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ABSTRACT 
 

 

Estimation of the carbon abatement potential of a national carbon market upon U.S. 

agricultural lands is needed by climate analysts, policymakers, and carbon market 

brokers. A high resolution, integrated, socioeconomic-biogeophysical model is developed 

in this research by linking the economics of land management with spatial data on soils 

and land use.  The economic component of the model functions at the county level with 

biophysical data at the sub-county level of resolution.  

 

The model is used to estimate changes in net carbon flux induced by incentives for 

conservation tillage on nine major crops.  The economic potential reduction in net carbon 

flux at incentives of $500 per metric ton carbon (MtC) is estimated to be 18.92 million 

metric tons carbon (MMtC) below baseline, and 12.6 MMtC below baseline at an offered 

incentive of $125 per MtC.   

 

Results indicate that the Northern Great Plains, northern Corn Belt, and Mississippi Delta 

have the greatest economic potential for carbon abatement.  Regions with significant 

amounts of acreage in hay have the greatest potential for gains in net soil carbon.  

Application of incentives based on soil sequestration potential leads to “leakage” in some 

regions where land is reallocated from low input practices to higher input practices. 

 

This analysis created an ideal opportunity to study the interactions of data resolution and 

analytical scale.  When analyzing carbon abatement at the national scale, abatement 
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estimations were similar using either high or low resolution data.  But, if regional 

estimation is a goal, the geographic resolution of data must match or surpass the 

geographic scale of analysis, otherwise estimation errors will be large.  Although 

validation using field-level data indicates that model results are not appropriate for field-

level estimation, it also indicates that the high resolution methodology developed here 

results in much smaller errors than lower resolution versions.   

 
Results indicate that there are many challenges to implementation, but if policymakers 

decide to implement a carbon abatement program using conservation tillage, either 

through a market-based mechanism or through government ‘green payments’, the 

methodology developed here could help reduce uncertainty in estimating regional 

abatement quantities. 

 



 viii

TABLE OF CONTENTS 
 
CHAPTER                                                                                                  PAGE 
 

I. INTRODUCTION       1 
 Objective        5 
 

II. BACKGROUND       8 
 Soil carbon and the carbon reservoirs     8 
 Soil carbon and the carbon cycle     10 
 Soil carbon sequestration      12 
 Soil carbon dynamics       14 
 Effects of management on soil carbon    16 
 Effects of climate change on soil carbon    18 
 National estimates of soil carbon sequestration   19 
 Appropriate roles of resolution and scale    23 
 

III. METHODOLOGY       27 
 Overview        27 
 Core socio-economic model      31 
 Building the integrated model      34 
      Soil carbon sequestration estimation    36 
  Base soil carbon estimation     37 
  Soil carbon response rate     39 
  Adjustment of carbon response rate    42 
      Emissions estimation      44 
  Building operation budgets     46 
  Linking with emissions     49 
      Building county level resolution     51 
      Inclusion of yield change uncertainty    55 
 Methods of model application     57 
      Baseline simulation      58 
      Simulation        60 
      Scenario analysis of base soil carbon uncertainty   63 
      Validation of high resolution     64 
      Scale comparisons       66 
 

IV. RESULTS        68 
 Baseline simulation       68 
 National agricultural carbon supply curve    70 
 Carbon changes       75 
 Average costs of abatement      78 
 Acreage changes       79 
 Price changes        80 
 Regional estimates       82 



 ix

 Uncertainty        90 
 Validation of high resolution      94 
 Resolution and scale       98 
 

V. DISCUSSION        106 
 Overall implications       106 
 Duration        107 
 Additionality        109 
 Permanence        111 
  Leakage        113 
 Discussion of resolution and scale     116 
 Value of this analysis to implementation    119 
    Alternative program design      120 
 Results compared to earlier studies     122 
 

VI. CONCLUSIONS       123 
 Future research directions      126 

 
REFERENCES        128 
 
APPENDIX A         140 
 
APPENDIX B         142 
 
VITA          147 
 



 x

LIST OF TABLES 
 
 
1.  Global carbon reservoirs        9 
2.  Average annual sources and sinks in the carbon cycle    11 
3.  Spatial data source, resolution and use      30 
4.  Estimated rates of soil carbon accumulation by tillage intensity   43 
5.  Operation budget example        50 
6.  Weighted average cost of production and emissions by crop and tillage  52 
7.  Baseline changes in atmospheric carbon       69 
8.  Marginal acreage changes per dollar incentive     72 
9.  Impacts to atmospheric carbon from annual emissions and soil carbon  
     uptake under increasing soil carbon incentive levels    76 
10. Change in impacts to atmospheric carbon from annual emissions 
       and soil carbon uptake under increasing soil carbon incentive levels  77 
11.  Costs of atmospheric carbon abatement as a result of  
        incentives targeting agricultural soil carbon sequestration   79 
12.  Acreage changes induced by carbon incentives     80 
13.  Cropland changes percentage under incentive levels    81 
14.  Commodity price changes through simulation period    81 
15.  Average annual rates of change of soil carbon in empirical experiments  
       and comparisons with estimated rates using differing resolutions  95 
16.  Analytical scale comparisons       100 
17.  Leakage through production input increases as a result of incentives  114 
 
 
 
 
 



 xi

LIST OF FIGURES 
 

 
1.  Schematic of layer integration and simulation     29 
2.  Locating county crop acres in soil type      40 
3.  Example of high resolution overlay, Randolph County, MO   41 
4.  Carbon management response curve      43 
5.  Carbon accumulation adjustment curve      45 
6.  POLYSYS crop budget regions       47 
7.  Change in no-tillage yield over time      57 
8.  Tillage adoption: historical and baseline projected    60 
9.  National carbon abatement supply curve      71 
10. Reduction in atmospheric carbon through simulation period   74 
11. Regional changes in soil carbon: average per acre    83 
12. Regional changes in soil carbon: regional totals     84 
13. Regional changes in emissions: average per acre     86 
14. Regional changes in emissions: regional totals     87 
15. Regional changes in net carbon flux: average per acre    89 
16. Regional changes in net carbon flux: regional totals    91 
17. Uncertainty around national mean carbon abatement curve   93 
18. National carbon abatement curves using differing resolutions   98 
19. Regional differences in estimation using differing resolutions   103 
20. State scale differences in estimation      105 
21. Change in abatement over 50 year period      108 
 
 



 1

CHAPTER I 
 

INTRODUCTION 
 

The Intergovernmental Panel on Climate Change (IPCC) has reported that concentrations 

of greenhouse gases (GHG) in the atmosphere have risen at an increasing rate since 1861 

and the beginning of the Industrial Revolution.  Coincidentally, the Earth has warmed an 

average of 0.74°C over the last 100 years, with 11 of last 12 years being among the 12 

warmest years on record (IPCC, 2007).  IPCC also reports that GHG concentrations 

could double or even triple pre-industrial levels by the end of this century.   Analysis of 

the 3.2 km Dome C ice core taken from Antarctica in December of 2004 revealed that 

current levels of CO2 have not been surpassed in the past 800,000 years, and that the 

current rate of growth in atmospheric CO2 is over 100 times faster than any increase 

found in the ice core data (BBC, 2006).  In September of 2007, the National Snow and 

Ice Data Center reported that Arctic sea ice extent had reached a new record low, 

plummeting to only 39% of long term average ice cover (NSIDC, 2007).   

 

Although there is still debate over the consequences of atmospheric CO2 growth and 

warming, there is growing interest in taking action to curb GHG growth and even reduce 

their concentrations in the atmosphere.  In 1998, 38 nations represented at the Kyoto 

Protocol (KP) of the United Nations Framework Convention on Climate Change 

(UNFCCC) agreed that industrialized countries should reduce GHG emissions by six to 

eight percent below 1990 emissions levels by 2012.  Besides reducing carbon emissions 

directly, several methods of abating carbon emissions have been proposed, including bio-
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energy production, hydrologic dam construction, deep-ocean burial, terrestrial burial in 

geological formations, afforestation, reforestation, and soil sequestration. Within the KP, 

the Clean Development Mechanism1 (CDM) was devised to evaluate, approve and 

oversee valid methods of abatement.  The CDM has approved bio-energy production, 

dam construction, afforestation and reforestation as creditable sources of Certified 

Emission Reductions (Manguiat, 2005).  Although carbon sequestration is creditable 

within KP (in the form of afforestation and reforestation), the CDM stopped short of 

including soil sequestration as a valid option for mitigation in the last round (2007), but 

stated that soil sequestration options should be investigated and reported for review of 

IPCC policy (Rosenbaum, 2004). Some studies have reported that sequestering carbon in 

agricultural soils through changes in land management have a low opportunity cost in the 

near future and may be the cheapest and most readily implemented of the sequestration 

strategies (McCarl and Schneider, 2001; Marland et al., 2001).  

 

Currently within the US Congress there are several climate bills introduced that mention 

soil sequestration (S.2724; S.3698; S.4039; H.R.1590; S.1766; H.R.2069;S.1168; S.280; 

S.2191).  In the recently introduced and highly touted America’s Climate Security Act of 

2007, soil carbon sequestration via conservation tillage is listed as an eligible offset 

mechanism (S.2191).  If the US chooses to unilaterally initiate reductions in GHG 

emissions, it is likely that soil sequestration will be used as an offset mechanism under a 

larger GHG emission program. 

                                                 
1 The Clean Development Mechanism is an arrangement under the Kyoto Protocol allowing industrialized 
countries with a greenhouse gas reduction commitment (so-called Annex 1 countries) to invest in emission 
reducing projects in developing countries as an alternative to what is generally considered more costly 
emission reductions in their own countries. 
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Regardless of its status within the KP or the US government, carbon sequestration in US 

agricultural lands is moving from theoretical speculation into actual implementation.   

The Chicago Climate Exchange (CCX) is now paying farmers in some regions for their 

use of no-tillage practices that act to increase the level of carbon in their soils.   

Currently, 140,000 metric tons of carbon offsets are under contract on over 1,000,000 

acres of US farmland per year.  Carbon payments are low and the market is small, but if 

the US enters the Kyoto Protocol and soil carbon is accepted as a valid offset in the Clean 

Development Mechanism (CDM), or if the US decides to legislate emissions reductions 

unilaterally, incentives will likely increase.  

 

In order for soil sequestration to gain credibility as a valid mechanism for abating 

emissions, it is essential to have accurate estimation of the carbon abatement potential of 

a national carbon market upon US agricultural lands. For example, in order for soil 

carbon sequestration to become an eligible offset mechanism under America’s Climate 

Security Act of 2007, the legislation mandates that “research on soil carbon sequestration 

and other agricultural and forestry greenhouse gas management that has been carried out” 

needs to be reported to Congress within one year of the Bill’s passage (S.2191).  

Knowing the achievable abatement quantities and their corresponding costs will influence 

policy choices, such as whether government agencies see it as worthwhile to subsidize 

market operation costs.  Due to the spatial heterogeneity of soil properties, climate, and 

management practices, a high degree of geographic resolution, in both economic and soil 

data, is essential in accurate estimation and in moving the market toward implementation. 
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Several estimates of soil sequestration potential have been reported at highly aggregated 

levels of geographic resolution (Lal et al., 1998; Follett, 2001; McCarl and Schneider, 

2001; Sperow et al., 2003; Lewandrowski et al., 2004).  Nationally, technical potential2 

quantities of carbon sequestration (from afforestation, cropland to pasture conversion and 

conservation tillage) have been estimated at as high as 207 million metric tons carbon 

(MMtC) per year (Lal et al., 1998).  Other studies, using integrated economic - 

biogeophysical models, have placed economically feasible3 quantities far lower, in the 

range of 7 to 70 MMtC per year.  This translates into US carbon emission offsets as great 

as 12% or as low as 0.5%.  Model estimates have such a large range because of 

differences in model design and scale.  Modeling differences in sequestration practices 

and payment structure has important implications upon outcomes. These studies 

acknowledge the great spatial heterogeneity involved in carbon sequestration, but 

aggregate soils and economic data to relatively large regions anyway (McCarl and 

Schneider, 2001; Lewendrowski et al., 2004).  In evaluating the relative merits of spatial 

resolution, Antle et al. (2007) conclude that soil carbon research conducted using 

spatially explicit, disaggregated data may provide better estimates.   

 

To date, national, integrated assessment models have undertaken analysis at low 

resolution levels in both economic and biophysical data.  This has been shown to result in 

                                                 
2 Technical potential sequestration is a common term in carbon sequestration literature to refer to the 
quantities of carbon that could be sequestered if all possible mitigating land-use changes were enacted. 
3 Economic potential sequestration refers to the quantities of carbon that could be reached with a given 
level of incentives for land managers to adopt alternative practices.  Some technical potential quantities can 
never be reached because of their high cost.  For this reason, economic potential is always less than 
technical potential. 
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aggregation error, where the distributional dynamics of both economic and environmental 

factors are not adequately estimated (Park and Garcia, 1994; Brown, 2000; Antle et al., 

2007).   The accuracy of integrated assessment models with national extent can be 

improved by a major refinement in the resolution of data representing both economic and 

environmental dynamics.  If accurate estimates of the market potential of carbon 

sequestration are not available, policy makers may dismiss carbon sequestration policy as 

too risky of a venture due to unpredictable outcomes. 

  

Objective 

The objective of this dissertation is to improve the standard in integrated assessment 

modeling by building a high resolution economic-biogeophysical model using the most 

disaggregated data available with national coverage, with the intention of estimating net 

carbon flux from US agricultural lands from changes in management practices induced 

through carbon incentives.  The economic decision-making component of the model will 

function at the county level of resolution.  The model will be informed by higher 

resolution environmental data through the use of 30 x 30 meter resolution satellite data.  

Previous studies have identified conservation tillage as the most promising sequestration 

alternative (Antle and McCarl, 2001; Pautsch et al., 2001).  I limited the scope of my 

research to the impacts of conversion of cropland to conservation tillage through an 

incentive mechanism.  I analyzed the effects of conventional-tillage, reduced-tillage, and 

no-tillage of the eight major crops in the lower 48 states.  Furthermore, the model 

developed in this analysis increases the temporal resolution by estimating net carbon flux 

annually for 20 years, allowing estimation of the market evolution during the important 
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short-to-medium term.   

 

In dealing with soils and their capabilities to sequester carbon, large variations exist 

within small geographic areas.  Likewise, local economic differences in farming practices 

and potential yields can play significant roles in determining threshold levels where 

producers are induced into adopting carbon abating practices.  Increasing the spatial 

resolution of economic potential carbon sequestration is intended to inform the 

international, national and regional policy process by giving the most precise estimates 

given current data and technology.  Three primary results of my research will inform the 

policy process: 1) estimating the amount of net carbon flux from agriculture, nationally, 

that can be reduced through incentives on conservation tillage, 2) determining those 

regional areas of greatest potential to reduce net carbon flux, and 3) developing a 

methodology to use readily available data to improve the resolution in program 

implementation.   

 

Additionally, this project presented an ideal opportunity to investigate the interaction of 

geographic resolution and scale of analysis.  It is hoped that this analysis will greatly 

improve both the national and regional estimates of economic potential carbon abatement 

from incentive-induced changes in US agricultural management practices, and also 

demonstrate the roles of appropriate data resolution and analytic scale in modeling.  The 

model and its results will be made available to climate modelers, policy makers, and 

market organizers. 
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My development of the model and simulations was guided by three working hypotheses: 

 
1) In most regions the incentive will result in net abatement; yet in some regions, the 

incentive may act perversely and result in net emissions increases. 
 
2) Higher resolution models are significantly better at replicating observed changes 

in soil carbon than lower resolution models. 
 
3) If the scale of analysis is finer-grained than the spatial resolution of the model, 

then estimation errors will be great. Geographic scale of analysis must be equal to 
or coarser-grained than the model data resolution. 
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CHAPTER II: 

BACKGROUND 

 

To give a complete picture of the role of soil carbon in global climate dynamics, I first 

review the planetary carbon budget and soil carbon’s role in the carbon cycle.  Next I 

explain the dynamics that allow carbon to be sequestered in agricultural soils.  Then I 

review previous studies and their estimates on potential quantities that can be sequestered 

in agricultural soils.  Finally, I look at current views on the relationship between 

resolution and analytic scale in modeling highly variable dynamic spatial systems. 

 

Soil carbon and the carbon reservoirs 

Carbon cycles and accumulates in several different physical locations on the planet.  The 

atmosphere is, by far, the smallest of the carbon reservoirs, but because it restricts long-

wave radiation thereby warming the atmosphere, its importance to the dynamics 

controlling the other reservoirs and the temperature of the planet as a whole, far 

outweighs its relative scale.  Table 14 lists the four major reservoirs of carbon and their 

total global quantities.  Eight hundred ten giga tonnes5 of carbon (GtC) are estimated to 

be in the atmosphere.  The ocean reservoir is a largest and holds 38,000 GtC (Lal, 2003).  

Over 66 million GtC are stored in the geologic reservoir, which is made up of deposits 

such as limestone, dolomite, and chalk; but most of this carbon is out of the carbon cycle.   

                                                 
4 All Tables and Figures are located in Appendix C. 
5 All units in this document are in metric tons, which are commonly written in the literature as tons when 
the term metric proceeds it or as tonnes, if not proceeded by metric. 



 9

Table 1.  Global carbon reservoirs. 

Gigatons
Carbon

Atmospheric 810                    
Terrestrial 3,060                 

Soil Carbon 2,500                 
organic 1,550                 
inorganic 950                    

Biotic 560                    
Oceanic 38,000               
Geologic* 5,000                 

Coal 4,000                 
Oil 500                    
Gas 500                  

Source: Lal, 2003
*carbonates in sedimentary rock not included

Reservoir

 

  

Fossil fuels are a part of the geologic reservoir, but only make up 4,000 GtC of the total 

(Lal, 2003).  The terrestrial system holds 3,060 GtC; 560 GtC are held as current biotic 

forms of plants and animals, and 2,500 GtC are held in soil carbon.  Soil carbon consists 

of 1,550 GT organic and 950 GT inorganic carbon (Eswaran et al., 1993; Batjes, 1996). 

 

There is also an additional 970 GtC in the Arctic permafrost organic matter that, until 

recently, had been considered stable and outside of the carbon cycle (Zimov et al., 2006).  

Yedoma soils, consisting of frozen grass roots and animals bones, hold 500 GtC.  Other 

permafrost soils hold an additional 400 GtC.  As the Arctic warms and these soils thaw, 

carbon can be quickly released.  Arctic peatlands hold 70 GtC, and are currently emitting 

methane, a potent greenhouse gas.  As the Arctic warms, increasing amounts of peatland 

oxidize and emit stored carbon.  In the future, these Arctic reservoirs of soil carbon will 

play an increasing role in the global carbon cycle (Smith et al., 2004).   
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The organic soil carbon reservoir holds twice as much carbon as current atmospheric 

levels and three times as much carbon as all living biota.  The dynamics that occur within 

the soil carbon reservoir play a major role in impacting the atmospheric carbon level.  If 

human land use and climate change act to release even a small percentage of soil carbon, 

the resulting (relative) increase in atmospheric carbon would be compounded.  

Alternatively, changes in human land use that increase the net absorption of carbon 

within soil could decrease atmospheric carbon by critical amounts. 

 

Soil carbon and the carbon cycle 

Scientists are independently determining the emissions of carbon from fossil fuels and 

land-use change, the quantities of carbon that the oceans absorb, the additional quantities 

being absorbed terrestrially through CO2 fertilization and climate change, and the 

quantity of carbon increasing in the atmosphere.  It is important to put these independent 

numbers together to see how close scientists are to balancing annual emissions of carbon 

with annual sinks of carbon.   

 

The value of annual changes for some of the carbon reservoirs is more certain than for 

others.  The level of atmospheric carbon is quite certain and can be easily measured.  

During the 1990s the average annual increase in atmospheric carbon was estimated to be 

3.2 GtC (Prentice et al., 2001).  Fossil fuel emission is the next most certain variable in 

the equation. Human burning of fossil fuels was estimated to emit an average of 6.5 GtC 

per year during the 1990s (Prentice et al., 2001).  Oceanic uptake is less certain and was 

estimated to have been 2.2 GtC per year during the 1990s.  Land-use change, the least 
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certain due to complexities in its dynamics, was estimated to emit 1.6 GtC per year 

(Houghton, 2003).  Table 2 lists these quantities along with the implied residual missing 

sink which is assigned to ‘land’ uptake.  Subtracting oceanic uptake from total sources 

shows that there should be a 5.9 GtC per year increase in atmospheric carbon, but 

measurements indicate that the atmosphere only gained 3.2 GtC per year.  This implies 

that 2.7 GtC per year accumulated in unmeasured locations.  This is referred to as the 

‘missing sink’ and is assumed by most climate scientists to reside in the land reservoir 

(Houghton, 2003).   

 

Table 2 also shows the relative increases through time of the sources and sinks.  The most 

recent data show an alarming increase in fossil fuel emissions and a simultaneous slow-

down in the absorption of carbon by both ocean and land reservoirs.  In their analysis of 

long-term trends in the carbon cycle, Canadell et al. (2007) hypothesize that land  

 

Table 2. Average annual sources and sinks in the carbon cycle. 

1959-2006 1970-1999 1990-1999 2000-2006
Sources
Fossil Fuel 5.3 5.6 6.5 7.6
Land Use Change 1.5 1.5 1.6 1.5
Total 6.8 7.1 8.1 9.1
Sinks
Atmosphere 2.9 3.1 3.2 4.1
Ocean 1.9 2 2.2 2.2

4.8 5.1 5.4 6.3

Residual Sink = Land Uptake 2 2 2.7 2.8
Source:  Canadell, J.G. et al. 2007

Mean

GtCy-1
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resources have been absorbing less carbon due to increased drought (frequencies) during 

the current decade.    

 

The Earth’s soils (along with biota) have been playing an important role in absorbing 2.8 

GtC of the 7.6 GtC of fossil fuel emissions.  Soil’s role in absorbing excess carbon is 

capable of expanding through changes in human land-use management.  I will, next, 

discuss how the soil reservoir can be expanded though the promotion of soil carbon 

sequestration. 

 

Soil carbon sequestration 

Carbon can be sequestered in agricultural soils by changing land management to practices 

that increase soil organic matter.  If the amount of carbon entering the soil can exceed 

amounts lost through soil respiration, then net gains can be made.  Such practices include 

reducing tillage intensity, using perennial crops, using a winter cover crop, increasing 

rotation complexity, applying fertilizer efficiently, decreasing erosion, and reducing the 

amount of time fields lay fallow.  In most cases, the reason agricultural soils can 

accumulate carbon is due to historic carbon losses caused by years of heavy cultivation.  

By changing management practices, some or all of the historically lost carbon can be 

regained over a few decades.  It is estimated that historic global carbon losses from 

agricultural soils range from 40 to 60 GtC (Paustian et al., 1997).  Yet not all of this 

carbon is likely to be regained, even through the most ambitious of land management 

plans.  Lowland soils, such as Histosols, that retained much of their carbon by being 

water-saturated, have been drained and are not likely to be re-flooded.  Therefore, the 
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total likely peak potential for carbon sequestration has been estimated at one-half the total 

loss, or between 20 to 30 GtC.  If accumulation of soil carbon occurs over a 100-year 

period and surplus agricultural lands revert to grassland or wetlands, then the annual 

potential global carbon sequestration in agricultural soils ranges from 0.2 to 0.4 GtC , or 

6 to 12% of the estimated annual atmospheric carbon increase (Cole et al., 1996).   

 

Some scientists suggest that sequestration potential above that which has been 

historically lost may be possible (Lehmann et al., 2003; Marris, 2006).  Lehmann et al. 

(2003) propose that by amending soil with biochar, which is a bi-product of pyrolysis 

(low temperature gasification) of biomass for fuel production, soil quality can be 

improved while sequestering more carbon in a very stable molecular state.   The idea of 

pyrolysis and biochar amendment came from studying the Terra Preta soils, or dark 

earths, of the Amazon, where intensive management of soil carbon was practiced 

historically by the indigenous populations.  It is hypothesized that indigenous 

agriculturalists used a ‘slash and smolder’ form of agriculture where biomass was 

aggregated into charcoal (as opposed to temporary 'slash and burn', where most of the 

carbon is burned and released).  The charcoal has remained in the fields for thousands of 

years, and its unique molecular structure aids in absorbing and storing vital 

micronutrients. Hence soil quality was improved as carbon was sequestered long term.  

Lehmann et al. (2003) estimate that if biochar schemes are used in conjunction with 

biofuel programs, they could offset upwards of 9.5 GtC per year, which is more than the 

current total annual global carbon emissions (Lehmann et. al., 2003; Marris, 2006).  
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Soil carbon dynamics 

The original source of all carbon in soil organic matter is plant material photosynthesized 

from sunlight.  The organic matter, consisting of carbon, oxygen and hydrogen, is 

returned to the soil through annual die-back of plant biomass, the eventual death of 

plants, or the return of manure or organic material from animals that ingested plant 

biomass (although animals may not return the organic material to the same locale).  The 

newly fallen organic matter then interacts with the atmosphere and soil fauna through a 

decomposition process.  Three primary reactions occur:  1) sugars, starches and amino 

acids are enzymatically oxidized and released as carbon dioxide, 2) proteins and lignin 

are decomposed slowly and release carbon dioxide, and 3) carbon compounds very 

resistant to decay are formed through microbial interactions.  The soil fauna is composed 

of thousands of microorganisms that are uniquely evolved to feed upon specific 

molecules that emerge throughout the time-span of normal biomass decomposition.  The 

first wave of microbes feeds upon the sugars, starches and amino acids, then another 

group of microbes flourishes as they break down proteins, cellulose and lignin.  

Depending on temperature and precipitation conditions, breakdown of cellulose and 

lignin could go on for decades, but eventually very little of the initial biomass exists.  Yet 

some does remain by becoming physically protected from decay via encasement inside 

soil pores too tight for microbes to enter.  Some also becomes chemically protected 

through microbial reactions which alter lignin into extremely resistant soil aggregates.  At 

the end of the decomposition cycle, total soil organic carbon (SOC) increases slightly 

through the biomass residues being incorporated through decomposition into the soil 

(Brady and Weil, 1999).  
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Other variables affect the rapidness and completeness of decomposition.   Soil microbes 

are most active when temperatures are warm and there is adequate moisture.   The rate of 

decomposition increases with temperature and can be described by the power function, 

Q10.  Q10 is used in the Arrhenius equation, which figures the rate of chemical reactions 

as a function of temperature (and activation energy) (Davidson and Janssens, 2006).  It is 

generally assumed that the rate of reaction, or decomposition, doubles for every 10ºC rise 

in temperature (Davidson and Janssens, 2006). Optimal decomposition occurs when soil 

moisture is around 55-60% by weight.  More moisture than this can limit oxygen 

availability and slow decomposition.  Drier soils also slow decomposition (Paustian, 

1997). 

 

Because temperature and moisture are the two most important variables affecting speed 

of decomposition, sequestration ability varies with climate.  In general, net primary 

productivity declines as the climate dries, making fewer residues available and resulting 

in a lower proportion of soil carbon.  Also, as the climate changes from cooler to warmer, 

decomposition rates increase and soil carbon levels decrease.  Sequestration in tropical 

climates does not hold the same carbon-retaining capabilities as soils in more temperate 

regions.  In temperate soils, decomposition is slowed in winter months, therefore 

sequestering the carbon from release during those months.  Additionally, plants in 

temperate climates distribute more of the biomass below the soil’s surface for the purpose 

of over-wintering.  As plants die, the below-ground biomass adds to soil carbon 

accumulation. 
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Effect of management on soil carbon 

Conventional-tillage aerates the soil and breaks up organic residues into smaller particles 

that are more accessible to soil microbes.  Cultivation can also increase soil temperatures 

by exposing darker energy-absorbing soil, and thus increasing the rate of decomposition.  

When virgin soils are tilled and brought into cultivation, SOC levels continue to drop 

until a new lower steady-state of SOC is reached.  Switching to conservation tillage 1) 

reduces aeration compared to conventional-tillage, 2) allows organic residues to remain 

longer undisturbed and, therefore, less accessible to decomposition, and 3) allows soil 

temperatures to remain cooler due to surface residues.  The combination of these 

processes allows conservation tillage to increase SOC levels (Lal et al., 1998). 

 

Yet two recent studies have thrown doubt on whether conservation tillage results in a net 

reduction in SOC.  Baker et al. (2007) point out that almost all the tillage experiments 

showing an increase in SOC under no-tillage only sampled to the 30-cm depth.  The few 

studies that sample the deeper soil layers showed no significant difference in SOC 

between conventional-tillage and no-tillage.  They hypothesize that, rather than tillage 

causing historical SOC losses, SOC may have been lost due to the change in ecosystems 

from perennial, deep-root plants to annual shallow-root plants.  Additionally, Li et al. 

(2005) suggest that, by increasing SOC levels through no-tillage, nitrous oxide emissions 

may increase enough to offset the reduction in atmospheric carbon from the sequestered 

carbon, and resulting in a net increase in GHG’s.  This may occur through changing the 

carbon-nitrogen ratio.  Raising carbon levels in carbon-deficient soils may raise the 
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carbon-nitrogen ratio to benefit microbial growth, which, in turn, increases nitrous oxide 

emissions.    

 

Rotations also have an effect upon soil carbon.  Generally, rotations producing more 

annual residue lead to higher levels of SOC (Brady, 1999).  For example, planting corn 

continuously would lead to higher SOC accumulations than a rotation of corn and 

soybeans.  Exceptions involve rotations with crops that possess large root structures, 

which can add more biomass below the soil surface.  Hay and alfalfa used in rotation 

with other crops act to increase SOC levels through the growth of deep roots which 

deposit carbon within the soil (Brady, 1999).   

 

Nutrient amendments can have highly variable effects on SOC levels.  They can either 

act to increase or decrease SOC. Nutrients can help increase net primary productivity; 

yet, at the same time, they can speed decomposition by feeding the microbes. Nitrogen is 

usually a limiting factor in decomposition where carbon is optimal.  Soil microbes need 

about 25 parts of carbon for every part of nitrogen to grow; therefore, at carbon to 

nitrogen (C/N) ratios lower than 25:1, decomposition is slowed.  If nitrogen is a limiting 

factor, and nitrogen is added, microbes can flourish and release more carbon to the 

atmosphere resulting in a lower level of SOC.  Nitrogen amendments may also result in a 

net increase in atmospheric carbon due to the high rate of emissions associated with their 

industrial production (Schlesinger, 2000).  On the other hand, limiting nitrogen to 

sequester more carbon is not a likely route either, due to decreased yield potential.  The 

most beneficial use of nutrients to increase SOC levels is increasing the efficiency and 
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timing of applications to assure that applied nutrients are mostly taken up by the growing 

biomass and not used to feed the soil fauna (Follett, 2001). 

 

Effect of climate change on soil carbon 

Recent studies indicate that there may be a synergistic effect between the use of no-tillage 

farming and increased levels of atmospheric CO2, which may lead to a more rapid 

increase in SOC.  In their study, Prior et al. (2005) compared plots of conventional and 

no-tillage crops grown under increased CO2 levels.  Soil carbon and residue 

accumulations were observed over a four-year period.  Although all plots showed 

increases in residues and SOC, no-tillage residues increased by 30% above those of 

conventional-tillage.    

 

Jain et al. (2005) estimated the amount of additional carbon sequestered under no-tillage 

in the US due to increased CO2 levels.  Using ISAM-26 simulation model and empirically 

based carbon management response curves for tillage practices, conversion of 

agricultural land to no-tillage was simulated over the period 1981 to 2000 under both 

steady CO2 levels and historically higher levels.  The study concluded that CO2 

fertilization sequestered an additional 42 MMtC over the time period, or 2.1 MMtC per 

year, under no-tillage. These studies indicate that conversion of cropland to conservation 

tillage has the potential to capture more carbon from CO2 fertilization.  This is in addition 

to increasing SOC through soil biophysical processes. 

                                                 
6 The Integrated Science Assessment Model (ISAM-2) is a climate model developed by researchers at the 
University of Illinois that replicates terrestrial carbon and nitrogen cycles and their interaction with the 
atmosphere at the 0.5 degree latitude and longitude resolution level.  
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Other studies analyzing the effect of a warmer climate upon SOC levels show mixed 

conclusions.  It is a long-held assumption that warming increases microbial activity, 

which causes SOC levels to decrease (Davidson and Janssens, 2006).  Yet in their review 

of soil experiments, Thornley and Cannell (2001) found little empirical evidence that 

SOC levels decrease under warming. They hypothesized that, rather than assuming the 

temperature sensitivity of soil respiration to be overestimated (in current models), 

“warming may increase the rate of physico-chemical processes which transfer organic 

carbon to protected, more stable, soil carbon pools.”  They concluded that “if the rate of 

physico-chemical reactions have a 50% greater response than microbial reactions, then 

soil carbon would [actually] increase” under warming (Thornley and Cannell, 2001).  

 

Melillo et al. (2002) studied net carbon flux and nitrogen mineralization in a ten-year 

study of forest plots comparing heated and unheated soil.  While the heated plot did have 

a higher net flux of carbon out of soil, the spike in net flux was short-lived, due to limited 

amounts of carbon in the mid-latitude (Massachusetts) forest.  They also found that 

warming increases nitrogen mineralization, which could potentially offset much of the 

lost carbon by stimulating additional plant growth (Melillo et al., 2002).  The same 

dynamics could dominate in poorer-soil agricultural lands. 

 

National estimates of soil carbon sequestration potential 

Potential quantities of carbon that can be sequestered by US agricultural soils fall into 

two groups:  technical and economic potential.   Technical potential measures the amount 

of carbon abatement if all proposed practices could be implemented in full, regardless of 
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economic costs.  Economic potential takes into consideration the costs of implementation 

versus potential payments received through incentives.  Technical potential quantities are 

always higher than economic potential quantities. 

 

In his analysis of technical potential, Follett (2001) estimated that, if conservation tillage 

were widely adopted, fallow periods were reduced, cover crops were more widely used, 

and production inputs were used more efficiently, then 30 to 105 MMtC per year could 

potentially be sequestered in US soils.  Sperow et al. (2003) estimated that similar 

changes to crop management practices could sequester 60-70 MMtC.  Lal et al. (1998) 

estimated 75-208 MMtC of potential soil storage in agricultural soils of the US. 

 

Such potential quantities of carbon sequestration may not be realized due to economic 

constraints.  Implementation of the new land management practices proposed in the 

above studies would result in some producers having to forgo more income than the new 

practices could earn.  If incentives were offered, initial changes in land use might 

increase commodity prices and make further land-use changes prohibitably expensive.  

At low payment levels, some carbon sequestering practices may easily be put into 

practice, yet the cost per carbon storage unit would be expected to increase at an 

increasing rate as the marginal cost of conversion of remaining lands increases.  For these 

reasons, several studies have analyzed the economic potential of carbon through the use 

of economic models.  These models include the dynamic interactions of competition 

within crops for land use, along with the underlying demands from other sectors such as 

livestock, food and energy.  While several economic studies have looked at carbon 



 21

sequestration locally (Plantinga et al., 1999; Pautsch et al., 2001; Antle et al., 2007), only 

two have looked at the subject nationally (McCarl and Schneider, 2001; Lewandrowski et 

al., 2004). 

 

McCarl and Schneider (2001) measured the economic potential of several mitigation 

strategies simultaneously, including soil sequestration, afforestation and biofuel offsets in 

their Agricultural Sector and Green House Gas Model (ASMGHG)7.  They estimated that 

agricultural lands could sequester a maximum of 70 MMtC by changing management 

practices at carbon incentives at or below $500 per metric ton of carbon (MtC).  McCarl 

and Schneider included conservation tillage, manure management and conversion of 

cropland to pasture within their defined category of land management.  They did not 

consider transaction costs or discounting for impermanence, and only paid incentives to 

'new adopters' (and also employed symmetric taxation on changes in management 

practices that result in higher emissions).  Therefore, they considered their estimates as 

'lower bound' costs.  The study also accounted for changes in emissions from input use 

(e.g., fertilizers, pesticides, machinery fuel) in estimating net abatement quantities.  The 

ASMGHG model disaggregates the nation into 63 regions and 22 commodities and is 

solved for market equilibrium in 10-year iterations.  Soil carbon data are aggregated to 

the regional level and Erosion Productivity Impact Calculator (EPIC) biophysical model8 

                                                 
7 The ASMGHG model is a partial equilibrium economic market-clearing model developed at Texas A&M 
University by Bruce McCarl and Uwe Schneider specifically to analyze carbon sequestration in agriculture 
and forestry. 
8 The EPIC model is a biophysical model that simulates the dynamics of soil nutrient cycling at a high 
degree of resolution.  It was developed in the 1980s at Texas A&M University. 
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was used to estimate sequestration quantities associated with crop and tillage types within 

the regions (McCarl and Schneider, 2001). 

 

Lewandrowski et al. (2004) measured economic potential sequestration using the US 

Math Programming (USMP) model 9, which is a spatial and market equilibrium model 

similar to ASMGHG.  They estimated 7-35 MMtC of potential economic sequestration in 

agricultural lands with offered carbon incentives at or below $125 per MT.  The USMP 

model disaggregates the nation into 45 regions and 10 major crops.  For estimating 

changes in SOC, Lewandrowski et al. (2004) used the IPCC methodology developed as a 

first-order approach to estimating soil carbon changes.  Initial soil carbon levels were 

derived from weighting 1997 National Resources Inventory (NRI) data points to ten farm 

production regions.  IPCC parameters for changing from conventional-tillage to no-

tillage and from conventional-tillage to reduced-tillage were applied to the initial carbon 

levels to arrive at the net change in soil carbon.  Lewandrowski et al. (2004) tested 

multiple incentive program designs through individual scenarios.  The scenarios 

investigated farmer response to:  a) rental payments versus full asset value (permanence 

assumption); b) payment of sequestration incentives versus additional taxes on carbon-

emitting management practices; and c) government 'cost sharing' of a portion of the 

conversion costs to alternative practices versus requiring farmers to bear the full burden 

of conversion.  In the scenario in which leakage10 is controlled through symmetric 

                                                 
9 USMP is a spatial and market equilibrium model designed for general-purpose economic and policy 
analysis of the U.S. agricultural sector developed at the US Economic Research Service in Washington, 
DC. 
10 Leakage is defined as the unintended increase in atmospheric carbon as a result of policies to decrease 
atmospheric carbon. 
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taxation, Lewandrowski et al. (2004) estimated that 27.6 MMtC can be abated annually at 

$125 per MtC.   

 

Appropriate roles of resolution and scale 

The geographic literature has long debated the proper role of resolution and analytic scale 

in capturing the real dynamics in both human and environmental systems11 (Haggett, 

1965; Harvey, 1968; Tobler, 1969).  Recently, there have been many analyses of scale 

and resolution pertaining to climatic and geomorphological modeling (Easterling, et al., 

2001; Mearns et al., 2001; Luoto and Hjort, 2006; Thoma et al., 2008).  Yet few studies 

have rigorously assessed the roles of resolution and scale in integrated economic and 

environmental models (Adams et al., 2003).  In modeling soil carbon policy, it is 

important to realize that heterogeneity in economic and environmental factors among 

deferring sites within a system boundary may lead to different thresholds of land-use 

adoption (Hochman and Zilberman, 1978; Openshaw and Taylor, 1979).  When 

confronted with heterogeneity, modelers face many questions:  What resolution of data 

do we use?  Will different data resolutions affect the results?  At what scale do you 

undertake an analysis?  Are there appropriate and inappropriate scales for using a 

                                                 
11 Because there is much confusion over the terms scope, scale, extent, and resolution, I will precisely 
define their use in this paper.  Resolution will refer to the spatial level at which unique estimates of model 
variables are estimated.  For example, soil carbon is estimated at the STATSGO regional resolution level.  
‘High’ resolution refers to small spatial units of unique data, and ‘low’ resolution refers to large spatial 
units of unique data.  Scale will refer to the spatial level at which the analysis results are reported.  For 
example, although this study uses STATSGO resolution soil carbon data, the analysis is reported at the 
national scale.  The terms scope and extent are also used within the literature to refer to the spatial level of 
analysis, but will be referred to as scale in this document for consistency.  In this analysis, ‘larger’ scale 
analyses refer to larger spatial areas, whereas ‘smaller’ scale analyses refer to smaller spatial areas.  
Geographers often use the opposite meanings when referring to map scales, where ‘large scale’ means 
smaller more detailed areas, and ‘small scale’ means larger, less detailed areas. The use of ‘scale’ in level 
of analysis should not be confused with the common use of ‘scale’ in mapping 
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particular level of data resolution?  While integrated models often confront issues of 

resolution and scale, few explicitly define their uses in practice (Meentemeyer, 1989). 

 

Modeling, by definition, is a simplification of reality, but how we simplify can have 

major implications upon a model’s results.  There are tradeoffs in deciding at what 

resolution to model a system’s behavior.  As you bring the model to higher levels of 

resolution, the accuracy of the model may improve, yet the data collection costs, time 

investment and model complexity increase.  So what is the appropriate relationship 

between resolution and scale in integrated economic biogeophysical modeling of soil 

carbon sequestration? 

 

A growing body of scientific work has investigated the integration of economic and 

biogeophysical models at higher resolutions (Just and Antle, 1990; Goddard et al., 1996; 

Antle et al., 2001; Stoorvogel et al., 2004; Antle et al., 2007).  Yet, in their evaluation of 

scale and resolution issues in integrated assessment modeling, Evans et al. (2002) 

concluded, “there is no consensus on how to deal with scale issues in the social sciences 

and by extension no evident answers in terms of integrated assessment modeling.”   

 

Although most integrated assessment modelers acknowledge heterogeneity, there is 

discrepancy over maintaining high resolution in scaled-up studies (Valdivia, 2006).  

Commonly, the unit of policy analysis is a large region, and models have often used 

aggregated data to arrive at the predicted effect upon the whole region (Antle et al., 

2001).  Yet it has not been clearly resolved whether smaller scale differences in outcomes 
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that occur at finer resolutions will average out by aggregating to a larger scale (Antle and 

Wagenet, 1995; Dumanski et. al., 1998).  In studying the effects of scale on carbon 

sequestration estimates for the central US, Antle et al. (2007) compared county-level 

econometric biophysical results with results from a larger regional level analysis where 

the mean carbon accumulation for the US central plains was used.  They found that, for 

the region as a whole, results using aggregate mean carbon accumulation rates were 

within 10% of the results using the county-specific carbon accumulation rates.   

 

Significantly greater errors may result from using low resolution data collected from a 

larger region to model dynamics on a smaller scale (Brown, 2000).  Antle et al. (2007) 

also compared results from specific counties using both disaggregated county level soils 

data and aggregated regional level soils data. Their results indicate that estimates using 

aggregate mean carbon accumulation were very high compared to those using 

disaggregated data.  They concluded that “the large errors in predictions for individual 

counties show that estimates of carbon rates do need to be matched to the spatial scale of 

analysis” (Antle et al., 2007).   

 

Berger (2001) proposed a methodology for integrating GIS data into a disaggregated, 

agent-based land-use change model. He concluded that integrating economic and 

ecological models for policy analysis would be an ambitious undertaking, but, if 

accomplished, “…GIS-based integrated multi-agent models will become a powerful tool 

for policy analysis and natural resource management” (Berger, 2001).  The intention of 

this study is to integrate satellite-derived biophysical data with other inventory data using 
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GIS that will allow land-use dynamics to be estimated at a higher resolution.  These 

higher resolution data can then be used to test scale and resolution issues.  Specifically, 

what is gained by higher resolution in the study of soil carbon sequestration? 
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CHAPTER III: 

METHODOLOGY 

 

Overview 

The analytical tool used to conduct this analysis is an integrated socioeconomic-

biogeophysical model.  The integrated model uses economic and soil data at the highest 

degree of resolution feasible from currently available secondary sources with national 

coverage.  The economic heart of the model is a modified version of POLYSYS, which is 

a partial equilibrium displacement model that iterates annually and simulates until the 

year 2025 (Ray et al. 1998a; De La Torre Ugarte et al., 1998; De La Torre Ugarte and 

Ray 2000).  For this analysis, I have disaggregated POLYSYS to the county level, where, 

in each county, representation of cropping activities has been expanded to include 

conventional-tillage, reduced-tillage and no-tillage operations.  Baseline acreage for each 

tillage type is derived from trends in Conservation Technology Information Center 

survey data (CTIC, 2004).  Tillage yields are based upon National Agricultural Statistic 

Service county averages (NASS, 2007) and extrapolated to specific tillage yields by 

analyzing the results of regional tillage experiments.  The model makes use of over 3,000 

newly created unique regional crop budgets, which are based upon regional differences in 

crop production operations.  Both direct and indirect use of energy and emissions of 

carbon have been tied to each input of the operation budgets, therefore the model can 

simulate changes in production emissions.   
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Carbon net flux is a result of changes in both SOC and changes in carbon emissions from 

agricultural inputs.  Since some carbon-sequestering management operations have lower 

carbon emissions than others, there could be considerably greater potential amounts of 

net carbon reductions than if only accounting for SOC.  The linear program design allows 

for accounting of domestic leakage in the agricultural carbon market.  Leakage is defined 

as the unintended increase in atmospheric carbon as a result of policies to decrease 

atmospheric carbon. 

 

Several layers of biogeophysical data were overlaid to create a model capable of 

simulating changes in SOC at the sub-county level.  Regional carbon management 

response curves (West et al., 2003), STATSGO soils data (USDA, 1994) and Landsat 

land use cover data (Homer et al., 2007) were integrated to determine potential changes 

in SOC associated with each unique combination of soil type and crop type.   The carbon 

management response curves give the percentage change in carbon per year of a 

particular management practice.  STATSGO data give initial soil carbon at the MUID 

(soil map unit ID) level.  And Landsat data are used to determine where the crop acres are 

located. Once the location of cropland is known, the overlay of STATSGO data gives the 

initial SOC of all cropland.  The accuracy of carbon accumulation is greatly improved by 

this methodology.  The overlay of these layers of data allows for estimation of the annual 

amounts of carbon that a particular crop in a particular county under a particular tillage-

type can accumulate.  A schematic of data layer integration is presented in Figure 1.   
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Figure 1.   Schematic of layer integration and simulation.  Although the data layers have 
national coverage, only a portion is shown here to depict the resolution. 
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The model uses secondary data from several different levels of resolution listed in Table 

3.  Resolution ranges from the highest resolution National Land Coverage Data (NLCD), 

which are at the 30 meter level, to lower resolution budget data, which are from the 

multi-county Agricultural Statistic Districts.  In all instances, the model data are the 

highest resolution available from secondary sources with national coverage in each data 

category.  Spatial information with the highest variability, such as SOC levels and 

cropland location are at very high levels of resolution, whereas information with less 

spatial variation, such as crop-operation schedules are at lower resolutions.  The 

economic component of the model is used to solve scenarios at the county level, but soils 

information from higher resolutions informs the economic model.  For this reason, the 

model can be considered sub-county in resolution. 

 

Table 3.  Spatial data source, resolution, and use in this research. 

Data source Spatial resolution Use in this research
NASS County County Crop Acres

CTIC County Percentage of crops in
conventional, reduced and no-tillage

STATSGO MUID region Weighted base soil carbon level
underlying land use.

NLCD 30m x 30m Placement of county crop acres
upon base soils.

Field data on Plot to field Rate of change in base carbon
soil carbon by crop category.
change

Agricultural Budgeting Agricultural Statistic Crop costs, operations and
System (ABS) District emissions  
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Core socio-economic model 

The socioeconomic modeling component of this analysis is based on the University of 

Tennessee’s Policy Analysis System model (Ray et al. 1998a; De La Torre Ugarte et al., 

1998; De La Torre Ugarte and Ray 2000).  POLYSYS is a rigorous model embedded in 

economic theory capable of estimating annual changes in land use and crop prices 

associated with exogenous changes in yield and management practices in the United 

States (De La Torre Ugarte et al. 1998, Ray et al. 1998b).  The POLYSYS modeling 

framework can be conceptualized as a variant of an equilibrium displacement model 

(EDM).  The general appeal of EDMs is in part due to the inherent ability to complete 

modeling exercises in a wide variety of market structures (Wohlgenant 1993, Piggot et al. 

1995, Brown 1995, Kinnucan 1996). 

 

The POLYSYS modeling framework has been previously developed to simulate changes 

in economic policy, agricultural management, and natural resource conditions, and to 

estimate the resulting impacts from these changes on the US agricultural sector (Ray et 

al. 1998b; Lin et al. 2000; De La Torre Ugarte and Ray, 2000).  At its core, POLYSYS is 

structured as a system of interdependent modules simulating (a) crop supply for the 

continental US, which I have disaggregated into 3110 production regions; (b) national 

crop demands and prices; (c) national livestock supply and demand; and (d) agricultural 

income. Variables that drive the previously listed modules include planted and harvested 

area, production inputs, yield, exports, costs of production, demand by use, farm price, 

government program outlays, and net realized income.  The POLYSYS modeling 

framework is capable of considering a wide variety of region-specific management 



 32

practices.  Crops currently considered in POLYSYS include corn, grain sorghum, oats, 

barley, wheat, soybeans, cotton, rice, and hay.   

 

POLYSYS anchors its analyses to US Department of Agriculture (USDA) published 

baseline of projections for the agriculture sector.  I have endogenously expanded the 

USDA ten-year baseline projection period through 2025 for this analysis.    Changes in 

agricultural land use, based on cropland allocation decisions made by individual farmers, 

are primarily driven by the expected productivity of the land, the cost of crop production, 

the expected economic return on the crop, and domestic and world market conditions.  

When provided with data for production inputs, changes in yields, and incentive levels 

that would accompany carbon management options, POLYSYS can be used to estimate 

potential changes in land use.   

 

Changes in agricultural land use, based on cropland allocation decisions made by 

individual farmers, are primarily driven by the expected productivity of the land, the cost 

of crop production, the expected economic return on the crop, and domestic and world 

market conditions.  By providing POLYSYS with data for production inputs, changes in 

yields, and incentive levels that would accompany carbon management options, we can 

estimate potential changes in land use.  Using estimates of land-use change generated by 

POLYSYS in conjunction with the integrated biogeophysical data, a full carbon cycle, or 

net carbon flux, analysis for potential carbon management options is completed.  
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Previous economic modeling work on the role of agriculture as a carbon sink, by 

Lewandroski et al. (2004), McCarl et al. (2001) and Adams et al. (1992,1999) has 

approached the issue by analyzing long-term and intermediate-run outcomes, i.e., 

equilibrium situations, which occur in durations of ten or more years.  Adjustment costs 

incurred in the short-run for implementing new technologies and/or policies are not 

considered by the models used in those studies (Schneider 2000).  Additionally, such 

long-term modeling is incapable of assessing the near-term challenges of adoption.  This 

is particularly important since changes in soil carbon resulting from changes in 

agricultural management are expected to occur, on average, within the first 15-60 years 

following the initial change depending on the particular management option (West and 

Post 2002, West et al. 2003). 

 

The POLYSYS model has the unique ability to provide annual estimates of changes in 

land use, adoption of management practices, and changes in economic conditions as a 

result of policy changes in agriculture.  Integrating terrestrial carbon dynamics with 

POLYSYS produces a framework capable of estimating future carbon sinks, sources, 

land-use change, and net greenhouse gas emissions that result from carbon management 

options and from economic incentives for carbon management options.  

 

In making decisions, farmers take other factors besides net present value into 

consideration.  For example, unique levels of risk aversion, lack of full knowledge of 

alternatives, local land characteristics, and landowners nearing retirement may all impact 

individual decisions.  These factors, and many others, play a role in landowners not 
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always choosing the management scheme with the highest net present value.  While 

POLYSYS does not explicitly model these other factors, it does take them into account 

through the use of constraints within the linear programming models.  These constraints 

act to limit the amounts of land that can switch to a particular management practice in a 

given time period.  Based on historical studies evaluating the sudden emergence of 

dominant management practices, no more than a portion of the landmass is switched from 

one practice to another in one year (Dicks and Li, 1991).  POLYSYS incorporates these 

historical constraints into the linear programming design.  In this manner, other factors 

besides net present value are indirectly included into the land allocation decision. 

 

 

Building the integrated model 

In order to create a high-resolution model capable of simulating regional and national 

impacts of a carbon incentive program for conservation tillage, methods of collecting, 

scaling, and integrating biogeophysical data with POLYSYS economic model had to be 

created.   

 

To create the integrated model these steps were taken:  

1) Developed methodology to simulate SOC changes at the sub-county level of 

resolution. 

a. Estimated initial sub-county soil organic carbon levels by integrating: 

i. National Agricultural Statistics Service (NASS) county crop data that 

report acres of each crop in each county.  
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ii. Conservation Technology Information Center (CTIC) tillage data that 

report the percentage of each crop in each tillage type in each county. 

iii. State Soil Geographic (STATSGO) database, which has data capable 

of estimating a weighted average of the soil components to arrive at 

one soil carbon estimate in units of metric tons per 0-30 cm depth, for 

each spatially delineated soil map unit (MUID). 

iv. National Land Cover Data (NLCD) Landsat TM imagery that reports 

the land use at a 30x30 meter resolution in 2003. 

b. Incorporated SOC response rates. 

c. Adjusted response rate by initial soil carbon levels. 

2) Developed methodology to simulate changes in emissions from the crop production 

process. 

a. Developed unique conventional, reduced and no-tillage operation budgets for 

all major crops grown within the US, at the Agricultural Statistic District 

level.   

b. Estimated carbon emissions (both direct and embodied) for all inputs to crop 

production and integrated them within the modeling framework to allow for 

the estimation of total emissions from crop practices.  

3) Created a county-level decision-making linear programming supply module within 

POLYSYS. 

4) Quantified the uncertainty of no-tillage due to yield changes over time within its net 

present value. 
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Each of these steps and their methodologies are explained in the following sections. 

 

Soil carbon sequestration estimation 

Accumulation of soil carbon is a function of crop and tillage combination and varies by 

county and crop depending upon soil quality and environmental conditions.  The 

estimation of annual metric tons of soil carbon sequestration per acre is figured by: 

 

Tacrei,j = Ci,j * (Δj * AdjCij)          (equation 1) 

Where, 

Tacrei,j = MtC per acre in county i, for crop j. 

Ci,j  = base (initial) carbon level in county i, for crop j (MtC per acre). 

Δj = change in carbon level per year of crop j, under tillage t (%). 

AdjCij =  carbon response adjustment factor for Δj in soil Ci,j . 

 

Estimation of base soil carbon (Ci,j ) in metric tons per acre is disaggregated by crop and 

county (with higher resolution soils data  more highly weighted to inform the county 

estimates).  The base soil carbon is multiplied by the carbon response rate (Δj) of a 

particular crop under a particular tillage regime. The carbon response rate is adjusted by 

multiplying by the adjustment factor (AdjCij), which is dependent upon the regional soil 

carbon level. This results in an estimate of the real potential change in soil carbon per 
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acre (Tacrei,j) specific to each particular crop in each particular county under both 

reduced-tillage and no-tillage regimes.   

 

Base soil carbon estimation 

A major contribution of my research is estimating base soil carbon using sub-county 

resolution to create estimates specific to crop type and county.  This was done by 

superimposing land-use data on regional soils data.  First, I will review the methods of 

estimating regional soil carbon data; then, I will explain the layering of these data with 

land use data.  

 

Geographically explicit base soil carbon quantities are weighted to the STATSGO MUID 

region and defined as per acre estimates of organic carbon to the 30 cm depth.  Data 

on soil series base soil carbon were estimated and provided by Tristram West of Oak 

Ridge National Laboratory.  The methodology of deriving soil carbon estimations at the 

30 cm depth is described in West et al. (2007);  the State Soil Geographic database 

(STATSGO, version 1.0; USDA, 1994), was used to obtain initial information for soil 

attributes.  The STATSGO-delineated soil map units encompass between 1 and 26 soil 

components, representing phases of a soil series. Each soil series phase within a map unit 

is given a high and low value for each soil attribute (e.g., soil organic matter, bulk 

density, soil layer depth, soil texture). To generate a baseline soils map, West et al. 

averaged the high and low values for attributes of each soil series phase, converted soil 

organic matter content to soil organic carbon content, multiplied the carbon content by 

soil bulk density and by the depth of the respective soil layer, and corrected for the 
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percentage of rock fragments in each soil layer. Soil carbon was estimated by 20 cm 

intervals to a 1 meter depth. A weighted average of soil carbon was calculated among soil 

series phases within each soil map unit, resulting in one soil carbon estimate for each 

spatially delineated soil map unit.  

 

To weight regional soil carbon by crop type at the county level (Ci,j), I superimposed 

NLCD on the STATSGO-generated soil carbon data.  The NLCD are derived from 2001 

Landsat Thematic Mapper satellite data and have a spatial resolution of 30 m.  The 

NLCD are available for the conterminous US and represent 21 land cover/use classes 

(Homer et al., 2007).  For this analysis, all model crops are in the NLCD subclasses of 

row crops, small grains and pasture. Superimposing STATSGO MUID regions and 

NLCD allow one to determine the base soil carbon underlying agricultural crop areas.  At 

this point, the base carbon level at the 30 cm depth is estimated from STATGO MUID 

regions underlying each 30x30 meter NLCD pixel.  Once known at the 30 meter 

resolution, base soil carbon estimates are weighted to county level for each major land-

use category by the relative area of each crop category.   

 

This methodology yields more specific estimates of base soil carbon than simply 

weighting entire MUID regions within each county.  Some counties contain large areas 

not in agriculture.  These areas, and their soil carbon values, are not included in the 

estimation of base soil carbon using this methodology.  Furthermore, base carbon 

estimates for ‘row crops’ are unique from those for ‘small grains’ and ‘pasture’ in each 

county.   
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A simplified example of the methodology is given in Figure 2 where there are row crops 

and small grains within the county.  The overlay of NLCD and STATGO indicates that 

all small grain acres are grown on Soil B with a base soil carbon level of only 5 MtC per 

acre.  The data also indicate that row crops are grown on both Soil A and B, with the 

majority in Soil B.  Estimated base soil carbon for ‘small grains’ for this county would be 

5 MtC per acre, but base soil carbon for ‘row crops’ would be the weighted average of 

areas in soil A (with 10 MtC per acre) and soil B (with 5 MtC per acre) which may be 

closer to 8 MtC per acre.  An example of the actual overlays of county boundaries, soil 

regions and land use is depicted in Figure 3.  In the sample county of Randolph County, 

Missouri, row crops are planted more often along stream and river drainages, so soils 

would be expected to have different qualities in these bottomlands than in the hillier 

areas.  My methodology only includes row crop soils in its estimation of row crop base 

soil carbon for this region.  The use of subcounty high resolution data inform the 

weighing of county-level base soil carbon estimates, and therefore integrates more 

accurate data on soil quality into the model. 

 

Soil carbon response rate 

There are two methods by which scientists can estimate carbon responses under changes 

in tillage practice.  One is through the use of pool models, a class of computer models 

that simulate the turnover of photosynthesized plant material within plant–soil 

ecosystems.  The other is through the use of directly observed experimental data of crop 

and tillage effects upon soil carbon.  I use the second method.  
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Figure 2.  Locating county crop acres in soil type:  A simplified example of two soil 
MUID regions (soil A and soil B) are overlaid on one county.  NLCD landuse is also 
overlaid.  Locations of row crop lands (green) and small grain lands (brown) are 
identified and the soils underlying them are known. 
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Figure 3.  Example of actual high resolution overlay.  Counties are outlined in purple, STATSGO soils regions are outlined in 
black, and NLCD data are displayed at the 30 meter resolution. This map of one county shows that land use and MUID regions 
are closely correlated.  For example, the soil region along the creek running from north-central to southwest is used extensively 
for ‘row crops’.  Weighting base soil carbon by soil regions where particular crops are grown allows more precise estimation 
of sequestration ability of individual crop categories (Randloph County, MO). 
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West and Post analyzed results from 67 long-term tillage studies on different soils 

globally, consisting of 276 paired treatments (West and Post, 2002).  They estimated 

Carbon Management Response (CMR) curves for every major crop and rotation within 

the US.   West et al. (2003) mathematically illustrate changes in soil carbon stocks using 

Carbon Management Response (CMR) curves, which are regression functions that 

estimate sequestration rates over time (Figure 4).  From a carbon accounting perspective, 

CMR curves are useful in their ability to be serially connected to represent changes in 

soil carbon following multiple changes in land use. Within this research, I assume that the 

total carbon accumulation estimated by CMR curves will occur linearly over a 20 year 

period.   Linear approximations of CMR curves estimated by West and Post (2002) are 

applied to nine crop types (i.e., corn, soybean, wheat, sorghum, oats, barley, cotton, rice, 

and hay) to estimate the change in carbon level per year (Δj).  The linear approximations 

used in this paper are listed in Table 4.  No-tillage haylands can accumulate the largest 

increase in soil carbon, increasing soil carbon by 1.85% more than base soil carbon in 

one year.  Cotton is the lowest carbon accumulator, increasing soil carbon 0.32% per year 

under no-tillage. 

 

Adjustment of carbon response rate 

The carbon accumulation rates listed above are estimated as a percentage or fraction of the 

initial soil carbon. The fraction (Δj) is adjusted as a function of the base soil carbon (AdjCij) 

and then multiplied by the base soil carbon content associated with respective cropping  
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Figure 4.  Example of a carbon management response curve: Estimated average annual carbon 
flux from soil to the atmosphere following a change from conventional-tillage (CT) to no-till 
(NT) on agricultural cropland (West et al., 2003). 
 

 

 

Table 4.  Estimated rates of soil carbon accumulation by tillage intensity.* 

Land Use

NT RT NT RT
Corn 1.035 0.518 20.7 10.4
Soybeans 1.035 0.518 20.7 10.4
Sorghum 0.320 0.160 6.4 3.2
Cotton 0.320 0.160 6.4 3.2
Wheat 0.930 0.465 18.6 9.3
Barley 0.930 0.465 18.6 9.3
Rice 0.930 0.465 18.6 9.3
Oats 0.930 0.465 18.6 9.3
Hay 1.845 0.923 36.9 18.5
*This is the total carbon change following the change in tillage practice.  Change
  is estimated to occur as 20 equal annual increments over a period of 20 years.
CT, RT and NT are conventional tillage, reduced tillage and no-till, respectively.
Sources: West and Post (2002), West et al. (2004), and Conant et al. (2001)
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practices (Ci,j). Adjusting the rate of soil carbon accumulation is based on an analysis by Tan 

et al. (2006) that indicates increased sequestration rates occur on lower base carbon soils and 

reduced sequestration rates occur on higher base carbon soils.  The adjustment factor 

equation is represented in Figure 5 as a function of base soil carbon level. 

 
The real potential change in soil carbon is found by multiplying base carbon by the newly 

adjusted carbon response rate. Using this procedure, I calculated real potential change in 

soil carbon (Tacrei,j)  for all combinations of crop and tillage in every county.  A sample 

of this data set is listed in Appendix A (counties in Tennessee). Change in total soil 

carbon is estimated at the county level by multiplying total acreage of each crop under 

each tillage by the real change in carbon per acre (Tacrei,j) for each crop and tillage 

combination.  The use of NLCD data allow for more specific selection of base soils 

underlying agricultural lands.  This informs the weighting process at the county level, 

and, therefore, results in more precise estimation of changes in soil carbon.  The relative 

strength of this method over more general aggregate methods will be tested in the 

validation section.  

 
 

Emissions estimation  

As cautioned by Schlesinger (2000), increases in soil carbon stocks do not necessarily 

equal a decrease in net emissions, because input emissions12 may rise faster than soil 

carbon levels.  A full carbon or greenhouse gas accounting should be completed to  

                                                 
12 Input emissions include all carbon equivalent emissions from direct on-farm burning of fossil fuels and 
indirect emissions from the production of farm inputs, such as chemicals, fertilizers and seeds. 
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Figure 5.  Carbon accumulation adjustment curve:  carbon accumulation adjustment 
factor as a function of base soil carbon.  The adjustment factor increases the rate of 
sequestration on lower carbon soils and decreases the rate of sequestration on higher 
carbon soils. 
 

estimate net emissions reductions caused by carbon management options.  Full carbon 

accounting must go beyond simply estimating changes in soil carbon.  It must also take 

into account changes in production emissions.  Net flux is then the net outcome of both 

soils carbon and production emissions changes between a baseline scenario and an 

alternative scenario.   

 

Emissions from the use and production of farm inputs must be known in order to account 

for the change in net flux of atmospheric carbon caused by changes in farm management 

practices.  Potential management options for cultivated agricultural lands include moving 

from conventional-tillage to either reduced-tillage or no-tillage. In this research, these 

management scenarios were applied to nine different crops (corn, wheat, soybean, 

1.6524 + 0.2471)*Ln(x * 0.5938- =y 
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sorghum, oats, barley, rice, cotton and hay).  A major undertaking of my research was 

compiling management scenarios that represent the economic costs and material use 

associated with the carbon management options listed above.  First, operation budgets 

were compiled for all crop and tillage combinations; then, emissions, both directly and 

indirectly associated with the material inputs of the production practices, were estimated. 

 

Building operation budgets 

Crop operation budgets are schedules of farm operations performed on an acre of land. 

They are commonly used by farmers and agricultural researchers to account for both 

physical quantities and costs of production.  Accurate crop operation budgets are an 

integral part of modeling land-use change upon agricultural lands.  In the past POLYSYS 

used only conventional-tillage budgets upon which to base its analyses.  I have expanded 

the database of available budgets to include alternative management practices being used 

to produce the major crops in the US.  The Agricultural Policy Analysis Center’s 

Agricultural Budgeting System (ABS) has been expanded by this research to include over 

3,500 conventional and alternative management practices of nine major crops in the 305 

Agricultural Statistics Districts of the US  The geographic resolution of the budgets 

corresponds to USDA-NRCS Agricultural Statistics Districts (ASD).  Agricultural 

practices within each ASD are relatively homogeneous in production characteristics 

(Figure 6).  
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Figure 6.  POLYSYS crop budget regions, corresponding to USDA-NRCS Statistics Districts (De 
La Torre Ugarte and Ray, 2000) 
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ABS budgets are expressed in both economic ‘enterprise’ format and specific operation 

format.  Types of operations, machinery used, and input quantities associated with each 

management practice within ABS were built by consulting with regional extension 

service publications and personnel (APAC, 1996).  In the ABS budgets, quantities of 

applied fertilizer and applied chemicals were taken from extension service sources but 

then standardized following established restrictions for herbicides and insecticide use 

(Meister, 2002A; Meister, 2002B).  Traction and implement-equipment were obtained 

from regional extension sources, but equipment efficiencies for regions are standardized 

by data provided by the USDA Economic Research Service (ERS) database on regional 

level machinery efficiencies (ERS, 1997).  Machinery time and fuel usage are figured by 

following American Society of Agricultural Engineering Standards estimation equations 

published in the American Agricultural Economics Association Costs and Returns 

Handbook (ASAE, 2004; AAEA, 2004).  The ASAE equation for estimating length of 

time per acre of each operation is a function of equipment width, ERS equipment 

efficiency, and equipment speeds provided by the ASAE machinery database. ASAE 

methodology is then used to transform horse-power of each traction operation and 

machinery time into an estimate of fuel usage per operation.  

 

Most regions in ABS, already had conventional budgets for all crops prior to the start of 

my research.  In constructing the alternative reduced-tillage and no-tillage budgets, I 

began with the conventional budgets as the default.  The same application rates of 

fertilizers and chemicals were used to construct the reduced-tillage budgets, but tillage 

operations were reduced to a maximum of two light tillage operations per year.  The same 
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application of fertilizers were used to construct the no-tillage budgets, but chemical 

applications were substituted for tillage operations.  In place of spring tillage, glyphosate 

was applied two to four weeks prior to planting.  Default quantities within ABS of 

glyphosate were used regionally.  An example of a compiled no-tillage corn operation 

budget from Missouri is listed in Table 5.  Fertilizer and chemical quantities are listed.  

Fuel quantities are figured from the type of machinery used and the time used. 

 

Linking budgets with emissions 

Carbon dioxide emissions from fossil fuels used in the production, transport, and 

application of agricultural inputs have been calculated by West and Marland (2002b) for 

cultivated lands.  Emissions of N2O resulting from the application of N fertilizer have 

recently been included in emissions analyses, as demonstrated by Marland et al. (2003).  

To quantify net carbon emissions resulting from carbon management options at the 

regional level, and hence be useful from a policy perspective, emissions estimates need to 

be applied to the newly disaggregated crop budgets.   

 

As part of my research, both direct and indirect emissions are estimated and tied to each 

unique management practice in ABS.  ‘Direct carbon’ includes emissions from the use of 

fuel on farms, lime decomposition in the soil, and carbon equivalent emissions from field 

decomposition of ammonia. Gallons of diesel per acre of each operation are determined 

by machinery horsepower and running time per acre following AAEA equations.  

Estimated gallons per acre are multiplied by the carbon content of diesel (6.75 lbs C/gal 

diesel) to estimate direct emissions from fuel usage.  Lime applications act to release 0.06 

http://en.wikipedia.org/wiki/Glyphosate
http://en.wikipedia.org/wiki/Glyphosate
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Table 5.  Operation budget example: no-tillage corn budget, central Missouri. 

 

Active  Seed  
Month Day Machinery Power Labor Machine Fertilizer lbs Chemical Amount Unit Ingredient Type Rate Unit
3 30 Dry Fert Spreader Tractor 2wd 135 hp 0.0873 0.096 N 117 0 0
3 30 Dry Fert Spreader -- 0 0 P2O5 54 0 0
3 30 Dry Fert Spreader -- 0 0 K20 56 0 0
5 1 7 Row No-till Planter Tractor 2wd 135 hp 0.2001 0.2201 0 0 Corn Hybrid 22 thou
5 10 Chem Applicator GE30ft Tractor 2wd 135 hp 0.0391 0.043 0 Lasso 4E (Alachlor) 3 QT 3 0
5 10 Chem Applicator GE30ft -- 0 0 0 AAtrex 4L (Atrazine) 3.6 PT 1.8 0
6 1 Chem Applicator GE30ft Tractor 2wd 135 hp 0.0391 0.043 0 Dual 8E (Metolachlor) 1.92 PT 1.92 0
6 1 Chem Applicator GE30ft -- 0 0 0 AAtrex 4L (Atrazine) 1.46 PT 0.73 0
11 5 Combine w/ Row Header-2wd 0.1637 0.1801 0 0 0
11 5 Single-axle Truck 2 ton (gas) 0.33 0.363 0 0 0
11 5 Dry Fert Spreader Tractor 2wd 135 hp 0.0873 0.096 Limestone 660 0 0
* Units of labor and machine time in hours
Source: Agriultural Policy Analysis Center's Agricultural Budgeting System

Time*
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ton of carbon per ton of limestone applied.  Carbon equivalent emissions of nitrous oxide 

from the use of nitrogen fertilizers are estimated by assuming 2.22 tons of carbon 

equivalent released per ton of nitrogen applied.   

 

Indirect carbon, or embodied carbon, includes emissions from the processing, 

manufacturing and transportation of seeds, fertilizers, and chemicals applied to the field.  

I obtained per unit carbon emissions embodied in the production of inputs from the 

lifecycle literature (West and Post, 2002; Ogle et al., 2005).  Quantities of seed, fertilizer 

and chemical inputs are linked in this research to these ‘per unit’ estimates to arrive at 

indirect carbon emissions.   Indirect carbon emissions from 81 combinations of organic 

and inorganic fertilizers, and 403 chemical pesticides are linked to the operation budgets 

in this research.  

 

Direct and indirect carbon emissions are summed to estimate total carbon equivalent 

emissions as a result of each unique regional management practice.  Table 6 lists the 

national weighted average costs of production and emissions for all model crops and 

tillage practices. As expected, no-tillage generally emits less carbon than reduced-tillage, 

and reduced-tillage emits less carbon than conventional-tillage.   

 

Building county level economic resolution 

The smallest region with consistent national coverage of crop-acre data is the county 

level. To achieve a model capable of simulating regional land use dynamics at the highest 

resolution feasible, I expanded the linear programming model from 305 Agricultural  
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Table 6.  Weighted average cost of production and emissions by crop and tillage.* 

CT RT NT CT RT NT
Corn 132 121 131 0.100 0.083 0.083
Sorghum 79 69 77 0.063 0.055 0.052
Oats 66 63 59 0.049 0.047 0.035
Barley 73 78 75 0.044 0.044 0.043
Wheat 59 63 75 0.047 0.044 0.041
Soybeans 93 87 91 0.044 0.044 0.038
Cotton 185 227 336 0.107 0.123 0.098
Rice 247 256 233 0.151 0.134 0.120
Hay 212 na 240 0.090 na 0.091
CT, RT and NT correspond with conventional, reduced and no-till, respectively.
* These data are weighted averages across all regions in the U.S.  In any particular region, 
 budget costs and relative differences between the tillage regimes could be quite different.
Costs were estimated using 2006 input prices.
Emissions include both direct and indirect emissions.

Cost ($ per acre) Emissions (MtC per acre)

 
 

Statistic Districts to 3,110 county level regions.  Furthermore, the cropping activities in 

each of the counties were disaggregated to include conventional-tillage, reduced-tillage 

and no-tillage of all 12 model crops.  The National Agricultural Statistics Service 

provides yearly crop acres for every county in the US and the Conservation Technology 

Information Center (CTIC, 2004) provides county level areas of each crop under 

conservation tillage.  Baseline county acreages in each crop and tillage practice were 

collected from 2001 through 2004 and an average quantity of acres in each crop-tillage 

combination was used to create an index that disaggregates USDA national baseline 

acreage to the county level.  In every simulation year, POLYSYS iterates through 3,110 

counties, solving for the optimal linear programming solution in each county.     

 

In the linear programming model, each crop and tillage type combination is a unique 

activity, with a corresponding net present value used for evaluating relative profitability.  

Twelve crops and three tillage operations sum to a possibility of 36 unique activities in 



 53

each county.  Acreage in each unique crop type is constrained by a maximum and 

minimum number of acres that can move from one tillage type to another within the same 

crop, and a maximum and minimum number of acres that can move between crops.  The 

tabular representation of the model is presented in Appendix B.  The following equations 

define the objective function and constraints within the county level linear programming 

models. 
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t=tillage category, 

i=year 1 to 20, 

Price = commodity expected price, 

Yield = commodity yield, 

TotalCosts = total variable costs of commodity production, 

drate = discount rate (6.25%)13, 

and, 

planted = planted acres. 

 

First, net income returns are determined for the current year for each crop and tillage 

combination (eq. 8).  Next, the net present value of each crop and tillage mix is 

determined for a 20 year time span (eq. 7). Within the linear programming model, the 

objective function is to maximize the next present value of all crop and tillage mixes 

subject to four constraints (eq. 2).  Maximum planted acres of an individual crop-tillage 

mix are equal to last year’s planted acres plus the sum of 10% of all tillage acres of that 

crop (eq. 3).  Minimum planted acres of an individual crop-tillage mix is equal to last 

year’s planted acres minus 10% of last year’s planted acres of the same crop-tillage mix 

(eq. 4). Maximum planted acres within all tillage categories of an individual crop is equal 

to last year’s planted acres of that crop plus 10% of last year’s planted acres (eq. 5). 

Minimum planted acres within all tillage categories of an individual crop is equal to last 

year’s planted acres minus 10% of last year’s planted acres (eq. 6). 

 

                                                 
13 Discount rate was determined by 5-year certificate of deposit rates in June of 2007. 
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I also expanded the net present value estimation to include an additional incentive 

variable.  Its value is determined by the incentive level per MtC and also the county-wide 

average rate of carbon accumulation for each unique crop and tillage combination.  For 

example, the satellite-derived land-use data may indicate that, historically, sorghum 

grows on carbon-poor lands with a low carbon accumulation rate, whereas corn in the 

county grows on carbon-rich lands with a high rate of carbon accumulation.  The 

incentive is different for an acre of sorghum and an acre of corn, not only because they 

are different crops with different biomass growth rates, but also because high resolution 

land-use data reveal that they are historically grown on different quality soils. 

 

Inclusion of yield change uncertainty 

Research has shown that the mean net returns on reduced-tillage practices are equal to or 

greater than the return from conventional-tillage due to decreases in input costs, yet only 

35% of agricultural lands have adopted conservation tillage practices (Sandretto 2001).  

One factor inhibiting the adoption of reduced-tillage is the additional risk of lesser yields 

perceived by farmers and the perceived effects of these risks on net returns (Nowak and 

Korsching 1985, Prato 1990, Larson et.al. 1998, Larson et.al. 2001).  Lower no-tillage 

yields in the initial years after a switch from conventional-tillage may be a significant 

factor affecting estimates of incentive-induced carbon abatement.  I quantify and include 

the uncertainty of low no-tillage yields in the initial years within the model methodology 

by valuing expected returns over future years. 
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No-tillage yields are lower in the initial years after switching from conventional-tillage.  

As soil conditions improve, yields increase to a new plateau after 20 years.  The new 

plateau is usually higher than conventional-tillage yields.  Because farmers value returns 

sooner rather than later, the model discounts returns over a 20-year planning period.  The 

lower yields of no-tillage in the initial years carry more weight in the net present value 

calculation than the later higher yields.  Discounting temporal yield trends in this manner 

influences the point at which farmers are willing to change practices, and therefore it 

affects net carbon flux estimation. 

 

In a study comparing yield differences of 664 paired tillage experiments, Kunda 

(forthcoming) found that a non-linear, exponential functional form resulted in the highest 

r2 value.  Figure 7 shows the estimated equation and no-tillage yield change over time 

relative to mean conventional-tillage.  In the initial period of 0 to 1 years, no-tillage 

experiences a 5.6% decrease in yields.  By year two there is no significant difference in 

yield, and by year five, no-tillage yields increase to 2.5% above conventional-tillage.    

 

Although average no-tillage yield over the entire 20-year period may be slightly higher 

than conventional-tillage, farmers value the returns closer to present.  Uncertainty 

associated with promised yields increases as time increases.  This uncertainty is 

quantified through discounting the net present value of a stream of revenue over the 20 

year period.  In the model, equation 9 is used to incorporate the yield differences through 

time. 
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Figure 7.  Change in no-tillage yield over time: percentage change in no-till yield from 
mean conventional-tillage yield over 20 years.  Initially, no-till yields fall, but by year 2 
no-till yields surpass conventional-tillage. 
 

 

Net Present Value = ∑ (Yieldi * Price) / (1+drate)i ,   (equation 9) 

 Where, 

 Yieldi = yield of no-tillage in year i,  

Price = current expected price of commodity, 

and, 

Drate = discount rate (6.25%). 

 
 
 
 
Methods of model application 
 
Once the model was created and all economic and biogeophysical data were integrated 

into a framework that simulated at a high degree of resolution, I used the model to do the 

following: 

ΔY% = -7.0988 + 10.0610 (1 - exp(-0.4610x)) 
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1) Simulate ‘baseline’ net carbon fluxes to the atmosphere at the county level for US 

agricultural lands. 
 
2) Develop a net carbon flux supply curve by simulating carbon incentive levels ($ per 

tonne), which estimated how much carbon can be abated both nationally and 
regionally at a given price of carbon. 

 
3) Test the uncertainty of base soil carbon estimates and quantify their impact upon 

mean model outcomes.  
 
4) Validate high resolution results as compared to low resolution results by comparing 

them to results of actual field level tillage trial experiments. 
 
5) Analyze the interaction between model resolution and analytical scale. 
 
 
 
Baseline simulation 
 
As an initial step in simulation, I projected a baseline simulation to arrive at the status 

quo future outlook.  The baseline simulation projects historic tillage trends forward in 

time.  Current county-level crop acreages (2000-2004) and tillage mixes were used as an 

initial point of departure for projections.  Data from the National Agricultural Statistics 

Service (NASS) (USDA, 2007) provided annual estimates of crop area per county for each 

major crop type. Data from the Conservation Technology Information Center (CTIC, 2004) 

provided information on the area of major crop types using different tillage practices 

including conventional-tillage, reduced-tillage, and conservation tillage. These three tillage 

practices are defined, respectively, as leaving less than 15% of the ground covered by crop 

residue, between 15-30% ground cover, and greater than 30% ground cover (CTIC, 2004). 

Conservation tillage encompasses tillage practices such as mulch tillage, ridge tillage, and no 

tillage. I combined mulch tillage and ridge tillage in the reduced-tillage category, and 

maintained no-tillage and conventional-tillage as separate categories.  
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Baseline simulation began in 2006. To estimate county level acreage as closely as 

possible to current allocations, I used the average county NASS acreages between 2003 

and 2004 to cover any biannual changes in crop rotation.  Individual county-level crop 

acres were divided into tillage type by applying CTIC data on the percentage of crop in a 

particular tillage.  This method gave the initial year's quantity of acres in each tillage and 

crop type at the county level.   

 

To project forward through 2025, additional methods were employed.  At the national 

scale, the baseline simulation used USDA baseline through 2016, after which the model 

endogenously projected trends outward to 2025.  Three exogenous assumptions were 

made for projection through 2025: population trends, export trends and yield trends were 

projected at ‘historic’ rates.  In each year of baseline simulation, county crop acres were 

adjusted by both their initial weighted ratio of national acreage and by adjustments based 

on relative profitability.  The relative share of crop acres in individual tillage types 

changed according to projected ‘historical’ trends.  Analysis of tillage trends indicated a 

significant structural shift in tillage adoption occurred in 1996, after which the acres of 

reduced-tillage declined rapidly and then remained steady, and the rate of adoption of no-

tillage decreased. I hypothesized that rapid conversion to no-tillage following the 

introduction of Round-up® (herbicide) was tailing off by 1996. Two opposing active 

dynamics will effect future no-tillage adoption.  Herbicide-resistant weeds are making 

no-tillage less attractive to farmers.  Contrary to this is the impact of increasing fuel 

costs, which farmers can alleviate by adopting less fuel-intense no-tillage.  Analysts 
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following no-tillage adoption believe that farmers will continue to adopt no-tillage but at 

one-quarter the historical rate (Tyler, 2007).  In this analysis, trends from 1996 through 

2004 are projected, at the state level, to the year 2025 at one-quarter the 'historic' rate 

(Figure 8).   

 

The baseline simulation gives the status quo situation to which alternative policy 

scenarios will be compared.  Baseline data include both regional and national acres in 

each crop and tillage, carbon emitted from production inputs, and carbon accumulation in 

soils from conservation tillage.   

 

Simulation 

The primary reason for undertaking the construction of the model is to analyze how much 

carbon can be abated and at what cost.  To do this, a carbon abatement supply curve is  
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Figure 8.  Tillage adoption: historical and baseline projected. 
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estimated by exogenously introducing incentive levels into the modeling framework, 

which act to trace the marginal supply curve.  A particular carbon incentive level adds to 

the net present value of each unique crop, tillage and county combination depending upon 

each activity’s estimated ability to sequester carbon.  Once again, each activity’s ability 

to sequester carbon depends upon: a) the type of crop; b) the type of tillage; and c) the 

quality of soils it is grown upon.   The conversion of national ‘per tonne’ incentive to 

county and crop specific ‘per acre’ incentive can be written as: 

 

Iacrei,j = Ci,j * Δj * Itonnat            (equation 10) 

Where, 

Iacrei,j = carbon incentive ‘per acre’ in county i, for crop j ($ per acre). 

Ci,j  = base carbon level in county i, for crop j (tonnes per acre). 

Δj = change in carbon level per year of crop j, under tillage t. 

Itonnat = national incentive level ‘per tonne’ of carbon ($ per tonne). 

 

In the simulations, the new net present value landscape changed the optimal solution 

within the linear programming models, and the incentives acted to change crop and 

tillage mix both regionally and nationally.  The new incentive-induced crop and tillage 

mix sequesters more carbon than the ‘baseline’ case.  Additionally, emissions increased 

in some regions, through the use of more energy intensive chemicals, and decreased in 

other regions, through the use of less tractor operations.  I compared net flux of carbon to 
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the baseline scenario to reveal the total reduction in atmospheric carbon at particular 

incentive levels. 

 

In this analysis, my intention is to investigate carbon program implementation that is 

most similar in form to the emerging carbon trading markets, which is to pay ‘all 

adopters’ of tillage practices an incentive, and not only ‘new adopters’. Furthermore, to 

arrive at an upper bound estimate of abatement potential, I assumed permanent 

sequestration and gave farmers the full asset value of carbon price (there is no 

discounting or transaction costs assumed).  The regional incentive level is based upon 

‘sequestration’ potential, or the ability of the soil to take up carbon from the atmosphere.  

The other option would be to apply the incentive to ‘net flux’ potential, which is the net 

amount of carbon reduction that occurs when both changes in soil uptake and emissions 

of carbon are totaled. Payments based on sequestration rather than net flux can cause 

leakage to occur through lands switching from conservation to conventional-tillage.  

Although I employ a sequestration based incentive, most of leakage is avoided due to 

payments going to ‘all adopters’.  Lands already in no-tillage do not switch to 

conventional-tillage.  Unintended increases in emissions caused by incentives still occurs 

through conversion of land to higher emitting crops.  But, by paying all adopters, a major 

source is avoided.  Once again, this implementation of the model is to estimate the upper 

bound potential of carbon abatement of a carbon program most similar to those emerging.   

  

There is wide variation in estimates of potential carbon price if the US were to begin 

regulating carbon emissions.  Currently the US is not part of the Kyoto Protocol and 
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polluters of CO2 are under no obligation to reduce emissions.  All carbon trading at the 

Chicago Climate Exchange (CCX) is completely voluntary.  CCX carbon price is around 

$5 to $10 per MtC.  In Europe, pre-Kyoto carbon prices have hovered in the range from 

$20 to $30 per MtC (Kyoto regulations take effect from 2008 to 2012).  Canada’s Tory 

(conservative) government estimated that it will take a carbon tax of $195 per MtC to 

compel Canada to meet its Kyoto obligations (Suzuki, 2007).  Sweden instigated a $100 

per MtC tax in 1991 and raised it to $150 per MtC in 1997 (Brannlund,1999).  In 

testimony before the US House of Representatives Ways and Means Committee, 

Schneider and Mastrandrea stated that their research estimated a typical shadow price of 

$200 per MtC to keep atmospheric carbon concentrations from more than doubling 

(Schneider and Mastrandrea, 2005).  If the US were to decide to reduce carbon emissions, 

carbon prices of $100 per MtC and higher are foreseeable.  This analysis estimates 

abatement responses from carbon incentive levels ranging from a very low level of $12.5 

per MtC up to a high estimate of $500 per MtC, with $125 being the analytical focal 

point. 

 

Scenario analysis of base soil carbon uncertainty 

Analysis of uncertainty in carbon estimates is performed by varying base soil carbon in 

separate scenarios.  Galbraith et al. (2003) studied soil carbon estimation error from 

regional soil maps and found coefficients of variation associated with one standard 

deviation error ranged from 3% to 87%.  This sensitivity analysis uses the mean 

coefficient of variation found in Galbraith et al. (2003).  Two simulations are run by 

changing mean regional and commodity base soil carbon estimates by ±28% (mean 
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coefficient of variation in Galbraith et al. (2003)), to estimate the range of error to 

approximately one standard deviational unit. The two additional simulations are 

compared to the mean estimate at the national level.  These alternative scenarios yield the 

upper and lower carbon sequestration estimates at a given carbon price.  The upper bound 

indicates carbon sequestration above the expected amount that is still significant.  The 

lower bound indicates an amount of carbon sequestration below the expected amount that 

is still significant.   

 

Validation of high resolution 

The main purpose of this project is the development of a modeling methodology that is 

capable of accurately estimating carbon sequestration potential at the sub-county level, 

yet with national coverage.  Sub-county estimation of carbon sequestration potential has 

been accomplished through the overlay of high-resolution satellite data.  It is not 

guaranteed that, by increasing the resolution, the model will result in more accurate 

estimations at either the local, regional or national level.  The model needs to be tested to 

verify any possible gains in accuracy over lower resolution methods.   

 

To test whether the methodology is accurate at estimating site specific changes in soil 

carbon, the results of the high-resolution model are compared to empirical results of field 

trials measuring changes in soil carbon as a result of no-tillage adoption.  Model 

estimates of MtC gains per acre per year are compared with empirical results from six 

experimental sites: 

1) Dekalb County, AL – Corn under no-till from 1980-1990 (Edwards et al., 1992). 
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2) Johnson County, IL – corn/soybeans under no-till from 1989-1992 (Kitur et al., 

1994). 

3) Fayette County, KY – corn under no-till from 1975-1989 (Blevens et al., 1994). 

4) Tate County, MS – cotton under no-till from 1980-1996 (Rhoton, 2000). 

5) Cheyenne County, NE – wheat under no-till from 1978-1990 (Varvel, 1994). 

6) Wood County, OH – corn/soybeans under no-till from 1980-1993 (Dick et al., 

1997). 

 

Because the high resolution estimates are derived from weighted initial soil carbon 

observations from the STATSGO database, it is not expected that the model will 

replicate precisely the observed changes in soil carbon.  But it can be expected that 

estimates using the high-resolution model more accurately estimate observed changes 

than lower resolution versions.  To test this expectation, empirical results are also 

compared to lower resolution (more aggregated) versions of the model.  It is 

hypothesized that the high resolution estimates of carbon accumulation will be more 

similar to empirical estimates.  Four model resolution versions are compared: 

A)  LANDSAT County Version –base soil carbon levels are weighted by STATSGO 

region for every LANDSAT crop-type at the county level. With LANDSAT data, 

there are weighted base soil carbon estimates for each crop type in each county. 

This is the high resolution method, to which the others are compared. 

B)  No LANDSAT County Version – base soil carbon level is weighted by the area of 

each STATSGO region within each county.  Without the use of satellite imagery, 

only one weighted base soil carbon estimate can be derived for every county.   
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C)  LANDSAT National Version –base soil carbon levels are weighted by STATSGO 

region and crop-type, but at the national level. With LANDSAT data, only soils 

with crops growing upon them are included in the weighted base soil carbon 

estimate. 

D)  No LANDSAT National Version – base soil carbon level is weighted by the area 

of each STATSGO region within the nation.  Without the use of satellite imagery, 

there is only one base soil carbon estimate for the nation as a whole. 

 

Scale comparisons 

In addition to testing the model version results to empirical observation, the resolution 

versions are compared to each other in estimating total gains in soil carbon at differing 

scales of analysis.  Estimated totals using the four resolution versions are compared at 

three different scales (levels of aggregation)–the national scale, the state scale and the 

county scale.   

 

Simulations of each of the four versions are run at increasing carbon incentive levels to 

create individual supply curves indicating the amount of carbon that can be abated at 

increasing prices per MtC.  Regionally, the results of the four versions are compared at 

the national, state, and county scales of aggregation.  It is hypothesized that estimation of 

national carbon abatement will be similar for all model versions, but that regional 

differences in estimated carbon abatement will grow as the scale of analysis decreases 

from national to state and then to county.  
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Hypothesized differences in estimated carbon sequestration among the four resolution 

versions are due to the weighting of initial soil carbon.  The highest resolution version 

weights initial soil carbon within a very small region.  The lowest resolution version 

weights soil carbon for all soils within the nation.  At the national scale of analysis, the 

aggregate totals of all resolution versions may be quite similar, but at the regional scale of 

analysis, differences in initial soil carbon (and therefore rate of accumulation) will affect 

the outcome in predicted sequestration through two mechanisms:   

 

1) The offered incentive per acre reflects different potential carbon sequestration rates, 

resulting in different conservation tillage adoption rates. 

2) Estimated total carbon accumulated results from different rates of accumulation.   

 

The resolution of other model variables, such as crop budget costs, is kept at the county 

level.  The purpose here is to test the impact of estimates of carbon accumulation alone.  

If too many variables change at once, the direction and weight of the individual variables 

may become lost.  The primary innovation of this project is in bringing the resolution of 

carbon accumulation rates down to the sub-county level; therefore, this is the primary 

factor evaluated. 
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CHAPTER IV: 

RESULTS 

Baseline simulation 

In the projected baseline case, 32% of US cropland is in reduced-tillage and 33% is in no-

tillage by 2025 (up from 23% in 2004).   Total uptake of carbon by US soils increases 

from the current level of 10.9 MMtC per year to 12.4 MMtC per year by 2025.  The 

slight increase in soil uptake of 1.24 MMtC per year is offset by an equal increase in 

carbon emissions over the baseline period.  In spite of conversion of lands to lesser 

emitting conservation-tillage regimes, total emissions from agriculture increase from 37.6 

MMtC per year to 39.0 MMtC per year.  The apparent discrepancy of increasing 

conservation tillage and increasing input emissions is due to changes in cropland 

allocation among different crops.  Through the baseline period, ethanol demand 

increases, and with it corn production increases.  Corn is a very input-intense crop, due to 

increased use of fertilizers, chemicals and seeds.  So, even though more conservation 

tillage is being used by 2025, the expansion in corn acreage causes total input emissions 

to increase.  The increase in annual soil carbon accumulation is exactly offset by 

increases in annual emissions from production inputs and, therefore, total net flux 

remains at 26.7 MMtC per year by 2025 (Table 7).  All incentive-induced changes in 

atmospheric carbon reported in the results section are divergences from this calculated 

baseline. 
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Table 7.  Baseline changes in atmospheric carbon through projection period as a result of 
agricultural soils and emissions (MMtC per year) from POLYSYS model, baseline 
simulation. 
 

2006 2025 Change

U.S. Agricultural Soils* -10.94 -12.36 -1.42

Emissions
Direct

On-Farm Fuel 9.75 9.63 -0.11
N20 from Nitrogen 13.72 14.74 1.02
C02 from Lime 2.94 2.94 0.00
Total 26.41 27.31 0.90

Indirect
Fertilizers 8.01 8.42 0.41
Chemicals 1.54 1.61 0.08
Seeds 1.64 1.68 0.04
Total 11.19 11.71 0.52

All Emissions 37.60 39.02 1.43

Total Net Flux 26.66 26.66 0.00
* Assuming all land in conservation tillage is still accumulating carbon
Note: Negative values correspond to reduction in C emissions to the atmosphere.

Positive values correspond to increase in C emissions to the atmosphere.  
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National carbon net flux supply curve 

If all cropland could be switched to no-tillage, total technical potential carbon abatement 

reaches 33 million metric tons of carbon (MMtC) per year in 2025, which is 21.4 MMtC 

above baseline.  To figure economic potential carbon abatement, incentives were 

increased to the upper bound of $500 per MtC.  At 500 per MtC, abatement reaches 18.9 

MMtC above baseline by 2025.  Soil carbon uptake accounts for 16.5 MMtC, and 

reductions in emissions contribute another 2.5 MMtC to total carbon abatement. The 

estimated carbon abatement supply curve is shown in Figure 9.  The brown curve 

indicates the additional soil carbon above baseline that would be sequestered at given 

incentive levels.  The green curve indicates the total reduction of atmospheric carbon 

from both soil sequestration and changes in agricultural emissions.  As expected, as the 

incentive level increases, carbon abatement increases.   Also, as incentives increase, the 

distance between the soil carbon and total abatement curves increase due to changes from 

higher emitting tillage practices to lesser emitting practices.   

 

The carbon supply curve indicates a rapid upward shift in marginal cost of abatement that 

occurs at around the $50 to $75 incentive level.  This is caused by the convergence to two 

factors, (1) the marginal amount of acres switching out of conventional- and reduced-

tillage and into no-tillage per dollar incentive begins to decrease after the $25 per ton 

level, and (2) the reduction in net flux per acre of newly switched land begins to drop 

after the $50 per MtC level (Table 8).  At lower incentive levels, incentives can easily 

raise the profitability of no-tillage over conventional-tillage of some cropping activities.  

For example, in some regions, the cost of hay production under both conventional and  
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Figure 9.  National carbon abatement supply curve with soil carbon changes and total  
    carbon changes induced by carbon incentive by 2025. 
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Table 8.  Marginal acreage change per dollar incentive, and marginal net flux per newly 
switched acre. 
 

Net flux change per
newly switched

Conventional Reduced No-till acre**
$12.5 -0.16 -0.36 0.52 -0.007
$25.0 -1.57 -0.27 1.84 -0.102
$50.0 -1.08 -0.15 1.24 -0.162
$75.0 -0.87 -0.12 0.99 -0.156

$125.0 -0.59 -0.08 0.67 -0.150
$250.0 -0.37 -0.07 0.44 -0.138
$500.0 -0.23 -0.07 0.30 -0.126

*This is the tillage acreage changes that each dollar of incentive stimulates.
  At incentive levels above $25, the less acres switch per dollar of incentive.
** This is the change in net flux that as a result of each newly switched acre.
   At incentive levels above $50, there is less of a drop in net flux per newly switched acre.

Acreage change per $ incentive*
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no-tillage are very similar.  Hay lands have a high sequestration potential and therefore 

receive larger incentives.  Slight increases in the net present value of no-tillage can 

induce its adoption.  But as the incentive level is increased, less additional land is 

switching over because it either has a lower carbon potential, or the conservation tillage 

management practices are relatively more expensive than conventional-tillage practices.  

Additionally, as land with lower carbon potential does change practices, it sequesters 

marginally less, resulting in an even steeper upturn in marginal costs.  

 

One major cause of the abrupt increase in marginal costs is due to the nearly complete 

switch-over of conventional haylands at the $50 incentive level.  In the baseline case 

there are 57 million acres of haylands in conventional-tillage.  At the $25 incentive level, 

32 million of these acres are switched to no-tillage, and at the $50 incentive level, 44 

million acres are switched to no-tillage.  At $50 per MtC, only 13 million acres of 

haylands remain in conventional-tillage.  Haylands usually have a larger sequestration 

potential than other crops due to two factors, (1) the root structure of hay deposits more 

carbon in the soil than other crops, and (2) a large portion of national hay acreage is 

located in northern areas, where soils can sequester more carbon due to cold conditions 

which act to slow microbial respiration.  

 

The temporal resolution of the model is at the annual level; therefore, the changes in 

carbon abatement induced by a given incentive level can be tracked annually through the 

important short to medium-term period.  Figure 10 shows annual reduction in 

atmospheric carbon induced at the $125 per MtC incentive level.  The initial years result 
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in the greatest annual decrease in atmospheric carbon.  By 2009, marginal reduction in 

atmospheric carbon is decreasing annually.  Eighty-five percent of total carbon reductions 

occur halfway through the simulation period (2015). By 2025, when 12.58 MMtC are 

abated annually, the marginal reduction is near zero, and all acres capable of switching 

management practice have done so.  After 2025, it can be expected that carbon abatement 

will decrease even though no-tillage remains in practice.  Conservation tillage can only 

increase soil carbon levels for about 20 years, after which SOC remains steady.  By 2025, 

the initial acres that switched into conservation tillage will have reached the 20-year 

mark, no further gains in SOC can be made, and total annual abatement would decline.   
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Figure 10.  National reduction in atmospheric carbon through 2025 at $125 per MtC. 
Source: POLYSYS simulation.  
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Carbon changes 

Table 9 lists the impacts to atmospheric carbon levels as a result of annual emissions and 

soil carbon uptake.  It also lists the total net flux that results from the net effect of 

agricultural emissions and soil uptake.  As incentives increase, both direct and indirect 

emissions decrease and soil carbon uptake increases.  At $500 per MtC, emissions total 

36.6 MMtC per year, and soil uptake reduces atmospheric carbon by 28.8 MMtC.  

Although incentives have acted to reduce total net flux by 18.9 MMtC below the baseline 

case, in total, agriculture is still a net contributor to atmospheric carbon, with an annual 

net flux of 7.7 MMtC to the atmosphere per year.   

 

Table 10 lists the same information but in terms of changes from the initial baseline.   

An incentive of $50 per MtC is estimated to increase soil uptake by 9.3 MMtC above 

baseline.  The same incentive acts to decrease total emissions by 0.8 MMtC below 

baseline.  This results in a total net flux reduction of 10.1 MMtC below baseline (Table 

10).  As incentives increase, and more land is put into conservation tillage, direct on-farm 

emissions from tractor operations decline.  Indirect chemical emissions increase slightly 

due to higher chemical usage in no-tillage operations, but total indirect emissions decline 

due to less fertilizer use with no-tillage.  Reduced fertilizer use also reduces direct 

emissions from nitrogen and lime decomposition in the soil.  At the upper bound scenario 

of $500 per MtC, conversion of cropland to conservation tillage results in a total 

reduction of 18.9 MMtC per year from the atmosphere below baseline projections. 
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Table 9.  Modeled impacts to atmospheric carbon from annual emissions and soil carbon uptake under increasing soil carbon incentive 
levels, 2025 (MMtC). 
 

All Soil Net Change in
Incentive On-farm N20 from C02 from Emissions Carbon*** Flux† Net Flux‡

$ per tonne Fuel Nitrogen Lime Total Fertilizers Chemicals Seeds Total
Baseline 9.63 14.74 2.94 27.31 8.42 1.61 1.68 11.71 39.02 -12.36 26.66 0.00

$12.5 9.53 14.71 2.93 27.17 8.40 1.61 1.67 11.68 38.85 -12.80 26.05 -0.61
$25 9.32 14.51 2.94 26.77 8.31 1.61 1.66 11.59 38.36 -16.38 21.98 -4.68
$50 9.25 14.49 2.93 26.67 8.30 1.62 1.66 11.59 38.25 -21.64 16.61 -10.05
$75 9.17 14.45 2.92 26.54 8.29 1.63 1.66 11.58 38.12 -22.96 15.16 -11.50

$125 9.07 14.36 2.90 26.32 8.24 1.65 1.65 11.54 37.86 -23.78 14.08 -12.58
$250 8.79 14.16 2.83 25.79 8.13 1.71 1.65 11.48 37.27 -25.88 11.39 -15.27
$500 8.36 13.93 2.82 25.11 8.02 1.80 1.64 11.46 36.57 -28.85 7.72 -18.94

Incentives are paid to reduced and no-till practices.
*Direct emissions represent all on farm carbon equivalent emissions.
**Indirect emissions include all emissions embodied in the production of these inputs.
***Negative numbers represent an uptake of carbon from the atmosphere and into the soil.
†Net flux is the net result of emissions from production and carbon uptake by soils due to soil conservation management practices.
‡Change in Net Flux represents changes from the Baseline level.

Direct Emissions* Indirect Emissions**
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Table 10.  Modeled change in impacts from baseline to atmospheric carbon from annual emissions and soil carbon uptake under 
increasing soil carbon incentive levels, 2025 (MMtC). 
 

All Soil Net
Incentive On-farm N20 from C02 from Emissions Carbon*** Flux†

$ per tonne Fuel Nitrogen Lime Total Fertilizers Chemicals Seeds Total
$0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

$12.5 -0.11 -0.04 0.00 -0.14 -0.02 -0.01 0.00 -0.03 -0.17 -0.44 -0.61
$25 -0.31 -0.23 0.00 -0.54 -0.11 0.00 -0.02 -0.13 -0.67 -4.02 -4.68
$50 -0.39 -0.25 -0.01 -0.64 -0.12 0.01 -0.02 -0.13 -0.77 -9.27 -10.05
$75 -0.47 -0.29 -0.01 -0.77 -0.14 0.02 -0.02 -0.14 -0.91 -10.60 -11.50

$125 -0.57 -0.39 -0.03 -0.99 -0.18 0.04 -0.02 -0.17 -1.16 -11.42 -12.58
$250 -0.84 -0.58 -0.10 -1.52 -0.30 0.09 -0.03 -0.24 -1.76 -13.51 -15.27
$500 -1.27 -0.81 -0.11 -2.20 -0.41 0.19 -0.04 -0.25 -2.46 -16.49 -18.94

Incentives are paid to reduced and no-till practices.

*Direct emissions represent all on farm carbon equivalent emissions.
**Indirect emissions include all emissions embodied in the production of these inputs.
***Negative numbers represent an uptake of carbon from the atmosphere and into the soil.
†Net flux is the net result of emissions from production and carbon uptake by soils due to soil conservation management practices.

Indirect Emissions**Direct Emissions*



 78

Average costs of abatement 

 Conservation tillage only sequesters additional carbon for about 20 years, after which no 

further gains in SOC can be made (Schlesinger, 2000).  In analyzing the costs of 

implementing a program, it is important only to credit conservation tillage acres on which 

carbon is still accumulating.  In this analysis, I have simulated the implementation of a 

carbon program that pays all adopters of conservation tillage and not only new adopters.  

This will raise implementation costs above paying only new adopters.  This scenario was 

chosen to simulate carbon payment programs most similar to those already emerging, 

such as the CCX. 

 

Table 11 reports total costs of national implementation of incentives and the average 

costs under two separate assumptions.  The “baseline plus additional” category reports 

the average cost if all conservation tillage lands are assumed to still be accumulating 

additional carbon annually.  The “only additional” category reports the average cost if it 

is assumed that only newly converted lands are counted as abated carbon.  Total program 

costs at $125 per MtC are estimated at $2.97 billion, which equates to an average cost of 

$119 per MtC of net carbon flux reduction under the “baseline plus additional” 

assumption.  The costs per MtC are slightly lower than the incentive levels due to the 

additional savings generated by net reductions in emissions. 

 
If we only count additional carbon abatement, above quantities which would have been 

abated in the absence of incentives, then all baseline carbon abatement cannot be 

included in the computation of average cost.  In this case, land in conservation tillage will 
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Table 11. Costs of atmospheric carbon abatement as a result of incentives targeting 
agricultural soil carbon sequestration in 2025.  Annual program costs under two different 
accounting assumptions, (1) all carbon changes counted as abated, and (2) only additional 
carbon counted as abated. 

 
Baseline plus Only Cost increase

Incentive Total additional Cost additional Cost above
($ per MT) mil $ carbon (MMT) per MT* carbon (MMT) per MT** incentive level

Baseline -         12.36 $0 0.00 $0 0%
$12.5 160         12.97 $12 0.61 $263 2003%

$25 410         17.05 $24 4.68 $87 250%
$50 1,082      22.41 $48 10.05 $108 115%
$75 1,722      23.87 $72 11.50 $150 100%

$125 2,973      24.94 $119 12.58 $236 89%
$250 6,469      27.63 $234 15.27 $424 69%
$500 14,425    31.31 $461 18.94 $762 52%

Simulated incentive program pays ALL adopters, not only new adopters for total estimated soil sequestration.
*Cost assumes the incentive program counts all carbon changes, even baseline, as abated carbon.
**Cost assumes the incentive program counts only new carbon above baseline as abated carbon.  

 

be receiving payments regardless of whether they are still accumulating soil carbon or 

not.  The payments going to non-additional carbon will raise average costs significantly.     

At $125 per MtC, ‘additional’ carbon abatement costs are estimated at $236 per MtC.   

 

Acreage changes 

In the baseline case, by 2025, 34% of total acreage in the eight major crops is in 

conventional-tillage, 32% in reduced-tillage and 33% in no-tillage.  At an offered 

incentive of $125 per MtC, no-tillage practices are estimated to increase by 84 million 

acres to account for 52% of total acreage (Table 12).  At $500 per MtC, 150 million acres 

are estimated to switch to no-tillage to account for 74% of total acreage.  Although 

reduced-tillage also receives incentives based in sequestration ability, the higher 

incentives received by no-tillage pulls acreage away from reduced-tillage.  Reduced- 
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Table 12.  Acreage changes induced by carbon incentive (mil acres) by 2025. 

Incentive Conventional % of Reduced % of No- % of
$ per ton tillage Change Total tillage Change Total tillage Change Total

0 131 0 43% 99 0 32% 76 0 25%
$12.5 129 -2 42% 94 -4 31% 82 7 27%

$25 92 -39 30% 92 -7 30% 122 46 40%
$50 77 -54 25% 91 -8 30% 137 62 45%
$75 66 -65 22% 90 -9 29% 150 74 49%

$125 58 -74 19% 88 -10 29% 160 84 52%
$250 39 -92 13% 80 -19 26% 187 111 61%
$500 16 -116 5% 64 -35 21% 226 150 74%

Incentives are paid to reduced and no-till practices  

 

tillage declines from 32% of total acreage in the baseline case to only 21% at the $500 

per MtC incentive level. 

 

The relative amount of cropland in each crop does not vary by much (Table 13).  

Nationally, there are slight movements of land out of corn, sorghum, cotton and hay, and 

into wheat and soybeans.  While crop acreage changes at the national level are small, 

regional changes in acreages could be quite significant.  

 

Price changes 

Prices change in response to incentive-induced changes in total crop production.  In most 

regions and crops, reduced-tillage has the highest yield, followed by conventional-tillage 

and then no-tillage.  As acres switch out of conventional and reduced-tillage and into no-

tillage, total production declines and prices rise.  Table 14 reports the price changes of the 

four major commodities through the simulation period at $125 per MtC.  Most price 

increases are no greater than three percent.  New virgin lands do not come into 

production for several reasons.   
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Table 13.  Cropland changes under incentive levels: percentage of total model cropland. 

Incentive Corn Sorghum Wheat Soybeans Cotton Hay Total*
$0 29.2% 1.8% 19.2% 21.8% 4.8% 19.8% 97%

$12.5 29.5% 1.8% 19.3% 21.7% 4.6% 19.7% 97%
$25 29.4% 1.8% 19.2% 21.8% 4.6% 19.8% 97%
$50 29.4% 1.8% 19.1% 21.8% 4.6% 19.9% 97%
$75 29.4% 1.8% 19.2% 21.8% 4.6% 19.9% 97%

$125 29.4% 1.7% 19.2% 21.8% 4.6% 19.9% 97%
$250 29.3% 1.7% 19.4% 22.0% 4.4% 19.7% 97%
$500 29.1% 1.5% 19.9% 22.4% 4.4% 19.3% 97%

*Other 3% of total model cropland is in sorghum, oats, barley, cotton and rice.  

 

 

Table 14.  Commodity price changes through simulation period at $125 per MtC. 

2010 2015 2020 2025
Corn

Baseline 3.55 3.35 3.37 3.19
Simulation 3.57 3.40 3.44 3.28
% Change 0.6% 1.5% 2.1% 2.8%

Soybeans
Baseline 7.00 6.75 6.69 6.46
Simulation 6.88 6.70 6.69 6.49
% Change -1.7% -0.7% 0.0% 0.5%

Wheat
Baseline 4.35 4.55 4.43 4.3
Simulation 4.34 4.6 4.48 4.37
% Change -0.2% 1.1% 1.1% 1.6%

Cotton
Baseline 0.570 0.560 0.616 0.621
Simulation 0.576 0.568 0.627 0.633
% Change 1.1% 1.4% 1.8% 1.9%  
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First, we are using 2007 USDA baseline projections, which already assume that over 10 

million acres of idled cropland comes into production to meet increased ethanol demand.  

Therefore, most of the readily convertible idle cropland is already in baseline production. 

Second, since converted pastureland would not be accumulating soil carbon (by tilling, it 

would be emitting stored soil carbon), it is assumed that converted pastureland does not 

receive incentives.  And third, without incentives, the relatively small price rises listed in 

Table 14 are not significant enough to bring other lands into production.  

 

Regional estimates 

Figure 11 shows changes in average soil carbon level per acre from baseline in 2025 at the 

$125 per MtC incentive level.  The greatest gains in carbon per acre are estimated to be in 

regions where a large portion of total switched acres are from haylands.  Deep penetration of 

soil by hay root structures lead to greater soil carbon gains on haylands over other crops.  Areas 

such as the northern plains, the northeast, Missouri and eastern Kansas have a high portion of 

total cropland in hay, therefore Figure 11 indicates that these areas gain the most per acre.   

 

Figure 12 depicts total soil carbon change at the county level.  In general, it mirrors the 

average change per acre shown in Figure 11, but the total carbon map also shows that 

intensive agricultural areas such as the Mississippi Delta and the Corn Belt of Iowa and 

Illinois sequester significant amounts of carbon.  Mapping total change at the county 

level can be somewhat misleading due to different land areas within the counties.  For 

example, Figure 12 indicates that large western counties sequester large amounts of 

carbon, yet the carbon sequestration occurs over vast areas.  Figure 12 also shows that  
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Change in Soil Carbon
(Tonnes C per yr per ac)

Over 0.1
0.05 to 0.1
0.025 to 0.05
0.01 to 0.025
Zero to 0.01

 

Figure 11.  Regional changes in soil carbon from baseline case at $125 per MtC: average 
per acre in 2025. 
 



 84

Change in Soil Carbon
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1,000 to 5,000
5,000 to 10,000
10,000 to 20,000
over 20,000

zero
1 to 1,000

 

Figure 12.  Regional changes in soil carbon from baseline case at $125 per MtC: regional 
totals in 2025. 
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smaller and more dispersed gains in soil carbon occur in all agricultural regions of the US 

Net production emissions changes per acre, depicted in Figure 13, show that incentives 

based on soil sequestration potential can cause emissions to increase in some regions.  

Agricultural operations and application of inputs causes emissions of carbon, and 

incentive-induced changes in crop and tillage types can lead to net changes emissions 

from the baseline case.  In the majority of regions, such as the Red River Valley, 

Mississippi Delta and Ohio, increased conservation tillage leads to net decreases in 

emissions (shaded in blue in Figure 13).  Yet in other regions, such as parts of North 

Dakota and eastern Kentucky, the incentives cause net production emissions to increase 

(shaded in pink in Figure 13).  No-tillage operations emit less directly, due to fewer 

tillage operations, but emit more indirectly due to increased chemical usage. In general, 

the net outcome is a drop in emissions when switching to no-tillage.  But the mix of 

cropland is not static.  Incentives to higher-sequestering management practices act to pull 

land out of some crops and into others. For example, in North Dakota, there are 

significant amounts of reduced-tillage wheat acreage switching to no-tillage hay.  Hay 

sequesters more carbon than wheat, but the process of growing hay can cause much 

larger emissions of carbon than wheat production.  As a result, net emissions per acre in 

some regions actually increase.  In eastern Kentucky, significant amounts of land moves 

from reduced-tillage soybeans to no-tillage corn.  Although no-tillage corn can sequester 

more carbon, it also emits more in the production process.  Also, eastern Kentucky is a 

hilly region that has already converted a significant portion of cropland to no-tillage in 

the baseline case, therefore, less additional abatement can occur.  Figure 14 shows the 

regional total changes in emissions in 2025.
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Change in Emissions
(Tonnes C Equiv per yr per ac)

Less than -0.1
-0.03 to -0.1
-0.015 to -0.03
-0.005 to -0.015
zero to -0.005 
Above zero

 

Figure 13.  Regional changes in emissions from baseline case at $125 per MtC:  average 
per acre in 2025. 
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zero

 

Figure 14.  Regional changes in emissions from baseline case at $125 per MtC: regional 
totals in 2025. 
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Significant drops in emissions occurred in Ohio and the Mississippi Delta.  In Ohio, the 

baseline scenario indicates very little acreage in no-tillage.  Incentives act to switch most 

of the corn and wheat acreage to no-tillage.  The regional budgets of no-tillage use fewer 

inputs and therefore total emissions decline.  In the case of the Mississippi Delta, 

incentives act to move land out of input-intensive cotton production and into less input 

intensive crops such as no-tillage corn or soybeans.   

 

Net carbon flux is defined as the net amount of carbon emitted by farming an area of land 

when both soil carbon sequestration and input emissions are accounted for.  Because total 

agricultural emissions far outweigh total soil sequestration, the beneficial effect of a 

carbon incentive is to reduce the net flux of carbon.  Regional changes per acre in net 

carbon flux as a result of an incentive of $125 per MtC are shown in Figure 15.  Here, we 

 

see that, in most regions, increases in soil carbon are enough to outweigh any increases in 

net emissions.  The result in most regions is, therefore, a net reduction in carbon flux to 

the atmosphere. Yet, in a few scattered regions, such as western Kentucky, and parts of 

Texas and Nebraska, the increase in emissions is greater than the countering increase in 

soil carbon.  In these instances, the incentive program acts in a perverse manner and 

actually causes an increase in net flux of carbon to the atmosphere.  This is an unintended 

leakage caused by the incentive program targeting soil sequestration ability.  Nationally, 

at $125 per MtC, there is 0.108 MMtC of gross leakage.   
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Change in Net Flux
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Less than -0.1
-0.065 to -0.1
-0.035 to -0.065
-0.015 to -0.035
0 to -0.015
Above zero

 

Figure 15.  Regional changes in net carbon flux from baseline case at $125 per metric 
ton: averages per acre in 2025. 
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Figure 16 shows total change in net flux at the county level.  Some counties reduced net 

carbon flux by over 30 thousand MtC per year.  Results indicate that regions currently 

producing hay under conventional-tillage have the greatest potential to reduce net carbon 

flux.  Such regions include the northern perimeter of the Corn Belt, eastern Kansas, 

Missouri, and New England. Also, intensive agricultural areas such as the Red River 

Valley, Mississippi Delta, and northern Corn-Belt have the high potential to reduce net 

flux.  Although North Dakota had significant increases in emissions from production, the 

deficit was rapidly made up by the amount of carbon that new no-tillage haylands 

accumulate.  This is not the case in eastern Kentucky, where, in some regions, the 

increases in soil carbon accumulation is not enough to correct the simultaneous increases 

in emissions from production.  In this region of Kentucky, the baseline case already had 

significant amounts of land in no-tillage (hilly countryside).  Many of the acreage shifts 

were from reduced-tillage soybeans to no tillage corn.  Because reduced-tillage soybeans 

were already sequestering carbon, the land shifts did not sequester significantly more.  

Therefore, emissions increases were not completely offset by soil carbon accumulation. 

 

Uncertainty 

Changes in soil carbon as a result of conservation tillage are dependent upon initial 

estimates of base soil carbon.  I have used empirical observations from STATSGO to 

derive the weighted mean soil carbon content at the STATSGO soils region level.  To test 

the uncertainty of the estimated carbon abatement curve presented in Figure 9, two 

alternative scenarios were run with initial base soil carbon adjusted by ±28% in every 

region based on the mean standard deviations of STATGO data found by Galbraith et al. 
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Figure 16.  Regional changes in net carbon flux from baseline case at $125 per MtC: 
Regional totals in 2025.  
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 (2003).  This gives an upper and lower bound estimate of uncertainty.  The first scenario 

assumes that initial soil carbon in all regions is 28% less than estimated, and the second 

scenario assumes that initial soil carbon is 28% more than estimated.  In reality, initial 

carbon in some regions is likely underestimated, and overestimated in other regions.  So, 

the uncertainty would lie somewhere between these two extremes.   

 

Figure 17 gives the results of the two alternative scenarios around the original mean 

carbon abatement curve.  The decline (rise) in estimated abatement is considerably less 

than the applied decline (rise) in initial soil carbon.  At $125 incentive level, the lower 

estimate is 2.02 MMtC less than mean level, or 16% less.   The upper estimate is 1.49 

MMtC greater than mean level, or 12% more.  Percentage changes in carbon abatement 

from the mean level are less than the 28% change in initial soil carbon.  In the model, this 

is due to the effect of the carbon rate adjustment factor.  This factor acts to bring down 

the rate of change in carbon on higher carbon soils and bring up the rate of adjustment on 

lower carbon soils, which corresponds to soil dynamics.  Empirical tests show that even 

though higher carbon soils may be able to accumulate more total carbon per acre, the 

relative rate of change is lower.  Higher carbon soils cannot increase proportionally to the 

same extent as lower carbon soils.  In lower carbon soils, the rate of accumulation is 

larger than the mean.  The carbon rate adjustment factor considers these dynamics and 

adjusts the rate of change in soil carbon by the initial base soil carbon level.  In testing for 

uncertainty, we lowered initial soil carbon estimates in the first simulation.  For higher 

carbon soils, this acted to decrease the adjustment factor so that the relative change in 

accumulated carbon was not as drastic as the applied change in initial soil carbon 
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Figure 17.  Uncertainty around national mean carbon abatement curve:  Mean net carbon 
abatement curve and range of error to one standard deviation.  Uncertainty in initial 
estimates of soil carbon can lead to errors in estimating soil carbon accumulation.  
Galbraith et al. (2003) found that the mean standard deviation of soil carbon in 
STATSGO data are ±28%.  The model was run under two alternative scenarios with 
initial soil carbon at ±28% of STATSGO estimations.   
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 estimates.  For lower carbon soils, the lower initial soil carbon estimates acted to raise 

the adjustment factor so that the lower estimate was closer to the original mean level.  In 

effect, the adjustment factor acts to smooth the estimates of quantities of soil carbon 

change across different estimates of initial soil carbon.  The net result is that the 

estimated changes in carbon abatement shown in Figure 17 are less, proportionally, than 

the changes in initial soil carbon applied.   

 

Validation of high resolution  
 
The high-resolution methodology developed in this analysis for estimating changes in 

soil carbon is still based upon aggregation of soil conditions in individual fields.  To test 

the high resolution methodology and its ability to estimate field-level changes in soil 

carbon, empirical results from specific tillage experiments were compared to modeled 

estimates.  Six tillage experiments located in Alabama, Illinois, Kentucky, Mississippi, 

Nebraska and Ohio tested the effects of no-tillage adoption on soil carbon accumulation.  

The experiments ranged in number of years tested from three to 25 years.  The average 

rates of change in soil carbon are reported in Table 15.  The Table also lists the estimated 

rate of change using the high resolution, ‘LANDSAT-county’, version of the model.  

Percentage error is reported in italics below the actual rate of change figures.  The errors 

are considerable, ranging from only a 3% error in the Mississippi cotton experiment to a  

-73% error in the Kentucky experiment.  The median absolute error was 25% for all the 

experimental locations combined.  Although the error seems quite large, it must be 

remembered that the high-resolution model estimates of carbon change are figured 

through the use of a weighted initial soil carbon estimate.  The initial soil carbon estimate 
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is weighted by all soil in each specific land use category (row crops, small grains, or 

pasture).  Each experiment is located on only one of these soils, therefore it can be 

expected that modeled results will vary from field trial results.  This is justification for 

not using the model results to estimate soil carbon changes at the field level.  Rather, the 

high-resolution model is designed for county-level estimates where changes in tillage on 

all soils within the county are considered.  Unfortunately empirical estimates of soil 

carbon are not available at the county level. 

 

The empirical results can be useful in testing the estimation abilities of the high 

resolution over lower resolution versions of the model.  In Table 15, lower resolution  

 

Table 15.  Average annual rates of change of soil carbon in empirical experiments and 
comparisons with estimated rates using four different model resolution versions. 
 

Empirical Rate Non- Non- 
Experiment of Change LANDSAT LANDSAT LANDSAT LANDSAT
Site MT Ac-1 Yr-1 County* County** National† National‡

Dekalb County, AL 0.073 0.066 0.038 0.107 0.091
(corn) -10% -49% 46% 23%

Johnson County, IL 0.200 0.134 0.053 0.107 0.091
(corn/soybeans) -33% -74% -47% -55%

Fayette County, KY 0.247 0.066 0.109 0.107 0.091
(corn) -73% -56% -57% -63%

Tate County, MS 0.073 0.076 0.015 0.033 0.028
(cotton) 3% -80% -55% -62%

Cheyenne County, NE 0.058 0.042 0.059 0.096 0.081
(wheat) -26% 2% 67% 41%

Wood County, OH 0.102 0.127 0.127 0.107 0.091
(corn/soybeans) 24% 24% 5% -11%

Median Absolute Error 25% 52% 51% 48%
Source of estimated changes in soil carbon of resolution versions: POLYSYS simulation.
*LANDSAT-county refers to the highest resolution scale developed in this project
**Non-LANDSAT county refers to initial soil carbon weighted by all soil regions at the county level.
† LANDSAT national refers to initial soil carbon weighted by only cropland at the national level.
‡Non-LANDSAT national refers to initial soil carbon weighted by all soil regions at the national level.

Estimated Rate of Change of Soil Carbon and
% Error in Replicating Emprical Rate
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versions of the model are also compared to empirical observations.  The ‘Non-

LANDSAT’ county version does not use satellite data to weight the initial soil carbon.  In 

Non-LANDSAT-county, all STATSGO initial soil carbon estimates are weighted by all 

areas within the county.  ‘LANDSAT-national’ version uses satellite data, but unlike the 

county version, they are weighted as the national level, and not the county level.  ‘Non-

LANDSAT-national’ version does not use satellite data and weights initial soil carbon by 

area of all STATSGO regions at the national level.  When comparing the estimated rate 

of soil carbon change in these lower resolution models to empirical observations at the 

six sites, they have about a 50% median absolute error in estimation.  This is double the 

error observed in the high resolution model.  Errors had a wide spectrum, ranging from as 

high as -80%, in the case of the cotton experiment in Mississippi, and as low as 2%, in 

the case of wheat rotation in Nebraska.   

 

Although the model was not designed to replicate individual field-level changes in soil 

carbon, there is justification for comparing the results to empirical observations for 

validation of the relative scale of error in the model resolution versions.  It was 

hypothesized that the higher resolution model would have better predictive capabilities 

than a lower resolution version.  In the case of the six experiments compared, the high 

resolution version came the closest to replicating the observed rate of increase in three 

cases.  In the other three experiments, it placed second, third and forth in replication 

error. At some individual sites, the high-resolution version may not have had the best 

replication ability, but in the majority of cases, it was the best version for replicating the 

empirical rate of change in soil carbon.  Although the number of site observations is too 
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few to analyze the results statistically, overall, the median absolute error for the high-

resolution version was half that of the other resolution versions.  For these reasons, we 

can be reasonably confident that the high resolution is doing a better job at estimating soil 

carbon changes at the county level than other lower resolution methodologies. 

 
 

Resolution and scale 

To study the interactions of resolution and scale and determine whether there is 

significant improvement occurs from using one resolution version over another in 

undertaking an analysis at a particular scale, the results of the four resolution versions 

were compared at three different scales of analysis.  Each resolution version of the model 

was run with an offered incentive of $125 per MtC soil sequestration to every region in 

the lower 48 states.  The resolution versions have different estimates of potential carbon 

sequestration due to the inherent nature of weighting the same initial soil carbon data at 

different resolutions.  All other geographic variables, such as yield or crop budgets, 

stayed at the same resolution in all versions in order to test the effects of resolution and 

scale ceteris paribus.  Analyses of estimates are compared at the national, state, and 

county scales.   

 

At the national scale of analysis, Figure 18 shows that all resolution versions are fairly 

close in their estimates of incentive-induced reductions in net carbon flux (or carbon 

abated).  When comparing all other resolution versions to the highest resolution version 

(LANDSAT-county), they are all within ±15% at all incentive levels.  The carbon  
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Figure 18.  Carbon abatement curves of using differing resolutions in figuring initial soil 
carbon quantities.  LANDSAT county resolution uses satellite data to weight initial soil 
carbon quantities by crop-specific soils at the county level.  No LANDSAT county 
resolution weights initial soil carbon quantities by area of each unique soil region at the 
county level regardless of land-use.  LANDSAT national resolution and No LANDSAT 
national resolution use these two methodologies but weighted at the national level. 
Source:  POLYSYS simulations. 
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abatement supply curves shown in Figure 18 display the results of the four resolution 

versions at the national scale of analysis.   

 

Table 16 reports the results of the resolution versions at all three scales of analysis.  

Results following the regions of the empirical field trial locations are listed also, but the 

reported mean absolute differences are for all regions and not only these sample 

locations.  Because the high-resolution version was shown to best replicate field level 

data, it will be used as the standard by which the other versions are compared.   As the 

scope of analysis decreases from national to state and then to county, there is an 

increasing level of disparity between the resolution estimates.  Table 16 lists MtC 

increases in soil carbon for each particular geographic boundary and also the percentage 

divergence of the resolution version from the highest resolution version (LANDSAT-

county).  At the national scale, the NO LANDSAT-county estimation differs by only -4% 

from the highest resolution version.  LANDSAT-national and NO LANDSAT-national 

differ by 5% and -13% respectively at the $125 per MtC incentive level.  National-scale 

results followed expectations, as the estimates using only soils upon which crops are 

grown is expected to come closer to high resolution results than estimates using all soils 

in the nation.  

  

At the state scale, the estimates diverge further.  The 48-state mean absolute difference in 

estimated soil carbon for the NO-LANDSAT-county resolution is only 5% more than the 

highest resolution version.  But, when using the nationally weighted versions, mean 

absolute difference increases by 20% and 24% for LANDSAT-national and NON- 
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Table 16.  Scale comparisons: comparison of soil carbon sequestration estimates of high 
resolution version to other resolution versions at the national, state and county scale of 
analysis.  Example states and counties correspond to locations of empirical tests listed in 
Table 15, but mean absolute differences are for all states and counties. 
 

Non- Non- 
Geographic LANDSAT LANDSAT LANDSAT LANDSAT
Scale and Boundary County* County** National† National‡

(MtC yr-1)
National Level
Nation 11,416,133         10,944,722       12,075,931        10,079,927        

-4% 5% -13%

State Level      (select states)
Alabama 71,730                69,811              107,231             91,047               

-3% 33% 21%
Illinois 270,848              270,402            272,718             224,557             

0% 1% -21%
Kentucky 162,866              164,018            189,941             156,946             

1% 14% -4%
Mississippi 26,000                29,112              32,698               29,112               

11% 20% 11%
Nebraska 662,264              646,765            768,272             646,765             

-2% 14% -2%
Ohio 372,566              328,045            393,473             328,045             

-14% 5% -14%
Lower 48 State Weighted 
Mean Absolute Difference
from LANDSAT County Scenario 5% 20% 24%

County Level      (select counties)
Dekalb County, AL 969 951 1582 1338

-2% 39% 28%
Johnson County, IL 861 889 1029 869

3% 16% 1%
Fayette County, KY 329 329 374 316

0% 12% -4%
Tate County, MS 330 337 285 391

2% -16% 15%
Cheyenne County, NE 1133 1148 1625 1368

1% 30% 17%
Wood County, OH 4108 4099 3257 2612

0% -26% -57%
All U.S. Counties Weighted 
Mean Absolute Difference
from LANDSAT County Scenario 22% 35% 40%

ξ Percentage differences of each scenario from the high resolution 'LANDSAT County' scenario 
are listed below metric tons soil carbon sequestration per year estimates.
All scenarios are compared at the $125 per MtC incentive level.
*LANDSAT sub-county refers to the highest resolution scale developed in this project
**Non-LANDSAT county refers to initial soil carbon weighted by all soil regions at the county level.
† LANDSAT national refers to initial soil carbon weighted by only cropland at the national level.
‡Non-LANDSAT national refers to initial soil carbon wieghted by all soil regions at the national level.

Resolution Versionsξ

(MtC yr-1 and % Δ from LANDSAT County scenario)
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LANDSAT-national respectively.  Just as at the national scale, the NON-LANDSAT-

national has the greatest divergence in estimation from the high resolution at the state 

scale as well.  Table 16 also gives individual states results from the six sample states 

(where empirical experiments were located).  At the individual state level, the order of 

divergence does not always follow the national trend.  For example, in the case of Ohio, 

the LANDSAT-national estimate best replicated the high-resolution estimate.  But in five 

of the six sample states, the NON-LANDSAT-county version best replicated the high-

resolution estimates.  These results follow expected behavior. Estimates based on using 

weighted initial soil carbon only from soils within each state are closer in estimation than 

using weighted initial soil carbon from soils nationally.   

 
 
At the county scale, Table 16 shows that the divergence in estimations grow even larger  

with mean absolute divergence of NON-LANDSAT-county growing to 22%, 

LANDSAT-national rising to 35%, and NON-LANDSAT-county increasing the most to 

40%.  Of the six individual county cases listed in Table 16, the range of divergence is 

quite great.  In the case of Fayette County, KY and Wood County, OH, the NON-

LANDSAT-county version estimated the same change in soil carbon at the high-

resolution version.  In all sample cases listed, the NON LANDSAT-county version did 

very well at replicating the high resolution results.  The national resolution versions show 

very large errors at replicating the county scale high-resolution results, with Wood 

County, OH showing a -57% difference using NON LANDSAT-national, and Dekalb 

County, AL showing a 39% difference using LANDSAT-national. 
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The low-resolution nationally-weighted versions tend to have large errors at the regional 

scale; but, at the national scale, these errors (positive and negative) balance out to give 

national estimates that are closer to high resolution estimates.  This follows expected 

results.  In the national resolution versions, one weighted-average initial soil carbon value 

is applied to all regions, so expectedly, about half the regional estimations will be under-

estimated and half overestimated.  This can be seen in Figure 19, which shows the 

difference in estimated changes in soil carbon between the No LANDSAT-national 

version and the LANDSAT-county version at the $125 per MtC incentive level.  Here, 

the national resolution model tends to overestimate the gains in soil carbon in the 

Western and Southeastern regions of the county.  Whereas the same version 

underestimates soil carbon gains of Midwestern and Northeastern regions compared to 

the high-resolution county version.  The pattern of initial soil carbon is very apparent in 

Figure 19.  Soils with a lower initial soil carbon level than the national weighted average 

are in green, and soils with a higher initial soil carbon level than the national average are 

in blue.  The national resolution model overestimates on low carbon soils and 

underestimates on high carbon soils.  The map is essentially showing the carbon-poor 

soils in green and the carbon-rich soils in blue.  

 

As the scale of analysis expands to larger regions, the differences in estimations using the 

different resolution versions may decrease.  This is shown in Figure 20 where the scale is 

expanded to the state level.  Here, the pattern of differences is similar to Figure 19, but 

the magnitude of differences is somewhat lessened in many states.  For example, in the 

case of North Carolina, Figure 19 shows wide county-level differences in estimated  
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Figure 19.  Regional differences in estimation using differing resolutions: This map 
shows differences in regional estimates of changes in soil carbon when using low 
resolution compared to high resolution in estimating initial soil carbon.  In comparing the 
No LANDSAT-national version to the LANDSAT-county version, the No LANDSAT-
national version over-estimates changes in soil carbon in the poorer soils of the western 
and southeastern US and underestimates in the richer soils of the upper Midwest.  
Nationally, the estimates are similar, but estimates widely diverge at the regional level. 
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carbon, but these differences cancel each other out in Figure 20 at the state level.  

Interestingly, in some states with soils consistently at the extremes of national 

sequestration ability, either low or high, increasing the scale does little to lessen 

estimation divergence.  For example, in Minnesota, soils are consistently estimated to 

sequester more using the high-resolution county version than using the low-resolution 

national version.  Figure 20 shows that Minnesota still has estimation differences greater 

than 25%, even at the state scale. 
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Figure 20.  State scale differences in estimation using differing resolutions: This map 
shows differences in state estimates of changes in soil carbon when using low resolution 
(LANDSAT-county ) compared to high resolution (No LANDSAT-national) in 
estimating initial soil carbon.  The pattern of differences is similar to Figure 19, but at 
aggregation to the state level somewhat lessens extreme divergences in estimations (those 
greater than ±25%). 
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CHAPTER V: 

DISCUSSION 

 

Overall implications 

The results of the analysis indicate a maximum technical potential abatement of 21.4 

MMtC above baseline by 2025. Economic potential abatement reaches 18.9 MMtC per 

year above baseline at incentives of $500 per MtC.  At this maximum level, a national 

program to sequester carbon in agricultural soils through adoption of conservation tillage 

would abate less than 1% of projected US annual carbon emissions.  At $125 per MtC, 

which is a price carbon may likely reach, and if the nation pursues rigorous reductions in 

GHG’s, 12.6 MMtC can be abated per year by 2025.  At these quantities, conservation 

tillage will not be a major solution to solving the atmospheric carbon problem.  At best, it 

can fill one small wedge of the GHG stabilization triangle (Pacala and Socolow, 2004) in 

the short to medium term.  Regardless of the small total offset potential, the inclusion of 

conservation tillage within a national carbon mitigation program may be attractive if it 

can be implemented at low cost and with minimal uncertainty in abatement quantities.   

 

Regional analysis using the high-resolution model indicates that the greatest abatement 

can occur in regions where hay is a dominant crop.  The Dakotas, eastern Kansas, and the 

northeast are intensive hay regions where potential abatement is high.  Conversion of 

haylands to conservation tillage offers the ‘lowest hanging fruit’ in terms of carbon 

abatement per dollar incentive.  The Mississippi Delta was also determined to be a 

significant region in terms of reduction in net carbon flux.  Unlike regions with high 
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concentrations of haylands, the reduction in net carbon flux in the Mississippi Delta does 

not come mainly from increases in soil carbon, but from decreases in production 

emissions.  Incentives act to move land out of input-intensive cotton production and into 

less input-intensive crops.   High-resolution results also indicate that, in some regions, 

such as eastern Kentucky, incentives may act in a perverse manner and cause net 

increases in carbon emissions.  

 

Besides the relatively small economic benefits of carbon sequestration by altering tillage 

practices, there are other challenges to soil carbon sequestration:  1) the duration of 

significant annual abatement is only 20 to 30 years; 2) payment to all adopters increases 

program costs significantly; 3) assuring permanence in offsets would also increase costs 

significantly; and 4) unintended leakage of carbon could occur through incentive-induced 

land-use changes.   I will discuss each of these challenges to implementation below. 

 

Duration 

Biophysical constraints restrict soil sequestration to a short to medium-term option.  

Historic tillage of US soils has depleted SOC below naturally occurring levels.   

Changing to conservation tillage cropping systems will allow SOC levels to increase once 

again.  But the increases will only continue until a new steady state is reached.  Beyond 

this point, continuation of conservation tillage will keep SOC levels steady, but they will 

not increase further.  It is estimated that a new steady state of SOC will be reached 20 

years after the initial change in tillage is made.  Figure 21 shows that, after 20 years, 

annual reductions in atmospheric carbon begin to decrease just as rapidly as they 
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increased.  If an incentive program were initiated today, soil carbon sequestration on 

agricultural lands would drop to near zero by the 2040s.  Only the small net reductions in 

input use continue to accrue annually thereafter.  In the long term, reductions in GHG 

levels will need to come from either direct reductions in emissions or other sequestration 

technologies.  Policy makers and market organizers should consider the relatively small 

duration of benefits from a sequestration program using conservation tillage.  Yet, of the 

many sequestration options proposed, such as geological sequestration or deep sea 

sequestration, soil carbon sequestration may be the most viable in the short to medium 

term, due to the fact that no technological hurtles need to be overcome before 

implementation. 
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Figure 21.  Changes in abatement over a 50 year period.  At $125 per MtC, incentives 
switch land to no-tillage and soils gain in carbon content annually until reaching the soil’s 
potential maximum level of carbon content, which is thought to occur about 20 years 
after conversion.  After 20 years, soil carbon no longer increases and total abatement 
declines just as rapidly as it increased.  By 2045, there is no longer abatement through 
soil carbon, yet the decrease in emissions from lands switched to conservation tillage 
remain. 
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Additionality 

It is import to make the distinction between total carbon sequestration and additional 

carbon sequestration.  Currently, there are over 175 million acres in conservation tillage, 

most of which are still making gains in soil carbon every year.  If a sequestration program 

were started today, the carbon sequestered in today’s conservation tillage acres will do 

nothing to abate atmospheric carbon below projected estimates of CO2 increases.  They 

are creating no ‘additional’ carbon abatement.  Additionality commonly refers to the 

measurement of atmospheric carbon reductions above that which would have been 

achieved in the absence of abatement actions.  Truly additional abatement quantities only 

come from acres that would be induced into conservation tillage through the incentive 

program.   

 

Additionality becomes a large problem in program design.  Ideally, a program would 

only pay the new adopters of conservation tillage which add additional acres above the 

baseline case.  If incentives are paid only to new adopters, then earlier adopters will be 

placed into a ‘moral hazard’ of switching out of no-tillage, releasing carbon, and then 

switching back into no-tillage to gain the incentive.  This is a form of leakage, where an 

incentive program targeting only new adopters gives a perverse incentive to release 

carbon.  Lewandrowski et al. (2004) estimated that the leakage in an incentive program 

paying all adopters could reduce total net carbon abatement by 90%!  One alternative to 

this situation is to simultaneously tax land movements out of conservation tillage along 

with incentives for land movements into conservation tillage. This is called symmetric 

incentives and would have the effect of stopping the perverse incentive to release stored 
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carbon.  Farmers switching out of no-tillage would be taxed, or fined, by an amount equal 

to what no-adopters are being paid.  Theoretically, symmetric incentives are a sound 

solution, but implementation of such a tax would face high obstacles, both technically 

and politically.   

 

In this analysis, I chose to investigate carbon program implementation that is most similar 

in form to the emerging carbon trading markets—to pay ‘all adopters’ of tillage practices 

an incentive, and not only ‘new adopters’.  Currently the Chicago Climate Exchange is 

paying farmers for their use of no-tillage.  Yet, most CCX program farmers were using 

no-tillage before payments began, or would have switched to no-tillage without the extra 

incentive.  In effect, the current CCX is contributing very little additional carbon 

abatement above which would have been done in its absence.  As in the CCX program, 

this analysis paid incentives to all adopters of conservation tillage; yet, unlike the CCX 

program, only additional carbon above baseline was accounted for as net carbon 

abatement gains.  This avoids the moral hazard issue by eliminating the need for farmers 

to switch out of conservation tillage in order to qualify for the incentive. But it also 

increases total program costs significantly.  Table 11 shows that, by paying all adopters at 

the $125 incentive level, per unit costs increase from $119 per MtC to $236 per MtC.  

The program is, in effect, paying all ‘good actors’, which adds inefficiencies to the 

program’s implementation.   

 

The intention of any new carbon program would be to abate additional carbon beyond 

what would occur without the program. It would seem most efficient to only pay new 
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adopters of conservation tillage, but this may not be the best option due to the perverse 

incentive to emit stored soil carbon.  Symmetric taxation and incentives could solve the 

moral hazard, but may be hindered by both monitoring costs and political unwillingness.  

Technically, the carbon program would have to monitor not only program participants, 

but all agricultural land practices.  The tillage practice of every parcel would need to be 

accounted for annually.  Currently, the monitoring costs may exclude this option.  If the 

costs of such a monitoring program could be estimated, they should be compared to the 

cost of paying all adopters outright (as done in this analysis).  Table 11 shows that the 

cost of paying all adopters at the $125 incentive level increases by 89% to $236 per MtC.  

If a symmetric incentive program that pays only new adopters is to be implemented, the 

estimated costs need to be less than this amount.  With improvements in satellite-based 

techniques, it is a future possibility that monitoring could be achieved at a fairly low cost.  

Yet politically, the fight would be much harder.  The combined political power of 

agricultural regions and the cultural context of land rights make a tax on soil emissions 

unlikely at best.  For these reasons, paying all adopters, yet only counting net abatement 

above baseline, seems the most likely route to program implementation.  Such a program 

would increase abatement costs significantly and should be considered by policymakers.   

 

Permanence 

The ultimate goal of carbon mitigation strategies is to permanently remove carbon from 

entering the atmosphere.  Reductions in emissions, such as those estimated from 

switching from conventional to no-tillage, are permanent; one year's reduction in 

emissions will not be released in future years.  Unfortunately this is not necessarily the 
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case with increases in SOC.  One year's increase in SOC can be released in future years if 

the soil is tilled.  For this reason, the issue of permanence is vitally important to 

implementation of any soil carbon program.  How can a program assure that the carbon is 

permanently removed from entering the atmosphere?  If we can't assure permanence, can 

we still use agriculture in the short term to store carbon?  How would a program pay for 

this service?  Historical trends indicate that once farmers switch to no-tillage and realize 

the benefits of increased long-term yields, they will remain in no-tillage.  If this is 

assumed, then permanent storage is assured.  Farmers could receive the full asset value 

for the duration of soil carbon gains, after which incentives would end.  Yet there is a risk 

that farmers will till their soil after incentives end, and emit soil carbon.   

 

Risk of carbon release can be approached by viewing farmers as providing a storage 

service through which a carbon program will lease or rent the storage right of soil carbon 

for a particular contract period. Through a lease program, the farmer only receives the 

market value of annual storage of carbon and not the 'full asset' value of abating the 

carbon permanently.  Lease contracts can be implemented for the duration that carbon is 

accumulating (20 years), or for longer periods after soils have reached their maximum 

carbon levels.  In both cases, incentives will be less than the market value of carbon.  

Under contracts that only pay farmers for 20 years while carbon is accumulating, 

incentives would be equal to the discounted net present value transformed into yearly 

annuity payments. Due to discounting, farmers would receive only 38% of the market 

value of carbon (McCarl et al., 2001).  After the 20 years, the farmer would be free to till 

and release the carbon.  The market entity that promised to permanently abate the carbon 
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must either find other means of reducing atmospheric carbon elsewhere, or continue to 

pay the farmer for not releasing the carbon.  Under a longer-term contract, say 100 years, 

farmers would agree not to till their soils even after maximum soil carbon has been 

reached.  In this case, farmers would receive 56% of market carbon value.  By reducing 

the farmer incentives below the carbon market value, abatement quantities per dollar are 

decreasing, or put another way, abatement costs per unit increase.  Policymakers should 

consider the additional costs necessary to reduce the risk of future release. 

 

Leakage 

Another challenge facing agricultural soil carbon sequestration policy is the issue of 

leakage.  Leakage is the unintended increase in carbon emissions that occur when 

incentives are given to decrease carbon emissions.  Leakage can occur through several 

different mechanisms, such as farmers using more inputs, idle or virgin land being 

cleared, plowed and planted, or crop production increasing in other countries.   

 

This analysis observed leakage occurring in some regions as incentives caused farmers to 

emit more carbon from increased production input use.   This analysis employed 

incentives based upon potential soil sequestration gains.  Yet in some instances, when 

farmers changed from a low input crop, such as oats, to a high input crop, such as corn, 

emissions increased.  Figure 14 shows the regions where the model estimated net 

emissions gains caused by the incentives.  Table 17 shows that there was leakage through 

emissions increases in 374 counties totaling 108 thousand MtC, but in the vast majority 

of counties there were emission decreases as a result of incentives, totaling 1,267  
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Table 17:  Leakage through production input increases as a result of incentives at $125 
per MtC. 
 

Number of Emissions Changes
Counties at $125 per MtC

Sum of All Regions
with Emissions Increases 374           108,015                    

Sum of All Regions
with Emissions Decrease 2,265        (1,267,902)                

National Net
Emissions Change 3,110       (1,159,886)              
( ) indicates negative values  

 

thousand MtC.  At the national scale, regional leakage is overcome by the ‘free’ 

reductions in emissions, and there is a net decrease in total emissions.  Therefore 

emissions leakage may be an issue at the county level, but it is not an issue at the national 

level.   

 

In counties where leakage is present, in most cases the increase in emissions is not 

enough to offset the increase in soil carbon and there is still a net gain in abatement.  But 

because total abatement is lessened, the marginal cost of abatement has increased, and 

incentives are not abating as much as intended.   In some cases (65 counties), the increase 

in emissions does overtake the increase in soil carbon and there is actually a net increase 

in atmospheric carbon (total of 42 thousand MtC).  In designing a carbon program, it 

should be recognized that there may be perverse incentives at the regional level.  Scaling 

the program’s geographic area of accounting to larger regions will balance out regional 

leakage. 
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One proposed solution to this form of leakage is to pay the incentive on decreases in net 

flux, and not simply soil carbon sequestration potential.  While this would surely stop this 

form of leakage, it would require estimation of the emissions, both direct and embodied 

in the cropping system forgone and the new one adopted.  I have compiled and used 

emissions estimations on a regional level in this analysis, but using it on an individual 

farmer level would be an inappropriate use for three reasons:  First, there is some 

variability in farm equipment and operations even within a small region. Second, it may 

hamper innovation by tying a fixed estimation of emissions to a particular crop and 

tillage mix.  For example, a farmer of conventional-tillage cotton may be able to employ 

biological pest controls at a far lower input rate, yet the program is giving disincentives 

based on the older estimation of cotton emissions.  Third, it has been argued that 

emissions associated with input use should not be accounted for at the user level because 

emissions from production management input are already accounted for in the industrial 

sector (Penman et al., 2003). 

 

Leakage could also occur if the program gave incentives for management practices that 

reduced production and increased market prices.  The higher prices would spur idle or 

virgin lands to be planted either domestically or abroad.  In this analysis, no-tillage did 

not reduce production significantly, and prices increased slightly (Table 14).  The price 

gains were not enough to bring more domestic cropland into production.  Therefore this 

form of leakage was avoided.   
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Although outside the geographic scale of the model used in this analysis, price rises can 

affect plantings in other nations.  The US is a major price setter for agricultural 

commodities (Ray et al., 2003).  Farmers in Brazil, Australia or the Ukraine will respond 

to price rises in the US and plant more crops.  This would lead to unintended increases in 

emissions and possible reductions in soil carbon as a result of US policy.  In the case of 

incentives of tillage adoption tested in this analysis, the price rises are too small to 

significantly increase production abroad.  But this form of leakage should be considered 

in potential expansion of incentives for planting perennial grasses for carbon 

sequestration or biofuel offsets on US cropland.  In those cases, the potential for 

commodity price increases is large and may spur crop production upon new land both 

domestically and abroad (Searchinger et al., 2008). 

 

Discussion of resolution and scale 

This analysis is the first test of a model designed to yield geographically precise estimates 

of carbon sequestration, emissions and net flux.  It is still valid to ask whether the 

increased complexity in geographic precision has really led to an actual gain in 

estimation accuracy.  By comparing the high resolution results to actual field level trial 

data, we see that the errors are highly variable, with a mean error of all six trials of 24%.  

This indicates that the methodology developed here is not appropriate for estimating 

carbon changes at the field level.  Although the methodology uses high resolution 

disaggregated data, it is still aggregated from individual sites and estimates are drawn 

from sample data.  
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But in comparing the field level trial data to the lower resolution versions of the model, 

significantly larger errors than the high resolution version were observed, with a median 

error across all locations greater than 48% for all three lower resolution versions.  These 

errors are twice the magnitude of the high-resolution version.  Given these differences, it 

can be concluded that the high-resolution methodology is an improvement over other 

lower resolution methodologies in estimating changes in soil carbon.   

 

In investigating the use of the resolution versions at different scales of analysis, several 

conclusions became apparent.  At the national scale, estimates from all resolutions are 

fairly similar.  Yet, as the geographic scope of analysis became smaller, divergence in 

estimations increased.  At the state scale, the national resolution version errors increased 

dramatically over the county resolution versions.   At the county scale, the national 

resolution version estimates diverged even more. There was also a large divergence 

between the two county-level resolution models.  This is due to further differences in 

resolution.  The LANDSAT-county version only considers soils upon which crops are 

grown, whereas the NON LANDSAT-county version considers all soils within the county 

for use in estimating changes in soil carbon.  Just as the analysis of field level data 

showed that it may not be appropriate to use the high-resolution model at the field scale, 

it may not be appropriate to use the national resolution model at any scale less than the 

national scale.  Weighting data at one level of resolution and using that model to estimate 

at a scale lower than that level will carry error with it.  The data weighted at the larger 

geographic unit are essentially carrying information on soils from outside the smaller unit 
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of analysis.  This follows expected results, as regional estimations are being based upon 

data from outside the region.  

 

Given these results, the following conclusions regarding resolution and scale can be 

drawn:   

1) With highly variable data, the geographic scale of analysis should be equal to 

or larger than the geographic unit of data resolution. 

2) With highly variable data, if the geographic scale of analysis is smaller than 

the geographic unit of data resolution, large errors in estimation will occur. 

3) Differences between high-and low-resolution estimates are relatively small at 

broader geographic scales of analysis. 

 

The broader analysis presented here presented an ideal opportunity to study the effects of 

data resolution and scale of analysis.  In particular, the estimation of initial soil carbon 

level allowed the study of a geophysical variable with high spatial variability to be 

analyzed.  The conclusions above are for variables with high spatial variability.  For 

variables with low spatial variability, exceptions to what was observed in this analysis 

can be imagined.  For example, another variable in this analysis, crop production costs, 

are fairly stable.  Crop production cost estimates at the multi-county level (Agricultural 

Statistic District) could conceivably be used in scale analyses smaller than their multi-

county level and not result in large errors.  This would refute conclusion (3).  In this case, 

crop production cost data estimated at larger units of aggregation are adequately 

representative of smaller units within.  Further studies could evaluate the point at which a 
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variable estimated at a lower resolution (larger area) not represent what actually occurs at 

a smaller scale (smaller area) of analysis. 

 

Value of this analysis to implementation 

The increase in model resolution will aid in the implementation of a functioning carbon 

market by reducing the uncertainty between estimated abatement and actual abatement. 

Under the current CCX market, regional farmers ‘pool’ their carbon potential to sell as a 

block (CCX, 2008a).  If purchasers of the block want to be assured that the potential 

carbon abatement meets actual abatement, the finer resolution of the methodology 

developed here would be more useful than lower resolution models.  If farmers in a five-

county area wanted to pool their potential abatement, it would be more appropriate to 

pool the county resolution estimations up to the larger region.  Whereas the analysis of 

resolution and scale showed that large errors could exist in scaling down lower resolution 

data to the five-county area.  Currently, the CCX uses very low resolution data.  CCX 

assumes that large estimation errors in one region will be balanced by equally large errors 

in another region.  Yet, if there is a disproportionate amount of total acreage entering the 

program from one region over another, then actual sequestration will be skewed from 

predicted sequestration and result in net estimation error.  Because the market is currently 

voluntary, there is little oversight, but if the soil carbon market became a creditable offset 

under national or international legislation, oversight and accountability would increase. 

 

Exact precision in estimation is impossible.  Even with detailed meter-by-meter soils 

data, unpredictable climate variability would change the net primary productivity and, 
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therefore, alter the actual abatement from the estimated abatement.  A carbon program 

would have to acknowledge some level of error between actual and estimated carbon.  

The errors could be balanced over larger geographic areas or discounted from the 

estimated abatement. The CCX currently lessens uncertainty by requiring that 20% of 

contract potential abatement be placed in a reserve pool (CCX, 2008b).  The high-

resolution methodology developed here is a cost-efficient compromise between collecting 

detailed soils data on one hand, and using lower resolution estimations on the other.  

With the high-resolution methodology, uncertainty in estimated abatement quantities can 

be reduced at little additional cost, therefore increasing the efficiency of the program as a 

whole.   

 

Alternative program design 

If implementation problems surrounding leakage, additionality, permanence and 

'measuring, monitoring, and verification' are seen as insurmountable, a market using 

conservation tillage may not be included as a valid offset mechanism in forthcoming 

legislation.  If this occurs, potential carbon abatement of agriculture may still be realized 

through an alternative government program which offers 'green payments'.  Instead of 

tying farmer payments to the amount of carbon per acre that a particular farmer can 

sequester, 'green payments' can target conversion of cropland to conservation tillage 

practices.  Conservation tillage has many other non-market environmental benefits 

besides abating atmospheric carbon.  Conservation tillage also decreases erosion, 

decreases stream and river sedimentation which results in cleaner water, increases soil 

fertility (insuring future productivity), increases wildlife habitat, and reduces chemical 
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and fertilizer runoff.  'Green payments' can be made on a per acre basis for the many non-

market environmental services that conversion of cropland to conservation tillage offers 

society.  The Conservation Reserve Program (CRP) is a type of 'green payment' program 

that has worked to transfer 35 million acres of cropland into perennial grasses, resulting 

in many environmental benefits.   

 

Like the CRP, conservation tillage 'green payments' could vary by region in order to 

reach target levels of cropland conversion.  In regions where the known potential to 

sequester carbon is high, payments could be offered at a higher level than in regions with 

lower potential.  There is not the urgency to measure actual quantities of soil carbon if 

payments are not specifically for carbon abatement.  Problems of additionality and the 

moral hazard of paying only new adopters would be avoided because all farmers who 

agree to keep their land in conservation tillage would receive payments. 

 

Some farmer groups fear that if a 'green payments' design were implemented, they might 

lose out on higher payments from the market (Kiely, 2008).  But, if a market program 

truly accounted for permanence, additionality, leakage and uncertainty, payments might, 

in fact, be lower than those in a program that targets the multiple societal benefits of 

conservation tillage.  ‘Green payments’ could target the 10 MMtC that can be abated at 

low marginal costs (below $50 per MtC in Figure 9).  By using a CRP-type program, 10 

MMtC may be abated annually at a cost near one billion dollars per year.  Future 

simulations using the model developed in this research could be used to analyze the 

outcome of ‘green payment’ program design in more detail. 
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Results compared to earlier studies 

Nationally, the carbon abatement results of my analysis are considerably less than 

previous estimates (McCarl and Schneider, 2001; Lewandrowski et.al., 2004).  Although 

previous studies used much lower resolution data, my analysis of resolution and scale 

indicates that the differences at the national scale of analysis should be fairly minor. 

There are several other reasons for the lower estimate:  There are differences in key 

parameters, such as ‘base carbon’ or ‘rate of carbon growth’.   The other analyses include 

other management options besides conservation tillage.  There are differences in 

estimated regional budgets of the management options.  Other analyses included 

additional carbon that this analysis excluded due to baseline projection of tillage trends.  

And finally, other analyses used long-term equilibrium solutions that solve once every 25 

to 30 years, whereas this analysis solved annually and considered annual constraints on 

movement of acreage to new practices.   
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CHAPTER VI: 

CONCLUSIONS 

 

In this analysis, I have expanded the POLYSYS model to be capable of analyzing land 

changes and carbon fluxes at a high degree of resolution.  The regional budgets were 

expanded to include over 3,000 unique crop management practices.  The linear 

programming model now functions at the county level.  Carbon emissions were tied to all 

crop management operations and soil carbon accumulation rates were linked to cropping 

practices.  Using this model, I was able to track county-level net carbon flux from 

croplands as a result of carbon incentives.  This is the first analysis, with national 

coverage, to account for leakage at the regional scale.  My first hypothesis stated that, in 

most regions, the incentives will result in net reductions in carbon emissions to the 

atmosphere, but that in some regions, net emissions may actually increase.  The model 

results indicate that this hypothesis is correct.  In most regions, the incentives act as 

intended and net emissions decrease.  Yet, in a few regions, the incentives act perversely, 

and cause emissions to increase.   

 

My second hypothesis stated that high-resolution models are significantly more accurate 

than low-resolution models.  My results indicate that this may not be true at all scales of 

analysis.  At the national scale, lower resolution versions did very well at replicating the 

results of the high-resolution version.  Yet at more fine-grained scales of analysis (e.g., 

state or county level), my results indicate that the higher resolution versions are 

significantly better at estimating net carbon flux.   
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This is the first net carbon flux analysis to study the interactions of data resolution and 

analytical scale with national coverage.  My third hypothesis stated that if the scale of 

analysis is finer-grained than the spatial resolution of the model, then estimation errors 

will be great.  My results indicate that this is true. If a low-resolution model (e.g., 

national), is used to estimate changes in net carbon flux at a more fine-grained 

geographic scale (e.g., county or state), then the errors will be large.  At the national 

scale, the improvements might not be that significant over lower resolution results, but if 

regional estimation is a goal, the geographic resolution of data (e.g., county) must match 

or be finer than the spatial scale of the analysis (e.g., nation). Otherwise, estimation errors 

will be large. 

 

This study found that nationally, a soil sequestration program through conservation 

tillage could abate an economic maximum of 18.9 MMtC per year.  This maximum 

would be reached after 20 years and then begin to fall.  Given that this is only 1% of 

current annual US fossil fuel emissions, conservation tillage will not play a major role in 

alleviating the problem of increasing GHG’s in the atmosphere.  Because there are no 

major technical hurtles to overcome in implementing conservation tillage, it could play a 

minor role in the short-to-medium term, giving time for other more effective solutions to 

emerge.  If legislation is passed that allows for conservation tillage as an abatement 

option, the high-resolution methodology developed here can improve regional estimation 

over other low-resolution methods, and therefore reduce estimation uncertainty. 
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If the US does pass carbon reduction legislation to seriously reduce carbon emissions, 

this may act to further expand the already emerging soil carbon trading markets.  The 

high-resolution model was used to simulate national implementation of a carbon market 

that is simple in design, and similar to the newly emerging regional carbon markets. Due 

to many complications and program costs discussed in the literature of soil carbon 

sequestration (Paustian et al., 1997, Pautsch, et al., 2001), implementation of a national 

carbon program may have to be done in a simple manner of paying ‘all adopters’ on 

carbon sequestration ability.  Paying all adopters on sequestration ability is simple, but 

has one major drawback: a significant amount of land in conservation tillage would have 

been in conservation tillage regardless of incentives.   The program would be paying 

these farmers for practices that are adding no additional abatement, and therefore 

increasing costs per MtC by a factor of 1.0 to 4.5.   These costs need to be weighed 

against the extra costs, both monetarily and politically, of the alternative policy design, 

such as only paying new adopters and penalizing conversion of conservation tillage to 

conventional-tillage.   

 

A national program of carbon abatement through incentives for conservation tillage faces 

other challenges, such as a limited duration of abatement, the potential for future releases 

of stored soil carbon, and the potential for perverse incentives to cause carbon leakage 

elsewhere.  Policy makers should consider all costs before initiating a national program.  

Alternatively, a market for carbon sequestration could be forgone in favor of a 

government program similar to the successful CRP design.  ‘Green payments’ could 
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target soil sequestration quantities that can be accomplished at fairly low marginal costs 

while simultaneously rewarding the other environmental benefits of conservation tillage. 

 

 

Future research directions 

The same high-resolution methodology should be used to evaluate other GHG abatement 

policy choices which impact soil carbon levels.  In December of 2007, the Energy 

Independence and Security Act of 2007 was signed into law.  It mandates that 36 billion 

gallons of fuel be produced from alternative (primarily plant derived) sources.  This 

legislation will promote the use of corn grain in the production of ethanol, which will 

increase prices and give farmers more incentive to grow corn.  Additionally, the new 

legislation requires 16 billion gallons to be produced from cellulosic sources, such as 

switchgrass.  Farmers will have an incentive to plant cropland to permanent grasses.  

These changes will affect both the regional sequestration of carbon in the soil and also 

the emissions from cropland production.  The legislation may likely result in more 

production emissions as farmers move to more emissions-intensive crops like corn, yet 

soil carbon may increase as more perennial grasses are planted.  The high-resolution 

model developed for this analysis could be used to evaluate the net result. 

 

In some climate change mitigation legislation, there is the potential for biofuel offsets to 

be tied to the production of feedstocks for ethanol.  Farmers could receive payments 

based on the net fossil carbon displaced by feedstocks grown upon their land for biofuel 

production.  Incorporating bioenergy dedicated crops and their effects upon soil carbon 
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levels into the framework developed here will also allow for the analysis of biofuels 

offsets. 
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Appendix A  
 

Soil Sequestration Potential by County and Crop: 
Estimated metric tons soil carbon gain per year of conversion of land from  

conventional-tillage to no-tillage. 
 

Tennessee counties listed.   
Dataset of all counties archived at  

Agricultural Policy Analysis Center, University of Tennessee. 
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STATE COUNTY FIPS Corn Sorgh Oats Barley Wheat Soy Cotton Rice Hay
TN Crockett 47033 0.0716 0.0221 0.0636 0.0636 0.0636 0.0716 0.0221 0.0636 0.1273
TN Cumberland 47035 0.0818 0.0253 0.0735 0.0735 0.0735 0.0818 0.0253 0.0735 0.1458
TN Davidson 47037 0.0880 0.0272 0.0779 0.0779 0.0779 0.0880 0.0272 0.0779 0.1522
TN Decatur 47039 0.0805 0.0249 0.0727 0.0727 0.0727 0.0805 0.0249 0.0727 0.1451
TN De Kalb 47041 0.0847 0.0262 0.0756 0.0756 0.0756 0.0847 0.0262 0.0756 0.1492
TN Dickson 47043 0.0894 0.0276 0.0803 0.0803 0.0803 0.0894 0.0276 0.0803 0.1590
TN Dyer 47045 0.0780 0.0241 0.0783 0.0783 0.0783 0.0780 0.0241 0.0783 0.1306
TN Fayette 47047 0.0723 0.0223 0.0646 0.0646 0.0646 0.0723 0.0223 0.0646 0.1274
TN Fentress 47049 0.0786 0.0243 0.0715 0.0715 0.0715 0.0786 0.0243 0.0715 0.1434
TN Franklin 47051 0.0908 0.0281 0.0814 0.0814 0.0814 0.0908 0.0281 0.0814 0.1612
TN Gibson 47053 0.0716 0.0221 0.0603 0.0603 0.0603 0.0716 0.0221 0.0603 0.1272
TN Giles 47055 0.0794 0.0245 0.0714 0.0714 0.0714 0.0794 0.0245 0.0714 0.1416
TN Grainger 47057 0.0617 0.0191 0.0563 0.0563 0.0563 0.0617 0.0191 0.0563 0.1133
TN Greene 47059 0.0690 0.0213 0.0617 0.0617 0.0617 0.0690 0.0213 0.0617 0.1217
TN Grundy 47061 0.0864 0.0267 0.0758 0.0758 0.0758 0.0864 0.0267 0.0758 0.1467
TN Hamblen 47063 0.0640 0.0198 0.0576 0.0576 0.0576 0.0640 0.0198 0.0576 0.1146
TN Hamilton 47065 0.0647 0.0200 0.0586 0.0586 0.0586 0.0647 0.0200 0.0586 0.1172
TN Hancock 47067 0.0670 0.0207 0.0593 0.0593 0.0593 0.0670 0.0207 0.0593 0.1159
TN Hardeman 47069 0.0679 0.0210 0.0737 0.0737 0.0737 0.0679 0.0210 0.0737 0.1211
TN Hardin 47071 0.0826 0.0255 0.0734 0.0734 0.0734 0.0826 0.0255 0.0734 0.1441
TN Hawkins 47073 0.0664 0.0205 0.0604 0.0604 0.0604 0.0664 0.0205 0.0604 0.1213
TN Haywood 47075 0.0719 0.0222 0.0644 0.0644 0.0644 0.0719 0.0222 0.0644 0.1274
TN Henderson 47077 0.0702 0.0217 0.0605 0.0605 0.0605 0.0702 0.0217 0.0605 0.1262
TN Henry 47079 0.0698 0.0216 0.0628 0.0628 0.0628 0.0698 0.0216 0.0628 0.1246
TN Hickman 47081 0.0825 0.0255 0.0742 0.0742 0.0742 0.0825 0.0255 0.0742 0.1473
TN Houston 47083 0.0914 0.0283 0.0822 0.0822 0.0822 0.0914 0.0283 0.0822 0.1632
TN Humphreys 47085 0.0872 0.0270 0.0787 0.0787 0.0787 0.0872 0.0270 0.0787 0.1568
TN Jackson 47087 0.0882 0.0273 0.0779 0.0779 0.0779 0.0882 0.0273 0.0779 0.1520
TN Jefferson 47089 0.0693 0.0214 0.0624 0.0624 0.0624 0.0693 0.0214 0.0624 0.1239
TN Johnson 47091 0.0871 0.0269 0.0754 0.0754 0.0754 0.0871 0.0269 0.0754 0.1437
TN Knox 47093 0.0666 0.0206 0.0598 0.0598 0.0598 0.0666 0.0206 0.0598 0.1187
TN Lake 47095 0.0913 0.0282 0.0876 0.0876 0.0876 0.0913 0.0282 0.0876 0.1738
TN Lauderdale 47097 0.0775 0.0240 0.0755 0.0755 0.0755 0.0775 0.0240 0.0755 0.1316
TN Lawrence 47099 0.0830 0.0256 0.0734 0.0734 0.0734 0.0830 0.0256 0.0734 0.1433
TN Lewis 47101 0.0814 0.0252 0.0727 0.0727 0.0727 0.0814 0.0252 0.0727 0.1433
TN Lincoln 47103 0.0835 0.0258 0.0749 0.0749 0.0749 0.0835 0.0258 0.0749 0.1483
TN Loudon 47105 0.0681 0.0210 0.0604 0.0604 0.0604 0.0681 0.0210 0.0604 0.1185
TN Mcminn 47107 0.0691 0.0214 0.0616 0.0616 0.0616 0.0691 0.0214 0.0616 0.1212
TN Mcnairy 47109 0.0771 0.0238 0.0689 0.0689 0.0689 0.0771 0.0238 0.0689 0.1358
TN Macon 47111 0.0840 0.0260 0.0753 0.0753 0.0753 0.0840 0.0260 0.0753 0.1488
TN Madison 47113 0.0710 0.0220 0.0653 0.0653 0.0653 0.0710 0.0220 0.0653 0.1279
TN Marion 47115 0.0820 0.0253 0.0745 0.0745 0.0745 0.0820 0.0253 0.0745 0.1495
TN Marshall 47117 0.0779 0.0241 0.0711 0.0711 0.0711 0.0779 0.0241 0.0711 0.1432
TN Maury 47119 0.0915 0.0283 0.0822 0.0822 0.0822 0.0915 0.0283 0.0822 0.1632
TN Meigs 47121 0.0703 0.0217 0.0640 0.0640 0.0640 0.0703 0.0217 0.0640 0.1286
TN Monroe 47123 0.0706 0.0218 0.0627 0.0627 0.0627 0.0706 0.0218 0.0627 0.1228
TN Montgomery 47125 0.0931 0.0288 0.0835 0.0835 0.0835 0.0931 0.0288 0.0835 0.1655
TN Moore 47127 0.0780 0.0241 0.0707 0.0707 0.0707 0.0780 0.0241 0.0707 0.1416
TN Morgan 47129 0.0854 0.0264 0.0755 0.0755 0.0755 0.0854 0.0264 0.0755 0.1472
TN Obion 47131 0.0745 0.0230 0.0768 0.0768 0.0768 0.0745 0.0230 0.0768 0.1317
TN Overton 47133 0.0911 0.0282 0.0816 0.0816 0.0816 0.0911 0.0282 0.0816 0.1614
TN Perry 47135 0.0883 0.0273 0.0795 0.0795 0.0795 0.0883 0.0273 0.0795 0.1580
TN Pickett 47137 0.0907 0.0280 0.0814 0.0814 0.0814 0.0907 0.0280 0.0814 0.1613
TN Polk 47139 0.0729 0.0225 0.0660 0.0660 0.0660 0.0729 0.0225 0.0660 0.1318
TN Putnam 47141 0.0895 0.0277 0.0799 0.0799 0.0799 0.0895 0.0277 0.0799 0.1573
TN Rhea 47143 0.0654 0.0202 0.0593 0.0593 0.0593 0.0654 0.0202 0.0593 0.1188
TN Roane 47145 0.0692 0.0214 0.0618 0.0618 0.0618 0.0692 0.0214 0.0618 0.1221
TN Robertson 47147 0.0918 0.0284 0.0823 0.0823 0.0823 0.0918 0.0284 0.0823 0.1630
TN Rutherford 47149 0.0815 0.0252 0.0732 0.0732 0.0732 0.0815 0.0252 0.0732 0.1453
TN Scott 47151 0.0796 0.0246 0.0717 0.0717 0.0717 0.0796 0.0246 0.0717 0.1426
TN Sequatchie 47153 0.0910 0.0281 0.0798 0.0798 0.0798 0.0910 0.0281 0.0798 0.1544
TN Sevier 47155 0.0712 0.0220 0.0642 0.0642 0.0642 0.0712 0.0220 0.0642 0.1277
TN Shelby 47157 0.0763 0.0236 0.0793 0.0793 0.0793 0.0763 0.0236 0.0793 0.1311
TN Smith 47159 0.0842 0.0260 0.0759 0.0759 0.0759 0.0842 0.0260 0.0759 0.1511
TN Stewart 47161 0.0837 0.0259 0.0766 0.0766 0.0766 0.0837 0.0259 0.0766 0.1548
TN S lli 47163 0 0671 0 0207 0 0612 0 0612 0 0612 0 0671 0 0207 0 0612 0 1233
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Appendix B 
 

Tabular form of county level linear programming models.
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Net Present Value
Acres CornCT SorghumCT OatsCT BarleyCT WheatCT SoybeansCT CottonCT RiceCT undefined undefined undefined HayCT CornRT SorghumRTOatsRT BarleyRT WheatRT

NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV
Total ACRES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MAX Corn ACRES 1
Sorghum ACRES 1

OF Oats ACRES 1
Barley ACRES 1

CT Wheat ACRES 1
Soybeans ACRES 1
Cotton ACRES 1
Rice ACRES 1
undefined ACRES 1
undefined ACRES 1
undefined ACRES 1
Hay ACRES 1

MAX Corn ACRES 1
Sorghum ACRES 1

OF Oats ACRES 1
Barley ACRES 1

RT Wheat ACRES 1
Soybeans ACRES
Cotton ACRES
Rice ACRES
undefined ACRES
undefined ACRES
undefined ACRES
Hay ACRES

MAX Corn ACRES
Sorghum ACRES

OF Oats ACRES
Barley ACRES

NT Wheat ACRES
Soybeans ACRES
Cotton ACRES
Rice ACRES
undefined ACRES
undefined ACRES
undefined ACRES
Hay ACRES

MAX Corn ACRES 1 1
OF Sorghum ACRES 1 1
ALL Oats ACRES 1 1
TILLAGE Barley ACRES 1 1
OF Wheat ACRES 1 1
CROP Soybeans ACRES 1

Cotton ACRES 1
Rice ACRES 1
undefined ACRES 1
undefined ACRES 1
undefined ACRES 1
Hay ACRES 1

MIN Corn ACRES 1
Sorghum ACRES 1

OF Oats ACRES 1
Barley ACRES 1

Continued on page 136 

Continued on page 137 
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SoybeansRT CottonRT RiceRT undefined undefined undefined HayRT CornNT SorghumNTOatsNT BarleyNT WheatNT SoybeansNT CottonNT RiceNT undefined undefined undefined HayNT
NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV

Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MAX Corn

Sorghum
OF Oats

Barley
CT Wheat

Soybeans
Cotton
Rice
undefined
undefined
undefined
Hay

MAX Corn
Sorghum

OF Oats
Barley

RT Wheat
Soybeans 1
Cotton 1
Rice 1
undefined 1
undefined 1
undefined 1
Hay 1

MAX Corn 1
Sorghum 1

OF Oats 1
Barley 1

NT Wheat 1
Soybeans 1
Cotton 1
Rice 1
undefined 1
undefined 1
undefined 1
Hay 1

MAX Corn 1
OF Sorghum 1
ALL Oats 1
TILLAGE Barley 1
OF Wheat 1
CROP Soybeans 1 1

Cotton 1 1
Rice 1 1
undefined 1 1
undefined 1 1
undefined 1 1
Hay 1 1

MIN Corn
Sorghum

OF Oats
Barley  

Continued on page 138 

Continued on page 135 
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Net Present Value
Acres CornCT SorghumCT OatsCT BarleyCT WheatCT SoybeansCT CottonCT RiceCT undefined undefined undefined HayCT CornRT SorghumRTOatsRT BarleyRT WheatRT

NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV
CT Wheat ACRES 1

Soybeans ACRES 1
Cotton ACRES 1
Rice ACRES 1
undefined ACRES 1
undefined ACRES 1
undefined ACRES 1
Hay ACRES 1

MIN Corn ACRES 1
Sorghum ACRES 1

OF Oats ACRES 1
Barley ACRES 1

RT Wheat ACRES 1
Soybeans ACRES
Cotton ACRES
Rice ACRES
undefined ACRES
undefined ACRES
undefined ACRES
Hay ACRES

MIN Corn ACRES
Sorghum ACRES

OF Oats ACRES
Barley ACRES

NT Wheat ACRES
Soybeans ACRES
Cotton ACRES
Rice ACRES
undefined ACRES
undefined ACRES
undefined ACRES
Hay ACRES

MIN Corn ACRES 1 1
OF Sorghum ACRES 1 1
ALL Oats ACRES 1 1
TILLAGE Barley ACRES 1 1
OF Wheat ACRES 1 1
CROP Soybeans ACRES 1

Cotton ACRES 1
Rice ACRES 1
undefined ACRES 1
undefined ACRES 1
undefined ACRES 1
Hay ACRES 1  

 

Continued on page 135 

Continued on page 138 
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SoybeansRT CottonRT RiceRT undefined undefined undefined HayRT CornNT SorghumNTOatsNT BarleyNT WheatNT SoybeansNT CottonNT RiceNT undefined undefined undefined HayNT
NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV NPV

CT Wheat
Soybeans
Cotton
Rice 
undefined
undefined
undefined
Hay 

MIN Corn
Sorghum

OF Oats
Barley 

RT Wheat
Soybeans 1
Cotton 1
Rice 1
undefined 1
undefined 1
undefined 1
Hay 1

MIN Corn 1
Sorghum 1

OF Oats 1
Barley 1

NT Wheat 1
Soybeans 1
Cotton 1
Rice 1
undefined 1
undefined 1
undefined 1
Hay 1

MIN Corn 1
OF Sorghum 1
ALL Oats 1
TILLAGE Barley 1
OF Wheat 1
CROP Soybeans 1 1

Cotton 1 1
Rice 1 1
undefined 1 1
undefined 1 1
undefined 1 1
Hay 1 1

Continued on page 137. 

Continued on page 136. 
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