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ABSTRACT 

The North American Great Lakes are a vital source on a global scale, as they hold ~18 % 
of the potable water resources on our planet. Cyanobacteria of the genus Microcystis are 
commonly found in fresh water environments around the world, and since the mid-1990s 
also in Lake Erie. The reasons for the success for these potentially toxic cyanobacteria in 
Lake Erie are not completely understood. In this study we have applied modern 
molecular tools to analyze field samples to provide an insight into the genotypic 
composition and diversity of the Microcystis community in the past and present day Lake 
Erie. We have also analyzed a three-year data set to identify specific environmental 
factors that contribute to the abundance of Microcystis genotypes and microcystin 
production. In addition, in a laboratory-based study we examined the effect of nutrients 
on transcriptional activity of the microcystin synthetase gene mcyD. 

The results of this study suggest that, although toxic Microcystis form < 10 % of 
the total cyanobacterial population in Lake Erie, the toxin-producing Microcystis 
community in Lake Erie is diverse, and that these populations are stabile on a time scale 
of decades. Sediments acting as a reservoir of Microcystis are likely contributing to the 
persistence of the population. Although Microcystis is the dominant microcystin producer 
in the lake, other microcystin-producing cyanobacteria were also found in spatially 
isolated regions of the lake. While microcystin concentration in Lake Erie is correlated 
positively with total phosphorus (P<0.001) and surface reactive phosphorus (P<0.001), 
and negatively with the molar ratio total nitrogen to total phosphorus (P<0.001); toxic 
Microcystis abundance correlates negatively with NO3 concentration (P=0.04) and 
positively with surface water temperatures (ranging from 20.8 °C to 27.4 °C) (P=0.03). 
These observations, along with findings from culture based experiments, suggest 
decoupling of the factors governing proliferation of toxic cells and toxin production. 
Culture based experiments also suggested that the chemical form of phosphorus may be 
an important factor in regulating microcystin biosynthesis in Microcystis based on 
monitoring relative transcriptional activity of the mcyD gene. The transcriptional activity 
of mcyD was higher (P=0.118) in cells grown in BG11-medium containing 2.3 μM 
organic phosphorus (glycerol 2-phosphate disodium salt hydrate) than in cells grown in 
BG11-medium containing 2.3 μM inorganic phosphorus (K2HPO4). 
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Background 

Freshwater cyanobacteria 

Cyanobacteria are prokaryotic photoautotrophs that thrive in a wide range of mostly 

aquatic habitats. The cellular organization and basic functions regarding growth and 

photosynthesis have been comprehensively described in the literature (e.g. Sandgren, 

1988; Peschek et al., 1999) and since the late 1990s, the sequencing of entire genomes of 

or smaller specific regions of within a genome (e.g. gene cassettes involved in certain 

metabolic functions, such as toxin production) (Nishizawa et al., 2000; Tillett et al., 

2000) has allowed more extensive understanding of their unique lifestyle and metabolic 

traits (Kaneko et al., 2001; Palenik et al., 2003; Rocap et al., 2003).  

The importance of cyanobacteria in the global ecosystem is indisputable: marine 

cyanobacteria Synechococcus and Prochlorococcus are estimated to carry out 32 – 88 %  

of primary production in the oligotrophic ocean (Rocap et al., 2002). There are no 

estimates regarding the percent contribution of cyanobacteria to primary production in 

freshwater systems or in the Great Lakes, however, in Lake Erie picoplankton (0.2 – 2.0 

μm size class), which include cyanobacteria, make up on the average 44 % (range 10 – 66 

%) of the biomass based on size-fractionated chlorophyll a estimates (Twiss et al., 2005). 

Cyanobacteria are important as the first link in the food web, nitrogen fixers, succession 

pioneers, and sources or pharmaceutical compounds (Dietrich and Hoeger, 2005).  

While cyanobacteria generally have relatively simple basic metabolic 

requirements consisting of carbon dioxide, light, water, and inorganic nutrients (Mur et 

al., 1999), some cyanobacteria have exhibited more complicated traits as they are 

auxotrophs for compounds such as vitamin B12 (Wilhelm and Trick, 1995). They also 

possess efficient uptake and retention mechanisms for phosphate, nitrate and bicarbonate 

(Ritchie et al., 1997; Herrero et al., 2001; Badger and Price, 2003). In addition to the 

above mechanisms, cyanobacteria are capable of producing high affinity iron chelators, 

known as siderophores, under iron deficient conditions to alleviate iron stress (Boyer et 

al., 1987; Wilhelm and Trick, 1994), and some filamentous cyanobacterial genera possess 
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heterocysts, cells specialized to fix atmospheric N2 (Paerl, 1988). In total, cyanobacteria 

have unique traits that allow them to dominate many phytoplankton communities as a 

result of the interactions between their physiology and the physical and chemical 

characteristics of the aquatic system itself.  

Numerous studies have been carried out that characterized the environmental 

conditions which allow cyanobacteria to proliferate (Dokulil and Teubner, 2000). The 

major mechanisms hypothesized to promote cyanobacterial success in freshwater systems 

include increased availability of nitrogen and phosphorus, low nitrogen to phosphorus 

ratio (N:P) (< 29:1 by weight), low ambient CO2 concentration and high pH, elevated 

water temperature, water column stability, buoyancy regulation, ability to store nutrients, 

trace element competition and avoidance by grazers due to excretion of toxins and other 

organic compounds (Paerl, 1988; Dokulil and Teubner, 2000; Downing et al., 2001). 

A range of bloom-forming freshwater cyanobacterial genera includes strains 

capable of producing toxins and other bioactive compounds (Carmichael, 2001; Welker 

and von Döhren, 2006). Currently known cyanobacterial toxins are classified into three 

broad groups based on their chemical structure: cyclic peptides (the hepatotoxins 

microcystin and nodularin), alkaloids (the neurotoxic anatoxins, saxitoxins, dermatotoxic 

aplysiatoxins and lyngbyatoxins) and lipopolysaccharides (irritant toxins) (Sivonen and 

Jones, 1999). The presence of cyanobacteria able to produce these toxins can compromise 

water quality leading to both economic and public health concerns. Due to this potential 

to cause damage, cyanobacterial blooms are commonly included within the larger 

designation of harmful algal blooms (HABs), a broad term that encompasses a broad 

class of events caused by marine or freshwater microalgae that have a negative impact on 

human activities (Zingone and Enevoldsen, 2000).   

 

Harmful algal blooms in freshwater – an old phenomenon and an emerging threat 

Although during the 20th century the occurrence of cyanobacterial blooms has been often 

linked to human-inflicted eutrophication of natural waters, humans have encountered 

cyanobacterial blooms well prior to the industrial revolution. The early reports of 
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cyanobacterial blooms were commonly descriptions of visible cyanobacterial masses 

formed in water bodies, or reports of adverse effects on animal or human health linked to 

consumption of water tainted with toxic cyanobacteria (Hayman, 1992; Codd et al., 

1994). The earliest reference suggesting the presence of (presumably toxic) 

cyanobacterial blooms can be found in the Bible (Exodus 7:20-21). Moreover, 

approximately 1000 years ago, the troops of Chinese general Zhu Ge-Ling became ill 

from drinking green water upon crossing a stream. Australian aboriginals have been 

known to use sand filters to pretreat their potable water, indicating awareness of health 

effects of water contaminated by toxic cyanobacteria (Hayman, 1992; Codd et al., 1994) 

and 17th century Dutch painters have illustrated agricultural and urban landscapes 

including water bodies that are bright green in color (Paerl and Steppe, 2003). Altogether, 

based on historical documents and remarks found in the folklore, literature and art 

originating from every continent inhabited by humans, it is obvious that cyanobacterial 

blooms have been a global phenomenon for at least two millennia (Codd et al., 1994; 

Bartram et al., 1999; Codd et al., 1999; Paerl and Steppe, 2003). The first report in 

scientific literature documenting deaths of farm animals due to ingesting green scum 

from a bloom of toxic cyanobacteria (Nodualria spumigena) in Lake Alexandrina in 

Australia dates back to the late 19th century (Francis, 1878).  

Harmful algal blooms in coastal marine waters have been intensively monitored 

due to significant economic impacts of bloom events, and recently cyanobacterial blooms 

in inland freshwaters have also been recognized as a serious threat to human health and 

fisheries resources (Boyer, 2006). Several reports in the literature have suggested that 

observations of harmful algal blooms around the world have increased in the post World 

War II era (Sellner et al., 2003). One suggested factor increasing the frequency of HABs 

is the (perhaps inaccurately named) process of “cultural eutrophication” (caused by land 

clearing, extensive use of fertilizers, large scale cattle farming and the discharge of 

sewage) mobilizing nutrients that are known to generate conditions where cyanobacterial 

blooms often develop (Cloern, 2001; Sellner et al., 2003). Modeling studies suggest that 

global climate warming has the potential to alter the overall functioning of aquatic 

ecosystems, also causing changes in the spatial and temporal distribution of bloom 
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forming cyanobacteria (Malmaeus et al., 2006). Besides environmental changes, the 

awareness of the devastating ecological, economic and health impacts of HABs has 

increased rapidly, which has led to development of improved HAB monitoring networks 

around the world. Therefore, it is somewhat debatable whether the observed increase in 

the frequency of harmful algal blooms is actually a result of increased frequency of the 

blooms or a reflection of improved monitoring and reporting of the bloom events (Sellner 

et al., 2003). 

Microcystis and microcystin 

Microcystis is one of the most well studied freshwater cyanobacterial genus due to its 

common occurrence in bodies of water around the world and its ability to form blooms 

and produce potent toxins that can threaten the health of humans and animals 

(Carmichael, 1996). Microcystis cells are 1-6 μm in diameter, characteristically coccoid-

shape, forming microscopic to macroscopic colonies (Komarek, 2003). Microcystis cells 

have gas vacuoles which allow them to float on the surface of the water and form 

characteristic surface scums (Paerl, 1988). Microcystis does not form heterocysts or 

akinetes, nevertheless the cells can revert to resting stages during unfavorable growth 

conditions (Paerl, 1988). These resting stages may sink to the sediments (Reynolds et al., 

1981) from where they can migrate back into the water column forming an inoculum for 

pelagic growth upon return of favorable growth conditions (Brunberg and Blomqvist, 

2003; Ihle et al., 2005). A recent study demonstrated that toxigenic Microcystis strains 

have higher requirements for N and P availability than non-toxigenic Microcystis strains, 

indicating the importance of these major nutrients in biomass and toxin production (Vezie 

et al., 2002). Hence it was speculated that non-toxic strains of Microcystis may be able to 

outcompete toxic strains under low-nutrient conditions.  

Cyanobacteria in the genus Microcystis produce an array of secondary metabolites 

classified as microcystins, aeruginosins, microginins, anabaenopeptins, cyanopeptolins, 

microviridins and cyclamides (Welker and von Döhren, 2006). Microcystins are potent 

hepatotoxins and are the most commonly found cyanobacterial toxins in brackish and 

freshwater environments (Sivonen and Jones, 1999; Welker and von Döhren, 2006). To 

 5



date microcystin production has been discovered in Microcystis sp., Synechococcus sp., 

Anabaena sp., Anabaenopsis sp, Nostoc sp., Phormidium sp., Planktothrix sp., and 

Oscillatoria sp., Haphalosiphon sp., and in Radiocystis fernandoi, Croococcus dispersus, 

(Vieira et al., 2003; Carmichael and Li, 2006; Jungblut and Neilan, 2006). Strains that are 

capable as well as strains that are incapable of producing toxin (referred to as toxic and 

non-toxic strains, respectively) are found in each genus. In natural bloom forming 

populations toxic and non-toxic strains of more than one genus can co-exist (Rantala et 

al., 2006). 

Microcystins exist in over sixty chemical forms, making these toxins the largest 

and most diverse group of cyanotoxins (Sivonen and Jones, 1999; Kaebernick and 

Neilan, 2001). Microcystin molecules contain seven peptide-linked amino acids, all of 

which can undergo structural variations (Figure 1) (Sivonen and Jones, 1999). Based on 

LD50 (an abbreviation for “lethal dose, 50 %”; a dose of substance that causes 50 % 

mortality) values determined through mouse bioassays, the toxicity of chemical variants 

of microcystins varies, with microcystin-LR (L-arginine and L-leucine at positions Z and 

X, respectively; see Figure 1) suggested to be the most toxic (Sivonen and Jones, 1999). 

Microcystin-LR is also the best studied variant of this large group of toxins (Dietrich and 

Hoeger, 2005). Microcystins are generally water soluble with a molecular weight of 800-

1000 Da (Sivonen and Jones, 1999). These toxins can be analyzed and quantified using 

several different methodologies. In the past the most widely applied assay was the mouse 

bioassay. This technique, however, has poor sensitivity and reproducibility and has been 

replaced by more sophisticated and reliable in vitro analytical methods, such as an 

enzyme-linked immuno sorbent assay (ELISA), the protein phosphatase inhibition assay 

(PPI), and high performance liquid chromatography (HPLC). All of these approaches 

have variable detection ranges and sensitivities (Harada et al., 1999; Dietrich and Hoeger,  
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Figure 1. The general structure of microcystins. Cyclo(Adda-D-Glu-Mdha-D-Ala-L-X-D-
MeAsp-L-Z-) where X and Z are sites for variable L-amino acid substitutions, Adda is 3-
amino-9-methoxy-2,6,8,-trimethyl-10-phenyl-4,6-decadienoic acid, D-MeAsp is 3-
methylaspartic acid and Mdha is N-methyl-dehydroalanine. 
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2005). Matrix assisted laser desorption/ionization-time of flight mass spectrometry 

(MALDI-TOF-MS) is commonly used for detection and identification of structural 

variants of microcystin produced by the cells in culture or in natural samples (Erhard et 

al., 2001). 

Cellular biosynthesis of microcystins 

Microcystins are synthesized in the cells by a non-ribosomal enzyme complex encoded 

by the microcystin synthetase (mcy) gene cluster (Kaebernick and Neilan, 2001). The 

biosynthetic pathway for cellular synthesis of microcystins and the gene clusters 

responsible for microcystin biosynthesis have been characterized in two strains of 

Microcystis (Nishizawa et al., 1999; Nishizawa et al., 2000; Tillett et al., 2000), in one 

strain of Planktothrix (Christiansen et al., 2003) and in one strain of Anabaena 

(Rouhiainen et al., 2004). In Microcystis spp. the gene cluster is located within the 

genome, it spans 55 kb and consists of two bi-directionally transcribed operons which 

contain 10 open reading frames (ORFs). The gene cluster is transcribed in two 

polycistronic transcripts (mcyABC and mcyDEFGHIJ). A transcriptional analysis 

revealed the presence of two alternate, light dependent transcription start sites for the two 

polycistronic transcripts located between mcyA and mcyD genes (Kaebernick et al., 

2002). In the same study Kaebernick et al. (2002) demonstrated that the selection 

between the transcription start sites depends on the light intensity the cells are exposed to. 

Putative intercistronic transcription start sites have also been identified for individual mcy 

genes (mcy E, F, G, H, I, J), however the role of these sites in regulation of mcy gene 

expression is still unknown (Kaebernick et al., 2002). 

The ORFs encode non-ribosomal peptide synthetase (NRPS) domains, polyketide 

synthase (PKS) domains and tailoring enzymes which catalyze the 48 sequential 

enzymatic reactions involved in microcystin biosynthesis (Tillett et al., 2000). The 

general arrangement and transcriptional orientation of the mcy gene cluster is different in 

the three microcystin-producing genera (Tillett et al., 2000; Christiansen et al., 2003; 

Rouhiainen et al., 2004). The content of mcy genes which are not primarily involved in 

peptide assembly is also characteristic in each genus, whereas the modular arrangement 
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and structural organization of the genes is conserved throughout the genera (Welker and 

von Döhren, 2006).  The presence of the gene cluster in the genome is currently thought 

to indicate whether the strain is considered to be toxic (Dittmann et al., 1997). Though 

this is generally shown to be the case, a few exceptions to the rule have been reported 

(Meissner et al., 1996). The central role of mcy genes in microcystin biosynthesis has 

been confirmed through gene disruption studies: mutations in genes mcyA, B, D, E, F and 

H in Microcystis have been shown to completely abolish the ability of the cells to 

synthesize the toxin (Dittmann et al., 1997; Nishizawa et al., 1999; Tillett et al., 2000; 

Pearson et al., 2004). Unlike other microbial NPRS systems, the mcy genes are generally 

though to be constitutively expressed (Welker and von Döhren, 2006). Nonetheless, new 

evidence suggests this may not be the case, as a ferric uptake regulator (fur) binding site 

has been found within the bidirectional promoter region (Martin-Luna et al., 2006a; 

Martin-Luna et al., 2006b) and recent laboratory studies suggest Fe-mediated 

transcriptional regulation of mcy gene cluster may occur (B. Neilan, unpublished). A 

strain producing mcyA and mcyB mRNA transcripts but no toxin was found in a previous 

study (Mikalsen et al., 2003) suggesting that the regulation of microcystin production 

may take place on a translational or posttranslational level. Genetic variation in mcy 

genes has been shown to be linked to production of different microcystin isoforms 

(Mikalsen et al., 2003).  

Regulation of microcystin production  

The effects of nutrients (nitrogen and phosphorus), trace metals (especially Fe), light 

intensity, pH and temperature on the toxicity of Microcystis have been investigated in 

several studies (See Table 1 for summary. Tables are in Appendix at the end of Part 1). 

The studies conducted so far have not been able to conclusively elucidate the major 

factors in the regulation of microcystin production in Microcystis. The lack of consensus 

can be, at least partly, explained by several methodological differences between 

individual studies. First, typically the individual studies have focused on analyzing the 

toxicity in a pure culture of some strain of Microcystis. This alone may be problematic 

since toxin production under identical conditions has been shown to vary between 
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Microcystis strains (Vezie et al., 2002). Secondly, cultures have been grown in different 

conditions (batch cultures, continuous cultures) and a variety of media has been used for 

growing the cells (Sivonen and Jones, 1999). Third, typically the effect of only a single 

factor has been investigated at a time. Fourth, a diversity of methods has been applied to 

determine the toxicity of the cells. And finally, some studies have quantified just select 

isoforms of microcystin, whereas others have quantified the combination of several 

isoforms as total microcystin. Studies quantifying just one isoform may give a biased 

view of the actual toxicity because microcystin producing strains can often produce more 

than one variant of microcystin and evidence from culture studies and environmental 

samples suggests that environmental conditions can affect the composition of 

microcystins produced by a single strain (Luukkainen et al., 1994; Vasconcelos et al., 

1995; Böttcher et al., 2001; Tonk et al., 2005).  

Microcystin in the environment and ecological significance of microcystin 

Laboratory-based batch culture experiments on microcystin-producing cyanobacteria 

(Microcystis, Anabaena and Aphanizomenon sp.) have shown that approximately 80% of 

toxin stays within the intact cells (Codd et al., 1999). Toxins are released in the 

surrounding medium upon increased permeability or lysis of aging cells (Sivonen and 

Jones, 1999). Due to varying growth states of cells in natural systems, the division of 

microcystins between intra- and extracellular pools has been difficult to estimate; the 

fractionation has been found to vary from 100% extracellular to 100 % intracellular 

(Codd et al., 1999). Sequence analysis of the mcy gene cluster in Microcystis suggested 

the mcyH gene is encoding a putative ATP-binding cassette (ABC) transporter, predicted 

to be involved in microcystin export (Pearson et al., 2004). However in the current 

literature no information exists regarding active microcystin export from the cells.  

Microcystins are remarkably resistant to chemical degradation; they are resistant 

to hydrolysis and oxidation at neutral pH range and can withstand even boiling 

temperatures. The chemical degradation process is slow, allowing toxins to persist for 

years. Full sunlight causes a slow photochemical breakdown of microcystins and the 

process is further accelerated by the presence of water soluble phycobiliproteins or humic 
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substances (Sivonen and Jones, 1999). In natural waters enzymatic degradation of 

microcystins by bacteria and algae accelerates the degradation process significantly 

(Bourne et al., 1996; Ou et al., 2005). 

The ecological role of microcystins is not yet understood (Wiegand and 

Pflugmacher, 2005; Babica et al., 2006). It seems unlikely that production of 

microcystins is an indispensable trait for the cells since both toxic and non-toxic cells 

coexist in natural populations (Kaebernick and Neilan, 2001). Several hypotheses have 

been presented for the potential role of microcystin, (Wiegand and Pflugmacher, 2005). 

Utkilen & Gjølme (1995) proposed a role for microcystin as an intracellular iron chelator, 

although experiments conducted at the University of Tennessee and Dickinson College 

(Wilhelm and Witter, unpublished) have demonstrated that the toxin has no iron-

chelating ability. It has also been suggested that microcystin may act in cell to cell 

signaling among phytoplankton (Babica et al., 2006) and as a grazing deterrent against 

zooplankton (Jang et al., 2003) or filter feeders (such as Dreissena polymorpha) 

(Vanderploeg et al., 2001).  The changes in pigment content of mutant Microcystis with 

impaired ability to produce microcystin suggested that microcystins may play a role in 

the light adaptation process of the cells (Hesse et al., 2001). Contradictory results from 

studies investigating these hypotheses have prevented acceptance of any of these 

hypotheses as such. Furthermore, Microcystis and other cyanobacteria are capable of 

producing a host of other bioactive compounds along with microcystin, which may make 

studying the precise effects of microcystin in natural systems especially challenging 

(Welker and von Döhren, 2006). 

Toxicity mechanism of microcystins 

The mechanism of toxicity in vertebrate cells for microcystin-LR has been well studied 

and described (Sivonen and Jones, 1999; Wiegand and Pflugmacher, 2005). Water 

soluble microcystin-LR is sequestered into vertebrate liver cells through a highly 

expressed bile acid carrier transport system. Once inside the hepatocytes, the toxin will 

localize in the nucleus where the ADDA-moiety of a microcystin-LR molecule 

effectively blocks the active site of nuclear protein phosphatases 1 and 2A (Mackintosh et 

 11



al., 1990; Guzman et al., 2003; Wiegand and Pflugmacher, 2005). The decreased 

phosphatase activity seen upon exposure to the toxin contributes to the lethal and 

sublethal effects in cells, such as severe intrahepatic hemorrhage, rounding and 

dissociation of hepatocytes, and oxidative stress through a variety of mechanisms 

(Guzman et al., 2003).  In humans, acute exposure to microcystins is known to have 

caused gastroenteritis and liver damage (Kuiper-Goodman et al., 1999) and, in the most 

severe case, death of 60 hemodialysis patients in Brazil in 1996 (Pouria et al., 1998). 

Some evidence of tumor-promoting activity of microcystins also exists (Falconer, 1991; 

Dietrich and Hoeger, 2005). Based mostly on animal studies, the tolerable daily intake 

(TDI) value for microcystin-LR has been determined as 0.04 µg kg-1 (Kuiper-Goodman 

et al., 1999). Based on the TDI, The World Health Organization (WHO) has determined a 

provisional guideline value of 1.0 µg L-1 for microcystin-LR in drinking water. Water 

containing less than 1.0 µg L-1 of microcystin LR does not pose a health risk and should 

be acceptable for lifelong consumption (Falconer et al., 1999). However, the effects of 

long-term, low-level exposure to microcystins have not been extensively studied. 

Modern techniques to study cyanobacteria  

Historically, a combination of microscopy, phytopigment analysis and chemical analysis 

to detect and quantify cyanotoxins has been the most common approach to the study toxic 

cyanobacteria in cultures and in natural samples (Chorus and Bartram, 1999). 

Cyanobacterial taxonomy has been established based on morphological features, such as 

the shape and dimensions of the cells, presence of structurally differentiated cells, and 

whether the cells grow as solitary cells or in colonies (Paerl, 1988; Watanabe, 1996; 

Komarek, 2003). As an example, the definition of “species” within the genus Microcystis 

was based on identification of different morphotypes, each one of which was originally 

considered equal to a “species” (Otsuka et al., 1999). Several studies have, however, 

found a disagreement between morphological taxonomy and molecular taxonomy of 

Microcystis (Neilan et al., 1995; Otsuka et al., 1998; Otsuka et al., 1999). These 

discrepancies can partially be explained by the morphological plasticity that takes place 
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during isolation of strains in different culture collections and the effects of long-term 

culture maintenance in laboratory conditions (Doers and Parker, 1988).  

Quantification of cyanobacteria in samples forms the core data in many ecological 

studies of cyanobacteria. Light microscopy is often the method of choice for enumerating 

cyanobacteria in samples. Knowing that the ability to produce toxin is a genotypic trait, 

enumeration of phenotypically identical cells can provide only some insight into the 

toxigenic potential of the cyanobacterial population. In genetically distinct cyanobacteria, 

generations of selection and genetic transfer have lead to multiple variations in the 

genetic systems associated with the production of these toxins (Rantala et al., 2004). The 

knowledge of genes involved in toxin synthesis in each genus provides researchers with 

the opportunity to develop molecular tools that can be used to identify general pathways 

for cyanotoxin production. The genes involved in toxin synthesis can be used for nucleic 

acid-based detection and identification of cyanobacteria employing these pathways 

(Fergusson and Saint, 2003; Dittmann and Börner, 2005; Jungblut and Neilan, 2006).  

Currently most of the work on the development of  molecular probes has focused 

on polymerase chain reaction (PCR)-based techniques that amplify specific products to 

indicate the presence or absence of the host organism (Ouellette and Wilhelm, 2003), and 

on developing phylogenetic markers to classify cyanobacteria and smaller subgroups 

(Dittmann and Börner, 2005). Moreover, a wide range of PCR-based “fingerprinting” 

techniques has been developed for profiling cyanobacterial populations, including 

randomly amplified polymorphic DNA (RAPD)-PCR, highly iterated palindromic 

sequence (HIP)-PCR, analysis of repetitive extragenomic palindromic (REP) elements 

(REP-PCR), enterobacterial repetitive intergenic consensus (ERIC)-PCR, (terminal) 

restriction fragment length polymorphism (T)RFLP and denaturing gradient gel 

electrophoresis (DGGE) (Neilan, 1995; Smith et al., 1998; Lyra et al., 2001; Kurmayer et 

al., 2002; Hisbergues et al., 2003; Janse et al., 2003).   

In utilizing the quantitative aspect of PCR based techniques, it has become 

possible to specifically quantify cells belonging to a certain genus and furthermore to 

quantify the cells within the specific genus bearing the genes required for toxin 

production. To provide a quantitative aspect in freshwater cyanobacterial ecology, a 
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quantitative real-time PCR (qPCR) technique known as Taq-nuclease assay (or Taq-man 

PCR) was first introduced in a study of Synechococcus ecotypes in deep lakes (Becker et 

al., 2002). This technique, along with other established qPCR techniques, has been 

subsequently applied for detection and quantification of Microcystis and Anabaena 

specific mcy gene copies in cultures as well as in natural samples (Foulds et al., 2002; 

Kurmayer and Kutzenberger, 2003; Vaitomaa et al., 2003) and for estimating the 

abundance of cells carrying the specific target genes in natural samples (Kurmayer and 

Kutzenberger, 2003).  

Target genes which have been utilized in molecular detection and phylogenetic 

classification of potentially toxic freshwater cyanobacteria in published studies, are listed 

in Table 2. Sequences from small subunit ribosomal RNA (SSU rRNA) genes have been 

widely used for phylogenetic studies of cyanobacteria in marine and freshwater 

environments (Urbach et al., 1992; Neilan et al., 1997). Although 16S rRNA gene 

sequences are often considered to contain enough sequence information for phylogenetic 

studies among eubacteria, the slow evolution of these sequences can be disadvantageous 

when studying cyanobacterial populations beyond the genus level. For example in the 

case of Microcystis, 16S rRNA gene sequences can be reliably used for genus-specific 

identification of potentially toxic Microcystis (Neilan et al., 1997), but to attain better 

phylogenetic resolution beyond genus level, more polymorphic sequences have been 

utilized as phylogenetic markers, such as sequences of 16S-23S rRNA internal 

transcribed spacer (ITS), intergenic spacer (IGS) region between phycocyanin subunit 

genes cpcB and cpcA (Kim et al., 2006) and functional genes encoding cyanobacterial 

RNA polymerase subunits γ (rpoC1) and σ (rpoD1), and the subunit B protein of DNA 

gyrase (topoisomerase type II)  (gyrB) (Seo and Yokota, 2003). Genes involved in toxin 

synthesis can also be used for phylogenetic characterization of smaller subgroups of 

cyanobacteria, such as microcystin-producers (Hisbergues et al., 2003) and nitrogen 

fixing cyanobacteria (Dyble et al., 2002). The most reliable way to date to detect and 

quantify microcystin-producing genotypes is to use mcy genes as a target for molecular 

probes. Strains carrying mcy genes appear to be erratically distributed in phylogenic trees 

based on conventional phylogenetic markers (such as phycocyanin intergenic spacer 
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region and ribosomal RNA genes) (Neilan et al., 1995; Neilan et al., 1997; Tillett et al., 

2001; Mikalsen et al., 2003). This is not always the case among toxic cyanobacteria, for 

example, phylogenetic analysis of Anabaena circinalis-specific 16S rRNA sequences 

demonstrated division of paralytic shellfish poison-producing strains and non-toxic 

strains into monophyletic groups (Beltran and Neilan, 2000).  

A major advantage of using molecular techniques instead of microscopic methods 

is the ability to enhance the taxonomic resolution from genus-level to genotype-level, 

which is not possible through other methods (Ouellette and Wilhelm, 2003). Quantitative 

techniques provide a wide detection range (seven orders of magnitude for target gene 

copies, 5 orders of magnitude for cells) and high sensitivity (less than 10 target gene 

copies can be detected in a single reaction), which is essential in the analysis of natural 

microbial communities (Becker et al., 2002; Kurmayer and Kutzenberger, 2003). The 

sensitivity of molecular techniques can also be a source of variable results, thus 

successful implementation of these techniques requires knowledge of both the technique 

itself as well as the potential pitfalls.   

Historical perspective on the ecosystem of Lake Erie 

The North American Great Lakes contain approximately one fifth of the Earth’s 

potable water supply, which makes them a vital resource on a global scale. Lake Erie is 

the twelfth largest lake in the world and the shallowest, warmest and most productive of 

the five Laurentian Great Lakes, and maintains a position of socioeconomic importance 

in the region (Makarewicz and Bertram, 1991; Fuller, 1995; Munawar et al., 2002). 

Natural geological division divides the lake into three basins, western, central and 

eastern, each of which has unique ecological characteristics (Makarewicz and Bertram, 

1991). The Lake Erie drainage basin is the most populated compared to the other Great 

Lakes; according to the 1990 census slightly over 11.5 million people lived in the area, 

which is roughly a third of the total Great Lakes basin population (Fuller, 1995). 

Consequently, the Lake Erie ecosystem has suffered from a range of anthropogenic 

impacts including agricultural runoff, sewage discharge and industrial pollution 

(Makarewicz and Bertram, 1991; Munawar et al., 2002).  
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Lake-wide eutrophication caused by excessive phosphorus loading was a major 

problem in Lake Erie in 1950s and 1960s. In the 1970s strict limits for phosphorus 

discharge were set in order to improve the water quality in the entire lake (Fuller, 1995). 

By the mid 1980s phosphorus loading had been cut significantly and this change was 

considered to have had a positive impact on the overall water quality, indicated by 

decreased phytoplankton biomass for all three basins (Makarewicz and Bertram, 1991; 

Makarewicz, 1993; Conroy et al., 2005). Besides the major changes in nutrient inputs, 

colonization of Lake Erie by the zebra (Dreissena polymorpha) and quagga mussels 

(Dreissena bugensis) (collectively referred to as dreissenids) in late 1980s remarkably 

altered the phytoplankton abundance and speciation in the lake (Nicholls and Hopkins, 

1993; Makarewicz et al., 1999; Munawar et al., 2002; Conroy et al., 2005). The selective 

filter-feeding and nutrient remineralization by the dreissenid mussels has been suggested 

to cause a shift in nutrient ratios more towards conditions that stimulate phytoplankton 

growth and to make conditions favorable to cyanobacterial growth (Vanderploeg et al., 

2001; Raikow et al., 2004; Sarnelle et al., 2005).  

Microcystis in Lake Erie 

Microcystis has been observed in the western and central basins of the lake during spring 

and summer phytoplankton surveys between 1983 – 1987 (Makarewicz, 1993), but there 

is no cyanotoxin data available from this period to assess the toxin production potential of  

these Microcystis populations. In October of 1995 a remarkably dense bloom of 

Microcystis appeared in the western basin of the lake and during the bloom Microcystis 

cell abundance varied from 3×106 to 3×109 cells liter-1 and total microcystin 

concentration in water samples collected from the already declining bloom reached >1 μg 

liter-1 (Brittain et al., 2000). The appearance of Microcystis blooms has been raising 

interest toward finding an explanation for the appearance of toxic cyanobacteria in the 

western basin of the Lake (Brittain et al., 2000; Vanderploeg et al., 2001). Recently, the 

phytoplankton (especially picoplankton size class) growth on Lake Erie was confirmed to 

be limited by the availability of phosphorus (Wilhelm et al., 2003; DeBruyn et al., 2004) 
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and periodically also by iron (Twiss et al., 2005), however the effect of these conditions 

on the dynamics of Microcystis has not been investigated. 

Since 1970s, the phytoplankton and water quality of Lake Erie has been surveyed 

on a routine basis by governmental agencies based in Canada and in the United States. In 

previous studies chlorophyll a concentration has been used as the proxy for the 

phytoplankton biomass, and the species diversity and abundance has been assessed 

through microscopy. Xu and Tabita (1996) applied molecular tools to assess the diversity 

of active fixing CO2 fixing microbes in Lake Erie through studying the expression and 

sequence diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase gene. While their  

study revealed the presence of a diverse community of CO2 fixing microbes in southern 

part of western basin of Lake Erie, no Micorcystis was detected at the time the study was 

conducted. A lake-wide study carried out on Lake Erie in 2002 provided information 

about prokaryotic and cyanobacterial diversity in surface waters and about the 

distribution of toxic Microcystis derived from 16S rRNA gene sequences from natural 

samples (Ouellette et al., 2006). The results indicated that potentially toxic genotypes had  

throughout the lake implying that the potential for toxigenic Microcystis blooms is not 

only limited to the western basin of the lake (Ouellette et al., 2006).  

OBJECTIVES OF THIS STUDY 

The goals of this study are to address a series of hypotheses which have been set to 

characterize aspects of the diversity and function cyanobacterial community in Lake Erie 

and to gain a better understanding of the dynamics of toxic cyanobacteria which are an 

integral part of the Lake Erie ecosystem. The hypotheses to be tested are: 

 

I. The microcystin producing cyanobacterial population in Lake Erie is genetically 

diverse and the diversity of microcystin producing cyanobacterial genera in Lake 

Erie is reflected by the diversity of DNA sequence polymorphisms of the mcyA 

gene fragments. 
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II. Cyanobacterial genera other than Microcystis contribute to microcystin production 

in Lake Erie.  

III. Reservoirs of Microcystis exist within Lake Erie and help to support Microcystis 

communities in Lake Erie. 

IV. Environmental factors (specifically N, P, Fe, pH and water temperature) influence 

the abundance of cyanobacteria, total Microcystis and toxic Microcystis as well as 

microcystin production by Microcystis. 
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APPENDIX I 

 



Table 1. Factors affecting toxicity of Microcystis sp. 

 

Parameter  Microcystis strain(s) 
studied  

Effect on microcystin 
production in Microcystis 

Method used to 
determine toxicity 

Reference 

Culture pH (range 
6.5-10.5) 

M. aeruginosa UV-006, 
UV-010 

Highest toxicity at pH 6.5 
and pH 10.5 

Mouse assay (LD50) Van der Westhuizen 
and Eloff, 1983 

Free Fe2+  M. aeruginosa CYA 
228/1 

Free Fe2+ ↓, toxicity ↓ Microcystin* to cellular 
protein ratio, mg 
microcystin g-1 dry 
weight)  

Utkilen and Gjølme, 
1995 

FeCl3 (3.5 μM – 0.1 
μM)  

M. aeruginosa CYA 
228/1 

Fe ↓, toxicity ↑ ng microcystin-RR* μg-

1 chlorophyll ratio and 
microcystin-RR* μg-1 
protein 

Lyck et al., 1996 

Fe (removal of Fe 
from BG11 medium 

M. aeruginosa PCC 
7806 

Fe ↓, toxin yield ↑ mg microcystin-LR* g-1 
dry weight 

Lukac and Aegerter, 
1993 

Fe M. aeruginosa PCC 
7806 

Free Fe2+ ↓, toxicity ↑ Electrophoretic 
mobility shift assay 
(EMSA), ng 
microcystin-LR* ng-1 
protein 

Martin-Luna et al., 
2006b 

Trace metals (Al, 
Cd, Cr, Cu, Fe, Mn, 
Ni, Sn, Zn)  

M. aeruginosa PCC 
7806 

Zn ↑ toxin yield ↑ 
Al, Cd, Cr, Cu, Mn, Ni, 
Sn: no significant effect 

mg microcystin-LR* g-1 
dry weight 

Lukac and Aegerter, 
1993 

Light intensity 
(range 7.53, 30.1, 
75.3 μmol photons 
m-2 s-1) 

M. aeruginosa M288 Highest toxicity at 30.1 
μmol photons m-2 s-1 

Mouse assay (LD50) Watanabe and Oishi, 
1985 
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Table 1 continued. 

 

Parameter  Microcystis strain(s) 
studied  

Effect on microcystin 
production in Microcystis 

Method used to 
determine toxicity 

Reference 

Light intensity 
(range 21-205 μmol 
photons m-2 s-1) 

M. aeruginosa UV-006 Highest toxicity at 145 
μmol photons m-2 s-1 

Mouse assay (LD50) Van der Westhuizen 
and Eloff, 1985 

Light intensity 
(range 5 – 50 μmol 
photons m-2 s-1) 

M. aeruginosa 7813 No effect on toxicity Mouse assay (LD50) Codd and Poon, 1988 

Light intensity 
(range 20-75 μmol 
photons m-2 s-1) 

M. aeruginosa 
CYA228/1 

highest toxicity at 40 μmol 
photons m-2 s-1 

mg microcystin* g-1 dry 
weight  

Utkilen and Gjølme, 
1992 

Light intensity 
(range 16-68 μmol 
photons m-2 s-1) 

M. aeruginosa PCC 
7806 

mcyB transcription 
upregulated in high light 
during early and middle 
growth phase. No effect 
on toxin content cell-1. 

PP2A inhibition assay, 
RT-PCR (detection of 
mcyB mRNA 
transcripts) 

Kaebernick et al., 2000 

Irradiance (range 
2.4-73 μmol 
photons m-2 s-1) 

M. aeruginosa HUB5-2-
4 

Highest toxin cell quota at 
73 μmol photons m-2 s-1.  

fg total microcystin* 
cell-1  

Böttcher et al., 2001 

Photosynthetically 
active radiation 
(PAR) (range 10-
403 μmol photons 
m-2 s-1) 

M. aeruginosa PCC 
7806 

PAR ↑, cellular 
microcystin content ↑ 
(highest toxicity at 126 
photons m-2 s-1) under  
PAR limited conditions. 
No change in dissolved 
toxin concentration during 
light-dark cycle.  

fg microcystin-LR* 
cell-1 

Wiedner et al., 2003 
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Table 1 continued. 

Parameter  Microcystis strain(s) 
studied  

Effect on microcystin 
production in Microcystis 

Method used to 
determine toxicity 

Reference 

Light-dark cycle M. aeruginosa PCC 
7806 

Intracellular toxin content  
↑ during light period. No 
change in dissolved toxin 
concentration during light-
dark cycle.  

Intracellular toxin 
content: fg microcystin-
LR* cell-1. Extracellular 
toxin content: μg L-1 
(PPIA) 

Wiedner et al., 2003 

Light  M. aeruginosa NIVA-
CYA 228/1 

Toxicity increased in 
darkness  

fg microcystin* cell-1 Lyck, 2004 

Light quality M. aeruginosa PCC 
7806 

Red light: mcyB and mcyD 
transcription upregulated. 

RT-PCR (detection of 
mcyB mRNA 
transcripts) 

Kaebernick et al., 2000 

Inhibition of PS (1 
mM MV) and 
chemical stress (250 
mM NaCl) 

M. aeruginosa PCC 
7806 

mcyB transcription 
downregulated 

RT-PCR (detection of 
mcyB mRNA 
transcripts) 

Kaebernick et al., 2000 

Temperature (+16-
36°C) 

M. aeruginosa UV-006 Highest toxicity at +20°C Mouse assay (LD50) Van der Westhuizen 
and Eloff, 1985 

Temperature (+18, 
25, 32°C) 

M. aeruginosa M288 Temperature ↓, toxicity ↑ 
(highest toxicity at +18°C) 

Mouse assay (LD50) Watanabe and Oishi, 
1985 

Temperature (+15, 
25, 34°C) 

M. aeruginosa 7813 Highest toxicity at +25°C Mouse assay (LD50) Codd and Poon, 1988 

P (undiluted MA 
medium, 10 and 20 
fold dilutions) 

M. aeruginosa M288 P ↑, toxicity ↑ Mouse assay (LD50) Watanabe and Oishi, 
1985 
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Table 1 continued. 

Parameter  Microcystis strain(s) 
studied  

Effect on microcystin 
production in Microcystis 

Method used to 
determine toxicity 

Reference 

P (14.4, 143.5 μM 
K2HPO4) 

M. aeruginosa 
CYA228/1 

P ↑, toxin content per dry 
weight ↑, toxin content to 
protein content ↓ 

ng microcystin-RR* μg-1 
dry weight, ng 
microcystin-RR* ng-1 
protein 

Utkilen and Gjølme, 
1995 

Phosphorus 
limitation 

M. aeruginosa UTEX 
2388 

P ↓, toxicity ↑ μg total microcystin* g-1 
dry weight 

Oh et al., 2000 

P M. aeruginosa UTEX 
2388 

N constant, total P ↓, 
toxicity ↑ 

μg microcystin* g-1 dry 
weight 

Lee et al., 2000 

Nitrogen (undiluted 
MA medium, 10 and 
20 fold dilutions) 

M. aeruginosa M288 N ↑, toxicity ↑ Mouse assay (LD50) Watanabe and Oishi, 
1985 

N (0.35-5.8 mM 
NaNO3) 

M. aeruginosa 
CYA228/1 

N ↑, toxin content per dry 
weight ↑, no effect on toxin 
content to protein content 

ng microcystin-RR* μg-1 
dry weight, ng 
microcystin-RR* ng-1 
protein 

Utkilen and Gjølme, 
1995 

N M. aeruginosa UTEX 
2388 

P constant, N ↑, toxicity ↑. 
Highest toxicity at N:P 
ratios of 16:1 and 50:1. 

μg microcystin* g-1 dry 
weight 

Lee et al., 2000 

N and P M. aeruginosa 205  
M. aeruginosa GL260735 

Highest intracellular 
microcystin content:  
strain 205: 458<N:P<664. 
Strain GL260735: 
237<N:P<735. 

μg microcystin* mL-1 Vezie et al., 2002 
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Table 1 continued. 

Parameter  Microcystis strain(s) 
studied  

Effect on microcystin 
production in Microcystis 

Method used to 
determine toxicity 

Reference 

Removal of 
inorganic N, P and C 
from BG11 medium 

M. aeruginosa 7813 - PO4: no effect on toxicity 
- NO3: toxicity ↓ 
- CO2: toxicity ↓ 

Mouse assay (LD50) Codd and Poon, 1988 

Growth phase M. aeruginosa UTEX 
2388 

Maximum toxicity at 
exponential growth phase 

μg total microcystin* g-1 
dry weight 

Lee et al., 2000 

Growth phase M. aeruginosa UV-006, 
UV-010 

Maximum toxicity at late 
log phase 

Mouse assay (LD50) Van der Westhuizen and 
Eloff, 1983 

Cell division rate M. aeruginosa MASH10 Microcystin production rate 
is equal to cell division rate 

mg microcystin* g-1 dry 
weight, fg microcystin* 
cell-1, μg microcystin* 
mL-1 culture 

Orr and Jones, 1998 

Cell cycle M. viridis NIES102 Microcystin production is 
regulated by cell cycle 
rather than culture 
conditions 

fg total microcystin* 
cell-1 

Kameyama et al., 2004 

Culture doubling 
time (tD) 

M. aeruginosa UV-006 Doubling time ↓, toxicity ↑ Mouse assay (LD50) Van der Westhuizen and 
Eloff, 1985 

Cell division rate M. aeruginosa NIVA-
CYA 228/1 

Inverse relationship 
between cell division rate 
and cell quota for 
microcystin 

fg microcystin* cell-1 Lyck, 2004 

*)Microcystins analyzed using HPLC 
 

 

 



Table 2. Oligonucleotide probes used in studies of potentially toxic cyanobacteria. 

 

Target Group/Genus Target gene Name of the Primer and Sequence (5’- 3’) Reference 
Cyanobacteria PCa operon  PCβF: GGCTGCTTGTTTACGCGACA 

PCαR: CCAGTACCACCAGCAACTAA 
Neilan et al., 1995 

 16S-23S rRNA 
ITSc 

16CITS: TGTAAAACGACGGCCAGTCCATGGAAG(C/T) 
TGGTCA(C/T)G 
23CITS: CCTCTGTGTGCCTAGGTATCC 

Neilan et al., 1997 

 16S rRNA PLG1.1: ACGGGTGAGTAACGCGTRA 
PLG2.1: CTTATGCAGGCGAGTTGCAGC 

Urbach et al., 1992 

 16S rRNA CYA106F: CGGACGGGTGAGTAACGCGTGA 
CYA359F: GGGGAATYTTCCGCAATGGG 
CYA781R: GACTAC(T/A)GGGGTATCTAATCCC(A/T)TT 

Nübel et al., 1997 

 16S rRNA CC: TGTAAAACGACGGCCAGTCCAGACTCCTACGGG 
AGGCAGC 
CD: CGCGTTAGCATCGGCACGGCTCGG 

Rudi et al., 1997 

 cpcBA IGSb CPC1F: GGCKGCYTGYYTRCGYGACATGGA 
CPC1R: GCHGATWCYCAAGGNCGYTT 

Kim et al., 2006 

Microcystis,  
Anabaena, 
Planktothrix, Nostoc 

mcyA mcyA-Cd 1F: AAAATTAAAAGCCGTATCAAA 
mcyA-Cd 1R: AAAAGTGTTTTATTAGCGGCTCAT  
 

Hisbergues et al., 
2003 

Microcystis,  
Anabaena, 
Planktothrix, 
Nodularia, Nostoc 

mcyD 
 

mcyDF: GATCCGATTGAATTAGAAAG 
mcyDR: GTATTCCCCAAGATTGCC 
 

Rantala et al., 2004 

 mcyE mcyE-F2: GAAATTTGTGTAGAAGGTGC 
mcyE-R4: AATTCTAAAGCCCAAAGACG 

Rantala et al., 2004 
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Table 2 continued. 

Target Group/Genus Target gene Name of the Primer and Sequence (5’- 3’) Reference 
Microcystis,  
Anabaena, 
Planktothrix, 
Nodularia, Nostoc, 
Phormidium 

Amino transferase 
domain in mcyE 
and ndaF  

HEPF: TTTGGGGTTAACTTTTTTGGGCATAGTC 
HEPR: AATTCTTGAGGCTGTAAATCGGGTTT 

Jungblut and 
Neilan, 2006 

Microcystis 16S rRNA 209F: ATGTGCCGCGAGGTGAAACCTAAT 
409R: TTACAA(C/T)CCAA(G/A)(G/A)CCTTCCTCCC 

Neilan et al., 1997 

 16S rRNA 16S F1: CGCAATGGGCGAAAGCCTGACGGAGC 
16S R1: GCGTGCGTACTCCCCAGGCGGGATAC 

Nonneman and 
Zimba, 2002 

 16S rRNA CH: AGCCAAGTCTGCCGTCAAATCA 
CI: ACCGCTACACTGGGAATTCCTG 

Rudi et al., 1997 

 PCa operon 
intergenic spacer 
region  

PcMafwd: GGTCTGCGCGAAACCTATGT 
PcMarev: GGTCAACACTTTAGCGGCG 

Kurmayer et al., 
2003 

 mcyA NMTd MSF: ATCCAGCAGTTGAGCAAGC 
MSR: TGCAGATAACTCCGCAGTTG 

Tillett et al., 2001 

 mcyB MCY F1: TGGGAAGATGTTCTTCAGGTATCCAA 
MCY R1: AGAGTGGAAACAATATGATAAGCTAC 

Nonneman and 
Zimba, 2002 

 mcyB McyBMafwd1: AATCAACGGTTAGTTGCTTATGT 
Tox4r: CACTAACCCCTATTTTGGATACC 

Kurmayer et al., 
2003 

 mcyC PSCF1: GCAACATCCCAAGAGCAAAG 
PSCR1: CCGACAACATCACAAAGGC 

Ouahid et al., 2005 

 mcyD PKDF1: GACGCTCAAATGATGAAAC 
PKDR1: GCAACCGATAAAAACTCCC 
PKDF2: AGTTATTCTCCTCAAGCC 
PKDR2: CATTCGTTCCACTAAATCC 

Ouahid et al., 2005 

 



 42

Table 2 continued. 

Target Group/Genus Target gene Name of the Primer and Sequence (5’- 3’) Reference 
Microcystis mcyE PKEF1: CGCAAACCCGATTTACAG 

PKER1: CCCCTACCATCTTCATCTTC 
Ouahid et al., 2005 

 mcyG PKGF1: ACTCTCAAGTTATCCTCCCTC 
PKGR1: AATCGCTAAAACGCCACC 

Ouahid et al., 2005 

 mcyE mcyE-F2: (Rantala et al., 2004) 
MicmcyE-R8: CAATGGGAGCATAACGAG 

Vaitomaa et al., 
2003 

 mcyA MISYf: CGACCGAGGAATTTCAAGCT 
MISYr: AGTATCCGACCAAGTTACCCAAAC 
TaqMan probe MISYTM: TTAAATCGGAAATTATCCCA-
GAAAATGCCGT 

Foulds et al., 2002 

 mcyB MIf: GCAGCGAACTCTTGAAGGGTTTATG 
MIr: GCGGATTCTGTGCAGCTTGTTCTTC 

Foulds et al., 2002 

 PCa operon 118F: GCTACTTCGACCGCGCC 
245R: TCCTACGGTTTAATTGAGACTAGCC 
TaqMan probe: CCGCTGCTGTCGCCTAGTCCCTG 

Kurmayer and 
Kutzenberger, 2003 

 mcyB 30F: CCTACCGAGCGCTTGGG 
108R: GAAAATCCCCTAAAGATTCCTGAGT 
TaqMan probe: CACCAAAGAAACACCCGAATCTGAGA-
GG 

Kurmayer and 
Kutzenberger, 2003 

 mcyA-B 135-F: GACTTATAGCCATCTCATCT 
676-R: TTGACGCTCTGTTTGTAA 

Mikalsen et al., 
2003 

 mcyB 2156-F: ATCACTTCAATCTAACGACT 
3111-R: AGTTGCTGCTGTAAGAAA 

Mikalsen et al., 
2003 

Anabaena A. circinalis rpoC1 Ana2: GATAGCATCCTCAATTTCTAGCCATTGG 
Ana4: CTCTGAAGCCAGAAATGGACGGC 

Fergusson and 
Saint, 2003 
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Table 2 continued. 

Target Group/Genus Target gene Name of the Primer and Sequence (5’- 3’) Reference 
Anabaena mcyE mcyE-F2: (Rantala et al., 2004) 

AnamcyE-12R: CAATCTCGGTATAGCGGC 
Vaitomaa et al., 
2003 

 A. circinalis 16S 27F1: AGAGTTTGATCCTGGCTCAG (Neilan et al., 1997) 
AC510R: CAATGCCACCTACGGACT 

Beltran and Neilan, 
2000 

 Non-toxic A. 
circinalis 16S 

ACB2F: AGGCTTCCTGCCCTGGG 
AC510R: CAATGCCACCTACGGACT 

Beltran and Neilan, 
2000 

 Toxic A. circinalis 
16S 

ACB1F: GCTAGTTGGTGGTGTAAGA 
AC510R: CAATGCCACCTACGGACT 

Beltran and Neilan, 
2000 

Nodularia 16S rDNA NS2: GGCGAAGGCGCTCTACTA 
1494R: (Neilan et al 1997) 

Moffitt et al., 2001 

 Toxic Nodualria 
spp. 16S rDNA 

NTS: TGTGATGCAAATCTCA(C/A)A 
1494R: (Neilan et al 1997) 

Moffitt et al., 2001 

Cylindrospermopsis RNA polymerase γ 
subunit (rpoC1) 

Cyl2: GGCATTCCTAGTTATATTGCCATACTA 
Cyl4: GCCCGTTTTTGTCCCTTTCGTGC 

Wilson et al., 2000 

 polyketide synthase 
(pks) 

M4: GAAGCTCTGGAATCCGGTAA 
M5: AATCCTTACGGGATCCGGTGC 

Schembri et al., 
2001 

 peptide synthetase 
(ps) 

M13: GGCAAATTGTGATAGCCACGAGC 
M14: GATGGAACATCGCTCACTGGTG 

Schembri et al., 
2001 

 polyketide synthase 
(pks) 

K18: CCTCGCACATAGCCATTTGC 
M4: (Schembri et al. 2001) 

Fergusson and 
Saint, 2003 

 dinitrogenase 
reductase (nifH) 

cylnif F: TAARGCTCAAACTACCGTAT 
cylnif R: ATTTAGACTTCGTTTCCTAC 

Dyble et al., 2002 

 PCa (cpcBA-IGS) Cylcpc F: GGCTTACGCGAAACCTATATA 
PCαR: (Neilan et al. 1995) 

Dyble et al., 2002 

 

 



Target Group/Genus Target gene Name of the Primer and Sequence (5’- 3’) Reference 
Planktothrix 16s rRNA CN: GGAAGGTTCTTGGATTGTCAACCC 

CO: TGCCTTTGCGAGGTTAAGCCT 
Rudi et al., 1997 

 mcyE mcyE-F2: (Rantala et al., 2004) 
mcyE-plaR3: CTCAATCTGAGGATAACGAT 

Rantala et al., 2006 

 mcyA mcyA.fw: ATGTCACCTATTGGGCTTGC 
mcyA.rev: TCGATTCCCCTAAGTGATGC 

Mbedi et al., 2005 

 mcyB mcyB.fw: ATTACAGCAGAGAAAATCCAAGCA 
mcyB.rev: TCGCAATAGCGGGATCA 

Mbedi et al., 2005 

 mcyCJ mcyCJ.fw: TTGGATACAAGCGACAAAAGG 
mcyCJ.rev: TCTCCAGCTTGAAGTTCTGC 

(Mbedi et al., 2005) 

 mcyE mcyE.fw: TTACCTAATTATCCCTTTCAAAG 
mcyE.rev: CAATGGGTAAGGTTTGCTT 

(Mbedi et al., 2005) 

 mcyEG mcyEG.fw: GAATTCATTTTTGTTGAGGAAGG 
mcyEG.rev: AGAAAACAAGCCCAGAGTGC 

(Mbedi et al., 2005) 

 mcyHA mcyHA.fw: TTAGATGAAGCCACCAGTGC 
mcyHA.rev: GATTAAAAATTGAATAGCTGCTAGG 

(Mbedi et al., 2005) 

 mcyT mcyT.fw: CCCAATCTAACCCCAACTGC 
mcyT.rev: CAATAGCGATTTTCCCAAGC 

(Mbedi et al., 2005) 

 mcyTD mcyTD.fw: ATCCGCCCATACTGTGACC 
mcyTD.rev: GATTTTGCCCGGTTTACTCC 

(Mbedi et al., 2005) 

Nostoc 16s rRNA CP: GGTCCGCAGGTGGCATTGT 
CQ: GCCCCGACCATACTCGATTTCTGT 

(Rudi et al., 1997) 
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Part II 

 

QUANTIFICATION OF TOXIC MICROCYSTIS SPP. DURING THE 2003 AND 

2004 BLOOMS IN WESTERN LAKE ERIE USING QUANTITATIVE REAL-

TIME PCR.  
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This part is a version of a paper published with same title in journal Environmental Science and 

Technology in 2005 by Johanna M. Rinta-Kanto, Anthony J.A. Ouellette, Gregory L. Boyer, 

Michael R. Twiss, Thomas B. Bridgeman, Steven W. Wilhelm. 

 

Rinta-Kanto, J.M., Boyer, G.L., Twiss, M.R., Bridgeman, T., Wilhelm, S.W. 2005. 

Quantification of Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using 

quantitative real-time PCR. Environmental Science and Technology, 39: 4198-4205. 

 

My use of “we” in this chapter refers to my co-authors and myself. My primary contributions in 

this paper were 1) Assisting in the development of the real-time PCR method and validating the 

use of genomic DNA standards for quantifying toxic Microcystis cells, 2) collecting most of the 

environmental samples for this study, 3) analyzing the samples for the study and analyzing the 

data 4) gathering the background literature and, 5) Most of the writing of the manuscript and 

correspondence to the reviewer comments. 
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Introduction 

Recurring blooms of toxic cyanobacteria in the western basin of Lake Erie have been a 

nuisance during the past decade. Microcystis spp. have been commonly found in samples 

collected from the bloom areas during summer since 1996 (Brittain et al., 2000). 

Microcystis blooms have often been associated with varying concentrations of the toxin 

microcystin measured in the surrounding water. It is common for microcystin 

concentrations in the western basin of Lake Erie to exceed the provisional guideline 

concentration of 1.0 μg L-1 set by the World Health Organization (Chorus and Bartram, 

1999). Our goal in this study was to utilize quantitative PCR (qPCR) for a single step 

detection and quantification of target genes for assessment of the total abundance of 

cyanobacteria, Microcystis and potentially toxic Microcystis in natural water samples. 

Use of this method improves the resolution at which mixed natural populations consisting 

of toxigenic and nontoxic Microcystis can be analyzed. Use of qPCR also expedites the 

analysis of bloom samples, reducing the number of time consuming steps involved in the 

analysis of bloom samples using microscopy and chemical toxin analysis.  

Microcystins are nonribosomally synthesized cyclic heptapeptides produced by 

Microcystis spp., as well as other species of cyanobacteria belonging to genera 

Anabaena, Nostoc, and Oscillatoria (Sivonen and Jones, 1999; Nishizawa et al., 2000). 

Microcystins are among the most wide spread cyanobacterial toxins to be found in lakes 

and in brackish water world wide (Sivonen and Jones, 1999). Blooms of toxin producing 

Microcystis cause severe aesthetic water quality problems (Jacoby et al., 2000) and pose 

a health risk to humans and animals upon ingestion of contaminated water (Codd, 1995; 

Murphy et al., 2000; Nonneman and Zimba, 2002). Trophic transfer of microcystins in 

the food web (from phytoplankton to planktivorous fish) has also been hypothesized 

(Brittain et al., 2000; Murphy et al., 2000). Cyanobacterial blooms may be influenced by 

numerous factors, such as lake morphometry, nutrient availability, and environmental 

factors affecting population size and dispersal (Sivonen and Jones, 1999; Jacoby et al., 

2000). In field studies, the production of microcystin has been shown to be correlated to 
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concentrations of carbon, dissolved phosphorous and nitrogen, pH, chlorophyll a, and 

solar radiation (Vezie et al., 1998). However, the combination of environmental 

conditions responsible for inducing a toxin producing bloom remains unknown not only 

in the Lake Erie ecosystem, but also in other freshwater systems where toxic Microcystis 

blooms occur.  

 In the past, detection of Microcystis in water samples has commonly been based 

on microscopic techniques combined with the chemical detection of microcystin in the 

water samples (e.g. Brittain et al., 2000). However, discerning amongst cyanobacterial 

strains solely based on cellular morphology is difficult, or even impossible (Baker et al., 

2002; Ouellette and Wilhelm, 2003). The PCR-based techniques allow for detection of 

specific DNA sequences, from which a distinction can be made between toxic and 

nontoxic strains of Microcystis spp. (Nishizawa et al., 2000). This approach subsequently 

facilitates an analysis of the distribution of genotypes based on the presence or absence of 

a combination of target genes in the samples (Ouellette and Wilhelm, 2003). In the 

current study an initial screening of samples was completed by multiplex PCR using a 

combination of previously published primer sets (Ouellette and Wilhelm, 2003). A 

quantitative real-time PCR technique, the Taq-nuclease assay (TNA) (also known as 5’ 

nuclease assay) was used to quantify cells carrying specific target genes in our samples. 

The Taq-nuclease assay has been recently applied successfully to the analysis of 

microbial components of natural water samples (Becker et al., 2000; Bach et al., 2002; 

Becker et al., 2002; Kurmayer and Kutzenberger, 2003; Vaitomaa et al., 2003). 

 In the initial screening, the distribution of cyanobacteria was studied using a 

cyanobacterial-specific 16S ribosomal RNA gene sequence as a target. At the same time, 

occurrence of toxigenic Microcystis spp. was studied through the detection of a 

Microcystis specific 16S rRNA gene sequence and toxin synthetase genes mcyB and 

mcyD in a multiplex PCR assay (Ouellette and Wilhelm, 2003). Subsequently, Taq-

nuclease assays were employed for the quantification of cyanobacterial and Microcystis 

16S rDNA and mcyD gene copies and the total abundance of cells carrying these target 

genes in all samples.  
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In this study we report observations concurrent with two toxic cyanobacterial 

blooms that occurred in the Western Basin of Lake Erie in late summer of 2003 and late 

summer 2004. The greenish biomass of a large algal bloom in summer 2003 at the mouth 

of Maumee River was visible in true-color LANDSAT images of this area (Figure 1). 

Whether these intense cyanobacterial blooms that developed in recent years are products 

of an indigenous Microcystis population or if Microcystis cells are transported into the 

system from outside sources is not clear. The aim of this study was to provide further 

information about the spatial distribution, abundance and possible origin of Microcystis 

in the western basin of Lake Erie. The results of this study provide more detailed 

information about the structure of the cyanobacterial community in Lake Erie than 

previous studies, while also raising questions about the presence of other microcystin-

producing cyanobacteria in the western basin of Lake Erie. 

Materials and Methods 

Sample collection   

Due to logistical constraints, water samples were collected by three independent groups 

who were concurrently working on Lake Erie at different locations in the western basin 

of the Lake on August 15th, 2003. Researchers on the R/V Lake Guardian, C.C.G.S. 

Limnos and the research support craft of the Lake Erie Center (Toledo, OH) collected 

samples and observations. In addition, samples were collected during field work in 

August 2004 onboard the C.C.G.S. Limnos. All sampling sites in 2003 and 2004 are 

indicated in the map in Figure 2. In all cases, water samples were collected from 1 m 

depth using the ship’s surface water pump (C.C.G.S. Limnos) or Niskin bottles (R/V Lake 

Guardian). Cells used to extract DNA for PCR analysis were collected by filtering onto 
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Figure 1. LANDSAT 7 image taken August 18, 2003.  The true color composite image 
demonstrates the presence of a significant bloom of phytoplankton in the surface waters 
(image from OhioLink LANDSAT 7 server).  
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Figure 2. Sampling sites in 2003 and 2004. Sampling sites visited in 2003 are indicated 
with a number 1-7 and an asterisk. Stations were renumbered consecutively because 
different groups collecting samples used different coding system for the sampling sites. 
The sampling sites used in August 2004 are numbered according to Environment Canada 
station coding system consisting of 3 and 4 digit station numbers as indicated on the map.  
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47 mm diameter, 0.22-μm nominal pore-size polycarbonate membrane filters (Millipore), 

which were immediately frozen (-20°C) until processing. 

Phytoplankton biomass 

Chlorophyll a (a proxy for phytoplankton biomass) in water samples was determined 

using the non-acidification protocol (Welschmeyer, 1994). Samples were collected on 

0.2-µm nominal pore-size polycarbonate filters (47-mm diam., Millipore) and 

Chlorophyll-a retained on the filters was extracted (ca. 24 h, 4 °C) in 90 % acetone. 

Chlorophyll a concentrations were quantified with either an AU-10 or TD-700 

fluorometer (Turner Designs; Sunnyvale, CA). 

Microcystin concentration  

Microcystin in water samples was determined with protein phosphatase inhibition assays. 

Samples were collected on GF/F (Whatman) filters. The assays were run in 96-well plates 

containing 0.1 mU enzyme (recombinant protein phosphatase 1A, catalytic subunit, 

Roche Applied Science), 1.05 mg para-nitrophenyl phosphate (Sigma) and 10 µl of 

sample or microcystin-LR (Sigma Biochemical) using the method of Carmichael and An 

(Carmichael and An, 1999). The rate of phosphate hydrolysis was calculated from the 

change in absorbance at 405 nm over 1 hr and compared to the control (no added 

microcystin-LR) and standards containing between 6 and 40 µg L-1 of microcystin-LR. 

Blanks (no enzyme, no toxin), unknowns, standards, and controls were all run in 

duplicate. 

Extraction of DNA from natural samples   

High molecular weight nucleic acids were isolated using a modification of the protocol of 

Giovannoni et al. (Giovannoni et al., 1990). Cells collected onto filters were suspended 

from the filter in lysis buffer (40mM EDTA, 400 mM NaCl, 50mM Tris-hydrochloride, 

pH 9). Cells were lysed by adding lysozyme to a final concentration of 1 mg mL-1 

followed by incubation at 37ºC for 20 min. After incubation, proteinase K was added to a 

final concentration of 50 μg mL-1 and sodium dodecyl sulfate to a final concentration of 
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0.5%. The cell suspension was then incubated at 50ºC for 2 h. DNA was extracted by first 

adding a phenol:chloroform:isoamyl alcohol (25:24:1) volume equal to the aqueous 

phase, with a subsequent extraction of the aqueous phase using an equal volume of 

chloroform isoamyl alcohol (24:1). DNA was precipitated overnight (-20 ºC) after the 

addition of absolute ethanol (2 × aqueous volume) and 10 M ammonium acetate (0.1 × 

the volume of the aqueous phase). DNA was collected the next day by centrifugation at 

11,900 × g for 25 min (Beckman J2-21 centrifuge equipped with Fiber Lite™ F21B rotor, 

Piramoon Technologies, Santa Clara, CA, USA). DNA pellets were air-dried and 

subsequently resuspended in sterile 1 × TE buffer, pH 8. Concentration and purity of 

extracted DNA was measured spectrophotometrically (BioMate5, Thermo Spectronics) 

as previously described (Sambrook and Russell, 2001).   

Multiplex PCR   

Initial sample screening was carried out using a combination of the four primer 

sets described by Ouellette and Wilhelm (Ouellette and Wilhelm, 2003). All reactions 

were performed in 50 μL volumes in 96-well plates (Eppendorf). For each sample, two 

separate PCR reactions were set up; one reaction to detect cyanobacteria using primers 

CYAN 108F and 16S CYR (Table 1) and a second multiplex reaction to detect 

Microcystis specific 16S rDNA fragment and the microcystin toxin synthetase genes 

mcyB and mcyD using three primer sets: MICR 185F and MICR 431R, mcyB 2959F and 

mcyB 3278R, and, mcyD F2 and mcyD R2 (Table 1). All reactions contained 400 nM of 

each primer, 200 nM of dNTPs, 1×Mg-free PCR buffer (Promega, Madison, WI, USA), 2 

mM MgCl2, 300 ng µL-1 (final concentration) bovine serum albumin (Sigma cat # A-

7030) (Kirchman et al., 2001), 0.04 U µL-1 (final concentration) Taq polymerase 

(Promega, Madison, WI, USA), and 20-200 ng DNA template. Bovine serum albumin 

was added into the reactions because it has been shown to enhance the sensitivity of the 

PCR-based detection of target genes in natural samples (Kirchman et al., 2001). The PCR 

protocol consisted of an initial denaturation step at 95°C for 5 min, 50 cycles of 94°C for 

30 s, 56°C for 60 s, 72°C for 30 s, and a final single step of 72°C for 15 min. Each PCR 

reaction was subjected to electrophoresis in 6% polyacrylamide gels. DNA bands were  
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Table 1. PCR primer sets and Taq nuclease assay probes (Taq) used in this study. 
Primer Sequence (5’- 3’) Reference 

mcyB 2959F 

mcyB 3278R 

TGGGAAGATGTTCTTCAGGTATCCAA   

AGAGTGGAAACAATATGATAAGCTAC 

(Nonneman and Zimba, 2002) 

(Nonneman and Zimba, 2002) 

mcyD F2 

mcyD R2 

mcyD F2 (Taq) 

GGTTCGCCTGGTCAAAGTAA 

CCTCGCTAAAGAAGGGTTGA 

FAMa –ATGCTCTAATGCAGCAACGGCAAA- 
BHQ-1b 

(Kaebernick et al., 2000) 

(Kaebernick et al., 2000) 

This study 

MICR 184F 

MICR 431R 

MICR 228F (Taq) 

GCCGCRAGGTGAAAMCTAA 

AATCCAAARACCTTCCTCCC 

FAMa –AAGAGCTTGCGTCTGATTAGCTAGT- BHQ-1b 

(Neilan et al., 1997) 

(Neilan et al., 1997) 

This study 

CYAN108F (PLG1.3)c 

16SCYRa 

ACGGGTGAGTAACRCGTRA 

CTTCAYGYAGGCGAGTTGCAGC 

(Urbach et al., 1992) 

modified from Urbach et al. (1992) 

CYAN 108F (PLG1.3)d 

CYAN 377Rb  

CYAN 328R (Taq) 

ACGGGTGAGTAACRCGTRA 

CCATGGCGGAAAATTCCCC  

FAMa –CTCAGTCCCAGTGTGGCTGNTC- BHQ-1b 

(Urbach et al., 1992) 

(Nübel et al., 1997) 

This study 
a6-carboxyfluorescein 
bBlack Hole Quencher-1™  (quenching range 480-580 nm) (Biosearch Technologies, Inc., Novato, CA, USA) 
cCYAN 108F and 16S CYR are used in conventional PCR assay 
dCYAN 108F and CYAN 377R are used in Taq-nuclease assay 



 

visualized under UV illumination after staining the gel with 0.01% SYBR green I 

(Molecular Probes, Eugene, OR, USA) in TBE (90 mM Tris-borate, 1mM EDTA, pH 

8.0). 

Real time quantitative PCR (qPCR) 

To provide quantitative information on cyanobacterial, specifically Microcystis, 

populations in Lake Erie, all samples were subjected to qPCR analysis to quantify copy 

numbers of cyanobacteria-specific 16S rDNA, Microcystis-specific 16S rDNA and mcyD 

genes in water samples, as well as the abundance of cells carrying these target genes in 

the original samples.  

Dual labeled probes CYAN 328R, MICR 228F, mcyDF2 (Table 1) were designed 

to accompany each primer set in qPCR. Briefly, the probes were designed according to 

guidelines from Applied Biosystems (http://home.appliedbiosystems.com [Applied 

Biosystems, Foster City, CA]) and from Bustin et al., 2000 (Bustin, 2000). To confirm 

that probes will not form secondary structures, the probe sequences were checked using 

the mfold web server (Zuker, 2003).  The functionality and sensitivity of the probe was 

confirmed by assaying different pure cyanobacterial cultures in the laboratory prior to 

analysis of natural samples.  

Amplifications and quantifications were performed using the BioRad iCycler equipped 

with the iQ real time fluorescence detection system and software, version 3.0 (Bio-Rad, 

Hercules, CA, USA). Triplicate Taq-nuclease assays were performed to quantify the gene 

copies for each sample. All reactions were carried out in a total volume of 25 μL. Three 

separate assays were performed to detect and quantify cyanobacterial 16S rDNA, 

Microcystis 16S rDNA and mcyD in the samples. For cyanobacterial 16S and Microcystis 

16S assays, each PCR reaction contained 10 μL of Eppendorf HotMasterMix (Brinkmann 

Instruments, Inc., Westbury, NY, USA). For mcyD assays, each PCR reaction contained 

12.5 μL of Platinum Quantitative PCR SuperMix-UDG (Invitrogen, Carlsbad, CA, USA). 

In addition, all 3 assays contained 10 μM of each primer (Sigma-Genosys, Inc., The 

Woodlands, TX, USA), 10 μM of Taq-probe (Biosearch Technologies, Inc., Novato, CA, 

USA), 300 ng µL-1 bovine serum albumin (Sigma cat # A-7030) (Kirchman et al., 2001) 
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and 5 μl of undiluted or ten fold diluted template DNA suspension. Each PCR reaction 

was run in triplicate on a 96-well plate (Bio-Rad, Hercules, CA, USA), sealed with 

optical quality sealing tape (Bio-Rad, Hercules, CA, USA). Two negative controls 

without DNA were included for each PCR run. The PCR program for cyanobacterial 16S 

rDNA and Microcystis specific 16S rDNA primers consisted of 1.5 min at 95°C, 55 

cycles at 95°C for 30 s, 56°C for 1 min, and 65°C for 20 s. The PCR program for mcyD 

assay consisted of 3 min at 50°C, 10 min at 95°C followed by 45 cycles of 30 s at 95°C, 1 

min at 61°C and 20 s at 72°C. High cycle numbers were required so that the most dilute 

standards (discussed below), as well as samples with low concentration of target DNA, 

could be quantified.  

Threshold cycle (Ct) calculations were completed automatically for each real time 

PCR assay by the iCycler software using the maximum correlation coefficient approach. 

In this approach the threshold is automatically determined to obtain the highest possible 

correlation coefficient (r2) for the standard curve (Table 2). Gene copies per sample were 

calculated using a standard curve (target gene copy number vs. Ct) determined for each 

assay. Cell abundance was inferred from a standard curve (cell abundance vs. Ct) 

determined in each assay. Real-time PCR data was analyzed using BioRad iCycler iQ™ 

real time detection system software version 3.0.  

Standards for real-time PCR: Preparation of single copy plasmid standard  

A cyanobacterial 16S rDNA fragment was amplified by PCR using primers CYAN 108F 

and 16S CYR (Table 1) from Microcystis aeruginosa LE-3 (Brittain et al., 2000) as 

described above. The DNA fragment was cloned into PCR 2.1 vector using a TOPO-TA
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Table 2. Efficiencies and standard curve parameters of from real-time PCR analysis for the cyanobacterial, Microcystis and mcyD 
specific primer sets. 

Target gene Standard  Efficiency (%) Slope  y-intercept r2 

Cyan 16S Plasmid DNA 92.1 -3.526 45.877 0.999 

Cyan 16S LE-3 genomic DNA 95.4 -3.437 37.628 0.997 

Micr 16S Plasmid DNA 97.9 -3.373 42.815 0.997 

Micr 16S LE-3 genomic DNA 104.7 -3.213 35.037 0.999 

mcyD Plasmid DNA 98.5 -3.359 41.138 0.997 

mcyD LE-3 genomic DNA 94.2 -3.470 36.864 0.998 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



 

cloning kit (Invitrogen, Carlsbad, CA, USA), following the manufacturer’s instructions. 

Plasmid DNA was purified using a Wizard Plus Minipreps kit (Promega, Madison, WI, 

USA) following the manufacturer’s instructions. Inserts in the clones were confirmed by 

PCR using primers CYAN 108F and 16S CYR and subsequent electrophoresis. The DNA 

concentration (ABS 260 nm) and purity (ABS 260 nm / ABS 280 nm) of the plasmid 

preparation was determined spectrophotometrically (BioMate5, Thermo Spectronics), as 

previously described (Sambrook and Russell, 2001). The molecular weight of the double 

stranded plasmid and the double stranded PCR product was determined using 

Biopolymer Calculator, version 4.4.1 (http://paris.chem.yale.edu/extinct.html). Using 

Avogadro’s number, 6.022 × 1023 plasmid copies mol-1, the plasmid copy number of the 

stock was determined. A plasmid standard for mcyD-assays was prepared as described 

above, but the PCR amplicon was obtained using mcyDF2 and mcyDR2 primers (Table 

1). Dilutions containing 1× 106 - 5 plasmid copies μL-1 were prepared to establish a 

linear standard curve for real-time PCR assays. 

Microcystis aeruginosa LE-3 genomic DNA standard  

Microcystis aeruginosa LE-3 (Brittain et al., 2000) were grown in batch cultures in BG11 

medium (Kerry et al., 1988) at +25°C and ca 80 µmol photons m-2 s-1.  Cells from a 

known volume of LE-3 culture were harvested onto a GF/F filter (Whatman), lysed and 

DNA isolated as described above. A subsample (2 mL) of the cell culture was obtained 

immediately before the cells were harvested to determine the cell density of the culture 

by direct microscopic count. For microscopic enumeration of the M. aeruginosa LE-3 

cultures, cells were harvested on a 0.22-μm nominal pore-size black polycarbonate 

membrane filter (Poretics). The filter was mounted on a glass slide (Fisher Scientific), 

then a drop of immersion oil (Type FF) (R.G. Chargille Laboratories, Inc., Cedar Grove, 

N.J. USA) was added on top of the filter and covered with a glass cover slip. 

Autofluorescent cyanobacterial cells were enumerated under 1000 x magnification with a 

Leica DMRXA epifluorescence microscope (Excitation filter λ = 530 – 595 nm; Dichroic 

mirror λ = 600 nm; Barrier filter λ = 615 nm) equipped with an ocular grid. Twenty fields 

or 200 cells were counted from each sample. The cell abundance of the original cell 
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culture was related to the total yield of extracted genomic DNA by dividing the total 

DNA yield (ng DNA) by the total number of cells contained in the original volume of 

liquid culture. This gave us a way to relate how much DNA corresponded to one cell in 

the Microcystis LE-3 sample. We used 100 fold dilutions of the DNA sample to establish 

the genomic DNA standard curve (see discussion below).  

Quantitative PCR - Detection limits  

Standard curves were established using four serial dilutions of standard plasmid DNA 

and genomic DNA isolated from M. aeruginosa LE-3 pure culture. For all real-time PCR 

assays the dilutions of the plasmid standard ranged from 5 × 106 to 25 plasmid copies per 

reaction. DNA concentrations for the 16S standards ranged from 2.6 × 106 to 1.3 ng 

plasmid DNA per reaction and for mcyD DNA concentrations of the plasmid standards 

ranged from 2.2 × 10-2 to 1.1 × 10-7 ng plasmid DNA per reaction. Using these standards, 

the lower detection limit of our assay was 25 target gene copies per reaction, which 

corresponds roughly to 5000 gene copies per liter of lake water. Genomic DNA from M. 

aeruginosa LE-3 culture was serially diluted to correspond to cell densities from 1.31 × 

106 to 1.31 cells per reaction with corresponding DNA concentrations 308 – 3.1 × 10-4 ng 

genomic DNA per reaction. Thus the lowest detection limit was 1.31 cells per 5 µL 

subsample, corresponding roughly to 262 cells per liter of lake water. 

Results 

Station descriptions   

Chlorophyll a concentrations from individual sampling sites are summarized in Table 3. 

In 2003 chlorophyll a concentrations ranged from 4 to 40 µg L-1 in the western basin; in 

2004 concentrations varied from 7 to 22 µg L-1. In 2003 the highest chlorophyll 

concentrations were found at sites 1, 5 and 6 which are located in the proximity of the tip 

of the green algal mass visible in the LANDSAT image (Figure 1).  

 In 2003 and 2004, samples from all stations contained various concentrations of 

microcystins-LR (Table 3). The microcystin-concentration exceeded the safety limit (1.0 
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Table 3. Chlorophyll a and toxin concentrations in samples collected in the western basin 
of Lake Erie in August 2003 and 2004. August 2003 sample stations are numbered 1-7 
and 2004 sampling stations numbered with 3 or 4 digits. Microcystin concentrations are 
expressed in microcystin-LR equivalents per liter. 
 

Sampling 

station 

Chlorophyll 

a (μg L-1) 

Microcystin (μg 

LR eqv. L-1) 

1  40.0 15.39 

2  5.22 <0.25 

3  6.40 0.33 

4  4.00 <0.25 

5  15.26 0.44 

6  26.04 1.80 

7 6.48 <0.25 

493 8.83 0.072 

311 14.10 0.292 

1163 20.08 2.583 

885 19.12 0.145 

496 21.70 0.408 

495 15.45 0.406 

494 12.78 0.333 

357 7.39 0.142 

974 7.84 0.979 

882 8.25 0.038 
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μg L-1) set by the World Health Organization (Chorus and Bartram, 1999) at two 

sampling locations (sites 1 and 6) in 2003 and at one location in 2004 (site 1163). In 2003 

the highest concentration of microcystin was detected at the mouth of Maumee River 

(sampling site 1) where the toxin concentration varied from 14.3 to 20.0 μg L-1. At 

sampling site 6, 1.8 μg L-1 microcystin was found in the water column. In 2004, the 

highest concentrations of microcystins were found at stations 974 and 1163. 

Multiplex PCR analysis  

Results from the initial multiplex PCR analysis of 2003 and 2004 samples are presented 

in Table 4. PCR analysis indicated the presence of cyanobacteria and Microcystis spp. in 

all sampling sites. In 2003, toxigenic Microcystis spp. were present in six out of seven 

sampling sites, indicated by the presence of a Microcystis-specific 16S rRNA gene 

fragment and either one or both microcystin toxin synthetase genes mcyB and mcyD 

(Figure 3). Interestingly, at site 3 in 2003, neither of the toxin synthetase genes mcyB or 

mcyD were detected by PCR, despite detectable microcystin concentrations in the water. 

In 2004, all target genes were detected by PCR in all samples analyzed, indicating the 

presence of toxic Microcystis spp. at all sampling sites. 

Gene copy numbers and cell abundance in lake water samples  

The mean and the standard deviations of the triplicate real-time PCR assays are reported 

in Table 5 for all samples. In 2003 the highest abundance of cyanobacterial 16S rDNA 

target genes was detected at the mouth of Maumee River. At other sampling sites the 

abundance was 1-3 orders of magnitude lower. The abundance of Microcystis spp. 16S 

rDNA genes were highest at the mouth of Maumee River and the quantities decreased as 

distance increased from the mouth of the river. A similar trend was found in the 

abundance of mcyD copies, with abundances 2-3 orders of magnitude lower at sites 4 and 

5 relative to site 1. At sites 3 and 6, abundances of Microcystis 16S genes and mcyD were 

below the quantifiable limit of our assay. In 2004 the quantities of all target genes in all 

samples were within quantifiable limits of the real-time PCR assay. Based on the 

percentages calculated using the quantities of cyanobacterial 16S and Microcystis 16S in  
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Table 4. Initial screening of water samples using multiplex PCR assays. The columns are 
labeled with the PCR primers used for the analysis. The presence or absence of a visible 
band in the gel after staining with SYBR green I is indicated by “+” or “-“. 
 

Sampling 

site 

Cya 16S Micr 16S mcyB mcyD 

1 + + + + 

2 + + - + 

3 + + - - 

4 + + + + 

5 + + + + 

6 + + + + 

7 + + + + 

493 + + + + 

311 + + + + 

1163 + + + + 

885 + + + + 

496 + + + + 

495 + + + + 

494 + + + + 

357 + + + + 

974 + + + + 

882 + + + + 
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Figure 3. Gel image of multiplex PCR results. Gel A. Detection of cyanobacterial 16S 
rDNA fragment. Lane 1: 100 bp molecular weight marker; Lane 2: site 1a; Lane 3: site 
1b; Lane 4: site 2; Lane 5: site 3; Lane 6: site 4; Lane 7: site 5; Lane 8: site 6; Lane 9: site 
7; Lane 10: negative control, no template DNA; Lane 11: positive control (M. aeruginosa 
LE-3 genomic DNA). Gel B: detection of Microcystis spp. 16S rDNA fragment and 
microcystin synthetase genes mcyB and mcyD. Lane 1: site 1a; Lane 2: 100 bp molecular 
weight marker; Lane 3: site 1b; Lane 4: site 2; Lane 5: site 3; Lane 6: site 4; Lane 7: site 
5; Lane 8: site 6; Lane 9: site 7; Lane 10: negative control, no template DNA; Lane 11: 
positive control (M. aeruginosa LE-3 genomic DNA). 
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the samples (Table 5), Microcystis dominated (>50%) the cyanobacterial population at 

site 1 in 2003 and at stations 357 and 882 in 2004. Using the Microcystis LE-3 genomic 

DNA standard, we estimated the abundance of cyanobacteria and Microcystis spp. cells at 

the mouth of Maumee River to be about 108 cells L-1. The abundance of all cell types 

decreased towards the sampling sites 4 and 5, which are located approximately at the tip 

of the blooming mass originating from the mouth of Maumee River as seen on the 

LANDSAT image (Figure 1). 

A low, but still detectable, abundance of Microcystis was found at sites 2 and 7. Although 

Microcystis was also found to be present at sites at sites 3 and 6, the abundances of 

Microcystis cells were too low to be quantified in our assay. The highest abundance of 

cells carrying mcyD gene were found at sites 1, 4 and 5. In 2004 the abundances of 

Microcystis and toxic Microcystis were within quantifiable limits at all sampling sites. 

The abundance of total Microcystis varied from 103 to 106 cells per liter. The highest 

abundances of total Microcystis and toxic Microcystis cells were found at station 496. At 

station 974 a notably high concentration of microcystin LR was detected (Table 3), 

however the abundance of toxic Microcystis was only approximately 800 cells per liter 

(Table 5). 
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Table 5. qPCR-based quantification of abundances of three target genes in water samples, and cell abundance of total 
cyanobacteria, total Microcystis and toxic Microcystis (cells carrying mcyD gene) in samples collected in August 2003 (sampling 
sites numbered 1-7) and August 2004. Description for all samples n= 3 (± SD) except, sampling site 1, where n=5 (±SD), 
sampling site 974 toxic Microcystis, n=2. ND=not detected, BQL= detected but below quantifiable limit. 
 
Sampling 

site 

Cyan 16S copies L-1 

 

Micr 16S copies L-1 mcyD copies L-1  Total cyanobacteria 

L-1  

Total Microcystis L-

1  

Toxic Microcystis L-

1  

1  3.9 (± 3.8) ×1010  3.4 (± 0.5) ×1010 3.2 (± 0.6) ×108 9.9 (±1.1) ×108  3.9 (±1.1) ×108 1.1 (±0.3) ×106 

2  1.7 (± 0.5) ×107  6.2 (±1.8) ×104 BQL 3.2 (±0.6) ×105  1.8 (±0.5) ×103 BQL 

3  1.5 (± 0.1) ×109 BQL ND 3.1 (±0.3) ×107 BQL ND 

4  2.1 (± 0.6) ×108 1.1 (± 0.7) ×107 2.8(± 0.6) ×106 4.7 (±0.5) ×106 6.6 (±4.3) ×104 9.0 (±4.0) ×104 

5  1.0 (± 0.1) ×108 1.7 (± 0.0) ×107 7.0 (± 4.2) ×105 1.9 (±0.1) ×106 1.0 (±0.0) ×105 3.4 (±2.0) ×104 

6  2.9 (± 0.3) ×108 BQL BQL 5.0 (±0.6) ×106 BQL 4.2 (±1.2) ×103 

7  8.7 (± 0.2) ×107 2.4 (± 6.9) ×105 7.7 (± 2.7) ×104 1.6 (±0.1) ×106 7.5 (±0.5) ×103 8.6 (±2.8) ×103 

493 4.3 (±1.0) ×108 5.1 (±0.8) ×107 4.2 (±2.8) ×105 5.5 (±1.4) ×106 7.0 (±1.1) ×105 2.0 (±1.3) ×104 

311 6.6 (±0.3) ×108 1.3 (±0.7) ×108 3.9 (±0.5) ×106 8.7 (±0.4) ×105 1.8 (±1.0) ×106 1.8 (±0.2) ×105 
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Table 5 continued. 
 
Sampling 

site 

Cyan 16S copies L-1 

 

Micr 16S copies L-1 mcyD copies L-1  Total cyanobacteria 

L-1  

Total Microcystis L-

1  

Toxic Microcystis L-

1  

1163 5.6 (±0.4) ×109 5.6 (±0.4) ×107 1.5 (±1.0) ×106 7.9 (±0.2) ×107 7.4 (±0.6) ×105 6.8 (±4.5) ×104 

885 2.8 (±0.3) ×108 4.0 (±0.8) ×107 3.5 (±0.3) ×106 3.9 (±0.4) ×106 5.4 (±1.1) ×105 1.6 (±1.6) ×105 

496 8.0 (±2.2) ×108 1.7 (±0.07)×108 6.0 (±0.3) ×106 1.6 (±7.8) ×107 3.2 (±1.5) ×106 2.8 (±0.1) ×105 

495 1.2 (±0.4) ×108 8.3 (±0.3) ×106 1.5 (±0.7) ×105 1.3 (±0.8) ×106 8.4 (±2.9) ×104 7.1 (±3.4) ×103 

357 2.5 (±1.3) ×107 0.8 (±1.1) ×107 3.5 (±0.3) ×104 2.7 (±1.9) ×105 5.4 (±6.4) ×104 1.7 (±0.2) ×103 

974 1.2 (±0.05) ×107 4.0 (±1.3) ×105 1.5 (±1.0) ×104 1.4 (±0.06) ×105 4.6 (±1.5) ×103 8.0 (±ND) ×102  

882 6.2 (±1.0) ×107 3.5 (±0.1) ×107 7.4 (±1.5) ×105 7.5 (±1.3) ×105 4.8 (±0.2) ×105 3.4 (±0.7) ×104 

 



 

Discussion 

 
Three important implications arise from the results of this study. Firstly, a tiered response 

to a potential toxic cyanobacterial bloom was demonstrated to be a practical approach to 

monitoring these events. Combined use of satellite, standard and then quantitative PCR 

allowed us to rapidly and reliably detect and characterize this bloom event. Secondly, the 

results of this study suggest that not all strains of Microcystis are capable of producing 

toxin. Finally, the results demonstrate the limits of molecular approaches, as microcystin-

producing cyanobacteria not detected by the probes used in this study (which were 

developed from our current knowledge of Microcystis gene system) appear to have 

persisted in some areas where we obtained our samples. As such, this work highlights the 

strengths of these tools as well as our continuing need for the development of a better 

understanding of the causative agents of freshwater cyanotoxin production.  

 At the time of sampling on August 15th 2003, a bloom of cyanobacteria was 

persisting in the western basin of Lake Erie. The bloom area was well visible as a green 

mass in the water column in the LANDSAT image (Figure 1) taken three days after 

sampling. In addition, ground level observations (by M.R. Twiss and T. Bridgeman) 

noted thick green slicks on the surface. At the time of sampling, another distinguishable 

toxigenic algal bloom was located at Sandusky Bay. Microcystis was abundant in the 

western basin of Lake Erie also in August 2004. Various concentrations of microcystins, 

determined using the protein phosphatase inhibition assay and expressed as microcystin-

LR equivalents, were detected at all sampling sites, however it is notable that toxin 

producing Microcystis spp. were not present at every sampling location in 2003. 

Based on qPCR analysis of the samples, the abundance of total Microcystis spp. 

cells varied from 4 ×108 to 2 ×103 cells per liter among the sites where the abundance of 

Microcystis spp. was within the quantifiable limits. These results agree with a previous 

survey of the abundance of Microcystis in the western basin of Lake Erie. In the summer 

months (June-August) of 1995, 1996 and 1997 the total Microcystis abundance was 
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reported to vary between 2×102 and 3×109 cells per liter (Brittain et al., 2000). Thus the 

real-time PCR based method used in this study provides data that are comparable to 

earlier results obtained through microscopic examination. 

There are two possible explanations for finding microcystin in the water but no 

toxic Microcystis. One is that the abundance of Microcystis spp. producing microcystin 

was extremely low in these samples and it was not detectable through conventional PCR 

due to a collapsed or senescent bloom in the sampling area. The detection of microcystins 

in the absence of living cells has been documented previously and it is known that 

dissolved microcystin persists in the water column for several weeks (Sivonen and Jones, 

1999), whereas naked DNA remains in PCR detectable form for only approximately 10 

days in lake water (Deere et al., 1996). The other possible explanation for finding no 

toxigenic Microcystis but finding microcystin is the production of microcystins by other 

cyanobacteria. Other cyanobacterial species, in addition to Microcystis species, belonging 

to genera Anabaena, Oscillatoria (Planktothrix), Nostoc and Anabaenopsis are known 

producers of microcystins (Sivonen and Jones, 1999) and at least Anabaena and 

Planktothrix were observed during a visit to Sandusky Bay in July 2003 via light 

microscopy (Wilhelm and Boyer, unpublished data). As the molecular probes used in this 

study are highly specific for Microcystis spp. (Ouellette and Wilhelm, 2003), the 

presence of other microcystin producers in water samples could not be detected.  

 Estimates of the density of cells carrying the specific 16S rDNA target genes from 

Microcystis spp. are presented here using genomic DNA from a Microcystis aeruginosa 

isolate originally collected in Lake Erie. Implicit in this work is that variations in the 

copy number of 16S rDNA genes occur within the genomes of different prokaryotes; a 

brief survey of the literature suggest these copies can range from 1 to 4 or more per 

genome. As such, any estimates of cell density using this approach are built around the 

caveat that variations in this copy number per genome within the natural population will 

be a source of error.  In the case of the mcyD gene, it appears that cells carry only one 

copy per genome (Kaebernick et al., 2002). Estimates of the percentage of the total 

Microcystis population that are toxic are therefore sensitive to this ratio: in the case of the 

current study this conversion alludes to more toxic Microcystis cells than total 
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Microcystis cells.  Although this obviously cannot be the case, the results none the less 

provide a snapshot of the approximate dominance of the potentially toxigenic strains 

within the community.  

 The data presented here suggest that the composition of cyanobacterial 

communities varies spatially in the western basin of Lake Erie, and suggest that in some 

regions (e.g. Sandusky Bay) novel toxigenic organisms may persist. By employing a 

combination of satellite images, toxin data and qualitative and quantitative PCR data, we 

suggest a tier-wise approach that allows for a precise evaluation of the composition of 

cyanobacterial blooms within this lake. Moreover, the data presented here demonstrate 

that, at least for the August 2003 bloom, the Maumee River/Bay region appears to act as 

a potential source of Microcystis populations in this system. Ongoing studies, including 

sequence analysis of toxin genes from Microcystis isolated from different locations 

within this system will hopefully shed some light on this issue, and provide resource 

managers and researchers with information concerning regions of bloom initiation, which 

in the future could act as focus points for monitoring programs. 
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Part III 

 

DIVERSITY OF MICROCYSTIN-PRODUCING CYANOBACTERIA IN 

SPATIALLY ISOLATED REGIONS OF LAKE ERIE  

 76



 

This part is an expanded version of the manuscript published as a short form paper with 

same title in journal Applied and Environmental Microbiology in 2006 by Johanna M. 

Rinta-Kanto and Steven W. Wilhelm.  

 

Rinta-Kanto J.M. and Wilhelm, S.W. 2006. Diversity of microcystin-producing 

cyanobacteria in spatially isolated regions of Lake Erie. Applied and Environmental 

Microbiology, 72: 5083-5085. 

 

My use of “we” in this chapter refers to my co-author and myself. My primary 

contributions in this paper were 1) Collecting the environmental samples for this study, 2) 

Analyzing the samples for the study and analyzing the data 3) Gathering the background 

literature and, 4) Most of the writing of the manuscript and correspondence to the 

reviewer comments. 
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Introduction 

The North American Great Lakes contain approximately one fifth of the Earth’s potable 

water supply, making them a vital resource on a global scale.  Although it is 

volumetrically the smallest, Lake Erie is the most productive of the five Laurentian Great 

Lakes, and maintains a position of socioeconomic importance in the region (Fuller, 1995; 

Munawar et al., 2002). Since the mid-1990s, recurring blooms of Microcystis spp. have 

formed in the western basin of Lake Erie and now the annual reappearance of Microcystis 

is well documented in the literature (Brittain et al., 2000; Vanderploeg et al., 2001; 

Vincent et al., 2004; Rinta-Kanto et al., 2005). The presence of other microcystin 

producers in this system, however, has garnered less attention. Recently our group 

reported results from surveys on Microcystis abundance in the western basin of Lake Erie 

in August of 2003 and 2004 (Rinta-Kanto et al., 2005). The study also revealed in some 

locations the presence of significant quantities of cyanotoxins (1.3-2.6 µg L-1 

microcystin-LR equivalents) coinciding with high densities of cyanobacteria (up to 0.8 -

1.0×108 cells L-1), but a relatively low abundance of toxic Microcystis. Microscopic 

observations of water samples collected in 2004 from Sandusky Bay (Station 1163) 

revealed the presence of a high abundance of Planktothrix aghardii, which are well-

known microcystin producing cyanobacteria (Christiansen et al., 2003), as such 

suggesting that the microcystin-producing cyanobacterial community may not be entirely 

composed of Microcystis spp.   

The hepatotoxic microcystins are the largest and most diverse group of 

cyanotoxins produced by cyanobacteria commonly belonging to genera Microcystis, 

Planktothrix, Anabaena (Sivonen and Jones, 1999; Kaebernick and Neilan, 2001). 

Microcystin-producing strains have also been identified in the genera Nostoc and 

Anabaenopsis (Sivonen and Jones, 1999). Microcystins are produced in the cells non-

ribosomally via a peptide synthetase complex and there are over 60 chemical forms of 

microcystins of varying toxicities (Kaebernick and Neilan, 2001), with new information 

on different congeners appearing regularly. The mcy gene cluster encoding the 

 78



 

components of the microcystin synthetase and the biosynthetic pathway for microcystin 

biosynthesis have been characterized in Microcystis, Planktothrix and Anabaena (Tillett 

et al., 2000; Christiansen et al., 2003; Rouhiainen et al., 2004). The phenotypes of the 

toxin producing and non-toxin producing cyanobacteria are similar, thus the microcystin 

biosynthesis genes are commonly used as targets for molecular probes for the selective 

detection of potentially toxin-producing cyanobacterial genotypes in water samples (e.g. 

(Ouellette and Wilhelm, 2003; Dittmann and Börner, 2005).  

The goal of the current study was to build on the previous observations and use 

molecular techniques to study the diversity of the microcystin-producing community in 

locations where the highest microcystin-LR concentrations in 2003 and 2004 were 

observed.  Specifically, we wanted to determine whether Planktothrix aghardii, observed 

microscopically in 2004, could potentially produce microcystin in the western basin of 

the lake. The microcystin-producing cyanobacterial community was characterized by 

amplifying a region encoding the condensation domain from the mcyA genes carried by 

the microcystin-producing genotypes of Anabaena, Planktothrix and Microcystis, using a 

previously published primer set (Hisbergues et al., 2003). The mcyA gene is one of the 

genes encoding microcystin synthetase found in potentially toxic genotypes of 

microcystin-producing cyanobacteria. The sequences of mcyA gene amplicons obtained 

from natural samples were cloned and sequenced and the sequences were used to study 

the identities and phylogeny of microcystin-producers in the natural community.  

Materials and Methods 

Sample collection  

Samples were collected from the western basin of Lake Erie in 2003 and 2004 onboard 

C.C.G.S Limnos (Figure 1. for sampling locations). Water samples were collected at 1 

meter depth using a pump deployed over the board of the ship. Water was collected into 

clean plastic bottles. Chlorophyll a and toxin (microcystin-LR) equivalents were 

determined as previously described (Rinta-Kanto et al., 2005). 
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Figure 1. Map of station locations and corresponding station codes in the western basin of 
Lake Erie 
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Construction of the mcyA clonal library 

Cells for DNA extraction were collected by filtering a known volume of lake water 

through 47 mm diameter, 0.22- µm nominal pore-size polycarbonate membrane filter 

(Millipore). DNA was extracted from cells collected on filters as described previously 

(Rinta-Kanto et al., 2005).  The primer pair mcyA-Cd 1R and mcyA-Cd 1F (Hisbergues et 

al., 2003) was used to amplify 291-297 bp mcyA gene fragments from natural samples.  

Reactions were carried out in EasyStart tubes (Molecular BioProducts, San Diego, CA, 

USA) in a final volume of 50 µL containing 0.4 µM of each primer, 300 ng µL-1 bovine 

serum albumin (Sigma cat # A-7030; (Kirchman et al., 2001)), 2.5 U Taq polymerase 

(Promega), 0.1 % Triton X-100 (Molecular BioProducts), 2 mM MgCl2, 0.2 mM dNTP 

mix, 1 × PCR buffer and 5 µL of undiluted or ten-fold diluted DNA extracted from 

natural samples. Thermal cycling was completed using an Eppendorf Mastercycler 

gradient-thermocycler using the following protocol: initial denaturation at 95ºC for 10 

min, 40 cycles of 94ºC for 30 s, 53ºC for 30 s, 72ºC for 30 s, and a final extension step at 

72ºC for 5 min. The PCR-amplified mcyA fragments were purified by running 10 µL of 

each PCR product along with 100 bp DNA ladder (Promega, Madison, WI, USA) on a 2 

% agarose gel in 1 × Tris-borate-EDTA buffer (Sambrook and Russell, 2001). The 

presence of the correct size band was confirmed by ethidium bromide staining and 

visualizing the gel under UV transillumination. The mcyA DNA of the correct size was 

excised from the agarose gel and the DNA from the bands extracted using a QIAquick 

Gel Extraction Kit (QIAGEN, Valencia, CA, USA). Clone libraries were generated using 

a TOPO TA Cloning kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s 

instructions. Cloned inserts of the correct size were verified by EcoRI digestion 

(Promega, Madison, WI, USA). Thirty eight clones were picked from each sample for 

sequencing. Plasmid DNA was isolated and high throughput sequencing of the mcyA 

gene inserts was completed at the Clemson University Genomics Institute, using the M13 

forward primer site within the cloning vector as the sequencing start point (Invitrogen, 

Carlsbad, CA, USA). 
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mcyA sequences from pure culture of Microcystis aeruginosa LE-3 

M. aeruginosa LE-3 (a Lake Erie isolate) was grown in modified BG11 medium (Kerry 

et al., 1988) at +25°C under continuous illumination at ca 80 μmol of photons m-2 s-1. 

The cells were grown in a batch culture for 3 weeks, then pelleted by centrifuging and the 

genomic DNA was extracted using the xanthogenate method (Tillett and Neilan, 2000) as 

described in Ouellette et al. (Ouellette et al., 2006). The mcyA gene fragments from the 

extracted DNA samples were PCR amplified and cloned as described above. Sequencing 

of this fragment was completed at the Molecular Biology Resource Facility at the 

University of Tennessee. 

Sequence analysis 

Vector and primer sequences were removed from the DNA sequences and all sequences 

were manually checked and edited as required prior to the analysis using the Bio Edit 

software program (Hall, 1999). The mcyA sequences from natural samples were 

examined both at the nucleotide level and at the amino acid level. Individual DNA 

sequences from natural samples were queried against the GenBank database using 

BLAST and BLASTX searches (Altschul et al., 1997) in order to find highly similar 

DNA and amino acid sequences from the data base originating from cultured isolates of 

microcystin-producing cyanobacteria. Prior to phylogenetic analysis, all nucleotide 

sequences were translated into amino acid sequences. Identical McyA sequences were 

removed from the data set leaving only representative unique sequences in the data set. 

These remaining amino acid sequences were then aligned using Clustal W-software with 

McyA amino acid sequences retrieved from GenBank (Thompson et al., 1994). 

Phylogenetic reconstruction was performed using the Mega 3.0 software package (Kumar 

et al., 2004). Phylogenetic relationships between the translated sequences were inferred 

through a neighbor-joining analysis using a Poisson correction distance. Bootstrap values 

were determined using 2000 iterations. Dendograms were also created using the UPGMA 

and minimum evolution approaches which yielded comparable tree topologies (not 

shown). 
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Detection of potentially toxic Planktothrix in water samples 

To confirm the presence of potentially toxic Planktothrix in the water samples analyzed 

in this study, the primer pair mcyE.fw and mcyE.rev (Mbedi et al., 2005) was used to 

amplify a 589 bp Planktothrix-specific fragment of the mcyE gene. PCR amplifications 

were carried out in EasyStart tubes (Molecular BioProducts, San Diego, CA, USA) in 

final volume of 50 µL containing 0.4 µM of each primer, 2.5 U Taq polymerase 

(Promega, Madison, WI, USA), 0.1 % Triton X-100 (Molecular BioProducts), 2 mM 

MgCl2, 0.2 mM dNTP mix, 1 × PCR buffer and 5 µL of undiluted or ten-fold diluted 

DNA extracted from natural samples. Thermal cycling was carried out using an 

Eppendorf Mastercycler gradient-thermocycler and the thermal cycling protocol was 

modified from the protocol specified by Mbedi et al. (Mbedi et al., 2005) consisting of an 

initial denaturation step at 95ºC for 10 min, 40 cycles of 95ºC for 10 s, 50ºC for 10 s, 

72ºC for 30 s, and final extension step at 72ºC for 10 min. PCR purification and 

visualization of the 589 bp mcyE fragments was performed as described above.  

GenBank accession numbers for all mcyA and mcyE DNA sequences reported 

here are DQ379674-DQ379711. 

Results 

Sampling locations are indicated in the map in Figure 1. Table 1 shows a summary of 

sampling dates, the percentage which potentially toxic Microcystis represents of the 

entire cyanobacterial cell abundance at each station and the outcome of Planktothrix 

specific PCR.  

Overall, the results from BLAST and BLASTX searches confirmed that all inserts 

in the clones sequenced originated from the mcyA gene of the microcystin synthetase 

complex. Sequences from station 1163 (Sandusky Bay) in 2003 and 2004 were identical 
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Table 1. Sampling stations and sampling dates, estimated % of potentially toxic Microcystis of the abundance of total 
cyanobacteria (cells L-1) and +/- indicating the presence or absence of toxic Planktothrix at the sampling locations based on 
detection of Planktothrix specific mcyE fragment by PCR.  

Station Date 
Chl a  

(µg L-1) 

MC-LR  

(µg L-1) 

% of toxic Microcystis of 

all cyanobacteria 

Planktothrix specific 

mcyE detected  

1163  Aug. 15, 2003 25.1 1.3 0.03 + 

WLE1 Aug. 15, 2003* 40.0 15.4 4.7 - 

1163 Aug. 19, 2004* 20.1 2.46 (± .02) 0.1 + 

974 Aug. 19, 2004* 7.8 0.99 (±.01) 0.4 - 

882 Aug. 20, 2004* 8.3 0.04 4.5 - 

 

 

 

 
* Toxin and chlorophyll data for marked stations from Rinta-Kanto et al., 2005 
 
 
 



 

to sequences from Planktothrix aghardii isolates (99-100 % identity at the nucleotide 

level; and 100% identity and at the amino acid level). Secondly, the mcyA sequences 

from western basin stations WLE1, 882 and 974 were most similar with sequences from 

Microcystis isolates: 93-100 % identity at the nucleotide level, 93-100 % identity at the 

amino acid level.  

Phylogenetic analysis was conducted among the McyA amino acid sequences (76-

78 residues in length) translated from natural samples and McyA sequences of other 

microcystin producing cyanobacterial genera (Planktothrix aghardii, Microcystis spp., 

Anabaena spp. and Nostoc spp.) deposited in the GenBank data base. A translated McyA 

sequence of M. aeruginosa isolate LE-3 was also included in the analysis. The grouping 

of the different sequences in the neighbor-joining tree confirmed that 100% of the McyA 

sequences from station 1163 were located in the same clade with Planktothrix aghardii 

isolates, whereas 100% of the McyA sequences from stations WLE1, 882 and 974 were 

located in the same clade with Microcystis isolates (Figure 2). The sequences within the 

Microcystis-clade were remarkably diverse. Most of these sequences (including the 

McyA sequences from cultured isolates of Microcystis) contained a two amino acid 

residue deletion compared to the Planktothrix-like McyA sequences. However, a subset 

of the Microcystis-like sequences (20 sequences from station 974 and one sequence from 

station WLE1) did not have this deletion. Despite lacking the two amino acid deletion, 

these sequences were still most similar to Microcystis sequences (93-97% identity at the 

nucleotide level; 96-93% identity at the amino acid level). Despite the high % identity, 

the sequences containing the extra amino acids had no exact match in the GenBank data 

base at the time the searches were done (January 2005). The McyA sequence alignment 

revealed that the two residue insertion in the Microcystin-like sequences occurred at the 

same position where the two extra amino acids are located in Planktothrix sequences 

(Figure 3).  
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Figure 2. A neighbor-joining tree displaying the relationship between partial McyA 
sequences (76-78 amino acids). The coding system for the clones as follows:  LE03-
1163: Lake Erie, year 2003, station 1163; LE03-WLEI: Lake Erie, year 2003, station 
WLEI; LE04-1163: Lake Erie, year 2004, station 1163; LE04-974: Lake Erie, year 2004, 
station 974; LE04-882: Lake Erie, year 2004, station 882. The numbers in parentheses 
after the codes for the clones indicate the number of identical sequences represented by 
these sequences. Accession numbers are in parentheses after the names for reference 
sequences obtained from GenBank. Bootstrap values > 50% (for 2000 iterations) are 
displayed at the branch nodes. The scale bar represents substitutions per site. 
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Figure 3. Multiple alignment of McyA amino acid sequences. Aligned sequences include McyA sequences of cultured isolates of 
Microcystis aeruginosa LE-3 (translated from the mcyA gene sequence DQ379709), Microcystis aeruginosa PCC7806 
(AAF00960.1), Planktothrix aghardii NIVA-CYA34 (CAD56463.1), Anabaena flos-aquae NIVA-CYA83 (CAD56455.1) and 
Nostoc sp. 152 (CAD 5663.1) with novel Microcystis-like McyA sequences from natural samples that contain two extra amino 
acids unlike Microcystis-sequences from cultured isolates. GenBank accession numbers are in parentheses after the name of the 
cultured isolate. 

                                                 10        20        30        40        50        60        70             
                                       ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|... 
Microcystis aeruginosa LE-3  1  LNNQRDIVTGLVSNGRLEAADGEKILGLFLNTLPLRLELSGGSWSDLVKQAFDVERECLSWRRYPLAELQK--SGQPL 76 
Microcystis aeruginosa PCC7806     1  ..........................................P............................--..... 76 
LE04-974-C02                     1  .......I............G..................................................TFA.... 78 
LE04-974-B09                     1  Q.................V....................................................TFA.... 78 
LE04-974-B11                     1  ...R..............V....................................................TFA.... 78 
LE04-974-E05                     1  ............P.....V....................................................TFA.... 78 
LE04-974-C05                     1  ..................V...............Q....................................TFA.... 78 
LE04-974-C12                     1  ..................V....................................................TFA.... 78 
LE03-WLE1-D02                    1  .......................................................................IFA.... 78 
Planktothrix agardhii NIVA-CYA34   1  ....T.VL..........ET...RV............Q.T..T.L...R.V.AT..DS.A...........RLG.... 78 
Anabaena flos-aquae NIVA-CYA83     1  .T..T..I..........DT....V............K.L....I...R.T..A.....P.......K..RTFG.... 78 
Nostoc sp. 152                      1  .T..T..L..........DT...RV............K.L..T.I...R.T..I..K..HL.........RTFG.... 78 

 

 

 

 



 

Discussion 

The application of molecular techniques to questions of cyanotoxin production is 

critical as it allows for a precise identification of the potentially toxigenic organism 

within a bloom event. On a larger scale it also provides principal insight into the global 

distribution of toxic cyanobacteria, and may ultimately lead to the development of a 

biogeographical model for bloom initiating populations. In the context of the current 

study, we have examined a conserved genetic element to determine which organism(s) 

within a population may be responsible for the production of the hepatotoxic 

microcystins. This approach has been useful in identifying the apparent toxin producers 

in spatially separated regions of the same lake.  Moreover, the analysis of sequence data 

has identified a genetic fragment not associated with any currently known toxin 

producers, suggesting that still other potential toxin producers may exist. We couch these 

observations within the framework of developing a better understanding of the key 

factors that regulate cyanobacterial blooms in Lake Erie as well as other freshwater 

environments.  

Microcystis, Planktothrix and Anabaena are the most common microcystin-

producing cyanobacteria, and their potentially toxic genotypes can not only be detected 

but also identified based on unique sequences within the mcyA amplicons (Hisbergues et 

al., 2003).  Phylogenetic analysis of McyA sequences from our natural samples along 

with sequences from cultured isolates shows that the sequences retrieved from the natural 

samples fall into two distinct clusters. All McyA sequences from station 1163 were most 

similar to Planktothrix agardhii sequences, whereas sequences from the other stations 

were most similar to Microcystis. No Planktothrix-like McyA sequences were found 

outside station 1163, and Microcystis-like sequences were found at all sampling location 

except station 1163. Based on the sequence analysis data, the populations of Planktothrix 

and Microcystis are clearly separated spatially. This, however, does not seem to be the 

case in the lake based on the analysis of lake water samples through other PCR-based 

methods. In our previous study (Rinta-Kanto et al., 2005), the abundance of potentially 
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toxic Microcystis determined by real-time PCR at station 1163 was 3.4 (±0.6) ×104 cells 

L-1 in August of 2003 (J.M. Rinta-Kanto, unpublished data) and 6.8 (±4.5) ×104 cells L-1 

in August of 2004 (Rinta-Kanto et al., 2005). At those times cyanobacterial abundance 

was 1.2 (±0.3) ×108 and 7.9 (±0.2) ×107 cells L-1, respectively (J.M. Rinta-Kanto, 

unpublished data and (Rinta-Kanto et al., 2005)). Thus, it is likely that Planktothrix mcyA 

fragments were preferentially amplified from the samples collected from station 1163 due 

to low relative abundance of potentially toxic Microcystis. This idea is corroborated by 

high abundance (2.3 × 108 cells L-1) of Planktothrix aghardii in August 2004 determined 

through microscopic counts (Renhui Li, unpublished data). In fact, the abundance of P. 

aghardii exceeds the total abundance of cyanobacteria in August 2004 determined 

through real-time PCR using Microcystis aeruginosa LE-3 genomic DNA as a 

quantification standard for cell abundance (Rinta-Kanto et al., 2005). While this is an 

indication of high relative abundance of Planktothrix in the cyanobacterial population 

potentially causing preferential amplification of Planktothrix mcyA fragments, this 

discrepancy also highlights the problems that still exist when quantifying by real-time 

PCR cyanobacterial cells with variable genomic content in mixed populations. Moreover, 

PCR analysis confirmed that potentially toxic Planktothrix spp. were not present at the 

time of sampling in the other sampling sites. These findings also emphasize the 

importance of parallel analyses when using molecular probes to study mixed natural 

populations to better understand the complexity of the system. 

Phylogenetic analysis indicated that the Microcystis-like mcyA sequences were 

more diverse than the Planktothrix-like sequences, as indicated by the number of unique 

sequences in the phylogenetic tree (Figure 2). Consistently with the observations from a 

previous study (Hisbergues et al., 2003), the majority of translated Microcystis-like mcyA 

gene sequences from natural samples contained a two residue deletion when aligned with 

Planktothrix sequences. In our data set, novel Microcystis-like sequences lacking the 

characteristic deletion were discovered. The effect of the additional two residues on 

microcystin-production in the host strains is unknown. We consider it unlikely that these 

additional residues in the Microcystis-like sequences are PCR artifacts, since 21 of our 

Microcystin-like sequences from natural samples contained the two residue insertion at 
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the same location as the Planktothrix-like sequences. This observation suggests that the 

Lake Erie toxigenic cyanobacterial populations (potentially Microcystis) contain 

uncultured diversity.  

The conditions that support the Microcystis and Planktothrix populations in Lake 

Erie are not yet known and future research will be directed to elucidating these factors in 

more detail.  Planktothrix spp. are known to thrive in low light environments, commonly 

outcompeting other cyanobacteria that have high light requirements (Wiedner et al., 

2002), and the abundance of Oscillatoriales (including Planktothrix) has been shown to 

be significantly correlated with Secchi depth (measuring water clarity) (Scheffer et al., 

1997). In Lake Erie Secchi depths < 1m are commonly observed in Sandusky Bay (the 

area of station 1163 on the map in Figure 1), whereas elsewhere in the western basin 

Secchi depths of > 1 m are common (SW Wilhelm, unpublished data). Thus, the light 

conditions in Sandusky Bay may be more favorable to Planktothrix spp. than to 

Microcystis spp. Filter feeding activity of Dreissenids may not specifically contribute to 

the local dominance of Planktothrix, since the mussels have not been shown to 

discriminate between filamentous or unicellular cyanobacteria as their food source (Pires 

et al., 2005). Overall, the conditions that support the dominance of toxigenic Micorocystis 

and Planktothrix populations in these two distinct locations have to be taken into account 

in the bloom management strategies. 

The data presented here reveal a new aspect of the diversity of microcystin-

producing cyanobacteria in Lake Erie. Although the results of this study do not give 

information about the toxin production at the time of sampling by the different 

cyanobacterial genera, the findings indicate that microcystin production during 

cyanobacterial blooms in the western basin of Lake Erie may not be solely carried out by 

Microcystis spp., as previously thought. Based on the observations from this study we can 

conclude that Planktothrix is a potential cyanotoxin producer in parts of the western 

basin.   
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MICROCYSTIN-PRODUCTION IN LAKE ERIE: INSIGHTS FROM 

ARCHIVED PELAGIC AND SEDIMENT SAMPLES 
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This part is a version of a manuscript with same title prepared to be submitted in journal 

Environmental Microbiology by Johanna M. Rinta-Kanto, Matthew A. Saxton, Jennifer 

M. DeBruyn, Christopher H. Marvin, Kenneth A. Krieger, and Steven W. Wilhelm. 

 

My use of “we” in this chapter refers to my co-authors and myself. My primary 

contributions in this paper were 1) Collecting part of the environmental samples for this 

study, 2) Formulating the hypothesis 3) Gathering the raw data from different sources and 

analyzing the data 4) Gathering the background literature and, 5) Most of the writing of 

the manuscript. 
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 Introduction 

It is now well known that cyanobacterial blooms induced by eutrophication were 

a significant threat to the water quality of Lake Erie in the 1970s. Management efforts, 

focusing on radical reductions in external phosphorus loading to the lake, resulted in 

temporary mitigation of the problem until the mid 1990’s (Makarewicz, 1993; Munawar 

et al., 2002; Conroy et al., 2005). After reaching a minimum in the early 1990s, the 

summer-season cyanobacterial biomass in Lake Erie again began showing an increasing 

trend, despite no significant increase in the external phosphorus loading (Conroy et al., 

2005). Previously published data sets suggest that the most common cyanobacteria in the 

1970s were Aphanizomenon flos-aquae and Anabaena spp. (Makarewicz, 1993). These 

data sets also indicate the presence of Microcystis among other members of the 

Cyanophyta in the phytoplankton assemblages of Lake Erie during 1970s (eastern basin) 

and from the mid to late 1980s (western basin), although there is no evidence of 

Microcystis bloom events at those times (Hopkins and Lea, 1982; Makarewicz, 1993). 

The first documented toxic Microcystis bloom event did not occur in the western basin of 

the lake until 1995 (Brittain et al., 2000). Since then, however, Microcystis has become a 

well documented phenomenon, with significant blooms (producing up to 15 µg L-1 of the 

toxin microcystin) occurring in several years (Vincent et al., 2004; Conroy et al., 2005; 

Rinta-Kanto et al., 2005; Ouellette et al., 2006). Lake Erie also supports a large 

community of single cell picoplankton (e.g. Synechococcus) (Ouellette et al., 2006). 

These non-toxic cyanobacteria are usually disregarded in studies of cyanobacterial 

blooms because they tend to focus on the toxin producing species. 

The seasonal appearance of Microcystis has induced public health concerns due to 

Lake Erie’s important role in recreation, fisheries and municipal drinking water supply in 

the densely populated area surrounding this Great Lake (Fuller, 1995). Cyanobacteria 

belonging to the genus Microcystis are non- nitrogen fixing unicellular cyanobacteria, 

which are capable of producing a range of chemical variants of microcystin (Carmichael, 

1996). Microcystins are potent hepatotoxins, which have been reported to induce 
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gastrointestinal symptoms, potentially promote liver tumors and can even cause death due 

to liver failure upon ingestion of toxin (Pouria et al., 1998; Falconer, 2005).  

Recent studies in Lake Erie have attempted to develop a better understanding of 

why Microcystis spp. are now thriving in the lake. The seasonal distribution and 

abundance of Microcystis (Rinta-Kanto et al., 2005; Ouellette et al., 2006; Rinta-Kanto 

and Wilhelm, 2006) and potential effects of the activities of dreissenid mussels 

(Dreissena polymorpha, Dreissena bugensis) on nutrient balance and Microcystis spp. 

abundance have been investigated (Raikow et al., 2004; Conroy and Culver, 2005). While 

a number of studies conducted in the past decade have focused on investigating the 

present situation, less attention has been drawn to the historical record of Microcystis in 

Lake Erie and the potential internal reservoirs of Microcystis in the lake, such as within 

sediments. In other freshwater systems sediments have been suggested to play an integral 

role in the annual cycle of Microcystis (Preston et al., 1980).  

The first goal of this study was to examine present day (2004) sediments to assess 

the relative abundance of cyanobacteria within the sediment microbial assemblage as 

well as to determine the genetic diversity and viability of the sediment-based Microcystis 

populations. The second goal was to characterize the microcystin producing 

cyanobacteria in archived pelagic phytoplankton samples and archived surface sediments 

which were collected from Lake Erie in 1970s and then to compare their diversity to 

microcystin-producers currently found in Lake Erie. The diversity of microcystin-

producing cyanobacterial populations was studied using a mcyA gene fragment which has 

been useful in characterizing the phylogenetics of the microcystin producers in this 

system (Rinta-Kanto and Wilhelm, 2006). This gene has been shown to be conserved on 

the genus level in microcystin-producing cyanobacteria, allowing identification of 

microcystin-producers belonging to different genera based on the polymorphisms in the 

DNA sequence of this gene (Hisbergues et al., 2003).     
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Materials and Methods 

Sample collection 

Box cores were obtained from three locations on Lake Erie in July of 2004 onboard 

C.C.G.S. Limnos (Figure 1). A series of sub-cores were obtained from each box core  

using clean, graduated acrylic coring tubes (2.5 cm diameter). Cores were sectioned 

every two centimeters between the top of the sediment and 10 cm depth. The sections 

were stored in sterile plastic bags at -20°C until they could be processed in the laboratory. 

Surface water samples (1 m) were collected from the same locations where box cores 

were obtained using a submersible pump, and cells for DNA extraction were collected by 

filtering a known volume of lake water through 47-mm diameter, 0.22- µm nominal pore-

size polycarbonate membrane filters (Millipore). The filtration apparatus was rinsed 

between the samples using a 10 % NaClO solution and distilled water to prevent the 

carryover of residual biomass between samples.  

Archived samples of Lake Erie sediments were retrieved from controlled storage 

at the National Water Research Institute (Burlington, ON) where they have been 

maintained since their initial collection.  In 1971 these sediments were collected as 

described previously (Frank et al., 1977) (see locations on the map), using a Shipek grab 

sampler and with subsampling of the top 3 cm of the sediment. After previous 

examinations, residual samples were freeze dried and stored under refrigeration. 

Phytoplankton samples collected from Lake Erie in 1978 and in 1979 were taken 

from locations indicated on the map (Figure 1). The 1978 samples were collected by a 

vertical tow of a 243 μm-mesh, 0.5-m diameter plankton net from near the bottom to the 

surface. The 1979 samples were collected in a similar manner but with a 64 μm-mesh, 

0.5-m diameter plankton net. These phytoplankton samples were preserved with formalin 

and stored at Heidelberg College (Tiffin, OH) until they were made available for this 

study. 
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Figure 1. Map of sampling locations in Lake Erie. Squares: 2004 sediment cores. 
Triangles: 1971 sediment cores. Circles: 1978 and 1979 plankton net tow samples. 
Stations mentioned in the text by their respective codes are labeled in the map. 
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Culturing cell material from sediments 

To collect sediment samples for culture work, a box core was obtained from Lake Erie 

from station 357 (see map on Figure 1) in August of 2006. Sub-cores were obtained from 

the box core using clean graduated acrylic coring tubes (2.5 cm diameter), which were 

sectioned into 0-5 cm and 5-10 cm fractions. Each section was placed in a sterile 1 L 

volumetric flask, which was covered with aluminum foil, except the top 5 cm of the neck. 

The volumetric flask was filled to the top with lake water filtered through a 0.2-μm 

nominal pore–size polycarbonate filter (Millipore). The bottles were capped with a sterile 

glass stopper and sealed with parafilm and maintained at room temperature in ambient 

light. After 8 weeks of incubation, green cellular material which had risen to the surface 

of the liquid in the bottles was collected with a sterile transfer pipette into a 

microcentrifuge tube, and centrifuged in a microcentifuge for 20 min at 10,000 × g. The 

resulting pellet was subjected to molecular analysis. Residual material in the culture 

vessels was also maintained for microscopic examination and in lab culture isolation 

(e.g., Figure 2). 

DNA extraction 

DNA from sediments collected in 2004 was extracted using FastDNA SPIN Kit for Soil 

(Qbiogene, Carlsbad, CA). For each depth, two parallel extractions were completed 

(denoted as Set 1 and Set 2). For each extraction, 0.5 g (wet weight) of sediment was 

used. DNA from 1971 sediment samples was extracted using UltraClean Soil DNA Kit 

(Mo Bio Laboratories, Carlsbad, CA, USA) using 1.0 g of freeze dried material for each 

extraction. To dilute substances potentially inhibiting PCR amplification, one hundred 

and one thousand-fold dilutions of DNA extracts were used as templates for PCR 

reactions.  

DNA from lake water samples was extracted from cells collected on filters using 

a method described in (Rinta-Kanto et al., 2005). DNA for quantitative real time PCR 

(qPCR) standards was extracted from Microcystis aeruginosa LE-3 (Brittain et al., 2000)  
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Figure 2. Light microscopy images of material cultured from Lake Erie sediment samples 
collected in 2006. Colonies with morphological characteristics consistent with 
Microcystis spp. were observed both in isolation (A.) and integrated amongst other 
cellular materials (B.). 
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grown in modified BG-11 medium, and the standards were prepared as previously 

described (Rinta-Kanto et al., 2005). 

DNA from archived plankton samples was extracted from 1 mL aliquots of the 

1978/9 formalin preserved plankton samples using a modification of the method 

described by Fiallo et al. (1992). Samples were centrifuged at 14,000 rpm for 5 min and 

the supernatant discarded. Samples were resuspended in one milliliter of Hank’s Buffered 

Saline Solution (HBSS) and placed on a rocking platform for 30 min. After this, 

centrifugation was repeated and the supernatant was removed prior to a repeat of this 

washing step. After the final centrifugation and removal of the supernatant, the cells were 

resuspended in 100 μL of sterile Milli-Q (Millipore) water. The cells were lysed by 

subjecting the samples to a freeze thaw cycle (10 min at -80°C, 1 min at +65°C) three 

times and a final heating at 95°C for 10 min. Two microliters of undiluted or ten-fold 

diluted lysate was used as a template for PCR.  

Cells within the material collected from sediment culture bottles were lysed using 

MicroLysis reagent (The Gel Company) according to the manufacturer’s instructions. 

Two microliters of the undiluted and ten-fold diluted cell lysis suspension was used as a 

template for PCR. 

PCR 

The presence of cyanobacteria, all known Microcystis cell-types (toxic or non-toxic) and 

toxic Microcystis (defined by the presence of genes in the toxin biosynthetic pathway) in 

water and sediment samples were determined by multiplex PCR. The reactions were 

carried out using four primer sets (CYA, MICR, mcyB and mcyD) as described in detail 

previously (Ouellette and Wilhelm, 2003; Rinta-Kanto et al., 2005).   

For phylogenetic studies, the primer pair mcyA-Cd 1R and mcyA-Cd 1F 

(Hisbergues et al., 2003) was used to amplify 291-297 bp fragments of the mcyA gene 

from one sediment sample collected in 2004 (station 357), from six sediment samples 

collected in 1971 and from four formalin-preserved samples collected in 1978-79. PCR 

reactions were carried out in EasyStart tubes (Molecular BioProducts, San Diego, CA, 

USA) in a final volume of 50 µL containing 0.4 µM of each primer, 300 ng µL-1 bovine 
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serum albumin (Sigma cat # A-7030) (Kirchman et al., 2001), 2.5 U Taq polymerase 

(Promega), 0.1 % Triton X-100 (Molecular BioProducts), 2 mM MgCl2, 0.2 mM dNTP 

mix, 1 × PCR buffer and 2 µL of undiluted or ten-fold diluted DNA extracted from 

natural samples. Thermal cycling was completed using an Eppendorf Mastercycler 

gradient-thermocycler using the following protocol: initial denaturation at 95º C for 10 

min, 40 cycles of 94º C for 30 s, 59º C for 30 s, 72º C for 30 s, and a final extension step 

at 72º C for 5 min. The PCR-amplified mcyA fragments were purified by running 10 µL 

of each PCR product along with 100 bp DNA ladder (Promega, Madison, WI, USA) on a 

2 % agarose gel in 1 × Tris-borate-EDTA buffer (Sambrook and Russell, 2001). The 

presence of the correct-size amplicon was confirmed by ethidium bromide staining and 

visualizing the gel under UV transillumination. 

Construction of the mcyA clonal library and sequencing of mcyA fragments 

The mcyA DNA bands were excised from the agarose gel and the DNA from the bands 

extracted using a QIAquick Gel Extraction Kit (QIAGEN, Valencia, CA, USA). Clone 

libraries were generated using a TOPO-TA Cloning kit (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions. Cloned inserts of the correct size were verified 

by EcoRI digestion (Promega, Madison, WI, USA).  

For the mcyA clone library from 2004 sediment samples, 19 clones from each 

depth (except 20 clones from 6-8 cm depth) were picked for sequencing. Plasmid DNA 

extraction and high throughput sequencing of the mcyA gene inserts was completed at the 

Clemson University Genomics Institute, using the M13 forward primer site within the 

cloning vector as the sequencing start point (Invitrogen, Carlsbad, CA, USA). 

The mcyA gene fragments from extracted DNA from the 1971 sediment samples 

and formalin-preserved phytoplankton samples were PCR amplified and cloned as 

described above. Plasmid DNA was extracted using Wizard Minipreps-kit (Promega). 

Two mcyA inserts were sequenced from each sediment sample and six inserts from net 

tow samples at the Molecular Biology Resource Facility at the University of Tennessee.  

All sequences from this study have been deposited in GenBank and are listed under 

accession numbers EF178215 - EF178270. 
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Sequence analysis  

Vector and primer sequences were removed from the mcyA DNA sequences and all 

sequences were manually checked and edited as required prior to the analysis using the 

Bio Edit software program (Hall, 1999). The mcyA sequences from natural samples were 

examined both at the nucleotide level and at the amino acid level. Individual DNA 

sequences from natural samples were queried against the GenBank database using 

BLASTN and BLASTX searches (Altschul et al., 1997) to find similar amino acid 

sequences from the data base originating from other microcystin-producing 

cyanobacteria. Prior to phylogenetic analysis, all nucleotide sequences were translated 

into amino acid sequences. Identical McyA sequences were removed leaving only unique 

representative sequences in the data set. Clustal W-software (Thompson et al., 1994) was 

used to align these remaining amino acid sequences with sequences retrieved from 

GenBank. Phylogenetic reconstruction was performed using the Mega 3.1 software 

package (Kumar et al., 2004). Phylogenetic relationships between the translated 

sequences were inferred through a neighbor-joining analysis using a Poisson correction 

distance. Bootstrap values were determined using 2000 iterations.  

qPCR 

Eubacterial 16S rDNA copies, Cyanobacterial 16S rDNA copies, Microcystis specific 

16S rDNA copies and mcyD gene copies in environmental samples were quantified using 

qPCR. The abundance of cells carrying these target genes was also determined through 

qPCR using a genomic DNA standard. The primers, probes, protocols and standards for 

cyanobacteria used in this study have been described in detail in Rinta-Kanto et al. 

(2005). Eubacterial 16S copies in the 2004 sediment samples were quantified as 

described (Dionisi et al., 2004). 
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Results 

Multiplex PCR 

Cyanobacterial 16S fragments were amplified from all three water samples collected in 

2004 sediment core collection sites, whereas Microcystis specific 16S, mcyB and mcyD 

specific fragments were not amplified from any of these samples. Subsequent sampling in 

August of that year (data not shown, Rinta-Kanto et al. 2005) did reveal PCR positives at 

these stations for all products. 

PCR products were generated with all four primer sets (Cyanobacterial 16S, 

Microcystis 16S, mcyB and mcyD) from cell material collected from  0-5 cm sediment 

(2006) sample incubation indicating that potentially toxic Microcystis had been released 

from the sediments and risen to the surface during incubation (Figure 2). Subsequent 

examination of samples from this material demonstrated cells that were morphologically 

consistent with Microcystis spp. (Figure 2). Cell material collected from the surface of 

the liquid in the bottle containing sediment from 5-10 cm depth yielded PCR products 

with cyanobacterial 16S primers and Microcystis 16S primers (Figure 3).  

qPCR  

Across all depths sampled in the 2004 sediments, eubacterial 16S rDNA copy abundance 

ranged from 9.4 × 109 to 6.3 × 108 copies and cyanobacterial 16S rDNA abundance 

ranged from 6.2 × 107 to 9.5 × 104 copies per gram wet weight of sediment (Figure 4). 

Cyanobacterial 16S rDNA copies formed 0.04 – 1.14 % of total eubacterial 16S rDNA 

copy abundance.  

The profiles of cell abundance (reported as Microcystis aeruginosa LE-3 cell 

equivalents) of Cyanobacteria, Microcystis and toxic Microcystis in the 2004 core 

samples are presented in Figure 5. In samples from station 357, all cell types were 

detected at all depths. The cell abundances declined with increasing depth of the sediment 

and toxic Microcystis levels fell below the detection limit (approximately < 200 cells per 

gram of sediment in this analysis) below 8 cm (in set 1) and between 6-8 cm (in set 2). In  
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Figure 3. PCR products amplified from biomass that grew in sediment sample 
incubations. PCR products were amplified with primer sets specific to cyanobacterial 16S 
rDNA (gel A), Microcystis microcystin synthetase genes mcyB, mcyD and Microcystis 
16S rDNA (gel B). Lanes (numbering and descriptions are identical for gels A and B) : 1. 
100 bp molecular weight ladder;  2. biomass from 0-5 cm sediment; 3. biomass from 5-10 
cm sediment; 4. positive control (Microcystis aeruginosa LE-3 genomic DNA used as a 
template); 5. negative control, no template DNA added. 
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Figure 4. Vertical profiles of eubacterial 16S rDNA copy abundance and cyanobacterial 
16S rDNA abundance in 2004 sediment core samples expressed as 16S copies per gram 
wet weight of sediment. Cyanobacterial 16S copies were determined from two DNA 
samples (Set 1 and Set 2) extracted from a single sample. Eubacterial 16S copies were 
determined from one of the DNA samples (Set 2). Error bars represent standard deviation 
among replicate assays (n=3). 
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Figure 5. Vertical profiles of the abundance of three cell types in 2004 sediment samples. 
Cell equivalents were quantified from duplicate DNA samples (labeled as (1) and (2) 
after the station code) extracted from each sediment sample. Cell abundance is expressed 
as Microcystis aeruginosa LE-3 cell equivalents. Black circles: cyanobacteria, open 
circles: Microcystis (total abundance), black triangles: toxic Microcystis. Dotted line 
represents the detection limit of the qPCR assay (200 cell equivalents per gram of 
sediment wet weight). Samples containing < 200 cell equivalents per gram of sediment 
wet weight were given a default value of 50 in order to make these data points visible in 
the graph. The error bars represent standard deviation among replicate assays (n=3). 
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the core sample from station 974, toxic Microcystis abundance was quantifiable (> 200 

cells per gram of sediment wet weight) only at 2-4 cm depth of the sediment. No toxic 

Microcystis was detected in the 10-12 cm deep samples.  

The relative abundance of Microcystis of total cyanobacteria based on 16S rDNA 

copies was highest in the sediment core from station 340. At 6-8 cm depth (set 1) and at 

4-6 cm depth (set 2) the abundance of total Microcystis appears to exceed the abundance 

of Cyanobacteria. 

Clone library and sequencing results 

We obtained a total of 89 mcyA sequences from the 2004 sediment sample. The mcyA 

sequences from the top of the sediment to the depth of 10 cm were 92 – 100 % identical 

among themselves. Compared to nucleotide and amino acid sequences of cultured 

isolates deposited in GenBank the sequences from 2004 sediments were 92 – 100 % 

identical to Microcystis-sequences at the nucleotide level and over 92 % at the amino acid 

level, with identities between 69 – 81 % (nucleotide) for Nostoc, Anabaena and 

Planktothrix.  

All mcyA sequences amplified from the 1971 sediment samples were 96 – 100 % 

identical with Microcystis mcyA nucleotide sequences and 94 – 100 % identical with 

Microcystis McyA amino acid sequences. Identities with other common microcystin 

producers (Anabaena spp., Planktothrix aghardii, Nostoc sp.) ranged from 69 – 76 % at 

nucleotide level. Three mcyA amplicons out of six that were sequenced from the 1978-

1979 net tow samples had unique sequences and they showed 86 – 99 % (nucleotide and 

amino acid) identity to Microcystis mcyA. 

Phylogenetic analysis 

We performed a Neighbor-Joining analysis of the unique McyA sequences 

generated in this study to assess the phylogenetic relationship between these sequences 

and other published sequences. The resulting phylogenetic tree is presented in Figure 6. 

As references we retrieved McyA sequences of isolates of Anabaena spp., Nostoc sp.,  
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Figure 6. A Neighbor-Joining tree of McyA sequences translated from mcyA sequences 
from natural samples. The tree is based on 2000 iterations. Bootstrap values >50 % are 
presented in as black circles in the corresponding nodes of the tree. Light blue triangles: 
formalin-preserved samples. Red triangles: 1971 sediment samples. Blue squares:  2004 
sediment, 0-2 cm depth; yellow squares: 2004 sediment, 2-4 cm depth; green squares: 
2004 sediment, 4-6 cm depth; pink squares: 2004 sediment 6-8 cm depth; brown squares: 
2004 sediment, 8-10 cm depth. Numbers in parenthesis on the right side of the colored 
symbols indicate the number of identical sequences found in the same sample. The scale 
bar indicates substitutions per site. 
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Planktothrix aghardii, Microcystis spp. from GenBank data base. In addition we included 

McyA sequences from the Lake Erie water column generated in our previous study 

(Rinta-Kanto and Wilhelm, 2006) (GenBank accession numbers of these sequences are 

included in the phylogenetic tree). All McyA sequences from natural samples clustered 

together with Microcystis sequences in the neighbor joining tree as expected based on the 

% identity of the McyA sequences. Despite relatively high identity to Microcystis McyA 

sequences, the sequences from natural samples showed diversity among themselves 

which can be seen in the shallow branching of the phylogenetic tree in the Microcystis 

cluster.  

Moreover we amplified unusual Microcystis-like mcyA sequences containing six 

extra nucleotides (which translate to two amino acids) from the DNA extracted from the 

1971 and 2004 sediments. These sequences are 95 – 99 % identical (at the amino acid 

level) to unique sequences originating from DNA samples amplified from water samples 

collected elsewhere in the lake in 2004 (Rinta-Kanto and Wilhelm, 2006).  

Discussion 

The development of an understanding of the factors driving the reoccurrence of 

Microcystis blooms as well as the factors which control the diversity of cyanobacterial 

populations within Lake Erie ultimately relies on defining the source inocula for the 

pelagic cyanobacterial population within each season. Ouellette et al. (2006) 

demonstrated that Microcystis was well distributed throughout the surface waters of Lake 

Erie during summer months and that it was present in the water column even during non-

bloom conditions. In the current study we have addressed the potential role of sediments 

as a reservoir for these populations. Moreover, we have also examined two sets of 

historical samples from the 1970s (archived sediments and formalin preserved net tow 

samples) to determine whether the current day population of microcystin producers has 

been present in the lake during the large blooms in the 1970s. 

Using the eubacterial and cyanobacterial 16S rDNA copy abundance as a proxy 

for the abundance of cells from these populations, we can conclude that cyanobacteria 
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form only a fraction of the total bacterial population within Lake Erie sediments. This is 

not surprising in that it is doubtful that cyanobacteria could maintain high growth rates in 

this environment (as they are phototrophs), while hetertrophic bacteria would no doubt 

proliferate. The results presented here indicate however, that cyanobacteria, including 

toxic and non-toxic Microcystis spp. can be found as deep as 12 cm in the sediment. This 

is in concordance with studies from other freshwater bodies where Microcystis 

communities have been shown to exhibit pelagic-benthic oscillation as a part of their life 

cycle (Takamura et al., 1984). Preston et al. (1980) demonstrated using 15N-labeled 

Microcystis that the populations over-wintering in the sediment can serve as inocula for 

succeeding pelagic populations. We are unable to estimate the time period which our 10 

cm sediment core represents because sediment deposition rates in Western Lake Erie are 

extremely difficult to determine due to frequent sediment resuspension events in these 

shallow waters. The dormant, over-wintering colonies on the sediment surface may also 

be transported deeper in the sediments due to sediment resuspension and bioturbation, 

such as burrowing activities of invertebrates (Takamura et al., 1984; Ståhl-Delbanco and 

Hansson, 2002). Recruitment of Microcystis from sediments is thought to be induced by 

environmental stimuli  (such as altered light levels, temperature, nutrient levels, oxygen 

availability), bioturbation due to activities of invertebrates burrowing into the sediments 

(Ståhl-Delbanco and Hansson, 2002), or through passive sediment resuspension or 

sediment resuspension facilitated by wind driven mixing (Schelske et al., 1995; 

Verspagen et al., 2004). At the time of sampling in 2004 no Microcystis were detected by 

PCR in the epilimnion of the lake at the sampling sites where the sediment cores were 

collected. Our finding could indicate that at the time of sampling in 2004 Microcystis in 

Lake Erie sediments had not yet been resuspended in the water column (at least not in 

detectable quantities), or that we failed to capture pelagic Microcystis at the time due to 

our sampling design. Regardless, we now know that it is possible for cells from the 

sediments in Lake Erie’s western basin to grow pelagically if introduced into the water 

column. The culture experiment demonstrated that the Microcystis in the Lake Erie 

surface sediments are able to float to the surface, suggesting that at least a fraction of 

Microcystis residing in the sediment is viable and able to regain their buoyancy.  This 
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further supports the hypothesis that the sediments can act as a dynamic reservoir of 

Microcystis in Lake Erie.  

Given this information, as well as to gain some insight into the composition of the 

microcystin-producing community three decades ago, we analyzed surface sediments 

from samples collected in 1971. The amplification of Microcystis-like mcyA sequences 

from sediment and pelagic samples collected from around the lake in the 1970s clearly 

demonstrates that toxic cyanobacteria were present more than thirty years ago when these 

samples were taken. The presence of Microcystis-like sequences in the top 10-12 cm of 

the sediment also in 2004 provides a perspective on the diversity of microcystin-

producers in Lake Erie, suggesting that a similar community of toxic Microcystis spp. has 

been the dominant microcystin producer in the lake for decades. This finding is in some 

contrast to reports suggesting that Anabaena spp. were the dominant cyanobacteria in 

Lake Erie in 1970s (Makarewicz, 1993). Anabaena strains are capable of producing a 

range of cyanotoxins, including microcystin (Carmichael, 2001). The mcyA primer set 

utilized in this study has been demonstrated to amplify mcyA fragments from 

microcystin-producing Anabaena spp. (Hisbergues et al., 2003). Therefore it is somewhat 

surprising we found no Anabaena-like mcyA sequences in our clone libraries, however it 

is also possible that the Anabaena strains present in Lake Erie in the 1970s were not 

producing microcystin, in which case we would not have been able to detect these 

cyanobacteria with the methods employed in this study. It is also possible that we did not 

detect the presence of other microcystin producers in 1970s samples due to low number 

of clones analyzed (two clones were sequenced from each 1970s sediment sample and 

two clones were sequenced from each 1970s formalin sample).  

The phylogenetic analysis shows that although the natural assemblage of 

Microcystis-like McyA sequences is diverse, bearing from 1 to 10 mostly randomly 

distributed amino acid differences among themselves, there are also distinctive 

similarities among these samples even though they were collected three decades apart. In 

the previous study we discovered unique Microcystis-like mcyA sequences with six extra 

nucleotides (corresponding to two amino acids) in samples collected from the western 

basin of Lake Erie (Rinta-Kanto and Wilhelm, 2006). Microcystis-like mcyA sequences 
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containing the same 6 extra bases in an identical position in the sequence were also found 

in this study from the 2004 and 1971 sediments indicating the persistence of these unique 

sequences in Lake Erie. Even though the sequences with 6 extra bases (or two extra 

amino acids) are over 90 % similar to Microcystis sequences, based on the sequence 

information available in public databases, we can not tell if they truly belong to 

Microcystis spp. or whether they originate from a still unknown microcystin producer, as 

examinations of cultured representatives have not yet yielded similar sequences.  

Although this study provides insight into the composition of the cyanobacterial 

community in the lake, it is not a comprehensive inventory of the past and present 

microcystin-producing community in the lake, since we did not include samples from 

embayments, which may generate suitable habitats for other Microcystin-producers 

(Rinta-Kanto and Wilhelm, 2006) as well as other toxic cyanobacteria. The relatively 

high similarity of the sequences found in the sediment and net tow samples analyzed here 

strongly suggests that the Microcystis community in the lake is persistent on the temporal 

scale of decades and as such is relatively stable. Because sediments of the lake may serve 

as a sink and a source of Microcystis in the water column, our observations suggest that 

management plans must address the persistence and stability of these populations.  
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Introduction 

The occurrence of Microcystis in the lower Great Lakes of North America, especially in 

Lake Erie, has been observed annually over the past decade (Brittain et al., 2000; Vincent 

et al., 2004; Rinta-Kanto et al., 2005). In the 1960s cyanobacterial blooms were common 

in the severely eutrophied Lake Erie. Radical reductions in external phosphorus loading 

since 1970s were implemented to reduce the cyanobacterial biomass and to diminish the 

extent and duration of the anoxia in the central basin of the lake (Makarewicz and 

Bertram, 1991). By late 1980s water quality had improved substantially, and algal 

biomass had decreased up to 89 % in off-shore waters (Makarewicz, 1993). The 

increased frequency of cyanobacterial blooms since the mid-1990s has been considered 

as a sign of eutrophic conditions returning to the lake (Conroy et al., 2005).  And 

although several theories have been put forth as to how changes in lake biology and 

geochemistry may influence the community structure of phytoplankton (Arnott and 

Vanni, 1996; Vanderploeg et al., 2001), the reasons for the seasonal proliferation of 

Microcystis in Lake Erie are unresolved. 

In natural assemblages non-nitrogen fixing Microcystis cells exist in colonies 

consisting of single cells held together by a mucilaginous matrix which can float on the 

water surface with the help of intracellular gas vesicles (Komarek, 2003). The toxin-

producing (toxic) genotypes of Microcystis carry a 55 kb microcystin synthetase (mcy) 

gene cluster required for production of the toxin microcystin, whereas non-toxic 

genotypes lack this gene cluster and the ability to produce the toxin (Kaebernick and 

Neilan, 2001). Microcystins are a chemically diverse group of cyanotoxins which in 

humans have been known to have caused gastroenteritis, liver damage and, in the most 

severe case, the death of 60 hemodialysis patients in Brazil in 1996 (Pouria et al., 1998; 

Kuiper-Goodman et al., 1999; Sivonen and Jones, 1999). Some evidence of tumor-

promoting activity of microcystins also exists (Falconer, 1991; Dietrich and Hoeger, 

2005).  
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Due to growing concerns regarding potentially toxic Microcystis blooms, several 

studies have addressed the factors which influence the proliferation and toxin production 

of Microcystis, including examinations of the relationships between limnological factors 

and the abundance of Microcystis in natural assemblages (Wicks and Thiel, 1990; Kotak 

et al., 2000; Oh et al., 2001; Graham et al., 2004; Giani et al., 2005). In complex aquatic 

systems the conditions that allow development of Microcystis blooms and induce toxin 

production are usually the sum of a variety of factors. Studies of Microcystis in natural 

populations have suggested some of the key factors affecting cell proliferation and toxin 

production including increased phosphorus loading, the stoichiometric ratio of nitrogen 

and phosphorus, solar radiation, pH and temperature of the water, primary production and 

oxygen saturation (Wicks and Thiel, 1990; Kotak et al., 2000). Relying on traditional 

methods for cell quantification, these studies have always addressed the total Microcystis 

population, which in natural assemblages is known to consist of phenotypically identical 

toxic and non-toxic genotypes (Vezie et al., 1998; Kurmayer and Kutzenberger, 2003). 

As such there is currently no information on the factors which may specifically affect the 

abundance of toxic genotypes of Microcystis in natural environments and how these 

environmental factors influence toxin production. This lack of quantitative information 

on specific genotypes has been partially caused by methodological constraints. To 

specifically address the toxin-producing Microcystis, quantitative molecular methods 

must be employed. Quantitative real-time PCR has been successfully applied in studies of 

the abundance of toxic and non-toxic genotypes of Microcystis and other cyanobacteria 

cultures and in natural samples (Kurmayer et al., 2003; Kurmayer and Kutzenberger, 

2003; Vaitomaa et al., 2003; Rinta-Kanto et al., 2005).  

The present study is the first one to combine the use of quantitative PCR (qPCR) 

to quantify cyanobacteria, total Microcystis and toxic genotypes of Microcystis and to 

relate this data to environmental variables through correlation analysis across spatial and 

temporal scales. To accomplish this we have collected cell abundance data and 

environmental data during the summer seasons of 2003, 2004 and 2005. The first goal of 

this study was to determine the proportion of the natural Microcystis population which is 

potentially toxic (in this case as demonstrated by the presence of a gene in the 
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microcystin biosynthetic pathway). The second goal was to elucidate how environmental 

parameters influence the proliferation of toxic Microcystis relative to the total 

Microcystis and cyanobacterial communities. With an over-arching hypothesis that toxin 

production is linked to cell proliferation, our approach in this study may ultimately shed 

light on the (as of yet) unknown role of the toxin in Microcystis biochemistry and 

ecology. 

Materials and Methods 

Sample collection 

Samples used to generate data for this study were collected from Lake Erie on board the 

C.C.G.S. Limnos and, additionally in August 2003, on board the R/V Lake Guardian and 

a research support craft from Lake Erie Center (Toledo, OH) as previously described 

(Rinta-Kanto et al., 2005). Samples from 1 m depth were collected using a surface water 

pump (on board C.C.G.S. Limnos) or Niskin bottles (R/V Lake Guardian). Samples from 

deeper than 1 m were collected using Niskin bottles mounted on a rosette sampler. 

Temperature was determined using the deckboard profiler on the C.C.G.S. Limnos. Water 

column pH was collected on deck of the ship after sample collection using a standard lab 

probe (Fisher Scientific). 

Natural water samples for DNA extraction were collected by filtering known 

volumes of lake water on 0.22-μm nominal pore-size polycarbonate filters (Poretics). 

Filter funnels were rinsed with 10 % sodium hypochlorite solution and distilled water 

between samples to reduce the potential for cell carryover between samples. Filters were 

stored frozen (-20 °C) until DNA extraction. DNA extraction was carried out as described 

previously (Rinta-Kanto et al., 2005).  

qPCR assay 

The abundance of all cyanobacteria, all Microcystis and toxic Microcystis were 

independently determined using  the qPCR assays described in detail in Rinta-Kanto et al. 

(2005). To standardize target gene quantities and cell quantities in samples, both single 
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copy insert plasmids as well as whole cell genomic standards were used to establish a 

standard curve as described in the previous study. In this study all cell densities in natural 

samples are reported as Microcystis aeruginosa LE-3 equivalents. Target gene quantities 

are not reported here because they are not equivalent to the abundance of the cells that 

carry these genes. To elucidate the relationship between target gene copies in cells of 

Microcystis aeruginosa LE-3, we quantified the abundance of cyanobacterial 16S copies 

and mcyD genes in genomic DNA extracted from a known quantity of Microcystis 

aeruginosa LE-3 cells. The DNA from M. aeruginosa LE-3 was prepared as described in  

Rinta-Kanto et al. (2005) and the qPCR analyses were completed as described in the 

previous study. 

Pigment analyses 

Water column chlorophyll-a concentrations were used as a proxy for phytoplankton 

biomass. Size-fractionated chlorophyll a was estimated in duplicate samples of lake water 

filtered on 0.2-µm, 2.0-µm and 20-µm nominal pore-size polycarbonate filters (47-mm 

diameter, Millipore) after extraction (ca. 24 h, 4 °C) in 90 % acetone. Chlorophyll-a 

retained on the filters was quantified with either an AU-10 or TD-700 fluorometer 

(Turner Designs; Sunnyvale, CA) using the non-acidification protocol (Welschmeyer, 

1994). 

Discrete water samples (1 L) were collected at 1 m depth and filtered onto 47-mm 

Whatman 934-AH glass fiber filters for phycocyanin determinations. Phycocyanin 

concentrations were estimated fluorometrically using a modification of the method of 

Abalde et. al. (1998) and Siegelman and Kycia (1978). Phycocyanin was extracted from 

these filters by freezing the samples at -21°C and thawing at 4°C three times in 10 mM 

phosphate buffer (pH 6.8) under dim light. The extract was clarified by centrifugation at 

22,000 x g for 15 minutes and the phycocyanin concentration in the supernatant 

determined by fluorescence using a Turner Designs 10-AU fluorometer equipped with a 

577 nm band pass excitation filter and 660 nm cutoff emission filter with a cool white 

light source. 
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Microcystin quantification  

Microcystin in water samples was determined with protein phosphatase inhibition assays. 

Samples were collected on GF/F (Whatman) filters. The assays were run in 96-well plates 

containing 0.1 mU enzyme (recombinant protein phosphatase 1A, catalytic subunit, 

Roche Applied Science), 1.05 mg para-nitrophenyl phosphate (Sigma) and 10 µl of 

sample or microcystin-LR (Sigma Biochemical) using the method of Carmichael and An 

(1999). The rate of phosphate hydrolysis was calculated from the change in absorbance at 

405 nm over 1 h, and then compared to the control (no added microcystin-LR) and to 

standards containing between 6 and 40 µg L-1 microcystin-LR. Blanks (no enzyme, no 

toxin), unknowns, standards, and controls were all run in duplicate. 

Nutrients 

Total phosphorus (TP) (filtered and unfiltered), surface reactive phosphorus (SRP), total 

nitrogen (TN) (filtered and unfiltered), NO3, NH3 and SiO2 were determined from lake 

water samples in 2004 and in 2005 as described in DeBruyn et al. (2004). Nutrient 

concentrations in the filtered fraction refer to the dissolved nutrients passing through 

0.22-µm nominal pore-size filter, whereas the unfiltered concentrations were measured 

directly from the lake water. 

Environmental variables used for statistical analysis 

The abundance of cyanobacteria, total Microcystis and toxic Microcystis cells for each 

sampling location was the arithmetic mean of triplicate PCR reactions run for each 

sample. Total chlorophyll a concentration (chlorophyll a retained on a 0.2-μm nominal 

pore-size filter), and size fractionated chlorophyll concentrations (size classes 0.2 – 2 μm, 

2 – 2 μm, and >20 μm) were calculated the as arithmetic mean of single measurements 

from duplicate samples; microcystin-LR concentration was an arithmetic mean of 

duplicate measurements from single samples; and phycocyanin concentration, pH, TN 

(dissolved and dissolved + particulate), NO3, NH3, SiO2, SRP, TP (dissolved and 

dissolved + particulate) were results from single measurements. Molar TN:TP ratio was 

calculated using the molar concentrations of dissolved TN and TP. 
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Statistical analysis 

Since assumptions of normality were not met in all variables, the nonparametric 

Spearman Rank Correlation coefficient was calculated as a measure of correlation 

between all possible pairs of variables. Analysis was completed using the NCSS 

statistical analysis software package. Correlations warranting P < 0.05 were considered 

significant in this analysis.  

Results  

The stations which were occupied in Lake Erie during the 2003 – 2005 sampling are 

indicated on the map (Figure 1). Environmental data collected from the stations are 

summarized in Table 1 and 2 (All tables in appendix at the end of part). Cell abundances 

quantified in samples collected from different locations in western basin in the summer 

seasons of 2003-2005 are presented in Figure 2 and discussed further below.  

The relationship between the abundance of target genes and cells 

Linear regressions between Microcystis aeruginosa LE-3 cells and the abundance of 

cyanobacterial 16S copies and mcyD genes are presented in Figure 3a and 3b. The results 

suggest that one cell carries as many as 90 16S rRNA genes and 35 mcyD genes. Based 

on this data in can be inferred that there are up to three 16S rRNA copies per genome, 

while a cell may carry 35 copies of its genome.     

Community composition 

The cell abundance data presented in Figure 2 was used to determine the relative 

abundances of total Microcystis and toxic Microcystis as well as the relative abundance 

of toxic genotypes within the Microcystis population (Table 3). The relative abundance of 

Microcystis in the cyanobacterial population shows seasonal variability between months 

and years. Of the three years studied here, the relative abundance of total Microcystis was 

lowest through the sampling season in 2005. The relative abundance of toxic Microcystis 

did not exceed 8 % of the total cyanobacterial abundance in any of the western basin  
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Figure 1. Sampling locations 2003-2005. 
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Figure 2. Cell abundances on western basin sampling locations in 2003-2005. Station 
numbers are organized according to their codes for each month. An asterisk indicates that 
same station was visited twice at separate times during one month. Error bars represent 
standard deviation among replicate assays (n=3). 
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Figure 3. Linear regression between target gene copy abundance and Microcystis 
aeruginosa LE-3 cell equivalents. Graph A: Target gene cyanobacterial 16S rRNA gene. 
Graph B: target gene mcyD. Cell equivalents correspond to a quantity of DNA that was 
extracted from a known quantity of Microcystis aeruginosa LE-3 cells. 
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samples. Toxic Microcystis showed the greatest relative abundance in the total 

cyanobacterial population and in the total Microcystis population in August of each 

sampling year.  

Abundance of Cyanobacteria, total Microcystis and toxic Microcystis 

The Spearman Rank Correlation coefficient (rs), number of samples (n) and probability 

values (P) for each correlation are presented in Table 4 (entire lake data set) and 5 

(western basin data set).  

In the entire lake data set the total abundance of cyanobacteria showed significant 

positive correlation with total Microcystis as well as toxic Microcystis cell abundance. 

Also, phycocyanin concentration was positively correlated with the abundances of total 

cyanobacteria and total Microcystis. Surface temperature and the temperature at sampling 

depth (temperatures at surface and other depths) showed a positive correlation with the 

abundance of total cyanobacteria, while the abundance of toxic Microcystis correlated 

positively with just surface temperature. Total cyanobacteria and total Microcystis cell 

abundance were negatively correlated with NO3, NH3, TN and TN:TP ratio. Toxic 

Microcystis cell abundance yielded a significant negative correlation with NO3. TN 

showed a negative correlation with the relative abundance of toxic genotypes in the 

Microcystis population (rs = 0.6326, n = 36, P = 0.0309). TP (dissolved and dissolved + 

particulate fractions) showed a significant positive correlation with cyanobacteria and 

total Microcystis cell abundance, while SRP was positively correlated (P < 0.05) only 

with total abundance of cyanobacteria. The relative abundance of total Microcystis in the 

cyanobacterial population showed a significant positive correlation with dissolved TP (rs 

= 0.3118, n = 52, P = 0.0244), whereas the relationship was not significantly correlated 

with the relative abundance of toxic Microcystis (rs = 0.0952, n = 39, P = 0.5645). 

In the western basin data set the total abundance of cyanobacteria showed 

significant positive correlation to total Microcystis as well as toxic Microcystis cell 

abundance. Phytopigments, chlorophyll-a and phycocyanin correlated with the cell 

abundance of cyanobacteria and total Microcystis. Surface temperature was significantly 

correlated only to total cyanobacterial abundance. SiO2 concentration yielded a 
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significant positive correlation with total cyanobacterial abundance. In the entire lake 

dataset and in the western basin data set, no correlation was seen between pH and cell 

abundance. 

Relationship of microcystin with environmental variables 

The rs, n and P values for each correlation are presented in Table 6. In the entire lake data 

set microcystin-LR concentration (reported as microcystin-LR equivalents) yielded a 

significant positive correlation with the cell abundance of cyanobacteria, total 

Microcystis and toxic Microcystis. A significant positive correlation was also found 

between microcystin concentration and the relative abundance of Microcystis (rs = 

0.4233, n = 69, P = 0.0003) and toxic Microcystis (rs=0.3378, n=58, P=0.0095) in the 

cyanobacterial population. Chlorophyll a concentrations in > 0.2 μm, 2.0 – 20 μm and > 

20 μm size classes were positively correlated (P < 0.0001) with microcystin. Of nutrients, 

SiO2, SRP and TP showed significant positive correlation with toxin, whereas the TN:TP 

ratio yielded a significant negative correlation. 

In the western basin microcystin concentration yielded a positive correlation with 

the abundance of total Microcystis. Microcystin also yielded significant positive 

correlation with the relative abundance of total Microcystis (rs = 0.6960, n = 35, P < 

0.0001) and toxic Microcystis (rs = 0.5907, n = 29, P = 0.0007) in the cyanobacterial 

population. Total chlorophyll-a concentration (> 0.2 μm size class) and phycocyanin 

yielded significant positive correlations with toxin. Microcystin concentrations were 

positively correlated with TP (P < 0.05), while the TN:TP ratio yielded a significant 

negative correlation. 

Discussion 

Lake Erie is geographically divided into three basins: eastern, central and western. The 

western basin of the lake is the shallowest of the three basins and due to the vicinity of 

urban centers such as Detroit and Toledo it is highly influenced by human activities 

(Makarewicz and Bertram, 1991). Although toxic Microcystis is now known to have 
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spread throughout the lake, the largest occurrences of Microcystis blooms in the past 

decade have been within the western basin (Brittain et al., 2000; Rinta-Kanto et al., 2005; 

Ouellette et al., 2006). As such, we have analyzed the data covering the entire lake but 

also separately for the western basin so that any anomalies may become apparent. 

Toxic Microcystis genotypes form less than 10 % of the total cyanobacteria in the 

western basin of Lake Erie and generally coexist with non-toxic genotypes in the 

Microcystis populations. In a previous study the proportion of toxic genotypes of the total 

Microcystis population was estimated to be 1.7 – 71% (Kurmayer and Kutzenberger, 

2003) from colonies collected from Lake Wannsee (Germany). Most of our estimates fall 

within this range, which seems reasonable considering that the analysis was carried out 

independently, using different target genes and in a different location. It should be noted 

that in our data set some data points yielded relative abundances for Microcystis > 100 % 

of the total cyanobacterial abundance. This likely results from using the 16S rRNA gene 

as a target gene for quantification of both cyanobacteria and Microcystis and the variable 

copy number of 16S rRNA operons in cells in natural populations. The 16S rRNA operon 

copy number in cyanobacteria is commonly more than one due to rRNA operon 

multiplicity (Acinas et al., 2004) and polyploidy. For example, Synechococcus and 

Synechocystis strains can carry 6-10 identical copies of their genomes (Castenholz et al., 

1992). In the case of Microcystis aeruginosa, estimates based on the results of this study 

suggest that there are three copies of the 16S rDNA gene per genome, but as many as 35 

genomes per cell. As such it is anticipated that some variation in the results will occur 

due to this variance in genetic composition.  

In the entire lake data set, the cell abundances of all three cell types correlated 

among themselves as well as with microcystin concentration, but in the western basin 

only total Microcystis abundance correlated with microcystin. In the western basin the 

maximum cyanobacterial abundance did not coincide with maximum microcystin 

concentration, which can at least partly be explained by the presence of a multitude of 

other cyanobacteria in the western basin of Lake Erie in the summer months (Wilhelm, 

unpublished data). Secondly, although the abundance of toxic Microcystis was strongly 

correlated to the abundance of cyanobacteria and total Microcystis, the abundance of 
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toxic genotypes of Microcystis did not correlate with microcystin concentration in the 

western basin. The reason for this may be that conditions ideal for cell growth alone are 

not enough to trigger toxin production. Our data from the natural population does not 

directly agree with previous culture based studies, which  have suggested a link between 

cell cycle and toxin production, suggesting maximal toxin production takes place at 

periods of maximal growth (Orr and Jones, 1998; Lee et al., 2000). Indeed, the complete 

lack of understanding of the role of microcystin in cell physiology leaves us unable to 

hypothesize about how such mechanisms may even function. The potential presence of 

other microcystin-producing cyanobacteria (e.g. Planktothrix sp., Anabaena sp.) may also 

be reflected in the weak positive correlation between microcystin and the cell abundance 

of toxic Microcystis. As well, the lack of strong correlation may be also affected by the 

rather small sample size (n=29) used in the correlation analysis for the western basin data 

set. 

In the whole lake data set, the water temperature was strongly correlated with 

total cyanobacterial abundance and the abundance of toxic Microcystis, although the 

water temperature showed no correlation with microcystin concentration. Temperature 

has been shown to have a positive effect on both growth rates and cell toxicity in culture-

based studies (Codd and Poon, 1988; Wicks and Thiel, 1990). Observations from natural 

populations supporting our findings suggest that temperature can affect the biomass of 

the cells but not toxin production; water temperature showed positive correlation with 

Microcystis abundance and yielded no correlation with microcystin in two previous 

studies addressing environmental factors and the abundance of Microcystis and 

concentrations of microcystin in small Canadian lakes (Kotak et al., 1995; Kotak et al., 

2000).  

Surprisingly, no correlation was seen between the pH and any of the cell types 

quantified in this study. In Lake Erie, Microcystis proliferation began to occur annually in 

1995, coincidental to a net drop in the total alkalinity of the western basin (Barbiero et 

al., 2006) and seems to annually reoccur late in the season after blooms of other 

phytoplankton would have presumably decreased dissolved CO2 concentrations. 

Cyanobacteria are generally thought to be able to thrive in an environment with low CO2 
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and high pH with help of efficient carbon concentrating mechanisms (Badger and Price, 

2003) which allow them to outcompete many eukaryotes. Positive correlation between 

pH and the biomass of total Microcystis and cellular microcystin content in natural 

populations has been suggested previously (Wicks and Thiel, 1990; Kotak et al., 2000; 

Rantala et al., 2006). Previously studies on Lake Erie have suggested that Microcystis 

proliferation may be linked to zebra mussel filter feeding (Vanderploeg et al., 2001).  

However, while we agree that this linkage may exist, we hypothesize that the 

proliferation of zebra mussels led to the decrease in water column alkalinity and thus may 

have given Microcystis a further advantage due to the presence of these carbon 

concentrating components.  As such it may be in our study that total pH is a poor proxy 

for alkalinity and that a more refined measure of this parameter is needed prior to the 

rejection of this apparent linkage.  

In the entire lake data set, the biomass of total cyanobacteria and total Microcystis 

showed a strong negative correlation with NO3, NH3 and TN. The abundance of toxic 

Microcystis showed a negative correlation only with NO3. In both data sets TN yielded a 

significant negative correlation with the relative abundance of toxic genotypes within the 

Microcystis population. Nitrogen is an essential nutrient for cyanobacteria and because 

Microcystis is not known to be able to fix dinitrogen these cyanobacteria are generally 

thought to respond to increasing N concentration with increasing biomass (Watanabe and 

Oishi, 1985; Utkilen and Gjølme, 1995; Giani et al., 2005; Rantala et al., 2006). Several 

studies have however  observed the opposite: a negative correlation was observed 

between TN and Microcystis abundance in a survey conducted in eutrophic to 

hypereutrophic lakes in Alberta, Canada (Kotak et al., 2000). To explain the negative 

correlation it was speculated that microcystin could serve as an intracellular storage form 

of N, allowing toxic cells to survive in a low N environment, however no more evidence 

has been provided to prove or disprove this hypothesis. Blomqvist et al. (1994) proposed 

that due to their low assimilation rates of nitrate, cyanobacteria are not able to compete 

with other phytoplankton in a nitrate rich environment whereas efficient uptake systems 

for ammonium allows non-nitrogen fixing cyanobacteria to outcompete other 

phytoplankton in an ammonium-rich environment. The theory was used to explain why 
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the onset of non-nitrogen fixing cyanobacteria often correlates with depletion of nitrate. 

This theory could, at least partly, explain the strong negative correlations seen between 

total- and toxic Microcystis and nitrate.  

In this study total cyanobacteria and total Microcystis biomass were also 

positively correlated with TP in the entire lake data set. Interestingly, though, in our study 

the cell abundance of toxic Microcystis was not correlated with TP, whereas microcystin 

showed a positive correlation with TP and SRP in the entire lake data set and with only 

TP in the western basin. Increasing phosphorus concentrations have been shown to elicit 

increasing toxicity in cultures of Microcystis (Watanabe and Oishi, 1985; Utkilen and 

Gjølme, 1995), but in natural populations correlation of phosphorus and microcystin 

concentrations have yielded variable results. A previous study conducted in southern 

Quebec lakes found a positive correlation between phosphorus concentration and the 

relative biomass of Microcystis among other phytoplankton species but no correlation 

was found between phosphorus and microcystin (Giani et al., 2005), whereas Kotak et al. 

(2000) found a positive correlation with phosphorus and microcystin in a study of small 

Canadian lakes. The different responses of toxic Microcystis biomass and microcystin to 

TP could indicate that phosphorus has a differential effect on cell growth and toxin 

production. 

Besides the availability of nitrogen and phosphorus, the ratio of these nutrients 

has been shown to influence the abundance of cyanobacteria in general, as well as growth 

and toxin production of Microcystis (Vezie et al., 2002; Downing et al., 2005). In general, 

low nitrogen-to phosphorus ratios have been considered to favor the development of 

cyanobacterial blooms (Smith, 1983), although the exact ratio is not always considered to 

be the best predictor for cyanobacterial dominance (Downing et al., 2001). In the present 

study the data collected from the entire lake showed a negative correlation between the 

TN:TP ratio and cell abundances of cyanobacteria and total Microcystis. In the western 

basin only the relative abundance of toxic Microcystis genotypes yielded a negative 

correlation with the TN:TP ratio. Microcystin also showed a negative correlation with 

TN:TP in both data sets analyzed. Negative correlation with TN:TP and positive 
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correlation with P (discussed above) could indicate that an increased P input in a low N 

environment may induce toxin production in the Lake Erie Microcystis population.  

One surprising result was that both the cyanobacteria and total Microcystis 

correlated positively with silica.  Silica is typically thought to be a component of (and 

potential growth limiting element for) diatoms. In this system it was a surprise to see this 

relationship within our data. Although not born out of our observations, it appears that 

silica in this case is acting as a marker of water column geochemistry, either released into 

the water column from sediments or from external sources. As such, its distribution in the 

water column may be tightly linked to external nutrient inputs in the system. 

Microcystis spp. are not the only microcystin producers in the western basin of 

Lake Erie (Rinta-Kanto and Wilhelm, 2006), which may partly explain the non-

significant correlation between toxic Microcystis cell abundance and microcystin-LR 

concentrations we have observed. Microcystin production by other microcystin producers 

(e.g., potentially toxigenic Planktothrix spp. found in Sandusky Bay) may respond 

differently to environmental conditions. Anabaena spp., Aphanizomenon spp., and a 

variety of other cyanobacteria are commonly seen in microscopic examinations of the 

water column, and in recent years many have been shown to be heterocyst bearing 

(unpublished data). As such, it is anticipated that altered TN:TP ratios would lead to very 

different cellular physiologies in these genera relative to Microcystis spp., and to 

differential growth and toxin production potentials. Moreover, these cells are implicated 

in toxin production in several locations within the Lake where microcystin concentrations 

are significant yet Microcystis cells are not detectable (see Figure 4 and discussion to 

follow).   

In this study cell abundance was estimated using a quantitative PCR-method, 

which is only capable of quantifying target gene copies within the limits of the standard 

curve established for the analysis. In our method, samples which yield less than 25 target 

gene copies in the final PCR reaction (the amount corresponds to cell abundance of 

roughly 200 cells L-1) can not be reliably quantified in the assay even though the target 

genes were detected at low levels. These samples have been excluded from the 

correlation analysis, which was based on the available quantitative data. Therefore we  
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Figure 4. The relationship between the abundance of toxic Microcystis cells and 
microcystin concentration (reported as microcystin-LR equivalents) at corresponding 
locations in Lake Erie. The box shaded with yellow indicates samples where the quantity 
of Micorcystis cells carrying the target gene (mcyD) was below quantifiable limit (BQL) 
of our assay (approximately 200 cells L-1). The box shaded with grey indicates samples in 
which Micorcystis cells carrying the target gene (mcyD) were not detected (ND). To be 
able to include these samples in this plot, these data points were given a default value of 
1.   
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have not been able to include samples in the analysis which contained very low quantities 

of Microcystis or cyanobacteria in general, causing us to lose some fine scale resolution 

in the correlations involving these variables. As well, microcystin was quantified using 

protein phosphatase inhibition assay which provides a measure of toxin activity, and as 

such is reported as microcystin-LR equivalents (the standard used for comparison). 

Different chemical variants of microcystin have been shown to have different levels of 

activity (Sivonen and Jones, 1999) and therefore the finite concentrations of the toxin 

may also vary. 

Conclusions 

In this study we have examined three summer seasons where Lake Erie Microcystis 

formed a variable proportion of the total cyanobacterial community each year. In two of 

the seasons (2003 and 2004) significant blooms occurred resulting in relatively high toxin 

concentrations (up to 15 µg L-1), while in the third season (2005) toxin concentrations 

were generally low (< 1 µg L-1).  As such this data set is unique in that it spans a possible 

range of Microcystis bloom events for Lake Erie. Based on monthly mean values, total 

Microcystis formed up to ~50 % of the cyanobacterial community whereas toxic 

Microcystis forms on the average less than 10 % of the total cyanobacterial abundance. 

Among total Microcystis, on the average up to ~60 % of the cells were toxic genotypes.  

In terms of water column chemistry, the data support previous observations in that the 

abundance of Microcystis and toxic Microcystis correlated with low N:P ratios. Water 

temperature also correlated with the abundance of toxic cells, but surprisingly not with 

toxin production, suggesting (at least in this case) a possible disconnect between cell 

proliferation and toxin production by these cells.  In our data sets toxin concentration was 

linked to nutrient concentrations (N:P ratios and phosphorus), re-emphasizing the 

decoupling between factors affecting the abundance of toxic Microcystis cells and their 

toxicity.  

This study is the first to correlate the effects of environmental factors on the 

abundance of Microcystis genotypes in Lake Erie, giving insight into differences between 

factors influencing the total Microcystin population vs. the toxic Microcystis population. 
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The outcome of this study shows clearly that responses of Microcystis in culture 

conditions can be very different from what is observed in natural systems and that 

environmental dynamics of Microcystis can not be understood by simply combining data 

from culture based studies, in spite of the difficulties of interpreting complex interactions 

in nature. In the recent years the Lake Erie ecosystem has once again entered a new 

phase, signified by the return of cyanobacterial blooms (Conroy et al., 2005). The current 

study represents an important first-step in the development of our understanding of how 

different cyanobacterial populations and specifically Microcystis in Lake Erie are 

responding to the present “state” of the Lake, which is very different from the eutrophic 

period which supported algal blooms at the end of 1960s and early 1970s.    
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Table 1. Raw data summary. n= total stations sampled. n´ = stations where results were positive. Where only one data point is 
available it is shown as the minimum only. 
 
 

Date 
 

Cyanobacteria 

(cells L-1) 

Microcystis 

(cells L-1) 

Toxic Microcystis 

(cells L-1) 

Toxin 

(μg L-1) 

Surface 

temp. 

2003       

June MIN 2.6 (±0.2) × 105 3.1 (±1.6) × 102 Not detected 3.1 16.0 

 MAX 1.1  (±0.5) × 108 -  - 19.6 

  n=4 n´=1  n´=1 n=3 

       

July MIN 1.3 (±0.0) × 105 1.3 (±0.0) × 105 2.7 (±0.4) × 103 0.007 22.5 

 MAX 7.0 (±0.8) × 108 7.0 (±0.8) × 108 6.2 (±0.1) × 106 - 23.2 

  n=4 n´=4 n´=3 n´=1 (n=2) 

       

Aug. MIN 4.8 (±1.5) × 105 1.8 (±0.5) × 103 8.8 (±1.6) × 102 0.02 24.3 

 MAX 2.4 (±0.3) × 108 1.7 (±0.6) × 108 1.1 (±0.5) × 107 14.0 25.1 

  n=17 n´=15 n´=15 n´=10 n=5 

2004       

July MIN 4.0 (±7.0) × 103 4.4 (±2.3) × 105 7.9 (±0.0) × 102 0.004 20.4 

 MAX 2.0 (±0.3) × 108 7.2 (±8.5) × 105 2.8 (±0.9) × 104 1.86 26.0 

  n=28 n´=22 n´=15 n´=6 n=21 
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Table 1 continued. 
 
 

Date 
 

Cyanobacteria 

(cells L-1) 

Microcystis 

(cells L-1) 

Toxic Microcystis 

(cells L-1) 

Toxin 

(μg L-1) 
Surface temp. 

2004       

Aug. MIN 2.3 (±0.8) × 105 1.0 (±0.2) × 103 4.6 (±0.4) × 102 1.2 20.8 

 MAX 7.0 (±0.9) × 106 2.5 (±0.8) × 106 2.8 (±0.1) × 105 21.7 22.2 

  n=14 n´=17 n´=13 n´=20 n=15 

       

Sept. MIN 1.3 (±0.7) × 106 7.0 (±2.2) × 105 3.7 (±2.1) × 104 n/a n/a 

 MAX 3.6 (±1.3) × 107 1.3 (±0.6) × 107 5.6 (±5.4) × 105,   

  n=13 n´=13 n´=13   

2005       

July MIN 8.9 (±3.4) × 102 3.6 (±3.1) × 103 4.1 (±1.3) × 103 0.003 24.8 

 MAX 6.3 (0.7) × 108 4.1 (±1.2) × 106 4.0 (±0.9) × 105 0.2 27.4 

  n=34 n´=9 n´=5 n´=20 n=12 

       

Aug. MIN 5.9 (±9.4) × 105 3.6 (±3.1) × 103 1.7 (±1.3) × 103 0.0004 23.1 

 MAX 4.0 (±0.8) × 108 1.0 (±0.3) × 107 7.7 (±1.1) × 105 0.1 27.1 

  n=55 n´=50 n´=37 n´= 38 n=38 
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Table 2. Nutrient data summary. 
 
Year, month  NO3 

(mg L-1) 

NH3 

(mg L-1) 

SiO2 

(mg L-1) 

SRP 

(mg L-1) 

TP (F) 

(mg L-1) 

TP (UF) 

(mg L-1) 

TN (F) 

(mg L-1) 

N:P 

(molar ratio) 

July 2004 MIN 0.2 0.1 0.1 0.0005 0.008 0.02 0.3 0.92 

(n = 9) MAX 2.4 0.3 0.9 0.03 2.5 2.4 2.7 134.4 

          

July 2005 MIN 0.009 0.005 0.1 0.001 0.004 0.006 0.4 19.3 

(n = 31) MAX 0.5 0.3 3.7 0.06 0.09 0.2 0.9 388.9 

          

Aug 2005 MIN 0.004 0.005 0.1 0.0007 0.005 0.01 0.02 2.78 

(n = 37 – 41) MAX 1.4 0.1 4.2 0.1 0.1 0.2 2.4 179.5 
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Table 3. Relative abundances of total Microcystis and toxic Microcystis in western basin of Lake Erie.  Results are given as 
averages of all samples collect for that time along with the range of minimum and maximum estimates. 
 

Year month % total Microcystis of 

total cyanobacteria 

% toxic Microcystis of 

total cyanobacteria 

% toxic genotypes 

of total Microcystis 

2003 June 

July 

August 

0.1 (0) 

14.6 (0) 

13.4 (0.07 – 71.4) 

 0 

2.1 (0) 

1.8 (0.03 – 4.7) 

0 

14.2 (0) 

59.5 (6.6 – ~100)  

2004 July  

August 

September 

4.3 (0.004 – 15.5) 

17.1 (0.6 – 51.7) 

49.1 (5.3 – ~100) 

0.7 (0.001 – 3.7) 

3.2 (0.1 – 7.8) 

1.7 (0.5 – 5.5) 

11.4 (2.1 – 23.7) 

18.2 (8.4 – 39.3) 

6.9 (2.1 – 15.3) 

2005 July 

August 

3.4 (0.02 – 6.5) 

3.7 (0.008 – 29.5) 

0.3 (0.003 – 0.6) 

0.6 (0.02 – 4.9) 

8.5 (3.1 – 15.6) 

22.5 (1.8 – ~100) 
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Table 4. Spearman correlation coefficients, n and P values for cell abundances in the whole lake data set. P-values < 0.05 are bolded.  
 

 Total Cyanobacteria Total Microcystis Toxic Microcystis 
 rs n P rs n P rs n P 

Total Microcystis cells L-1 0.6161 128 0.0000       
Toxic Microcystis cells L-1 0.4238 100 0.0000 0.7774 98 0.0000    
          
Total chl a μg L-1 0.5906 146 0.0000 0.4872 111 0.0000 0.4731 84 0.0000 
Phycocyanin 0.7771 46 0.0000 0.4071 33 0.0187 -0.0052 29 0.9788 
Microcystin-LR 0.3266 88 0.0019 0.4016 70 0.0006 0.3080 58 0.0187 
          
pH 0.1321 57 0.3271 -0.1519 38 0.3626 -0.2946 32 0.1017 
Surface temperature 0.3324 112 0.0003 0.1550 96 0.1315 0.2546 71 0.0321 
Temperature at sampling depth 0.3926 116 0.0000 0.0527 86 0.6297 0.1687 66 0.1757 
          
NO3 mg L-1 -0.3359 78 0.0026 -0.3835 49 0.0065 -0.3473 36 0.0380 
NH3 (dissolved) mg L-1 -0.3497 65 0.0043 -0.3261 45 0.0288 -0.2948 36 0.0809 
SIO2 (dissolved) mg L-1 0.3184 81 0.0038 0.2748 52 0.0487 0.2564 39 0.1151 
SRP (dissolved) mg L-1 0.2622 80 0.0188 0.0877 51 0.5408 0.2786 38 0.0904 
TP (dissolved) mg L-1 0.4706 81 0.0000 0.4152 52 0.0022 0.2443 39 0.1340 
TP (particulate) mg L-1 0.5706 81 0.0000 0.3766 52 0.0059 0.2407 39 0.1399 
TN (dissolved) mg L-1 -0.3143 80 0.0045 -0.2990 51 0.0330 -0.3089 38 0.0591 
N:P ratio -0.4799 80 0.0000 -0.3493 51 0.0120 -0.2159 38 0.1930 
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Table 5. Spearman correlation coefficients, n and P values for cell abundances in the western basin data set. P-values < 0.05 are bolded.   
 

 Total Cyanobacteria Total Microcystis  Toxic Microcystis  
 s n P rs n P rs n P 

Total Microcystis cells L-1 0.5138 50 0.0001       

Toxic Microcystis cells L-1 0.4200 42 0.0056 0.6757 42 0.0000    

          

Total chl a μg L-1 0.5379 45 0.0001 0.4299 38 0.0071 0.2641 31 0.1511 

Phycocyanin  0.7731 25 0.0000 0.5444 20 0.0131 0.2198 18 0.3808 

          

pH -0.2917 27 0.1398 -0.1215 22 0.5901 -0.0860 19 0.7262 

Surface temperature 0.4933 41 0.0010 0.2472 35 0.1522 0.1864 27 0.3519 

Temperature at sampling depth 0.2564 41 0.1057 0.0589 35 0.7370 0.0678 27 0.7367 

          

NO3 mg L-1 -0.3897 25 0.0542 -0.3294 20 0.1561 -0.1339 16 0.6210 

NH3 (dissolved) mg L-1 0.0397 22 0.8608 -0.2720 20 0.2460 -0.0813 17 0.7563 

SIO2 (dissolved) mg L-1 0.4036 28 0.0332 0.2866 23 0.1850 0.0000 19 1.0000 

SRP (dissolved) mg L-1 0.2655 27 0.1807 0.0017 22 0.9940 0.0870 18 0.7315 

TP (dissolved) mg L-1 0.2389 28 0.2207 0.1038 23 0.6375 0.1027 19 0.6757 

TP (particulate) mg L-1 0.2272 28 0.2450 0.1310 23 0.5514 0.0570 19 0.8166 

TN (dissolved) mg L-1 -0.2425 28 0.2138 -0.1166 23 0.5962 -0.0930 19 0.7050 

N:P ratio -0.2140 28 0.2742 0.0257 23 0.9074 -0.1491 19 0.5423 
 
 

 

 

 

 



 

Table 6. Spearman correlation coefficients, n and P values for microcystin-LR concentrations in 
the whole Lake Erie data set as well as for the western basin only.  P-values < 0.05 are bolded.  
 
 Lake Erie  Western Basin only 

 rs n P  rs n P 
Total cyanobacteria 0.3266 88 0.0019  0.1423 41 0.3749 
Total Microcystis 0.4016 70 0.0006  0.5046 35 0.0020 
Toxic Microcytis 0.3080 58 0.0187  0.3412 29 0.0701 
        
% cyanobacteria Microcystis  0.4233 69 0.0003  0.6960 35 0.0000 
% cyanobacteria toxic Microcystis 0.3378 58 0.0095  0.5907 29 0.0007 
% Microcystis toxic  0.1159 57 0.3907  0.0318 29 0.8700 
        
Temp. at sampling depth -0.0579 73 0.6266  0.0656 34 0.7125 
Surface temp. (°C) -0.0296 67 0.8119  0.0182 34 0.9187 
        
Chl a > 0.2 μm size class 0.6608 85 0.0000  0.3831 40 0.0147 
Chl a 0.2 - 2.0 μm size class 0.0212 66 0.8660  0.0328 33 0.8563 
Chl a 2.0 - 20 μm size class 0.6220 66 0.0000  0.3309 33 0.0600 
Chl a > 20 μm size class 0.6485 66 0.0000  0.3112 33 0.0779 
Phycocyanin   0.7633 45 0.0000  0.6274 25 0.0008 

pH -0.1566 46 0.2986  -
0.3086 27 0.1173 

        

NO3 (dissolved) mg L-1 -0.1778 46 0.2370  -
0.0958 25 0.6487 

NH3 (dissolved) mg L-1 -0.1548 38 0.3534  0.0856 22 0.7049 

SiO2 (dissolved) mg L-1 0.3526 49 0.0130  -
0.0079 28 0.9680 

SRP (dissolved) mg L-1 0.4241 48 0.0027  0.1915 27 0.3386 
TP (dissolved) mg L-1 0.6907 49 0.0000  0.5475 28 0.0026 
TP (part.+diss.) mg L-1 0.7505 49 0.0000  0.5929 28 0.0009 
TN (dissolved) mg L-1 -0.0725 48 0.6242  0.1202 28 0.5425 

N:P -0.6363 48 0.0000  -
0.4048 28 0.0326 
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THE EFFECT OF IRON AND PHOSPHORUS DEPLETION ON GROWTH AND 
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Introduction 

Microcystis spp. are non-nitrogen fixing freshwater cyanobacteria that can form large 

accumulations of biomass (blooms) on the surface of inland waters. These bloom forming 

populations often consist of multiple strains of Microcystis, some of which are capable of 

producing toxin microcystin (Rinta-Kanto et al., 2005). Microcystins are potent 

hepatotoxins produced by Microcystis as well as other genera of cyanobacteria including 

Anabaena and Planktothrix (Jungblut and Neilan, 2006). Currently there are over sixty 

known chemical variants of this toxin (Sivonen and Jones, 1999), with as many as 80 

possible variants thought to exist (GL Boyer, pers comm.). In Microcystis, a 55-kb 

microcystin synthetase (mcy) gene cluster in the genome makes the toxin-producing 

strains genotypically distinct from the non-toxic strains of Microcystis (Meissner et al., 

1996; Dittmann et al., 1997; Nishizawa et al., 1999; Nishizawa et al., 2000; Tillett et al., 

2000).  

The effects of environmental factors on microcystin production by Microcystis 

have been studied in field and laboratory conditions; however these studies have given 

contradictory results. Phosphorus, for example, which is generally regarded as one of the 

key factors inducing cyanobacterial proliferation in often phosphorus-limited freshwater 

systems (Guildford and Hecky, 2000), has been shown in independent studies to both 

increase and decrease toxicity of Microcystis  (Watanabe and Oishi, 1985; Lee et al., 

1994; Utkilen and Gjølme, 1995; Oh et al., 2000). Iron has also been shown to affect the 

toxicity of Microcystis both negatively and positively in culture based studies (Lukac and 

Aegerter, 1993; Utkilen and Gjølme, 1995; Lyck et al., 1996; Martin-Luna et al., 2006b).  

Despite interest in the regulation of toxicity of Microcystis, relatively little is still 

known about the influence of environmental factors on transcriptional regulation of the 

mcy gene cluster. The mcy gene cluster in Microcystis is transcribed as two polycistronic 

transcripts (mcyABC and mcyDEFGHIJ). For both transcripts, two alternate transcription 

start sites have been located between genes mcyA and mcyD, and the use of the two start 

sites has been shown to depend on ambient light intensity (Kaebernick et al., 2002). In a 
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previous study, light intensity was semi-quantitatively shown to affect the accumulation 

of mcyB transcripts: a higher quantity of mcyB mRNA transcripts accumulated in cells 

grown under high light intensities (68 μmol photons m-2 s-1) than in cells grown under 

low light (16 μmol photons m-2 s-1) (Kaebernick et al., 2000).  Currently there is no 

published literature about the effects of any other factors on transcriptional activity of 

mcy genes.  

The involvement of iron in transcriptional regulation has been recently suspected 

due to the presence of a ferric uptake regulator (Fur) protein binding site (known as Fur 

box or iron box, (Escolar et al., 1999)) within the bidirectional promoter region between 

mcyA and mcyD as well as in the promoter regions for mcyE, G, H, and J in Microcystis 

aeruginosa (Martin-Luna et al., 2006a; Martin-Luna et al., 2006b). Furthermore, it has 

been shown in vitro using gel mobility shift assays, that in the presence of ferric iron, Fur 

protein from Microcystis aeruginosa binds to Fur boxes located in promoter regions of 

microcystin synthetase genes (Martin-Luna et al., 2006b). In the same study Martin-Luna 

et al. (2006b) reported a 125% increase in microcystin-LR (relative to total protein 

content) after incubating M. aeruginosa with 50 μM 2,2’-bipyridyl for 30 minutes. 

Although these experiments suggest that Fe availability potentially affects microcystin 

production, there is no direct evidence of the effect(s) on the transcriptional activity of 

mcy genes.  

Primary productivity in Lake Erie is known to be influenced by the availability of 

phosphorus and trace metals (including Fe) to phytoplankton (Wilhelm et al., 2003; 

Twiss et al., 2005). Because these factors may also influence Microcystis proliferation 

and on its toxin production, we chose to study the effects of iron and phosphorus on the 

transcriptional regulation of the mcyD gene. In the present study our goal was to 

empirically determine the effects of decreasing the availability of iron or phosphorus on 

transcription of the mcyD gene. We hypothesized that phosphorus-limitation would affect 

the biomass of Microcystis as well as the expression of mcyD gene. Furthermore, 

assuming the Fur protein and previously described binding site play a role in mcy gene 

expression, we hypothesized mcyD mRNA transcripts would increase in Microcystis 

aeruginosa cells grown under induced Fe-deficiency.  
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Materials and Methods 

Cultures – phosphorus experiment  

To test the effect of altered phosphorus concentrations on mcyD transcription, unialgal 

Microcystis aeruginosa PCC 7806 was grown in modified BG-11 medium (Kerry et al., 

1988) in 50 mL glass tubes (Kimax). BG-11 for the decreased phosphorus cultures was 

prepared by reducing the amount of phosphorus relative to the original concentration 

within the BG-11 medium (230 µM, 100 % P). Treatment cultures were grown in 

phosphorus concentrations of 80% (184 µM P), 60% (138 µM P), 40% (94 µM P), 20% 

(46 µM P), 10% (23 µM P) and 1% (2.3 µM P) of the original phosphorus concentration. 

BG11 medium was also prepared containing 23 and 2.3 µM organic phosphorus; in these 

media the original inorganic phosphorus source (K2HPO4·3H2O) was omitted and 

replaced with an organic phosphorus source (glycerol 2-phosphate disodium salt 

hydrate). Triplicate cultures were grown in each phosphorus concentration. Prior to use, 

all culture tubes and media bottles had been soaked in 1% HCl and multiply rinsed with 

Milli-Q water. 

Cells for DNA and RNA extractions were harvested from cultures at t=136 h by 

filtering approximately 10 mL (exact volume was recorded for each replicate) onto 25 

mm diameter, 0.2-μm nominal pore-size polycarbonate filters (Poretics). Filters were 

placed in sterile 2 mL microcentrifuge tubes and stored frozen at -80°C until processed. 

Cultures – Fe chelator addition 

Unialgal Microcystis aeruginosa PCC 7806 were grown in BG11 medium (Kerry et al., 

1988) in 40 mL polycarbonate Oakridge tubes. Cultures (27 mL total volume) were 

inoculated with 2 mL M. aeruginosa PCC 7806 late exponential phase stock culture, and 

triplicate cultures were amended with fungal siderophore desferrioxamine B (DFB) 

(Sigma) (Wells, 1999) to final concentrations of 50 nM and 100 nM DFB. A triplicate set 

of unamended cultures was maintained as controls. To reduce external Fe contamination, 

nutrient stocks and water used to prepare the medium were treated with Chelex-100 resin 

(Price et al., 1989). All culture vessels and media bottles were soaked in 1% HCl and 
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rinsed with Chelex-100 treated Milli-Q water before use. All culture manipulations were 

performed in class-100 clean room conditions to maintain aseptic conditions and to avoid 

trace metal contamination. Culture medium was prepared in sterile 1 L polycarbonate 

flasks, and sterilized by bringing the liquid to boil three times in a microwave oven 

(Keller et al., 1988) The liquid was allowed to cool down back to room temperature 

between the heating steps.  

Cells were harvested from cultures at t = 96 h by centrifugation at 10,000 × g for 

20 min. The culture medium was removed from the tubes and the cells were resuspended 

in 500 μL sterile culture medium. The cell suspension was divided in half by volume and 

the aliquots were transferred into sterile microcentrifuge tubes. These samples were 

centrifuged as above, the supernatant was removed and cells were stored frozen at -80°C 

until processed. 

All Cultures 

Biomass accumulation in all cultures was measured as in vivo fluorescence using a 

Turner Designs TD-700 bench top fluorometer equipped with the manufacturer’s in vivo 

chlorophyll-a filter set. Growth rates in cultures were estimated by plotting the natural 

logarithm of fluorescence units against time (days) and determining the slope of the 

growth curve. Each culture was grown until the late logarithmic growth phase before 

transfer. The cultures were grown and transferred twice in their respective media before 

growing the third generation of cells that were harvested for DNA and RNA extraction. 

All cultures were grown at +25ºC under illumination of ca 10 µmols photons m-2 s-1.  

DNA extraction 

Prior to DNA extraction, cells were resuspended in 500 µL sterile lysis buffer (Rinta-

Kanto et al., 2005) and ~200 µL sterile zirconia-silica beads were added to each sample. 

Cells were lysed by bead beating in a Mini-Beadbeater (BioSpec Products) for 2 min at 

4800 rpm. DNA was extracted from the lysate using phenol-chloroform extraction and 

precipitated using a standard ethanol-ammonium acetate precipitation protocol 

(Sambrook and Russell, 2001). DNA was collected by centrifuging the sample tubes in a 
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refrigerated bench top centrifuge at 16 000 rpm for 30 min. The supernatant was 

removed, the DNA pellet was washed with ice cold 70% ethanol and the centrifugation 

step was repeated. After centrifugation the ethanol was removed and the DNA was air 

dried at room temperature. DNA was resuspended in 100 µL sterile 1 × TE buffer and the 

samples were stored frozen at -80ºC. 

RNA extraction 

To extract RNA, cells were first resuspended in lysis solution supplied with RNAqueous 

kit (Ambion) and ~200 µL sterile zirconia-silica beads, which had been treated with 0.1% 

diethyl pyrocarbonate (DEPC) prior to use to remove RNAse contamination, were added 

into each sample tube. The cells were lysed through bead beating in a Mini-Beadbeater 

(BioSpec Products) for 2 min at 4800 rpm. RNA was extracted from the lysate using 

RNAqueous kit (Ambion) and in the final step of extraction the RNA was eluted in 60 µL 

elution buffer. Carry-over DNA was eliminated from RNA extracts using Turbo DNA 

Free kit (Ambion). DNA-free RNA was quantified spectrophotometrically (Sambrook 

and Russell, 2001) and stored frozen at -80ºC.  

qPCR and RT-qPCR 

The primers, Taq-man probe and plasmid standards used in quantitative PCR 

(qPCR) and RT-qPCR assays have been described in detail previously (Rinta-Kanto et 

al., 2005). The reactions for qPCR assay for quantification of mcyD gene copies consisted 

of 12.5 μL of Platinum Quantitative PCR SuperMix-UDG (Invitrogen), 0.4 μM (final 

concentration) of primers mcyD F2, mcyD R2 (Sigma-Genosys, Inc.), 0.4 μM (final 

concentration) of Taq-probe (Biosearch Technologies, Inc.), 5 μL of ten-fold or hundred-

fold diluted template DNA and sterile Milli-Q water to adjust the reaction volume to 25 

µL. Triplicate reactions were run for each template dilution and standard on a 96-well 

plate using Opticon 2 instrument (BioRad). Negative controls with no DNA template 

added were included for each PCR run.   

The reaction mixtures for reverse transcription quantitative PCR (RT-qPCR) 

assays for RNA samples consisted of 12.5 μL of 2 × QuantiTect Probe mastermix 

(Qiagen, Novato, CA, USA), 0.25 μL of QuantiTect RT Mix (Qiagen), 0.4 μM (final 
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concentration) of primers mcyD-F2 and mcyD-R2 (Sigma-Genosys, Inc.), 0.4 μM (final 

concentration) of mcyD-F2 Taq-probe (Biosearch Technologies, Inc.), and 5 μl of two-

fold or twenty-fold diluted template RNA. The reaction volume was adjusted to 25 µL 

with DEPC treated sterile Milli-Q water. QuantiTect RT Mix was omitted from the PCR 

reactions for plasmid standards and DEPC treated sterile Milli-Q water was added to 

adjust the reaction volume accordingly to 25 µL. Each reaction was run in triplicate on a 

96-well plate. The thermal cycling protocol for RT-qPCR consisted of an initial reverse 

transcription step at 30 min at 50°C, then 15 min at 95°C, followed by 45 cycles of 30 s 

at 95°C, 1 min at 61°C and 20 s at 72°C.  Control reactions with no template were 

included in the assay to ensure there was no RNA contamination in the PCR reagents. 

Control reactions containing template RNA with no reverse transcriptase were also 

included in the assay to ensure there was no DNA contamination in the reagents. The 

primers, probe and the dilutions of the RNA extract were prepared using DEPC treated 

sterile Milli-Q water.  

Analysis 

In both qPCR assays, mcyD DNA or cDNA copies were quantified against a standard 

curve (target gene copy number vs. Ct) generated using a serial dilution of plasmids 

containing one copy of the target mcyD gene. Threshold cycle (Ct) calculations were 

completed automatically for each qPCR assay by the Opticon Monitor analysis software, 

using the maximum correlation coefficient approach. In this approach the threshold is 

automatically determined to obtain the highest possible correlation coefficient (r2) for the 

standard curve.  

The relative expression of the mcyD gene in the cultured cells was calculated by 

normalizing the quantity of mcyD cDNA copies mL-1 to the quantity of mcyD gene copies 

mL-1 for each replicate culture. The statistical significance of differences between the 

relative abundance of cDNA copies per gene copy in each culture was tested using the 

independent-samples Student’s t-test.  
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Results 

The effect of phosphorus 

Growth curves based on in vivo chlorophyll fluorescence show that all cultures (except 

cultures grown in 138 µM P) had reached exponential growth phase by the time cells 

were harvested (data not shown). The growth rates showed significant differences 

between phosphorus treatments, however the reduction of phosphorus in the media did 

not result in a linear response in reduction of growth rates (Figure 1). The 138 µM P 

treatment was excluded from the analysis because all three cultures died in the beginning 

of the experiment for an unknown reason.  

The relative quantity of mcyD cDNA copies per mcyD gene copy did not show 

significant changes across the inorganic phosphorus concentrations (Figure 2). Cultures 

grown with 23 µM or 2.3 µM organic P showed an increase in the relative mcyD cDNA 

copy number, and the increase of relative expression in 2.3 µM organic P was statistically 

significant compared to cultures grown with 2.3 µM inorganic P (t-test, P = 0.118).  

The effect of Fe chelator 

Growth curves based on in vivo chlorophyll fluorescence showed that all cultures had 

reached exponential growth phase by the time of harvesting the cells (data not shown). 

The growth rate in culture amended with 50 nM DFB was significantly higher than the 

unamended control (Figure 3). The relative number of mcyD cDNA copies per mcyD 

gene copy decreased in cultures amended with DFB compared to the unamended 

cultures. The relative abundance of mcyD cDNA copies was significantly lower in 

cultures grown with 100 nM DFB than in cultures with no added Fe chelator (t-test, one 

tailed P=0.045) (Figure 4). 
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Figure 1. Growth rates (ln in vivo chlorophyll fluorescence over time) for M. aeruginosa 
PCC 7806 cultures grown in different P-concentrations. The error bars represent standard 
deviation. Asterisk indicates significant difference (t-test, P < 0.05) in growth rate 
compared to culture grown in 230 μM inorganic P (regular BG11). The error bars 
represent standard deviation (n = 3). 
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Figure 2. Relative expression of mcyD expressed as relative number of mcyD cDNA 
copies per mcyD gene copy in cultures grown under a series of phosphorus 
concentrations. Difference in relative expression between cells grown in 2.3 μM organic 
phosphorus (*) and 2.3 μM inorganic phosphorus is significant (t-test, P = 0.118). The 
error bars represent standard error (n = 3). 
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Figure 3. Growth rates (log in vivo chlorophyll fluorescence over time) for M. aeruginosa 
PCC 7806 cultures grown with 0 nM, 50 nM and 100 nM DFB. Asterisk mark indicates 
significant difference in growth rate compared to culture grown in 0 nM DFB (t-test, P < 
0.05). The error bars represent standard deviation (n = 3). 
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Figure 4. Relative expression of mcyD gene (mcyD cDNA copies per mcyD gene copy) in 
cultures of M. aeruginosa PCC 7806 as a response to increasing concentration of DFB. 
Asterisk indicates significant difference in relative expression compared to unamended 
control culture at t = end (t-test, one tailed P = 0.045). The error bars represent standard 
error (n = 3). 
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Discussion 

BG11 medium is rich in nitrogen (17.6 mM N) and it is typically used for the generic 

growth of cyanobacteria (including Microcystis). In our attempts to exacerbate the P-

limited growth of cells, we established conditions with molar nitrogen to phosphorus 

ratios (N:P) ranging from 77 to 7625. Studies in natural systems with TN:TP ratios of 

>50 have suggested that these conditions generally result in P-deficient growth 

(Guildford and Hecky, 2000). In our experiments decreasing the inorganic P 

concentration did not show a significant effect on the relative mcyD expression, however 

it seems that organic phosphorus had a stronger effect on the expression than the 

corresponding concentrations of inorganic phosphorus.  It has been shown that culture 

media with different phosphorus sources bring forth different responses in Microcystis 

cultures (growth, macromolecular composition, toxicity) (Rao et al., 1996). Although 

Microcystis grown in MA medium (Watanabe and Oishi, 1985) was shown to be more 

toxic than cells grown in CB (Shirai et al., 1989), A3M7 (Carmichael et al., 1988) or 

BG11 (Warterbury and Stainer, 1981) media, the differences may not only be resulting 

from differential P sources and Microcystis cultures may be responding to the differential 

composition of the culture media investigated.    

Adding the DFB in the cultures is known to reduce the availability of Fe to the 

cells but render the cells in Fe-limited conditions where Microcystis is still known to be 

able to maintain growth (Efteland, 2004). The increase in the growth rate in cultures 

amended with DFB is likely seen due to activation of the high affinity Fe-uptake system 

in Fe-deplete conditions. This is characteristic of several cyanobacterial species and 

evidence exists that Microcystis also utilizes this mechanism to enhance its Fe uptake 

(Wilhelm, 1995; Efteland, 2004). The Fe-deplete conditions are also known to induce the 

Fur-protein to leave its binding site allowing the Fur-regulated genes to be expressed 

(Escolar et al., 1999). In our experiment the relative expression levels were generally 

low, compared to the relative expression in the cells grown in different concentrations of 

phosphorus. However the reduced availability of Fe to M. aeruginosa PCC7806 appeared 
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to repress the relative mcyD expression, which is not expected should Fur have a role in 

regulation of mcyD expression as was suggested recently by Martin-Luna et al. (2006b).  

 Cultures were grown under relatively low light intensities because in brighter 

light the cultures had a tendency to bleach and die or accumulate biomass very slowly. 

We suspect the nutrient manipulations may have made the cultures more light sensitive. It 

is possible that the low light conditions may have suppressed the overall level of 

expression of the mcyD gene, as light intensity has been shown to reduce the transcription 

of the mcyB gene (Kaebernick et al., 2000). However, if the light intensity was an issue, it 

should have affected all cultures systematically because all cultures were maintained in 

same location. 

In conclusion, our experiments indicated relatively weak effects of phosphorus 

and iron on the relative transcriptional activity of the mcyD gene. On the other hand, 

these experiments do not exclude the possibility of nutrients influencing the 

transcriptional activity of microcystin synthetase gene cluster. While these experiments 

have assessed the effects of single nutrients in transcriptional regulation of the mcy gene 

cluster, synergistic action of different factors (e.g. nutrients, light) in regulating the 

transcriptional activity in the environment can not be ruled out.  
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CONCLUSIONS  
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In this series of studies I have examined the ecology of cyanobacteria, specifically those 

of Microcystis spp. in Lake Erie.  Microcystis are common cyanobacteria in freshwater 

environments worldwide, but prior to the mid-1990s these organisms were not dominant 

members of the phytoplankton assemblage in Lake Erie. Prior to this study, one report of 

a major Microcystis bloom event in 1995 had been published (Brittain et al., 2000) but 

concerns regarding increased abundance of Microcystis in Lake Erie had been raised in 

the context of other studies (Vanderploeg et al., 2001; Murphy et al., 2003). There was 

only one recent report concerning cell abundances of Microcystis and microcystin 

concentrations in Lake Erie (Brittain et al., 2000). And although Microcystis had already 

been extensively characterized in cultures and several studies had addressed Microcystis 

populations in natural assemblages, before I began studying this topic, there were no 

published studies that had applied quantitative PCR (qPCR) for quantification of 

Microcystis genotypes. During the course of my research I have employed the qPCR 

technique for quantification of cyanobacteria, total Microcystis and toxic Microcystis. I 

have used the technique along with other molecular tools in a series of studies designed 

to expand the knowledge of Microcystis in Lake Erie and to investigate factors affecting 

the toxicity of Microcystis. Through my investigations I have demonstrated the 

following: 

 

i. The natural diversity of Microcystis in Lake Erie is greater than what is currently 

represented in culture collections and in public databases. As an example of the 

previously undiscovered diversity, mcyA sequences containing six extra bases 

were found, which appear to be characteristic of Lake Erie populations, but no 

identical matches to the sequences are deposited in public data bases. 

ii. Cyanobacterial genera other than Microcystis contribute to microcystin 

production in Lake Erie, contrary to previous assumption. Based on identification 

of microcystin-producing cyanobacteria by their characteristic sequences in the 

microcystin synthetase gene mcyA, we have shown that Planktothrix spp. are 

dominant microcystin producers in spatially isolated regions of the lake.  
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iii. Reservoirs of Microcystis exist within Lake Erie. Sediments were shown to harbor 

significant quantities of cyanobacteria (5 ×103 – 4 ×106 cell equivalents per gram 

of sediment wet weight) and Microcystis (2 ×102 – 7 ×105 cells per gram of 

sediment wet weight) in the top 10-12 cm layer. It was shown that the 

cyanobacteria, including toxic Microcystis, deposited in the top 5 cm of the 

sediment can return to the pelagic community.  

iv. The reservoirs of Microcystis may help to support Microcystis communities in 

Lake Erie. Sequence analysis of mcyA gene fragments from sediment and 

phytoplankton samples collected in the 1970s and in 2004 suggests that the toxic 

Microcystis community in the lake has persisted on the temporal scale of decades 

and, as such, is relatively stabile.   

v. Environmental factors (specifically N, P, Fe, pH and water temperature) influence 

the abundance of cyanobacteria, total Microcystis and toxic Microcystis as well as 

microcystin production by Microcystis. Of the factors tested in this study, 

primarily the concentration of phosphorus and the ratio of total nitrogen and 

phosphorus correlated with microcystin concentrations in Lake Erie whereas the 

abundance of toxic Microcystis cells was correlated with NO3 and water 

temperature. Moreover, Microcystis forms a variable proportion of the total 

cyanobacterial community in Lake Erie each year. In a study spanning three 

summer seasons, monthly means of cell abundances estimated through qPCR 

quantification indicated that total Microcystis formed up to ~50 % of the 

cyanobacterial community, whereas toxic Microcystis formed on the average less 

than 10 % of the total cyanobacterial abundance. Among total Microcystis, on the 

average up to ~60 % of the cells were toxic genotypes. 

vi. Essential nutrients, such as iron and phosphorus influence the expression of toxin 

synthetase gene mcyD. Furthermore, the source of phosphorus (organic vs. 

inorganic) causes differential effects in mcyD expression. Induced Fe depletion 

decreased relative mcyD expression significantly, indicating a lack of Fe-mediated 

regulation of microcystin production. 
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The conclusions listed above demonstrate that Microcystis spp. are well established 

cyanobacteria in Lake Erie. The similarities between samples collected 30 years apart in 

the lake show that some of the sequence diversity has been preserved there over decades. 

It is remarkable that although the toxic genotypes of Microcystis currently form only less 

than 10 % of the cyanobacterial community in Lake Erie, the population is persistent in 

the lake. Because its sediment can act as a sink and a source of Microcystis, this likely 

contributes to the persistence of Microcystis populations in the lake. In Lake Erie the 

abundance of Microcystis and microcystin production are correlated strongly with 

nutrient availability. Toxic Microcystis abundance is additionally correlated with water 

temperature, suggesting a decoupling of factors governing proliferation of toxic cells and 

toxin production. Decoupling the cell growth and relative expression of the mcyD gene 

was demonstrated in a culture based study testing the effect of Fe depletion. The natural 

diversity of microcystin producing cyanobacteria which my research has demonstrated 

leads me to believe that the diversity in sequences of functional genes may reflect 

functional plasticity required in the environment, which can also contribute to the 

persistence of Microcystis in this system. The diversity can also be a basis of a much 

greater functional potential that can affect toxin production and cell proliferation than can 

be anticipated from studying a limited number of cultured strains in the laboratory, which 

warrants further studies on the complex natural populations. Overall, this study implies, 

firstly, that monitoring cyanobacterial population abundance, diversity and function has 

allowed a better perception of the persistent nature and composition of the Microcystis 

population in Lake Erie; and, secondly, that molecular level observations have improved 

our understanding of the relationship between toxic cell abundance, toxin production and 

the role of environmental factors in regulating these phenomena.  

It is apparent that the management plans tailored to reduce the harmful algal 

blooms in Lake Erie in the late 1970s resulted in the desired effects until the early 1990s, 

but have since become ineffective as the ecosystem is changing (Matisoff and 

Ciborowski, 2005). Altogether, our studies provide insight into the present day 

Microcystis population and we hope that the findings will be of significant value in the 

future revision of lake management plans.  
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