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Abstract 

Beauveria bassiana isolate 11-98 is entomopathogenic, endophytic in tomato, and has 

biocontrol activity against Rhizoctonia solani on tomato. The objectives of this study 

were to determine 1) if B. bassiana is endophytic in cotton, following seed treatment; 2) 

if B. bassiana can protect cotton against seedling pathogens; 3) if different conidial rates, 

applied to seed, alter effectiveness of B. bassiana; and 4) mechanisms of biocontrol used 

by B. bassiana against plant pathogens. Cotton ‘Delta Pine 436’ seed was inoculated with 

isolate 11-98 conidia, sown in a gnotobiotic system, and then isolated from surface-

sterilized seedlings on selective medium. Using scanning electron microscopy, hyphal 

penetration of epithelial cells was observed. Using ITS primers, polymerase chain 

reaction (PCR), and electrophoresis of PCR products, 11-98 was detected (single 421-bp 

band) in a dilution series of fungal and plant DNA, and from cotton seedlings 

endophytically colonized by 11-98. Biocontrol of B. bassiana against R. solani, Pythium 

myriotylum, and Thielaviopsis basicola was examined using several seed treatment rates 

(log 5 to log 11 CFU). Disease was suppressed and plant growth was increased in potting 

mix with B. bassiana at log 7 and log 9 CFU/seed, and in sandy loam soil at log 7 

CFU/seed. With low disease pressure from P. myriotylum, seed treated with 11-98 or 

BotaniGard isolate GHA increased plant growth. Assays with T. basicola were 

inconclusive. Beauveria bassiana was evaluated for induced systemic resistance in cotton 

against Xanthomonas axonopodis pv. malvacearum. Root drench treatments were B. 

bassiana at log 5, log 7, and log 9 CFU/ml, untreated, 2,6-dichloro-isonicotinic acid  

(INA), and untreated without Xanthomonas. After 13 days, primary leaves were wounded 

and challenge-inoculated with Xanthomonas. Treatment with B. bassiana (log 7 
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CFU/seed) had less disease than untreated controls and was as effective as INA. In 

antibiosis assays, Beauveria bassiana out-competed T. basicola on cotton agar, however 

no clear zone of inhibition was observed; B. bassiana was outcompeted by R. solani and 

P. myriotylum, however it maintained its original colony diameter. Beauveria bassiana 

hyphae coiled around P. myriotylum hyphae in parasitism assays; no coiling was 

observed with R. solani; results for T. basicola were inconclusive.  
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Extended Abstract 

Beauveria bassiana, an entomopathogenic fungus, is endophytic in some agronomically 

important plants, including tomato and corn. Although known for its entomopathogenic 

traits, B. bassiana isolate 11-98 has biocontrol activity against Rhizoctonia solani on 

tomato. The objectives of this study were: 1)  to determine if B. bassiana could be 

endophytic in cotton, Gossypium hirsutum, following seed treatment; 2) to determine if 

B. bassiana is capable of providing protection for cotton as a seed treatment against 

soilborne pathogens responsible for cotton seedling disease complex; 3) to determine if 

different rates of conidia, applied to seed, alter the effectiveness of B. bassiana; and 4) to 

determine mechanisms of biocontrol used by B. bassiana against plant pathogens. Seed 

from ‘Delta Pine 436’ cotton was inoculated with conidia in 2% methylcellulose and 

sown in a gnotobiotic system. Beauveria bassiana isolate 11-98C (Bb 11-98C) was 

endophytic in cotton based on standard isolation plating techniques onto selective 

medium. Scanning electron microscopy was used to determine the mode of penetration 

by the fungus into cotton. Hyphal penetration points through epithelial cells were 

observed; however, not all developing hyphae on the leaf surface penetrated the cuticle. 

Detection of B. bassiana in a dilution series of fungal and plant DNA, and from cotton 

seedling tissue endophytically colonized by Bb 11-98C was determined using polymerase 

chain reaction (PCR) with ITS primers, and gel electrophoresis of PCR products. 

Detection was evidenced by the production of a single 421 bp band for Bb 11-98C. The 

biocontrol efficacy of B. bassiana against soilborne cotton pathogens, R. solani, Pythium 

myriotylum, and Thielaviopsis basicola was determined using a range of rates (1 × 105 to 

1 × 1011 CFU) of B. bassiana conidia as seed treatments. Experimental designs were 
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factorials (pathogen level and seed treatment) in randomized complete blocks with 7 to 

14 replicates and two seeds per replicate. Plant height, weight, disease severity (1 to 6) 

and percent survival were determined after 21 days. Beauveria bassiana (1 × 107 and 1 × 

109 CFU/seed) provided significant control of R. solani in three trials in potting mix.  

Beauveria bassiana at 1 × 107 CFU/seed suppressed disease in a sandy loam soil infested 

with R. solani.  With low disease pressure from P. myriotylum applied 7 days after 

sowing with a 48 hr flood period in a silt loam soil, seed treated with Bb 11-98 or 

BotaniGard isolate GHA increased plant growth. Assays with T. basicola in sandy loam 

were inconclusive as pathogen effects were not significant. Beauveria bassiana was 

evaluated for its ability to induce systemic resistance (ISR) in cotton against 

Xanthomonas axonopodis pv. malvacearum using conidia of Bb 11-98C applied to 

seedling roots in a soilless system. Treatments were three rates of B. bassiana 11-98C 

conidia (1 × 105, 1 × 107, 1 × 109) and three controls [untreated, 2,6-dichloro-isonicotinic 

acid  (INA), and untreated without Xanthomonas challenge]. Treatments were replicated 

four to 10 times with four seedlings per replication. Conidial and INA treatments were 

applied to roots 5 cm below radicle emergence. After 13 days, one primary leaf of each 

plant was pricked with a needle and challenge-inoculated with X. axonopodis (1 × 109 or  

1 × 1010 CFU/ml). After which, leaves were rated for bacterial leaf blight daily for 1 

week. Treatment with B. bassiana 1 × 107 CFU/seed resulted in significantly lower 

disease ratings than the untreated control and was as effective as INA. Beauveria 

bassiana was examined on host based medium for its ability to produce antimicrobials 

that would inhibit growth of R. solani, P. myriotylum or T. basicola, and parasitism 

assays were performed to determine if B. bassiana could parasitize these pathogens. In 
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the antibiosis assays, B. bassiana out-competed T. basicola on cotton agar, however no 

clear zone of inhibition was observed. In the assay with R. solani and P. myriotylum, B. 

bassiana was out-competed however; it maintained its original colony diameter. In the 

parasitism assay no parasitism was observed with R. solani and results for T. basicola 

were inconclusive as the fungus did not produce mycelia in the assay. Coiling of B. 

bassiana hyphae around P. myriotylum hyphae was observed. 
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Introduction 

Cotton production 

Gossypium hirsutum L. upland cotton has become the dominant species in 

commercial cotton production. It is a member of Malvaceae, which contains about 95 

genera of herbs, shrubs, and small trees. Economically cotton is the most important 

member of the family (Anonymous 2006b). It is currently grown in over 90 countries, the 

majority of which are developing countries (Jabaji-Hare and Neate 2005). In the U.S., the 

Cotton Belt extends through North and South Carolina, Georgia, Alabama, Mississippi, 

western Tennessee, eastern Arkansas, Louisiana, eastern Texas, to southern Oklahoma 

(Anonymous 2006a). 

In the U.S., more than 13 million acres are planted with cotton, the majority being 

genetically engineered cultivars (Brooks 2001). Since introduction of transgenics, in 

1995, a number of cultivars have been introduced; some with multiple or “stacked” 

characteristics. Three genes are commonly inserted into cotton: Bacillus thuringiensis 

Berlinger (Bt) toxin, 5-enolpyruvylshikimate-3-phospate (EPSP) synthase (RR- Roundup 

Ready), and bromoxynil nitrilase (BXN). 

Bollgard cotton cultivars are genetically engineered for resistance to tobacco 

budworm and pink and cotton bollworm. The Bt gene in cotton was isolated from B. 

thuringiensis, a common soil bacterium. Certain strains of the bacterium are capable of 

producing toxins that are lethal to target insects. The Bt toxin is a crystal protein that kills 

the cells lining the insect gut in certain insects. When these insects ingest this toxin, it 

disrupts the function of their digestive systems causing the insects to stop feeding and die 

(Clark and Russell 2000a). Plants with the RR gene have increased amounts of the 
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monomeric EPSP. This enzyme is pivotal for the production of essential amino acids 

(phenylalanine, tyrosine and tryptophan) and is inhibited by glyphosate, the active 

ingredient in the commercial herbicide Roundup (Clark and Russell 2000b). The gene 

product ultimately protects RR plants and direct application of the herbicide is possible. 

The BXN system consists of cultivars genetically engineered for leaf applications of 

oxynil-containing herbicides, such as bromoxynil. The oxynil family of herbicides is 

active against dicotyledonous plants by blocking electron flow during the light reaction of 

photosynthesis. BXN, a gene from the soil bacterium Klebsiella pneumoniae (Schroeter) 

Trevisan, detoxifies bromoxynil in genetically engineered plants by hydrolysis into non-

phytotoxic compounds. The modified cotton permits farmers to use oxynil-containing 

herbicides for weed control in the cultivation of cotton (Hagedorn 2005).  

 

Cotton Diseases 

Disease losses in cotton are highly variable within a country or region. Seedling 

diseases result in the largest yield losses of cotton crops in the U.S., and are among the 

most important of those diseases that limit cotton lint and seed production (Howell 2001, 

Wang and Davis 1997). In 2001, the estimated loss in bales of cotton due to seedling 

diseases was 2.43% or approximately $169,820,640 (Howell 2001).  In severely infested 

fields planted with susceptible cultivars, yield losses can be high and in some cases, 

complete loss may occur. According to the National Cotton Disease Council, disease 

losses were estimated at over 109,000 bales (227 kg or 500 lb) in 2004 (Blasingame and 

Patel 2005).  

The seedling disease complex of cotton is caused by Rhizoctonia solani Kühn, 
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Fusarium spp., Pythium spp., and Thielaviopsis basicola (Berk. & Broome) Ferraris. 

These soilborne pathogens may occur separately or in combination. They are capable of 

surviving and maintaining high inoculum loads in fields for multiple years (Watkins 

1981). Symptoms include the decay of the seed before germination, decay of the seedling 

before emergence, girdling of the emerged seedling at or near the soil surface and rotting 

of the root tips (Blasingame 1993).  

 

Options for control of cotton seedling disease 

Several crop management practices reduce losses to seedling disease including 

crop rotation, planting quality seed, timely planting, and the use of fungicides. Increased 

disease control is expected as more control practices are utilized.   

Rotation is the first line of defense against seedling disease, since following 

cotton with cotton will increase populations of seedling disease fungi in the soil. Fields 

should be rotated out of cotton for at least two years. Problem fields should be rotated out 

of cotton for a longer period of time. The second line of defense is seed quality. High 

quality seed will emerge from the soil more quickly and develop secondary roots faster, 

therefore being vulnerable to fungal infection for a shorter period of time. Early 

plantings, which have the greatest potential for seedling disease, should be planted with 

seed rated excellent or good. Timely planting is the third step in reducing seedling 

disease loss. Usually warm weather early in the season entices growers to plant earlier 

than they should. Even high quality seed should not be planted until the 10-day average 

soil temperature at the 20-cm depth is 18°C. Unfortunately this control measure is not 

always viable in areas where the growing season is short (Brown et al. 2002). 
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Another seedling disease control practice is use of fungicides to protect seed and 

seedling. Cotton seed is typically treated with fungicides by the supplier. Many different 

fungicides are used as seed treatments for seedling disease control (Davis 1997), 

including captan, carboxin, pentachloronitrobenzene (PCNB), metalaxyl, myclobutanil, 

chloroneb and thiram.  

The highest level of input for seedling disease control involves in-furrow 

fungicides. Cotton growers must also consider that fungicides that are effective against 

one pathogen may not be effective against others. For example, PCNB is active against 

Rhizoctonia, but not Pythium. Metalaxyl, mefenoxam and etridiazole are active against 

Pythium spp., but not Rhizoctonia (Brown et al. 2002). Using combination treatments of 

some of the new systemic fungicides will provide a higher level of disease control 

(Watkins 1981, Brown et al. 2002).  

Many growers may not be fully aware of the price that they are currently paying 

to reduce disease. For example the cost of fungicide seed treatments is included with the 

price of seed, and growers often plant at an increased seeding rate, in part to offset 

potential losses from a poor stand due to seedling disease.  

 

Biocontrol of plant diseases 

Public concern over potential health risks caused by chemical pesticides has 

helped energize interest in pest management alternatives such as biocontrols, which 

involve the use of a living organism to control another. The use of biocontrols is an 

important component of efforts to reduce reliance on chemical pesticides and increase 

agriculture sustainability. Plant pathogens can become tolerant or resistant to individual 
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or combinations of pesticides. Pesticide resistance often requires farmers to rotate to a 

less economically valuable crop or use higher amounts of chemical pesticides to produce 

the same crop. Soilborne fungi generally can exist in the soil for years without a host 

plant. They are especially difficult to combat since their life cycles are adapted to endure 

long periods of time in the soil in the form of survival propagules. Mechanisms through 

which biocontrol agents can antagonize soilborne pathogens are generally divided into 

four categories: antibiosis, competition for niches and nutrients (niche exclusion), 

parasitism/predation, and induction of a plant defense response (Chin-A-Woeng et al. 

2003).  

 

Trichoderma spp. 

 Trichoderma spp. have been used as biocontrols against a number of soilborne 

pathogens and are also known for their ability to enhance plant growth. Trichoderma spp. 

are well known mycoparasites that have been used successfully as effective biocontrols 

on many crop plants, including cotton. Typically, Trichoderma has been applied on plant 

parts where the disease symptoms are present and direct antagonism with the pathogen is 

involved. Different mechanisms have been reported to explain this antagonism including 

cell lysis, antibiosis, competition and mycoparasitism with concomitant production of 

enzymes that degrade fungal cell walls (Bigirimana et al. 1997). 

The role of extracellular chitinase in the biocontrol activity of T. virens has been 

examined using genetically manipulated strains of this fungus. The T. virens strains in 

which the chitinase gene was disrupted or constitutively overexpressed were constructed 

through genetic transformation. The biocontrol activity of the disrupted chitinase isolate 
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was decreased significantly while the overexpressed isolate had significantly enhanced 

biocontrol activity against R. solani (Baek et al. 1999). 

Trichoderma asperellum Samuels, Lieckf. & Nirenberg. [stat. anam.] can penetrate the 

roots of cucumber seedlings and colonize the epidermis and root cortex. These 

interactions induce host plant resistance to pathogens, even in the upper part of the plant. 

Trichoderma root inoculation is effective against different types of pathogens in a wide 

variety of plants including cucumber (Shoresh et al. 2005). 

Trichoderma spp. can also affect host plant physiology and induce plant defense 

reactions such as the hypersensitive response and production of phytoalexin. When 

seedlings were treated with T. harzianum Rifai and T. viride Pers.:Fr, before Sclerotinia 

sclerotiorum (Lib.) de Bary challenge, there was significant reduction in stalk rot severity 

in cauliflower and tomato compared to treatments that did not receive Trichoderma 

(Sharma and Sain 2004). Development of infection was consistently reduced after prior 

treatment with T. harzianum and T. viride on plant parts spatially separated from the site 

of S. sclerotiorum inoculation.  

On cotton, Trichoderma has been reported to be active against R. solani, 

Fusarium oxysporum f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hansen and 

Verticillium dahlia Kleb. Cotton seedlings treated with an effective biocontrol strain of T. 

virens (J.H. Mill., Giddens & A.A. Foster) Arx have higher levels of defense-related 

compounds such as terpenoids and peroxidase activity in the roots than seedlings treated 

with ineffective isolates (Hanson and Howell 2004).  

In effect, Trichoderma spp. have demonstrated multiple mechanisms of 

biocontrol. Similarly, the entomopathogenic fungus Beauveria bassiana (Bals-Criv.) 
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Vuill. may use these same biocontrol mechanisms against plant pathogens.  

 

History of Beauveria bassiana 

The occurrence of mummified silkworm (Bombyx mori L.) cadavers was 

documented in Japan as early as 900 CE. Mummified caterpillars were used medicinally 

in China for sore throats and as an antiseptic for wounds. They also were pulverized and 

used in mixtures with other compounds for inciting milk lactation in mammals, to treat 

abscesses, or as a remedy for toothaches. These uses have been associated with Chinese 

herbal medicine for about 2,000 years (Boucias and Pendland 1998). 

In 1834, an Italian scientist, Agostino Bassi determined that the muscardine 

disease, causing great economic losses in the silkworm industry, was caused by a living 

organism (Porter 1973). Because of his recognition of the origin of the disease, Bassi is 

credited with formulating the parasite theory of disease. Bassi also developed and 

demonstrated the use of sanitation techniques which made it possible to control the 

disease (Porter 1973).  

Beauveria bassiana is an entomopathogen that has been recognized, utilized and 

studied for many years. The entomopathogenic characteristics of the organism have 

probably changed relatively little over time. The identification of a worker ant covered in 

a fungus, morphologically similar to modern B. bassiana isolates was discovered in 

amber and estimated to be 25 million years old (Poinar and Thomas 1984). 

The initial identification of B. bassiana was done by Balsamo-Crivelis, who 

named it Botrytis bassiana in honor of Bassi. Later Veillmuin transferred it to Beauveria 

(Porter 1973). Because the sexual stage was not known at the time, B. bassiana was 
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originally grouped in the artificial phylum Deuteromycota. In 2001, the teleomorph of B. 

bassiana was determined to be a Cordyceps. The current taxonomy of the sexual stage of 

the fungus is phylum Ascomycota, class Pyrenomycetes (perithecia), order Hypocreales, 

family Clavicipitaceae, Cordyceps bassiana (teleomorph) and Beauveria bassiana 

(anamorph) (Yokoyama et al. 2004). For the sake of literary continuity, the organism will 

be referred to as B. bassiana throughout this dissertation.  

 

Morphology and nutrition of Beauveria bassiana 

 The asexual structures of B. bassiana are conidia, blastospores and mycelia.  The 

asexual stage of B. bassiana is well understood and involves the production of septate 

hyphae, which produce conidiophores from which hyaline (colorless) conidia form singly 

on a geniculate rachis. Conidia are globose to oval. Beauveria bassiana produces aerial 

conidia on the surface of mummified insect cadavers; submersed conidia are formed in 

liquid culture. Blastospores are sometimes referred to as the yeast-like phase of the 

fungus. Blastospores arise from the hypha once penetration of the insect cuticle has 

occurred. They are capable of reproductive budding. Blastospores inside insect cadavers 

do not have cell walls, but those in liquid culture suspensions do have walls (Hegedus et 

al. 1992). These structures are the obligatory parasitic phase of the fungus, since B. 

bassiana in its hyphal mode can sporulate on a dead insect (Boucias and Pendland 1988). 

 

Beauveria bassiana as an entomopathogen 

Historically B. bassiana is best known as an entomopathogen. Fungal 

entomopathogens are unique among insect pathogens in that instead of depending on 

 



 10 

being eaten by the insect or by opportunity entering through an opening (wound or 

natural), they are capable of entering the insect directly through the cuticle by production 

of enzymes (Boucias and Pendland 1988). 

The spore(s) can be wind-blown or picked up by the insect as it moves through its 

environment. The spores are hydrophobic, which enables them to adhere to the insect’s 

cuticle. Beauveria bassiana spores require only a carbon source in order to germinate, 

and germination can occur after only a few hours. However, a nitrogen source is required 

for continued growth (Boucias and Pendland 1988).  

Spore germination is induced on the surface of the insect cuticle which is 

composed of up to 40% chitin and serves as a source of carbon and nitrogen. The chitin 

molecule (Fig. 1-1.) is composed of alternating N-acetylglucosamine residues, linked by 

β-(1-4)-glycosidic bonds. Chitin is always associated with cuticle proteins that determine 

the mechanical properties of the cuticle (Merzendorfer and Zimoch 2003). 

Upon spore germination, a hyphal tube is extended and proteases, chitinases and 

lipidases are released. Proteases are released first, suggesting that the chitin fibrils are 

coated with protein, followed by the release of chitinases. The enzymatic action of B. 

bassiana is thought to help the fungus adhere to the insect cuticle (Boucias and Pendland 

1988). The hyphae use mechanical pressure (exerting force in one concentrated area) and 

enzymes to penetrate the cuticle and enter the hemocoel (Steinhaus 1949). If the insect is 

in the process of a molt, it may discard the exoskeleton before B. bassiana can penetrate 

into the new integument, thereby escaping infection. Infection may appear as dark brown 

spots on the insect cuticle, as melanization may be part of the insect immune response. 

Infection can also occur via the mouth or anus; it has also been speculated that infection 
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occurs via spiracles (Boucias and Pendland 1988). 

Once penetration of the hemocoel by hyphae has occurred, B. bassiana switches 

into a yeast-like phase, with the production of blastospores.  Blastospores will continue to 

multiply within the insect by budding. Blastospores do not appear to induce an immune 

response within the insect. Depending on the insect, virulence of the B. bassiana strain, 

internal environmental factors and host immune response, it may take from 2 to 8 days to 

actually kill the insect. During this time the insect will continue to eat and move; with 

time, insect activity will slow and a type of confusion or paralysis will occur (Boucias 

and Pendland 1988). When the insect food source has been utilized, B. bassiana enters 

into the hyphal stage again and sporulation occurs. Aerial conidia are produced and the 

infection cycle begins again. Sometimes the sexual stage, with production of perithecia, 

occurs. 
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Since its initial recognition, the ability of Beauveria to feed upon insects has made 

it a natural alternative to chemical pesticide control. Beauveria bassiana is commercially 

available in the U.S. under several brand names such as, Mycotrol, BotaniGard, and 

Naturalis. Active ingredients are isolate GHA for Mycotrol and BotaniGard, and TNO 

isolate F-7744 from ATCC-74040 of B. bassiana for Naturalis. 

 

Secondary metabolites 

Beauveria bassiana produces an array of relatively low molecular weight 

secondary metabolites, some of which have antibiotic properties while others are 

important virulence determinants. These metabolites aid in parasitism of insects but are 

not required, as some entomopathogenic isolates do not produce all metabolites. 

Although these metabolites are collectively referred to as toxins, little is known about 

their properties, production and spatial distribution. They may act as virulence factors by 

facilitating the ability of the fungus to colonize and use an insect as a food source and 

preventing subsequent invasion by secondary invaders (Stasser et al. 2000). Toxins 

produced by isolates of B. bassiana include beauvericin (Fig. 1-2A), bassinolide (Fig. 1-

2B), beauvolide, beauvirolide (Fig. 1-2C), oosporein (Fig. 1-2D), bassianin (Fig. 1-2E) 

and tellinin (Fig. 1-2F). 

Beauvericin, a cyclohexadepsipeptide, was first isolated from B. bassiana on the 

basis of assays of toxicity to brine shrimp. It exhibits antibacterial activity and has 

moderate insecticidal properties (Gupta et al. 1991, Stasser et al. 2000). It is structurally 

similar to enniatins, a class of N-methylated cyclohexadepsipeptides produced by 

Fusarium species with manifold biological activities (Weckwerth et al. 2000). 
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Fig. 1-2A.  Beauvericin.                           Fig. 1-2B. Bassinolide.      
(Google images European                                           {R1-4 = CH(CH3)2} 
Mycotoxin Awareness Network).                                (Weckwerth et al. 2000). 
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Fig.1-2C. Beauverolides.                                           Fig. 1-2D. Oosporein. 
(Kuzma et al. 2004).                                             

 
 
 

                  

Fig. 1-2E. Bassianin.                                      Fig. 1-2F. Tellinin.  
(Jeffs and Khachatourians 1997).                               (Jeffs and Khachatourians 1997). 

 
 

Fig. 1-2. Molecular structures of toxins produced by Beauveria bassiana. (A) 
Beauvericin; (B) Bassinolide; (C) Beauverolide;  (D) Oosporein; (E) Bassianin; (F) 
Tellinin. 
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Beauvericin is an ionophore capable of inserting into the plasma membrane disrupting 

transmembrane potential. Abnormal ion transport and disrupted cells and membrane 

bound organelles may result (Plattner and Nelson 1994, Žižka and Weiser 1993). Less is 

known about bassinolide which, like beauvericin, is structurally similar to enniatins. 

Bassinolide is toxic to lepidopteran species (Kanaoka et al. 1978).  

Beauvolide and beauvirolide are structurally similar to beauvericin and 

bassinolide, but their toxic effects have not been fully demonstrated against target insects. 

Biological tests indicate that beauverolides do not exhibit bactericidal, fungicidal, or 

direct insecticidal effects. However they are involved in insect immunomodulation, a 

change in the body's immune system, caused by agents that activate or suppress its 

function (Kuzma et al. 2001).  

Oosporein is a red pigmented dibenzoquinone that is a widespread secondary 

metabolite of soil-dwelling fungi (El Basyouni and Vining 1966, Michelitsch et al. 2004). 

It is active against several bacteria, particularly Gram-positive species [Staphylococcus 

aureus Rosenbach, Bacillus subtilis (Ehrenberg) Cohn, Proteus vulgaris Hauser]; 

however, oosporein has little effect against Gram-negative bacteria (Brewer et al. 1984, 

Taniguchi et al. 1984, Vining et al. 1962, Wainwright et al. 1986). It has no obvious 

effect on fungi and plants (Cole et al. 1974). Oosporein was shown to have strong 

inhibitory effects on radial growth of Phytophthora infestans (Mont.) de Bary (minimum 

inhibitory concentration = 16 µM), but Alternaria solani Sorauer and F. oxysporum 

Schltdl.:Fr. were insensitive (Nagaoka et al. 2004). Oosporein oxidizes proteins and 

amino acids by changing the SH-groups, resulting in enzyme malfunction. The 

production of this compound may enable B. bassiana to compete against the natural 
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bacteria microflora located within the insect gut. The presence of this compound is 

generally observed after infection has occurred and B. bassiana is within its proliferation 

phase; the insect sometimes exhibits a pink or reddish color. Oosporein is thought to 

inhibit opportunistic organisms found in the insect digestive tract thereby enabling B. 

bassiana to sporulate on the cadaver without competition (Stasser et al. 2000). 

Bassinin (Fig. 1-2E) and tellinin (Fig. 1-2F), yellow pigments from mycelial 

extracts, are collectively referred to as bassianins (El Basyouni et al. 1968). These 

compounds are capable of inhibiting total ATPase activity in erythrocyte membranes and 

of promoting cell lysis (Jeffs and Khachatourians 1997). All of these toxins are thought to 

act as virulence factors that aid in the colonization and utilization of a food substrate until 

fungal propagules are produced. 

 

Effect of environment on control of insects by B. bassiana  

The use of microbials in pest management is not new in entomology, which has 

relied on microbials as part of integrated pest management programs. However, their use 

against plant pathogens in plant production is still somewhat novel. In some cases, plants 

have formed symbiotic relationships with microbial organisms to enhance their survival. 

The establishment of these symbiotic relationships may also require specific 

environmental conditions. 

Beauveria bassiana requires certain environmental conditions in order to operate 

effectively and optimally as a biocontrol against insects. The optimal temperature range 

for insect control with B. bassiana is between 24 and 26°C. Optimal humidity is between 

75 to 100%. However, if a humidity of 100% occurs for greater than 24 hours, growth of 
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B. bassiana is somewhat reduced. These conditions can be met in microenvironments on 

leaf surfaces, within soil or even on the insect cuticle that enable the conidia to germinate 

(Luz and Fargues 1999). 

The main concern in the use of B. bassiana for control of insects is the need for an 

extended shelf-life. Eighteen months is considered a good shelf-life for many microbials. 

There is strong evidence that B. bassiana isolates retain their entomopathogenic activity 

over long periods of time. Frequent transfer was found to lower its virulence somewhat, 

thus it is better to keep a single culture for a long period of time (Steinhaus 1949). 

Timing of application affects efficacy of B. bassiana (Feng et al. 1994). 

Beauveria bassiana is not effective against Colorado potato beetle as an overwintering 

control because the winters are too cool and dry for fungal development. Thus an 

effective treatment schedule would be to spray in the early spring, when moisture levels 

are high (Boucias and Pendland 1998).  

  

Plant colonization by B. bassiana 

  It has been traditionally accepted that a B. bassiana infection cycle begins with 

conidia landing directly on the host cuticle, then attaching and producing an infection 

tube before it acts as a microbial pesticide against an insect (Boucias et al.1995). 

However this accepted paradigm was challenged when Bing and Lewis (1991) conducted 

a 2-year study to analyze the distribution and persistence of B. bassiana within corn 

plants when injected at the whorl stage, and to determine the effects on population levels 

of the European corn borer, Ostrinia nubilalis Hübner. Hypodermic needles and foliar 

applications were used to inoculate corn plants with B. bassiana conidia. Ostrinia 
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nubilalis was used to infest corn in the field at anthesis and plant samples were collected 

at harvest. Six different plant tissue samples were examined for the presence of B. 

bassiana. For both application treatments, results varied between the first and second 

year crops due to environmental conditions. Little B. bassiana was isolated from plant 

tissue during the first year, while in the second year B. bassiana was recovered from corn 

nodes 7 and 12 and the leaf collar at the node above the primary ear, but not from the leaf 

collar for the primary ear. The fungus was not isolated from leaf collar surfaces, but 

rather from internal areas. Therefore, the fungus did not persist throughout the season on 

the plant surface, where it was first applied, but did persist endophytically. A significant 

reduction in tunneling by the European corn borer was noted between untreated corn 

stalks and foliar and injected corn stalks (Bing and Lewis 1991). 

In a later study, Bing and Lewis (1992b) examined the ability of B. bassiana to 

control O. nubilalis activity at different stages in corn development. Treatments were 

applied to corn as a foliar application of a granular formulation of corn grits, and through 

injection of a conidial suspension at the whorl stage of development. Plants were infested 

with O. nubilalis at the following stages of development: V7 (whorl), V12 (late whorl) or 

V17 (pretassel). The later the stage of development of the plant, the less damage the 

European corn borer caused. Time of fungal application significantly affected amount of 

tunneling by European corn borer larvae. Beauveria bassiana colonized all stages 

equally. Six different plant tissue samples were examined for the presence of B. bassiana. 

The pith was more frequently colonized than the leaf collars. Beauveria bassiana isolated 

from corn maintained its pathogenicity when tested against 5th stage instars. The fungus 

persisted inside the plant and was present at harvest. Time of European corn borer 
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infestation after fungal application significantly affected the amount of tunneling by 

European corn borer larvae. The effectiveness of B. bassiana as a microbial control was 

regulated by environmental conditions. The authors suggested that hot, dry environmental 

conditions during the first year affected the fungus negatively and delayed its suppression 

of European corn borer larvae. Beauveria bassiana was found to colonize a higher 

percentage of plants in the second year, due to sufficient rainfall. It was concluded that B. 

bassiana does kill corn borers, but it was not determined if this action is caused by 

contact or consumption of the endophyte (Bing and Lewis 1992b).  

In another study, a conidial suspension of B. bassiana was injected into corn 

plants at anthesis to suppress O. nubilalis. The fungus colonized the plants and moved 

primarily upward within the pith. Beauveria bassiana injected into corn plants 

significantly reduced the amount of European corn borer tunneling (Bing and Lewis 

1992a). 

Wagner and Lewis (2000) examined the method employed by B. bassiana to 

colonize a corn plant by means of electron microscopy. Beauveria bassiana spores were 

placed on a corn leaf substrate and found to germinate. Hyphae (less than 1%) entered the 

plant directly through the epidermal cuticle or the stomata to form an endophytic 

relationship with the plant (Wagner and Lewis 2000).   

Naturally occurring endophytic isolates of B. bassiana have been isolated from 

corn, cotton and jimson weed using traditional plating techniques on selective media 

(Doberski and Tribe 1980). From five isolates collected, two isolates were selected to use 

as potential endophytic biocontrol inoculum for potato plants. These isolates were 

capable of endophytic colonization of potato plants (Jones 1994).  
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Beauveria bassiana as a biocontrol of plant pathogens 

The potential of B. bassiana to control important soilborne plant pathogens of 

seedlings, such as R. solani in situ, is largely unknown. With few exceptions, research on 

B. bassiana as a control for plant pathogens has been limited to in vitro studies on growth 

and cell lysis of plant pathogens. Antagonistic ability against R. solani with 22 different 

B. bassiana isolates was examined on potato dextrose agar (PDA) plates. Three isolates 

were inhibitory against R. solani, indicating there are differences among B. bassiana 

isolates and their specific plant pathogen biocontrol capacities (Lee et al. 1999). In 

another study, five B. bassiana isolates were found to have antifungal inhibitory activity 

against the mycelial growth of the plant parasitic fungi Fusarium oxysporum, Armillaria 

mellea (Vahl:Fr.) P. Kumm. and Rosellinia necatrix Prill. (Reisenzein and Tiefenbrunner 

1997). The isolates of B. bassiana had different antifungal effects, but differences were 

small compared to nontreated controls. Mycelial growth and spore germination of the 

phytopathogenic fungi Botrytis cinerea Pers.:Fr. and F. oxysporum was inhibited by B. 

bassiana culture filtrate (Bark et al. 1996). Inhibition efficiency varied depending on 

culture medium; inhibition was greatest on PDA for B. cinerea and on tryptic soy agar for 

F. oxysporum. Beauveria bassiana was antagonistic to Pythium ultimum Trow and P. 

debaryanum Auct. non R. Hesse, inducing lysis of the mycelium while actively growing 

on or beneath the mycelia; however, R. solani was resistant to this isolate of B. bassiana, 

while Septoria nodorum (Berk.) Castell. & E.G. Germano was strongly suppressed on 

solid medium (Vesely and Koubova 1994).  

In a greenhouse study involving treatment of onion bulbs with antagonistic fungi 

against Fusarium oxysporum f. sp. cepae (H.N. Hansen) W.C. Snyder & H.N. Hansen, 
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out of sixteen fungi, three treatments (T. viride isolate 144, T. harzianum 312 and B. 

bassiana 142), provided greater that 63% control of the pathogen (Flori and Roberti 

1993). Beauveria bassiana isolate 11-98 applied as a conidial treatment in a 2.5% 

methylcellulose (MC) solution to tomato seeds prior to sowing provided protection 

against R. solani (Bishop 1999, Seth 2001).  

Beauveria bassiana has the ability to become endophytic in plants. Endophytic 

activity may in part be responsible for its ability to act as a biocontrol of plant pathogens. 

Detection of B. bassiana in tomato tissues was accomplished with the use of polymerase 

chain reaction and ITS primers 1 and 4 (Leckie 2002, Ownley et al. 2005). Beauveria 

bassiana was reported to be endophytic in cocoa (Theobroma cacao L.) seedlings and 

was recovered from the roots, stems and leaves after two months using direct plating 

techniques (Posada and Vega 2005). Beauveria bassiana was found to colonize 

approximately 40% of opium poppy, (Papaver somniferum L.) seedlings after seed were 

coated with conidia and examined after six days using direct plating techniques, scanning 

electron microscopy and polymerase chain reaction with ITS primers 1 and 2 (Quesada-

Moraga et al. 2006). 

  In a regional field trial on cotton, B. bassiana seed treatments provided protection 

against seedling pathogens in some soils. In the two field sites where B. bassiana proved 

successful, the soils were sandy loams and the only pathogen isolated from plant material 

was R. solani (Batson et al. 2000). Variability of the environment has long been noted as 

a problem for the overall efficiency of biocontrols (Ownley et al. 2003). Soilborne 

pathogens present the greatest threat to seedlings prior to and a few days after 

germination.  
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Research Objectives 

The objectives of this study were to determine: 1) if B. bassiana is endophytic in 

cotton and can be isolated from tissue via traditional direct plating techniques; 2) if B. 

bassiana can be detected in cotton with electron microscopy and polymerase chain 

reaction; 3) if B. bassiana is capable of providing protection for cotton as a seed 

treatment against soilborne pathogens responsible for cotton seedling disease complex; 4) 

if different rates of conidia, applied to seed, alter effectiveness of B. bassiana; and 5) 

mechanisms of biocontrol used by B. bassiana against plant pathogens. 
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Abstract 

Beauveria bassiana an entomopathogenic fungus is endophytic in some 

agronomically important plants, including tomato and corn. The primary objective of this 

study was to determine ability of B. bassiana for endophytic colonization of cotton, 

Gossypium hirsutum, following seed treatment. Cotton seedling tissues were evaluated 

for endophytic colonization with standard isolation techniques on culture medium, 

scanning electron microscopy, and polymerase chain reaction. Seed from ‘Delta Pine 

436’ cotton was inoculated with conidia in 2% methylcellulose slurry. Seed were 

germinated in either a sterile or a gnotobiotic system. Beauveria bassiana isolate11-98C 

was endophytic in cotton based on standard isolation plating techniques with selective 

medium. Scanning electron microscopy was used to determine mode of penetration into 

cotton. Beauveria bassiana hyphae grew along cotton leaf surfaces; germination and 

hyphal growth were associated with areas of leaf exudates. Hyphae also germinated and 

grew on >50% of the root surface examined. Often, a germ tube formed from a conidium 

and elongated without any apparent termination of growth or penetration of the plant 

surface. Penetration points through epithelial cells were observed; however, not all 

developing hyphae on the leaf surface penetrated the cuticle. It is possible that selection 

sites for germination and generalized movement by B. bassiana toward trichomes and 

other cellular structures associated with exuded plant nutrients indicate the fungus is 

capable of utilizing specific topographic signals to locate an appropriate entry site. Three 

sets of primers were evaluated for detection of B. bassiana using polymerase chain 

reaction (PCR) and gel electrophoresis of PCR products. Beauveria bassiana was 

detected as a single band in positive Beauveria DNA controls with the use of ITS 1 and 4 
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primers. However, ITS 1 and 4 primers failed to detect B. bassiana in the presence of 

excess cotton DNA. These primers also amplify ITS regions in cotton. In DNA samples 

from Beauveria-colonized plants a Beauveria sequence could not be detected. 

Presumably the excess cotton DNA out-competed the fungal DNA for primer binding. 

MAT 1 and MAT 2 mating-type primers, also were unable to detect this isolate of B. 

bassiana in any samples. From ITS sequences detected by ITS 1 and 4 primers, 

additional primers were designed that did not bind to cotton DNA. Using the new ITS 

primers, B. bassiana was detected in a mixed DNA sample at a ratio of 1 part B. bassiana 

DNA to 1000 parts cotton DNA (1:103) with PCR and gel electrophoresis of PCR 

products. The reaction produced a single 421-bp band for B. bassiana and no bands for 

cotton. New ITS primers also detected B. bassiana in different tissues of cotton seedlings 

grown from B. bassiana-treated seed. 

Keywords: Beauveria bassiana, endophytic colonization, cotton, SEM, PCR 

 

Introduction 

Beauveria bassiana (Bals.-Criv.) Vuill. was first identified in 1834, by an Italian 

scientist, Agostino Bassi, as the agent of silkworm (Bombyx mori L.) disease, commonly 

known as muscardine disease (Porter, 1973). In 2001, the teleomorph stage was 

associated with the Ascomycota, Pyrenomycetes, Hypocreales, Clavicipitaceae, and 

named Cordyceps bassiana (Yokoyama et al. 2004). Beauveria is closely related to the 

mutualistic Neotyphodium spp., known endophytes of grasses that can confer protection 

and act as a deterrent to feeding by insects (Ahmad et al. 1985; Johnson et al. 1985). 

Beauveria bassiana is pathogenic on several insect species worldwide. The use of 
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B. bassiana as a biocontrol for insect pests has been the subject of several papers and 

reviews (McCoy et al. 1985, Roy et al. 2005). Beauveria bassiana applied to whorl-stage 

corn by foliar application, colonized and persisted in corn plants to provide season-long 

suppression of European corn borer, Ostrinia nubilalis Hübner (Bing and Lewis 1991). 

Naturally occurring isolates of B. bassiana were isolated sporadically from the stems of 

corn, cotton and jimson weed by Jones (1994) and a single selected isolate was able to 

endophytically colonize potatoes (Jones 1994). Beauveria bassiana has the ability to 

colonize plants endophytically. Endophytic activity may be responsible in part for the 

fungus’ ability to act as a biocontrol against plant pathogens. Beauveria bassiana, applied 

as conidia in a 2.5% methylcellulose (MC) solution to tomato seeds prior to sowing, 

provided protection against Rhizoctonia solani Kühn, a ubiquitous soilborne fungus that 

causes disease in a wide range of cultivated plants (Ownley et al. 2005).   

Objectives of this study were: 1) to determine extent of B. bassiana isolate 11-98 

colonization of cotton by isolation from leaves, stems, and roots of cotton seedlings using 

traditional plating techniques, following seed treatment with the fungus; 2) to monitor B. 

bassiana penetration and invasion using scanning electron microscopy (SEM); and 3) to 

develop PCR protocols for detection of B. bassiana in cotton tissues. 

 

Materials and Methods 

Gnotobiotic assay for selection of cotton-adapted B. bassiana 11-98  

Beauveria bassiana 11-98 (Bb 11-98) was isolated originally from an infected 

click beetle (Coleoptera: Elateridae) from Scott County, TN (Leckie 2002). The isolate 

was grown on Sabouraud dextrose agar (SDA) for approximately 6 weeks, and conidia 



 32 

were harvested by brushing the surface of the plates with a stenciling brush. Conidia were 

stored at 4°C in a desiccator until needed.  

Delinted black cotton seed of ‘Delta Pine (DP) 436 RR’ was obtained from Dr. 

Craig Canaday, The University of Tennessee, West Tennessee Research and Education 

Center, Jackson. Seeds were surface-sterilized with a 30% Clorox solution (30 ml Clorox 

and 70 ml deionized H2O) and soaked for 5 min, stirring occasionally. Seeds were rinsed 

five times, allowed to soak for 1 min during each rinse in deionized water, then air-dried 

under a chemical fume hood for 3 h. Seed (2 g) were coated with B. bassiana spores (1 g 

Bb 11-98) in 2 ml 2% MC solution to which 25 µl Tween-20 had been added. 

Modifications to the formula were made to achieve desired conidial rates on seed. 

In the gnotobiotic assay, seed of ‘DP 436 RR’ were coated with Bb 11-98 to 

achieve a final CFU of 1 × 109 CFU per seed. Treated seed were air-dried and stored at 

4°C until use. Seed coated with Bb 11-98 were aseptically placed into 40 (30-mm2) test 

tubes with 20 cm3 of twice-autoclaved vermiculite and 8 to 10 ml sterile deionized water 

(Fig. 2-1). Seed were placed beneath the vermiculite surface and tubes were incubated in 

a growth chamber with a 12 hour light/dark cycle at 24 to 25°C for 2 weeks, after which 

germination rates were recorded. Six 21-day old plants were used for direct plating onto 

B. bassiana selective culture medium (Doberski and Tribe 1980) and remaining plants 

were harvested at 14 days and stored at -80°C for PCR. The gnotobiotic assay was 

repeated. A cotton adapted isolate (Bb 11-98C) collected after the gnotobiotic assay was 

used in subsequent experiments. 

At 21 days, five intact seedlings were surface-sterilized by immersion for 1 min in 

95% ethanol, then transferred to a 20% Clorox solution for 3 min, and placed in 95%  
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Fig. 2-1. Cotton seedlings in gnotobiotic assay. 
 

 

ethanol for 1 min (method adapted from Jones 1994). Afterwards, the plant was rinsed in 

sterile deionized water and allowed to dry under a laminar flow hood. Surface-sterilized 

seedlings were aseptically cut into 2 to 3-mm pieces for root and stem sections; leaves 

were cut into 3-to 7-mm pieces before being placed on Beauveria selective medium 

(Doberski and Tribe 1980) for 6 weeks. Each plate contained five to eight pieces of plant 

material. Plates were incubated at 22 to 24°C for 6 weeks. A single non-surface sterilized 

seedling was plated on the selective medium to determine epiphytic growth of B. 

bassiana. In addition, to determine presence of fungal seedborne pathogens 20 to 25 

surface-sterilized seeds were randomly selected and placed directly onto potato dextrose 

agar (PDA). Cultures were sealed and incubated at 22 to 24°C for 14 to 18 days. 

 

Scanning electron microscopy 
 

Conidia from Bb 11-98C cultures were coated onto ‘DP 436 RR’ seed at 1 × 1010 

CFU/seed and air-dried as previously described. Seed were stored at 4°C until needed. 
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Seed were germinated on moistened filter paper in 150 × 15-mm Petri plates were sealed 

and incubated at 25°C for 7 days with continuous light. Approximately 3 to 4 days after 

germination, two seedlings were selected for SEM.  

 A modified fixation procedure, adapted from Wagner and Lewis (2000), was 

used for SEM. Cotyledon and root sections were cut into 5-to 7-mm pieces and fixed in 

3% glutaraldehyde in phosphate buffer (0.1 M; pH 7.2) for 2 h at 20 to 22°C; plant 

material was then transferred to fresh fixative solution for approximately 24 h at 4°C. 

Specimens were rinsed in three changes of buffer, 10 ml each, and then postfixed in 1% 

OsO4 for 2 h. Material was washed twice in distilled water for 30 min, and dehydrated in 

a graded ethanol series to 100% ethanol. Leaves were critical point dried in a DCP-1 

critical drying unit (Ladd Research Industries, Inc., Willeston, VT) with CO2. Specimens 

were coated with gold in a SPI-Module sputter coating unit. Photographs were taken on a 

Leo 1525 Field Emission Secondary Electron Microscope (FE-SEM) (Leo Gemini with 

Oxford INCA ED software, Pretoria, South Africa) operating at 5-kV accelerating 

voltage. 

 

Isolation of plant and fungal DNA 

Plant and fungal material was lyophilized (Virtis Company Inc., Gardner, NY) for 

24 h in Eppendorf tubes with three to four, 2.5-mm glass beads (Biospec Products Inc., 

Bartlesville, OK). Dried material was pulverized with a Mixer mill (Retsch Inc, Haan, 

Germany); for 1 min, rotated and repeated for 1 min. Plant and fungal DNA were isolated 

using a PCR purification kit (Qiagen, Valencia, CA). DNA concentrations were 

determined with a TD 360 Mini-Fluorometer (Turner Designs Instruments, Sunnyvale, 



 35 

CA) at 360 nm. DNA samples were stored at 4°C until needed. 

 

Polymerase chain reaction 

All primers were obtained from Sigma-Genosys (The Woodlands, TX) (Table 1).  

 

MAT 1 and MAT 2 mating type primers 

The PCR reaction mixture with the mating type primers (Yokoyama et al. 2004) 

contained 2.5 µl of 10X PCR reaction buffer with MgCl2 (Promega., Madison, WI);  0.5 

µl of a 2 mM mixture of dCTP, dGTP, dTTP and dATP (Promega); 1.25 µl of 20 µM 

MAT (forward) primer; 1.25 µl of 20 µM MAT (reverse) primer; 9.5 µl of deionized 

water; 0.5 µl AmpliTaq Gold DNA polymerase (PE Applied Biosystems, Foster City, 

CA) and 10 µl of DNA sample (100 ng/µl). Tubes were placed into a Mastercycler 

gradient thermalcycler (Eppendorf AG, Hamburg, Germany) for amplification. Reaction 

parameters were as follows: 95°C for 9 min; 95°C for 45 s; 65°C with MAT 1-1 for 45 s, 

68°C with MAT 1-2 for 45 s, 54°C with MAT 2-1 for 45s and 59°C with MAT 2-2 for 45 

s; and 72°C for 30 s, for 35 cycles. The reaction mixture was held at 4°C until tubes were 

removed. Products were removed from tubes and separated on 2% (w/v) agarose-TAE 

gel (Tris-acetate-EDTA electrophoresis buffer) at approximately 100 volts. Agarose gels 

were stained with ethidium bromide solution (4 µl/400 ml buffer; Sigma Chemical Co., 

St. Louis, MO) and visualized with a Fisher Biotech 312-nm transilluminator FBTI 816 

(Fisher Scientific, Pittsburgh, PA). Positive controls of DNA from B. bassiana isolate 11-

98 and cotton were included in each gel. A negative control containing all reaction  
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Table 2-1. Primer sequences 

1 All primers were obtained from Sigma-Genosys, The Woodlands, CA. 
 

 

 

Primer1 Sequence Orientation Reference 
MAT1-F1 5’ -

G(A/G)GC(A/T)AA(A/G)CG(A/
G)CCATT(G/)A(C/T)GC 

Forward Yokoyama 
et al. 2004 

MAT1-R1 5’ -
TT(G/T)CCCATCTC(A/G)TC9A/
G)CGGA(C/T(A/G)AA(A/G)GA 

Reverse Yokoyama 
et al. 2004 

MAT1- 
F2 

5’-
CCAAGCCGGTATCAGTGAAT
GC 

Forward Yokoyama 
et al. 2004 

MAT1- 
R2 

5’ –
CGACCTGTTGTCGAACAAAG
GT 

Reverse Yokoyama 
et al. 2004 

MAT2-F1 5’ –
GC(A/G)TATATTCT(A/G)TAC
CGCAG 

Forward Yokoyama 
et al. 2004 

MAT2-R1 5’ –
CGAGGTTGATA(T/C)TGATA(
T/C)TG 

Reverse Yokoyama 
et al. 2004 

MAT2-F2 5’ –
ACGCATATATT(T/C)TGTACC
G(T/C)AA 

Forward Yokoyama 
et al. 2004 

MAT2-R2 5’ –
GAAGGCTTTCG(AT/T)GGT(T/
C)TGTAC 

Reverse Yokoyama 
et al. 2004 

ITS 1 5’-
TCCGTAGGTGAACCTGCGG 

Forward White et 
al., 1990 

ITS 4 5’ –
TCCTCCGCTTATTGATATGC 

Reverse White et 
al., 1990 

Modified 
ITS  

5’ –
GAACCTACCTATYGTTGCTT
C 

Forward  This study 

Modified 
ITS  

5’ –
ATYCGAGGTCAACGTTCAG 

Reverse This study 
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components except the DNA sample was included to ensure no DNA contamination of 

PCR reaction constituents. 

 

ITS 1 and ITS 4 primers 

The PCR reaction mixture with ITS 1 and ITS 4 primers contained 2.5 µl of 10X 

PCR reaction buffer (Takara Bio. Otsu, Shiga, Japan); 1.0 µl of a 2 mM mixture of dCTP, 

dGTP, dTTP and dATP (Takara); 2.5 µl of 3 µM ITS1 primer; 2.5 µl of 3 µM ITS4 

primer; 17.75 µl of deionized water; 0.25 µl Taq DNA polymerase (Takara); and 1 µl of 

DNA sample (100 ng/µl). Mixture was placed in 25-µl Eppendorf tubes, and tubes placed 

in Mastercycler gradient thermalcycler for amplification. Reaction parameters were as 

follows; 95°C for 9 min, followed by 35 cycles at 94°C for 1 min, 42°C for 1 min, 72°C 

for 1 min, for 40 cycles, followed by a final 3-min period at 72°C. The reaction mixture 

was held at 4°C until the tubes were removed. Products were removed from the tubes and 

separated on a 1% (w/v) agarose-TBE gel (Tris-Boric-EDTA Electrophoresis Grade, 

Fisher Scientific) at approximately 100 volts. A 50-bp + DNA step ladder (Promega) was 

included to determine size of PCR products. Agarose gels were stained with ethidium 

bromide and visualized as described earlier. 

Positive controls of DNA from Bb 11-98 and cotton were included in each gel. A 

negative control with all reaction components except the DNA sample was included in 

each gel to ensure no DNA contamination of the PCR reaction constituents. Cotton and 

B. bassiana bands were excised from gels, and processed with a QIAquick Gel Extraction 

Kit (Qiagen) using the manufacturer’s instructions. Extracted PCR products were 
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sequenced (The University of Tennessee Molecular Biology Resource Facility) and 

subjected to a GenBank Blast search (Altschul et al. 1997). 

 

Beauveria bassiana new ITS primers  

New ITS primers specific for B. bassiana DNA were designed by Dr. J.K. 

Moulton, The University of Tennessee, Knoxville. The reaction mixture consisted of 2.5 

µl of 10X PCR reaction buffer (Takara); 1.0 µl of a 2 mM mixture of dCTP, dGTP, dTTP 

and dATP (Takara); 2.5 µl of 20 µM forward primer; 2.5 µl of 20 µM reverse primer; 

16.75 µl deionized water; 0.25 µl Taq polymerase (Takara); and 1.0 µl (100 ng/µl) 

template DNA. Contents were placed in a 25-µl Eppendorf tube and placed in the 

thermalcycler for sequence amplification. Two gradient series were conducted to 

determine optimal annealing temperature for the primers. The optimal annealing 

temperature (59°C) for the new ITS primers was used in subsequent experiments. 

Positive controls of DNA from Bb 11-98, and cotton were included in each gel. A 

negative control with all reaction components except the DNA sample was included in 

each gel to ensure no DNA contamination of the PCR constituents.  

Reaction parameters for PCR were as follows; 95°C for 2 min, 94°C for 1 min,  

59°C for 1 min, 72°C for 1 min, for 40 cycles, followed by 72°C for 3 min. Reaction 

mixes were held at 4°C until used for agarose electrophoresis. 

Products were removed from the tubes and separated on a 1% (w/v) agarose-TBE 

gel at 100 volts until bands had separated properly. A 50 bp+ DNA step ladder (Promega) 

was included to determine the size of PCR products. Agarose gels were stained with 

ethidium bromide and visualized with a transilluminator as described above. 
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The original Bb 11-98 isolate, Bb 11-98C from cotton seedlings and a putative 

violet B. bassiana isolate from seedlings treated with 11-98 were used as DNA samples. 

Samples were processed with a QIAquick Gel Extraction Kit (Qiagen). PCR fragments 

were sequenced with the Applied Biosystems (Foster City, CA) Big Dye version 3.1 

cycle sequencing kit and analyzed with an MJ Research BaseStation-100 automated 

sequencer (BioRad Laboratories, Hercules, CA). 

To determine the smallest relative concentration of DNA from B. bassiana that 

could be detected in a mixture of plant and fungal DNA; a dilution series was established 

with 1:1; 1:10; 1:100; 1:1000 ratios of DNA from Bb 11-98 to DNA from cotton ‘DP 436 

RR.’   

The PCR reaction mixture for the dilution series was 2.5 µl of 10X PCR reaction 

buffer (Takara); 1.0 µl of a 2 mM mixture of dCTP, dGTP, dTTP and dATP (Takara); 

1.25 µl of 20 µM forward primer; 1.25 µl of 20 µM reverse primer; 17.75 µl of deionized 

water; 0.25 µl Taq polymerase (Takara); and 1.0 µl (100 ng/µl) template DNA. Tubes 

were placed into the thermalcycler and the amplification procedure was conducted. 

Reaction parameters were as follows; 95°C for 2 min, 94°C for 1 min, approximately 

59°C for 1 min for 40 cycles, followed by 72°C.  

Products were removed from tubes and separated on a 1% (w/v) agarose-TBE gel. 

Electrophoresis was conducted at approximately 100 volts until bands had separated 

properly. As previously described, each gel included a 50 bp+ DNA ladder, a positive Bb 

11-98 DNA control, a positive cotton DNA control, and a negative no DNA control. 

Reaction mixes were held at 4°C until electrophoresis. Agarose gels were stained with 
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ethidium bromide and visualized with a transilluminator. Bands were excised from the 

gels and DNA was extracted for sequencing. 

 

Results 

Gnotobiotic assay 

Beauveria bassiana 11-98 was isolated from cotton seedling tissues of ‘DP 436 

RR.’ The cotton-adapted isolate was named Bb 11-98C. From five seedlings surface 

sterilized prior to plating, approximately 78% of the plates had fungal isolates. A single 

non-surface sterilized seedling also had similar fungal isolates in culture. The majority of 

fungal isolates observed in culture were violet hue in color rather than the typical beige 

observed in the original 11-98 isolate (Fig. 2-2).  From these endophytic isolates, two 

fungal isolates had the color and morphology typical of Bb 11-98 in culture. One of these 

was selected and designated isolate Bb11-98C, the assay was repeated with five 

additional seedlings and beige B. bassiana isolates were re-isolated from all parts of 

cotton plants (Fig. 2-3). Fungal growth from surface-sterilized cotton tissues took 

approximately four to six weeks for development in culture (Fig. 2-2 and 2-3). 

In the first gnotobiotic assay, 79% cotton seeds germinated. In the second assay, 

69% of seeds germinated. To test for potential endophytes present, seed were placed 

directly on PDA plates and evaluated for fungal contaminants after 10 days. Of 23 seeds 

placed on PDA, 100% germinated and less than 9% had fungal contaminants. The 

contaminants morphologically resembled Fusarium sp. and Penicillium sp. No Beauveria 

was isolated from nontreated seed. 
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A.   B.   
 
Fig. 2-2. Violet colored endophytic Beauveria bassiana. A. Several violet colonies on B. 
bassiana selective medium were recovered using plating techniques with gnotobiotically 
grown cotton seedlings. B. Colony of violet fungus.  
 
 
 
 
 

A.   B.  C.  
 
Fig. 2-3. Endophytic Beauveria bassiana 11-98C was re-isolated from ‘DP 436 RR.’ 
Beauveria bassiana 11-98C was isolated from the leaves (A) stems (B) and roots (C) of 
surface-sterilized seedlings grown in a gnotobiotic assay. 
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The cotton-adapted strain, Bb 11-98C, was grown on SDA for 6 weeks; conidia 

were harvested and stored at 4°C until needed. A morphological examination of the 

predominant violet colored culture suggested that it was B. bassiana; however, this  

fungus did not resemble the typical highly sporulating Bb 11-98 observed in culture. The 

violet colored colonies had more aerial mycelia than the Bb 11-98 isolate and did not 

readily sporulate. No other fungal isolates were found.  

The cotton-adapted strain, Bb 11-98C, was grown on SDA for 6 weeks; conidia 

were harvested and stored at 4°C until needed. A morphological examination of the 

predominant violet colored culture suggested that it was B. bassiana; however, this  

fungus did not resemble the typical highly sporulating Bb 11-98 observed in culture. The 

violet colored colonies had more aerial mycelia than the Bb 11-98 isolate and did not 

readily sporulate. No other fungal isolates were found.  

 

Scanning electron microscopy 

Conidia of Bb 11-98C were observed that had germinated and colonized the outer 

surfaces of cotton seedlings grown from seed treated with Bb 11-98C conidia, including  

cotton cotyledons (Figs. 2-4, 2-5, 2-6, 2-7 and 2-8) and on the radicals (Fig. 2-9). 

Scanning electron micrographs of conidia revealed either ungerminated or in varying 

stages of germination and hyphal extension. Germination of dry conidia occurred after re-

hydration on surface of cotton seedling. Early germination and formation of a germ tube 

from a single conidium was observed (Fig. 2-4). Germ tubes gradually elongated into 

hyphae and spread in seemingly random directions across epidermal cells of the 

cotyledon (Fig. 2-6). Germinating conidia and hyphae were closely associated with  
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Fig. 2-4. Conidium of Beauveria bassiana 11-98C germinating on cotton ‘DP 436 RR’ 
cotyledon surface. H = hyphae, C = conidium. Bar = 2 um. 

 
 
 
 
 

 
 
Fig. 2-5. Conidia of Beauveria bassiana 11-98C germinating and growing towards two 
trichomes. H = hyphae, T = trichome, S =stomate. Bar = 10 um. 
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Fig. 2-6. Mycelia of Beauveria bassiana 11-98C spreading out in a seemingly random 
pattern, penetrating, and exiting epithelial cells. P = penetrating hyphae, C = conidia that 
have not germinated. Bar = 10 um. 

 
 
 
 

  
 
Fig. 2-7. Beauveria bassiana 11-98C conidia germinating outside of stomate. H = 
hyphae, P = penetration point S = stomate. Bar = 10 um. 
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Fig. 2-8. Cotton leaf cross section showing the palisade parenchyma and spongy 
mesophyll. Linear structures (indicated by arrows) represent hyphae of Beauveria 
bassiana 11-98C growing throughout. H = hyphae, P = palisade leaf layer, M = 
mesophyll leaf layer. Bar = 10 µm. 

 
 

    
 
Fig. 2-9. Conidia and hyphae of Beauveria bassiana 11-98C pushed forward on root tip 
of cotton radicle three to four days after germination from conidia coated seed. C = 
conidia, H = hyphae. Bar = 10 µm. 
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trichomes on the cotyledon surface (Fig. 2-5).  

Mycelia were strongly associated with tips of the cotyledons where thick mats 

developed and were visible to the naked eye. Several hyphae were associated with 

stomatal openings but penetration occurred through the epidermal cells (Fig. 2-7). In a 

cotyledon cross section, Bb 11-98C hyphae were observed growing through the internal 

leaf tissues, being associated with all layers of the cotyledon (Fig. 2-8). In general, more 

than 50% of the cotton radicle surface was covered with conidia (Fig. 2-9).  

 

Polymerase Chain Reaction 

Attempts to use mating type primers, MAT 1 and MAT 2 (Yokoyama et al. 2004), 

to detect presence of B. bassiana DNA in association with cotton DNA were not 

successful. Internal transcribed spacer region, ITS 1 and ITS 4 primers were used for 

detection of B. bassiana. When pure DNA samples were used, cotton DNA had a band 

approximately 800-bp in size and B. bassiana 11-98 had a 550-bp PCR product. Both 

bands were sequenced and a GenBank Blast search confirmed that 800 and 550-bp PCR 

products were homologous with ITS regions of cotton and B. bassiana, respectively. 

However in mixed DNA samples, ITS 1 and ITS 4 primers had a higher affinity for 

cotton DNA than for B. bassiana DNA. The band for B. bassiana was not visible in 

mixed DNA samples with a high concentration of cotton DNA (Fig. 2-10). 

Because the objective was to detect the presence of B. bassiana in plant tissue, a more 

highly selective primer pair for B. bassiana was needed. Since B. bassiana was 

successfully detected using ITS 1 and ITS 4 primers, new ITS primers were designed to 

detect the ITS region within B. bassiana but not the ITS region in cotton.  
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                       Lane 

                                 M     1     2    3    4     5    6    7     8    9    10   11   12  13   14  15 

 

Fig. 2-10. Dilution series with Beauveria bassiana isolate 11-98C and cotton ‘DP 436 
RR’ DNA using ITS 1 and ITS 4 primers. Electrophoresis of PCR products produced a 
strong band at approximately 800-bp in all lanes where cotton was present. A 550-bp 
band was present in two lanes (3 and 5) where B. bassiana was present. However, 
detection of B. bassiana in mixed DNA samples at dilution rates 1:10 and below was not 
possible due to primer affinity for plant DNA. PCR products were separated by 
electrophoresis in a 1% agarose-TBE gel. The 50-bp ladder (Promega, Madison, WI) (M) 
was used to estimate the size of PCR products. Lanes 1, 3, 5, 7, 9, 11, 13, 15: Blank; 
Lane 2: Bb 11-98C; Lane 4: Bb 11-98C : cotton (1:1); Lane 6: Bb 11-98C : cotton (1:10); 
Lane 8: Bb 11-98C : cotton (1:100); Lane 10: Bb 11-98C : cotton (1:1000); Lane 12: 
cotton ‘DP 436 RR’ DNA; Lane 14: no DNA control. 

 

 

 

 

 

550-bp-- 
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Using the new ITS primers, repeated bands for the original B. bassiana 11-98 

(Fig. 2-11) and 11-98C (Fig. 2-12) and the violet isolate (Fig. 2-13) were sequenced, and 

were a 99% homologous match to Cordyceps bassiana, the teleomorph of B. bassiana 

(Fig. 2-14). Using new ITS primers on a dilution series of DNA from Bb 11-98C and a 

GenBank Blast search was conducted. The 421-bp PCR product from Bb 11-98, Bb 11-

98C and the violet hued putative B. bassiana isolate were identical. The sequence was a 

cotton, B. bassiana was detectable in ratios as low as 1:1000 [B. bassiana DNA : cotton 

DNA template (Fig. 2-15)]. No bands were present in the lane with positive cotton DNA 

control. Beauveria bassiana also was detected using the new ITS primers, from whole 

plant parts in two plants, that had been grown in the gnotobiotic assay from seed treated 

with Bb 11-98 (Fig. 2-16).  
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                                                    Lane 
              M      1      2      3 

                         
 
Fig. 2-11. DNA from original fungal isolate Beauveria bassiana 11-98 was isolated and 
subjected to PCR using new ITS primers. Primers were designed by Dr. J. K. Moulton 
(University of Tennessee. Electrophoresis of the PCR products produced a 421-bp band. 
PCR products were separated by electrophoresis in a 1% agarose-TBE gel. The 50-bp 
ladder (Promega, Madison, WI) (M) was used to estimate the size of PCR products. 
Lanes 1, 2: Bb 11-98 (repeated); Lane 3: Blank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

500-bp-- 
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                                                            Lane 
                                          M      1       2     3       4      5 

         
 
Fig. 2-12. DNA from Beauveria bassiana 11-98C was isolated and subjected to PCR 
using new ITS primers. Primers were designed by Dr. J. K. Moulton (University of 
Tennessee). Electrophoresis of the PCR products produced a 421-bp band. PCR products 
were separated by electrophoresis in a 1% agarose-TBE gel. The 50-bp ladder (Promega, 
Madison, WI) (M) was used to estimate the size of PCR products. Lane 1: Blank; Lanes 
2, 3, 4, 5: B. bassiana 11-98C (repeated). 
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  Lane 

                   M      1       2      3        4        5 

      
 
Fig. 2-13. DNA from the violet-colored putative Beauveria bassiana 11-98 isolate. The 
fungus was subjected to PCR using new ITS primers. Primers were designed by Dr. J. K. 
Moulton (University of Tennessee). Electrophoresis of the PCR products produced a 421-
bp band. PCR products were separated by electrophoresis in a 1% agarose-TBE gel. The 
50-bp ladder (Promega, Madison, WI) (M) was used to estimate the size of PCR 
products. Lane 1: Blank; Lanes 2, 3, 4, 5: violet colored B. bassiana 11-98 (repeated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                

   500-bp-- 



 52 

    Bp 
Gen Bank          1 TCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTTCAACTCCCTAA 
B. bassiana 11-98    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
                     
Gen Bank          51 CCCTTCTGTGAACCTACCTATCGTTGCTTCGGCGGACTCGCCCCAGCCCG 
B. bassiana 11-98  ~ ~ ~ ~ ~ ~ ~ ~ CCTATTGTTGCTTCGGCGGACTCGCCCCAGCCCG 
 
Gen Bank          101 GACGCGGACTGGACCAGCGGCCCGCCGGGGACCTCAAACTCTTGTATTCC 
B. bassiana 11-98   GACGCGGACTGGACCAGCGGCCCGCCGGGGACCTCAAACTCTTGTATTCC 
 
Gen Bank          151 AGCATCTTCTGAATACGCCGCAAGGCAAAACAAATGAATCAAAACTTTCA 
B. bassiana 11-98  AGCATCTTCTGAATACGCCGCAAGGCAAAACAAATGAATCAAAACTTTCA 
 
Gen Bank          201 ACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAACGCGA 
B. bassiana 11-98  ACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAACGCGA 
 
Gen Bank          251 TAAGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCA 
B. bassiana 11-98  TAAGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCA 
 
Gen Bank          301 CATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTC 
B. bassiana 11-98  CATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTC 
 
Gen Bank          351 AACCCTCGACCTCCCCTTGGGGAGGTCGGCGTTGGGGACCGGCAGCACAC 
B. bassiana 11-98  AACCCTCGACCTCCCCTTGGGGGGGTCGGCGTTGGGGACCGGCAGCACAC 
 
Gen Bank          401 CGCCGGCCCTGAAATGGAGTGGCGGCCCGTCCGCGGCGACCTCTGCGCAG 
B. bassiana 11-98  CGCCGGCCCTGAAATGGAGTGGCGGCCCGTCCGCGGCGACCTCTGCGCAG 
 
Gen Bank          451 TAATACAGCTCGCACCGGAACCCCGACGCGGCCACGCCGTAAAACACCCA 
B. bassiana 11-98  TAATACAGCTCGCACCGGAACCCCGACGCGGCCCCGC~ ~ ~ ~ ~ ~ ~ 
 
Gen Bank          501 ACTTCTGAACGTTGACCTCGAATCAGGTAGGACTACCCGCTGAACTTAAG 
B. bassiana 11-98  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
 
Gen Bank          551 CATATCAATAAGCGGAGGA 
B. bassiana 11-98  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 

 
Fig. 2-14. Sequence and comparison of PCR products. Products (detected with new ITS 
primers) from Beauveria bassiana isolate 11-98 with published ITS region from 
Cordyceps bassiana strain EABb 04/01-Tip (Quesada-Moraga et al. 2006). Differing 
nucleotides in sequences are shaded. 
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Lane 
    M   1   2   3   4   5    6   7   8   9  10 11  12  13 14 15 

 
 
Fig. 2-15. Dilution series with Beauveria bassiana 11-98C and cotton ‘DP 436 RR’ 
DNA using new ITS primers designed by Dr. J. K. Moulton (University of Tennessee). 
Electrophoresis of the PCR products in a 1% agarose-TBE gel produced a 421-bp band in 
lanes where B. bassiana was present (Lanes 2, 4, 6, 8, 10) but not in the cotton (Lane 12) 
or no DNA control lane (Lane 14). The 50-bp ladder (Promega, Madison, WI) (M) was 
used to estimate the size of the PCR products. Lanes 1, 3, 5, 7, 9, 11, 13: Blank;  Lane 2: 
B. bassiana 11-98C; Lane 4: 1:1 ratio of DNA from Bb 11-98C to cotton; Lane 6: 1:10 
ratio of DNA from Bb 11-98C to cotton; Lane 8: 1:100 ratio of DNA from Bb 11-98C to 
cotton; Lane 10: 1:1000 ratio of DNA from Bb 11-98C to cotton; Lane 12: cotton ‘DP 
436 RR’ DNA; Lane 14: no DNA control. 
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         Lane 
                      M    1   2   3    4   5   6   7    8    9 

                                 
 
Fig. 2-16. Detection of Beauveria bassiana 11-98 DNA extracted from cotton ‘DP 436 
RR’ DNA from plants grown from Bb 11-98 treated seed using new ITS primers 
designed by Dr. J. K. Moulton (University of Tennessee). Electrophoresis of the PCR 
products in a 1% agarose-TBE gel produced a 421-bp band in lanes where B. bassiana 
was present (Lanes 2, 6, 7) but not in the cotton (Lane 4) or no DNA control lane (Lane 
9). The 50-bp ladder (Promega, Madison, WI) (M) was used to estimate the size of the 
PCR products. Lanes 1, 3, 5, 8: Blank; Lane 2: B. bassiana 11-98C; Lane 4: cotton ‘DP 
436 RR’ DNA; Lane 6: Bb 11-98C in cotton whole plant material; Lane 7: Bb 11-98C in 
cotton whole plant material; Lane 9: no DNA control. 
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Discussion 

Beauveria bassiana was successfully reisolated from leaf, stem and root tissue of 

cotton seedlings following conidial seed treatments in a sterile or gnotobiotic system. 

Ability of B. bassiana to become endophytic after foliar application has been observed 

with corn (Bing and Lewis 1991), potato plants (Jones 1994), tomato (Leckie 2002) and 

cocoa seedlings (Posada and Vega 2005).  

Results of the SEM work with cotton seedlings are similar to results by Wagner 

and Lewis (2000) for corn. However, B. bassiana appeared to be selectively associated 

with areas of exudates on the cotton cotyledons. Following seed treatment, conidia and 

hyphae of Bb 11-98C were observed on all parts of the seedling, including the emerging 

root radical. Beauveria bassiana 11-98C spores also germinated and hyphal growth 

extended along the cotton cotyledon surface. Hyphae appeared to grow in a selective 

process along the cotyledon surface toward trichomes. Because no appressoria were 

observed, hyphae are believed to penetrate the epidermal layers of the cotton cotyledon 

with mechanical pressure. Growth within the cotton cotyledon was observed in a cross-

section of the cotyledon. A large percentage of conidia did not germinate on the radicle; 

however, some hyphae were observed growing along the radicle surface. The 

ungerminated spores may provide the emerging radicle and developing roots with 

protection within a soil environment as conidia would be carried deeper into the soil 

profile as the radicle grows through the soil.  

MAT 1 and MAT 2, mating type primers, were suitable for detection of B. 

bassiana in any DNA samples. Use of these primers may have been unsuccessful because 

Bb 11-98 may be a different mating type than those tested by Yokoyama et al. (2004), or 
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have been due to the fact that these primers contain several degenerate base pairs, and 

larger amounts of primer may have been needed for the PCR reactions to detect 

Beauveria. 

Detection of fungi in mixed samples of plant and fungal DNA was problematic 

using ITS primers because these primers bind to both fungal and plant ITS sequences 

(Martin and Rygiewicz 2005). In studies on detection of Bb 11-98 in tomato, ITS 1 and 

ITS 4 primers were used (Leckie 2002, Ownley et al. 2005). In work with tomato 

colonized by Bb 11-98, ITS 1 and ITS 4 primers detected tomato DNA and B. bassiana 

DNA in mixed DNA samples and PCR products were 100-bp different in size. Beauveria 

bassiana 11-98 produced a single 550-bp product and tomato had a larger single-650 bp 

PCR product. Similarly Quesada-Moraga et al. (2006) using ITS 1-5.8S-ITS 2 primers 

detected a single PCR product, about 570-bp for B. bassiana strain EAB b 04/01-Tip and 

a larger single PCR product of about 750-bp for opium poppy (Papaver somniferum L.) 

in mixed DNA samples.  

Using ITS 1 and ITS 4 primers with cotton and Bb 11-98 DNA, gel 

electrophoresis of PCR products revealed two consistent bands appearing in mixed 

samples of cotton and Beauveria at a ratio of 1:1: an 800-bp band for cotton and a smaller 

550-bp band for B. bassiana.  However, additional bands were also present. Using a 

higher ratio of cotton DNA, the ITS primers had greater affinity for cotton DNA and the 

550-bp band for Beauveria was absent. The new ITS primers were selective for B. 

bassiana DNA in mixed samples of fungal and plant DNA. Using a spiked dilution series 

of cotton and fungal DNA, B. bassiana was detected at a ratio of 1:1000 (fungal to plant 

DNA) with new ITS primers. Using the new ITS primers, B. bassiana DNA was detected 
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from cotton tissue of seedlings grown from Beauveria-treated seed in a gnotobiotic assay. 

Since it was possible to detect B. bassiana in very small quantities using the new ITS 

primers, it may be possible to use them for detection of endophytic Beauveria regardless 

of plant type or material. 
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Part 3. Beauveria bassiana: Effect of conidial rate and 

soil type on biocontrol of Pythium, Rhizoctonia, and 
Thielaviopsis 
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Abstract 

Beauveria bassiana 11-98, an entomopathogenic fungus, is endophytic in tomato and is 

an effective biocontrol against Rhizoctonia solani. Biocontrol of cotton seedling disease 

complex by B. bassiana has been reported in selected soils in field experiments. In this 

study, efficacy of B. bassiana to control soilborne cotton pathogens, Rhizoctonia solani, 

Pythium myriotylum, and Thielaviopsis basicola was determined in different soils using 

different rates of B. bassiana conidia. ‘Delta Pine 436 RR’ black cotton seed were coated 

with different rates (1 × 105 to 1011 CFU) of B. bassiana 11-98C conidia using a 2% 

methylcellulose solution. Growth chamber trials were conducted using factorial 

experimental design in randomized complete blocks with pathogen infested versus 

uninfested soil, four seed treatments, and 7 to 14 replicates with two seeds per replicate. 

Final plant stand, height, weight and disease severity were determined 21 to 28 days after 

exposure. Conidial rate of B. bassiana impacted seedling survival in germination assays 

in planta. In growth chamber assays, however, little reduction in seed viability was noted 

regardless of spore rate applied as a seed coat treatment. Beauveria bassiana provided 

significant control of R. solani in three trials and marginal control in another. Beauveria 

bassiana-treated seed performed better in soil infested with P. myriotylum 7 days after 

sowing and in one trial when P. myriotylum was introduced to soil the same day as seed 

sowing. Two soil trials with T. basicola were conducted but results were inconclusive. 

Keywords: Beauveria bassiana, biocontrol, cotton seedling disease, Pythium myriotylum, 

Rhizoctonia solani, Thielaviopsis basicola  
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Introduction 

Gossypium hirsutum L. has become the dominant species in commercial cotton 

production. With introduction of transgenic cultivars that have engineered traits such as 

the toxin against lepidopteran insects produced by Bacillus thuringiensis Berlinger (Bt) 

(Clark and Russell 2000a), the gene for resistance to glyphosate in Roundup Ready (RR) 

(Clark and Russell 2000b), and bromoxynil (BXN), a common herbicide (Hagedorn 

2005), cotton growers have been provided with additional management tools.  

Even with production benefits offered by transgenic cultivars, cotton growers still 

face multiple challenges to yields. One of the greatest challenges to crop success is the 

seedling disease complex, caused by a complex of soil fungi. Symptoms of pathogenicity 

include: seed decay before germination, seedling decay before emergence, girdling of 

emerged seedlings at or near the soil surface, and rotting of root tips (Blasingame 1993). 

Fungi within the soil pathogen complex are Rhizoctonia solani (Kühn), Fusarium spp., 

Pythium spp., and Thielaviopsis basicola (Berk. & Broome) Ferraris. Any one of these 

fungi or several occurring in combination can produce symptoms characteristic of the 

disease complex and present the greatest threat to cotton during the first 30 days after 

planting. These fungi are soilborne pathogens capable of maintaining high inoculum 

loads in the absence of host plants for multiple years.  

Rhizoctonia solani causes serious plant losses primarily attacking roots and lower 

stems of plants (Zaki et al. 1998). Rhizoctonia mainly exists as sterile mycelium and 

sometimes, as small sclerotia that show no internal tissue differentiation. The fungus is 

present in most soils and once established in a field remains indefinitely (Watkins 1981). 

In older plants, Pythium myriotylum Drechsler is typically restricted to root tips 
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and young cells. However, in young plants the pathogen is capable of causing pre- and 

post-emergence death known as damping off. Primary methods of infection are by direct 

penetration of mycelia and through release of flagellate zoospores which are capable of 

movement through soils, where they invade seeds or roots either through direct 

penetration or by entering natural cracks in root tissues (Kucharek and Mitchell 2000).   

 Thielaviopsis basicola is a soilborne plant pathogen that causes black root rot, 

mainly recognized as cortical rot of seedling roots. The seedling disease is widespread in 

the southwestern United States (Olsen and Silvertooth 2001). The pathogen reproduces 

asexually and persists in soils for long periods as chlamydospores. Two kinds of spores 

are formed: pigmented, barrel-shaped chlamydospores and hyaline endoconidia. Disease 

is favored by wet, cool, alkaline soil in conjunction with any condition that weakens 

plants (Wheeler et al. 1999).  

Beauveria bassiana (Bals.-Criv.) Vuill. is a well known ubiquitous 

entomopathogenic fungus with an extensive host range (Boucias and Pendland 1988). 

The fungus, commonly known as muscardine disease was first identified in 1834 by an 

Italian scientist, Agostino Bassi, as the agent of silkworm (Bombyx mori L.) disease, 

(Porter 1973). In 2001, the sexual stage of B. bassiana was classified in Ascomycota, 

Clavicipitaceae, genus Cordyceps bassiana (Yokoyama et al. 2004).  

With few exceptions, research on Beauveria bassiana as a control for plant 

pathogens has been limited to in vitro studies on growth and cell lysis of plant pathogens 

(Vesely and Koubova 1994, Reisenzein and Tiefenbrunner 1997, Lee et al. 1999 and 

Nagaoka 2004). Beauveria bassiana applied as a conidial seed treatment in a 2.5% 

methylcellulose (MC) solution to tomato seeds prior to sowing provided protection 
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against R. solani (Bishop 1999, Ownley et al. 2005). In a regional field trial on the 

biocontrol of cotton seedling diseases conducted across the Southeast at 11 sites, B. 

bassiana provided protection against soilborne pathogens on cotton in some soils. In two 

field sites where B. bassiana proved successful as a biocontrol for cotton seedling 

disease, soils were sandy loams and R. solani was the only pathogen isolated from plant 

material (Batson et al. 2000). Environment variability has long been recognized as a 

problem for the overall efficiency of biocontrols (Duffy et al. 1997, Ownley et al. 2003).  

Objectives of this study were: 1) to evaluate biocontrol efficacy of B. bassiana 

11-98C (Bb 11-98C) against soilborne pathogens: Rhizoctonia solani, P. myriotylum and 

T. basicola; 2) to determine effect on biocontrol of different rates of Bb 11-98C conidia 

as a seed treatment; 3) to evaluate biocontrol efficacy of Bb 11-98C in different soils; 4) 

to evaluate impact of Bb 11-98C treatment on germination of cotton seed and; 5)  to 

determine the relationship between germination rates of cotton and application rates of 

Bb 11-98C conidia.  

 

Materials and Methods 

Experimental design for disease assays  

Designs for all disease assays were factorial experiments in randomized complete 

block s(RCB). Each assay had three to five seed treatments, seven to 14 replicates, with 

two seeds per replicate. Seed treatments ranged from 1 × 105 to 1 × 1011 CFU/seed of B. 

bassiana 11-98C, in disease assays with R. solani in potting mix (Premier Horticulture  

Quakertown, PA) and Staser, a sandy loam soil from Hawkins County, TN.  For P. 
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myriotylum assays, seed treatment rates of B. bassiana 11-98 and BotaniGard at 1 × 107 

CFU/seed were examined for biocontrol efficacy in Collins, a silt loam from Gibson 

County, TN and potting mix. Seed treatments were 1 × 109 to 1 × 1011 CFU/seed of B. 

bassiana 11-98C, in disease assays with T. basicola in Staser soil. Effectiveness of seed 

treatments was determined by measuring root, shoot and plant weight (g), plant height 

(mm), survival rate (%) and disease severity rating (1-6) for plant hypocotyls and roots, 

three to four weeks after sowing. Seedlings were rated for disease symptoms with the 

following hypocotyl disease index, 1 = no symptoms, 2 = a few pinpoint lesions or 

diffuse discolored areas, 3 = distinct necrotic lesions, 4 = girdling lesions, 5 = dead 

seedling attributed to post-emergence damping off, and 6 = dead seedling due to 

preemergence damping off.  For the root disease index, ratings were 1 = no symptoms, 2 

= 1 - 10% of root system discolored, 3 = 11 - 25% of root system discolored, 4 = 26 - 

50% of root system discolored, 5 = > 50% of root system discolored or post-emergence 

death, and 6 = pre-emergence death. All data were analyzed using PROC MIXED of PC-

SAS, Ver. 9.1.3. Significant main effects were further analyzed with F-protected LSD (P 

= 0.05 and P = 0.10). 

 

 Growth chamber assay conditions 

Growth chamber conditions were 25 to 26oC, with 50% RH and a 12 h 

photoperiod. For assays, Ray Leach conetainers (Stuewe and Sons, Corvallis, OR) were 

placed in racks and plugged with three to four cotton balls to prevent rapid loss of water 

and soil. Immediately after sowing seeds, tops of conetainers were covered and sealed 

with clear plastic to retain moisture until germination began. Plastic was removed once 



 66 

seedlings emerged from soil. Germination typically began by day 3 and ended by day 7. 

If germination did not occur during this time period, seed typically failed to germinate. 

Delinted untreated cotton seed of ‘Delta Pine (DP) 436 RR’ transgenic cultivar with the 

genes for glyphosate resistance was obtained from Dr. Craig Canaday, The University of 

Tennessee, West Tennessee Research and Education Center, Jackson.  

 

Collection and storage of B. bassiana conidia 

Beauveria bassiana 11-98 (Bb 11-98) was isolated originally from an infected 

click beetle (Coleoptera: Elateridae) from Scott County, TN (Leckie 2002). Beauveria 

bassiana 11-98 was used as a seed treatment in a gnotobiotic assay with ‘DP 436 RR’ 

and re-isolated from cotton tissue by means of traditional plating techniques (Griffin et al. 

2005). Endophytic cotton adapted Bb 11-98C was used along with Bb 11-98 in 

subsequent assays. Both isolates were grown on Sabouraud dextrose agar (SDA) for 

approximately 6 weeks, and then harvested by brushing the surface of the plates with a 

stenciling brush. Conidia were stored at 4°C in a desiccator until needed. Fungal cultures, 

started from conidia, were grown on SDA at 22 to 24°C. Approximately every 6 weeks 

dry conidia were transferred to fresh SDA for production of spores.  

 

Beauveria bassiana isolates used with assays 

Seed were coated with conidia and stored at 4° C until needed. Conidial rates for 

coated seed were determined through a dilution series plated onto SDA. Assays with P. 

myriotylum were conducted using the original isolate Bb 11-98 and BotaniGard (Emerald 

BioAgriculture Corp. Butte, MT) isolate GHA. Later assays with R. solani and T. 
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basicola were conducted using only Bb 11-98C.   

 

Seed coating technique and spore rate determination of Bb 11-98, Bb 11-98C and 

BotaniGard 

Beauveria bassiana conidia, 2% methylcellulose solution (1 ml/g of seed) and 

Tween 20 (25 µl/g of seed) were evenly mixed together before the addition of cotton 

seed. The mixture was stirred every 15 min in a biosafety cabinet until seeds were dry.  

Pythium experiments were conducted with the original Bb 11-98 isolate and 

BotaniGard at 1 ×107 CFU/seed and 10 to 14 replicates with 3 to 4 treatments for each 

replicate. Seed germination assay, and disease assays with Rhizoctonia and Thielaviopsis 

were made with multiple conidial rates of Bb 11-98C, which were estimated based on dry 

mass of bulk conidia. Experimental rates ranged from 1 × 105 to 1 × 1011 CFU per cotton 

seed. All rates were confirmed by dilution plating of coated seeds on SDA. 

 

Seed germination assay 

Seed coated with Bb 11-98C were stored at 4°C until needed. To determine 

germination rates, seeds were placed on 15-cm diameter sterile Whatman filter paper, 

which was inserted into a 150 × 15 mm Petri dish. Approximately 6 to 7 ml sterile 

deionized water was added to Petri dishes, which were then sealed with Parafilm to 

maintain moisture. Assays were placed in an incubator at 25°C with continuous light. 

Three replicates of Petri dishes each contained seven cotton seeds, for a total of 21 seeds 

for each rate of conidia and the assay was repeated.  
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Disease assays- Soil types 

For disease assays, a Collins silt loam, a Staser sandy loam, and a potting mix 

were used. Collins silt loam soil was collected from a no-till field in which cotton had 

been grown for several years in Gibson County at the Milan Research and Education 

Center, University of Tennessee, Milan, TN. Soil was sieved through a 1-cm screen to 

remove roots and debris. The Staser sandy loam soil was collected from a field adjacent 

to the Holston River from Hawkins County TN. Promix potting soil was obtained from 

Premier Horticulture, Quakertown, PA. 

 

Rhizoctonia solani inoculum  

Rhizoctonia solani RS3 (AG-4) was obtained from Dr. Mike Benson, North 

Carolina State University, Raleigh, NC. The fungus was cultured on cornmeal: sand 

medium, which contained twice-autoclaved white quartz sand (100 g), cornmeal (3 g) and 

deionized water (7 ml). Ten 3-mm2 plugs of 7-day old hyphal tips of R. solani were added 

to flasks containing medium. Inoculum was shaken thoroughly every 48 to 72 h and 

allowed to grow for 2 weeks. At the time of assays, inoculum was mixed into soil at 1% 

(w/w). 

 

Pythium myriotylum inoculum  

A P. myriotylum isolate was obtained from Dr. Darrell Hensley, The University of 

Tennessee, Knoxville, TN. Inoculum was prepared to stimulate production of zoospores 

using a modification of the procedure from Mitchell and Rayside (1986). Two types of 

assays, differing in when the pathogen was applied to the soil, were examined using this 
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inoculum. In pre-emergence disease assays, P. myriotylum inoculum was applied 

immediately after the seed were planted. In post-emergence disease assays, P. myriotylum 

inoculum was applied approximately 7 days after cotton seed were sown. 

 

Thielaviopsis basicola inoculum  

Thielaviopsis basicola was grown for three weeks on 10 to 12% carrot agar 

formulated using 100 to 120 ml carrot juice per liter with 2% agar. Propagules of T. 

basicola were collected by pouring 10 ml of sterile deionized water onto the culture 

surface, then lightly scraping propagules free. Inoculum was a natural mixture of 

endoconidia and chlamydospores. This suspension was mixed with 100 ml of deionized 

water and added to Staser soil, which had a slightly alkaline pH.  

Propagules per gram of soil were determined from dilutions of six counts per trial 

and averaged with a hemacytometer (American Optical, Buffalo, NY; Becker et al. 

1996). Thorough mixing was enhanced by placing soil in a large plastic bag with 

inoculum, then placing it on a shaker at 50 to 70 rpm for 30 to 45 min, with manual 

adjustments to ensure equal distribution of the inoculum in soil. In a preliminary 

pathogenicity test, approximately 20,000 propagules (as determined with a 

hemacytometer) per gram of dry soil was needed for disease (P = 0.0038) at EC50. 

 

Results 

Germination Assay 

For the germination assay (Fig. 3-1), rates of conidial seed treatments were 7.5 × 

105, 4.0 × 107, 2.33 × 109, and 4.57 ×1011 CFU of Bb 11-98C per seed. The effect of Bb  
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Fig. 3-1. Germination assay. Untreated seed (left) and Bb 11-98C coated seed (right) at a 
rate of 1 × 107 CFU/seed. 
 

 

11-98C conidial seed treatment rate was significant for all variables in the germination 

assay. The assay was repeated with consistent results. There was a significant effect of B. 

bassiana conidial rates on seedling shoot height [Trial 1, (F = 2.87; df 4,98; P = 0.0230); 

Trial 2; (F = 5.81; df = 4,98; P = 0.0003)] and radicle length [Trial 1, (F = 2.7; df = 4,98; 

P = 0.0264) Trial 2, (F = 3.09; df = 4,98; P = 0.0192)]. Shoot height and radicle length 

were reduced in the soilless system when conidial rates exceeded 1 × 109 CFU/seed (Fig. 

3-2). Rate of Bb 11-98C per seed was significant for percent seedling survival [Trial 1, (F 

= 4.59; df = 4,98; P = 0.0024); Trial 2, (F = 4.61; df = 4,98; P = 0.0019)]. At conidial 

rates higher than 1 × 109 CFU/seed, survival was reduced. No significant differences from 

control seed were noted with lower rates (Fig. 3-2).  

 

Rhizoctonia solani disease assays  

 Four trials were conducted using potting mix, to determine the efficacy of Bb 11-

98C as a biocontrol against R. solani. In three of the four trials, there was a significant 

interaction between seed treatment and pathogen presence. In one trial, only the main 



 71 

S
ee

dl
in

g 
sh

oo
t h

ei
gh

t (
m

m
)

0

10

20

30

40

Trial 1
P = 0.0230

0

10

20

30

40
R

ad
ic

le
 le

ng
th

 (m
m

)

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

S
ee

dl
in

g 
su

rv
iv

al
 (%

)

0

20

40

60

80

100

0

20

40

60

80

100

Trial 2
P = 0.0003

P = 0.0264 P = 0.0192

P = 0.0024 P = 0.0019

A

AB
ABC BC

C

A

A
AB

BC

C

AB

A

ABC

BC
C

A

A

A

AB

B

A
A

A A

B

A A
A

AB

B

Untreated      105        107        109         1011
Untreated      105         107        109         1011

Rate of Beauveria bassiana 11-98C per seed  
 
Fig. 3-2. Effect of seed treatment rate of Beauveria bassiana 11-98C conidia on seedling 
shoot height, radicle length and seedling survival in a soilless germination assay. Effects 
were significant for shoot height in Trial 1 (P = 0.0230) and Trial 2 (P = 0.0003), for 
radicle length in Trial 1 (P = 0.0264) and Trial 2 (P = 0.0192) and for seedling survival in 
Trial 1 (P = 0.0024) and Trial 2 (P = 0.0019). For each trial, bars with the same letter are 
not different according to an F-LSD at P = 0.05. Each bar represents least square means ± 
SE. 
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effect of seed treatment was significant. These assays indicated a significant effect in 

conidial rate application of Bb 11-98C, which resulted in differences in levels of 

protection provided. The first trial included three conidial rates (1 × 105, 1 × 109 and 1 × 

1011) of Bb 11-98C, and an untreated control. Interaction of seed treatment and pathogen 

was significant for plant height (F = 2.37; df = 3,113; P = 0.0742), and hypocotyl disease 

index (F = 3.47; df = 3,113; P = 0.0185) in 3-week old seedlings. Bb 11-98C at 1 × 109 

CFU/seed provided significant protection of cotton against R. solani. In noninfested soil, 

there were no differences in seedling height (Fig. 3-3). However, in infested soil 

seedlings treated with Bb 11-98C at 1 × 109 had significantly greater height than the 

untreated control (Fig. 3-3). Hypocotyl disease index in infested soil was lowest for 

plants treated with Bb 11-98C at 1 × 109 and did not differ from plants in noninfested soil 

(Fig. 3-4). The effect of seed treatment was significant for seedling weight (F = 3.22; df = 

3,113; P = 0.0256), root weight (F = 2.16; df = 3,113; P = 0.0973), and shoot weight (F = 

5.32; df = 3,113; P = 0.0099). Seedling weight was greatest with 1 × 109 CFU Bb 11-98C 

seed treatment and not different than the untreated control (Table 3-1).  Similarly, root 

weight was largest for seedlings treated with 1 × 109 CFU Bb 11-98C but not different 

from the untreated control. However, shoot weight with 1 × 109 CFU Bb 11-98C was 

greater than all other treatments (Table 3-1). 

A second trial was conducted to confirm that a difference in spore rates would 

affect the level of protection provided by B. bassiana as a biocontrol against R. solani in 

potting mix. Three conidial rates (1 × 105, 1 × 107, and 1 × 109 of B. bassiana isolate 11-

98C) and an untreated control were examined for biocontrol effectiveness. There was a 



 73 

Seed treatments

S
ee

dl
in

g 
he

ig
ht

 (m
m

)

0

20

40

60

80

100

120

140

160

180

Rhizoctonia 
No Rhizoctonia 

BC
ABC

D

ABC

A A

CD

AB

Unteated                 105                    109                    1011

Trial 1
P = 0.0742

 
Fig. 3-3. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia and 
pathogen in potting mix amended with 1% (w/w) Rhizoctonia solani on cotton seedling 
height, Trial 1. Seed treatments were untreated, 1 × 105, 1 × 109, and 1 × 1011 Bb 11-98C 
CFU/seed. Interaction of seed treatment and pathogen was significant at P = 0.0742. Bars 
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Fig. 3-4. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia and 
pathogen in potting mix amended with 1% (w/w) Rhizoctonia solani on cotton seedling 
hypocotyl disease index, Trial 1. Seed treatments were untreated, 1 × 105, 1 × 109, and 1 
× 1011 Bb 11-98C CFU/seed. Interaction of seed treatment and pathogen was significant 
for hypocotyl disease index at P = 0.0185. Bars with the same letter are not different 
according to F-LSD at P = 0.05. Each bar represents least square means ± SE. 
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Table 3-1. Seed treatment differences with Beauveria bassiana in potting mix infested 
with 1% Rhizoctonia solani, Trial 1. Effect of different seed treatment rates of Beauveria 
bassiana (Bb) 11-98C conidia on seedling weight (P = 0.0256), shoot weight (P = 
0.0099), and root weight (P = 0.0973). For each variable, least square means ± SE with 
the same letters are not different according to F-LSD at P = 0.05 or 0.10 
 

Seed treatment 
(CFU/seed) 

Seedling weight  
(g) 

 

Shoot weight 
(g) 

Root weight 
(g) 

 

Untreated 

 

1.8384 ± 0.1557 ab 

 

1.0125 ± 0.08797 b 

 

0.8259 ± 0.08235 ab 

 

Bb 11-98C 

 1 × 105 

 

1.6125 ± 0.1557 b 

 

0.9094 ± 0.08797 b 

 

0.7031 ± 0.08235 b 

 

Bb 11-98C 

1 × 109 

 

2.244 ± 0.1557 a 

 

1.2512 ± 0.08797 a 

 

0.9931 ± 0.08235 a 

 

Bb 11-98C 

 1 × 1011 

 

1.7525 ± 0.1557 b 

 

0.9601 ± 0.08797 b 

 

0.7960 ± 0.08235 ab 

 

F-LSD P-value 

 

0.05 

 

0.05 

 

0.10 
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significant seed treatment and pathogen interaction effect for plant height (F = 2.9; df = 

3,113; P = 0.0379), survival rate (F = 3.09; df = 3,113; P = 0.0371), and root disease 

index (F = 3.87; df = 3,113; P = 0.0113). Similar to Trial 1, the 1 × 109 CFU/seed Bb 11-

98C treatment produced the tallest seedlings in the presence of R. solani and the height of 

plants was significantly greater than untreated controls (Fig. 3-5). Seedling survival was 

greatest with 1 × 109 CFU/seed Bb 11-98C (Fig. 3-6) and root disease index was 

significantly lower in infested soil with 1 × 107 and 1 × 109 CFU/seed Bb 11-98C (Fig. 3-

7). 

In the third trial, three conidial rates (1 × 105, 1 × 107 and 1 × 109) of Bb 11-98C, 

an untreated control and a MC control were included as seed treatments. Pathogen effect 

was significant for seedling weight (F= 6.20; df = 1,181; P = 0.0137), shoot weight (F = 

11.52; df = 1,181; P = 0.0008), seedling height (F = 9.6; df = 1,181; P = 0.0023), and 

hypocotyl disease index (F= 71.48; df = 1,181; P = 0.0001). In infested soil seedling 

weight, shoot weight and seedling height were lower and hypocotyl disease index was 

higher than in noninfested soil (Table 3-2).  

The main effect of seed treatment was significant for several variables including: 

seedling weight (F = 4.48; df = 4,181; P = 0.0018), root weight (F =2.88; df = 4,181; P = 

0.0242), shoot weight (F = 4.75; df = 4,181; P = 0.0011), seedling height (F = 3.12; df = 

4,181; P = 0.0164), and hypocotyl disease index (F= 5.41; df = 4,181; P = 0.0004). For 

all plant growth variables, seed treatments with Bb 11-98C produced larger plants than 

the MC control, but were not different from the untreated control (Table 3-3). Similarly, 

hypocotyl disease indices were lower with the Bb 11-98C seed treatments than the MC 

control, but not different from the untreated control (Table 3-3). 
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Fig. 3-5. Effect of different seed treatment rates of Beauveria bassiana (Bb) 11-98C 
conidia on cotton seedling height in potting mix amended with 1% Rhizoctonia solani, 
Trial 2. Seed treatments were untreated, 1 × 105, 1 × 107, and 1 × 109 Bb 11-98C 
CFU/seed. Effect of interaction of seed treatment and pathogen was significant at P = 
0.0379. Bars with the same letter are not different according to F-LSD at P = 0.05. Each 
bar represents least square means ± SE. 
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Fig. 3-6. Effect of different seed treatment rates of Beauveria bassiana (Bb) 11-98C 
conidia on percentage cotton seedling survival in potting mix amended with 1% 
Rhizoctonia solani, Trial 2. Seed treatments were untreated, 1 × 105, 1 × 107, and 1 × 109 

Bb 11-98C CFU/seed. Effect of interaction of seed treatment and pathogen was 
significant at P = 0.0371. Bars with the same letter are not different according to F-LSD 
at P = 0.05. Each bar represents least square means ± SE.  
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Table 3-2 Effect of pathogen on cotton seedling variables, Trial 3. The measured 
variables were seedling weight (P = 0.0137), shoot weight (P = 0.0008), seedling height 
(P = 0.0023), and hypocotyl disease index (P = 0.0001) of cotton seedlings in potting mix 
infested with 1% Rhizoctonia solani. For each variable, least square means ± SE with the 
same letters are not different according to F-LSD at P = 0.05 
 

 
Pathogen 

 
Seedling weight 

(g) 

 
Shoot weight 

 (g) 

Hypocotyl 
disease index 

(1-6) 

 
Seedling height 

(mm) 
 
Rhizoctonia 
solani 

 

1.4860 ± 0.08826 a 

 

0.7955 ± 0.05039 b 

 

3.49 ± 0.1673 a 

 

107.18 ±5.5832 b 

 
No 
pathogen 

 

1.7968 ± 0.08826 b 

 

1.0224 ± 0.05039 a 

 

1.49 ± 0.1673 b  

 

131.65 ± 5.5832 a 
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Table 3-3. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C CFU/seed on cotton seedling variables, Trial 3. 
Measured variables were seedling weight (P = 0.0018), shoot weight (P = 0.0011), root weight (P = 0.0242) and seedling height 
(P = 0.0164) and hypocotyl  disease index (P = 0.0004) of cotton seedlings in potting soil infested with 1% Rhizoctonia solani. 
For each variable, least square means ± SE with the same letters are not different according to F-LSD at P = 0.05 
 

 
Seed 

treatments 

 
Seedling weight 

(g) 

 
Shoot weight 

(g) 

 
Root weight 

(g) 

 
Seedling height 

(mm) 

 
Hypocotyl disease 

(1-6) 
 

Untreated 

 

1.6058 ± 0.1396 a 

 

0.9165 ± 0.07676 a 

 

0.6892 ± 0.08058 ab 

 

117.53 ± 8.8278 ab 

 

2.6  ±  0.2645 b 

 
MC 

 
1.1543 ± 0.1396 b 

 
0.6420 ± 0.07676 b 

 
0.5123 ± 0.08058 b 

 
95.0 ± 8.8278 b 

 
3.5 ±  0.2645 a 

Bb 11-98C 
1 × 105 

 
1.9275 ± 0.1396 a 

 
1.0823 ± 0.07676 a 

 
0.8453 ± 0.08058 a 

 
137.73 ± 8.8278 a 

 
2.275 ±  0.2645 b 

Bb 11-98C 
1 × 107 

 
1.7478 ± 0.1396 a 

 
0.9275 ± 0.07676 a 

 
0.8203 ± 0.08058 a 

 
125.13 ± 8.8278 a 

 
2.150 ±  0.2645 b 

Bb 11-98C 
1 × 109 

 
1.7718 ± 0.1396 a 

 
0.9765 ± 0.07676 a 

 
0.7953 ± 0.08058 a 

 
121.70 ± 8.8278 a 

 
1.9250 ±  0.2645 b 
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In the fourth trial, seed treatments were an untreated control, a MC control and 1 

× 107 CFU/seed Bb 11-98C. Variables for which there was a significant seed treatment 

and pathogen interaction were:  seedling weight (F = 3.42; df = 2,72; P = 0.0381), shoot 

weight (F = 5.06; df = 2,72; P = 0.0088), seedling height (F = 3.19; df = 2,72; P = 

0.0471), hypocotyl disease index (F = 5.80; df = 2,72; P = 0.0046) and root disease index 

(F = 3.0; df = 2,72; P = 0.0558).  In R. solani-infested soil, 1 × 107 CFU Bb 11-98C per 

seed resulted in 3-week old seedlings that were significantly larger in seedling weight 

(Fig. 3-8), shoot weight (Fig. 3-9), seedling height (Fig. 3-10), and had a lower hypocotyl 

disease index (Fig. 3-11) and root disease index (Fig. 3-12) than untreated seed.  

 

Rhizoctonia in Staser sandy loam soil 

 Two disease assays were conducted in Staser sandy loam soil amended with 1% 

R. solani inoculum. The interaction of seed treatment and pathogen was not significant 

for any variable in either trial. However in both trials, there were significant main effects 

for pathogen and seed treatment. In trial 1, the effect of pathogen was significant for 

seedling weight (F = 4.29; df = 1,181; P = 0.0398), shoot weight (F = 4.47; df = 1,181; P 

= 0.0359), root weight (F= 3.23; df = 1,181; P = 0.0311), seedling height (F = 11.08; df = 

1,181; P = 0.0011), hypocotyl disease index (F = 22.88; df = 1,181; P = 0.0001) and root 

disease index (F = 17.05; df = 1,181; P = 0.0001). In infested soil, seedling weight 

variables and seedling height were lower (Table 3-4). Hypocotyl and root disease indices 

were lower in noninfested soil (Table 3-4). 

There were significant seed treatment effects for seedling weight (F = 2.31; df = 

4,181; P = 0.0595), root weight (F = 3.44; df = 4,181; P = 0.0098), survival rate (F =
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Fig. 3-8. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C on seedling 
weight in potting mix amended with 1% Rhizoctonia solani, Trial 4. Seed treatments 
were untreated, methylcellulose (MC), and 1 × 107 Bb 11-98C CFU/seed. Interaction of 
seed treatment and pathogen was significant at P = 0.0381. Bars with the same letter are 
not different according to F-LSD at P = 0.05. Each bar represents least square means ± 
SE. 
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Fig. 3-9. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C on shoot weight 
in potting mix amended with 1% Rhizoctonia solani, Trial 4. Seed treatments were 
untreated, methylcellulose (MC), and 1 × 107 Bb 11-98C CFU/seed. Interaction of seed 
treatment and pathogen was significant at P = 0.0088. Bars with the same letter are not 
different according to F-LSD at P = 0.05. Each bar represents least square means ± SE. 
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Fig. 3-10. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C on seedling 
height in potting mix amended with 1% Rhizoctonia solani, Trial 4. Seed treatments were 
untreated, methylcellulose (MC), and 1 × 107 Bb 11-98C CFU/seed. Interaction of seed 
treatment and pathogen was significant at P = 0.0471. Bars with the same letter are not 
different according to F-LSD at P = 0.05. Each bar represents least square means ± SE. 
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Fig. 3-11. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C on hypocotyl 
disease index in potting mix amended with 1% Rhizoctonia solani, Trial 4. Seed 
treatments were untreated, methylcellulose (MC), and 1 × 107 Bb 11-98C CFU/seed. 
Interaction of seed treatment and pathogen was significant at P = 0.0046. Bars with the 
same letter are not different according to F-LSD at P = 0.05. Each bar represents least 
square means ± SE. 
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Fig. 3-12. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C on root disease 
index in potting mix amended with 1% Rhizoctonia solani, Trial 4. Seed treatments were 
untreated, methylcellulose (MC), and 1 × 107 Bb 11-98C CFU/seed. Interaction of seed 
treatment and pathogen was significant at P = 0.0588. Bars with the same letter are not 
different according to F-LSD at P = 0.10. Each bar represents least square means ± SE. 
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Table 3-4. Effect of pathogen on cotton seedling variables, Staser Trial 1. The measured variables were seedling weight (P = 
0.0398), shoot weight (P = 0.0359), root weight (P = 0.0311), seedling height (P = 0.0011), hypocotyl disease index (P = 0.0001) 
and root disease index (P = 0.0001) of cotton seedlings in Staser sandy loam infested with 1% Rhizoctonia solani. For each 
variable, least square means ± SE with the same letters are not different according to F-LSD at P = 0.05. 
 

 
Pathogen 

 
Seedling weight 

(g) 

 
Shoot weight 

(g) 

 
Root weight 

(g) 

 
Seedling height 

(mm) 

 
Hypocotyl 

disease index  
(1-6) 

 
Root 

disease 
index 
 (1-6) 

 

Rhizoctonia 
solani 

 

0.9520 ± 0.07892 a 

 

0.5938 ± 0.05442 a 

 

0.3582 ± 0.03011 a 

 

63.61 ± 4.5564 a 

 

3.51 ±  0.1685 a 

 

3.0350 ±  
0.1944 a 

 
 
No 
pathogen 
 

 
 
1.1731 ± 0.07892 b 

 
 
0.7384 ± 0.05442 b 

 
 
0.4347 ± 0.03011 b 

 
 
85.06 ± 4.5564 b 

 
 
32.37 ± 0.1685 b 

 
 
1.9 ±  
0.1944 b 
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2.49; df = 4,181; P = 0.0449), hypocotyl disease index (F = 3.10; df = 4,181; P = 0.0169) 

and root disease index (F = 2.93; df = 4,181; P = 0.0221). For seedling weight, 1 × 105 

and 1 × 107 Bb 11-98C were greater than the MC control, but not different from untreated 

seedlings (Fig. 3-13). Root weight was greater for all Bb 11-98C treatments than the MC 

control, but not different from the untreated control (Fig. 3-14). Percent seedling survival 

was greater with 1 × 105 and 1 × 109 Bb 11-98C than the MC control (Fig. 3-15). 

Hypocotyl disease index was lower with 1 × 105 and 1 × 109 Bb 11-98C than the MC 

control (Fig. 3-16), and root disease index was lower for all Bb 11-98C seed treatments 

than the MC control (Fig 3-17). 

In a second trial, two conidial rates 1 × 107 and 1 × 109 CFU of Bb11-98C, a MC 

control and an untreated control were examined for biocontrol effectiveness. There was 

no significant interaction of seed treatment and pathogen for any measured variables in 

trial 2. The effect of pathogen was significant for shoot weight (F = 17.98; df = 1,98; P = 

0.0001), root weight (F = 22.32; df = 1,98; P = 0.0001), seedling height (F = 29.45; df = 

1,98; P = 0.0001), percent survival (F= 28.91; df= 1,98; P = 0.0001), hypocotyl disease 

index (F= 33.88; df = 1,98; P = 0.0001), and root disease index (F = 31.94; df = 1,98; P = 

0.0001). In pathogen infested soil, shoot and root weights and seedling height were lower 

and hypocotyl and root disease indices were higher than in noninfested soil (Table 3-5).  

Seed treatment effects were significant for seedling height (F = 2.24; df = 3,98; P 

= 0.0889), and survival rate (F = 3.01; df = 3,98; P =0.0340). Seeds treated with 1× 107 

and 1 × 109 CFU produced seedlings with greater height (Fig. 3-18) and a higher survival 

rate (Fig. 3-19) than the MC control.  
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Fig. 3-13. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia on 
seedling weight in a Staser sandy loam soil amended with 1% Rhizoctonia solani, Trial 1. 
Seed treatments were untreated, methylcellulose (MC), 1 × 105,  1 × 107, and 1 × 109 Bb 
11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0595. Bars with 
the same letter are not different according to F-LSD at P = 0.05. Each bar represents least 
square means ± SE. 
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Fig. 3-14. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia on 
seedling root weight in Staser sandy loam soil amended with 1% Rhizoctonia solani, 
Trial 1. Seed treatments were untreated, methylcellulose (MC), 1 × 105,  1 × 107, and 1 × 
109 Bb 11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0098. 
Bars with the same letter are not different according to an F-LSD at P = 0.05. Each bar 
represents least square means ± SE. 
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Fig. 3-15. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia on 
percent seedling survival in Staser sandy loam soil amended with 1% Rhizoctonia solani, 
Trial 1. Seed treatments were untreated, methylcellulose (MC), 1 × 105,  1 × 107, and 1 × 
109 Bb 11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0449. 
Bars with the same letter are not different according to an F-LSD at P = 0.05. Each bar 
represents least square means ± SE. 
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Fig. 3-16. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia on 
hypocotyl disease index in Staser sandy loam soil amended with 1% Rhizoctonia solani, 
Trial 1. Seed treatments were untreated, methylcellulose (MC), 1 × 105,  1 × 107, and 1 × 
109 Bb 11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0169. 
Bars with the same letter are not different according to F-LSD at P = 0.05. Each bar 
represents least square means ± SE. 
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Fig. 3-17. Effect of seed treatment rate of Beauveria bassiana (Bb) 11-98C conidia on 
root disease index in Staser sandy loam soil amended with 1% Rhizoctonia solani, Trial 
1. Seed treatments were untreated, methylcellulose (MC), 1 × 105,  1 × 107, and 1 × 109 

Bb 11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0221. Bars 
with the same letter are not different according to F-LSD at P = 0.05. Each bar represents 
least square means ± SE. 
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Table 3-5. Effect of pathogen on cotton seedling variables, Staser Trial 2. The measured variables were shoot weight (P = 
0.0001), root weight (P = 0.0001), seedling height (P = 0.0001), hypocotyl disease index (P = 0.0001) and root disease index (P = 
0.0001) of cotton seedlings in Staser sandy loam infested with 1% Rhizoctonia solani. For each variable, least square means ± SE 
with the same letters are not different according to F-LSD at P = 0.05 
 

 
Pathogen 

 
Shoot weight 

(g) 

 
Root weight 

(g) 

 
Seedling height 

(mm) 

 
Hypocotyl disease 

index  
(1-6) 

 
Root disease  

index 
 (1-6) 

 

Rhizoctonia 
solani 

 

0.1514 ± 0.04643 b 

 

0.1246 ± 0.04648 b 

 

22.5893 ± 6.2916 b 

 

5.9643 ±  0.2365 a 

 

5.7679 ±  0.2748 a 

 
 
No 
pathogen 
 

 
 
0.4298 ± 0.04643 a 

 
 
0.4352 ± 0.04648 a 

 
 
70.8750 ± 6.2916 a 

 
 
4.0179 ± 0.2365 b 

 
 
3.5714 ±  0.2748 b 
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Fig. 3-18. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C conidia on 
seedling height in Staser sandy loam soil amended with 1% Rhizoctonia solani, Trial 2. 
Seed treatments were untreated, methylcellulose (MC), 1 × 107, and 1 × 109 Bb 11-98C 
CFU/seed. The effect of seed treatment was significant at P = 0.0889. Bars with the same 
letter are not different according to an F-LSD at P = 0.10. Each bar represents least 
square means ± SE. 
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Fig. 3-19. Effect of seed treatment with Beauveria bassiana (Bb) 11-98C conidia on 
percent seedling survival in Staser sandy loam soil amended with 1% Rhizoctonia solani, 
Trial 2. Seed treatments were untreated, methylcellulose (MC), 1 × 107, and 1 × 109 Bb 
11-98C CFU/seed. The effect of seed treatment was significant at P = 0.0340. Bars with 
the same letter are not different according to an F-LSD at P = 0.05. Each bar represents 
least square means ± SE. 
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Pythium myriotylum assays  

A total of four disease assays were conducted with P. myriotylum; treatments 

were Bb 11-98 and BotaniGard (B. bassiana isolate GHA), at 1 × 107 CFU/seed, a MC 

control, and an untreated control. Two post-emergence assays were conducted with P. 

myriotylum added after seedling emergence in Collins silt loam soil. Two additional 

assays were conducted with P. myriotylum added at seeding (pre-emergence application). 

The first trial was in Collins soil and the second in potting soil. 

 In the first post-emergence trial, there were no significant effects. In the second 

trial, disease pressure was low and the effect of pathogen was not significant for any of 

the measured variables. There were significant seed treatment effects for seedling weight 

(F = 4.4; df = 3,173; P = 0.0052), root weight (F = 2.5; df = 3,173; P = 0.0609), survival 

rate (F = 7.96; df = 3,173; P = 0.0001), seedling height (F = 7.25; df = 3,173; P = 

0.0001) and hypocotyl disease index (F = 5.97; df = 3,117; P = 0.0007). The 1 × 107 rate 

of Bb 11-98 and BotaniGard resulted in greater seedling weight (Fig. 3-20), root weight 

(Fig. 3-21), percent survival (Fig. 3-22), and  seedling height (Fig. 3-23) than the 

untreated control, but were not different than the MC control. The hypocotyl disease 

index was significantly lower for Beauveria treated seed than for untreated, but was not 

different from the MC control (Fig. 3-24). 

In the first pre-emergence trial, there were no significant effects for any measured 

variables. In the second trial the interaction of seed treatment and pathogen was not 

significant. The effect of pathogen was significant for seedling weight (F = 6.6; df = 

1,173; P = 0.0011), shoot weight (F = 4.15; df = 1,173; P = 0.0432), root weight (F = 

10.04; df  = 1,173; P = 0.0018); seedling height (F = 8.83; df = 1,173; P = 0.034)  
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Fig. 3-20. Effect of seed treatment with Beauveria bassiana (Bb) conidia on seedling 
weight in Collins silt loam amended with Pythium myriotylum (post-emergence), Trial 2. 
Inoculum of P. myriotylum was added eight days after seed sowing. Seed treatments were 
untreated, methylcellulose (MC), 1× 107 Bb 11-98 CFU/seed and 1× 107 BotaniGard 
(BG) isolate GHA CFU/seed. The effect of seed treatment was significant at P = 0.0052. 
Bars with the same letter are not different according to F-LSD at P = 0.05. Each bar 
represents least square means ± SE. 
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Fig. 3-21. Effect of seed treatment with Beauveria bassiana (Bb) conidia on root weight 
in Collins silt loam amended with Pythium myriotylum (post-emergence), Trial 2. 
Inoculum of P. myriotylum was added eight days after seed sowing. Seed treatments were 
untreated, methylcellulose (MC), 1× 107 Bb 11-98 CFU/seed and 1× 107 BotaniGard 
(BG) isolate GHA CFU/seed. The effect of seed treatment was significant at P = 0.0609. 
Bars with the same letter are not different according to F-LSD at P = 0.10. Each bar 
represents least square means ± SE. 
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Fig. 3-22. Effect of seed treatment with Beauveria bassiana (Bb) conidia on percent 
seedling survival in Collins silt loam amended with Pythium myriotylum (post-
emergence), Trial 2. Inoculum of P. myriotylum was added eight days after seed sowing. 
Seed treatments were untreated, methylcellulose (MC), 1× 107 Bb 11-98 CFU/seed and 
1× 107 BotaniGard (BG) isolate GHA CFU/seed. The effect of seed treatment was 
significant at P = 0.0001. Bars with the same letter are not different according to F-LSD 
at P = 0.05. Each bar represents least square means ± SE. 
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Fig. 3-23. Effect of seed treatment with Beauveria bassiana (Bb) conidia on seedling 
height in Collins silt loam amended with Pythium myriotylum (post-emergence), Trial 2. 
Inoculum of P. myriotylum was added eight days after seed sowing. Seed treatments were 
untreated, methylcellulose (MC), 1× 107 Bb 11-98 CFU/seed and 1× 107 BotaniGard 
(BG) isolate GHA CFU/seed. The effect of seed treatment was significant at P = 0.0001. 
Bars with the same letter are not different according to F-LSD at P = 0.05. Each bar 
represents least square means ± SE. 
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Fig. 3-24. Effect of seed treatment with Beauveria bassiana (Bb) conidia on hypocotyl 
disease index in Collins silt loam amended with Pythium myriotylum (post-emergence), 
Trial 2. Inoculum of P. myriotylum was added eight days after seed sowing. Seed 
treatments were untreated, methylcellulose (MC), 1× 107 Bb 11-98 CFU/seed and 1× 107 
BotaniGard (BG) isolate GHA CFU/seed. The effect of seed treatment was significant at 
P = 0.0007. Bars with the same letter are not different according to F-LSD at P = 0.05. 
Each bar represents least square means ± SE. 
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hypocotyl disease index (F = 7.91; df = 1,173; P = 0.0055), and root disease (F = 8.05; df 

= 1,173; P = 0.0051). Seedling weight, shoot weight, root weight and seedling height 

were lower in Pythium infested soil while hypocotyl and root disease indices were higher 

(Table 3-6).  

There was a significant seed treatment effect for hypocotyl (F = 3.46; df = 3,173; 

P = 0.0177) and root disease (F = 2.14; df = 3,173; P = 0.0967) indices. Both isolates of 

B. bassiana resulted in lower hypocotyl (Fig. 3-25) and root (Fig. 3-26) disease indices 

than the MC control.  

 

Thielaviopsis basicola assays 

Two trials were conducted in Staser sandy loam soil; in both assays, there was no 

significant interaction of seed treatment (untreated control, MC control, and 1 × 10 11 

CFU/seed of Bb 11-98C or BotaniGard isolate GHA) and pathogen. In trial 1, the effect 

of pathogen was significant for seedling weight (F = 3.35; df =1,83; P = 0.0710), root 

weight (F = 2,91; df = 1, 83; P = 0.0919), seedling height (F = 6.55; df = 1,83; P = 

0.0123), hypocotyl disease index (F = 21.01; df = 1,83; P = 0.0001), and root disease 

index (F = 2.96; df = 1, 83; P = 0.0890).  In Thielaviopsis infested soil, seedling weight, 

root weight and seedling height were lower, while hypocotyl and root disease indices  

were higher than in noninfested soil (Table 3-7). The effect of seed treatment was not 

significant in Trial 1. 

In the second trial, seed treatments were Bb 11-98C (1 × 109 and 1 × 1011 

CFU/seed) and BotaniGard GHA (1 × 1011 CFU/seed), a MC control and an untreated 

control. Neither the interaction nor the main effects were significant.  
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Table 3-6. Effect of pathogen on cotton seedling variables in potting mix with Pythium pre-emergence application, Trial 2. The 
measured variables were seedling weight (P = 0.0110), shoot weight (P = 0.0432), root weight (P = 0.0018), seedling height (P = 
0.0034), hypocotyl disease index (P = 0.0055) and root disease index (P = 0.0051). For each variable, least square means ± SE 
with the same letters are not different according to F-LSD at P = 0.05 
 

 
Pathogen 

 
Seedling 
weight  

(g) 

 
Shoot weight 

(g) 

 
Root weight 

(g) 

 
Seedling height 

(mm) 

 
Hypocotyl disease 

index  
(1-6) 

 
Root disease 

index 
 (1-6) 

 

Pythium 
myriotylum 

 

2.57 ± 

0.1530 b 

 

1.7598 ± 0.1027 b 

 

0.8102 ± 0.05804 b 

 

108.16 ± 5.1852 a 

 

2.3438 ± 0.1549 a 

 

2.1146 ±  
0.1599 a 

 
 
No 
pathogen 
 

 
 
3.126 ± 
0.1530 a 

 
 
2.0557 ± 0.1027 a 

 
 
01.0703 ± 0.05804 a 

 
 
129.95 ± 5.1852 b 

 
 
1.75 ± 0.1549 b 

 
 
1.4792 ±  
0.1599 b 
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Fig. 3-25. Effect of seed treatment with Beauveria bassiana (Bb) conidia on hypocotyl 
disease index in potting mix infested with Pythium myriotylum added immediately after 
seed sowing (pre-emergence). Seed treatments were untreated, methylcellulose (MC), 1 × 
107 Bb 11-98 CFU/seed and 1 × 107 BotaniGard (BG) isolate GHA CFU/seed. The effect 
of seed treatment was significant at P = 0.0177. Bars with the same letter are not different 
according to an F-LSD at P = 0.05. Each bar represents least square means ± SE. 
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Fig. 3-26. Effect of seed treatment with Beauveria bassiana (Bb) conidia on root disease 
index in potting mix infested with Pythium myriotylum added immediately after seed 
sowing (pre-emergence). Seed treatments were untreated, methylcellulose (MC), 1 × 107 
Bb 11-98 CFU/seed and 1 × 107 BotaniGard (BG) isolate GHA CFU/seed. The effect of 
seed treatment was significant at P = 0.0967. Bars with the same letter are not different 
according to an F-LSD at P = 0.10. Each bar represents least square means ± SE. 
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Table 3-7. Effect of pathogen on cotton seedling variables in Staser sandy loam soil with Thielaviopsis basicola, Trial 1. The 
measured variables were seedling weight (P = 0.0710), root weight (P = 0.0919), seedling height (P = 0.0123), hypocotyl disease 
index (P = 0.0001) and root disease index (P = 0.0890). For each variable, least square means ± SE with the same letters are not 
different according to F-LSD at P = 0.05 or 0.10 
 

 
Pathogen 

 
Seedling weight  

(g) 

 
Root weight 

(g) 

 
Seedling height 

(mm) 

 
Hypocotyl disease 

index  
(1-6) 

 
Root disease  

index 
 (1-6) 

 

Thielaviopsis 
basicola 

 

1.4244 ± 0.1768 b 

 

0.4213 ± 0.06056 b 

 

69.528 ± 8.5682 b 

 

4.333 ± 0.2231 a 

 

3.5 ±  0.2817 a 

 
 
No pathogen 
 

 
 
1.8767 ± 0.1768 a 

 
 
0.5673 ± 0.06056 a 

 
 
100.53 ± 8.5682 a 

 
 
2.9583 ± 0.2231 b 

 
 
2.8750 ±  0.2817 b 

F-LSD  
P-Value 

0.10 0.10 0.05 0.05 0.10 
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Discussion 

Microbial control of plant pathogens is an important component of efforts to 

reduce our reliance on chemical pesticides and increase sustainability of U.S. agriculture. 

Plant pathogens can become tolerant or resistant to individual or combinations of 

pesticides. Development of fungicide resistance forces farmers to use higher amounts of 

chemical pesticides to produce a crop. Soilborne fungi can persist in the soil, in some 

cases, for years. This persistence makes them especially difficult to combat since their 

lifecycles are adapted to survive long periods of time in the form of survival propagules. 

Public concern over potential health risks caused by chemical pesticides has helped 

energize interest in pest management alternatives such as biological control agents, which 

involve the use of a living organism to control another. Beauveria bassiana 11-98 has 

potential as a biocontrol of plant pathogens; however, to enhance its efficacy, information 

about application rates and a greater understanding of its function in different soil 

environments must be obtained.   

Some biocontrol organisms are capable of enhancing growth in some plants. For 

example, Trichoderma harzianum Rifai applied as a peat-bran preparation and 

incorporated into a propagative mixture in a production nursery, significantly enhanced 

seedling height and dry plant weight in cucumber and pepper (Inbar et al. 1994). In 

another study, T. harzianum (T-203) propagules added to soil gave a 30% increase in 

cucmber seedling emergence up to 8 days after sowing. After four weeks the plants 

exhibited a 95% increase in root area and a 75% cumulative increase in root length. A 

significant increase in dry weight, shoot length and leaf area also was observed (Yedidia 

et al. 2001). 
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Based on results of the germination assays, certain rates of Bb 11-98C affected 

seedling shoot and root length and survival rate. In some cases these parameters were 

enhanced in the presence of Bb 11-98C. Application of Bb 11-98C at 1 × 105 CFU/seed 

enhanced radicle length (Trial 1) and survival rates (Trial 1 and 2); thus, at low rates B. 

bassiana may enhance growth in the absence of pathogens. 

Conversely, high rates of Bb 11-98C may be detrimental to plant growth. The rate 

of 1 × 1011 CFU/seed appeared to be the conidial rate limit for ‘DP 436 RR’. Percentage 

seed survival was reduced at the highest rate (1 × 1011 CFU/seed) of Bb 11-98C. 

Decreased survival at the 1 × 1011 rate could be due to production of secondary 

metabolites by Bb 11-98C. Apparent toxicity was reduced in soil. 

Biological control agents are capable of producing phytotoxic effects if 

population rates are not optimized. In a study using Pseudomonas fluorescens Migula 

strain 2-79, a well known biocontrol agent used against take-all of wheat 

(Gaeumannomyces graminis var. tritici Walker), the biological control agent was found 

to have a negative effect on seedling height. Decline in plant growth coincided with 

deterioration of the biocontrol agent in storage when encapsulated on wheat seeds. 

Significant germination loss also was observed due to phytotoxic metabolites (Slininger 

et al. 1996). 

In the current study, application of B. bassiana on the seed coat surface within a 

potting mix or soil substrate did not decrease germination, growth, or survival rates of 

seedlings regardless of spore rate. It is undetermined at this time if the production of 

mycotoxins inhibited seedling growth in the germination assay, or if seed nutrients may 

have been depleted due to the mass of germinating spores and growing hyphae.  
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Some biocontrols, particularly pseudomonads, have a required threshold 

population density of bacteria before they affect significant disease suppression. 

Relatively small decreases in population size can dramatically reduce protection (Johnson 

1994). In a two-year study by Dorner et al. (1998) on the effect of inoculum rate of 

biological control agents on preharvest aflatoxin contamination of peanuts, the biocontrol 

agents were nontoxigenic color mutants of Aspergillus flavus Link:Fr. and A. parasiticus 

Speare. Aspergillus mutants were grown on rice for soil inoculum and added to three 

replicate plots at 0, 2, 10 and 50 g/m of row. Regression analysis indicated a trend toward 

lower aflatoxin concentration with increasing rates of inoculum and this relationship 

increased in the second year of treatment. 

In the present study, Bb 11-98C, at a rate of 1 × 105 CFU/seed was too low to 

provide significant protection against R. solani in potting mix. As the rates of Bb 11-98C 

applied to seed increased, disease suppression was greater. In general, the rate of 1 × 109 

CFU/seed Bb 11-98C gave optimal control in the organic potting mix. In the Staser sandy 

loam soil, 1 × 107 CFU/seed was the best treatment, suggesting that soil type may play a 

role in efficacy of Bb 11-98C against R. solani.  

Wide-scale commercial application of biocontrols has been slowed, in part, due to 

inconsistent performance in field locations. Effects of various minerals, growth factors, 

carbon and nitrogen source, pH and temperature on the potential biocontrol agents have 

each been proposed as potential factors influencing success of biological control activity 

in a particular location (Ownley et al. 2003). Understanding which abiotic and biotic soil 

factors have the most influence on the biocontrol activity of B. bassiana, and how these 

factors interact, may provide ways to enhance biocontrol efficacy through regulation of 
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biocontrol mechanisms. 

It is possible that the population density of B. bassiana per seed needed for 

effective biocontrol correlates to nutrient availability in the soil. The biocontrol activity 

of Beauveria bassiana against R. solani was more effective in potting mix that has higher 

organic matter than the sandy loam soil, which is low in organic matter.  

Soil mineral components are known to have an effect on biocontrol efficacy and it 

is possible to create a more favorable environment for biological control to occur with 

managed mineral fertilization regimes. Duffy and Défago (1997) found in soilless tomato 

culture that mineral amendments of copper and zinc significantly improved the biocontrol 

activity of Pseudomonas fluorescens strain CHA0 against Fusarium oxysporum f. sp. 

radicis-lycopersici Jarvis & Shoemaker. The trace mineral zinc was positively correlated 

with biocontrol activity of Pseudomonas fluorescens 2-79 and enhanced the production 

of a phenazine antibiotic essential for disease suppression of take-all of wheat (Duffy et 

al. 1997). 

In the P. myriotylum disease assays with post-emergence application of Pythium, 

disease was low overall and no disease suppression by B. bassiana was observed in the 

first trial. However, in the second trial, disease pressure was greater and both Beauveria 

isolates (11-98 and GHA) provided disease protection compared to the untreated controls.  

Two pre-emergence assays where Pythium was added prior to seedling emergence 

were conducted. In one trial, no results were significant, while the second resulted in 

Beauveria 11-98 and BotaniGard isolates having less disease than the MC treatment for 

both hypocotyl and root disease indices, but effects were not different from observations 

of untreated seedlings. Protection against P. myriotylum in a pre-emergence environment 
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was successful using Beauveria isolates Bb 11-98 and BotaniGard with tomato (Clark 

2006). 

In this study, comparison of pre-emergence and post-emergence assays indicates 

that moisture levels were potentially a limiting for the efficacy of B. bassiana on cotton 

especially in the pre-emergence assays. This was most likely due to soil flooding with the 

application of Pythium zoospores immediately after seed were sown. In post-emergence 

assays, there was an 8-day period during which spores of B. bassiana could colonize the 

cotton seedling; seedlings treated with Bb 11-98 and BotaniGard had greater seedling 

shoot and root weight, and seedling height than untreated seedlings; however, disease 

pressure in the assay was low.   

 The effectiveness of B. bassiana 11-98 and BotaniGard isolate GHA in providing 

protection for seedlings against T. basicola was not demonstrated in the two trials. In the 

first trial, only one rate of isolate Bb 11-98 and BotaniGard were examined. Because the 

effect of pathogen was significant, it is likely that 1 × 1011 was not an effective spore rate. 

The second trial proved inconclusive even though different rates, 1 × 109 and 1 × 1011 of 

Bb 11-98C, and 1 × 1011 of BotaniGard, were examined. Pathogen effect was significant 

in the first assay; however, there were no other significant effects. In the second assay no 

significant effects were found. For the first assay, it is possible that the rates of Beauveria 

were too high, because in the assay with R. solani in potting mix, the highest rate of 1 × 

1011 CFU/seed did not provide protection compared to the lower 1 × 109 CFU/seed rate. 

In the sandy loam soil, the lower rate of 1 × 107 was more effective against R. solani. 

 In conclusion, rate of conidia applied to cotton seeds does influence the biological 

control efficacy of Bb 11-98C. Biocontrol efficacy of B. bassiana varies in field soil and 
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this is likely due partly to abiotic factors, as the effective rate of conidia on seed varied 

with soil type. Beauveria bassiana also differed in its ability to control the three different 

soilborne pathogens examined in this study. Efficacy was greater against R. solani than P. 

myriotylum, and results with T. basicola were inconclusive.  
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Part 4. Mechanisms of action, including induced 

systemic resistance, employed by Beauveria bassiana as 
a biocontrol against cotton pathogens 
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Abstract 

Beauveria bassiana (Bals.-Criv.) Vuill., an entomopathogenic fungus, can protect 

against soilborne plant pathogens when applied as a seed treatment. However, the 

mechanisms that B. bassiana utilizes have not been elucidated. In this study, B. bassiana 

was evaluated for its ability to induce systemic resistance (ISR) in cotton against 

Xanthomonas axonopodis pv. malvacearum (Smith 1901) Vauterin, Hoste, Kersters & 

Swings 1995. Treatments were three rates of B. bassiana 11-98C conidia (1 ×105, 1 ×107 

and 1 ×109) and three controls [untreated, 2,6-dichloro-isonicotinic acid  (INA), and 

untreated without Xanthomonas challenge]. Treatments were replicated six to eight times 

with three to four seedlings per replication. Cotton seeds were placed in growth pouches 

in a soilless system and incubated at 28°C with continuous light for five days. Conidial 

treatments were added to 0.2 ml sterile 1/3 Hoagland’s solution and applied to roots 5 cm 

below radicle emergence. Likewise, INA was applied at 0.2 ml per root. After 13 days, 

one primary leaf of each plant was pricked with a needle and challenge-inoculated with 

X. axonopodis (1 × 109 to 1 × 1010 CFU/ml). After which, leaves were rated for bacterial 

leaf blight daily for 1 week. Treatment with B. bassiana 1 ×107 conidia resulted in lower 

disease ratings than the untreated control and was as effective as INA. In host-based 

medium, B. bassiana was tested for ability to produce antimicrobials that would inhibit 

growth of three soilborne pathogens of cotton. Although no zone of inhibition was noted 

for any tested pathogens, B. bassiana appeared to out-compete, or parasitize 

Thielaviopsis basicola (Berk. & Broome). Colony diameter of T. basicola was reduced 

after two weeks in culture. Furthermore, after two weeks B. bassiana continued to grow, 

and colony diameter expanded within all pathogen assay plates. Parasitism assays were 
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performed to determine if B. bassiana could parasitize Rhizoctonia solani (Kühn), 

Pythium myriotylum Dreschler or T. basicola. Coiling by B. bassiana was observed on 

hyphae of P. myriotylum; however, no coiling was observed on R. solani. Thielaviopsis 

basicola was unable to produce mycelia on the glass cover slips in this assay. An assay 

was conducted to determine if Bb 11-98C could grow on chitin- and cellulose-based 

media. Beauveria bassiana 11-98C was able to hydrolyze and use the chitin-based 

medium as a food source however; B. bassiana was not able to hydrolyze the cellulose-

based medium. 

Keywords: Beauveria bassiana, biocontrol, cellulose, chitinase, induced systemic 

response, ISR  

 

Introduction   

In order to better understand the efficacy of B. bassiana as a biocontrol agent it is 

important to understand mechanisms by which it protects itself and its symbiont. 

Mechanisms through which biocontrol agents can antagonize soilborne pathogens are 

generally classified as antibiosis, competition for niches and nutrients (niche exclusion), 

parasitism/predation, and induction of a plant defense response (Chin-A-Woeng et al. 

2003).   

Antibiosis is defined as antagonism mediated by specific or nonspecific 

metabolites of microbial origin by lytic agents, enzymes, volatile compounds or other 

toxic substances, such as antibiotics (Fravel 1988). Antibiotics encompass a chemically 

heterogeneous group of organic low-molecular weight compounds produced by 
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icroorganisms. At low concentrations antibiotics are deleterious to growth or metabolic 

activities of other organisms (Raaijmakers et al. 2000). Most antibiotics are produced by 

soil inhabiting microorganisms. In the past decade, numerous antibiotics have been 

isolated from various biocontrol strains representing different bacterial genera, such as 

pseudomonads, bacilli and Streptomyces spp.; and Trichoderma spp., a group of fungal 

biocontrol agents, which are widely distributed in soil and decaying vegetation. Each 

produces antimicrobial compounds and suppresses disease by diverse mechanisms 

(Handelsman and Stabb 1996). 

Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx (formerly 

Gliocladium virens GL-21) can protect plants against damping-off and root rot pathogens 

(Paulitz and Bélanger 2001). Its spectrum of control includes the soilborne pathogens R. 

solani and Pythium spp. Trichoderma virens typically produces gliotoxin, a structurally 

complex antibiotic. Mutants of T. virens that do not produce gliotoxin are reduced in their 

ability to control Pythium damping-off. Mutants with increased or decreased antibiotic 

production have a corresponding effect on biocontrol (Handelsman and Stabb 1996). 

Beauveria bassiana may act similarly to Trichoderma spp. in its biocontrol 

activity, and may be in part, securing its substrate through antibiosis. Beauveria bassiana 

is known to produce beauvericin, bassinolide, oosporein, beauvolide, beauvirolide, 

bassinin and tellinin, but not every isolate produces all the toxins listed. 

Although production by B. bassiana of mycotoxins in vitro is well studied, little 

information is available on production of mycotoxins by B. bassiana in planta. As an 

entomopathogen, the production of toxins is thought to act as virulence factors that aid in 

the colonization and utilization of a food substrate until propagules are produced. 
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 Beauvericin is an ionophore capable of inserting into the lipid of the plasma 

membrane causing abnormal ion transport and disrupting cells and organelles such as 

mitochondria (Plattner and Nelson 1994, Žižka and Weiser 1993). Bassinolide is toxic to 

lepidopteran species (Kanaoka et al. 1978). Oosporein, a red pigmented dibenzoquinone, 

has antibiotic activity against several bacteria, particularly Gram-positive species (Brewer 

et al. 1984, El Basyouni and Vining 1966, Taniguchi et al. 1984, Vining et al. 1962, and 

Wainwright et al. 1986). Oosporein may help B. bassiana compete against the natural 

bacterial microflora located within the gut of the insect. Production is generally observed 

after insect infection, when B. bassiana is within its proliferation phase; the insect is 

noted to turn pink or reddish in color (Stasser et al. 2000). Beauvolide and beauvirolide 

are structurally similar to beauvericin, but their toxic effects have not been fully 

demonstrated against target insects (Kuzma et al. 2001). Little is known about bassinin 

and tellinin (El Basyouni et al. 1968). 

One mechanism of action by fungal antagonists is mycoparasitism or 

hyperparasitism: the utilization of other fungi or fungal pathogens as a food base. 

Parasitism requires specific interactions between parasite and fungal host, including 

ability to detect chemical gradients and mycelial surface features. Digestion of host cell 

walls is accomplished by a battery of excreted lytic enzymes, including proteases, 

chitinases and glucanases. These enzymes often have antifungal activity individually and 

are synergistic in mixtures or with antibiotics (Handelsman and Stabb 1996, Spadaro and 

Gullino 2005). 

Many fungi are capable of producing lytic enzymes. Some of these enzymes are 

involved in the breakdown of fungal cells by degradation of cell wall constituents such as 
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glucans and chitins, resulting in the destruction of pathogen structures or propagules. The 

degradation products released can be used by the biocontrol agent as a food source (Chin-

A-Woeng et al. 2003). 

Several Trichoderma spp. are known to parasitize fungal plant pathogens. Hyphal 

branches grow toward the target host hyphae, coil around and attach to them with 

appressorium-like bodies, then penetrate the hyphae of the host fungus. Trichoderma 

harzianum Rifai produces at least three distinct chitinases as well as proteolytic and 

glucanolytic enzymes (Handelsman and Stabb 1996). The fungus Trichoderma 

harzianum Rifai strain KRL-AG2 (T-22) is effective in controlling soilborne pathogens 

such as Pythium spp., Rhizoctonia solani, Verticillium spp., Sclerotium spp., and others 

by parasitism and competition (Haggag 2002).  

As an entomopathogen, the production of chitinases by B. bassiana would be 

necessary for it to break down the insect’s cuticle before colonization. For B. bassiana to 

successfully utilize fungi as a food source it would be necessary for it to produce the 

necessary lytic enzymes capable of breaking down the components of the pathogen. 

Conidial swelling and germ tube formation in B. bassiana requires only a carbon source, 

but nitrogen is necessary to support hyphal development after these initial events 

(Boucias and Pendland 1998).  

Systemic resistance induced by nonpathogenic microorganisms is termed induced 

systemic resistance (ISR), which is a state of enhanced defensive capacity developed by a 

plant when appropriately stimulated. Jasmonic acid and ethylene activate the ISR 

signaling pathway (Han et al. 2000). A nonpathogenic microorganism can induce a 

systemic effect against a pathogen while remaining spatially separated on the plant. 
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Plants infected by pathogens can develop resistance against later attacks on previously 

infected parts and even on plant tissues distant from the primary infection (Van Loon et 

al. 1998).  

Systemic acquired resistance (SAR) differs from ISR in that salicylic acid 

production and pathogenesis-related (PR) proteins are produced in the plant. Systemic 

acquired resistance, can be induced by several necrotizing pathogens in a wide range of 

plants, and by chemicals such as phosphates, 2,6-dichloro-isonicotinic acid (INA) and 

benzo (1, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) (Bigirimana et al. 

1997). In contrast, ISR induced by nonpathogenic rhizosphere organisms does not 

involve the SA signaling pathway or the induction of PR proteins (Han et al. 2000). 

Although B. bassiana has not been previously studied for its ability to induce ISR 

response in plant pathogen systems, other nonpathogenic fungi such as T. harzianum 

have been observed to induce this resistance (Bigirimana et al. 1997). Trichoderma 

asperellum Samuels, Lieckf. & Nirenberg. [stat. anam.] (formerly T. harzianum 203) can 

penetrate the roots of cucumber seedlings and colonize the epidermis and outer root 

cortex. These interactions also induce host plant resistance to pathogens even in upper 

plant potions. Trichoderma root inoculation has been shown to be effective against 

different types of pathogens in a wide variety of plants (Shoresh et al. 2004). 

Beauveria bassiana may also offer protection against fungal pathogens via other 

mechanisms as B. bassiana produces a host of antibiotics and has the ability to hydrolyze 

chitin. Evidence for B. bassiana as a dual-purpose biocontrol organism, with activity 

against insect pests and plant pathogens, is currently being examined. Beauveria bassiana 

applied to whorl-stage corn by foliar application colonized and persisted in corn plants to 
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provide season-long suppression of Ostrinia nubilalis Hübner (Bing and Lewis 1991). 

Application of B. bassiana to tomato seeds prior to sowing provided protection against R. 

solani, a soilborne fungus that causes disease in a wide range of cultivated plants 

(Ownley et al. 2005).  

Objectives of this study were 1) to determine if B. bassiana is capable of causing 

an induced systemic response in cotton seedlings against X. axonopodis pv. 

malvacearum; 2) to determine if B. bassiana is capable of creating a response in cotton 

plants comparable to that induced by a SAR inducing chemical; 3) to determine if effect 

of spore rates applied to cotton roots will vary ISR response in cotton; 4) to determine if 

B. bassiana is capable of inhibiting pathogens via production of antibiotics on host based 

medium; 5) to determine if B. bassiana is capable of mycoparasitic activity against 

soilborne pathogens and; 6) to determine indirectly if B. bassiana is capable of 

mycoparasitic activity by hydrolysis of chitin- and cellulose-based media. 

 

Methods and Materials 

Production of Beauveria bassiana 

Beauveria bassiana (Bb) 11-98 was isolated originally from an infected click 

beetle (Coleoptera:  Elateridae). Following application to cotton seed, this organism was 

re-isolated from cotton ‘Delta-Pine (DP) 436 RR’ tissue by plating samples of surface-

sterilized plant tissue onto a selective culture medium (Doberski and Tribe 1980); the 

recovered isolate (Bb 11-98C) was utilized in subsequent assays.  

Cultures of B. bassiana were produced on Sabouraud dextrose agar (SDA) over a 

4 to 6-week period at ambient room temperature (22 to 25°C) in low light. When cultures 
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had sporulated heavily, conidia were collected and stored at 4ºC in a desiccator. 

 

Production of pathogen inocula for antibiosis assay 

Rhizoctonia solani and P. myriotylum were grown on potato dextrose agar (PDA) 

for 3 or 4 days. Thielaviopsis basicola was cultured on 10% carrot juice agar (100 ml 

carrot juice and 20 g agar in 900 ml deionized water) and allowed to grow for 10 to 12 

days at ambient room temperature (22 to 25°C) in low light. 

 

Production of X. aonopodis pv. malvacearum for ISR assay 

Xanthomonas axonopodis pv. malvacearum (ATCC 9924) which was originally 

isolated from cotton was obtained from the American Type Culture Collection, 

(Manassas, VA). To produce inoculum, cultures were grown for three days on nutrient 

broth agar. Rate of Xanthomonas used in the ISR assay was 1 × 109 CFU/ml for trial 1 

and 1 × 1010 CFU/ml for trials 2 and 3.   

 

Cotton cultivar 

Delinted black cotton seed ‘Delta Pine (DP) 436 RR’, (obtained from Dr. Craig 

Canaday, The University of Tennessee, West Tennessee Research and Education Center, 

Jackson) was used in the ISR assay.  
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ISR assay 

Cotton seed were surface-sterilized with 30% Clorox solution for 5 min. Seed 

were rinsed five times with sterile deionized water and air-dried in a laminar flow hood 

overnight. Dried seed were stored at 4ºC until use.  

Seed were placed aseptically into sterile autoclaved growth pouches (Mega 

International, St. Paul, MN) containing paper wicks with four seed per pouch. 

Approximately 10 ml of sterile deionized water was added to each pouch. Germination 

typically occurred within 72 h. 

Assays were conducted in a growth chamber and maintained at a constant 28ºC. 

Relative humidity was approximately 50%, prior to inoculation with Xanthomonas. 

Lights were 1,530 lumens on top and 5,100 lumens on bottom. The light inequality was 

rectified by alternating assay location every 24 h.  

If contamination was observed in growth pouches, the pouch was discarded 

immediately. A minimal number, 4 to 6 pouches per assay, were discarded. Pouches also 

were removed if all plants in a pouch had not developed primary leaves by day 18. This 

was done to increase overall light exposure for the remaining seedlings. Plants were left 

uncovered until day 18, when inoculation of primary cotton leaves occurred.  

A supplementation of sterile 1/6 Hoagland’s solution was applied on day 8 of the 

assay then alternated every other day with sterile deionized water for about one week. 

Liquids were added aseptically to the corner of the paper wick in the growth pouch. 
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Root treatments-ISR assay 

 Treatments for the ISR assay included two controls of untreated seed, a chemical 

control with 2, 6-dichloro-isonicotinic acid (INA) and three conidial rates of B. bassiana. 

The two untreated seed controls received 200-µl 1/3 Hoagland’s solution applied directly 

along the root surface. 

Root drench treatments with Bb 11-98C spores were prepared by adding dry 

conidia to test tubes with 20 ml of sterile 1/3 Hoagland’s solution and approximately 25 

µl of Tween 20. Solution was mixed by vortex and tubes were intermittently placed on a 

rotary shaker (150-160 rpm) 2 to 3 h. Population density of Bb 11-98C was determined 

by dilution plating on SDA.  

Conidial treatments were added to 0.2-ml sterile 1/3 Hoagland’s solution and 

applied to roots 5 cm below radical emergence. For B. bassiana treatments, three rates of 

conidia (1 × 105, 107 and 109) of isolate Bb 11-98C were applied as 0.2-µl root drench 

treatments.  

A 200-µl solution of 2,6-dichloroisonicotinic acid (INA) at 50 µg/ml in sterile 

deionized water was added, in two100-µl aliquots, to each individual root to ensure 

thorough coverage. 

Thirteen days after the cotton seedlings received the root drench treatments, (18 

days after seeding the pouch) a single primary leaf was challenged with X. axonopodis 

pv. malvacearum. All treatments except one control treatment were inoculated. Upper 

surface of one true leaf per cotton plant was pricked three to four times with a 26-gauge 

sterile disposable needle while a rubber stopper was held against the lower leaf surface. 

Xanthomonas was applied to the upper leaf surface with a cotton swab. Leaves selected 
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for inoculation were approximately 1.5- 2 cm wide by 2-3 cm long. None of the plants 

had more than one leaf large enough for inoculation on day 18. 

After inoculation, growth pouches with seedlings were placed back into 

containers, placed in a large plastic box, and returned to the growth chamber. The outer 

plastic box was covered with clear plastic to increase relative humidity (RH) within 

assays containers. Humidity was measured daily and maintained at 85 to 90% RH for the 

next six days.  

Measurement of disease severity index began on day 19 and was completed on 

day 24 after seeding. Disease severity index was recorded 1, 2, 3, 4, and 6 days after 

Xanthomonas inoculation. Disease severity index was 1 = symptomless, 2 = fewer than 

three lesions per leaf, 3 = more than three lesions per leaf, less than 25% leaf area 

affected by disease, 4 = lesions covering 25 to 50% of leaf surface area,  5 = lesions 

covering more than 50% of leaf surface area, 6 = one or more leaves dead. Symptoms 

developed within 24 h. 

 

Statistical analysis and experimental design of the ISR assay 

Treatments were replicated (5 to 12) with 3 to 4 seedlings per replicate, and the 

experiment was repeated to yield three complete trials. Disease severity data was 

analyzed with PROC MIXED of PC-SAS version 9.1. Least significant differences were 

determined according to Fisher’s protected LSD (P = 0.05). 
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Antibiosis Assay 

To prepare host-based medium, ‘DP 436 RR’ cotton plants were grown for 28 

days in Promix Premier potting soil in a growth chamber at 25 to 26°C. Seedlings were 

harvested by cutting the plant at the crown. Soft stems and cotyledons were comminuted 

in a Waring blender, and then 2 L deionized water was added. Mixture was heated and 

allowed to simmer for 30 to 45 min. Using cheese cloth, supernatant was collected. 

Cotton agar was prepared by adding 2% agar to 200 ml of harvested cotton supernatant, 

and autoclaving for 30 min. 

Beauveria bassiana 11-98C was grown for seven days on SDA, and then 10-mm2 

plugs of B. bassiana mycelia were placed on opposing sides of the cotton agar plates. For 

controls, two 10-mm2 plugs of uninoculated SDA were placed on opposing sides of the 

plates. Beauveria bassiana was allowed to grow for 7 days on the cotton agar (Fig. 4-1). 

After seven days, a single 3-mm diameter plug of three cotton pathogens, P. 

myriotylum, R. solani (which had been grown for 5 days on PDA) or T. basicola (which 

had grown for two weeks on 12% carrot agar) were placed in the center of Petri dishes, 

equidistant from the B. bassiana and SDA control plugs. There were seven replicate 

plates for each pathogen. Petri dishes were left without Parafilm throughout the assay to 

help reduce moisture within plates. 

 

Parasitism assay 

Dilute PDA (1/5) was prepared and actively growing hyphal tips of 10-mm2 plugs 

were taken from the R. solani, P. myriotylum and T. basicola cultures. In the center of the 

dilute PDA plates, flame-sterilized, cooled microscope slides (25 x 75 mm) were placed  
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Fig. 4-1. Beauveria bassiana after growing on cotton agar for approximately 7 days. 
 

 

on the agar. Plugs were aseptically placed using forceps onto the microscope slides. For 

controls, a single plug of each soilborne pathogen (R. solani, P. myriotylum and T. 

basicola) and B. bassiana was placed individually in the center of the microscope slide 

and a cover slip (24 mm x 50 mm) was lightly but securely placed on top of the plug. 

Controls were repeated three times for each individual fungus. For the parasitism 

challenge, Petri dishes contained a single soilborne pathogen and B. bassiana; the 

pathogen plug and the B. bassiana plug were placed 20 mm from the edge of the slide in 

opposite directions. The area between the two plugs was approximately 11 to 15 mm 

(Ownley and Windham 2004). After 3 days plates, were examined daily for hyphal 

growth (of B. bassiana or pathogen) along the glass cover slides or the cover slips toward 

the opposing fungus. Six replicates of B. bassiana and each soilborne pathogen (R. 

solani, P. myriotylum and T. basicola) were assayed. Digital photomicrographs of hyphal 
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growth along cover slips where taken at 100 × magnification.  

 

Chitin and cellulose utilization assay 

To determine if Bb 11-98C can hydrolyze chitin or cellulose, it was grown on 

media containing these polymers as the sole carbon source. A chitin-based medium was 

prepared, (10 g ball-milled chitin, 1 g MgSO4·7H2O, 1 g K2HPO4 and 15 g agar in 1L 

deionized water), and 8 to 10 ml of this medium was poured directly onto a plate already 

containing 8 to 10 ml of solidified 2% water agar. Cellulose-based medium (12 g ball-

milled cellulose, 0.5 g NaNO3, 1 g K2HPO4, 0.5 g MgSO4·7H2O, 0.01 g FeSO4·7H2O and 

15 g agar in 1L deionized water) was prepared. Conidia of Bb 11-98C were suspended in 

a phosphate buffer solution, and 0.1 ml was pipetted onto the center of seven plates each, 

of the chitin-based medium and cellulose-based medium. Cultures were incubated for 14 

to 28 days and examined. Substrate specific stains were used. For chitin hydrolysis, 

methyl blue dye (Sigma-Aldrich Co., St. Louis, MO) was mixed with deionized water at 

0.01g/ml and filtered in a 250-ml filter system vacuum (Corning Inc., Corning, NY). 

Approximately 8 to 10 ml was applied to uninoculated control and treated plates on 

which Bb 11-98C had been grown earlier. To avoid a false reading caused by presence of 

B. bassiana culture growing in the medium, 8 to 10 ml of sterile deionized water was 

poured onto the culture and a brush was used to gently scrape the medium surface. The 

procedure was repeated twice to ensure removal of B. bassiana. Methyl blue dye was 

added for 25 to 30 min then removed with a pipette. The medium was rinsed twice with 

sterile deionized water. For the cellulose medium, a sterile Congo Red (Fisher Scientific, 

Fairlawn, NJ) solution was applied (0.1 g dye/100 ml deionized water) for 15 min to 
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uninoculated control and treated plates. Exposure was followed by a 5 min soak with 

sterile NaCl solution (5.84 g/100 ml deionized water). Petri dishes were left without 

Parafilm throughout the assay to reduce moisture within the plates. 

 

Results 

ISR Assay 

Effects of induced systemic resistance reaction by cotton seedlings, caused by B. 

bassiana 11-98C applied as a root drench, were observed two weeks after initial 

challenge by bacterial blight pathogen, X. axonopodis pv. malvacearum. Symptoms of 

Xanthomonas infection were noticeable on leaves within 48 h. Seedling treatment was 

significant for disease severity in all three assays. Six days after pathogen challenge, the 

effect of seedling treatment was significant (F = 8.34; df = 5,87; P = 0.0001) for Trial 1, 

(F = 5.61; df = 5,58; P = 0.0003) for Trial 2, and (F = 6.66; df = 5,70; P = 0.0001) for 

Trial 3. 

For trial 1, among treatments challenged with Xanthomonas, cotton seedlings 

treated with B. bassiana conidia at 1 × 105 and 1 × 107 CFU/ml had lower disease 

severity than all other treatments (Fig. 4-2). The 1 × 105 and 1 × 107 CFU/ml Bb 11-98C 

treatments had disease severity indices as low as the untreated control that was not 

challenged with Xanthomonas. For Trial 2, cotton seedlings treated with B. bassiana 

conidia at 1 × 105 and 1 × 107 CFU/ml were intermediate in disease between the 

untreated control inoculated with Xanthomonas and the untreated control without 

pathogen challenge. In Trial 3, all Bb 11-98C treatments had lower disease than the  
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Fig. 4-2. Evidence of induced systemic resistance in cotton caused by Beauveria bassiana 
(Bb) 11-98C applied as a root drench 13 days prior to pathogen challenge. Disease 
severity index (1-6) was measured at six days after Xanthomonas axonopodis pv. 
malvacearum (Xa) inoculation of cotton leaves. Beauveria bassiana 11-98C was applied 
to cotton root systems at three rates; (log 5 = 1 × 105, log 7 = 1 × 107 and log 9 = 1 × 109 

CFU/ml). Controls were an untreated control with Xanthomonas challenge (Untrt + Xa), 
an untreated control with no pathogen challenge (Untrt), and an SAR chemical control, 2, 
6-dichloro-isonicotinic acid (INA) with pathogen challenge (INA + Xa). Effects of 
seedling treatment were significant for Trial 1 (P = 0.0001), 2 (P = 0.0003) and 3 (P = 
0.0001). For each trial, bars with the same letter are not different according to an F-
protected LSD (P = 0.05). Each bar represents least square means ± SE. 
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untreated control inoculated with Xanthomonas. The rate of 1 × 107 CFU/ml Bb 11-98C 

had the least disease and was not different then the untreated control without 

Xanthomonas. In all three trials, 1 × 107 CFU/ml Bb 11-98C had disease severity indices 

as low as the untreated control without Xanthomonas.  

Over the six days of the assay, the disease severity indices were consistently 

lower for Bb 11-98C treatments based on disease progress curves (Fig. 4-3). In contrast, 

INA treatment was inconsistent between trials with greater variability between replicates.  

 

Antibiosis assay  

 Beauveria bassiana, P. myriotylum, R. solani and T. basicola grew well on the 

cotton agar. After seven days the colony diameter of B. bassiana grew approximately 1 to 

1.25 cm from the edge of the initial plug. Initially all three pathogens exhibited faster 

growth in culture than B. bassiana (Figs. 4-4, 4-5, and 4-6), with the most rapid growth 

by P. myriotylum and R. solani.  

Thielaviopsis basicola was the slowest growing pathogen. By day 5 of the 

antibiosis assay, T. basicola exhibited an unusual colony growth pattern that indicated it 

was hindered by B. bassiana but not inhibited by antibiosis activity, since no zone of 

inhibition was observed. By 14 days, T. basicola was almost completely eliminated in 

some plates. Thielaviopsis basicola was either out-competed by B. bassiana or another 

mechanism of action was employed. Growth of T. basicola was much slower (Fig. 4-4 A-

C) than the other pathogens, and growth on cotton agar was greatly restricted (Fig. 4-4 B- 

C) by B. bassiana 11-98C. After three weeks, growth of T. basicola appeared to have 

halted.  
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Fig. 4-3. Effect of Beauveria bassiana (Bb) 11-98C applied as a root drench to cotton 
seedlings 13 days prior to pathogen challenge on disease progress caused by 
Xanthomonas axonopodis pv. malvacearum. Disease severity index (1-6) was measured 
at 1, 2, 3, 4 and 6 days after pathogen challenge inoculation on cotton leaves. Beauveria 
bassiana (Bb) 11-98C was applied to cotton root systems at three rates; (log 5 = 1 × 105, 
log 7 = 1 × 107 and log 9 = 1 × 109 CFU/ml). Controls were an untreated control with 
Xanthomonas challenge (Untreated + Xa), an untreated control with no pathogen 
challenge (Untreated), and an SAR chemical control, 2, 6-dichloro-isonicotinic acid 
(INA) with pathogen challenge (INA + Xa). Symbols represent the mean of 5 to 12 
replicates. 
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A.  B.  C.  
 
Fig. 4-4. Antibiosis assay with Beauveria bassiana (Bb) 11-98C and Thielaviopsis 
basicola. A. Day 1: inoculation of a 3-mm-diameter plug of T. basicola. B. Day 10: Bb 
11-98C limited growth of T. basicola and out-competed the pathogen for new space on 
cotton-based medium. C. Day 28: Bb 11-98C maintained its space and contained the 
spread of T. basicola into the medium. Bb 11-98C also sporulated. 
 

A.  B.  C.  
 
Fig. 4-5. Antibiosis assay with Beauveria bassiana (Bb) 11-98C and Rhizoctonia solani. 
A. Day 1 after a 3-mm-diameter plug of R. solani was introduced to cotton based 
medium.  B. Day 4:  Bb 11-98C was out- competed for new space on the cotton based 
medium surface. C. Day 21: Bb 11-98C maintained its initial colony diameter.  
 

A.  B.  C.  
 
Fig. 4-6. Antibiosis assay with Beauveria bassiana (Bb) 11-98C and Pythium 
myriotylum. A. Day 1 after a 3-mm-diameter plug of P. myriotylum was introduced to 
cotton-based medium. B. Day 3: Bb 11-98C was out- competed for new space on the 
cotton-based medium surface. C. Day 21: Bb 11-98C maintained its initial colony 
diameter. 
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Rhizoctonia solani took approximately four days to grow to the edge of the plate 

and past SDA control plugs (Fig. 4-5 B). Beauveria bassiana colonies continued to 

maintain their initial colony diameter even though by day 5 aerial mycelia of R. solani 

could be seen growing around the B. bassiana colonies. By day 7, using a dissecting 

microscope (Steromaster, Fisher Scientific, Pittsburgh, PA) hyphae of R. solani were 

observed extending into the B. bassiana colony. Very little activity was observed by B. 

bassiana against R. solani after two weeks; however B. bassiana continued to maintain 

its initial colony diameter and was not out-competed: hyphae continued to extend 

outward into the R. solani colony. Three weeks after initial inoculation with R. solani, B. 

bassiana continued to maintain its initial colony diameter (Fig. 4-5 C).  

Within two to three days, P. myriotylum grew to the edge of agar plates past the 

location of SDA control plugs (Fig. 4-6 B). Beauveria bassiana was out-competed for 

new space on the cotton-based medium surface; however B. bassiana continued to 

maintain its original colony boundaries. After 12 days, B. bassiana had begun to grow 

into the P. myriotylum colony. Three weeks after the P. myriotylum plug was introduced, 

B. bassiana continued to maintain its initial colony diameter. Beauveria bassiana 11-98C 

sporulated and produced hyphae on areas occupied by P. myriotylum (Fig. 4-6 C). 

 

 Parasitism assay 

Within 15 days of initiation of the parasitism assay with B. bassiana and P. 

myriotylum, Bb 11-98C was observed coiling around P. myriotylum hyphae (Fig. 4-7). 

No coiling was observed around R. solani hyphae. No hyphae were observed around T. 

basicola, which produced only endoconidia (Fig. 4-8). Both, P. myriotylum and R. solani  
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Fig. 4-7. Small hyphae of Beauveria bassiana isolate 11-98C (B) coiling around larger 
hyphae of Pythium myriotylum (Pm). Magnification = 100 ×. 

 

 

 

 
 
Fig. 4-8. Endoconidia of Thielaviopsis basicola. Endoconidia produced by T. basicola 
plug after approximately two weeks on a glass cover slip.  
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grew out from the initial agar plug into dilute PDA within five days. Growth of hyphae 

was slower on the underside of the glass cover slip.  Hyphal contact between B. bassiana 

and P. myriotylum or R. solani was observed after approximately 9 to 11 days.  

In the assay with P. myriotylum and B. bassiana, P. myriotylum grew at a faster 

rate than B. bassiana; however B. bassiana continued to grow along the cover slip even 

when in contact with P. myriotylum. Based on digital photomicrographs of P. myriotylum 

and B. bassiana hyphae, B. bassiana hyphae coiled around the larger P. myriotylum 

hyphae (Fig. 4-7). 

In assays with R. solani and B. bassiana, similar to the Pythium trials, B. bassiana 

grew more slowly. By day 18, hyphae of B. bassiana was out-competed by R. solani, 

which covered the underside of the glass cover slip surface. In the area where the two 

hyphae did come into contact, no coiling was observed.  

No coiling was observed by B. bassiana around T. basicola since T. basicola did 

not produce any hyphae which would extend along the glass cover slip surface for 

observation. Thielaviopsis basicola did produce copious amounts of endoconidia (Fig. 4-

8) along the under surface of the glass cover slip and chlamydospores also were 

observed. Appearance of T. basicola was similar in controls without B. bassiana.  

 

Chitin hydrolysis assay 

Visual determination of chitin hydrolysis was apparent, even without the use of 

the methyl blue dye; however, the stain produced more visible results. Plates inoculated 

with B. bassiana conidia produced a clear zone around growing the B. bassiana colony in 

the chitin-based medium. Clearing was apparent after nine days and continued to expand 
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over time (Fig. 4-9 A). When methyl blue dye was applied to chitin-based agar, the 

outline where B. bassiana had not extended hyphae and hydrolyzed chitin was apparent 

(Fig. 4-9 B). Chitin-based medium control plates did not show any clearing during the 

same time period (Fig. 4-9 C). Chitin based medium control plates treated with methyl 

blue did not produce any differential outline, but the dye colored all parts of the plate 

equally (Fig. 4-9 D). This indirect assay demonstrated that B. bassiana isolate 11-98C has 

the capacity to utilize chitin (Fig. 4-9). 

 

Cellulose hydrolysis assay 

No differences were observed between cellulose medium inoculated with B. 

bassiana and uninoculated control medium. Beauveria bassiana sporulated on medium, 

but mycelia growth was limited and the cellulose-based medium was not utilized after 

treatment with Congo Red dye, which was used to aid in visual detection.  

 

 

 

 

 

 



 

 144

A.             B.   

C.          D.   
 
Fig.  4-9. Chitin hydrolysis assay. A. Chitin-based medium on which Beauveria  bassiana 
isolate 11-98C spores in a phosphate buffer solution were added directly to plates and 
allowed to grow for two weeks at 22°C. B. Chitin-based medium plate, to which conidial 
spores had been added and allowed to grow for 18 days, stained with methyl blue for 15 
to 20 min. C. Uninoculated chitin-based medium control on which no B. bassiana spores 
were added. D. Same plate as C, to which approximately 8 ml methyl blue stain was 
added and allowed to stand for 15 to 20 min. 
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Discussion 

Techniques and treatments that stimulate plant host defense responses can be 

powerful tools for growers since neither synthetic elicitors nor biocontrols in general 

exhibit any direct antimicrobial activity. Unlike traditional pesticides biocontrols provide 

a way to control disease without asserting direct selective pressure on the pathogen 

population. This is important because even transgenic cotton cultivars exert direct 

selective pressure on the organisms they are attempting to control (Vallad and Goodman, 

2004). 

In the ISR assays, seedlings treated with B. bassiana are less susceptible to X. 

axonopodis pv. malvacearum than untreated plants inoculated with the pathogen. The 

SAR inducer, INA, slowed cotton development. Seedlings that received this treatment 

were healthy, but a large number of the seedlings had delayed development of their 

primary leaves.  

A consistent theme in several field experiments using BTH or INA as SAR 

inducers was the reduction of crop yield (Louws et al. 2001, Vallad and Goodman 2004). 

Often these reductions were statistically insignificant. Tomato seedlings treated with 

BTH were smaller than nontreated plants in greenhouse experiments (Vallad and 

Goodman 2004). Growth of pepper plants was also greatly influenced by BTH (Romero 

et al. 2001). Decreased effects on plant growth were apparent across several pepper 

cultivars when compared with plants treated with copper hydroxide, but only when plants 

were infected with Xanthomonas campestris pv. vesicatoria Doidge Dye (causal agent of 

bacterial spot). In experiments that excluded X. campestris pv. vesicatoria, there were no 

significant yield differences between BTH-treated and copper hydroxide-treated plants 
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(Romero et al. 2001). Alternaria leaf spot caused by Alternaria macrospora Zimm., 

bacterial blight (caused by Xanthomonas campestris pv. malvacearum) and Verticillium 

wilt (caused by Verticillium dahliae Kleb.) of cotton were controlled in a series of field 

experiments with the use of BTH and INA (Colson-Hanks and Deverall 2000). Single 

applications of either BTH or INA reduced symptoms of both Alternaria leaf spot and 

bacterial blight. Multiple applications of BTH or a single application of INA reduced 

severity of Verticillium wilt of cotton (Colson-Hanks et al. 2000). Plants challenged with 

limited insect damage benefit from application of SAR-inducing chemicals. However in 

their absence, induced plants have been found to be less reproductively fit in terms of 

flower development and pollen production (Agrawal 1999). Heil et al. (2000) observed 

effects on vegetative growth and seed production of wheat plants induced with BTH in 

the absence of disease pressure, regardless of growing conditions or fertilization 

regiment. However, they found that BTH most impeded growth during production of 

lateral shoots and under nitrogen-limiting conditions, demonstrating the importance of 

plant growth stage and nutritional status when assessing physiological costs of induced 

resistance (Heil et al. 2000). 

Many plant disease biocontrol agents are not broad spectrum but instead are more 

specific in nature, capable of providing protection for a limited number of hosts against a 

limited number of pathogens. Biocontrol with induced systemic resistance in 

Trichoderma harzianum T39 against the necrotrophic fungus Botrytis cinerea Pers.:Fr. 

has been demonstrated. Resistance was conferred by T. harzianum T39, as a soil 

treatment applied 7 days before challenge inoculation with a foliar application of B. 

cinerea. Trichoderma harzianum T39 reduced stem infections in pepper and reduced leaf 
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infections in tomato, lettuce, pepper, tobacco and bean (DeMeyer et al. 1998). It is not 

known whether ISR mediated by B. bassiana functions as a broad-spectrum control agent 

since it has not been tested with other plant species; however, it is possible that seed 

treatment will provide some protection in tomato because it has provided protection 

against damping off in tomato caused by R. solani (Bishop 1999, Ownley et al 2005, Seth 

2001) and P. myriotylum (Clark 2006).  

 The ISR response in this assay was extended compared to work by Han et al. 

(2000), in which the response was only 7 to 8 days between ISR induction and pathogen 

inoculation. In this study, response was extended to 13 days as this amount of time was 

needed for cotton seedlings to produce primary leaves. This resulted in a large portion of 

INA plants being excluded from data collection because primary leaves had not yet 

formed or were too small to use. It is probable that INA concentration was too high for 

cotton seedlings. A reduced rate may help by not delaying plant development or another 

chemical SAR inducer might prove more useful. In all trials, Bb 11-98C at conidial 

treatment rate of 107 had less disease than untreated control plants inoculated with 

Xanthomonas and the INA-treated plants.  

Inhibitory effects of B. bassiana against R. solani were examined in an in vitro 

study with 22 different B. bassiana isolates, on PDA. Three isolates were inhibitory 

against R. solani, indicating there are differences among B. bassiana isolates in their 

ability to inhibit growth of plant pathogens in vitro (Lee et al. 1999). In another study, B. 

bassiana isolates had inhibitory activity against mycelial growth of the plant parasitic 

fungi Fusarium oxysporum Schltdl.:Fr., Armillaria mellea (Vahl:Fr.) P. Kumm. and 

Rosellinia necatrix Prill. (Reisenzein and Tiefenbrunner 1997). Mycelial growth and 
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spore germination of the phytopathogenic fungi Botrytis cinerea and F. oxysporum were 

inhibited by the culture filtrate of B. bassiana (Bark et al. 1996); inhibition efficiency 

varied depending on culture medium, which was the highest on PDA for B. cinerea and 

on tryptic soy agar for F. oxysporum.  

Although B. bassiana produces numerous toxins, in the present antibiosis assay, 

evidence of in vitro antibiosis was not apparent on cotton-based medium. The range of 

toxins produced by B. bassiana 11-98C has not been determined. It may be that Bb 11-

98C simply does not produce a toxin that inhibits growth of R. solani, P. myriotylum and 

T. basicola. Many of the Beauveria-related toxins have only recently been elucidated, or 

are difficult to isolate and few standards are available. It is known that Bb 11-98 does 

produce beauvericin and that beauvericin production occurs during colonization of 

tomato plants (Powell, 2005). Beauveria bassiana 11-98 and 11-98C also produce 

oosporein, as evident by the deep red color of liquid culture after a few days (Ownley, 

personal communication). Another possibility is that, because Bb 11-98C has been host 

adapted by passage through cotton, selection may have occurred against production of 

certain toxins. A possible loss of toxins may make it easier for B. bassiana 11-98C to 

colonize a cotton host. 

Possible parasitism of Pythium species by Beauveria bassiana was observed by 

Vesely and Koubova (1994) when B. bassiana was antagonistic to Pythium ultimum 

Trow and P. debaryanum Auct. non R. Hesse. Beauveria bassiana induced lysis of the 

mycelium while actively growing on or beneath the mycelia. In the present study, hyphae 

of Bb 11-98C coiled around the larger hyphae of P. myriotylum. This coiling behavior 

was not observed with R. solani and was not applicable to T. basicola as this fungus did 
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not produce mycelia on the glass surface as a substrate on which to produce mycelia. It is 

possible that B. bassiana is capable of coiling behavior with R. solani and T. basicola, 

however this assay was limited in visualization and did not provide a suitable surface for 

T. basicola to develop. 

Utilization of culture substrates is an indirect though valid method to determine if 

B. bassiana is capable of utilizing soilborne pathogens as a potential food source. In the 

hydrolysis assay with chitin-based medium, Bb 11-98C hydrolyzed the chitin. Although 

utilization of chitin is not a novel concept for B. bassiana, it is important to note that Bb 

11-98C was host-adapted to cotton and this assay confirms that the isolate has maintained 

this capability. For the cellulose-based medium, B. bassiana 11-98C did not hydrolyze 

the medium after three weeks of incubation. Mycelial production, if present, was very 

sparse and difficult to detect. No clearing of the cellulose medium was noted. These 

results seem to contradict the parasitism assay where Bb11-98C coiled around P. 

myriotylum hyphae. Beauveria bassiana 11-98C may not produce all the enzymes needed 

to hydrolyze a solid cellulose-based medium. Cellulose is composed of long chains of 

glucose residues linked by β-1,4-glycosidic bonds and several enzymes are involved in 

hydrolysis. Enzymes such as exocellobiohydrolase, which is capable of exo-type activity, 

cellulase, endoglucanase or carboxymethylcellulase, which randomly split β-1,4-

glycosidic bonds to form cellobiose, cellotriose, or cellotetraose can be used by 

organisms to hydrolyze cellulose. If Bb 11-98C was missing an enzyme required for 

some step of cellulose hydrolysis, there would be no clearing of the cellulose-based 

medium. 

Beauveria bassiana 11-98C is capable of inducing an ISR response in cotton as 
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demonstrated with the X. axonopodis challenge, it also may be able to out-compete or 

parasitize T. basicola, as demonstrated in the antibiosis assay, even though parasitism 

was not conclusive due to the failure of T. basicola to grow along the glass surface in the 

parasitism assay. Beauveria bassiana 11-98C was able to utilize the chitin-based medium 

which would suggest that it could function as a hyperparasite against T. basicola and R. 

solani. Furthermore, B. bassiana 11-98C did exhibit coiling around P. myriotylum, but 

was unable to utilize the cellulose-based medium possibly due to the lack of all necessary 

enzymes needed for hydrolysis of this medium.  
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Part 5. Potential of Beauveria bassiana as a biocontrol 

for plant pathogens 
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Research Possibilities 

Although the research in this document supports the use of Beauveria bassiana as 

a biocontrol agent against plant pathogens, many questions remain unanswered.  Many 

avenues have yet to be explored, and opportunities to test B. bassiana in other systems 

still wait. 

 

Antibiosis 

The lack of a clear zone of inhibition in the antibiosis assays on host-based 

medium with three soilborne plant pathogens should not be taken as conclusive evidence 

that Bb 11-98C does not produce antifungal compounds in the plant. Mobility of 

metabolites may have been reduced in the solid medium and therefore did not inhibit 

pathogen development. Sterile culture filtrates from liquid culture added to solid media 

should be evaluated to determine if pathogen growth is inhibited.  This would address 

questions about the ability of metabolites to diffuse through the media. 

The violet isolate produced on the host-based medium may prove to be an 

important experimental tool in elucidating antibiosis.  The violet isolate, which was 

changed morphologically after colonizing cotton, may have also changed physiologically 

in response to the host plant environment that would enable B. bassiana to inhibit the 

pathogen.  

Beauveria bassiana does not produce all of its secondary metabolites 

constitutively, for example, oosporein is typically produced after colonization of an insect 

has occurred. It is possible that B. bassiana responds to environmental triggers before 

producing some secondary metabolites.  A reddish tinge was observed around two Bb 11-
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98C plugs late in the antibiosis assay with Thielaviopsis basicola. Pigment production by 

Bb 11-98C may have been stimulated by cotton components within the agar or by 

mycelial contact with T. basicola. 

Regardless HPLC assays to determine if mycotoxins are produced within the host 

plants is important, particularly with plant parts intended for consumption. Beauvericin 

was determined to be present in the leaves of tomato (Powell 2005), but no determination 

was made for the fruits in part due to the high number of interfering compounds. Isolation 

of beauvericin from cotton may prove more difficult as only seeds and seed oils are 

utilized in food production. Growing cotton plants and determining if B. bassiana or any 

secondary compounds could be extracted from ground seed would be a time consuming 

process but a conclusive way to determine if B. bassiana produces these compounds 

during the plant growth cycle. A greenhouse project where plants are systematically 

sacrificed throughout the lifecycle should yield this information.  

 

Parasitism and competition assays using Beauveria bassiana against plant pathogens 

A possible explanation of the microscopic evaluations of the coiling action by 

Bb11-98C around the P. myriotylum is that Bb 11-98C parasitizes Pythium. Using a 

similar methodology to the assay with cellulose medium, information about the ability of 

B. bassiana to hydrolyze a solid based medium in which β-1-3 and 1-6 glucans are 

present could be generated. It is possible that B. bassiana has a sequence to enzymatic 

production and hydrolysis of the cell walls of Pythium spp. Evidence to support that there 

can be sequence to enzyme production was shown with Trichoderma harzianum. 

Trichoderma was found to produce first glucanases, then cellulases (Benhamou and Chet 
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1997). To simplistically determine if there is similar sequential production of enzymes 

produced by Bb 11-98C, a series of culture media would be prepared. Cultures would be 

grown on media augmented with ß-1-3 glucans, β-1-6 glucans or cellulose. Hydrolytic 

activity of Bb 11-98C in these cultures would be monitored. After Bb 11-98C is grown 

on media containing the glucans, a section of the agar containing growing hyphae would 

be transferred to a plate containing a new compound, the other glucans or cellulose. 

Using this method, it may be possible to determine a sequence for enzyme production. In 

addition, SEM work to examine hyphal contact between B. bassiana and Pythium or 

other plant pathogens is needed. 

 

Storage and Production  

If Bb 11-98C is to be a viable commercial biological control agent for plant 

pathogens, then the viability of conidia coated on seed must be determined over time. 

Testing could be done with simple dilution plating techniques. Based on results from the 

germination assay, one could conclude that B. bassiana may be capable of producing 

secondary compounds which could reduce seed germination. It is possible that metabolite 

production, even at low levels, could negatively affect the viability of seeds. A 

determination of the viability of seed coated with conidia (as well as different conidial 

rates) is needed. Simple seed viability trials over time would answer these questions. 

Both questions need to be considered as seed coating with B. bassiana is essential to 

control of soilborne pathogens.  

Furthermore, quality control of conidial coating technique needs to be examined. 

A more efficient, consistent method of seed coating should be developed since the 



 

 159

method currently used is labor intensive and time consuming. Quesada-Moraga et al. 

(2006) sprayed conidia in a rotating drum; this application has the potential to achieve 

more even distribution of conidia. 

 

Endophytic action and dual-control possibility 

The capability of B bassiana to act as an endophyte within plants can be 

systematically examined now that a protocol has been established. Beauveria bassiana is 

known to colonize tomato (Leckie 2002), corn (Bing and Lewis 1991), snap bean 

(Ownley, personal communication), jimson weed (Jones 1994), cocoa (Posada and Vega 

2005), opium poppy (Quesada-Moraga et al. 2006), and cotton (Griffin 2006); thus, it is 

likely to be capable of colonizing many other agronomically important crop plants.  Bb 

11-98 was isolated using traditional plating techniques from leaf tips of tomato plants of 

varying ages (Ownley, personal communication).  Also, Posada and Vega (2005) isolated 

B. bassiana from all parts of 2-month-old cocoa plants using the same technique. Real-

time PCR would give information on the location of accumulation of B. bassiana within 

selected host plants. 

 The route B. bassiana travels as it colonizes a plant is also currently unknown 

and may not be the same for every plant species that Beauveria is able to colonize. 

Transport of B. bassiana may occur through xylem vessels of the plant (Wagner and 

Lewis 2000). Additional light microscopy and transmission electron microscopy may 

help to gain more information to answer these questions. 

The ability of B. bassiana to act as a dual biocontrol has potential in crops on 

which products like BotaniGard (Emerald BioAgriculture Corp. Butte, MT) are already 
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in use. Bing and Lewis (1991) showed endophytic growth by B. bassiana was possible 

using foliar spray application. However a colonized seed coat will allow for endophytic 

growth during seeding and plant development and has the advantage that the plant is 

colonized prior to an attack. This is particularly important since it was established in this 

study that Bb 11-98C can induce systemic resistance in cotton seedlings. Cooperation 

would involve sample testing for colonization in plants and collection of insect pest to 

check for entomopathogenic activity by B. bassiana over time. Information gathered 

from a study such as this would be especially useful if B. bassiana efficiency could be 

tested in soils which harbor plant pathogens. This system may not be viable for cotton as 

seed produced for growers is almost always treated with pesticides. 

 

Soils and nutrients 

Disease assays with cotton demonstrate that differences in soil characteristics can 

affect efficacy of B. bassiana as a biocontrol. Nutritional content varies among soils and 

often within a field. Comparison of B. bassiana in different soils should be conducted. In 

addition, analysis of the impact of micronutrients on the ability of B. bassiana to grow 

(and potentially colonize crop plants) could be correlated with its ability to provide 

protection against different pathogens. Fungal growth capacity on (host-based) media in 

which varying amounts of micronutrient supplement(s) are added should be determined. 

In addition to radial growth measurements and colony morphology, production of 

compounds by the fungus in response to the micronutrients should be examined. In order 

to use this information, secondary metabolite production against test pathogens would be 

necessary. This would not necessarily relate to biocontrol efficiency, but it would give a 
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working database of information from which to make comparisons later. 

 

 Induced systemic response assays 

Continued examination of the ability of B. bassiana to induce systemic resistance 

in other plants is needed. Other plant pathogens should also be evaluated. It has been 

speculated that the ISR response in plants is most effective against bacterial pathogens 

however, examination of foliar fungal pathogens is needed. Other than pathogen 

protection, physiological changes in the plant in response to endophytic growth of B. 

bassiana are unknown.  In cotton, for example production of known defense chemicals 

such as terpenoids, gossypol and hemigossypol, in response to B. bassiana colonization 

should be monitored.   
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