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Abstract 

The genus Phytophthora includes more than 90 described species infecting 

over 1000 plant species. Population studies were conducted to investigate the 

survival and spread of P. capsici in the Peruvian coastal region. A total of 227 

P. capsici isolates, recovered at widely distant localities from 2005-2007, 

were fingerprinted with AFLPs and SNP genotyping. A clonal population 

(PcPE-1) represented by 221 isolates was found to be distributed throughout 

the country. Atypical isolates of P. nicotianae were isolated from loquat trees 

in Peru and nuclear (internal transcribed spacer [ITS], the phenol acid 

carboxylase gene, and AFLPs) and mitochondrial genotyping (cytochrome 

oxidase gene [coxI]) identified this species as a hybrid between P. nicotianae 

and P. cactorum. A comparison of five Phytophthora hybrid isolates from 

Peru and Taiwan (also infecting loquat trees) suggested that isolates from Peru 

likely originated from a single hybridization event and that the two isolates 

from Taiwan originated through different hybridization events.  

The generation of genetic resources for the study of complex genetic traits in 

P. capsici was initiated by studying its inbreeding up to the sixth generation. 

A total of 692 oospore-derived isolates were fingerprinted and a subset was 

characterized for pathogenicity in cucumber and jalapeno fruits and for 

segregation of the mating type. The traits tested revealed no-Mendelian 

segregation, and apomixis were observed to be more prevalent (100%) in deep 

(fifth generation) inbreeding crosses. Inbreeding was measured by studying 



 v 

the segregation of 20 AFLP markers, which indicated a loss of heterozygosity 

of ~75% by the sixth generation. The seminal cross from this study was used 

as a mapping population (F1) for generating a genetic linkage framework with 

189 AFLP and 18 SNP markers. A total of 18 linkage groups were produced 

for each parental isolate using 65 and 42 markers for CBS121657 and 

CBS121656 isolates respectively covering 409 cM. SNP markers FL5 and 

FL6 were used for estimating the genome size of P. capsici and precision of 

the genome assembly.  

In order to conduct functional studies in P. capsici, we tested the efficacy of 

the polyethylene glycol mediated transformation. We regenerated up to 30 

antibiotic resistant isolates and 53% of them were stable after three months of 

subculturing. 
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 Currently the genus Phytophthora includes more than 90 described species 

infecting over 1000 plant species, arguably making Phytophthora the most devastating 

pathogens of dicotyledonous plants (1, 8, 11, 16, 18). The genus Phytophthora is 

classified in a unique group of organisms known as oomycetes (1). Due to their fungal-

like morphology, Phytophthora were historically considered fungi. Detailed 

physiological, biochemical and phylogenetic studies placed oomycetes in a unique 

lineage of eukaryotic organisms more related to brown algae and greatly distant from true 

fungi. Among these differences between fungi and oomycetes we can mention that: (i) 

oomycete cell walls are primarily composed of β-1,3-glucans and lack or contain small 

only proportions of chitin; (ii) oomycetes are sterol and thiamine auxotrophs and their 

membranes are composed of unusual lipids, (iii) the major part of an oomycete’s life 

cycle is diploid, unlike filamentous fungi which are haploid, (iv) oomycete hyphae is not 

septate, and (v) oomycetes produce biflagellate swimming spores (1). Due to these 

differences, most strategies to control fungi are not effective against oomycetes (6, 17, 

21). 

 Phytophthora infestans, the causal agent of potato late blight and the Irish famine 

in the 19th century, is the most thoroughly studied oomycete (2, 3). Research conducted in 

this pathosystem has greatly contributed to our current understanding of the different 

biological processes in this group of organisms. At the present time there are three 

oomycete draft genomes (P. sojae, P. ramorum, and P. infestans) and two more are 

underway (P. capsici and Hyaloperonospora  parasitica). The current genomic era, with 

improved technological capabilities, offers oomycete researchers the opportunity to 

pursue more comprehensive and detailed studies (4, 7, 22).  
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 Although oomycete and filamentous fungi are phylogenetically distant, they share 

common strategies of invasion (17). Both the fungal rice blast pathogen Magnaporthe 

grisea and P. infestans develop specialized pre-penetration structures or terminal 

swellings called appresoria (5, 20). The appresorium allows the pathogen to penetrate the 

hydrophobic cuticle of the host. A combination of secreted lytic enzymes and external 

force (turgor pressure) permits the pathogen to enter, forming a penetration peg. The 

penetration peg develops into an infection vesicle that subsequently ramifies inter- and 

intracellularly throughout the plant cells (10). Phytophthora usually adopts a 

hemibiotrophic lifestyle. During the early stages of infection, Phytophthora keeps the 

host cells alive, but the pathogen subsequently secretes specific proteins into the host 

(known as necrosis-induced proteins, NIPs) that induce cell death (19). Phytophthora 

then spreads rapidly through the host and then specialized tissue (also known as 

sporangium) emerges from natural openings in the host. Sporangia contain non-

differentiated cytoplasm that undergoes cleavage after perceiving certain environmental 

cues. Cytoplasmatic cleavage results in the formation of small uninucleate cells known as 

zoospores that are released from the sporangium and swim by means of two flagella. 

Zoospores perceive specific exudates from the root of the host (chemotropism) and 

encyst once they contact the host surface. Zoospores can then start a new cycle of 

infection.  

 During host colonization Phytophthora also secrets a battery of proteins (known 

as effector proteins) that are believed to evade the plant immune system and to modulate 

the transcriptional host machinery (9). Data mining of Phytophthora genome sequences 
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complemented with ectopic expression assays have determined that a group of these 

effector proteins contain an aminoacidic motif known as RxLR (7). 

 Phytophthora capsici (L.) is a soilborne plant pathogen distributed worldwide. It 

is capable of infecting a wide variety of hosts including members of the Solanaceae, 

Leguminoseae and Cucurbitaceae plant families (13). Consequently, losses due to P. 

capsici outbreaks have serious economic implications. Phytophthora capsici is an 

outcrossing species, requiring both mating types (A1 and A2) to complete the sexual 

cycle. In the United States, fields naturally infected with P. capsici have both mating 

types. The sexual stage is under strong selection pressure because P. capsici does not 

produce thick-walled asexual chlamydospores and the primary hosts (cucurbits, tomatoes, 

and peppers) are unavailable during the winter months (15). For this reason, U.S. 

populations carry a large amount of genetic variation, and in many cases the isolates are 

highly fecund (12-14). When studying P. capsici under laboratory conditions, the life 

stages of this pathogen easily generated. All these characteristics point to P. capsici as an 

attractive organism for studying oomycetes.   

 In chapter two, the genetic diversity of P. capsici populations in pepper fields 

from Peru is presented. Peru is located in the west side of South America and is 

considered a center of diversity for Capsicum species, the main hosts for P. capsici. 

Genetic diversity was studied using amplified fragment length polymorphic (AFLPs) and 

single nucleotide polymorphism (SNPs) markers. Our studies concluded that 

Phytophthora capsici has the profile of an introduced pathogen in the coastal fields in 

Peru, and that isolates with exactly the same AFLP profile survived for at least three 

years. We only identified one mating type in all sampled fields (A2). Phytophthora 
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capsici propagates clonally in coastal Peru and shows a very low genetic variability, in 

contrast to the high genetic diversity found in naturally infested fields in the U.S. This 

finding suggests that Peruvian pepper farmers would only need to deploy a small set of 

resistant pepper varieties combined with good agricultural practices to control P. capsici 

outbreaks.  

 Our interest in studying different species of Phytophthora led us to focus on an 

interesting group of isolates collected from dying loquat trees in Peru. Studies of these 

isolates are presented in the third chapter. Our collaborator in Peru, Professor Liliana 

Aragon, brought to our attention this Phytophthora species that was difficult to identify 

using classical morphological keys. We employed molecular tools (AFLP fingerprinting, 

nuclear gene sequencing, and mitochondrial inheritance using hi-resolution DNA melting 

analysis) to determine the identity of this pathogen. Reports of a similar pathogen 

infecting loquat trees in Taiwan also directed us to investigate and compare the isolates 

from Taiwan and compare results from both locations.  

 Our analysis shows that these isolates were natural hybrids between the species P. 

nicotianae and P. cactorum. Moreover, our results suggest that these Phytophthora 

hybrids from Peru likely originated from a single hybridization event, that the two 

isolates from Taiwan originated through different hybridization events, and that the 

hybrids in Peru have persisted over at least three years at three separate field locations as 

a clonal pathogen. 

 In a separate line of study, homozygous lines for P. capsici were developed with 

an aim toward studying complex genetic traits, such as sporangiogenesis, oosporogenesis, 

and pathogenicity that are believed to be ruled by an orchestrated expression of several 
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genes. The current models used for the study of biology in oomycetes, such as P. sojae-

soybean and P. infestans-potato, focus their attention on a particular gene, or gene family, 

under the genetic background of one or very few isolates. Studies that exploit naturally 

occurring variations (e.g., SNPs) found in Phytophthora isolates have not been possible 

because of the limited ability of generating laboratory crosses with measurable 

phenotypes.  

 As mentioned above, P. capsici is highly fecund, the generation of laboratory 

crosses is routine, and natural US populations carry large amount of genetic variation. 

Thus, P. capsici is an attractive model for conducting experiments in quantitative genetic 

analysis of complex traits in oomycetes by employing recombinant inbred lines, near 

isogenic lines, and other genetic resources. These resources have already proved to be 

useful in the determination of complex traits and in the study of genetic networks in other 

organisms, such as maize, fruit fly, potato, etc.  

 In the fourth chapter, the possibility of generating recombinant inbred lines in P. 

capsici is explored. Laboratory crosses were conducted up to the sixth generation of 

inbreeding. Loss of heterozygosity was performed by tracking the segregation of 20 

AFLP markers through five generations, resulting in the generation of oospore-derived 

isolates with more than 60% of their alleles fixed to homozygosity. Subsets of these 

laboratory populations were tested for their pathogenicity on cucumber and jalapeno 

fruits, and mating type. SNP genotyping was required for an accurate identification of 

recombinant progeny by the fourth generation. We observed that either oospore-derived 

isolates recovered from the different crosses with exact AFLP profiling or SNP 

genotyping profile was prevalent during our crosses. The entire progeny of two crosses 
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from the fourth generation of inbreeding yielded this type of clonality with the same 

genotype as one of the parents, phenomena that we called apomixes. An oospore-derived 

isolate from the second backcross generation was selected for the genome sequencing 

project for its reduced heterozygosity to facilitate the genome assembly. 

 The development of genetic resources for studying quantitative traits required the 

association of loci to the trait under study in a segregating population. Genetic linkage 

maps are the first step in building these resources. In the fifth chapter, DNA markers 

(AFLP and SNP genotyping) were employed to build genetic linkage maps in P. capsici. 

Oospore progeny derived from a cross generated in the third chapter were used as a 

mapping population. One hundred eighty-nine clearly resolvable AFLP markers were 

generated with 16 primer combinations plus 18 SNPs with 18 sets of primer pairs.  

 Our analysis generated 18 linkage groups at LOD (Logarithm of Odd) threshold 

values between 4 and 6 for parent CBS121656 and 18 linkage groups for CBS121657. 

We also mapped 10 SNP markers. SNP markers were useful for comparison between 

their physical location in the genome assembly and their location in the genetic linkage 

groups. 

 After the identification of candidate gene(s) associated with the trait of interest 

using the resources described in chapter three and four, functional analyses were required 

for further validation. One method that can provide further validation is through 

activation of intrinsic gene silencing machinery by overexpression of a particular gene.  

 In chapter six, a transformation technique currently used with P. sojae was 

adapted for use with P. capsici. The technique was based on the transformation of 

protoplast via polyethylene glycol and CaCl2. We generated protoplast from isolate 
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CBS121656 and then transformed the protoplasts with three different constructs (pNC-

GFP, pHA, and pUBIN) using the selectable antibiotic G418 (geneticin). We recovered a 

total of 30 antibiotic resistance isolates (50 µg/ml) and confirmed their identity with 

PCR. Isolates were subcultured at least three months under selective and non-selective 

media and observations were made for their stability. Although transformation using the 

PEG protocols remains the favorite among different oomycete laboratories, this method 

still generates a high percentage (65%) of non-stable transformants that can lose their 

ability to grow on selective media. 
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ABSTRACT 

Phytophthora capsici Leonian is a soilborne pathogen that causes significant losses to 

pepper production in Peru. Our objective was to investigate the mechanisms by which P. 

capsici is able to survive and spread. During 2005-2007, 227 isolates of P. capsici were 

collected from four species of pepper (Capsicum annum, C. baccatum, C. chinense, and 

C. pubescens) and tomato (Solanum lycopersicum) at 33 field sites in 13 provinces across 

coastal Peru. All 227 isolates were of the A2 mating type and AFLP (amplified fragment 

length polymorphism) analysis indicated that 221 of the isolates had the same genotype. 

Analyses of six polymorphic SNP (single nucleotide polymorphism) loci showed fixed 

heterozygosity suggesting a single clonal lineage is widely dispersed. Members of the 

same clonal lineage were recovered during 2005-2007 from geographically separate 

locations from each of the host types sampled. Our results indicate that clonal 

reproduction drives the population structure of P. capsici in Peru. The impacts of 

continuous cropping and irrigation from common river sources on the population 

structure in Barranca valley are discussed. 

 

INTRODUCTION 

 Phytophthora capsici Leonian is a soilborne plant pathogen that causes fruit, 

crown and root rot in a wide range of vegetable hosts including peppers, tomato, squash, 

melons, and most recently green and lima beans (5, 9, 29, 35, 60). Phytophthora capsici 

was first described as a pathogen of pepper in New Mexico (42). Since the initial species 

description, P. capsici has been reported on additional hosts (18, 28, 30, 32-34, 44, 46, 



 14

50, 58, 68, 72). Phytophthora capsici can produce massive amounts of asexual deciduous 

sporangia on infected host and large-scale epidemics can be initiated from a limited 

number of infected plants (62). Unlike many other Phytophthora diseases that are favored 

by cooler temperatures, disease is favored by warm (25°C to 28°C) and wet conditions 

(9). Phytophthora capsici is heterothallic requiring the interaction of two mating types 

(A1 and A2) to complete the sexual stage and produce thick-walled sexual oospores. 

Oospores are capable of surviving in the soil for several years, germinating in favorable 

environmental conditions (9, 16, 49, 61). In the U.S., both mating types are found at most 

locations and oospores are thought to play an important role in the epidemiology (36-39, 

58). In addition, P. capsici has been isolated from creeks used for irrigation of vegetables 

in Michigan, and it has been shown to infect diverse weeds (15, 19, 56). In many cases 

crop rotation has not reduced the residual inoculum sufficiently to provide effective 

protection (40).  

 In Peru, Phytophthora capsici was first reported as the causal agent for wilt and 

root rot infecting several Capsicum spp. in 1971 (10). Since then, no other investigation 

has been conducted despite increasing losses due to P. capsici for pepper growers in 

Peru. Various practices are applied to control the epidemics, such as moderate irrigation, 

the use of well-drained fields, crop rotation, and fungicide treatments (3, 48). The 

Andean region of Peru-Bolivia is considered one of the centers of origin for species 

within the genus Capsicum. Archeological studies in coastal Peru have revealed evidence 

for the presence of Capsicum spp. dating back 4000 years (54). It is not known how long 

P. capsici has been present in and around the Capsicum center of origin, nor is it known 

whether P. capsici infected other ancient local crops, such as cucurbits, prior to Capsicum 
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(6). Several varieties of C. annuum, as well as other species of Capsicum such as C. 

baccatum, C. chinense, and C. pubescens, are cultivated across the coastal area of the 

country and several other Capsicum spp. are grown in the Amazon (55). Thus, a high 

diversity of the host may impact the pathogen population structure and evolution (73). A 

better understanding of the mechanisms by which P. capsici is surviving and spreading 

will assist in developing effective management and breeding strategies.  

 Our primary objective was to characterize the survival and spread of P. capsici in 

pepper production areas of coastal Peru. We report on the absence of diversity in P. 

capsici recovered from peppers and tomatoes from across coastal Peru for mating type, 

AFLP and SNP markers, and we present a fine scale genotypic analysis of P. capsici 

recovered from pepper in the Barranca valley. 

 

MATERIALS AND METHODS 

Isolate recovery and sampling scheme 

 Samples collected in 2005 (n=23) were received as standard diagnostic specimens 

and processed by the diagnostic clinic at the National Agricultural University La Molina 

(Lima, Peru). Isolates were recovered from seven different hosts at 23 field sites (Fig. 2.1 

and Table 2.1; tables and figures are located in appendices). During 2006-2007, more 

intensive sampling was performed at ten pepper fields located in Barranca, a coastal 

province 120 miles north of the city of Lima. The fields spanned four districts: Barranca, 

Supe, Caral and Minas (see Table 2.2 and Fig. 2.2). Fields were previously cultivated 

with the following hosts: tomato, potato, paprika, and/or artichoke. Fields varied in size 

from 3 to 10 hectares and isolates were recovered from the following Capsicum species: 
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C. annum, C. baccatum, C. chinense, and C. pubescens. Plants varied in age from 3 

weeks-old to 3 months-old and wilting was the primary symptom of infected plants. 

Adjacent plants within a field were avoided. All of the isolates were recovered from the 

crown region of infected plants. A minimum of 12 symptomatic plants were collected per 

field and transported to Lima for pathogen isolation at the diagnostic clinic (National 

Agricultural University, La Molina). Phytophthora capsici culture collection isolates 

CBS121656 (isolated from infected cucumbers in Michigan, U.S. in 1997) and 

CBS121657 (isolated from infected pumpkins in Tennessee, U.S. 2004) were also 

included in the study. 

 For pathogen isolation, infected plants were thoroughly washed with tap and 

sterile distilled water. Small sections of tissue were excised from the edge of an 

expanding lesion at the crown level and transferred to potato dextrose agar plates 

amended with PARP (100 ppm of pimaricin, 100 ppm of ampicillin, 30 ppm of 

rifampicin, and 100 ppm of pentachloronitrobezene). Plates were incubated for 2 days at 

room temperature. Hyphal tips were sub-cultured from actively expanding mycelium and 

transferred to V8 juice agar amended with PARP. For long term storage, agar plugs of 

mycelium were stored in 2 ml screw cap tubes with 1 ml of sterile distilled water and 

three sterile hemp seeds. 

 To determine mating type of P. capsici isolates, plugs of actively expanding 

mycelium were placed at the center of V8 juice agar plates approximately 2 cm distant 

from the “tester” isolate CBS121656 (mating type A1) or CBS121657 (mating type A2). 

Plates were wrapped with Parafilm® and incubated in the dark at room temperature for at 

least one week, after which observations were made for the production of oospores at the 
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interface using a light microscope. Isolates able to produce oospores when crossed 

against CBS121656 were determined as A2 mating type. Conversely, isolates that were 

able to form oospores when crossed against CBS121657 were determined as A1 mating 

type. 

 

DNA isolation and AFLP analyses 

 To determine genetic similarity among P. capsici isolates, AFLP profiles were 

generated for all 227 isolates. Isolates were grown and treated as previously described for 

DNA isolation (41). AFLP genotyping was done using EcoRI and MseI restriction 

endonucleases, adapters, and primers as described by Vos et al. (70). Pre-selective 

amplification was done using no selective nucleotides (Eco+0/Mse+0) and selective 

amplification was conducted with selective primer pair (Eco+CG/Mse+CG). Selective 

amplifications were diluted and labeled in a separate reaction according to Habera et al. 

(25). AFLP fragments were resolved and analyzed on a CEQTM 8000 Genetic Analysis 

System (Beckman Coulter, Fullerton, CA) following the manufacturer’s protocols. A 600 

bp DNA size standard was used to resolve AFLP fragments (Beckman Coulter, Fullerton, 

CA). AFLP marker sizes ranged from 70 to 500 bp. AFLP profiles were generated twice 

for each isolate using independent DNA extractions. A binary matrix was constructed 

using only clearly resolved, replicated markers. Using the program NTSYSpc 2.11a 

(Exeter Software, Setauket, NY), the combined data matrix was used to construct a 

genetic similarity matrix of all possible pairwise comparisons of individuals using 

Jaccard’s similarity coefficient: GS(ij) = a/(a + b + c). GS(ij) is the measure of genetic 

similarity between individuals i and j, where a is the number of polymorphic bands 
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shared by i and j, b is the number of bands present in i and absent in j, and c is the 

number of bands present in j but absent in i. A dendrogram was constructed by 

employing an unweighted pair-group method with arithmetic average (UPGMA) cluster 

analysis. Bootstraps values were generated in PAUP version 4.0b10 with 1000 replicates 

(66). 

 

SNP genotyping 

 Twenty isolates from the Barranca valley (2006-2007) and 23 isolates from the 

diagnostic clinic in 2005 were selected for subsequent analyses using six nuclear SNP 

markers (Table 2.3). The SNP markers were heterozygous in at least one of the samples 

tested. Custom TaqMan® SNP Genotyping Assays (Foster City, CA) were designed 

according to the manufacturer’s instructions (Table 2.3). SNP assays were performed 

using 7.5 µl of iQ™ Supermix (Bio-Rad), 0.325 µl of TaqMan® probe/primers allelic 

discrimination cocktail (40X), 2 µl of DNA (~15-20 ηg) and 3.2 µl of molecular biology 

grade H2O. PCR reactions were carried out in 96-well plates (Bio-Rad) in triplicates for 

each isolate on an iQ5 Real-Time thermal cycler (Bio-Rad) using the following 

parameters: 95°C for 10 minutes, 40 cycles of 92°C for 15 seconds and 60°C for 1 

minute. Each assay was standardized for their optimal cycling PCR conditions. Results 

were analyzed with the accompanying iQ5 optical system software 1.0 (Bio-Rad) using 

the allelic discrimination option, adjusting parameters for Ct values and RFU (relative 

fluorescent units) according to the manufacturer’s instructions. Results were scored as: 

Allele 1 = 11 (FAM), Allele 2 = 22 (VIC) and Heterozygous = 12. A concatenated 

similarity tree with bootstraps (AFLP and SNP) was built as described above.  
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RESULTS 

AFLP genotyping and mating type 

 AFLP using the Eco+CG/Mse+CG primer pair generated 50 reproducible 

markers. Four of the 50 alleles identified were only found in the U.S. isolates 

(CBS121656 and CBS1211657). Isolates recovered from the Barranca valley in 2005 

(n=2) and 2006-2007 (n=204, represented by isolate LT3738) were found to exhibit a 

single AFLP genotype with 35 AFLP markers. Seventeen of the twenty-three isolates 

submitted to the clinic in 2005 had the LT3738 genotype. Of the remaining clinic isolates 

all except one had a different AFLP genotype composed of 45 AFLP markers 

(represented by isolate LT2137). Representative isolates LT3738 and LT2137 had 34 

AFLP markers in common. The last isolate (LT2145) had a unique AFLP genotype 

consisting of 37 AFLP markers. AFLP genotypes LT3738 and LT2137 were identified as 

clonal types and are referred to as PcPE-1 and PcPE-2.  

 Isolates belonging to the clonal lineage PcPE-1 were recovered from widely 

dispersed geographic fields (e.g. Ica and Trujillo, Fig. 2.1) whereas isolates from PcPE-2 

were confined to Lima and Ica (Fig. 2.1). Mating type analysis revealed that all 227 

isolates were the A2 mating type. 

 

SNP and genotyping 

 Analysis of six SNP markers showed a strong correlation with the AFLP analysis. 

Thirty-four of the 37 isolates identified as the PcPE-1 type using AFLP had SNP profiles 

identical to PcPE-1, five isolates with the PcPE-2 AFLP profile had SNP profiles 

identical to PcPE-2, and LT2145, which had a unique AFLP profile, also had a unique 
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multi-locus SNP profile (Table 2.4). Two isolates identified as the PcPE-1 type using 

AFLP (LT3726 and LT3762) had a single SNP marker, SNP 15, changed from AG to AA 

(Table 2.4). Additionally, LT3753 identified as PcPE-1 with AFLP had two SNP markers 

changed from hetero- to homozygosity; URA3 changed from AG to GG, and SNP 15 

changed from AG to AA (Table 2.4). Clone corrections of the 227 isolates reduced the 

total number of unique multi-locus genotypes to five and for all six SNP markers only 

two of the three possible genotypes were observed. Due to the small size of the clone 

corrected data set, Hardy-Weinberg and other population genetic metrics that are based 

on allele frequencies were not calculated. A UPGMA cluster analysis combining AFLP 

and SNP markers revealed that the two distinct clusters (PcPE-1 and PcPE-2) shared 

~70% of the markers (Fig. 2.3). 

 

DISCUSSION 

 This is the first large-scale spatiotemporal population study of P. capsici infecting 

peppers and tomatoes in Peru using molecular tools. Phytophthora capsici is a major 

biological threat to peppers in Peru and our objective was to better understand how P. 

capsici is surviving and spreading. There are few population studies characterizing the 

genotypic diversity of P. capsici outside of the U. S. and a limited number of studies 

indicating the frequency of the A1 or A2 mating types at specific sites. In Northwest 

Spain, 16 isolates from 11 locations had a low level of genetic variation based on RAPD 

analysis and all were a single (A1) mating type (63). Additional reports of only a single 

mating type include reports from Bulgaria (45 isolates, all A1), southern Italy (60 
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isolates, all A2) and southeastern Spain (3 isolates, all A1) (27, 31, 52). Both mating 

types have been reported from Brazil, Canada, Mexico and northern Italy (1, 11, 45, 67). 

 AFLP and SNP analysis of 227 P. capsici isolates recovered from 2005 to 2007 

from four different Capsicum spp. and tomato at 33 locations throughout Peru revealed a 

surprisingly homogenous population with much lower genotypic and overall genetic 

diversity compared to populations analyzed in the U.S. (26, 38, 39). A single clonal 

lineage (PcPE-1) accounts for 221 of the isolates and this clonal type was recovered from 

all of the locations sampled except for three isolates from the Ica Valley (Fig. 2.1, Fig. 

2.3). Also surprising, but consistent with the molecular data, was the finding that all of 

the isolates had the A2 mating type. For the U. S. populations that have been analyzed in 

detail, the overall picture is significantly different. In the U. S., both the A1 and A2 

mating types have been recovered from many different locations and the genetic structure 

clearly reflects the impact of sexual recombination on the overall population biology (4, 

12, 26, 30, 33, 36, 38, 40, 51, 58). In Michigan, the expansion of clonal lineages is 

common within single fields during a single year; but spread of clonal lineages over long 

distances or survival over the winter has not been detected (39, 40).  

 Although AFLP data showed no new AFLP genotypes in the Barranca valley 

from 2005 to 2007, SNP genotyping of a subset of isolates revealed changes from 

heterozygosity to homozygosity at two loci; SNP15 and URA3 (Table 2.4). Since the 

overall AFLP profile is identical to the PcPE-1 clonal type, there is no evidence that sex 

has occurred and most likely these changes are due to some kind of mitotic effect (e.g. 

gene conversion) (20). Mitotic recombination as well as mutation and gene conversion 
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are thought to be sources of variation for Phytophthora spp. that spread as large clonal 

lineages such as P. infestans, P. cinnamomi, and P. ramorum (7, 21, 57). 

 Currently it is unclear how a single clonal lineage has spread throughout coastal 

Peru. In the U.S., P. capsici does not appear to be spread long distances aerially similar to 

P. infestans and movement is most likely via infested water, soil, or plant parts (59). The 

finding of a limited number of widely dispersed clonal lineages parallels the situation 

with P. infestans in Peru where clonal lineages define the population structure. For both 

P. capsici and P. infestans migration of the opposite mating type (A1 for P. capsici and 

A2 for P. infestans) could significantly impact the overall diversity of populations and 

may contribute to increased crop losses and pathogen survival (2, 8, 13, 14, 17, 21-24, 53, 

64, 65, 69).   

Coastal Peru is a very dry agricultural system with very little annual rainfall (less 

than 50 mm/year) and above-ground infection and sporulation is generally not observed. 

The geography at many of the sites sampled precludes infested irrigation water 

accounting for the observed population structure as they are separate valleys and rely on 

separate water sources. Further investigations of movement on seedlings and/or seed are 

warranted. For the isolates collected from the ten fields in the Barranca valley, the 

situation may be easier to explain. The pepper cropping season in the Barranca coastal 

areas starts in October and plants are mature in April. Further up the valley, at a higher 

elevation (Caral and Minas districts), the climate allows and farmers practice year-round 

pepper cultivation. Irrigation water in the Barranca valley comes from the Supe River, 

which runs west from the slope Andean mountains to the Pacific Ocean (Fig. 2.2) and it 

is possible that P. capsici outbreaks occurring in higher areas of the valley contribute to 
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the incidence of pepper root rot and crown rot in lower parts of the valley. In addition, 

alternative explanations such as movement of plant seedling, tools, and survival of latent 

mycelium or sporangia in plant debris, should not be excluded. Current methods to 

control P. capsici include avoiding excess water in the plant rhizosphere through 

conservative irrigation and planting on raised beds. Drip irrigation is employed in some 

cases, but not all farmers have access to this technology. In light of our findings it will be 

important to test the above-ground irrigation water for the presence of P. capsici.  

 Peppers, originally cultivated in South America, now have more than five 

cultivated species and over twenty wild species (27). Archeological studies revealed 

deposits of cultivated types of Capsicum baccatum dating back 4000 years in coastal 

areas in Peru (54) and a major portion of Capsicum evolution appears to have occurred in 

the south-central Peruvian and Bolivian Andes (43). Our studies suggest that P. capsici in 

Peru has the profile of an introduced pathogen. Additional investigation into the 

population structure of P. capsici at other locations in Peru (e.g. C. pubescences 

cultivated in the Amazon, in the eastern side of the Andes) and other areas in South 

America may provide some clues to the current situation and may help identify current 

and past possible routes of dissemination.  

 Breeding for resistance against P. capsici has been challenging due to the high 

diversity of pathogen populations in the U.S. (47, 71). If the genotypic clonality of P. 

capsici in Peru is reflective of fewer race types of P. capsici, then this could offer the 

advantage for pepper breeders to generate resistant pepper lines that protect against one 

or a few clonal lineages. In light of the mitotic genetic changes that may be occurring 
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within the context of a clonal population it will be important to include a panel of clonal 

isolates from different geographic locations in the screening program.  
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APPENDIX 2 

Tables 

Table 2.1. Phytophthora capsici isolates collected during 2005 from pepper and tomato in 
Peru. 

Isolate Isolation 
date MT1 Origin (Province, State) Host 

LT2135 01/24/05 A2 Viru, La Libertad  Capsicum annum 
LT2136 01/25/05 A2 Huaral, Lima Solanum lycopersicum 

LT2137 01/25/05 A2 Carabayllo, Lima Solanum lycopersicum 

LT2138 01/27/05 A2 Huaral, Lima Solanum lycopersicum 

LT2139 01/27/05 A2 Santa Rosa Irrigation, Lima Capsicum annum 

LT2140 02/02/05 A2 Santiago Valley, Ica Solanum lycopersicum 

LT2141 02/14/05 A2 Santa Rosa Irrigation, Lima Capsicum annum 

LT2142 03/08/05 A2 Pampas de Villacuri , Ica Capsicum annum 

LT2143 04/27/05 A2 Nepeña, Ancash Capsicum annum 

LT2144 05/04/05 A2 Barranca, Lima Capsicum chinense 

LT2145 05/10/05 A2 Viru, La Libertad Capsicum annum 

LT2146 05/12/05 A2 Mala, Lima Capsicum baccatum  

LT2147 05/12/05 A2 Mala, Lima Capsicum baccatum  

LT2148 05/31/05 A2 Chincha, Ica Capsicum  annum 

LT2149 05/31/05 A2 Chincha, Ica Capsicum annum 

LT2150 08/17/05 A2 Ica Valley, Ica Capsicum annum 

LT2151 08/17/05 A2 Ica Valley, Ica Capsicum annum 

LT2152 09/07/05 A2 Viru, La Libertad Capsicum annum 

LT2153 10/23/05 A2 Ica Valley, Ica Solanum lycopersicum 

LT2847 06/27/05 A2 Curahuasi, Abancay Capsicum annuum 

LT2848 06/27/05 A2 Curahuasi, Abancay Capsicum annuum 

LT2849 06/27/05 A2 Curahuasi, Abancay Capsicum annuum 

LT2850 09/19/05 A2 Supe, Lima Capsicum annuum 
1 MT=mating type  
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Table 2.2. Phytophthora capsici isolates collected from peppers at ten locations in Lima, 
Barranca province, in 2006-2007. 
 

 
 
 

Field No 
isolates Year Origin Host 

1 19 2006 Barranca, Lima Capsicum pubescens 

2 18 2006 Supe, Lima Capsicum chinense 

3 12 2006 Supe, Lima C. baccatum var. pendulum 

4 13 2006 Supe, Lima C. baccatum var. pendulum 

5 18 2006 Barranca, Lima Capsicum annum 

6 36 2006 Barranca, Lima Capsicum annum 

7 36 2007 Caral, Lima Capsicum annum 

8 18 2007 Minas, Lima Capsicum annum 

9 14 2007 Minas, Lima Capsicum annum 

10 20 2007 Minas, Lima Capsicum annum 
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Table 2.3. Primers and probe sequences used for SNP genotyping with Taqman assays. Underlined bold nucleotide refers to 
the assessed SNP. F=forward and R=reverse. 

Locus name Primer sequence 
Internal reporter 

oligonucleotide (probe) 
VIC 

Internal reporter 
oligonucleotide (probe) 

FAM 

SNP11 
F_5’-agattgagaagaaggaacttggtcatg-3’ 

R_5’-ccttctcacctgtaaccttgctaat-3’ 
5’-acgcacagtgccgtag-3’ 5’-acgcacagtaccgtag-3’ 

SNP14 
F_5’-cgctgtgtcgatagtgggaatg-3’ 

R_5’-tcttctctctgtgttcgactacca-3’ 
5’-cttgagctaattctct-3’ 5’-ttgagctcattctct-3’ 

SNP15 
F_5’-ttccgacgagcaacgaaca-3’ 

R_5’-gtaccgtgccacgcagat-3’ 
5’-tcttgcatacattctgg-3’ 5’-tcttgcatacgttctgg-3’ 

SNP16 
F_5’-gccagcatgctcgatattgg-3’ 

R_5’-gcagtcagggccaagca-3’ 
5’-caattgcaacaaggcaa-3’ 5’-ccaattgcaactaggcaa-3’ 

SNP20 
F_5’-ccactcggccgacaactc-3’ 

R_5’-gatgatgctaagatcgtaccaaagc-3’ 
5’-tactctggtggaaatg-3’ 5’-ctactctagtggaaatg-3’ 

URA3 
F_5’-cgaaggacaacgcgaacttg-3’ 

R_5’- ctgcgtgacgccatcaac-3’ 
5’-tgctgcgtcgactg-3’ 5’-tgctgcatcgactg-3’ 
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Table 2.4. Summary of SNP multi-locus genotypes for 43 representative isolates of the 
PcPE-1 and PcPE-2 clonal lineages and the unique isolate LT2145. N represents the 
number of isolates identified with a particular SNP genotype configuration. 

 

 

 

 

 

 

 

 

 Clonal lineage 

 PcPE-1 PcPE-2 Unique isolate

Locus name/ 
Isolate ID 

LT3738 LT3726 LT3753 LT2137 LT2145 

SNP11 A/A A/A A/A G/A G/A 

SNP14 A/A A/A A/A A/C A/C 

SNP15 A/G A/A A/A A/A A/G 

SNP16 A/T A/T A/T A/T T/T 

SNP20 A/G A/G A/G A/G A/A 

URA3 A/G A/G G/G A/G A/G 

Genotype 
frequency 

0.79  

N = 34 

0.05 

N = 2 

0.02 

N = 1 

0.12 

N = 5 

0.02 

N = 1 
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Figures 

 

 
Figure 2.1. Geographic locations for Phytophthora capsici isolates collected in Peru. 
Superscript a indicates that isolates from clonal lineage PcPE-1 were present; b indicates 
isolates from PcPE-2 were present and c indicates the location of LT2145. 
 
 
 
 



 39

 

 

 

Figure 2.2. Close-up depicting the location of ten fields sampled in the Barranca valley. 
Black circles indicate specific fields. 
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Figure 2.3. Unweighted pair-group method with arithmetic average (UPGMA) cluster 
analysis of Phytophthora capsici isolates from 13 provinces across Peru during 2005-
2007 using 50 amplified fragment length polymorphism markers (AFLP) and six SNP 
loci. LT3738* represents 200 P. capsici isolates with identical AFLP profiles from 
Barranca province in Lima from 2006-2007. LT # refers to isolate identification for 
isolates that have not been deposited into a collection. Bootstrap values are based on 
1000 replicates and the major clonal lineages are indicated by the designators PcPE-1 and 
PcPE-2. 
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ABSTRACT 

Natural Phytophthora hybrids (P. nicotianae x P. cactorum) infecting loquat in Peru and 

Taiwan were characterized using AFLP (amplified fragment length polymorphism) 

markers, sequencing of the internal transcribed spacer (ITS) region and the phenol acid 

carboxylase gene (Pheca), and inheritance of the mitochondrial cytochrome oxidase I 

gene (coxI). AFLP profiles of two Taiwanese isolates, recovered in 1995, were 

polymorphic in ~50% of the fragments whereas five Peruvian isolates, recovered in 

2002-2003 and 2007, showed no genotypic variation. Sequencing analysis of the cloned 

ITS region indicated the presence of P. nicotianae and P. cactorum, containing double 

bases at those positions where the sequences of P. nicotianae and P. cactorum differ. 

Direct sequence analysis of the Pheca gene revealed sequences matching both P. 

nicotianae and P. cactorum. Melting analyses of coxI revealed that all seven 

Phytophthora hybrids inherited the mitochondrial DNA from P. nicotianae. Our results 

suggest that Phytophthora hybrids from Peru likely originated from a single hybridization 

event and that the two isolates from Taiwan originated through different hybridization 

events. The hybrid in Peru appears to have persisted over at least three years at three 

separate locations. Possible factors influencing the population structure of Phytophthora 

hybrids infecting loquat are discussed. 

 

INTRODUCTION 

 The genus Phytophthora includes more than 90 described species that infect over 

1000 plant species and cause large economic losses in food and ornamental crops every 

year (12, 17). Methods for identification of Phytophthora species have traditionally relied 
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on observations of phenotypic characteristics (12). More recently, genomic and 

mitochondrial sequence data have been used to support and expand the definition of 

Phytophthora species (10, 17, 22). 

 There have been recent reports of atypical isolates of Phytophthora that do not fit 

any described species. An unknown Phytophthora was reported to be responsible for the 

death of alder trees in Britain (6). Later, this pathogen was formally described as an 

allopolyploid Phytophthora hybrid named P. alni with several subspecies (8). The 

possible progenitors of P. alni are thought to be Phytophthora cambivora and P. 

fragariae, none of which are pathogenic in alder trees (7). Thus, the possibility of hybrid 

Phytophthora with an increased or new host range may be an important mechanism of 

speciation in oomycetes (5, 23).  

 In 1998, an unknown Phytophthora was isolated from diseased Spathiphyllum and 

Primula growing in hydroponic cultures in the Netherlands (21). Using molecular 

approaches, these isolates were described as natural hybrids with P. nicotianae and P. 

cactorum as possible progenitors (21). In 2000, atypical Phytophthora isolates were 

recovered in hydroponic cultures on different hosts. DNA fingerprinting demonstrated 

that these isolates were also P. nicotianae x P. cactorum hybrids and that they had likely 

emerged through different hybridization events (3). 

 Reports of Phytophthora infecting loquat trees date back to the early 1930s (25). 

However, a detailed description of the Phytophthora species infecting loquat was not 

recorded until 1967 when Weltzien and Schwinn described Phytophthora nicotianae as 

the causal agent of outbreaks in commercial loquat orchards in Lebanon (27). More 

recently, Chern et al. (9) reported two different types of Phytophthora species infecting 



 44

loquat trees in Taiwan. Isolates were described as typical and atypical P. nicotianae (9). 

Atypical isolates of P. nicotianae were further characterized using isozyme patterns, 

demonstrating their similarity to isozyme patterns of previously identified natural hybrids 

of P. nicotianae and P. cactorum (20, 21). During 2006, atypical P. nicotianae isolates 

were identified infecting loquat trees in Peru. Preliminary studies of the ITS region from 

a monosporic isolate revealed ITS sequences from P. nicotianae and P. cactorum, which 

suggested a possible hybrid nature of the atypical Phytophthora (1).  

 Our goal was to characterize Phytophthora hybrids infecting loquat in two distant 

geographic locations (Peru and Taiwan). Using AFLP and sequence analysis of nuclear 

genes, we determined that a single hybridization event may account for the isolates 

recovered in Peru whereas separate hybridization events (distinct from the event in Peru) 

may have led to the isolates in Taiwan. Mitochondrial inheritance indicates only one 

mitotype (P. nicotianae) in both hybrid populations. 

 

MATERIALS AND METHODS 

Isolate recovery and maintenance 

Phytophthora spp. were isolated in October 2002, March 2003 and April 2007 

from loquat trees (Eriobotrya japonica [Thunb.] Lindl.) with die-back symptoms at 

Coayllo (Lima, Peru). Sampled trees (N=5) varied in age from one to 15 years and were 

located in three different fields at least 400 feet apart. Root systems were processed for 

pathogen isolation in the Diagnostic Clinic at the National Agricultural University La 

Molina, Peru. Small sections of symptomatic root tissue were thoroughly washed with tap 

and sterile distilled water. Root tissue was transferred to corn meal agar plates (CMA) 
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and incubated for three to five days at 24ºC. Single hyphal tips were sub-cultured to 

amended PARP (100 ppm of pimaricin, 100 ppm of ampicillin, 30 ppm of rifampicin, 

and 100 ppm of pentachloronitrobezene) V8 juice agar plates (840 ml of distilled water, 

163 ml of unclarified V8 juice, 3 g of CaCO3, and 15 g of agar). For long-term storage, a 

7-mm plug of expanding mycelium from each culture was placed in 2 ml screw-cap tubes 

with three sterilized hemp seeds and 1 ml of sterile distilled water. Phytophthora 

nicotianae isolate LT215, isolated from tobacco in Tennessee (2004), and P. cactorum 

isolate LT198, isolated from Rhododendron in Tennessee (2004), were included in the 

study for comparative analysis and crossing experiments (see below). 

 

Phytophthora cactorum x P. nicotianae crosses 

Laboratory crosses were conducted using the P. nicotianae and P. cactorum 

isolates mentioned above. Actively expanding mycelal plugs of P. cactorum isolate 

LT198 were placed at the center of V8 juice agar plates approximately 2 cm away from 

the P. nicotianae isolate LT215. Plates were wrapped with Parafilm and incubated in 

darkness at room temperature for at least eight weeks. Oospores were separated from the 

surrounding mycelium by blending with a TissueTearor (Fisher Scientific Inc, Hampton, 

NH) and treated overnight with 0.05 mg/ml crude lysing enzyme from Trichoderma 

harzianum (Sigma, St Louis, MO). Solution was then diluted with sterile distilled water 

and incubated at room temperature under constant white-fluorescent light for at least 

seven days at room temperature (19). Microscope observations were made daily to 

identify germinated oospores. 
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DNA isolation and AFLP fingerprinting 

Isolates from Peru were grown in antibiotic-amended V8 broth and DNA isolation 

was performed as previously described in Lamour and Finley (18). DNA of two 

previously identified Phytophthora hybrid isolates 95023 and 95034 from Taiwan, were 

also included in the study (9). AFLP genotyping was performed using EcoRI and MseI 

restriction endonucleases from Invitrogen (Carlsbad, CA). Sequence adapters and primers 

as described by Vos et al. (26) were acquired from Integrated DNA Technologies 

(Coralville, IA). Restriction, ligation, pre-amplification and amplification were performed 

according to Habera et al (14). Pre-selective amplification was performed using non-

selective primers matching the adaptor sequences and selective amplification was 

conducted with the selective primer pair (Eco+CG/Mse+CG). Selective amplifications 

were diluted and re-amplified in a separate reaction using FAM labeled primers from 

Proligo (Boulder, CO). AFLP fragments were resolved and analyzed on a CEQTM 8000 

Genetic Analysis System (Beckman Coulter, Fullerton, CA) following the manufacturer’s 

protocols. AFLP profiles were generated twice for each isolate using independent DNA 

isolations and only AFLP markers consistent among replicates were considered for 

further analyses. 

 

Hi-resolution DNA melting analysis of mitochondrial DNA 

Mitochondrial inheritance in Phytophthora hybrids was done using hi-resolution 

DNA melting analysis (15, 28). Primers were designed to amplify a 221 bp region (from 

bases 793 through 1013) of the cytochrome oxidase mitochondrial gene I (coxI). This 

region contained nine single nucleotide polymorphic (SNP) sites previously identified 
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between P. nicotianae and P. cactorum (22). Primer sequences were Forward 5’-

ccaccccataaagtagctaacc-3’ and Reverse 5’-caagtttctgcagcttttgct-3’ and PCR parameters 

were: 95°C for 5 min, 45 cycles of denaturing at 95°C for 30 s, annealing at 74°C for 30 

s, synthesis at 72°C for 30 s with a final extension at 72°C for 5 min. After PCR 

amplification and heteroduplex formation, PCR products were subjected to melting 

analysis using a light scanner instrument (Idaho Technologies, Salt Lake City, UT). 

Parameters were adjusted accordingly and melting curve profiles from each P. hybrid 

were compared with those from P. nicotianae and P. cactorum. PCR amplifications and 

melting analyses were performed twice using DNA from two biological replicates. 

 

ITS and nuclear gene sequencing 

Sequencing of the ribosomal internal transcribed spacer (ITS) and a single-copy 

nuclear gene (phenol acid decarboxylase, Pheca) were performed in order to determine 

the genomic contribution of each parental Phytophthora (P. nicotianae and P. cactorum) 

in the hybrid isolates. PCR amplification of the ITS region for hybrid isolates (95023, 

95034, and LT2852) was done as previously described by Cooke et al. (10) using primers 

ITS4 5’-tcctccgcttattgatatgc-3’ and ITS6 5’-gaaggtgaagtcgtaacaaagg-3’. The amplified 

region contains the ITS1, 5.8S gene and ITS2. PCR products were cloned using the 

TOPO® TA Cloning™ kit (Invitrogen, Carlsbad, CA) following manufacturer’s 

instructions. Clone PCR products were inserted into One Shot® TOP10 E. coli cells 

(Invitrogen, Carlsbad, CA) following the manufacturer’s instruction. At least six E. coli 

recombinant colonies per isolate were randomly selected for sequencing. Plasmid 

isolation was performed using the PureLink™ Quick Plasmid miniprep kit (Invitrogen, 



 48

Carlsbad, CA). Plasmids were submitted for sequencing to the Sequencing Facilities of 

the University of Tennessee. Both strands of the cloned ITS region were sequenced. 

Sequencing files were manipulated with CodonCode aligner software v2.0.2 (CodonCode 

Corp. Dedham, MA). 

Phenol acid carboxylase (Pheca) gene amplification was performed using 

degenerate primers that were designed from a multiple nucleotide sequence alignment 

(Clustal W) of P. sojae, P. infestans, and P. ramorum (24). Primer design was performed 

manually and primers were flanking ~ 750 bp of the open reading frame region of the 

gene. Primer sequences were Forward 5’- gtbccygghtwycacaccaacac-3’ and Reverse 5’-

ctcgasgatrkyrgcctgtcgc-3’. PCR reactions were performed using Platinum Taq® from 

Invitrogen (Carlsbad, CA, US) following the manufacturer’s instructions. Cycling 

parameters were as follows: 95°C for 5 min, 35 cycles of denaturing at 95°C for 30 s, 

annealing at 60°C for 30 s, extending at 72°C for 30 s. PCR products were cleaned using 

the Qiagen PCR purification kit following manufacturer’s instructions (Valencia, CA) 

and submitted for sequencing to the Molecular Biology Resource Facility of the 

University of Tennessee. Sequencing files were manipulated as described above. 

 

RESULTS 

AFLP fingerprinting 

AFLP profiling of the five Phytophthora hybrid isolates from Peru (2002-2003, and 

2007) revealed identical AFLP genotype. Isolate LT2852 was used for further 

comparative analysis. AFLP profiles from Taiwan isolates (95023 and 95034) showed 

that out of 29 clearly resolvable markers, 15 were polymorphic between both isolates 



 49

(Table 3.1 and Fig. 3.1). The AFLP profile of isolate LT 2852 was similar to that of 

isolate 95023 from Taiwan, sharing 19 out of 29 identified markers (Fig. 3.1). No unique 

markers were detected for isolate LT2852 that were not present in the Taiwanese isolates 

(Table 3.1 and Fig. 3.1). Isolate 95023 had the highest number of AFLP markers (26 

markers), followed by isolate LT2852 (20 markers) and isolate 95034 (17 markers) 

(Table 3.1).  

 

Mitochondrial inheritance 

 The inheritance of mitochondrial genome in hybrids was studied by comparing 

the hi-resolution DNA melting curve profile of each Phytophthora hybrid isolate to that 

of each parental Phytophthora (P. nicotianae and P. cactorum). The Phytophthora 

hybrids from Peru and Taiwan inherited the mitochondrial genome from P. nicotianae. 

Phytophthora hybrids had similar melting curve profiles to that of P. nicotianae isolate 

LT215 (Fig. 3.2).  

 

Nuclear content of Phytophthora hybrids 

ITS analysis. Eighteen E. coli recombinant colonies containing the ITS PCR 

product cloned from three Phytophthora hybrid isolates were sequenced: six clones from 

isolate LT2852, six clones from isolate 95023 and six clones from isolate 95034. Blast 

searches in a public database (National Center for Biotechnology Information, NCBI) 

revealed the presence of distinct ITS sequences within each of the isolates: ITS sequences 

with high homology (99%) to previously deposited P. nicotianae=AF266776, and ITS 

sequences with high homology to previously deposited P. cactorum=AF266772).  
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Pheca analysis. Blast searches in Phytophthora databases (Virginia 

Bioinformatics Institute, Broad Institute, and the National Center for Genome Research) 

suggest that Pheca is a single copy gene. Sequencing analysis of the phenol acid 

carboxylase gene (Pheca) using degenerate primers in both parental Phytophthora (P. 

nicotianae and P. cactorum) indicated the presence of thirteen nucleotide differences 

across 354 bp of the gene at positions 84, 99, 105, 111, 114, 156, 165, 201, 243, 285, 

294, 300, and 359 bp (Table 3.2). Direct sequencing of the PCR product from the same 

region in the Phytophthora hybrid isolates revealed the presence of the same nucleotide 

differences but in the heterozygous stage. These results indicate that the Phytophthora 

hybrids from Peru and Taiwan carry the phenol acid carboxylase alleles from both P. 

nicotianae and P. cactorum (Table 3.2 and Fig. 3.3). 

 

DISCUSSION 

 Several studies have described the presence of strains of Phytophthora as the 

causal agent of root rot in loquat. Phytophthora nicotianae was identified as the causal 

agent of outbreaks in commercial loquat orchards in Lebanon. The description of some 

isolates from Lebanon agreed significantly with those observations made by Chern et al. 

during 1995 in Taiwan and Aragon-Caballero et al. during 1998 in Peru (1, 9). Isolates 

from Taiwan and Peru were initially described as atypical P. nicotianae isolates based on 

taxonomic keys. However, based on molecular approaches and comparison to previously 

described hybrids of P. nicotianae and P. cactorum (3) the atypical P. nicotianae isolates 

from Peru and Taiwan were identified as the same Phytophthora hybrids (1, 20).  
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 Previously identified interspecific hybrids of Phytophthora species (P. nicotianae 

x P. cactorum) were recovered from hydroponic systems in the Netherlands (3, 21). 

Continuous hydroponic systems harboring multiple crops provide an ideal environment to 

different Phytophthora species for evolutionary experimentation and possibly the 

generation of new interspecific hybrids (3). Generation of interspecific Phytophthora 

hybrids has been shown to be possible through zoospore fusion or laboratory crosses and 

in some cases with modified host range (2, 11, 13). Our attempts to germinate oospores 

from a laboratory cross of P. nicotianae and P. cactorum failed. This was primarily due 

to the finding that very few oospores were formed and it was also difficult to visualize 

germinating oospores due to abundant germination of chlamydospores that survived after 

enzyme treatment. 

 Fingerprinting from previously reported interspecific hybrids of P. nicotianae x P. 

cactorum showed that isolates arose from independent hybridization events between the 

parental Phytophthora species (3). Highly polymorphic AFLP profiles of Phytophthora 

hybrids recovered in Taiwan also suggests that the isolates have arisen from independent 

hybridization events (Table 3.1 and Fig. 3.1). In contrast, AFLP profiles of Peruvian 

isolates indicate the presence of a clonal population maintained at separate locations 

across the three years that samples were collected. Genetic characterization of natural 

hybrid species of Phytophthora alni showed that hybrids may have been generated on 

several occasions through the hybridization of its potential progenitors (16). 

 Mitochondrial inheritance studies demonstrated that P. nicotianae participates as 

a permanent donor of the mitochondria in the Phytophthora hybrids, which contrasts with 
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the Phytophthora hybrids infecting alder trees where two mitotypes have been identified 

from the two possible parental progenitors (16).  

 It is possible that irrigation practices in Peruvian loquat orchards are maintaining 

the environmental conditions for the propagation of a clonal population of the pathogen. 

Loquat orchards in Peru are normally flooded for irrigation by the Omas River in 

Coayllo, Peru, whereas Taiwanese orchards are irrigated through drip systems. Die-back 

of loquat trees in Peru was observed after El Niño-Southern Oscillation occurred in 1998. 

During El Niño 1998, the Omas River overflowed its banks and flooded loquat orchards 

in Coayllo for several weeks. Similarly, die-back of loquat trees in Taiwan was reported 

after heavy rainfalls in 1995 (9). Flooding rivers could bring a pathogen into new 

geographic areas (such as loquat orchards). Permanent flooding or heavy rainfalls (which 

simulated the conditions present in hydroponic systems) allows the resident species (i.e., 

P. nicotianae) and the immigrant species (P. cactorum) to come together for 

hybridization (4). Among isolates infecting loquat trees, researchers have also identified 

strains that fit well with the taxonomic characteristics of P. nicotianae (1, 9, 25, 27). In 

addition, phylogenetic studies have shown that P. nicotianae and P. cactorum are closely 

related species (10). The occurrence of P. hybrids suggests that their divergence is not 

completed to the extent to which the genomes are no longer compatible (21). 
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APPENDIX 3 

Tables 

Table 3.1. Summary of AFLP markers identified in Phytophthora hybrids from Peru 
(LT2852) and Taiwan (95023 and 95034) isolates using primer combination 
Eco+CG/Mse+CG. One [1] = presence of the marker and cero [0] = absence of the 
marker. 

Isolate Marker (bp) LT2852 95023 95034
62 0 1 1 
109 1 1 0 
113 1 1 1 
121 1 1 0 
131 1 1 0 
143 1 0 1 
149 0 0 1 
167 0 1 0 
172 1 1 1 
182 1 1 1 
239 0 1 0 
248 1 1 1 
252 1 1 0 
262 1 1 1 
340 1 1 0 
363 1 1 1 
382 1 1 0 
385 1 1 1 
400 1 1 0 
423 1 1 0 
429 1 1 1 
440 0 1 0 
450 0 1 0 
460 1 1 1 
500 1 1 1 
516 0 1 1 
543 0 0 1 
556 0 1 1 
587 1 1 1 
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Table 3.2. Summary of nucleotides differences between parental and hybrids of Phytophthora in a 359 bp fragment of the 
Phenol acid carboxylase gene. Phytophthora nicotianae= LT215; P. cactorum=LT198, LT2852=Phytophthora hybrid from 
Peru, 95023=Phytophthora hybrid from Taiwan. 

Base 
Isolate 

84 99 105 111 114 156 165 201 243 285 294 300 359

P. nicotianae G G A G C C C A A A A G G 

P. cactorum A A G A G G G G G G G A T 

LT2852 R R R R S S S R R R R R K 

95023 R R R R S S S R R R R R K 
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Figures 

 

 
Figure 3.1. AFLP profiles for Phytophthora hybrids recovered from loquat in Peru and 
Taiwan. LT2852 = Peru; 95023 and 95034 = Taiwan. 
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Figure 3.2. DNA melting analysis curves of the coxI gene for Phytophthora cactorum, P. 
nicotianae, and Phytophthora hybrids. 
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Figure 3.3. Trace electropherograms for a portion of the phenolcarboxylase gene in 
Phytophthora nicotianae, P. cactorum, and hybrid isolates from Peru (LT2852) and 
Taiwan (95023). Black arrows indicate the position of the heterozygous sites in P. 
hybrids. 
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Chapter Four Inbreeding, apomixis, and the genetics of 
Phytophthora capsici 
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ABSTRACT 

A series of inbreeding crosses, recurrent backcrosses, and successive sibling crosses were 

completed up to the sixth generation in the plant pathogen Phytophthora capsici 

generating a total of 692 oospore-derived isolates. All of the crosses stem from an initial 

cross between two wild type P. capsici isolates and the resulting progeny varied 

throughout the different crosses for mating type, colony morphology, and pathogenicity 

on cucumber and pepper fruits. The heterozygosity level, as measured through the 

inheritance of 20 amplified fragment length polymorphism (AFLP) markers, decreased 

incrementally with continued inbreeding and was reduced ~ 60 to 75% by the second 

consecutive sibling cross. Of the eight crosses analyzed, all but one produced oospore-

derived progeny that were identical to one or the other parent indicating that apomixis 

can play a role in P. capsici intraspecific crosses and that mature (two- to five- months-

old) oospores may serve as resistant, asexual spores. There was no evidence of isolates 

emerging through selfing or generation of homothallic isolates. Overall our results 

suggest that the large reservoirs of naturally occurring genetic variation in P. capsici can 

be exploited to develop inbred lines useful for characterizing complex genetic traits in 

Phytophthora.  

 

INTRODUCTION 

The genus Phytophthora includes 90+ species and infects more than 1000 plant 

species worldwide (5, 19). Draft genome sequences of two oomycetes are now available 

(P. sojae and P. ramorum) (41) and the genomes for the oomycetes Hyaloperonospora 

parasitica, P. capsici and P. infestans are currently being sequenced. Functional genetic 
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analyses in Phytophthora are conducted by means of transformation, heterologous 

expression systems, gene silencing, and gene disruption via mutagenesis (17, 24, 43-45, 

47). In general, these approaches focus on the effects of single genes in a few “wild type” 

background genotypes. There are few studies of phenotypic variation that is inherited as 

complex genetic traits or quantitative trait loci (QTLs). Most likely the majority of the 

key developmental processes such sporangiogenesis, zoosporogenesis, oosporogenesis 

and host colonization (pre- and postinvasion) are complex traits and these processes are 

likely regulated by the orchestrated expression of multiple genes (30, 40). 

In other organisms, such as mouse, fruit fly, roundworm, Arabidopsis and crops 

such as tomato, maize and beans, elucidating complex traits is greatly facilitated by the 

availability of mapping populations, recombinant inbred lines (RILs), and near isogenic 

lines (NILs) (11, 25-27, 29, 32, 42). Researchers working with hosts such as Capsicum 

annuum, Cucurbita moschata, and Solanum lycopersicum have developed recombinant 

inbred lines toward the dissection of the resistance against P. capsici (3, 15, 31). A few of 

these economically important hosts are also being sequenced. The development of similar 

inbred line resources for the oomycete community is highly desirable. However there are 

a number of factors that have slowed the progress of strategies that rely on extensive 

crossing including low oospore germination rates for some species (e.g., P. infestans), 

aberrant segregation ratios, difficulties in separating the sexual oospores from the 

surrounding parental asexual spores and mycelium, and a limited number of well 

characterized nuclear markers (14, 16).  

A primary goal in our research program is the development of genetic and 

genomic resources for the vegetable pathogen Phytophthora capsici (23). Phytophthora 
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capsici is unique because it regularly completes the sexual stage in natural populations in 

the U.S. (21). Populations are composed of genotypically diverse individuals of both 

mating types (20). The sexual stage appears to be under strong selection pressure in the 

U.S. because P. capsici does not produce thick-walled asexual chlamydospores and the 

primary hosts (cucurbits, tomatoes, and peppers) are unavailable during the winter 

months. Consequently, U.S. populations carry a large amount of genetic variation and 

laboratory crosses are in many cases highly fecund (20, 21, 33). In addition, P. capsici 

has a wide host range including members of the Solanaceae, Cucurbitaceae and 

Leguminoseae (5, 10). The ability to easily complete crosses provides a unique 

opportunity for genetic investigation. 

Our objective was to investigate the impact of inbreeding on P. capsici and to 

determine if the segregating populations may be useful for studying complex traits. We 

present genetic data from segregating AFLP and/or single nucleotide polymorphism 

(SNP) markers as well as phenotypic information (mating type, pathogenicity on pepper 

and/or cucumber fruits, and colony morphology) for 692 oospore-derived isolates from 

eight inbreeding crosses. We also discuss the implications and difficulties for the 

development of P. capsici genetic resources.  

 

MATERIALS AND METHODS 

Isolates and crossing scheme 

All of the crosses stem from an initial cross of P. capsici between two field 

isolates: LT51 (mating type A1) isolated from a cucumber fruit in Michigan in 1997 and 

LT263 (mating type A2), isolated from a pumpkin fruit in Tennessee during 2004 (cross 
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named: LT51xLT263). To generate oospores the parent isolates were plated 

approximately 2 cm apart on UCV8 juice agar amended with PARP (100 ppm of 

pimaricin, 100 ppm of ampicillin, 30 ppm of rifampicin, and 100 ppm of 

pentachloronitrobezene). Plates were wrapped with Parafilm® and kept in the dark at 

room temperature and incubated for at least 2 months before the oospores were separated 

from the parental material and stimulated to germinate (described below). The first 

backcross (BC1F1) was between isolates LT1021 (A1, F1 progeny) and LT263 (A2) 

(cross named LT1021xLT263). A second recurrent backcross (BC2F1) was then set up 

between isolates LT1422 (BC1F1 derived progeny, A1) and LT263 (A2) (cross named 

LT1422xLT263). A first full sibling-cross (SC1F1) was initiated with offspring from cross 

LT1422xLT263 using isolates LT1503 (A1) and LT1530 (A2) (cross named: 

LT1503xLT1530). Two different full-sibling crosses (SC2-1F1 and SC2-2F1) were set up 

using progeny isolates from cross LT1503xLT1530. The second sibling crosses, cross 

name LT2209xLT2222 and LT2211xLT2222, were germinated at two, three and five 

months following mating. Recombinant progeny derived from cross LT2209xLT2222 

was used for generating a third sib-cross: LT3382xLT3394. A diagram of the crosses is 

presented in Figure 4.1. 

 

Oospore germination and mating type 

Mycelium was scraped from the surface area between the two parental inoculum 

plugs using a sterile spatula and the material transferred into 20 ml of sterile distilled 

water in a 50-ml falcon tube. The mycelium was then thoroughly disrupted by blending 

with a Tissue Tearor (Fisher Scientific Inc, Hampton, NH) for at least 1 min at 30,000 
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rpm. The wand was continuously moved up and down until no visible chunks remained. 

The homogenized solution was then passively filtered through a single layer of sterile 

Kimwipe (Kimberly Clark, Dallas, TX) into a clean 50 ml Falcon tube. The volume was 

adjusted to 18 ml with sterile water and amended with filter-sterilized crude lysing 

enzyme from Trichoderma harziarum (Sigma, St Louis, MO) to a final concentration of 1 

mg/ml and a final volume of 20 ml. The 50 ml tubes were incubated overnight (16-20 h) 

at room temperature under laboratory lighting with gentle agitation using a Minilab 

Roller shaker (Labnet Int., Edison, NJ) at 25 rpm. Following the overnight incubation, an 

aliquot of the oospore preparation was transferred to 60-mm plates and observed under a 

light microscope for viable mycelium, sporangia, or zoospore contamination. Oospores 

were quantified (number of oospores per µL) and the oospore preparation was diluted 

with amended filtered V8 broth to a final concentration of one oospore per 50 µL and 

arrayed into 384-well plates using an Apricot 96-channel pipette model PP-550DS 

(Apricot Designs, Inc., Monrovia, CA) to a volume of 50 µL per well. Plates were 

incubated at room temperature for 3-7 days and colonies were picked and transferred to 

PARP amended water agar media (15 g of agar in 980 ml of distilled water) in 60 mm 

plates. A single hyphal-tip subculture was then transferred after two days at room 

temperature and each oospore-derived isolate was assigned a unique identifier (LT 

number). For long-term storage, 7-mm plugs of agar with expanding mycelium were 

placed into 2-ml screw-top tubes containing 1 ml of sterile distilled water and three hemp 

seeds and stored at room temperature. 

 To determine mating type of P. capsici isolates, plugs of actively expanding 

mycelium were placed at the center of V8 juice agar plates approximately 2 cm away 
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from “tester” isolates CBS121656 (mating type A1) or CBS121657 (mating type A2). 

Plates were wrapped with Parafilm and incubated in the dark at room temperature for at 

least one week after which observations were made for the production of oospores at the 

interface using a light microscope. Isolates able to produce oospores when crossed 

against CBS121656 were determined as A2 mating type. Conversely, isolates that were 

able to form oospores when crossed against CBS121657 were determined as A1 mating 

type. Isolates unable to produce oospores with either parent were considered sterile. 

 

DNA isolation and AFLP profiles 

Isolates were grown in V8 broth, the mycelium lyophilized, genomic DNA 

extracted, and amplified fragment length polymorphism (AFLP) profiles generated as 

described previously (9, 22). AFLP genotyping was done using EcoRI and MseI 

restriction endonucleases, adapters, and primers as described by Vos et al. (46). Pre-

selective amplification was done using no selective nucleotides (Eco+0/Mse+0) and 

selective amplification was conducted with selective primer pair (Eco+CC/Mse+CA). 

Selective amplifications were diluted and labeled in a separate reaction according to 

Habera et al. (2004). AFLP fragments were resolved and analyzed on a CEQTM 8000 

Genetic Analysis System (Beckman Coulter, Fullerton, CA) following the manufacturer’s 

protocols. AFLP profiles were generated twice for each isolate using independent DNA 

extractions. AFLP markers were scored for each isolate from the different crosses as one 

[1] for presence of the marker and zero [0] for absence. A binary matrix was constructed 

using only clearly resolved, replicated markers. A similarity analysis was carried out 

using NTSYSpc 2.11a (Exeter Software, Setauket, NY) and a dendrogram constructed by 
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employing an unweighted pair-group method with arithmetic average (UPGMA) cluster 

analysis. 

 

Loss of heterozygosity 

Due to the limitations of AFLP markers (dominant markers) only a specific group 

of markers were considered for calculating the loss of heterozygosity. The markers used 

segregated consistent with the following schemes: (1) polymorphic but homozygous in 

each parent and not segregating in the offspring (case: AA x aa); (2) polymorphic and 

heterozygous in one parent with segregation 1:1 ratio in the offspring (Aa x aa); (3) 

heterozygous in both parents and segregation 3:1 in the offspring (Aa x Aa). No attempts 

were made to determine if alleles were hetero- or homozygous based on the intensity of 

the fluorescent markers. Loss of heterozygosity was calculated directly by dividing the 

number of heterozygous alleles that had switched to a homozygous conformation in each 

of the inbreeding crosses by the total number of heterozygous alleles observed in the 

seminal cross LT51 x LT263. 

 

Pathogenicity 

Infection assays were conducted as previously described (8) with slight 

modifications. The pathogenicity tests were conducted on both wounded and unwounded 

fruit. For the wounded assays, a sterile scalpel was used to make small punctures at the 

site of inoculation. For cucumber fruits (Cucumis sativus), plugs of agar containing 

expanding mycelium were placed onto the surface of the fruit, covered with 1.5 ml 

Eppendorf tubes without caps and sealed with petroleum jelly to avoid desiccation. For 
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jalapeño fruits (Capsicum annum), the plug of agar was placed on the surface of the fruit 

and the fruits were laid on a moist paper towel in a plastic covered container. Inoculated 

fruits were incubated at room temperature under laboratory lighting and observations 

were made daily for 3 to 6 days following inoculation and an isolate was considered 

pathogenic if a visible lesion was produced by day six.  

 

SNP genotyping 

 Five nuclear SNP markers were identified in silico from EST sequences generated 

from P. capsici mRNA from isolate LT1534, a second backcross derived isolate, as part 

of the P. capsici genome sequencing project (unpublished). Custom TaqMan® SNP 

Genotyping Assays (ABI, Foster City, CA) were designed according to the 

manufacturer’s instructions. SNP assays were performed using 7.5 µL of iQ™ Supermix 

(Bio-Rad Inc, Hercules, CA), 0.325 µL of Taqman® probe/primers allelic discrimination 

cocktail (40X), 2 µL of DNA (~15-20 ηg) and 3.2 µL of molecular biology grade H2O. 

PCR reactions were carried out in 96-well plates (Bio-Rad) in triplicates for each isolate 

on an iQ5 Real-Time thermal cycler (Bio-Rad) using the following parameters: 95°C for 

10 minutes, 40 cycles of 92°C for 15 seconds and 60°C for 1 minute. Each assay was 

standardized for optimal cycling PCR conditions and results were analyzed with the 

accompanying iQ5 optical system software 1.0 (Bio-Rad) using the allelic discrimination 

option, adjusting parameters for Ct values and RFU (relative fluorescent units) according 

to the manufacturer’s instructions. Table 4.1 shows SNP markers used throughout the 

different crosses. 
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RESULTS 

Inbreeding reduces heterozygous alleles 

A total of 692 oospore-derived isolates were germinated from eight different 

crosses (Fig. 4.1). The number of recombinant isolates identified through AFLP 

fingerprinting and/or SNP genotyping was 201, 71, 79, 88, 11, and 42 (N=492) from the 

F1, BC1F1, BC2F1, SC1F1, SC2-1F1, and SC3F1 crosses respectively (Fig. 4.1). AFLP 

fingerprinting with the primer combination Eco+CC/Mse+CA revealed 40 clearly 

resolvable markers on the F1 population. These markers were tracked for their 

presence/absence across the different offspring (BC1F1, BC2F1, SC1F1, and SC2-1F1 and 

SC3F1). Twenty of the 40 markers were determined to be heterozygous in the wild type 

parents (LT51 and LT263) based on observations of their segregation in each of the 

recombinant progeny sets (Table 4.2). Based on these observations it was determined that 

within the progeny sets the original heterozygosity was reduced by 10% at BC1F1, 35% at 

BC2F1, 50% to 52% at SC1F1, and 60% to 75% by the SC2-1F1 (Table 4.2).  

AFLP markers were useful for identifying sexual progeny in the first four inbred 

generations (F1, BC1F1, BC2F1 and SC1F1) as there were between 16 and four segregating 

markers in the F1 and SC1F1, respectively (Table 4.2). However, AFLP profiles from 

advanced inbred crosses (SC2-1F1 and SC3F1) revealed that most of the markers were fixed 

to one of the parents, making it impossible to accurately differentiate sexual progeny 

from parental genotypes. An UPGMA similarity tree illustrates the low level of genetic 

variability present at the higher levels of inbreeding as there were ~90% of the identified 

markers shared by the majority of isolates derived from SC2-1F1 cross (Fig. 4.2).  
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Co-dominant SNP markers fixed for different alleles were employed to overcome 

the AFLP limitations (Table 4.1). SNP14 marker was fixed in the parents from cross 

LT2209xLT2222 (LT2209=G/G and LT2222=T/T) and recombinant progeny carried 

both alleles (G/T) (Table 4.3). Additionally, 60 and 10 oospore-derived isolates had 

identical SNP14 conformation to LT2209 and LT2222, respectively. Three additional 

SNP markers (SNP18, SNP19 and URA3), were also tested for their inheritance in this 

recombinant progeny and all except one followed Mendelian segregation (Table 4.3). In 

the same way, identification of recombinant isolates from cross LT2211xLT2222 was 

done using the SNP12 marker (LT2211=G/G and LT2222=A/A) but non-recombinant 

progeny were recovered. Instead, all 46 oospore-derived isolates recovered had SNP12 

allelic conformation identical to one of parents (two isolates were identical to LT2222 

and 44 isolates identical to LT2211). 

Assessment of URA3 SNP marker on F1, BC1F1, BC2F1, SC1F1, and SC2-1F1, 

revealed significant correlation with Mendelian ratios (P<0.05) except for cross BC1F1 

(Table 4.4). 

 

Inbreeding reveals a wide range of segregating phenotypes 

All of the F1 isolates produced oospores when mated with the opposite mating 

type (tester isolate). The number of sterile isolates throughout all of the inbreeding 

crosses ranged between 0.5 and 12% (Table 4.5). The ratio for mating type (A1:A2), 

varied from a 1:1 (F1, BC1F1, SC2-1F1 and SC3F1) to approximately 1:2 for the BC2F1 

progeny and ~1:3 for SC1F1 (Table 4.5). No self-fertile isolates were recovered from any 

of the crosses. 
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The proportion of non-pathogenic isolates varied throughout the entire inbreeding 

process. Eighty-five of the 86 oospore progeny isolates tested from the initial cross 

LT51xLT263 were able to cause vigorous infection on unwounded jalapeno fruits (Table 

4.5). All tested isolates from cross LT51xLT263 were pathogenic on cucumber fruits. 

Sixty-five isolates from the first backcross population (LT1021xLT263) were tested and 

14 isolates were unable to cause infection on wounded or unwounded cucumber fruits. 

No water-soaking lesions were observed even 10 days after inoculation and therefore 

were considered non-pathogenic. The remaining isolates (51) were pathogenic on 

cucumber fruits but eight isolates were only pathogenic on wounded fruit (Table 4.5). Of 

the 69 progeny tested from the second backcross LT1422xLT263, 59 (85%) and 40 

(57%) isolates were able to cause infection on unwounded cucumbers and jalapenos fruits 

respectively (Table 4.5). Nonpathogenic isolates were detected in this cross. Interestingly, 

a high percentage (~60%) of the nonpathogenic isolates had either a predominantly 

submerged or an appressed type of colony morphology when grown on V8 juice agar 

media (Fig. 4.3). All isolates from cross LT1503xLT1530 (88 isolates) were pathogenic 

on cucumber but eight were only able to cause infection on wounded cucumber fruits. 

Infection results on jalapeno fruits were similar: 86 isolates were pathogenic on 

unwounded jalapenos and only two isolates were non-pathogenic. A large proportion of 

progeny isolates from cross LT3382xLT3394 (76% of the total tested progeny) were only 

pathogenic on wounded jalapeno fruits, and four isolates were completely nonpathogenic 

(Table 4.5).  

 

 



 74

Mature oospores can germinate as parental clones (Apomicts) 

 Oospore-derived isolates with AFLP or SNP profiles identical to one or the other 

parent were recovered from all but one cross (LT1021xLT263) (Fig. 4.1). The seminal 

cross LT51xLT263 produced 20 out of 221 oospore progeny with identical AFLP 

genotype to the A2 mating type parent LT263. The first backcross LT1021xLT263 did 

not produce any parental clones whereas the second backcross LT1422xLT263 had 10% 

of the isolates (nine out of the 88 oospore progeny) with AFLP genotypes identical to 

LT263 parent isolate (A2 mating type). The first sibling cross LT1503xLT1530 had six 

oospore-derived isolates identical to LT1503 (A2 mating type). The majority of the 

isolates recovered from the second sibling crosses (LT2209xLT2222 and 

LT2211xLT2222) were identical to the A2 compatibility type parent with 73% of isolates 

recovered from LT2209xLT2222 and 95% of the isolates recovered from 

LT2211xLT2222 identical to the A2 parent type. No recombinant isolates were recovered 

from LT2211xLT2222 (two-month old oospores). Three-month old oospores from cross 

LT2209xLT2222 generated seventeen oospore progeny. SNP genotyping using marker 

SNP14 revealed a single recombinant progeny, ten isolates (59%) identical to the A2 

compatibility type parent (LT2209), and six isolates identical to LT2222 (data not 

shown). Likewise, three-month old oospores germinated from cross LT2211xLT2222 did 

not produce any recombinant isolates and the same pattern was observed: a large number 

of isolates (28 out of 34 oospore progeny recovered) were identical to the A2 

compatibility type parent (LT2211) and only 6 isolates were identical to LT2222 (A1) 

(data not shown). 
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 In addition, of the 46 oospore-derived isolates recovered from a cross between 

LT2198xLT51, none appeared to be products of sexual recombination; 42 isolates had 

identical fingerprint to LT51 (A1 mating type) and four isolates had identical AFLP 

genotypes to the LT2198 parent (A2 mating type). 

 

DISCUSSION 

 The wild type isolates used as parents in this study are typical of P. capsici found 

on vegetables in the U.S. Both isolates readily infect common cucurbit and solanaceous 

vegetable hosts, grow rapidly at room temperature on V8 medium, produce sexual and 

asexual spores abundantly, and in many parental pairings are highly fecund (21, 33). 

Despite their apparent morphological similarities growing under laboratory conditions, 

population studies indicate that individual P. capsici isolates carry significant genetic 

variation (21). Close crosses (inbreeding) can produce genotypes that may not survive 

under natural conditions due to deficiencies in survival, pathogenicity and virulence 

which is consistent with our findings. The progeny from the initial outcross (F1) showed 

very little change in the overall characteristics of the parent isolates; they were 

consistently vigorous, pathogenic, virulent, and all of the isolates produced sexual spores. 

It was only at the first backcross and subsequent backcross and sibling cross generations 

that the effects of recombination on the previously masked store of recessive variation 

came to light (Table 4.5). These findings are similar to reports for P. infestans where F2 

isolates were less pathogenic on tomato and potato than their initial parental isolates (18). 

Inbred isolates varied in colony morphology, ability to produce sexual spores, and 

the ability to infect common hosts. Not surprisingly, none of these traits appear to be 
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controlled by a single gene with simple Mendelian inheritance (Table 4.5). This likely 

reflects a complex polygenic inheritance for these diverse functions. For pathogens such 

as P. infestans and P. sojae, different races have been identified carrying specific 

avirulence genes that interact with host resistance genes defined in specific differential 

lines (1, 2, 7, 34). In the P. capsici-Capsicum pathosystem similar discrete gene for gene 

interactions have yet to be established and investigations have rather focused on 

polygenic resistance to P. capsici (28, 39).  

An interesting finding that should be considered when generating more advanced 

inbreeding crosses is the recovery of apomictic, or clonally derived, progeny from 

mature, germinating oospores. Neither of the parent isolates produces thick-walled 

asexual chlamydospores and it is unlikely that our results are due to asexual material 

contaminating the oospore preparations. Meticulous visual observations of the overnight 

enzyme-treated oospore solution never revealed any visible hyphal fragments, sporangia, 

or germinating zoospores. Also, there was no evidence that any of the oospore progeny 

were produced via selfing, as has been previously reported for P. infestans (35-37). For 

selfing, we expect to see some of heterozygous AFLP markers in the parental fingerprint 

type lost due to recombination and production of the absence allele. In addition, the 

products of selfing should show a wide variety of different phenotypes due to inbreeding. 

In all of the crosses presented here the apomictic oospore progeny were phenotypically 

and genotypically identical to the parent type. Aberrant segregation ratios have been 

reported as a limiting factor in P. infestans genetic analyses (6, 14). Previous 

investigations in crosses of P. infestans (backcrosses and sibcrosses) yielded distorted 
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ratios for allozyme markers (38). It is possible that non-recombinant oospores (apomicts) 

may have contributed to the distorted ratios (4, 13).  

Although both parental P. capsici isolates contributed apomictic oospore progeny, 

it is interesting to note that the A2 mating type parent contributed the majority. 

Phytophthora isolates are thought to vary for “maleness” and “femaleness” based on 

whether they are contributing more to the production of antheridia or oogonia formation 

(5, 12) and this may play a role in our observed results. It is possible that the A2 type was 

preferentially male or female and that the underlying mechanism for the observed 

apomixis occurs primarily in the oogonium or antheridium.  At this point it is difficult to 

speculate on the underlying mechanism(s). Similar results were observed in a series of 

interspecific crosses between P. capsici and isolates of the closely related P. tropicalis, as 

well as crosses between P. capsici and P. nicotianae (Donahoo, unpublished). 

Finally, our results suggest that developing inbred lines in the oomycete 

Phytophthora capsici is possible and may help identify genetic factors underlying 

complex traits. Currently, the main limiting factor is the lack of co-dominant, low-cost 

markers. AFLP analysis provided sufficient segregating markers early in the inbreeding 

process but by the second sibling cross the number of segregating AFLP markers among 

the siblings was very low and it became difficult to accurately genotype individual 

progeny. One of the goals of the current P. capsici genome project is to catalogue single 

nucleotide polymorphism (SNP) markers and develop a large-scale marker resource. We 

expect that the availability of a large database of co-dominant markers will provide the 

necessary tools to fully develop and exploit inbreeding resources for P. capsici. 
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Table 4.1. Primers and probe sequences used for SNP genotyping with Taqman assays. Underlined bold nucleotide refers to 
the assessed SNP. F=forward and R=reverse. 

 

Locus name 
Accession 
Number Primer sequence 

Internal reporter 
oligonucleotide (probe) 

VIC 

Internal reporter 
oligonucleotide (probe) 

FAM 

SNP12 EF566463 
F_5’-cccgctagagattcattcatcca-3’ 

R_5’-gcggaccgtaattctgtgcataa-3’ 
5’-cagccagcagacgc-3’ 5’-acagccaacagacgc-3’ 

SNP14 EF566464 
F_5’-cgctgtgtcgatagtgggaatg-3’ 

R_5’-tcttctctctgtgttcgactacca-3’ 
5’-cttgagctaattctct-3’ 5’-ttgagctcattctct-3’ 

SNP18 EF566465 
F_5’-gatgcgccccacaatgg-3’ 

R_5’-ttggcccactgcgatgt-3’ 
5’-cagcgctccaccacg-3’ 5’-cagcgcttcaccacg-3’ 

SNP19 EF566466 
F_5’-agggaagcaccgcattagg-3’ 

R_5’-cgtgtcaatctccgtcactaataga-3’ 
5’-ctcccgaaccggatga-3’ 5’-cccgaagcggatga-3’ 

URA3 EF151190 
F_5’-cgaaggacaacgcgaacttg-3’ 

R_5’-ctgcgtgacgccatcaac-3’ 
5’-tgctgcgtcgactg-3’ 5’-tgctgcatcgactg-3’ 
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Table 4.2. Summary table of AFLP alleles followed throughout the inbreeding process. Alleles were named by their size (bp). 
Percentage of fixed alleles was calculated based on the total number of described alleles. 

 Cross 

F1 BC1F1 BC2F1 SC1F1 SC2-1F1 
Allele (bp) 

LT51xLT263 LT1021xLT263 LT1422xLT263 LT1503xLT1530 LT2209xLT222

119 Aa x Aa Aa x Aa aa x Aa aa x aa aa x aa 
125 aa x Aa Aa x Aa AA x Aa Aa x Aa A* x A* 
202 aa x Aa aa x Aa aa x Aa Aa x aa Aa x aa 
215 Aa x aa Aa x aa aa x aa aa x aa aa x aa 
217 Aa x aa Aa x aa aa x aa aa x aa aa x aa 
226 Aa x aa aa x aa aa x aa aa x aa aa x aa 
233 Aa x Aa aa x Aa aa x Aa Aa x Aa aa x Aa 
267 Aa x aa Aa x aa aa x aa aa x aa aa x aa 
290 aa x Aa Aa x Aa AA x Aa Aa x Aa A* x A* 
322 aa x Aa aa x Aa Aa x Aa aa x Aa aa x aa 
363 Aa x aa aa x aa aa x aa aa x aa aa x aa 
378 AA x Aa Aa x Aa AA x Aa A* x A* A* x A* 
387 aa x Aa Aa x Aa aa x Aa aa x Aa aa x Aa 
427 aa x Aa Aa x Aa AA x Aa Aa x Aa A* x A* 
453 aa x Aa aa x Aa aa x Aa Aa x aa aa x aa 
469 AA x aa Aa x aa aa x aa aa x aa aa x aa 
492 aa x Aa Aa x Aa Aa x Aa Aa x Aa aa x Aa 
595 Aa x aa Aa x aa aa x aa aa x aa aa x aa 
614 aa x Aa aa x Aa aa x Aa aa x aa aa x aa 
622 aa x Aa aa x Aa Aa x Aa aa x aa aa x aa 

Fixed alleles (%) not calculated 10 35 50 – 52** 60- 75** 
* Allelic conformation was ambiguous. ** Calculated excluding ambiguous alleles.  
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Table 4.3. SNP genotypes for cross LT2209 x LT2222. 
Marker SNP14 SNP18 SNP19 URA3 

Allelic 

conformation 
G/GA x T/TB T/C x T/C G/G x G/C C/T x C/C 

Expected 

conformation 
GT TT:2TC:CC GG:GC CC:CT 

No. isolates 11 1:8:2* 8:3** 6:5* 
A An additional 60 isolates had identical SNP genotype. B An additional 10 
isolates had identical SNP genotype. * Chi Square value significant at P=0.05. ** 
not significant at P=0.05. 
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Table 4.4 Summary data for inheritance of the URA3 single nucleotide polymorphism in a series of inbreeding crosses of P. 
capsici 

 Cross 
 F1 BC1F1 BC2F1 SC1F1 SC2-1F1 

SNP marker LT51xLT263 LT1021xLT263 LT1422xLT263 LT1503xLT1530 LT2209xLT222

URA3 CC x CT CC x CT CC x CT CT x CC CT x CC 

No. isolates 44:48 20:51 32:48 47:41 5:6 

Chi-square 0.17* 13.53** 3.2* 0.41* 0.09* 
* Chi Square value significant at P=0.05. ** not significant at P=0.05. 
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Table 4.5. Summary data for compatibility type and pathogenicity for the progeny of Phytophthora capsici inbreeding crosses 
3Pathogenicity 

Cucumber Jalapeno 1Population Cross name A1 A2 Sterile
2Ratio 
A1:A2 

P NP P NP 
F1 LT51xLT263 36 50 0 1:1 86 0 85 1 

BC1F1 LT1021xLT263 31 38 2 1:1 51 (8) 14 N/T N/T 

BC2F1 LT1422xLT263 26 42 2 1:2 59 10 40 29 

SC1F1 LT1503xLT1530 22 65 1 1:3 80 (8) 0 86 2 

SC2-1F1 LT2209xLT2222 5 6 0 1:1 11 0 11 (1) 0 

SC3F1 LT3382xLT3394 18 19 5 1:1 N/T N/T 38 (32) 4 
1 F1=filial 1, BC1F1=first backcross, BC2F1=second backcross, SC1F1=first sib-cross F1, SC2F1-1 =second sib-
cross F1. SC3F1-1=third sib-cross. 2 Chi Square value significant at P=0.05 
3 Isolates were tested on both wounded and non-wounded fruit. Values in parentheses are the number of 
isolates pathogenic only on wounded fruit; P=pathogenic, NP=non pathogenic, N/T= non tested 
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Figures 

 
 
Figure 4.1. Overview of Phytophthora capsici crosses. N = the total number of oospore-
derived isolates with the number of genetically recombined progeny in parenthesis. 
Tennessee (LT263) and Michigan (LT51) wild type isolates were initially crossed (cross 
name LT51xLT263) rendering 201 recombinant isolates (F1 population). Isolate LT1021 
(F1 - derived) was mated with LT263, generating 71 recombinant isolates (cross name 
LT1021xLT263). Isolate LT1422 (BC1F1- derived) was mated with LT263 (cross 
LT1422xLT263) producing 79 recombinant isolates. First full sibling cross (cross name 
LT1503xLT1530) was done using isolates derived from cross LT1422xLT263, 
generating 88 recombinant isolates (F1 population). Second full sibling crosses 
(LT2209xLT2222 and LT2211xLT2222) generated 11 and 0 recombinant populations 
respectively. A third consecutive sibling cross (LT3382xLT3394) generated 42 
recombinant isolates. 
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Figure 4.2. Unweighted pair-group method with arithmetic average (UPGMA) cluster 
analysis of Phytophthora capsici isolates from five crosses using 40 amplified fragment 
length polymorphic (AFLP) markers. Bars at the right represent the position of at least 
85% of the isolates from each population. F1=filial one; BC1F1=first backcross; 
BC2F1=second backcross; SC1F1=first sib-cross F1; SC2-1F1=second sib-cross F1. 
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Figure 4.3. Representative colony morphologies for Phytophthora capsici isolates 
derived from sexual reproduction. A and B are LT263 and LT51 wild type parent isolates 
respectively. C is LT1021 (F1 isolate). D through I are single-oospore isolates derived 
from cross LT1021xLT263 (first backcross). 
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Chapter Five Construction of genetic linkage framework for the 
oomycete Phytophthora capsici (L.) 
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ABSTRACT 

We mated two wild type isolates, CBS121656 (mating type A1) and CBS121657 (mating 

type A2) to construct partial genetic linkage maps in the outcrossing species of 

Phytophthora capsici (L.). We analyzed a set of 46 F1 progeny isolates with 16 primer 

combinations, generating 189 AFLP (amplified fragment length polymorphism) markers. 

Additionally 18 SNP (single nucleotide polymorphism) markers were generated for the 

F1 population. Only 7% (18 AFLP markers) demonstrated significant segregation 

distortion (P<0.01). At a minimum LOD score of 3.0 and a maximum recombination 

frequency of 0.3, the framework map for each parental isolate was composed of 15 

linkage groups. The genetic linkage groups for CBS121657 and CBS121656 were 

comprised of 65 and 42 markers respectively. Six SNP markers were mapped into 

CBS121657 with two SNP markers (FL5 and FL6) located in the same linkage group 

(LG9) separated by 7.7 cM, and allows assembly and genetic comparisons. The highest 

marker density was identified in linkage group 3 of CBS121657 with seven AFLP 

markers covering 15.6 cM. Overall, the genetic linkage map for CBS121657 had a better 

coverage and expanded 268 cM whereas the framework map for CBS121656 spanned 

141 cM. This is the first genetic linkage analysis for the diploid fungus-like P. capsici. 

 

INTRODUCTION 

 Phytophthora capsici (L.) is a diploid fungus-like plant pathogen with a broad and 

expanding host range that includes crops such as tomato, peppers, pumpkin, cucumber, 

watermelon, squash, and snap beans (3, 4, 6). Phytophthora capsici causes root, crown, 

and fruit rot, causing economic losses of millions of dollars annually for the vegetable 
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industry (6, 16). Due to the unique biology of oomycetes, most fungicides do not 

effectively control outbreaks of P. capsici (3). 

 In recent years, a better understanding of the epidemiology of P. capsici has 

provided useful information about fungicide resistance, dispersal of the pathogen, and the 

importance of sexual reproduction for the long term survival of P. capsici (10-14). 

However, little is known about the genetics of this devastating pathogen. The 

identification of races or pathotypes within P. capsici has been elusive, but laboratory 

crosses could be used for this purpose, as they have generated a range of pathogenic and 

non-pathogenic isolates on pepper, cucumber, tomato, and watermelon plants (19, 21). 

More recently, pepper breeders have started to focus their efforts on creating a set of 

differential hosts similar to those resources existing in other pathosystems (P. infestans 

and potato or P. sojae and soybean) in order to elucidate the genetic bases of 

pathogenicity (2, 18). Oelke et al. identified 13 physiological races of Phytophthora root 

rot and foliar blight using a limited collection of isolates from New Mexico (18).  

 Progress in identifying the molecular basis of pathogenicity and other traits such 

as sporulation, organogenesis, heterothallism, etc., can be accomplished via functional 

analyses of candidate genes genetically associated with the phenotype under study. There 

are several examples in which map-based cloning strategies have led to the identification 

of the gene of interest. Genetic analyses in P. sojae have shown that single dominant 

avirulence genes corresponding to the resistant Rsp gene in soybean were organized in 

clusters and that the Avr1b locus contained a secreted effector protein (17, 22, 34). 

Bulked segregant studies using AFLP markers in P. infestans identified markers closely 

linked to five Avr genes (30). The Avr3a avirulence gene from P. infestans was identified 
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using a combination of linkage disequilibrium and candidate gene approach of ESTs 

(expressed sequence tags) encoding secreted proteins (1). A mapping interval study using 

AFLP, combined with a physical spanning of a BAC library from a F2 cross of 

Hyaloperonospora parasitica, was the starting point for cloning the ATR1Nd avirulence 

gene (20). DNA markers have also been used to study the mating type locus in P. 

infestans (8, 9).  

 The abundance of molecular markers for the construction of saturated genetic 

linkage maps enables these strategies to effectively identify markers linked to the trait of 

interest. Despite the utility of the strategies mentioned above, very few genetic linkage 

maps have been developed in oomycetes. This is due in part to the challenges in 

generating laboratory crosses, low oospore germination, and the biotrophic dependence 

of a group of oomycetes (downy mildew). In oomycetes such as the homothallic P. sojae, 

the number of DNA markers is also limited. Out of 400 decanucleotide primers used for 

generating RAPD (random amplified polymorphic DNAs) markers in F1 populations of 

P. sojae, 224 did not generate polymorphic fragments between the parental isolates (33). 

Inspection of the whole-genome sequence revealed ~500 SNPs for P. sojae compared to 

~13000 SNPs in the outcrossing P. ramorum (28). In addition, in the heterothallic P. 

infestans, trisomy in oospore-derived progenies can hamper genetic studies (31).  

 Phytophthora capsici is an outcrossing species, requiring both mating types (A1 

and A2) to complete the sexual cycle (11, 12). In the U.S., both mating types are found at 

most locations and oospores are thought to play an important role in the epidemiology 

(6). Consequently, U.S. populations of P. capsici carry a large amount of genetic 

variation which can be exploited for the generation of saturated genetic linkage maps.  
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 The generation of a genetic linkage map is also an important component of the P. 

capsici genome project. The linkage maps provide independent information on the 

genomic organization, playing a crucial role especially in areas of the genome with 

repetitive sequences where a definitive assembly is hard to predict. Our goal was to 

generate the first genetic linkage map for P. capsici using AFLP and SNP markers and to 

provide preliminary information about the genomic organization of P. capsici. 

 

MATERIALS AND METHODS 

Phytophthora capsici mapping population 

The mapping population was generated from a cross of P. capsici between two 

field isolates: CBS121656 (mating type A1) isolated from a cucumber fruit in Michigan 

in 1997 and CBS121657 (mating type A2), isolated from a pumpkin fruit in Tennessee 

during 2004. To generate oospores, the parent isolates were plated approximately 2 cm 

apart on UCV8 juice agar amended with PARP (100 ppm of pimaricin, 100 ppm of 

ampicillin, 30 ppm of rifampicin, and 100 ppm of pentachloronitrobezene). Plates were 

wrapped with Parafilm®, kept in the dark at room temperature and incubated for at least 2 

months before the oospores were separated from the parental material and stimulated to 

germinate. Oospore germination was performed as previously described (10). Germinated 

oospores (“octopus” shape) were retrieved from the solution using a constructed device 

using a glass Pasteur pipette. Individual germinated oospores were transferred to water 

agar plates and after 1-2 days, single hyphal tips were transferred to V8 amended agar. A 

total of 225 isolates were recovered using this method. To determine mating type of P. 

capsici isolates, plugs of actively expanding mycelium were placed at the center of V8 
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juice agar plates approximately 2 cm away from “tester” isolate CBS121656 (mating type 

A1) or CBS121657 (mating type A2). Plates were wrapped with Parafilm and incubated 

in the dark at room temperature for at least one week after which observations were made 

for the production of oospores at the interface using a light microscope. Isolates able to 

produce oospores when crossed against CBS121656 were determined as A2 mating type. 

Conversely, isolates that were able to form oospores when crossed against CBS121657 

were determined as A1 mating type. 

 

DNA isolation and AFLP fingerprinting 

AFLP profiles were generated for all 41 oospore-derived isolates. Isolates were 

grown and treated as previously described for DNA isolation (15). To assess the quantity 

and quality of the DNA, 3 µl of DNA per isolate were resolved on a 1% agarose gel 

alongside a dilution series of lambda DNA (10 and 5 ηg) (Takara Bio Inc, Shiga, Japan). 

 AFLP profiling was done using EcoRI and MseI restriction endonucleases, 

adapters, and primers as described by Vos et al. (32). Pre-selective amplification was 

performed using the primer combinations Eco +0/MseI +0, Eco+A/Mse+A, and 

Eco+A/Mse+C. Selective amplification was conducted with 16 selective primer 

combinations (Table 5.1). Selective amplifications were diluted and labeled in a separate 

reaction according to Habera et al. (5). AFLP fragments were resolved and analyzed on a 

CEQTM 8000 Genetic Analysis System (Beckman Coulter, Fullerton, CA) following the 

manufacturer’s protocols. A 600 bp DNA size standard was used to resolve AFLP 

fragments (Beckman Coulter, Fullerton, CA). AFLP marker sizes ranged from 70 to 500 

bp.  
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SNP genotyping with Hi-resolution DNA melting analysis 

SNP genotyping was performed using the hi-resolution DNA melting analysis of 

small amplicons (7, 35). Full-length complementary DNA sequences (FL-cDNA) were 

generated as part of the genome project for P. capsici (unpublished) and used as template 

for designing primers to amplify 700 to 1100 bp in both parental isolates (unpublished 

data). Subsequently this sequence data was used to design primers to amplify small 

genomic regions (65-150 bp) flanking one to three SNPs. Primers were designed using 

the LightScanner primer design software (Idaho Technologies, Salt Lake City, UT) 

(Table 5.2). Small amplicons were generated using PCR parameters: 95°C for 5 min, 45 

cycles of denaturing at 95°C for 30 s, annealing at 74°C for 30 s, synthesis at 72°C for 30 

s with a final extension at 72°C for 5 min. After PCR amplification and heteroduplex 

formation, PCR products were subjected to melting analysis using a light scanner 

instrument (Idaho Technologies, Salt Lake City, UT). Parameters were adjusted 

accordingly using the LightScanner 2.0 software and melting analyses were performed 

twice using DNA from two biological replicates.  

 

Marker name and scoring 

 Each AFLP marker was named according to the primer combination and its 

position given according to the molecular ladder (Beckman Coulter, Fullerton, CA). The 

presence of a marker was scored as 1 and absence as 0. A binary matrix was constructed 

using only clearly resolved markers. Markers were confirmed visually by one person 

throughout the whole experiment. The format for naming the markers consisted of three 
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elements: Eco primer followed by the number of the selective nucleotide combination 

(e.g.: E22, means adapter sequence plus two selective nucleotides, [C=2]), Mse primer 

(e.g: M21) and the corresponding size marker (e.g: 350 bp). The final name for the 

marker in this example would be E22M21.350. 

 Markers generated using the hi-solution DNA melting analysis (DMA) were 

named according to their primer’s name. For haplotype combinations P1=H1H1 x 

P2=H1H2, and P1=H1H1 x P2=H2H3, parents with the coupled haplotype (H1H1) were 

scored as 0 and the uncoupled haplotypes (H1H2 and H2H3) were scored as 1 for 

mapping purposes. Haplotype identification relied on sequence information previously 

generated from both parents (unpublished). Haplotypes H1H2 and H2H3 were scored “1” 

(presence of the "band”) only in sequence trace data that contained the heterozygous site 

(SNP) in both strands of the parental isolate. 

 

Markers segregation 

 A binary matrix with polymorphic markers for each parent was generated and all 

markers were analyzed for their goodness of fit to the appropriate segregation ratio. 

Observed segregation ratio (presence vs absence) in the progeny was analyzed for the 

Mendelian segregation 1:1 with a chi-square (P=0.01) and one degree of freedom.  

 

Linkage analysis and map construction 

 Data files with segregating markers were used as input files in the software 

JoinMap 3.0 (24) and individually analyzed for each parental isolate. The similarity of 

loci was calculated using JoinMap and loci with similarity values larger than 0.98 were 
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excluded from the analysis. JoinMap calculates linkage between two markers based on 

the Logarithm of Odd (LOD) and estimated LOD values are compared to specific 

threshold value (stepwise approach). After the grouping of markers, the order of the 

markers was calculated. Mapmaker/EXP 3.0  was used to confirm the order of markers 

using commands ‘order’, ‘compare’ and ‘map’ with the Kosambi mapping function. One 

map was generated for each parental isolate. Linkage groups were exported as text files 

and a compiled file containing all linkage groups was generated for use in MapChart 2.1 

(Plant Research International, Wageningen, The Netherlands). 

 

RESULTS 

Marker segregation  

 AFLP profiling using 16 primer combinations yielded 189 reliable markers. From 

this data set, 87 markers were polymorphic for CBS121656, 102 markers were 

polymorphic for CBS121657, and 57 markers were present in both parents but segregated 

in the progeny. Chi-tests on all AFLP markers revealed that 95% (83 markers) and 94% 

(96 markers) segregated as 1:1 for CBS121656 and CBS121657, respectively (P=0.01). 

Similarly, 85% of AFLP markers (49 markers) in both parents segregated as 3:1 ratio 

(P=0.01). Hi resolution DMA (DNA melting analysis) generated six markers for 

CBS121656 and 12 markers for CBS121657. All but one marker (FL35), fit a 1:1 ratio at 

P=0.01. 
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Linkage analysis 

 JoinMap revealed two loci with identities equal to 1.0 for parent CBS121657 and 

therefore one of these loci was excluded from further analysis. No loci with identity 

larger than 0.98 were detected in isolate CBS121656. Five F1 isolates (LT976, LT1001, 

LT1052, and LT1060) were excluded from the genetic analysis because they contained 

more than 50% loci with missing scores and all genetic analyses were performed with 

only 41 isolates. Linkage analysis was performed at LOD threshold values 4, 5, 6 and 8. 

 Linkage groups were generated between LOD 4 and LOD 6. At these conditions, 

15 linkage groups for CBS121656 parent were generated and 32 AFLP markers did not 

link to any linkage group (Fig. 5.1). Similarly, 15 linkage groups were generated for 

isolate CBS121657 and 39 markers did not link to any linkage group (Fig. 5.2). Further 

analysis of unlinked loci showed that at least 20% were missing between 20 to 30% of 

their scores. The remaining loci (51 AFLP markers and 6 FL markers) did not have a 

significant distortion in their segregation 1:1 (P=0.01), and after a second round of linked 

analysis, they could be linked to other linkage groups under LOD threshold value of 2 

(data not shown).  

 The largest linkage group (LG) for CBS121656 was LG8. LG8 was comprised of 

6 markers (4 AFLPs and 2 FLs) and spanned ~20 cM, whereas the smaller LG was LG7 

with two markers and spanned 2.6 cM (Fig. 5.1). The largest LG in CBS121657 was 

LG7, comprised of 10 AFLP markers and two FLs markers, spanning 44.7 cM. The 

smallest LG in CBS121657 was LG12 with two AFLP markers (Fig. 5.2).   
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DISCUSSION 

 This is the first genetic linkage analysis of the oomycete Phytophthora capsici. 

We used a combination of two types of markers (AFLP and SNPs) and obtained loci data 

for 41 F1 oospore-derived isolates. Initially, we generated AFLP profiles on 93 isolates 

derived from the cross under study. 

 We decided to investigate how the SNP data linked into the context of a mapping 

population because the SNP data could provide relevant information regarding the 

genome assembly. The mapping population size was thus reduced to 46 F1 isolates to fit 

the SNP data. We mapped a total of 10 FL markers (four FLs in CBS121656 and six FLs 

in CBS121657). A comparison between the genetic linkage data and the assembly 

information for SNP markers FL5 and FL6 was possible due to their location in the same 

scaffold of assembly FORGE7. FL5 and FL6 were also mapped in the same LG (LG9) of 

CBS121657. Mapping data indicated that both markers were separated by 7.7 cM at LOD 

5. The assembly FORGE7 indicated that SNPs FL5 and FL6 were located in scaffold 1 in 

the relative positions of 86 and 95% in the scaffold, respectively (~2.6 Mb and ~2.9 Mb) 

(Fig. 5.2). Calculations demonstrated that 1cM is equivalent to 38 Kb, and because the 

genetic linkage framework of CBS121657 resulted in 268 cM, the genome of isolate 

CBS121657 should be ~10Mb. The size of the P. capsici genome has been previously 

calculated at 65Mb (27); however, this discrepancy could be due to the lack of more 

markers. We concluded that there is 1 cM per 38 kb. This value is comparable to that of 

P. sojae (38/56 kb/cM) (17) but considerably smaller than that of P. infestans (~200 

kb/cM) (29). The remaining FLs markers mapped within one LG (pairs FL18-FL24 for 
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LG7 and FL22-FL25 for LG8) and they were located at different scaffolds in the 

assembly, therefore it was not possible to corroborate our previous calculations.  

 The number of linkage groups per parent isolate was considerably higher than the 

estimated basic number of chromosomes. Observation of chromosome number under a 

light microscope is difficult due to their small size in oomycetes. For P. capsici, the 

number of chromosomes has been suggested as n=6 (25, 26). Therefore in a framework 

map built only with dominant markers, the number of linkage groups generated will be 

the double of the basic chromosome number (mirror map).  

 We generated 15 groups per parental isolates but there were at least three groups 

per parental isolate composed by two or three markers covering a distance larger than 8 

cM (Figs. 5.1 and 5.2). There was a significant number of AFLP markers unlinked at 

LOD 4. Additional markers are needed to merge these markers into other linkage groups 

and probably the number of linkage groups would be reduced. The use of co-dominant 

markers will enable us to integrate both linkage framework maps and reduce the number 

of LGs. In our case, all SNPs generated in this study behaved as dominant markers with a 

Mendelian segregation of 1:1. The generation of SNP markers based on coding region 

(our case) will also be useful for the identification of gene distribution in the genome and 

for future syntheny studies. 

 In general, AFLP profiling of parental isolate CBS121657 yielded more 

heterozygous markers that enabled a better coverage of its linkage groups. DNA markers 

were not evenly distributed evenly in and between linkage groups per parental isolate. 

There were several distinct clusters of markers observed in parental CBS121657 that 
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could be due to reduced recombination or unequal detection of markers (23). Moreover, 

the map saturation was not sufficient for an indicative location of the centromeric region.  

 We attempted to describe the first linkage analysis in P. capsici using dominant 

markers. The generation of additional markers (SNPs) with power to bridge both parental 

maps is underway. Functional maps based on information generated from ESTs or high-

throughout technologies at each life stage will increase our understanding about which 

areas of the genome are active during specific developmental processes.  
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APPENDIX 5 

Tables 

Table 5.1. Summary of primer combinations used for generating amplified fragment 
length polymorphic (AFLP) markers. Cero is equivalent to the absence of selective 
nucleotide. 
 

 

 

 

 

 

 

 

 

 

 

 

Pre-selective PCR Selective PCR No markers 
Eco+0/Mse+0 EcoRI+12/MseI+212 10 

 EcoRI+21/MseI+212 7 
 EcoRI+12/MseI+211 17 
 EcoRI+21/MseI+213 12 
 EcoRI+12/MseI+213 11 
 EcoRI+21/MseI+222 8 
 EcoRI+22/MseI+21 13 
 EcoRI+12/MseI+211 9 
 EcoRI+21/MseI+21 19 
 EcoRI+22/MseI+23 19 
 EcoRI+23/MseI+23 20 

Eco+1/Mse+1 EcoRI+14/MseI+13 26 
 EcoRI+11/MseI+14 22 

Eco+1/Mse+2 EcoRI+11/MseI+24 19 
 EcoRI+12/MseI+24 19 
 EcoRI+13/MseI+21 15 

A=1, C=2, G=3, and T=4 
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Table 5.2. Primer list designed for generating SNP marker in F1 population of Phytophthora capsici 
Locus 
ID Forward Primer Reverse Primer Amplicon 

Size 
Tm 
ºC 

# of 
sites 

FL-3 GGGGCGTTCTCAACAGTATGC CAGCGTCGGGTGCGTC 227 64 2 
FL-6 CCTCATTTCTCAATTTACCACG GTGGAATTGTGCACCATTT 67 59 3 
FL-5 GTGATGATCTGCTGACCAC TCACGGTCGATGAATACCC 67 64 2 
FL-9 TGCAGAAGAAGCCGGAG TCACATCTGCAGCGCTGA 54 64 2 
FL-13 CTCTGCACGTTGTGCTC TGACGACAATGGATGTACG 90 64 1 
FL-14 AGAAGGCTCTCGTTACG CACAAACACAGCAGCAA 83 64 1 
FL-18 CCTGCTAATGCTGAAGTCAA GTTTCCTTAGTCTCTGTCTCAC 56 64 2 
FL-20 TCATTCCGCTTATGACAGAAC ATACTGCTTACTCAGATTGGG 56 64 1 
FL-22 CCTGCAGCGACATCAAC TAGCCGTCCATCACATCT 53 64 2 
FL-23 ATACCCTCCGACATATCTTCA CAGCATCGAATCGTTACTG 69 64 1 
FL-24 CCTGCCCTTGACAAGGA CCCACCTTGACCATCTG 95 64 3 
FL-25 CGAACGACTTAACGGGT CTTCATCTTCCACGTCACT 53 64 1 
FL-26 GGAAATGGCAGAAGAAATTGG CGCAGCACCTTCAAACTA 51 64 2 
FL-27 CTGGGTCAACTTGGTCTTT GCAGTACATTACTCTCTACCTCA 70 64 2 
FL-32 TCGTGTGTTTTCTGCTGT GTAAAAATGAGAGTAATCTCACCGA 52 64 2 
FL-34 CGAACAGCTTCATACGGA GATGGCGTGTTCAAGGT 55 64 2 
FL-35 CATCTTCGGCAGTGACG GTAACAATAGCAACACACAGAAC 110 64 1 
FL-37 AAACCCCAATAGCTGAGAAA TCAACGTCTCCTAAAGGTGT 55 64 1 
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Figure 5.1. Genetic linkage map for CBS121656. Markers are indicated on the right 
according to marker code. Genetic distance is indicated at the left side (cM). 
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Figure 5.2. Genetic linkage map for CBS121657. Markers are indicated on the right 
according to marker code. Genetic distance is indicated at the left side (cM). 
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Chapter Six Polyethylene glycol-mediated transformation in 
Phytophthora capsici 

 



 118

ABSTRACT 

Transformation for drug resistance (G418) in conjunction with constructs for green 

fluorescent protein production was tested using protoplasts and polyethylene glycol 

(PEG) for Phytophthora capsici. The protocol for PEG-mediated transformation was 

adapted from a modified version of a protocol described for P. infestans and P. sojae. 

Protoplasts were generated (3 x 107 protoplast/ml) using a cocktail of enzymes (crude 

lyzing enzyme from Trichoderma harzianum and cellulase), and isolates resistant to 

G418 (50 µg/ml) were subcultured at least five times in selective media for three months. 

Approximately 65% of the transformed isolates were not able to recover in selective 

medium (G418 50 µg/ml) after subculturing on UCV8 medium. Our observations agree 

with previous reports of PEG-mediated transformation for other Phytophthora spp. in 

which a combination of stable and nonstable transformants were recovered. 

 

INTRODUCTION 

 The genus Phytophthora is comprised of more than 90 described species (5, 13, 

17). Phytophthora species infect many economically important crops such as potato, 

soybean, and tomato (5, 8). The genomics era has placed oomycete researchers in a 

privileged position: two draft genome sequences are available (P. sojae and P. ramorum) 

(24) and the genome sequences for P. infestans, P. capsici and Hyaloperonospora 

parasitica will be available soon. Thus, devising approaches for studying gene function 

are in demand.  

 A wide array of transformation methods have been developed, such as the PEG-

mediated transformation of protoplasts (9), electroporation of zoospores (16), 
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Agrobacterium tumefaciens mediated transformation (26), and microprojectile 

bombardment (3). In addition, triggering of gene silencing has been demonstrated via 

incubation with double stranded RNA (29). Each method has its drawbacks; some are not 

efficient for obtaining homokaryotic stable transformants and others do not reach a 

completed silencing of the gene under study. Currently, the PEG-mediated protocol 

remains the favorite transformation method although promising new techniques are 

emerging, such as the generation of gene knockouts based on chemical mutagenesis (15). 

 The overall objectives of this study were to adapt a P. sojae PEG-mediated 

transformation protocol for P. capsici, and to study the stability of transformants during 

continuous subculturing on selective and non-selective medium (G418 50 µg/ml) . 

 

 

MATERIALS AND METHODS 

Phytophthora growth conditions 

 Isolate CBS121657 was used for the transformation experiments. Four plugs of 

expanding mycelium growing in V8 juice agar plates amended with PARP (100 ppm of 

pimaricin, 100 ppm of ampicillin, 30 ppm of rifampicin, and 100 ppm of 

pentachloronitrobezene) were transferred to 100-mm Petri plates containing nutrient pea 

agar medium (described in Appendix 6). Plates were incubated in the dark for four days 

at room temperature. Four plugs of expanding mycelium were then transferred to 250-ml 

Erlenmeyer flasks containing 50 ml of sterile nutrient pea broth (described in Appendix 

6). Flasks were incubated at room temperature in darkness for three days. 
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Isolation of protoplasts 

 The protocol described below was kindly provided by Dr. B. Tyler at Virginia 

Bioinformatic Institute (VBI) and is currently used for transformation in P. sojae. 

Mycelium mats from three Erlenmeyer flasks were harvested and rinsed with 50 ml of 

mannitol solution (0.8 M) followed by a 10 min wash in 0.8 M mannitol on shaker (50 

RPM) at 28ºC. After mannitol incubation, mycelium was transferred to a sterile 100 mm 

sterile Petri dish and incubated with 60 ml of a cocktail enzyme [0.4 M mannitol, 20 mM 

KCl, 20 mM 2-morpholinoethanesulfonic acid (MES) pH 5.7, 10 mM CaCl2, 0.25% 

(w/v) lyzing enzyme Trichoderma harzianum, 0.5% (w/v) cellulase] at 28ºC on shaker 

(50 RPM) for 40 minutes. Observations for protoplast release were done at least twice 

and protoplast concentration was determined using a hemocytometer. Protoplast solution 

was filtered through two layers of sterile 50-µm nylon mesh (BioDesign, Carmel, NY) 

into 50-ml Falcon tubes to remove any mycelial fragments. Protoplasts were centrifuged 

for three minutes at 1500 RPM and supernatant was decanted. The protoplast pellet was 

gently washed with 35 ml of W5 buffer (5 mM KCl, 125 mM CaCl2, 154 mM NaCl, 177 

mM glucose) during one minute and immediately centrifuged for 4 minutes at 1500 

RPM. The pellet was resuspended in 10 ml of W5 buffer and the concentration was 

adjusted to 2 x 106 protoplasts/ml. Protoplast solution was incubated on ice for 30 min, 

centrifuged for 4 minutes at 1500 RPM and the supernatant was discarded. Protoplast 

pellet was resuspended with 10 ml of MMg solution (0.4 M mannitol, 15 mM MgCl2, 4 

mM MES pH 5.7) and incubated for 10 min at room temperature before PEG 

(polyethylene glycol)-mediated transformation. 
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PEG-mediated transformation of protoplast and regeneration 

 A total of 30 µg of plasmid DNA from construct pNC-GFP (described below) or a 

mix of plasmid pHA and pUBlN (described below) were used in a 3:1 proportion for 

PEG-mediated transformation. 

 Plasmid DNA was placed in 50-ml Falcon tube and mixed gently with ~ 1 ml of 

protoplast solution and incubated in ice for 10 min. Three aliquots of 580 µl of fresh 

filter-sterilized PEG solution [40% (w/v) PEG 4000, 0.3 M mannitol, 0.15 M CaCl2] 

were added to the protoplast/DNA mix and incubated on ice for 20 min. Two milliliters 

of pea/mannitol solution (described in Appendix 6) were added to the protoplast solution, 

the tube was gently inverted once, and incubated in ice for 2 min. Eight milliliters of 

pea/mannitol solution were added and the tube was incubated for 2 min. Protoplast 

solution was poured in 100-mm Petri dishes containing 10 ml of pea/mannitol solution 

amended with ampicillin (100 µg/ml) and incubated at 18ºC for 15 h in order to allow 

protoplast regeneration.  

 

Selection of stable transformants 

 The solution of regenerated protoplasts was spun for 5 min at 2000 RPM and then 

decanted carefully without disturbing the pellet. The pellet was gently dissolved by 

flicking the tube on the sides and kept on ice. Fifteen milliliters of warm (40ºC) amended 

(30 µg/ml geneticin) pea/mannitol agar solution (described in Apendix 6) were added to 

regenerated cells and mixed gently. The solution was immediately poured into 100 mm 

Petri dishes and incubated at 25ºC for one day or until mycelial growth appeared on the 

agar surface. An overlayer with 5 ml of amended (50 µg/ml geneticin) pea/mannitol 
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solution was poured after 24 to 48 h. Plates were kept at 25ºC until mycelial colonies 

appeared on the agar surface. Hypahal tips were taken from colonies with fast growth and 

transferred into 60-mm Petri dishes with amended (50 µg/ml geneticin) pea agar medium, 

then incubated at 25ºC. Colonies that survived 7 days in amended pea agar medium were 

considered to be primary transformants. After 7 days, colonies were transferred into 

amended (50 µg/ml geneticin) V8 juice agar plates, incubated at room temperature and 

subcultured to fresh amended geneticin (50 µg/ml)-PARP V8 juice agar plates every 3 

weeks. Colonies were also transferred into V8 juice agar plates without the selective 

antibiotic. For long term storage, three agar plugs of expanding mycelium of each 

primary transformant were placed into 96-well plates containing three hemp seeds and 1 

ml of sterile distilled water. Plates were sealed with a sterile cap mat and stored at room 

temperature. 

 

DNA isolation and PCR confirmation of stable transformants 

 Isolates were grown and treated as previously described for DNA isolation (14). 

Isolates transformed with plasmid pNC-GFP were tested with GFP primers, Forward: 5’-

ctacggaaagctcaccctga-3’ and Reverse: 5’-catgtggtccctcttctcgt-3’ (expected PCR product 

size= 541 bp). An additional pair of primers was tested to amplify a region between the 

promoter and the terminator region of the GFP gene. The sequences of the primers were 

Forward: 5’-aagcctcgcccgactcgcccacg-3’ and Reverse: 5’-aaatctgcaacttcgcactca-3’ with a 

948 bp PCR product size. Isolates transformed with pHA/pUBIN vectors were tested 

with primers flanking the region between the Ham34 promoter and Avr1b gene (pHA 

construct) or with primers amplifying the antibiotic resistance gene (pUBIN construct). 
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Primer sequences for the Ham34-Avr1b region were Forward: 5’-

aaagctgtcactgcgcttgttcag -3’ and Reverse: 5’-acgcaactgagtactccgacgaaa-3’ with an 

expected PCR product size equal to 622 bp. PCR parameters were: 95°C for 5 min, 34 

cycles of denaturing at 95°C for 30 s, annealing at 56°C for 30 s, synthesis at 72°C for 30 

s with a final extension at 72°C for 5 min. Positive (plasmid DNA) and negative controls 

(wild type DNA and non-template DNA) were included in each PCR amplification. 

Amplification was repeated twice using DNA from two technical replicates. 

 

Plasmid source and isolation 

 Plasmids pHA and pUBIN were kindly provided by Dr. Brett Tyler (VBI) and 

construct pNC-GFP was provided by Nicolas Champouret (The Netherlands, NCBI 

accession EU257522). Construct pHA was designed to express the Avr1b gene in a 

antisense orientation (23) driven by the transcriptional regulatory promoter sequence 

Ham34 from Bremia lactucae (ham34::Avr1b::ham34) (9). Construct pUBIN contains 

the gene for resistance to geneticin (G418). Construct pNC-GFP harbors the green 

fluorescent protein flanked at the 3’ region by the Ham34 promoter and at the 5’ region 

the terminator Ham34 (han34::GFP::ham34). pNC-GFP also contains the gene for 

conferring resistance to geneticin. Large quantities of each plasmid DNA (0.5 mg) were 

obtained with the Qiagen plasmid Maxi kit (Qiagen, CA) following the manufacturer’s 

instructions and quantified with a spectrophotometer.  
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RESULTS 

 Isolate CBS121657 grew well in nutrient pea agar medium and mats of mycelium 

were readily generated by day three. Protoplast release was achieved as soon as 30 min 

after incubation with the enzyme cocktail. The protoplast concentration was 1.4 x 107 and 

adjusted according to the protocol from the Virginia Bioinformatic Institute for P. sojae. 

Four 50-ml Falcon tubes containing enough protoplast solution (a total of 1 x 108 

protoplasts per 250- ml flask) were further treated. Each falcon tube represented one 

single 100-mm Petri dish and up to 20 Phytophthora colonies were observed in each Petri 

dish before the first overlay of selective medium. After the first overlay, only 40% of the 

colonies were able to grow on the surface and survive for more than three days. Once 

transferred into amended pea agar medium, 90% of the remaining colonies survived for 

more than one week. Only colonies that survived through this step were subjected to 

DNA isolation and PCR confirmation. 

 PCR using genomic DNA of transformants showed that all transformants 

generated with constructs pNC-GFP (13 isolates) and/or pHA/pUBIN (16 isolates) were 

positive for the antibiotic resistant gene (Fig. 6.2). However, only 14 isolates of the latter 

group (pHA/UBIN) were confidently identified as PCR positive with primers amplifying 

the Ham34 to Avr1b region (Fig. 6.3). Three isolates resulted in a smear PCR product 

with a size similar to the expected size for primer Ham34-Avr1b region (Fig. 6.3). All 

isolates transformed with pNC-GFP were also PCR positive for the GFP flanking primers 

(data not shown). 

 Isolates were subcultured five times (3 months) on amended (50 µg/ml G418) V8 

juice agar plates. Isolates were also growing in V8 agar plates without the selective agent 
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and kept for one month, then transferred into selective medium (50 µg/ml G418). 

Approximately 53% of the isolates continued growing in the selective medium.  

 

DISCUSSION 

 Genetic transformation in oomycetes was first described for Phytophthora 

infestans in 1991, representing a significant breakthrough in oomycete research (9, 10). 

Several other species, such as P. sojae, P. palmivora, P. parasitica, Pythium 

aphanidermatum, and Saprolegnia monoica, have been transformed using the PEG- 

mediated protocol (2, 6, 10, 11, 20, 28). However the PEG method has sometimes 

resulted in protoplasts with a low regeneration rate (7-10%) and requires the preparation 

of a large amount (30-40 150 mm Petri dishes for sporangia production) of starting 

material. In our experience, only a small amount of starting material (one mat of 

mycelium) was required for producing enough protoplasts (1.4 x 107 protoplast/ml). 

 The coenocytic mycelium of oomycetes harbors multiple nuclei, and regenerated 

transformants may contain transformed and untransformed nuclei (heterokaryotic 

transformants). This could explain why gene silencing triggered by overexpression of the 

transgene is sometimes not fully accomplished in the organism (25). Our results are 

consistent with previous observations from other transgenic Phytophthora species. In P. 

parasitica, repeated subculture under nonselective medium resulted in the loss of 

transformed nuclei, stopping their growth in selective medium (7). Moreover, intensive 

manipulation of Phytophthora during protoplast generation is thought to provoke changes 

in the normal morphology and function of the isolate. Previous investigations have 

described the inability of some transgenic oomycete isolates to generate sporangia (28). 
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In our experience, 30% of the recovered antibiotic resistant isolates had a slightly 

different growth rate and morphology compared to the wild type (data not shown). 

 The initial PEG protocols for oomycete transformation needed modifications 

because the enzyme used to generate protoplasts was no longer commercially available. 

The current protocol used reagents that are commercially available (lyzing enzyme from 

Trichoderma harzianum and cellulase) (18). The lyzing enzyme from T. harzianum is 

described as a combination of β-glucanase, cellulase, and protease enzymes (22). Other 

laboratories have described the use of lipofectin instead of PEG (29) as it has proven to 

increase transformation efficiency by 35-fold in Schizosaccharomyces pombe (1). More 

recently, McLeod et al. adapted a protoplast protocol from Arabidopsis to generate stable 

transformants in four oomycetes (18). The protocol includes an enzyme cocktail of β-D-

glucanase and cellulase (aided with 10 mM CaCl2) and the species with the highest rate 

of regeneration was Pythium aphanidermatum (18). 

 The development of new transformation vectors will contribute to functional 

studies in oomycetes because traditional vectors used in other fungi have not produced 

satisfactory results in the past (9, 10, 12). McLeod tested 17 novel vectors for expression 

using the PEG-mediated protocol and identified pDBHAMT35G as the only promising 

vector with GUS expression in P. infestans and P. citricola (18).  

 The search for novel gene disruption procedures is critical for oomycete research. 

Two recombination pathways have been identified in eukaryotes: homologous 

recombination (HR) that requires interaction between homologous sequences; the second 

pathway, nonhomologous end-joining (NHEJ) that involves direct ligation of the strand 

ends independent of DNA homology (19). In Neurospora crassa, disruption of genes 
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homologous to Ku70 and Ku80 from humans, heterodimer key proteins involved during 

NHEJ of double-stranded DNA breaks, has demonstrated a high rate of homologous 

integration of exogenous DNA (21). More recently this strategy to enhance gene 

disruption has been successfully applied to other organisms such as Magnaphorthe grisea 

and Aspergillus fumigatus (4, 27) and it could probably be adapted for Phytophthora.  
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APPENDIX 6 

Solutions 

Pea/0.5M mannitol (Broth or agar for overlays) 

Pea Broth (see pea media protocol)  
91.1 g Mannitol 
1 g CaCl2 
2 g CaCO3   
Make up to 1 L and autoclave in 250-ml bottles 
For overlays add 10 g agar  
 

 

Pea Agar Medium 

Autoclave 120 g frozen peas in 1 L of distilled water. Filter through four layers of 
cheesecloth. Squeeze the cheesecloth gently to remove residual broth.  
Bring volume of broth up to 1 L add 2 g CaCO3, 15 g agar and autoclave. 
 

Nutrient Pea Broth and Agar Medium 

Chemical Amount 

K2P04 1.0 g 
KH2P04 1.0 g 
KN03 3.0 g 
MgS04 0.5 g 
CaCl2 0.1 g 
CaCO3 2.0 g 
D-sorbitol 5.0 g 
D-mannitol 5.0 g 
Glucose 5.0 g 
vitamin stock  2.0 ml 
trace elements 2.0 ml 
yeast extract 2.0 g 
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Vitamin stock Trace elements 

Biotin                         0.0002 g FeC6H5O73H2O            0.215 g 

Folic acid                   0.0002 g ZnSO4 7H2O                0.150 g 

l-inositol                    0.0120 g CuSO4 5H2O                0.030 g 

Nicotinic acid            0.0600 g MnSO4 H20                  0.015 g 

Pyridoxine-HCl         0.1800 g H3BO3                          0.010 g 

Riboflavin                 0.0150 g MoO3                           0.007 g 

Thiamine-HCl           0.3800 g  

Coconut milk                 50 ml  

H20 to make                300 ml H20 to make 400 ml 

 
Autoclave 120 g frozen peas in 1 L distilled water. Filter through four layers of 
cheesecloth. Squeeze the cheesecloth gently to remove residual broth.  
Amend with the chemicals above and bring the volume up to 1 L with distilled water. 
For agar medium, add 15 g/L Difco Bacto Agar. 
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Figures 

 

 

Figure 6.1. PCR screening of CBS121657 isolates (1 through 30) resistant to G418 (50 µg/ml) using primers flanking the 
antibiotic resistant gene (PCR size~500 bp). Positive controls were included in the PCR reaction (plasmid dilution for pNC-
GFP and pUBIN). 
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Figure 6.2. PCR screening of regenerated isolates growing in G418 (50 µg/ml). Isolates were transformed with a mix of 
plasmid pHA and pUBIN. PCR correspond to primers flanking the Ham34-Avr1b region (PCR size ~622 bp). 
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