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Abstract

This research considers the application of Optimal Control theory to minimize the spread of

viral infections in disease models. The population models under consideration are systems of

ordinary differential equations and represent epidemics arising due to either rabies or West

Nile virus. Optimal control strategies are analyzed using Pontryagin’s Maximum Principle

and illustrated based upon computer simulations.

The first model describes a population of raccoons and its interaction with the rabies

virus, thus dividing the animals into four classes: susceptible, exposed, immune, and

recovered (SEIR). The model includes a birth pulse during the spring of the year and an

equation reflecting the dynamics of a potential vaccine. The vaccine equation contains a

linear control variable representing the rate at which the vaccine is distributed. The goal

is to minimize the number of infected raccoons and the cost of vaccine distributed. Due

to linearity in the control, there is the possibility of a singular control and the generalized

Legendre-Clebsch condition will be satisfied to obtain new necessary conditions for the

singular case. A scenario with a limited amount of vaccine is also investigated. The system

is modified to include a density-dependent death rate for each of the S, E, I, R classes,

and the results of this model are compared with those of the non-density dependent model

to determine how the different death rates affect control strategies.

The second disease model considered describes the dynamics of mosquito, bird and

human populations exposed to the West Nile virus. The mosquito and bird categories will

be divided into susceptible and infected classes. In addition to these two groups, humans

will also have the potential of entering the exposed, hospitalized and recovered classes. In

this model, birth and death rates are assumed to be density-dependent. Two controls are

v



applied with one control representing pesticide efforts to decrease the number of mosquitos

and a second control representing prevention and repellant methods. The basic reproduction

number is considered to justify the need for control.

Approximations of the optimal solutions of the models are obtained using an iterative

method. The numerical algorithm, Runge-Kutta of order four, is programmed in Matlab.

Graphical results show the appropriate amount of control for various situations.
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Chapter 1

Introduction

The dynamics of a given population’s density or abundance may be represented by an ordi-

nary differential equation. If the population is exposed to a viral infection, the original group

of organisms can be divided into different classes, namely susceptible, exposed, infected and

possibly a recovered class. Given a diseased population and a control function which affects

its dynamics, a possible goal is to choose a control to minimize the spread of the infection

and maximize the size of the non-diseased population. Optimal control theory may be used

to theoretically solve a minimization problem of this type. This procedure is an analytical

method applied to a given objective functional that yields the optimal path to be taken by

variables of a dynamical process in continuous time. In the disease models to be considered

here, the dynamical process is represented by a system of ordinary differential equations

(ODEs) and the objective functional to minimized could depend upon some combination of

the infected class and some control quantity. L.S. Pontryagin and his co-workers developed

this method in the 1950’s based on their formulation of the maximum principle for optimal

control of ordinary differential equations [25]. In optimal control, variables are classified as

being either a state or control variable. The path of a state variable is determined by a first

order ordinary differential equation. Control variables are Lebesgue measurable functions

of time and influence the dynamical process.
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1.1 Optimal Control

Before considering the optimal control problem for a system of differential equations, the

single ODE case will be considered. The state variable, x(t), is the solution to the state

differential equation:

x′(t) = g(t, x(t), u(t)),

where g is a continuously differentiable function and u is the control function. It is assumed

that an objective functional with an integrand f(t, x(t), u(t)) and the state equation are

both influenced by the control function u(t). The problem may be written as:

min
∫ t1

t0

f(t, x(t), u(t))dt

over the Lebesgue measurable control functions u on [t0, t1] subject to

x′(t) = g(t, x(t), u(t)), x(t0) = x0, x(t1) free.

For this simple optimal control problem, with f and g continuously differentiable in x

and u, Pontryagin’s Maximum Principle [20] can be stated as:

Theorem 1.1.1. If u∗(t) and x∗(t) are optimal for the above problem, then there exists a

piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≥ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H(t, x, u, λ) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),

and

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))
∂x

, λ(t1) = 0.

2



The state and adjoint equations form the optimality system

x′(t) = g(t, x(t), u(t)), x(t0) = x(0) fixed (1.1)

λ′(t) = G(t, x(t), u(t), λ(t)), λ(t1) = 0,

where G(t, x(t), u(t), λ(t)) = −∂H
∂x , and u∗ is represented in terms of x and λ from maxi-

mizing H with respect to u. Usually the optimality equation, ∂H
∂u = 0 at u∗, is used to solve

for this representation of u∗.

If H is nonlinear with an unbounded control class, then the optimality condition is

∂H
∂u = 0 at u∗, coming from maximizing the Hamiltonian with respect to u at u∗. However,

if the Hamiltonian is linear in the control, then the control does not appear in ∂H
∂u . If ∂H

∂u = 0

over a time interval with positive length, then the optimal control is called singular.

A generalization of the Pontryagin maximal principle was developed in the 1970’s, pro-

viding new necessary conditions for an optimal control problem [19, 5, 26, 18, 14]. This

method, called the High Order Maximal Principle, generalizes the Legendre-Clebsch condi-

tion,

∂2

∂u2
H ≥ 0 at u∗.

The degree h + 1 of the singular control, u0(t), on the subinterval (t∗, t) of (t0, t1) is

defined such that h is the smallest integer for which a solution exists for

λ′(t) = −λ(t)
∂g(t, x(t), u0(t))

∂x

as well as

dk

dtk
∂

∂u
H(λ(t), x(t), u0(t)) = 0

for k = 0, 1, 2, ... such that for such t in the subinterval of [t1, t2],

3



∂

∂u

dh+1

dth+1

∂H(λ(t), x(t), u0(t))
∂u

6= 0.

This condition will be satisfied in the rabies model of the next chapter.

The generalized Legendre-Clebsch condition [19]

Theorem 1.1.2. Assume that u0(t) and x(t) are defined for x′(t) = g(t, x(t), u(t)), x(t0) =

x0(0) on [t0, t1]. If u0 is singular of degree h+1 on a subinterval (t∗, t) ⊂ [t0, t1] and h is

finite, then h is odd. If u0 is optimal, then there is exists a λ(t) satisfying the Pontryagin

Maximum Principle on [t0, te] such that

(−1)
h+1
2

∂

∂u

dh+1

dth+1

∂H(λ(t), x(t), u0(t))
∂u

≥ 0 on (t∗, t).

1.2 Numerical Approximation

Solving the optimality system, which is the state and adjoint ODEs together with the opti-

mal control representation, requires an iterative scheme. This involves use of an algorithm

such as Runge-Kutta of order four. First, we discuss the numerical method by approxi-

mating a single ordinary differential equation and its associated adjoint equation. In the

Runge-Kutta method of order four, the interval [t0, t1] is partitioned into N subdivisions

of equal length, N > 1. Assuming that u is known at the original N grid points, then we

may solve the state equation x′(t) = g(t, x(t), u(t)), with x(t0) = x0 fixed, according to the

following difference equation:

4



w0 = x(0) (1.2)

k1 = hg(ti, wi, ui)

k2 = hg(ti +
h

2
, wi +

k1

2
,

1
2
[ui + ui+1])

k3 = hg(ti +
h

2
, wi +

k1

2
,

1
2
[ui + ui+1])

k4 = hg(ti+1, wi + k3, ui+1)

wi+1 = wi +
1
6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, 2, ..., N − 1 where N >> 1 and h = t1−t0
N and ti is the grid point [20].

The value of wi is the approximation of the solution of the ordinary differential equation

at ti = t0 + ih, i = 0, 1, 2, ..., N − 1. Since u is not necessarily constant throughout the

subdivision [ti, ti+1], i = 1, 2, ..., N + 1, we approximate the control at ti + h
2 by taking the

average of ui and ui+1 in the calculation of k2 and k3.

One may use the same step technique to approximate λ(t). However, since its value at

the final time is known instead of at the initial time, we set wN = 0, with the difference

equation:

wN = 0 (1.3)

k1 = hG(tN−i, wN−i, uN−i, xN−i)

k2 = hG(tN−i −
h

2
, wN−i −

k1

2
,

1
2
[uN−i + uN−i−1],

1
2
[xN−i + xN−i−1])

k3 = hG(tN−i −
h

2
, wN−i −

k1

2
,

1
2
[uN−i + uN−i−1],

1
2
[xN−i + xN−i−1])

k4 = hG(tN−i−1, wN−i − k3, uN−i−1, xN−i−1)

wN−i−1 = wN−i −
1
6
(k1 + 2k2 + 2k3 + k4),

5



for i = 0, 1, ..., N − 1.

Approximate solutions of the optimality system are obtained using an iterative method

in combination with the above 4th-order Runge-Kutta scheme.

Starting with an initial condition for the state variable and an initial guess for the

control, forward sweep with the Runge-Kutta scheme (1.2) may be used to obtain an ap-

proximate solution for the state equation. Using this estimate, the solution of the adjoint

equation is approximated using backward sweep (1.3) from the final time condition. The

control is updated by using an average of its previous values and its values from the control

characterization. Iterations continue until successive values of all variables from current

and previous iterations are sufficiently close.

Convergence is determined by requiring the values from two successive iterations to

satisfy the relations

‖ x − oldx ‖
‖ x ‖

≤ ε and
‖ u − oldu ‖

‖ u ‖
≤ ε

where ε is the accepted tolerance, x is the vector of state values from the current iteration,

u is the vector of control values from the current iteration, oldx, oldu are the corresponding

vectors from the previous iteration, and ‖ · ‖ refers to the sum of the absolute value of the

terms. Allowing for the possibility of the variables to be zero, the convergence relation may

be expressed as

ε ‖ x ‖ − ‖ x − oldx ‖ ≥ 0 and ε ‖ u ‖ − ‖ u − oldu ‖ ≥ 0.

For the models described below, the inclusion of an infection in a population model

produces additional classes, each of which has a corresponding ODE and an associated

adjoint equation. The resulting model is a system of state equations with a corresponding

system of adjoint equations requiring a numerical procedure to approximate the optimal

solution. In this case, after a forward sweep solution of the state system and a backward

sweep solution of the adjoint system, the values of successive iterates for each of the state,

adjoint and control variables are compared until all differences fall below a prescribed margin

6



of error.

1.3 Epidemic Models Involving Viral Diseases

These methods will be applied to population models that have been invaded by an infectious

agent called a virus. A virus is a DNA or RNA molecule encased in a protein coat that has

the ability to move through filters and invade a cell that may serve as a host. Once inside

the host, the virus has the ability to replicate itself, initiating the onset of a particular

disease. In 1898, a disease that stunted the growth of tobacco plant leaves was classified

as a virus. After the turn of the 20th century, microbiologists began growing viruses in

petri dishes to more closely study their effects on cultured cells. The research of viruses in

cultured cells is used to identify potential vaccines to contain the spread of infections [21].

This project will consider the rabies and West Nile viruses.

Chapter 2 introduces a population model for raccoons that interacts with the rabies

virus. This model divides the raccoons into four classes: susceptible, exposed, immune,

and recovered (SEIR), including a birth pulse during the spring time of the year and

an equation reflecting the dynamics of a potential vaccine. The goal is to find optimal

strategies for distributing vaccine packets to minimize the infected population and the cost

of implementing the control. The effect of the birth pulses on this strategy is investigated.

This scenario, with control u as the rate of vaccine distribution, may be described with the

system:

7



S′ = −
(

βI + b +
c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1] (1.4)

E′ = βIS − (σ + b)E

R′ = σ(1− ρ)E − bR +
c0V S

K + V

I ′ = σρE − αI

V ′ = −V [c(S + E + R) + c1] + u.

Here S, E, I, R are given in terms of numbers of raccoons. The vaccine V is the

amount of vaccine. Further explanation of the model may be found in chapter 2.

To minimize the infected population as well as the cost of the vaccine, we consider the

objective functional

J(u) =
∫ T

0
[I(t) + Bu(t)]dt.

The set of all admissible controls is

U = {u : [0, T ] → [0,M1]|u is Lebesgue measurable}

where M1 is a positive constant and the upperbound of u.

Note that the vaccine equation contains a linear control variable representing the rate

at which the vaccine is distributed. The linearity of the control in (1.4) and in the objec-

tive functional raises the possibility of a singular control and generalized Legendre-Clebsch

conditions that must be satisfied to obtain new necessary conditions for the singular case.

A scenario with a limited amount of vaccine is also investigated. Results from numeri-

cal simulations show the optimal distribution of vaccine so as to minimize the objective

functional.

In the next chapter, the system is modified to include a density-dependent death rate
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for each of the S, E, R classes. This term is expressed as the product of the death rate,

state variable, and the total non-infectious population, i.e., bS(S + E + R), bE(S + E +

R), bR(S + E + R). The model with density-dependent deaths is:

S′ = −
(

βI +
c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1] − bS(S + E + R) (1.5)

E′ = βIS − σE − bE(S + E + R)

R′ = σ(1− ρ)E − bR(S + E + R) +
c0V S

K + V

I ′ = σρE − αI

V ′ = −V [c(S + E + R) + c1] + u,

with the same objective functional as described above. The results of this model are com-

pared with those of the first to determine how the different death rates affect control strate-

gies.

Control intervention efforts in an epidemiological model of the West Nile virus are con-

sidered in chapter 4. This model describes the dynamics of mosquito, bird and human

populations exposed to the West Nile virus. The mosquito and bird categories will be

divided into the susceptible and infected classes and may be described by the system:

dMs

dt
= γMNM (1− u1(t))−

b1β1MsBi

NB
− µMMs − r0u1(t)Ms (1.6)

dMi

dt
=

b1β1MsBi

NB
− µMMi − r0u1(t)Mi

dBs

dt
= λB + ρNB −

b1β2MiBs

NB
− δBs − µBBs

dBi

dt
=

b1β2MiBs

NB
− dBBi − δBi − µBBi

Here Ms, Mi, Bs, Bi are given in terms of numbers of mosquitos and birds respectively.
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In addition to the susceptible and infected groups, humans will also have the potential

to enter the exposed, hospitalized, and recovered classes. The dynamics of the human

population may be described by the system:

dS

dt
= λH + γHNH − b2β3MiS(1− u2(t))

NH
− µHS (1.7)

dE

dt
=

b2β3MiS(1− u2(t))
NH

− αE − µHE

dI

dt
= αE − σI − dII − rI − µHI

dH

dt
= σI − dHH − τH − µHH

dR

dt
= τH + rI − µHR.

Here S, E, I, R, H are given in terms of numbers of humans. Note that for this

model, the birth and death rates are assumed to be density dependent. Note the control

u1 represents the effort to apply pesticide to the mosquitos population and the control u2

represents the prevention efforts to minimize the spread of infection to humans to mosquitos.

Further explanation of the model may be found in chapter 4.

We formulate an optimal control problem with the objective (cost) functional given by

J(u1, u2) =
∫ T

0

(
A1E(t) + A2I(t) + A3NM (t) + B1u

2
1 + B2u

2
2

)
dt (1.8)

subject to the constraint (state system) given by (1.6-1.8). Thus, the total cost arising from

the exposed, infected, total number of mosquitos, and controls is being minimized.

The cost of implementing the controls is assumed to be nonlinear and here we take the

cost to be proportional to the square of the corresponding control functions. Part of our

goal is to find optimal control functions (u∗1, u
∗
2) such that

J(u∗1, u
∗
2) = min{J(u1, u2) | (u1, u2) ∈ Γ}
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subject to the system of equations given by (1.6-1.8), where

Γ = {(u1, u2)|ui(t) is Lebesgue measurable on [0, T ], 0 ≤ ui(t) ≤ ai, i = 1, 2} (1.9)

is the control set and ai is a positive constant and the upperbound of ui for i = 1, 2.

The basic reproduction number is assumed to be large enough to require a control strategy.

Numerical simulations are given to illustrate various scenarios.

We note that there are limitations and possible extensions of this model and control

problem. The model may be extended to include separate pesticides for the larvae and

adult stages of mosquitos, suggesting the use of two controls of the insects. One could

add a control for efforts to adjust the rate of hospitalization. A limitation is the difficulty

in obtaining reasonable estimates for the parameters in this model to apply to a specific

location. The optimal controls and their resulting populations strongly depend on the choice

of parameters.

These results show the utility of the optimal control tools in designing strategies for

slowing the spread of this epidemic. Given a specific set of parameters (including cost

coefficients), one can decide which of the two controls to give more emphasis.
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Chapter 2

An Epidemic Model of Rabies in

Raccoons

Rabies is a common RNA virus that is transmitted between wildlife causing death to an

infected organism after an incubation period. Only the Antarctic, Australia, and other is-

land nations are unafflicted by the rabies virus. There are over 25,000 known cases per year

worldwide. This virus is a member of the genus Lyssavirus of the family Rhadbdoviridae,

and order Mononegavirales [33]. Pasteur first developed a rabies vaccine from exposed

specimens by experimenting on rabbits and dogs [17]. Since the discovery of vaccine, atten-

tion has been focused on using vaccination to contain the spread of various types of diseases

in infected populations.

Today, raccoons have been identified as the most common terrestrial wildlife carrier of

the rabies virus in the eastern United States. In an effort to contain the spread of the

disease, various states have distributed vaccine baits in their respective wildlife habitats

with varying degrees of success. In 1996, the reported cost of programs designed to contain

the spread of infection exceeded $300 million[33]. Fish meal and oil are sometimes used

as bait to coat plastic packaging containing the vaccine. The vaccine packets are then

frequently dropped from airplanes flying above a given region inhabited by wildlife [3].

Ordinary differential equations (ODEs) as well as partial differential equations (PDEs)

have been used to model the dynamics of populations afflicted with the rabies virus. Murray
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et al. [24] used ODEs to study the dynamics of susceptible and infected foxes in Europe

coupled with a PDE describing the dispersal of the rabid class. This paper also discussed

various vaccination and culling strategies. In a later paper, an immune class was included,

influencing the behavior of the periodic outbreaks associated with oscillating tail of the

epidemic wave [23]. Evans and Pritchard extended Murray’s 1986 model to include a vac-

cinated class of foxes with the goal of controlling the density of the infected population to

be below a predetermined number [12]. An ODE model developed by Coyne et al., divided

raccoons into six categories: susceptible, exposed, infected, rabid, naturally immune,

and vaccinated. These model results showed that the least expensive control strategy in-

volved exclusively either culling or vaccination. A combined approach is cheaper only when

the per capita cost of vaccination is less then 20% of the per capita cost of culling [9].

A stochastic spatial model developed by Smith et al. described the spread of rabies

in Connecticut raccoons and suggested that rivers act as a semipermeable barrier slowing

the outbreak of infection [31]. A later paper analyzed how long-distance translocation

events influenced the spread of the rabies epidemic in Connecticut [32]. This assumed an

adjacency network of Townships within the state divided into infected and undocumented

regions. Forested areas were found to slow the spread of rabies. A similar stochastic spatial

model was used by Russell et al. to analyze data from Ohio [30]. These results show

that vaccine barriers are permeable and subject to breaches. Members of this team later

authored another paper using an ODE model to show that the spread of rabies may be

controlled by distributing vaccine behind barriers such as rivers [29].

Asano et al. [3] first applied optimal control to a system modeling an infected raccoon

population. This SIR model included three classes in 9 spatial compartments giving a

total of 27 ODEs. Results showed that a higher rate of vaccination is needed for a larger

population but a lower distribution of vaccine given a high cost of vaccination. Recently,

Ding et al. investigated the distribution of vaccine baits in a rabies epidemic in raccoons

using a model discrete in time and space. The results showed that optimal distribution

of vaccine depended on the location of the rabies infection. If the virus is detected in the

middle of a patch, vaccine is applied heaviest to the center of the spread of infection. If the
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infection is observed in a corner of a patch, the distribution of the vaccine is given around

the edges to prevent the spread of the infection [11].

Since raccoons only give birth during specific times of the year, a more realistic model

could include a ‘birth pulse’ where organisms are added to a population which grows during

a specific time interval. Many models use the term ‘pulse’ to mean the population has a

discontinuous jump. Here the population is continuous with an expected increase in animals

for a period of time during the year. A comparison of continuous birth rate, where births

may occur at any time of the year, and annual birth pulses was provided by Roberts and

Kao. They investigated control of the spread of tuberculosis in possums, showing that

periodic births may be approximated with a model with continuous births [28]. Tang et al.

observed the birth pulses to cause a sequence of period-doubling bifurcations resulting from

small amplitude periodic solutions [34]. Gao et al. modified the model of Tang to include

the invasion of a disease and concludes that the controlling of disease is more efficient when

prevention is seasonal [13].

A new feature of the model presented here is the investigation of birth pulses on the

distribution of vaccine. One of the conclusions is that the distribution of the vaccine depends

on the time that the rabies infection is detected relative to the birth pulse. The closer the

detection is to the time of the seasonal births, the more sustained the level of vaccination.

This project also uses optimal control strategies for a system that includes the dynamics

of the vaccine. The goal is to find optimal strategies for distributing vaccine packets to

minimize the infected population and the cost of implementing the control. The effect

of the birth pulses on this strategy is investigated. The basic model is introduced in the

next section followed by a discussion of the dynamics of the vaccine. Section 3 describes

the existence of solutions for the corresponding adjoint system and an optimal control.

Numerical results are reported in section 4 for various scenarios with section 5 considering

the possibility of having a limited amount of vaccine available for distribution. We conclude

with a summary and interpretation of the numerical simulations.
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2.1 The Infected Raccoon Population

Various kinds of seasonal forcing have been shown to influence biological systems including

infectious diseases [2, 1]. The periodic effect of annual birth pulses is a kind of forcing that

occurs at the same time each year. It is assumed that raccoons give birth during the spring

time of the year, March 20 - June 21. For a 365 day year starting from January 1, March 20

is day 79 and June 21 is day 172. The entire birth pulse is 93 days. There are four classes

of raccoons that may be described by the system:

Our system of ODEs describe the dynamics between four classes: susceptibles, S, ex-

posed, E, immune, R, and infecteds, I. The variable functions S(t), E(t), R(t), and I(t)

are given in units of number of raccoons at time t. Any raccoon that can transmit the

rabies virus will be in the infected class, designated as I. Raccoons that do not have the

rabies virus but have the potential to contract the disease will be called susceptible and

are identified as being in the susceptible class. When a susceptible becomes exposed to the

rabies virus, an incubation period occurs during which time the raccoon does not imme-

diately have the ability to transmit the disease but is only a latent carrier of the disease.

The average time of this incubation period is 1/σ. This class will be called exposed and

represented as E. The interaction between the susceptible and exposed classes is assumed

to follow mass action, so βIS where βIS is the rate that a member of the susceptible class

becomes infected. Our system is given by

S′ = −(βI + b)S + a(S + E + R)χω(t) (2.1)

E′ = βIS − (σ + b)E

R′ = σ(1− ρ)E − bR

I ′ = σρE − αI

where the birth pulse occurs on the set ω =
⋃∞

k=0[tk, tk+1], tk = 79 + 365k and tk+1 =
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172 + 365k. (Since this paper is concerned with time intervals of one year or less, k will be

taken as 0 for the remainder of the discussion.)

It is assumed that a small percentage of exposed raccoons will develop a natural immu-

nity to the rabies virus. This percentage is 1 − ρ, where ρ is the percentage that die from

the disease. This phenomenon introduces a new class called the immunes and given the

label R.

The per-capita birth rate per day is a during the birth pulse. During the spring, the

S, E,R classes are able to give birth, and the birth rate is represented symbolically as

a[S(t) + E(t) + R(t)]χ(t)[t0,t1],

where χ(t)[t0,t1] is a characteristic function of the time interval [t0, t1] corresponding to

March 20 and June 21, respectively. All births enter the susceptible class. Raccoons die of

non-rabies causes at a per-capita rate per day of b . The total population at any time is

N = S + E + R + I with a dynamical equation of

N ′ = (aχ[t0,t1] − b)(S + E + R)− αI.

Since the right hand sides of the state equations are measurable in t and continuous in

the state and control variables, there exists a solution to the system (2.1) by Theorem 9.2

of [22].

We assume E(0) = R(0) = 0 and S(0) and I(0) are positive, and show the positivity of

the state variables. There exists some t̂ > 0 such that S(t), I(t) are both positive on the

interval (0, t̂). Consider

E′ + (σ + b)E = βIS,E(0) = 0.

Since S, I are both positive on the interval (0, t̂), we have the explicit solution

E(t) = e−(σ+b)t

∫
0

t

e(σ+b)sβISds.
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Therefore E(t) > 0 for t > 0 such that

∫
0

t

e(σ+b)sβISds > 0,

and in particular E(t̂) > 0.

Likewise for the immune class, the initial value problem

R′ = σ(1− ρ)E − bR, R(0) = 0

yields the solution

R(t) = e−bt

∫
0

t

ebsσ(1− ρ)sE(s)ds.

Therefore R(t) > 0 for t > 0 such that
∫
0
t
e(σ+b)sβISds > 0, and R(t̂) > 0.

Note the explicit solution for the infected class is

I(t) = e−αt

[
I(0) +

∫
0

t

eαsE(s)ds

]
.

Using the above, we only need to consider the cases that the first state variable to

decrease to zero is either S or I, i.e. S = 0 or I = 0 with t̂ being the first time that S or I

hits 0. If I(t̂) = 0, then I ′(t̂) ≤ 0. But

I ′(t̂) = σρE(t̂)− αI(t̂) > 0,

which is a contradiction. Thus I(t) > 0 on the interval (0, t̂]. If S(t̂) = 0, then S′(t̂) ≤ 0.

But

S′(t̂) = −(βI(t̂) + b)S(t̂) + a[S(t̂) + E(t̂) + R(t̂)]χΩ > 0,

which is a contradiction, so S(t) > 0 on the interval (0, t̂). We conclude that the state

variables are positive for t > 0.

Note that since all the state variables are non-negative for all t ≥ 0, then N ′ ≤ aN
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implies the boundedness of N(t) for any finite time interval. Thus all the state variables

are also bounded.

2.2 Introducing Vaccine Dynamics

The system of ordinary differential equations (2.1) is extended to include the dynamics of

the amount of vaccine available to wildlife

S′ = −
(

βI + b +
c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1] (2.2)

E′ = βIS − (σ + b)E

R′ = σ(1− ρ)E − bR +
c0V S

K + V

I ′ = σρE − αI

V ′ = −V [c(S + E + R) + c1] + u,

where V is the amount of the vaccine at time t.

If vaccine baits are introduced into the environment, it is assumed that they are eaten

by the susceptible raccoons with a conversion rate to the immune class as c0V
K+V . This term

gives a saturation effect due to the foraging of raccoons on the baits. The constant K is a

type of “half-saturation” constant, the value of V such that V
K+V becomes 1

2 . The vaccine

baits are depleted by being eaten by raccoons, other wildlife or through natural decay. The

rate at which the baits are eaten by S, E and R, is c. Otherwise, the baits are eliminated at

a rate of c1 due to other causes, including natural decay and consumption by other animals.

The control u is the rate of vaccine distribution. The state variables and parameters are

described in Table 2.1.

Note that one can prove, as in section 2, that the states remain non-negative and

bounded. We shall denote there is an upper bound on the states, M.
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Table 2.1: State Variables and Parameters

Notation Description Units
S(t) the number of susceptible at time t raccoon
E(t) the number of exposed at time t raccoon
R(t) the number of immune at time t raccoon
I(t) the number of infected at time t raccoon
V (t) amount of vaccine at time t vaccine
c0 rate raccoons become immune day−1

c rate vaccine is eaten by raccoons day−1raccoon−1

c1 rate vaccine decays or eaten by other animals day−1

K saturation constant raccoons
α disease-related death rate day−1

β transmission rate day−1raccoon−1

a birth rate day−1

b non-viral death rate day−1

σ rate raccoons move from E to I day−1

ρ natural immunity none

2.3 Finding an Optimal Control

To minimize the infected population as well as the cost of the vaccine, the objective func-

tional is

J(u) =
∫ T

0
[AI(t) + Bu(t)]dt.

The set of all admissible controls is

U = {u : [0, T ] → [0,M1]|u is Lebesgue measurable}

where M1 is a positive constant and the upper bound of u. The coefficient A converts the

number of infected raccoons into a cost. If we divide the objective functional by A, we will

obtain the same optimal control. So the rate B
A is a crucial parameter, and without loss we

take A = 1. The cost coefficient B is a weight factor balancing the two terms. When B is

large, then the cost of implementing the control is high. We seek to find u∗ in U such that

J(u∗) = min
u∈U

J(u).
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Theorem 2.3.1. There exists an optimal control u∗ ∈ U which minimizes the objective

functional J(u).

Proof:

Let {un(·)}n≥1 be a minimizing sequence and Pn(·) = (Sn, En, In, Rn, Vn) be

the state trajectory corresponding to un(·). Since Pn(·) and Pn
′(·) are both bounded in

L∞, then {Pn(·)} is a uniformly bounded and equicontinuous sequence. Therefore, by the

Arzela-Ascoli Theorem, there exists P ∗(·) and u∗(·) such that

Pn(·) → P ∗(·) uniformly on [0, T ].

We have

lim
n→∞

J(un) = lim
n→∞

∫
0

T

In(t) + Bun(t)ds = inf
u∈U

J(u),

since In → I∗ uniformly and un(t) ⇀ u∗ weakly in L2[0, T ] on a subsequence due to the

bounds on the controls. Passing to the limit in the state ODE system, we obtain that P ∗

is the state vector corresponding to control u∗. Thus we obtain

J(u∗) = min
u∈U

J(u).

Therefore, u∗ is an optimal control. �

To use Pontryagin’s Maximum Principle [25], we form the Hamiltonian

H =Bu + I + λ1

[
−

(
βIS + b +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1]

]
(2.3)

+ λ2[βIS − (σ + b)E] + λ3

[
σ(1− ρ)E − bR +

c0VS
K + V

]
+ λ4[σρE− αI] + λ5

[
−V

(
c(S + E + R) + c1

)
+ u

]
.

Grouped in terms of u
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H =(B + λ5)u + I + λ1

[
−

(
βIS + b +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1]

]
(2.4)

+ λ2[βIS − (σ + b)E] + λ3

[
σ(1− ρ)E − bR +

c0VS
K + V

]
+ λ4[σρE− αI] + λ5

[
−V

(
c(S + E + R) + c1

)]
.

Theorem 2.3.2. Given an optimal control u and corresponding state solutions S, E, I,R

and V , there exists adjoint functions λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) satisfying the adjoint

system:

λ′1 = λ1

(
βI + b +

c0V

K + V
− aχ(t)[t0,t1]

)
− λ2βI − λ3

c0V

K + V
+ λ5cV (2.5)

λ′2 = −λ1aχ(t)[t0,t1] + λ2(σ + b)− λ3σ(1− ρ)− λ4σρ + λ5cV

λ′3 = −λ1aχ(t)[t0,t1] + λ3b + λ5cV

λ′4 = −1 + λ1βS − λ2βS + λ4α

λ′5 =
(λ1 − λ3)c0SK

(K + V )2
+ λ5[c(S + E + R) + c1]

with λi(T ) = 0, for each i, and

u =


M1 if λ5 + B < 0

0 if λ5 + B > 0

us if λ5 + B = 0

(2.6)

where the singular control is given by
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us =− (K + V )
2

[βI − aχ(t)[t0,t1]] +
c0(K − V )

2
+ a

(K + V )
2S

(E + R)χ(t)[t0,t1] (2.7)

+ V

[
c(S + E + R) + c1

]
+

(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
+

Bc(K + V )3

2c0K(λ1 − λ3)
(b + aχ(t)[t0,t1])

+
Bc(K + V )3

2c0SK(λ1 − λ3)

[
σρE + (b + aχ(t)[t0,t1])(E + R)

]
,

provided 0 ≤ us ≤ 1.

Furthermore the generalized Legendre Clebsch condition is satisfied for this singular control

giving necessary conditions when the optimal control is singular.

Proof: Suppose u is an optimal control and S, E, I, R, V are corresponding state vari-

ables. Using the result of Pontryagin’s Maximum Principle [25], there exists adjoint variables

λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) satisfying

λ′1 = −∂H

∂S
= λ1

[
βI + b +

c0V

K + V
− aχ(t)[t0,t1]

]
− λ2βI − λ3

c0V

K + V
+ λ5cV (2.8)

λ′2 = −∂H

∂E
= −λ1aχ(t)[t0,t1] + λ2(σ + b)− λ3σ(1− ρ)− λ4σρ + λ5cV

λ′3 = −∂H

∂R
= −λ1aχ(t)[t0,t1] + λ3b + λ5cV

λ′4 = −∂H

∂I
= −1 + λ1βS − λ2βS + λ4α

λ′5 = −∂H

∂V
=

(λ1 − λ3)c0SK

(K + V )2
+ λ5

[
c(S + E + R) + c1

]

The behavior of the control may be obtained by differentiating the Hamiltonian with

respect to u:

At time t, Hu = B + λ5. For this minimization problem,

u = 0 when Hu > 0 and

u = M1 when Hu < 0.

Next we consider the singular case. If Hu = 0 on some non-empty open interval (a1, b1),

then λ5 = -B on (a1, b1) and λ′5 = 0. Substitution into the respective adjoint equation and

rearranging gives
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(λ1 − λ3)c0SK

(K + V )2
= B

[
c(S + E + R) + c1

]
. (2.9)

Since c1 is a positive constant and the state variables are positive, equation (2.9) implies

(λ1−λ3)c0SK
(K+V)2

> 0

or

(λ1 − λ3)> 0, for all t in (a1, b1).

Differentiating λ′5 with respect to t yields

λ′′5 =
(λ1 − λ3)c0K

(K + V )2

(
S′ − 2SV ′

K + V

)
+

c0SK(λ′1 − λ′3)
(K + V )2

+ λ5c(S′ + E′ + R′). (2.10)

Substituting for V ′ gives

λ′′5 =
(λ1 − λ3)c0K

(K + V )2

(
S′+

2SV [c(S + E + R) + c1]− 2Su

K + V

)
+

c0SK(λ′1 − λ′3)
(K + V )2

+λ5c(S′+E′+R′).

Since λ′′5 = 0 on (a1, b1), solving the above equation for u,

u =
(K + V )S′

2S
+V [c(S+E+R)+c1]+

(K + V )(λ′1 − λ′3)
2(λ1 − λ3)

+
(K + V )3

2c0SK(λ1 − λ3)
λ5c(S′+E′+R′).

Note that since S(t) is positive, division by S is allowed.

Now consider

S′ + E′ + R′ = −σρE +
[
aχ(t)[t0,t1] − b

]
(S + E + R)

and
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λ′1 − λ′3 = λ1

(
βI + b +

c0V

K + V

)
− λ2βI − λ3

(
c0V

K + V
+ b

)
(2.11)

= (λ1 − λ3)
(

c0V

K + V
+ b

)
+ (λ1 − λ2)βI.

Substitution into the expression for u with λ5 = −B,

u =
(K + V )

2S

[
−

(
βI + b +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1]

]
+ V

[
c(S + E + R) + c1

]
(2.12)

+
(K + V )

2(λ1 − λ3)

[
(λ1 − λ3)

(
c0V

K + V
+ b

)
+ (λ1 − λ2)βI

]
− Bc(K + V )3

2c0SK(λ1 − λ3)

[
−σρE + (aχ(t)[t0,t1] − b)(S + E + R)

]
.

Distributing where appropriate,

u =− (K + V )
2

(βI + b)− c0V

2
+ a

(K + V )
2S

(S + E + R)χ(t)[t0,t1] + V [c(S + E + R) + c1]

(2.13)

+
c0V

2
+

(K + V )b
2

+
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b)(S + E + R)].

Grouping like terms,

u =− (K + V )
2

βI + a
(K + V )

2S
(S + E + R)χ(t)[t0,t1] + V [c(S + E + R) + c1] (2.14)

+
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
+

Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b)(S + E + R)].

Continuing to group terms, the singular control is:
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u =− (K + V )
2

[βI − aχ(t)[t0,t1]] + a
(K + V )

2S
(E + R)χ(t)[t0,t1] (2.15)

+ V [c(S + E + R) + c1] +
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
− Bc(K + V )3

2c0K(λ1 − λ3)
(aχ(t)[t0,t1] − b)

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b)(E + R)].

Since λ5
′ does not contain any u terms and λ5

′′ does contain u, this singular control has

order 1.

The generalized Legendre Clebsch condition [19] in a minimization problem with a

singular control of order 1, is

(−1)
∂

∂u

d2

dt2
∂H

∂u
≥ 0,

and is a necessary condition for the singular control to be optimal. Our model has a singular

control of order 1 and satisfies

(−1)
∂

∂u

d2

dt2
∂H

∂u
= −1

∂

∂u

[
d2

dt2
(B + λ5)

]
= (−1)

−2S(λ1 − λ3)c0K

(K + V )3
> 0. �

Note that the numerical simulations will agree with the condition

(λ1 − λ3)> 0, for all t.

The optimality system is the state system and the adjoint system coupled with the

optimal control characterization. Next we illustrate our results by numerically solving the

optimality system.

2.4 Numerical Results

Before we present our numerical results, we discuss our choice for parameters. The pa-

rameters were chosen based upon current literature and communication with Les Real and

Scott Duke-Sylvester. Data indicated that the reproductive rate for mature female rac-

coons is between 1 and 8 kits/mature female/year [8]. Assuming a 50-50 sex rate, we
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Table 2.2: Parameter Values

Parameter Value Units
c0 0.8 day−1

c 0.01 day−1raccoon−1

c1 0.01 day−1

K 1.0 raccoons
α 0.182 day−1

β 0.01 day−1raccoon−1

a 0.006 day−1

b 0.0015 day−1

σ 0.02 day−1

ρ 0.02 none

assume that half the population are mature females giving an approximate rate between

0.5 and 4 kits/raccoon/year. Since this model contains a birth pulse, dividing the extreme

values by 93 days gives a range for the birth rate between 0.005 and 0.04 kits/raccoon/day.

First, we let the birth rate a = 0.006
day . The death rate b was chosen to maintain a disease

free population near the initial size at the end of one year. This disease free case can be

solved explicitly by considering

S′ = (aχΩ − b)S

with solution

S(t) = S(0)exp
[∫

0

t

(aχΩ(τ)− b)dτ

]
or

S(t) = S(0)exp
[
−bt +

∫
0

t

aχΩ(τ)dτ

]
.

Note that S(t) = S(0)e−btea[t1−t0] when t1 ≤ t ≤ 365. A sustainable population is achieved

when a[t1 − t0]− bt = 0. For t = 365 and t1 − t0 = 93, we obtain b = 93a
365 . If the birth rate

a = 0.006, then the death rate b ≈ 0.0015. If b > 0.0015 then the total raccoon population

N will die out. If b < 0.0015 then the total population N grows without bound. Figure 2.1

displays a graph of the population dynamics of raccoons for a duration of 1 year without
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Figure 2.1: One year projection of disease free raccoon population starting on January 1

interaction with the rabies virus starting from an initial population of 1000, i.e. S0 = 1000.

The period of time that infected raccoons are able to transmit the disease ranges from 3

to 14 days [9, 17]. For the following results, we assume the infectious period has a mean of

5.5 days. Therefore the rate α at which an infected raccoon leaves the infected class, 1/5.5,

is approximately 0.182. The rate of infection βI is taken to be 0.01I [29].

The incubation period, the time from infection until a raccoon is infectious (able to

transmit the disease) or recovers, ranges from 18 to 107 days [9]. We assume a 49 day mean

incubation period yielding a rate σ of approximately 0.02. Estimates for the fraction of

animals that develop natural immunity ρ during the infection period have varied from 0 to

35.6% [29, 9]. We assume that 2% of the population develops natural immunity, i.e. ρ 0.02.

Using [17, 9] and the form of our vaccination term in the susceptible equation we take

c0 = 0.8.

Johnston and Tinline [17] also state that 70% of the population will eat the vaccine if

one bait per animal is provided in the range of their home. Therefore, a raccoon population

of 1000 requires a distribution of approximately 714-1000 baits. The authors continue by

estimating that half of all baits distributed are consumed within one week and about 80%

are consumed within two weeks. If 714 baits are distributed, then 357 baits will be depleted

after 7 days with a total of 571 baits consumed after 14 days. Assuming a linear relationship,

we obtain a rate of 31 baits consumed per day. For a population of 1000 raccoons, the rate

that the baits are eaten is at most 0.04 per day. Since the numbers include other animals
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and the possibility that a raccoon may eat more than one bait, the rate used in the model

for raccoons should be less than 0.04. The value of 0.01 was taken for c. We also assume

that baits decay at the same rate as those eaten by the raccoons, i.e. c1 = 0.01.

The graphical results involving the optimal control below were obtained using an iter-

ative method with a 4th-order Runge-Kutta scheme programmed in MATLABTM to solve

the optimality system. Starting with the initial conditions S0, E0, I0, R0, V0 and an initial

guess for the control, forward sweeps with the Runge-Kutta scheme were used to obtain

approximate solutions for the state equations. Using those state values, the solutions of

the adjoint equations were approximated using backward sweeps from the final time con-

dition, λ1(T ) = λ2(T ) = ... = λ5(T ) = 0. The control is updated by using an average

of its previous values and its values from the control characterization. Iterations continue

until convergence occurs, ie., successive values of all variables from current and previous

iterations are sufficiently close.

For the simulations of length 28 days, the grid was taken to be N = 20, 000 and the

tolerance was set at ε = 0.01. If convergence was not achieved, the current values for the

state and adjoint variables were used as initial and final conditions respectively and we

repeated the process until reaching the desired convergence. For our results illustrated

here, this process worked well.

The results that follow include representations of the states as well as the control vari-

ables. To help justify the bang− bang feature of the control, |λ5 +B| was used to verify the

output of the control variable. Since the numerical results show λ1 − λ3 > 0, the singular

case, which has λ1 − λ3 in the denominator, is not ruled out. But in our numerical results,

the singular case does not occur.

Figure 2.2 displays graphs of the populations with the same initial value for S, 1000,

but with initial infected raccoons of 1, 40 and 100 with no control and for a duration of

1 year. Notice that raccoons in the susceptible class first move quickly into the exposed

class and then into the infected class. Only a modest amount of raccoons move into the

recovered class due to very low natural immunity. Notice the result of the birth pulse on

S starting on day 79. Note the horizontal segment in this figure indicates the days of the

28



(a) 1 infectious raccoon

(b) 40 infectious raccoons

(c) 100 infectious raccoons

Figure 2.2: Populations of system 2.1 with initial values of 1, 40 and 100 infected raccoons
and no control. Note the horizontal segment indicates the days of the birth pulse.
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Figure 2.3: Optimal control results of system 2.2 projected for 1 year with I0 = 40, u = 1
for days 1-14, 77-189. B = 10−2

birth pulse.

Figure 2.3 shows the optimal results when vaccine is available during the course of 1 year

beginning on January 1. The geographic area under consideration is assumed to be 100km2

with initial populations of 1000 susceptibles and 40 infecteds, i.e., S0 = 1000, I0 = 40.

It is also assumed that no exposed or immunes are initially present. The cost coefficient

B = 10−2 leads to the vaccine being distributed during the first 14 days of the year. The

optimal strategy suggests resuming the distribution March 18 - July 19 (days 78-189). Note

that after treatment, the immune class R assumes the pattern of the disease free scenario

(figure 2.1).

Attempting to forecast the population dynamics for an entire year leads to several

inherent problems. First, we do not have immigration and emigration in our system. During

a year, some raccoons would come and go, so the model makes more sense for a shorter time

period. Also, a month after the initial infecteds appear, the susceptible population decreases

to very small numbers, and one would expect a time of quick response to stop the disease

spread. Therefore, a duration of 28 days will be used in the numerical simulations that

follow. Figure 2.4 displays a graph of the population dynamics of raccoons for a duration
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Figure 2.4: Disease free raccoon population results of system 2.1 starting on March 1

of 28 days without interaction with the rabies virus. The time period starts on March 1

(the 60th day of the year) with the birth pulse beginning on March 20 (the 79th day of the

year). Like the previous examples, the initial susceptible population is 1000.

With the same initial number of susceptibles, we now introduce 40 infected raccoons on

the 73th day of the year. The time period begins on March 14 for a duration of 28 days with

the birth pulse starting on March 20. Since without any control the susceptibles quickly

decrease in number, a logarithmic scale is used for the susceptibles in order to observe the

effect of the pulse. Figure 2.5 shows the susceptibles quickly moving into the exposed class

and the number of infecteds doubling approximately 12 days into the interval. Note the

relatively small number in the immune class due to natural immunity.

When vaccine and the associated cost are included in the optimal control problem,

the immune class increases due to the vaccination strategy. For example, under the same

starting day and the same initial conditions S0 = 1000, I0 = 40, R0 = 0 = E0 and a cost

coefficient B = 10−4, the number of immunes increases from a maximum of 8 to almost 200.

For this particular cost, the optimal control u is at 1 during days 1−27. Note that the peak

of the exposed class decreases from approximately 850 to less than 60. The final numbers

for the infected class decreases from 80 to less than 6. Note that the numerical results did
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Figure 2.5: State variables of system 2.1 with disease and no control: Simulation begins on
March 14.

not indicate the singular case for this example. The graphical results representing this case

are displayed in figure 2.6a.

With the same starting day, for a cost coefficient B= 10−2 and initial conditions S0 =

1000, I0 = 40, R0 = 0 = E0, the optimal control u is at 1 during days 1 − 22. While

the results are similar for the state variables, the control decreases with the higher cost

coefficient, being at 1 from 27 days to 22 days, due to the higher cost. Corresponding

results are shown in figure 2.6b. For the larger cost coefficient of B = 1 and the same initial

conditions, the control u is at 1 for days 1−9. We observe the expected result that a larger

cost of distributing the vaccine corresponds to fewer days of distribution of the control. The

associated graphical results are displayed in figure 2.6c.

Additional simulations of a susceptible population interacting with 1, 40 and 100 in-

fected raccoons with a cost coefficient of B = 10−2 were completed using a start date

approximately one week before the beginning of the birth pulse which corresponds approx-

imately with March 13. These results showed that increasing I0 decreases the number of

immunes at the end of the 28 day interval however the number of days of distributing the

vaccine remain approximately the same for all three cases. If the cost is increased to 10,

i.e. B = 10, the control has similar results to those with B = 1, however the vaccine

is distributed for only the first five days. For B = 50, the vaccine is further restricted
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(a) B = 10−4

(b) B = 10−2

(c) B = 100

Figure 2.6: Optimal control results of system 2.2 for (a)B = 10−4, (b)B = 10−2, (c)B = 100
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to the first two days with a noticeable reduction in the number of immunes. The findings

illustrating all three cases are shown in figure 2.7.

Figure A.1 show the results if the 28 day trial takes place during a time of the year

without encountering a birth pulse (a), when the interval lies entirely within a birth pulse

(b), and when the time interval initially begins on March 14 without a birth pulse but

encounters the pulse after approximately 1 week into the interval (c). The control is used

for nearly the entire 28 days for cases (b) and (c) when births are encountered. In the absence

of births for any time during the entire 28 day interval, the amount of vaccine needed for

distribution is approximately half as many as when the same duration lies within or overlaps

the birth pulse. Note that (c) is the result from figure 2.6b.

Figure A.2a shows the results if the 28 day interval begins on March 1 approximately

3 weeks before the birth pulse. In this case vaccine is distributed for 12 days after the

infection is detected and then resumes March 21-24, at the beginning of the birth pulse.

If the outbreak is detected a month before the birth pulse, then the optimal amount of

vaccine is distributed for the first 12 days only (figure A.2.b). In either case, results suggest

starting treatment immediately for approximately two weeks. Baits are made available a

second time coinciding with the addition of new susceptible raccoons into population due

to the birth pulse. This case would be important to form a policy for doing a second

round of vaccination when the birth pulse starts. Note that the susceptible graph displays

a horizontal line representing the birth pulse beginning around March 21 corresponding to

day 21.

Next we change the upper bound of the controls. Figure A.3 shows the results when the

upper bound for the control is increased, i.e. 0 ≤ u ≤ 5. If the 28 day interval begins on

March 14, the optimal distribution occurs during the first 24 days (figure A.2a). Beginning

on March 1, the distribution occurs the first 10 after the infection is detected and then

resumes briefly for March 21-23, a total of 13 days (figure A.3b). If the interval occurs a full

month before the birth pulse, the vaccine is distributed on February 20 - March 2 and then

on day 4 (figure A.3c). Each of these cases has fewer days of vaccine distribution due to a

larger upper bound for u. Since the variable u represents a rate, an increased upper bound
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(a) 40 infectious raccoons, B=1

(b) 40 infectious raccoons, B=10

(c) 40 infectious raccoons, B=50

Figure 2.7: Comparison of system 2.2 with varying cost coefficients beginning on March 14,
seven days before the birth pulse.
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of five for this example represents distributing five times the number of baits per unit time

than was distributed for the prior simulations.

Since some parameters have a range of possible values [9], additional simulations were

made using various values for the birth and death rates. For example, Coyne, et. al. gives

a reproductive rate of 1.34 kits/raccoon/year. Dividing this number among a 93 day birth

pulse gives approximately 0.014/raccoon/year. Recall that for the disease free case, the

susceptible differential equation is

S′ = (aχω − b)S

with solution S(t) = S(0)e−btea[t1−t0] when t1 ≤ t ≤ 365. For t = 365 and t1 − t0 = 93, we

obtain b = 93a
365 . If the birth rate a = 0.014, then the death rate b ≈ 0.004. If b > 0.004 then

the total raccoon population N will die out. If b < 0.004 then the total population N grows

without bound. If the infectious period lasts for 14 days, this will yield an approximate

value of 0.07 for α. Other parameters remained unchanged. The new set of parameter values

are shown in Table 2.3.

The disease free population is shown in figure A.4 showing an equilibrium for the rac-

coons after one year. Note that the maximum number of raccoons for the year is significantly

larger than with the old parameters.

Figure A.5 shows no control with the new parameter values. The recovered class shows

the only noticeable change in the population dynamics compared to the old parameters in

figure 2.2 reflecting a decrease in the number of raccoons near the end of the year.

If vaccine is available over a year, the optimal strategy distributes the control for days

75-191 when B = 10−2. Figure A.6 displays the results for the new parameters and may be

compared to figure 2.3 using the first set of parameters. The most significant difference is

seen in the omission of the control until day 75.

Table 2.3: New Parameter Values

Parameter Value Units
α 0.07 day−1

a 0.014 day−1

b 0.004 day−1
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As before, we now focus on 28 days for our time interval. With the new parameters,

figure A.7 shows the disease free population for 28 days beginning on March 1. These results

may be compared with those of figure 2.4 using the old parameters.

Forty infected raccoons introduced into the susceptible population on March 14 (the

73th day of the year) for 28 days yields a greater number of infecteds across time. The

results without control are displayed in figure A.8. Note that more infected individuals

occur with the new parameters versus the number of infected in figure 2.5 using the first

set of parameters.

With the new parameters, more infected individuals occur compared to the results of

figure 2.6a with a cost coefficient of B = 10−4. The optimal control u is at 1 during days

1−27. With B = 10−2 the optimal control u is at 1 during days 1−25, which is 3 days more

than results with the old parameters. Again, more infecteds occur. For a cost coefficient

B= 100 and the same initial conditions, the control u is at 1 for days 1 − 12, three more

days than the results with the old parameters. The results are displayed in figure A.9 a,b,c,

respectively.

Figure A.10a show the results if the 28 day interval takes place during a time of the

year without encountering a birth pulse. The new parameters give 2 fewer days of control

compared to the results in figure A.1a. When the interval lies within a birth pulse (b), the

number of days distributing the control is the same as the results in figure A.1b. Part (c)

gives the same number of days for the control distribution as in figure A.1c.

Now we change the date that the virus is detected to March 1 with figure A.11a showing

the corresponding results. In this case vaccine is distributed 1-10, for 12 days after the

infection is detected and then resumes March 19-25, at the beginning of the birth pulse,

one day more than the old parameters. If the outbreak is detected on February 20 avoiding

overlap with the birth pulse, then the optimal amount of vaccine is distributed for the first

10 days only, figure A.11b, (two days fewer than the old parameters). One style of control

works for several ranges of parameters. These results should be compared with figure A.2

where fewer infected are shown for both cases.

Using the new values a = 0.014/day for the birth rate and b = 0.004/day for the death
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rate with the old value for the time a raccoon spends infected α = 0.7 yields results (figure

A.12) more similar to the old parameter values (figure A.2a) than the new set of values

(figure 2.11a). However the control is applied an additional four days including days 1-13

and 20-26.

2.5 Limited Vaccine

We now suppose a limited amount of vaccine is available for distribution. This limitation

may be included in the above model by introducing a new state variable z(t) such that

z(t) =
∫

0

t

uds,

with

z(T ) =
∫

0

T

uds = C,

where C =constant. The new state equation becomes

z′ = u, with boundary conditions z(0) = 0, z(T ) = C.

The Hamiltonian becomes

H =λ5u + I + λ1

[
−

(
βI + b +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1]

]
(2.16)

+ λ2[βI − σ + b] + λ3

[
σ(1− ρ)E − bR +

c0V S

K + V

]
+ λ4[σρE − αI] + λ5[−V (c(S + E + R) + c1)]

+ λ6u,

since the objective functional is

min
u

∫ T

0
I(t)dt,
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where the set of all admissible controls is

U = {u : [0, T ] → [0, 1]|u is Lebesgue measurable}.

The adjoint equations in (2.5) above are included in the new adjoint system with the

addition of

λ′6 = −∂H

∂z
= 0,

with no boundary conditions, since z has two boundary conditions.

The optimal control may be characterized as

u =


1 if λ5 + λ6 < 0

0 if λ5 + λ6 > 0

us if λ5 + λ6 = 0

(2.17)

where the singular control is given by

us =− (K + V )
2

[βI − aχ(t)[t0,t1]] +
c0(K − V )

2
+ a

(K + V )
2S

(E + R)χ(t)[t0,t1] (2.18)

+ V [c(S + E + R) + c1] +
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
+

Bc(K + V )3

2c0K(λ1 − λ3)
(b + aχ(t)[t0,t1])

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE + (b + aχ(t)[t0,t1])(E + R)]

as argued above.

After a desired target value for z(T ) was chosen, the code was executed repeatedly for

a range of values of λ′6 until the z(T ) was sufficiently close to the target value. The target

was taken to be z(T ) = 10 for the simulations below.

Figure A.13 shows the results with no birth pulse (a) and the result with the 28 day

interval beginning on day 73 which is 6 days before the start of the birth pulse (b). The

results show that the optimal control may be maintained during the first 10 days when no
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birth pulse occurs in case (a), but requires a brief cessation in the middle of case (b).

2.6 Conclusion

The models developed and analyzed here included several new aspects to incorporate more

realistic assumptions about rabies spread in racoons, with emphasis on developing optimal

control schemes to determine the “best” methods to constrain the spread of the disease

once it is detected. The new components incorporated include an exposed class, an explicit

birth pulse which occurs seasonally, and dynamics of the vaccine packets associated with

uptake by racoons as well as loss due to other factors. The key results derived illustrate

the dependence on the optimal timing of distribution of vaccine packets on the timing of

disease detection relative to the birth pulse. While the exact optimal timing results vary

with parameter assumptions, there are a number of general results which appear to be

rather robust based upon the illustrations presented here and numerous other cases also

investigated.

One general result concerns a type of “rule of thumb” arising from investigation of the

effect of the birth pulse on the timing of vaccine delivery which may be useful in developing

policies for vaccine distribution following an outbreak detection. If the infection is detected

near the start of the birth pulse, the optimal control distributes the vaccine immediately for

a certain period of time (see figure A.1c). If the infection is detected a few weeks before the

birth pulse, the optimal distribution of vaccine begins immediately, stops briefly and then

resumes for a certain period of time (see figure A.2a). If the distribution starts at about

March 1 or about 3 weeks before the start of the birth pulse, then under most situations

(e.g. for most parameter sets investigated) a second round of vaccine distribution is optimal

after the start of the birth pulse.

If the birth pulse occurs soon after the disease detection and the start of the vaccination

distribution, the optimal treatment is necessary for a longer period of time (see figure A.1c).

Thus if the disease were detected and distribution started at about March 14, more days

of vaccine distribution are optimal than if the detection occurred on an earlier date. The

closer the detection of the rabies outbreak is to the start of the birth pulse, the longer the
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period of optimal distribution of vaccine is projected to be.

For other parameters fixed, the optimal number of days to distribute the vaccine de-

creases with higher cost. The general qualitative results noted above arise as well when

costs are accounted for in a different manner, by assuming there is a fixed total amount of

effort allowed on vaccine distribution (see figure 2.16a). The qualitative behavior of optimal

solutions appears to be robust relative to differing assumptions about vaccine distribution

costs.

Our examples focused on a 28 day total duration for the control period. In this situation,

the number of infecteds is never completely eliminated, but if the optimal policy for vaccine

distribution is followed, more raccoons join the immune class and that number exceeds the

population of the infected class. The period for which the optimal solution is calculated can

readily be extended using the same methodology presented here, but in this case additional

assumptions must be made about immigration and emigration rates, which were ignored

here due to the short duration of the time period considered. Sufficient input of new

susceptibles due to immigration can effectively act as another ”birth pulse” however and

thus if net immigration is positive over some extended time period, the effect would be

similar to a longer birth pulse. If net immigration included infected or exposed individuals,

then we expect that the period of optimal vaccine distribution would be lengthened, though

we have not investigated this situation.

A major use of general models such as those presented here is to evaluate under simpli-

fying assumptions what the “best” policies would be to limit disease spread. As such they

also allow elaboration of how much “worse” the impact of the disease would be (measured

for example in terms of total number of deaths resulting from disease over the chosen time

horizon) if the policy chosen were off by a small or large amount from the optimal one

(measured for example in terms of the period for which the vaccine is distributed). This is

useful for policy decisions in which there are uncertainties about the details of demograph-

ics or transmission assumptions in that they can provide a basis for determining how much

effort might be effectively devoted to either obtaining more accurate data (e.g. through

surveillance methods) rather than expending effort on further vaccination. Expansion of
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the methods developed here to account for the trade-offs in expenditure for surveillance ver-

sus vaccination could well be a very important contributor to establishing policy decisions

regarding wildlife infectious disease management.
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Chapter 3

An Epidemic Model of Rabies in

Raccoons with Density Dependent

Mortality

3.1 Introduction

Natural death rates are frequently considered to be density dependent. For most common

diseases in humans in developed countries, the assumption of a constant death rate is

reasonable. For diseases among animal populations, this assumption may be unrealistic.

Models that include a density dependent death rate are believed to be more realistic since

infected animals die at higher rate than their noninfected counterparts and because of

limited resources available to competing populations [16]. Similar considerations may hold

in diseases in developing countries.

Greenhalgh investigated the structure and stability of equilibria using an ODE epidemic

model for animal populations with a death rate, f(N), dependent on the size of the popula-

tion [16]. This compartmental epidemic model was shown to have a threshold condition for

various equilibrium values. Depending on parameters and the structure of f(N), the model

may have one, two or three equilibria. His simulations show that the less harmful diseases

may persist but diseases that cause more deaths are not as likely to continue. Roberts

43



discussed models with density-dependent birth, death, contact, and vertical transmission

rates in wild-animal populations. The susceptible and infected classes form one model and

produced at most four steady-state solutions one of which is globally asymptotically stable

depending on the choice of parameters. The possibility of the endemic solution becoming

unstable occurs when an exposed class is included in the dynamics [27]. In another density-

dependent paper [4], control strategies are considered; sterilization and culling are shown

to be more effective than vaccination when R0 > 3 or when deaths are density dependent.

If R0 < 3 in the presence of density-dependent recruitment, culling or vaccination is more

effective.

Again, our control strategy is the distribution of vaccine baits. We want to investigate

how the optimal control results from the previous chapter change with a density dependent

death rate. In our previous model the death rate is not density dependent. This chapter

discusses a version of the previous model, with density dependence in the natural death

terms.

First, let’s consider the dynamical equation for the disease free population with a density

dependent death rate:

S′ = aSχ(t)[t0,t1] − bS2

where S, a, b are defined as in the previous chapter and bS2 reflects the density dependent

death rate. The S class is able to give birth during the spring time of the year and the

birth rate is represented symbolically as

aS(t)χ(t)[t0,t1],

where χ(t)[t0,t1] is the characteristic function of the time interval [t0, t1] corresponding to

March 20 and June 21, respectively.

Next we will discuss the effects of exposure to the rabies virus on the model when vaccine

is and is not available.
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3.2 The Infected Raccoon Population

We again use an annual birth pulse, the periodic effect of which is a kind of forcing that

occurs at the same time each year. It is assumed that raccoons give birth during the spring

time of the year, March 20 - June 21. For a 365 day year starting from January 1, March

20 is day 79 and June 21 is day 172. The entire birth pulse is 93 days. Using the same

notation as the previous chapter, there are four classes of raccoons that may be described

by the system:

S′ = −βIS + a(S + E + R)χ(t)[t0,t1] − bS(S + E + R) (3.1)

E′ = βIS − σE − bE(S + E + R)

R′ = σ(1− ρ)E − bR(S + E + R)

I ′ = σρE − αI,

where the birth pulse occurs on the set

ω =
∞⋃

k=0
[tk, tk+1], with tk = 79 + 365k and tk+1 = 172 + 365k

and where −bS(S + E + R), −bE(S + E + R), and −bR(S + E + R) are the natural death

rates. The other terms are the same as in the previous chapter and we again assume that

Ω = [t0, t1].

If the right hand sides of the state equation are measurable in t with bounded state

variables, there exist a solution to the system (3.1) ([22], by Theorem 9.2.1).

We assume E(0) = R(0) = 0 and that S(0) and I(0) are positive. Positivity of the state

variables may be shown to be positive using arguments similar to those of the previous

chapter.

Note that since all the state variables are non-negative for all t ≥ 0, then N ′ ≤ aN
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implies the boundedness of N(t) for any finite time interval. Thus all the state variables

are also bounded.

3.3 Introduction of Vaccine

When vaccine is introduced the system becomes:

S′ = −
(

βI +
c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1] − bS(S + E + R) (3.2)

E′ = βIS − σE − bE(S + E + R)

R′ = σ(1− ρ)E − bR(S + E + R) +
c0V S

K + V

I ′ = σρE − αI

V ′ = −V [c(S + E + R) + c1] + u,

with initial conditions S(0) = S0 > 0, E(0) = E0 = R(0) = 0, I(0) = I0 > 0.

As before, the infected population and the cost of the vaccine is to be minimized with

the corresponding objective functional

min
u

∫ T

0
[I(t) + Bu(t)]dt,

where the set of all admissible controls is

U = {u : [0, T ] → [0, 1]|u is Lebesgue measurable}

and B is a weight factor balancing the two terms. When B is large, then the cost of

implementing the control is high.

Arguments similar to chapter 1 may be used to show the existence, the boundedness,

and positivity of the the state variables.

Now we turn to deriving the optimality system, again using Pontryagin’s Maximum
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Principle [25].

3.4 Finding an Optimal Control

As before the solutions of the state system exists and are bounded and non-negative. Also

one can show there exists an optimal control. Now we derive the necessary conditions that

an optimal control must satisfy.

The Hamiltonian grouped in terms of u is

H =(B + λ5)u + I + λ1

[
−

(
βI +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1] − bS(S + E + R)

]
(3.3)

+ λ2[βIS − σE − bE(S + E + R)] + λ3

[
σ(1− ρ)E − bR(S + E + R) +

c0VS
K + V

]
+ λ4[σρE − αI] + λ5[−V (c(S + E + R) + c1)].

Theorem 3.4.1. Given an optimal control u and corresponding state solutions S, E, I,R

and V , there exists adjoint functions λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) satisfying the adjoint

system:

λ′1 = λ1

[
βI +

c0V

K + V
− aχ(t)[t0,t1] + b(2S + E + R)

]
(3.4)

+ λ2(bE − βI) + λ3(bR− c0V

K + V
) + λ5cV

λ′2 = λ1[bS − aχ(t)[t0,t1]] + λ2[σ + b(S + 2E + R)] + λ3(bR− σ(1− ρ))− λ4σρ + λ5cV

λ′3 = λ1[bS − aχ(t)[t0,t1]] + λ2bE + λ3b(S + E + 2R) + λ5cV

λ′4 = −1 + λ1βS − λ2βS + λ4α

λ′5 =
(λ1 − λ3)c0SK

(K + V )2
+ λ5

[
c(S + E + R) + c1

]

with λi(T ) = 0, for each i, and
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u =


M1 if λ5 + B < 0

0 if λ5 + B > 0

us if λ5 + B = 0

(3.5)

where the singular control is given by

u =− (K + V )
2

[βI − aχ(t)[t0,t1]] + a
(K + V )

2S
(E + R)χ(t)[t0,t1] (3.6)

+ V [c(S + E + R) + c1] +
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
− Bc(K + V )3

2c0K(λ1 − λ3)
(aχ(t)[t0,t1] − b(S + E + R))

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b(S + E + R))(E + R)]

provided 0 ≤ us ≤ 1.

Proof: Suppose u is an optimal control and S, E, I,R, V are corresponding state solu-

tions. Using the result of Pontryagin’s Maximum Principle[25], there exists adjoint variables

λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) satisfying

λ′1 = −∂H

∂S
(3.7)

= λ1

[
βI +

c0V

K + V
− aχ(t)[t0,t1] + b(2S + E + R)

]
+ λ2(bE − βI) + λ3(bR− c0V

K + V
) + λ5cV

λ′2 = −∂H

∂E
= λ1(bS − aχ(t)[t0,t1]) + λ2[σ + b(S + 2E + R)]− λ3(σ(1− ρ)− bR)− λ4σρ + λ5cV

λ′3 = −∂H

∂R
= λ1(bS − aχ(t)[t0,t1]) + λ2bE + λ3b(S + E + 2R) + λ5cV

λ′4 = −∂H

∂I
= −1 + λ1βS − λ2βS + λ4α

λ′5 = −∂H

∂V
=

(λ1 − λ3)c0SK

(K + V )2
+ λ5

[
c(S + E + R) + c1

]
.

The behavior of the control may be obtained by differentiating the Hamiltonian with

respect to u: at time t, Hu = B + λ5. For this minimization problem,

u = 0 when Hu > 0 and
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u = 1 when Hu < 0.

Next we consider the singular case. If Hu = 0 on some non-empty open interval (a1, b1)

of time, then λ5 = -B on (a1, b1) and λ′5 = 0. Substitution into the respective adjoint

equation and rearranging gives

(λ1 − λ3)c0SK

(K + V )2
= B

[
c(S + E + R) + c1

]
. (3.8)

Since c1 is a positive constant and the state variables are positive for t > 0, equation

(4.6) implies

(λ1−λ3)c0SK
(K+V)2

> 0

or

(λ1 − λ3)> 0, for all t ∈ (a1, b1).

Differentiating λ′5 with respect to t yields

λ′′5 =
(λ1 − λ3)c0K

(K + V )2

(
S′− 2SV ′

K + V

)
+

c0SK(λ′1 − λ′3)
(K + V )2

+λ5c(S′+E′+R′)+λ′5[c(S+E+R)+c1].

(3.9)

Substituting for V ′ and using λ′5 = 0 gives

λ′′5 =
(λ1 − λ3)c0K

(K + V )2

(
S′ +

2SV [c(S + E + R) + c1]− 2Su

K + V

)
(3.10)

+
c0SK(λ′1 − λ′3)

(K + V )2
+ λ5c(S′ + E′ + R′).

Since λ′′5 = 0 on (a1, b1), solving the above equation for the u term,

2Sc0K(λ1 − λ3)
(K + V )3

u =
(λ1 − λ3)c0K

(K + V )2
S′ +

2c0SV K(λ1 − λ3)[c(S + E + R) + c1]
(K + V )3

(3.11)

+
c0SK(λ′1 − λ′3)

(K + V )2
+ λ5c(S′ + E′ + R′).
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and solving for u,

u =
(K + V )S′

2S
+V [c(S+E+R)+c1]+

(K + V )(λ′1 − λ′3)
2(λ1 − λ3)

+
(K + V )3

2c0SK(λ1 − λ3)
λ5c(S′+E′+R′).

Note that since S(t) is positive, division by S is allowed.

Now consider

S′ + E′ + R′ = −σρE + [aχ(t)[t0,t1] − b(S + E + R)](S + E + R)

and

λ′1 − λ′3 = λ1

(
βI + b(S + E + R) +

c0V

K + V

)
− λ2βI − λ3

(
c0V

K + V
+ b(S + E + R)

)
(3.12)

= (λ1 − λ3)
(

c0V

K + V
+ b(S + E + R)

)
+ (λ1 − λ2)βI.

Substitution into the expression for u with λ5 = −B,

u =
(K + V )

2S

[
−

(
βI + b(S + E + R) +

c0V

K + V

)
S + a(S + E + R)χ(t)[t0,t1]

]
(3.13)

+ V

[
c(S + E + R) + c1

]
+

(K + V )
2(λ1 − λ3)

[
(λ1 − λ3)

(
c0V

K + V
+ b(S + E + R)

)
+ (λ1 − λ2)βI

]
− Bc(K + V )3

2c0SK(λ1 − λ3)

[
−σρE + (aχ(t)[t0,t1] − b(S + E + R))(S + E + R)

]
.

Distributing where appropriate,
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u =− (K + V )
2

(βI + b(S + E + R))− c0V

2
+ a

(K + V )
2S

(S + E + R)χ(t)[t0,t1] (3.14)

+ V [c(S + E + R) + c1] +
c0V

2
+

(K + V )b(S + E + R)
2

+
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b(S + E + R))(S + E + R)]

Grouping like terms,

u =− (K + V )
2

βI + a
(K + V )

2S
(S + E + R)χ(t)[t0,t1] + V [c(S + E + R) + c1] (3.15)

+
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
+

Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b(S + E + R))(S + E + R)]

Continuing to group terms, the singular control is:

u =− (K + V )
2

[βI − aχ(t)[t0,t1]] + a
(K + V )

2S
(E + R)χ(t)[t0,t1] (3.16)

+ V [c(S + E + R) + c1] +
(K + V )(λ1 − λ2)βI

2(λ1 − λ3)
− Bc(K + V )3

2c0K(λ1 − λ3)
(aχ(t)[t0,t1] − b(S + E + R))

+
Bc(K + V )3

2c0SK(λ1 − λ3)
[σρE − (aχ(t)[t0,t1] − b(S + E + R))(E + R)]

The Legendre Clebsch condition [19] in a problem with a singular control of order 1, is

(−1)
∂

∂u

d2

dt2
∂H

∂u
≥ 0.

Since the control u occurs in the equation λ5
′′ but not in λ5

′ our model satisfies the

same condition

(−1)
−2S(λ1 − λ3)c0K

(K + V )3
> 0,

which means the second order necessary condition is satisfied and the singular control could

occur. �
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Figure 3.1: One year projection of disease free raccoon population starting on January 1

The optimality system is the state system and the adjoint system coupled with the

optimal control characterization. Next we illustrate our results by numerically solving the

optimality system. We note that the numerical results below will agree with the condition

(λ1 − λ3)> 0, for all t ∈ (a1, b1).

.

3.5 Numerical Results

The second set of parameter values from chapter 2 are used again in this chapter. In

particular:

a = 0.014/day birth rate (constant per-capita)

b = 0.004 ×10−3 /day death rate (constant per-capita)

1/α = 1/0.071 average time raccoon spends infectious

1/σ = 1/0.02 average time from infection until raccoon dies or recovers

See Table 2.2 for the other parameter values.

Figure 3.1 displays a graph of the population dynamics of raccoons for a duration of 1

year without interaction with the rabies virus starting from an initial population of 1000,

S0 = 1000. The impact of the birth pulse can be seen beginning on day 79 and continuing

for approximately 3 months. Note that at the end of one year the population is near the

initial condition of S0 = 1000.
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The density dependent death rate b was based on work by Scott Duke-Sylvester. Recall

that the death rate b is 0.004 in the non-density dependent case. Thus in a population of

1000 raccoons with density dependent deaths, the death rate becomes 0.004 × 10−3 per

raccoon. Other parameters remain unchanged. Using the same iterative method as in the

second chapter on the optimality system, we compare various cases to our results from the

previous chapter. Again, in our numerical results, the singular case does not occur.

Figure 3.2 displays graphs of the populations with the same initial value for S but with

initial infected raccoons of 1, 40 and 100 for a duration of 1 year. A logarithmic scale is

used to more clearly show the dynamics of the susceptible population including the effect

of the birth pulse. Note the modest number of the recovered class due to natural immunity.

This model assumes that a percentage of raccoons will acquire immunity naturally by a

factor of 1− ρ. Coyne indicates that the threshold density number above which the disease

will persist in a population is directly proportional to the percentage of raccoons acquiring

immunity after being infected [9]. Also, as the number of raccoons that develop natural

immunity increases, the less the population deviates from the carrying capacity. Dynamics

of the infected population are shown in figure 3.3 with different values for the rate of natural

immunity 1− ρ. Without natural immunity, ρ = 1, a recurrence of rabid raccoons occurs

every 4 to 5 years as shown in figure 3.3a. If 1% or 2% of the of the population acquires

natural immunity, a more frequent occurrence of the infected peaks is shown in 3.3b and

3.3c respectively. For the simulations that follow, ρ = 0.02.

Figure 3.4 displays an optimal strategy for one year when the rabies virus is detected

on January 1 and vaccine is available with a cost coefficient of B = 10−2. The geographic

area under consideration is again large enough for a susceptible population of 1000 with

40 infecteds, ie., S0 = 10000, I0 = 40. It is also assumed that no exposed or immunes are

initially present. These results may be compared with the non-density dependent case of

figure A.6 which has the same initial conditions and value of B. Note for figure 3.4 the

distribution begins 2 days later and ends 6 days earlier as compared to figure A.6. For the

second round of vaccination, the control begins on the same day but ends four days earlier.

We now focus on the short term behavior for a 28 day time period beginning on March
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(a) 1 infectious raccoon

(b) 40 infectious raccoons

(c) 100 infectious raccoons

Figure 3.2: Populations of system 3.1 with initial values of 1, 40 and 100 infected raccoons
and no control
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(a) ρ = 1.0

(b) ρ = 0.99

(c) ρ = 0.98

Figure 3.3: Infected Populations of system 3.2 with varying natural immunity
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Figure 3.4: Optimal control results of system 3.2 projected for one year with I0 = 40. u = 1
for days 77-185. B = 10−2.

14, the 73rd day of the year. The birth pulse begins one week later on March 20. With

the same number of susceptibles, S0 = 1000, no exposed or immunes, and using the cost

coefficient B = 10−2, we now introduce one, forty, and one-hundred infected raccoons

into the population withs results displayed in figure 3.5. In all three cases, the control

is implemented during a 25 day interval. As the number of initial infecteds increase, day

28 shows a larger number of infecteds and a smaller number of recovereds. Since the

susceptibles quickly decrease in number, a logarithmic scale is used for the susceptibles in

order to observe the effect of the pulse. The susceptible graph again displays the birth pulse

with a horizontal line.

Continuing with I0 = 40 and B = 10−2, figure 3.6 show the results if the 28 day

interval takes place during a time of the year without encountering a birth pulse (a), when

the interval lies within a birth pulse (b), and when the time interval initially begins without

a birth pulse but encounters the pulse 6 days into the interval (c). Note that (c) is the

result from figure 3.5b. Part(a) shows the results beginning on February 20 and ending

on March 20, the first day of the birth pulse suggesting that relatively few days are need

for distributing vaccine when seasonal births are not anticipated in the near future. When
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(a) 1 infectious raccoon

(b) 40 infectious raccoons

(c) 100 infectious raccoons

Figure 3.5: Populations of system 3.2 using initial values of 1, 40 and 100 infected raccoons
with control
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the 28 day interval lies within a birth pulse or begins a week before births occur (March

14), a greater number of days are needed for vaccine distribution. These results are similar

to the corresponding non-density dependent results for both sets of parameters discussed

in chapter 2 (figures A.1 and A.10). Thus the similar optimal control results for different

population models shows the versatility of a common strategy.

If the 28 day interval occurs 2 weeks before the birth pulse begins then vaccine is

distributed for the first 11 days, and after a brief cessation is resumed for days 21-26. Note

that the second round starts one day after the birth pulse begins. If infected raccoons are

detected 3 weeks before the pulse, only the first 10 days is used for distributing the vaccine,

similar to the case above where no pulse occurs at all. These results are shown in figure

3.7. Figure A.11 shows the comparable non-density dependent results, which contain a few

more days of applying vaccine than the density-dependent case.

Increasing the upper bound for u decreases the optimal number of days for vaccine

distribution. Figure 3.8 displays results for 28 day interval beginning on March 14 (3.8a),

March 1 (3.8b), and February 20 (3.8c). Note in particular, part b shows the vaccine

distribution for days 1-9 and 19-26. This time the vaccination begins the day before the

start of the birth pulse on March 20. Also, for figure 3.8c the 28 day interval ends on March

20 at the start of the birth pulse and therefore does not need another round of vaccine. Each

of these cases has fewer days of vaccine distribution due to a larger upper bound for u. The

density dependent case shows that slightly fewer days of control are needed as compared to

figure A.10 (a) and (c).

3.6 Conclusions

Taking account of different mortality assumptions, through inclusion of density-dependence

in this model component, did not qualitatively change the nature of the optimal control

solution for vaccine distribution. This robustness of the optimal solution for alternative

model forms was only investigated for a few parameter sets however, so there may be

situations in which alternative assumptions about mortality have larger qualitative impacts.

Our results do provide some hope however that even if the exact demographic details of
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(a) u = 1 for days 1-9. B = 10−2

(b) u = 1 for days 1-25. B = 10−2

(c) u = 1 for days 1-25. B = 10−2

Figure 3.6: Control results of system 3.2 for a 28 day interval:(a) without a birth pulse. (b)
during a birth pulse. (c) beginning on day 73 (shortly before the birth pulse).
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(a) u = 1 for days 1-11, 21-26. B = 10−2

(b) u = 1 for days 1-11. B = 10−2

Figure 3.7: Control results of system 3.2 for a 28 day interval:(a) beginning March 1. (b)
beginning February 20.
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(a) u = 5 for days 1-25. B = 10−2

(b) u = 5 for days 1-10, 21-25. B = 10−2

(c) u = 5 for days 1-10. B = 10−2

Figure 3.8: Populations results of system 3.2 with a 28 day interval:(a) beginning March
14. (b) beginning March 1. (c) beginning February 20.
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population dynamics are not well-specified, the general patterns of optimal control would

still apply.

One of the few differences between the models of chapter 2 and 3 include a non-decreasing

trend in the recovered class near the end of the year in figure 3.2 as compared to figure 2.2.

Figure 3.4 is similar to figure 2.3 except for the density dependent recovered class which

shows a more gradual increase in the population. The density dependent case also has fewer

days of the control and then only at the beginning of the birth pulse. Similar dynamics can

also be seen when a 28 day interval is considered as demonstrated in figures 3.7 and A.2. In

general, all cases considering the 28 day interval indicate to begin treatment immediately

for a period of time and then resuming implementation of the control if a birth pulse is

anticipated. It should be noted that we only investigated the type of density dependence

deaths of the form S(S + E + R), E(S + E + R), R(S + E + R) and other types of density

dependence may used for further research.

The assumption of natural immunity affects the population dynamics including the

reoccurrence of infected individuals. When natural immunity does not exist, a second wave

of infection occurs after approximately 51
2 years (see figure 3.3a). When 1 percent of the

population acquires natural immunity, the infection reappears 5 times during the same time

interval (figure 3.3b). If 2 percent of the population acquires natural immunity the same

oscillating pattern occurs as seen in figure 3.3b but with a larger amplitude (figure 3.3c).
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Chapter 4

An Epidemic Model of West Nile

Virus

4.1 Introduction

West Nile virus (WNV) is a single-stranded RNA virus of the genus Flavivirus and the

family Flaviviridae. The virus is spread by female mosquitos that feed on infected birds

such as Blue jays and crows [10]. The mosquitos in turn make contact with humans causing

the potential for sickness and deaths. There is no transmission of infection directly between

birds. West Nile virus is different from some other mosquito-borne diseases in that it is a

cross-infection between birds and mosquitoes and the birds can travel with no natural (or

spatial) boundaries. The potential for an epidemic is compounded due to the fact that birds

are not constrained to a particular location. Attempts at containing the spread of infection

sometimes takes the form of killing the mosquitos or applying insect repellant to humans.

Since the detection of the virus in the West Nile district of Uganda in 1937 (Smithburnit et

al., 1940), the disease has spread outward making its arrival to North America in 1999 [7].

WNV is a type of vector-borne infectious disease that is carried by mosquitos from one

host to another [15]. Recent studies have considered bird or human hosts. Wonham inves-

tigates the transmission of WNV between mosquitos and birds for a single season using a
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SIR system of ordinary differential equations. That paper applied analytical and graph-

ical methods that determines the proper control strategies for each group and calculates

the disease reproduction number R0. Simulations show that mosquito control reduces the

chances of an outbreak while the chances are increased when using a bird control strategy

[36]. Cruz-Pacheco et. al. presents an SIR model that compares mosquitos and various

species of birds yielding different R0 values [10]. Parameters are given for various birds

species including Blue jay, Common grackle, House finch, American crow, House sparrow,

Ring-billed gull, Black-billed magpie, and Fish crow. The ODE system used by Bowman,

et al., [7] includes humans in a single season mosquito-bird cycle. Mosquito reduction and

personal protection strategies are used to prevent the spread of infection. The resulting

R0 values are also calculated to determine the stability of equilibria. Gourley presents an

age structured model distinguishing between adult and juvenile populations in both sus-

ceptible and infected hosts. Adult mosquitos are considered to be the vector. A system of

reaction-diffusion equations are also derived that shows the spatial spread of the infection

[15].

This project is the first ODE model that uses optimal control to minimize the spread

of WNV. The two controls represent the level at which pesticide is applied to the mosquito

population and the prevention efforts to minimize human-mosquito contacts. The next

section will discuss the model, including the dynamics of the mosquito, bird and human

populations as well as appropriate optimality conditions. Section 3 gives a brief description

of the basic reproduction number R0. Proposed strategies based on numerical computations

are presented in section 4. Section 5 summarizes the results and offers areas for further

investigation.

4.2 Model Formulation

We present a model that extends the work of Bowman et. al. [7] to include control variables

designed to limit the number of mosquitos and infected humans and to include density

dependent mortality and recruitment rates. The notation and parameters for this model can

be found in Table 4.1. Let NM , NB and NH represent the total number of mosquitoes, birds
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and humans in a given community, respectively. The infected female mosquito is divided

into susceptible Ms and infected Mi groups. The quantity b1 = b1(NM , NB, NH) describes

the per capita biting rate of mosquitoes on birds per unit time, and b2 = b2(NM , NB, NH)

is the per capita biting rate of mosquitoes on humans per unit time,

b1 =
bNB

NB + NH

b2 =
bNH

NB + NH
.

(4.1)

The term, NB + NH , is the number of hosts (birds and human) for mosquitos.

The model includes immigration of birds and humans. The birth rates and the immi-

gration rates are

γMNM , λB + ρNB, and λH + γHNH

for the mosquitos, birds and humans respectively, where λB and λH are immigration rates

and γMNM , ρNB, and γHNH are the birth rates. The death rates of the mosquitos and

the humans are density dependent and are given by:

µM = µ1 + µ2NM , γM > µ1

µH = µ3 + µ4NH .

(4.2)

The units for immigration, death and birth parameters can be found in table A.1 in appendix

A.

The mosquito control is primarily utilized to diminish the mosquito population in a

designated area by killing adults and reducing larva production. The reproduction rate of

larva is reduced by applying some type of insecticide, u1(t), with the effect of lowering the

growth rate of mosquitos by a factor of 1 − u1(t). Additionally, the model also assumes

that the mortality rate of mosquitoes increases at a rate proportional to u1(t), where the

rate constant is r0 > 0.
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The dynamics are given by

dMs

dt
= γMNM (1− u1(t))−

bNB

NB + NH

β1MsBi

NB
− (µ1 + µ2NM )Ms − r0u1(t)Ms. (4.3)

dMi

dt
=

bNB

NB + NH

β1MsBi

NB
− (µ1 + µ2NM )Mi − r0u1(t)Mi. (4.4)

where r0 is a rate constant for the death rate of mosquitos due to the control u1(t), the level

that insecticide is applied to the mosquito population. The coefficient β1 is the probability

of transmission from infected bird to susceptible mosquito.

The bird population is assumed to be infected through contact with mosquitoes which

get the disease from infected birds. We assume that in the bird population, the natural

death rate µB is higher than the disease induced death rate dB. Birds are assumed to

immigrate at a constant rate of λB. They also exit the community through emigration at

a rate of δ.

The bird dynamics are governed by these two ODEs:

dBs

dt
= λB + ρNB −

bNB

NB + NH

β2MiBs

NB
− δBs − µBBs

dBi

dt
=

bNB

NB + NH

β2MiBs

NB
− dBBi − δBi − µBBi.

(4.5)

Note that the coefficient β2 is the probability of transmission from infected mosquito to

susceptible bird.

The human population is divided into five categories susceptible, exposed, infectious,

hospitalized and recovered designated by S, E, I, H, R respectively. The rate of infection is

reduced by a factor of (1 − u2(t)), where u2(t) measures successful prevention efforts such

as insect repellents, treating indoor areas, and using treated bed nets to cover bed areas at
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night time. The susceptible and exposed DEs are given by

dS

dt
= λH + γHNH − bNH

NB + NH

β3MiS(1− u2(t))
NH

− (µ3 + µ4NH)S

dE

dt
=

bNH

NB + NH

β3MiS(1− u2(t))
NH

− αE − (µ3 + µ4NH)E.

(4.6)

with density dependent death and birth rates. The coefficient β3 is the probability of

transmission from infected mosquito to susceptible human.

Once a human being is exposed to the disease, either the person dies of natural causes (at

a rate of µH) or becomes infectious (at a rate α) per unit time. After developing infection,

the patient experiences anyone of these: death due to the disease (at a rate of dI) or due

to natural causes, recovery from infectious stage (at a rate of r � 1) or recovery after

hospitalization (at a rate of τ). It is assumed that the death rate of infected humans, dI , is

greater than the death rate of hospitalized humans, dH . Also, the natural death for humans

in any of the four compartments is µH as given in (4.2). Infected humans are hospitalized

at a rate σ. This leads to our last three state equations:

dI

dt
= αE − σI − dII − rI − (µ3 + µ4NH)I

dH

dt
= σI − dHH − τH − (µ3 + µ4NH)H

dR

dt
= τH + rI − (µ3 + µ4NH)R.

(4.7)

A description of the state variables and parameters is given in Table A.1 in appendix A.

Adding the equations for the compartments in mosquitos (4.3) - (4.4), birds (4.5) and

humans (4.6)-(4.7) we obtain

dNM

dt
= NM [γM (1− u1)− (µ1 + µ2NM )− r0u1]

dNB

dt
= λB + ρNB − (δ + µB)NB

dNH

dt
= λH + γHNH − dII − (µ3 + µ4NH)NH − dHH.

(4.8)

Note that for bounded Lebesgue measurable controls and non-negative initial conditions,
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non-negative bounded solutions to this system exist [22].

We formulate an optimal control problem with the objective functional given by

J(u1, u2) =
∫ T

0

(
A1E(t) + A2I(t) + A3NM (t) + B1u

2
1 + B2u

2
2

)
dt (4.9)

subject to the state system given by (4.3)-(4.7). In this formulation, A1, A2 and A3 are re-

spectively, the weight constants of the exposed, infected human group and the total mosquito

populations. Weight constants for the mosquito and the prevention controls are given by

B1 and B2. It is assumed that the cost of each process are proportional to the square of the

corresponding control function. Our goal is to find optimal control functions (u∗1, u
∗
2) such

that

J(u∗1, u
∗
2) = min{J(u1, u2) | (u1, u2) ∈ Γ}

subject to the system of equations given by (4.3)-(4.7), with given initial conditions, Ms(0) =

104,Mi(0) = 103, Bs(0) = 103, S(0) = 103, and with zero initial conditions for the

rest. The set of controls is

Γ = {(u1, u2)|ui(t) is Lebesgue measurable on [0, T ], 0 ≤ ui(t) ≤ ai, i = 1, 2}. (4.10)

Note that our control set is clearly closed and convex. Next we prove the existence of the

optimal control and then characterize it.

Following Pontryagin’s Minimum Principle [25], the Hamiltonian is:
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H =A1E(t) + A2I(t) + A3NM (t) + B1u1
2 + B2u2

2 (4.11)

+ λ1

[
γMNM (1− u1(t))−

bβ1MsBi

NB + NH
− (µ1 + µ2NM )Ms − r0u1(t)Ms

]
+ λ2

[
bβ1MsBi

NB + NH
− (µ1 + µ2NM )Mi − r0u1(t)Mi

]
+ λ3

[
λB + ρNB −

bβ2MiBs

NB + NH
− δBs − µBBs

]
+ λ4

[
bβ2MiBs

NB + NH
− dBBi − δBi − µBBi

]
+ λ5

[
λH + γHNH − bβ3MiS(1− u2(t))

NH + NB
− (µ3 + µ4NH)S

]
+ λ6

[
bβ3MiS(1− u2(t))

NH + NB
− αE − (µ3 + µ4NH)E

]
+ λ7

[
αE − σI − dII − rI − (µ3 + µ4NH)I

]
+ λ8

[
σI − dHH − τH − (µ3 + µ4NH)H

]
+ λ9

[
τH + rI − (µ3 + µ4NH)R

]
.

Theorem 4.2.1. Given an optimal control (u∗1, u
∗
2), and solutions of the corresponding state

system (4.3) - (4.7), there exists adjoint variables, λi, i = 1, ..., 9, satisfying

λ′1 = − ∂H

∂Ms
=−A3 − λ1

[
γM (1− u1(t))−

bβ1Bi

NB + NH
− µ2Ms − (µ1 + µ2NM )− r0u1(t)

]
(4.12)

− λ2

[
bβ1Bi

NB + NH
− µ2Mi

]
= −A3 + (λ1 − λ2)

bβ1Bi

NB + NH
− λ1

[
γM (1− u1(t))− (µ1 + µ2NM )− r0u1(t)

]
+ λ2µ2Mi + λ1µ2Ms
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λ′2 = − ∂H

∂Mi
=−A3 − λ1

[
γM (1− u1(t))− µ2Ms

]
+ λ2

[
µ1 + µ2NM + µ2Mi + r0u1

]
(4.13)

+ λ3

[
bβ2Bs

NB + NH

]
− λ4

[
bβ2Bs

NB + NH

]
+ λ5

[
bβ3S(1− u2)

NB + NH

]
− λ6

[
bβ3S(1− u2)

NB + NH

]

λ′3 = − ∂H

∂BS
=− λ1

[
bβ1BiMs

(NB + NH)2

]
+ λ2

[
bβ1BiMs

(NB + NH)2

]
(4.14)

− λ3

[
ρ− bβ2Mi

(
− Bs

(NB + NH)2
+

1
NB + NH

)
− δ − µB

]
− λ4

[
bβ2Mi

(
1

NB + NH
− Bs

(NB + NH)2

)]
− λ5

[
bβ3MiS(1− u2)

(NB + NH)2

]
+ λ6

[
bβ3MiS(1− u2(t))

(NB + NH)2

]

λ′4 = − ∂H

∂Bi
=− λ1

[
−bβ1Ms

(
−Bi

(NB + NH)2
+

1
NB + NH

)]
(4.15)

− λ2

[
bβ1Ms

(
−Bi

(NB + NH)2
+

1
NB + NH

)]
− λ3

[
ρ +

bβ2MiBs

(NB + NH)2

]
+ λ4

[
bβ2MiBs

(NB + NH)2
+ (dB + δ + µB)

]
− λ5

[
bβ3MiS(1− u2)

(NB + NH)2

]
+ λ6

[
bβ3MiS(1− u2(t))

(NB + NH)2

]
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λ′5 = −∂H

∂S
=− λ1

[
bβ1BiMs

(NB + NH)2

]
− λ2

[
− bβ1BiMs

(NB + NH)2

]
− λ3

[
bβ2MiBs

(NB + NH)2

]
(4.16)

− λ4

[
− bβ2MiBs

(NB + NH)2

]
− λ5

[
γH − bβ3Mi(1− u2)

(
1

NB + NH
− S

(NB + NH)2

)
− µ4S − (µ3 + µ4NH)

]
− λ6

[
bβ3Mi(1− u2)

(
1

NB + NH
− S

(NB + NH)2

)
− µ4E

]
+ λ7µ4I + λ8µ4H + λ9µ4R

λ′6 = −∂H

∂E
=−A1 − λ1

[
bβ1BiMs

(NB + NH)2

]
− λ2

[
− bβ1BiMs

(NB + NH)2

]
− λ3

[
bβ2MiBs

(NB + NH)2

]
(4.17)

− λ4

[
− bβ2MiBs

(NB + NH)2

]
− λ5

[
γH +

bβ2MiBs(1 − u2)
(NB + NH)2

− µ4S

]
+ λ6

[
bβ3MiS(1− u2)

(NB + NH)2
+ α + µ4E + µ3 + µ4NH

]
− λ7

[
α− µ4I

]
+ λ8µ4H + λ9µ4R
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λ′7 = −∂H

∂I
=−A2 − λ1

[
bβ1BiMs

(NB + NH)2

]
− λ2

[
− bβ1BiMs

(NB + NH)2

]
− λ3

[
bβ2MiBs

(NB + NH)2

]
(4.18)

− λ4

[
− bβ2MiBs

(NB + NH)2

]
− λ5

[
γH +

bβ3MiS(1− u2)
(NB + NH)2

− µ4S

]
+ λ6

[
bβ3MiS(1− u2)

(NB + NH)2
+ µ4E

]
+ λ7

[
σ + (dI + r) + (µ4I + µ3 + µ4NH)

¯

]
− λ8

[
σ − µ4H

]
− λ9

(
r − µ4R

)

λ′8 = −∂H

∂H
=− λ1

[
bβ1BiMs

(NB + NH)2

]
− λ2

[
− bβ1BiMs

(NB + NH)2

]
− λ3

[
bβ2MiBs

(NB + NH)2

]
(4.19)

− λ4

[
− bβ2MiBs

(NB + NH)2

]
− λ5

[
γH +

bβ3MiS(1− u2)
(NB + NH)2

− µ4S

]
+ λ6

[
bβ3MiS(1− u2)

(NB + NH)2
+ µ4E

]
+ λ7µ4I

+ λ8

[
(dH + τ) + µ4H + µ3 + µ4NH

]
− λ9(−µ4R + τ)

λ′9 = −∂H

∂R
=− λ1

[
bβ1BiMs

(NB + NH)2

]
+ λ2

[
bβ1BiMs

(NB + NH)2

]
− λ3

[
bβ2MiBs

(NB + NH)2

]
(4.20)

+ λ4

[
bβ2MiBs

(NB + NH)2

]
− λ5

[
γH +

bβ3MiS(1− u2)
(NB + NH)2

− µ4S

]
+ λ6

[
bβ3MiS(1− u2)

(NB + NH)2
+ µ4E

]
+ λ7µ4I + λ8µ4H + λ9(µ4R + µ3 + µ4NH).
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The terminal conditions are:

λi(T ) = 0 for i = 1, ..., 9. (4.21)

Furthermore, the optimal functions u∗1 and u∗2 are represented by

u∗1 = max{0,min{1,
1

2B1
[λ1(γMNM + r0Ms) + λ2r0Mi]}}

u∗2 = max{0,min{1,
1

2B2
bβ3MiS

1
2(NB(i) + NH(i))

(λ6 − λ5)}}.
(4.22)

Proof: The state variables in these characterizations are solutions of system (4.3) - (4.7) and

the λ′is are solutions of the adjoint system (4.12)-(4.20) all corresponding to the optimal

control functions (u∗1, u
∗
2).

The behavior of the controls may be obtained by differentiating the Hamiltonian with

respect to u; on the interior of the control set, u∗1, u∗2 satisfy

∂H
∂u1

= 2B1u1 − λ1γMNM − r0Ms − λ2r0Mi = 0

∂H
∂u2

= 2B2u2 + λ5
bβ3MiS

NH + NB
+ λ6

bβ3MiS
NH + NB

= 0.

Solving for u∗1, u∗2 and using the bounds gives (4.22).

The state adjoint system (4.12)-(4.20) results from Pontryagin’s Principle [25]. �

4.3 Basic Reproduction Number

For an epidemic model, a threshold number exists that determine whether or not a disease

will persist. The threshold number is known the basic reproduction number, and is des-

ignated R0. Mathematically, it is defined to be the spectral radius of the next generation

matrix [35]. If R0 > 1, then the disease free equilibrium is asymptotically stable. Biologi-

cally, when R0 > 1, each infected organism infects more than one susceptible causing the

disease to spread. If R0 < 1, then each infected organism infects less than one suscep-

tible individual and the virus does not spread [35]. For this problem without the density

dependence in the birth and death rates, the basic reproduction number is:

73



R0 =
b
√

β1β2
λM
µM

λB
µB+δ

√
µMk2( λB

µB+δ )
(4.23)

which is calculated in Blayneh et. al. [6] using the techniques from [35].

4.4 Numerical Simulation

Before we show our numerical results, we discuss our choice of parameters. In the literature

[7], [10], [15], [36], the natural death rate for humans ranges from 3.91 ∗ 10−5 to 0.005.

Since the death rate is assumed to be density dependent, µH = µ3 + µ4 NH , values of

µ3 = 9 ∗ 10−4 and µ4 = 2 ∗ 10−6 gave a death rate in the above range. The death rate

due to the disease is between 5 ∗ 10−7 and 0.015. Since it is assumed that the death rate of

infected humans, dI , is greater than the death rate of hospitalized humans, dH , the value

of dI = dH + 10−5 is chosen where dH = 5 ∗ 10−7. For mosquitos the natural death rate is

between 0.016-0.07. Since µM = µ1 + µ2 NM , γM > µ1, the values of µ1 = 1 ∗ 10−3

and µ2 = 5 ∗ 10−6 gave the above range. The natural death rate for birds is between

0.0001-0.1429. Thus we take µB = 1 ∗ 10−4. and death rate in the presence of WNV is

less than 0.2. For these results, dB = 0.015. Parameter values are shown in table A.2 in

appendix A.

For the examples below, we used the parameters in table A.2, which give R0 > 1 from

the model without density dependence in the birth and death rates [6].

Figure 4.1 shows the population levels for mosquito, bird and human populations during

a 50 day period of time without the West Nile virus beginning with 10,000 mosquitos, 1000

birds and 1000 humans.

Next, we introduce 1000 mosquitos infected with the West Nile virus with the corre-

sponding effects on the susceptible class in figure 4.2a. Note the rapid decrease in the

number of organisms for each group and the corresponding increase in each of the newly

formed infected classes shown in figure 4.2b. Similar results occurred when including a 100

infected birds in addition to 1000 infected mosquitos.

Several control scenarios are now presented using initial conditions of 1000 infected
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Figure 4.1: Disease free populations of mosquito, bird and humans

(a) Susceptible population

(b) Infected population

Figure 4.2: Effects of system 4.3-4.7 with 1000 infected mosquitos
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mosquitos and 0 infected birds interacting with 10000 susceptible mosquitos, 1000 suscep-

tible birds and 1000 susceptible humans. We now consider controls u1 and u2 and assume

that the relative importance of each term of the objective functional is the same, ie.:

A1 = A2 = A3 = B1 = B2 = 1.

We consider the corresponding results for the susceptible and infected populations and

note that little change occurs in the mosquito and bird dynamics. However the human

susceptible shows a significant increase whereas a decrease is shown in the human infecteds.

We also note that a decrease in the human hospitalized and recovered classes occurred with

mixed results for the exposed group. These results are due to the optimal distribution of

the control where it is assumed that 0 ≤ u1 ≤ 0.8 and 0 ≤ u2 ≤ 0.5. For this case, the

optimal solution requires a maximum level of distribution of control u2 suggesting intense

efforts at preventing human and mosquito contact. On the other hand effort at controlling

the spread of infected mosquitos is needed only near the end of the 50 day period as is

reflected in the graph of u1. Here and throughout the remaining chapter, solid lines indicate

the case with no control and the dashed lines represent the situation when the controls are

made available. Results for the state and control variables are shown in figure 4.3.

If minimizing the total number of mosquitos becomes less important, the coefficient of

NM becomes smaller. Letting A3 = 10−4 and Ai = 1 for i = 1, 2 and the cost of preventing

human/mosquito contact B2 = 103. Using these parameters yields a noticeable increase

in the number of infected mosquitos and a slight reduction in the total human population.

Corresponding state and control results are given in figure 4.4. For this case, note that

preventing human/mosquito contact is applied first followed by effort at eliminating infected

mosquitos.

Now, A3 = 10−4 is held constant and A1, A2 is varied. The cost coefficients B1 and B2

remain 1 and 103 respectively. Note that varying A1, A2 refers to placing a different

emphasis on minimizing the exposed and infected humans respectively. If minimizing the

exposed is less important but more important than controlling the mosquito population, say

A1 = 10−1, A2 = 1, all classes see an increase in the number of infecteds and a decrease in

the number of susceptibles. For this case the optimal strategy shows a noticeable increase
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(a) Susceptible population

(b) Infected population

(c) Infected population

(d) Control

Figure 4.3: Effects of system 4.3-4.7 with 1000 infected mosquitos when cost coefficients are
unity.
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(a) Susceptibles

(b) Infecteds

(c) Exposed, hospitalized and immunes

(d) Control

Figure 4.4: State and control system 4.3-4.7 with A3 = 10−4 and A3 = 10−4, A1 = A2 =
1, B1 = 1, B2 = 103.
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occurring in the number infected mosquitos coupled with a small change in the infected

birds as compared to figure 4.4. For this case, control u1 begins before u2 and remains for

only a brief period of time followed by the application of u2. After u2 is stopped, a second

application of u1 occurs. With A3 = 10−4 and A1 = 1, A2 = 10−1, i.e., controlling

the infected humans is less important than the exposed humans but more important than

minimizing mosquitos, the state variables begin to merge the control/no control cases with

a slight decrease in mosquito infecteds when applying control. Note that since this result

is similar to the previous case, except that the maximum level is smaller for both control

variables the state variables are not shown, however figure 4.5 shows the results when

A1 = 10−1, A2 = 1.

We now consider the case when A1 = A2 = 10−1, A3 = 10−4 suggesting

that minimizing the human infected and exposed classes are equally important. Again,

B1 = 1, B2 = 103. Figure 4.6 shows the corresponding susceptible, infected and exposed

dynamics. The associated controls for figures 4.5 and 4.6 are shown in figure 4.7. Note that

in all three cases, u1 is applied immediately for a short time followed by an application of

u2 and then a resumption of u1. Thus, these results suggest eliminating mosquitos first for

a short period of time and then expend effort in preventing human/mosquito contact and

resume mosquito elimination.

Consider the case of stressing the minimization of the human exposed class with ex-

pensive prevention efforts coupled with less importance given to killing mosquitos (A1 =

10. A2 = 1, A3 = 10−3, B1 = 1, B2 = 103, 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.9). For this

case the optimal control strategy suggests an early application of u2 for approximately 25

days and an increase of u1 peaking just before the decrease in u2. This strategy produces an

increase in the human susceptible population and a slight decrease in the bird susceptibles

as compared to figure 4.5. Mosquito and bird infecteds have a slight increase compared to

figure 4.6 but a decrease in the human infected. Figure 4.8 shows the corresponding results

for the state and control variables.

With a relatively large cost for prevention efforts, i.e., B2 = 103, and giving less

importance to minimizing the mosquito population, i.e., A3 = 10−4, produces figures 4.9.
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(a) Susceptibles

(b) Infecteds

(c) Exposed, hospitalized, and immunes

Figure 4.5: State system 4.3-4.7 with A1 = 10−1, A2 = 1, A3 = 10−4, B1 = 1, B2 = 103
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(a) Susceptibles

(b) Infecteds

(c) Exposed, hospitalized, and immunes

Figure 4.6: State system 4.3-4.7 with A1 = A2 = 10−1, A3 = 10−4, B1 = 1, B2 = 103
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(a) Controls when A1 = 10−1, A2 = 1, A3 = 10−4.

(b) Controls when A2 = 10−1, A1 = 1, A3 = 10−4.

(c) Controls when A1 = A2 = 10−1, A3 = 10−4.

Figure 4.7: Controls of system 4.3-4.7 for varying cost coefficients with B1 = 1, B2 = 103.
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(a) Susceptibles

(b) Infected

(c) Exposed

(d) Control

Figure 4.8: State system 4.3-4.7 with A1 = 10, A3 = 10−3, B2 = 103, 0 ≤ u1 ≤
0.8, 0 ≤ u2 ≤ 0.9
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Also, 0 ≤ u1 ≤ 0.8 and 0 ≤ u2 ≤ 0.9 Compared to figure 4.8, fewer bird and

human suceptibles occur as well a decrease in infected organisms from all three classes. A

decrease in the exposed, hospitalized and recovered categories also occurs. Part d shows

the application of control u2 before u1 as in the previous case, but the maximum is less for

u2 and the maximum for u1 is maintained for a shorter period of time.

4.5 Conclusion

Given a fixed set of model parameters, we have obtained optimal controls results and cor-

responding populations for several scenarios of varying weight and cost coefficients in the

objective functional. Certain cases lead to conclusions about the formats of the control

strategies. These results suggest that when the exposed, infected and mosquito population

all carry the same weight and when the cost coefficients are the same, the optimal solution

requires an emphasis on preventing contact of the human and mosquito populations with

little effort applied to limiting the mosquito population (see figure 4.3). Since it may be

difficult to depend on humans to take preventive action, one may want to consider scenar-

ios that require more effort at controlling the mosquito population. Thus a more realistic

approach is to consider high costs for the the prevention efforts. We may also want to place

more importance on lowering the exposed and infected human population than on the total

number of mosquitos, by using a lower weight coefficient for the mosquitos. If the cost of

prevention (control u2) is relatively high and the weight of the total number of mosquitos

is low, the optimal strategy suggests a brief period focused on killing mosquitos followed by

prevention efforts and then an approximate equal time spent on a second round of distri-

bution of insecticides (see figure 4.7). If the size of the mosquito population is assumed to

be even less important, preventive strategies are applied first followed by a more sustained

effort on the killing of mosquitos (see figure 4.4).

We note that there are limitations and possible extensions of this model and control

problem. The model may be extended to include separate pesticides for the larvae and

adult stages of mosquitos, suggesting the use of two controls of the insects. One could

add a control for efforts to adjust the rate of hospitalization. A limitation is the difficulty
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(a) Susceptibles

(b) Infected

(c) Exposed

(d) Controls

Figure 4.9: Control of system 4.3-4.7 with A1 = 1, A3 = 10−3, B2 = 103, 0 ≤ u1 ≤
0.8, 0 ≤ u2 ≤ 0.9
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in obtaining reasonable estimates for the parameters to apply this model to a specific

location. The optimal controls and their resulting populations strongly depend on the

choice of parameters.

These results show the utility of the optimal control tools in designing strategies for

slowing the spread of this epidemic. Given a specific set of parameters (including cost

coefficients), one can decide which of the two controls to give more emphasis.
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(a) u = 1 for days 1-12. B = 10−2

(b) u = 1 for days 1-25. B = 10−2

(c) u = 1 for days 1-25. B = 10−2

Figure A.1: Controlled populations of system 2.2 during a 28 day interval (a) without a
birth pulse. (b) during a birth pulse. (c) beginning on day 73 (about 1 week before the
birth pulse).
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(a) u = 1 for days 1-12, 21-24. B = 10−2

(b) u = 1 for days 1-12. B = 10−2

Figure A.2: Controlled populations of system 2.2 during a 28 day interval:(a) beginning
March 1. (b) beginning February 20.
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(a) u = 5 for days 1-24. B = 10−2

(b) u = 5 for days 1-10, 21-23. B = 10−2

(c) u = 5 for days 1-10, 12. B = 10−2

Figure A.3: Results of system 2.2 with upper bound of 5 on the control for a 28 day
interval:(a) beginning March 14. (b) beginning March 1. (c) beginning February 20.
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Figure A.4: Disease free population for 1 year
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(a) 1 infectious raccoon

(b) 40 infectious raccoons

(c) 100 infectious raccoons

Figure A.5: Populations of system 2.1 with initial values of 1, 40 and 100 infected raccoons
and no control
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Figure A.6: Optimal control results of system 2.2 projected for 1 year with Io = 40. u = 1
for days 75-191.

Figure A.7: Disease free raccoon population starting on March 1
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Figure A.8: State variables of system 2.2 with disease and no control: Simulation begins on
March 14.
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(a) B = 10−4

(b) B = 10−2

(c) B = 100

Figure A.9: Controlled results of system 2.2 from new parameters when (a)B =
10−4, (b)B = 10−2, (c)B = 100
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(a) u = 1 for days 1-10. B = 10−2

(b) u = 1 for days 1-25. B = 10−2

(c) u = 1 for days 1-25. B = 10−2

Figure A.10: New parameter results of system 2.2 for a 28 day interval:(a) without a birth
pulse. (b) during a birth pulse. (c) beginning on day 73 (shortly before the birth pulse).
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(a) u = 1 for days 1-10, 19-25. B = 10−2

(b) u = 1 for days 1-10. B = 10−2

Figure A.11: Results of system 2.2 from new parameters for a 28 day interval:(a) beginning
March 1. (b) beginning February 20.
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Figure A.12: Results of system 2.2 from new birth and death rate but the old infection
period α beginning March 1.
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(a) λ6 = 0.003, u = 1 for days 1-10.

(b) λ6 = 0.30285, u = 1 for days 1-7, 7-13.

Figure A.13: Results of system 2.2 from control constraint case (a) 28 day interval without
a birth pulse. (b) 28 day interval beginning on March 14.
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Table A.1: State Variables and Parameters

Notation Description Units
Ms number of susceptible mosquitos mosquitos
Mi number of infected mosquitos mosquitos
Bs number of susceptible birds birds
Bi number of infected birds birds
S number of susceptible humans humans
E number of exposed humans humans
I number of infected humans humans
H number of hospitalized humans humans
R number of immune humans humans
µ1 mosquito natural death rate day−1

µ2 mosquito density dependent death rate day−1mosquito−1

µ3 human natural death rate day−1

µ4 human density dependent death rate day−1human−1

γM mosquito density dependent birth rate day−1

γH human density dependent birth rate day−1

b per capita biting rate of mosquitos day−1

λB bird immigration rate (bird)day−1

λH human immigration rate (human)day−1

δ bird emigration rate day−1 bird
α rate exposed humans become infectious day−1

σ hospitalization rate of humans day−1

r recovery rate of infectious humans day−1

τ recovery rate of hospitalized humans day−1

β1 probability mosquitos become infected
β2 probability birds become infected (bird)mosquitos−1

β3 probability humans become exposed (human)mosquitos−1

r0 mosquito mortality rate due to control day−1

ρ bird density dependent birth rate day−1

dI , infected human death rate day−1

dH hospitalized death rate day−1

µB natural death rate of birds day−1

dB death rate of birds due to WNV day−1

u1(t) effort of killing mosquitos day−1
u2(t) effort of preventing human/mosquito day−1
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Table A.2: State Variables and Parameters

Parameter Value
µ1 10−3

µ2 5 ∗ 106

µ3 9 ∗ 10−4

µ4 2 ∗ 10−6

γM 51.1µ1

γH 2.85 ∗ 10−3

b 3
λB 2.1
λH 5 ∗ 10−2

δ 5.2 ∗ 10−2

α 0.1
σ 9 ∗ 10−4

r 2.0 ∗ 10−4

τ 0.05
β1 0.4
β2 0.1
β3 10−2

r0 1.25 ∗ 10−1

ρ 0.05
dI , dH + 10−5

dH 5 ∗ 10−7
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