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ABSTRACT 

Specific objectives of this study were to develop, prototype, and test a corn 

population sensor.  Both intrusive mechanical and non-intrusive capacitive techniques 

have been used to develop the stalk population sensors in previous research.  However, 

neither could generate consistent performance.  The mechanical method required high 

maintenance and resulted in significant underestimations of stalk counts.  The 

performance of capacitive systems was limited by inadequate sensing distance, especially 

at low stalk moisture levels. 

In this research, the sensitivity of the capacitive sensor was optimized for corn 

stalks.  This system utilized a single-sided capacitive sensor, Wien bridge oscillator, 

phase-locked loop, and an operational amplifier to transform stalk presence to a change in 

electrical potential signal.   

The capacitive sensor patterns were simulated using the finite element method, 

which provided useful conceptual information.  A number of different detection element 

patterns were modeled and tested.  The patterns examined included single-sided two-plate, 

interdigital, polarized interdigital, semi-interdigital, and solid ground electrode.  The key 

parameters affecting pattern sensitivity were investigated.  The most promising pattern, 

the solid ground electrode, was selected for further evaluation and development. 

The solid ground electrode detection element was incorporated into circuitry 

including Wien-Bridge oscillator, a phase-locked loop used as a high-speed frequency-to-

voltage converter, and an operational amplifier to provide impedance matching and 
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maximize data acquisition resolution.  The operational configuration, optimum operating 

parameters, and associated component sizes were determined using both modeling and 

laboratory testing.  With an acceptable signal-sided pattern and signal-to-noise ratio, this 

sensing system was investigated in a realistic production environment.   

A preliminary field test was used to evaluate the sensor system (including a 

protective housing and mounting system) and data acquisition system to identify 

problems before conducting the final field test.  Stalk moisture content and harvest speed 

were used as treatment blocks in the final test.  The influences of environmental and 

mechanical noise and the noise-like influence of corn leaves and weeds were also 

investigated.  The final field test accurately simulated realistic harvesting conditions and 

real-time data was collected for stalk identification analysis.  

Post-acquisition processing, feature extraction, and principal component analysis 

of the extracted features were performed on the raw field data.  Three sensor signal 

features were selected to identify stalks.  A backpropagation artificial neural network 

technique was used to develop the pattern classification model.  Numerous neural 

network structures were evaluated and two-layer structure with four neurons in the first 

layer and one neuron in the second layer was selected based on maximum prediction 

precision and accuracy and minimum structure complexity.  This structure was then 

evaluated to determine the prediction accuracy at various resolution levels.  Results 

showed that the model can predict stalk population at 99.5% accuracy when the spatial 

resolution is 0.025 ha.  The sensor can predict stalk population with a 95% accuracy 

when the resolution is a 9-meter row segment (approximately 10 seconds).  
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CHAPTER 1 – INTRODUCTION 

Justification for Research 

According to USDA estimates, 81.6 million acres of corn were planted and 10.8 

billion bushels of corn were harvested in the United States in 2005 (USDA-UASS 2005).  

Producers are continuously looking for technologies to improve their production 

efficiency due to rising production cost and varied grain markets.  

A corn population sensor can benefit producers, seed companies, researchers, and 

consumers.  The primary advantage of this sensor is to generate a better site-specific corn 

stalk density maps.  Improved corn stalk density maps can be beneficial in several ways.  

First, the improved maps can enable farmers to make better field management decisions.  

By using this data, farmers can obtain a geo-referenced corn plant population map that 

shows site-specific differences in corn population within a field.  This knowledge allows 

farmers to respond appropriately and improve production efficiency.  Point rows, which 

are typically found at field boundaries, result in under-estimation of yield by yield 

monitors.  This is because yield is calculated while assuming a full header width even 

though a smaller area is actually being harvested.  A corn stalk sensor can be used to 

generate a better yield map by eliminating the effect of point rows on yield map data.  By 

mounting a population sensor on each row unit, the actual number of rows being 

harvested can be continuously monitored.  The sensor can also be used to modify GPS-
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enabled variable-rate seeding controllers through offline feedback.  These modifications 

can aid in achieving the optimal seeding rate. 

Second, seed companies can benefit from population sensors by quantifying corn 

plant survival rates.  The availability of seed germination and stalk survival rates and 

yield per plant may help arbitrate disputes between farmers and seed companies. 

Third, sensor determined corn stalk population information can assist researchers 

in other corn related areas.  This data may help plant breeders evaluate new varieties in 

large production fields.  Improved site-specific data could help researchers quantify the 

impact of irrigation, fertilization, and weeds on seed germination and stalk survival rates.  

The end result is better control of experiments with respect to management variables. 

Both intrusive (mechanical) and non-intrusive (electromagnetic-based) designs 

have been developed during the past fifteen years.  However, neither method could 

consistently generate the required detection precision.  Under a wide range of field 

conditions, the mechanical design was prone to underestimate the stalk population and 

the capacitive design had low sensitivity and inadequate sensing distance, which limited 

the accuracy of detecting low moisture content corn stalks. 

The potential broad applications of this sensor in corn production and the 

limitations of past attempts, lead us to the following objectives. 



 

3 

Objectives 

This study will contribute to the development of a non-intrusive corn population 

sensor design that will provide accurate corn population measurements during harvest. 

To achieve these goals, three specific objectives were indentified: 

1)  Identify sensing techniques that can potentially be used as indicators to quantify 
corn population.  An optimum technique or combination of techniques will be 
investigated.  Sensing techniques considered will include dielectrics, spectral 
reflectance, microwave absorption, and microwave refraction.   

2)  Develop and laboratory test a prototype sensor based on the selected technique or 
technique combinations identified from Objective 1.   

3)  Evaluate the prototype sensor in a production harvest environment.  Data post-
processing techniques will be used to investigate the difference between hand-
counted population and sensor-counted population.  Effects of corn leaves, weeds, 
and background noise will also be investigated.  Sensor accuracy, stability, and 
repeatability will be evaluated based on these investigations. 



 

4 

CHAPTER 2 – REVIEW OF LITERATURE 

Potential Sensor Applications 

A corn population sensor has the potential to improve production agriculture 

efficiency.  For example, it can be used to improve yield maps, field management 

practices, and seeding systems.  Yield maps are useful for documenting and analyzing 

spatially-variable crop performance within a field.  However, yield monitor systems 

sometimes provide invalid yield estimates because of complicated harvesting geometrics 

(Prather and Denton, 2003).  One such circumstance results when point rows develop as 

shown in Figure 1.  Point rows result in under-estimation of yield because yield is 

calculated assuming a full header width is being harvested, even though a smaller width 

is actually being harvested (Figure 2).  By mounting a population sensor on each row unit, 

the actual number of rows being harvested can be continuously monitored. If the 

information is electronically communicated to the yield monitor, accuracy of yield maps 

will greatly improve, especially in irregularly shaped fields.  

 
Figure 1.  Point row illustration 

Corn 

Combine Head 

Point Rows
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Figure 2.  Corn yield map illustration. Lower yield estimates occurred on the field boundary. 

(Prather and Denton, 2003) 

Geo-referenced corn plant population data have the potential to improve several 

aspects of production management.  Detailed knowledge of corn plant population is 

important because population affects yield (Buehring and Dobbs, 2000; Yonts and Smith, 

1997).  Evaluation of plant population from several seasons may indicate that some fields 

consistently fail to produce acceptable plant stands, and are unsuitable for corn planting.  

Furthermore, site-specific knowledge of low population areas within fields will allow the 

examination of the causes of low population.  Improvements may be needed in drainage, 

irrigation, soil fertility, and weed control in these areas.  Corn plant population data can 

provide farmers with the knowledge needed to better manage both planting plans and 

field operations. 

Plant spacing uniformity is another important factor that affects the crop yield.  

Research by Nielsen (1995) showed that increases in corn plant spacing variations due to 

Point Rows 
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planter inaccuracies or reduced emergence reduced yield in some cases.  GPS-enabled 

variable-rate seeding controllers now commercially available make it possible to adjust 

seeding rate to vary harvest population within a field to provide an optimal and uniform 

harvest population (Sudduth et al., 2000).  However, seeding system failures and field 

specific situations can affect both optimal seeding rate and uniform plant spacing.  A 

population sensor mounted on each harvester row can detect the row where a planter 

malfunction took place.  Thus, this corn population sensor could be an effective aid to 

gather harvest population and plant location information.  Detailed analysis of the 

problems can be used to compute an optimum seeding rate map.  This map could be used 

to update the automated seeding system to compensate for emergence variations and 

provide an optimum economic yield for subsequent planting seasons.  

Population information collected at harvest in conjunction with seeding rate maps 

can be used to compute seed germination and stalk survival rates.  Because seed 

germination and stalk survival rates are important indicators of seed quality, this sensor 

will be helpful for evaluating new seed varieties.  Plant population maps and yield maps 

can be combined to produce yield-per-plant maps.  This type of data will help researchers 

and producers evaluate variety performance.  In certain conditions, availability of seed 

germination and stalk survival rates and yield-per-plant values may help arbitrate 

disputes between producers and seed companies.  
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Corn Population Sensor Reviews 

Because of the expected benefit from this sensor, both intrusive (mechanical) and 

non-intrusive (electromagnetic-based) designs have been tested during the past fifteen 

years, but neither could generate consistent performance.  Mechanical systems have been 

shown to be prone to errors resulting from weak stalks and stalks growing close to one-

another.  The performance of capacitive systems has been limited by insufficient sensing 

distance, especially at low stalk moisture levels.  

Intrusive methods 

Early corn population sensors were mechanical.  Initial design and testing of corn 

population sensors were described by Birrell and Sudduth (1995).  The sensor consisted 

of a spring-loaded rod attached to a rotary potentiometer that was mounted in front of the 

gathering chains on the row dividers of the combine head (Figure 3).  During harvest, the 

corn stalk caused the rod to rotate, increasing the voltage potential across the 

potentiometer.  In 2000, Sudduth and Birrell modified their initial designs to provide 

better flow of plants past the sensor.  The mechanism was redesigned to fit within the row 

divider, with only the sensor rod protruding above.  A mechanical shock absorber was 

added to cushion the return of the sensor rod to the at-rest position. 
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Figure 3.  Redesigned mechanical population sensor (Sudduth and Birrell, 2000) 

In their research, sensor-determined and hand-counted population for individual 

harvested rows was compared in 1997, 1998, and 1999.  On average, the sensor 

underestimated actual population by 4.4%.  The standard error of the estimate was 

equivalent to an error of 3 plants within 10 m of row length.  However, most test blocks 

were analyzed using “corrected” populations, meaning that weak stalks were removed in 

the field and double counts (two plants immediately adjacent to one another) were 

removed before analysis.  This research approach may show two possible intrinsic 

limitations of mechanical design: 1) strong weeds could be counted as corn stalks while 

weak stalks were disregarded, and 2) two stalks immediately adjacent to one another 

were counted as one.  While the mechanical method only needs simple signal 

conditioning and it is unaffected by ambient humidity changes, it cannot overcome its 

intrinsic limitations in accurately quantifying corn stalk density.  
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Non-intrusive Methods 

An electrical capacitance-based measurement technique has been studied to count 

corn stalks.  Nichols (2000) holds a patent for a method and apparatus used to count 

plants as they are harvested.  It includes a capacitive sensor which senses the change in 

dielectric surrounding a capacitive proximity sensor, which in turn is sent to a counter 

that tallies the plants as they are being harvested.  The patent contains no documented 

evaluation for this invention.  

Webb (2001) designed a ring-shaped coaxial capacitor proximity sensor (Figure 

4a). Testing showed that this system was capable of measuring plant population with 

some degree of accuracy.  Tractor-mounted tests indicated average absolute errors of 8.9 

percent and 16.0 percent for speeds of 0.4 mph and 1.76 mph, respectively. Accuracy was 

moderately correlated with speed (r=0.43: α=0.05). Moody (2002) improved this 

capacitive sensor, which consisted of a three-electrode arrangement (Figure 4b).  The 

three electrodes were in essence two capacitors in series, and a bridge measurement 

technique was used to measure the capacitance between adjacent electrodes.  Testing 

showed that the triple-plate design was much less sensitive to changes in relative 

humidity than a similar dual-plate design.  However, in laboratory testing, neither 

prototype effectively generated sufficient signal-to-noise ratio (SNR) at a clearance 

between stalk and sensor of greater than 0.5 inch, which was determined insufficient.   
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Figure 4.  Capacitance-based non-intrusive corn population sensor (Webb, 2001 and Moody, 2002) 

Recently, a machine-vision technique was used to develop a corn plant population 

sensing system for measuring early stage corn population (Shrestha and Steward, 2003).  

Video was acquired from a vehicle-mounted digital video camera.  Algorithms were 

developed to sequence video frames and to segment and count corn plants.  Performance 

of this system was evaluated by comparing its estimation of plant counts with manual 

stand counts in 60 experimental units of 6.0 m sections of corn rows.  In low-weed 

conditions, the system plant count was well correlated to manual stand count (R2 = 0.90).  

The standard error of population estimates was 1.8 plants over 33.2 mean manual plant 

count, or a 5.4% coefficient of variation. However, no estimation of corn stalk count was 

conducted under weedy conditions. Because this design was developed based on 

vegetation segmentation, it would be difficult for this system to separate weeds from corn 

plants. Therefore, high-weed conditions can be a major limitation for effectively 

implementing this system.  
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Potential Sensing Techniques 

Electromagnetic and Neutron Methods for Moisture Content 
Measurement 

Pordesimo et al. (2004) indicated that field dried corn stalks may contain at least 

8% moisture content wet basis (Note: all moisture content in this dissertation is wet basis). 

If the water in corn stalks can be detected, the location of these corn stalks may be 

determined. Therefore, moisture-based techniques were investigated for a corn plant 

population sensor. 

The most popular moisture content measurement technology used in agriculture is 

electric capacitance (Mizukami et al., 2006; Sacilik, et al., 2007; Schmilovitch et al., 

2006).  Microwave absorption and radio frequency transmission are other moisture 

content measurement methods that are also based on variation of electrical properties 

(Schajer and Orhan, 2006; Tien and Judge, 2006; Knochel et al., 2001; Trabelsi et al., 

2006).  Also, infrared techniques have been used to develop moisture content sensors 

(Ozdemir, 2006; Jezek et al., 2006).  Infrared techniques involve surface determination, 

which must be representative of the layers of the bulk material being analyzed.  Sensors 

using neutron activation techniques determine the hydrogen content in the material from 

which moisture content is inferred. Neutron activation measurements are based on the 

deceleration of fast neutrons in conjunction with the absorption of gamma radiation to 

establish density (Nagadi and Naqvi, 2007; Gehl and Rice, 2007).  A nuclear magnetic 

resonance (NMR) moisture meter was recently produced (Sorland et al., 2004; Sanchez et 
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al., 2005). The measurement is based on the fact that 1H NMR signal intensity is 

proportional to the total number of proton in a sample. 

All techniques noted above have been widely used in laboratory or industry 

applications for moisture determination.  Electric capacitance is the most common design 

principal used by sensor manufacturers primarily based on low cost.  Capacitance-based 

sensors can be non-contact, have the capability to detect small objects, and work with 

either conducting or insulating objects.  However, detection of insulating objects depends 

on a high-loss dielectric or a dielectric constant sufficiently different from the 

background.  The sensors’ maximum sensing range can be affected by the change of the 

dielectric constant of air, which changes with atmospheric pressure, temperature and 

humidity.  Atmospheric pressure and temperature have little effect on the sensitivity 

range (< 3% of value range in general field condition); however absolute humidity could 

significantly affect the sensitivity range (Baxter, 1996).  These sensors also could be 

affected by the variation in the concentration of dissolved electrolytes within materials.   

Another limit to the detection sensitivity is the effect of small relative movements of 

sensor components which can be caused by machine vibration or thermal expansion.  

Such movement could change the mutual capacitance between the measuring electrodes. 

Advanced electromagnetic sensing techniques have been developed to overcome 

some of these disadvantages.  Kandala et al. (1992) found that radio frequency (RF) is 

very well suited for online moisture monitoring during the production of foodstuffs.  In 

this method a resonant perturbation technique is used to determine the water content from 

the dielectric properties.  Both real and imaginary parts of the complex permittivity of a 
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material are correlated to their moisture content under radio frequency resonance.  In 

general, complex permittivity is expressed as εr = εr’ - j εr”, where εr’ and εr” are the 

dielectric constant and loss factor, respectively.  Thus, the system response is a measure 

of the total water in the RF field, which is directly related to the moisture content of the 

material.  A relationship between moisture content and the complex permittivity was 

developed to measure the moisture content in individual popcorn kernels: 
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where, M is the moisture content in percent, and subscripts 1 and 10 refer to values 

associated with measurements at 1 and 10 MHz, respectively. 

Another electromagnetic moisture content measurement technology is open 

microwave.  Research by Knochel et al. (2001) showed the moisture content and bulk 

density of shelled corn can be determined by measuring microwave parameters.  Such 

measurement does not require any contact between the material and the equipment and is 

fast, continuous, and non-destructive.  The principal of microwave moisture measurement 

is that microwave beam energy changes with respect to different water content. When 

non-magnetic materials, such as foodstuffs, are introduced into an electric field the 

storage of electric energy is increased and the resonant frequency decreases.  Energy 

dissipation in the material under examination leads to an attenuation of the resonance 

resulting in an exponential decay of the oscillation amplitude in the time domain and a 

broadening of the resonance curve in the frequency domain.  Thus, two independent 

parameters of the material (permittivity and attenuation) can be determined by 
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quantifying the amplitude of the resonance around the resonant frequency by scalar and 

potentially low cost measurement methods.  Unlike Karl Fischer titration methods or 

oven-drying, microwave moisture determination is an indirect method based on a 

dielectric measurement. Microwaves detect the mass of water in a certain volume and 

respond to the water concentration (Kraszewski and Nelson, 1994). 

Another sensor that is commonly used in industry is Near Infrared Reflectance 

(NIR).  NIR measurement of material’s moisture content is based on the ratio of absorbed 

and reflected wavelengths.  This technique has been developed in the past 40 years to 

measure the water content in fruits and vegetables.  NIR technology has been improved 

in recent decades.  McQueen et al. (1995) used two popular NIR methods (optothermal 

near infrared (NIR) spectroscopy and Fourier Transform Mid-Infrared-Attenuated Total 

Reflection (FTIR-ATR)) to measure moisture contents of cheese samples.  NIR 

techniques are very efficient, provide quick measurements, and require minimal specimen 

preparation. It also offers other advantages, such as medium to high accuracy, non-

contact with materials, large range of applications, and medium investment. However, it 

should also be noted that surface conditions can have significant impacts on NIR 

measurements.  Also, reflective and black-body radiation from nearby surfaces can cause 

false readings. Dust and interference (e.g., steam and high humidity) can also have 

significant effects on measurement accuracy.  

Moisture content measurement using NMR techniques was introduced into the 

agriculture area in the last decade.  NMR has been regarded as a seminal tool for 

understanding material compounds because it directly monitors the spin state of atoms.  
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The nuclear spin is sensitive to the electron configuration of the parent atom and it is this 

fact that makes the NMR method an incisive tool for understanding physical and 

chemical properties of materials.  Measurement is based on the fact that 1H NMR signal 

intensity is proportional to the total number of proton nuclei in a sample.  Advantages of 

NMR techniques are that they allow a quick acquisition of results, are non-invasive, non-

destructive, require little preparation of samples, easily automated, can quantify different 

water fractions present with different mobilities, and can simultaneous determine water 

and fat contents. However, high investment and effect from nearby magnetic material are 

strong disadvantages in many agricultural applications. One successful agriculture-related 

application of NMR moisture content measurement techniques was quantifying the 

change of moisture distribution in a rice grain during boiling (Takeuchi et al., 1997).  

Optical Sensing 

Computer vision is another non-contact technology that has proven effective for 

agricultural applications.  Two general approaches have typically been used: 1) detection 

of geometric differences, such as leaf shape and 2) detection of the differences in spectral 

reflectance (Thompson et al.,1990). Spectral analysis is used to divide the crop and soil 

since the differences between vegetation and soil reflectance in the near-infrared region 

has proven successful for segmenting plants from a soil background.  However, the use of 

ambient illumination may impact measurement accuracy.  For example, measurements 

using image processing on sunny days may produce errors due to shadows and highlights.  

Both hardware-based and software-based methods have been introduced to minimize 
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these effects.  For example, a light diffuser (cast acrylic cover) that avoided direct sun 

light was used to reduce the impact of ambient illumination variability (Perez et al., 2000).  

Also, algorithms and programs used in image processing stage have been developed to 

minimize the illumination effect (Zhao et al., 2003). 

Laser based object detection had been successfully used for many applications.  

Laser technology is used to produce a high intensity and highly directional light source.  

Objects are detected when they block the laser light path between the source and the 

detection (Figure 5).  However, dusty environments require frequent cleaning to maintain 

proper function.  Also, laser detection can not discriminate between different types of 

objects since any opaque object can block the light path and trigger detection.  The 

combination of high maintenance, high cost, and a lack of discrimination between corn 

stalks, weeds, or leaves makes laser detection unsuitable for counting corn stalks. 

 

 

 

Figure 5.  Laser proximity sensor illustration 
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Density Techniques 

Density measurement techniques have been used for many years in intrusive and 

non-intrusive applications.  Generally, the intrusive methods are only suitable for offline 

evaluation of density, whereas non-contact methods are suitable for both online and 

offline measurements.   

Non-intrusive online density measurements have been widely used in industry and 

health care areas.  The most popular non-intrusive methods are X-ray and ultrasound.  X-

ray measurements use a high energy density electromagnetic wave that can penetrate 

through solid materials.  The percentage of X-ray particles which can penetrate a material 

depends on the density of the material.  By evaluating the projected shadow of X-rays, 

the material density is characterized.  Achmad et al (2004) developed an X-ray method of 

measuring the density at a point inside an object without the cumbersome processes of 

rotating the object, sources, or detectors, or the use of multiple sources.  However, the 

radiation and high initial cost are the main disadvantages of X-ray techniques for discrete 

object detection.   

Ultrasound is a mechanical wave whose frequency is above the human audible 

detection range.  Both ultrasound reflection and transmission methods can be used to 

measure material density.  When an ultrasound wave (beam) travels through a medium, it 

suffers a loss in its energy due to various mechanisms, such as beam spreading, scattering 

and absorption. In addition, when an ultrasound wave strikes an interface boundary 

between two media of different acoustic properties, part of its energy is transmitted 

through the boundary and the rest is reflected back. The ratio of the transmitted energy to 
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the incident energy is known as the transmission coefficient. Similarly, the ratio between 

the reflected energy to the incident energy is known as the reflection coefficient.  Based 

on these properties, ultrasound can be used to detect change in density.  Buehring and 

Dobbs (2000) developed a sensor that measured the reflections at the fluid–sensor 

interface, sound speed, and attenuation of ultrasound to determine the fluid density and 

solids concentration of cotton.  The refraction method involves a combination of rays 

(due to refraction by the velocity gradient within the sample) can be used to measure the 

density (Lu et al., 1993).  However, for ultrasound density detection, passing the sound 

wave through multiple layers of different media can significantly complicate density 

measurement and degrade the accuracy of the measurement. 

Analysis of Measurement Technologies  

As specified in the previous section, two classes of sensing technique are 

available, intrusive and non-intrusive.  After comparing the advantages and disadvantages 

between non-intrusive and intrusive sensing methods, the following evidence supports a 

preference for non-intrusive corn stalk discrimination: 

During harvest, a combine typically moves at speeds of 3-5 km/hour (1.8-3 mph) 

based on combine through put capacity, operating conditions, and operator experience.  

That means the population sensor needs to detect 6-10 stalks per second.  The average 

corn stalk diameter is 2 cm by casual surveys, therefore it takes approximately 20 ms to 

pass the sensor.  The dynamic response time of mechanical parts in the intrusive design 

may limit the operating speed.  Thus, a non-intrusive approach can potentially increase 
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the dynamic response time.  Furthermore, the rapid response of non-intrusive technique 

can be used to overcome the mechanical design limitation of separating two closely-

spaced corn stalks.  

The fast dynamic response of a non-intrusive approach can collect much more 

information that can be used to discriminate corn stalks from background noise.  Using 

post processing procedures, weeds can potentially be recognized because of its higher 

frequency content 

The non-intrusive approach has lower maintenance due to the lack of contact 

between sensors and stalks. The sensor should need less maintenance and repair and 

should have a longer life span. 

Once the options have been limited to non-intrusive methods, the key features 

used to discriminate corn stalk from surrounding environment need to be specified. Two 

factors, moisture content and density could be potentially used as the discriminant 

features. As previously mentioned, air-dried corn stalks still contain moisture at a level of 

at least 8% (Podesimo et al, 2004).  Stalks can be detected if water in corn stalks can be 

detected above the background environmental moisture.  Therefore, moisture-based 

sensing techniques are feasible for corn plant population sensing at harvest.  Furthermore, 

by investigating the relationship between stalk number and ear number, expertise proves 

97% of corn stalks have only one ear.  A corn ear generally has higher moisture content 

than a corn stalk at harvest, which is more readily detected by a moisture content sensor.  

Even if whole plant is completely dry, the ear still can show the property of high density 

which is another difference between the plant and the environment.  Therefore, if a corn 
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ear can be detected; the existence of a corn stalk can be inferred.  However, the position 

and variability of the position of corn ears could make ear detection quite difficult since it 

would be difficult to position a sensor such that ears could be reliably detected. 

Therefore, only moisture and density related methods were further researched.  

Selection of particular methods was based on knowledge of their functional theory.  The 

feasibility of the chosen sensing methods was evaluated.  Because this sensor was 

intended for mounting on a combine and operated in a high dust environment, reliability, 

stability, sensitivity, size, speed, and cost were the key features used as evaluation criteria.  

Based on preliminary research, capacitance and radio frequency techniques were further 

investigated. 

Capacitive Proximity Sensing 

One of the most popular non-intrusive sensing techniques for moisture content is 

based on capacitive change.  Capacitive sensors are non-destructive and have advantages 

of low cost and low maintenance. 

The simplest capacitor form is two parallel plates with a dielectric material 

separating them (Figure 6). 
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Figure 6.  Parallel Two-plate capacitor schematic  

A capacitor is an electrical device that stores electrical energy.  Its energy storage 

capability is the ratio of Q/V that is constant as long as the conductors’ geometry and the 

dielectric of the separating material are not variable.  The ratio is called capacitance, 

which is determined by following equation. 

V
QC =  (2.2) 

where C is capacitance (Farad), Q is electrical charge (Coulomb), and V is 

electrical potential (Volt) between two electrodes. 

Theoretically, the amount energy can be held by a capacitor follows the equation: 

2

2CVW =  (2.3) 

where W is energy (Joule), C is capacitance, and V is the electrical potential. 

Electrodes 

AC or DC Source 
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Assuming that the charge density on the two parallel conductor surfaces is 

uniformly distributed, and the dielectric constant between them is known, a geometric-

related capacitance equation can be derived:   

d
AC rεε 0=  (2.4) 

where C is capacitance, ε0 is electric permittivity of vacuum (8.854×10-12 F/m), εr 

is relative dielectric constant, A is the area (m2) of one plate, and d is the 

distance (m) between two plates.  When the geometric properties are not 

varied, the relative dielectric constant is the only variable that could change 

the capacitance. 

Proximity sensing is a common application for capacitance-based sensors.  

Proximity sensors are used to detect the presence or motion of a nearby target without 

direct contact with the target.  Proximity sensors also use other methods (e.g., inductance, 

optical, magnetic, ultrasound), however the capacitive method is the most commonly 

used technique for non-metallic objects.  But there are some limits for the capacitive 

proximity sensor.  First, dipole electrode pairs are preferred.  A single electrode sensor 

has a simpler structure and a longer sensing distance because the other sensor electrode is 

a distant ground or a distant target.  Therefore, the signal produced by the single electrode 

sensor can be easily disturbed by ground noise.  However, when a dipole structure is 

selected, the sensing distance becomes the principal limitation.   

Figure 7 illustrates how the change in capacitance between two electrodes and an 

object related to each other.  The proximity sensing circuit (Figure 7) can be simplified to 
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an equivalent circuit (Figure 8).  In this circuit, the targeted capacitances are C2 and C3.  

The targeted capacitance is impacted by C1 and C4.  When the distance between the target 

and sensor increases C2 and C3 decreases and C1 remains constant.  The effect of C4 will 

further decrease the signal strength.  There are three possible situations for the proximity 

sensor: 

• If the target is a floating metal, C2 and C3 will decrease 10% for every sense-

plate-diameter (sensor largest size) increment movement. 

• If the target is a grounded conductor, C4 is shorted.  When the object moves to the 

sensor, C1 decreases due to the shielding effect.  Under this situation, the 

capacitance combination of C1, C2, and C3 can be used as signal.   

• If the object is a dielectric and the object has a higher dielectric constant than air, 

when the object moves to the sensor, C1 increases due to the dielectric constant 

change (Baxter, 1996). 

 
Figure 7.  Capacitive proximity sensor schematic 
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Figure 8.  Capacitive proximity sensor equivalent circuit 

Because the dipole design limits the sensing distance of the proximity sensor, 

several geometric sensor patterns have been developed to improve the sensing distance.  

Two of them are cylindrical pattern and interdigital pattern.  The term interdigital refers 

to a digit-like or fingerlike periodic pattern of parallel in-plane electrodes used to build up 

the capacitance associated with the electric fields that penetrate into the material sample 

or sensitive coating (Mamishev et al., 2004).  In the sensor industry, both the cylinder and 

interdigital patterns have been widely manufactured.  

In a capacitive proximity sensor, fringe capacitance (Figure 9) plays the most 

important role on the sensing distance.  The fringe capacitance results from the fact that 

the electric field lines extend past the edges of a conductor. The principal concept behind 

both the cylinder pattern and the interdigital pattern is to maximize the fringe capacitance.  

The interdigital pattern has a much more complex pattern than the cylinder pattern, but 

the interdigital pattern demonstrates much stronger fringe capacitance strength.  
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Figure 9.  Fringe capacitance schematic  

Due to its excellent performance, interdigital electrodes sensor have become one 

of the most popular capacitive sensors in recent years.  This type of sensor is widely used 

in nondestructive testing (NDT), microelectromechanical systems (MEMS), 

telecommunications, chemical sensing, and biotechnology (Mamishev et al., 2004).  The 

interdigital sensor has several desirable features: single-sided access, control of signal 

strength, imaging capability, and multiple physical effects in the same structure.  

Particularly, the single-sided sensing capability can simplify sensor fabrication, mounting, 

and cost, since access to both sides of the object under test and careful alignment of 

separated plates are not required. 

Signal strength can be controlled by adjusting the finger pattern. Theoretically the 

penetration depth of the fringe quasi-static electric fields above the interdigital electrodes 

is proportional to the spacing between the centerlines of the sensing and the driven 

fingers and is independent of frequency.  When the spacing between the driven fingers 

increases, the fringe capacitance decreases.  Sensitivity, sensing distance, and fringe 

capacitance can be adjusted by changing the finger gaps. However, there are no published 

Fringe Capacitance 



 

26 

theoretical equations that can be used to compute the exact signal strength based on the 

finger gap.  Most available equations are empirical which show an approximate result.  

One accurate method for determining optimum finger gaps is to physically fabricate a 

series of sensors with different patterns and select a finger gap experimentally.  This 

method is expensive, time consuming, and tedious.   

Fortunately, there are several alternative methods available for interdigital 

capacitance calculation (Baxter, 1996).  The first method uses Teledeltos paper.  The 

Teledoltos paper is a black electrically paper with a thin carbon coating.  The coating is 

evenly spread for a constant resistance.  The paper can be used to model capacitors in 

two-dimensional field.  The capacitor electrodes can be simulated by painting a pattern 

with silver paint.  An ohmmeter is used to determine the capacitance.  For example, if the 

paper resistance is 10 KΩ/square, and the resistance between two silver paints is 5 KΩ.  

This result means that two square are in parallel.   

The second is a numeric method that calculates capacitance by sketching field 

lines.  Equipotential surfaces cross the force lines at right angles and tend to parallel 

conductive surfaces. The electric force lines terminate at right angles to conductors.  

Therefore, the whole electric field is separated by electric force lines and equipotential 

lines into multiple areas.  The capacitance of each simplified small area can be calculated.  

The total capacitance can be obtained by summing up the capacitance of individual areas.  

However, this method is a cut-and-paste approximation.  The calculated result only 

shows a rough estimation of capacitance. 
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Another numeric method for capacitance calculation with a high accuracy is the 

finite element method (FEM).  Reference data shows that FEM error compared to an 

analytic solution could be less than 0.18% (Baxter, 1996).  This method was selected for 

sensor development in this research. 

Chapter Summary 

Both intrusive mechanical and non-intrusive capacitive techniques have been used 

to develop the stalk population sensors in previous research.  The mechanical method has 

the disadvantages of requiring high maintenance and significant underestimations of stalk 

counts.  Previous research on non-intrusive sensors focused on moisture content detection, 

but the sensitivity and sensing distance were limited, resulting in low stalk count 

accuracy.  Near infrared, NMR, and microwave methods are precise methods of moisture 

content detection, but are prohibitively expensive and physically too large for mobile 

applications.  Therefore, the capacitive sensing technique was chosen. 
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CHAPTER 3 – SENSOR DESIGN AND EVALUATION 

OVERVIEW 

This research consisted of five major components: detection element development, 

design and evaluation of the supporting circuitry, field testing of the completed sensor 

system, post-acquisition data processing and feature extraction, and stalk pattern 

classification (Figure 10). 

Chapter 4 details the detection element development.  A number of different 

detection element patterns were modeled and tested to optimize sensitivity.  The patterns 

examined included single-sided two-plate, interdigital, polarized interdigital, semi-

interdigital, and solid ground electrode.  The key parameters affecting pattern sensitivity 

were investigated.  The most promising pattern, the solid ground electrode, was selected 

for further evaluation and development. 

Chapter 5 addresses the design and evaluation of the supporting circuitry.  This 

circuitry included a Wien-Bridge oscillator (which incorporates the detection element 

pattern), a phase-locked loop used as a high-speed frequency-to-voltage converter, and an 

operational amplifier to provide impedance matching and maximize data acquisition 

resolution.  Although it is not a part of the supporting circuitry, the data acquisition 

system that was used during field testing was also evaluated to identify and mitigate 

problems before going to the field.  The operational configuration, optimum operating  
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Figure 10.  Research procedure flowchart 
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parameters, and the associated component sizes were determined using both modeling 

and laboratory testing. 

Chapters 6 and 7 present two field test events.  Once the electronic components of 

the sensor system were designed and fabricated, a protective housing and mounting 

system were designed and fabricated.  The preliminary field test was used to evaluate the 

sensor system (including the housing and mount) and data acquisition system to identify 

problems before conducting the final field test.  Data collected in the preliminary field 

test was used to develop an understanding of how the system functioned in the field.  A 

problem was identified in the sensor design and modifications were made in the 

laboratory to correct this problem.  Based on the results of the preliminary field test, 

experimental parameters and levels were identified and incorporated into the 

experimental design for the final field test.  The experimental parameters included stalk 

moisture content and harvest speed.  Several noise influences were also investigated 

(environmental and mechanical noise and the noise-like influence of corn leaves and 

weeds).  The final field test accurately simulated realistic harvesting conditions.  Real-

time data was collected for use in post-acquisition processing and stalk pattern 

classification. 

Chapter 8 discusses post-acquisition processing, feature extraction, and principal 

component analysis of the extracted features.  Post-acquisition processing was used to 

minimize the impact of noise and prepare the raw data for feature extraction.  Feature 

extraction reorganized and reduced the data set to a form conducive to later stalk pattern 

classification.  A total of eight features were extracted.  Principal component analysis was 
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performed to identify the most important features with respect to identifying stalk events.  

As a result of this analysis, five of the features were eliminated reducing the feature space 

dimension from eight to three.  The reduction in the size and complexity of the data set 

was necessary to enable eventual online processing of the data by a commercialized 

version of the sensor system. 

The final stage of this research, stalk pattern classification, is presented in Chapter 

9.  Artificial Neural Network techniques were used to illustrate the development of a 

classification algorithm.  The extracted feature data set was divided into a training set and 

a test set.  The training set was used along with a backpropagation training technique to 

produce matrix sets which represent the neural network model.  The test set was used to 

evaluate the accuracy of the model developed from the training set.  Numerous neural 

network structures were evaluated, and the optimal structure was selected based on 

maximum prediction accuracy and minimum structure complexity.  The optimal structure 

was then evaluated to determine the prediction accuracy at various resolution levels from 

a 9 m row segment to a square kilometer field and from 5 to 50 consecutive events. 
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CHAPTER 4 – STALK DETECTION ELEMENT 
DESIGN AND EVALUATION 

The general design criteria for the corn stalk sensor included: 

• Detect at least 98% of the corn stalks samples at a 2.0 cm distance from the sensor.  

• The difference between hand-counted and sensor-counted populations in the field 

environment should be less than 5% for a row length of 9 m. 

• The sensor system should be small enough for easy mounting on a combine 

header.   

• Circuit complexity should be minimized to reduce prediction cost.  

• Precision alignment of sensor components should not be necessary.  

• The final design should be sufficient for technology transfer to industry. 

Preliminary Static Test for Changes in Dielectric Constant  

A preliminary test was necessary to assure that a capacitive proximity sensor 

could detect trace capacitance changes between the dielectric constant of a corn stalk and 

ambient air.  Furthermore, this test also was used to better understand the general 

relationships among the most critical factors (sensor-to-stalk distance, dielectric constant, 

and capacitance change). 
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A static test station was built for this evaluation.  The static station consisted of an 

adjustable plate type capacitance test fixture and a frame to support specimens (Figure 

11).  This fixture was fabricated using polyethylene with a low dielectric constant (ε=2).  

The initial detection element was a simple two-plate capacitor.  The plate electrodes were 

mounted on the test fixture.  The distance between the plate electrodes was adjustable 

from 8.5 cm to 21 cm.  The electrodes were connected via Kelvin clip leads to a 

programmable LCR meter (7600 precision LCR Meter Model B, QuadTech, MA) that 

measured the electrical parameters for computing change.  The complex dielectric was 

calculated in accordance with ASTM D 150-98 (ASTM 2003).   

Corn stalks with moisture contents ranging from approximately 8% to 80% 

moisture content were tested to investigate the relationship between moisture content and 

capacitance of the sensor.  The moisture content of each stalk was determined after 

testing by weighing the stalk, drying the stalk in an oven for 72 hours at 103°C, and re-

weighing the dried stalk.  Moisture content was calculated on a wet basis: 

%100.. ×
−

=
wet

drywet
bw W

WW
MC  (4.1) 

where Wwet is the wet stalk weight and Wdry is the oven-dry stalk weight.  The stalks were 

tested at a stalk-electrode distance of 4.5 cm.  
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Figure 11.  Static test fixture schematic 
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Two rubber rods (2.54 cm) with different dielectric constants (2.9 and 8.0 at 300 

KHz at 25 C) were used in place of corn stalks to better isolate the effect of stalk-sensor 

distance by maintaining a constant specimen dielectric constant.  The rubber rods were 

tested at 300 KHz (more details on this frequency selection later) and inter-electrode 

distances of 8.5, 13, 17, and 21 cm were tested.   

For both corn stalks and rubber rods, baseline capacitance was measured with no 

specimen in the test fixture.  The specimen was then placed in the test fixture and the 

capacitance measurement was repeated.  The capacitance change was calculated by 

subtracting the measured baseline value from the measured capacitance with a specimen 

in place. 

The results from the static tests are shown in Figure 12, Figure 13, and Figure 14.  

It was found that the capacitive detection element can detect a stalk with moisture content 

of 45% over the frequency range from 200 Hz to 2M Hz (Figure 12).  The average 

capacitance is 550 pF, ranged from 505 to 585 pF, and the capacitance variation is 

approximately 8%.  These results showed that the capacitance change was reasonably 

constant across the entire frequency band.  This data indicated that within the test range 

frequency has relatively little effect on the capacitance change caused by a corn stalk.  A 

target frequency of 300 kHz was chosen for further testing due to the operating 

parameters of the oscillator selected in the supporting circuit design.  A detailed 

discussion of the supporting circuit design is presented in Chapter 5. 
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Figure 12.  High moisture content corn stalk capacitance at different frequencies 

Corn stalks with different moisture contents were used to determine detection 

element response to moisture content (Figure 13).  Moisture content of the corn stalks 

range from 8% to 80% and capacitance changes were measured at 300 KHz.  Results 

showed that the capacitance change to moisture content relationship was non-linear, but 

was reasonable well fit by an exponential curve (Figure 13).  The capacitance change 

varied most rapidly at low stalk moisture contents.  This showed that a small amount of 

water can change stalk dielectric constant significantly when stalks were relatively dry.  

When the moisture content was larger than 60%, the capacitance change was maintained 

close to a constant value.  This indicates that once a threshold moisture content was 

reached, further increase in the moisture content would not result in a proportional 

increase in detection element output. 
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Figure 13.  Capacitance change at different stalk moisture contents 

Two rubber rods with different dielectric constant were used to simulate corn 

stalks at two moisture contents. The dielectric constant of the rubber rods provide a 

consistent and stable test standard that is not impacted by ambient conditions. The rods 

were tested using the same procedure as the corn stalks.  The results of these tests 

allowed the approximation of equivalent stalk moisture content of the rubber rods.  The 

capacitance change due to the presence of rubber rods at 300 KHz was 35 pF and 190 pF 

for dielectrics of 2.9 and 8, respectively.  Therefore, the equivalent stalk moisture 

contents of the rubber rods were 9% and 21% for dielectric constants of 2.9 and 8.0, 

respectively.  The rubber rods were used to represent corn stalks in further laboratory test. 

The rubber rods were used to evaluate the effect of sensor-to-specimen distance 

(Figure 14).  When the sensor-to-specimen distance was increased from 8 to 21 cm, the 

percentage capacitance change in the detection element decreased from 6 to 1% and 3.5  
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Figure 14.  Capacitance change with respect to electrode-to-specimen distance for rubber rods 

to 0.5% for rubber rods with dielectric constants of 8 and 2.9, respectively.  This shows 

that the sensor-to-specimen distance is a critical parameter for capacitive sensor design in 

addition to stalk moisture content. 

Electrode Geometry Optimization through FEM 

FEM analysis was used to develop and evaluate capacitive detection element 

patterns after the preliminary test proved the validity of the capacitive sensor concept.  

There were two design requirements for the model development.  One was to expel the 

sensor’s capacitance as far as possible from the sensor surface in order to increase the 
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maximum effective sensing distance.  The other was to maximize the capacitance change 

resulting from the presence of a corn stalk and therefore maximize sensitivity.   

FEM Analysis Background 

FEM is a numerical procedure that is widely used to solve engineering problems 

where mathematical models of physical phenomena are known.  Mathematical and 

physical concepts are generalized to governing equations (generally partial differential 

equations).  These governing equations represent balances of mass, force, or energy.  The 

basic mathematical concept consists of approximating real scalar fields (e.g., temperature 

fields) by subdividing the domain of definition (e.g., the volume of the body) into 

geometrical elements (e.g., parallelepipeds).  Simple arithmetic functions (interpolating 

functions) are defined over the geometrical elements. A finite element is a geometrical 

element and associated interpolating functions. 

Maxwell’s equations, a set of equations written in differential or integral form, are 

the basic governing equations for analyzing electromagnetism.  These equations describe 

the relationships among the fundamental electromagnetic quantities.  For general time-

varying fields, Maxwell’s equations can be written as: 

0=⋅∇
=⋅∇

−=×∇

+=×∇
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δ
δ

δ
δ

 (4.2) 
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where H is the magnetic field intensity, J is the current density, D is the electric 

displacement or electric flux density, E is electric field intensity, B is the 

magnetic flux density, and ρ is the electric charge density. 

A set of constitutive relations can be used to state the macroscopic properties of a 

closed system:   

EJ
MHB

PED

σ
μ
ε

=
+=

+=
)(0

0

 (4.3) 

where ε0 is the permittivity of vacuum, P is the electric polarization vector, µ0 is 

the permeability of vacuum, M is the magnetization vector, and σ the 

conductivity.  The electric polarization vector describes how the material is 

polarized when an electric field E is present.  Similarly, the magnetization 

vector describes how the material is magnetized when a magnetic field H is 

present.   

In the SI system, the permeability of vacuum is 4π·× 10-7 H/m.  The velocity of an 

electromagnetic wave in vacuum is given as c0 and the permittivity of vacuum is derived 

by the relationship: 

12

0
2
0

0 10854.81 −×==
μ

ε
c

 (4.4) 

P is generally a function of E.  P can be used to interpret the electric dipole 

moments.  Some materials can have a nonzero P even when there is no electric field 

present.  For linear materials, the polarization is directly proportional to the electric field:  

EP eχε 0=   (4.5) 
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where χe is the electric susceptibility.  By combining equation 3.7 and 3.9, we can 

derive the following equation: 

EED re εεχε 00 )1( =+=  (4.6) 

where εr is the relative permittivity. 

In FEM, a static electric model is realized by using the electric potential V.  The 

classical Poisson’s equation can be derived by combining the definition of the electric 

potential with Gauss’ law and the continuity equation: 

ρε =−∇⋅∇− )( 0 PV  (4.7) 

This equation is used for the electrostatics application mode.  

In FEM, boundary conditions are also critical.  The governing equations 

determine the physical behaviors of materials.  The boundary conditions determine the 

behavior at interfaces.  In electrostatics application, boundary conditions of current flow, 

electric insulation, electric potential, ground, continuity need to be considered (Comsol, 

2006). 

The electric potential boundary condition: 

0VV =  (4.8) 

specifies the voltage at the boundary.  In an electrostatic model, the electrical 

potential is a dependent variable. But its value needs to be defined at some 

point or over some area. 

The ground boundary condition: 

0=V  (4.9) 
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specifies a zero potential at the boundary. 

The electric insulation boundary condition: 

0=⋅ Jn  (4.10) 

specifies that no current across the boundary. 

The current flow boundary condition: 

0JnJn ⋅=⋅  (4.11) 

specifies the normal component of the current density flowing across the 

boundary. 

The continuity boundary condition: 

0)( 21 =−⋅ JJn  (4.12) 

specifies that the normal component of the electric current is continuous across 

the interior boundary. 

The capacitance of a capacitor, C, is calculated from the stored electric energy, We, 

in the capacitor and the applied electrical potential, V0.  The stored electric energy is 

obtained from domain integration of the field energy density: 

2
0

2
V
W

C e=
 

∫
Ω

⋅= EdVDWe 2
1

 
 (4.13) 

Since capacitance and the integration of electric field energy density are linearly 

related, both parameters may be used interchangeably for comparing detection element 

pattern output. 
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A commercial finite elements software package, Femlab (COMSOL, 2005), was 

used for corn stalk population sensor model development.   

Detection Element Development Procedure 

Optimization of the detection elements was accomplished by repeating the 

following sequence of steps: 

• Capacitance and electromagnetic field distribution of different detection element 
patterns were compared by computer simulation.   

• The most promising patterns were fabricated and evaluated.   

• By investigating and analyzing the fabricated pattern in the laboratory, more 
promising patterns were further examined and modified. 

• The FEM was used again to simulate the modified pattern effects mathematically. 

• The best pattern from this stage were fabricated again and evaluated in laboratory.   

This process was repeated until an acceptable pattern was developed.   

Electrode Geometry Optimization through FEM 

In the FEM simulation, several assumptions and boundary conditions were 

considered.  The dielectric constant of the ambient environment was assumed to be 1 (εdry 

air = 1.0005) for all models.  Ambient air in production environments contains water 

vapor that increases the dielectric constant, but a constant reference level was chosen for 

comparative purposes.  Three-dimensional detection element models were placed into a 

20 cm × 20 cm × 10 cm space and two-dimensional models were placed into a 1 m × 1 m 

space due to computer limitations.  This limited space suppressed the electric field which 
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may affect the simulation accuracy.  The space boundaries were set as insulation 

boundaries, which made the space an isolated system.  Detection elements were made of 

copper and the electrode surfaces were set at either 10 V or ground. 

Parallel-Plate Capacitor Modeling 

The first step in modeling the detection element was to develop a model of a basic 

parallel-plate capacitor model.  The base capacitance of this configuration is high because 

of its geometric structure (large area of overlaid electrodes).  A 20 mm × 20 mm parallel-

plate capacitor model with an electrode gap of 10 mm was developed (Figure 15).  Figure 

16 is a 2-dimensional representation of the 3-dimensional field produced by the simple 

parallel-plate capacitor.  Figure 16 shows some electric field beyond the parallel-plate 

capacitor frame, which is a result of fringe capacitance.  Based on equation 3.3 which 

ignores the effect of fringe capacitance, the theoretical capacitance of this model was 

0.354 pF.  The integration of power density of this model by FEM was 3.342 × 10-11 J.  

Based on the equation 4.12, the capacitance by FEM was 0.668 pF.  The 0.314 pF 

difference between the modeled and theoretical values was due to fringe capacitance.   
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Figure 15.  Parallel-plate capacitor 3-dimension electric field schematic 

 

Figure 16.  Parallel-plate capacitor 2-dimension electric field schematic 
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Single-sided Two-plate Pattern Modeling 

The two-plate parallel design illustrated the most fundamental concept of a 

capacitance-based sensor.  However, this configuration does not meet the design 

requirements because it was not single-sided and required careful alignment of the two 

electrode plates.  Therefore, the next step was to convert a simple two-plate parallel 

capacitor to a single side pattern. 

Figure 17 demonstrates a gradual process of converting a parallel-plate detection 

element to a single-sided detection element.  Figure 17 shows how the fringe capacitance 

changes during the conversion.  During this procedure, the normal capacitance between 

the electrodes is transferred to the fringe capacitance.  In the final configuration, the 

majority of capacitance is fringe capacitance.   

Figure 18 shows the energy density for a simple single-sided two-plate proximity 

sensor configuration.  Each electrode had dimensions of 2 cm × 2 cm and the gap 

between the electrodes was 1 cm.  The energy density distribution is shown in Figure 18.  

The integration of energy density for this design was 1.67 × 10-11 J as compared to 3.34 × 

 

                   
Figure 17.  Transition from parallel-plate to fringe field capacitor. 
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10-11 J for the parallel two-plate design.  The transformation reduced the total capacitance 

by 50% and the normal capacitance is almost entirely eliminated leaving only fringe 

capacitance.  The energy density distribution was examined to identify possible 

improvements in fringe capacitance.  Most of the capacitive energy was on the edges of 

the inter-electrode gap, therefore, increasing the length of the inter-electrode gap was a 

promising way to increase the fringe capacitance.   

  

Figure 18.  Single-sided two-plate detection element energy density map 
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One of the most popular commercial capacitive proximity sensor patterns is a 

cylindrical pattern (Figure 19).  The cylindrical pattern can be derived from the single-

side two-plate sensor by curving the inner edges.  The cylinder pattern has two 

advantages: relatively stronger fringe capacitance as compared to the single-sided two-

plate pattern for a given electrode area (since the ratio of inter-electrode gap length to 

total electrode area is increased) and ease of manufacturing.   

A cylinder pattern model was built using Femlab (Figure 19). The inner electrode 

has an area of 4 cm2 and an outer electrode has area of 4 cm2.  The inter-electrode gap 

was 1 cm.  The average inter-electrode gap length (10.23 cm) is approximately five times 

that of the single-sided two-plate pattern.  The integration of energy density was 3.45 × 

10-11 J which was more than double that of the single side two plate pattern (1.67 × 10-11 

J).  However, the energy density in the central area of this sensor is low (Figure 19).  

While the cylindrical pattern increased the fringe capacitance significantly, there was still 

room for further improvement of the fringe capacitance.  
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Figure 19.  Cylindrical detection element energy density map 
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Interdigital Pattern Modeling 

As previously mentioned, the interdigital pattern is another commercially-used detection 

element pattern.   Two-dimensional models were used for future model development 

since the complexity of the interdigital pattern produced 3-dimensional models that could 

not be executed on the available computer resources.  an interdigital two-dimension 

rectangular proximity sensor model (Figure 20) was built by minimizing the areas of low 

field density in Figure 19.  Every positive electrode (except the electrodes at two ends) 

had two adjacent ground electrodes, and vice versa.  The integration of energy density of 

this pattern was 9.05 × 10-9 J/m (energy density per unit length of the 2-dimensional 

representation).  The 2-dimensional model was linearly extended into three dimensions to 

produce the same electrode area as the 3-dimensional cylindrical pattern.  The integration 

of energy density for the modified interdigital pattern was 1.1 × 10-10 J.  The interdigital 

pattern showed significantly improved fringe capacitance (more than 3 times the 

cylindrical pattern).  The integrations of energy density of different patterns are listed in 

Table 1.  The relative capacitive strength of each pattern can be readily compared by 

setting the smallest value (single-side two plate pattern) to unity.  
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Figure 20.  Interdigital sensor profile  
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Table 1.  Integration of modeled energy density for four different patterns 

Patterns 
Two-plate 

parallel 

Single-side 

two-plate 
Cylinder Interdigital 

3 Dimensions (10-11 J) 3.34 1.67 3.45 11 * 

Normalization 2 1 2.07 6.59 

* Data from modified 2-dimensional model  

Interdigital Pattern Evaluation 

The interdigital detection element pattern was physically fabricated by a printed 

circuit board (PCB) plotter (LPKF ProtoMat 92s/II) in the laboratory.  The pattern was 

approximately 5 x 10 cm in size with a 0.2 mm electrode width and a 0.2 mm inter-

electrode gap.  This prototype was used to evaluate the interdigital pattern and compare 

modeled and experimental results.   

Two methods were used to evaluate the capacitor: a high sensitivity LCR meter 

(7600 precision LCR Meter Model B, QuadTech, MA) used to measure capacitance 

changes and a universal counter (Agilent 53131A) used to measure frequency changes in 

response to capacitance changes in a Wien Bridge oscillator (the selection and design of 

this oscillator will be addressed in the following chapter.)  Only one detection element 

pattern was used with the LCR meter but two detection element patterns were required in 

the Wein Bridge.  Two detection elements were used with the Wein Bridge for all 

laboratory test and the preliminary field test.  The results obtained using the LCR meter 
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were also used in the design and evaluation of the oscillator.  For the oscillator, the 

theoretical frequency to capacitance relationship is given by: 

RC
f

π2
1

=
 (3.18) 

where f is the oscillation frequency (Hz) and R and C are resistance and sensor 

capacitance in the oscillation circuit with units of ohms and Farads, 

respectively.   

Theoretically, we expect the results from the two methods to be similar.  For 

example, if the capacitance change is small (less than 10%) it should induce a similar 

frequency change (inverse direction).  The data from both test methods are presented in 

Table 2.  The results from the LCR meter showed that both absolute change (F) and 

relative change (%) relative to base capacitance were detectable for the interdigital 

pattern.  The relative change is more important because it more closely represents 

sensitivity (8.6% at 0.5 cm and 0.45% at 2.5 cm).   
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Table 2.  Evaluation data on rubber rod (dielectric constant = 8) by two different methods (method 1: 
LCR meter method; method 2: oscillator method) 

*  SNR was too low to obtain reliable mesurements 

Results from the oscillator showed that sensitivity decreased dramatically when 

the detected object was moved away from the sensor surface.  The SNR decreased 

tremendously when the stalk-sensor distance increased.  The frequency change for the 

interdigital sensor was 17 KHz at 0.5 cm.  The frequency change at 2.5 cm was obscured 

by noise and not measurable.   

The detection instruments significantly impacted the experimental results.  First, 

the high sensitivity LCR meter internally averaged repeated measurements (200 per test) 

which minimized the impact of random influences on the measured value and enabled the 

device to detect extremely small changes in capacitance.  While measurements using the 

Measured data 
Absolute change 

(percentage change) 

Stalk-sensor distance 
Method 

No Sample 

(air) 

0.5 cm 2.5 cm 0.5 cm 2.5 cm 

LCR meter 110.7 pF 120.2 pF 111.2 pF 
9.5 pF 

(8.6%) 

0.5 pF 

(0.45%) 

Oscillator 290 KHz 273 KHz N/A * 
-17 KHz 

(-5.9%) 
N/A * 



 

55 

laboratory LCR are more precise, this method was not feasible for integration into a field 

application due to cost, size of the instrument, and the number of computations required 

to obtain the end result. 

The results indicated that the fringe capacitance created by the interdigital design 

was near the sensor surface.  Both the absolute and percentage change in the capacitance 

is relatively large in the space near the detection element.  Conversely, the absolute 

change and relative change decreased when the test object was moved away from the 

detection element.  While the sensitivity of the interdigital pattern is high when the 

sensor-stalk distance is small, the rapid drop in sensitivity as sensor-stalk distance 

increases indicated that the field is not expelled far enough from the pattern surface to 

provide adequate sensing distance. 

Polarized Interdigital Pattern Modeling 

The basic interdigital pattern was modified in an attempt to enhance the 

sensitivity.  Additional qualitative analysis models considering the effect of the presence 

of a corn stalk on sensor behavior were used to suggest modifications to the basic 

interdigital pattern.  Specifically, the impact of corn stalks on the electric field produced 

by the sensor patterns was studied. For each detection element pattern model, a stalk 

element was located 1.5 cm from the pattern surface, and integration of the field energy 

density (per unit length of the model) was performed with (εstalk= 5) and without (εstalk 

=εair = 1) the stalk element present in the model.  The difference in integrated field energy 

density was then converted to a percentage change of capacitance.  The integrated field 
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energy density and percentage change in capacitance due to the presence of a stalk was 

used as the basis for comparing the different detection pattern models.   

Figure 21 illustrates the impact of a corn stalk on the capacitance produced by the 

basic interdigital pattern.  The high intensity electric field exists between adjacent 

positive and ground electrodes but is not projected away from the pattern surface.  A stalk 

located a relative far distance away from the pattern surface has little impact on the high 

density field located near the pattern surface.  This behavior suggested the first 

modification of the basic interdigital pattern which involved moving all the positive 

electrodes to one end of the pattern and all the ground electrodes to the other end of the 

pattern to produce a polarized interdigital pattern (Figure 22).  The results from the basic 

and polarized interdigital patterns are compared in Table 3.  For the basic interdigital 

pattern there was no significant change in capacitance (0.009%).  Such a small change 

would make accurate stalk detection nearly impossible.  While the polarized interdigital 

pattern produced only 7% of the base capacitance of the basic interdigital pattern, the 

percentage change in capacitance (0.99%) was more than 100 times that of the basic 

interdigital pattern.  A capacitance change of approximately 1% was far more likely to 

provide an accurate basis for stalk detection.   
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Figure 21.  Basic interdigital pattern model electrical potential lines 
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Figure 22.  Polarized interdigital model electrical potential lines 
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Table 3  The change of two interdigital patterns with/without stalk by FEM 

 

Basic Interdigital Pattern Polarized Interdigital Pattern 
 

With Stalk Without Stalk With Stalk Without Stalk

Integration of 
Energy Density 

(J/m) 
1.80928×10-8 1.80926×10-8 1.26947×10-9 1.25708×10-9 

Capacitance 
Change 0.00886% 0.99% 

For the polarized interdigital model, different sensor-stalk distances (0.5, 1.0, 1.5, 

2.0, and 2.5 cm) were modeled with and without stalk elements present.  The difference 

between integrated electric field energy density with and without the stalk element 

present and the corresponding capacitance change were calculated and the results are 

presented in Figure 23.  The results showed that when the stalk element was moved away 

from the pattern surface, the capacitance change decreased.  These results correlated well 

with the preliminary tests of the two-plate parallel capacitor (Figure 14).   
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Figure 23.  Modeled relationship between integrated field energy density and sensor-stalk distance 

for polarized interdigital pattern. 

Additional prototypes were fabricated and tested in the laboratory by cutting 

electrode digits from 0.05 mm thick adhesive-basked copper tape and attaching them to 

1.25 cm thick ultra-high molecular weight (UHMW) polyethylene blocks (ε=2.3).  While 

this construction technique was not as precise as using the PCB plotter, it allowed rapid 

prototyping of numerous patterns.  These prototypes were evaluated to identify the most 

promising patterns for later PCB plotter fabrication. 

The polarized interdigital pattern was the first pattern fabricated in this manner.  

Laboratory tests showed that the polarized interdigital pattern did produce a measurable 

frequency change (~3 kHz change from the 300 kHz base frequency) in the oscillator 

output with a 2 cm stalk-sensor distance.  As previously noted, the basic interdigital 

pattern did not produce a measurable change under these conditions.  However, as the test 
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specimen was passed across the polarized interdigital pattern, two frequency peaks were 

observed.  One occurred at the midpoint of positive electrodes and the other at the 

midpoint of ground electrodes.  These dual peaks could pose a serious problem for later 

stalk detection since the detection element responds relatively slowly to the presence of a 

stalk.  Successive higher frequency signals would overlap with each other making 

discrimination between the two signals very difficult. 

Semi-Interdigital Pattern Modeling 

A modification was made to the polarized interdigital pattern to eliminate the dual 

signal peaks.  All but one of the positive electrodes were changed to ground electrodes to 

produce the semi-interdigital pattern.  This pattern was simulated using FEM and two 

prototypes of this pattern were physically fabricated in the laboratory using the copper 

tape method.  The ground electrode width, inter-electrode gap, and sensor-stalk distance 

were varied.  The two prototypes were connected with the oscillator and a universal 

counter was used to measure the frequency change both with and without a test specimen.  

The sensor effective area was evenly divided into 4 parts.  The boundaries of these four 

parts (position 1 to position 5) were chosen to test the impact of specimen location 

(Figure 24).  Simulated stalk elements were placed in front of the modeled sensor at these 

5 positions and the capacitance change was calculated.  Rubber rods were placed in front 

of the prototype patterns at these five locations and the capacitance change was measured 

using the LCR meter.  
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Figure 24.  Five specimen positions for the static test 

The simulated detection pattern response showed only one peak corresponding to 

Position 1 (Figure 25).  The capacitance change at Position 1 and a 0.5 cm sensor-stalk 

distance was 4.76%.  When the stalk element was moved to Position 5 and a 0.5 cm 

sensor-stalk distance, the capacitance change dropped to 0.17%.  The modeling also 

showed that the sensor-stalk distance had a significant effect on the capacitance change.  

The capacitance change at Position 1 decreased from 4.76% to 0.45% when the sensor- 
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Figure 25.  Modeled capacitance change at different positions and 
sensor-to-stalk distances 

stalk distance increased from 0.5 cm to 2.0 cm.  Since the strongest signal was obtained 

at Position 1, future modeling used only Position 1 to compare detection pattern response.  

Qualitative laboratory tests confirmed that the dual signal peak problem was eliminated 

by the electrode pattern modification. 

Solid Electrode Pattern Modeling 

To simplify detection pattern fabrication, a final pattern modification was 

evaluated.  The semi-interdigital pattern was simplified by integrating the ground 

electrodes into a single, wide electrode producing the solid electrode pattern.  FEM 

simulation of the solid electrode pattern was compared to the semi-interdigital pattern 

model with a stalk element located at Position 1 and a 1.5 cm senor-stalk distance.  The 



 

64 

capacitance change was 1.32% and 1.26% for the semi-interdigital and the solid patterns, 

respectively.  The difference between these two patterns was less than 5%.  The electrical 

fields for these two patterns were also very similar (Figure 26 and Figure 27).  Laboratory 

tests using the oscillator were not able to detect a difference between the semi-interdigital 

and solid electrode patterns.  It is likely that the very small difference in the modeled 

performance of these two patterns was less than the resolution of the laboratory 

measurements.  Based on these results, the simple solid electrode pattern was selected for 

further investigation. 
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Figure 26.  Semi-interdigital sensor pattern electrical potential lines with and without a stalk 

Electric Potential (100 mV/div) 
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ε = 1 

Stalk Position 
ε = 5 



 

66 

 

 
Figure 27.  Solid pattern electrical potential lines with and without a stalk 

Electric Potential (100 mV/div) 
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Solid Electrode Pattern Evaluation 

The solid electrode pattern performance was evaluated using the following 

procedure:   

1. Several patterns with different parameters were modeled to identify the most 

critical parameters and properties for the pattern. 

2. Modeled patterns were fabricated to investigate the critical parameters and to 

determine the sensor geometric specifications. 

3. The final pattern was fabricated to investigate the effect of corn stalks with 

different moisture contents. 

There are several parameters that could potentially affect the performance of the 

solid electrode pattern:  electrode width, inter-electrode gap, electrode thickness, and 

electrode length (Figure 28).  Based on modeled results, sensitivity was primarily 

determined by the electrode width and the inter-electrode gap.  Increasing electrode 

length linearly increased the base capacitance of the pattern but does not increase the 

percentage capacitance change, which was directly related to sensitivity.  Varying 

electrode thickness did not significantly affect sensitivity (less than 1% difference 

between 0.1and 0.5 mm) and probably would not justify the increased material costs. 
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Figure 28.  Critical parameter for solid electrode pattern 

Modeling was used to evaluate the effect of the ground electrode width and inter-

electrode gap.  Different ground electrode widths (5, 10, 20, 30, 40, 50, 60, and 85 mm) 

and inter-electrodes gaps (5, 10, 20, 30, and 40 mm) were modeled and the results are 

presented in Figure 29.  The sensitivity increased as the inter-electrode gap was increased, 

but the rate of increase drops sharply once the inter-electrode gap reaches 20 mm.  

Successive 10 mm increases in inter-electrode gap from 10 to 20, 20 to 30, and 30 to 40 

mm resulted in sensitivity increases of 73%, 17%, and 5%, respectively.  Due to the need 

to minimize sensor size, the 20 mm inter-electrode gap was preliminarily selected as the 

best balance of performance and size. 
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Figure 29  Modeled capacitance change for solid electrode pattern at different ground electrode 

widths and inter-electrode gaps 

Similarly, increasing the ground electrode width improved sensitivity and 

successive increases in ground electrode width resulted in diminishing increases in 

sensitivity.  Successive 10 mm increases in ground electrode width from 30 to 40, 40 to 

50, and 50 to 60 mm resulted in sensitivity increases of 4.6%, 1.8%, and 1.7%, 

respectively.  There is little return for increasing ground electrode width beyond 50 mm.  

Later experimental testing showed that a wider ground electrode can extend the signal 

width.  This means more data points can be collected from each stalk for a given 

sampling rate, which could benefit post-processing.  However, a wider signal could cause 

the signals from successive stalks to overlap and make discrimination of individual stalks 

more difficult.  A ground electrode width of 50 mm was preliminarily selected as the best 
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compromise between sensitivity, physical size, data points per stalk event, and stalk 

discrimination. 

Solid Electrode Pattern Parameter Determination 

Detection element patterns were fabricated using the copper tape technique and 

tested to evaluate pattern performance and compare analytical and experimental results.  

First, the impact of ground electrode width was evaluated.  The positive electrode width 

and inter-electrode gap were fixed at 2 mm and 20 mm, respectively.  Patterns with 

ground electrode widths of 20, 30, 40, 50, 60, and 70 mm were fabricated and tested.  

The test results are presented in Figure 30.  Second, the impact of inter-electrode gap was 

evaluated.  The positive electrode width and ground electrode width were fixed at 2 mm 

and 50 mm, respectively.  Patterns with inter-electrode gaps of 20, 25, 30, 35, 40, and 50 

mm were fabricated and tested.  The test results are presented in Figure 31.  In these 

laboratory tests, the corn stalks were located at Position 3, which was different from 

Position 1 used in the model.  The sensor-stalk distance was 2.5 cm.  While the results 

can not be used to directly validate the FEM model, the results are useful in identifying 

trends and making relative comparisons. 
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Figure 30.  Modeled and measured  change for different ground electrode widths 
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Figure 31.  Modeled and measured capacitance change for different inter-electrode gaps 
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The experimental relationship between ground electrode width and pattern 

sensitivity was generally similar to the modeled relationship.  Both the simulation and 

testing showed a stronger sensitivity response to ground electrode width when ground 

electrode width was less than 40 mm and a weaker response when ground electrode width 

exceeded 40 mm.  However, the specific shape and magnitude of the response was 

different for modeled and measured performance.  The measured response indicated a 

rate of sensitivity increase greater than that indicated by the modeled response at ground 

electrode widths less than 40 mm.  The average experimental rate of sensitivity response 

to ground electrode width was more similar to the modeled response for ground electrode 

widths exceeding 40 mm.  The average experimental rate of sensitivity response 

indicated a decrease in sensitivity at ground electrode widths greater than 50 mm.  

However, the variability in the experimental measurements at ground widths exceeding 

40 mm was considerable and greater than the variability for ground electrode widths less 

than 40 mm.  Therefore, while the experimental results may indicate a decrease in 

sensitivity, the confidence in the magnitude of these measurements is not high enough to 

conclusively support a difference between modeled and measured behavior. 

The modeled and measured responses of sensitivity to inter-electrode gap were 

also similar in terms of general trends.  The incremental increase in sensitivity was 

greatest at gaps less than 20 mm and attenuated at gaps greater than 20 mm.  However, 

the experimental response did not follow the consistent and smooth curve suggested by 

the modeled results and differs in shape and magnitude.  The measured rate of sensitivity 

increase was greater than the modeled rate at gaps less than 20 mm and less that the 
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modeled rate at gaps greater than 20 mm.  As with sensitivity response to ground 

electrode width, the variability in the measured data was relatively high, therefore, 

confidence in the exact magnitude of the measured values was not high.  Also, the 

average measured rate of sensitivity response to inter-electrode gap did not consistently 

continue to increase at gaps greater than 20 mm, as indicated in the modeled response. 

The variability in the measured data may be a result of several factors.  First, the 

copper tape technique of prototype fabrication was not as precise as the PCB plotter 

method.  Human error in fabrication could have contributed to the variability in the data.  

This might help explain deviations from the expected response between different pattern 

prototypes (i.e., different ground electrode widths or different inter-electrode gaps).  

However, this does not explain the variability in the measurements from a single 

prototype.  Variability in the results from a single prototype was likely due to the 

sensitivity of the test equipment connections.  The magnitude of the prototype pattern 

base capacitance was on the order 1 pF.  Even the short leads that were used to connect 

the LCR meter to the prototype patterns had a significant capacitance with respect to that 

of the patterns.  Therefore, even relatively small changes in the positional relationship 

between the connecting leads could have a significant impact on the measurements.  

While careful laboratory procedures minimized the impact of the connection lead 

capacitance, some variability was unavoidable. 

The combination of the experimental and simulated data supported the selection 

of the following pattern parameters as the best comprise between sensitivity, stalk 
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discrimination, and pattern size: 2 mm positive electrode width, 20 mm inter-electrode 

gap, 50 mm ground electrode width, and 100 mm electrode length. 

The third step in evaluating the pattern performance was to evaluate the response 

to corn stalks with different moisture contents.  The test fixture in Figure 11 was used and 

the stalks were located at Positions 1 through 5 (Figure 24).  Stalk moisture contents of 

10%, 15%, and 21% and sensor-stalk distances of 1.2 cm, 2.5 cm, and 3.7 cm were tested.  

The LCR meter was used to measure capacitance with and without stalk specimens.  The 

relative percentage change in capacitance was calculated from these values. 

The static test results for the final detection element pattern are shown in Table 4 

and Figure 32.  Regardless of specimen position, stalks with higher moisture content 

produced a larger change in capacitance than drier stalks.  As expected, the relatively 

higher dielectric constant associated with wetter stalks had a greater impact on the 

electric field and therefore resulted in a larger capacitance change.  For example, at 

Position 4 and a sensor-stalk distance of 2.5 cm, the capacitance change was -0.52%, 

0.24%, and 0.97% for stalk moisture contents of 10%, 15%, and 21%, respectively.  For a 

given stalk moisture content and position, the capacitance change decreased as the 

sensor-stalk distance was increased,.  For example, at Position 4 and a stalk moisture 

content of 21%, the capacitance change was 3.28%, 0.97%, and 0.73% for sensor-stalk 

distances of 1.2, 2.5, and 3.7 cm, respectively.  This result also agrees well with previous 

modeling and experimental results. 

In addition to these general trends, three phenomena were observed.  First, if 

moisture content is sufficiently low, the sensor-stalk distance at which the stalk can be  
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Table 4.  Static test results for the final detection element pattern. 

Moisture 
content 10% 15% 21% 

Sensor-stalk 
Distance 1.2 cm 2.5 cm 1.2 cm 2.5 cm 3.7 cm 1.2 cm 2.5 cm 3.7 cm 

Positions Δ C 

1 -0.44% -0.34% 0.27% 0.04% 0.04% 0.63% 0.10% 0.11% 

2 -0.60% -0.49% 0.56% 0.12% 0.06% 1.87% 0.57% 0.12% 

3 -0.67% -0.56% 0.60% 0.19% 0.09% 2.73% 0.82% 0.58% 

4 -0.57% -0.52% 0.46% 0.24% 0.09% 3.28% 0.97% 0.73% 

5 -0.66% -0.68% 0.36% 0.07% 0.08% 3.04% 1.07% 0.50% 

*  Capacitance change at 10% M.C. and 3.7 cm was not measurable 
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Figure 32.  Static test results for the final detection element pattern. 
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effectively detected decreased with moisture content.  Therefore, there is a lower limit to 

the moisture content that can be detected over a given sensor-stalk distance.  Second, it is 

possible that the dielectric constant of the stalk may be low enough to produce a negative 

change in the relative capacitance, even at very small sensor-stalk distances.  In this case, 

the dielectric constant of the stalk is actually lower than that of the ambient air.  Finally, 

it is possible that the dielectric constant of the stalk is so similar to that of the ambient air 

that it will produce no measurable change in the relative capacitance.  In this situation, 

the stalk would be effectively invisible to the detection element.  However, later testing 

indicated that this phenomenon was observed under laboratory conditions that would be 

rather unlikely to occur in the harvesting environment.  The corn is typically harvested in 

September and October when the ambient temperatures begin to decrease.  At these lower 

temperatures, the absolute humidity of the air at saturation decreases and limits the 

maximum dielectric constant of the air.  Also, heavier dew during the night tends to 

increase the moisture content of the stalks, resulting in a higher stalk dielectric constant.  

Extremely moist conditions that could produce this phenomena, such as those associated 

with rainfall events, typically delay harvesting due to the monetary penalty of harvesting 

higher moisture content grain and the potential damage to the fields from harvesting 

equipment in wet conditions. 

Chapter Summary  

In this chapter, a corn stalk population sensor detection element was developed 

and evaluated through FEM analysis and laboratory testing.  In the preliminary tests, the 
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capacitive sensing technique showed potential as a technique to detect the presence corn 

stalks.  The sensing ability was affected by the detection element geometry, stalk 

moisture content, and sensor-to-stalk distance.  However, the effect of moisture content is 

not linear. The largest capacitance change increase occurred in the low moisture content 

range.  Therefore, the detection element is most sensitive to moisture content changes for 

dry stalks, which is desirable. 

FEM was a useful tool for modeling various electrode geometries and optimizing 

the detection element pattern.  While the FEM could not be fully validated by 

experimental results, the model provided useful conceptual information.  The change in 

integrated of energy density (which is linearly related to capacitance) proved to be the 

key parameter in evaluating the efficacy of a detection element pattern in simulation.  

Investigations through both simulations and fabricated prototypes provided a final 

sensing element pattern design.  The final configuration was 72 x 100 mm with a 100mm 

electrode length, a 2 mm positive electrode width, a 20 mm inter-electrode gap, and a 50 

mm ground electrode width. 
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CHAPTER 5 – CIRCUIT DESIGN AND 
EVALUATION 

Once a detection element design was developed, the next logical step was to 

develop the circuitry required to detect and process the capacitance change of the 

detection element.  The basic idea for signal acquisition in this project was to transform 

capacitance variation to voltage variation.  For this circuit the design requirements were:  

1. Effectively transform capacitance variation to a voltage signal, 

2. Maintain an acceptable SNR, 

3. Provide a circuit dynamic response greater than the dynamic response of the 

detection element, 

4. Optimize circuit component values to maximize circuit output sensitivity to 

detection element capacitance change, and 

5. Minimize circuit complexity and physical size to facilitate mounting, improve 

reliability, and minimize manufacturing costs. 

Circuit Design 

There are several ways to transform changes in capacitance to a change in 

frequency.  The first method is a current-to-voltage transformation.  When the 

capacitance in a circuit changes, it can change the circuit current.  This current change 
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can be transformed into a voltage by passing this current through a resistor and measure 

the resulting voltage.  Another way is a current-to-voltage integrated circuit (IC).  The IC 

both amplifies the current and transforms the current into a voltage signal.  The IC is the 

simplest way to carry out capacitance-to-voltage transformation.  However, current-to-

voltage transformations also transform and amplify noise as well as the signal.  

Furthermore, the thermal noise of a resistor may be significantly larger than capacitance-

induced change in this application, resulting in a very low SNR.  

The second method is a capacitance-to-voltage IC (e.g., Analog Device AD7745).  

This method can yield very high resolution (up to 24 bits), but the complex IC design and 

high resolution measurement results in a response rate less than the stalk passage rate 

during harvest.  This type of IC is most commonly used for static sensor design (e.g., 

moisture measurement, impurity detection, etc.). 

The third method is to use an oscillator and a frequency-voltage-converter.  

Capacitance variation is transformed to frequency variation in the oscillator, then 

transformed to a voltage variation by the frequency-voltage-converter.  The oscillator and 

frequency-to-voltage converter method was selected for further development since it had 

the highest potential to meet the design requirements.  A functional diagram of the circuit 

design and data acquisition system is presented in Figure 33. 
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Figure 33.  Functional diagram of sensor circuitry and data acquisition system 

Oscillator Circuitry Background 

An oscillator is a device or mechanism for producing or controlling oscillations.  

A stable electrical oscillator has at least one active device and satisfies two conditions: 

the phase condition and amplitude condition.  The amplitude condition requires that the 

cascaded gain and loss through the amplifier feedback network must be greater than 1.  

When the gain is too low oscillation ceases. When the gain is too high the active device 

saturates and clips the output wave.  The phase condition requires that the frequency of 

oscillation be at the point where loop phase shift totals an integer multiple of 2π (Gottlieb, 

2006).  

The frequency or phase stability can be affected by ambient conditions (e.g., 

temperature or humidity) since the oscillation frequency is determined by circuit 

components.  The operation frequency also can be intentionally changed by adjusting the 

component values.  There are two different types of oscillators: fixed frequency 

oscillators and variable frequency oscillator (VFO) (with variable capacitors or inductors).  

A fixed frequency oscillator can be used to measure capacitance change by measuring the 

phase shift for a fixed frequency oscillation.  However, the phase shift is relatively 

insensitive to small capacitance changes, it is difficult to compensate for phase shift noise, 
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and phase shift is more difficult to measure than frequency change.  Only VFOs can be 

used to convert capacitance or inductance variations to frequency variations, therefore, a 

variable frequency oscillator (VFO) with capacitive elements was selected for this design.  

A VFO can be tuned to select a desired frequency by adjusting the value of one of the 

components.  The variable component is usually a capacitor, but could be an inductor. 

Oscillation is typically generated by amplifying random noise (Figure 34).  Noise 

at a selected frequency is fed back positively and amplified repeatedly.  The amplification 

slows and eventually halts as the output voltage approaches the power rail.  Oscillation is 

the state where the power loss and power supply reach equilibrium.  
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Figure 34.  The oscillation initiation from thermal noise.  
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The Wien Bridge oscillator (Figure 35) is a popular low frequency oscillator 

because it produces a sine-wave output with minimum circuit complexity.  This circuit 

can generate an oscillation using internal thermal noise amplified by an operational 

amplifier.  The Wien Bridge actually is a half bridge in the positive feedback loop of the 

amplifier and produces a maximum response at the resonant frequency.  Negative 

feedback is used to set loop gain to unity at the oscillation frequency, which stabilizes the 

frequency of oscillation and reduces harmonic distortion.  The dependence of the 

oscillation frequency on system components, especially C1 and C2, is useful in converting 

the variance of a capacitor into a change in frequency.  
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Figure 35.  Circuit schematic of a Wien-Bridge oscillator.  
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In the circuit, R1 and C1 form a low-pass filter and R2 and C2 form a high-pass 

filter.  The low-pass and high-pass filters together form a frequency selection circuit. The 

resonant frequency of the oscillator is defined where phase angles of C1R1 and C2R2 are 

equal in magnitude and opposite in direction. This phenomenon induces oscillation.  

Wien Bridge oscillator behavior is better described by a mathematical gain 

analysis (Williams 1991).  From gain analysis, the gain of the entire circuit must be 3 for 

the oscillation to be stable. If the gain is greater than 3, the oscillation is amplified and 

continues to increase until saturation is reached.  If the gain is less than 3, the oscillation 

is attenuated and eventually ceases. Therefore, the stable oscillation frequency is: 

RC
f

π2
1

=
 (5.1) 

where C = C1 = C2 and R = R1 = R2. 

Wien Bridge Oscillator Design 

The physical interaction between the detection element, a corn stalk, and the earth 

is illustrated in Figure 36.  The corn stalk creates a capacitance between the stalk at the 

sensing location and the earth (C7).  Capacitance is also developed between the corn stalk 

and each of the electrodes in the detection element (C3, C4, C5 and C6).  An equivalent 

circuit for the physical interaction between the cornstalk, detection elements, and the 

earth is presented in Figure 37.  In the sensor system design, the detection elements are 

capacitors C1 and C2 in the Wien Bridge oscillator circuit (Figure 38).  The targeted 

capacitances are C3, C4, C5 and C6 and is contaminated by C7.  Grounding the stalks 
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reduces C7 and prevents charge build-up on the stalk.  Later laboratory tests showed that 

the lack of an earth ground for the stalks decreased the signal strength.  Fortunately, the 

stalks have a direct connection to earth ground in the harvest environment.  
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Figure 36.  Physical representation of detection element interaction with corn stalk  
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Figure 37.  Equivalent circuit representation of detection element interaction with corn stalk 
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Figure 38.  Circuit schematic of a Wien-Bridge oscillator including the detection elements and corn 
stalk.  

A corn stalk is a dielectric material with a dielectric constant typically higher than 

the ambient air.  When the stalk approaches the detection elements, C1, C2, C3, C4, C5 and 

C6 increase.  The combined capacitance change affects the oscillator circuit and creates a 

corresponding frequency change.  The change ratio (Δ Ccombined/ Ccombined) is more critical 

than the base capacitance values because it represents the sensor sensitivity.   

Initially, a general purpose amplifier (741) was used for the oscillator 

development.  However, both the Pspice model and laboratory testing showed that the 

oscillation output frequency cannot exceed 150 KHz.  Therefore a higher-speed amplifier 
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(Linear AT 1354) was chosen.  This amplifier had a 12MHz Gain-Bandwidth and a slew 

rate of 400V/µs.  The slew rate is the maximum rate of change in the amplifier output.  

The AT-1354 will theoretically allow the oscillator to operate at a frequency up to 4 MHz 

without excessively distorting the signal. 

The oscillator was modeled using Pspice, a commercial circuit modeling package.  

A milliamp level thermal noise current was used to initiate the oscillation and the 

capacitances were kept constant (1.3 pF) during the simulation to isolate the influence of 

the two resistors R1 and R2.  The modeled oscillator response indicated that the Wien 

Bridge oscillator can generate a steady frequency output when the capacitances and 

resistances are stable.  The output frequency changed when either the capacitances or 

resistances changed, but the two capacitors (C1 and C2) and the two resistors (R1 and R2) 

do not equally impact frequency change in the circuit.  The capacitances (C1 or C2) are 

determined by the geometry of the detection element and dielectric constant in the 

sensing field.  The resistances (R1 and R2) can be used to select the base operating 

frequency.  The modeled effects of R1 and R2 (Table 5) indicated that when either 

resistance is increased, the base operating frequency of oscillator decreased.  The model 

also showed that the oscillator behavior was not stable for all values of R1 and R2. 
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Table 5.  Modeled frequency output of oscillator for different bridge resistances  

C1 = C2 = 1.3 pF Frequency (KHz) 

Resistance (KΩ) R1 (R2 = 50 KΩ) R2 (R1 = 50KΩ) 

1 * 1211.4 

25 * 1042.2 

50 963.9 963.9 

75 789.5 876.1 

100 667.5 826.0 

125 581.5 736.1 

150 520.1 655.5 

175 465.5 589.4 

200 422.0 541.7 

225 384.5 499.5 

250 353.3 460.6 

275 327.7 441.1 

300 306.3 * 

325 287.8 * 

350 270.8 * 

* No stable oscillation. 
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The circuit was evaluated in the laboratory once modeling was completed.  Since 

the capacitive elements in the Wien Bridge oscillator are the detection elements, the 

values of R1 and R2 that would maximize the sensitivity of the oscillator output to 

detection element capacitance change needed to be determined.  The oscillator was 

fabricated on a printed circuit board with potentiometers for R1 and R2.  Each resistor was 

varied by adjusting the potentiometers from approximately 10 to 250 kΩ while fixing the 

other resistor at approximately 50 kΩ.  Both capacitors (C1 and C2) were fixed at 1.3 pF 

and a universal counter was used to measure the oscillation frequency.  The experimental 

results are presented in Table 6. 

Table 6.  Measured frequency output of oscillator with different resistances 

C1 = C2 = 1.3 pF Frequency (KHz) 

Resistance (KΩ) R1 (R2 = 50 KΩ) R2 (R1 = 50KΩ) 

10 499 170 

25 246 161 

50 152 152 

100 89.5 149 

150 66.8 158 

200 49.8 170 

250 52.3 180 
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The experimental results indicated that when R1 is increased, the base operating 

frequency of oscillator decreases.  However, changing the value of R2 has little effect on 

the base operating frequency.   

The data were plotted to graphically compare trends (Figure 39 and Figure 40).  

In both figures, the difference between the simulated output from Pspice and measured 

output from printed circuit board was considerable.  For example, when R1 and R2 were  
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Figure 39.  Modeled and measured effect of R1 on the oscillation frequency 
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Figure 40.  Modeled and measured effect of R2 on oscillation frequency  

50 KΩ, the measured and modeled responses were 152 and 950 KHz, respectively.  The 

difference was probably due to the low sensor capacitance coupled with parasitic 

capacitance on the PCB.  The sensor capacitance was less than 1.5 pF and the complex 

circuit board layout introduced parasitic capacitors into the circuit which could have been 

of the same order of magnitude as the sensor capacitance.  Parasitic capacitances are both 

unmeasurable and unstable.  The addition of parasitic capacitances results in a very 

complex capacitance space with complex interactions.  The Pspice model does not 

accurately represent the actual circuit if the parasitic capacitances are significant.  Figure 

41 illustrates the impact of parasitic capacitance on circuit and modeling complexity.  

Parasitic components result in a much more complex circuit, especially, when the 

parasitic components are of the same order of magnitude as the operational components.  
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Figure 41.  Typical OPAMP circuit, as designed (a) and with parasitic (b) (Analog Devices, 2005) 

By comparing Figure 39 and Figure 40, the experimental and modeled results of 

the effect of R1 share a similar trend, but differ considerably in magnitude.  However, 

there is little similarity to be found between the modeled and measured results with 

respect to R2.  While the modeled data indicated a significant response to R2, measured 

results indicated that the response is almost constant with respect to R2. 

It is logical to focus on using the measured results to complete the oscillator 

design considering the large discrepancies between the modeled and measured results 

along with the fact that the model likely does not accurately represent the actual circuit 

behavior.  Therefore, the optimal values of R1 and R2 were determined experimentally.  A 

two-dimensional test matrix was developed for R1 and R2 with resistance values of 10, 25, 

50, 100, 150, 200, and 250 KΩ.  The oscillator and detection elements were attached to 

the static test fixture described in Chapter 4 and a rubber rod with a dielectric constant of 

8 was used as the test specimen.  The base frequency was measured for each test 
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condition (R1 and R2) with and without a specimen and the relative change in oscillator 

frequency was calculated.  

The oscillator output frequency change with respect to R1 and R2 is shown in 

Figure 42.  The darker areas indicate regions of higher sensitivity.  Three relatively 

sensitive areas (Areas 1, 2, and 3) were identified.  Area 1 represents only a local, not 

global, maximum.  Area 2 is located in a region where stable oscillator behavior is 

questionable.  Experimental measurement of frequency in this area showed a large drift.  

Therefore, Area 3 was chosen to represent the optimum combination of R1 and R2.  The 

selected values of R1 and R2 were further refined in the laboratory to determine the 

optimum operational parameters resulting in final values of 43 KΩ and169 KΩ for R1 and 

R2, respectively.  The base output frequency of the Wien Bridge oscillator was 245 KHz. 

Two corn stalk specimens (10 and 85% moisture content) were used to confirm 

adequate function of the oscillator.  The measured frequency changes were 9 and 0.4 kHz 

for stalk moisture contents of 10 and 85%, respectively.  These frequency changes 

relative to the 245 kHz base frequency were 3.7 and 0.16%, respectively. 
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Figure 42.  Sensor sensitivity with R1 and R2. 

Frequency to Voltage Converter Background  

A commercially available PLL IC was used as an Frequency-to-voltage converter.  

A popular general purpose PLL IC, 74HCT4046, was selected for this PLL design.   

A PLL is a circuit that synchronizes an output signal with a reference signal with 

respect to frequency and phase.  When the PLL is locked, the phase error between the 

oscillator output and the reference will either be zero or remain constant.  There are three  



 

94 

 
Figure 43.  Phase-locked loop functional schematic 

basic functional blocks in a PLL (Figure 43): a voltage-controlled oscillator (VCO), a 

phase comparator (PC), and a low pass filter (LF).   

There are three different types of phase comparators (PC) available in the selected 

PLL: an exclusive or (XOR), J-K flip-flop, and a phase-frequency comparator (PFC).  

Although a linear multiplier is not included in the selected PLL, it is useful to examine 

this type of phase comparator to better understand the function of a PLL.   

For a linear multiplier phase comparator, two inputs are required: an input signal 

and the output from a VCO.  A sinusoidal input signal, u1(t), is generally assumed: 

)sin()( 11101 θω += tUtu  (5.2) 

where U10 is the amplitude of the input signal, ω1 is the radian frequency, and θ1 

is the phase.  Generally, the VCO output, u2(t), is a square wave: 

)()( 22202 θω += trectUtu  (5.3) 

where “rect” is square waveform, U20 is the amplitude of the input signal, ω2 is 

the radian frequency, and θ2 is the phase. For simplification, the phases are 

assumed to be constant over time. So, the product of the inputs, ud , is: 
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)()()( 21 tututud ⋅=  
])3cos(

3
4)cos(4)[sin()( 2222112010 ⋅⋅⋅+++++= θω
π

θω
π

θω tttUUtud  (5.4) 

If the PLL is locked, the frequencies ω1 and ω2 are identical, therefore: 

⎟
⎠
⎞

⎜
⎝
⎛= ed UUtu θ

π
sin2)( 2010  + high frequency component  (5.5) 

where θe is the phase error.  The first term is the DC component and the high 

frequency component is attenuated by a low pass filter.  

The EXOR type phase comparator is level-sensitive, while the JK-flip-flop and 

PFC types are edge-sensitive.  Therefore, the EXOR is less noise-sensitive and is 

typically used in high noise environments.  The PFC behaves differently dynamically 

than the other PCs in that its output signal depends on not only on phase error but also on 

frequency error.  The PFC generally will lock under conditions where the other PCs will 

not and therefore is preferred when operated in low noise environments (Best, 1999).  

There are three types of first-order low pass filters that are used with PLLs: a 

passive lead-lag filter, active lead-lag filter, and active proportional-integral (PI) filter.  

The passive lead-lag filter has one pole and one zero. It is transfer function F(s) is given 

by: 

)(1
1)(

21

2

ττ
τ
++

+
=

s
ssF  (5.6) 

where τ1=R1C and τ2=R2C.   

The zero of this filter is crucial because it has a strong influence on the damping 

factor of the PLL system.  The active lead-lag filter is similar to the passive but has an 
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additional gain term Ka, which can be chosen to be greater than 1.  The transfer function, 

F(s), is given by: 

1

2

1
1)(

τ
τ

s
sKsF a +

+
=  (5.7) 

where τ1=R1C and τ2=R2C, and Ka = C1/C2.   

The active PI filter’s transfer function is given by: 

1

21)(
τ

τ
s

ssF +
=  (5.8) 

where τ1=R1C and τ2=R2C. This filter has a pole at s = 0 and therefore behaves 

like an integrator.  

There are four key parameters specifying the frequency range in which the PLL 

can be operated (Best, 1999): 

1. Hold range:  The frequency range over which a PLL can statically maintain 

phase tracking.  A PLL is conditionally stable only within this range.  

2. Pull-out range:  The dynamic limit for stable operation of a PLL.  If tracking is 

lost within this range, a PLL normally will lock again, but this process can be 

relatively slow if it is a pull-in process. 

3. Pull-in range:  The range over which a PLL will always become locked, but the 

process can be relatively slow. 

4. Lock range:  The frequency range within which a PLL locks within one cycle 

between reference frequency and output frequency.  Normally the operating-

frequency range of a PLL is restricted to the lock range. 
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Figure 44.  Scope of the static and dynamic stability limits of a linear second order PLL 

The relationship between these parameters is graphically represented in Figure 44. 

Frequency-to-Voltage Conversion Design 

The basic requirement for a PLL design is to relock the PLL in a short time when 

frequency changes.  This means the PLL can track input frequency change.  As 

previously discussed, the capacitance change of the detection elements is a relatively 

slow process.  This continuous slow capacitance change induces a continuous slow 

frequency change.  Therefore, once the frequency is locked, the frequency change will 

generally be in the lock range where very little time is required to relock the PLL. 

The operation frequency band and dynamic properties (e.g. lock-up time, 

bandwidth, and stability) of the PLL needed to be determined.  The operation band is 
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determined by its central frequency and offset frequency (Figure 45).  The central 

frequency is the VCO output frequency when the VCO input voltage is half the PLL 

supply voltage (½ Vcc) (Austin, 2002).  The PLL central frequency was matched to the 

oscillator output frequency (245 kHz) by selecting external components (resistor R11 and 

capacitor C11) (Figure 45).   

The offset frequency is half the linear operating band width.  The PLL output 

resolution (V/Hz) is the allowable linear output voltage range (Vmax-Vmin) divided by the 

operating band width.  A smaller offset frequency will therefore increase PLL output 

sensitivity.  However, the output voltage can be saturated if the offset frequency is too 

small.  The operating band width should be large enough to contain the entire output 

range of the oscillator.  Previous tests showed that a high moisture content stalk (MC = 

85%) produced a 9 KHz change in oscillator output frequency.  A safety factor of 2 was 

used to ensure the operating band width would contain all reasonable oscillator output 

frequencies and baseline drift.  An offset frequency of 20 kHz was selected, which 

corresponds to an operating band width of 40 kHz. The offset frequency was set by 

selecting an appropriate value for the external resistor R12.   
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Figure 45.  PLL center and offset frequencies (linear operation) 

Approximate values for the external components (R11, R12, and C11) were 

determined by referring VCO performance curves in the PLL datasheet (Appendix B).  A 

value of 10 nF was selected for C11 and the power supply voltage for PLL was 5 V.  The 

desired center and offset frequencies were obtained at resistances of approximately 100 

and 50 KΩ for R11 and R12, respectively.   

Final values of the external components were determined experimentally by using 

a programmable power supply (HP E3631A) and a universal counter.  The programmable 

power supply was used as the VCO input and 10 nF was selected for C11   The 

programmable power supply was set to one-half Vcc (2.5 V) to produce the center 

frequency on the VCO output pin.  The VCO output was measured using the universal 

counter and R11 was adjusted to obtain the target output frequency.  The power supply 
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voltage was changed to Vmin (0.9V)and Vmax (4.1V) and R12 was adjusted to obtain the 

desired offset frequency (20 kHz).  The final values for C11,  R11, and R12 were 10 nF, 100 

KΩ, and 33 KΩ, respectively.   

The dynamic properties (lock-up time, PLL bandwidth, and the desired stability) 

of the PLL are determined by its low pass filter, therefore the low-pass filter is a critical 

component in the design.  Assuming a corn stalk diameter is 1 centimeter (an extremely 

small stalk diameter), a combine harvesting speed of 6.5 km/h (an extremely high harvest 

speed), and an average stalk gap of 10 cm (15 cm typically), the stalk appearance 

frequency is 18 Hz with a 5.5 ms passing time for each stalk.  These two values represent 

a reasonable upper limit for corn harvest.  The actual sensor response was considerably 

slower than 5.5 ms (more details provided later).  For this design, the lock-up time was 

set at 2 ms with a damping factor (ξ) near 0.7 (0.4 < ξ < 1).  The design lock-up time was 

approximately one-third the expected minimum passing time.  A damping factor near 0.7 

provided a good balance between stability and speed.  Phillips PLL design software was 

used to determine initial component values for the low pass filter. 

The final component values for the low pass filter were determined 

experimentally after connecting the oscillator and PLL circuit.  A dynamic test simulated 

dynamic field conditions and was used to test the sensor’s dynamic response properties.  

The low pass filter component values were adjusted to increase the SNR while 

reasonably sacrificing dynamic performance, since the designed 2ms lock-in time is far 

faster than the sensor response.  The peak-to-peak noise magnitude was approximately 80 

mV and the signal level was typically greater than 1 V.  Therefore, the final SNR was 
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greater than 10 in laboratory testing.  The final values of the low-pass filter were 1200 pF 

and 200 KΩ for C13 and R13, respectively. 

Amplification for DAQ Interface  

An operational amplifier (OPAMP) was used to provide impedance matching of 

the PLL output and DAQ input, bias offset adjustment of the PLL output, improved 

digital acquisition resolution, and improved SNR in the acquired signal. 

An AD627 amplifier was used (Figure 46) because of its simple circuit 

configuration.  This device offers flexibility by allowing the user to set the gain of the 

device with a single external resistor (RG).  With no external resistor, the AD627 is 

configured for a gain of 5.  The amplifier output voltage (Vout) for a given input (Vin+), 

reference voltage (Vref) and offset voltage (Vin-) is given by: 

refGininout VRVVV +Ω+×−−+= )/2005()]()([     (5.9) 

 

Figure 46.  Active amplifier AD 627 schematic graph 
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The input signal to theAD 627 was the PLL output to the low-pass filter and the 

OPAMP output was connected to the DAQ.  The amplifier gain was set to 5 by leaving 

the RG terminals open.  An adjustable offset voltage was connected to the inverting input 

of the AD627 to remove the PLL output base voltage (0.9 V).  This allowed maximum 

amplification (5X) without exceeding the dynamic range (± 5 V) of both the AD627 and 

DAQ.  The offset voltage also allowed for baseline drift compensation in the field by 

resetting the zero output point.   

There are two possible PLL output pins.  One pin is the demodulator output, 

which has  high output impedance.  The other output pin which serves as the input to the 

low-pass filter.  The output impedance of this pin is dependent in part on the external 

low-pass filter components.  Experimental testing showed that the low-pass filter pin had 

a much better SNR than the demodulator output pin.  Therefore, this pin was used as the 

PLL output signal.  However, the input impedance of the DAQ was somewhat low (144 

kΩ).  Connecting the DAQ input to the low-pass filter pin significantly changed the 

properties of the PLL low-pass filter and adversely impacted PLL function.  The addition 

of the AD627 (20 GΩ input impedance) between the PLL and DAQ eliminated the 

impact on the PLL low-pass filter and restored proper PLL function. 
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Laboratory Evaluation of Detection Element and Circuit 

Methodology 

The detection elements and supporting circuitry were fabricated using the PCB 

plotter to evaluate the sensor system circuitry (two detection elements, oscillator, PLL, 

and OPAMP) including any parasitic capacitance effects.  Two dynamic test fixtures 

were used to evaluate the sensor system circuitry.  One fixture (Figure 47) allowed the 

specimen passing speed to be adjusted from 0 to 5 m/s and was used for dynamic 

response testing.  The other (Figure 48) was used to better simulate field harvest 

conditions and the interaction of multiple stalks.  Corn stalks in this fixture were 

grounded by a conductive wire to simulate earth grounding. 

In the first fixture (Figure 47), a 90-V DC variable speed motor was used to 

control the speed of the flywheel.  Holes at various intervals on the flywheel were used to 

simulate the variable gaps between stalks in the field.  The sensor was mounted on the 

top of the fixture and the specimens were passed by the sensor.  Corn stalks with different 

moisture contents (ranging from 18% to 35%) were placed on the flywheel and tested at 

different speeds (1, 2, 3, 4, and 5 m/s).  Sensor-stalk distances of 0.5, 1.0, 1.5, 2.0, and 

2.5 cm were evaluated. 
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Figure 47.  Schematic of the first dynamic test fixture 

The pitfall of the first test fixture is that the corn stalk could not pass the sensor 

parallel with the sensor electrode.  The stalk reaches the low right corner first and leaves 

the low left corner last.  This required the fabrication of another fixture that better 

simulated the passage of stalks in a field environment.  In the second fixture, a 

rectangular wood frame was built (Figure 48).  Two rows of one-inch diameter holes 

were drilled at center-to-center distances of 5, 7.5, and 15 cm.  An informal survey 

conducted in the field (August 2006) indicated that more than 95% of corn stalks were 

spaced greater than 10 cm apart and less than 2% of the stalks were spaced less than 5 cm 

apart.  Corn stalks chosen randomly in the field were placed in the fixture and a wire 

connected to an earth ground was tied to the corn stalks.  Two steel rails attached to the 
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floor were used to guide the wood frame along a straight path.  The OPAMP portion of 

the supporting circuit was not used during these tests and the PLL output was measured 

using a digital oscilloscope (Tektronix TDS-3014).  An infrared transmission optical 

sensor was also used to more  

 

Figure 48.  Schematic of the second dynamic test fixture. 
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Figure 49.  The second dynamic test fixture 

precisely locate the stalks and correlate the sensor output with actual stalk location.  The 

two sensors were mounted beside the frame with 9.5 cm between the centerlines of the 

two sensors. 

In the second fixture test, stalks harvested from field were placed in the frame.  

Data were collected over a one month period as the stalks were allowed to air dry.  The 

stalk samples were harvested on Aug 11th, 2006, and had an average stalk moisture 

content of 85% at harvest.  The leaves and ears were carefully removed to minimize the 

effect from leaves and improve the optical sensor reference.  The samples were mounted 

into the holes with different gap combinations.  Two oscilloscope channels were used to 

simultaneously record both sensor outputs.  The fixture was pushed to move it along the 

Sensor 
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rail channel at speeds ranging from 0.8 to 1.48 m/s (1.8 – 3.31 mph), which is 

representative of the harvesting speed range (2 – 3 mph).  The test was repeated every 

three days to represent a range of moisture contents. Parameters such as stalk spacing, 

sensor-to-stalk distance, and sensor position were kept constant.  At the end of one month 

of testing, the average moisture content decreased from approximately 85% to 25%.  The 

individual stalk moisture content ranged from 15% to 35% in the last test, which was 

conducted on September 6th, 2006, one week before the preliminary field test.   

Results 

The first dynamic test fixture was used to investigate the relationships between 

the signal width, signal magnitude, harvest speed, the sensor-stalk distance, and stalk 

moisture content. The definitions of signal width and signal magnitude are shown in 

Figure 50; positive signal peaks correspond to stalks, signal width is the time gap 

between two stalk peaks, and signal magnitude is the voltage difference between a stalk 

peak and the baseline voltage. 

Figure 51 shows the signal width at different harvest speeds when the corn stalk 

moisture was 35% and the sensor-stalk distance was 2 cm.  The signal width decreased 

when the operation speed increased. The relationship between signal width and operation 

speeds was nearly linear, which was expected. 
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Figure 50. Definition of signal width and signal magnitude  
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Figure 51.  Signal width at different operating speeds (first dynamic fixture test) 
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Figure 52.  Signal magnitude at different corn stalk moisture contents (first dynamic fixture test) 

Figure 52 illustrates the signal magnitude at different corn stalk moisture contents 

when the operation speed was 4 m/s and the sensor-stalk distance was 2 cm. The signal  

magnitude increased when the moisture content increased.  The rate of signal magnitude 

increase was 1.46 mV/%MC and 0.52 mV/%MC for moisture content range of 18% to 

25% and 30% to 35%, respectively.  The signal sensitivity was greater at low moisture 

content.  Similar behavior was observed in the static preliminary test (Figure 13), . 

Figure 53 shows the signal magnitude with respect to the sensor-stalk distance 

when the operation speed was 4 m/s and moisture content was 35%.  The signal 

magnitude was dramatically affected by the sensor-stalk distance.  The rate of signal 

strength decrease was much larger when the stalk less than 2 cm from sensor  
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Figure 53.  Signal magnitude at different sensor-stalk distance (first dynamic fixture test) 

(approximately 5.7 mV/mm) as compared to when the stalk was more than 2cm from the 

sensor (approximately 1.2 mV/mm). 

The second fixture was used to better simulate some aspects of the field 

environment and to investigate the relationship among multiple corn stalks.  The results 

of the first test are shown in Figure 54.  The upper plot was the signal from the capacitive 

sensor and the lower plot was from the optical sensor.  The gap between two corn stalks 

was 15 cm.  The positive peak corresponded to a stalk for the capacitive sensor and the 

negative peak corresponded to a stalk for the optical sensor. 
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Figure 54.  Sensor output  from first test using the second dynamic test fixture 

The gap between stalks did affect the output signal shape. The sensor output did 

not completely return to baseline levels after the passage of each stalk.  Instead, the corn 

stalks signals overlap with each other.  By inspecting the last corn stalk signal, the 

capacitive sensor required approximately 70 ms to discharge from peak to baseline levels.  

This recovery time was far longer than the average signal width (30 ms) at a speed of 1 

m/s.  The slow response explains why successive stalk signals were overlaid.  The 

overlaid signal pattern could affect stalk discrimination.  However, even at high stalk 

moisture contents (~85%) and a 15 cm gap (average gap), the individual stalks can still 

be discriminated.  When moisture content was lower, the successive stalk signals were 
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easier to separate for a given stalk spacing because dry stalks produced lower peak signal 

magnitude and required less time to return to baseline output levels. 

The absolute air humidity can also affect the signal shape.  There was a signal 

output magnitude below the baseline after the corn stalks that represented the wood frame, 

which is wider and drier than any corn stalk.  The signal magnitude was below the 

baseline when the wood frame passed the sensor.  The dielectric of the wood would have 

to be lower than the dielectric constant of the ambient air for this to occur.  The dry air 

dielectric constant is 1.0005 (εvacuum = 1).  However, the ambient air is a mixture of dry 

air and water vapor.  The baseline represents the ambient air dielectric constant, which 

changes with psychrometric properties.  Any material with a lower dielectric constant 

than ambient air will generate a signal below the baseline.  If stalks have a dielectric 

constant close to that of ambient air, it will be difficult for the sensor to discriminate 

between a corn stalk and air.  However, as previously discussed, a stalk with a dielectric 

constant lower than that of ambient air is unlikely to exist under field conditions. 

Tests performed at two different speeds on the same day are presented in Figure 

55.  The two signal patterns were similar; but the signal strength was somewhat different.  

For example, the peak-to-peak magnitude of the ninth stalk was 0.88 V and 1.36 V at the 

fast and slow speeds, respectively.  However, the signal pattern from a test conducted at 

higher stalk moisture content (Figure 54) differs considerably from the signal pattern 

from a test conducted at lower stalk moisture content (Figure 55).  The higher stalk 

moisture content was conducted in August and the lower stalk moisture content was 

conducted after the stalks were allowed to air dry for one month.  In the earlier, 
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Figure 55.  Signal pattern comparison between 0.8 m/s and 1.48 m/s test speeds (last test, second 

dynamic fixture) 

wetter test, the sensor output did not fall back to the baseline level until all the specimens 

had passed the sensor.  However, in the later, drier test, the sensor output crossed below 

the baseline level after the passage of some specimens.  This phenomenon was likely due 

to the electronic dynamics of the sensor system.  At higher moisture contents, the high 

signal strength prevented the sensor output from returning to baseline levels.  For drier 

stalks the sensor output had sufficient time between stalks to return to baseline levels and 
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the electronic dynamics of the sensor was capable of driving the sensor output below the 

baseline levels before the next stalk forced the output to recover. 

Chapter Summary 

The final sensor circuitry design used a Wien Bridge oscillator, a PLL, and an 

OPAMP to transform a very small change in detection element capacitance to an output 

voltage change.  While the Pspice model was useful in concept, the modeled results did 

not agree well with the experimental results.  The Pspice model did not accurately 

represent the physical circuit due to the significant impact of parasitic capacitance.  

However, experimental development of the sensor circuitry was successful. 

Based on the laboratory evaluations, the sensor and data acquisition systems met 

the design requirements: 

1. The sensor system effectively transformed the capacitance variation to a voltage 

signal.   

2. The base capacitance of the sensor was 1.3 pF and the change due to the presence 

of a stalk was less than 1% of the base capacitance.  The circuit sensitivity proved 

sufficient to detect the presence of corn stalks with a wide range of moisture 

contents (approximately 10%-85%). 

3. SNR was acceptable and typically exceeded 10. 

4. The dynamic response of the sensor circuits was sufficient to detect capacitance 

changes in the detection elements and the dynamic response of the sensor system 
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was sufficient to discriminate between adjacent stalks spaced 7.5 cm apart over a 

wide range of stalk moisture contents (approximately 10%-85%). 
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CHAPTER 6 – PRELIMINARY FIELD TEST 

Both the static and dynamic tests showed that the sensor was able to detect the 

corn stalks in a laboratory environment.  A field evaluation was necessary to ensure the 

sensor has a similar performance in a production environment. Before a final field test 

was conducted, a preliminary field test was used to investigate some critical factors that 

could potentially affect the success of the final field test: stalk moisture content, physical 

sensor mounting, efficacy of the data acquisition system, signal pattern, and sensor 

efficacy.  Without a full understanding of these factors, the final field test could be a 

partial or complete failure.  The pitfalls found in the preliminary test were used to 

improve the sensor in the laboratory before the final test.   

The purpose of the preliminary field test was to:  

1. Design, assemble, and test the sensor mount and sensor housing 

2. Investigate the moisture content distributions across adjacent stalks 

3. Test the sensor and data acquisition system under realistic harvesting conditions 

4. Perform simple analysis of the collected signals and improve the sensor as 

necessary 
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Sensor Enclosure and Mounting Design 

Sensor enclosure is important for mounting and protecting the sensor in a realistic 

production field test.  An effective sensor housing system assures the sensor will survive 

in the mechanically violent harvesting environment without interfering with the function 

of the sensor and prevent damage from environmental exposure (i.e. wind, rain, dirt, UV, 

etc.).  An effective sensor mount will maintain a fixed position and protect the housing 

from physical damage from the effects of normal mechanic impacts during harvest (corn 

stalks, weeds).  The sensor could be struck more than 10 times per second by both corn 

stalks and weeds.  A sensor without protection will collect a tremendous amount of dust 

in a short time, which could affect circuitry performance and change sensor capacitance 

properties.   

The correct selection of sensor housing material was critical to maintain optimum 

performance while still protecting the sensor.  An electromagnetically transparent 

material was required.  Any metal material would shield the sensor from the corn stalk’s 

influence.  Therefore, only non-metalic materials were considered.  However, most non-

metallic candidates with good electromagnetic permeability were rejected because of 

their low structural rigidity. Glass-reinforced polystyrene (fiberglass) was selected since 

it exhibits both acceptable mechanical and electrical properties.  Other research showed 

that fiberglass has been widely used for radar enclosures (Moorehouse and Bradish 2006).  

This fact reinforced the decision to choose fiberglass for the sensor housing. 

Several factors (e.g. fiberglass effect, air gap effect, and sensor mount material 

effect) needed to be tested in the laboratory to minimize the impact of the housing on 
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sensor function.  An air gap was left between the sensor surface and the fiberglass 

housing to prevent direct contact between the sensor and the housing and minimize the 

transmission of mechanical impacts from the housing to the sensor.  However, this gap 

increased the sensor-to-stalk distance and needed to be minimized.  A minimum gap of 2 

mm was selected as the best balance between sensor function and protection, resulting in 

a 5.3 mm increase in the sensor-stalk distance (including 3.3 mm fiberglass thickness).   

The static test fixture was used to evaluate potential impacts of the fiberglass 

housing and air gap on sensor behavior.  The sensor was attached to the fixture with and 

without the housing and a rubber rod with a dielectric constant of 8 was used to test the 

impact of the enclosure.  The sensor-stalk distance was set at 2 cm from the detection 

element surface without the housing and the sensor-stalk distance was set at 2 cm from 

the surface of the fiberglass housing with the housing in place.  The absolute signal 

magnitude was approximately 1.3 V without the housing and 1.5V with the housing in 

place.  The 200 mV reduction was significant but did not excessively degrade the ability 

of the sensor to detect stalks.  Therefore, glass-fiber reinforced polystyrene was used to 

fabricate the sensor housing and the detection element was positioned 2 mm from the 

inside surface of the housing.  

The sensor mount was designed to attach the sensor housing to the irregular 

surface of the corn header, guide the stalks close to the sensor housing, and help protect 

the sensor system from mechanical impacts.  The mounting fixture consisted of two parts 

with one part mounted on each side of the row. One side of the fixture provided sensor 

mounting and the other side helped guide the corn stalks and push them closer to the 
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sensor surface to reduce sensor-stalk distance and increase the signal strength.  The main 

challenges of the mount design were to avoid knocking down stalks and causing the corn 

header to clog during harvest.  A streamlined shape was used to minimize stalk knock-

down and clogging.  A triangular metal wedge on the sensor mount was used to protect 

the housing from direct stalk impact.  The initial design concept is shown in Figure 56.  

The materials for sensor mount needed to be selected carefully.  From a purely 

mechanical point of view, steel was the ideal material since it is strong, rigid, low cost, 

and simple to fabricate.  However, metallic materials could impact the sensor 

performance.  The need to investigate the potential influence of steel on sensor 

performance was compounded by the fact that the sensor would be mounted in close 

proximity to steel components of the corn header.  The second dynamic test fixture was 

used to test the influence of steel on the sensor.  A steel plate with area of 50 cm × 50 cm 

was attached to the back of the sensor housing.  When the test stalks were placed in front 

of the sensor, no measurable difference was observed in the sensor output with and 

without the steel plate attached to the back of the sensor housing.  Therefore, the sensor 

mount was fabricated from steel. 

The sensor housing and mounting hardware installed on the corn header and field-

tested over a three-hour harvesting period.  After harvesting, the sensor produced stable 

signals and the sensor housing showed no noticeable wear.  From direct observation and 

video replay, it was found that corn stalks could pass the sensor mount smoothly without 

any sensor-mount induced knock-down or clogging.  The stalks also were gently pushed 

close to the sensor surface by the stalk guide.  Therefore both the sensor housing and  
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Figure 56.  Sensor mounting fixture. 
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mount were found to be effective and no modifications were required before final field 

test. 

Stalk Moisture Content Distribution 

Knowledge of the actual stalk moisture content distribution pattern was important 

for the experimental design of the final field evaluation.  , Stalk sample collection and the 

experiment design for the final field test could be simplified if moisture contents between 

two adjacent stalks were highly correlated.  However, if the correlation was low, 

statistical considerations would be necessary for the experiment design of the final field 

test. 

Three stalk rows were chosen to determine localized and field-wide stalk moisture 

content distributions.  Observation of the visible condition of corn stalks in the field was 

used in an attempt to select three stalk rows representative of low, medium, and high 

stalk moisture content.  Ten successive stalks were cut from each stalk row and samples 

approximately 20 cm in length were cut from the stalks approximately 75 cm above the 

stalk root.  The stalk samples were marked and transported to the laboratory in sealed 

plastic bags where the wet-basis stalk moisture content was determined. 

The moisture content of the three sample rows is shown in Figure 57.  Row 2 was 

very dry (average moisture content was 9.3%) with a coefficient of variability of 9.5%.  

Row 3 was fairly wet (average moisture content was 65%) and had a coefficient of 

variability of 13%.  Row 1 had a large variation in moisture content, with an average 

moisture content of 42% and a coefficient of variability of 57%.  The variability in stalk  
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Figure 57.  Stalk moisture content relationship among continuous stalks 

moisture content indicated that the moisture content of an individual stalk could not be 

predicted based on the moisture content of adjacent stalks.  The results also suggested a 

larger sample would be needed for the final field test and more sentinel stalk samples 

would be needed for correct moisture content representation.   

Preliminary Field Test Procedures 

The preliminary field test was performed at the Milan Experimental Station, 

Milan, Tennessee on September 14, 2006.  A Case-IH 2344 combine with an attached 

Case-IH 1063 6-row corn header was used.  The sensor was mounted in the far right 

harvest row (as viewed from the operator’s station).  A 12-bit DAQ (National Instrument, 

USB-6008) was connected to the sensor output and was controlled by a laptop PC in the 
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combine cab.  One multi-conductor shielded cable (~ 4 m) was used to supply power to 

the sensor system and connect the sensor system output to the DAQ and a three-meter 

USB cable was used to connect the DAQ to the laptop PC.  The DAQ sampling rate was 

set at 10KS/s and the input range was ± 5 V.  A LabVIEW program was developed to 

record and store sensor output waveforms (voltage magnitude vs. time). 

The sensor system was tested by harvesting corn from production fields.  During 

the test, 6 rows of corn stalks were selected.  The number of corn stalks in each row was 

determined by hand counting before harvest.  There were approximately 45 stalks in each 

row.  Stalks that were very close to each other (inter-stalk gap < 8 cm) were marked with 

bright-colored paint that could be detected in video recordings of the harvesting process.  

The marked stalks were used to investigate the discrimination capability of the sensor and 

were also used as flags to correlate the hand count information to sensor output data. 

Sensor System Evaluation and Results 

By design, no anti-aliasing filter was used in the DAQ.  During laboratory testing 

a digital oscilloscope with a 1.25 Gs/S sampling rate and a 100 MHz bandwidth was 

frequently used measure the sensor system output and the frequency content was 

routinely examined.  None of these laboratory test indicated high frequency components 

that could be aliased when the sensor system was digitally sampled at a lower sampling 

rate.  The DAQ output was also directly compared to oscilloscope measurements in the 

laboratory.  Since no significant high frequency content was observed, the maximum 

sampling rate for the DAQ system (10 kHz) was selected for use in the field tests.  In 
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addition, the stalk passage frequency was typically 10 Hz and not likely greater than 18 

Hz.  Therefore, the frequency range of interest is 0 to 20 Hz.  Based on Nyquist theory, a 

10 KHz sampling frequency can accurately represent frequencies from 0 to 5 KHz.  The 

probability of an aliased frequency falling into the 0 to 20 Hz range is 1:250.  By 

comparing the stalk and noise pattern in the low frequency range, it was found that the 

stalk-related signal was much stronger than noise at low frequencies (Figure 58).  This 

means that even if the aliasing components from background noise fall into the frequency 

band of interested, the effect on stalk signals would likely be limited.  Furthermore, the 

design is unlikely to produce high frequency signal components.  First, the capacitive 

sensor was a slow response device; therefore the frequency output of the oscillator and 

the PLL output voltage changed slowly.  Second, the PLL itself is a second order low 

pass filter that filters most high frequency components.  The only probable source of high 

frequency signal content was environmental noise.  The digital oscilloscope was also 

used during the preliminary field test and no high frequency signal content was observed.  

Therefore, the exclusion of an anti-aliasing filter was deemed an acceptable risk at this 

stage of the sensor system development, but should be included prior to 

commercialization. Signal shapes, signal magnitude, SNR, and signal overlay were 

investigated to evaluate the sensor system performance.  Signals were visually inspected 

and signal peaks were counted to estimate the stalk count.  The analyzed data and hand 

counted data were compared (Table 7).  The data showed that the sensor system had 

potential for counting stalks.  The estimated count and hand count were equal for two 

rows and the count error was no more than 2 stalks per sample row with the exception of  
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Figure 58.  Stalk and noise pattern in frequency domain. 

Table 7.  Stalk hand count and sensor estimated count from the preliminary field test 

Row 

 

1 2 3 4 5 6 

Hand count 47 45 41 44 42 46 

Count estimated from measured data 42 44 43 44 43 46 

Error -5 -1 +2 0 +1 0 

Stalk Signal 

Noise 



 

126 

17 18 19 20 21 22 23 24 25 26
-0.5

0

0.5

1

1.5

2

2.5

time (s)

S
ig

na
l M

ag
ni

gu
de

 (V
)

 

Figure 59.  Typical sensor output signal from the preliminary field test 

the first row, which had an error of 5 stalks.  The number of stalks in each row was 

recorded, but not detailed information (e.g. individual location, stalk diameter, location of 

weeds, etc.) for each stalk.  The most important result of this test was that it indicated the 

need to collect more detailed information about the test rows in the final field test. 

A typical sensor output signal is presented in Figure 59.  The peak-to-peak noise 

magnitude was approximately 70 mV.  The average signal magnitude level was 650 mV.  

Therefore, the SNR in preliminary test was close to 10, which was very similar to that 

observed in the laboratory.  Therefore, environmental noise in the field environment was 

not significantly different than observed in the laboratory.  
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Discrimination capability was investigated by examining the signal from closely-

spaced stalks that were marked before harvest. The gap between these stalks was 

measured in the field at 6 cm, which was 25% less than minimum spacing tested in the 

laboratory.  From the figure, the signal peaks corresponding to the two closely-spaced 

stalks can be easily identified through visual inspection.  

A consistent signal shape would be helpful for signal processing and data 

classification.  However, the signal shapes varied significantly (Figure 60).  The second 

half of this graph (> 3.5 s) is much simpler than the first half.  The stalk signal in the 

second half only had one peak for each stalk.  However, each stalk in the first half had 

two peaks, one positive and one negative.  The fact that two very different patterns can be 

produced by the sensor presents a much more difficult situation for pattern recognition.  

Laboratory analysis later found that the two different patterns was a result of a more 

complex capacitance pattern between the stalk and the two detection elements (Figure 61) 

than was originally considered during detection element development.  This more 

complex interaction affected the function of the capacitive sensors (Figure 62).  In theory, 

the two-detection element design theoretically should improve signal strength, but this 

was not always true in the field test.   
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Figure 60. Example sensor output pattern from the preliminary test. 

The capacitive interaction between a stalk and the detection element was 

simplified and the interaction between the two detection elements was eliminated by 

removing one of the detection elements and replacing it with a fixed value capacitor.  By 

experimentally comparing the impacts of the two capacitors in the oscillator, C1 and C2, 

C1 was found to be more sensitive to the presence of a stalk. Therefore, the C2 was 

replaced by a fixed value capacitor of approximately 2 pF.  The new single sensor pattern 

was tested in laboratory and the elimination of the “push-pull” phenomena that occurred 

in the preliminary field test was confirmed.  However, the sensitivity did not show a 

significant change.  This single-capacitor design was used for the final field evaluation 

(Figure 63 and Figure 64). 
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Figure 61.  Physical representation of the more complex detection element interaction with corn stalk  

0

C6

C4C3

C5

C7

C2

C1

 
Figure 62.  Equivalent circuit representation of the more complex detection element interaction with 

corn stalk 
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Figure 63.  Circuit schematic of a Wien-Bridge oscillator with the final detection element 
configuration and corn stalk.  

 
Figure 64.  Photograph of the sensor used for the final field test. 
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Chapter Summary  

The fiberglass sensor housing had little effect on the sensor output but protected 

the sensor components against damage from both mechanical impacts and environmental 

factors with no noticeable impact on performance.  The sensor mount effectively attached 

the sensor housing to the combine header and protected the sensor housing from 

mechanical impacts.  No stalk knock-down or clogging was observed during harvest 

operations. 

The measured stalk moisture content distribution in the field indicated that stalk 

moisture content, between adjacent stalks and across the entire field, varied significantly.  

The moisture content of one stalk could not be used to predict the moisture content of 

adjacent stalks.  Therefore, a larger sample size was needed to represent the wide range in 

moisture content during the final field test. 

The data acquisition system effectively collected and stored the sensor output 

with a SNR of approximately 10.  This SNR proved that both the sensor system and data 

acquisition system were effective in the production environment.  No high frequency 

signal components that could be aliased into the frequency range of interest (0-20 Hz) 

were observed. 

The sensor efficacy was tested by comparing the stalk count estimated from the 

collected data to hand counts.  The small errors between these counts indicated that the 

sensor could effectively be used to count stalks.  However, the more significant finding 

was that more detailed information needed to be collected in the final field test to enable 

a better correlation analysis between sensor output and stalks in the field.  
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One significant problem was identified.  The recorded sensor output showed two 

different sensor output patterns could be produced (Figure 60).  The potentially negative 

impact on later stalk pattern classification was identified and sensor system modifications 

were implemented to correct this problem.  The modification was tested in the laboratory 

and the elimination of the problematic behavior was confirmed.  As a result, one of the 

detection elements in the oscillator circuit was replaced by a fixed-value capacitor to 

produce the final sensor system design which was used during the final field test. 
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CHAPTER 7 – FINAL FIELD EVALUATION 

The final field evaluation was conducted at the Milan Experiment Station, Milan, 

Tennessee on October 11 and 12, 2006.  The combine, corn header, sensor mount, sensor 

housing, and DAQ system were the same as those used in the preliminary test.  The 

sensor was modified as noted in chapter 6.  

Noise Investigations  

Three potential noise sources were investigated: environmental noise, presence of 

weeds, and corn leaves.  Background noise could be caused by mechanical effects, 

electromagnetic interference, or environmental conditions.  Three control tests 

(background noise test, weeds test, and leaves test) were developed to investigate these 

effects.  The speed for these control tests was at 0.9 m/s (2 mph).  The environmental 

effects were investigated by monitoring the sensor behavior during the entire test process 

to identify longer-term variations in sensor behavior that could be associated with 

changing weather conditions.  

Background Noise and Signal Drift 

The first control test was the background noise investigation.  This test was 

performed with the combine running over previously harvested field areas.  The sensor 



 

134 

was exposed to potential mechanical and electromagnetic noise sources in the absence of 

corn stalks or weeds to isolate the impact of background noise.  Although background 

noise could likely include cyclic components, as a whole it can be treated as a random 

event.  Therefore, a Gaussian distribution for the background noise could logically be 

assumed.   

Representative raw and filtered background noise waveforms are presented in 

Figure 65.  The peak-to-peak noise magnitude in the raw data was approximately 100 mV 

(SNR > 2).  The application of a first order low pass Butterworth filter with a cutoff 

frequency at 80 Hz reduced the peak-to-peak noise magnitude to approximately 25 mV.  

In the preliminary field test, the signal strength of a dry stalk was typically greater than 

200 mV, resulting in a SNR greater than 8 for the filtered acquired data.  The similarity 

between the SNR of laboratory tests (SNR > 10) and field tests indicated that the noise 

environments of laboratory and field conditions are similar. 

The same raw noise data was transformed to the frequency domain using a Fast 

Fourier Transform (FFT) (Figure 66).  There was a weak peak around 200 Hz.  The 

magnitude across the rest of the frequency spectrum was relatively constant.  With the 

exception of the single peak, the assumed Gaussian distribution for the background noise 

is reasonable. 

The sensor output was relatively stable over long periods of time when the 

psychrometric properties of the ambient air were relatively stable.  However, when 

psychrometric parameters changed, the sensor signal base drifted.  For example, a signal 

drift of approximately 90 mV occurred over a 60 second period during testing on October  
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Figure 65.  Typical raw and filtered background noise (time domain) 

 

Figure 66.  Typical raw background noise (frequency domain). 

16.39 16.4 16.41 16.42 16.43 16.44

-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

Time (s)

S
ig

na
l M

ag
ni

tu
de

 (V
)

-370 mV

-427 mV

-344 mV
-267 mV

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-10 

10
-8 

10
-6 

10
-4 

10
-2 

10
0

10
2

10
4

frequency (Hz)

R
el

at
iv

e 
M

ag
ni

tu
de

  

Raw 
 
  Filtered 



 

136 

12.  Humidity measurements during that same time period showed that relative humidity 

changed from 75% to 73% and the winds were gusty.   

Comparison of the data collected on October 11 (dry and sunny, RH ≈ 50%) to 

that collected on October 12 (after a light shower, RH ≈ 75%) showed that a baseline 

shift of more than 1 V (10% change of full scale).  The average temperatures for the two 

harvest days were similar (< 5 ºC difference) but there was a significant change in 

humidity.  There was a similar change in sensor baseline from the evening of October 10 

(when the sensor was installed and a function test performed) and the late-morning 

harvest on October 11.  The relative humidity was not measured on October 10, but the 

presence of heavy dew when the sensor was installed indicated that the relative humidity 

was near saturation levels.  It is logical to attribute the baseline drift to weather changes.  

This data confirms that the sensor is sensitive to psychrometric changes in the ambient air.  

However, with the exception of the weed effects testing, no evidence of sensor system 

saturation was observed during harvesting, which indicated the designed bandwidth of 

the oscillator and PLL were sufficient to maintain sensor system functionality over a 

broad range of ambient conditions. 

Weed Effect Investigation 

The second control test was a weed interference investigation.  During this test, a 

field (identified as N26) with high-density sickle pod was chosen for the weed effect 

investigation.  The mature sickle pod had a high moisture content relative to the dry corn 

stalks.  The sickle pod was taller than 1.5 meters and 90% of the weed stalk diameters 
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were thicker than 0.5 cm.  The weeds were dense enough to prevent a human from 

passing and are not representative of a modern production operation.   

Corn stalks were carefully removed from two rows without changing the weed 

pattern and these rows were used to collect pure weed signal patterns.  Both stalks and 

weeds were kept in their original states in four additional rows and these rows were used 

to determine if the sensor could discriminate stalks from weeds.  Figure 67 and Figure 68 

are representative of the filtered (80 Hz, first-order, Butterworth low-pass) time-domain 

sensor output collected from rows in which the corn stalks were removed before harvest 

and rows with both corn stalks and weeds, respectively.  The moisture content of the 

weeds was high enough to saturate the sensor system from time to time, resulting in 

clipped signals as noted in both figures.  No clear difference could be found between 

rows with and without stalks by comparing these two figures.  Therefore, it is unlikely 

that the sensor system can discriminate corn stalks against a background of high-density, 

high-moisture weeds. 

The time-domain signals were transformed into the frequency domain using an 

FFT (Figure 69) in an effort to identify differences between the signals produced by 

weeds with and without corn stalks.  The two signals differ even less in the frequency 

domain.  The stalk information was hidden inside weed noise and the SNR was too low 

to allow stalk detection.   
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Figure 67.  Typical filtered weeds-only sensor output 
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Figure 68.  Typical filtered weeds-and-stalks sensor output 
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Figure 69.  Comparison of weeds-only and weeds-and-stalks filtered sensor output (frequency 

domain) 
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Figure 70.  Comparison of weeds-only and stalks-only filtered sensor output (frequency domain) 

could produce similar overlapping output signals, effectively masking the true frequency 

of weed passage.  While stalks can not be detected against a heavy weed background, the 

very high-magnitude, low-frequency sensor output from the presence of heavy weeds 

may provide a means of identifying areas of high weed density.  This information could 

be used to prevent inaccurate prediction of stalk counts in low weed density areas by 

segregating data from high-weed areas and could be used to flag these areas as an aid in 

improving weed management. 

0 10 20 30 40 50 60 70 80 90 100 
10-6

10-4

10-2

100 

102 

104 

frequency (Hz)

R
el

at
iv

e 
M

ag
ni

tu
de

 

Weeds only 

Stalks only 



 

141 

Impact of Corn Leaves on Sensor Accuracy 

The third control group was used to investigate the effect of corn leaves on stalk 

discrimination.  A long row was chosen for this test where ten adjacent stalks were 

removed and ten left in place to obtain a series of ten-stalk sample rows.  The gap 

between two rows was the length of 10 stalks that were removed.  A total of eight 10-

stalk sample rows were prepared for a total length of approximately 25 meters.  The 

leaves, ears, and weeds were removed in every other sample row, leaving half the sample 

rows in the original field condition.  The signal from the modified stalk rows was 

generated purely by corn stalks and the signals from the unmodified rows were used as a 

basis for comparison to investigate the effect of leaves on the senor output.  

The filtered (80 Hz, first-order, Butterworth low-pass) sensor outputs for stalks 

with and without leaves are presented in Figure 71 and Figure 72, respectively.  Figure 72 

(without leaves) shows a very clean signal pattern from the stalks, as expected.  In Figure 

71 there are some ripples in the signal (indicated by arrows), which could be from leaves.  

Data from two other adjacent sample rows, one with leaves and one without, are 

presented in Figure 73.  In this figure, the sample row without leaves showed a more 

complex signal pattern than sample row with leaves.  The same dataset was analyzed in 

the frequency domain (Figure 74) and no significant pattern difference was found.  The 

unexpected pattern may be due to variability in stalk moisture content and sensor-stalk 

distance, since these two factors may dominate the effect of leaves.  While the leaves 

may have some effect on the signal, in most conditions the impact of leaves are not likely 

to dominate the influence of stalk moisture and sensor-stalk distance. 
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Figure 71.  Filtered sensor output from stalks with leaves (time domain) 
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Figure 72.  Filtered sensor output from stalks without leaves (time domain) 
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Figure 73.  Filtered sensor output from stalks with and without leaves (time domain) 

 
Figure 74.  Filtered sensor output from stalks with and without leaves (frequency domain) 
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Ear Effects 

One impact on sensor output not considered prior to the final field test was 

observed during the final testing: the effect of corn ears.  An ear of corn typically has a 

higher mass and moisture content than stalks.  The sensor output may be affected 

significantly if an ear passes by the sensor.  The wide, relatively high magnitude signal 

block in Figure 75 resulted from the presence of an ear.  This phenomenon was only 

observed once during three hours of harvesting.  An ear was observed on video being 

rolled around in front of the sensor by the gathering chains on the header while the 

combine was in the gap between two subsamples (i.e., no stalks passing through the 

headers).  Once harvesting of the next subsample began, the ear was pushed away from  
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Figure 75.  Possible ear effect on signal pattern 
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the sensor and the sensor output returned to a more typical pattern.  While the impact of 

an ear is considerable, the rarity of this event should have a minimal impact on stalk 

count. 

Sensor System Performance 

Stalk moisture content and sensor-stalk distance were the two most important 

factors that could potentially affect sensor performance.  The sensor-stalk distance was 

stochastic during harvesting and could not be controlled or measured.  However, the 

moisture content was roughly related to psychrometric history of the ambient air and corn 

maturity.  Psychrometric parameters, specifically temperature and absolute humidity, can 

increase or decrease stalk moisture content.  Associated weather events such as rainfall 

and dew can also significantly affect stalk moisture content.  Early-maturing stalks were 

prone to be drier than the later-maturing stalks.  Because both psychrometric parameters 

and crop maturity are difficult to control, a combination of time (psychrometric 

parameters) and fields (maturity) were used to obtain different moisture contents.   

The goal was to obtain three groups of stalks with different moisture contents 

representative relatively dry (< 20%), medium (~ 35%), and relatively wet (> 60%) stalk 

moisture contents.  Two corn fields with different planting times and three harvest times 

were used.  The early-planting field (identified as A11) was very dry and the late-planting 

field (identified as A22) still had relatively high moisture stalks.  The early-planting field 

was harvested at two different times.  The first harvest occurred in the afternoon 
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following a period of several days of relatively dry weather conditions and the second 

harvest was conducted in the morning following a light rainfall event the previous night. 

The randomized split plots with replication method was used for this experiment 

design.  The combination of three harvest times and two different fields were used as 

three treatment blocks in the experimental design.  In each time-field block, corn was 

harvested at three speeds (0.9 m/s, 1.1 m/s, and 1.34 m/s).  Each sample unit was repeated 

twice at each harvest speed in each time-field block.  Each unit had 6 subsamples of 31 

stalks.  

Each subsample (Figure 76) was a row-segment of approximately 9.1 m (30 feet) 

and had more than 32 stalks.  The subsample row was counted 15 stalks from each end 

towards mid point (approximately 3 meters).  The two stalks nearest the center of the 

space between the two sets of 15 stalks were not cut.  All other stalks in this area were cut 

to create gaps between the “sentinel” stalks and the two sets 15-stalk adjacent rows. One 

of these two stalks was randomly selected, cut just prior to harvest, and sampled for 

moisture content using the same procedure as the preliminary test. The remaining stalk 

was painted with bright-colored marking paint to facilitate recovery immediately 

following harvesting.  A similar MC specimen was taken from the painted stalk post-

harvest.  The sentinel stalks cut before and after harvesting were used to evaluate the 

moisture content relationship between two adjacent stalks and the field-wide moisture 

content distribution.  The sentinel stalks cut after harvests were used to correlate moisture 

content to signal strength.  The gaps between the sentinel stalks and the 15-stalk sets 

helped to identify the signal peak associated with the sentinel stalk.   
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Figure 76.  Final field test subsample schematic 

The presence of weeds and location of each individual stalk in each subsample 

were recorded prior to harvesting.  The location was measured by placing a measuring 

tape along the stalk row.  Each stalk position was recorded to the nearest 0.1 foot (~ 3 

cm).  The diameter of stalks greater than 2.6 cm and less than 1.5 cm were measured 

using dial calipers and recorded. 

Moisture Content and Signal Strength Relationship 

The sentinel stalk moisture content was determined just prior to and after 

harvesting.  The results were segregated by time-field block and compared to characterize 

the differences in the time-field blocks using a t-test.  The moisture content difference 

between A11 (October 11 and October 12 harvests) and A22 were significant (p << 

0.0001).  The difference between the morning and afternoon tests in A11 was also 

significant (p = 0.035).  The average moisture contents of the three groups were 22.3%, 

34.1%, and 70.4% for A11 (October 11), A11 (October 12), and A22, respectively.  In 

A22, 85% of stalks had moisture content greater than 60%.  In A11 (October 11), 45% of 

15 Stalks 15 Stalks 
Two Middle 
adjacent stalks. 
One was cut 
before harvest 

Approximately 9.1 m (30 feet) 



 

148 

stalks had moisture content lower than 20% and 24% of stalks has moisture content lower 

than 15%.  These results indicated that sensor data was collected over a representative 

stalk moisture content range. 

The stalk moisture content data were also used to evaluate the difference in 

moisture content between adjacent stalks by calculating the difference between the pre- 

and post-harvest sentinel stalks.  The distribution of this difference is shown in Figure 77.  

The results showed that the moisture content difference between two adjacent stalks 

could be greater than 60%.  The correlation coefficient between the pre-harvest sentinel 

stalks and post-harvest sentinel stalks is 0.27.  The stalk moisture content difference 

distribution and the correlation coefficient confirmed the finding from the preliminary 

field test that the moisture content of a stalk cannot be used to predict the moisture 

content of an adjacent stalk. 
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Figure 77.  Distribution of stalk moisture content difference between sentinel stalk pairs 
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The post harvest sentinel stalks were also used to find the relationship between 

moisture content and signal strength.  The signal peak generated by an example sentinel 

stalk is shown in Figure 78.  The sentinel stalk signal was conspicuous because adjacent 

stalks were removed before harvesting.  Therefore, the signal from the sentinel stalk can 

be easily identified and its strength could be compared to the measured moisture content.  

The signal strength was calculated as the absolute difference between peak and baseline 

sensor output.  The moisture content and signal strength of each individual painted stalk 

were correlated using linear regression (Figure 79).  R-squared for this model was 0.17, 

which is quite low.  This means only 17% of the variation in the signal strength can be 

explained by the moisture content.  Much of the remaining 83% of the variability is likely 

due to the strong relationship between signal strength and sensor-stalk distance (as 

determined in the laboratory) and the variability in the sensor-stalk distance during  
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Figure 78.  Processed data by first order Butterworth low pass filter with cut off frequency at 500 
rad/sp 
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Figure 79.  Moisture content and signal strength of sentinel stalks. 

harvesting.  If the sensor-stalk distance were controlled, the correlation model fit might 

improve dramatically.  However, no valid model of the signal strength to stalk moisture 

content relationship can be built from the data collected during the final field test. 

Chapter Summary 

Background noise produced by electromagnetic, environmental and mechanical 

influences were investigated.  The total peak-to-peak noise magnitude was approximately 

100 mV.  A digital low-pass filter was used to effectively attenuate the noise magnitude 

to approximately 25 mV and achieved a minimum SNR of 8 without losing useful signal 

information.  Sensor output baseline drift with respect to environmental conditions was 

also observed.  The designed operational frequency band of the sensor system was 

sufficient to maintain sensor functionality over a wide range of environmental conditions. 
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The impact of corn leaves, ears, and weeds on sensor performance were 

investigated.  While leaves may have some affect on sensor output, the impact was 

minimal and did not dominate the primary influences of stalk moisture content and 

sensor-stalk distance.  An ear of corn can have a significant impact on sensor output, but 

such interference by ears is an extremely rare event and the impact on stalk count should 

be negligible.  The presence of high-density weeds totally obscured the stalk signals and 

prevented the detection of discrete stalks.  However, the signal pattern associated with 

high-density weeds may be used to exclude high weed areas to avoid biasing field stalk 

counts.  This pattern could also be used to flag high-density weed areas.  

Moisture content data collected from the sentinel stalk pairs was useful in 

characterizing the field-wide moisture content distribution, but the variability in moisture 

content between the two stalks of a sentinel pair confirmed the earlier finding that the 

moisture content of a stalk can not be used to predict the moisture content of nearby 

stalks.  Finally, the influence of sensor-stalk distance prevented the development of a 

model of the relationship between signal strength and stalk moisture content from the 

field collected data. 
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CHAPTER 8 – FEATURE EXTRATION 

The final field test data in raw form was not directly useful for counting stalks.  

This chapter focuses on the extraction of useful information from the raw data.  A 

number of post-acquisition data processing techniques were applied to help define event-

specific features: digital filtering, downsampling, moving average, and thresholding.  

These features were the input for the neural network pattern classification discussed in 

Chapter 9. 

Digital Filtering and Downsampling 

The raw data contained a significant amount of high frequency noise.  Low-pass 

digital filtering and downsampling with averaging was used to remove unwanted high 

frequency noise.  Three types of digital low-pass filter (Butterworth, Chebyshev, and 

Elliptic) with four orders (0, 1, 2, and 3) and three cutoff frequencies (40, 80, and 160 Hz) 

and five downsampling rates (10, 20, 50, 100, and 200) were evaluated to find the 

optimum signal processing parameters.  Downsampling was performed by averaging a 

number of data points into a single point.  The optimal parameters for these two 

techniques were determined by visual comparison of the raw and processed data. 

The filter parameters were varied and the filtered and raw signals were visually 

compared.  Preference was also given to simplicity and minimal computational 
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requirements.  A first order Butterworth low-pass filter with cutoff frequency at 500 

rads/sec (approximately 80 Hz) was chosen.  The raw and filtered signals are presented in 

Figure 80 and Figure 81, respectively.  The peak-to-peak noise magnitude in the raw 

signal was approximately 100 mV.  The low-pass filter attenuated the noise magnitude to 

approximately 25 mV.  The SNR was increased from approximately 2 to 8 (assuming 

minimum signal strength of 200 mV).   

Downsampling with averaging in blocks of 100 points was selected.  The 

resulting effective sampling rate was 100 Hz (Figure 82).  After downsampling, the peak-

to-peak noise magnitude was further attenuated to approximately 20 mV and the SNR 

was increased further increased to approximately 10.  Visual comparison of the signal 

patterns before and after processing confirmed that the fine detail for each stalk event was 

retained while most of the unwanted high frequency noise was suppressed (Figure 80, 

Figure 81, and Figure 82).  
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Figure 80.  Typical raw sensor signal 
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Figure 81.  Typical sensor signal filtered by a first order Butterworth low-pass filter with an 80 Hz 

cut off frequency 
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Figure 82.  Typical filtered sensor signal after downsampling with averaging to 100 Hz  

Moving Average and Threshold 

A moving average and a threshold were used to remove slow signal drift and 

signal overlay.  The moving average was subtracted from the filtered data to remove slow 

signal drift.  Different moving average windows were tested to find the optimum size.  

When the window size was too small, the values of the filtered data and the values of the 

moving average were very close.  The difference between them was close to zero.  

Therefore, stalk discrimination was lost.  When the window size was too large, the 

moving average was close to a DC signal and little slow signal drift was removed. The 

optimal window size was determined by trial and error by visually comparing the raw and 

processed data to obtain a balance between event discrimination and drift removal. 
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The relationship between the downsampled data and the moving average is shown 

in Figure 83.  A good balance between stalk discrimination and drift removal was 

achieved when the window size was between 11 and 13 (110 – 130 ms), and a window 

size of 13 was selected.  The signal pattern after subtracting the moving average from the 

filtered and downsampled signal is presented in Figure 84.   

The signal pattern oscillated above and below the time axis after the application 

of the moving average.  A minimum threshold was applied to help separate the events 

and simplify the signal pattern by eliminating the portion of the signal below the 

threshold.  While the application of the threshold eliminated almost half the signal 

magnitude information, the loss of information was offset by an increase in the ease of 

discrimination between adjacent events.  Visual inspection of the processed data was  
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Figure 83.  Typical filtered and downsampled sensor signal and moving average 
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Figure 84.  Signal pattern acquired by subtracting moving average from filtered and downsampled 

sensor signal 
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Figure 85.  Typical signal pattern after all data processing techniques were applied 

used to identify a threshold  (10 mV)  that balanced the need to simplify the signal data 

and the need to preserve enough data to effectively characterize the sensor output (Figure 

85).  Each peak above the threshold defined an event, which may or may not correlate to 

a stalk.  

Each stalk position was recorded before harvesting, therefore, each stalk could be 

correlated to the events in a dataset.  Every event was identified as either Stalk (1) or 

Non-stalk (0) by comparing the events with corn stalk positions (Figure 86).  However, a 

stalk may exist where there is no corresponding event.  This situation was very rare, (0.7 

% of total number of stalks) and only happened in very dry conditions.  In this situation, a 

signal point with magnitude of 0.01 was inserted represent the stalk missing from the 
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signal and marked as 1.  The events were aligned with stalk locations for most stalk 

events, but some misalignment occurred.  This could be a result of the measurement 

resolution (0.25 cm) or repositioning of the stalk during harvesting.  The event dataset 

after correlation with stalk position information was named the “true dataset”. 

 

Figure 86.  Typical processed sensor signal correlated with measured stalk positions 
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Feature Extraction 

While signal processing significantly simplified the signal data, additional 

processing was required to further reduce the size of the data set and reorganize the data 

into a form conducive to later stalk pattern classification.  Feature extraction is a method 

of characterizing each signal event (a discernible signal peak) with a finite set of 

attributes, which minimizes the data set size while retaining enough information to 

accurately characterize the events.  An ideal feature extractor would yield a 

representation that makes the job of the pattern classifier trivial, therefore, the feature 

extraction is critical to the success of pattern classification.  Features were carefully 

defined to preserve aspects of the signal that would be most useful in identifying stalks. 

The extracted features were defined based on previous experimental results and 

understanding of the sensor system interaction with corn stalks.  In this project, a total of 

eight features were extracted from each event: 1) peak magnitude, 2) peak width, 3) peak 

top gap, 4) peak bottom gap, 5) number of local maxima in one peak, 6) peak magnitude 

average, 7) preceding peak magnitude, and 8) following peak magnitude (Figure 87).  

These signal features are correlated to stalk physical properties and stalk spacing and 

therefore contain unique information that represented stalk events.  

The peak magnitude (1) and the event width (2) represent the maximum signal 

magnitude and signal width of each event.  These features represented signal strength for 

individual stalks.  The event width was a time variable represented by the downsampling 

index.  The original DAQ field sampling rate was 10KS/s and downsampling block size 

was 100, which produced 100 data points for each second.  Therefore, each index 
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increment was equal to 10 ms.  The event width was represented by the difference in 

index numbers of the start and end points of an event.  The peak width contained 

individual stalk moisture content and harvest speed information.  The signal width of a 

high moisture content stalk was typically greater than a drier stalk.  The signal slope was 

represented by the combination of Features 1 and 2.  

The peak top gap (3) was the index number difference between the current event 

peak magnitude and the preceding event peak magnitude.  The peak bottom gap (4) is the 

index number difference between the starting point of the current event and the final 

point of the preceding event.  Feature 3 represented the stalk spacing.  This feature also 

contained harvest speed information and characterized the stalk passage frequency.  The 

combination of Features 3 and 4 contained stalk diameter information.   

 

Figure 87.  Eight features of an individual event 
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The local maxima number (5) was determined by the number of peaks in one 

event.  There may be more than one peak in an event if two stalks were closely spaced or 

if weeds or leaves significantly impacted the sensor signal. 

The peak magnitude average (6) was determined by a group of events (Figure 88).  

Eleven events were chosen, the current event, five events before the current event and 

five events after the current event. The two events with the smallest peak magnitudes 

were discarded because they have higher probability to be non-stalk information.  The 

average of the remaining nine events was the peak magnitude average.  This feature 

represented the moisture content of stalks around the current stalk.  This allowed a 

localized dynamic threshold to be considered.   

 

Figure 88.  Definition of the peak magnitude average 
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The preceding peak magnitude (7) was the peak magnitude of the event 

immediately preceding the current event.  The following peak magnitude (8) was the 

peak magnitude of the event immediately following the current event.  The combination 

of these two features represented localized signal strength content. 

Principal Component Analysis 

The set of extract features was deliberately made as comprehensive as practical to 

preserve as much signal information as possible.  However, not all extracted features 

have equal weight in identifying stalks in the processed signal.  Some features may also 

be linear multiples or combinations of other features, and therefore provide little 

additional useful information.  These “excess” features do not improve the final 

effectiveness of classification, but do increase the classification model size and require 

much more computation power for classification and prediction.  Therefore, feature 

dimension reduction is very important to decrease model size and increase model 

prediction speed. Principal component analysis was used to reduce the feature set 

dimensions. 

Principal component analysis provides the proportion of total variability 

associated with a component.  Components correlated with a larger proportion of the total 

variability more effectively describe the total variability, and therefore contribute more to 

accurate pattern classification.  Components correlated with little variability contribute 

little to accurate pattern classification and may unnecessarily complicate the pattern 

classification process.  When the threshold was set to eliminate components responsible 
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for less than 2% of the total variability, the feature space dimension was reduced from 8 

to 6.  When the threshold was increased to 10%, the feature space dimension was further 

reduced to 3.  Artificial neural network tests (more details in next chapter) showed no 

significant difference between 6 and 3 dimensions.  However, when the feature space was 

dimension decreased to 2, the model efficiency decreased dramatically (from 99.5 % to 

63%).  Therefore, three features were selected for pattern classification.  The three critical 

features were identified by analyzing the feature eigenvalues: peak magnitude, average 

peak magnitude, and peak top gap.  These features are account for 25%, 22%, and 21% of 

the total variability, respectively.   

This feature reduction means each event had three input vectors and one output 

vector.  The three input vectors were the three features and the output vector was the 

event type (1 or 0, for stalk and non-stalk events, respectively).  More than 3500 events 

were extracted from the final field test data.  Both the input data set (3×3500) and output 

dat set (1×3000) were stored in the final dataset, which is a four-dimensional data set 

(4×3500). 

Chapter Summary  

The raw data from the final field test was processed in preparation for stalk 

pattern classification (Chapter 10).  A first-order Butterworth low-pass filter with a cutoff 

frequency of 80 Hz and a 100 point downsampling with average were used to filter high-

frequency components from the raw data and reduce the raw data set size.  A moving 

average with a window size of 13 (130 ms) was used to remove slow signal drift and 
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signal overlap.  A minimum threshold level was used to eliminate negative signal 

components and help separate signal peaks.  Each remaining signal peak was defined as 

an “event”. 

Eight features were extracted for each individual event.  The eight features 

included information pertaining to individual stalk moisture content, average stalk 

moisture content, harvesting speed, stalk spacing, stalk diameters, closely spaced stalks, 

the effects of weeds and leaves, and stalk moisture content variation over a small area.  

Principal component analysis was used to eliminate features that were less effective for 

stalk pattern classification to simplify the feature dataset.  Three features, peak magnitude 

average peak magnitude, and peak top gap, balanced processing efficiency and 

classification effectiveness.  These three features and the event type (stalk or non-stalk) 

were recorded to form the final feature dataset. 



 

166 

CHAPTER  9 – PATTERN CLASSIFICATION FOR 
STALK NUMERATION 

A primary goal of this research was to develop a method to accurately classify 

stalks based on real-time sensor output.  Therefore, an effective classifier is very 

important to the successful development of this sensing system.  Artificial neural network 

techniques were chosen to develop the classifier based on key features identified in 

chapter 8. 

Methodology 

Artificial Neural Network Background 

An artificial neural network (ANN) is a computing paradigm that is loosely 

modeled after cortical structures of the brain.  ANNs are composed of simple elements 

operating in parallel.  As in a natural neural network, an ANN is defined largely by the 

connections between elements.  An ANN can be trained to perform a particular function 

by adjusting the values of the connections between elements so that a particular input 

leads to a target output (Figure 89) (MathWorks, 2002).  
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Figure 89.  Schematic of Artificial Neural Network learning process 

An ANN architecture consists of the number of layers, the number of neurons in 

each layer, layer bias, the transfer function of each layer, and the inter-layer connections.  

No single structure is ideal for all applications.  All ANNs have an input and output layer, 

most also have one or more hidden layers between the input and output layers, and each 

hidden layer contains one or more neurons.  These additional layers are known as hidden 

layers since they are internal to the ANN.  ANNs with no hidden layers are a special case 

used for linear classification and are known as linear networks or perceptrons.  Layers 

with a single neuron are linear and layers with multiple neurons are non-linear.  

If the inputs and target output can be linearly mapped, then a perceptron  is 

reliable and very fast.  Most ANN applications are more complex and require multiple 

layers composed of multiple neurons to provide reliable classification.  Model complexity 

and computational requirements increase with the number of layers and neurons.  Also, 

overly complex models tend to “overfit” the data.  Overfitting occurs when the learning 

process produces a classification model so complex that all variability in the data is 
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described by the model.  While this will provide a perfect classification of the data used 

to teach the ANN, subsequent data may be poorly classified.  There are several 

techniques that can be used to avoid overfitting including: careful selection of model 

complexity, the use of a very large training set, and a combination of training and 

validation. 

Generally, a two layer sigmoid-linear network can represent any functional 

relationship between inputs and outputs if the sigmoid layer has enough neurons.  A non-

linear ANN is most frequently used for multiple feed-forward layers, which is more 

flexible.  A multilayer feed-forward network with differentiable transfer functions can be 

trained by a backpropagation method to perform function approximation, pattern 

association, and pattern classification.  

Neural Network Development Procedure 

An ANN was used as a function approximation tool.  That is, the neural network 

was used to develop a non-linear model to predict stalk count given collected features.  

Once a trained neural network was verified (tested against data not used in the training 

process) to be an effective classifier, this neural network can function as the prediction 

model.  Neural network training was an offline process in this application, meaning the 

raw data was collected in the field and the training process was performed in the 

laboratory.  Training can be a time-consuming and computationally intensive process that 

normally cannot be easily performed in the field.   



 

169 

Verified neural network parameters consist of one or more matrixes.  The number 

and dimensions of the matrixes is dependent on the neural network structure.  More 

layers require more matrixes to describe the model and more neurons in a layer require a 

larger matrix to describe the layer.  After the network was trained and the matrixes were 

defined, the matrixes serve as the model for real-time prediction. Only these matrixes and 

the layer activation functions are necessary to process the collected features online.  

Online extracted features from the sensor signal are multiplied by the first matrix and the 

first layer activation function is applied. The results are multiplied with the second matrix 

(if any) and the activation function of the second layer is applied to the product.  This 

process is repeated until all layers have been applied and the final result is produced.   

Implementation of the ANN using Matlab produced a numeric final result (0 or 1).  

Values of 1 resulted in classification of the event as a stalk and values of 0 resulted in 

classification as a non-stalk event (or noise). 

Before the structure could be determined, the training and test set needed to be 

defined.   Overfitting was carefully considered when partitioning the final feature set into 

the training and test sets.  A large training set is more likely to represent all possible 

behaviors of the system being modeled and therefore is more likely to prevent overfitting.  

A large test set is more effective in evaluating the network prediction accuracy and 

identifying potential overfitting.  The rule of thumb for avoiding overfitting is that the 

training set size is at least 30 times the number of input neurons in the network. 

The final feature set (as described in Chapter 8) consisted of the three-

dimensional input feature vector extracted from sensor output and the one-dimensional 
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target output vector based on hand-count and stalk position data.  Because the dataset was 

large (more than 3000 events), 20% of the dataset was used as the training set and the 

remaining 80% was used as the test set, which would allow up to 20 neurons without 

overfitting.  The data were partitioned sequentially to ensure both the training and test 

sets were as representative of the entire body of data as possible.  Every fifth extracted 

feature and associated event type was moved to the training set (i.e., features 5, 10, 15, …, 

N/5; where N is the total number of features in the final feature set).   The remaining 

features defined the test data set. 

The training set was used together with a supervised learning method to train the 

neural network.  The neural network converted the three features into a stalk or non-stalk 

(1 or 0) output.  Training involved running the neural network with the features as the 

arguments of the model, calculating the output vector, and comparing it with the target 

output vector.  If the stopping criterion was met, the training process stopped.  If the 

stopping criterion was not met, the values in the model matrixes were modified to 

increase the likelihood of matching the target vector on the next iteration and the process 

was repeated.  Mean square error (MSE) between successive iteration outputs was used 

as the stop function.  The training was stopped when the MSE was less than the threshold 

value (0.01). 

The trained network model was tested to evaluate model accuracy once the 

training process was complete.  The features in the test set were input into the model and 

a stalk or non-stalk output (1 or 0) was generated.  The sum of the model output for all 
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features in the test set was the predicted stalk count.  The predicted count was compared 

with hand-count to determine prediction error: 

Prediction error = [(Prediction mean – Hand count)/Hand count] × 100%  (9.1) 

The initial states of the model matrixes during training were randomly generated; 

therefore, repetition of the training process could produce different results.  Random 

generation of the initial matrix states provided a means of evaluating the stability of an 

ANN structure by examining the variability of the training results.  The training process 

was repeated 30 times to produce 30 sets of matrixes describing 30 different models for a 

given ANN structure.  The test data set was applied to each of the 30 models and the 

predicted counts were examined to determine prediction error and the variability in the 

prediction.  The most desirable model was chosen based on accuracy, stability, and 

simplicity.  Accuracy was indicated by prediction error, stability was represented by the 

standard deviation of the predicted counts, and simplicity was a function of the number of 

layers and neurons in the structure. 

Pattern Classification 

Pattern classification is used to partition data into groups by defining 

discrimination boundaries between the groups.  The discrimination boundary may be as 

simple as a straight line or may be a very complex, multi-dimensional surface.  The 

complexity and dimensionality of the discrimination boundaries depend on the size and 

variability of the feature space which is the input to the classification process.  The neural 
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network structure and parameter values defined the discrimination boundaries in this 

application. 

The simplest strategy for pattern classification was to use a single ANN to 

partition data into two groups: stalk or non-stalk.  This strategy is very effective if the 

data is well segregated (i.e, few data points lie near the discrimination boundary).  

However, the confidence in classification of data near the boundary may be low.  The 

definition of the discrimination boundaries through the development of the neural 

network structure and parameter definition divided these data between the two groups to 

preserve overall accuracy of the classification process. 

The classification of the data near the discrimination boundary may result in 

individual classification errors.  If there are two possible classification groups (positive 

and negative), there are four possible classification outcomes: true positive, true negative, 

false positive and false negative.  Classifying a stalk event as a stalk event was defined as 

a true positive and classifying a non-stalk event as a non-stalk event was defined as a true 

negative.  Incorrect classification of a stalk event as a non-stalk event or a non-stalk event 

as a stalk event were defined as false negative and false positive, respectively (Table 8).  

The division of the classification errors into the two classification groups is illustrated in 

Figure 90. 
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Table 8.  Possible outcomes from classification with two categories 
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Figure 90.  Illustration of classification into two categories 
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Another classification strategy added a separate category for the data near the 

discrimination boundary.  Since the correct classification of these data was not certain, 

this third category was named “I Don’t Know” (Table 9 and Figure 91).  Correct 

predictions (true positive and true negative) were the same as defined in the first strategy.  

This strategy combined both false positive and false negative errors into a single category, 

“I Don’t Know”.  The third category provides a mechanism to quantify potential errors or 

warn of conditions where prediction uncertainty may be large rather than simply dividing 

errors into the other two categories.   

Multiple neural network models were necessary to implement the three-category 

classification strategy.  The additional models provide the extra dimension required to 

define the third category.  The data near the discrimination boundary were prone to 

simultaneously have both stalk and non-stalk properties.  As a result, different neural 

network models may classify these events differently since each model defines a different 

discrimination boundary.  The output of all models were be compared to determine the 

final classification of an event into one of three categories. 

Table 9.  Possible outcomes from classification into three categories. 
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Figure 91.  Illustration of classification into three categories. 

Accuracy and Resolution Investigation 

Mean square error (MSE) in the outputs of successive training iterations was used 

as the stopping criterion for neural network training.  This criterion produced neural 

network models trained into a state where the number of false positive classifications is 

close or even equal to the number of false negative classifications, maximizing prediction 

accuracy over large areas.  However, stalk count prediction over small areas of the field 

is more meaningful for field management and seed germination and stalk survival rates.   

Two different methods were used for the small area stalk count predictions: 

length-based and event-based.  The length-based method involved creating data subsets 

of the final feature set that contained the events in a fixed length (9 m) row.  The event-
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based method divided the final feature set into segments containing a number of 

consecutive events (5, 10, 20, 30, 40, and 50 events).  For example, 60 subsets of 50 

events would be created from 3000 events.  The data were organized by harvest time 

order for both methods.  Both hand count and neural network predicted count were 

obtained for each data subset and the prediction error calculated. 

Linear regression with a forced zero intercept was used to describe the 

relationship between the hand count and the predicted count for the length-based data sets.  

For the event based data sets, the difference between hand count and the predicted count 

for each plot was calculated.  For example, when the resolution was 50 events, there were 

42 stalk events and 8 non-stalk events.  If the model predicted 43 stalks, the miscount was 

1.  The total number of the miscount plots at each miscount level was found and used to 

investigate the model prediction accuracy. 

Neural Network Structure Determination  

Both perceptrons and backpropagation neural networks developed in Matlab 

(MathWorks, 2002) were tested.  A single two-layer linear structure was developed and 

tested.  This model correctly predicted only 2% of the stalk events.  The low accuracy 

indicated the data was not linearly separable and the development of a multiple-layer, 

non-linear neural network was necessary.   

The first step in developing the multiple-layer neural network was to determine 

the structure of the network (i.e., the number of layers and the number of neurons in each 

layer.  As previously discussed, a carefully designed 2-layer network can adequately 
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model most systems.  Both 2- and 3-layer neural network layers with different numbers 

of neurons in each layer (2, 3, 4, 5, 6, 9, 12, and 15) were considered.  Each structure was 

trained 30 times using the training data set and the test data set input to each trained 

model to produce predicted stalk counts.  There were a total of 2162 confirmed stalk 

events in the test data set.  Table 10 presents the predicted stalk counts for a 

representative selection of model structures. 

Table 10.  Representative results from the neural network structure determination 

Predicted Number 
NN structure 

Mean 

(A l 2612)

Standard 
Deviation 

Absolute Mean 
Prediction Error 

3-1 2155 48 0.32% 

4-1 2150 31 0.55% 

5-1 2151 39 0.51% 

6-1 2177 40 0.69% 

12-1 2187 32 1.15% 

6-3-1 2127 43 1.62% 
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Results 

The network structures were evaluated in terms of precision and accuracy.  Since 

a stable model is more repeatable, model stability was used as a measure of precision.  

Precision and accuracy were inversely related to the standard deviation of the predicted 

count and the prediction error, respectively.  Based on these criterion, the 4-1 (1 hidden 

layer with four neurons) structure was the best combination for precision (standard 

deviation =31) and accuracy (prediction error = 0.55%).  Both the 3-1 and 5-1 structures 

are more accurate than the 4-1 structure (prediction errors of 0.32 and 0.51%, 

respectively) but less stable (standard deviations of 48 and 39, respectively).  The 

stability of the 12-1 structure was similar (standard deviation = 32) to that of the 4-1 

structure but the prediction error (1.55%) was nearly twice that of the 4-1 structure and 

the 12-1 structure was considerably more complex than the 4-1 structure.  The 4-1 

structure with a tansig activation function for the first layer and a purelin activation 

function for the second layer was selected.  The 4-1 structure schematic is presented in 

Figure 92. 
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Figure 92.  Schematic of the 4-1 neural network structure 

The 4-1 structure had two layers and each layer had one corresponding matrix.  

The first matrix was a 4 × 3 matrix since there were 4 neurons in the first layer and the 

input feature space was three dimensional.  The second matrix was a 1 × 4 matrix.  Each 

layer also had a bias vector.  These matrixes and bias vectors were the model for the stalk 

count prediction.  Each feature input (P) was a 3 × 1 matrix.  The product of P × IW{1,1} 

was a 4 × 1 matrix.  The first bias vector (b{1}) was added to this product and the first 

activation function (tansig) was applied.  The resulting matrix was multiplied by the 

second layer matrix (IW{2,1})to produce a 1 × 1 scalar result.  After adding the second 

bias vector (b{2}) and applying the second activation function (purelin), this product was 

rounded to its nearest integer.  This output is the event classification, either 1 or 0.   

}}2{})]1{}1,1{([tan}1,2{{ bbPIWsigIWpurelinP inputoutput ++××=   (9.2) 

The tansig function was defined as: 
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The following matrixes and bias vectors are based on one backpropagation 

training iteration of the 4-1 structure neural network: 

⎥
⎥
⎥
⎥
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⎤
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⎢
⎢

⎣

⎡

−−
−−

−−
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“I Don’t Know” Determination 

Multiple network groups (with at least three networks) were used to better 

identify the data misclassified by the first pattern classification strategy.  The extra 

networks were used to provide the third dimension necessary to define the third category, 

“I Don’t Know”.  This method was performed with 20 iterations to evaluate the 

classification strategy.  An average of 185 of the 335 (55%) previously misclassified 

events (combination of false positives and false negatives) were re-classified as “I Don’t 

Know” (Figure 93).  The three-category classification would produce more accurate 

predicted stalk counts by reducing the number of misclassified events and removing the 

bias associated with these events from the predicted stalk count.  This strategy could also  
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Figure 93.  “I Don’t Know” reclassification of previously misclassified events 

be used to flag areas of a field where prediction confidence is low.  This information 

could be used to help improve the effectiveness of the entire sensing system. 

Feature Relationship Investigation 

The relationship between the three critical components is shown in Figure 94 and 

Figure 95.  The blue crosses and red circles represent correct and incorrect classifications, 

respectively.  Negative and positive (non-stalk and stalk) classifications are presented 

separately in Figure 94 and Figure 95, respectively.  These plots show how the stalk 

information can be obscured by noise.  Almost all the non-stalk information occurs where 
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the peak top gap feature magnitude was low or where the average peak magnitude was 

low.  The data also suggested a linear relationship between the peak magnitude and the 

average peak magnitude.  This relationship is logical since an individual stalk would tend 

to have a moisture content at least somewhat similar to the adjacent stalks.  This may 

appear contrary to earlier conclusions that an individual stalk can not be used to predict 

the moisture content of adjacent stalks.  However, the proposition that the moisture 

content of a single stalk is closely related to the moisture content of a group of nearby 

stalks is the converse of the previous conclusion. 

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

Peak Magnitude

P
ea

k 
To

p 
G

ap

 
(a) 



 

183 

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

Peak Top Gap

M
ag

ni
tu

de
 A

ve
ra

ge

 
(b) 

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

Peak Magnitude

M
ag

ni
tu

de
 A

ve
ra

ge

 

(c) 

Figure 94.  Relationships among three principal components (true negative & false negative) 
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Figure 95.  Relationships among three principal components (true positive & false positive) 

Resolution Investigation 

Subsets of the final feature set based on fixed row lengths (9 m) and a fixed 

number of consecutive events were used to examine the accuracy of stalk count 

predictions at various spatial resolutions.  Hand count and predicted counts using the 

single neural network model were obtained for each subset.  Linear regression analysis 

with a forced zero intercept was used to examine the relationship between hand count and 

predicted count in (Figure 96) for the fixed row length subsets.  The relationship was: 

xy 0216.1=   
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where y is predicted count and x is the hand count.  R square of this regression is 0.8, 

which mean 80% variation can be explained by this equation.  The slope of the regression 

line indicated good average correlation between the predicted and hand counts with a 

slight tendency to over estimate.  It was found that the largest deviations occurred mostly 

in the low moisture content range, which confirmed the strong impact of stalk moisture 

content on prediction accuracy.   
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Figure 96.  Linear relationship between hand count number and predicted number 
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For the event-based method, different event resolutions (5, 10, 20, 30, 40, and 50 

events) were chosen.  These resolutions corresponded approximately to row lengths of 

0.75, 1.5, 3, 4.5, 6, and 7.5 m.  The cumlative percentage of plots with no more than the 

indicated prediction count error at different resolutions is presented in Table 11.  For 

example, there were 62 subset plots at resolution of 50.  There was no prediction error 

(error # = 0) for 8 plots (12.9%), 23 plots (37.1%) had a one-stalk error or less per plot, 

and  44 plots (71%) had a 2-stalk error or less per plot.  Higher resolution data is more 

useful than field-scale data for making precision management practice decisions.  From 

the table, it was found that at a resolution of 1.5 m (10 events resolution), more than half 

plots can be predicted with no error and almost 90% of plots have a prediction error of 

one stalk or less.  

Table 11.  Cumulative percentage of subsets with respect to predicted count error at different 
resolutions 

 Cumulative percentage of plots with predicted error no more than the 
indicated error 

        Error # 
 

Resolution(Events) 
0 1 2 3 4 5 6 7 

50 12.9% 37.1% 71.0% 85.5% 92.0% 95.2% 96.8% 100% 

40 18.2% 48.1% 76.7% 92.3% 96.2% 98.8% 100% 100% 

30 27.2% 59.2% 85.4% 92.2% 97.1% 100% 100% 100% 

20 34.2% 68.4% 91.0% 98.1% 100% 100% 100% 100% 

10 50.5% 88.1% 97.8% 100% 100% 100% 100% 100% 

5 72.2% 95.8% 99.5% 100% 100% 100%   
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Chapter Summary 

A neural network structure was used to develop a stalk pattern classification 

model.  The classification model was used to determine stalk population counts from the 

final feature set data discussed in Chapter 8.  The final feature set was divided into a 

training data set and a test data set.  The training data set was used with backpropagation 

techniques to train the neural networks and determine neural network model parameters.  

A number of neural network structures were evaluated and the best model was selected 

based on model precision, stability, and accuracy.  The selected network structure had 

two layers with 4 and 1 neuron per layer, respectively.  This structure could provide 

99.5% prediction accuracy for the overall field.  Predicted counts for 1.5 row segments 

were predicted with no error for 50% of the evaluated data subsets and 90% of the data 

subsets had predicted counts with an error no more than one stalk.   

Multiple network groups (with at least three networks) were used to better 

identify the data misclassified by the first pattern classification strategy.  This strategy 

identified an average of 185 of the 335 (55%) previously misclassified events 

(combination of false positives and false negatives) as “I Don’t Know”. 
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CHAPTER 10 – CONCLUSTIONS AND 
RECOMMENDTIONS 

Conclusions  

Specific objectives for this study were to develop, prototype, and test a corn 

population sensor.  Based on the results obtained in this study, the following conclusions 

can be made: 

• A single-sided capacitive detection element was successfully optimized to 

discriminate corn stalks at harvest, especially for low moisture content stalks.  

• Finite element analysis proved useful in design of the capacitive sensor pattern, 

but the very small magnitude of capacitance changes produced by the detection 

element make accurate quantitative modeling extremely difficult.  However, the 

combination of qualitative modeling and quantitative experimental analysis was 

effective in producing a functional design that met the design requirements.   

• A Wien Bridge oscillator, a phase-locked loop, and an operational amplifier can 

effectively transform stalk presence (small ΔC) to an electrical potential signal 

with an acceptable SNR (generally greater than 10). 

• Corn stalk dielectric constant, which is coupled to stalk moisture content, and 

sensor-to-specimen distance are the most important factors influencing sensor 

sensitivity.  
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• Principal component analysis showed that three corn stalk features were most 

important for stalk identification: peak magnitude, average peak magnitude, and 

peak top gap (Chapter 8).  They accounted for 25%, 22%, and 21% of the total 

variability, respectively.  These components are primarily representative of stalk 

moisture content and stalk spacing. 

• A backpropagation neural network with 4-1 structure (two layers with 4 and one 

neuron per layer, respectively) was found to be the most effective neural network 

structure.  Stalk pattern classification using this structure provided a 99.5% 

prediction accuracy for the complete data set.  This structure was also effective 

for high-resolution (1.5 m row segment) predictions with no error for 50% of the 

subplots and an error no more than one stalk for 90% of the subplots. 

• Multiple network groups (with at least three networks) were used to better 

identify the data misclassified by the 4-1 structure.  This strategy identified an 

average of 185 of the 335 (55%) previously misclassified events (combination of 

false positives and false negatives) as “I Don’t Know”.  Segregating these data 

points improve the prediction accuracy for the remainder of the field. 

Recommendations 

The prototype stalk population sensor functioned as designed, accurately counting 

stalk population.  Still, there is considerable room for improvement.  This sensor can be 

separated into three functional components: detection element unit, signal conditioning 

unit, and field evaluation and analysis unit.  Discussion of improvements focuses on each 
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of these components.  System refinements that may improve performance and function 

are: 

Detection element:  

• The balance between sensitivity and discrimination may be improved.  A high 

sensitivity provides a higher-magnitude output and a high discrimination 

capability provides a large gap between two adjacent signal peaks.  By design, 

this sensor is a relatively slow response device.  A large magnitude signal peak is 

prone to overlap with adjacent signal pekas, which decreases the ability to 

discriminate adjacent stalks.   

• The sensor-stalk distance was difficult to precisely control or measure in the 

laboratory.  Therefore, a static test fixture designed to precisely control the 

sensor-stalk distance could be used to better validate the FEM simulation results, 

making FEM a more useful tool in detection element design refinement.   

• Additional laboratory testing should be conducted using the single detection 

element configuration.  Most laboratory tests were based on a two detection 

element configuration. 

Signal Conditioning:   

• The most critical circuit component is the Wien Bridge oscillator.  A better 

understanding of the interaction between the oscillator and detection element 

would be useful.  Specifically, a better understanding of the impact of parasitic 

capacitance on the circuit board is needed.  Some unanticipated behaviors need to 
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be carefully recorded and analyzed.  An improved, more precise static test fixture 

would provide better data for analyzing these effects. 

• A better signal conditioning system may be possible.  Some current commercially 

available capacitance-to-voltage converters may be investigated.  The systems 

used in this research might be incrementally improved or replaced entirely if a 

more suitable alternative can be identified. 

• An 80-Hz first order Butterworth filter should be integrated into the conditioning 

system.  This filter could further improve the SNR and function as an anti-aliasing 

filter. 

Field Evaluation and Analysis:   

• The impact of weeds on stalk pattern classification needs to be further 

investigated so that strategies can be developed to address the impact of weeds.  

The weed density in this project represented an unrealistic extreme, therefore, a 

variety of weed densities need to be evaluated.  Multiple types of commonly 

occurring weeds might be considered as well.   

• Additional testing needs to be performed with very dry stalks to determine the 

minimum operation threshold.   

• The sensor system needs to be tested on additional fields.  Fields in different areas 

or even different states have different environmental conditions and different stalk 

properties.  Additional varieties of corn should also be considered 
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• Neural networks are useful and practical classification tool that proved effective 

in this application.  However, models developed by neural network techniques are 

somewhat complex and requires moderate online computational power to 

implement.  Other classification methods are worth investigating.  A simpler 

model that would be less computationally intensive might be developed using 

other techniques. 

• Testing of multiple sensors on combine corn header should be conducted.  The 

sensor was only mounted on one header row during the field test.  The effect 

between sensors could be investigated by mounting each sensor on each row.  

• Integration of the sensor signals with a yield monitor using a CAN bus should be 

pursued to promote comercialization of this system.  The overall objective of this 

sensor was to improve yield maps.  This objective can only be fulfilled by 

integrating this sensor with yield monitors.  
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Appendix A.  Electrical Drawing 
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Appendix B.  Electronic Device Specifications 
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Appendix C.  Wien Bridge Oscillator Pspice Code  
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.lib "nom.lib"  

* CURRENT PULSE TO START OSCILLATIONS 

IS 0 1 PWL(0US 0MA   10US 1uA   40US 1uA   50US 0MA   10MS 0MA) 

R_R1         0 1  50k    * Positive loop 

C_C1         0 1  3p       * Detection Element 

C_C2         1 3  3p          * Detection Element 

R_R2         3 4  50k 

R_R10        0 2  1k        *  Negative  loop 

R_R11        2 6  1K   

R_R12        6 4  6K   

R_R13        6 5  2.4K  

D_D1         5 4  D1N914     * Diodes 

D_D2         4 5  D1N914  

X_OP1        1 2 7 8 4  LT1354/LT   * Amplifier 

V_V1         7 0 5Vdc     * Input power (positive) 

V_V2         0 8 5Vdc        * Input power (negative) 

.TRAN  0.01MS 0.1MS 

.PROBE V(4) 

.end 
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Appendix D.  Matlab Code 
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AD.1  Import field raw data,  Filter data by low pass filter, and downsample the filtered data 

  

% Program for field data processing 

% Oct. 16th, 2006 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  import raw data 

% RT_1,  Raw data collected in field 

 

open ('RT_1.mat') 

Rawdata = ans.RT_1(:,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  LowPass Filter built in Matlab Simulink, See Appendix A2.2 

%  First order Butterworth low pass filter with cut off frequency at 80 Hz 

open ('FilterDesign.mdl')  

 

% reorganize filtered data 

SamplingLength = length(Filterdata); 

Filtered = ones (1, SamplingLength); 

 

for i = 1:SamplingLength 

    Filtered (i) = Filterdata(1,1,i); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Downsample the data by averaging.   

SampleAve = 100; 

SampleFreq = 10000/SampleAve; 

RowSize = floor(SamplingLength/SampleAve); 

MatrixSize = SampleAve*RowSize; 



 

213 

NewFiltered = Filterdata(1:MatrixSize); 

Matrix_Reshaped = reshape(NewFiltered, SampleAve, RowSize); 

Matrix_ave = (1/SampleAve)*ones(1, SampleAve)*Matrix_Reshaped; 

 

timeline = 0.0001*SampleAve:0.0001*SampleAve:SamplingLength/10000; 

 

figure(1) 

plot(timeline, Matrix_ave); hold on; 

xlabel('Time (s)'); 

ylabel('Voltage (V)'); 

title('Road Side,  Row 1, 2.1mph, 3.08 ft/s, Filtered Data (1 Order, 100 Hertz)'); 

figure(2) 

plot(timeline, Matrix_ave); hold on; 

xlabel('Time (s)'); 

ylabel('Voltage (V)'); 

title('Cursor Searching'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A2.2   Low pass filter module developed in Simulink.  

 

 

Filterdata

To Workspace
Rawdata

Signal From
Workspace

Scope
0.3

Constant

butter

Analog
Filter Design1

butter

Analog
Filter Design
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A2.3  Import the hand count position 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% load the corn stalk position file and count the column number 

 

load 'RT_Dist'  % Matrix including the hand count position information  

 

Location = RT_1; 

[m, n] = size(Location); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Automatically find the stalk peak and the peak maximum.  

 

Cur_Num = n*2; 

Cur_Index = zeros(1,Cur_Num); 

Sampling_Freq = 10000/SampleAve; 

for i = 1:Cur_Num 

    indexrange = cursor_info(i).DataIndex-
0.02*Sampling_Freq:cursor_info(i).DataIndex+0.02*Sampling_Freq; 

    datarange = Matrix_ave(indexrange); 

    [Maxdata, index] = sort(datarange, 'descend'); 

    Cur_Index(i) = cursor_info(i).DataIndex-0.02*Sampling_Freq + index(1) -1; 

end 

 

% order the cursors' locations 

CursorPoint = sort(Cur_Index); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot the stalk location 

 

 for k = 1:n; 
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    b = isnan(Location(:,k)); 

    c = find(b); 

    d = sort(c); 

    if c 

        Last_data = d(1)-1; 

    else 

        Last_data = length(Location(:,k)); 

    end 

    temp1 = Location(2:Last_data, k)'; 

    temp2 = Location(1,k)*ones(1,(Last_data-1)); 

    Dist_Gap = temp1 - temp2; 

    Dist = Location(Last_data,k) - Location(1,k); 

    Point_Dist = CursorPoint(2*k) - CursorPoint(2*k-1); 

    ratio = Point_Dist/Dist; 

    format long 

    ratio; 

    Location_Turepoint = Location(1:Last_data, k);  

    Location_Plot = CursorPoint(2*k-1)*ones(1, Last_data) + [0, Dist_Gap*ratio]; 

    format long 

    Location_Plot; 

    figure(1) 

    stem(Location_Plot/SampleFreq,5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on; 

    stem(Location_Plot/SampleFreq,-5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on;% 

  end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A2.4  Find the moving average, get the difference between downsampled data and moving average, and 
discard the information below 0.01 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Moving Average to minimize drift effect. 

 

MovingAveRate = 13; 

 

for l = MovingAveRate-floor(MovingAveRate/2):length(Matrix_ave)-floor(MovingAveRate/2); 

    MovAved_temp(l)= Matrix_ave((l-
ceil(MovingAveRate/2)+1):l+floor(MovingAveRate/2))*ones(MovingAveRate,1)/MovingAveRate; 

end 

 

MovAved = [MovAved_temp, zeros(1, floor(MovingAveRate/2))]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Diffe = Matrix_ave - MovAved; 

 

figure(3) 

plot(timeline, Matrix_ave, timeline, MovAved,'--g', timeline, Diffe, 'r');hold on; %, timeline, Diffe2,'b'); 
hold on;% timeline_ave, MovingAve_Ave,':.g'); 

title('Moving Average Data, Blue: Raw; Green, Moving Average; Red, Difference'); 

xlabel('time (s)'); 

ylabel('Voltage (V)'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Get rid of the information below 0.01 

 

datalength1 = length(Diffe); 

 

for i = 1: datalength1 

    if (Diffe(i)<0.01) 
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    Diffe(i) = 0; 

    end 

end 

 

Diffe(1:3) = 0; % Clean extreme situation 

 

figure(4) 

plot(timeline, Diffe); 

title('Moving Average Cleaned by A Single Threshold'); 

xlabel('time (s)'); 

ylabel('Voltage (V)'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A2.5  Feature Extraction 1. The first 5 features.  

 

% Feature Spaces. Feature predefine (Not necessary, To show the Features extracted) 

SigWid = zeros(1, datalength1); 

SigMax = zeros(1, datalength1); 

PlantNumber=  zeros(1,datalength1); 

% Distance between two maxs 

% Gap between two signals 

% Average Moisture Content of last potential 5 stalks.  

 

FeaIndex = 0; 

 

% Feature Extractionn 

a1 = 1; 

b1 = 0; 

 

for i = 2: datalength1 

         

    % Determine signal Height and width 

     

    if (( Diffe(i) > Diffe(i-1) ) &  (Diffe(i-1) == 0)) 

        a1 = i; 

    end 

     

    if ((Diffe(i) < Diffe(i-1)) &  (Diffe(i) == 0)) 

        b1 = i-1; 

    end 

     

    if (b1 > a1) 

    SigWid(1, a1:b1) = b1 - a1 + 3; 

    SigMax(1, a1:b1) = max(Diffe(a1 : b1)); 

    [Temp_Max, Max_Index] = max(Diffe(a1 : b1)); 

     

    FeaIndex = FeaIndex + 1; 

    Features_Pre(1, FeaIndex) = b1 - a1 + 3; 
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    Features_Pre(2, FeaIndex) = max(Diffe(a1 : b1)); 

    Features_Pre(4, FeaIndex) = Max_Index + a1 -1; 

    Features_Pre(5, FeaIndex) = a1 - 1; 

    Features_Pre(6, FeaIndex) = b1 + 1; 

    end 

     

    % Detemine Signal Mono Properties.  

       

    if ((b1 > a1) & ((b1 - a1) < 2)) 

        PlantNumber(1, a1:b1) = 1; 

        Features_Pre(3, FeaIndex) = 1; 

    end 

     

    if ((b1 - a1) >= 2) 

     

    LocalLength = length(a1:b1); 

    [LocalMax, LocalMaxIndex] = max(Diffe(a1:b1));     

         

    Increase = 1; 

    for p1 = (a1-1):(LocalMaxIndex+a1-2) 

        if (Diffe(p1+1) >= Diffe(p1)) 

            Inc = 1; 

        else  

            Inc = 0; 

        end 

        Increase = Increase*Inc; 

         

    end 

     

     

    Decrease = 1; 

    for p2 = (LocalMaxIndex+a1-1):b1 

        if (Diffe(p2+1) <= Diffe(p2)) 

            Dec = 1; 

        else 
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            Dec = 0; 

        end 

        Decrease = Decrease*Dec; 

         

    end 

     

    MonoDetect = Increase*Decrease; 

     

    if MonoDetect == 1 

        PlantNumber(1, a1:b1) = 1; 

        Features_Pre(3, FeaIndex) = 1; 

    else          

        PlantNumber(1, a1:b1) = 2; 

        Features_Pre(3, FeaIndex) = 2; 

    end 

          

    end 

end 

     

figure(5) 

plot(timeline, Diffe, timeline, PlantNumber, timeline, SigWid);hold on; 

 

figure(6) 

plot(Diffe,'k'); hold on; 

%plot(PlantNumber,'y');hold on; 

%plot(SigWid,'b');hold on; 

 

 

% Plot the stalk location 

 

 for k = 1:n; 

 

    b = isnan(Location(:,k)); 

    c = find(b); 

    d = sort(c); 
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    if c 

        Last_data = d(1)-1; 

    else 

        Last_data = length(Location(:,k)); 

    end 

    temp1 = Location(2:Last_data, k)'; 

    temp2 = Location(1,k)*ones(1,(Last_data-1)); 

    Dist_Gap = temp1 - temp2; 

    Dist = Location(Last_data,k) - Location(1,k); 

    Point_Dist = CursorPoint(2*k) - CursorPoint(2*k-1); 

    ratio = Point_Dist/Dist; 

    format long 

    ratio; 

    Location_Turepoint = Location(1:Last_data, k);  

    Location_Plot = CursorPoint(2*k-1)*ones(1, Last_data) + [0, Dist_Gap*ratio]; 

    format long 

    Location_Plot; 

    figure(5) 

    stem(Location_Plot/SampleFreq,5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on; 

    stem(Location_Plot/SampleFreq,-5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on;% 

    figure(6) 

    stem(Location_Plot,5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on; 

    stem(Location_Plot,-5*ones(1,Last_data),':sr','fill','MarkerSize',2);%hold on;% 

     

  end 

 

% Feature Space Simplification 

 

Features = zeros(6,30); 

Fealength = length(Features_Pre(2,:)); 

k = 0; 

for i = 1:Fealength-1 

    k = k + 1;   

    Features(:,k) = Features_Pre(:,i); 
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    if ((Features_Pre(1,i) == Features_Pre(1,(i+1))) & (Features_Pre(2,i) == Features_Pre(2,(i+1))) & 
(Features_Pre(3,i) == Features_Pre(3,(i+1)))) 

        k = k - 1; 

    end 

end 

 

Features_Temp1 = Features(4,1:(length(Features(4,:))-1)); 

Features_Temp2 = Features(4,2:length(Features(4,:))); 

Features(4,:) = [0, Features_Temp2 - Features_Temp1]; 

 

Features_Temp3 = Features(5,2:length(Features(5,:))); 

Features_Temp4 = Features(6,1:(length(Features(6,:))-1)); 

Features(5,:) = [0, Features_Temp3 - Features_Temp4]; 
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A2.5  Feature Extraction 2. The last 3 features. 

 

% A11_2 Feature Reorganization  

 

load ('Features_RT_1.mat') 

load ('Features_RT_2.mat') 

load ('Features_RT_3.mat') 

load ('Features_RT_4.mat') 

load ('Features_RT_5.mat') 

load ('Features_RT_6.mat') 

 

 

load ('Features_A11_2_1.mat') 

load ('Features_A11_2_2.mat') 

load ('Features_A11_2_3.mat') 

load ('Features_A11_2_4.mat') 

load ('Features_A11_2_5.mat') 

load ('Features_A11_2_6.mat') 

 

 

load ('Features_A11_9.mat') 

load ('Features_A11_10.mat') 

load ('Features_A11_11.mat') 

load ('Features_A11_12.mat') 

load ('Features_A11_15.mat') 

 

 

Reorg_Temp1 = [Features_RT_1 Features_RT_2 Features_RT_3 Features_RT_4 Features_RT_5 
Features_RT_6 Features_A11_2_1 Features_A11_2_2 Features_A11_2_3 Features_A11_2_4 
Features_A11_2_5 Features_A11_2_6 Features_A11_9 Features_A11_10 Features_A11_11 
Features_A11_12 Features_A11_15]; 

 

ReorgLength = length(Reorg_Temp1(1,:)); 

 

% eliminate the effect of subsampling 

for ii = 1: ReorgLength; 
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    if Reorg_Temp1(4,ii) == 0 

        Reorg_Temp1(4,ii) = 17; 

    end 

     

    if Reorg_Temp1(5,ii) == 0 

        Reorg_Temp1(5,ii) = 5; 

    end 

     

    if Reorg_Temp1(4,ii) > 40 

        Reorg_Temp1(4,ii) = 40; 

    end 

     

    if Reorg_Temp1(5,ii) > 36 

        Reorg_Temp1(5,ii) = 36; 

    end 

 

end 

 

% Maximum Value Pattern 

% stem(Reorg_Temp1(2,:),'sr', 'fill', 'markersize', 3); 

 

% the feature of potential moisture content effect 

 

Reorg_Temp2 = [Reorg_Temp1(2,1:5) Reorg_Temp1(2,:) Reorg_Temp1(2,(ReorgLength-
4):ReorgLength)]; 

 

for jj = 6: (ReorgLength+5); 

    Sort_temp = sort(Reorg_Temp2((jj-5):(jj+5))); 

    NoLittle = Sort_temp(1,3); 

     

    for kk = -5:5 

          if Reorg_Temp2(jj+kk) < NoLittle;  

              Reorg_temp3(kk+6) = 0; 

          else 
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              Reorg_temp3(kk+6) = Reorg_Temp2(jj+kk); 

          end 

    end 

    Reorg_temp4 = sort(Reorg_temp3);  

    Reorg_temp5 = Reorg_temp4(3:11); 

    Reorg_Temp1(6, (jj-5)) = (1/9)*Reorg_temp5*ones(9,1); 

end 

 

% Feature 7 

 

Reorg_Temp1(7,:) = [Reorg_Temp1(2, ReorgLength), Reorg_Temp1(2, 1:(ReorgLength-1))]; 

 

% Feature 8 

 

Reorg_Temp1(8,:) = [Reorg_Temp1(2, 2:ReorgLength), Reorg_Temp1(2, 1)];     
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A2.5  Principal Component Analysis 

 

% Both prepca and princomp are principal component analysis function.  The first one is designed specially 
for neural network.  The second can show more detail information on each component.  

 

[pn,meanp,stdp] = prestd(Reorg_Temp1); 

[NN_P, NN_Mat] = prepca(pn, 0.1); 

stdr = std(Reorg_Temp1'); 

sr = Reorg_Temp1'./repmat(stdr,3116,1); 

[pcs,newdata,variances,t2] = princomp(sr); 

percent_explained = 100*variances/sum(variances); 
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A2.5  Artificial Neural Network 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Build input/target dataset 

load ('NN_T_RTRaw') 

 

load ('NN_T_Raw') 

 

load ('NN_T_A11Raw') 

 

NN_T = [NN_T_RTRaw(1,:) NN_T_RTRaw(2,:) NN_T_RTRaw(3,:) NN_T_RTRaw(4,:) 
NN_T_RTRaw(5,:) NN_T_RTRaw(6,:) NN_T_Raw(1,:) NN_T_Raw(2,:) NN_T_Raw(3,:) 
NN_T_Raw(4,:) NN_T_Raw(5,:) NN_T_Raw(6,:) NN_T_A11Raw(1,:) NN_T_A11Raw(2,:) 
NN_T_A11Raw(3,:) NN_T_A11Raw(4,:) NN_T_A11Raw(5,:) 10]; 

 

NN_T_Leng = length(NN_T); 

 

k = 1; 

 

while NN_T(k) ~= 10 

     

    if isnan(NN_T(k)) 

        NN_T(k) = []; 

        k = k-1; 

    end 

    k = k + 1; 

 

end 

 

NN_T_Leng = length(NN_T); 

 

NN_T = NN_T(1:(NN_T_Leng - 1)); 

 

NN_Data = [NN_P; NN_T]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine two stalks in one signal 

% NN_T modification 

 

PotentialTwoStalk = 0; 

 

NN_T_Leng = length(NN_T); 

 

for i = 1:NN_T_Leng 

    if NN_T(i) == 2 

        NN_T(i) = 1; 

        PotentialTwoStalk = PotentialTwoStalk + 1; 

    end 

end 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine test, valadation, and training data sets. 

 

[R, Q] = size(NN_Data); 

 

NNtst = [1:5:Q 3:5:Q 5:5:Q]; 

%NNval = 4:4:Q; 

NNtr  = [4:5:Q 2:5:Q]; 

 

 

%P_Val = NN_P(:,NNval);  T_Val = NN_T(:,NNval); 

P_Tst = NN_P(:,NNtst);  T_Tst = NN_T(:,NNtst);  

P_Tr  = NN_P(:,NNtr);   T_Tr  = NN_T(:,NNtr); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Neural Network  

 

net = newff(minmax(P_Tr),[3 1], {'tansig' 'purelin'},'trainbfg'); 

net.trainParam.epochs = 300; 

[net tr] = train(net, P_Tr, T_Tr); 

SimT = sim(net, P_Tst); 

figure(10) 

plot(T_Tst, SimT, '+'); 

xlabel('Hand Count Value'); 

ylabel('Modeled Value'); 

title('Overfitting Evaluation'); 

axis([-0.5 3.5 -1 2.5]); 

 

 

HitZero = 0; 

HitOne  = 0; 

MisTrg  = 0; 

Fail    = 0; 

 

 

SimTRound = round(SimT); 

 

SimTlength = length(SimT); 

for ss = 1:SimTlength 

    if ((SimTRound(ss) <= 0) & (T_Tst(ss) == 0)) 

        HitZero = HitZero + 1; 

    elseif ((SimTRound(ss) == 1) & (T_Tst(ss) == 1)) 

        HitOne = HitOne + 1; 

    elseif ((SimTRound(ss) <= 0) & (T_Tst(ss) == 1)) 

        Fail = Fail + 1; 

    elseif ((SimTRound(ss) == 1) & (T_Tst(ss) == 0)) 

        MisTrg = MisTrg + 1; 

    end 

end 
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% True value of corn stalks by hand count 

 

TureTotalStalksLength = length(NNtst); 

 

TureTotalStalks = 0; 

for i = 1:TureTotalStalksLength 

    if T_Tst(i) == 1; 

        TureTotalStalks = TureTotalStalks + 1; 

    end 

end 

 

TureTotalStalks = TureTotalStalks + PotentialTwoStalk; 

 

ModelTotalStalks = HitOne + MisTrg; 

 

disp('The true stalk number by hand count is:') 

disp(TureTotalStalks) 

 

disp('The stalk number calculated by model is:') 

disp(ModelTotalStalks) 

 

disp('Hit Zero = ') 

disp(HitZero) 

 

disp('Hit One =') 

disp(HitOne) 

 

disp('False Positive =') 

disp(MisTrg) 

 

disp('False negative =') 

disp(Fail) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A2.5  Accuracy Analysis at different Resolution 

 

GroupSize = 5;  % Resolution 

k = 0; 

 

NN_P_length = length(NN_P(1,:)); 

 

GroupNumber = floor(NN_P_length/GroupSize); 

 

NN_P_group = NN_P(:,1:GroupNumber*GroupSize); 

NN_T_group = NN_T(1:GroupNumber*GroupSize); 

 

NN_P_groupinput = reshape(NN_P_group, 3, GroupSize, GroupNumber); 

NN_T_groupinput = reshape(NN_T_group, 1, GroupSize, GroupNumber); 

 

Features_org = Reorg_Temp1(:,1:GroupNumber*GroupSize); 

Features_Raw_Group =  reshape(Features_org, 8, GroupSize, GroupNumber); 

 

 

for p = 1:GroupNumber 

     

     SimT_ind = sim(net, NN_P_groupinput(:,:,p)); 

     

     HitZero = 0; 

    HitOne  = 0; 

    HitTwo  = 0; 

    MisTrg  = 0; 

    Fail    = 0; 

    MisTrg2_1 = 0; 

    MisTrg1_2 = 0; 

 

    SimTRound = round(SimT_ind); 

 

    for ss = 1:GroupSize 

        if ((SimTRound(ss) <= 0) & (T_Tst(ss) == 0)) 
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            HitZero = HitZero + 1; 

        elseif ((SimTRound(ss) == 1) & (T_Tst(ss) == 1)) 

            HitOne = HitOne + 1; 

        elseif ((SimTRound(ss) <= 0) & (T_Tst(ss) == 1)) 

            Fail = Fail + 1; 

        elseif ((SimTRound(ss) == 1) & (T_Tst(ss) == 0)) 

            MisTrg = MisTrg + 1; 

        elseif ((SimTRound(ss) >= 2) & (T_Tst(ss) == 2)) 

            HitTwo = HitTwo + 1; 

        elseif ((SimTRound(ss) <= 1) & (T_Tst(ss) == 2)) 

            MisTrg2_1 = MisTrg2_1 + 1; 

        elseif ((SimTRound(ss) >= 2) & (T_Tst(ss) == 1)) 

            MisTrg1_2 = MisTrg2_1 + 1; 

        end 

    end 

 

    NN_T_ind = NN_T_groupinput(:,:,p); 

    TureTotalStalks_ind = 0; 

    for i = 1:GroupSize 

        if NN_T_ind(i) == 1; 

            TureTotalStalks_ind = TureTotalStalks_ind + 1; 

        end 

        if NN_T_ind(i) == 2; 

            TureTotalStalks_ind = TureTotalStalks_ind + 2; 

        end 

    end 

 

 

    ModelTotalStalks_ind = HitOne + HitTwo*2 + MisTrg*1 + MisTrg2_1 + MisTrg1_2*2; 

 

    Result_ind(p,:) = [TureTotalStalks_ind ModelTotalStalks_ind HitZero HitOne HitTwo Fail MisTrg 
MisTrg2_1 MisTrg1_2]; 

 

    Result_Diff = abs(TureTotalStalks_ind - ModelTotalStalks_ind); 
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    if Result_Diff == 0 

        k = k + 1; 

        zerosorder(k) = p; 

        ZeroDataSet(:,:, k) = [NN_T_ind' SimTRound' NN_P_groupinput(:,:,p)' Features_Raw_Group(:,:,p)'];  

    end     

end 

 

Result_diff = abs(Result_ind(:,1) - Result_ind(:,2)); 

 

Rightcatch = 0; 

MissOne = 0; 

MissTwo = 0; 

MissThree = 0; 

MissFour = 0; 

MissFive = 0; 

MissSix = 0; 

MissSeven = 0; 

MissMore = 0; 

 

    for mm = 1:GroupNumber 

        if (Result_diff(mm) == 0) 

            Rightcatch = Rightcatch + 1; 

        elseif (Result_diff(mm) == 1) 

            MissOne = MissOne + 1;         

            elseif (Result_diff(mm) == 2) 

                MissTwo = MissTwo + 1; 

                elseif (Result_diff(mm) == 3) 

                    MissThree = MissThree + 1; 

                    elseif (Result_diff(mm) == 4) 

                        MissFour = MissFour + 1; 

                        elseif (Result_diff(mm) == 5) 

                            MissFive = MissFive + 1;  

                                elseif (Result_diff(mm) == 6) 

                                MissSix = MissSix + 1;  

                                    elseif (Result_diff(mm) == 7) 
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                                    MissSeven = MissSeven + 1;  

                            elseif (Result_diff(mm) > 7) 

                                MissMore = MissMore + 1; 

        end 

    end 

  

disp('Sample Signal Size = ') 

disp(GroupSize) 

     

Result_miss = [Rightcatch MissOne MissTwo MissThree MissFour MissFive MissSix MissSeven 
MissMore] 

 

percent = 100*Result_miss/sum(Result_miss) 

 

Result_mean = mean(Result_ind(:,1:2)) 
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A2.5  “I Don’t Know” Test 

 

clear 

clc 

 

 

RotationTime = 20; 

 

 

% A11_2 Feature Reorganization  

 

load ('Features_RT_1.mat') 

load ('Features_RT_2.mat') 

load ('Features_RT_3.mat') 

load ('Features_RT_4.mat') 

load ('Features_RT_5.mat') 

load ('Features_RT_6.mat') 

 

 

load ('Features_A11_2_1.mat') 

load ('Features_A11_2_2.mat') 

load ('Features_A11_2_3.mat') 

load ('Features_A11_2_4.mat') 

load ('Features_A11_2_5.mat') 

load ('Features_A11_2_6.mat') 

 

 

load ('Features_A11_9.mat') 

load ('Features_A11_10.mat') 

load ('Features_A11_11.mat') 

load ('Features_A11_12.mat') 

load ('Features_A11_15.mat') 
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Reorg_Temp1 = [Features_RT_1 Features_RT_2 Features_RT_3 Features_RT_4 Features_RT_5 
Features_RT_6 Features_A11_2_1 Features_A11_2_2 Features_A11_2_3 Features_A11_2_4 
Features_A11_2_5 Features_A11_2_6 Features_A11_9 Features_A11_10 Features_A11_11 
Features_A11_12 Features_A11_15]; 

 

ReorgLength = length(Reorg_Temp1(1,:)); 

 

% eliminate the effect of subsampling 

for ii = 1: ReorgLength; 

     

    if Reorg_Temp1(4,ii) == 0 

        Reorg_Temp1(4,ii) = 17; 

    end 

     

    if Reorg_Temp1(5,ii) == 0 

        Reorg_Temp1(5,ii) = 5; 

    end 

     

    if Reorg_Temp1(4,ii) > 40 

        Reorg_Temp1(4,ii) = 40; 

    end 

     

    if Reorg_Temp1(5,ii) > 36 

        Reorg_Temp1(5,ii) = 36; 

    end 

 

end 

 

% Maximum Value Pattern 

% stem(Reorg_Temp1(2,:),'sr', 'fill', 'markersize', 3); 

 

% the feature of potential moisture content effect 

 

Reorg_Temp2 = [Reorg_Temp1(2,1:5) Reorg_Temp1(2,:) Reorg_Temp1(2,(ReorgLength-
4):ReorgLength)]; 
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for jj = 6: (ReorgLength+5); 

    Sort_temp = sort(Reorg_Temp2((jj-5):(jj+5))); 

    NoLittle = Sort_temp(1,3); 

     

    for kk = -5:5 

          if Reorg_Temp2(jj+kk) < NoLittle;  

              Reorg_temp3(kk+6) = 0; 

          else 

              Reorg_temp3(kk+6) = Reorg_Temp2(jj+kk); 

          end 

    end 

    Reorg_temp4 = sort(Reorg_temp3);  

    Reorg_temp5 = Reorg_temp4(3:11); 

    Reorg_Temp1(6, (jj-5)) = (1/9)*Reorg_temp5*ones(9,1); 

end 

 

% Feature 7 

 

Reorg_Temp1(7,:) = [Reorg_Temp1(2, ReorgLength), Reorg_Temp1(2, 1:(ReorgLength-1))]; 

 

% Feature 8 

 

Reorg_Temp1(8,:) = [Reorg_Temp1(2, 2:ReorgLength), Reorg_Temp1(2, 1)]; 

 

 

% Neural Network Preprocessing by std and Principal component Analysis         

[pn,meanp,stdp] = prestd(Reorg_Temp1); 

[NN_P, NN_Mat] = prepca(pn, 0.1); 

[pcs,newdata,variances,t2] = princomp(Reorg_Temp1'); 

percent_explained = 100*variances/sum(variances); 

 

% Neural Network Target Data Set 

 

load ('NN_T_RTRaw') 
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load ('NN_T_Raw') 

 

load ('NN_T_A11Raw') 

 

NN_T = [NN_T_RTRaw(1,:) NN_T_RTRaw(2,:) NN_T_RTRaw(3,:) NN_T_RTRaw(4,:) 
NN_T_RTRaw(5,:) NN_T_RTRaw(6,:) NN_T_Raw(1,:) NN_T_Raw(2,:) NN_T_Raw(3,:) 
NN_T_Raw(4,:) NN_T_Raw(5,:) NN_T_Raw(6,:) NN_T_A11Raw(1,:) NN_T_A11Raw(2,:) 
NN_T_A11Raw(3,:) NN_T_A11Raw(4,:) NN_T_A11Raw(5,:) 10]; 

 

NN_T_Leng = length(NN_T); 

 

k = 1; 

 

while NN_T(k) ~= 10 

     

    if isnan(NN_T(k)) 

        NN_T(k) = []; 

        k = k-1; 

    end 

    k = k + 1; 

 

end 

 

 

NN_T_Leng = length(NN_T); 

 

NN_T = NN_T(1:(NN_T_Leng - 1)); 

 

NN_Data = [NN_P; NN_T]; 

 

 

% NN_T modification 

 

PotentialTwoStalk = 0; 

 

NN_T_Leng = length(NN_T); 
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for i = 1:NN_T_Leng 

    if NN_T(i) == 2 

        NN_T(i) = 1; 

        PotentialTwoStalk = PotentialTwoStalk + 1; 

    end 

end 

  

% Determine test, valadation, and training data sets. 

 

[R, Q] = size(NN_Data); 

 

NNtst = [1:5:Q 3:5:Q 5:5:Q]; 

%NNval = 4:4:Q; 

NNtr  = [4:5:Q 2:5:Q]; 

 

% First group 

 

%P_Val = NN_P(:,NNval);  T_Val = NN_T(:,NNval); 

P_Tst1 = NN_P(:,NNtst);  T_Tst1 = NN_T(:,NNtst);  

P_Tr1  = NN_P(:,NNtr);   T_Tr1  = NN_T(:,NNtr); 

 

% Second Group 

 

NNtr2 = NNtst; 

NNtst2 = NNtr; 

 

%P_Val = NN_P(:,NNval);  T_Val = NN_T(:,NNval); 

P_Tst2 = NN_P(:,NNtst2);  T_Tst2 = NN_T(:,NNtst2);  

P_Tr2  = NN_P(:,NNtr2);   T_Tr2  = NN_T(:,NNtr2); 

 

NN_T = [T_Tst1 T_Tst2]; 

%%%%%%%%%%% Rotation Process 
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Totallength = length(NN_P); 

 

T_PR = zeros(RotationTime, Totallength); 

 

endpoint = length(NNtst); 

 

beginpoint = endpoint + 1; 

 

for RO = 1:RotationTime 

 

     

% Neural Network  

 

% First group 

net = newff(minmax(P_Tr1),[4 1], {'tansig' 'purelin'},'trainbfg'); 

net.trainParam.epochs = 300; 

net.trainParam.goal = 0.05; 

[net tr] = train(net, P_Tr1, T_Tr1); 

SimT = sim(net, P_Tst1); 

figure(10) 

plot(T_Tst1, SimT, '+'); 

xlabel('Hand Count Value'); 

ylabel('Modeled Value'); 

title('Overfitting Evaluation'); 

axis([-0.5 3.5 -1 2.5]); 

 

2*RO-1 

 

SimTRound = round(SimT); 

 

roundsimt = round(SimT); 

 

T_PR(RO, 1:endpoint) = roundsimt; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% second group 

net = newff(minmax(P_Tr2),[4 1], {'tansig' 'purelin'},'trainbfg'); 

net.trainParam.epochs = 300; 

net.trainParam.goal = 0.05; 

[net tr] = train(net, P_Tr2, T_Tr2); 

SimT = sim(net, P_Tst2); 

figure(10) 

plot(T_Tst2, SimT, '+'); 

xlabel('Hand Count Value'); 

ylabel('Modeled Value'); 

title('Overfitting Evaluation'); 

axis([-0.5 3.5 -1 2.5]); 

 

2*RO 

 

SimTRound = round(SimT); 

 

roundsimt = round(SimT); 

 

T_PR(RO, beginpoint:Totallength) = roundsimt; 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

NumDtKnown = 0; 

NumStalks = 0; 

Miss = 0; 

 

for PR = 1:Totallength 

    TestPoint = 1; 

    for OR = 1:(RotationTime - 1) 
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        if T_PR(OR,PR) ~= T_PR((OR+1),PR) 

            TestPoint = TestPoint * 0; 

        end 

    end 

     

    if TestPoint == 0 

        PR; 

        NumDtKnown = NumDtKnown + 1; 

    end 

     

    if TestPoint == 1 

        if T_PR(1, PR) ~= NN_T(1, PR) 

            Miss = Miss + 1; 

        end 

    end 

end 

 

 

 

for PR = 1:Totallength 

    TestPoint = 1; 

    for OR = 1: RotationTime 

        TestPoint = T_PR(OR,PR) * TestPoint; 

    end 

    if TestPoint 

        NumStalks = NumStalks + 1; 

    end 

end 

 

 

NumDtKnown 

NumStalks 

Miss 
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