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Abstract

There are many applications and problems in science and engineering that require large-scale
numerical simulations and computations. The issue of choosing an appropriate method to solve
these problems is very common, however it is not a trivial one, principally because this decision is
most of the times too hard for humans to make, or certain degree of expertise and knowledge in the
particular discipline, or in mathematics, are required. Thus, the development of a methodology that
can facilitate or automate this process and helps to understand the problem, would be of great inter-
est and help. The proposal is to utilize various statistically based machine-learning and data mining
techniques to analyze and automate the process of choosing an appropriate numerical algorithm for
solving a specific set of problems (sparse linear systems) based on their individual properties.
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Chapter 1

Introduction

Many fundamental tasks in scientific computing can be approached through multiple algorithms;
such is the case of the solution of sparse linear systems. The solution process can be improved
by adapting certain algorithms to the characteristics of the linear systems. Our research centers on
using non-numerical techniques, such as statistics and machine learning, to experimentally analyze
and find the most suitable solution method to a given numerical problem based on its numerical
properties. These findings can ultimately be used to build a recommendation system that can fa-
cilitate the algorithm selection process for users in other disciplines, who lack numerical expertise.
The particular set of numerical problems we will address is finding the solution (using iterative
methods) for Ax = b where A is a system of linear equations with a sparse coefficient. The main
idea of the proposed approach is to use various statistical techniques to understand the behavior of
these numerical problems, and then develop a methodology to automate the process of choosing an
appropriate numerical algorithm (reliable and optimal among the available) for solving them.

In this chapter, we cover the motivation for this research, related work and contributions.

1.1 Motivation

There are many applications and problems in science and engineering that require large-scale nu-
merical simulations and computations. The issue of choosing an appropriate method to solve these
problems is very common but not trivial. Such a decision is typically difficult for humans to make,
requiring certain degree of expertise and knowledge in the particular discipline, or mathematics.
Furthermore, there is no theoretical knowledge about what type of method is the most suitable for
many numerical problems, or about the relationship between the characteristics of the problem and
the behavior of the methods. Thus, research and experimentation using a statistical approach, which
can help to uncover these relationships, would be of great interest and help. The development of
a software tool that implements this knowledge can facilitate and automate the decision making
process.

Choosing a suitable numerical algorithm in scientific computing implies searching for optimal
solutions, in terms of performance (time for solving the system) or in terms of accuracy, depending
on the requirements of the application and the user. Part of the problem is that numerical solvers
usually possess a large number of parameters; it is necessary to understand and find a way of tuning
these parameters for optimal performance.

1



Figure 1.1: Performance profile for iterative methods with respect to default method gmres20: (a)
Shows the cumulative proportion of cases for each iterative method where the default method was
faster for different slowdown ratios. (b) Shows the cumulative proportion of cases for each iterative
method where the default method was slower for different speedup ratios.

The group of algorithms for solving numerical problems is composed of direct and iterative ap-
proaches. When solving dense matrices using direct solvers the time complexity is known. Iterative
methods for solving sparse linear systems may be more efficient, but the time required by these
methods is unknown and depends greatly on the type of problem or preprocessing steps involved.
In some cases, iterative methods may take “infinite” time (in such a case we say that the iterative
method diverges).

This research focuses on the task of solving linear systems of sparse coefficients using various
iterative methods. The process of choosing an optimal method depends not only on the properties
of the problem, but also on the behavior and characteristics of the different applicable methods. The
impact of the properties of the matrices on the performance of the solvers has not been considered
very often; thus, the problem presents an interesting field for experimentation and research.

Many numerical libraries, applications and engineering packages for solving numerical prob-
lems are required to be reliable and work with stability most of the time, even if they are not as
efficient as they could be. For this reason, a conservative solver is usually established as default.
For users who are not skillful enough to tune various solver parameters or to choose preprocess-
ing and preconditioning options, picking an efficient solver is a difficult task. Although a default
solver may be a safe option in most cases, more efficient solvers and options can be used; natu-
rally, there will still be problems for which even a default iterative solver will not work. Figure 1.1
shows performance comparisons of iterative methods applied on an experimental dataset (M3D in
Appendix A.2.4) against a default method. These plots are known as “performance profiles” and
they show how fast each available method is compared to a default choice (gmres with restart pa-
rameter 20 for this particular example), and in how many cases it was faster than the default. From
Figure 1.1(a) we can see that in general the default is not much faster than other methods, and other
methods can be much faster than the default, in which case there is a lot of room for improvement
by picking a different method (Figure 1.1(b)).
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In numerical literature we can predominantly find qualitative knowledge about the comparative
advantage of different methods on different types of problems, since there is almost no quanti-
tative information that explains these relations. Part of the proposed research studies the perfor-
mance of various algorithms and how it relates to the particular properties of different problem
instances [Demmel et al., 2005]. The discovery of this kind of information could be helpful in the
design and development of automated decision-making software tools, which could combine prior
knowledge with heuristic models and new problems to perform the algorithmic choice.

1.2 Contributions

The task of choosing an appropriate algorithm to solve linear systems (or other numerical problems),
based on some metric combining memory capacity and execution time in a realistic computing
environment, is very difficult even when a relatively small class of problems is considered. We
propose the use of statistics, machine learning and data mining − non-traditional methodologies in
the numerical area − to study the problem and develop a methodology that will serve as a tool to
facilitate the process of appropriate algorithm selection. Such a methodology will make it easier to
use numerical techniques in an application context without expert knowledge, and to systematize
their benefits for a wider community.

The proposed works aims to reduce the cost and increase the efficiency of large-scale computa-
tions and simulations in many fields of science and engineering. The most significant impact can be
for large-scale computations, where even small improvements achieved by choosing optimal solvers
can result in considerable savings of time and computational resources. Smaller-scale computations
can also benefit from optimal-algorithm selection, because generally, default methods embedded in
many applications often converge slowly or not at all, yet the next better choice is out of reach of
the unsophisticated, unexperienced user. In both cases, a leading benefit is the identification of reli-
able methods (e.g., converging iterative methods); gains in performance are important, but avoiding
methods that diverge is extremely valuable.

There are many factors involved in the process of finding an appropriate solver. A few of these
are documented in the literature as rules or parameter settings, while others exist only as heuristic
knowledge in the mind of experts in numerical analysis. Our research also attempts to identify
and study the importance of these factors as we integrate them into an automated decision making
process.

Machine learning and statistics have been widely used in many areas, but its application in nu-
merical analysis has not been explored nor taken advantage of. One of the innovative characteristics
of this research lies in the integration of numerical analysis with these ’unconventional’ techniques.
By using some of the tools they provide we aim to understand if/how the aforementioned factors
impact the behavior of different numerical algorithms. The proposed research does not focus on
numerical solvers themselves, nor on the study of statistical and machine learning peculiarities, but
in their combination, aiming to discover trends in numerical problems that will simplify their appli-
cation and understanding by people in other disciplines. The concepts and strategies here developed
can be extended to other problems and applications not addressed here, such as eigenanalysis, para-
meter tuning and optimization.
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Furthermore, by using data mining techniques we look to uncover data relationships, explore
different numerical algorithms’ behaviors and see whether and how they correlate with the char-
acteristics of different input problems. The identification of currently unknown patterns can create
new research paths and motivate future investigation in the numerical area.

Additionally, most of the related research in this area has often overlooked the impact of numer-
ical features of the input problems on the behavior of solvers and other algorithms. Given that the
performance of most statistical techniques depends greatly on the input data, it is crucial to study
and understand the nature of these properties. We propose the application of some powerful tools in
data mining, such as Principal Component Analysis, which have not had an application in the nu-
merical area, to evaluate their efficiency for determining relevant data and its relations. The use of
these analysis tools provides valuable knowledge (or possible directions for future research) about
currently unknown trends and the significance of specific properties of the problems.

1.3 Related Work

As mentioned in section 1.1, there is no current quantitative knowledge of the effect of the properties
of linear systems on the performance of different methods and transformations. However, there exist
some efforts that attempt to address this problem. In this section, we briefly describe some of the
related research into algorithmic adaptivity and adaptive numerical software. We also explain how
the research presented in this dissertation differs from other approaches. Note that our interest is
only in systems that work on the algorithmic level, not taking into account those systems for kernel
and network optimization levels.

One of the first concepts that addressed the idea of having a computer choose the best available
algorithm to solve a problem was the “polyalgorithm” [Rice and Rosen, 1966], which was first
formulated in 1966. The polyalgorithm also (intrinsically) provides numerical analysis features for
very simple problems.

LINSOL is a package [Häfner et al., 1998] that picks an iterative solver through backtracking
using a “poly-algorithm”. Different from our study, the linear system in question is not analyzed
before the iteration process; the decision making process is done on-line during the iteration, based
on tracking the error norm. Furthermore, the backtracking is done only through the space of iterative
methods without considering the effects or ordering of preconditioners, and the number (and type)
of iterative solvers considered is very small.

Research by Kuroda, et al [Kuroda et al., 1999] introduces ideas to perform automatic tuning.
In [Kuroda et al., 1999] they concentrate on the analysis of restarted GMRES (definition in Sec-
tion 2.1.1) and identify related factors for the tuning (although no actual tuning is performed). Some
of these factors are numerical parameters that influence the restart length of GMRES, orthogonal-
ization strategies, and software implementation and architectural parameters such as loop unrolling
and some MPI communication commands. They identify, study, and experiment with parameters
(which are assumed to be independent) for the parallel tridiagonalization problem. The determina-
tion of numerical parameters is based on timing results from a set of simple tests (which include the
use of preconditioners and GMRES); the determination of architectural parameters are determined
by the matrix. The authors have also developed a library for linear systems and eigenvalues called
ILIB [Kuroda et al., 2002].

Related work by Katagiri [Katagiri et al., 2004] describes an auto-tuning software architecture
framework. The research is based on performing tuning based on user derived knowledge about
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different parameters of numerical software and architecture-related factors such as loop-unrolling.
This is also an experience-based learning system, but its application area is specifically the solution
of eigenvalue problems, and their approach does not stress the use of numerical properties of the
problems.

IPRS The University of Kentucky’s Intelligent Preconditioner Recommendation System (IPRS) [Xu
and Zhang, 2004] focuses on providing a recommendation of a suitable preconditioner and its pa-
rameters for solving efficiently sparse linear systems. The research proposed here mainly differs
from the IPRS project in that their work is limited to the prediction of preconditioners, while we
expect to address a wider range of decisions on iterative methods and other transformations. The
behavior and performance of these precondtioners are characterized in terms of the structural prop-
erties of matrices. Their experiments are limited to the use of a couple of variants of the ILU
preconditioner on a relatively small pool of matrices.

Pythia The Pythia project [Houstis et al., 1995, Houstis et al., 2000], started at Purdue Univer-
sity, is a system that recommends scientific software using methodologies for knowledge discovery
in databases based on the processing of performance data. The idea behind Pythia is to build a
“recommender system” based on the performance-related information stored in a database. The
system PYTHIA II is an example of this idea, which targets the solution of PDEs using PELL-
PACK [Houstis et al., 1998]. Both the framework and learning methodologies used in this project
differs from ours. Pythia uses knowledge discovery in databases, which is a static learning method-
ology, while we propose a dynamic approach. Furthermore, they focus on a limited amount of linear
system solvers, only applicable to elliptic systems.

In consequent research by Ramakrishnan and Ribbens [Ramakrishnan and Ribbens, 2000] pa-
rameter tunning is investigated in the context of setting a method parameter depending on the vari-
ations of the parameters or characteristics of a problem. Some of the limitations of this work reside
in the difficulty that such a system has for generalization. The parameters are grouped in fixed
intervals or “bins” and the decision process works by exhaustively testing all possible problems in
one group. The problem’s parameter is actually a parameter in the PDE that originates the problem,
which makes the exhaustive search possible because the parameter space is bounded. This limits
the ability of the model to work with parameters beyond these established groups. Although this
is a common problem in machine learning, this model seems to be very parametrized (could result
in overfitting behavior), and there is no evidence that the model proposed can be extended to use
experimental parameters or even other types of parameters.

ITBL The project Test of Iterative Solvers on ITBL [Fukui and Hasegawa, 2005] presents a simi-
lar framework to Pythia. The main focus of this work is the solution of sparse linear systems, using
the sparsity structure of the problem and the documented performance (in time only) for various
solvers in different computing environments.

Recommender for iterative solvers Work done by T. George and V. Sarin [George and Sarin,
2007] describes a generic approach to build a recommender for preconditioned iterative solvers.
The main strategy is based on the ranking of a list of solvers for a particular linear system. Each
solver is ranked based on its “feasibility” (whether it converges to solution or not), and “goodness”
(the best approach based on a performance metric − time to solution or memory usage during
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execution). In their work, they try to focus more on the properties of the problems (linear systems)
and they acknowledge the difficulty of feature selection (some of the features we used are referenced
in their work). Their work is still in early stages and there are no results yet. One of the main
differences with our work in that their method space consists only of one method (GMRES) and
one preconditioner with different parameters.

MPI Collective Operations This research focuses in the use of statistical learning techniques to
perform optimal algorithm selection for MPI collective operations [Pješivac-Grbović et al., 2007b,
Pješivac-Grbović et al., 2007a]. The research presents the use of decision trees to choose the op-
timal algorithm based on several parameters and characteristics of the problems and architectures
used. This work differs from ours in that the application area is very different, but also the feature
space they explore is considerably smaller than ours, which allows a more thorough exploration
of the decision tree structures used to build the decision rules; finally, the only statistical learning
methodology used is decision trees.

Combinatorial composite methods Work presented in [McInnes et al., 2003] proposes the use
of “multi-methods” for problems where a number of methods are tried in sequence. This sequence
is determined experimentally by an overall reliability ranking, independent from particulars of the
input problems. In our research, the main criterion to choose (or rank) methods is given by the input
data.

Related research [Bhowmick et al., 2005, Bhowmick et al., 2004] presents a combinatorial
scheme for combining individual methods into a more reliable composite. Each method is ranked
by a utility value ui = ti/ri, where ti is the time to solution (perhaps an upper bound) of method i
for a problem and ri is the reliability of the method. By ordering the methods according to increas-
ing utility, they obtain a method sequence with lowest expected solution time over all permutations
of that group of methods.

Again, the characteristics of the input problems are not taken into account. Also, the handling
of method divergence seems to pose a problem: even if some method in a sequence diverges for the
same set of problems, it is still applied, so this time is wasted, making the definition of ti doubtful.
In our approach, we use properties of the problems to help determine divergence.

Others One of the first and most common applications of algorithmic adaptation is some type
of compilers. These use trace data from previous program executions to tune certain parameters
and make compile-time decisions for optimal code generation. We extend this idea to algorithmic
adaptivity based not only on execution history, but also on specific properties of problems.

Work by Kunkle [Kunkle, 2005] proposed the use of Support Vector Machines (SVM) to do al-
gorithm selection. They suggest the use of SVM as an evolutionary algorithm to determine the most
efficient solver. Their problem scope is, like ours, solving linear systems using various methods;
however, the work discussed is at a very early stage (data collecting stage) and there are no signs
that more results have been obtained. SVM is a powerful technique, however is computationally
expensive and it is used for two-class problems only, which means that multiclass problems need to
be solved hierarchically as binary problems, increasing even more the computation time.

The work [Lagoudakis and Littman, 2000] presents a methodology to perform algorithm selec-
tion system by using Reinforcement Learning. This research focuses on recursive and non-recursive
algorithms, where the selection is based on the run-time performance of each algorithm and it is
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done on-line. The problem is modeled as a Markov Decision Process (MDP) with reinforcement
learning, an approach suited well for algorithms that have long-term and short-term timing trade-
offs, such as recursive algorithms. The feature space of the problems used in this work consists
only of one feature, the size of the problem. The on-line nature of this approach makes it difficult to
extend to problems with large feature spaces, or with a more varied choice of algorithms, because
of the increase in its complexity.

Oreizy et al [Oreizy et al., 1999] describes an architecture-based model that allows the dynamic
modification of the functionality of the software. The type of applications targeted is very different
from ours. There is no formal description of their model.

Work by Brewer [Brewer, 1995] and Sussman [Sussman, 1992] consists of modeling the runtime
of a small set of algorithms by using a small set of parameters measured from specific tests. This
work, like ours, uses the a-priori knowledge notion for their models. However, in our research it is
not possible to predict runtime, due to the amount and type of algorithms and their parameters as
well as the involvement of actual problem characteristics.

Collaborations Ongoing work with collaborators at Columbia University and UCSD [Bhowmick
et al., 2007] is more closely related to the research presented in this dissertation. This project eval-
uates the performance of various machine-learning techniques on different datasets, concentrating
only on a few numerical properties of the problems. The problems are solved with parallel iterative
solvers (due to their size and complexity). Our collaborators have focused on the analysis of the
Boosting learning algorithm [Freund and Schapire, 1999] for making method predictions. In our re-
search we use other statistical techniques and we continue to stress the importance of characterizing
more numerical features of the problems and on the possible impact they have on the behavior of
iterative solvers. Additionally, we have introduced the use of data mining techniques such as PCA
for a more extensive feature analysis.

1.4 Assumptions and Limitations

The experiments and results presented in this dissertation do not consider parallel implementations
of iterative methods and preconditioners. Although some parallel implementations for precondition-
ers were used in the experiments, these were applied using a single processor. While a precondi-
tioner may behave similiarly in both uniprocessor and parallel implementations, these experiments
do not account for the preconditioners as a function of processors. This is a different problem
which involves architectural properties instead of the matrices’ numerical properties. Although the
methodoloy will be similiar for the parallel implementation, this is beyond the scope of this research.

The machine learning methods used in this research do not use validation techniques. For
example, the decision trees methodology would handle overfitting or overtraining problems by using
pruning techniques, increasing the accuracy of classification. However, based on the descision tree
results, this work assumes that the results are sufficiently accurate and further validation would only
result in minimal gains. Work in [Elomaa, 1999] discusses the cost of pruning, which in many
problems can be too high and does not dramatically improve the behavior of decision trees.
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1.5 Outline of the Document

This document is organized as follows. Chapter 2 contains an outline of the numerical problems
addressed in this dissertation. Chapter 3 describes various statistical and classification techniques of
this research, giving a preview of their application in the numerical context. Chapter 4 explains gen-
eral concepts of how a classification and statistical learning approach can be used as a framework to
address the algorithm selection and recommendation problem. This chapter also describes its differ-
ent subproblems: reliability and performance. Chapter 5 focuses on the description of the reliability
problem, which consists of determining which methods are reliable for certain problems. Chapter 6
concerns itself with the description of the performance problem, which is finding and predicting
which method is the optimal for a problem. Both chapters cover definitions and formalization of the
elements used to address these problems and describe in detail the particular algorithms developed
for classification and recommendation applied to the problem of method selection for linear sys-
tems. In Chapter 7, we present various experiments and discuss how to analyze and interpret how
their results were used to develop the strategies developed and described in Chapters 5 and 6. It also
shows how recommendations can be built based on the experimental results from classification and
recommendation. In Chapter 8 we present conclusions and discuss future work.
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Chapter 2

Numerical Background and the SALSA
Framework

In this chapter we present the numerical scope and concepts considered in this research, and some
of the limitations in this context. We also give an outline of the Self Adaptive Large-scale Solver
Architecture (SALSA) framework, which is one of the application ideas that served as motivation for
the work presented in this dissertation.

2.1 Numerical Background

When we talk about numerical problems in this research, we refer specifically to linear system solv-
ing. There are dense and sparse linear systems. Dense systems can generally be solved efficiently
using some implementation of Gaussian elimination like in Lapack [Angerson et al., 1990] or Scala-
pack [Choi et al., 1992]. The choices that are left to make regarding the solver are whether to run it
sequentially or in parallel and if so, how many processors to use. In some cases, iterative methods
are also suitable for dense problems. The solvers for sparse matrices are different. They can be
direct, iterative or multigrid. For these methods there are different and more choices. This choice
of algorithm mainly depends on the how the sparse matrix was originated (e.g., different iterative
methods behave differently for problems originating from PDE’s than for those from optimization
processes), and on the additional data that is generated during the solving process of the matrix.
To address the later case, preconditioners are brought into play. The scope of our research focuses
on the use of iterative solvers applied on sparse linear systems since they pose an interesting and
unexplored ground in terms of method selection.

Direct methods [Duff et al., 1989] can assure convergence to solutions better than any itera-
tive method; they may have excessive memory requirements and exceed accuracy requirements for
some problems. Iterative methods [Axelsson, 1987] are less robust but also require less memory.
However, it is more challenging to understand their behavior and estimate the time to convergence.

The applicability of machine learning and statistical techniques in the numerical area may go
beyond these particular problems; however, these seem to be a good starting point to investigate the
potential of such techniques, in particular because of the broad type of areas where they appear, as
well the possibility to improve their usage.
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Many iterative methods have more than one parameter that governs their performance or that
can benefit from data preprocessing or transformations such as preconditioning. Different transfor-
mations alter different properties of the linear systems and can affect the performance of iterative
methods. Some types of transformations are:

Preconditioner (pc): this is perhaps the most important transformation used in our research.
This is not a transformation of the coefficient matrix like the other transformations used in
here. A preconditioner is an matrix (Symmetric Positive Definite) M which approximates the
matrix A, such that Mx = b is inexpensive to solve as opposed to Ax = b [Saad, 1995].

Scaling: performs point wise left, right or symmetric scalings by the diagonal of the coeffi-
cient matrix of a linear system.

Approximation: when a preconditioner is not derived from the coefficient matrix, it can be
derived from linear element discretization of the same problem, e.g.,in the cases of higher
order finite element matrices.

Distribution: comprise permutations and load balancing. The sensitivity of a linear system
to this type of transformation typically comes through the preconditioner, for instance incom-
plete factorizations are sensitive to permutation while block Jacobi preconditioners are to load
distributions.

Preconditioning is a very important technique that affects the performance of iterative methods.
A good preconditioner can dramatically improve the convergence time of a solver, and a bad pre-
conditioner can affect its performance and perhaps even its reliability. Thus, the preconditioner is
an important part of the method selection. We will also address the problem of picking a suitable
preconditioner as part of our prediction and recommendation system.

Next, we give a brief description of the different iterative methods and preconditioners that were
used in our research and experiments.

2.1.1 Iterative Methods

In numerical mathematics, an iterative method is a type of solver that uses successive approxima-
tions to a solution (parting from an initial guess) to try to solve a problem, Ax = b in our case.
Direct methods, on the other hand, solve the problem in a single-step approach. The advantage and
application area of iterative methods is for problems that have a large number of variables (perhaps
order of 106 or more). In such cases, direct methods are computationally very expensive and require
excessive amount of storage [Saad, 1995, Barrett et al., 1994].

The type of iterative methods used for the experiments in this dissertation are known as Krylov
Subspace methods (ksp). The Krylov Subspace is the linear subspace spanned by the vectors
b, Ab, . . . , An−1b where n is the number of rows in the matrix A. To solve a linear system, the ksps
try to avoid matrix-matrix operations by using instead matrix-vector operations with the Krylov
Subspace vectors [Saad, 1995]. The iterative methods we have used in our experiments are ksps
and are:

• BCGS: the main idea behind the Bi-Conjugate Gradient Stabilized method is to eliminate the
use of AT that the BCG (Bi-conjugate gradient) method uses. This method is built upon CGS
(Conjugate Gradient Squared method), and it also attempts to smooth its convergence [Sonn-
eveld, 1989, van der Vorst, 1992].
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• BICG: the Bi-Conjugate Gradient is a modification of the Lanczos algorithm [Lanczos, 1952]
as a generalization for solving non-hermitian systems. This method is based on progressively
solving a tridiagonal system (with no pivoting) at the same time as the tridiagonalization is
performed. This method is sometimes inaccurate because of the lack of pivoting [Fletcher,
1975].

• CGNE: this is the Conjugate Gradient Method when applied on the Normal Equations. This
is one of the simplest approaches for non-symmetric or indefinite systems [Wolfram, 2007].

• GMRES: the Generalized Minimal Residual Method approximates and uses the minimal
residual of a vector in a Krylov subspace to approximate the solution. [Saad and Schultz,
1986]

• FGMRES: a modification of GMRES that allows variations in the preconditioner at each
iteration [Saad, 1993]. With this method, iterative methods themselves can be used as pre-
conditioners.

• TFQMR: the Transpose-Free Quasi-Minimum Residual (QMR) method is a variant of BCG
based on a “quasi-minimization” of the residual norm of the current approximation. This
method is a QMR implementation of the CGS method that avoids using the transpose of A
[Freund and Nachtigal, 1991, Freund, 1993].

The implementations of these iterative methods (and the preconditioners mentioned in next
section) are available from PETSc [Balay et al., 2004]. PETSc stands for Portable, Extensible
Toolkit for Scientific computation, and it is a numerical toolkit that contains serial and parallel
implementations for solving large-scale systems of equations originating from PDEs [Balay et al.,
2007].

2.1.2 Preconditioners

Preconditioning is about transforming the system Ax = b into another system, whose properties are
more suitable for its solution using an iterative solver. A preconditioner is a matrix that is used to
carry out such transformation. The motivation behind using a preconditioner is to try to improve the
spectral properties of the coefficient matrix [Benzi, 2002]. A good preconditioner produces a matrix
that is easier to solve than the original so that each iteration of a solver converges faster. It is also
hoped that the application and construction of such a preconditioner is cheap, so that it minimizes
the cost of each iteration. The choice of preconditioner depends on many factors, such as the type
of matrix and the type of iterative method it is used with because these affect the behavior and the
efficiency of preconditioners.

Suppose we have the system Ax = b, and M is a nonsingular matrix that approximates A. We
have that the system

M−1Ax = M−1b

may be easier to solve and has the same solution as Ax = b. This is also called left preconditioning,
where M is the preconditioner [Saad, 1995]. It is also possible to do right preconditioning:

AM−1y = b, x = M−1y.
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The preconditioners considered for our research (also available from PETSC implementations
[Balay et al., 2004] are:

• ASM and RASM: Additive Schwarz Method, derives a preconditioner by decomposing the
original problem’s domain into a number of subdomains (possibly overlapping), and the so-
lution of each subdomain contributes to the global solution [Smith et al., 2004]. RASM is a
modification of ASM, and the R stands for Restricted [Cai and Sarkis, 1999].

• Bjacobi: the Block Jacobi preconditioner comes from the Jacobi preconditioner which is
the simplest technique for preconditioning, consisting only of the diagonal of a matrix. The
blocked version comes from partitioning the variables into mutually disjoint sets, such that
the preconditioner is a block-diagonal matrix [Barrett et al., 1994].

• BoomerAMG: a method that can be used as a solver or preconditioner, and it comes from a
parallel implementation of algebraic multigrid [Benzi, 2002, Henson and Yang, 2002].

• ILU and SILU: the Incomplete LU factorization is also one of the simplest preconditioning
methods. It consists of performing an incomplete factorization of the matrix A (A = LU−R)
and computing both a lower triangular matrix L and an upper triangular matrix U , such that
the residual error of the factorization R satisfies certain conditions [Saad, 1995]. SILU is a
modification of ILU, and stands for Shifted ILU.

• PILUT: the Parallel ILU factorization is a parallel preconditioner that produces a nonsymetric
preconditioner even from symmetric systems [Falgout and Yang, 2002].

2.2 The SALSA Framework

The Self-Adapting Large-scale Solver Architecture [SALSA, 2007] (SALSA) is a concept that was
developed to integrate the continuously evolving numerical software with non-numerical, vanguard
techniques, such as data mining and machine learning, to create a software framework that facilitates
the use of numerical techniques in an application context for users that lack the expertise in numer-
ics. This project’s goal is to simplify the problem of algorithm selection through the implementation
of a heuristic decision-making agent, based on experience and integration of new knowledge over
time. Overall, the idea behind SALSA is to create a software architecture that enables non-experts
from other science and engineering disciplines to use and take advantage of sophisticated numerical
software. Figure 2.1 illustrates the system’s general structure and flow of information.

The structure of this system is Layered:

1. Interface Layer: an application passes problem data into the system (rather than to a numerical
library like accustomed). Additional information can also be provided as metadata.

2. Analysis Layer: here, the system extracts numerical characteristics of the input data. These
can be derived numerically, heuristically or translated from metadata.

3. Algorithm Selection Layer: based on the extracted characteristics of the data, the system picks
a suitable algorithm to solve the original problem, this constitutes a method recommendation.
The decision making process in this layer is heuristic.
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Figure 2.1: The SALSA framework. A science or engineering process produces data (numerical
problems), which is then passed to the feature-extracting process implemented as a set of Analysis
Modules. The output of this analysis is a vector of numerical features descriptive of the input data.
In learning mode, these features are stored in the Database, and the system attempts to solve the
original problem using each available solver implemented as Numerical Processes Modules. The
outcome of each solver is then also stored in the Database. The Decision Switch is a learning process
which then uses the information in the Database to model decision rules based on the “knowledge”
stored in the database. In recommendation mode, the system extracts the features from a problem
and, using the decision rules previously derived, predicts a suitable solver, which can then be applied
to compute the solution to the input problem.

The adaptivity of the system resides in the way it “accumulates” experience. A database is
used to store characteristics of problems, together with the performance measurements (timing,
convergence history, error) resulting from the application of different solvers. This information is
kept and used later to create (and tune) heuristics for the decision process.

The research presented in this dissertation originated from the idea of developing the Decision
Switch module of the SALSA system (see Figure 2.1). SALSA embodies the type of learning
process for which supervised machine learning is very appropriate. The existence of a database
makes it natural to use data mining techniques to uncover patterns and possible relations among the
data. The large amount of data (which is also expected to grow over time) makes the application of
statistical techniques also suitable.
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Chapter 3

Statistical and Machine Learning
Context

Classification is an important task in machine learning that helps to address a variety of problems in
different fields and types of applications. In particular, classification can be applied in the numerical
context, as it helps us in the prediction and eventual recommendation of suitable methods to solve
numerical problems (this concept is embodied by the SALSA framework described in Section 2.2).

From the various classification approaches, we focus on the use and study of statistical and
machine learning techniques. These techniques can provide, in many cases, the means to solve these
problems in a simple way within a reasonable range of accuracy. The supervised learning approach,
in particular, provides a natural and flexible way to approach many classification problems as well
as other probability related questions. Another technique is the Bayesian methodology, which is a
simple yet powerful approach that can also be used as a building block and starting point for more
complex methodologies.

In this chapter, we will describe how we can use this theory to identify patterns in numerical
data and use these to classify various types of problems based on certain criteria, such as solving
method suitability. We also describe other techniques we use in this dissertation, such as Principal
Component Analysis, which can be used to process the input data and facilitate the identification
of important data properties that directly affect the classification process. Techniques to process the
output data that help to interpret the results from our experiments are also discussed in this chapter
(e.g., statistical error analysis).

3.1 Introduction and Problem Statement

Classification is the process of assigning individual items to groups based on one or more charac-
teristics of these items. The classification problem addressed in machine learning and is often used
in data mining applications and in pattern recognition. It is also known as discrimination and can be
seen as a problem of prediction and class assignment. Statistical methods are a common approach
for classification because they provide a simple approach for addressing many problems and are
relatively easy to implement. However, they should be used with caution since they work on many
assumptions. The successful use of these techniques depends both on the size of the data set as well
as the previous information regarding the set. Statistics provide methods for data analysis, such
as sampling, stochastic modeling, predictions, experimental design, and exploratory data analysis.
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Statisics-based methodologies have a wide range of applications in many different fields such as
medicine, genetics, business, etc. The simplicity and natural interpretation of the way they output
results makes them suitable for many applications despite of some of their disadvantages (e.g., in
some cases Bayesian models tend to be naive or too simple for certain types of data sets).

Some of the many applications suitable for statistical methods are related to computer science
problems, where the increasing size and complexity of data require new types of models and ap-
proaches [Klösgen and Zytkow, 2002]. However, they have not been extensively used in the numer-
ical context, and their advantages have not been exploited for understanding and studying numerical
data. Part of our study has been to explore the possibility of their applicability to numerical prob-
lems.

In this dissertation we focus on the use of the machine learning approach known as supervised
learning. This technique involves learning patterns or functions from “experience.” This experience
is acquired by looking at examples of inputs for which the corresponding correct outputs is provided.
From these observations we can then learn to predict outcomes based on certain conditions. A
typical example of this approach is the Bayes method, where a class-specific probability model is
designed for the random observations, given that a learning sample of representative data vectors is
provided for each class (this approach will be discussed in detail in Section 3.3).

The inputs to a supervised learning process are usually a set of variables that are measured
and preset (in our case these correspond to numerical properties of matrices). The outputs are
variables that are “dependent” on the inputs (these would be the class memberships of different
input matrices) [Hastie et al., 2001]. Usually the supervised learning approach consists of two
stages:

• Learning: involves the incorporation of the experience-based knowledge into the learning
system, e.g., a set of example problems with their corresponding correct membership to a
class.

• Testing: this part concerns the evaluation of how accurately a trained system can “predict”
the correct answer.

As mentioned in Chapter 1, the type of numerical problem we are concerned with is the solution
of sparse linear systems using iterative methods. Using statistical and machine learning techniques,
we want to determine if it is possible to choose a suitable iterative method and ultimately build a
recommendation system that will give a good prediction of such a method to solve a particular in-
stance of a numerical problem. The problem of choosing a suitable method for solving a matrix has
two parts: reliability and performance (see Figure 3.1). For the Reliability problem, we want to find
whether an iterative method can solve (converge to a solution) or not solve (diverge) certain matri-
ces. In the Performance problem, we are more interested in determining, among various iterative
methods, which one is the most efficient for solving particular problems.

Based on these criteria for picking a suitable method, we can make predictions to build a rec-
ommendation system. Making a recommendation depends on the problem and on the needs of
particular users. Consider the case of a user who needs an efficient and robust method for solving
a large sparse matrix resulting from some engineering or scientific process modeled using PDEs.
Such a user, not being an expert in the field of linear algebra, does not have the mathematical ex-
pertise to set specific parameters and options for different methods, or may not even know about
preconditioning techniques. On the other hand, consider a user who may be interested only in the
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Figure 3.1: The process of selecting the most suitable method. The process of selecting the most
suitable method. This consists of two stages: first, find which methods are reliable, and second, find
which of those reliable methods is the best for solving a particular problem.

study of the behavior of preconditioners on a particular method or vice versa. To address different
types of needs, we have considered the following types of recommendations:

• Preconditioner & iterative method: this is probably the most generic type of recommendation
but also the most difficult. Given a matrix, choose a reliable and efficient combination of
an iterative method and a preconditioner. The difficulty of this problem arises from the fact
that it is necessary to compare every possible pair (preconditioner, iterative method) with all
the others to decide which one is the best. Also, it is complicated to establish what is the
best choice of preconditioner, depending on how its relationship to the iterative method is
evaluated.

• Iterative method: for this particular option, consider the case when the matrix provided is al-
ready preconditioned, and the only interest is to determine which is the best iterative method
to match with the preconditioner. Another case is for the instance when a default or constant
preconditioner is used, like in many numerical libraries and applications. Such a recommen-
dation would be interesting for a user with more expertise in the numerics field, or if the user
is satisfied with the default preconditioner assigned by the software.

• Preconditioner only: the selection of an appropriate preconditioner can greatly improve the
performance of an iterative method. Many software packages and numerical libraries provide
a default preconditioner with the application of iterative solvers. However, a better choice
may result in a more effective solving processes.

These various options give origin to various strategies for classification and recommendation,
which will be discussed in Chapters 5 and 6.

3.2 Statistical Classification Framework

Statistical methods are widely used in discrimination and pattern recognition problems because they
provide a simple framework for classification. The statistical approach for classification generally
consists of the following tasks [Duda et al., 2000] methods:
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• Information gathering: form a data set with examples of the problem of interest. Group
these examples (observations) into the different desired classes; no observation should appear
in two classes at the same time. Choose variables and measurements that can be used to
distinguish between the classes, some data preprocessing may be required at this point. This
step may also involve the creation of training and test data sets, depending on the approach.

• Feature extraction:determine features (or characteristics) of the observations that are repre-
sentative of the classes and also adequate for the classification method.

• Creation of a methodology for classification: construct a classifier using the information avail-
able from the existing classes, e.g., use a training set to choose or design a classifier, then
assess and tune its behavior using validation examples.

• Evaluation of the classification results: measure the classifier’s performance, e.g., determine
class membership for examples provided and check if the answers are correct.

• Generalization: application of the classifier to new problems to test how well it can solve
different examples.

In a classification problem, the observations in a data set can be described by a vector x of k
features (components). Each of these observations originally belong to one of the classes. This
membership is unknown and the classification process is used to determine which class they be-
long to, which is “guessed” based on the values of x. Each class has certain characteristics or data
distribution; by using a function we can predict or estimate of the true but unknown class of an
observation using its features x [Klösgen and Zytkow, 2002]. This is feasible when each class is de-
scribed by a particular data distribution, and the observations have feature values that are distinctive
of the class. Unfortunately, in practice, target classes are usually not completely independent and
separated from each other; for this reason their data distributions will very likely overlap, leading
to misclassifications [Ye, 2003]. One of the objectives when building classifiers is to minimize the
overlapping areas; this problem can be easily illustrated using the Bayesian approach, which will be
addressed with more detail in Section 3.3.

Classification methods commonly use probability distribution functions to discriminate between
different groups of data. A probability distribution function is defined (in one dimension) as:

FX(x) = P (X ≤ x) (3.1)

where x ∈ <, and X is a one-dimensional, random variable defined on a sample space S (X is a
function whose domain is S and whose range is in the real numbers). For each x there is a subset
of S such that {s|X(s) ≤ x} which is known as an event. P (X ≤ x) is the probability of the event
happening [Apostol and Holbrow, 1963]. In classification, an example of such an event would be
that an observation belongs to a particular class.

A probability density function is a continuous representation of a probability distribution func-
tion, obtained by integrating a function f over an interval. We say that a probability distribution has
a density function f , when f is non-negative, real, and satisfies:∫

f(x)dx = 1 (3.2)
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For instance, consider the function in Equation 3.1, we would have the density function as
follows:

FX(x) = P (X ≤ x) =
∫ −∞

x
f(t)dt. (3.3)

In classification problems, density functions can be used to describe (or model) each of the
involved classes; there is one density function per class. This function can be chosen so that it
represents or captures certain aspects of the classes such that it will be possible to differentiate
between them.

There are two approaches for classification and learning problems based on how the density
functions are computed. The density function is what determines how the rules for making decisions
will be built. These approaches are known as parametric and non-parametric; we use both in this
research:

• Parametric Classifiers: in this approach we estimate the parameters for a presumed probabil-
ity distribution function such as the Normal (Gaussian) distribution, then we use this function
as a basis for making decisions [Dunham, 2002]. The problem with this approach is that
sometimes it is too naive because the data originating from many problems does not follow
any particular distribution. Furthermore a few parameters cannot fully describe more compli-
cated problems. In order to choose an appropriate distribution it is necessary to have a great
deal of knowledge about the data or the originating problem [Martı́nez and Martinez, 2002].

• Non-parametric Classifiers: the decision function is built specifically from the collected data
instead of assuming the existence of a specific probability distribution. This approach can
be better for data mining applications since the problem is data-driven and there are no ex-
plicit equations to determine the models; however they require lots of input data to perform
better. Examples of these approaches are clustering techniques and decision trees [Dunham,
2002] [Duda et al., 2000].

Another important technique used in this work is the Bayes theorem (which is the heart of
the Bayesian methodology). This is a statistical concept that can be used as a basis for pattern
recognition, classification and problem discrimination [Dunham, 2002]. It can also be used as a
starting point for implementing more complex techniques, e.g. data mining for knowledge discovery
in databases. Before getting into more detail regarding parametric and non-parametric techniques,
we will address the Bayesian approach in the next section. This approach was used as a starting point
in the construction and evaluation of classifiers using probability density functions. Parametric and
non-parametric techniques will be covered later in Sections 3.4 and 3.5, including a description of
how the Bayesian approach can be used in both of them.

3.3 The Bayesian Approach

The Bayesian approach in statistical data analysis is based on a probability model dependent on
observed or given information. The Bayesian approach allows us to derive a-posteriori knowledge
expressed as posterior probabilities, based on experience or a-priori knowledge given by prior
probabilities. This model finds the conditional probability distributions for the possible classifica-
tions of the data of interest; in other words, it estimates the likelihood of some property given some
input data as evidence. The Bayes theorem is used in particular to compute the conditional posterior
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probability distributions, with the aid of probability density estimation methods [Ye, 2003]. It puts
the problem in terms of probabilities, all of which must be known in order to make a classification
decision.

The simplest form of the Bayes Theorem, states the following:

P (A|B) =
P (A)P (B|A)

P (B)
(3.4)

where A and B are two events [Douglas and Montgomery, 1999] and P is the probability of an event
happening. P (A|B) denotes the posterior conditional probability of event A occurring, given that
event B was observed. This follows from the definition of joint probability, which is the probability
of two events occurring together and is also the prior probability:

P (A ∩B) = P (B|A)P (A) = P (A|B)P (B).

When used for classification, the events translate as A and B become “being in a class” (ω) and
“problem characterized by properties x” respectively:

P (ω|x) is the probability of class ω given that the problem has properties x.

In other words, we can determine the probability of a problem x belonging to a class ω, based
on the experience of observed problems (with properties similar or equal to x) also belonging to
class ω. Assuming that the classes are given, and that by previous experiments we have determined
the proper classification of a number of input problems, Equation 3.4 can be written as:

P (ω|x) =
P (ω)P (x|ω)

P (x)
.

We can calculate the posterior probability P (ω|x) if we can determine

• P (ω): the prior probability of the class. Usually we will have no analytic knowledge of the
prior probability of a class, so we take the fraction of the feature vectors in this class.

• P (x): the marginal probability acts as a normalizing constant. We express it as

P (x) =
∑

classesω

P (x|ω)P (ω)

in terms of the final quantity:

• P (x|ω): the class-conditional probability or conditional probability. Computing this requires
us to know the probability distribution of the features in each given class.

With a posterior probability given, we arrive at the Bayesian decision rule:

Assign a feature vector x to class j if P (ωj |x) ≥ P (ωi|x) for all i.

For multi-dimensional problems, a rudimentary solution is to adopt naive Bayesian analysis,
which makes the simplifying assumption that all features that describe the input problems are inde-
pendent, so

P (x̄|ω) = P (x1|ω) · · ·P (xn|ω). (3.5)
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The biggest problem with this naive assumption is that in practice, problems with especially high
dimensions usually possess more than two properties that are correlated, i.e., when two features
are inversely or directly porportional to each other. To handle this kind of situation, we can apply
certain preprocessing to the data, such as Principal Component Analysis, which transforms the
original set of features in to a new set of linearly independent features (this will be covered in detail
in Section 3.6).

In Bayesian classification, the learning process estimates the probabilities instead of finding an
explicit rule. The advantage of this approach is that the classifier will reach the minimum error when
the dataset is large, assuming that the data is representative of the true distribution. If the person
who designs the classifier has some prior knowledge about the data that would lead to the belief
that some model is a particularly good approximation to the probability distribution, the classifier
will have a very good performance. The problem is that the model used in the classification might
not be the best estimation to the probability distribution. However, unrealistic models that make
naive assumptions are not necessarily bad and very often will lead into relatively good performance
compared to other techniques. The Bayesian classification gives the most likely classification, which
might not be the best solution, since the cost of the errors could be different (for example, cancer
diagnosis or tornado warning [Troyanskaya et al., 2003, Klösgen and Zytkow, 2002]).

3.4 Parametric Approach

Techniques that follow a parametric approach assume that the input data has a particular distribution,
such as normal, exponential, Poisson, etc. The probability density function is then defined in terms
of the distribution and its particular parameters (hence the name “parametric”). This approach can
simplify the computation of probability estimates and it can be very useful and efficient to model
problems when we know (from experience) the data exhibits a particular distribution. The most
simple and most common distribution used is the Normal or Gaussian, which is described by the
mean (or expected value) µ and standard deviation σ parameters:

f(x, µ, σ2) =
1

σ
√

2π
exp

{
(x− µ)2

2σ2

}
where σ2 is the variance. The multi-dimensional version of this (the multivariate normal distribu-
tion) is:

f(x̄, µ̄,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x̄− µ̄)tΣ−1(x̄− µ̄)

}
where µ̄ is a vector of means and Σ is a matrix of covariance.

The parametric method using a single Gaussian distribution is a simple approach that can be
used to explain many of the concepts and procedures of statistical-based classification and learning.
However, for many problems, like the one addressed in this dissertation (algorithm determination)
its practical application is very limited, mainly because data is not known to have any specific
probability distribution. The assumption that this data follows a Gaussian distribution can be more
harmful than beneficial for determining prior and posterior probabilities. Parameters like a mean
and standard deviation can only give very general information about the sample.
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Figure 3.2: Normal distributions corresponding to two classes for a uni-variate problem. The single
feature is represented along the x axis as a random variable. The distribution for C1 appears in
blue, and the distribution for C2 in red. The grey marker line shows the point on the x-axis where
decision for classification changes.

Parametric Approach using Bayesian Methodology: an Example

The application of the Bayesian methodology is straight forward for classification problems using a
parametric approach. Consider the simplest case: a set of input problems (sparse matrices) that can
be characterized with one feature (condition number for instance), and each problem can belong to
either of two classes C1 or C2. Assume also that these problems have a normal distribution, so we
have two normal distributions that describe each class (see Figure 3.2).

We represent the distributions for C1 and C2 with their mean and variance parameters respec-
tively: µ1, σ

2
1 and µ2, σ

2
2 . Now suppose we have an input problem x; to determine which class it

belongs to, we compute the posterior probabilities for both classes:

P (C1|x) = P (µ1, σ
2
1|x) =

P (µ1, σ
2
1)P (x|µ1, σ

2
1)

P (x)

P (C2|x) = P (µ2, σ
2
2|x) =

P (µ2, σ
2
2)P (x|µ2, σ

2
2)

P (x)

Then we compare the posterior probabilities: if P (C1|x) > P (C2|x) then we say that x belongs
to C1, and belongs to C2 otherwise. Also, we can easily visualize this in Figure 3.2; any x ≤ 80
(marker line) would be assigned to C1, because the corresponding posterior probability for C1 is
grater than that of C2 in this region. When x > 80, the class assigned would be C2.
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3.5 Non-Parametric Approach

Non-parametric techniques for probability density estimation are a form of supervised learning
(each of the sample data are labeled with a class membership tag). The difference with the paramet-
ric approach is that we do not make assumptions about what shape or function models the probability
density.

For the Bayesian approach, there are three basic techniques: histograms, finite mixtures, and
kernel density estimation. In our experiments, we concentrate on the use of kernel density estima-
tion, which can be considered a special case of finite mixtures. We will be using the simplest case
of kernel density estimation (multivariate case) which is called product kernel.

There are other non-parametric techniques that do not use the Bayesian approach. One of the
most important and effective techniques is the use of decision trees for classification [Dunham,
2002]. We will focus on the analysis of non-parametric methodologies using the Bayesian approach
and Decision Trees.

3.5.1 Finite Mixtures

The finite mixture term comes from the statistical concept of probability mixture model, which is
a convex combination of several probability distributions, meaning that the sum of the components
is 1. It can also be seen as a type of model where several independent variables act as fractions
of a total [Titterington et al., 1985]. A finite mixture is a specific type of mixture model where the
number of component distributions is finite; a common example of this is a mixture of Gaussian
distributions.

The main idea is that the density function f can be modeled as the sum of c weighted densities,
assuming that c << n, where n is the number of sample points or events (FM stands for finite
mixture):

fFM (x) =
c∑

i=1

wiG(x) (3.6)

where G is any continuous or discrete probability function for modeling the component densities
of the mixture (which must be non-negative and sum to 1), and wi is the weight or mixing coefficient
for each component of the mix. For example, if we use normal density functions for G with mean
µ̂ and variance σ̂2, we can re-write Equation 3.6 as:

fFM (x) =
c∑

i=1

wiφ(x|µi, σ̂2
i ) (3.7)

where we have c − 1 independent mixing coefficients, c means and c variances. We can easily
extend this model to the multivariate case, as the weighted sum of multivariate component densities:

f(x̄) =
c∑

i=1

wiG(x̄|θi) (3.8)

where x̄ is a data point vector in a d-dimensional space (each dimension corresponds to a fea-
ture). In this case we would have c d-dimensional vectors of means µ and c covariance matrices σ2

of size d× d. Similar to the univariate case, Equation 3.8 can be re-written as:
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fFM (x̄) =
c∑

i=1

wiφ(x̄|µi, σ
2
i ) (3.9)

3.5.2 Kernel Density Estimators

A kernel density estimator is a type of finite mixture method that requires the use of a “smoothing
parameter” h. This parameter determines how accurate the results of the function are. For example,
suppose we have a histogram for which the bars define the probability density function, i.e., sum
of the area of the bins = 1. The smoothing parameter would be the bin width (or window) in
the histogram. As h approaches 0 the more exact the solution will be; the choice of h can give
very different estimates of the probability density. This parameter can dramatically influence the
performance of a classifier but can be difficult to tune. In the finite mixture method we do not need
this parameter, however it is necessary to determine the number of components c in the mixture,
which can also be very hard to tune depending on the problem [Bosq, 1998,Martı́nez and Martinez,
2002].

To understand the idea behind this approach, consider the example of a probability density func-
tion f modeled by histograms. As the number of histograms m approaches infinity, the sum of the
areas of the histogram’s bins approximates the real value of the area under the curve defined by f
. An example of this technique is the averaged shifted histogram, where the idea is to create many
histograms of the same width h with different origins and then average the histograms together;
this creates a piecewise constant function, which is the average of a set of piecewise constant func-
tions [Bosq, 1998, Martı́nez and Martinez, 2002].

A kernel estimator for a univariate case is as follows:

f(x) =
1
n

n∑
i=1

Kh(x−Xi) (3.10)

where the parameter h is the smoothing factor or window width, and K is called the kernel
function that must satisfy, as mentioned in the previous section, the following conditions:∫

K(x)dx = 1 where K is non-negative and real (3.11)

Kernel functions are usually symmetric probability functions, such as the normal distribution,
which is the one we used in our experiments. The estimated probability function can be computed
by placing a weighted kernel function at each data point and then taking the average of them in a
similar way as the histogram approach.

To extend to the multivariate case we use the product kernel approach, which is the simplest
case, as follows. Consider each that sample point is now a d-dimensional vector denoted as x̄, and
there are n observations in the sample. The density estimator is given by:

fKernel(x̄) =
1

nh1 . . . hd

n∑
i=1

{
d∏

j=1

K(
x̄j −Xij

hj
)} (3.12)
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where Xij corresponds to the j-th component of the i-th observation.
The smoothing parameter h is computed for each dimension of the d-dimensional data vectors

X using Scott’s rule [Scott, 1992]:

t =
4

n× (d + 2)

1
d+4

σj , j = 1, ..., d (3.13)

and h is computed as:
hi = Σii × t, i = 1 . . . d (3.14)

where Σ = cov(X), and X is a n × d matrix (each row of this matrix corresponds to an
observation from the input data set).

This rule is also called normal reference rule for multivariate product kernels using the normal
function.

Non-Parametric Approach using Bayesian Methodology

Using the Bayesian approach in this type of non-parametric techniques, we do not train a classifier to
learn the parameters of a Gaussian distribution like in the parametric example. Instead, we estimate
prior probabilites by computing the estimate for the density function using a Kernel Product for
each class. Then, similar to the parametric approach, we can compute posterior probabilities based
on these estimates and assign the data point to whichever class gives the highest probability.

3.5.3 Classification using Decision Trees

Another approach to non-parametric classification is decision trees. A decision tree is a recursive
structure that is constructed to model the classification process. The two basic steps in this technique
are: building the tree based on information gathered from experience and applying the tree to the
data [Dunham, 2002], which are consistent with the supervised learning approach. Decision trees
are particularly useful for problems that have many variables or features involved. For instance,
for the type of numerical problems on which this research is centered, we have extracted around
50 different numerical properties (most of these are continuous, some are discrete, and a few are
binary).

The construction of the decision tree structure is called induction step, and it is done using
“training” data. The idea is to classify the members of this set at the leaf nodes, such that the
elements in each resulting class have the same associated (actual) class. The classes are constructed
by filtering each observation in the dataset through the tree structure.

The decision tree is a tree-structured collection of nodes with the following properties [Quinlan,
1990]:

• There is a single Root node N0 that has no parent nodes.

• Each internal node (also called non-terminal) corresponds to a feature and may have one or
more children nodes.

• Every internal node Nk, k > 0, has exactly one parent node.

• A terminal or leaf node has no children and is associated with a class Cj . This association is
given by the class Cj-membership of a set (perhaps empty) of input problems.
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This tree structure embodies a set of simple rules, e.g., for the type of numerical problems
addressed in this dissertation a rule could be “if the condition number κ of a matrix A is greater
than a threshold, assign A to class C1” (see Figure 3.3). These rules do not require any assumptions
about the distribution of the measurements of each variable in each group. The variables or features
can be categorical, discrete numeric, or continuous. Every non-terminal node has a rule of this kind
associated with the feature corresponding to that node. This rule is queried every time the node
is visited during the evaluation of a problem, by comparing the actual value of the feature to the
current threshold in the node.

The features in the internal nodes are called splitting atributes or predictors [Breiman et al.,
1983, Dunham, 2002] and are the places in the tree where the decisions take place. The rules as-
sociated to each of the nodes are called splitting predicates and are basically a comparison with
respect to the aforementioned threshold. There are many different algorithms for constructing deci-
sion trees. They differ in the criteria by which they choose the splitting attributes and the splitting
predicates and in the order they are assigned on the tree.

The tree structure is created recursively until all the elements of the training data are classified
correctly. Some tree algorithms may use a stopping criteria [Dunham, 2002] to avoid the creation
of very large trees or overfitting problems.

In our experiments we have focused on using the approach known as CART (Classification and
Regression Trees) developed by [Breiman et al., 1983]. This approach generates a binary decision
tree, and uses an entropy model similar to the ID3 (Iterative Dichotomiser 3 algorithm) approach
[Quinlan, 1986] to select the best splitting attributes and predicates. This approach tries to minimize
the number of comparisons by ordering and grouping features that contribute the most information.

An important characteristic of the decision tree methodology is the ability to handle overfitting.
This is an aspect that was not covered by the other techniques we have described. The process known
as pruning is a validation step that allows us to eliminate possible overtraining, in particular for small
datasets. This consists of eliminating certain nodes and branches to improve the generalization
power of the tree structure and yield even better classification results. There are many different
approaches for pruning. In our experiments, we do not carry out any pruning, mainly because the
accuracy of classification for decision trees is very high even in the generalization tests.

3.5.4 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning method for classification. It maps the
input vector into a multi-dimensional space and builds an optimal hyperplane to separate the data
into two categories. The separating hyper-plane is constructed with respect to the feature space in
such a way that it maximizes the distance between the plane and the nearest data points from both
classes (this is known as margin) [Vapnik, 1998]. The margin of the linear classifier is the width
that a boundary around the hyperplane may be increased before hitting any datapoint. The support
vectors are those points that the margin pushes against. When there are points of one class cross
over the hyper-plane and intersect with the other class (these are known as noise), the technique
seeks to minimize the distance of these “error” points to their correct location (i.e., on the other side
of the dividing hyper-plane).

This method is a linear classifier because it uses a plane to separate two classes; however, it
can be used for non-linear classification problem by transforming the original feature space [Aiz-
erman and Braverman, 1964]. Since this methodology is used for binary (2-class) problems, its
applicability in our research is only for the Reliability problem.
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Figure 3.3: Example of a decision tree structure. This could be used to classify the reliability of an
iterative solver M , based on a few numerical properties of a matrix: symmetry, condition number,
eigenvalues, etc.

The core of the methodology is a kernel function that transforms a non-linear feature space
into a linear one to find optimal distances between observations, groupings and boundaries between
classes. Some examples of SVM kernel functions are: linear, polynomial, radial basis function,
sigmoid (a description of these can be found in [Burges, 1998,Hsu et al., 2003]).

SVM is a relatively new technique for data classification; it is considered an optimization prob-
lem which makes it computationally very expensive. Large datasets usually require long and ex-
tensive computations to generate results, especially with higher-dimension feature spaces. For this
reason we had to limit our study to the use of the bivariate version of the technique for the Reliabil-
ity problem with a very reduced set of features. This technique was very useful in the early stages
of our research since it helped us to understand the effect of certain features in the classification
process for the Reliability problem; however its cost and non-applicability to multi-class problems
makes it a hard choice as classifier technique.

3.5.5 K-means: an Unsupervised Learning Technique

Although we have centered our research on the application of supervised learning techniques, K-
means is a basic approach that can be very useful for initial exploration of the data sample. This is a
clustering technique that groups data based on the distance between each of the observations in the
sample, minimizing the sum of the variance in each cluster. It is unsupervised learning because we
do not know prior to the clustering to which class each observation belongs.

The K-means un-supervised learning algorithm aims to classify data into k clusters. It measures
the distance between each data and the corresponding cluster centroid and tries to minimize the sum
of the square error function
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V =
k∑

i=1

∑
xj∈Si

|xj − µi|2,

where there are k clusters Si, i = 1, 2, . . . , k and µi is the centroid of the ith cluster (geometric
mean of the observations). An initial parameter is the the number of classes and the initial center,
then the algorithm clusters each of the observations in the input data by using an iterative method
until a solution is found.

Although the experimental results for classification using this method have not been very accu-
rate, K-means is useful because it gives a “geometrical” notion of the data and features; e.g., if the
data is well clustered in space we would expect other classifiers to differentiate between the classes
more easily.

The accuracy evaluation of this method is similar to the other approaches we have discussed.
Once the clusters are formed, a test set can be used to see how well it can classify new data based
on the computed centroids and number of clusters.

3.6 Principal Component Analysis

Principal Component Analysis (PCA) is a linear projection method based on singular value de-
composition (SVD). PCA is a linear dimensionality reduction method that identifies the orthogonal
directions of maximum variance in the original data and projects the data into a lower dimension
space formed by a subset of the highest variance components [Jackson, 2003]. PCA also facilitates
data clustering and its analysis by first dimensionality reduction via projections onto principal com-
ponent axes. The main idea of using PCA is to represent the data with fewer number of dimensions
while retaining the main properties of the original data. This methodology is an unsupervised linear
projection method, which means it is not required to use the output information as feedback.

The feature space of the set of input problems A ⊂ A (set of sparse matrices in our case) forms
a linear space, where each of the features corresponds to a dimension in the original space. By using
SVD, it is possible to use a transformed set of orthogonal basis vectors that captures approximately
the same degree of information but using less dimensions in the transformed subspace. This trans-
formation linearly combines the original original features into a new transformed set of variables,
which are known as “principal components” [Jackson, 2003]. In this way, PCA provides a good
way to preprocess the input data of the problem. The transformation process inherently provides
information that facilitates the identification of relevant properties of the data and possible corre-
lations between them. Section 3.6.1 describes how this can be achieved by the means of singular
value decomposition of the original data matrix.

The motivation for using PCA as part of our analysis comes from two main ideas behind this
methodology. First, it allows us to represent multidimensional data with fewer numbers of variables
(dimensions) while retaining the main properties of the original data, due to the high degree of cor-
relation among the original variables. Thich is very useful for the implementation of certain types
of statistical classifiers. Second, because the elements originated from each step of the PCA algo-
rithm provide a useful and natural way to understand associated properties and correlations in the
data, it is particularly useful for characterizing and understanding those variables (features) which
are critical for our classification goals. The data can be preprocessed using PCA before carrying
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out classification. Some dimensionality reduction can also be achieved by feature extraction which
implies the elimination of redundant features.

Consider a space of d dimensions (features). With feature extraction, we try to find a new set of
k < d dimensions that captures the most variation from the data set and we discard the remaining
(d−k) dimensions. The idea is to find a mapping from the original space with d dimensions to a new
space having k dimensions, without sacrificing real data. In the new reduced space, the variance is
maximized and the difference between sample points becomes more apparent, hence the process of
discrimination between classes becomes easier.

Next, we will go through the description of the essential PCA elements and their significance
in our experiment. With this method we can get the truly independent variation embedded in the
d-dimension space by removing correlated data, which facilitates clusterability and discrimination
of the data. In this study, each sparse matrix constitutes an observation and its associated features
or properties are the original variables (or dimensions).

3.6.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is the workhorse for implementing PCA. SVD is a decompo-
sition of a matrix into three matrices, each with distinct properties. It factors a matrix X into

X = USV T

where U and V are unitary matrices known as the left and right singular vectors respectively, two
matrices with mutually orthonormal columns, and S is a diagonal matrix [?] containing the singular
values of X , which are all positive and arranged in descending order.

In our experiments, the matrix X is composed of vectors with the properties (features) of the
input problems. Suppose there are m observations from a particular data set or experiment, and from
each of these observations we have n associated features (variables). This data can be arranged into
a data matrix Xm×n, i.e. each row represents an observation and each column represents a feature
variable:

X =


x11 · · · x1n

...
. . .

...

xm1 · · · xmn


Figure 3.4 depicts the SVD factorization. X can be decomposed into the product of three

matrices U , S, and V as follows:

Xm×n = Um×r Sr×r V T
r×n, (3.15)

where r is the rank of X . This factorization in particular is a reduced singular value decomposition,
and m ≥ n is assumed [Trefethen and Bau, 1997]. While m >> n is desirable, is not a necessary
condition (if there are more observations than variables, the method will be more robust).

Each of the matrices resulting from the SVD factorization has particular properties that are
important for the analysis and understanding of the data:
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Figure 3.4: Depiction of the Singular Value Decomposition (reduced version).

• U : known also as the normalized Scores Matrix. Each row of this matrix corresponds to a
normalized observation with respect to the basis vectors of V . Its columns uk, also referred
to as the left singular vectors of X , form an orthonormal basis for the scores space.

• S: or the Singular Value Matrix. This is a diagonal matrix with all its elements positive and
by convention [Wall et al., 2001] are arranged in descending order. These elements are the
singular values of X denoted as σi : i = 1 . . . n.

• V : also known as the Loadings Matrix. Its columns are called right singular vectors of X
or principal components (PCs) and form an orthonormal basis for the feature space. Each
principal component is a linear combination of the original features. The set of {vi}r

i=1

vectors span the reduced r-dimensional principal component subspace.

The product of U and S yield another matrix T known as the Regular Scores

T = X × V = U × S (3.16)

Each row of T contains the so called PC-scores of a sample, and they correspond to the projec-
tion of the sample onto each of the PCs. The columns of T are orthogonal to each other and their
lengths are the singular values squared:

T ′T = SUT US = S2

The mathematical interpretation of the matrices in a SVD factorization pieces provide relevant
information that can be used for PCA. Some of the most significant information is about the char-
acteristics of the variables or features interpretation. One of the most important consequences of
SVD is that it allows for dimensionality reduction in PCA. To understand this, it is necessary to first
emphasize the following series of facts that are associated with the decomposition:
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• Let r be effective rank(X), and n be the number of columns of X (number of features), then
n ≥ r.

• Let i ∈ [1, n], and let σi represent a singular value of X . The condition number of X is

κ ,
σ1

σr
≥ 1

and the bigger κ is, the more near singular the matrix X is at its apparent or nominal rank.

• The original SVD factorization of X can be expressed as follows:

Xm×n = Um×r Sr×r V T
n×r (3.17)

where

– Um×r or Ur, and its vectors span the r-dimension column-space of X .

– Sr×r or Sr

Sr =

 σ1 · · · 0
...

. . .
...

0 · · · σr

 (3.18)

– V T
n×r or V T

r , the vectors of Vr span the r-dimension row-space of X .

• By viewing the decomposition this way, we can break X into r outer products (i.e., X =
r∑

j=1

ujσjv
′
j), where the contribution of the ith outer product to the overall variance represented

by the original data set is given by:

σ2
i

σ2
1 + σ2

2 + . . . + σ2
r

(3.19)

Equation 3.16 states a very important fact about SVD: each row of XV is the representation of
the rows of X with respect to the (orthogonal) basis vectors of V , and V is mapped by X into U
but scaled by S. In other words, the ith vector of V is mapped by X into the ith vector of U scaled
by the ith singular value of X σi. This is a one-to-one mapping between {vi}r

i=1 and {ui}r
i=1

v1
X−→ σ1u1

v2
X−→ σ2u2

. . .

vr
X−→ σrur

which also defines the relationship between the matrices U and V : the ijth element of U is the
projection of the ith row of X (ith observation) onto the jth column of V (jth principal component)
normalized by the jth singular value.

Furthermore, the singular values for X appear in S in decreasing order (by convention) making
σ1 the largest singular value, and σn the smallest singular value, which makes the first vectors
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of Ur “heavier” than the last ones. After a certain index (e.g., r), the singular values become so
small compared to σ1 that the ratio σk

σ1
is close to 0, so it is admissible to discard the (n − r) last

singular values (e.g., making them 0) in reconstructing the data matrix with a reduced effective
dimensionality. In this way v1 will be scaled the most by Xσ1 in being mapped to u1, while vr will
be scaled by σr (the “smallest” singular value considered by the mapping). The last n − r vectors
from V can then be discarded given that they are multiplied by zeroed singular values. Since the
vectors in V are the principal components forming an orthonormal basis in the reduced transformed
space (each of them being a “new” variable), and the last (n − r) V vectors are eliminated, we
have reduced the original dimensionality of n to (n − r) dimensions or variables by projecting the
original data onto the reduced r-dimensional principal component subspace.

In practice, it depends entirely on the application or the experiment, the number of singular val-
ues that will be considered to represent the transformed data matrix. Depending on the behavior of
the data, the desired accuracy, and other factors, one may decide to include more or less dimension.

3.6.2 Scree Plots

Deciding on the number of principal components to use is helped by two types of plots known as
Scree and cumulative Scree. These graphs plot the variance explained as a function of the number
of principal components used. They are a useful part of the dimensionality reduction process. The
Scree plot shows the number of principal components on the x-axis, and on the y-axis:

σ2
i

n∑
j=1

σ2
j

.

This measurement is also an indication of how much information is retained by the ith principal
component. The cumulative Scree plot shows the number of principal components on the x-axis,
and the following on the y-axis, which represents the cummulative fraction of information

k∑
i=1

σ2
i

n∑
j=1

σ2
j

, k = 1, . . . , n. (3.20)

These values together with a visual analysis of the plots can help one to decide how many (and
which) k principal components (dimensions) to keep. By analyzing the cumulative Scree plot we can
also decide when adding another principal component does not significantly increase the variance
in the data (i.e. when adding more components will not add any significant amount of information).
In our experiments in particular, it was enough to keep as many principal components to reach a
cumulative total of 0.9± 0.05. So if the ratio from Equation 3.20 for the ith singular value is close
to 0.9 we use only the first i principal components to represent the effective dimensions.

The use of the scree plots will be described with more detail using the experiments presented in
Section 7.2.
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3.6.3 Loadings Vectors

The loadings vectors from the loadings matrix V T are used to find which original features are
correlated along each of these principal components. By plotting as bars the magnitudes of each
component of each column vector of V it is possible to determine the importance of that feature in
the makeup of that principal component. Also, by comparing the magnitudes of each feature with
the others, we can look for existence of correlations between features. Usually, we are interested on
examining the first k principal components, and how the different features behave in these compo-
nents (k is obtained from the scree plots as described in Section 3.6.2). Nevertheless, the very last
principal components, which are scaled by the smallest singular values, can also provide valuable
information about redundant variables.

By studyng the loadings vectors we can assess the importance of each feature and decide
whether it can be disregarded or not, e.g., we can eliminate features that do not significantly con-
tribute information in the first principal components. To visually analyze these vectors, we generate
a bar chart per principal component in which each original feature is represented as a bar, the length
of the bar is the magnitude of that feature as a component of that particular loadings vector, and the
direction of the bar (above zero or below zero) corresponds to the sign. In general, the following
criteria can give important information regarding the features, based on the analysis of the loadings
vectors:

• For any particular principal component, if a feature has a high loading with respect to others,
it means that that feature has more weight or importance in that principal component. Fur-
thermore, features that generally score high in the first k principal components are considered
as the most relevant features, that best characterize the data in X in having the most variation
from sample to sample.

• Features that always score low in the first k chosen principal components can be characterized
as not exhibiting much variation in the original data; therefore discarded as being relevant to
the data set (we will call these useless).

• A feature that has the same scores as another feature in these k components can be considered
as correlated.

• Features that score high in the last n − k principal components can also be disregarded –
these features can be considered as redundant. The last few principal components retain very
few information because they are scaled by singular values that are close to zero compared
to the first singulare value. Since most of the information have been captured by previous
dimensions, if a feature is important in any of these components, it means its information can
be “represented” by some other feature(s).

Algorithm 1 shows the steps to find relevant features based on these criteria. To facilitate the
identification of relevant features and correlations between features using the loadings vectors, we
square the entries (preserving the sign) V 2

ij , i, j = 1, . . . , n. The number of important loadings
vectors k and the threshold h ∈ (0, 1] are determined depending on the application (these may be
arbitrary). The threshold is used to determine if a feature is considered as relevant based on its
associated magnitude along a loadings vector, for instance, if vmax indicates the highest magnitude
then other magnitudes that fall between vmax and vmax × h are also considered relevant.

Algorithm 1. Identify Relevant Features
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Input: loadings matrix V , the number of loadings vectors to analyze k, the number of original
features n, threshold h, indexed set of original features F .

Output: the set of relevant original features, and a list of original indexes Lrelevant for these
features.

initialize L = {}

for each column vector Vj where 1 ≤ j ≤ k

determine the most relevant feature along that vector

vmax = max1≤j≤n{(Vij)2}

find other relevant features using h, for each feature Vij where 1 ≤ i ≤ n

if (vmax × h) ≤ Vij ≤ vmax then
L = L ∪ i

ouput Lrelevant and Fi where i ∈ Lrelevant

To find possible positive correlations between features we follow Algorithm 2. The number of
vectors to analyze k does not have to be the same as in Algorithm 1. The threshold h ∈ (0, 1] is
used to determine how close are the magnitudes of two features, we want h to be as big as possible,
e.g., h = 0.01 means that two magnitudes are within 1% of each other. Optionally, we can remove
all but one correlated features to eliminate more dimensions.

Algorithm 2. Identify Positive Correlations

Input: loadings matrix V , the number of loadings vectors to analyze k, the number of original
features n, threshold h, indexed set of original features F , and Lrelevant.

Output: the set of correlated original features, and a list of original indexes L for these
features.

initialize Ll = {}, a list of positively correlated features for each relevant feature in Lrelevant

for each column vector Vj where 1 ≤ j ≤ k

for each feature Vij where 1 ≤ i ≤ n

for each l ∈ Lrelevant

initialize Llj = {}, a list of correlated features
if (Vlj × (1− h)) ≤ Vij ≤ Vlj or Vlj ≤ Vij ≤ (Vlj × (1 + h)) then

Llj = Llj ∪ i

for each l ∈ Lrelevant

if feature i is in every Llj where 1 ≤ j ≤ k

Ll = Ll ∪ i

33



for each relevant feature l ∈ Lrelevant,

ouput Ll and

for every Ll

output Fi where i ∈ Ll

optinally, in every Ll remove all but one feature index

If we also want to include negative correlations cases, we can use a modification of Algorithm 2,
simply use absolute value of Vlj and Vij in the comparisons step.

3.6.4 Scores Vectors and Plots

The scores vectors and plots are PCA’s main tool to identify data clustering. They are used to
plot the projections of each point from the original space of X , onto the space of the principal
components. While the loads vector plots give information regarding the features, the scores data
provide information about the relationships between the observations in the input data [Jackson,
2003]. The scores vectors are extracted from the matrix U , which has one row per observation. For
the scores plots, we actually use the regular scores corresponding to T , whose entries are scaled by
the singular values.

The scores plots are used to determine which observations are similar to each other in their
make-up of attributes, those observations with similar attributes (e.g., spectral properties, structural,
simple) will probably have similar effects on the behavior (and consequently the slection) of the
iterative solver. As with the scree plots, the detailed application and usage of these vectors will be
addressed in terms of the experiments from Section 7.2.

To visually analyze the data represented in the new feature space (principal components), the
transformed data is plotted in a 2 or 3 dimensional space using the first 2 or 3 heaviest principal
components respectively as axes. This type of mapping usually reveals the correlation structure
of the data, which is harder to identify by plotting in the original space [Faloutsos et al., 1997].
The scores plots are also helpful to detect outliers that deviate from the common patterns. The
outliers are those few points far away from the clusters that have an important effect on the variance
calculation from the original data matrix.

In general, these plots give a better pictorial description of the data sample than if we plotted
using two or three of the original variables [Russell and Norvig, 1995].

3.6.5 Feature Preprocessing for PCA and Classification

In many cases, due to the variables having different physical units, the variances of the original
features may vary considerably, affecting the directions of the principal components, more than the
correlations themselves; to correct this problem we can preprocess the original data so that each
feature column is mean centered (has mean 0), and it’s variance is normalized (unit variance), then
we can apply PCA over the preprocessed data.

PCA is based on a variance maximization criteria, which makes the method sensitive to outliers.
By using certain methods (e.g. calculating Mahalanobis distance of the data points and isolating
the outliers) it is possible to acquire a good estimation and performance of classification [Russell
and Norvig, 1995]. So for practical purposes, sometimes it is desirable to eliminate such outlying
observations.
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Initial reduction of features

There are certain types of features that do not vary in some datasets. Those features that remain
constant along the experimental datasets are not of interest because they don’t provide any infor-
mation about the dataset, neither can they be used for statistical purposes. All these features are
suitably eliminated “automatically”. The criteria used to cancel out these features that are constant
(or mostly invariant) is by obtaining the standard deviation of the column corresponding to each
feature, the column is eliminated when this value is zero or close to it. For example, suppose that
the ith column of A corresponds to some featurei that is constant, if any of the following holds the
feature will be eliminated:

stdev(featurei) ≈ 0 or
stdev(featurei)
mean(featurei)

≈ 0

Characterization of Relevant Features

There are three main tasks in feature characterization: identification and elimination of useless
features, identification and understanding of relevant features, and discovery and analysis of corre-
lations among features.

For the first task, we want to eliminate features that are statistically useless (e.g., constant values,
NaN , etc.), the criteria of elimination of these features is by measuring the standard deviation of
the column, when it is 0 or below a certain limit (machine epsilon) the column is considered to be
constant (as it was explained in Section 3.6.5).

The next step is to eliminate noisy data. This corresponds to the case when the standard devia-
tion σ of a feature along the dataset is too large specially with respect to its mean µ, which indicates
that the scores are widely dispersed and the mean is not very informative about the average score.

As a final step, we want to contemplate the elimination of certain features that may be redundant
by being highly correlated to other features. This step is more complex since we have to make at
least one pass of the analysis on the data to identify correlations, and then decide upon this what are
the features that we want to eliminate (note that this is another way to further achieve dimensionality
reduction). This step also requires a closer analysis of the data. In Section 3.6.3, we discussed
the loadings-matrix V T . By analyzing the loadings vectors we can determine which features are
the main players along the main principal components and their behavior. We can also find which
additional features can possibly be eliminated. In Section 7.2 we will illustrate the process of feature
characterization in various experiments and datasets.

PCA and Classification Techniques

PCA can be used as a preprocessing step for the input data. The transformed data and feature space
can be used for classification instead of the original ones. This can be advantageous for certain types
of classifiers.

On the other hand, there are some classifiers for which the use of PCA-transformed data does
not necessarily improve the accuracy of classification. An example of such classifier, found through
preliminary experiments, is decision trees. This is a very effective classifier and had overall the
best performance in our tests, so it was used extensively to obtain most of the results presented in
the experiments chapter. It is important to point out some of the reasons for which using PCA to
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preprocess the data may not be completely favorable for decision trees. These are related to inherent
characteristics of this classifier; decision trees [Dunham, 2002, Quinlan, 1993]:

• Need more effort to handle continuous data: the numerical nature of our problems (matrices)
imply that many of the features used for classification are continuous. Nevertheless, from
experiments we have identified several discrete features that are crucial properties and affect
the performance of iterative solvers and preconditioners (Section 7.2.3)

– diagonal sign

– symmetry

– maximum number of non-zeros per row

– diagonal definite

– number of ritz values

• Can handle well high-dimensional data: part of the idea of using PCA is to reduce dimen-
sionality. Even if we keep 90% of the information in a PCA-transformed space, we could be
disregarding small contributions from some features. A decision tree may actually use this
little information to improve a classification ∗.

• Ignore correlations among attributes: as we will see in the experiments presented in Sec-
tion 7.2.3 there are several features that consistently show correlation with others. With PCA
we can identify and eliminate correlated features, but decision trees does not necessarily ben-
efit from this, neither from the use of completely uncorrelated features.

3.7 Statistical Error Analysis

Statistical errors occur when the estimated values from an experiment are different from the true
ones, which can be caused by unpredictable randomness in the data and/or from the loss of precision
introduced by implementations of algorithms. A statistical error emerges when we make a wrong
assertion with respect to the null hypothesis. A null hypothesis, denoted as H0, is a statement to
be tested to see if in fact it is true. In classification problems like ours, H0 is the assumption that a
particular class is the source of the observations. The data collected from the experiments is used
to decide if H0 should be rejected, in order to support instead an alternative hypothesis denoted as
H1 [Duda et al., 2000, Alpaydin, 2004]

The simplest structure to analyze statistical errors, is a classification problem with two classes
and hence, the two hypotheses. The problem of recommending a reliable problem fits well in this
structure, so we will cover this case first (Section 3.7.1). Statistical errors arising from multiclass
problems are more difficult to examine and interpret; such is the problem of recommending the
fastest method, which is multiclass in the sense that we need to have one class per method.

∗By this, we are not saying that the results from PCA should be completely disregarded for decision trees. We only
stress that it is not necessary to transform the feature space because a decision tree could make better use of the original
non-transformed features.
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3.7.1 Statistical Error Analysis for a Two-Class Problem

Since classification problems are based on probability distributions, the problem of testing the null
hypothesis becomes that of testing whether the probability of obtaining data given H0 is smaller than
a threshold, in which case we would favor H1. For instance, consider the two (mutually exclusive)
classes in the reliability problem:

• class1: set of problems for which method M converges

• class2: set of problems for which method M diverges

For a single method M and any problem A, we can then define the hypotheses as follows:

H0: A /∈ class1

H1: A ∈ class1 (or A /∈ class2)

The statistical errors emerge from erroneously accepting or rejecting H0:

Type I error: also known as an α error, which is the error of rejecting a null hypothesis when
it is actually true. This is also known as “false positive”.

Type II error: also known as a β error, which is the error of accepting a null hypothesis when
the alternative hypothesis is the true state. This is also known as a “false negative”.

The number of false positives (FP ) and false negatives (FN ), and their rates (FPratio and
FNratio) with respect to the sample are useful measurements when we assign certain type of penal-
ties for making a wrong decision. The overall error rate is measured in terms of both types of
errors:

Errorratio =
FP + FN

|TestingSet|
(3.21)

The individual error rates FPratio and FNratio, which measured respectively, the total count of
negative and positive instances, are:

FPratio =
FP

FP + TN
(3.22)

FNratio =
FN

FN + TP
(3.23)

When we have only two classes, the FP of class1 is the same as the TN of class2 and vice
versa; and FN for class1 is the same as TP for class2, i.e. whether the statement is positive or
negative depends on which class we are analyzing (positive in one class is negative on the other).
The kind of penalties assigned depends on the problem and on how important it is to distinguish
between FP and FN , but in general, we want to minimize the cases for which we would pay
a high price for making such a a mistake to make the best choice (recommendation). Table 3.1
illustrates how these errors originate based on the result of the prediction and the actual result of an
experiment.
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Table 3.1: Possible predictions for a two-class classification problem.
Test result

Positive Negative ↗ Wrong Prediction

Actual Condition
True TP FN (error)
False FP (error) TN

↘ Correct Prediction

Table 3.2: Confusion matrix for a 3-class classification problem.
Test result

ω1 ω2 ω3

Actual Condition
ω1 CM11 CM12 (error) CM13 (error)
ω2 CM21 (error) CM22 CM23 (error)
ω3 CM31 (error) CM23 (error) CM33

3.7.2 Statistical Error Analysis for a Multi-Class Problem

Finding the fastest method (performance problem) can be viewed as a multi-class classification
problem. In such cases it is not trivial to analyze the classification errors to rate the accuracy of a
classification algorithm.

This problem usually involves the comparison, side by side, of more than two methods. In such
cases, a more appropriate way of analyzing the statistical error is using a confusion matrix approach.
A confusion matrix [Provost et al., 1998] contains results from a classification process with respect
to actual class memberships and misclassifications. This matrix is very similar to Table 3.1, except
that it has one row (and one column) per class. Along the diagonal are the “true positives” for
each class, or the number of cases that are correctly classified. Every other entry in a row is a
misclassification error, that of assigning to a different class an observation that belongs to the class
of that corresponding row. For example (see Table 3.2), suppose there are 3 classes so the confusion
matrix CM is of size 3 × 3, the first row corresponds to class ω1 so in CM 11 we have all those
observations correctly assigned to ω1; in CM 12 we have those observations belonging to ω1 but
were classified as ω2; and in CM 13 are the observations from ω1 erroneously assigned to ω3.

This type of matrix is very useful to see where the classification errors come from, which are
the classes a classifier gets “confused” with. The more diagonal the confusion matrix is, the more
accurate a classifier for these classes would be. In Section 7.4 we demonstrate the applicability
of this concept in our research and experiments for the Performance problem (classification and
prediction of most efficient method).
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Chapter 4

Concepts for Algorithm Classification
and Recommendation

The task of finding an optimal method can be viewed as a classification problem. The set of matrices
(or numerical problems in general) constitutes the set of observations in the classification problem.
Each class is composed of a set of observations (matrices) for which a particular method is the best.
When a new matrix is presented, the problem of finding the most suitable method becomes that of
assigning this matrix to a class.

In general, like many other machine learning problems, the process of finding an optimal method
is divided in two: learning and recommending. The learning part consists of training classifiers to
learn certain functions (or parameters) and derive decision rules that determine the membership of
a matrix in a class. The recommendation part uses these rules to assign a new matrix to one of the
classes based on its properties. Obtaining the membership for the new problem is in fact a way of
determining the best method for solving it.

In this chapter we describe the learning and recommending stages in our problem’s context, as
well as the defipnitions of general elements necessary for the setup of specific strategies for the
Perormance and Reliability problems.

4.1 Classification and Recommendation Process

In this dissertation, we will focus on the use of supervised learning classification approach for the
learning process. Supervised learning is a type of classification in which, during the process of
modeling the classifier, we know the class to which each observation belongs to (hence the name
supervised). The set of observations is divided in two subsets: training set and test set. This type of
classification has two main stages: training and testing, where the aforementioned data subsets are
used respectively.

Like in other classification problems, the task in supervised learning is to learn an optimal
mapping from an input X (the set of observations) to an output Y (the set of classes). For instance,
in the problem of finding the optimal iterative method X would be a set of vectors of features that
describe a set of sparse matrices, and Y would be a set of classes, one per iterative method; the
mapping would be given by a function that assigns a problem in X to the best-method’s class.
From a machine learning point of view, such a mapping function, which we will call f , is a model
defined in terms of a set of parameters θ, and is known as discriminant function. The main goal
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is to derive this discriminant function, which separates the instances of different classes and a best
set of parameters θ, such that the estimated results are as close as possible to the actual values
(minimization of the approximation error) [Alpaydin, 2004]. In the example problem, θ could be
the ranges of values that the vectors from X have in each class.

The discriminant f can be viewed as an approximation to an unknown ideal function F that can
assign perfectly every observation to the correct class. For us f represents a classifier that decide
which method class a problem in X should be assigned to, and F would be a trivial function that
uses the known membership (since we are using supervised learning) to assign each observation to
its correct class.

Definition 1. Let F : X 7→ Y be an ideal function that correctly classifies every input x ∈ X . The
learning process is used to derive a discriminant function f : X 7→ Y such that

maxX(F(x) = f(x))

In other words, suppose that the optimal mapping is given by an unknown functionF : X 7→ Y ;
the learning process derives an approximation function f : X 7→ Y such that for as many cases as
possible F(x) = f(x). Let x ∈ X and y ∈ Y ; then the discriminant function f : X 7→ Y is

y = f(x|θ) (4.1)

The actual values used to model the discriminant function are obtained from a set of observations
called training set; the training set Xtr ⊂ X are those observations for which F(Xtr) is known.
The estimates of how well f approximates F come from testing the discriminant function f on a
different set of observations called the test set Xte ⊂ X , for which F (Xte) is also known. The best
approximation is the one that maximizes the number of cases where: f(Xte) = F(Xte).

During the training stage, the objective is to train a classifier to derive a decision rule. In many
cases this means to obtain the parameters θ that model the discriminant function. The discriminant
function then allows us to make the decision of which observations belong to which class using the
knowledge that the training set provides.

In the testing stage, we use the test set to evaluate the rule obtained in the training stage. Using
the discriminant function, each observation in the test set is assigned to a class. To evaluate how
well a classifier works, we count the number of correct assignments made using the decision rule
during the testing stage. This is a way of measuring the performance of a classifier and will be
referred to as accuracy of prediction or accuracy of classification. The actual process of obtaining
these accuracies is carried out by a function which we will call accuracy evaluation module, to
differentiate it from the actual classification process (which outputs a membership instead of an
accuracy value). In this research, each classifier will have a accuracy evaluation module associated
with it.

Figure 4.1 illustrates the training and testing steps in a classification process, and their relation
with the input dataset, and the accuracy measurements. To implement adaptivity, the outcome of the
recommendation process is used as feedback for the learning process (similar to the way in which
the testing process is used with the training process).

In summary, for the experiments presented here, the learning part comprises the following ac-
tions:
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Figure 4.1: General data flow for supervised learning classification. The input of the classifier is a
dataset that is partitioned into training and test sets. The classifier function is used to derive and test
a decision rule with these datasets respectively. The decision rule is then used to measure the perfor-
mance of the classifier, which is accuracy of predicting a membership in each class. The testing and
training processes are repeated over several iterations (the results of the testing process can be used
as a feedback for further training). In each iteration, different combinations of observations from
the original dataset are used to build the training and test sets. The resulting accuracy integrates the
results from all the iterations (e.g., average).

1. Feature extraction and collection: from various types of numerical problems obtain and/or
compute different categories of properties.

2. Collection of convergence and performance measurements: this involves running every avail-
able solver (in our software implementation) for on each numerical problem.

3. Feature Processing: this constitutes the identification of relevant features, elimination of use-
less features, investigation of the possible correlation among features and dimensionality re-
duction (some of these can be achieved using Principal Component Analysis).

4. Training the classifier: using the features and performance information to derive a decision
rule.

Next we give a formalization of the problem of selecting the best method for solving a given
numerical problem, and the methodology proposed.

4.2 Problem Formalization

In this section we define the different elements and functions in the method selection problem.
Such elements are the set of numerical problems and their features, numerical solvers, performance
measurements. The functions are, for instance, feature extraction, transformations, method selection
and accuracy evaluation.
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4.2.1 Basic Elements

Definition 2. Let A be the set of numerical problems.

In the research presented in this dissertation, A is the set of all linear systems of sparse co-
efficient (sparse matrices) mainly resulting from PDE problems. We define A ⊂ A as the finite
set of those particular matrices available in our research. These matrices have been collected from
different sources (e.g., the Matrix Market [Market, 2007]) and originate from different problems.

We define the solution space for numerical problems as a set of solutions S for the numerical
problems with the associated performance measurement T for each of them:

Definition 3. R = S×T is the results space, the space of solutions plus performance measurements,

where

Definition 4. T is the set of performance measurements.

Now, we can formalize the definition of a method

Definition 5. M : A 7→ R is the set of methods that potentially solve the class of numerical problems
A. M ∈ M may converge or diverge when trying to solve A ∈ A.

In general, the method space is an unordered, finite set of methods. Here in particular, S refers
to the solutions to Ax = b, and M is the set of iterative solvers. A method M can be an considered
an iterative method, or a combination of a preconditioner (or other transformation) and an iterative
solver which we call composite or combination method. We define the set of iterative methods as
K ⊆ M, where K : A 7→ R. The set of available methods in our research is denoted by M⊂ M.

Transformations or preprocessors include scalings, approximations and preconditioners among
others, and will be described in detail in Section 4.2.3. The set of transformations will be denoted as
D. In the research here presented, we will focus only on the use of the preconditioner transforma-
tions, i.e., the set of transformations D contains only preconditioners. The set of available iterative
methods in our research is denoted as K ⊂ K and the set of available preconditioners as D ⊂ D.

The set of composite methods is defined as

Definition 6. Let K ⊂ M. The set of composite methods is D×K ⊂ M.

Suppose for instance we have ksp ∈ K and pc ∈ D. A composite method would be pc, ksp ∈
M, which means we first transform a problem A with pc and then attempt to solve pc(A) using ksp.
The set of available composite methods is given byD×K. Our classification problem then consists
of finding a suitable ksp ∈ K, pc ∈ D, or a combination pc, ksp〉 ∈ M. Strategies for composite
methods are of particular importance and will be discussed in Section 4.3.

Any method M applied to A takes some time to converge to a solution, or to stop by the criteria
of the stopping test (meaning that it doesn’t converge). Time to solution is one way of evaluating
how well a method can solve a problem. There are other types of measurements to evaluate the
behavior of iterative methods, such as the accuracy of the solution or the number of iterations to
convergence. Here, we will focus on the use of time to solution as a performance metric.

A timing function T (A,M) denotes the time that it takes for method M to solve problem A.
For the cases when M diverges we set T (A,M) = ∞ (T (A,M) 6= ∞ otherwise). By T (A) we
denote a vector of timings of all methods on problem A.
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Note that if the time t to solve a problem is defined, then there is a corresponding solution σ ∈ R
for every problem A ∈ A.

The problem of finding most suitable method M ∈ M to solve a problem in A could be in terms
of reliability, performance, and/or a combination of both.

4.2.2 Numerical Properties of the Feature Space

A matrix as a numerical problem can have many different properties. In order to generalize the way
the numerical problem is taken and analyzed by a classification method, we will describe a matrix in
terms of its numerical properties or features. The set of features presented in here consider most of
the properties and issues that are widely used for studying numerical problems. The features have
been grouped in categories according to the type of numerical property they describe. Once they
are extracted and/or computed for a problem, they are organized and presented as a vector.

Definition 7. Let F be the set of feature vectors that numerically describe the problems in A. Let
x̄ ∈ F be a feature vector that describes a numerical problem (sparse matrix) A ∈ A. Φ : A 7→ F
is a function that extracts the features from the sparse matrix and arranges them as the components
of the feature vector:

Φ(A) = x̄ (4.2)

The components of x̄ are very unhomogeneous and they can be real numbers, integers, fractions, or
elements of a finite set of choices (e.g.,binary values).

The components of a vector x̄ ∈ F, in the particular example of linear system solving, corre-
spond to various features in the following categories:

Simple: norm-like quantities that in general can be calculated in time proportional to the
number of nonzeros of a matrix.

Structure: quantities that are strictly a function of the nonzero structure, which stay invariant
during a nonlinear solve process or while time-stepping a system of equations.

Spectrum: probably the most informative properties of a matrix. In here are included eigen-
values and singular values, as well as various estimates obtained by running multiple GMRES
iterations on a system.

Normal: estimates of departure from normality of a system (usually very expensive to com-
pute).

Variance: heuristic measures not related to any known mathematical theory. These describe
how different the elements in a matrix are.

Given these categories, it makes sense to subdivide the feature space in separate dimensions,
one for each category

F = F1 × · · · × Fk

Accordingly, we can also split up the feature extraction function as follows

Φ = 〈Φ, . . . , Φk〉

where Φi : A 7→ Fi represent the individual feature calculations.

43



4.2.3 Method Selection

Like in other classification problems, for method selection, we need to define a classification func-
tion like Equation 4.1. This function should discriminate between the available methods to choose
the best given the properties of a matrix. Time to solution is the performance metric upon which we
base the decision, so we can define the function for the Reliability and the Performance problems
as follows:

Definition 8. The problem of selecting a suitable method to solve a given problem A, can be viewed
as that of constructing a function Π : A 7→ M that chooses the most suitable method given a
problem A, by mapping the problem space into the method space. Stated formally:

Π(A) = M where T (A,M) 6= ∞ and M ∈ M for the Reliability problem

Π(A) = M ≡ ∀M ′ ∈ M : T (A,M) ≤ T (A,M ′) for the Performance problem

Since it is not possible to define Π on the problem space A, we reduce and represent a problem
A as a vector x̄ ∈ F of m dimensions, each corresponding to a numerical property (feature) of A.

Definition 9. The method selection problem, based on Π and Φ (defined in 4.5 and 4.2 respectively)
is given by:

Π(x̄) = M if ∃A ∈ A s.t. Φ(A) = x̄, and M s.t. ∀M ′ ∈ M : T (A,M) ≤ T (A,M ′) (4.3)

In Equation 4.3 the definition was dependent on finding a problem A with the desired features.
This raises the question: what if there are two problems with the same features. Such a situation
indeed occurs in practice, and it is the reason that we can not directly hope to predict runtimes, and
base our function Π on such runtime prediction.

Theorem 1. It is not possible to predict a runtime t ∈ T or base our function Π on such a prediction.

Proof. For consistency, a prediction should be done based on optimal method rather than run-
time. Suppose for instance that problems A1 and A2 have approximately the same features, that
is, Π(A1) ≈ Π(A2) ≈ x̄. Let Π(x̄) = M ; then for consistency

T (A1,M) = min
M ′

T (A1,M
′) and T (A2,M) = min

M ′
T (A2,M

′)

which means that the same method should be optimal, as opposed to having the same runtime
T (A1,M) = T (A2,M), which does not hold.

Furthermore, equation 4.3 depends on the features x̄ of a problem A. If there are two problems
that have the same x̄ but scaled differently, it is not realistic to make different predictions for both
problems; for this reason, it is necessary to normalize x̄ to make the problems scale-invariant.

The scale-invariant property for the selected features is partially attained by normalizing each
scale-dependent feature by another feature that varies, proportionally, depending on the scale of the
problem. For example, the number of non-zeros nnz is normalized using the square of number of
rows nrows2, which makes the feature nnz

nrows2 scale-invariant.
Additionally, the first steps of PCA also scale and normalize the features, helping to achieve

further scale-independence (the details of this process were addressed in detail in Section 3.6). We
will define the process associated with PCA as a function that transforms the original feature space
F into a new one
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Definition 10. Let Γ : F 7→ F′ be the function from PCA that transforms the original feature space
into a new orthonormal space:

Γ(x̄) = x̄′

where x̄ ∈ F, x̄′, and F′ is an affine subset of F. The original vector x̄ is first mean-centered and
scaled, then transformed using singular value decomposition.

As we saw in Section 3.6, the vectors in this new feature space may have the same or fewer
number of features than the original vectors.

We also define
Ψ : A 7→ M (4.4)

as the ideal, unknown function that indicates the objectively optimal method M ∈ M to solve
A ∈ A; we will use these function to define the class spaces. This function would correspond to
the F function described in Definition 1; analogously, the function Π corresponds to the function f
from Equation 4.1.

Preprocessor Transformations

There are various preprocessors that can be applied to a problem A; they map one numerical problem
into another which may be more simple. These transformations can have positive or negative effects
on the performance of the iterative methods. In general, these preprocessors can be viewed as a
series of transformations that applied a coefficient matrix A produce a new one, say A′. Formally:

Definition 11. D : A 7→ A is the set of transformation functions that can be applied to A.

The function Φ in Definition 7 makes it possible to reflect on F any changes made on A: Let
A ∈ A such that Φ(A) = F , and let D ∈ D be transformation function such that D(A) = A′. It
follows that Φ(A′) = F ′ where A′ ∈ A and F ′ ∈ F. Based on this, we could redefine the function
Π to select the best solution method M ∈ M as Π : F 7→ M

Π(F ) = M. (4.5)

As mentioned before, in our experiments we will focus on the study of the use of the precon-
ditioner transformation only. The classification and recommendation of iterative methods paired
with preconditioner is a very important task; there are several ways to approach this problem. These
strategies will be introduced and discussed in Section 4.3.

4.2.4 Elements of the Classification Process

A classifier is a function that is used to map from an set of observations (or problem instances)
to a set of classes, where a class is generically defined as a set of observations. In our case, an
observation is a matrix A ∈ A. For each observation there are several timings, each of them
corresponding to the time that each method takes to solve it.

Definition 12. The class space denoted as C, is a partition of the observation space, where each
subset is a class.

The configuration of the class space and its constituent classes depends on the classification
problem. In our case the classification problem is to determine the suitability of numerical methods
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in terms of either reliability or performance. For instance, when we want to find how reliable a
method M is, then C consists of only two classes: the set of matrices for which M converges, and
the set of matrices for which it diverges. On the other hand, if we want to determine which method
performs the best, we have to delimit sets of matrices for which each converging method was the
fastest. In this case there is a class for each method.

As we will see in Section 5.1 and Section 6.1, the class space definition for the Reliability
(convergence) problem is quite different from the Performance problem. The definition of a class
in C, however, can be generalized as set of all matrices for which a particular method is the most
suitable solver:

Definition 13. Let M be a method in M. A class is defined as the set of observations ClassM , such
that ∀A ∈ ClassM , M = Ψ(A) and ClassM ⊂ A.

The classifier’s purpose is essentially to output a class membership for each input observation,
where each of these can belong to only one class at a time. The number of classes depends on the
type of problem, e.g., the reliability problem has only 2 classes, while the performance problem has
as many classes as methods we want to compare. In general, a classifier function can be defined as
follows:

Definition 14. Let F be the feature space as defined in Section 4.2 and C a finite set of performance
or convergence classes. A classifier is defined as a function Υ : F 7→ C.

A classifier uses different probability distribution functions (see Equation 3.1) to model the be-
havior of the elements in each class. These function are derived during the training stage described
in Section 4.1.

Observe that the function Υ takes as input a feature vector F , which implies that we have to
extract the features from a problem A, i.e., F = Φ(A).

The effectiveness of a classifier is obtained after the test stage is completed, and can be evaluated
as the accuracy with which it can predict each of the classes. The process of computing the accu-
racies is actually one of the stages in supervised learning (described in Section 3.2). An accuracy
evaluating function computes the accuracy of prediction (classification) for each class. Generally
speaking the accuracy of classification is the probability of correctly classifying observations for a
class, i.e., it is the ratio of the number of test observations classified correctly with respect to the
number of observations actually in that class. Formally:

Definition 15. Let Υ be a classifier with class space C, and I be the index set of classes in C. Let
i ∈ I , let Ci ∈ C be the set of all numerical problems in class i, and let Ctei ⊂ Ci be the set of
numerical problems correctly assigned to class i by Υ. The accuracy of classification of Υ is:

α =
|Ctei |
|Ci|

where α ranges between [0, 1] and 1 is perfect accuracy.

In any classification problem |C| ≥ n and n ≥ 2, so there is an α for each class in C. For
convenience we can represent the associated set of accuracies for C as a vector Ȳ of n components,
where each component corresponds to the accuracy of each class:

Ȳ = 〈α1, α2, . . . , αn〉 (4.6)
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and Ȳ ∈ [0, 1]n, where n = |C|.
Since the accuracy of a classifier is a critical computation for prediction and recommendation

purposes, we define an additional function associated with each classifier which calculates the ac-
curacy of prediction for each class. We will call this function accuracy evaluating function, and it
takes as input a set of feature vectors (observations) and outputs a vector of accuracies:

Definition 16. For a given classifier Υ : F 7→ C the accuracy evaluating function is defined as

Ω : F 7→ [0, 1]n, where n = |C|.

4.3 Strategies for Combination Methods

In Chapter 2 we discussed iterative methods and preconditioners. There is a very important inter-
action between these two, the behavior of one is “conditional” on the application of the other, for
example, a preconditioner can improve the performance of an iterative method or make it worse.
The effects of this interaction is one of those facts (as mentioned in Section 1.2) that are not very
well documented in literature, making this subject a very interesting research question. This inter-
action, of course, affects the method selection problem as well.

Out of the different types of transformations, we will focus on preconditioners because of the
significant relationship they have with iterative methods (the study and strategies here presented can
later be extended to other transformations such as scalings or approximations). The set of precondi-
tioners is a subset of D, but since in this research we only concern with the study of preconditioners,
for convenience we will use D to represent the set of preconditioners, and D ⊆ D to represent the
set of available preconditioners. In a similar way K ⊆ K is the set of available iterative methods.

The construction of recommendation strategies for combined methods depend on how strong
we consider the dependency to be. To recommend a combination we can either choose the iterative
method and the preconditioner as independent events, or as joint events. The goal is to classify a
combination of a preconditioner transformation and an iterative method, whether they are dependent
or not. Such a pair is represented as (pc, ksp) where pc ∈ D and ksp ∈ K.

To represent this dependency we will use the concept of conditional combination∗, which refers
to a method as the composition of a transformation with an iterative method, e.g. applying the pre-
conditioner ilu on a matrix A and then solving it with the iterative method gmres is the conditional
combination method ilu, gmres . Conditional combinations are in fact methods, and we will use
the notation pc, ksp to represent them, so we have pc, ksp ∈ M. Conditional classification is about
performing classification on pc, ksp where pc ∈ D and ksp ∈ K. These combinations are also
“composite methods”.

Definition 17. Let pc ∈ D and ksp ∈ K. The conditional combination pc, ksp is defined ∀A ∈ A
as

pc, ksp ≡ ksp(pc(A))

where pc, ksp ∈ M.

Note the difference between the pair (pc, ksp) and the pair pc, ksp used in conditional classi-
fication. The combination pc, ksp ∈ M indicates that that the dependency is explicitly assumed,

∗In here, the term conditional is not to be associated with the conditionality concept of probability and statistics, part
of the Bayesian theory.
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while (pc, ksp) only denotes a combination for which a recommendation is requested (notation for
recommendation algorithms), where the pc and the ksp may or may not be dependent (i.e., pc, ksp
is a case of (pc, ksp)).

The purpose is to construct a function Π that chooses the best transformation and the optimal
iterative method, find the accuracy of the prediction for such a function and build suitable recom-
mendations. This function can be constructed using different approaches, considering the selection
of pc and ksp as independent events or not †. The names of the approaches we have developed are:
orthogonal, sequential and conditional.

Next, we will describe each of these approaches in general and in Chapters 5 and 6, we will
describe their specific use in the Reliability and Performance problems respectively. Later, in Chap-
ter 8 we will see that these approaches perofm differently for those two problems.

4.3.1 Orthogonal Approach

In this approach we perform separately the classification for the iterative method and the transfor-
mation. We assume that the event of choosing a preconditioner pc is independent from the event
of choosing an iterative method ksp, so we construct separate classifiers for choosing pc based on
the features of the linear systems in A, and ksp based on preconditioned features. For example, to
select a combination for a given A ∈ A we use

Πorthogonal(Φ(A)) = pc, ksp, such that ΥD(Φ(A)) = pc and ΥK(Φ(D(A))) = ksp,

where D is some preconditioner in D, ΥD is the classifier function for preconditioners and ΥK is
the one for iterative methods.

In other words, separately perform the classification for pc using ΥD on the features of the un-
preconditioned matrix, and the classification for ksp using ΥK on the features of preconditioned
systems (all preconditioners considered); then we put together the results for pc, ksp. The accu-
racies of classification for the pc and the ksp are computed separately then we just multiply the
independent accuracies of classification: α(pc,ksp) = αpc × αksp.

This approach is straightforward, but ignores interaction between the preconditioner and the
iterative method.

4.3.2 Sequential Approach

In this approach, we assume that there is a dependency between the transformation and the iterative
method that affects the classification of the transformation. On the other hand, we still consider
that finding a reliable ksp, regardless of the transformation is an separate event. We first choose
a preconditioner pc based on the features of A and use pc to transform A (i.e., A′ = pc(A)), and
then choose an iterative method ksp based on the features of A′. Using a similar example as in the
orthogonal approach, to choose the composite method in this approach we have:

Πsequential(Φ(A)) = pc, ksp, such that ΥD(Φ(A)) = pc and thenΥK(Φ(pc(A))) = ksp,

†This is why it is important to note the difference in notation pc, ksp which implies that the behavior of the pc depends
on the ksp (or vice versa), but the notation (pc, ksp) does not imply that in the recommendation we will consider that
one affects the behavior of the other.
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that is, first use the preconditioner classifier ΥD to choose pc and use it to transform A, then use the
classifier ΥK to choose ksp based on the transformed features of A.

This approach is more accurate and takes on account the interaction between preconditioners
and iterative methods, but it is expensive since we need to compute preconditioned features.

4.3.3 Conditional Approach

In the conditional approach we explicitly construct a classifier for a combination of a preconditioner
and an iterative method pc, ksp as a unit, based on the features of A. In this case, to choose the
composite method we have:

Πconditional(Φ(A)) = pc, ksp, such that ΥM(Φ(A)) = pc, ksp,

where ΥM is the classifier function for composite methods.
It is not completely necessary to consider the selection of the transformation and the iterative

method as independent events. Depending on the statement of the recommendation request it may
or not be necessary to acknowledge the classification of an iterative method as an independent and
additional event.

This approach is convenient because we do not compute preconditioned features required in the
sequential approach or the classification of iterative methods alone. It is also reasonably accurate in
many cases but could also lead to unreliable classifications.

4.4 Recommendation Issues in the Method Selection Problem

To make a recommendation we need to address the Reliability and Performance problems. The
reliability problem concerns itself with the binary choice of classifying a method as converging or
non-converging. The performance question is that of recommending the method that will lead to
the fastest solution among a set of methods. (Other continuous measures than speed to solution are
also possible.) In the performance problem we weigh the following issues in our recommendation
of best method:

• What is the gain of choosing the best performing method (in terms of speed)?

• For every two methods that converge, which one is faster in more cases?

• By how much is a method faster compared to other methods (speedup factor)?

• From a numerical point of view, what is a good recommendation? For instance, compared to
a default method choice (e.g., a direct method), can we recommend a faster method?

In our experiments, we define the suitability method as the time it takes to converge. In many
cases, the time to apply a preconditioner (setuptime) is longer than the time to actually solve
the system (solvetime). In order to prevent the setup time from obscuring the solution time we
solvetime ∗ 10 + setuptime as the total performance measure. One of the reasons we do not use
number of iterations is that we also intend to compare with a direct method which converges in
“one single iteration” (however this iteration takes a long time). Similarly, in practice there are
some methods which converge in many less iterations than others for the same type of problem,
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however it is possible that those few iterations are very expensive. In such case, the total time to
solution may actually be much longer than a method that uses more (but cheaper) iterations.

In general, the recommendation strategy for the performance or reliability of a method may be
based on the following criteria, depending on the sensitivity of the problem or the desired result:

• Reliability: select a method that will converge even if it is slow, in this case the main goal is
to recommend a method that will guarantee a solution.

• Performance: choose a method that is the best depending on the performance measure (e.g.,
smallest solving time, best accuracy, least number of iterations, etc.). For this type of recom-
mendation, we might consider cases when it is previously known that the problem is well-
behaved and we only require a fast solution, or the choice of a set of methods that are very
likely to converge is the most suitable recommendation.

• Reliability and Performance: this is perhaps the hardest recommendation to make; it is a
combination of the two previous types and consists of choosing a method that is both reliable
and efficient.

Based on this we can decide what constitutes a better recommendation: choose a slower method
that is more likely to converge, or choose a faster method even if there is a chance that it diverges.
The best choice would be, of course, a reliable method that is also the fastest.

In the introduction to classification (Section 4.1) we mentioned that the input dataset is split into
two subsets: training and test. However, it is common to split instead the dataset into three parts:
training set, test set and what we will call unseen set. The unseen is a set that is excluded from the
learning process and is used for further testing the constructed classifiers to see how well a classifier
can make recommendations on new data, this process is called generalization. The name “unseen”
comes from the idea that the classifiers have never seen this data before, it has not been part of
the modeling of the discriminant functions, nor has it taken part in the derivation of the accuracies
of prediction. The results of the recommendation stage are done based on this dataset and will be
discussed in the experiments chapter, Sections 7.3.2 and 7.4.7.

Every time a recommendation is constructed we need to evaluate how good or bad it may be.
How good a recommendation is not only depends on the accuracy with which we can predict each
class, but also, on the gain or loss associated with choosing the predicted class. For example in
the Performance problem, if we predict that a method is the optimal for solving problem A and
this prediction is 90% accurate, it is also necessary to associate a penalty for the 10% chance that
the prediction made was wrong; we will denote this as the penalty of missclassification. But it is
important as well to associate a gain for the 90% possibility that the prediction is correct; this we
will refer to as the gain of correct prediction.

We can base the calculation of the penalty of misprediction on the statistical errors described
in Section 3.7. In our case, both problems of Reliability and Performance are associated with a
performance measurement (time to solution) that determines if a method is the best solution to solve
a problem. We can associate the classification errors with some loss of performance, for example,
using a mispredicted method may result in waiting 10 hours to solve a problem, as opposed to
waiting 1 hour if the optimal method had been chosen. In this sense, we can penalize the errors in
terms of the additional waiting time (performance loss), and the more mistakes a classifier makes
will result in a higher penalty.
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On the other hand, we can also weight the ability of a classifier to predict the correct method.
This is a performance gain that can be measured as the benefit of choosing an optimal method
compared to a default (default methods are commonly used in numerical software). In our example,
this means waiting less time.

These penalties are computed differently for the Reliability and Performance problems. How-
ever, they are determined based on the misclassification errors, and on the time loss. For the Reli-
ability problem we use the number of false positive (FP ) errors, and for the Performance problem
we use the errors’ data in the confusion matrix (described in Section 3.7.2).
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Chapter 5

The Reliability Classification Problem

This chapter addresses the concepts and strategies concerned with the identification and recom-
mendation of reliable solvers. This is probably the most critical part in the problem of choosing
appropriate solvers, because we want to minimize as much as possible the risk of choosing an unre-
liable solver that will iterate forever. The first section contains specific definitions for this problem,
and incorporates some of the statistical techniques from Chapter 3 to develop strategies for classifi-
cation and recommendation. Section 5.2 describes in detail the algorithms that constitute the various
classifying and recommending strategies for the problem of finding the best method in terms of time
to convergence.

In Chapter 4 we stated the need to address two main problems − reliability and performance.
This chapter concerns itself with the definition and description of the reliability problem.

In performance classification, there are three possible recommendation outputs: iterative method,
transformation, a combination of these two. A recommendation is built using the classifier func-
tions Υ. For the recommendation of iterative methods we need Υksp (where ksp ∈ K), and for
preconditioners Υpc (where pc ∈ D). For combination methods, we need to use both the classifiers
for iterative methods and for preconditioners.

The algorithms that describe how set up and derive the classifiers are derived will be denoted
as “Construction” algorithms. Those that describe the usage of the derived classifiers to form a
recommendation will be known as “Recommendation” algorithms.

5.1 Concepts and Definitions

The general problem of reliability classification consists of determining which methods converge
and which don’t for any particular problem (observation) F ∈ F. If we define the class space as
C = {converge, diverge}, then the classes represent the sets of those observations for which a
method converged or diverged respectively. More specifically, these classes are defined for each
method M as convergeM and divergeM , so when M is used to solve a problem A if M converged
then Fi is assigned to convergeM , otherwise it is assigned to divergeM .

Definition 18. Let M ∈ M. In the reliability problem, the class space for M is defined as

C = {convergeM , divergeM}
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where
convergeM = {F |F = Φ(A), A ∈ Å and T (A,M) 6= ∞}
divergeM = {F |F = Φ(A), A ∈ Å and T (A,M) = ∞}

(5.1)

And the reliability classifier function for a particular method M ∈ M is:

ΥM : F 7→ {convergenceM , divergenceM} (5.2)

such that for every F ∈ F, ΥM (F ) = convergenceM when M applied to F converges and
divergenceM otherwise. And the corresponding accuracy evaluating function

ΩM (F ) = 〈αconvergenceM , αdivergenceM
〉. (5.3)

5.1.1 Classification of Iterative Methods

To determine which iterative method is the most reliable or the fastest, we use as input observations
the set of feature vectors resulting from preconditioned (and preprocessed) matrices. In section
4.2 we defined M as the set of methods that potentially solve a problem A. M includes all possible
combinations of transformations, preprocessing steps and ksps. In this particular problem we refer to
the subset K ⊂ M that includes only iterative methods. This implies that the observations considered
for this experiment consist of the feature vectors extracted from preprocessed and preconditioned
matrices. The class space is defined like in Definition 18 but using K. It is also appropriate to
consider the set of (possibly) preconditioned problems and its features, since the preconditioners
may have an effect on the behavior of some ksps.

Let ksp ∈ K be an iterative method. In the reliability problem, the class space for ksp is

C = {convergeksp, divergeksp}

where

convergeksp = {F |F = Φ(D(A)), A ∈ A and T (D(A), ksp) < ∞ }

divergeksp = {F |F = Φ(D(A)), A ∈ A and T (D(A), ksp) = ∞}

and D ∈ D is a preconditioner. The classifier function for the reliability of ksp can be written as
follows based on Equation 5.2:

Υksp : F 7→ C (5.4)

such that ∀F ∈ F

Υksp(F ) =
{

convergeksp if ksp converged for F
divergeksp otherwise

where F ⊂ F is the set of preconditioned features F = Φ(D(A)).
And the accuracy evaluation function for ksp ∈ K is defined as Ωksp : F 7→ Y such that ∀F ∈ F

Ωksp(F ) = 〈αconvergeksp
, αdivergeksp

〉 (5.5)

The recommendation function, which determines the best choice of method for this case is:
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Definition 19. LetK ⊂ K be a set of available iterative methods, ksp ∈ K and F ∈ F . The method
picking function is given by

Πksp(F ) = K ≡ ∀ksp ∈ K Υksp(F ) = convergeksp

where F ⊂ F and F = Φ(D(A)) where D ∈ D

5.1.2 Classification of Transformations

This problem considers the case when we want to know if a transformation is reliable or not, re-
gardless of the iterative method being used.

The criteria for convergence and divergence in the transformations case is different than the one
used for the methods. For a problem A ∈ A and a transformation D ∈ D:

D is said to converge ⇐⇒ ∃M ∈ M that converges for F = Φ(D(A))

D is said to diverge ⇐⇒ ∀M ∈ M diverges for F = Φ(D(A))

Using these criteria and following the same idea as we did for iterative methods, we can define
the convergence and divergence classes.

Let D ∈ D be a transformation. The class space for the reliability problem for D is CD =
{convergeD, divergeD} where

convergeD = {F |F = Φ(A) s.t.∃ ksp ∈ K s.t. T (D(A), ksp) < ∞ where A ∈ A}

divergeD = {F |F = Φ(A) s.t.∀ksp ∈ K s.t. T (D(A), ksp) = ∞ where A ∈ A}

and F ∈ F where F ⊂ F is the set of original feature vectors (non-preconditioned) from A.
However, we have found from numerous experiments that this definition cannot be used in all

the cases. Unlike the classification of iterative methods which can be done independently from other
transformations, the classification of certain transformations requires to evaluate the classification
with respect to each particular method.

Theorem 2. It is not possible to determine if a transformation D ∈ D converges or not for a
problem A ∈ A using the class space CD = 〈convergeD, divergeD〉 and non-transformed feature
vectors.

Proof. By counter example. Let pc ∈ D be a preconditioner transformation. Suppose for instance
we apply different preconditioners to a problem A and we run two ksps on the preconditioned sys-
tems. For a particular problem Aj preconditioned with pci, the iterative method ksp1 may converge
while ksp2 does not. In terms of classification this creates a conflict, we have the same observation
(corresponding to Aj) in both convergence and divergence classes for pci. This not only contradicts
the class space Definition 12, but also makes impossible for classifiers to distinguish between the
classes because observations could appear in both classes.

This issue is also present in the other transformations, so we need to devise a different approach
for these classification problems. We will refer to this approach as conditional classification and it
is based on the fact that the behavior of many preconditioners is highly dependent on the iterative
method used and vice versa.
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The type of observations considered for this approach consist solely of unpreconditioned (non-
transformed) feature vectors from the set of problems A. The classes are formed by the set of
observations for which a ksp converged (or not), given that A was first preconditioned using pc
(i.e., ksp(A′) where A′ = pc(A)).

Definition 20. Let pc ∈ D, ksp ∈ K, and pc, ksp ∈ M. The class space for the conditional
classification of pc with ksp is given by the union of the following two classes:

convergepc,ksp = {F |F = Φ(A) such that T (pc(A), ksp) < ∞ where A ∈ A}

divergepc,ksp = {F |F = Φ(A), such that T (pc(A), ksp) = ∞ where A ∈ A}

and F ∈ Fpc, where Fpc is the set of unpreconditioned feature vectors extracted from A.

Definition 21. Let pc ∈ D, ksp ∈ K and C = {convergepc,ksp, divergepc,ksp}. The reliability
classifier function for the transformation pc given the iterative method ksp is Υpc,ksp : Fpc 7→ C,
such that ∀F ∈ Fpc

Υpc,ksp(F ) =
{

convergepc,ksp if ksp converges for F = Φ(pc(A))
divergepc,ksp otherwise

where Fpc is the set of unpreconditioned feature vectors.

To compute the classification for each pair of pc and ksp, we define the corresponding accuracy
evaluating function:

Definition 22. Let pc ∈ D and ksp ∈ K. The accuracy evaluation function for the classification of
the conditional combination pc, ksp is Ωpc,ksp : F 7→ Y such that ∀F ∈ F

Ωpc,ksp(F ) = 〈αconvergepc,ksp
, αdivergepc,ksp

〉

After obtaining the classification and accuracy evaluation for a particular pc with each available
ksp (conditional classes), we “merge” the results to evaluate the pc’s overall behavior. The main
idea of this strategy is to pair a particular pc with every available ksp in K to form the conditional
cases. The results of each conditional combination class where pc appears, are then merged to form
a global result for that pc as we will explain in detail next.

We first designate a numeric value for the convergence or divergence of a pc, ksp class for
F ∈ F:

βΥpc,ksp
(F ) =

{
1 if Υpc,ksp(F ) = convergepc,ksp

0 if Υpc,ksp(F ) = divergepc,ksp
(5.6)

where F = Φ(A) for A ∈ A. We then create a value to measure the convergence percentage
(convppc) of the pc:

convppc(F ) =

∑
∀ksp∈K

βΥpc,ksp
(F )

|K|
× 100 (5.7)

Lastly, the classifier function for the preconditioner is constructed as follows:

Υpc(F ) =
{

convergepc if convppc(F ) ≥ threshold
divergepc if convppc(F ) < threshold

(5.8)
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where threshold is an experimentally determined heuristic to quantify the overall convergence of
pc.

The accuracy evaluation for the convergence and divergence of a pc is processed in a similar
manner. It is computed as the average of the accuracies of the individual conditional classes:

αconvergepc =

∑
ksp∈K

αconvergepc,ksp

|K|

αdivergepc =

∑
ksp∈K

αdivergepc,ksp

|K|

(5.9)

For example, suppose that pc = ilu and that KSP = {gmres, tfqmr}. The conditional
classes would then be ilu, gmres and ilu, tfqmr with the corresponding accuracies α〈ilu,gmres〉 and
αilu,tfqmr . The overall accuracy for ilu would be the average of these two amounts. The accuracy
evaluation function for a precondtioner would be

Ωpc(F ) = 〈αconvergepc,ksp
, αdivergepc,ksp

〉 (5.10)

With the accuracy evaluation function we can obtain the accuracies for every possible combina-
tion of preconditioner and iterative method.

The method picking function, which determines the best choice of transformation in terms of
reliability is:

Πpc(F ) = D ≡ ∀pc ∈ DΥpc(F ) = convergepc (5.11)

where D ⊂ D is a set of preconditioners, pc ∈ D, Fpc is the set of unpreconditioned feature vectors
and F ∈ Fpc.

5.2 Algorithms for Classification and Recommendation

This section we revisit various definitions from the previous section. These are incorporated into
algorithms that overview the construction of classifier and recommendation functions for iterative
methods and/or preconditioners.

We consider three types of recommendations: iterative method, preconditioner, or combination
of both (e.g., composite methods). For the case of iterative methods and preconditioners, we will
describe the algorithms to derive the classifiers and to construct the recommendation (using the
derived classifiers). For combinations we only contemplate the recommendation function imple-
mentation. There is no need to construct an additional classifier for combinations since we can use
the classifiers that have been derived for the iterative methods and preconditioners separately.

5.2.1 Algorithms for Iterative Methods

This considers the case where we only want to know which iterative methods are reliable for a
problem, regardless of the preconditioner (or transformations) used. Note that for this particular
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problem, it is possible that the input is a matrix of the type A, or a preconditioned matrix A′ =
pc(A).

Construction of Classifiers for Iterative Methods

This algorithm describes the steps required to derive a classifier function for an iterative method
ksp. The classifier can later be used to select converging methods, discard diverging ones, and form
recommendations. Recalling from Section 4.1, a classifier is constructed based on decision rule. In
the reliability problem, it is necessary to derive such a decision rule for each of the iterative methods.
Thus, the following algorithm has to be applied for every ksp ∈ K:

for each ksp ∈ K

apply Algorithm 3 on A using ksp as input

Although the application of this algorithm is expensive, it is performed only once to train the learn-
ing system (or whenever new information needs to be added to a knowledge database).

Algorithm 3. Derive Reliability Classifiers for Iterative Methods

Input: a set of problems A and an iterative method ksp ∈ K

Output: a classifier function (discriminant) Υksp, and a vector of accuracies Yksp in Equa-
tion 4.6

1. Obtain the feature space as F = Φ(A)

2. As an optional step, transform the feature space using PCA as described in Section 3.6:
F′ = Γ(F) and make F = F′

3. Randomly split the feature space into training (Ftr) and test (Fte) sets

4. Using Ftr, derive a discriminant function Υksp (a set of parameters that describe a probability
density function) using a statistical learning methodology such as:

Kernel Mixture

Decision Trees

K-means Clustering

5. Using Fte, compute the accuracies for each of the two classes using Ωksp from Definition 15
to form Yksp

Construction of Recommendations for Iterative Methods

This algorithm describes the way of using the classifiers Υ to form a set of reliable methods for a
given problem. This implements the iterative method picking function (or recommendation func-
tion) Πksp(F ) (Equation 5.4). Observe that if the given problem A is not preconditioned, this
algorithm is very expensive because it would be necessary to precondition A with every precondi-
tioner to evaluate the overall performance of each ksp. However, the applicability of this particular
algorithm is for problems A that are already preconditioned, and the main requisite is to find a set
of reliable iterative methods.
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Algorithm 4. Use of Reliability Classifiers for Iterative Methods

Input: a problem A ∈ A, a classifier function Υksp and a vector of accuracies Yksp for each
ksp ∈ K

Output: a set of iterative methods K ⊆ K that converge for A

initialize K = {} and Q = {}

for each ksp ∈ K

if A is not preconditioned then

for each D ∈ D
extract the preconditioned features F = Φ(D(A))
if Υksp(F ) = convergeksp then
K = K ∪ {ksp}
obtain accuracyconvergeksp

from Yksp (Definition 4.6)
Q = Q ∪ {accuracyksp}

else

extract the features F = Φ(A)
if Υksp(F ) = convergeksp then

K = K ∪ {ksp}
obtain accuracyconvergeksp

from Yksp (Definition 4.6)
Q = Q ∪ {accuracyksp}

output ΠK(F ) = K and Q

5.2.2 Algorithms for Transformations

This is the case when we are interested only in the reliability of a transformation (preconditioner),
independently of the iterative method being used. In order to simplify the description of the al-
gorithms, we will limit the set of transformations to preconditioners as we have done in previous
chapters. The problem A in this case is not preconditioned, so the features extracted are in their
original form. Remember from Section 5.1.2 that in order to analyze a preconditioner, it is nec-
essary to account for each of the individual combinations of the desired preconditioner with each
iterative method and then merge these results.

Construction of Classifiers for Preconditioners

This algorithm describes the process to derive a classifier function for a preconditioner pc. In the
reliability problem, it is necessary to construct a classifier for each preconditioner, like t was done
for iterative methods. Thus it is necessary to apply this algorithm to every preconditioner to derive
each of the corresponding Υ functions.

Algorithm 5. Derive Reliability Classifiers for Preconditioners

Input: a set of problems A and preconditioner pc ∈ D
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Output: a classifier function (discriminant) Υpc, a vector of accuracies Ypc as in Defini-
tion 4.6

1. Obtain the feature space as F = Φ(A)

2. As an optional step, transform the feature space using PCA as described in Section 3.6:
F′ = Γ(F), and make F = F′

3. Using F, derive a discriminant function Υpc using the conditional combinations approach
described in Definition 17

4. For each ksp ∈ K

Create a conditional class for pc, ksp

Derive a discriminant function Υpc,ksp (a set of parameters that describe a probability
density function) using a statistical learning methodology such as:

Kernel Mixture
Decision Trees
K-means Clustering

Compute the accuracies for each of the two classes with Ωpc,ksp from Definition 15 to
form Ypc,ksp.

5. Merge the results for conditional Υpc,ksp using the steps described in Equations 5.6, 5.7, 5.8

6. Compute the accuracies for each of the two classes using Ωpc (Definition 22).

Construction of Recommendations for Preconditioners

This algorithm implements the preconditioner picking function ΠD(F ) (Equation 5.8) to obtain the
resulting set of reliable preconditioners. This is also the recommendation process.

Algorithm 6. Use of Reliability Classifiers for Preconditioners

Input: a problem A ∈ A, a classifier function Υpc and a vector of accuracies Ypc for each
pc ∈ D

Output: a set of preconditioners D ⊆ D for which some iterative method ksp ∈ K converges
for F

initialize D = {} and Q = {}

extract the features F = Φ(A)

for each pc ∈ D

if Υpc(F ) = convergepc then

K = D ∪ {pc}
obtain accuracyconvergepc from Ypc (Definition 4.6)
Q = Q ∪ {accuracypc}

output ΠD(F ) = D and Q
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5.3 Strategies for Combinations of Iterative Methods with Transfor-
mations

The algorithms for these approaches have the same input and output, but the construction of the
function Π and the way of obtaining the accuracy differs for each of them. The main difference
between these algorithms lies in the use of the classifier functions and the way the recommendation
is built. We will describe the algorithm for each approach in the following sections.

5.3.1 Orthogonal Approach

To find the accuracy of classification α for the convergence and divergence classes we do:

αconverge(pc,ksp)
= αconvergepc × αconvergeksp

αdiverge(pc,ksp)
= αdivergepc × αdivergeksp

The method picking function is then constructed:

Definition 23. Let pc ∈ D, ksp ∈ K, D ⊆ D, K ⊆ K, and let F ∈ F. The function for choosing pc
and ksp is

Πorthogonal(F ) = D ∪K ≡ ∀pc ∈ D Υpc(F ) = convergepc

and ∀ksp ∈ K Υksp(pc(F )) = convergeksp

where F = Φ(A).

Orthogonal Approach Algorithm

We assume that picking a pc is independent from picking a ksp (and that, numerically, one has no
effect on the behavior of the other). It is called “orthogonal” because we classify and pick first the pc
and then then ksp, separately. This algorithm implements the recommendation function Πorthogonal

from Definition 37.
In this approach, it is important to differentiate between the theoretical version and the practical

version. A theoretical version considers that in order to evaluate the overall behavior of a ksp it is
required to analyze its behavior with all the available preconditioners. To do this, it is necessary
to obtain the preconditioned features of the matrix A with each preconditioner, which is a very
expensive process. For this reason, the practical versions contemplate the use of a reduced set of
preconditioners.

Algorithm 7. Use of Reliability Classifiers for Combination methods: Orthogonal

Input: a problem A ∈ A, a set of classifier functions Υ and a set of vectors of accuracies Y
for each method and/or preconditioner

Output: a set of converging combinations of iterative method and preconditioner subset of
D×K expressed in the (pc, ksp) format, an accuracy of classification for each (pc, ksp)

initialize D = {}, K = {} and Q = {}
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extract the features F = Φ(A)

for each pc ∈ D

if Υpc(F ) = convergepc (Definition 5.8) then

D = D ∪ {pc}
obtain αconvergepc from Ypc (Definition 4.6)

for each D ∈ D (or D ∈ D for Theoretical algorithm)

extract the preconditioned features F = Φ(D(A))

for each ksp ∈ K
if Υksp(F ) = convergeksp then

K = K ∪ {ksp}
obtain αconvergeksp

from Yksp (Definition 4.6)
α(pc,ksp) = αconvergepc × αconvergeksp

Q = Q ∪ {α(pc,ksp)}

output Πorthogonal = D ×K and Q

5.3.2 Sequential Approach

The accuracies for the resulting combination (pc, ksp) are then obtained as follows

αconverge(pc,ksp)
= αconvergepc,ksp

× αconvergeksp

αdiverge(pc,ksp)
= αdivergepc,ksp

× αdivergeksp

The method picking function is:

Definition 24. Let pc ∈ D, ksp ∈ K, K ∈ K. Furthermore, let M ⊆ M be a set of combined
methods of the type pc, ksp, and F ∈ F. The function for choosing pc and ksp is

Πsequential(F ) = M ≡ ∀pc, ksp ∈M Υpc,ksp(F ) = convergepc,ksp

and ∀ksp ∈ K Υksp(pc(F )) = convergeksp

where F = ΦA.

Sequential Approach Algorithm

In this case we assume that picking a combined method pc, ksp is actually independent from picking
only the ksp. In order to use pc, ksp we must first choose a ksp. We can pick a combination but we
still need to consider the probability of actually picking a converging ksp. It is called simultaneous
because we are picking pc, ksp at once (however, we then choose a ksp). This algorithm implements
the recommendation function Πsimultaneous.

Algorithm 8. Use of Reliability Classifiers for Combination methods: Sequential
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Input: a problem A ∈ A, a set of classifier functions Υ and a set of vectors of accuracies Y
for each method and/or preconditioner

Output: a set of converging combinations of iterative method and preconditioner subset of
D×K expressed in the (pc, ksp) format, an accuracy of classification for each (pc, ksp)

initialize M = {} and Q = {}

extract the features F = Φ(A)

for each 〈pc, ksp〉 ∈ D×K

if Υ〈pc,ksp〉(F ) = converge〈pc,ksp〉 (Definition 21) then

M = M∪ {〈pc, ksp〉}
from 〈pc, ksp〉 take the iterative method’s name ksp

use Algorithm 4 to obtain αconvergeksp
from Yksp (Definition 4.6)

α(pc,ksp) = αconverge〈pc,ksp〉 × αconvergeksp

Q = Q ∪ {α(pc,ksp)}

output Πsequential = M and Q

5.3.3 Conditional Approach for Combination Methods

This approach is exactly the same as the conditional approach for transformations, except that we
don’t carry out the ”merging” part to obtain the overall information for a pc. Instead, we focus on
each of the combinations of the pc with the various ksps and treat these as if they were actually
methods in M of the form pc, ksp. The accuracy evaluating function becomes simply

Ω(pc,ksp)(F ) = Ωpc,ksp(F ).

and the computation of the respective accuracies is

αconverge(pc,ksp)
= αconvergepc,ksp

αdiverge(pc,ksp)
= αdivergepc,ksp

Experimental results show high accuracy of classification by using pc, ksp on its own. The
method picking function Π for this approach is as follows:

Definition 25. Let M ⊂ M be a set of combined methods of the type pc, ksp, where pc ∈ D and
ksp ∈ K, and let F ∈ Fpc

Πconditional(F ) = M ≡ ∀pc, ksp ∈M Υpc,ksp(F ) = convergepc,ksp

where Fpc is the set of unpreconditioned feature vectors.
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Conditional Approach

This approach assumes that the process of picking a pc is dependent on that of picking a ksp (and
vice versa). This implies that the behavior of a pc is conditional based upon the effect of a ksp and
conversely. The conditional approach is convenient, not only we don’t need to compute precondi-
tioned features for choosing ksps like we did in the sequential approach, but it also turned out to be
very accurate on its own. This algorithm implements the recommendation function Πconditional

Algorithm 9. Use of Reliability Classifiers for Combination methods: Conditional

Input: a problem A ∈ A, a set of classifier functions Υ and a set of vectors of accuracies Y
for each method and/or preconditioner

Output: a set of converging combinations of iterative method and preconditioner subset of
D×K expressed in the (pc, ksp) format, an accuracy of classification for each (pc, ksp)

initialize M = {} and Q = {}

extract the features F = Φ(A)

for each 〈pc, ksp〉 ∈ D×K

if Υ〈pc,ksp〉(F ) = converge〈pc,ksp〉 (Definition 21) then

M = M∪ {〈pc, ksp〉}
obtain αconverge〈pc,ksp〉 from Y〈pc,ksp〉 (Definition 4.6)
α(pc,ksp) = αconverge〈pc,ksp〉

Q = Q ∪ {α(pc,ksp)}

output Πconditional = M and Q

This approach is convenient for the Reliability problem because it is not necessary to compute
preconditioned features of the problems. The accuracy of classification is comparable to the se-
quential approach, which in turn requires the full analysis with preconditioned features making the
process very expensive. The downside of this strategy is that sometimes there may be very little
data in some of the classes. In our experiments, this has not posed a big issue, specially since the
data in the convergence classes has been separated very well from the corresponding divergence
classes. However, in the Performance problem (which we will cover in the next chapter) where the
comparison is done between all the available methods, using conditional combinations makes the
discrimination between classes very difficult.

5.4 Recommendation Evaluation

The recommendation for the Reliability problem consists of a set of methods that are likely to con-
verge for solving problem A. As a part of the recommendation we need to evaluate the “risk” of
choosing each method. In Section 3.7.1 we presented the types of statistical errors for a binary
classification problem. We can use these concepts in the assessment of classification and recom-
mendation results.
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The penalty of misclassification is dependent on the action we take once the class membership
has been determined for a matrix. The price of choosing a diverging method would be to iterate
forever or to get a completely wrong solution, but discarding a converging method under the idea
that it diverges means that we can choose another possibly slower method. Obviously the first
mistake is more costly than the second one, so the associated penalty should be higher; this error is
also a false positive.

For a method M we have defined our set of classes as convergeM and divergeM . The worst
action to take is to recommend or use a method that diverges when the classifier has mistakenly said
that it converges, so the errors with respect to class convergenceM are:

FP : saying the method converges when in reality it diverges

FN : saying the method diverges when in reality it converges

Now we need to incorporate this error and its associated penalty into our decision making process.
The Bayes methodology provides a convenient approach to incorporate the notions of gain and

penalty directly into the formulation of the classifiers and the decision rule. We can define two
mutually exclusive actions to take for a method:

• a1: run the method

• a2: discard the method

Let us express the set of classes as ω, and define a penalty λ, which is associated with taking a
particular action in a particular situation (e.g. running a method, given that it diverges): λ(ai|ωj).
We can then express the risk R of taking the action ai as follows:

R(ai|F ) =
j=1∑

c

λ(ai|ωj)P (ωj |F )

where F is a given problem (vector of features in our case), and P is the computed posterior prob-
ability. To simplify the notation, we can express the penalties as λij . Note that for a two-class
problem like this one, the total penalty is given by λij +λii, but λii is zero because we do not assign
a penalty for making the right choice.

This is very convenient for those classifiers using Bayesian methodology, but since we also use
other approaches like Decision Trees, we can use these penalty ideas to “weight” a recommendation.
For example, the cases when the error is minimized we can have better recommendations from a
classifier.

The challenge here becomes to choose an appropriate metric for the associated penalties in terms
of the weight we want to give to each type of error. The proposed metric for this penalty is in terms
of the maximum amount of time we are willing to wait to determine convergence as a slowdown or
performance loss factor. In general, we define slowdown factor as follows:

slowdown =
time to solve A using a slower method
time to solve A using a faster method

. (5.12)

In the Reliability problem, the time for the “slower” method is the maximum waiting time to
convergence, and the time for the “faster” method could be that associated to the optimal method
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or to any other converging method. Although the time-to-wait for divergence is determined by
the particular stopping criteria used in the implementation of the iterative solvers, the slowdown
should be a factor big enough to represent the maximum waiting time (in practice, this is perhaps
comparable to the time for a very slow method to converge). This factor can be determined with
the aid of preliminary experimental results; for example, in our experiments we have found that the
highest slowdown factor for a method is 16 (a method is at most 16 times slower than any another
one), therefore we assign 30 as the the penalty for an FP ∗.

The slowdown and number of FP errors can then be used to weight how good a recommenda-
tion is for a method M . We define a metric Q to measure how good is a recommendation using the
accuracy of classification, the error and the slowdown:

Qreliability =
αM

slowdown× FPratio
, (5.13)

and the smaller Qreliability is, the better the recommendation. In our experiments, the slowdown is
constant for a test, so we can simplify Equation 5.13:

Qreliability =
αM

FPratio
. (5.14)

The penalty for a FN error is given by the slowdown factor computed as

slowdown =
time to solve A using the predicted converging method

time to solve A using the optimal method
. (5.15)

Note however, that when a Reliability recommendation is issued is not possible to determine whether
a “converging” method is the optimal or not, and if not, how slow it is. The analysis of this type
of error falls into the area of the Performance problem and it will be addressed in Section 6.3. The
worse case is when the converging method is the slowest, and the best case is when the converging
method is actually the optimal, in which case the slowdown factor is 1, in such case FN is not really
an error.

∗In our experiments we have determined these factors experimentally from the performance information from our
available datasets, but the computation of this factor should be automated as a part of the adaptivity of the recommendation
system over time
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Chapter 6

The Performance Classification Problem

This chapter describes in detail the algorithms that constitute the various classifying and recom-
mending strategies for the problem of finding the best method in terms of time to convergence. The
first Section contains specific definitions for this problem, and incorporates some of the statistical
techniques from Chapter 3 to develop strategies for classification and recommendation. Section 6.2
covers the description of the specific strategies and algorithms developed for this problem.

In Chapter 4 we stated the need to address two main problems: Reliability and Performance.
This chapter concerns itself with the definition and description of the Performance problem. Like
in the Reliability problem, there are three types of classification: iterative method, preconditioner,
a combination of these two. A recommendation is built using the classifier functions Υ. For the
recommendation of iterative methods we need Υksp (where ksp ∈ K), and for preconditioners Υpc

(where pc ∈ D). For combinations of these, we need to use both the classifiers for iterative methods
and for preconditioners.

The algorithms that describe how set up and derive the classifiers will be denoted as classi-
fier “Construction” algorithms. Those that describe the usage of the derived classifiers to form a
recommendation will be known as “Recommendation” algorithms.

6.1 Concepts and Definitions

The performance problem consists of finding which method converges the fastest for a given prob-
lem (this implies that only cases where the methods converged are considered). There are always
two or more classes, one for each method that is being compared. The set of methods taken into
consideration is M ⊆ M (Definition 5), for iterative methods and transformations in particular we
use K and D respectively. A performance class CM ∈ C is the set of problems (observations) for
which the method M was the fastest . The cardinality of the performance class space C is the num-
ber of methods considered |M|; i.e., there is one class per method. Similarly, given a transformation
D the class CD is defined as the set of problems transformed with D for which some method was
the fastest.

In general, the classes and the class space for the performance classification problem is defined
as follows:

Definition 26. Let A ∈ A, let I be the index set of methods and i, j ∈ I . For each method Mi ∈ M
define:

ClassMi = {F |F = Φ(A), ∀j : T (A,Mi) < T (A,Mj)} .
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In other words, M is the fastest method for solving A. Note that for every solvable A ∈ A there
exists some method M that is the fastest, thus A =

⋃
M

ClassM , and for every observation in A

there is only one method that is the fastest so the classes are disjoint.

Definition 27. In the performance problem the class space is defined as

C = {ClassM |M is amethod in M} .

In particular, for performance classification we are interested in comparing several methods side
by side, so the classifier is defined differently than for convergence:

Definition 28. For a given problem A ∈ A, let M ⊆ M be the set of methods that solve A.
The performance classifier for M is given by ΥM : F 7→ CM where CM is a set of two or
more performance classes of the type ClassM (from Definition 26), such that for a given F ∈ F
∃M ∈M

ΥM(F ) = ClassM

where F = Φ(A), and M is the method that solves A the fastest.

Remember that the accuracy for any type of class is computed as described in Definition 15.
The accuracy evaluating function Ω for the performance problems has a general form. The only
difference is the number of methods (or transformations) that are considered for each problem in
particular.

Definition 29. Let n = |M| where M represents the methods or transformations to classify. The
accuracy evaluating function is given by:

ΩM = 〈αM1 , αM2 , . . . , αMn〉

As opposed to the reliability classification problem, by Definition 8, the method picking function
Π for the performance problem outputs solely one method – the fastest.

Definition 30. For a given problem A ∈ A, let F = Φ(A) the function that picks the fastest method
to solve A is constructed as:

ΠM(F ) = M ≡ ∃M ∈ M ΥM(F ) = ClassM

where F ∈ F.

However, it is possible that certain methods are almost as fast as the chosen method. For such
cases, we will consider the possibility of recommending more than one method, e.g., the first and
second best methods. This will be described in the implementation of the recommendation algo-
rithms in Section 6.2.

6.1.1 Classification of Iterative Methods

In this section we focus only on K, the subset of M which includes only iterative methods (ksps),
like we did in Section 5.1.1. The class space is constructed as in Definition 27, but based only on
the set iterative methods considered K ⊆ K. A class in this space is defined:
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Let A ∈ A, and K ⊆ K be the set of iterative methods available that solve A. Let I be the index
set of methods and i, j ∈ I . For each method kspi ∈ K define:

Classkspi
= {F |F = Φ(D(A)), ∀j : T (A, kspi) < T (A, kspj)} (6.1)

where D ∈ D.

Definition 31. The class space for the performance problem, based on a set of iterative methods is
constructed as:

CK = {Classksp | ksp ∈ K}

Based on this, the classifier functions to find the best iterative method can be defined as follows:

Definition 32. For a given problem A ∈ A, let K be the set of methods that solve A. The perfor-
mance classifier for K is given by ΥK : F 7→ CK where CK is a set of two or more performance
classes of the type Classksp (Definition 6.1), such that for F ∈ F ∃ksp ∈ K

ΥK(F ) = Classksp (6.2)

where F = Φ(D(A)) for a transformation D ∈ D, and ksp is the iterative method that solves A
the fastest.

The trivial function for choosing the method is defined as follows:

Definition 33. For a given problem A ∈ A, let F = Φ(D(A)) where D ∈ D and let ksp ∈ K. The
function that picks the fastest method to solve A is constructed as:

ΠK(F ) = ksp ≡ ∃ksp ∈ K ΥK(F ) = Classksp

where F ∈ F.

6.1.2 Classification of Transformations

The problem of finding the “optimal” (fastest) transformation for a problem A ∈ A, is that of
finding which transformation makes an iterative method be the fastest. The comparison of transfor-
mations is performed only against other transformations of the same type. The different types of
transformations were described in Section 4.2.3. Like in previous sections, the description and con-
struction of the class space and other concepts for this problem will be based on the preconditioner
transformation; so for clarity of the notation, we will assume that D contains only preconditioners
(i.e., Dpc = D). The methods and definitions described here can be extended later to other types of
transformations.

We denote the set of available preconditioners as D, a subset of D. A class can be defined as
follows.

Let A ∈ A, andK ⊆ K be the set of iterative methods available that solve pc(A), where pc ∈ D.
Let I be the index set of methods and i, j ∈ I . For each preconditioner pci ∈ D define:

Classpci = {F |F = Φ(A), ∀j : T (pci(A), ksp) < T (pcj(A), ksp)} (6.3)

where ksp ∈ K.
We now define the class space for the transformation classification problem.
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Definition 34. Let D ⊆ D be the set of available preconditioners. The class space for the perfor-
mance problem is

C = {ClassD|D ∈ D}

Next, we construct the corresponding classifier based on this class space:

Definition 35. For a given problem A ∈ A, let D be the set of preconditioners that can be applied
to A. The performance classifier for D is given by ΥD : F 7→ CD where CD is a set of two or more
performance classes of the type Classpc(Definition 6.3), such that for a given F ∈ F ∃pc ∈ D

ΥD(F ) = Classpc

where F = Φ(A), and pc is the preconditioner for which a set of iterative methods K were the
fastest for solving pc(A).

The function for choosing the method is:

Definition 36. For a given problem A ∈ A, let F = Φ(A). The function that picks the precon-
ditioner which yields to solve A the fastest with some iterative method ksp ∈ K is constructed
as:

ΠD(F ) = pc ≡ ∃pc ∈ D ΥD(F ) = Classpc

where pc ∈ D and F ∈ F.

6.1.3 Strategy for Recommendation of Composite Methods

As opposed to the Reliability problem, in the Performance problem we have to compare side by
side all available combinations, which results in a large class space. Suppose we have k available
iterative methods and d available preconditioners; this results in k × d classes, which makes the
classification problem very difficult. Since the class space is a partition of the dataset, the more
classes there are, the fewer number of observations there is in each class (classes with very few
observations can cause some classifiers to fail or result in overfitting and thus, poor generalization).
It is also harder to distinguish between classes, especially among those that are very similar, because
the intersection areas between the classes yield larger statistical errors relative to the size of the
classes (experimental results about this are discussed in Section 7.4.6).

For this reason, we will focus on a strategy equivalent to the orthogonal approach from the
Reliability problem (see Section 5.3.1). The density functions for the iterative method and the pre-
conditioner are computed separately (ΥK and ΥD), as well the accuracies of classification. Let
n = k × d where k is the number of iterative methods available and d is the number of precondi-
tioners available. The accuracy of classification for any combination (pc, ksp) is the product of the
independent accuracies:

α(pc,ksp) = αpc × αksp where pc ∈ D and ksp ∈ K. (6.4)

The method picking function is then constructed (based on the sets of available iterative methods
and preconditioners):
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Definition 37. Let pc ∈ D, ksp ∈ K, D ⊆ D, K ⊆ K, and let F ∈ F. The function for choosing
the best composite method (pc, ksp) is

Πorthogonal(F ) = D ∪K ≡ ∃pc ∈ D ΥD(F ) = Classpc

and ∃ksp ∈ K ΥK(pc(F )) = Classksp

where F = Φ(A).

6.1.4 Method Similarity and Superclasses

In classification problems, the more classes there are the more difficult it is to differentiate between
each of them, in particular when we are dealing with high dimensional problems. For this reason,
it is advisable to have only the basic number of classes that best represent the data. In our software
implementation we have 8 iterative methods and 10 preconditioners. Several of these methods
are potentially similar in performance and convergence behavior, whether it is because of their
numerical nature or because of their implementation (same applies to preconditioners).

To compare and measure the similarity of the methods or transformations, we define the follow-
ing measurements

Definition 38. Let x, y ∈ M. The independence of method x from method y is:

Iny(x) =
x1 ∧ y0

x1
(6.5)

that is, the proportion of cases for which method x converged and method y diverged with respect
to the total number of cases where method x converged. This quantity is always between 0 and 1,
with being 1 complete independence.

Definition 39. For any two different methods x ∈ M and y ∈ M we define covering ratio as:

CR(x, y) =
P (x0 ∧ y1) + P (x1 ∧ y0)

P (x1 ∧ y1)
(6.6)

where P represents a proportion. In other words, this ratio is the proportion of cases where ei-
ther method converges with respect to the proportion of cases where both methods converge. This
measurement can have values between 0 and ∞.

The method independence helps us identify those methods that cover other methods in the sense
of reliability. It also help us evaluate how independent one method is with respect to another. Figures
6.1(a) and 6.1(b) explain these ideas in more detail. Also, note that method independence is not a
symmetric relation, i.e. IM1(M2) 6= IM2(M1).

The covering ratio can help us determine when a method covers another one and by how much,
i.e. the size of intersection of cases that they solve. The closer its value is to 0, the more they
intersect, and the more it grows to ∞ the less they intersect (refer to figures 6.1(a) and 6.1(b)).
Essentially, a small intersection indicates that the types of cases that each of them cover is very
different, and we can view a bigger intersection as the case when one can be used instead of the
other to solve the problems (in terms of reliability).

The similarity of two methods can be measured in terms of these two quantities. Suppose for
example we have methods M1 and M2, if InM1(M2) ≈ 0 and InM2(M1) ≈ 0 then both methods
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Figure 6.1: Example for method independence and coverage: (a) Method x converges for most of
the cases where method y also converges; this figure also shows the case when x is very independent
from y (Iy(x) ≈ 0.85) but not otherwise (Ix(y) ≈ 0.25). (b)Method x converges for most of the
cases where method y diverges, x and y are both very independent from each other.

are highly dependent on each other. In addition, if CR(M1,M2) > 1 it means that these methods
solve approximately the same number (and types) of cases. These amounts allow us to group meth-
ods (or transformations) into what we define as superclasses, which group the observations that are
best solved by similar methods.

Experimental results have showed that independence values smaller than 0.4 already indicate
a significant dependence of one method on the other. For covering ratio a value greater than 0.7
is an indication that the methods have a similar convergence and performance behavior if both
independence measurements are below 0.4. Based on this we can now formalize the concept of
similar iterative methods:

Definition 40. Let I be the index set of iterative methods and i, j ∈ I . Let kspi, kspj ∈ K. The
methods kspi and kspj are similar if the following conditions hold for i 6= j:

Inkspi
(kspj) ≤ 0.4 and Inkspj

(kspi) ≤ 0.4 and CR(kspi, kspj) ≥ 0.7

A superclass can be defined as follows:

Definition 41. Let I be the index set of iterative methods, and i, j ∈ I . Let K ⊂ K be a set of
similar methods as defined above (Definition 40). A superclass, denoted as CLASSK , is composed
by the union of several classes like the Classksp from Definition 26 where ksp ∈ K

CLASSK =
⋃

ksp∈K

Classksp

and none of these classes is contained in any other superclass.

Furthermore, CLASSK is a set of observations for which one of the similar methods is the
fastest:

CLASSK = {A|∃kspi ∈ K such that ∀kspj /∈ K : T (A, kspi) < T (A, kspj)}

The following algorithm describes how to form the superclasses of iterative methods:
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Algorithm 10. Build Superclasses

Input: a set of methods K, a set of classes CK = {Classksp|ksp ∈ K}

Output: a set of N superclasses CKN
, a partition KN of K (methods organized into super-

classes)

initialize i = 1, CLASS = {}, K′ = {}, KN = {}, CKN
= {}, and K = K

for each ksp1 ∈ K

CLASSi = CLASSi ∪ {Classksp1}
K′ = K′ ∪ {ksp1}
for each ksp2 ∈ K such that ksp1 6= ksp2

if ksp1 and ksp2 are similar (definition 40)
CLASS = CLASS ∪ {Classksp2}
K′ = K′ ∪ {ksp2}
K = K − {ksp2}

K = K − {ksp1}
make CLASSi = CLASS and Ki = K′

restore CLASS = {} and K′ = {}
i = i + 1

CKN
= CKN

∪ {CLASSi}
KN = KN ∪ {Ki}

output CKN
and KN

The class space for superclasses is defined as:

Definition 42. Let N be the number of identified superclasses for iterative methods. ClassKN is
the class space of superclasses and is a partition of the class space C from Definition 27 such that

CKN
= {CLASSK |CLASSK is a superclass}

The classification is then made based on superclasses rather than the original classes. By group-
ing the observations in this way we may achieve better accuracy of classification for the classifiers.
Once we have found the best superclass, we proceed to do classification using the subclasses.

The classification learning process using superclasses follows both the training and testing steps
as described previously in Section 4.1. We can use the concept of superclasses to develop a hier-
archical classification strategy, which carries out the classification in several levels of classes and
subclasses. The algorithm for hierarchical classification using superclasses will be described in
detail in Section 6.2.2.
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6.2 Algorithms for Classification and Recommendation

The algorithms for the Performance problem are also divided in Classification (which concerns
the learning process) and Recommendation (the actual method picking process). In here we also
consider the three recommendation possibilities as discussed in previous chapters: iterative method,
preconditioner or combination of both. There are classification algorithms for these three cases,
but for combinations there are only recommendation algorithms since the classification is based on
independent results of the first two cases.

6.2.1 Algorithms for Iterative Methods

The Performance problem is described as finding which iterative method is the fastest (in terms of
time to convergence) for solving a particular linear system A ∈ A, regardless of the preconditioner
(or transformations) used. Note that for this particular problem, it is possible that the input is a
matrix of the type A, or a preconditioned matrix A′ = pc(A).

Construction of Classifiers for Iterative Methods

This is the way to derive the classifier for a particular ksp in the performance problem. The classifier
can later be used to form pick converging methods, discard diverging ones, and form recommenda-
tions.

Algorithm 11. Derive Performance Classifier for Iterative Methods

Input: a set of problems A, a set of available iterative methods K

Output: a classifier function (discriminant) ΥK, and a vector of accuracies YK as in Defini-
tion 4.6

1. Obtain the feature space as F = Φ(A)

2. As an optional step, transform the feature space using PCA as described in Section 3.6:
F′ = Γ(F) and make F = F′

3. Randomly split the feature space into training (Ftr) and test (Fte) sets

4. Using Ftr, derive a discriminant function ΥK (a set of parameters that describe a probability
density function) using one of the methodologies in Section 3.2, e.g.

Kernel Mixture

Decision Trees

5. Using Fte, compute the accuracies for each of the |K| classes using ΩK as described in
Definition 15 to form YK
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Recommendation of Iterative Method

This algorithm describes the way of using the classifier ΥK to find the fastest iterative method to
solve a given problem. It shows the implementation of the iterative method picking function ΠK(F )
(Equation 6.2).

Algorithm 12. Use of Performance Classifier for Iterative Methods

Input: a problem A ∈ A, a classifier function ΥK

Output: an iterative method K ∈ K which is the fastest for solving A

initialize K = {}

if A is not preconditioned then

for each D ∈ D
extract the preconditioned features F = Φ(D(A))
if ΥK(F ) = Classksp then

K = {ksp}
obtain αksp from YK (Definition 4.6)

else

extract the features F = Φ(A)

if ΥK(F ) = Classksp then

K = {ksp}
obtain αksp from YK (Definition 4.6)

output ΠK(F ) = K and the corresponding accuracy αK = αksp

6.2.2 Algorithms for Transformations

This is the case when we are interested only in finding the optimal transformation among the avail-
able ones, independently of the iterative method being used. In order to simplify the description of
the algorithms, we will limit the set of transformations to preconditioners as we have done in previ-
ous chapters, and D ⊆ D is the set of available preconditioners. The problem A in this case is not
preconditioned, so the features extracted are in their original form. Unlike the Reliability problem
described in Section 5.1.2, in the Performance problem it is not necessary to analyze individually
each of the combinations like 〈pc, ksp〉. For the performance problem we want to know which is the
fastest preconditioner, and since we can assume that the timings for each observation are different,
then there is only one transformation that yields the fastest solution (i.e., there is only one “optimal”
preconditioner no matter what iterative method is used, as opposed to the Reliability problem where
a preconditioner can be reliable for more than one iterative method).
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Construction of Classifiers for Preconditioners

Algorithm 13. Derive Performance Classifier for Preconditioners

Input: a set of problems A, a set of available preconditioners D

Output: a classifier function (discriminant) ΥD, a vector of accuracies YD as in Definition 4.6

1. Obtain the feature space as F = Φ(A)

2. As an optional step, transform the feature space using PCA as described in section 3.6: F′ =
Γ(F), and make F = F′

3. Randomly split the feature space into training (Ftr) and test (Fte) sets

4. For each pc ∈ D

• Using Ftr, derive a discriminant function ΥD using the conditional combinations ap-
proach described in Definition 17, and one of the techniques described in Section 3.2
for example

Kernel Mixture
Decision Trees

5. Using Fte, compute the accuracies for each of the |D| classes using ΩD as described in
Definition 15 to form YK

Algorithm for Recommendation of Preconditioner

This algorithm details the construction of the preconditioner picking function ΠD(F ) (Equation 35)
to obtain the fastest preconditioner. This is the recommendation process for the performance of
preconditioners.

Algorithm 14. Use of Performance Classifier for Preconditioners

Input: a problem A ∈ A, a classifier function ΥD

Output: a preconditioner PC ∈ D for which some iterative method ksp ∈ K is the fastest
solving A

initialize PC = {}

extract the features F = Φ(A)

if ΥD(F ) = Classpc then

PC = {pc}
obtain αpc from YD (Definition 4.6)

output ΠD(F ) = PC and αPC = αpc
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Hierarchical Classification for the Performance Problem

To find the fastest method, it is necessary to compare different methods at a time. The bigger
the cardinality of the class space, the harder it is to distinguish between each of the classes. For
this reason we need to develop a different approach for finding the fastest method for solving a
problem A. Hierarchical classification consists of forming superclasses (Definition 41) that group
similar methods (Definition 40) and perform the classification based on these classes. Then, once
the superclass was picked, the classification proceeds to differentiate between the classes within that
superclass.

The following algorithms show the strategy followed to carry out hierarchical classification for
a set of |K| methods to find the fastest method K ∈ K.

Methods are grouped based on similarity measures (In and CR) of convergence and perfor-
mance, which were described in Section 6.1.4.

In hierarchical classification these two processes vary slightly so we will describe the additional
processing. Using Algorithm 10 we form the super classes and create their class space CKN

, this
space also defines how the iterative methods are organized into each of the superclasses KN .

Algorithm 15. Derive Performance Classifiers for Superclasses of Iterative Methods

Input: a set of problems A organized as a set of superclasses CKN
, a partition KN of the

iterative methods

Output: a superclass classifier ΥKN
, a vector of accuracies YKN

(Definition 4.6)

1. Obtain the feature space as F = Φ(A)

2. As an optional step, transform the feature space using PCA as described in Section 3.6:
F′ = Γ(F) and make F = F′

3. Randomly split the feature space into training (Ftr) and test (Fte) sets

4. Using Ftr, derive a discriminant function ΥKN
(a set of parameters that describe a probability

density function) using a statistical learning methodologies such as the ones described in
Section 3.2, for example:

Kernel Mixture

Decision Trees

5. Using Fte, compute the accuracies for each of the N superclasses using ΩKN
as described in

Definition 15 to form YKN

for each CLASSi ∈ CKN

make A = CLASSi and K = Ki

apply Algorithm 11 to derive a discriminant function ΥKi and the corresponding accu-
racies YKi for the current superclass

output ΥKN
and YKN
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The following algorithm uses the derived classifiers of both superclasses and subclasses to build
the recommendation.

Algorithm 16. Use of Performance Classifiers for Superclasses of Iterative Methods

Input: a problem A ∈ A, a classifier function for superclasses ΥKN
, and a set of classifier

functions ΥKi (one for each ith superclass)

Output: an iterative method K ∈ K that is the fastest for solving A

initialize K = {}

if A is not preconditioned then

for each D ∈ D
extract the preconditioned features F = Φ(D(A))
if ΥKN

(F ) = CLASSKi then
with the superclass CLASSKi and the respective set of classifiers Υksp where
ksp ∈ Ki use Algorithm 12 to obtain K and αK

else

extract the features F = Φ(A)
if ΥKN

(F ) = ClassKi then
with the superclass CLASSKi and the respective set of classifiers Υksp where
ksp ∈ Ki use Algorithm 12 to obtain K and αK

output ΠKN
(F ) = K and αKN

= αK

These algorithms are specific for iterative methods, however, they can be easily modified to work
with preconditioners and other transformations by using D instead of K (and they can be extended
to work with combinations of these by using D × K). If we are dealing with transformations, the
recommendation process in Algorithm 12 has to omit the preconditioning (or preprocessing) of
features as follows:

Algorithm 17. Use of Performance Classifiers for Superclasses of Preconditioners

Input: a problem A ∈ A, a classifier function for superclasses ΥDN
, and a set of classifier

functions ΥDi (one for each ith superclass)

Output: a preconditioner D ∈ D which makes some iterative method in K be the fastest
solving A.

initialize PC = {}

extract the features F = Φ(A)

if ΥDN
(F ) = CLASSDi then

with the superclass CLASSDi and the respective set of classifiers Υpc where pc ∈ Di

use Algorithm 14 to obtain PC and αPC

output ΠDN
(F ) = PC and the accuracy αDN

= αPC
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6.2.3 Algorithms for Combinations of Iterative Methods with Transformations

As opposed to the Reliability problem, the treatment for combination methods for the Performance
problem is different. Suppose that we create a class per combination (pc, ksp). If we have eight
preconditioners and seven iterative methods available then we would have 56 classes to choose from.
If we use this approach, the number of classes grows quadraticaly and is very hard for a classifier
to distinguish among them. Hence, it is very difficult to follow the conditional approach that was so
favorable for the Reliability problem.

In this case we need to take a simpler approach. Preliminary experiments indicated that the
accuracy of different classifying strategies for combinations like (pc, ksp), used in the Reliability
problem (Section 5.3), is minimal. Therefore, we can simply use the most straightforward approach,
which is the orthogonal strategy. Naturally, a tradeoff between accuracy and simplicity may arise
for certain methods or classifiers, but the use of certain recommendation measurements can help to
improve predictions, these will be discussed in Section 6.3.

Algorithm 18. Use of Performance Classifiers for Combination Methods: Orthogonal

Input: a problem A ∈ A, functions ΥD and ΥK

Output: a combination method expressed in the (pc, ksp) format which is the fastest combi-
nation for solving A.

initialize D = {}, K = {} and Q = {}

extract the features F = Φ(A)

for each pc ∈ D

if ΥD(F ) = Classpc then

obtain αpc from YD (Definition 4.6)

for each D ∈ D (or D ∈ D for Theoretical algorithm)

extract the preconditioned features F = Φ(D(A))

for each ksp ∈ K
if ΥK(F ) = Classksp then

obtain αksp from YK (Definition 4.6)
α(pc,ksp) = αpc × αksp

output Πorthogonal = (pc, ksp) and α(pc,ksp)

This approach is also convenient for use with superclasses, e.g., instead of using the K and D
sets we can use superclasses sets.
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6.3 Recommendation Evaluation

The Performance problem is a multi-class classification problem. In a two-class problem, like in
Reliability, the quality of the recommendation depends mainly on the statistical error. In a multi-
class problem, both the quality of a recommendation and the penalties associated with error depend
on how we measure the “badness” of a wrong recommendation considering all the classes involved.
Like in the Reliability problem, we can measure how bad a predicted method is as the additional
time t we have to wait for it to converge to the solution for a linear system A, compared to the time
that the optimal method takes. This can be seen as a factor of time loss or speed loss for solving a
problem; it was defined Equation 5.12 as the slowdown factor.

In the Performance problem, we can then express the quality of the recommendations as gain
and loss of time (or any other performance metric). This problem is concerned with the prediction of
an optimal method to solve a matrix, so the answers are not “binary” like in the Reliability problem
(converges, diverges). For this reason, besides measuring “how bad” a method is, it is also important
to measure “how good” it is. In other words, the recommendation goes beyond determining whether
a method is the optimal, but should also considers these cases ∗:

• If the prediction is indeed the optimal method, how much faster it is compared to a default.
This can be represented as the factor of speed gain

speedup =
T (A,Mdefault)
T (A,Mpredicted)

• If the prediction is wrong, how much slower the recommended method is compared to the
actual best method. We use the following factor to evaluate this speed loss:

slowdown =
T (A,Mpredicted)
T (A,Moptimal)

The slowdown can be used as a factor to penalize mispredictions for each method together
with the statistical error. The error of misprediction can be obtained from the confusion matrix(see
Section 3.7.2) associated to the classification problem. We can compute the slowdown factor for
each method and then use it to weight the non-diagonal elements of the confusion matrix to obtain
an expected loss associated with the method.

First we need to define intervals or “bins” of slowdown factor, e.g., “from 1 to 2”, “from 2 to
20”,“more than 20”. These bins will contain those errors whose associated slowdown factors fall in
the range delimited by the bin; i.e., each bin is an error counter or accumulator. A slowdown bin is
defined as:

BM,l,c,u where M ∈M, l is the lower limit of the bin u is the upper limit and c is the center.

The center of the bin can be for example the mean value between l and u or the median. It can
be determined arbitrarily depending on the data, application, methods, etc. Then we compute the
slowdown factor for every A in the unseen set that is misclassified and assign it to the corresponding

∗Moreover, we have to ponder the possibility of recommending more than one method. For example, according to the
classification recommend the “optimal” method and then from the remaining ones, select the second “optimal” choice.
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bin (increase its count)

if l ≤
T (A,Mpredicted)
T (A,Moptimal)

< u, increaseBM,l,c,u by one.

Observe that these errors originate from the non-diagonal elements of the confusion matrix
associated with the classification, so the errors that account for a bin BM,l,c,u correspond to the
column for method M . Based on this, we can compute a weighted average of errors and slowdown
factors for a each method M ∈M; we call this expected loss.

Definition 43. Let S1, . . . , Sn be a series of speedup factors, where n is the number of bins in which
we split the speedup range, i.e., BM,l,c,u is a bin, such that 1 ≤ c < n. LetM be the set of available
methods. The expected loss for a method Mi ∈M is given by

LMi =
n∑

j=1

Sj ×BMi,l,j,u

This represents the expected loss of performance if we are to choose the recommended method
Mi, i.e., if it happens that Mi is not the optimal method, how bad or slow it is expected to be with
respect to the optimal method (whichever it was).

Similarly, we can use the speedup factor to weight the diagonal elements of the confusion
matrix and obtain an expected gain associated with the method. When we form the bins for each
observation classified correctly, we are accounting only for these diagonal elements. The bins are
created based on the speedup factor:

if l ≤
T (A,Mdefault)
T (A,Mpredicted)

< u, increaseBM,l,c,u by one.

Definition 44. The expected gain for method Mi ∈M is

GMi =
n∑

j=1

Sj ×BMi,l,j,u.

Note that when the recommended method is also the default this factor is 1.
Like in the Reliability problem, we can measure how good the recommendation is for some

method M ∈ M, by defining a metric Q. In this case Q is defined in terms of LM and GM , which
are derived from the confusion matrix and are intrinsically related to the accuracy of classification
and associated statistical error:

Qperformance =
GM

LM
, (6.7)

and similar to the Reliability problem, the larger Qperformance is, the better the recommendation.
This kind of measurement is useful when, for instance, we would like to provide more than one
choice of method. For example, if internally, the recommendation system generates several recom-
mendations and then compares between them, discarding those that are beyond certain value of Q.
Algorithm 19 shows how this process is carried out.

Algorithm 19. Multiple Recommendations and use of Q

80



Input: a problem A ∈ A, a set of available methods M, the number of performance recom-
mendations requested n (where n ≤ |M|), and the associated performance gains and losses
for each method.

Output: a method M ∈M

for i = 1, . . . , n

apply a recommendation algorithm such as Algorithm 12 or Algorithm 18 on problem
A to find most suitable method Mi

obtain the QMi for Mi with the associated expected performance gain GMi from Defi-
nition 44 and loss LMi from Definition 43 using Equation 6.7

add Mi to a temporary set of recommended methods Mtmp

remove Mi from M

end

choose Mi from Mtmp for which the associated QMi is the largest

output M as Mi

To evaluate the quality of a recommendation for a method, based on reliability and performance
we can use the tuple

Qtotal = (Qreliability,Qperformance). (6.8)

The recommendation system can output these values and the user can then decide which is
more important for a particular problem − reliability or performance − and make a choice. This
value is mainly based on the slowdown and speedup factors, which are determined upon the current
experience from the available data. In other words this is dependent on the particular experiment.
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Chapter 7

Experiments and Results

This chapter presents the results and discussion of various experiments. It also includes the discus-
sion of a case study that exemplifies how the recommendation strategies work on new problems.

7.1 Introduction: Experimental Setup

The different experiments discussed in this chapter are based on the main steps of our methodology:

• Feature Analysis: feature evaluation using PCA.

• The Learning Process

– The Reliability Problem: strategies for classification and recommendation.

– The Performance Problem: strategies for classification and recommendation, including
the hierarchical approach and a description of how the superclasses used in this strategy
are formed.

• Building Recommendations: an example of how the reliability and performance strategies
can be used to make predictions for new data.

Experimental Data We have used various datasets (described in Appendix A.2) in preliminary
experiments to develop, test and tune the different strategies and concepts discussed in previous
chapters. A description of these datasets can be found in Appendix A.2. The same set and type of
experiments were performed individually on the different datasets. Results from these experiments
have been qualitatively the same, except for those for the dataset JLAP40. JLAP40 is an “artificial”
dataset that does not exhibit the feature variation that the other sets do; e.g., some of its features are
constant for every observation in the set, making the feature characterization process fundamentally
different.

The Matrix Market dataset is the most heterogeneous and provides a good and variated testbed
for training and testing heuristics, and the variety of problems in this set is better for testing gener-
alization. Considering that qualitative results across other datasets are the same, for the experiments
presented here we focus on the analysis of the results from the Matrix Market dataset.

Like many other statistical and machine learning applications, the results of our methodology
depend greatly on the type and amount of input data available for the learning process. Since we part
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Figure 7.1: Proportion of examples for iterative methods in the database: (a) Proportion of examples
for each method. (b) Proportion of runs for which each method converges.

Figure 7.2: Proportion of examples for preconditioners: (a) Proportion of examples for each pre-
conditioner. (b) Proportion of runs that converged when each preconditioner was used.

from the premise that the numerical properties affect the performance of solvers, we need to have a
general perspective of the performance data in our database. Figures 7.1(a) and 7.2(a) present this
information. For every available matrix we apply every possible combination of preconditioners and
other transformations, then we try every possible solver and record the outcome. Each of these tests
is a run. In particular, Figure 7.1(a) shows the proportion of runs available for each iterative method
and Figure 7.1(b) shows the proportion of these cases for which a method converges. Figures 7.2(a)
and 7.2(b) present the same type of information but for the available preconditioners∗.

These types of measurements are very useful to tune classification strategies and interpret their
results. For instance, cgne in Figure 7.1(b) appears as a method that is not very reliable. In the
Reliability problem, this reflects as a method for which the divergence class in the training process
is very big, and there are almost no examples of cases where cgne converges. This can cause
overfitting [Winston, 1992], a common problem in supervised learning, which can make it nearly
impossible for a classifier to generalize for problems where cgne works. For the Performance
problem, where we compare several methods at once, the cgne class can also introduce noise,
making the distinction between other methods more difficult.

∗A “converging run” for a preconditioner pc is when some iterative method converged for a matrix preconditioned
using pc
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Learning Methodologies From the different types of classifiers described in Chapter 3, the kernel
density estimators (using Bayes approach) and decision trees are the ones that experimentally were
the most efficient. These methods are also the most suitable for the type of input problems that we
here address, mainly because of their high dimensionality, feature interactions and large amount of
data. It is useful to consider and test more than one classifier type in case one of them fails. The
results presented in this chapter are from experiments using implementations of these two types of
classifiers, however, decision trees was the one that yielded the best results in the majority of the
tests. The accuracy of classification α presented in these results is an average accuracy taken over
several trials on each experiment (the training and testing set are randomly picked from the original
dataset each time, hence these sets are different each time). A confidence interval for α is also
computed in most of the experiments; this indicates the interval in which the resulting accuracy for
a random trial, will be away from the presented average α by ±z 95% [Douglas and Montgomery,
1999] of the time†. The interval can be used to determine how “stable” the resulting accuracy is for
an experiment.

7.2 Feature Analysis

The feature analysis is one of the most important steps in the classification process. In this section
we present the analysis of the features used in our experiments using PCA, and show the importance
of PCA as an optional preprocessing step before classification.

“Bad” features commonly hinder the performance of different classifiers by introducing noise;
it is necessary to do our best job to identify and filter out these features. These can be features that
correspond to outliers, or features that remain constant across the different classes. On the other
hand, “good” features help to achieve better classification for most kinds of classifiers; most impor-
tantly they provide valuable information to understand important characteristics of the classification
problem being addressed.

Both problems of Performance and Reliability use the same set of numerical features. However,
each problem partitions the dataset in a different way, so the same features may characterize the
problems differently (e.g. feature i may affect the speed with which a method converges, but may
have no effect on whether it is reliable or not). The categories in which we group these features were
described in Section 4.1. Some features, particularly the ones in the simple and structure categories
are not scale invariant, so it is necessary to scale them down or normalize them using other features
such as number of rows or some of the norms, to keep these features independent from the size of
the matrix, making the analysis scale-independent. A detailed description of these features and their
normalizations can be found in Appendix A.2.

In the numerical context, all the features we have taken into account are intuitively important.
In addition, the features characterized as relevant for both the Reliability and the Performance prob-
lems (Sections 7.2.3 and 7.2.4 respectively) make sense in the context of sparse matrices. Some of
the most obvious ones are, based on expert intuition and heuristics [Langou, 2007]:

• symmetry: we cannot use a method for symmetric matrix on a nonsymmetric matrix. Ad-
ditionally, the features diag definite and diag dominance together with symmetry can
determine when a mtrix is symmetric positive definite (SPD), which is extremely important

†We use z to delimit the confidence interval since we have used the Z-test [Douglas and Montgomery, 1999], com-
monly used in statistics
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for the selection of methods. The feature ratio symmanorm/symmsnorm is redundant with
symmetry.

• κ: the condition number is particularly important for SPD matrices, for convergence of meth-
ods like CGNE, and for some cases of nonsymetric matrices.

• ellipse ax and ellipse ay: these features are related to κ and important for nonsymmetric
matrices. These are quantities directly coming from the convergence theory of GMRES, and
influence both robustness and performance.

• max nnzrow and min nnzrow: these quantities are useful mostly for unsymmetric matrices

• Features from the Normal category: these are important for convergence in nonsymmetric
matrices. They are related to the cost of matrix-vector products. If the number of non-zeros
per row is large then this means that matrix-vector products are very expensive compared to
vector operations. As a consequence, Full GMRES may be used to minimize the number
of iterations. If the number is small, then matrix-vector products are relatively cheap and a
method like BCGS is a better choice.

Next, we walk through the process of feature characterization using as an example the data for
the Performance problem. Then we present results for both Performance and Reliability.

7.2.1 Initial Elimination of Features

As described in Section 3.6.5, there are two types of features that are statistically problematic and
need to be eliminated during the first stage of feature preprocessing. The first type are features that
are constant across the different input problems and datasets. In our experiments we identified some
of these features only in certain datasets (such as FEMH or JLAP). The second type of problematic
features are those that introduce noise. Most of the features that had to be eliminated from our
experiments correspond to this type. The following are some examples of these type of “noisy”
features (see Section 3.6.5) that are eliminated in the Performance:

• λmax,magnitude,=/λmax,magnitude,<: µ = −6.39× 10−3, stdv = 4.01× 10−1

• λmax,magnitude,=/diag avg: µ = −2.44, stdv = 1.27× 102

• λmax,rp,=/diag avg: µ = −2.99× 10−2, stdv = 1.12

Observe how the order of magnitude of the standard deviation (stdv) is bigger than the mean’s
(µ), this implies that there is a lot of variation (possibly noise) on their values even after they are
normalized to make them scale-invariant:

A difference in order of magnitude of 2 is already big enough to cause these features to become
noisy, and makes it difficult to cluster them in any of the classes. Eliminating this type of features not
only reduces the noise for the classification process, but is also a first step dimensionality reduction.
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Figure 7.3: Scree plots: along the x-axis is the principal component index, and the y-axis shows
proportion of the information captured by each principal component (cumulative on the right plot).

7.2.2 Characterization of Features Using PCA

The different products and stages of PCA have provided useful information for feature character-
ization (this was described in Section 3.6). We illustrate the feature analysis process by using an
instance of features extracted for the Performance problem with three iterative methods. All the
features extracted from input problems form the matrix X used for SVD (Section 3.6.1). After the
initial elimination of statistically useless features, we are left with n = 44 features, supposing that
the size of the dataset is m problems, then X is of size m× n. There are as many principal compo-
nents as the number of the original features, 44 in this example. By using only the first 30 principal
components instead of the original 44, we can achieve some dimensionality reduction.

The scree plots help us decide how many principal components can be discarded; this is a type
of dimensionality reduction. Figure 7.3(left) shows that the first two principal components capture
more information than the others (approximately 0.21 and 0.13 respectively); in the same figure
the cumulative plot (right) indicates that the first 30 principal components capture almost all the
information from the original features, these can also be referred to as the “heaviest” principal
components.

Next, the principal components are analyzed to evaluate the importance of each original feature
in each as described in Section 3.6.3. Each loadings vector (LV ) is a principal component, and each
of them is analyzed using a bar plot (see Figures 7.4- 7.8). These plots have along the x-axis an
index associated to each original feature, and the y axis shows how much each feature contributes
to that particular vector (i.e. the higher the bar, the more meaningful the feature is). To simplify the
notation, we will abbreviate the loadings vector charts as LV i, where i is the index of that vector.
The analysis of these vectors consists of two parts: first, we explore the “heaviest” loadings vectors
(the first 30 in this example) to identify significant and/or correlated features by looking at their
magnitudes; and second, we look at the last 14 vectors to search for redundant and/or insignificant
features. Next we will examine the type of information we can extract from these two parts.
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Table 7.1: Feature correlations in the first Loadings Vectors. The columns Positive and Negative
show those relevant features with positive and negative loading signs respectively.

LV Positive Sign Negative Sign
1 7, 8, 10, 11, 16, 17, 21, 25 2, 3, 5, 12, 14, 22
2 6, 10, 11, 17 19, 20, 26, 27
3 2, 3, 7, 9, 25 15, 22, 38, 40, 41, 42, 44
4 23, 41, 42 26, 27, 37, 38, 40
5 18, 28, 33, 36 7, 29, 38, 40

First Loadings Vectors

The heaviest loadings vectors are shown in Figures 7.4- 7.5. The features that are loaded the
highest in LV 1 can be “marked” as important because they contribute with the most informa-
tion in the heaviest principal component. These features and their corresponding indexes are: 2
(trace), 3 (traceabs), 5 (Fnorm), 7 (symmanorm/symmsnorm), 8 (symmfanorm/symmfsnorm),
12 (diagonalavg), 14 (diagonalsign), 16 (nnz) and 22 (diag definite).

To find possible linear correlations, we compare the magnitudes of features in each PC. When
two or more features are positively correlated their magnitudes on a particular principal component
will be approximately the same, and with the same sign and they are negatively correlated when
the signs are different For instance, features 2 and 3 (trace and traceabs) in the chart for LV 1
in (Figure 7.4) are positively correlated, while features 2 and 16 are negatively correlated because
when one grows, the other decreases. Note that features 2 and 3 also exhibit the same behavior
in other important loadings vectors (such as LV 3, LV 4, LV 12). Table 7.1 shows other important
feature correlations in the first five LVs. For each LV, the features in the same column are positively
correlated, and are negatively correlated with the ones in the other column. (See Appendix A.1 for
the associated name, description and normalization type of each feature index).

Features like 26 and 27 are positively correlated in LV 4, LV 6, LV 18, LV 20, and they both
score relatively high in these vectors. Furthermore, there is no principal component vector where
their loadings have opposite signs, neither one scores high when the other one did not. We can
conclude that these two features are positively correlated, and we can possibly eliminate one of
them because they exhibit the same behavior. The identification of correlations is important, if
several features are always correlated we can eliminate all but one of them, this is another way of
reducing the number of dimensions in a problem.

The first loadings vectors can also be used to look for features that do not provide a significant
amount of information. Figure 7.6 shows the magnitude of the loadings of each feature in the first
five loadings vectors. Examples of features that are not relevant are 24 (n ritz vals), 30 (σmax), 31
(σmin), and 35 λmin,magnitude,< in Figure 7.6(d). These plots provide information of how significant
a feature is in the most important pirncipal components.

Last Loadings Vectors

The loadings vectors corresponding to the last principal components also provide important infor-
mation or redundant feature variables. The bar charts corresponding to these vectors appear in Fig-
ures 7.7, 7.8. From various experiments we have observed that the last loadings vectors are usually
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Figure 7.4: First 10 loadings vectors.
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Figure 7.5: Loadings vectors 11-20.
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(a) Simple

(b) Variance (c) Structure

(d) Spectrum

(e) Normal and JPL

Figure 7.6: Loadings of each feature in the first five LVs for the Performance problem. Along the
x-axis is the feature index; each bar in a feature index corresponds to a loadings vector. The y-
axis shows the loadings magnitudes. See Appendix A.1 for the associated name, description and
normalization type of each feature index.
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not very populated with high-score features; instead, there are only a few that appear to be important
along them (e.g. in LV 41 through LV 44). Since these vectors are the ones that capture the least
information, the features that score high in these vectors are usually those that do not contribute with
much information themselves. If such features do not score high in the first (and heaviest) principal
components they can be considered as not representative of the data and can be excluded from the
experiments. If a feature scores high in these vectors, it means that only a negligible number of
observations have that feature as relevant property. Some of these observations, could very well
correspond to outliers. One example is feature 13 (diagonalvar/∞norm) in LV 29, which does
not appear in any of the first loadings vectors. A different case are those features that never stand
out in any loadings vector, however, none of our features strongly displays such behavior.

Furthermore, remember that the information provided by these loadings vectors is better cap-
tured by at least one of the first vectors. This means that the behavior of features present along this
vectors is better exposed by one or more features in the first vectors, which also represent the ma-
jority of the sample population. For example, in Figure 7.8, the plot for LV 40 shows that features
10 and 11 (row variability and col variability) are inversely correlated, but since this is one of
the last loadings vectors it means that they exhibit this behavior only for a few observations in the
whole sample. If we look instead at the plots for LV 1 and LV 2 in Figure 7.4 we can see that these
two features are directly correlated. Similar examples are the cases of features 2 and 3 (trace and
traceabs), 19 and 20 (left bw and right bw), 26 and 27 (ellipse ay and ellipse ax), 33 and 36
(λmax,magnitude,< and λmax rp<), 40 and 41 (ruhe75 bound and lee95 bound).

It is very difficult to set a threshold for deciding whether a feature is relevant along a loadings
vector. This is generally determined depending on the application, preliminary experiments and de-
sired outcome. In our case, the initial process of analyzing the loadings vectors was done manually.
We inspected each LV to find what is the highest absolute score achieved by any feature in that
particular LV ; we then determined that we can mark as “important”, those features whose score is
at least within 70% of the highest score. Using this heuristic threshold yielded a reasonable outcome
in our experiments as we will see in Section 7.4.7, subsequently, it can be used for automatizing the
analyzis.

We can now summarize some of the feature-related findings resulting from the different stages
of PCA.

7.2.3 Feature Characterization for the Performance problem

After the initial feature elimination described in Section 3.6.5 we are left with a set of features that
behave “well” statistically. By looking at the first loadings vectors and the high-scoring features in
them, we can identify several features that appear correlated to others. Features like 2 and 3 (trace
and traceabs), are a good example of correlated features; not only they appear in LV 1 with high
magnitudes, but if we look at other loadings vectors like LV 3, LV 6, LV 7, LV 11 and LV 31, we
can see that even if they don’t score high, they always appear together and their magnitudes are
about the same. In our data, we have seen that such features occur in pairs and we can decide to
eliminate either of them because the effect of one is mimicked by the other one. These features are:

• trace and traceabs

• symmanorm/symmsnorm and symmfanorm/symmfsnorm

• row variability and col variability
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Figure 7.7: loadings vectors 31-40.
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Figure 7.8: Last four loadings vectors (41 through 44).

• max nnzrow and min nnzrow

• left bw and right bw

• ellipse ay and ellipse ax both normalized by ellipse cx

• λmax,magnitude,< and λmax,rp,< both normalized by 1norm

• lee95 bound and lee96 lbound

• ruhe75 bound and n colors

Most of the correlations here found make sense from a linear-algebra point of view; the only
unforeseen correlation is between ruhe75 bound and n colors. This could be a behavior resulting
from our dataset in particular, but it is an interesting finding that requires further research.

Also based on the analysis of loadings vectors we have identified several relevant features. These
features have a significant contribution to the heaviest principal components. From Figure 7.3,
we can see that these are the heaviest components (left) and account for almost 70% of all the
information (right). The following is a list of relevant features (some in their normalized form)
that load high in the first 7 principal components, we have discarded some of those that appear as
correlated:

• trace

• Fnorm/∞norm

• symmanorm/symmsnorm

• row variability

• diagonalavg/∞norm
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• diagonalsign

• symmetry

• nnz/nrows2

• left bw/nnz2

• diag definite

• ellipse ay/ellipse cx

• κ

• positive fraction

• λmax,magnitude,</1norm

• λmax,rp,=/diag avg

• trace2

• lee95 bound

• n colors

In addition, Figure 7.3 shows that principal components 8 through 25 account for almost 30%
of the remaining information. There are other features like nrows, n ritz values, σmin/1norm,
λmax,magnitude,=/diag avg and ellipse ay/ellipse ax, which may not load high in the first load-
ings vectors, however they are relevant in several of these “secondary” ones.

Although we can identify several relevant features, the behavior of iterative solvers does not
depend individualy only on these, but rather on a composition of features that contribute in different
amounts.

7.2.4 Feature Characterization for the Reliability Problem

In the Reliability problem, the observation space is split in two for every method available: “con-
verge” and “diverge” classes. In this section we focus on the feature analysis for the reliability of
iterative methods using as an example the results for bcgs, i.e. we want to determine the behavior
of the features that can help us to determine whether bcgs converges or not for a problem. The case
of bcgs is used as an example here, because for most of the other methods the feature arrangement
along the loadings vectors are very similar.

First we detect and eliminate “noisy” features:

• λmax,magnitude,=/λmax,magnitude,<: µ = −2.02× 10−1, stdv = 7.86× 10+1

• λmax,magnitude,</λmax,magnitude,=: ∞

• λmin,magnitude,=/λmax,magnitude,=: NaN

• λmax,rp,=/diag avg: µ = −2.32× 104, stdv = 4.58× 106
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Figure 7.9: Scree plots for the Reliability problem.

Note that λmax,magnitude,= must be 0 in many observations in this class, which makes some of
these normalized features impossible to use in global statistics. In such case we have to decide
whether to eliminate the affected feature over all the set, or just eliminate those observations that
exhibit this problem. For the learning and classification stage we chose the later option, but in the
recommendation problem we have to eliminate the feature because if it is not available in the given
problem we cannot use it as part of the decision process.

The rest of the features are analyzed with the same guidelines as we did for the Performance
problem example. Figure 7.9 shows the scree plots, very similar to the ones for the Performance
problem in Figure 7.3. These indicate that using approximately the first 25 principal components,
is enough to capture almost the totality of the information. Also, we see that the first 7 principal
components are the heaviest and account for more than 60% of the information.

The first loadings vectors appear in Figure 7.10. Important correlations found in these vectors
are:

• trace and traceabs

• symmanorm/symmsnorm and symmfanorm/symmfsnorm

• row variability and col variability

• σmax/1norm and σmin/1norm

• λmax,magnitude,</1norm, λmax,rp,</1norm and ruhe75 bound

• lee95 bound, lee96 lbound and lee96 ubound

And the relevant features are:

• trace

• Fnorm/∞norm

• diag dominance/∞norm

• symmanorm/symmsnorm
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Figure 7.10: loadings vectors 1-8.
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• row variability

• diagonalavg/∞norm

• diagonalsign

• symmetry

• nnz/nrows2

• left bw/nnz2

• diag definite

• ellipse ay/ellipse cx

• ellipse ax/ellipse cx

• σmax/1norm

• λmax,magnitude,</1norm

• ruhe75 bound

• n colors

The last four loadings vectors appear in Figure 7.11, and show some features and correlations
that also appear in the first loadings vectors; however, this information most likely come from
observations that are outliers.

It is important to note the differences and similarities between the lists of relevant features for
the Performance problem (List 7.2.3) and for the Reliability problem (List 7.2.4). Many of these
features seem to characterize both the Reliability and Performance behavior, although there are
several differences, which show in the spectrum category of features. This can lead us to think that
spectral features are indeed, very important for determining both the performance and the reliability
of solvers, and unfortunately these features are also the most expensive to compute. Future research
will focus on the study of correlations with other “cheaper” features, to determine whether it is
possible, to some extent, to limit the use of spectral features as a basis for classification.

7.2.5 PCA and Classification Approaches

The information extracted from the Loadings Vectors is valuable and can be used to understand
which features affect the most the behavior of certain iterative methods, and which ones do not have
much influence. In Definition 10 the function Γ is presented as an optional function that can be used
to preprocess the feature vectors extracted from input problems. PCA has proved a useful tool to
evaluate the importance of different features, but it can also be used as a preprocessing step that can
be advantageous for certain classification techniques. The transformation of the linear space shaped
by the original features yields a new space with less dimensions, which allows us to visualize more
easily how the different transformed features project into the new space.

Consider for example the Reliability problem for the iterative method gmres. Figure 7.12(a),
which shows two plots of the observations along three randomly selected dimensions in the origi-
nal feature space, does not exhibit any clear separation of the observations from the two different
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Figure 7.11: Last four loadings vectors (39 through 42).

classes. Now, if we look at Figure 7.12(b), which plots the observations along three principal com-
ponents in the transformed feature space. It shows a clearer separation of the observations of the
two different classes. Just like it is easier for us to better distinguish between the different clus-
ters in a transformed space it might be easier for certain classifiers to do the same, specially those
classification methods based on spatial distances (e.g., simple Gaussian, K-means or SVM). Even
some methods like the kernel density estimators can benefit from such a process. Furthermore, PCA
constructs as a result from SVD an orthogonal new feature space, which is actually more applicable
for multi-variate Bayesian approaches (see Equation 3.5).

7.3 The Reliability Problem

The Reliability problem is the first step for a recommendation. In some cases it may be more impor-
tant to determine how safe a method is rather than its speed. In here we discuss the results obtained
for the Reliability problem classification and recommendations for iterative methods, precondition-
ers and combinations of these. The experiments consisted of training classifiers to predict whether
a method converges or not when trying to solve a linear system. Remember that in the Reliability
problem, there are two classes per method: set of observations for which the method converges, and
the set for which it diverges.

7.3.1 Reliability Classification

The second column of Table 7.2 shows the accuracies with which we can determine if an itera-
tive method is reliable or not. The reliability of an iterative method in this case is evaluated from
its overall performance with the different preconditioners, i.e. each preconditioned problem A is
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(a) Distribution of observations in 3D in original feature space. (Left) The axes correspond to three randomly chosen
original features. (Right) The axes correspond to each of the previous features incremented by one.

(b) Distribution of observations in 3D principal component space. Here the term “features” refers to the PCA-
transformed new features, that is, the principal components. (Left) shows the plot using the first 3 principal
components. (Right) shows the plot of the same data but using principal components 2,3,4.

Figure 7.12: 3D plot for the classes gmresconverge and gmresdiverge: red markings correspond to
the observations in the converge class and blue markings to those in the diverge class.
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Table 7.2: Accuracy measurements for classification of ksp: the second column is the accuracy of
prediction, third column is the false positive error and last column shows how good the recommen-
dation is.

ksp αconverge ± z FP Qreliability

bcgs 0.97±0.01 0.027 0.830
bicg 0.98±0.01 0.003 0.082
cgne 0.79±0.02 0.053 0.702
gmres 0.94±0.01 0.093 3.011
fgmres 0.92±0.01 0.073 2.150
lgmres 0.95±0.01 0.089 2.560
tfqmr 0.97±0.01 0.022 0.667

Table 7.3: Accuracy measurements for classification of preconditioner: the values in the second and
third columns refer to accuracy of prediction for each class.

pc Avg. αconverge ± z Avg. αdiverge ± z

asm 0.84±0.02 0.81±0.04
bjacobi 0.89±0.01 0.84±0.01
boomeramg 0.80±0.02 0.80±0.03
ilu 0.86±0.01 0.93±0.02
parasails 0.81±0.02 0.80±0.02
pilut 0.81±0.02 0.80±0.02
rasm 0.82±0.02 0.85±0.02
silu 0.87±0.01 0.91±0.01

considered as a different observation, and is assigned to a class depending on the behavior of the
iterative method. Observe that the accuracy of prediction for every method is very high, except for
cgne; this is related to the fact that there is not enough experience stored in the database regarding
cases where cgne converged (see Figure 7.1(b)).

In Table 7.3 are the classification results for different preconditioners. The accuracies of clas-
sification of each preconditioner are the average taken over all the iterative methods as indicated in
Equation 5.9. Although this gives a good approximation of how trustworthy a prediction may be,
it disregards the fact that the reliability of a preconditioner is greatly related to the iterative method
used. These results can be useful for preconditioner-only recommendations, where we are interested
on evaluating the general reliability of a preconditioner.

The best type of reliability prediction we can obtain is for particular combinations of precondi-
tioner and iterative method 〈pc, ksp〉. Determining whether such a combination converges or not for
a problem A is more difficult because the training dataset contains only observations preconditioned
with pc, which means fewer training data. This could possibly result in overfitting because there
may be cases where there are too few observations in the corresponding convergence or divergence
class. However, an important experimental result that yielded the conditional strategy for reliability
classification, is that the behavior of classifiers is highly dependent on the iterative method used.
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In Section 5.1.2 we discussed why it is not possible to make a prediction based solely on a pre-
conditioner. Additional experiments showed that unless the iterative method is taken into account,
is not even possible to correctly group observations into convergence and divergence classes. As
an example, consider the 3D plot on PCA-transformed space (using the first three principal com-
ponents) for the preconditioner bjacobi in Figure 7.13 left, and the plot in the same space for the
combination 〈bjacobi, bcgs〉 Figure 7.13 right. Observe the amount of overlap between the two
classes on the left, as opposed to the plot on the right, which offers a “cleaner” distinction between
the observations in each class.

Table 7.4 summarizes the accuracy of prediction (Reliability problem) for each combination
of available preconditioners with available iterative methods using the conditional approach (Sec-
tion 5.3.3). Each row corresponds to a preconditioner with each of the available iterative methods.
Although this is a very economic and relatively accurate approach, it has the problem that it may
result in overfitting because of the smaller size of sets. An example is the entry for boomeramg and
cgne, cases for which there are very few examples stored in the database. For such cases, the orthog-
onal or sequential approach would be more convenient. The selection of the approach depends on
the data and also on the associated expected loss. For this particular combination boomeramg, cgne
the expected loss is maximum, because the false positive ratio is maximal (the accuracy for conver-
gence is 0).

7.3.2 Reliability Recommendations

In the Reliability problem, a recommendation consists of a set of methods that are the most likely to
converge to a solution when solving a problem A. Besides evaluating the accuracy of a classifier it is
very important to measure the risk involved on taking a particular recommendation. In Section 3.7.1
we discussed the statistical error analysis for two-class problems and penalties.

For our type of problem, the “price” of making an error can be measured as the time we have
to wait when picking the wrong solver. So the mistake of recommending a method that does not
converge should be penalized more than the mistake of not recommending a method that in reality
converges. The first error (and the most dangerous) is measured with the ratio of False Positive
errors (FP for short): given problem A, for method M assigning Φ(A) to Mconverge when in
reality belongs to Mdiverge; in such case, we wait “infinite” time. The other possible error is to
discard a converging method, in which case the worse situation is if that method had also turned
to be the optimal solver, then we would have to wait the additional time that another method (or a
default) takes to solve the problem A.

To assign the penalty consider the following iterative method classification example. Table 7.2
shows in the second column the False Positive error FP for each method, and the last column shows
its effect on how good a recommendation is (see the definition for the reliability Q in Section 5.4).
The classifiers for this examples are effective in general, even for the cases where the ratio of false
positive errors are higher. However, suppose that for a particular problem A all these methods are
recommended as “reliable”; if we want to go with safer choices we would rather not pick gmres,
fgmres or lgmres .
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Figure 7.13: Distribution of observations in 3D principal component space for classes
bjacobiconverge and bjacobidiverge: (left), and 〈bjacobi, bcgs〉converge and 〈bjacobi, bcgs〉diverge

(right): red markings correspond to observations in the converge class and blue markings to those
in the diverge class. The axes correspond to the first three principal components (or dimensions in
the transformed space).

Table 7.4: Accuracy measurements α for classification of 〈pc, ksp〉.
Reliability Class bcgs cgne fgmres gmres lgmres tfqmr

asm
converge 0.83 0.88 0.80 0.78 0.87 0.89
diverge 0.72 0.80 0.82 0.83 0.78 0.95

bjacobi
converge 0.84 1 0.94 0.91 0.93 0.88
diverge 0.89 0.82 0.86 0.85 0.77 0.89

boomeramg
converge 0.96 0 0.98 0.97 0.97 0.95
diverge 0.98 0 0.93 1 0.92 1

ilu
converge 0.87 0.89 0.87 0.90 0.85 0.94
diverge 0.97 1 0.96 0.96 0.89 0.99

parasails
converge 0.99 0 0.96 0.97 0.97 1
diverge 0.98 0 0.92 1 0.98 0.95

pilut
converge 0.98 0 0.98 0.97 0.97 1
diverge 0.98 0 0.91 1 0.98 0.95

rasm
converge 0.93 0.77 0.87 0.87 0.90 0.75
diverge 0.81 0.82 0.98 0.92 0.80 0.96

silu
converge 0.98 0.88 0.88 0.93 0.86 0.92
diverge 0.95 1 0.95 0.89 0.80 0.98
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Figure 7.14: Proportion of cases where (a) each iterative method was the optimal and (b) each
preconditioner was the optimal.

7.4 The Performance Problem

In order to understand and interpret the results from the Performance experiments it is important
to acknowledge what the current “experience” is that is stored in the database, as far as methods
performance is concerned. Figure 7.14(a) shows the proportion of the runs for which each method
was the best, and Figure 7.14(b) those for which some method was the best using a particular
preconditioner.

Figure 7.15 shows a performance comparison for different (reliable) solvers applied to problems
from the Matrix Market dataset, similar to the one in Figure 1.1 of Chapter 1. The default method
is also gmres20 and the slowdown and speedup ratios are also computed, for a problem A as:

T (A, slower method)
T (A, faster method)

In this case, again, the default is not much faster than other methods (Figure 7.15(a)), and other
methods can be much faster than the default, in which case there is a lot of room for improvement
by picking a different method.

Remember that for the Performance problem, the more methods or preconditioners we have
available, the more classes there are and the harder it becomes to differenciate between these. The
discrimination between all the classes becomes even more difficult for smaller datasets. The results
in Table 7.5 show this problem. In Table 7.5(a) we have the classification accuracy for two classifiers
(kernel density estimator and decision trees) working on seven methods. Table 7.5(b) shows the
accuracies for these classifiers when trying to differenciate between eight preconditioners. In both
cases, the accuracy of the classifiers is not very high, yet, it is still better than making a random
choice that would yield an α = 1

number of available methods (0.14 for this experiment).
These accuracies can be improved by using the hierarchical classification strategy (Section 6.1.4).

In the following sections we will show how the use of this strategy and superclasses can help to ob-
tain better predictions.
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Figure 7.15: Performance profile for iterative methods with respect to default method gmres20:
(a) Shows the cumulative proportion of cases for each ksp where the default method was faster for
different slowdown ratios. (b) Shows the cumulative proportion of cases for each ksp where the
default method was slower for different speedup ratios.

Table 7.5: Accuracy of classification and statistical error in the Performance problem using one
class per available method (left) or preconditioner (right). The second column in each table is the
accuracy of prediction using Kernel Density Estimators classifier and the third column is using
Decision Trees.

(a) Iterative Methods

ksp αKDE ± z αDT ± z

bcgsl 0.29±0.06 0.59±0.02
bcgs 0.19±0.15 0.71±0.03
bicg 0.28±0.03 0.68±0.06
fgmres 0.26±0.03 0.80±0.02
gmres 0.19±0.03 0.59±0.04
lgmres 0.19±0.07 0.81±0.03
tfqmr 0.21±0.05 0.61±0.05

(b) Preconditioners

pc αKDE ± z αDT ± z

asm 0.25±0.04 0.72±0.05
bjacobi 0.52±0.22 0.11±0.11
boomeramg 0.11±0.06 0.71±0.06
ilu 0.18±0.06 0.66±0.02
parasails 0.35±0.16 0.46±0.12
pilut 0.17±0.11 0.80±0.06
rasm 0.14±0.06 0.70±0.04
silu 0.17±0.18 0.83±0.02
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Figure 7.16: Independence ratios for iterative methods: (a) the shade of color indicates the ratio
between two ksps. The darker the color the more independent two methods are; “i” represents the
rows and “j” the columns.

Figure 7.17: Independence ratios for preconditioners: (a) the shade of color indicates the ratio
between two pcs. The darker the color the more independent two methods are; “i” represents the
rows and “j” the columns.
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7.4.1 Building Superclasses for Hierarchical Classification

Hierarchical classification is based on creating superclasses, which are formed by grouping meth-
ods or preconditioners based on their similarity. Similarity can be measured using the independence
ratio In, covering ratio CR and visual comparisons of the speedup factor trends (these were dis-
cussed in Section 6.1.4).

An interesting matter is to see whether there are some methods that “cover” others, i.e. almost
all the problems that a method can solve are also solved by another method. On the other hand, there
is also the question of whether there are methods that work only for a subset of problems for which
other methods break down. We use this information to create superclasses (Definition 41), which
can improve the accuracy of prediction in the Performance problem as we will see in Section 7.4.4.
In this section we show how we determine if two methods are similar or not; similar methods can
then be grouped into superclasses.

A preliminary analysis of results from exhaustive comparisons among all methods (using dif-
ferent datasets) motivated the development of the concepts of method independence In and cov-
ering ratio CR (Definitions 38 and 39 respectively), and the determination of the corresponding
experimental thresholds discussed in Section 6.1.4. Figure 7.16 illustrates the In measurements
for different pairs of iterative methods. In this figure, we can see that other methods and cgne are
very independent (look at the column Icgne(M)), numerically this also makes sense because cgne
is an iterative method very different to the others. On the other hand, the row IM (cgne) has lighter
shade indicating that cgne is less independent from other methods, the reason is mainly because
there are not enough examples of converging runs with cgne in our database. The darker regions for
gmres, fgmres and lgmres indicate these methods are more independent from tfqmr , bcgs, bcgsl
and bicg than they are among themselves. These results are consistent with the fact that the nu-
merical implementation of the “gmres” methods is different than those for the “bcgs” and tfqmr
methods. Additionally “bcgs” and tfqmr are numerically similar techniques, and this figure shows
more dependence between them.

Similarly, Figure 7.17 shows the independence ratios for every pair of preconditioners. In this
figure we can obtain important regarding different preconditioners. For instance, parasails and
pilut are very independent from any other preconditioner excluding boomeramg, suggesting that
we can group these into a superclass. However, ilu and pilut seem to be very independent, which
is an interesting result because pilut is a parallel implementation of ilu and they would be expected
to behave similarly. However, all of our experiments were done in single-processor, which suggests
that in such case ilu and pilut behave very differently. This poses an interesting research question,
but it is beyond the scope of this dissertation. Overall, this figure shows that there are very few pre-
conditioners that are very independent from others. This affects the classification process because
it is more difficult to distinguish between preconditioners that are more dependent. It is also harder
to group in superclasses.

To determine similarity, it is also important to study those cases where one method is faster
than the other and by how much. Similar behavior of the speedup factor of two methods is another
indication that the methods are similar; remember that the speedup factor expresses how much faster
one method is with respect to the other for a problem A

speedup =
T (A,M2)
T (A,M1)

.
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Next, we present examples of how we use these ideas to find which methods and preconditioners
are similar and which are not to form superclasses. Once we have formed superclasses for iterative
methods and preconditioners, we can test the classification process; these results will be presented
in Sections 7.4.4, 7.4.6 and 7.4.6. Results presented for performance recommendation are also from
experiments where superclasses were used.

7.4.2 Superclasses for Iterative Methods

First, consider methods bcgs and bicg. Figure 7.18(a) shows that the proportion of cases for which
either of them converged is very small compared to that where both of them converged and to that
for which neither of them did. This suggests that these methods may not be independent. Addi-
tionally, the associated CR is 0.152355, which indicates that they both can solve almost the same
problems. Based on this, these two methods are catalogued as similar and put into the same super-
class. Furthermore, Figure 7.18(b)(c) shows that the speedup trends are very close; for instance,
note that one method is faster than the other by a factor of 1 for almost all the cases.

Furthermore, another way to determine method similarity is to compare methods which we
suspect to be similar with other methods, side by side. For example, if bcgs and bicg are potentially
similar we can compare bcgs vs. gmres and bicg vs. gmres. From Figures 7.19 and 7.20 we can
see that both methods behave comparably with respect to gmres, which in turn is not similar to
either of them, observe for example the big difference in the speedup trends.

Now consider the example of the methods tfqmr and cgne. If we look at Figure 7.21(a), we
can see that there are very few methods for which both work as opposed to the number of methods
for which only tfqmr works; the corresponding CR = 5.584337 shows that the intersection of
problems that they both solve is very small. These methods are marked as different. In this example,
there is no other method similar to either of them, so they consitute their own superclasses.

By comparing side by side all the available methods in this manner, we can form a set of super-
classes for the hierarchical classification of iterative methods:

• B={bcgs, bcgsl, bicg}: from Figure 7.16 we can see that the independence In for these three
methods is nearly 0, which indicates that they are very dependent on each other; also the
associated CRs values are less than 0.2, which suggests that one method covers the other.
This is also depicted in Figure 7.18(a), which shows how the number of cases for which both
converge and diverge is much bigger than the number of cases when either of them did.

• G={gmres, fgmres, lgmres}: in a similar manner, we found experimentally that these meth-
ods behave in a similar way and they are highly dependent from each other (see the corre-
sponding entries in Figure 7.16). CR values for each pair of these methods is below 0.4.

• T={tfqmr}: numerically, this method is a modification of bcgs, however, there is not enough
experimental evidence to group them together in the superclass B, so we put it in its own
class ‡.

• C={cgne}: this method is quite different from any other presented here, both in terms of cov-
erage and independence. Numerically, we know that the nature of this approach is different
than other methods. Unfortunately, there is very little experience in our database regarding

‡By definition, tfqmr is a modification of bcgs [Freund and Nachtigal, 1991, Freund, 1993] as mentioned in Sec-
tion 2.1.1.

107



Figure 7.18: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when bcgs was faster than bicg and blue line
when it was slower. Along the x-axis is the factor by which either method is faster than the other
one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated percent
of cases at each factor.

Figure 7.19: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when bcgs was faster than gmres and blue line
when it was slower. Along the x-axis is the factor by which either method is faster than the other
one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated percent
of cases at each factor.
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Figure 7.20: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when bicg was faster than gmres and blue line
when it was slower. Along the x-axis is the factor by which either method is faster than the other
one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated percent
of cases at each factor.

Figure 7.21: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when cgne was faster than tfqmr and blue line
when it was slower. Along the x-axis is the factor by which either method is faster than the other
one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated percent
of cases at each factor.
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Figure 7.22: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when asm was faster than rasm and blue line
when it was slower. Along the x-axis is the factor by which either method is faster than the other
one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated percent
of cases at each factor.

this method, so for statistical purposes we have not included this experiment in several exper-
iments because it may introduce noise.

7.4.3 Superclasses for Preconditioners

We can do the same type of comparisons for preconditioners. Take for instance Figure 7.22, which
shows preconditioners asm and rasm that are similar (rasm is a modification of asm). Figure 7.17
(both Inasm(rasm) and Inrasm(asm)) indicates that they are more dependent than independent,
and the corresponding CR for these preconditioners is 0.366132. On the other hand, Figure 7.23
shows an example of two preconditioners, boomeramg and ilu, that behave differently; Figure 7.17
shows that while ilu is dependent from boomeramg, boomeramg is very independent from ilu, in
such case the CR measurement becomes useful and in this case it is 1.310578

Following the same guidelines as with the iterative methods, for preconditioners we have formed
the following superclasses:

• A = {asm, rasm, bjacobi}

• BP = {boomeramg, parasails, pilut}

• I = {ilu, silu}

7.4.4 Classification of Iterative Methods

Table 7.6 shows the accuracy outcome using the hierarchical classification approach with two classi-
fication methods− kernel density estimation and decision trees. Compare the values in the columns
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Figure 7.23: (a) Proportion of problems for which none of these methods converged, only of them
converged, and both of them converged. For the last case, the bin labeled as “both” shows the
proportion when each was faster than the other method. (b)(c) Distribution of number cases by
speedup factor: the red line corresponds to the case when boomeramg was faster than ilu and blue
line when it was slower. Along the x-axis is the factor by which either method is faster than the
other one. Along the y-axis are (b) the number of cases per each factor, and (c) the accumulated
percent of cases at each factor.

Table 7.6: Hierarchical classification for iterative methods
Superclass Class αKDE KDE Totals αDT DT Totals

B 0.73 0.95
bcgs 0.59 0.43 0.93 0.87
bcgsl 0.69 0.51 0.92 0.87
bicg 0.15 0.11 0.89 0.84

G 0.87 0.98
fgmres 0.88 0.77 0.96 0.94
gmres 0.53 0.46 0.91 0.89
lgmres 0.75 0.66 0.94 0.93

T 0.79 0.91
tfqmr − 0.79 − 0.91
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Table 7.7: Hierarchical classification for preconditioners
Superclass Class KD Accuracy KD Total DT Accuracy DT Total

A 0.97 0.95
asm − − 0.98 0.93

bjacobi − − 0.67 0.64
rasm − − 0.82 0.78

BP 0.93 0.99
boomeramg 0.65 0.61 0.80 0.80

parasails 0.75 0.70 0.78 0.77
pilut 1.00 0.93 0.97 0.96

I 0.92 0.94
ilu 0.82 0.75 0.82 0.75
silu 0.97 0.90 0.97 0.91

labeled as “Totals” for the two classifiers with the values in Table 7.5(a). Observe the improvement
for both classifiers using superclasses and the hierarchical approach.

One of the main benefits besides improving the accuracy of classification is that it can better help
in handling overfitting. Remember that a reason for overfitting is having very small training sets,
and the more classes we have, the smaller number of observations per class. The use of superclasses
can help to overcome this issue; although the classification inside a superclass may suffer from
overfitting it does not affect other superclasses, and the methods in a superclass are similar so
mistakes within this are less dangerous. The effect of hierarchical classification in recommendations
is also important, and will be discussed in Section 7.4.7.

7.4.5 Classification of Preconditioners

Similarly, Table 7.7 shows the results for accuracy using the hierarchical approach on precondition-
ers. Note that in this table there are some subclasses for which the result is marked as ’−’; this is
a problem that occurs in some cases with kernel density estimators. The reason is that this partic-
ular technique makes use of a covariance matrix for each class which becomes indefinite in cases
where one or more features are constant within the class. A good way to overcome this problem is
either filtering these features previously or to use a different classifier (like decision trees) if such a
problem is encountered.

7.4.6 Classification of Combinations of Preconditioners and Iterative Methods

Classifying combinations of preconditioners with iterative methods in the Performance problem is
more difficult than in the Reliability problem because we have to distinguish among several methods
at a time. If we consider each composite method as a class we would have |D| × |K| classes, in
our case it would be around 56 classes. For this reason the conditional approach, that was so
effective for the Reliability problem, is not convenient in the Performance problem. The sequential
approach does not perform much better since it follows some of the principles of the conditional
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approach. The orthogonal approach, which ignores the interaction between the preconditioners and
the iterative methods, yields better results in this case.

To show the effectiveness of these strategies in the problem of classifying the best composite
method 〈pc, ksp〉, we use the confusion matrix concept from Section 3.7.2. The more diagonal a
confusion matrix is, the better the classification process is. We generate a confusion matrix for each
approach, and use a color scale to represent the number of occurrences in each entry of the matrix.
Higher values in entries of the confusion matrix correspond to darker colors, conversely smaller
numbers are lighter, where white indicates an entry with value 0. For this example we use a reduced
number of iterative methods (four) and preconditioners (three), those for which we have the most
number of observations.

Figure 7.24 shows the confusion matrix for the conditional approach. In this figure we can
appreciate the interaction between iterative methods and preconditioners and how it affects the clas-
sification process. This matrix has “blocks” along the diagonal, and asi turns out each of these
blocks correspond to a preconditioner. Take for instance the first four rows and columns corre-
sponding to various iterative methods with the preconditioner asm; there we can find a group of
errors. This means that a classifier can accurately distinguish between preconditioners, but once
the preconditioner is selected it is difficult to differentiate between the iterative methods. In other
words, it is easy to predict an optimal preconditioner regardless of the iterative method, and in gen-
eral a preconditioner will be the optimal choice for a problem no matter the method. In addition,
this result is very important for Performance classification, because it makes it easier to exploit the
hierarchical classification (described in Section 6.1.4) together with the orthogonal classification
strategy(see Section 6.2.3), where we pick the iterative method and the preconditioner separately.
Figure 7.25 shows the confusion matrix for the sequential approach, although there is a reduction
of errors off the diagonal, its pattern is very similar to that of the conditional approach so there is
not much gain in the accuracy of classification. Finally, Figure 7.26 shows the confusion matrix
obtained using the orthogonal approach; this matrix has a nice diagonal pattern meaning that this is
the best approach in the Performance problem.

7.4.7 Performance Recommendation

The recommendation process for the Performance problem involves more factors than the Relia-
bility problem. The different classes are based on the performance of each method, so there is a
performance loss and gain associated with making wrong and correct predictions. In this section
we present and discuss these factors and how they are affected by other factors such as hierarchical
classification, PCA preprocessing and using different sets of fetures. Remember that recommenda-
tion tests are made on “unseen” data, and they also make use of the accuracy α information resulting
from the testing process.

First, let us see how the L and G (Definitions 43 and 44 respectively) are obtained. In the
case of performance loss, a slowdown factor greater than 20 would include those cases where the
recommended method did not converge; however, in the performance recommendation process the
cases where a method diverged are not considered§. In the case of performance gain, the factor 20+
includes those cases for which the default method did not converge so the recommended method
is not only more efficient but also more reliable. The performance loss is, in general, lower than
the ones for performance gain, and the particular advantage lies in the 20+ factor, meaning that the

§In our experiments, 20 was the largest slowdown factor encountered between two methods.
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Figure 7.24: Confusion matrix for conditional approach for classifying (pc, ksp).

Figure 7.25: Confusion matrix for sequential approach for classifying (pc, ksp).

Figure 7.26: Confusion matrix for orthogonal approach for classifying (pc, ksp).
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Figure 7.27: Performance Loss and Gain factors for unseen problems: this chart shows results for
superclasses only. Along the x is the slowdown factor (left) and the speedup factor (right). The y is
the proportion of misclassified cases that fall within each slowdown factor.

Table 7.8: Accuracy of classification α and expected performance loss and gain for the iterative
methods in superclass G using decision trees.

As Individual Classes As part of Superclass G
ksp αksp ± z L G αksp ± z L G

fgmres 0.80±0.02 8.178 7.73 0.94±0.02 6.62 8.32
gmres 0.59±0.04 13.167 3.40 0.88±0.03 10.61 6.01

lgmres 0.81±0.05 11.222 28.27 0.92±0.02 3.67 28.65

gain of using the recommendations goes beyond the possible loss and results also in more reliable
choices even compared to a default choice (see the example in Figure 7.27). Even if the gain and
loss factor values are similar, the probability of recommending a “bad” method is very low (0.01),
which scales down the loss factors.

The recommendation process can also benefit from using hierarchical classification. For ex-
ample, on the left columns Table 7.8 we can see the accuracies for fgmres , gmres and lgmres as
individual classes (as taken from Table 7.5(a)) and their corresponding expected loss L and gain G
values; on the right columns it shows the same measurements but for these three methods as part of
the superclass G. As we can see, the expected loss inside the superclass is less, and the expected
gain is greater.

Effect of the Feature Set and PCA Preprocessing

In Section 7.2.5 we discussed how the use of PCA can affect the classification process in the Re-
liability problem. The effect of choosing the correct set of features for classification has a bigger
impact in the Performance problem because we have to differentiate between more classes. In
here we illustrate how the selection of features can affect the performance of a classifier. We use
superclasses since these provide the larger number of observations per class so we can have a bet-
ter general view of the effect. We also compare the effect of using PCA with all the transformed
features and using a reduced set (using the most important principal components).
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Table 7.9: Accuracy, Expected Performance Gain and Loss for classification of iterative methods
using Kernel Density Estimation.

Using all features Using good features Using (all − good) features
ksp αksp ± z L G αksp ± z L G αksp ± z L G

B 0.80±0.03 4.77 11.73 0.79±0.03 3.91 11.70 0.57±0.07 3.99 11.22
G 0.67±0.02 3.74 9.02 0.53±0.03 3.85 8.97 0.51±0.06 3.30 8.17
T 0.71±0.05 3.76 19.50 0.89±0.03 3.68 19.80 0.84±0.02 3.85 18.30

Table 7.10: Accuracy, Expected Performance Loss (L) and Gain (G) for classification of iterative
methods using Kernel Density Estimation and PCA-transformed feature space. The first 25 princi-
pal components account for 90% of the information.

Using all PCs Using first PCs
ksp αksp ± z L G αksp ± z L G

B 0.93±0.01 2.83 11.121 0.85±0.03 4.487 11.125
G 0.94±0.01 2.07 8.258 0.87±0.03 3.385 9.018
T 0.90±0.01 2.01 21.750 0.88±0.04 3.792 20.367

Table 7.9 shows the results for kernel density classifier without using PCA, and Table 7.10 using
PCA. And Table 7.9 and 7.10 show the corresponding results for decision trees. Using these tables
we can evaluate how these two classifiers are affected by the feature selection as well as by the
use of PCA. The accuracy of classification is the measurement that is the most affected and in less
degree the expected gain and loss for predictions.

In these tables, the accuracy for each superclass corresponds to the average of the accuracies of
its subclasses, similarly the expected loss L for a superclass is as well the average of the expected
losses of the individual classes when measured as part of a superclass. For example the accuracy α
for class G is the average of the values in the fourth column of Table 7.8, and the L is the average
of the values in the second to last column in that same table.

First we look at the kernel density estimator classifiers, in Table 7.9 the good features correspond
to those we characterized in Section 7.2.3 as relevant; observe how the use of this set do not affect
much the overall performance of the classifier for each class, and it shows particular benefit for
class T, where it seems that the use of all features introduces some noise that affects the ability of
the classifier to distinguish this class. The use of the remaining features (denoted as (all − good)),
greatly affects the accuracy αksp.

Table 7.10 shows what happens when we use a transformed set of features using PCA, first
using all the principal components, and second using only the most relevant. The use of transformed
features is, in general, better for this type of classifier: the accuracy αksp increases and the expected
loss decreases. The overall performance of the accuracy is improved even with dimensionality
reduction using only the principal components that account for a 90% of the information.

Now we take a look to these results but using decision trees classifier instead. Table 7.11 shows
how the use of all features is very convenient in decision trees. Remember that this type of classifier
can take advantage of the information originating from all the features. The use of the reduced set
of good features slightly affects the L and the G, but also slightly decreases the accuracy, and not
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Table 7.11: Accuracy, Expected Performance Gain and Loss for classification of iterative methods
using Decision Trees.

Using all features Using good features Using (all − good) features
ksp αksp ± z L G αksp L G αksp ± z L G

B 0.86±0.03 10.69 16.07 0.83±0.02 9.77 10.58 0.66±0.04 6.28 10.87
G 0.91±0.02 7.00 14.32 0.89±0.03 6.27 13.36 0.79±0.03 8.73 10.42
T 0.89±0.04 4.75 20.88 0.743±0.04 15.11 22.22 0.257±0.05 3.11 24.22

using these features dramatically affects it. Table 7.12 shows the results using PCA, as opposed
to the kernel density estimator classifier, there is some decrease of the overall effectiveness of the
decision tree classifier. Several reasons, discussed in Section 7.2.5 could account to this effect.

Table 7.13 shows the effect of using different sets of features on the classification results. Using
only one category (except the case of Spectrum), leads into less accurate classifications, in particular
for the superclasses B and T . Observe that the classification excluding the Normal category is good,
which may indicate that the features in this category introduce noise into the classification process.
The Spectrum category seems to be important in this process, not only it yields good accuracy when
used alone but also, the classification is not as successful when this category is excluded.

7.5 Case Study: “Blind” Test

In this section we discuss an example of how the classification and recommendation are carried out
on eight completely new matrices, we will call this small set G (the description of this set can be
found in Appendix A.2.4). Four of these matrices are symmetric, and the other four are not. The
user that provided these matrices has specified the methods and preconditioners available for this
particular application in a single-processor machine. We first obtain a recommendation for each
problem, then we run every available method and preconditioner on these matrices and we compare
the recommendations’ results with the results from the actual runs.

The user also defines which is the set of available solvers:

M = {bcgs, bicg, cgne, gmres, tfqmr}

The first stage is the learning process 4.1, covers the training of the classifiers:

1. Train a Reliability classifier. This classifier will determine whether a method converges for the
input matrix. It is trained using all available methods on the data in the database. The resulting
set of decision rules for each method is a discriminant function Υreliability

M (Definition 5.2),
where M ∈M.

2. Train a Performance classifier. The performance classifier predits which of the available
methods will achieve the best performance on the particular input. It is trained by using
all available methods on the data in the database. The resulting set of decision rules is the
discriminant function Υperformance (Definition 28), which compares between the methods in
M.
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Table 7.12: Accuracy, Expected Performance Loss (L) and Gain (G) for classification of iterative
methods using Decision Trees and a PCA-transformed feature space. The first 25 principal compo-
nents account for 90% of the information.

Using all PCs Using first PCs
ksp αksp ± z L G αksp ± z L G

B 0.84±0.04 14.58 11.67 0.83±0.03 10.98 12.02
G 0.93±0.03 6.93 8.34 0.92±0.03 5.70 8.32
T 0.66±0.03 3.66 20.87 0.74±0.03 4.00 21.92

Table 7.13: The first column indicates which set of features was used (based on the categories in
Appendix A.1). These results were obtained using decision trees.

Feature Set Method
Superclass

α L G

Simple
B 0.67 7.40 10.64
G 0.80 10.59 8.37
T 0.23 2.91 26.75

Variance
B 0.56 6.72 10.67
G 0.82 10.20 8.50
T 0.23 3.11 26.75

Structure
B 0.71 5.40 10.36
G 0.80 12.06 8.83
T 0.40 3.67 22.57

Spectrum
B 0.79 13.61 12.34
G 0.91 4.60 8.26
T 0.77 2.00 21.22

Normal
B 0.78 10.02 10.82
G 0.83 8.77 8.64
T 0.62 8.86 20.45

All except Spectrum
B 0.76 7.26 10.42
G 0.88 10.33 8.63
T 0.54 3.33 23.05

All except Normal
B 0.93 15.61 11.07
G 0.92 7.62 8.41
T 0.69 4.00 20.12

All except Spectrum and Normal
B 0.66 6.98 10.87
G 0.79 9.73 8.42
T 0.26 3.11 24.22
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Table 7.14: Output from reliability classifiers.
matrix G ∈ G Recommended reliable Actual reliable
sym pdl bicg, gmres, tfqmr bcgs, bicg, cgne, gmres, tfqmr
sym pdl-20 bcgs, bicg, gmres, tfqmr bcgs, bicg, cgne, gmres, tfqmr
sym pd2 bicg, gmres, tfqmr bcgs, bicg, cgne, gmres, tfqmr
sym pd2-20 bcgs, bicg, gmres, tfqmr bcgs, bicg, cgne, gmres, tfqmr
nsym pdl bcgs, gmres, tfqmr bcgs, bicg, gmres, tfqmr
nsym pdl-1.6e4 bcgs, bicg, gmres, tfqmr bcgs, bicg, gmres, tfqmr
nsym pd2 bicg, gmres, tfqmr bcgs, bicg, gmres, tfqmr
nsym pd2-20 bcgs, bicg, gmres, tfqmr bcgs, bicg, gmres, tfqmr

Training the classifiers is a process that usually takes minutes (perhaps even hours depending
on the amount of data in the database), it can be done offline and the decision rules saved for later
use (e.g., store the decision tree structure in a file).

Using the trained classifiers we can proceed to find the set of reliable methods:

for each matrix G ∈ G

for each M ∈M
if Υreliability

M = convergeM then
add M to the set of reliable methods for solving G

end

end

end

Table 7.14 shows the following is the output of this process, and the results from the actual tests.
Observe that sometimes the classifiers do not identify as converging some methods that actually are,
however, methods that diverge are not recommended – that would be a dangerous error.

We also have to find which preconditioners are also reliable with each of these “reliable” meth-
ods. The set of preconditioners marked available for this experiment is:

D = {asm, ilu, bjacobi, boomeramg, parasails, pilut}.

Using the conditional approach (Section 5.3.3), we try to identify the set of reliable combinations.
Take for instance the set of reliable methods bcgs, bicg, gmres , tfqmr for the matrix nsym pd2-20,
the result for the recommendation of reliable combinations (pc, ksp) is in Table 7.15.

The best recommendations are those that have a minimal false positive ratio and higher accu-
racy, which results also in a minimal Qreliability (see Equation 5.13). Except for (bcgs, asm) and
(gmres, jacobi), all the other recommendations are good, specially in terms of the penalty they
incur in, these bad penalties happen to coincide with the worse accuracies too.

Now we try to find what is the optimal method to solve each of these matrices. For each matrix,
two choices of optimal method are recommended. The first is the one that according to the classifier
is the optimal among M, this method is then removed from M and we let the classifier choose
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Table 7.15: Recommended combinations (pc, ksp) for the matrix nsym pd2-20.
(pc, ksp) α(pc,ksp) FPratio Qreliability

(bcgs, asm) 0.83 0.270 0.087
(bcgs, boomeramg) 0.96 0.011 2.976
(bcgs, ilu) 0.84 0.023 1.191
(bcgs, parasails) 0.99 0.012 2.724
(bcgs, pilut) 0.98 0.012 2.695
(bicg, asm) 0.99 0.009 3.676
(bicg, ilu) 0.99 0.006 5.524
(gmres, bjacobi) 0.91 0.244 0.109
(gmres, boomeramg) 0.98 0.001 33.33
(gmres, ilu) 0.90 0.073 0.420
(gmres, parasails) 0.97 0.001 32.25
(gmres, pilut) 0.99 0.001 33.33
(tfqmr , asm) 0.90 0.047 0.666
(tfqmr , boomeramg) 0.95 0.001 33.33
(tfqmr , ilu) 0.94 0.012 2.695

another method, which is the second choice. On Table 7.16 we present the output of the recommen-
dation process together with the real optimal method (obtained later by doing exhaustive tests on
each matrix). We also present the expected gain and loss values for each recommendation as well
as the Qperformance, which the smaller it gets the better a recommendation is (see Equation 6.7).

These measurements can help us to decide if the optimal method recommended is indeed a good
choice, or if taking the second option may be a better decision. Observe first the recommendations
for the symmetric problems (first four). The classifier made a mistake predicting the optimal meth-
ods for these and in two of these cases the real optimal was cgne¶; observe from Figure 7.1(a)
that there are almost no examples of cases using cgne in our experience database, so even if that is
indeed the optimal method for these particular matrices, it is very difficult to generalize from a few
examples, so the classifier recommends instead something else.

On the other hand, the last three matrices from the blind test (non-symmetric) had better rec-
ommendations. The classifier was able to predict which was the actual optimal method, even when
it was a second choice. The difference with these matrices is that we have recorded plenty of ex-
perience and examples in the database where these methods were successful for matrices sharing
similar numerical properties, which results in a better generalization for new problems.

Let us analyze individually a couple of these examples:

• sym pd1: the first recommendation is gmres with Q = 1.76 and an accuracy (α) of 0.89,
while the second recommendation is bcgs with Q = 0.38 and accuracy of 0.87. In this case,
selecting the first recommendation is a better choice. After checking the result from the real
test, we find that this recommendation is slower than the real optimal by a factor of 1.25.

¶A common rule of thumb for solving positive-definite symmetric matrices is to use the conjugate gradient method
cg, however, at the time we trained the classifiers we did not have this method available so there are is no experience
recorded in the database about its behavior.
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Table 7.16: Output from performance classifiers.
matrix G ∈ G Recommended op-

timal (1st and 2nd)
Actual optimal αM L G Qperformance

sym pdl
gmres cgne 0.89 10.61 6.01 0.568
bcgs 0.87 4.16 10.95 2.632

sym pdl-20
gmres tfqmr 0.89 10.61 6.01 0.568
tfqmr 0.89 4.75 20.88 4.405

sym pd2
tfqmr cgne 0.89 4.75 20.88 4.405
gmres 0.89 10.61 6.01 0.568

sym pd2-20
tfqmr bicg 0.89 4.75 20.88 4.405
bcgs 0.87 4.16 10.95 2.632

nsym pdl
tfqmr bicg 0.89 4.75 20.88 4.405
bicg 0.84 3.333 30.00 9.09

nsym pdl-1.6e4
tfqmr tfqmr 0.89 4.75 20.88 4.405
gmres 0.89 10.61 6.01 0.568

nsym pd2
tfqmr tfqmr 0.89 4.75 20.88 4.405
bcgs 0.87 4.16 10.95 2.632

nsym pd2-20
tfqmr tfqmr 0.89 4.75 20.88 4.405
gmres 0.89 10.61 6.01 0.568

• sym pd1-20: the second recommendation withQ = 0.227 and same accuracy as the first one
is a better choice, and after checking the real result from tests we find that tfqmr is indeed the
optimal method.

• nsym pd1: the first choice of recommendation is not the actual optimal method, however the
second recommendation is. The accuracy of the recommendation for both cases is very close,
but the Q for bicg is better. Based on the order of the recommendation and on the accuracy
of the prediction (α), choosing the first method is a good option (although it would not be
the optimal in reality); however, the Q, L and G tell us that with bicg there is not much loss
expected compared to the expected gain so bicg becomes a better option. When we check the
actual results from tests, we find that for this problem tfqmr was slower than bicg by a factor
of only 1.02. So picking either of the methods recommended is a good choice.

• nsym pd2: the first recommended method happens to be the optimal method too. This is an
example of a perfect case, where the accuracy of the first recommendation is higher and itsQ
is smaller.

In general, we have found that for this test the methods recommended for the Performance
problem using our strategies are good choices, even for the cases when these were mispredictions.
To achieve better recommendations it is necessary to incorporate into our database more examples
to homogenize the sample of data for different methods.

To exemplify how we can use the results from both the reliability and performance recommen-
dations, lets use again the matrix nsym pd2-20. From Table 7.14 we see that gmres and tfqmr
are reliable, and in Table 7.15 we have a list of the recommended most reliable combinations of
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preconditioner and iterative methods for this matrix. From Table 7.16 we have discussed that the
best choice, in terms of performance, is tfqmr . However, from Table 7.15 we can see that gmres
converges for more choices of preconditioners than tfqmr .

The importance that each type of recommendation gets, reliability or performance, greatly de-
pends on the application for which it is required and the requirements of the final user. In this
particular example, although tfqmr is a better choice for fastest method, gmres is more promising
in terms of reliability and more likely to work with more preconditioners.
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Chapter 8

Conclusions and Future Work

In this section we describe the current achievements of this research as well as the possibilities for
future work and research.

8.1 Conclusions

We have developed and tested various strategies that can be used for algorithm selection in nu-
merical problems. These strategies have been based on the study of the numerical properties of
sparse matrices paired with the behavior analysis of different solvers. A priori, the behavior of the
classifiers is completely determined by features, and we have shown that sufficient features can be
computed. The properties of these types of problems have a strong effect on the effectiveness of the
algorithms, whether this is in terms of reliability or performance.

We have identified, via PCA, several correlations between features. We have also pointed out a
group of relevant features for the Reliability problem and for the Performance problem. These fea-
tures seem to influence the outcome of the method selection process, which implies that they affect
as well the behavior of the algorithms. Central to the feature analysis problem was the determination
of the normalizing factors for each feature; this was essential to make the problems scale-invariant.
This makes our analysis independent (to some extent) from some architecture-related parameters
and timing measurements that are dependent on the size of the problem.

Overall, PCA is a powerful tool for the study and comprehension of numerical problem features.
It may also be used to improve the classification accuracy of some classifiers. It has been proved
very useful in particular with reliability classification problems (both iterative methods and/or pre-
conditioners). However, this approach should be used with caution since it could be useless (maybe
even harmful) for other classifiers like decision trees.

Over the course of the research we carried out experiments with different datasets. Some of
these guided us in the development and tuning of the different strategies presented here, by exposing
characteristics of the features.

We have found that the interaction between preconditioners and iterative methods is very sig-
nificant not only in the numerical sense. This reflects directly on the behavior and effectiveness of
statistical learning techniques, particularly in the Reliability problem, where determining the con-
vergence of a method is critical. Among the different strategies for recommendation we have tested,
the conditional approach was the most effective and the one that best captured this interdependence.
Experimentation with other approaches led us into the development of the conditional approach,
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with which we were able to better represent the dependence of iterative methods on precondition-
ers, and use this to achieve better classification results and thus, more reliable recommendations.

The problem of finding an optimal method, i.e. the Performance problem, depends greatly on
the way that methods behave compared to each other. We developed certain concepts, independence
and covering ratio, to measure and determine when two methods are similar not only in terms of
reliability but also in terms of performance. By determining which methods are similar we were
able to group them in superclasses to improve the effectiveness of performance classifiers by using
the Hierarchical classification strategy. We have found that it is easier to discriminate between
superclasses, and then by restricting the classification to the classes within a superclass we can
achieve better accuracy of classification, as well as better ratios of expected performance gain and
loss for recommendations made using this approach. The determination of method similarity is
a heuristic strategy, but it is a reasonable approach based on experimental results. Although the
similarity of methods and preconditioners is consistent across different datasets, we have to keep
in mind that for other datasets outside the current scope, the similarity measurements may vary;
however, the superclasses may still be determined using the proposed methodology.

8.2 Future Work

A fact that we have not explicitly considered in our current experiments is that many iterative
solvers, such as gmres and bcgs, have parameters that can make a method perform better or make
it more reliable. In order to incorporate these parameters into our analysis we could consider each
parametrized solver as a different solver, e.g., gmres5, gmres20, etc. However, this creates many
more classes which are more difficult to separate and could result in overfitting of some classifiers.
A possible alternative could be to do Hierarchical classification (Section 6.1.4) in more steps, for
instance: superclass G has classes gmres, fgmres and lgmres, and in the class gmres we could
have subclasses gmres5, gmres20, gmres50. The main issue with either of these approaches is
that many of these solver parameters are not discrete; they extend over a continuous range that is
difficult to split in intervals. A different kind of modeling is required for this problem, such as
regression or different machine learning techniques such as genetic algorithms or regression de-
cision trees. Furthermore, parameters are not only particular of solvers, but they also appear in
preconditioners and other preprocessing steps.

We have mentioned that there are other types of transformations that can be applied to a problem
A prior to the application of a solver. Here we have focused on the use of preconditioners because of
the important effect they have on iterative solvers. Other important transformations such as scaling
also have parameters that must be taken into account. For this, it is very important to gather more
data and examples from different datasets.

Another important issue for future investigation is the incorporation of parallel implementations
of solvers and experimentation with the different preconditioners that are known to be affected by
parallelism. We have characterized several features that are relevant for the decision making process
in single processor experiments; some of these are intuitively important no matter the implemen-
tation. However, the amount of information that they may capture or the type of correlations they
may exhibit could be very different in a parallel environment.

Further analysis of the adaptivity of the system over large periods of time is also important. This
concerns mainly the constant evaluation of the recommendation system with the incorporation of
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new “experience”, and how the particular strategies can be tuned improved when more data (and
perhaps different) data is incorporated.

With the use of the techniques strategies here proposed, we have been able to address a cer-
tain spectrum of numerical problems. It is interesting to extend these techniques to other types of
problems, not only those originating from the solution of linear systems and iterative solvers, but
also those arising from different application areas such as the eigenvalue problem. A preliminary
look at experiments with the “blind” test dataset described in Appendix A.2.4 (originally used for
eigenvalue problem), has indicated a promising possibility for the use of our proposed methodology
of feature characterization, given that many of the features we have analyzed are intuitively impor-
tant in numerical research. We have stressed the importance of taking into consideration different
problem features. Further analysis and experimentation with those features identified as relevant can
allow numerical researchers to focus on particular areas of the problems affected by these properties.
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Appendix A

Experimental Feature Set, Datasets and
Implementations

A.1 The Feature Set

This section contains definitions and descriptions of the features considered in our research and
experiments. These features are available as extracted using the AnaMod [Eijkhout, 2007] software
library.

Tables A.1, A.2, A.3, A.4, A.5 and A.6 contain, organized by category, the specific features
that are considered in our experiments. Each row of these tables includes the feature name, a brief
description, and the feature used to normalize it (if necessary). The first column of these tables
contains an index that indicates the order the Loadings Vectors used in Section 7.2.2. If the index is
− it means the feature was not used in the analysis.

A.2 Experimental Datasets

In this part of the Appendix we describe in detail the datasets we have used as a source for our
experiments.

A.2.1 The Matrix Market Dataset

The matrix collections [Market, 2007] in this dataset are both “wide” and “deep”. The matrices from
this dataset come from a wide range of applications, originating from PDE problems. From each
application there is a group of similar matrices, and matrices from different datasets are dissimilar
from the ones in other groups. Some of examples of the applications from which these matrices
are collected from are: structural engineering, finite element structures problems in aircraft design,
fluid dynamics, plasma physics. This set provides a good and variated testbed for training and
testing heuristics.

A.2.2 The Finite Element Modeling Dataset FEMH

This is a set of matrices resulting from a finite element modeling for a homogenization of materials
[Parsons, 2007]. The homogenized material introduces a material density dependancy. This density
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Table A.1: Simple Category
Index Feature Name Description Normalize With

1 nrows number of rows −
2 trace Trace, sum of diagonal elements ∞norm
3 traceabs Trace Absolute, sum of absolute values of di-

agonal elements
∞norm

4 1norm 1-Norm, maximum column sum of absolute
element sizes

∞norm

5 Fnorm Frobenius-norm, square root of the sum of el-
ements squared

∞norm

6 diag dominance least positive or most negative value of di-
agonal element minus sum of absolute off-
diagonal elements

∞norm

7 symmanorm infinity norm of anti-symmetric part symmsnorm

8 symmfanorm Frobenius norm of anti-symmetric part symmfsnorm

9 n struct unsymm number of structurally unsymmetric elements ∞norm

Table A.2: Variance Category
Index Feature Name Description Normalize With

10 row variability maxilog10
maxj |aij |
minj |aij | −

11 col variability maxjlog10
maxj |aij |
minj |aij | −

12 diagonalavg average value of absolute diagonal elements ∞norm
13 diagonalvar standard deviation of diagonal average ∞norm
14 diagonalsign indicator of diagonal sign pattern −

Table A.3: Structure Category
Index Feature Name Description Normalize With

15 symmetry 1 for symmetric matrix, 0 otherwise
16 nnz number of nonzero elements in the matrix nrows2

17 max nnzrow maximum number of nonzeros per row ∞norm
18 min nnzrow minimum number of nonzeros per row ∞norm
19 left bw maxi{i− j : aij 6= 0} nnz2

20 right bw maxi{j − i : aij 6= 0} nnz2

21 diag zerostart min{i : ∀j>iajj = 0} nrows2

22 diag definite 1 if diagonal positive, 0 otherwise −
23 blocksize integer size of blocks that comprise matrix block

structure, 1 in the general case
−
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Table A.4: Spectrum Category
Index Feature Name Description Normalize With

24 n ritz vals number of stored Ritz values −
25 ellipse ax size of x-axis of the enclosing ellipse ellipse cx
26 ellipse ay size of y-axis of the enclosing ellipse ellipse ax and

ellipse cx
27 ellipse cx x-coordinate of the center of the enclosing

ellipse
−

− ellipse cy y-coordinate of the center of the enclosing
ellipse

−

28 κ estimated condition number −
29 positive fraction fraction of computed eigenvalues that has

positive real part
−

30 σmax maximum singular value 1norm
31 σmin minimum singular value 1norm
33 λmax,magnitude,< real part of maximum eigenvalue by mag-

nitude
1norm

32,34 λmax,magnitude,= imaginary part of maximum eigenvalue by
magnitude

λmax,magnitude,<
(index 32) and
diag avg (index 34)

35 λmin,magnitude,< real part of minimum eigenvalue by mag-
nitude

λmax,magnitude,<

− λmin,magnitude,= imaginary part of minimum eigenvalue by
magnitude

λmax,magnitude,=

36 λmax,rp,< real part of minimum lambda by eigen-
value

1norm

37 λmax,rp,= imaginary part of minimum lambda by
eigenvalue

dia avg

Table A.5: Normal Category

Index Feature Name Description Normalize With
38 trace2 an auxiliary quantity −
39 commutator normF the Frobenius norm of the commutator

AAt −AtA
Fnorm2

40 ruhe75 lbound the bound from [?] −
41 lee95 bound the bound from [Lee, 1995] −
42 lee96 lbound the lower bound from [Lee, 1996] −
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Table A.6: : Functions for computing a multicolour structure of a matrix [Jones and Plassmann,
1993a, Jones and Plassmann, 1993b].

Index Feature Name Description Normalize With
43 n colors the number of colours computed −
− color set sizes an array containing in location i the num-

ber of points of color i
−

− colors points sorted first by color, then increasing
index

−

dependency is composed of an infinite number of small holes which are periodically distributed in
the material structure. This can be thought of as regularly distributed porus material. The unit cell,
defined as a single cell with a void, is the microscopic hole that is modelled using the finite element
technique. Using the finite element discretization on a 2D domain, the unit cell model can be written
as:

[K] · [χ̂] = [f ] (A.1)

where [K] is classically refered to as the stiffness matrix. This is the term of interest in this
research. The stiffness matrix is varied by changing the number and location of the descretization
points and material properties.

A.2.3 The “Artificial” Dataset JLAP40

These matrices can be generated from the SALSA [SALSA, 2007] software implementation; they
constitute a built-in test set for this code. They are based on a general form of a Laplace problem.
The following description is from [Eijkhout, 2005].

The general form of a Laplace problem is

−∇ · (a(x̄)∇u(x̄)) + βv(x̄) · ∇u(x̄) + γu(x̄) = f

In our test code, x̄ is a two-dimensional vector, and

• the diffusion coefficient a(x̄) is piecewise constant, with a step at x = 0.5 and y = 0.5;

• the convection vector v(x̄) = (sin(4p(x + y)), cos(4p(x + y)))t, and

• γ is negative.

The matrix is formed by discretizing this with a five-point stencil (which has 2nd order accuracy)
on a square 2D domain.

The relation between differential equation coefficients and program parameters is as follows:

• domain size determines the mesh parameters: 1/h = domainsize + 1.

• the diffusion function is scaled by h2:
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• the vector v(x̄) has unit length, so the amount of diffusion is determined by the parameter β:

β = skewh

• finally, γ = −shift.

The scalings by powers of h imply that even modest numbers for the program parameters may
imply rather badly conditioned differential equations, if h is small enough.

In this dataset, the features in the categories structure and simple do not change in any of
these samples. The two parameters shift and skew affect the spectral (and other) properties of the
matrices when a transformation is applied, so the analysis will concentrate in the behavior and study
of these properties.

A.2.4 Other Datasets

The M3D Dataset

This dataset includes problems from plasma physics projects (from Princeton, University of Wis-
consin, and University of New Hampshire) and one geophysics project (at Columbia). This dataset
contains very few matrices, a full description of the application that originates these matrices can
be found in [M3D-Home, 2007]. The matrices are of three general types based on how diagonally
dominant they are: weak, medium and strong.

The “Blind” Test Dataset

The sparse matrices for this case study are obtained using finite element method (FEM) discretiza-
tion of convection-diffusion-reaction equations. In particular, the problem is in 3D, the FEM uses
piecewise linear continuous finite elements over tetrahedral mesh. The PDEs describe a real 3-D
application in fluid flow and transport in porous media. The symmetric matrices used are for prob-
lems without convection (e.g., solving for the pressure), and the non-symmetric are for problems
with convection, discretized using up-winding. In both cases the problems have singularities due
to boundary data, inhomogeneity, and localized source terms. The computational mesh is obtained
with automatic mesh refinement around the singularities (just mentioned) using a posteriori error
analysis. For more information see [C. Carstensen and Tomov, 2005].

There are several matrices based on the discretization just mentioned. These matrices are also
used to obtain a few others by subtracting from them αI where α is constant chosen in the following
way. The original matrices are positive definite and estimates about their smallest eigenvalues λmin

are obtained using SALSA. Several choices for alpha are considered:

1. alpha close to λmin and alpha < λmin,

2. alpha close to λmin and alpha > λmin, and finally

3. alpha further away from λmin towards the middle of the spectrum.

Note that these choices correspondingly give us matrices with much larger condition number
(than the original) but still positive definite, matrices with much larger condition number and indef-
inite (with possibly just a few eigenstates with negative eigenvalues), and highly indefinite matrices
(many eigenstates with negative eigenvalues).
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A.3 Code Implementations

Here we briefly describe the implementation of various methodologies used in this research and
their corresponding software modules.

One of the main goals of developing a smart agent component for the SALSA project is to im-
plement an automated decision making process that will eventually help to find the most “suitable”
method. As mentioned in previous sections we study the performance using statistical machine
learning methods to develop and test various types of classification approaches.

For this study, we need to consider two important aspects: first, we need to research the be-
havior of different classification techniques that can help the system to understand and eventually
recommend a “good” method for solving a specific problem, and second we need a way to store
the information that is inherently required (and generated) by these techniques. Since most of these
techniques are statistical methods-based, we need to collect as much data as possible, and with a
wide range of problem variety.

To address the first point we have investigated the behavior of different types of classification
methods; the various implementations of these methods we will refer to as classifiers. These clas-
sifiers are implemented using Matlab scripts and toolboxes. To address the second point, we have
created a database using MySQL, which stores both properties of the matrices (and several transfor-
mations) available so far, and the performance of different iterative methods applied to solve these
matrices.

Another important aspect mentioned before is to identify and characterize the features or prop-
erties of the numerical problems that make them be solvable or more efficiently solved by particular
methods.

A.3.1 Classification Modules Using Matlab

All the classifiers that have been studied so far have been implemented using Matlab and its Sta-
tistical Toolbox. Matlab provides a convenient C API, so it will be possible to integrate and run
the classifier modules with the rest of the SALSA environment. We concentrate on statistical meth-
ods, and so far, the following types of classifiers have been implemented and tested with the data
currently available:

• Bayesian with Gaussian assumption (parametric approach)

• Bayesian using Kernel Mixture (non-parametric approach)

• K nearest-neighbors (KNN) which is a clustering technique

• Principal Component Analysis (PCA), applied to both parametric and non-parametric Bayesian
approaches

• Decision Trees

• Support Vector Machines (SVM): currently the implementation only supports 2-dimensional
data, but will be extended for multi-dimensional analysis

Each classifier is implemented as a separate module in Matlab script with a standard API.
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A.3.2 Accuracy Evaluation Modules using Matlab

Here we define some classification terms we will use. The following definitions help with the
generalization and design of the classifier interface.

Let X be the set of numerical problem (in this particular case, the set of linear systems with
sparse coefficient). X is composed of a finite number of observations, we define an observation
xi ∈ X as a vector of numerical properties (features) that describe a single numerical problem,
where i = 1, 2, ..., n and n is the number of elements in X.

Let M be the set of numerical methods that can potentially solve a problem, or that can solve
it in the most efficient way according to a designed performance measure (e.g. smallest time to
convergence, least number of iterations, best accuracy).

Let C be a finite set of classes or groups defined within the context of a particular classification
problem. In our case, a class ci ∈ C can be defined in two different ways depending on the problem
we want to address in terms of recommendation system (as described in Section 4.4):

• Best performance recommendation: a class is defined as a set problems subset of X with
certain features such that all the members of the class are best solved by a particular method
m ∈ M with respect to a particular performance measurement.

• Reliability recommendation: a class is defined as a set of problems that have certain features,
such that a particular method m ∈ M converges (or not) regardless of its speed.

In general, each class in C is a subset of X ci ⊆ X, and the union of the elements of these classes
compose the totality of X: c1 ∪ c2∪, ...,∪cn = X.

It is important to note that the classes in in either case, are mutually exclusive, once a problem
is assigned as a member of certain ci it cannot belong to any other.

Let P be the set of input parameters that a statistical-based classifier can take. Depending on the
type of classifier (parametric, non parametric, supervised, etc.) a subset p of P is a particular set that
is adequate for a classifier. For example, consider a simple Gaussian based classifier. Here p would
be composed of new observation, mean, standard deviation, and accuracy threshold.

A.3.3 Database Interface

The second part of our problem involves the manipulation of the database based in MySQL. MySQL
also provides a C API which allows the integration of SQL queries embedded in C programs. This
will allow the main C program to work as a link between the database information and how it can be
processed using the Matlab scripts for the classifiers. Presently, we have several MySQL scripts that
extract information from the database in different ways depending on the format and input required
by the classifiers, and on the different types of statistics that we are interested in exploring. In
general, we can group the types of scripts in the following categories:

• Counting and comparing statistics: with this module it is possible to count and compare the
behaviour of different methods or transformations, such as convergence and speed rates of
one method compared to other(s).

• Data grouping by best performance-measure: these scripts are used for dumping data grouped
by method; that is, all the data dumped into one file corresponds to those matrices that are
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best solved by a specific method. The data can be grouped in different ways depending on
the way the data is to be analyzed; e.g., data groups could correspond to four different types
of iterative methods.

• Data grouping by transformations applied to a matrix: these scripts are similar to the previous
category, but in these cases we might be interested in the performance of different prepro-
cessing steps applied to a matrix and the ultimate impact on the performance of the iterative
method.

• Data display for comparing performance: these scripts are mainly used for PCA. The data is
not grouped in any way, but it rather consists of a block of features followed by a block of
performance measures (of the same type) corresponding to the different methods or groups
of interest, to compare side by side the performance of the methods when applied to the same
matrix but with different transformations, as well as investigating how the performance is
affected by the difference in the properties or features of each specific matrix.
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