremely 

sensitive to the refractive index variation of the near-wall fluid region above the thin 

metal layer. Note that s-polarization wave-vector is not subjected to SPR and is totally 
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Figure 1.1 Schematic SPR and TIR principle. Detail explanation for SPR configuration is 

described in Fig. 2.1. 
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reflected. 

Various techniques using the SPR principle are currently applied to research, 

which is rapidly expanding to comprise a variety of interests, including biochemical, 

biomedical, pharmaceutical, chemistry, polymer and various other engineering fields. 

One of the most active areas of research is in the field of biomedicine, which is exploring 

protein-protein interactions, substrate-DNA/cell/protein/enzyme joining, receptor-ligand 

attractions, and a number of other applications of timely importance [7-17]. Other 

essential applications outside the field of biomedicine include measurements of thin 

polymer film thicknesses [18-21], the sensing of specific gas or liquid components [22-

25],  point-wise temperature measurements, theoretical modeling for hydrogenated 

amorphous silicon, silver film, titanium dioxide layer (TiO2), a mixture of ethanol and 

glycol [22, 26-28] and the nanoscale optics in the near and wide field using localized 

surface plasmon polarization [29-33]. In addition, diverse techniques are presently being 

developed and tested using the surface plasmon optical characteristics: classical SPR [14, 

34,35], SPR interferometry [36-38], SP coupled emission [6,39], SP fluorescence 

spectroscopy [8, 9,40,41], SPR microscopy [42-44], nano-optics of SP polarization [29-

33], and SPR scattering of nanoparticles [45,46].  

However, the advantageous merits of SPR sensing, based on the SPR reflectance, 

have not been explored as a full-field detection tool for near-field transport properties in 

micro/nanoscale fluidic phenomena. Traditionally, SPR microscopy has been used in 

diverse applications. Rothenhausler and Knoll [44] and Berger et al. [42] presented full-

field images of thin film thickness changes by detecting the SPR reflectance variation 

depending on the film thickness. Brockman et al. [43] and Lee et al. [10] suggested the 

detection of multiple DNA array interactions by measuring the multiple point-wise SPR 

reflectance information with time.  Lam et al. [23] showed the point-wise detection of a 

binary mixture (glucose and water) concentration with SPR. Fu et al. [47] used the 

wavelength-tunable SPR microscopy to detect the point-wise changes of refractive index 

of saline solution. None of these results, however, provide measurements of 

concentration distributions in full-field and real-time nature. Zhang et al. [38] showed 

three-dimensional imaging of the dynamic process of alcohol using the SPR  
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interferometric method. While their method analyzes the interferogram to obtain 

refractive index variations, this analysis is not applied directly to concentration field 

distribution. Menguc’s group showed that SPR phenomena are utilized to characterize the 

scattering of nanosized particles, with the parameters of size, shape, and orientations of 

these particles [45,46]. 

In this study, a label-free, full-field and real-time quantitative visualization 

technique using the SPR reflectance imaging is presented as a new optical tool to 

nonintrusively measure the near-field transport properties in micro/nanoscale fluidic 

phenomena. 

 

1.2 Motivation and Objective 

Originally, this study starts from the trial to visualize the concentration profile of 

transparent binary liquids in a label-free, real-time and full-field manner. Foreign 

materials can affect or alter transport properties of test medium and cause measurement 

inaccuracy. To overcome this problem, non-intrusive label-free technique is investigated 

in this study. Most techniques such as enhanced microscopy and interference do not work 

through several trial and errors except SPR technique. SPR is known to be highly 

sensitive to the variation of refractive index of test medium with 10-8 in refractive index 

(RI) unit [48] because the electric field of surface plasmon is dramatically enhanced near 

the interface between metal thin film and test medium. For this reason, SPR is employed 

as a sensing platform for a label-free mapping of transport properties of micro/nanoscale 

fluidic phenomena. For the first time, surface Plasmon resonance (SPR) reflectance 

imaging technique is implemented and applied in the field of thermal-fluids to detect 

transport properties such as concentration, temperature, salinity, hidden cavities, and 

effective refractive index in a label-free, real-time, and full-field manner. This study aims 

to develop SPR reflectance imaging technique and demonstrate its applications to detect 

transport properties of micro/nano fluidic phenomena. 

 

1.3 Organization of the Study 

This study consists of development of surface Plasmon resonance (SPR)  
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reflectance imaging technique for label-free mapping of transport properties in 

micro/nano fluidic phenomena and its five practical applications. Chapter 2 describes the 

fundamentals of SPR covering its principle, governing equation, modified Drude model 

for the consideration of temperature effect of metal film, and the resolution. Chapter 3 

shows the proposed uses of SPR reflectance imaging technique in five applications. 

Section 3.1 presents a visualization of micromixing concentration profiles of binary 

liquids when a drop of ethanol propagates to pure water stored in microchannel by 

capillary phoretic suction force. Section 3.2 shows a detection of transient near-wall 

convective/diffusive salinity profiles when a droplet of saline solution is dropped into 

pure water on top of gold thin film surface to show the formation of vortex ring in the 

shape of “donut”. Section 3.3 demonstrates the possibility of SPR thermometry based on 

modified Drude model to detect the temperature field in real-time and label-free when hot 

water droplet is put in the test medium of air or cold water. Section 3.4 discusses the 

unveiling of hidden hollow cavities formed during evaporative nanocrystalline structure 

self-assembly by using SPR near-field imaging and natural fringe mapping technique 

with digital fringe analysis. Dramatic and scientifically meaningful finding is observed 

using SPR near-field mapping technique. Section 3.5 presents the correlation of refractive 

index of nanofluids with surface plasmon resonance technique to show that effective 

refractive index of nanofluids is linearly dependent on volume fraction of 47 nm Al2O3 

nanofluids. Chapter 4 is the conclusions derived from this study and provides 

recommendations for further research. 
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CHAPTER 2 

Fundamentals of SPR 

2.1 Principle of SPR 

The SPR technique is known for its high sensitivity in measuring refractive index 

variations on the order of 10-8 sensitivity [48]. In addition, the illuminating intensity of 

the SPR wave is about 10 times greater than the ordinary evanescent wave field generated 

by the total internal reflection (TIR) under the same illumination source strength [9, 40, 

41). 

Figure 1.1 illustrates the very basic concept of SPR reflectance and an 

experimental schematic as a real-time and full-field refractive index imaging tool. When 

the incident ray exceeds a critical angle onto the prism interface (Fig. 1.1a), the intensity 

of the total internal reflection remains identical to that of the incident ray, while the 

evanescent light wave field is created to quickly decay within a few hundred nanometers, 

from the interface [4,5]. When the prism interface is coated with a thin metal (Au) layer 

(Fig. 1.1b), the evanescent EM field induces the abundant free electrons to oscillate and 

resonate at an optimized PR condition. The resulting resonated and amplified evanescent 

wave field is created along the top surface of the metal layer. Because of the absorption 

by resonance of the incident ray, the reflectance intensity is reduced by the amount of 

resonant absorption (A), and the absorption amount directly depends on the refractive 

index of the test fluid contacting the thin metal film when other optical conditions are 

fixed. In turn, the refractive index of test medium depends on the local concentrations or 

temperatures. 

Figure 2.1 schematically illustrates the Kreschtmann’s principle of SPR occurring 

at the interface of a thin-layered metal film contacting the external test medium [34]. 

When a thin metal film is illuminated by a coherent p-polarized light at an incident angle 

exceeding the critical angle for total internal reflection, the evanescent wave vector ( xk
r

) 

is formed at the incident (bottom) metal surface that successively triggers coherent 

fluctuations of free electrons at the surface of the metal film [49]. This coherent energy 

conversion of the photons into free electrons is called the Surface Plasmon (SP)  
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Figure 2.1 Kreschmann configuration of a three-layered SPR principle consisting of the 

glass prism (1), the metallic gold film (2), and the test medium (3), where spθ is the 

surface plasmon angle, d2 is the thickness of the gold film,  kx denotes the wave 

propagation number of the evanescent wave, and ksp denotes the wave propagation 

number of the SPR wave. In most experiments, thin metal film is coated on slide glass 

which is placed on top of prism using refractive index matching fluid, and this layer of 

refractive index matching fluid is neglected in Fresnel calculation [58,59]. 
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phenomenon. The resonant excitation of SP in the laterally heterogeneous interface 

occurs when the condition of momentum matching is fullfilled, i.e., spx kk
rr

=  where xk
r

is 

the evanescent wave vector along the surface. When the SP waves penetrate into the very 

thin metal film and collectively oscillate to form amplified waves, the SPR wave is 

achieved on the emitting (top) surface of the metal layer [6,9]. 

As a result of the SPR excitation and absorption of the incident light into the 

metal film, the reflected light intensity is darkened and is ideally nullified at the specified 

SP angle [44]. The parameters determining the SP angle include the incident light 

wavelength, the type and thickness of the metal film, refractive index values of the metal 

layer and the prism, and the refractive index of the test medium.  Thus, once the SP 

angle is set for the base fluid at reference concentration or temperature with the specified 

conditions showing the darkest background image, any local changes of refractive index 

distribution in the test field as the result of mixing with secondary fluid or variations of 

temperature will reduce the local SPR absorption and enhance the corresponding SPR 

reflectance. This is the key idea to non-intrusively detecting the concentration fields of a 

binary mixture or the temperature fields with fine spatial measurement resolution and 

high accuracy. 

The SPR excitation requires specific conditions for metal properties in that the 

real part of its dielectric constant must be negative and its absolute magnitude greater 

than that of the imaginary part [9, 50]. There are several noble metals available for SPR 

applications, including silver, gold, copper and aluminum. Among them, gold is preferred 

because of its stability and superior performance in various environmental conditions.  

 
2.2 Governing Equation 

The SPR reflectance R based on the three-layer configuration (Fig. 2.1) is 

regarded as a function of related optical and geometrical parameters as: 

( )θλ ,,,,, 2321 IdnnnRR =  (2.1) 

where n is refractive index, d is the gold layer thickness, Iλ is the incident wave length, 

and θ is the incident ray angle. The subscripts i = 1, 2, and 3 refer to prism, thin film 

metal, and test medium, respectively.  
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Fresnel equations relating p-polarization [4,51] gives: 
2||rR p=                     (2.2) 
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where rp is reflection coefficient, ω is the angular frequency of incident ray, c is the speed 

of light, k is the wave number, ( ), equivalently the magnitude of the wave 

vector 

222
zx kkk +=

k
r

, and ε is the dielectric constant. The dielectric constant of liquid is obtained 

from the relationship [9]. 2n=ε

Computational calculations by setting R = 0 in Eq. (2.2) predict the optimum 

incident angles for zero reflectance as 43.5° for air test medium, 70.7° for water test 

medium, and 74.9° for ethanol test medium, when d2 = 47.5-nm gold layer is illuminated 

by 632.8-nm waves at 20°C through a BK7 glass prism (n1 = 1.515). For the case of a 

thicker or thinner film than the optimum 47.5 nm, less of the evanescent wave is 

absorbed or transmitted through the film to amplify the resonance, and, in turn, the SPR 

reflectance increases. All fluid temperatures (air, water, ethanol) remain constant at 20°C 

in the temperature-controlled laboratory environment, with estimated maximum 

uncertainties of ±0.5°C. 
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2.3 Modified Drude Model 
To consider the temperature effect on metal film dielectric constant, the modified 

Drude model is incorporated in the Fresnel equation. The dielectric constant of thin metal 

film is given by Drude model [26,27,52,53] as: 

 

)(
1)(
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p
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ωωω

ω
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−=+≡         (2.7) 

 

where ε, nr, ni are the dielectric constant, the real and imaginary parts of thin metal film 

refractive index, respectively. ω is the angular frequency of the illuminating light, and  

ωp and ωc are the plasmon frequency and the collision frequency of thin metal film, 

respectively. Eq. (2.7) is expanded to provide 
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The plasma frequency is defined as [4]: 
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where N and m* are the free electron number density and effective mass of a single 

electron, respectively. The temperature dependence of ωp is given as [26,52]: 

 
2/1

00 )](1[ −−+= TTepp γωω            (2.10) 

 

where γe is the thermal volume expansion coefficient of thin metal film and T0 is the 

reference temperature (90°C for the present case). It is shown that the temperature 

dependence of ωp is negligibly small compared with that of ωc [52], and thus, only the 
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latter will be retained in determining the temperature dependence of the thin metal film 

dielectric constant in Eq. (2.8). 

 The collision frequency ωc consists of phonon-electron scattering frequency cpω  

and electron-electron scattering frequency  [26,27,52], i.e., ceω
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where all the constants and coefficients are listed in Table 2.1.  

Using the experimentally determined refractive index n = nr  + ini = 0.1718 + 

i3.637 for the 47.5 nm Au thin film at the incident wave length of 632.8 nm [54], Eq. 

(2.10) is solved to determine ωp = 3.7826ω, and ωc = 0.08802ω where the specified ω = 

2πc/λ = 2.9788 X 1012rad/s. Substituting these results into Eq. (2.11) gives ω0 = 1.171 X 

1014 rad/s.  

The SPR curve accounting for the temperature variation effect in Fig. 2.2 is 

determined from the aforementioned analysis and calculations. Two parameters of 

thermal expansion and dielectric constant are considered to investigate the temperature  

 

Table 2.1 Parametric values for the calculation of the temperature dependent thin 

metal refractive indices  

 Symbols Description Value 
TD Debye temperature 170 K
EF Fermi energy 5.53 eV
kB Boltzmann’s constant 1.3807 × 10-23 J/K
Γ Scattering  probability 0.55
Δ Fractional umklapp scattering 0.77
h Plank constant 1.0546 X 10-34 Js
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Figure 2.2 Effect of temperature dependency of thin metal film on SPR reflectance 

thermometry (Dielectric constant & thermal expansion). 
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effect on SPR reflectance imaging thermometry. The thermal expansion factor has the 3% 

decrease effect and the dielectric constant has the effect of 7% increase effect. On 

average, the temperature variation consideration has the 4% increase effect.  

 

2.4 Spatial and Line of Sight Resolutions   
Because of the plane wave optical components, the lateral resolution of SPR 

imaging, as in normal wide-field light microscopy, is affected by the well-known 

diffraction limit length scale, Dfl /22.1min λ= [44], also referred to as a Rayleigh 

criterion [4]. 

In addition, SP waves occur in a propagating mode and are strongly damped in 

their direction due to intrinsic dissipation [55,56] and radiative damping [35,57]. The 

propagation length that a surface plasmon wave travels along the interface, between the 

test medium and the gold thin film, is defined by decay length [42,44]. The decay 

length, or equivalently, the distance along the surface where the attenuation of the 

plasmon field occurs is proportional to 1/e, the reciprocal of an exponential function, or 

equivalently to,

xL

"2
1

sp
x k

L = , where ksp” is the imaginary part of the surface plasmon wave 

vector along the surface, i.e., 2/1

32

32 )(2
εε

εε
λ
π

+
=′′+′= spspsp kikk .  

The calculated decay length  as a function of ethanol concentration is shown 

in Fig. 2.3, where the upper and lower limits refer to the elementary uncertainties of 

xL

2, ελ and 3ε  for the test medium of water/ethanol binary liquids (The following section 

includes more detailed discussions on measurement uncertainties in Chapter 3, see Table 

3.2) The lateral resolution is approximately 4.5 μm for all tested ethanol concentrations 

and is approximately equivalent to seven pixels of the CCD camera, with each pixel 

covering a 0.66-μm square in the physical domain. 

The line-of-sight resolution of SPR imaging is estimated to be in the order of one 

nanometer based on the resonance contrast, while the line-of-sight resolution for normal 

wide-field light microscopy is typically in the order of 10 nm based on the interference  
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Figure 2.3 Lateral resolution of SPR imaging as a function of ethanol mass concentration 

in water based on the SPR decay length [58,60]. 

 

contrast [42,44]. Thus, the SPR technique can provide additional benefits in accurately 

measuring thin film thicknesses [18-21] or the separation distance between two interfaces 

[8,17] with substantially enhanced accuracy. 

SPR technique can provide additional benefits in accurately measuring thin film 

thicknesses [18-21] or the separation distance between two interfaces [8,17] with 

substantially enhanced accuracy. 

 

2.5 Penetration Depth of Surface Plasmon Wave 
Surface Plasmon wave has the evanescent characteristics, and its penetration 

depth (δ) or skin depth is defined as the depth at which the electric field of evanescent 

surface plasmon wave falls to 1/e from dispersion relationship [6]; 

2/1

2'
3

3
'
2

2/1

2
3

3
'
2

2
,

2
,

||
1

⎟
⎟
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⎞
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=

=

ε
εε

π
λδ
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εε

π
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δ
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k zi

      (2.12) 
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where ε2 and ε3 are dielectric constants of metal film and test medium, respectively. ε2
’
 is 

real part of ε2. Penetration depth, δ is a function of incoming light wavelength, and 

dielectric constants of test medium and metal film. In the case of λ=632.8 nm, gold (εm=-

13.2+1.25i), and test medium of water or air, penetration depth is calculated as; 

for test medium side, δ = 192 nm for water and 353 nm for air, and for metal side, δ = 25 

nm for water and 26 nm for air. While the penetration depth for total internal reflection 

(TIR) is given as [4,5] 

)sin(
)(4 2

3
2

ip

TIR

nNA
nNA

θ
π

λδ

=

−
=

    (2.13) 

where np is refractive index of prism, NA is numerical aperture, θi is incident angle of  

incoming light. Penetration depth δTIR is calculated as 95 nm for water and 49 nm for air, 

respectively with λ=632.8 nm, prism of SF 10 (np=1.723), and the incident angle of 56.3 

degree for the SPR optimum angle ofpure water (n=1.3321), while critical angle θc=sin-

1(nt/np)= sin-1(1 and 1.3321 / 1.723) = 35.5 and 50.6 degree for air and water, 

respectively.  
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CHAPTER 3 

Proposed Uses of SPR Reflectance Imaging 

3.1 Micromixing Concentration Profiles of Binary liquids 

3.1.1 Experimental Methods 

Figure 3.1 shows the optical arrangement of the SPR imaging system that was 

designed and constructed at the University of Tennessee. The present experimental set-up 

uses white light source that is monochromatized by a narrow bandpass filter [43,44]. The 

randomly polarized white light from a 100-watt Tungsten-Halogen lamp collimates onto 

the p-polarizer to provide only p-polarization light, the E-field of which is parallel to the 

incident plane. The rotating mirror adjusts the incident angle to the optimized SP angle, 

and the incident ray illuminates onto the gold film of 47.5-nm nominal thickness that is 

laid on the 2.5-nm thick Titanium adhesion layer coated on the 0.16-mm thick cover glass 

substrate. The gold-coated substrate is then attached to the prism (BK7 glass with n = 

1.515) using index matching fluid (n = 1.515, Newport Inc.) to fill the micro-gap in-

between.  

A rectangular microchannel with a cross-section of 50-μm (h) x 91-μm (w) is 

constructed directly on the top surface of the gold film. Two pieces of 50-μm thick self-

adhesive plastic tape are placed with 91-μm separation, and a glass slip cover is placed 

on top to complete the rectangular channel configuration. 

The band pass filter narrows the white light spectra to the center at 632.8-nm, 

with its full width half maximum (FWHM) of 10-nm. Sony XC-75 CCD (640 x 480 pixel  

resolution) uses a long focal distance lens of Mitutoyo M Plan Apo 5x (NA = 0.14 f = 40 

mm) to record microscale SPR images of the near-field test region. 

The SPR intensity at the SP angle should be nearly zero, showing a dark 

background image when the test region is filled entirely by the base fluid of water. When 

the second fluid, ethanol, penetrates into the base fluid, the local index of refraction 

changes (Table 3.1), and the aforementioned optimum SP conditions for zero reflection 

are not sustained. As a result, the mixed region will appear brighter than the dark 

background, and the brightness increases with increasing concentration of ethanol. 
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Microscopic CCD  
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Figure 3.1 Experimental layout of the SPR imaging system using a p-polarized white 

light source [58,60]. 
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Table 3.1 Thermophysical [61] and optical properties [62] of ethanol and 

 

Div. Density 
(g/cm3) 

Refractive 
Index 

Optimum SPR angle 
(degrees) 

Surface Tension 
(mN/m) 

Ethanol 0.7893 1.3604 74.9 21.97 
Water 1.0 1.3321 70.7 71.99 

 

Therefore, the gray levels of the SPR image will represent the mixture concentration 

distributions. 

 

3.1.2 Calibration Correlation of SPR Reflectance Imaging 

Figure 3.2 shows the calculated reflectance curves as functions of incident angles 

for different ethanol mass concentrations in percentile. The corresponding SP angles, as 

shown in the inset Table, progressively increase from 71.5° for 10% ethanol by mass to 

75.6° for 80% ethanol by mass, then gradually decrease to 74.9° for 100% or pure 

ethanol; all concentration units in this paper is percent by mass. 

In Fig. 3.3a, the SPR reflectance is shown in a direct correlation with the ethanol 

mass concentration and is equivalent to the reflectance variation along the vertical dashed 

line in Fig. 3.2. The symbols show discrete calculation points, and the smoothing spline 

curve fits the points nicely with the square correlation R2 = 0.995; curve fitting tool in 

Mattlab 7 is applied for the calculations and R2 is defined as the square of the correlation 

between the response values and the predicted response values. The reflectance increases 

with increasing ethanol concentrations up to 80% in mass and shows slight decrease 

thereafter. This decrease is consistent with the decreasing refractive index of the mixture 

[61] beyond 80% concentration, as shown in Fig. 3.3b. This implies that the current SPR 

imaging carries inherent limitations in measuring ethanol concentrations higher than 80% 

mass fraction in water. Furthermore, at concentrations higher than 50%, two different 

ethanol concentrations generate an identical SPR reflectance intensity level and the 

current technique will be subjected to ambiguity in determining concentrations higher 

than 50%. For the case of more or less uni-directionally increasing ethanol concentration 

fields, like the present mixing case, however, the ethanol concentrations up to 80% can be  
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Figure 3.2 Calculated SPR reflectance as functions of the incident angles for different 

ethanol mass concentrations in water: a BK7 glass prism (n1 = 1.515) with 47.5-nm gold 

(Au) metal layer illuminated by p-polarized white light narrow-banded at 632.8 nm. The 

SP angles progressively increase from 70.7° for 0% ethanol, or pure water, to 75.6° for 

80% ethanol, then gradually decrease to 74.9° for 100% or pure ethanol [58,60]. 
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(a) SPR reflectance versus concentration 

 

 

(a) 

 

 

 

 

 

     (b) Refractive index versus concentration 

 

 

 

 

(b) 

Figure 3.3 Dependence of SPR reflectance R and the test field refractive index n on the 

ethanol concentration in water: (a) The symbols represent calculated SPR reflectance 

using the three-layer Fresnel relationship of Eq. (2.2)-(2.6) and the solid curve represents 

the smoothing spline fitting with R2 = 0.995, and (b) Refractive index variation of 

ethanol-water mixtures [61] (The SPR parametric conditions are identical to those of Fig. 

3.2) [58,60].
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examined since the SPR reflectance monotonically increases at least up to 80%. The 

reversing refractive index of ethanol/water mixture at high concentration range is 

attributed to the characteristics of ethanol/water molecular association and the 

aggregation of ethanol in water [63].  

 

3.1.3 Results and Discussions 

An initial calibration experiment is conducted to correlate the measured pixel gray 

levels of SPR images for nine specified ethanol/water mixtures with the reflectance curve 

fitting shown in Fig. 3.3a. In order to minimize the potential bias occurring from the 

background nonuniformities, as well as the pixel-to-pixel variation in the quantum 

efficiency, pixel-by-pixel correlations are facilitated individually for nine different 

mixture samples with specified ethanol concentrations ranging from 0 to 80% by mass.  

The highest measured pixel gray level, PGLmax, is set to the maximum SPR intensity at 

80% ethanol concentration, and the lowest pixel gray level, PGLmin, is set to the SPR 

intensity at 0% or pure water.  

Figure 3.4 shows the theoretical and experimental correlations of the ethanol 

mixture concentrations with the normalized pixel gray levels, defined as 

. The symbols show measured PGL data, and the 

error bars span the 95% confidence levels of uncertainties occurring from the individual 

640x480 CCD pixels. The agreement of the calibration measurement data with the theory 

allows for the use of the predicted calibration curve to convert measured SPR image 

intensities into corresponding ethanol concentration values. 

( ) ( minmaxmin / PGLPGLPGLPGL −− )

 

3.1.3.1 Ethanol Concentration Distributions Penetrating into Water in a 

Microchannel 

Figure 3.5 shows the SPR images in pixel gray level contours (the left column) 

and the contour maps of the corresponding concentration distributions for the timely 

progress of ethanol penetrating from the left entrance into pure water filled in a 

microchannel. The primary drive for ethanol penetration into water is attributed to the 

capillary phoretic suction [64] by the small hydraulic radius of the micro-channel. 
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Figure 3.4 Calibration results of the normalized pixel gray levels 

( ( ) ( minmaxmin / PGLPGLPGLPGL )−−≡ , where  and correspond to pure 

water and 80% ethanol mixture, respectively) against the ethanol mass concentrations are 

shown by the symbols with the error bars of 95% confidence levels of the experimental 

data variation. Calculated correlations based on the Fresnel theory are shown by the solid 

curve [58,60]. 

minPGL maxPGL
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  (f) time = 330 ms

 (e) time = 300 ms

  Original SPR images with gray 
level contours 

Concentration field distributions converted  
based on the correlation curve in Fig. 4  

 

Figure 3.5 Full-field development of ethanol mixture concentrations penetrating into 

water contained in a microchannel (50-μm high and 91-μm wide) that drives a capillary 

phoresis rapidly from the left entrance to the right inside. Images represent the near-field 

region on the order of the penetration thickness of the evanescent wave field. The left 

column shows the recorded SPR images in gray level contours, and the right entrance 

(50-μm high & 91-μm wide). Thus, the ethanol-water interface rapidly advances to the 

right inside the channel. The ethanol-water interface is broadened because of the 

molecular diffusion progressively occurring during the interfacial advancement [58-60]. 
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The SPR illumination wave field exponentially decays within a few hundred 

nanometers into the test field from the gold film surface, which is approximately 

consistent with the penetration depth of the evanescent wave field [65]. The SPR images 

shown in Fig. 3.5 represent the near-wall concentration fields confined within a thin fluid 

region of less than 1-μm spanning from the gold surface. This effective detection of the 

near-wall concentration field development is considered to be a unique advantage of the 

SPR imaging technique. For example, the near-wall concentration information will be 

very important in examining the viscous sublayer region for turbulent mixing process or 

determining the effect of slip boundary condition on mixing. The present shortcoming is 

that the maximum detectable ethanol concentration is limited to 80% because of the 

aforementioned SPR reflectance ambiguity, in that the reflectance increases with ethanol 

concentration up to 80% and then decreases thereafter.  

Figure 3.6 shows the temporal development of ethanol concentration distributions 

along the channel centerline. A single-pixel of the CCD array is covering a 0.66-μm 

square in the physical field. Thus, 4-pixel binning of raw data (Fig. 3.6a) represents 2.64-

μm square measurement spatial resolution, and 16-pixel binning (Fig. 3.6b) represents 

10.56-μm resolution. The centerline ethanol concentrations show rapid increase with 

increasing time. At t = 300 ms, the ethanol concentrations near the channel entrance (for 

the case of 4-pixel binning) show saturation to 80%, which means that the local 

concentration can be anywhere from 80 to 100% ethanol in mass because of the inherent 

limitation of the technique associated with the ambiguity of the SPR reflectance versus 

ethanol concentrations as aforementioned in more details in the following section. The 

overall concentration profiles remain unchanged with the quadrupling of the binning 

order to 16-bit; however, the data fluctuations are substantially reduced at the cost of 

four-times coarse spatial data resolution. Nevertheless, the spatial resolution of 10.56-μm 

for the 16-bit binning is considered fairly acceptable for microscale concentration profile 

data resolutions. column shows the corresponding ethanol concentration distributions 

determined based on the calibration curve in Fig. 3.4. 
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Figure 3.6 Temporal development (30 ms ~ 300 ms) of ethanol concentration 

distributions along the channel centerline in two different spatial measurement 

resolutions. Four (4)-pixel binning (a) provides 2.7-μm spatial resolution and shows 

saturations to 80% near the entrance, while more widely averaged results by 16-pixel 

binning with 10.6-μm spatial resolution (b) show less saturation at the cost of 

quadrupling the spatial resolution [58]. 

 25



3.1.3.2 Measurement Uncertainty Evaluation 

The uncertainty analysis is conducted based on the single point detection 

estimation given by Kline and McClintock [64]. The second-power equation referring to 

the measurement uncertainty of pixel gray level (PGL), which is linearly proportional to 

the reflectance R, is given as:  
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where R is given as in Eq. (2.2), except that refractive index values are replaced by 

dielectric constants using . The elementary uncertainties are estimated as: 2n≡ε
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where the variation of the prism dielectric constant 
1εω is assumed negligible because of 

its extremely small variations of 10-4 or 0.01%. The elementary variations of dielectric 

constant of gold,
2εω , are ±0.0438 and ±0.148 for its real and imaginary parts (The 

complex refractive index of gold film is given as ngold = 0.1718+i3.637), respectively [67]. 

The concentration of the nominal 100 % ethanol has 0.5% variation according to the 

manufacturer’s specifications. The weighted factor of the variation is considered as the 

test medium uncertainties, which increase with increasing ethanol concentration. For 

example, for the test case of 40% ethanol concentration, 0.4*(0.5%) = ±0.2% is estimated 

for the elementary uncertainty
3εω . The incident light wavelength variation is adopted 

from the narrow band pass filter specification with FWHM (Full-width half maximum) of 

10 nm. The rotation stage that determines the incident angle has an accuracy of 1/60° = 

±0.0167°. The thin film thickness uncertainty 
2dω is estimated to ±10% as provided by 

the manufacturer (Playtypus Tech., LLC). The precision mass scale has a reading 

accuracy of 0.01g for mixing of ethanol and water. 
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The individual derivatives of R directly using Eq. (2.2) are too complicated to 

derive in their closed forms, primarily because of the coupling with complex refractive 

index of gold. Alternatively, numerical estimations for the derivatives have been 

conducted using the first-order finite differential scheme as follows:  
2/1
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    (I)         (II)      (III)       (IV)       (V)       (VI) 

where each term represent an elementary uncertainty for the dielectric constant of gold 

thin film (I), the dielectric constant of test sample (II), the incident light wavelength (III), 

the incident angle (IV), the thin metal film thickness (V), and the mixing by mass scale 

(VI). 

The differential  in each elementary term is calculated for the range 

equivalent to the corresponding elementary uncertainty magnitude with respect to the 

specified test condition parameter. For example, for the case of term (III), 

RΔ
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( 232232 dRdRR θεεωλθεεωλ λλ −−+=Δ , 

where the test parameters are specified asλ  = 632.8 nm and the elementary uncertainty 

is given as λω = 10 nm. Note that all other parameters are taken as their test condition 

values, i.e., 25.12.132 i+−=ε , 3ε  as specified for a given ethanol concentration, θ = 

70.7°, and d2 = 47.5nm.  

Table 3.2 shows the summary results of uncertainty calculations, including 

magnitudes of the individual terms contributing in Eq. (3.3), for the range of ethanol 

concentrations from 10 to 80%, and Fig. 3.7a shows the normalized overall uncertainties 

RR /ω  corresponding to the last column of Table 3.2. The uncertainty of SPR 

reflectance is as high as ± 21.5% at 10% ethanol concentrations and dramatically 

decreases to less than ± 3.5% with increasing ethanol concentrations beyond 40%. In a 

stricter sense, the CCD camera detection accuracy of an order of 1 % [68] and the 

regression error of 0.5% for curve fitting (Fig. 3.3) should be accounted for in estimating 
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Table 3.2 Measurement uncertainties for SPR reflectance R and its six (6) individual 
contributions ( 25.12.132 i+−=ε , λ = 632.8 nm, θ  = 70.7°, and d2 = 47.5 nm) 

Individual uncertainty terms 

 
 

the overall uncertainties. However, these two elementary uncertainties are relatively 

small compared with other contributions and not included at present. An important 

observation from 

Table 3.2 is that the uncertainty contributions from the terms (I), (II) and (VI) are 

generally more substantial than the contributions from (III), (IV) and (V) particularly at 

lower ethanol concentrations. This finding can be considered as a valuable guideline to 

design improvement of the SPR system to enhance its measurement accuracies.  

A suggested improvement is to use 99.9% pure ethanol, a narrower band pass 

filter with 3-nm FWHM and a high precision mass scsale with a reading accuracy of 

0.001g, i.e., , )(000001.0 2
33 33

n=×= εεωε nm
i

3=λω  and gc 001.0=ω . As a result, 

the uncertainty can be noticeably reduced for all ethanol concentrations, as shown in Fig. 

3.7b; a particularly noticeable change occurs at 10% ethanol concentration, where the 

SPR reflectance uncertainty is substantially reduced to  ± 8.2 % from the previous ± 

21.5 %.  

 

3.1.4 Summary 

The technique of SPR reflectance detects the refractive index variations of the 

mixture with microscale spatial measurement resolutions and successfully measures the  

 in Eq. (3.3) (x 104) 
Normalized 

Uncertainty 

Overall 

Uncertainty 
Reflectance Ethanol 

Concentration 

Rω RωR (Mass %)  (= /R, %) 
I II III IV V VI 

±0.034 ±21.5 1.32 2.10 0.06 0.07 0.09 7.84  10 0.158 

±0.049 ± 9.8 2.25 6.76 0.16 0.06 7.84 6.76 20 0.500 

±0.037 ± 5.3 1.21 4.20 0.06 0.02 6.25 2.10 30 0.703 

±0.028 ± 3.5 0.64 2.72 0.02 0.01 3.42 0.81 40 0.787 

±0.022 ± 2.7 0.42 1.96 0.02 0.003 1.96 0.42 50 0.825 

±0.019 ± 2.2 0.30 1.69 0.01 0.003 1.32 0.25 60 0.844 

±0.018 ± 2.1 0.25 1.69 0.01 0.002 1.10 0.20 70 0.854 

±0.018 ± 2.1 0.20 1.82 0.01 0.002 0.90 0.16 80 0.858 
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RR /ωFigure 3.7 The normalized uncertainty for SPR reflectance ( ) as a function of 

ethanol concentration using nominal values of the related parameters ( 25.12.132 i+−=ε , 

λ = 632.8 nm, θ  = 70.7°, and d2 = 47.5 nm) and their elementary uncertainty levels: (a) 

for the present experimental conditions, and (b) for a suggested improved conditions [58].  
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time advancement of the mixing region of ethanol into water contained in a microchannel 

when the rapid penetration is driven by capillary phoresis. The spatial measurement 

resolution is estimated to 2.7 μm for the case of four (4)–pixel binning, while the limited 

lateral resolution is estimated to be less than 5.0 μm, based on the SPR wave attenuation 

length scale. The SPR visualization technique can be most effectively applied to various 

microscale fields, where introduction of foreign particles, such as tracking microspheres, 

fluorescence dyes or quantum dots, is detrimental in terms of biological compatibility, 

chemical and interfacial stability as well as physical consistency of fluid properties. 

From the uncertainty analysis, several design guidelines are presented in order to 

refine the SPR imaging technique with higher measurement accuracies. The effect of 

concentration uncertainty of ethanol and water mixture (c) and ethanol purity (ε3) on the 

overall uncertainty is generally higher than that of the dielectric constant of the gold layer 

(ε2): thus, the use of a more accurate mass scale (reading accuracy better than 0.01g) and  

ethanol with extreme purity is recommended. For the case of wavelength uncertainty, or 

degree of monochromatically (λ), a laser light source with narrower bandwidth can 

theoretically increase the measurement accuracy; however, in reality it will obscure the 

SPR images with the diffraction rings, which appear extremely difficult to eliminate. Fine 

adjustment of the SPR angle (θ) is important to ensure the measurement accuracy, 

especially at lower concentrations, and the SPR angle should be carefully optimized to 

ensure minimum detectable SPR image intensity for the base fluid condition. The 

uncertainty due to the variation of metal film (Au) thickness seems to be most crucial 

(Table 3.2), except for the case of 10% or lower ethanol concentrations, and a custom-

fabrication, whether using an e-beam evaporation, sputtering or electro-plating, is 

recommended to provide accurate control for the deposited metal layer. The last, 

certainly not the least important guideline, is that the related optical principle needs to be 

vigorously investigated to possibly alleviate the measurement limitation occurred from 

the reverse trend of refractive index at higher mixture concentrations. 
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3.2 Near-Wall Convective/Diffusive Saline Concentration Profiles 
Historically, there have been various techniques developed for the measurement 

of salinity. Among these, three stand out for practical considerations: gravimetric, 

inductive electrical, and conductivity detection techniques. The gravimetric method is 

essentially the direct weighing of the specific gravity of a saline solution, however, this 

method has the shortcoming of a single-valued representation for a stationary situation. 

The induced electrical method is fast and considered to be acceptably precise and fast, 

but for high precision measurement of salinity, the conductivity measurement method is 

preferred because of its better measurement stability. The conductivity measurement 

technique, however, provides only point-wise detection at a time and features invasive 

electrode probes.  

 

3.2.1 Experimental Methods and Calibration 

In this part, SPR microscopic salinity detection tool is implemented and tested by 

measuring the time-dependent salinity distribution profiles in the near-wall region when a 

small saline drop (0.8 mm diameter) reaches the bottom of a water pool and spreads by 

convective-diffusion of salinity. The salinity distributions are determined from the 

measured SPR reflectance distributions using a calibration curve correlating with CCD 

gray level intensities. An elaborate uncertainty analysis identifies critical elementary 

uncertainties that needs to be improved to refine the measurement accuracies. 

The experimental setup is based on the base of experimental system of section 

3.1 (Fig. 3.1). The gold film layer is then illuminated by the p-polarized white light that is 

narrow-banded at 632.8 ± 1.5 nm using a 150W halogen bulb as white light source. The 

SPR reflectance images are recorded with a 12-bit cooled CCD camera (Hamamatsu Inc, 

Model C8800-21C). 

The CCD pixel gray levels are correlated with specified saline concentrations to 

provide a calibration for salinity measurements. The saline concentration (C) is a function 

of the pixel gray level (PGL) recorded for SPR reflectance (R) as: 

 

)( PGLRfC ∝=          (3.4) 
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where f represents a functional form of complicated Fresnel’s equation [6,34, 

51,58,60,69-71]. 

Figure 3.8a shows SPR reflectance characteristic curves, calculated using the 

Fresnel’s equation, at four different saline mass concentrations as functions of the 

incident angle. The minimum reflectance on each curve occurs at the so-called SPR angle 

specified for the corresponding saline concentration, and the SPR angle progressively 

increases from 70.7° at pure water to 73.0° at 10% NaCl mass concentration. The 

intersections of the vertical dashed line, drawn from the SPR angle of 73.0° for 10% 

salinity, indicate the SPR reflectance values at the four concentrations corresponding to 

the four curves.  

The solid curve in Fig. 3.8b shows the approximately linear correlation between 

the measured pixel gray levels and the calculated SPR reflectance for the tested salinity 

range up to 10%. The error bars indicate the 95% uncertainty intervals for the pixel-to-

pixel variations. Based on this linearity, the normalized SPR reflectance R is defined as 

 

LLH
LH

L RRR
PGLPGL

PGLPGLR +−
−

−
= )(     (3.5) 

 

where the subscripts H and L refer to the maximum (10%) and minimum (0%) saline 

concentrations, respectively, and RH and RL are corresponding SPR reflectance intensities 

that are calculated using the Fresnel’s equation. With two known pixel gray levels PGLH 

and PGLL, R at any unknown saline concentration at each pixel is evaluated from Eq. 

(3.5) as a function of PGL. The resulting saline concentration is determined from the 

Fresnel’s equation, Eq. (2.2~2.6,3.4). The solid curve in Fig. 3.8c shows theoretical 

values calculated from Fresnel’s equation and normalized pixel gray levels are directly 

related with SPR reflectance by Eq. (3.5) for the range of salinity from 0 to 10%. The 

symbols represent measured normalized pixel gray levels and show fairly good 

agreement, with the predictions with an average rms deviation of 0.062. The error bars 

represent the 95% confidence interval for the measured data assuming Gaussian 

distributions. The calibration curve shown in Fig. 3.8b is used to convert the measured  
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  (a) SPR reflectance as functions of optimized SPR angles corresponding to salinity 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  A linear correlation between the measured pixel gray levels and the calculated SPR 

reflectance 

Figure 3.8a, b, c SPR reflectance and calibration for salinity [60,69]. 
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(c) Experimental calibration results for the normalized pixel gray levels 
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pixel gray levels into corresponding saline concentrations. Inset photos show actual SPR 

reflectance images taken at the four specified saline concentrations.  

 

3.2.2 Results and Discussion 

Figure 3.9 presents the dynamic and full-field detection of near-wall salinity 

when a 0.8-mm diameter aqueous drop containing 10% saline mass falls in a water bath 

(water depth of approximately 3mm). The saline drop (SG = 1.02) falls by gravity toward 

the bottom surface of gold metal layer and goes through convective (driven by gravity 

and inertia)-diffusive (driven by viscous and concentration gradients) process into the 

surrounding water. The first column shows the original SPR reflectance images of 

temporally developing salinity profiles at the near-wall region, with the SPR angle of 

73.0° optimized for 10% salinity (i.e., 10% salinity corresponds to the lowest PGL). The 

second column presents corresponding full-field salinity distributions based on the 

calibration curve in Fig. 3.8c, and the third column represents the centerline salinity 

profiles. The fourth column schematically illustrates the development of the falling saline 

drop, showing its satellite droplets, and their settling evolution on the surface by 

convective-diffusion under the gravity field.  

The evolution/diffusion of salinity is further described: (a) multiple satellite 

droplets are almost always generated at the result of the complicated vorticity interactions 

of a falling drop with the surrounding fluid, multiple satellite droplets are generated 

almost always, (b) the first satellite droplet of high salinity reaches the bottom surface 

resulting in the local salinity near the center to increases, (c) when the second satellite 

droplet reaches the bottom surface and joins the first droplet under diffusing, the resulting 

salinity further increases in the center region, (d) the main drop is then developed into a 

“donut” ring shape because of the balance between the viscosity and the interfacial 

tension with the surrounding fluid, and it reaches the bottom surface resulting in a 

concentric salinity distribution, (e) the convective-diffusion of salinity spreads out the 

concentric ring, while the additional falling of the main saline drop slightly increases the 

salinity in the concentric region, (f) the diffusion-dominated stage is reached eventually, 

and finally, (g) the localized salinity diffuses nearly entirely to zero salinity after a  
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Figure 3.9 Full-field and real-time mapping of near wall salinity when a 0.8-mm 

diameter drop with 10% saline mass concentration is dropped into 3-mm thick pure water.  
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The first column shows the original SPR images, the second column shows the 

corresponding saline mass concentration fields based on the calibration curve presented 

in Fig. 3.8, the third column represents the centerline salinity profiles, the fourth column 

shows schematic illustrations of saline drop formation and near-wall diffusion 

characteristics, and the last column is the sketch made by Thomson and Newall [72] for 

the case of sulfuric acid (SG = 1.84, dynamic viscosity = 26.7cP) falling into water. The 

images shown in the first and second columns are vertically contracted by a factor of 3.42 

because of the slanted viewing angle of θSPR = 73° from vertical for both incoming ray 

and SPR reflectance ray. Note that the apparently elliptic salinity profiles on the imaging 

domain are indeed circular ones in the physical domain [60,69,70]. 

 

considerable amount of time.  

Note that the ring vortex occurs when the drop liquid is more viscous than the 

base liquid [73]. The viscosity of 10% NaCl aqueous solution is approximately 20% 

higher than that of pure water [61]. The interface between the NaCl aqueous solution and 

water is broadened because of the molecular diffusion progressively occurring during the 

convective-diffusion advancement. It is clear that the width of the ring becomes wider, 

and, accordingly, the saline concentration diffuses with increasing time.  

According to Korteweg’s theory, stresses due to gradients of concentration and/or 

density could conceivably give rise to the capillary phenomena, which are called 

capillary-like phenomena [73]. The evolvement of the saline drops on the gold surface 

demonstrates capillary-like phenomena for two miscible fluids of saline and pure water. 

It is worthwhile noting that the capillary-like phenomena in two miscible fluids 

are not yet fully understood, and the SPR reflectance imaging system can experimentally 

delineate unknown physics of the capillary-like phenomena [69]. 

It is noted that the present results of Eulerian mapping of salinity taken at a fixed 

z-location show qualitative similarities with corresponding Lagrangian planes of the 

classic sketch of Thomson and Newall [72], as shown in the fifth column. Their sketch 

was based on their direct observation of a sulfuric acid (SG = 1.84, dynamic viscosity = 

26.7cP) drop falling into water.  
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Uncertainty Analysis 

The uncertainty analysis is conducted based on the single-point detection 

estimation given by Kline and McClintock (1953) [66]. The second-power equation 

referring to the measurement uncertainty of pixel gray level, which is proportional to the 

SPR reflectance R, is given as:  

),,,,,( λθεεε mmtp dRRNPGLPGL =∝∝    (3.6)  
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where εp, εt, and εm  are dielectric constants of the prism (BK-7), tested saline solution, 

and the thin Au layer, respectively. θ is the incident SPR angle optimized for 10% 

salinity (73.0°), dm is the thickness of the Au layer (47.5 nm), and λ is the incident 

wavelength (632.8 nm). The elementary uncertainty for the variation of the dielectric 

constant of the BK-7 prism, pε , is assumed negligibly small, 10-4 or 0.01%. The 

elementary uncertainty of the tested saline solution is also regarded as negligible. The 

other elementary uncertainties are best estimated as, :  
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The individual derivatives of R directly using Eq. (3.7) are too complicated to 

derive in their closed forms, primarily because of the nonlinear coupling with complex 

refractive index of gold. Alternatively, numerical estimations for the derivatives have 

been conducted using the first-order finite differential scheme as follows:  
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where each term represents an elementary uncertainty for SPR reflectance associated 

with the dielectric constant of gold thin film (I), the incident angle (II), the Au film 

thickness (III), and the incident light wavelength (IV). The effect due to the variation of 

the wavelength (IV) is negligible compared with the other three terms.  

The differential  in each elementary term is calculated for the range 

equivalent to the corresponding elementary uncertainty magnitude with respect to the 

specified test condition parameter. For example, for the case of term (IV), 

RΔ

[ ] [ ] λλλ ωωλωλλ 2=−−+==Δ ),,;(),,;( mSPRmmSPRm dRdRR θεωλθεωλ λλ −−+=Δand , 

where the elementary uncertainty is given as λω = ±1.5 nm. Note that all other parameters 

are taken as their test condition values, i.e., 25.12.13 im +−=ε , θSPR = 73.0°, and dm = 

47.5nm.  

Table 3.3 shows the summary results of uncertainty calculations, including 

magnitudes of the individual terms contributing in Eq. (3.9) for the range of NaCl 

aqueous solution concentrations from 0 to 8%. The overall uncertainty of R is as high as 

±0.011 at 0% concentration, which is equivalent to ±2.7% in reflectance. Results show a 

dramatic decrease of overall uncertainty to ±0.002, or equivalent to ±4.1% in reflectance, 

at 8% salinity mass concentration. An important observation from Table 3.3 is that the 

uncertainty contributions from the terms (I) and (III) are generally more substantial than 

the contributions from (II). Therefore, it is observed that the dielectric constant and the 

thickness of the metal (Au) film are the two most significant factors in determining the  

 

 

Individual uncertainty 

Table 3.3 Measurement uncertainties for SPR reflectance R and its three individual 
contributions ( 25.12.13 i−= +

terms in Eq. (3.9) (×104) 

mε , λ = 632.8 nm, θSPR  = 73.0° and dm = 47.5 nm)
Reflectance 

NaCl 
Concentration 

(Mass %) 
R I II III 

Overall 
Uncertainty 

Rω  

0 0.414 0.90 0.02 0.36 ±0.011 
2 0.330 0.56 0.02 0.25 ±0.009 
4 0.231 0.16 0.03 0.09 ±0.005 
6 0.127 0.00 0.03 0.01 ±0.002 
8 0.038 0.00 0.01 0.01 ±0.002 

 39



overall measurement uncertainties for SPR reflectance. 

 

3.2.3 Summary 

SPR reflectance microscopy is devised to quantitatively measure salinity field 

distributions in the near-wall region where the SPR is effective. The successfully tested 

label-free, full-field and real-time mapping technique overcomes the limitation of single-

point detection of practically all existing salinity detection techniques. The salinity-

calibrated SPR microscopy system allows for the detailed and dynamic mapping of the 

near-wall salinity distributions with a lateral spatial resolution of about 4 μm when a 

gravity-falling 10% saline drop reaches the bottom of a shallow water pool. From the 

Kline-McClintock uncertainty analysis, the elementary uncertainties due to the variation 

of metal (Au) film’s dielectric constant and its thickness seems to be most crucial in 

determining the overall measurement uncertainties. 

 

3.3 Full-Field and Real-Time SPR Imaging Thermometry 
Despite the known best sensitivity of SPR to the refractive index of the contacting 

medium (as fine as 10-8 RIU [48]), the SPR thermometry technique utilizing the RI-T 

correlation has not been well exploited to date.  Limited SPR thermometry tests have 

been conducted to examine a single-point temperature detection of thin metal films 

[22,26,27,53], and very few SPR tests have been done for the case of liquid contacting 

medium [58-60]. None of these results, however, supplies temperature measurements in a 

full-field and real-time manner. Note that neither incident-angle scans [22,23] nor 

incident-wave spectral scans [27,28] can provide a “real-time” detection of transient test 

fields. At present, SPR imaging at a fixed angle is devised to allow real-time recording of 

transient thermal phenomena. 

The two primary optical parameters, the refractive index of the prism and the 

refractive index of the thin gold film coated on the prism, are examined using the Fresnel 

theory [34] to determine their effects on the temperature dependence of SPR reflectance 

intensity. Based on the examinations, the most desirable selection of design parameters is 

proposed for improved measurement sensitivities for SPR thermometry. Furthermore, the  
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feasibility of real-time and full-field SPR thermometry is tested for two cases of time-

varying temperature fields when a hot water droplet diffuses on the gold surface in either 

an air or water environment.  

 

3.3.1 Experimental Methods 

The SPR reflectance R, for a three-layer configuration (Fig. 3.10a) with the prism 

(1), the thin metal film (2), and a test medium (3), is given as a function of temperature: 

 

( ) ( ) ( ) ( )[ ]θλ ,,,,, 2321 IdTnTnTnRTR =   (3.9) 

 

where n is the refractive index, d2 is the Au film thickness, Iλ is the incident ray 

wavelength, and θ is the incident ray angle. For the case of fixed d2 (= 47.5 nm) and 

Iλ (= 632.8 nm), R varies exclusively with the refractive indices of n1, n2, and n3.  

The refractive index of the prism, n1, is specified by the prism material, and its 

temperature dependence is assumed to be negligibly small [27]. The refractive index of a 

thin metal film, n2, is given by the Drude model [52] as: 
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where ω is the angular frequency of the incident wave field, and  ωp(T) and ωc(T) are 

the plasmon frequency and the collision frequency of the thin metal film material, 

respectively [26,27]. The plasmon frequency ωp(T) is given as:  

2/1
00 )](31[ −−+= TTpp γωω  (3.10a) 

where ωp0 is the plasma frequency at reference temperature T0, and γ is the thermal linear 

expansion coefficient of thin metal film. The collision frequency is determined as 

followings: 

cecpc ωωω +=    (3.10b) 
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Figure 3.10 SPR reflectance R as functions of water temperature seven (7) different 
prism materials using the dielectric constant of Kolomenskii [54] for a thin Au film of 
47.5 nm thickness [71]. 
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where the photon-electron scattering frequency is defined as 
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used for calculations throughout are from Table 2.1. 

Note that both temperature-dependent frequencies ωp and ωc alter the resulting 

SPR reflectance R. The temperature dependence of the test medium n3(T) of water is 

provided from the CRC Handbook [61]. 

 

3.3.2 Results and Discussion 

Figures 3.10b and 1c show the temperature dependence of SPR reflectance for the 

seven different tested prism materials using water as the test medium. The SPR optimum 

angle is set for water at 80°C. While n2(T) is theoretically expressed in a closed form in 

Eq. (3.10,3.10a,b), the plasma frequency ωp0 needs to be experimentally determined 

using at least one refractive index value measured at a specified temperature in order to 

complete the calculations. The Kolomenskii’s data [54] are selected to calculate ωp0 and 

determine n2(T), and successively R(T) from Eq. (3.9).  

The BK 7 prism shows the steepest gradients and the highest SPR reflectance 

intensity whereas the SF 11 prism shows the lowest SPR reflectance intensity. As the 

refractive index of the prism, n1, increases, R decreases consistently. On the other hand, 

the optimum SPR angle persistently decreases with increasing n1. Among the seven 

materials tested, the BK 7 prism seems to show the highest sensitivity for the temperature 

dependence of SPR reflectance when water is the test medium.  

Figure 3.11a shows the R-T correlations for seven different sets of published 

refractive index data for thin Au films with thicknesses ranging from 45 to 48 nm (except 

for Palik’s [74] case for 10 ~ 25-nm thicknesses), and Fig. 3.11b shows the 

corresponding normalized R-T correlations. The aforementioned BK 7 prism is used and 

the temperature dependence of the Au film’s refractive index, n2(T) or ε2(T), is accounted 

for as in the case of Fig. 3.10. The seven measured refractive index values [13,14,21,54] 
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Figure 3.11 SPR reflectance R as functions of water temperature for seven (7) different 

refractive index values measured for thin metal films of approximately 47.5 nm 

thickness, coated on the top surface of a BK 7 prism (n2 = 1.515) [71].
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for thin Au films of approximately the same thickness show deviations between them that 

may be attributed to different measurement techniques and the preparation of the 

specimens, such as differences in surface roughness, dimensional uncertainties, and 

differences in fabrication processes. The largest deviation of ε2r is approximately 15% 

(Kolomenskii [54]) over the average while the largest deviation of ε2i is up to 50% 

(Peterlinz [75]) above the average. On the other hand, the SPR optimum angle 

SPRθ shows a mere ±2.5% deviation, and this can be partially attributed to the dominating 

dependence of SPRθ on ε2r, with its relatively narrower deviation range, compared with 

ε2i. The optimum SPR angle is given as
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0
2 21
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R
spr n ε

εθ . The R-T correlation gradient, ΔR/ΔT, represents the sensitivity of the 

SPR reflectance change corresponding to a unit temperature change; thus, the steepest 

gradient shown for Kolomenskii data (Fig. 3.11a) is expected to provide the highest 

measurement sensitivity. Both Peterlinz’ [75] and Snopok’s [76] data are considered 

inappropriate because of the deflections occurring for T > 60°C (more clearly visible in 

Fig. 3.11b). The possibly overestimated values of ε2i for these two cases are believed to 

cause the undesirable deflections. The normalized R-T correlations of the remaining five 

cases collapse into a nearly single curve despite the noticeable discrepancies in their ε2r 

as well as their ε2i.  

The experimental set-up for full-field and real-time SPR reflectance imaging 

thermometry (Fig. 3.12a) is designed and fabricated based after Kretschmann’s 

configuration [34]. The system uses a BK 7 prism with 47.5-nm thick Au film coated on 

its top surface. Example results of SPR thermometry measurements are presented for 

dynamic temperature field developments when a hot water droplet at 80°C contacts the 

Au film surface at 20°C and spreads either in an air environment (Fig. 3.12b) or a water 

environment (Fig. 3.12c). The most favored R-T correlation, based on the Kolomanskii’s 

n2, is used to convert the recorded SPR image intensity distributions into corresponding  

 45



Microscopic 
CCD  

Mirror 

Prism 

BP-Filter (632.8 nm) 

Condenser 

47.5-nm 
Au Film  

p-Polarizer 

White 
light 

source 

Test medium 

Mirror 

(a) 

 

 

 

 

 
 
 
 
 
 
 
 
 

(c) 

5.17 

80 
Temp. 

(°C)

0.03 s

0.2 s 1 s

4.3 mm

0.15 s 0.63 s 16 s

20

40

60

80

0.00 1.04 2.08 3.11 4.15

x (mm)

Te
m

p.
 (C

en
tig

ra
de

)

0.15 s 
0.63 s 

16 s 

20

40

60

80

0.02 1.05 2.09 3.12 4.16

x (mm)

Te
m

p.
 (C

el
si

us
)

0.2 s 
0.03 s 

1 s 

Water at 

80 °C 

Water at 20 °C

Water at 

80 °C 

Air 

20 °C 
(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.12 Full-field and real-time mapping (a) of transient temperature fields 

when a hot water droplet (80°C) falls on the cold Au surface (20°C) in (b) air 

environment and (c) water environment [71]. 
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temperature fields. The gradual heat and energy transport under the air environment 

allows the contact surface shape to remain circular and spread concentrically, and the 

surface temperature gradually decreases to the environmental level after 16 seconds. In 

the cold-water environment, however, the aggressive single-phase mass and energy 

diffusion of hot water deforms the contact surface shape and spread, and the contact 

surface temperature rapidly approaches the environmental level in the relatively short 

time period of 1 second.  

The temporal resolution of SPR thermometry depends exclusively on the data 

acquisition rate of the CCD camera recording system (6.4 ms or 156 fps for the present 

condition), while the spatial resolution is known to be specified equivalent to the 

propagation length of surface plasmon wave, which is a function of the incident ray’s 

wavelength, the dielectric constant of the thin metal film, and the dielectric constant of 

the test medium [44]. For the present experiment, the theoretically minimum spatial 

resolution is estimated to be approximately 4.5 μm. 

Using the Kline-McClintock analysis [66], the elementary uncertainties are 

calculated as followings: 

Cnm

iinmnm
O

T
oo

md mm

1.0,5.1,0167.060/0.1

),25.12.13(081.0002115.0),59375.0(%25.15.47

±=±=±=±=

+−=±+±=±=±×=

ωωω

εωω

λθ

ε

where dm is the thickness of the Au layer (47.5 nm), θ is the incident SPR angle 

optimized for the water temperature of 80 °C (69.47°), and λ is the incident wavelength 

(632.8 nm). 

The overall measurement uncertainty of T is estimated to be ±1.85°C (3.3% in R) 

at 20°C and ±1.41°C (9.8% in R) at 70°C. The relatively large uncertainty levels are 

mainly attributed, firstly, to the excessive elementary uncertainties of the dielectric 

constant of the Au film, and secondly, to the fabrication uncertainties of the Au film 

thickness. The elementary uncertainty for the fluctuation of light intensity of highly DC 

regulated power supply is considered negligibly small. 

 
 

 

 

 47



3.3.3 Summary 

The BK 7 prism together with the Au film dielectric constant of Kolomenskii 

suggests the most desirable sensitivity for full-field and real-time SPR imaging 

thermometry for water as a test medium. The present real-time SPR thermometry at a 

fixed SPR angle tends to increase the measurement uncertainties at the lower temperature 

range and its measurement accuracy critically depends upon the thickness and dielectric 

constant of the Au thin film. Therefore, to further enhance the measurement accuracies  

and uncertainties, it is strongly recommended that the dielectric constant of Au film be 

more accurately determined and that the film thickness be more precisely fabricated.  

3.4 Correlation of Near-Field Refractive Index of Nanofluids with 

Surface Plasmon Resonance Reflectance 

Nanofluid is a mixture of metallic nanoparticles (Au, CuO, Al2O3 etc.) with a 

base fluid (water, ethylene glycol etc.) and its thermo-fluidic properties is known to 

substantially alter with nanoparticle population [77,78]. In addition, the nanoparticle 

loadings result in higher effective refractive index (ERI) values than the base fluid 

[77,79,80] and the corresponding SPR reflectance intensity shows dramatic changes with 

nanoparticle concentrations [81]. Therefore, a quantitative correlation between SPR 

reflectance and nanofluidic ERI at different nanoparticle loadings will allow 

nonintrusive, dynamic and full-field determination of nanoparticle concentrations. 

Effective refractive index (ERI, neff) values for nanofluids containing 47 nm average 

Al2O3 nanoparticles are measured using the Abbey type critical-angle refractometry 

based on total internal reflection (TIR) [82,83]. The experiments are conducted at a 

constant humidity of 40 % and laboratory temperature of 21 ±0.5°C. Furthermore, SPR 

reflectance imaging is devised [58-60] and correlated with the TIR measurement to 

establish a real-time and full-field mapping of nanofluidic concentration fields.  

3.4.1 Experimental Methods 

Figure 3.13 shows measured TIR reflectance versus incident angle increase for  
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Figure 3.13 Experimental determination of effective refractive index (ERI) of nanofluids 

containing 47 nm Al2O3 nanoaprticles using total internal reflection (TIR) technique: (a) 

increasing reflectance with increasing incident angle, and (b) measured ERI and 

measurement uncertainties for different volume concentrations of nanoparticles [84]. 
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the nanoparticle volume concentrations up to 12%. The 632.8 nm He-Ne laser light 

source is used with focused beam spot on the test sample with the diameter less than 0.5 

mm to minimize the noise associated with the diverging beam effect. 3 μl volume of test 

sample is placed on top of BK7 prism (np = 1.515) and reflectance is measured by 

photometer (Newport Model 818 SL). 

 

3.4.2 Results and Discussion 

cpeff nn θsin=Snell’s law ( ) calculates neff once the critical incident angle θc is 

identified. Since the critical point is broadened with increasing volume concentration, θc 

is determined at the turning point in the broadened range [79]. The measurement 

uncertainty associated with the critical angle broadening ( θΔ ) is estimated using 

θθθ
θ

ω Δ=Δ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= )cos( cpn nn   (3.11) 

neff of nanofluids increases with increasing nanoparticle loadings and the normalized 

uncertainty ( effn n/ω ) is shown to be less than 1.5% for the tested range of volume 

concentrations up to 12%.  

A theory of real refractive index or effective RI, neff of non-interacting, spherical, 

colloidal particles for dilute dispersions is given [85]; 

'1
1 8

3
scaeff P

x
vmmn +=       (3.12)                          

where x = 2πrm1/λ, r is radius of particle, v is volume fraction of nanoparticles, P’sca is 

refraction efficiency as a function of m = m2/m1 with subscript 1 and 2 refer to the base 

fluid (m1 = 1.332 for water at 20°C) and the nanoparticles (m2 = 1.7 [86] for Al2O3), 

respectively. When the size of nanoparticle is much smaller than the wavelength (d < 

λ/10), Rayleigh scattering theory in the form by Van de Hulst [77,85,87] derives  
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mxPsca , m = m2/m1  (3.13) 

Combining Eqs. (3.12) and (3.13) gives 
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χIf  is exactly unity, neff = m1 + (m2-m1)v , which is regarded as a volume 

average of refractive index values and also concurs with Mie scattering case as 

demonstrated for particles significantly larger than 100 nm [77]. For the present case of 

water and 47-nm Al2O3 particles, the Rayleigh theory gives χ = 0.94, i.e. 

ν345.0332.1 +=effn  [Theory]  (3.14a) 

whereas the present experiment extrapolates  χ = 0.89, i.e.,  

ν327.0332.1 +=effn  [Experiment]  (3.14b) 

The discrepancy of approximately 5% is believed to be attributed to particle interactions 

of non-diluting nanofluids.  

The three-layer configuration of SPR system (Fig. 3.14a) creates an evanescent 

wave field that is in a condition of total internal reflection when illuminated with p-

polarized monochromatic light at λ. The top surface of the SF-10 prism is metal-

deposited to lay a thin film and the free electrons in the gold film create a surface 

plasmon resonance when excited by the evanescent wave field at the optimum SPR angle.  

Fresnel theory is applied to calculate SPR reflectance R according to Kreschman’ 

configuration [34] with the refractive index of prism n1 = 1.723 (SF-10 prism), the 

dielectric constant ε2 = -13.198 + 1.245i for the gold film, thickness d2 = 47.5 nm, λ = 

632.8 nm, and the incident optimum angle of θspr = 56.3°. Thus, R varies exclusively with 

the nanofluidic ERI, neff.  

 The correlation of normalized intensity R with the TIR measured neff (is 

presented for nanofluidic concentrations ranging from 0 to 12% in volume in Fig. 3.14b. 

The experimentally extrapolated correlation is given as (the dashed curve): 

neff = 1.332 exp(-0.000253R) + 7.854×10-5 exp(6.093R) (3.15) 

where SPR reflectance R is experimentally determined by averaging pixel gray levels 

recorded in each SPR image (inset photos) at a specified concentration.  

The vertical error bar denotes the uncertainty analysis for TIR measurements as 

shown in the inset table in Fig. 3.13. The horizontal error bar represents the root-mean- 
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Figure 3.14 (a) a schematic illustration of SPR reflectance imaging, and (b) a correlation 

of TIR-measured ERI of nanofluids (47 nm Al2O3) with normalized SPR reflectance R for 

different loadings. The vertical error bars represent the measurement uncertainty of the 

TIR technique associated with the broadening of critical angles and the horizontal error 

bars represent the RMS of the spatial pixel intensity variations of SPR reflectance images 

[84]. 

 

 52



square (RMS) variation of PGL in each image and this error is bounded within ±5%. SPR 

measurement uncertainties are estimated using the Kline-McClintock analysis [66] with 

the elementary uncertainties of ,59375.0 nm
md ±=ω  

,0167.0 o
spr

±=θω,081.0002115.0 i
m

±+±=εω nm5.1±=λω  [58]. The overall 

measurement uncertainty of SPR reflectance R is estimated to be less than ±7 % for all 

tested range. The uncertainties are mainly attributed to the elementary uncertainty of the 

dielectric constant of the Au film (
mεω ), and secondly, to the fabrication uncertainty of 

the Au film thickness ( ).   
mdω

Use of both correlations of Eqs. (3.14b) and (3.15) allows experimental 

determination of near-field nanoparticle concentration fields that are continuously 

changing with time such as an evaporating drop of nanofluid (Fig. 3.15). An evaporating 

nanofluid drop of 1.0 μl containing 0.25% initial volume concentration of Al2O3 

nanoparticles is placed on top of the gold thin film (the wet diameter of 1.6 mm) and 

allowed to slowly evaporate in the laboratory environment. The SPR angle of 56.3° is 

optimized for water so that R is the lowest for water. The SPR reflectance intensity (the 

first column) shows the darkest image at the lowest nanoparticle concentration at t = 0 

and thereafter increases with increasing concentration as the evaporation is progressed.  

The dominant evaporation in the edge draws nanoparticles and this phenomena is 

called “self-pinning” driven by the radially outward flow replenishing the evaporative 

flux near the edge [88]. The region of dense nanoparticles is created along the outer edge 

as shown by the bright ring in the SPR image at t = 283 s. The third and fourth columns 

present corresponding effective RI and volume concentration field distributions based on 

the ERI-R- concentration correlation as shown in Fig. 3.14. The outer ring region is 

measured to have ERI and volume concentrations higher than 12%.   

As the evaporation further progresses, the outer region is solidified as self-

assembly of nanoparticles (t = 326s) and the center fluidic region shrinks to be thinner and 

denser. Eventually the solidification penetrates inward into the thin film region (t = 327s) 

and complete dryout will be reached soon after that.  Note that the ERI-R  
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Figure 3.15 Full-field and real-time mapping of ERI and volume concentration 

distributions of evaporating nanofluid containing 47 nm Al2O3 nanoparticles. The tested 

nanofluid has an initial nanoparticle concentration of 0.25% in volume and is placed on 

top of Au thin film until the self-assembled dryout is reached. The first column shows 

progressive SPR reflectance images as the evaporation/self assembly is progressed, the 

second column presents schematic drawings illustrating the progress, the third column 

shows ERI field distributions based on the correlation of Fig. 3.14, and the fourth column 

shows corresponding concentration filed distributions [84]. 
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correlation (Fig. 3.14) is valid only for fluidic regions of up to 12% volume concentration 

and cannot be applied once the solidification is initiated.  

 

3.4.3 Summary 

Nanofluidic ERI is determined by the Abby-type TIR and correlated with SPR 

reflectance image intensity. The resulting correlation enables determination of nano 

fluidic ERI and near-field concentration distributions in real-time and full-field.  

Further, and significantly, the outcome of the research methodology allows us to  

quantitatively and dynamically examine the ERI distributions and nanoparticle 

concentration field evolution for evaporating nanofluid droplets containing 47 nm Al2O3. 

 

3.5 Unveiling of Hidden Complex Cavities formed during 

Nanocrystalline Self-Assembly 
How nanoparticle crystalline structures assemble themselves has been, to date, 

remaining as a largely unknown process at least for its dynamic and quantitative 

characterization. However, this process is attracting growing attention from researchers 

because of the important potential applications of these nanostructures, including 

nanoscale manufacturing and bioprocesses [88-93]. Since Deegan et al. [88] first 

delineated the ring stain formation, various attempts have been made to understand how 

crystallized patterns form from the evaporation-induced self-assembly of colloidal or 

nanoparticles.  

Recently, possibility of a cavity structure was conjectured to accompany 

microtornadoes-like pattern of evaporating liquid during the evaporation-induced self-

assembly process [94,95]. However, the existence of the conjectured hidden cavities has 

never been satisfactorily evidenced because of the difficulty associated with 

nonintrusively accessing the cavities, which are roofed by a thick nanocrytalline crust 

structure.  

We are now able to demonstrate the existence of hidden hollow cavities by using 

SPR refractive index mapping [44,58-60,69-71] to fingerprint the near-field solid-gas 

phase distributions of the cavity structure, viewed from the bottom of the nanocrystaline  
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structure. Furthermore, we have been able to quantitatively reconstruct the fully three-

dimensional cavity dimensions by digitally analyzing the naturally formed R-G-B 

interference fringes constructed by the reflected rays from the cavity inner walls. 

 

3.5.1 Experimental Methods 

The present crystallization experiments were conducted with an aqueous solution 

containing 10% volume of 47-nm average diameter Al2O3 nanoparticles (Fig. 3.16); the 

solution is laid on a gold surface at a constant humidity of 40% and a laboratory 

temperature of 21±0.5°C.  No surfactant or additives were used in sonically mixing the 

47-nm Al2O3 nanoparticles with deionized water at the authors’ laboratory. Note that he 

47-nm diameter is an average value for the inevitably distributed Al2O3 nanoparticles. It 

is expected that larger particles (than the average) will generally play more deterministic 

role in the formation of nanocrystalline structure than smaller particles because of their 

larger gravity and inertial effect. The effect of nanoparticle sizes on crystallization is 

definitely a critical issue to be more extensively and systematically examined in the 

future study.  

The characteristics of evaporation-induced crystallization can vary with different 

types, sizes and concentrations of solutes, and also with the relative humidity of the 

atmosphere and the hydrophobicity and the morphology of the substrate [97-100]. Based 

on our observation, however, we believe that most cases of nanofluidic crystallization 

create one form or another of hidden cavity structures, which is attributable to the 

competing growth and decay of the solid-liquid-gas (s-l-g) phases during the self-

assembled crystallization.    

A combined optical recording system (Fig. 3.16) was implemented to 

simultaneously image both dorsal and ventral views of the nanocrystalline structure. 

Normal reflected optical microscopy is used for dorsal view imaging from the top. The 

SPR near-field fingerprinting [44,58-60,69-71] identifies the existence of hidden cavity 

structures viewed from the bottom, and the quantitative analysis of R-G-B natural fringes 

[96] delineates the complex inner dimensions of the 3-D cavity. Note that all three videos 

presented herein were recorded starting 10 minutes after the beginning of evaporation.  
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Figure 3.16 Simultaneous imaging of microscopic dorsal view from the top, near-

field SPR fingerprinting, and natural fringe ventral view of the crystallized inner 

cavity structure (i). The SF-10 prism (ii) with n = 1.723 creates the evanescent wave 

field under total internal reflection conditions when illuminated with p-polarized 

monochromatic light at 632.8 nm (iii). The free electrons in the 47.5-nm thick Au thin 

film (iv), which is metal-deposited on the SF-10 prism, create surface plasmon 

resonance which is driven by the evanescent wave field and the resulting SPR 

reflectance distributes depending on the refractive index of the s-l-g phase 

distributions of the near-field cavity structure. Computer analysis of a full-field R-B-

G natural fringe map allows quantitative reconstruction of the complex 3-D cavity 

details (see Fig. 3.18e) [81]. 
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The SF-10 prism (n = 1.723) creates an evanescent wave field that is in a 

condition of total internal reflection when illuminated with p-polarized monochromatic 

light at λ = 632.8 nm. The top surface of the SF-10 prism is metal-deposited to lay a thin 

gold film of 47.5 nm thickness and the free electrons in the gold film create a surface 

plasmon resonance when excited by the evanescent wave field. The resulting SPR 

reflectance distributes depending on the refractive index variations of the contacting test 

field and the resulting reflectance variations can distinguish the s-l-g phases of the near-

field cavity structures.  

 

3.5.2 Results and Discussion 

An examination of dynamically recorded SPR images delineates the physical 

mechanism for the formation of hidden hollow cavities during the self-assembly of 

nanocrystalline structures. The SPR images shown in Fig. 3.17a map the evolution of 

near-field cavity structures by means of intensity discrimination among the phases; gas 

(gray), liquid (white) and solid (black) phases. The penetration depth of the SPR wave 

field is estimated to be 192 nm for the liquid phase and 353 nm for the gas phase, 

measured from the substrate gold surface. After a certain amount of time t from the 

beginning of evaporation, gas phase regions are conceived as cavity in the near-field.  As 

the evaporation proceeds, the gas phase expands and the cavity structure grows while the 

liquid phase regions continually shrink (t +5s). The shrinkage stops when the 

nanoparticle concentration in the liquid phase exceeds a certain limit and the 

crystallization begins from the pinned edge region (t +10s). 

Figure 3.17b shows a cross-sectional view normal to the dashed lines on the SPR 

images to provide a schematic picture of the 3-D self assembly mechanism. Anchoring of 

the nanoparticles starts soon after the droplet contacts the substrate surface; contact line is 

pinned with the radially outward flow (1) when evaporation begins [88,101]. The 

progressive evaporation lowers the surface temperature near the top dorsal area due to the 

latent heat loss, and consequently, a thermocapillary phoretic Marangoni flow (2) is 

induced toward the dorsal peak region having higher surface tension [92,101,102]. The 

“replenishing” flow (3) rises from the bottom to conform to a stagnant point [101,103]   
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Figure 3.17 The SPR fingerprinting identifies the existence and layout of hidden cavity 

structures by distinguishing s-l-g phase regions. (a) Sequential SPR fingerprint images 

show the initiation of the gas-phase cavities (t); their growth, driven by the surface 

tension actions (t + 5s); and the progressive crystallization after the cavity growth has 

ceased (t + 10s).  (b) The sketch schematically represents a cross-sectional view 

normally erected along the dashed lines on the SPR images showing the mechanism for 

the complex cavity formation; (1) self-pinning driven by the radially outward flow 

replenishing the evaporative flux near the edge, (2) Marangoni or thermocapillary 

phoretic flow driven toward the relatively cold top region, (3) stagnation flow generated 

by thermocapillary phoretic and replenishing flows, (4) internal anchoring driven by 

attractive interaction of nanoparticles with the substrate gold surface, (5) cavity growth 

driven by surface tension action, (6) attractive van-der-Waals force between nanoparticles, 

and (7) thermophoretic upward flow to replenish the evaporated liquid [81]. 
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and ultimately draws vacuum in the near field to conceive a cavity. The downward forces 

(4) of the attractive van-der-Waals interaction of nanoparticles with the substrate surface 

result in multiple inside anchorings and conform to a complex hidden cavity structure.  

The surface “tension” action associated with the cavity interface (5) continually 

expands the cavity areas with progressive evaporation until the nanoparticle 

concentration exceeds a fluidic limit and surface tension is no longer active. Aquatic 

evaporation also decreases the interparticular distance and increases the attractive van-

der-Waals force (6), overcoming the electrostatic repulsive force between the slightly 

negatively charged Al2O3 nanoparticles [104]. This enhances the congregation of the  

nanoparticles and expedites the evaporation. The internally driven thermophoretic flow 

(7) along the temperature gradients from the ventral cavity ceiling to the dorsal peak area 

also contributes to further evaporation.  

Rayleigh number which is a dimensionless number associated with free 

convection is estimated to be , where gravitational 

acceleration g = 9.81 m/s, thermal volumetric coefficient β ≈  206 × 10-6/K for 10% 

Al2O3 nanofluids [105], which is well below the critical value of 1,708 for the onset of 

natural convection inside the evaporating droplet. For calculation, the following 

parameters are assumed; maximum temperature differential between the dorsal and 

ventral surfaces ΔT∼ 1.4K [106], droplet thickness h ∼ 1 mm, thermal diffusivity α ∼ 

145× 10-9 m2/s taken for water, and kinematic viscosity ν∼  0.961 × 10-6 m2/s for water. 

20/Pr 3 ≈Δ=⋅= ανβ ThgGrRa

The ratio of surface-tension-driven Marangoni flow to thermally driven 

convection flow [106] is estimated to be at approximately 60 for the present experimental 

conditions; using the approximations of VM ≈ BΔT/η and VR ≈ βρΔTgh2/η [106], where 

surface tension variation with temperature B ∼ 1.5 × 10-4 N/mK for water, nanofluidic 

density ρ = 1,258 kg/m3, dynamic viscosity η ∼ 959 × 10-6 Pa.s for water, the ratio of 

VM/VR= B/βρgh2 ≈ 60.  

 Thus, it can be said that the fine-scale nanocrystalline self-assembly process is 

dominated by conduction heat transfer, with minimal contribution from natural 

convection, strongly associated with the interfacial Marangoni flow, or so-called  
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thermocapillary phoresis.  

Figure 3.18 shows the details of a self-assembled nanocrystalline structure and 

unveils the previously hidden complex cavities. The microscopic dorsal plane image is 

taken 2 minutes after the cavity inception (Fig. 3.18a) when the crystallization is 

completed. The crystallized glassy surface conforms to a half-toroidal shape with a 

number of radial crack lines [107,108]. The crystallized crust [99, 107-110] is 

approximately 2 mm in diameter and 160 μm in the maximum height. 

The SPR image (Fig. 3.18b) shows two-dimensional fingerprint of the three-

dimensional cavity structure. The dark image areas correspond to crystallized 

nanoparticles congregated on the aforementioned anchored regions, and the bright 

background represents the air interface, both inside and outside the crust. Each anchored 

spot is located in the middle of the corresponding compartment, which is divided by the 

primary crack lines shown in Fig. 3.18a. Each anchored region is shrunk by the surface 

tension pulling along the ventral inner cavity wall conforming to a round- or oval-shaped 

crystallized spot. The bisected crystallized spots are likely attributed to the secondary 

crack that occurred at a later time than the primary cracks. The noncircular forming of the 

central crystallized spot is resulted from non-axisymmetric competition of surface tension 

pulling associated with the multiple and distributed inner cavity growth.  

While Fig. 3.18b shows the non-destructive SPR fingerprint of the cavity structure, 

Fig. 3.18c shows an intrusive image of the crystallized spots after the bulky roof layer has 

been shattered off. This open view concurs with the non-destructive SPR image for the 

overall locations, shapes, and sizes of the crystallized inner structures, but with 

noticeably reduced details because of damages and disturbances imposed on the delicate 

inner structures during the top roof removal. More detrimentally this intrusive 

examination did not allow imaging of the detailed structure of the peripheral edge region 

because the top roof could not be separated without destroying the inner structures there.  

Figure 3.18d shows non-destructive R-G-B fringe imaging (at λ = 635 nm, 535 

nm, and 465 nm, respectively) of the hidden cavity structures; these fringes are 

constructed by interference of the rays reflected from the substrate surface (gold) and 

rays reflected from the ventral cavity inner surface, and they present quantitative 
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Figure 3.18 Anatomy of a self-assembled nanocrystalline structure revealing the hidden 

hollow complex cavities formed when a 2-μl aqueous droplet containing 10% volume of 

47-nm diameter Al2O3 nanoparticles was allowed to evaporate at ambient temperature 

(21±0.5°C) and humidity (40%) on a gold surface. The microscopic dorsal view (a) 

shows the crystallized half-toroidal glassy surface of approximately 2.0-mm diameter and 

160-μm maximum height. Nonintrusive fingerprints by the near-field SPR imaging (b) 

clearly evidence the existence of the hidden hollow cavity structures. Note that each cell 

bounded by crack lines is crystallized to form a single anchoring onto the gold substrate. 

The destructive image taken with the roof shattered (c) confirms the SPR fingerprints, but 

lacks the details particularly in the self-pinned edge region. Naturally occurring R-G-B 

interference fringe map (d) is constructed by incident ray interference when they are 

reflected from both the ventral inner cavity surface and the gold substrate surface, which 

carry quantitative information on the cavity dimensions. Finally, three-dimensional 

reconstruction (e) of the R-G-B fringe map from the computer analysis of (d) unveils the 

hidden complex cavity structures and completes the detailed 3-D topography showing the 

maximum vertical scale of 0.72 μm while the maximum crest roof thickness reaches 160 

μm [Note that the vertical scale is exaggerated by 400 times compared with the 

horizontal scale.] [81]. 
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information on the three-dimensional details of the cavity. Two neighboring fringes of an 

identical color represent the locations where the cavity height differential is equal to λ/4 

[4]. In addition, the spectral sequence of the fringes determines the slope of the inner 

cavity walls; the slope increases when fringes are seen in the order of …-B-G-R-B-G-R-

…, and the slope decreases when fringes are seen as …-B-R-G-B-R-G-…[96]. Therefore,  

a digital image processing of the fringes shown in Fig. 3.18d allows reconstruction of a  

full three-dimensional layout of the cavity structure. Furthermore, dynamic recording of 

the fringe field provides comprehensive knowledge of the time-dependent cavity growth.  

Figure 3.18e shows three-dimensional reconstruction of the fringe map of Fig. 

3.18d using elaborate pixel-by-pixel analyses and artificially intelligent slope mapping to 

unveil, for the first time, the hidden complex cavities formed inside the self-assembled 

nanocrystalline structures. The maximum gap height corresponding to the cavity ridges is 

approximately 720 nm, which occupies approximately 0.5% of the crystallized crust total 

height of 160 μm. Note that the vertical scale of the reconstructed topography is 

exaggerated by 400 times compared with the horizontal scale to present the cavity 

structure more clearly. It is notable that the topography of the crystallized cavity 

structures of nanofluids remarkably resembles the earth formation of mountains and 

valleys.  

 

3.5.3 Summary 

We have discovered, using both SPR near-field refractive index fingerprinting and 

natural R-G-B fringe mapping, that hidden hollow cavities exist under nanocrystalline 

crust structures and the cavities are formed in complex dimensions due to the competing 

growth of multiple cavities during the evaporative nanocrystalline process.  Further, and 

significantly, the outcome of our research methodology allows us to dynamically examine 

the self assembly process of the nanocrystalline inner structures and also sheds light on 

finding a way to actively control the nanocrystalline assembly quality, for example, such 

as a fabrication of nanofluidic self-assembly with zero-cavity tolerated ensuring the 

interfacial uniformity. Despite our exhaustive effort associated with careful examination 

of the fully dynamic SPR imaging and R-G-B fringe analysis, we were not able to verify 
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the existence of the microtornadoes-like flow at present.  
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CHAPTER 4 

Conclusion 

A novel tool for a label-free mapping of near-field transport properties of 

micro/nano-fluidic phenomena is developed using surface plamson resonance (SPR) 

reflectance imaging system. The system successfully demonstrates its feasibility as a 

innovative tool for full-field and dynamic mapping of microscale concentration profiles, 

near-wall salinity, transient temperature field, hidden hollow cavities formed during 

nanocrystallne structure self-assembly, and effective refractive index of nanofluids. 

The current developed system has the shortcoming of low spatial resolution from 

triangular prism. However, this problem will be resolved by applying cylindrical prism or 

objective. In addition, the current system can be coupled with AFM or confocal 

microscope to provide comprehensive information of test sample as well as SPR data. 

We believe that SPR reflectance imaging technique will significantly contribute to 

visualization of micro- and sub-micro scale fluidics and heat transfer phenomena such as 

a study on the nanocrystalline structure formation depending on the difference of surface 

hydrophobicity and the label-free and real-time visualization of evaporation-induced fluid 

flow pattern in binary liquids. Furthermore, this technique can be utilized to characterize 

single molecules and energy transfer between particles in potential applications of 

nanomedicine and solar energy harvest. 
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Fresnel Calculation Program (Matlab) 
 
% Calculate the Fresnel equation and penetration depth, lateral resolution 
% written by Iltai Kim in MINSFET laboratory, University of Tennessee 
% Sept. 7, 2008 
 
clear all; 
% write data file with theta loop 
%fid_theta=fopen('SF10.dat','w'); 
% write data file with n_m loop 
fid_n_m=fopen('SF10_n_m.dat','w'); 
 
% refractive index n; 2 is prism, 1 is adhesion layer, 3 is thin metal film 
n(2)=1.7231; % SF10 prism 
%n(2)=1.515; % BK7 prism 
n(3)=0.1718+i*3.637; % Au 
n(1)=n(3);    % for (1) test medium 
 
% wavelength of incoming light 
lumda=632.8*10^-9; % in meter 
 
% Thickness of adhesion layer (1) and thin metal film(3) in meter 
d1=2.5*10^-9; 
d3=45.0*10^-9; 
 
% refractive index of water with temperature 0~100 degree 
n_m_org=[1.33306 1.33211 1.32972 1.32636 1.32223 1.31744]; 
 
theta(1)=56.3; % incident angle for initial calculation 
 
i_n=1; % for example, one data is used in the following program 
n_m(i_n)=n_m_org(i_n); 
 
% Loop with refractive index of test medium 
for i_n_m=1:1:200 
    n_t(i_n_m)=0.01*i_n_m; 
    n_m(i_n)=n_t(i_n_m); 
    % Loop with theta increment 
    %for i_theta=1:1:700 
    %    theta(i_theta)=theta(1)+0.1*i_theta; 
    i_theta=1; 
 
    n(4)=n_m(i_n); % test medium 
 
    for j= 1:4 
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        e(j)=n(j)^2; 
    end 
 
    e(5)=e(4)*e(1)/e(3); 
 
    k_sp=2*pi/lumda*sqrt( (e(3)*e(4))/(e(3)+e(4))); % wavevector of SP 
    k_x=(2*pi/lumda)*sqrt(e(2))*sin(theta(i_theta)*pi/180.); % wavevector of x-
component 
 
    for j=1:4 
        const1=e(j).*(2*pi/lumda)^2; 
        const2= k_x.*k_x; 
        const3=const1-const2; 
        k(j)=sqrt(e(j).*(2*pi/lumda)^2 - k_x.*k_x); 
    end 
 
    k(5)=k(4)*k(1)/k(3); 
 
    n53=e(3)*k(5)+e(5)*k(3); 
    n21=e(1)*k(2)+e(2)*k(1); 
    n14=e(4)*k(1)+e(1)*k(4); 
 
    z53=e(3)*k(5)-e(5)*k(3); 
    z14=e(4)*k(1)-e(1)*k(4); 
    z21=e(1)*k(2)-e(2)*k(1); 
 
    r134=(z14-i*z53*tan(k(3)*d3))/(n14-i*n53*tan(k(3)*d3)); 
    r21=z21/n21; 
    r214=(r21+r134*exp(2*i*k(1)*d1))/(1+r21*r134*exp(2*i*k(1)*d1)); 
 
    R(i_n_m)=abs(r214)^2; % Reflectance 
    fprintf(fid_n_m,' %6.4f %6.4f ',n_t(i_n_m), R(i_n_m)); 
    fprintf(fid_n_m,'\n'); 
     
    L(i_n)=1/(2*imag(k_sp))*10^6;  % propagation length of SP wave  
    %i_n=i_n+1; 
end 
figure(1) 
plot(n_t, R) 
 
fclose(fid_n_m); 
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