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 Abstract 

 

Spectroscopic imaging is a vital tool for studying heterogeneous samples such as 

bacteria and tissue. Its ability to acquire spatially resolved information allows for 

identification and classification of the various constituents within a sample. 

Spectroscopic imagers quickly acquire thousands to tens of thousands of spectra per 

measurement. These data are often arranged in the form of a 3-dimensional (3D) data 

cube which contains two spatial dimensions and one spectral dimension. This large 

amount of data is beneficial for gaining a thorough understanding about the distributions 

of chemical information. If too little information is measured, important chemical behavior 

may be overlooked. Statistical analysis algorithms (chemometrics) are required to 

determine the relevant spectroscopic information within a data cube. Applying 

chemometrics to such large volumes of data presents computational difficulties 

regarding computer memory and processing speed. To overcome these burdens, 

wavelet transform compression is applied prior to chemometric evaluation to accelerate 

computations and reduce data storage requirements.  

To optimize compression by enhancing acceleration and reducing approximation 

errors, different wavelets, or „hybrid wavelets‟, can be applied to the different dimensions 

of a 3D data set. Determining which combination of wavelets will yield the most 

compression and best data representation is difficult since many possibilities exist. A 

compression method is presented that automatically determines the optimum wavelet 

combinations for a given data set. Principal component analysis (PCA) is used to 

demonstrate the capabilities of this new procedure, but the compression routine is 

advantageous for many chemometric techniques.  

Although linear algorithms like PCA work well in many situations, they are not 

well-adapted for explaining nonlinear relationships. Kernel principal component analysis 

(KPCA) has recently been developed to overcome the limitations of linear algorithms. 

However, when applied to spectroscopic imaging, KPCA calculations require multiple 

gigabytes of RAM just for holding the data. Therefore, routine use of the algorithm is 

often prohibited on personal computers. To circumvent such situations, a wavelet 

compression algorithm is presented that avoids ever having to hold all data in memory at 
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any point during the calculations. The goal is to enable the application of KPCA to large 

imaging data sets of heterogeneous samples.  
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Preface 

 

The compression-based chemometric algorithms established in Chapters 2 - 4 

are adapted from two first-author manuscripts published in the Journal of Chemometrics 

[ 1 ], [ 2 ] and a co-author manuscript published in the Journal of Chemical Education 

[ 3 ]. Appendix 1 is based on a project conducted in collaboration with the United States 

Department of Agriculture, Cotton Structure and Quality Research Unit. All alterations 

are implemented in order to reflect the appropriate style of this thesis. 
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List of Notation and a Short Repetition of 

Linear Algebra 

 

Any introductory linear algebra textbook [ 4 ], [ 5 ] should serve as a reference. In 
this brief section, some of the essential concepts that are required for basic chemometric 
algorithms are summarized.  

x   scalar - upper case italics represent fixed values, i.e. J  samples; lower case 

italics represent variables, i.e. the j th sample or the j th element jx  of a 

vector  (see next definition). 

1Nx   a lower case bold letter indicates a (column) vector with N  elements 

Nx

x


1

; 

the subscript is not always given. 

KNX  a capital bold letter indicates a matrix with N  rows and K  columns; if  

KN  the matrix is called a square matrix; the subscript indicating the 

dimensions are only given where necessary. 

knX .  the matrix element of X  at the position row number n  and column number 

k . 

Matrix multiplication: QNQPKN ZYX  is defined only if PK . Note that usually 

XYYX . The elements of Z  are computed by: 

PK

k

qkknqn YXZ
1

,,,  

T
x , 

T
X  transposed vector (= row vector), transposed matrix; example: 

65

43

21

23X  
642

531
32

T
X  

The rank of a matrix equals the number of linear independent rows (row vectors) or 
columns (column vectors). 



 x 

y  is linearly dependent from a set of vectors 21 xx  if it can be expressed as a 

linear combination, i.e. 2211 xxy cc  

0y  is linearly independent from a set of vectors 21 xx  if there is no such 

linear combination. 

1
X  inverse matrix: 1XXXX

11
; X  must be square and its inverse does not 

always exist. It only exists if M  has „full rank‟, i.e. all rows or all columns are 
linearly independent from each other.  

A matrix X  is called orthogonal if: 

1XXXXXX
TTT1          

x̂  or x̂  least-squares estimate of the true but inaccessible value x  or x , 

respectively. 

The scalar product (or dot product) of two vectors a  and b  with the same length is 

defined as 
i

ii bababa .  

If x  and y  are orthogonal, their dot product 0yx ; such vectors are also called 

perpendicular. 

If x  and y  are orthonormal, their dot product is either 0yx  or 1yx . The 

former dot product holds if yx ; the latter if and only if yx . 

The Euclidean length of a vector x  is a scalar and is defined as: xxx
2

. Its 

length is normalized to one by multiplying each element by 
2

1 x . 

A vector space is the „range‟ a certain set of vectors can cover, i.e. all possible linear 
combinations of these vectors. In other words, a linear combination of vectors from a 
certain vector space is again a member of the vector space; any vector from the vector 
space times a constant scalar is also a member of that vector space. A more descriptive 

way is to say a set of vectors span a vector space. For example, 
0

1
1x  and 

1

0
2x  

span the X-Y plane 
2R . Thus, the vector space 

2R  contains (or „covers‟) all linear 

combinations that can be made from 1x  and 2x . 

A subvector space is introduced by means of an example: 
2R  is the vector space of the 

2-dimensional X-Y plane; 
3R  is the vector space of the 3-dimensional X-Y-Z space, i.e. 

all vectors with three elements. Obviously, 
2R  is a subvector space of 

3R , i.e. 
32 RR , 



 xi 

or in other words, 
2R  is contained in 

3R . These two definitions are not strict in a 
mathematical sense but covers what is needed here.  

The basis of a vector space is a minimum set of linearly independent vectors by means 

of which all elements of a vector space can be expressed as a linear combination. 
1

3
 

and 
1

1
 are a basis for 

2R . An orthonormal basis of a vector space contains basis 

vectors that are mutually orthonormal. 1x  and 2x  from above are an orthonormal basis 

for 
2R . 

A vector 2211 xxy cc  is expressed as a linear combination of (here) two basis 

vectors and corresponding coordinates 1c  and 2c . If the basis vectors change, the 

coordinates also change. 
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Chapter 1 

 

Introduction: Chemometrics and its Application to 

Spectroscopic Data Analysis 

 

Combining spectroscopy with imaging techniques, commonly known as 

spectroscopic imaging, has significantly enhanced many studies of heterogeneous 

samples which require high spatial resolution [ 6 ] - [ 8 ]. The data acquired from a 

spectroscopic imager are usually arranged in the form of a data cube (see Figure 1). The 

X and Y-dimensions of the cube represent the spatial dimensions of the sample and the 

Z-dimension contains the corresponding spectral information. Thus, one can imagine 

such a data set as a stack of images acquired at different wavelengths. Chemometric 

algorithms are often applied to data cubes to extract the desired chemical information. 

Chemometrics [ 9 ] - [ 15 ] is the chemical discipline that uses statistical methods to 

evaluate measurement data. Specifically, chemometrics can determine which analytes 

are present within a sample, their spatial distribution, and how much of the analyte is 

present. Multivariate image analysis (MIA) [ 16 ], a standard chemometric tool, is used 

for visualizing spectroscopic imaging data. MIA produces color coded images which 

represent the distributions of different spectroscopic features as different colors. As an 

example, MIA is applied to data acquired from a microscopic E. coli B sample (see 

Figure 2). The color image in Figure 2 (c) clearly discriminates the different 

spectroscopic information. 

Most current imaging systems make use of a 2-dimensional focal plane array 

(FPA) detector that acquires a chemical spectrum with each pixel of the detector [ 17 ]. 

Standard sizes of modern day FPAs easily produce thousands to tens of thousands of 

spectra within a short amount of time (i.e. < 1 minute). This amount of information results 

in data sets ranging in size from several megabytes to several gigabytes. When 

chemometric algorithms are applied to this amount of data, serious challenges arise. 

Time resolution, as encountered in online applications, and computational resources, in  
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Figure 1: Example of a 3-dimensional spectroscopic data cube obtained with a 2-
dimensional detector. The data cube contains two spatial dimensions, X and Y, and one 
spectral dimension, Z. Each pixel (m, n) of the detector measures an individual chemical 
spectrum from a specific sample location.  



 3 

m
id
-IR

 ra
ng

e:
  3

50
0c

m
-1

 –
 9

00
cm

-1   

   
   

   
   

   
   

   
   

@
 4c

m
-1  re

so
lu
tio

n

250 µm 

2
5

0
 µ

m
 

250 µm 

2
5

0
 µ

m
 

sample:  E. coli  B

3500 3000 2500 2000 1500 1000

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 

 

L
o

a
d

in
g

s
  

(A
rb

. 
U

n
it

s
)

W avenum ber  (cm
-1

)

  principal com ponent #1

  principal com ponent #2

  principal com ponent #3

(a)

(c)

(b)

 

Figure 2: (a) A visible image of an E. coli B sample – no chemical information is 
available. (b) A spectroscopic data cube acquired from the sample contains 4096 
spectra from different sample locations. (c) MIA extracts the relevant spectroscopic 
information and depicts its spatial distribution as different colors. 
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general, computer memory and processing speed, become greatly affected. Therefore, 

in order to overcome these burdens and accelerate data analysis times without 

sacrificing the quality of the final results, it is mandatory that compression methods be 

developed. These methods must extract the relevant information within a data set 

without introducing excessive computations. 

To facilitate data compression, thus accelerating computation times, wavelet 

transforms are utilized. 1-dimensional (1D) wavelet transforms (WTs) [ 18 ] - [ 26 ] have 

become an important chemometric tool for denoising and data compression [ 23 ], [ 27 ] -

[ 30 ]. WTs are linear transformations and preserve data structure unlike the more 

commonly known „ZIP‟ method [ 31 ]. ZIP alters data structure such that chemometric 

algorithms can no longer be applied. Therefore, chemometrics can be applied directly to 

compressed data sets [ 32 ] - [ 34 ]. Recently, 1D WTs have been expanded to high-

dimensional (or multi-dimensional) WTs [ 35 ] which allows for data compression in 

multiple dimensions. This is greatly beneficial for compressing 3D data cubes (Figure 1). 

Applying the same wavelet to each dimension of a multi-dimensional data set is not 

required from a mathematical perspective. Since different data set dimensions contain 

different types of information, different wavelets, or „hybrid wavelets‟, can be combined 

and applied to each dimension in order to optimize compression for spectroscopic 

imaging [ 36 ], [ 37 ]. Additional computation expense is introduced when wavelet 

compression is applied; however, it is highly over-compensated during subsequent 

chemometric analyses which then handle much smaller data sets. The reason for this 

over-compensation is that the computation time required to perform wavelet 

compression increases linearly with data set size; computation times for a principal 

component analysis (PCA), for example, are decreased in second and third order [ 32 ], 

[ 38 ] when these smaller data sets are analyzed. It has been demonstrated that the 

quality of the chemometric models derived from compressed data is comparable to that 

of the models derived from the uncompressed data [ 36 ], [ 37 ]. 

To provide a solution [ 1 ], [ 2 ] for the severe computational demands produced 

by spectroscopic imaging data sets, two novel compression techniques utilizing multi- 

dimensional WTs are presented in this thesis. The first compression method describes 

an automated selection routine that chooses the optimum wavelet combination for any 

given data set [ 1 ]. PCA is applied in this method for demonstration purposes, but many 

other chemometric algorithms can also be employed. The second compression 
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technique addresses the nonlinear counterpart of PCA, kernel principal component 

analysis (KPCA) [ 39 ], [ 40 ]. KPCA is a relatively new chemometric method and is 

experiencing a rapid increase in popularity given its ability to model nonlinear 

relationships present in complex data [ 41 ] - [ 46 ]. Unfortunately, the vigorous 

mechanics involved with KPCA prevent it from being easily applied to large data sets as 

encountered in spectroscopic imaging. Therefore, a compression algorithm is presented 

that accelerates KPCA, making it feasible on common desktop computers [ 2 ]. These 

proposed compression routines reduce data set sizes and accelerate computation speed 

while maintaining high-quality data representation. The capabilities of these 

compression-based methods are assessed through application to multiple spectroscopic 

imaging data sets obtained from different experimental setups.  

The organization of the thesis is as follows: First, the background and theory of 

chemometrics and the algorithms applied in this thesis, PCA and KPCA, are established 

in Chapter 2 along with a qualitative description of a wavelet transform. Chapter 3 

presents a selection algorithm for automatically determining the optimum wavelet 

combinations for any given data set. A compression routine for the nonlinear counterpart 

to PCA, KPCA, is outlined in Chapter 4. Conclusions and future outlook based on the 

research in this thesis are given in Chapter 5. Appendix 1 provides a description of a 

project that is conducted in collaboration with the United States Department of 

Agriculture (USDA), Cotton Structure and Quality Research Unit. This project involves 

the development of new chemometric procedures for assessing cotton quality. 
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Chapter 2 

 

Background and Theory of Chemometric 

Algorithms and Wavelet Transforms 

 

This chapter supplies the background and basic ideas utilized in least-squares 

regression. Univariate Least-Squares Regression linearly relates one response variable 

(i.e. concentration) to one predictor variable (i.e. absorbance). However, if the response 

variable (concentration) is dependent on several predictor variables (absorbance 

values), then the univariate model is extended to Multivariate Least-Squares Regression. 

Since many chemometric algorithms are based on least-squares regression, the 

fundamental principles of Univariate Least-Squares Regression are introduced in 

Chapter 2.1. The expansion towards Multivariate Least-Squares Regression (MLR) 

[ 47 ] - [ 49 ] is exemplified by means of Classical Least-Squares (CLS, Chapter 2.2), a 

generalization of Beer‟s Law [ 50 ]. However, CLS can only be applied in special cases 

and for many real-world situations a more general approach is required. For this purpose 

Principal Component Analysis / Regression (PCA/PCR) [ 11 ], [ 51 ] is introduced in 

Chapter 2.3. Chapter 2.4 describes a nonlinear form of PCA referred to as Kernel 

Principal Component Analysis (KPCA) [ 39 ], [ 40 ] which has been shown in recent 

years to be successful at modeling nonlinear behavior in various experimental studies 

[ 41 ] - [ 46 ]. Finally, wavelet transforms [ 19 ] - [ 30 ] are discussed in Chapter 2.5 and 

are used significantly in Chapters 3 and 4 [ 1 ], [ 2 ]. 

 

2.1 Principles of Univariate Least Squares Regression 

 

Beer‟s Law ( 1 ) states that the absorption A  at a certain user selected 

wavelength  is the product of the molar absorptivity  times absorption pathlength 

L  times concentration c  of an analyte [ 3 ], [ 50 ]: 
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cLA  

( 1 ) 

If only one analyte is absorbing at , Beer‟s Law can be used to quantify this analyte. 

For this purpose, a calibration sample of known concentration calc  is prepared. After 

measuring its absorbance calA  the L  can be determined by: 

cal

cal

c

A
L  

( 2 ) 

This procedure ( 2 ) is called calibration. Since L  does not change over time, this 

information ( 2 ) can be used to determine the concentration measc  of an unknown 

sample by measuring its absorbance measA  and calculating measc  by: 

L

A
c

meas

meas  

( 3 ) 

However, in real-world applications this procedure is not feasible because of 

measurement errors. If a measurement error  impacts the measurement, ( 1 ) is not 

accessible and one has to deal with: 

cLA  

( 4 ) 

This imposes an unsolvable one-equation-two-unknowns problem, i.e. either L  and 

in ( 2 ) or measc  and  in ( 3 ) are unknown. Further, preparing only one calibration 

sample while assuming 00 Ac  as a second point of a straight calibration curve 

should be avoided because measurement errors in ( 2 ) falsify the calibration curve, 

resulting in concentration errors. Thus, a calibration curve should be based on several 

calibration samples because then errors are „averaged out‟. K  calibration samples with 

known calibration concentrations 
cal

Kic 1  are prepared and the corresponding 

absorbance values 
cal

KiA 1  are acquired. This results in the following equations, which 

are all impacted by random and different measurement errors K1 : 
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K

cal

K

cal

K

calcal

dcLA

dcLA



111

 

( 5 ) 

As shown in Figure 3, a straight line dxmy  or here dcLA  is fitted to 

these measurement data. Details on how the slope L  and intercept d  are determined 

are discussed in the remainder of this chapter. Beer‟s Law does not incorporate an 

intercept; nonetheless, a straight line has two degrees of freedom, slope and intercept. 

In this case, 0d  is expected because in theory  00 Ac . 

Parameters L  and d  that closely fulfill all K  equations ( 5 ) are required. 

However, due to random noise this is not possible because there are K  equations and 

2K  unknowns, i.e. L , d  and K1 . Thus, one has to estimate good overall 

parameters Lˆ  and d̂ . The symbol  ̂  has been introduced to discriminate between 

true but inaccessible and estimated parameters. This estimation is done by a least-

squares regression. The fundamental principle of least-squares regression is: Select 

model parameters Lˆ  and d̂  such that the sum of squared errors S  is 

minimized, i.e.: 

K

i

cal

i

cal

i

K

i

i

dcLA

S

1

!2

1

2

minˆˆ

 

( 6 ) 

Squared errors prevent canceling of positive and negative deviations.  

In order to determine this minimum (or to be more rigorous, extrema) we 

compute partial derivatives with respect to the wanted parameters and set them equal to 

zero: 

K

i

cal

i

cal

i

cal

i

K

i

cal

i

cal

i

cdcLA
L

S

dcLA
d

S

1

1

ˆˆ20
ˆ

1ˆˆ20
ˆ

 

( 7 ) 
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Figure 3: 5K  calibration samples have been used to determine a calibration curve by 

means of least-squares regression (simulated data). 
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Strictly speaking, the parameters Lˆ  and d̂  that fulfill the equation ( 7 ) are extrema, 

i.e. minima or maxima. However, they could be chosen completely out of the way such 

that S  ( 6 ) gets arbitrarily large. Thus, it can be assumed that the parameters found 

after solving these equations minimize S .  

We now have two equations ( 7 ) and two unknown parameters. Therefore, we 

can begin to solve this equation system for Lˆ  and d̂ . For the final result, refer directly 

to equation ( 9 ): 

K

i

cal

i

K

i

cal

i

K

i

cal

i

cal

i

K

i

cal

i

cal

i

cal

i

K

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

cal

i

cdcLcAcdcLA

dcLAdcLA

11

2

11

1111

ˆˆˆˆ0

1ˆˆˆˆ0

 

The factor of 1 in the right hand side of the first equation has been introduced to make 

the following derivation more clear. Now we bring items we know to the right side: 

K

i

cal

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cAcLcd

AcLd

11

2

1

111

ˆˆ

ˆ1ˆ

 

The left hand sides are rewritten to make the following step more clear: 

K

i

cal

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cAcLcd

AcLd

11

2

1

111

ˆˆ

ˆ1ˆ

 

This can be formally written as a vector-matrix equation: 

K

i

cal

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cA

A

L

d

cc

c

1

1

1

2

1

11

ˆ

ˆ1

 

( 8 ) 

We formally define a vector a  and a matrix cal
C  which contain data we know because 

we prepare the calibration samples and measure the calibration spectra‟s absorbance 

values: 
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cal

K

cal

cal

A

A


1

a      
cal

K

cal

cal

c

c

1

1 1

C   and thus  
cal

K

cal

cal

cc 



1

11T
C  

It is straightforward to verify that: 

calcal

K

i

cal

i

K

i

cal

i

K

i

cal

i

K

i

cc

c

CC
T

1

2

1

11

1

   and   
calcal

K

i

cal

i

cal

i

K

i

cal

i

cA

A

aC
T

1

1

1

 

Again, a factor of 1 has been introduced to the right equation to make the following more 

clear. Now we can rewrite ( 8 ) as: 

calcalcalcal

L

d
aCCC

TT

ˆ

ˆ
 

In the last step we multiply by the matrix 
1T

CC
calcal

 from the left to both sides and 

get: 

aCCC

aCCC

1

CCCC

T1T

T1TT1T

calcalcal

calcalcal

x

calcalcalcal

L

d

L

d

ˆ

ˆ

ˆ

ˆ

22

  

 

( 9 ) 

The right side of ( 9 ) consists of known calibration information and the left side contains 

the estimates of the wanted parameters (Figure 3). These parameters determine the 

calibration curve and are optimum in the least-squares sense. Least-squares fitting 

assumes random, independent, and normally distributed measurement errors. If there is 

any kind of systematic error, the experiment or the sensor should be checked. 

 

2.2 Classical Least-Squares (CLS) 

 

The procedure outlined in Chapter 2.1 is a standard component of analytical 

chemistry. However, this approach can only be applied if only one analyte absorbs at the 

chosen wavelength  (univariate regression). If this is not the case and several analytes 
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absorb at the chosen wavelength , there will be cross-sensitivities from other analytes 

and the sensor‟s selectivity will be insufficient. The reason for this is that overlapping 

absorptions of several analytes add linearly (refer to ( 10 ), [ 50 ]). This is somewhat 

over-simplified because analyses of mixtures with overlapping absorbance bands are 

typical tasks chemists encounter in real-world applications.  

In order to keep the following discussion concise, only two analytes are 

considered here; the augmentation to more analytes is straightforward. Instead of ( 1 ) 

one has to handle: 

2211 cLcLA  

( 10 ) 

The unsolvable problem here ( 10 ) is obvious: only one absorbance A  is measured 

but the concentrations of two analytes, i.e. 1c  and 2c , need to be determined. To 

overcome this insufficient amount of information, the absorbance is measured at two 

different wavelengths 1  and 2 . Now we have two equations and two unknowns: 

2221212

2121111

cLcLA

cLcLA
 

( 11 ) 

In order to simplify the notation we change ( 11 ) to ( 12 ) where the first index of  

refers to the wavelength position and the second to the analyte number. The index of A  

refers to wavelength position: 

2221212

2121111

cLcLA

cLcLA
 

( 12 ) 

Since we are dealing now with more than one predictor variable (= absorbance at 

different wavelengths), the following procedure is called Multivariate Least-Squares 

Regression (MLR) [ 47 ] - [ 49 ]. For solving this equation system we need to know the 

constant parameters L11 , L12 , L21  and L22 . These four parameters have to 

be determined experimentally by means of a calibration. The following discussion is a 

detailed derivation of Classical Least-Squares (CLS), a MLR based approach. If only the 

final equations are of interest to the reader, refer to ( 26 ) and ( 31 ). Equation ( 26 ) uses 
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calibration data to determine the parameters required in ( 12 ). After this calibration, 

equation ( 31 ) is used to determine the concentrations of unknown samples. 

 

2.2.1 CLS – Calibration 

 

To determine these four parameters ( 12 ) experimentally, at least four equations 

are required. To derive them we have to prepare two calibration samples of known 

composition; i.e. 
calc11  and 

calc21  (sample #1) and 
calc12  and 

calc22  (sample #2). The first index 

of 
calc  refers to the analyte number and the second to the sample number. Then 

absorbance values are measured for both samples at wavelength position 1  and 2 . In 

the following equation ( 13 ), the first index of 
calA  and  refers to the wavelength 

position; the second index of 
calA  refers to sample number and the second index of  to 

the analyte number.  

calcalcal

calcalcal

calcalcal

calcalcal

cLcLA

cLcLA

cLcLA

cLcLA

2222122122

2212121112

2122112121

2112111111

   

  

 #2sample  ncalibratio

  #1sample  ncalibratio

 

( 13 ) 

calc11  and 
calc21  in each of the top two equations (calibration sample #1) are the same 

because these equations are measured from the same sample. Similarly, 
calc12  and 

calc22  

are the same values in the bottom two equations (calibration sample #2). For both 

calibration samples L11 , L12 , L21  and L22  are equal because they are 

physical properties of the analyte. Solving the equation system ( 13 ) determines the four 

unknowns L11 , L12 , L21  and L22 , which are required later on for analyses of 

unknown samples. 

However, this only works in an ideal case, i.e. in the absence of measurement 

errors – but there are always measurement errors. Thus, ( 13 ) is not accessible and we 

have to deal with the following:  
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42222122122

32212121112

22122112121

12112111111

calcalcal

calcalcal

calcalcal

calcalcal

cLcLA

cLcLA

cLcLA

cLcLA

   

   

 #2sample  ncalibratio

 #1sample  ncalibratio

 

( 14 ) 

In ( 14 ) there are four equations and eight unknowns; i.e. L11 , L12 , L21 , L22  

and the measurement errors 41 . These random measurement errors leave us with an 

unsolvable problem Even measuring absorbances at one more wavelength position 

would add one more equation while also introducing an additional unknown 

measurement error . Thus, we are always short of information. Like in Chapter 2.1, we 

have to estimate good overall parameters L11
ˆ , L12

ˆ , L21
ˆ  and L22

ˆ . This 

estimation is again based on the least-squares principle of minimizing the sum of 

squared errors S  (compare ( 6 )): 

2

2222122122

2

2212121112

2

2122112121

2

2112111111

2

ˆˆˆˆ

ˆˆˆˆ

calcalcalcalcalcal

calcalcalcalcalcal

i

i

cLcLAcLcLA

cLcLAcLcLA

S

 

( 15 ) 

To determine values L11
ˆ , L12

ˆ , L21
ˆ  and L22

ˆ  that minimize S , partial 

derivatives with respect to the unknowns are computed and set equal to zero. Now we 

have four equations ( 16 ) and four unknowns. 

0
ˆ

11 L

S
            0

ˆ
12 L

S
            0

ˆ
21 L

S
           0

ˆ
22 L

S
 

( 16 ) 

From ( 16 ) we start to separate unknown and known items and we derive: 

IV   

III   

II   

I   

calcalcalcalcalcalcalcalcalcalcalcal

calcalcalcalcalcalcalcalcalcalcalcal

calcalcalcalcalcalcalcalcalcalcalcal

calcalcalcalcalcalcalcalcalcalcalcal

cAcAccLccLccLccL

cAcAccLccLccLccL

cAcAccLccLccLccL

cAcAccLccLccLccL

22222121222222221221212122211121

12221121122222121221112122111121

22122111222212221211212112211111

12121111122212121211112112111111

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

 

( 17 ) 
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Consider the right side of ( 17 ) – both equations I  and II  must hold simultaneously. 

We also rewrite this sum as a multiplication of a row and column vector: 

cal

cal

calcal

cal

cal

calcal

c

c
AA

c

c
AA

22

21

1211

12

11

1211

    II

    I

 

Thus, we combine them to give one equation; the left hand side of ( 18 ) is a row vector: 

calcal

calcal

calcal

cc

cc
AA

2212

2111

1211III  

( 18 ) 

In an equivalent approach III  and IV  are combined: 

calcal

calcal

calcal

cc

cc
AA

2212

2111

2221IVIII  

( 19 ) 

Also, both equations ( 18 ) and ( 19 ) must be true at the same time. Thus, we combine 

them to form one matrix equation: 

T

CA
calcal

calcal

calcal

calcal

calcal

cc

cc

AA

AA

2212

2111

2221

1211

IVIII

III
 

( 20 ) 

During calibration all elements of cal
A  have been measured and we know the elements 

of 
T

C
cal  (see indices) due to sample preparation. Let us consider the left side of ( 17 ): 

calcalcalcalcalcal

calcalcalcalcalcal

calcalcalcalcalcal

calcalcalcalcalcal

ccLcLccLcL

ccLcLccLcL

ccLcLccLcL

ccLcLccLcL

22222212212121221121

12222212211121221121

22221212112121121111

12221212111121121111

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

IV

III

II

I

 

Combine I  and II  to form one equation; the left side is a row vector and the right 

side contains a row vector times a matrix: 

calcal

calcal

calcalcalcal

cc

cc
cLcLcLcL

2212

2111

2212121121121111
ˆˆˆˆIII  

( 21 ) 
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and III  and :IV  

calcal

calcal

calcalcalcal

cc

cc
cLcLcLcL

2212

2111

2222122121221121
ˆˆˆˆIVIII  

( 22 ) 

Now, we can combine ( 21 ) and ( 22 ) to obtain: 

calcal

calcal

calcalcalcal

calcalcalcal

cc

cc

cLcLcLcL

cLcLcLcL

2212

2111

2222122121221121

2212121121121111

ˆˆˆˆ

ˆˆˆˆ

IVIII

III
 

( 23 ) 

The left side of equation ( 23 ) is known due to ( 20 ). The right matrix on the right hand 

side is 
T

C
cal , which is known due to sample preparation. The left matrix of the right hand 

side is only partially known and requires further splitting up. By simple inspection we see: 

cal

calcal

calcal

calcalcalcal

calcalcalcal

cc

cc

LL

LL

cLcLcLcL

cLcLcLcL

CÊ

ˆˆ

ˆˆ

ˆˆˆˆ

ˆˆˆˆ

2221

1211

2221

1211

2222122121221121

2212121121121111

 

( 24 ) 

Substituting ( 24 ) back into ( 23 ) results in:  

T
CCE

calcalˆ
IVIII

III
 

( 25 ) 

The right side of ( 20 ) equals the right side of ( 25 ): 

TT
CCECA

calcalcalcal ˆ  

We know the elements of cal
A  and cal

C  and we need to solve this equation for Ê . For 

this purpose, both sides are multiplied from the right by 
1T

CC
calcal

: 

LL

LL
calcalcalcalcalcalcal

2221

1211

ˆˆ

ˆˆ
ˆˆ E

1

CCCCECCCA
1TT1TT

  
 

( 26 ) 

The matrix equation ( 26 ) computes Ê  whose elements (also compare ( 1 ), ( 10 )) are 

estimates of the four unknown parameters needed in ( 12 ). Since the absorption 



 17 

pathlength L  has been incorporated into Ê  it must be kept constant during all 

calibration measurements and during acquisition of the spectra from unknown samples.  

It is easy to see how ( 26 ) can be expanded to more wavelength positions. If 

more equations are needed, simply add more rows to cal
A  and consequently Ê . In other 

words, calibration spectra are written into columns of cal
A . Each column of Ê  contains 

the molar absorptivity values (times L ) of a certain analyte at the selected wavelength 

positions. In this thesis, these columns are referred to as molar absorptivity spectra. The 

calibration concentrations of the analytes are written into the rows of cal
C . If more 

calibration samples are available, more columns are appended to cal
C . If more analytes 

are to be included, rows are added to cal
C . In general, a MLR estimate is more precise 

when more information is used in the procedure. However, adding information that has 

strong errors has detrimental effects and should be excluded - only high quality 

information helps to increase the accuracy. 

In order to prevent the failure of a calibration set, the following important warning 

needs to be considered while preparing calibration samples: Calibration concentrations 

of the individual analytes are written in the rows of the matrix cal
C . In ( 26 ) the matrix 

1T
CC

calcal
 is computed. From a mathematical perspective cal

C  must be non-singular 

for this inverse to exist. This means that it must be avoided to prepare calibration 

samples with concentrations such as 
1-1-1-

-1-1-1

L molL molL mol

L molL molL mol

6.04.02.0

3.02.01.0cal
C . In 

this example, the concentrations of the second analyte (second row) are always twice as 

much as the concentrations of analyte #1; these rows are linearly dependent vectors and 

the matrix is singular. From a spectroscopic perspective, the spectra look like they are 

due to only one analyte. In other words, one must avoid preparing calibration samples 

such that the calibration concentrations of one analyte are a linear combination of the 

concentrations of other analytes. 

After computing Ê  ( 26 ) we can determine concentrations of an unknown 

sample by solving ( 12 ) or an appropriately expanded equation system. For this 

purpose, an equation of similar type like ( 26 ) will be used in the following prediction 

step (Chapter 2.2.2). 
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2.2.2 CLS – Evaluation of Unknown Samples 

 

Measurement errors 1  and 2  are also contained in the spectrum of an 

unknown sample. Thus, instead of ( 12 ) we have to solve the following equation system: 

22221212

12121111

cLcLA

cLcLA
 

( 27 ) 

Similar to the calibration procedure ( 14 ) we have fewer equations (here: two) than 

unknowns: 1c , 2c , 1  and 2 . Again, there is no way to solve this system analytically. 

Thus, we cannot determine the true concentrations 
2

1

c

c
c ; instead we have to 

estimate a vector 
2

1

ˆ

ˆ
ˆ

c

c
c  by means of MLR from a measured spectrum 

2

1

A

A
a . The 

least-squares principle is applied again, which minimizes the sum of squared errors: 

2

2221212

2

2121111

!
2

ˆˆˆˆˆˆˆˆ

min

cLcLAcLcLA

S
i

i

 

We compute the partial derivatives with respect to the unknowns (here: 1̂c  and 2ĉ ): 

0
ˆ
1c

S
     and      0

ˆ
2c

S
 

LcLcLALcLcLA

LcLcLALcLcLA

222221212122121111

212221212112121111

ˆˆˆˆˆ2ˆˆˆˆˆ20

ˆˆˆˆˆ2ˆˆˆˆˆ20
 

We divide both equations by 2 , separate known (right hand side) and unknown items 

(left hand side) and rewrite the right hand side as a matrix times a vector: 

aE
Tˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

2221212222212112212111

2121112122212111212111

LALALcLcLLcLcL

LALALcLcLLcLcL
 

( 28 ) 

The left side of this equation system can be re-organized as: 
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222121

212111

222121

212111

2212

2111

2221212221211112

2221212121211111

ˆˆˆˆ

ˆˆˆˆ
ˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆ

ˆˆ

ˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆ

cLcL

cLcL

cLcL

cLcL

LL

LL

cLcLLcLcLL

cLcLLcLcLL

T
E

 

( 29 ) 

We have to further split up the right vector in ( 29 ) in order to separate known and 

unknown items. We simply see that: 

cE ˆˆ
ˆ

ˆ

ˆˆ

ˆˆ

ˆˆˆˆ

ˆˆˆˆ

2

1

2221

1211

222121

212111

c

c

LL

LL

cLcL

cLcL
 

( 30 ) 

Inserting ( 30 ) into ( 29 ) and setting the result equal to ( 28 ) gives: 

cEEaE
TT ˆˆˆˆ  

In order to solve for ĉ , 
1

T
EE ˆˆ  is multiplied from the left to both sides of the matrix 

equation: 

cc

1

EEEEaEEE
T

1
TT

1
T ˆˆˆˆˆˆˆˆˆ

  
 

( 31 ) 

In conclusion, the calibration step (Chapter 2.2.1) uses calibration spectra and 

the corresponding calibration concentrations to estimate the matrix Ê  ( 26 ). Ê  is then 

utilized to predict the concentrations ĉ  ( 31 ) of an unknown sample from the 

corresponding spectrum a . 

Equations ( 26 ) and ( 31 ) are very general types of equations encountered 

during MLR procedures. The origin of this equation type lies in the least-squares 

principle of minimizing the sum of squared errors. 

A warning regarding ( 31 ) should be mentioned here: 
1

T
EE ˆˆ  needs to be 

computed, which only exists if all molar absorptivity spectra have different signatures 

and no one spectrum is a linear combination of the others. Otherwise, Ê  would be 

singular and the aforementioned inverse would not exist. This requirement is violated in 
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situations where selectivity is insufficient, thereby prohibiting the parallel quantification of 

these analytes. 

 

2.3 Principal Component Analysis / Principal Component 

Regression (PCA/PCR) 

 

So far, calibration and evaluation algorithms have been discussed from a 

multivariate regression perspective. Since a spectrum consists of absorbance values 

measured at discrete wavelength positions a spectrum is represented by a vector. After 

expanding ( 12 ) to N  wavelength positions and Q  analytes, CLS expresses a spectrum 

a  as the following linear combination of vectors Qee 1 : 

QQQ

Q

NQ

Q

NN

cccLcL

A

A

ee

ee

a 
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1

1

1

1

111

 

( 32 ) 

While the molar absorptivity spectra QQL  11 eε  determine the general shape 

of the absorbance spectrum, concentration values weigh these molar absorptivity 

spectra. This will be discussed from a linear algebra perspective in order to introduce 

PCR. The vectors Q1e  are now interpreted as basis vectors spanning a NQ -

dimensional subvector space of 
NR  (usually: NQ ). Since Q  independently 

changing analytes are present in the samples, Q  basis vectors are sufficient to describe 

the entire system mathematically. If, for instance, the concentration 1c  is doubled, the 

absorbance contribution of analyte #1 at all N  wavelengths also doubles. Thus, the 

absorbance values at all N  wavelength positions are not independent. In ( 32 ) the 

concentrations Qcc 1  are the coordinates of a  in the basis Q1e . 

CLS‟s requirement of knowing all analytes and all calibration concentrations 

becomes obvious. If something is not known, the molar absorptivity spectra are 

determined incorrectly in ( 26 ). If these basis vectors are incorrect, they are not equal to 
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the expected physical properties of the analytes. Consequently, the coordinates of an 

unknown spectrum in this incorrect basis are not the concentrations of the wanted 

analytes in ( 31 ) and ( 32 ). Depending on the level of the disturbance, concentration 

results can range from being slightly off to being random numbers. In conclusion, the 

origin of distorted basis vectors Q1e  is that a wrong assumption about the number of 

present analytes (= number of basis vectors) has been made. If Q1e  are wrong, the 

concentration prediction in equation ( 31 ), ( 32 ) will be erroneous as well.  

This is where PCA/PCR introduces a different approach. PCA/PCR first 

determines the rank RAr  of the calibration spectra matrix A  (a generalized version 

of the matrix introduced in ( 20 )). The rank of a matrix is the number of linearly 

independent row vectors or column vectors [ 4 ]. In a further step, PCA/PCR extracts R  

basis vectors (typically QR ), which will replace the QQ L  11 εe  in ( 26 ), ( 31 ) and 

( 32 ). The superiority of PCA/PCR over CLS stems from the fact that PCA/PCR 

determines mathematically the appropriate number QR  of basis vectors and does not 

rely on a possibly incorrect user assumption about the number of present analytes. This 

user-independent approach ensures that the complete spectroscopic information 

contained in the calibration spectra is incorporated into the calibration model. Hence, 

unanticipated analytes will not lead to an incomplete calibration model and concentration 

errors. The price one has to pay for this is the loss of straightforward interpretability of 

the calibration model. The basis vectors Q1e  ( 32 ) will be replaced by QR  „principal 

components‟ (PCs). The coordinates of a spectrum in the PC basis are called „scores‟ 

which replace the concentrations Qcc 1  in ( 32 ). Nonetheless, the PCs model the 

spectroscopic features of the analytes contained in the calibration samples; however, the 

PCs comprise a mixture of features from different analytes. Consequently, the scores are 

linear combinations of the concentrations. At the end of the PCA/PCR calibration a 

„translation‟ step from the PC coordinate system to the chemically meaningful properties, 

i.e. concentrations, is derived. This translation step remains valid during calibration and 

evaluation of unknown samples. If QR  is found during PCA/PCR calibration, at least 

one analyte has a spectrum that is either buried in noise or is a linear combination of the 

others. In such a situation, the calibration fails for CLS and PCA/PCR and a different 

experimental approach is required. This problem would not be detected by CLS. 
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A word of warning is required here to make the full extent of these techniques 

clear. CLS requires that calibration concentrations for all analytes in all calibration 

samples to be known. PCA/PCR can handle such situations but will fail if an unknown 

absorber emerges after finalizing PCA/PCR calibration. In that case, additional spectral 

features are contained in the spectra of unknown samples which cannot be described by 

the PCA/PCR calibration model because they are not contained in the PCs. It is 

mandatory for both CLS and PCA/PCR that no new absorbers are contained in the 

unknown samples after the calibration has been finalized. 

 

2.3.1 PCA – Calibration 

 

One common way to compute the PCs is to use a singular value decomposition 

(SVD) ([ 4 ], [ 38 ], [ 52 ], [ 53 ]) on the matrix A  whose columns contain the K  

calibration spectra of length N . A SVD decomposes an arbitrary matrix into two 

orthogonal matrices U  and V  as well as a diagonal matrix Kss 1diagS  such 

that: 

T

T

T

T

TU

T

VSU

VSUA

KRRN

KR

KRRRRN

KKKKKNKN

PCAPCA

PCA

PCAPCAPCAPCA

    

    

    

  
 

( 33 ) 

Usually the so-called singular values Ks1  are ordered decreasingly by convention. The 

columns of U  and the rows of 
T

V  are ordered accordingly. If A  does not have full rank, 

i.e. KNR ,minPCArank A , only PCAR  singular values 0,min KNRs
PCA

. If a 

singular value equal to zero is multiplied with the corresponding column of U  or row of 

T
V , the resulting vector is zero. This singular value as well as the corresponding column 

of U  or row of 
T

V  can be discarded without loss of information (second row in ( 33 )). In 

the third row of ( 33 ), the columns of U  contain the PCAR  relevant principal components 

(PCs) and the columns of 
T

T  (or the rows of T ) contain the PCAR  so-called scores of 
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the K  calibration spectra. The PCs replace the basis vectors Q1e  ( 32 ) and the scores 

T
T  replace the calibration concentrations cal

C . Each column of 
T

T  corresponds to one 

calibration spectrum, i.e. a column of A .  

Because of random measurement noise, two spectra of the same sample 

measured back-to-back will never be identical. One consequence of noise is that in real-

world applications there will be small singular values but none that are exactly zero. 

Thus, we need to determine a threshold below which a singular value can be assumed 

to be approximately equal to zero. Selecting the appropriate number of PCs is very 

important because „overfitting‟ [ 53 ] must be avoided; however, this is a non-trivial task. 

Refer to the literature ([ 12 ], [ 13 ], [ 54 ]) for more detailed information. Thus, due to 

noise we have to consider the following equation instead of ( 33 ): 

T

T

T

TU

T

VSUA

KRRN

KR

KRRRRNKN

PCAPCA

PCA

PCAPCAPCAPCA       
 

( 34 ) 

Here, we apply an empirical approach that is found to be feasible in many real-world 

applications. The singular values Ks1  in ( 33 ) are ordered decreasingly. A value 0  

represents irrelevant information which must be discarded. In this thesis, the ratio 

Krss 21  serves as a figure of merit for finding the threshold. r  is increased stepwise 

until the ratio crosses a user-defined value. For many of our applications, an empirical 

value of 1000 is often sufficient. PCAR  indicates the smallest singular value for which 

10001 rss .    

The procedure just described is referred to as Principal Component Analysis 

(PCA). In order to predict concentrations from unknown spectra, PCA must be expanded 

to a Principal Component Regression (PCR). This is discussed in the next paragraph. 

The PCAR  PCs (qualitative information) contain the entire relevant spectroscopic 

information contained in A . The scores (quantitative information) represent how strong 

a PC contributes to the corresponding calibration spectrum. The PCs have the same 

length (or the same discrete wavelength positions) as the calibration spectra; the 

numbers contained in a PC are called loadings. The PCs and scores have no direct 
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chemical/physical meaning but are linear combinations of all the chemical/physical 

properties contained in the calibration samples. Later, the unknown spectra will be 

expressed as a linear combination of the PCs. In other words, their coordinates (scores) 

in the PC space will be determined. In order to transform these scores into chemical 

information (=concentrations) we need to determine a „translation‟ from scores to 

concentrations. This transform from scores to concentrations will never change and will 

be derived from the calibration information. The scores 
T

T  ( 34 ) of the calibration 

spectra and the calibration concentrations cal
C  are known. Further, the calibration 

concentrations are linear combinations of the scores aside from measurement errors or 

other deviations ε . A transform matrix B̂  has to be determined via MLR (compare ( 26 ) 

and ( 31 )): 

BTTTC

εTBC

1T

T

ˆcal

KRRQ

cal

KQ PCAPCA

 

( 35 ) 

This finalizes the PCA/PCR calibration. The PCAR  PCs have been determined 

during calibration ( 33 ) which contain all spectroscopic information of the calibration 

spectra. A future unknown spectrum will be decomposed into these PCs. The scores, or 

the coordinates in the PC basis of this unknown spectrum, will then be translated into 

concentrations via the matrix B̂  ( 35 ). 

Sometimes in the literature the calibration spectra are written in the rows of A  

( 33 ). In this case, the previous discussion remains valid, only the meaning and 

dimensions of U  and 
T

V  ( 33 ) are exchanged. The PCs are then contained in the rows 

of 
T

V  and the scores in the columns of SU . Refer to [ 51 ] for more details on this 

approach. Here, the calibration spectra have been written into the columns of A  in order 

to remain consistent with the discussion of CLS (Chapter 2.2). 

 

2.3.2 PCR – Evaluation of Unknown Samples  

 

In CLS a spectrum is represented by a linear combination of concentration and 

molar absorptivity spectra (compare ( 32 ) and first line in ( 36 )). In PCA/PCR an 

unknown spectrum is decomposed into PCs, the new basis vectors, and scores (second 
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line in the following equation ( 36 )). δ  and Δ  indicate measurement errors that cannot 

be modeled: 

ΔtU

Δua

δεa

1

1

)1(

1

1

PCAPCA

  

   

RRN

R

i

iiNx

Q

i

iiN

t

cL

 

( 36 ) 

In ( 36 ), the top equation represents the CLS model, which may not be correct if any 

unknown absorbers are present. The middle equation represents the PCA/PCR model, 

which will be correct despite any unknown information. Again, MLR (compare ( 26 ) and 

( 31 )) is used here to estimate t  of the unknown spectrum )1(Nxa . The orthogonality of 

U  simplifies the computations: 

aUaU

1

UUt
TT1T


ˆ  

( 37 ) 

In a second step, the scores vector t̂  is linearly transformed into the concentrations 

unknown
c  by using the result of ( 35 ): 

tBc ˆˆunknown
 

( 38 ) 

This finalizes PCA/PCR evaluation. PCA/PCR is utilized in Chapter 3 as a tool to assess 

the capabilities of a new compression-based chemometric algorithm. 

 

2.4 Kernel Principal Component Analysis (KPCA) 

 

Common linear algorithms, such as PCA/PCR (Chapter 2.3), are frequently used 

to model chemical systems. These linear methods have been successful for countless 

applications but can be ill-suited for modeling nonlinear behavior within data. For the 

latter applications, a method named „kernel principal component analysis‟ (KPCA) [ 39 ], 

[ 40 ] has been recently developed. KPCA has been successfully applied to a number of 

fields including nonlinear process monitoring for failure detection in waste water 
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treatment plants [ 41 ] - [ 43 ], data denoising [ 44 ], recognition of handwritten digits 

[ 45 ], and classification of genetic data [ 46 ]. 

For the introduction of KPCA, it will be helpful to derive the PCs and scores (see 

( 33 ) in Chapter 2.3) in a different way. Using the calibration spectra, a covariance 

matrix C  will be computed which then undergoes an eigenvalue decomposition (EVD). 

This EVD can be realized via an SVD (see ( 33 )): 

,N,iiii

M

j

jjNN

1

2

1

   :  with          vvC

VVVSVVSUVSU

xxAAC

TTTTT

TT

 

( 39 ) 

After an EVD, the PCs are contained in the eigenvector matrix V  and the eigenvalues, 

which are the squared singular values, are contained in the diagonal matrix 
2

S . The 

scores are obtained by projecting the unknown measurement spectra onto the PCs. 

Calculating the scores for KPCA will be discussed in more detail in Chapter 2.4.2. 

 

2.4.1 KPCA – Calibration 

 

The KPCA algorithm is briefly concluded in this section. References [ 39 ] and 

[ 40 ] provide a more detailed discussion. If the reader is only interested in a basic 

summary of the KPCA algorithm and wants to skip some of the lengthy derivations, then 

proceed directly to the summary paragraph at the end of this section and then to 

Chapter 2.4.2. However, some important details describing the computational difficulties 

associated with KPCA are discussed below. These computational burdens are the main 

focus of the research presented in Chapter 4. The compression algorithm established in 

Chapter 4 provides a means to handle these demanding computations, thus making 

KPCA feasible on common workstations [ 2 ]. 

 From a linear algebra perspective, spectra 1Nx  are vectors in an N -

dimensional vector space X . Since the chemical system from which spectra are 

acquired typically generates a certain number of spectroscopic signatures, X  is usually 
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a sub-vector space of 
NR , i.e. the space of N -dimensional real vectors. The first step of 

KPCA is to non-linearly transform all M  spectra into vectors of dimension NNH . 

After applying this non-linear transform  (or mapping function or kernel), vectors 

Mxx ,,1   are members of the so-called „feature (vector) space‟ H  which is a 

MR -dimensional sub-vector space of HN
R (compare to ( 34 ) but note that 

PCA RR ): 

xx,: HNN RHRX  

( 40 ) 

If, for example, a „polynomial kernel‟ of order 2d  is applied to a spectrum 

T
x 21 xx  containing absorbance values of two wavelengths, ( 40 ) becomes: 

21

2

2

2

1

2

132

2

,:

xx

x

x

x

x
RHRX xx   

( 41 ) 

For the investigations in this study, mainly the polynomial kernel ( 41 ) of user-specified 

order d  is used. Using 1d  makes KPCA equivalent to the conventional linear PCA 

algorithm. 

For 2N  and higher polynomial orders d , the explicit mapping  of data into 

H  introduces serious computational challenges because HN  becomes extremely large. 

For polynomial kernels, the dimension of the feature space H  has the dimension [ 40 ]: 

!1!

!1

      

 

Nd

Nd
NH

 

( 42 ) 

For example, if a spectrum x  contains 1000N  wavelength positions and a polynomial 

of degree 4d  is applied, the feature space H  has a dimension of HN  ~
10104 . 

Storing one vector x  in double precision would require ~300 GB. Thus, at all steps of 

the KPCA algorithm it is mandatory to avoid explicit handling of vectors in feature space. 

Consequently, a PCA in feature space, similar to the approach in ( 33 ), is not feasible 
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and an alternative formalism has to be utilized. For this purpose, a covariance matrix 

H

NN HH
C  similar to the one in ( 39 ) can formally be defined by: 

MiNi iHiii

H

M

j

jj

H

NN HH

   for       but      :h       wit   
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1

vvC

xxC
T

 

( 43 ) 

The dimensions ( 42 ) of 
H

NN HH
C  ( 43 ) prohibit direct computation of all eigenvectors 

iv  and eigenvalues i ; however, a new method is presented in Chapter 4 that can 

handle such situations. Nonetheless, the vectors Mxx ,,1   span the feature 

space H  ( 40 ) and since all Mi ,,1  eigenvectors iv  ( 43 ) are members of H , 

there exists a set of M  coefficients MkMiα ,,1,,,1     such that:  

M

k

kkii α
1

, xv  

( 44 ) 

In other words, the eigenvectors, which will now be determined, are linear combinations 

of the calibration spectra in feature space. In the following discussion, the coefficients 

MkMiα ,,1,,,1     will be determined. Using ( 44 ) in the second line of ( 43 ) results in: 
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( 45 ) 

In the next step, all M  vectors 
T

x
 

1 M  are consecutively multiplied from the left to 

the second row of equation ( 45 ). This results in the M  equations: 
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Rearranging the summations over k  and utilizing dot products results in: 
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( 46 ) 

Now, the so-called Gram matrix MMK  (Figure 17) is defined which contains the 

elements: 

qpqpK xx ,,  

( 47 ) 

In the next equation, it will be shown that M  column vectors Mi ,,1α , which contain the 

coefficients MkMiα ,,1  ,,,1  , are eigenvectors of MMK . Substituting this definition along 

with ( 47 ) into ( 46 ) derives Mi ,,1 : 
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( 48 ) 

Solving the eigenvalue problem ( 48 ) for all Mi ,,1  results in eigenvalues M,,1   

and eigenvectors M,,1α  of the Gram matrix K . The latter, M,,1α , will be used to 
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determine the eigenvectors Mi ,,1v  ( 44 ) of the covariance matrix H
C . The Mi ,,1v  will 

then play the role of principal components as in PCA (see ( 44 )).  Typically, there are 

only MR  relevant eigenvalues. The remaining eigenvalues are so close to zero that 

they are negligible from a spectroscopic perspective. Thus, only R,,1    and R,,1α  are 

kept. In a last step, the vectors Ri ,,1v  are normalized to Euclidean length of one by 

dividing each iα  by 
i 
:  
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( 49 ) 

Since the R,,1α  are eigenvectors of the symmetric Gram matrix they are orthogonal. 

Similarly, the iv  are eigenvectors of the covariance matrix 
H

C  and after dividing all iα  

by i  the iv  will be an orthonormal basis of the vector space H  ( 40 ).  

However, even if the Gram matrix MMK  would have dimensions small enough 

to store the matrix in a workstation‟s memory, it can often not be generated directly. The 

reason for this is that each matrix element is a dot product of two vectors of length HN  

( 42 ). In order to circumvent unreasonable computation times, the so-called “kernel 

trick” [ 39 ], [ 40 ] is applied. It can be shown that for some kernels dot products in the 

high-dimensional feature space can be determined based on the dot product in the much 

lower-dimensional input space. This approach is much more computationally efficient. 

For instance, for polynomial kernels of order d  ( 41 ): 

d
yxyx ,,  

( 50 ) 

In summary, the KPCA algorithm first calculates the Gram matrix ( 47 ), ( 48 ) 

which is then decomposed into eigenvalues R,,1   and eigenvectors R,,1α  ( 48 ).  From 
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R,,1α , vectors R,,1v  ( 44 ), ( 49 ) are derived that are KPCA‟s equivalent to PCA‟s 

principal components. 

 

2.4.2 KPCA – Evaluation of Unknown Samples 

 

In order to evaluate an unknown spectrum in feature space, a vector 

T
t Rtt 1

 is determined. This t -vector is the equivalent to PCA‟s score vector of 

unknown samples (compare to ( 37 )). For instance, these t -vectors represent how 

strong a (KPCA) PC ( 44 ) contributes to the corresponding calibration spectra. For this 

purpose, an unknown data vector unknownx  is projected ( 51 ) onto the vectors Ri ,,1v  

( 44 ). The same kernel trick ( 50 ) helps, again, to keep computation efforts reasonable: 
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( 51 ) 

If Q  unknown data vectors 
Q,,1 unknown 

x  are evaluated, ( 51 ) has to be expanded, as 

shown in this paragraph. For data evaluation, the R  score values of each of the Q  

unknown data vectors can be combined to a matrix RQT . Thus, each row of RQT  is 

derived from one of the unknown samples: 
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( 52 ) 

Concluding the evaluation step, t -values (KPCA), which are equivalent to PCA‟s 

scores, of one ( 51 ) or several unknown samples ( 52 ) are determined by projecting 

unknown data vectors in the feature space, unknownx , onto KPCA‟s principal 

components R,,1v  ( 44 ). 

 

2.5 Wavelet Transforms (WTs) 

 

 Throughout the following two chapters wavelet transforms (WTs) are used as a 

tool to accelerate (Chapter 3) and make feasible (see Chapter 4) chemometric 

calculations to analyze spectroscopic imaging data. WTs have gained substantial 

interest in recent years in the field of analytical chemistry by providing a means for 
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denoising and compressing data [ 1 ], [ 2 ], [ 23 ], [ 27 ] - [ 30 ], [ 32 ] - [ 34 ]. This section 

is intended to offer a qualitative overview on the concept of a WT and give insight on the 

unique characteristics of this efficient form of data representation. Refer to [ 20 ] for a 

general description, or first read, of WTs. For a more detailed discussion, refer to [ 18 ], 

[ 19 ], [ 22 ]. 

 To begin explaining the advantages of a WT, a comparison is made to Fourier 

Transform (FT). FT decomposes a signal into sine and cosines waves, thus 

decomposing a signal into its frequency components (Fourier coefficients). Each 

coefficient is specifically derived from a single frequency and provides information about 

the contribution of this frequency to the overall signal. No time localization information is 

obtained from a signal during FT. Since most signals contain some degree of localization 

in time and frequency, a certain set of basis functions is required that is well localized in 

both the time and frequency domains in order to represent the signal efficiently. This is 

where the advantage of a WT becomes apparent. A WT uses wavelets, xba,  (also 

see Figure 4), which are well localized in both time and frequency, as its basis functions 

to decompose a signal xf  into its corresponding wavelet coefficients bac , : 

x
a

bx
xf

a
xxxfc baba d

1
d,,  

( 53 ) 

a  and b  in ( 53 ) describe the scale (resolution or width) and translation (location in 

time) of the wavelet, respectively.  

There are many different types of wavelets; however, the research outlined in 

this thesis makes use of the popular Daubechies family wavelets [ 19 ]. Daubechies 

wavelets decompose a signal perfectly; i.e. no loss (or addition) of information is 

introduced during the transform. Figure 4 displays a few examples of some the various 

Daubechies family wavelets. Each wavelet contains its own individual mathematical 

properties. This characteristic is addressed in more detail in Chapter 3. Other than the 

Haar wavelet (Figure 4 (a)), the remanding Daubechies wavelets are simply referred to 

as Daub4, Daub8, etc.  

The unique feature of wavelets is that they are ≠ 0 only within a small window 

known as the „support‟. During a WT, the scale (width) of the support for a particular 

wavelet is adjusted, via a  (see ( 53 )), and translated over the entire signal, via b  (see  
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Figure 4: Examples of various Daubechies family wavelets. (a) Haar, (b) Daub4, (c) 
Daub8, (d) Daub14, and (e) Daub20 wavelets are shown, respectively. Each wavelet 
has its own mathematical properties. (f) The Daub8 wavelet represented at different 
scales (width) and translations (also see ( 53 )). 
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( 53 )). In other words, once a scale is set it is held constant while it is translated over the 

entire signal. This process is continued until all wavelet coefficients ( 53 ) are calculated. 

Only the spectral features present inside the support (see ( 53 )) impact the wavelet 

coefficients. Since a wavelet is equal to zero everywhere outside of the support, all 

spectral features outside of the support are set equal to zero and contribute nothing to 

the corresponding wavelet coefficients. Figure 4 (f) displays different widths and 

translations of the Daub8 wavelet. Scaling and translating wavelets over a signal acts as 

a filter. Information is gathered about the high and low frequency signal components 

when narrow and wide wavelets are applied, respectively. The next paragraph, along 

with Figure 5, provides an example to illustrate, in more detail, the scaling/translating 

process of a WT. 

Utilizing a simulated spectrum (Figure 5, top left) of 512 wavelength positions a 

WT is carried out by first scanning over this spectrum with the highest scale (narrowest) 

of the applied wavelet. In this example, a Daub8 wavelet (Figure 4 (c) and (f)) is used. 

As the wavelet scale widens, the number of wavelet coefficients calculated is down-

sampled by a factor of 2. For instance, the first scanning step will yield 512 / 2 = 256 

wavelet coefficients (refer to Figure 5, top right and bottom left). These coefficients 

characterize the high frequency components of the spectrum (i.e. mostly noise). Next, 

the subsequent wavelet scale (refer to Figure 5, bottom right) is translated over the 

spectrum producing the next 256 / 2 = 128 wavelet coefficients. This procedure is 

continued until the widest wavelet scale is used and the final wavelet coefficients are 

calculated, thus resulting in a WT spectrum (refer to Figure 5, bottom left). Again, this 

WT spectrum (Figure 5, bottom left) is completely equivalent to the original simulated 

spectrum (Figure 5, top left). The large positive and negative values of the lower order 

wavelet coefficients in the WT spectrum clearly indicate their greater significance 

(relevance) over the other coefficients. A large portion of the higher order coefficients are 

 0. Therefore, setting the small valued wavelet coefficients equal to 0 will essentially 

„denoise‟ a signal (or spectrum). Completely removing these „irrelevant‟ coefficients will 

compress the original spectrum. An example of signal compression and denoising using 

WTs is described next. 

The compression and denoising capabilities of WTs are depicted in Figure 6. 

Using the simulated spectrum (Figure 5 and Figure 6 (a)), a WT is applied using a 

Daub8 wavelet resulting in the WT spectrum in Figure 5 and Figure 6 (b). Several  
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Figure 5: Cartoon illustrating the main steps of a WT ( 53 ). The spectrum (top left, 
generated data) is scanned by a narrow Daub8 wavelet (top right) at 512 / 2 = 256 
different positions to yield 256 wavelet coefficients (bottom left). These coefficients 
characterize the high frequency components (mostly noise) of the spectrum. The next 
widest wavelet (bottom right) is scanned over the same spectrum at 256 / 2 = 128 
different positions to give the next set of (128) wavelet coefficients. This process is 
continued for the remaining wavelets until all coefficients are obtained, concluding the 
WT (bottom left). 

 



 37 

0 100 200 300 400 500
-100

-50

0

50

100

150

200

0 100 200 300 400 500
-100

-50

0

50

100

150

200

0 100 200 300 400 500

0

10

20

30

40

50

0 100 200 300 400 500
-100

-50

0

50

100

150

200

0 100 200 300 400 500

0

10

20

30

40

50

R
e
le

v
a
n
c
e
 (

A
rb

. 
U

n
it
s
)

 

 

Keeping 40 of the original 

512 wavelet coefficients

Compression

(c)

R
e
le

v
a
n
c
e
 (

A
rb

. 
U

n
it
s
)

R
e
le

v
a
n
c
e
 (

A
rb

. 
U

n
it
s
)

Wavelet Coefficient 

 

 

Many wavelet coefficients  zero 

(b)

Wavelength (Arb. Units) Wavelength (Arb. Units)

Wavelength (Arb. Units)

S
ig

n
a
l 
(A

rb
.U

n
it
s
)

 

 

(a)

Wavelet Coefficient 

Wavelet Coefficient 

 

(d)

Insert zeros where wavelet coefficients 

were previously removed

(e)

 

0 100 200 300 400 500

0

10

20

30

40

50

 S
ig

n
a
l 
(A

rb
. 
U

n
it
s
)

(f)

 S
ig

n
a
l 
(A

rb
. 
U

n
it
s
)

 Original spectrum

 Denoised spectrum

 

 
Figure 6: (a) The original signal (or spectrum) in the original measurement domain 
(simulated data). (b) The same signal transformed into the wavelet domain using a 
Daub8 wavelet. Both representations of the signal in (a) and (b) are equivalent; i.e. no 
information is lost (or added) during the transform. (c) The compressed version of the 
signal in (b). After thresholding, only 40 of the original 512 wavelet coefficients are 
retained. At this point, chemometrics can be applied to these compressed data to greatly 
accelerate computations. (d) Before reconstruction (via iWT) of the compressed signal in 
(c), zeros are inserted into the locations where wavelet coefficients were previously 
removed. (e) The denoised spectrum is calculated after performing an iWT on the signal 
in (d). (f) The denoised spectrum (e) overlaid on the original spectrum (a). The main 
„spectral‟ features are retained in the denoised spectrum; however, the noise has 
successfully been removed. 
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wavelet coefficients in this WT spectrum (Figure 6 (b)) are  0. Since large positive and 

negative wavelet coefficients are more relevant than coefficients that have a small value, 

a threshold range can be established and used to eliminate any coefficients falling within 

this range. In this example, an empirical range of ± 5 „relevance units‟ is used to 

distinguish between relevant and irrelevant wavelet coefficients. More sophisticated 

approaches are discussed in Chapters 3 and 4. After applying this threshold only 40 of 

the original 512 wavelet coefficients are considered „relevant‟. This compressed wavelet 

spectrum (shown in Figure 6 (c)) is < 8% of its original length. At this point, 

chemometrics can be applied to these compressed data, thus achieving large increases 

in computation speed. This topic is discussed in more detail throughout Chapters 3 

and 4. For denoising purposes, zeros can be inserted into the exact locations where 

„irrelevant‟ wavelet coefficients were previously removed (compare Figure 6 (b) and 

Figure 6 (d)). In order to obtain the denoised, reconstructed spectrum in Figure 6 (e), an 

inverse wavelet transform (iWT) needs to be applied to the spectrum in Figure 6 (d). 

After the iWT is applied, the resulting denoised signal is obtained. If all Daubechies 

wavelet coefficients are kept during compression/denoising, the denoised signal would 

exactly equal xf  after the iWT. Also, the same wavelet must be applied during the 

iWT that was applied during the original WT. If not, the results will be meaningless. 

Figure 6 (f) compares the denoised spectrum (Figure 6 (e)) to the original noisy 

spectrum (Figure 6 (a)). In the denoised spectrum, the noise has been successfully 

removed and the main „spectral‟ features have been preserved. The example above 

demonstrates that WTs are capable of modeling the relevant information within a signal 

using only a small number of wavelet coefficients. This is not possible with FT. 

So far, only 1-dimensional (1D) WTs have been discussed. It has been shown 

[ 35 ] - [ 37 ], [ 55 ] that 1D WTs can easily be expanded to multi-dimensional WTs to 

enhance compression of multi-dimensional data sets (i.e. spectroscopic data cubes). 

Multi-dimensional WTs will be discussed to a greater extent and applied in Chapters 3 

and 4 [ 1 ], [ 2 ]. 
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Chapter 3 

 

Composing Hybrid Wavelets for Enhanced 

Evaluation of N-dimensional Data Sets  

 

Each dimension of a multi-dimensional data set contains different types of 

information. For example, a 3D data cube acquired by means of spectroscopic imaging 

contains two spatial dimensions and one spectral dimension (Figure 1). From a 

mathematical perspective, different wavelets, whichever is best, can be used to 

transform the different dimensions of this data set as long as the same wavelet is used 

during the inverse transform (see Chapter 2.5). In reference [ 37 ], „hybrid wavelets‟ have 

been introduced which utilize combinations of different wavelets. This enhances 

acceleration and reduces approximation errors when different types of data are 

contained in multi-dimensional data cubes. However, there are many different wavelet 

types which lead to several possible wavelet combinations. Therefore, an important 

question has to be addressed: which combination of wavelets is optimum for a specific 

data set? This selection has to be made without a priori information and without adding 

excessive computational burden in order not to jeopardize the acceleration.  

In this study, a pool of 10 different Daubechies wavelets are used, i.e. Haar, 

Daub4, Daub6, Daub8, …, Daub18 and Daub20 [ 19 ] (see Chapter 2.5 and Figure 4). 

Because spectroscopic imaging generates 3D data sets (Figure 1) there are 10 different 

wavelet options for each dimension. Thus, for this group of wavelets, there are 

10 x 10 x 10 = 1000 possible wavelet combinations which can be used to transform the 

X-Y-Z dimensions of a data cube. In the absence of compression, all possible wavelet 

combinations provide perfect and reconstructable data representation. However, when 

compression is implemented, not all of these combinations provide an equally 

acceptable representation of the data [ 1 ], [ 37 ]. This chapter presents an automated 

compression method that selects optimum and near-optimum hybrid wavelet 
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combinations for N-dimensional data sets. Since accelerating overall calculation times is 

highly desired, the selection is made fast enough to avoid burdensome calculations. 

The computational methods discussed in the following chapter have been 

developed and implemented into C++ source code. All of the results presented in 

Chapter 3.3 were obtained using this code. All calculations were performed under 

Windows on a 32-bit Intel machine with 4 GB of RAM utilizing Microsoft Visual C++. 

 

3.1 Theory 

 

This section describes how we build optimum 3D hybrid-WTs for 3D data sets [ 1 ]. 

The wavelet selection is based on three figures of merit: acceleration of the chemometric 

computations, quality (accuracy) of the resulting model, and size of the compressed data 

cubes. In previous studies [ 36 ], [ 37 ], [ 55 ], it has been shown that shorter wavelets 

(i.e. Haar, Daub4, Daub6, etc.) can result in higher acceleration factors because they 

require fewer computations for performing WTs and iWTs. So, if the algorithm finds 

several wavelet combinations of equal capability, the shortest wavelets are selected in 

order to optimize computation speed. However, a decent amount of acceleration can be 

achieved even with the longest wavelets (i.e. Daub16, Daub18, Daub20). Therefore, the 

algorithm explicitly incorporates model accuracy and data set size. Calculation speed is 

gained as a result of performing chemometrics on compressed data sets and by utilizing 

shorter wavelets, whenever possible. In Chapter 3.3.2, an acceleration factor is defined 

to determine the amount of computation speed that is achieved as a result of utilizing the 

compression algorithm. The figures of merit that are explicitly incorporated into the 

compression algorithm are defined as:  

1. Accuracy compares the closeness (or quality) of the chemometric model derived 

from the compressed data to its counterpart computed from the original 

measurement data. Such a comparison is only intended to assess the 

compression-based method and will not be performed in routine computations.  

2. The Size of a compressed data set is important for accelerating chemometric 

calculations and for data storage requirements, especially when handling a 

continuous stream of incoming data, as encountered in online sensing. Smaller 

data sets yield faster computation times and require less storage space. 
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The selection of the best wavelet is performed subsequently for each dimension of a 

data (hyper)cube. In this study, the wavelet for the Z-dimension (see insert in Figure 7) is 

chosen first, then for the Y-dimension and finally for the X-dimension; however, the order 

does not matter since the transforms in different dimensions are independent from each 

other [ 52 ]. The automated hybrid wavelet compression is outlined in the following steps 

(see corresponding steps in Figure 7) followed by a more detailed discussion based on 

Figure 8. This algorithm can be applied to any data cube. The cube shown in the top left 

of Figure 7 is used only for visual purposes and is described further in Chapter 3.2. 

(1) The fundamental idea is to randomly choose a small subset of test vectors in the 

Z-dimension (or XY plane; see insert in top right of Figure 7) of the data set. The 

size of this subset, labeled as N% of the total number of vectors in the Z-

dimension, is discussed in Chapter 3.3.1. N% has to be as small as possible to 

keep computation efforts limited, but it must be large enough to ensure that the 

subset is representative of the entire Z-dimension. A copy of this subset is made 

for each wavelet type that is to be tested. Since ten Daubechies wavelets are 

included in this study, ten copies of the subset are made. 

(2) The best wavelet type for the Z-dimension is chosen after analyzing the wavelets‟ 

performance on the subset regarding the aforementioned figures of merit; this 

step is outlined in more detail below and in Figure 8. 

(3) The wavelet found to be optimum for this subset is then used to transform the Z-

dimension of the original cube, vector by vector. Next, compression of the 

original cube in the Z-dimension is performed. The compression process is 

discussed further below. 

(4) Steps 1 and 2 are repeated to find the best wavelet type for the Y-dimension (or 

XZ-plane).  

Comment: The Y-selection is done after Z-compression because it makes 

no sense to select test vectors in the Y-dimension that are removed after 

compression in the Z-dimension. These vectors are considered to be 

dispensable and thus are not representative of the Y-dimension. Also, the 

selection of the Y-wavelet is performed after compressing the Z-

dimension since the numbers along the Z-axis of the data cube are 

altered due to wavelet transformation. 
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Figure 7: Flowchart outlining the major steps of the wavelet selection algorithm. (insert 
top right: definition of data cube dimensions and planes) (1) N% of the test vectors in the 
Z-dimension are randomly selected and stored in a matrix. This matrix is then copied as 
many times as there are different wavelet types being considered (i.e. ten). Next, 1D 
wavelet transforms are applied to the individual vectors (shown as rows) of the subsets 
and the best wavelet type for this subset is determined (see text). (2) Since the subset is 
considered to be representative of the entire Z-dimension of the original data cube, this 
best wavelet type is applied to transform the entire Z-dimension. (3) Compression is 
applied in the Z-dimension (see text). Steps (4) and (5) repeat this procedure for the Y- 
and X-dimension until the final compressed data cube is obtained. (6) This cube is 
analyzed by means of the chemometric method of choice. (7) Zeros are inserted into the 
final results, for example, PCs and score images, at the locations where wavelet 
coefficients were removed during compression. Inverse WTs of appropriate 
dimensionality (e.g. 1D for PCs and 2D for score images) finalize the computations and 
derive the wanted results in the original measurement domain. 
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Figure 8: Flowchart outlining the compression of the Z-dimension; see ( 54 ) for definition 
of total information content and % retained information (Q%). See text for step-by-step 
discussion of the procedure. The same method is applied subsequently to the Y- and X-
dimensions. 
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Use this wavelet to transform all of the cube‟s vectors in the Y-dimension. Next, 

perform compression in the Y-dimension of the original cube.  

(5) Steps 1 and 2 are repeated to find the best wavelet type for the X-dimension (or 

YZ-plane); see comment in step 4. Use this wavelet to transform all of the cube‟s 

vectors in the X-dimension. Next, perform compression in the X-dimension of the 

original cube. 

(6) After the Z, Y, and X dimensions of the original data cube are compressed, the 

chemometric algorithm of choice (here, PCA) is applied. 

(7) Last, zeros are inserted into the compressed chemometric results at the locations 

where wavelet coefficients were removed during compression (see Chapter 2.5). 

This step allows for an inverse WT (iWT) to be applied to these results, thus 

finalizing the computations. After the iWT, the results are now in the original 

measurement domain. In this study, since PCA is used, a 2D iWT and a 1D iWT 

are applied to the score images and principal components (PCs), respectively. 

This procedure can be restricted to steps (4) – (7) for compressing (2D) matrices or to 

steps (5) – (7) if a number of (1D) vectors are compressed. Of course, this procedure 

can be easily expanded to N ≥ 4-dimensional hypercubes.  

The next paragraph discusses how the randomly selected subsets are 

transformed and compressed using different wavelets (steps (1) – (3)). Also, details are 

given about how the two main figures of merit, size and accuracy, are incorporated in the 

selection of the best wavelet for a specific dimension (Z, Y, and X).  

In step (1) (see Figure 7, top left), a representative subset of vectors in the Z-

dimension is extracted and copied as many times as there are wavelet types 

incorporated into the analysis (i.e. ten). All of the vectors in each copy are then 1D 

wavelet transformed, one-by-one, with one of the wavelet types. The resulting vectors 

are stored in the rows of new matrices (see Figure 8 – step (A)). In step (B), the absolute 

values of a matrix are added column-wise; each column corresponds to a particular 

wavelet coefficient. Absolute values are added to avoid having large positive and 

negative wavelet coefficients from canceling. As was discussed in Chapter 2.5, both 

large positive and negative wavelet coefficients are considered relevant and need to be 

preserved to accurately represent the data. The size of the resulting sum of absolute 

values is an indication of how important a certain wavelet coefficient is for a particular 

subset and, also, for the entire Z-dimension. Step (C) copies this vector and orders its 
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elements in decreasing order. To assess the relative importance of the individual vector 

elements, step (D) adds up all vector elements, thus resulting in a value labeled “total 

information content”. The user has to define how much (Q%) of the “total information 

content” shall be retained during the compression (step E), i.e.:  

% retained information = Q% · total information content 

( 54 ) 

Once “% retained information” is derived, a threshold indicating the least relevant 

wavelet coefficient is determined (step (F)). This is done by first adding the elements of 

the sorted vector that was determined in step (C). The last added element that makes 

this sum ≥ “% retained information” is the smallest relevant element. This element is 

named TH (for threshold, see step (F)). In step (G1) and (G2) the elements of the vector 

determined in step (C) are compared to the threshold TH (step (F)). Values smaller than 

TH indicate irrelevant wavelet coefficients and will later be removed from the wavelet 

transformed data cube. In order to preserve this information, irrelevant elements of this 

vector are set to zero. The last step (H) counts how many relevant (non-zero) wavelet 

coefficients have been found. The number of non-zero elements represents the size of 

the compressed cube for the specific dimension that is being analyzed. After performing 

steps (A) – (H) for all ten copies of the test matrix (selected subset), the best wavelet 

type for this dimension is determined.  

The figure of merit „size‟ will be derived from the information gained in step (H) 

(see Figure 8):  

0tscoefficien wavelet    waveletsize_Z #i    with:   101i  

( 55 ) 

Since the same percentage Q% ( 54 ) is used for all wavelet types, the wavelet retaining 

the smallest number of non-zero wavelet coefficients ( 55 ) is considered the best 

regarding compressed cube size. This procedure (A) – (H) is performed for all ten copies 

of the test matrix.  

Now, a figure of merit for accuracy is defined which is based on the results 

obtained during step (G2) in Figure 8. There, wavelet coefficients, or more precisely, 

positions in the wavelet transforms, have been classified as relevant („x‟) or irrelevant 

(„0‟). Entire columns in the matrix shown in Figure 8 (top left) that correspond to „0-

positions‟ in step (G2) are set to zero; this is essentially a denoising step. Following this, 

the individual rows of all ten matrices are 1D inverse wavelet transformed using the 
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same wavelet that was used for the previous transforms. This step produces the 

denoised versions of the original vectors. These denoised vectors are approximations of 

the original vectors. Next, the original vectors are compared to their denoised 

counterparts. The better a certain wavelet type is able to model the original vectors, the 

closer the denoised vectors will be to the originals. Thus, a figure of merit for assessing 

the accuracy of a specific wavelet is defined which utilizes squared residuals: 

elements vector of  #     and     

ectordenoised_v  -  ectororiginal_vwaveletaccuracy_Z
vectors test all

,,1101

2

 ni

nni
n

 

( 56 ) 

Squared values are used to prevent positive and negative differences from canceling.  

Since ten wavelet types have been employed size_Z  ( 55 ) and accuracy_Z  

( 56 ) are vectors containing ten elements each. In order to make both figures of merit of 

comparable weight, both need to be normalized. The following procedures, ( 57 ) and 

( 58 ), will ensure that the smallest element, indicating the optimum wavelet type, for 

both size_Z  and accuracy_Z  will have a value of one. The larger elements within 

size_Z  and accuracy_Z  correspond to the less appropriate wavelets and will result in 

values much smaller than one. Thus, the figures of merit for size ( 55 ) and accuracy 

( 56 ) for all 101i  wavelet types are computed to be: 

i
i

waveletsize_Z

size_Z
wavelet_ZMerit_sizeFigure_of_

min
 

( 57 ) 

i
i

waveletaccuracy_Z

accuracy_Z
waveletracy_ZMerit_accuFigure_of_

min
 

( 58 ) 

For some applications, such as data storage, small cube size may be more 

advantageous than high accuracy. In other applications, this may be the opposite. Thus, 

a weighing of the two figures of merit is introduced by defining a final selection criterion: 
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i

i

waveletracy_ZMerit_accuFigure_of_     _accuracy importance                     

wavelet_ZMerit_sizeFigure_of_             _sizeimportanceiselector_Z
 

with:  %100_sizeimportance_accuracyimportance  

( 59 ) 

The ten elements ( 101i ) of selector_Z  have values between zero and one. The 

largest element indicates the optimum wavelet type regarding a user‟s size and accuracy 

preference. Now the best wavelet for the Z-dimension has been determined and will be 

used to transform all of the vectors in the Z-dimension (see step (2) in Figure 7). 

Compression can be performed quickly if the decision regarding relevant and irrelevant 

wavelet coefficients utilizes the results found during wavelet selection. For each wavelet 

type, this classification has been determined in step (G2) (see Figure 8). Since the 

results are different for each wavelet, it is important to use the classification belonging to 

the chosen wavelet. Because the test set is considered to be representative of the entire 

dimension, the same selection of relevant wavelet coefficients can be applied to the 

entire Z-dimension of the original data cube. In other words, a „0‟ found in step (G2) of 

Figure 8 indicates an XY-plane (Figure 7, top right) that will be removed from the data 

cube after wavelet transformation. Entire planes have to be removed from the cube in 

order to prevent mixing of wavelet coefficients in different vectors. 

After compressing the Z-dimension, the same procedure is applied to the cube‟s 

Y-dimension (step (4), Figure 7) and X-dimension (step (5), Figure 7). After all 

dimensions are wavelet transformed and compressed, the resulting smaller data cube is 

then processed by the chemometric method of choice (step (6), Figure 7). After finalizing 

chemometric computations, zeros are filled into the positions where wavelet coefficients 

have been removed (=uncompressing) and an inverse WT is performed using the 

correct wavelet to bring the final results into the original measurement domain (step (7), 

Figure 7).  

This algorithm allows for the quick determination of an optimum wavelet 

combination for N-dimensional data sets. As will be presented in Chapter 3.3, there are 

typically several appropriate combinations. It should be stated that the wavelet 

combinations selected by this algorithm are typically sub-optimal since the choice of 

wavelets is based on a randomly selected sub-set of the original data. If, for instance, at 

a given compression level, the subset were to contain 100% of all the available data 
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vectors, then the selected wavelet combination is considered optimum. Using all data 

vectors as the subset needs to be avoided since this would not benefit computation 

speed. Again, the test subset needs to be large enough to be representative of the entire 

data set, yet be as small as possible to keep computation efforts to a minimum. 

Nevertheless, deviations from the true optimum wavelet combination are possible. The 

results that will be presented in Chapter 3.3 demonstrate the capabilities of this 

methodology. Wavelet combinations chosen by the algorithm clearly contain strong 

advantages over combinations that are never selected. Compared to previous wavelet 

compression strategies [ 36 ], [ 37 ], [ 55 ], this algorithm invests some additional 

computation time for selecting an appropriate wavelet combination. This additional time 

is still overcompensated by the amount time that is saved by performing chemometric 

calculations on compressed data sets. The advantage of this proposed selection method 

is that it provides enhanced model quality and minimum data set sizes although it loses 

some computation speed due to the selection process.  

 

3.2 Experimental 

 

Two different data sets acquired with two different experimental setups are used 

to develop and evaluate this algorithm. The main purpose of using these different data is 

to show that the algorithm is applicable for different data types.  

Data set #1 is a 3-D data cube that was acquired with a mid-infrared (3 - 5µm) 

imaging sensor described in previous publications [ 56 ] - [ 59 ]. The dimensions 

(X (spatial), Y (spatial), Z (spectral)) of this data set are (318, 254, 35), i.e. 318 x 254 = 

80772 rather short spectra of 35 wavelength positions. The purpose of this experiment 

was to demonstrate the feasibility of passive remote sensing and to prove the ability to 

classify different materials based on their respective IR emission spectra. In this study, 

IR emission spectra of plastic furniture in a natural setting were acquired. A PCA was 

applied to these spectra and red-green-blue (RGB) encoded score images were 

calculated using multivariate image analysis (MIA) [ 16 ] (refer to Chapter 1 and 

Figure 2). These RGB images show different materials being represented as different 

colors (the corresponding RGB score images were published in [ 36 ]). 
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Data set #2 (X = 64, Y = 64, Z = 311) was acquired by means of FTIR 

microscopy (Bruker Optics Vertex 70 coupled with a Bruker Hyperion 1000 IR/VIS 

microscope featuring a 64 x 64 pixel MCT focal plane array, Santa Barbara Focal Plane, 

Inc). The sample used in this data set is a piece of Parafilm®. Its RGB score image was 

calculated by MIA [ 16 ] (also see Figure 2 and related discussion) and is shown in 

Figure 9. This data set contains fewer spectra than data set #1, but its spectra are much 

longer covering a wavelength range of ~1450 – 850 cm-1. In the following section the 

consequence of a longer wavelength range will be shown. Both data sets were mean 

centered [ 9 ] prior to all calculations to remove any common background that may be 

present. 

 

3.3 Results and Discussion 

 

3.3.1 Finding a Representative Test Set Size 

 

First, it is required to determine how many test spectra (N% of the total number 

of vectors in each dimension) are needed to reliably represent the overall information 

contained in a data cube (refer to (1) in Figure 7). The number of test spectra must be 

large enough for the test set to be representative, yet be as small as possible in order to 

limit computational expense for finding the best wavelet. To determine the appropriate 

size of the test subset, several preliminary analyses were performed using different 

percentages of the available test spectra. These tests were performed on data set #1 at 

an accuracy/size ratio of 50/50 ( 59 ) and a rather low compression level (Q% = 90% 

retained information ( 54 )).  

As a benchmark, 100% of the test spectra were chosen to determine the 

optimum wavelet combination at a specific compression level. Since all vectors were 

used for this analysis the resulting wavelet combination represents the optimum wavelet 

combination for this data set at a compression level of Q% = 90%. In this particular case, 

computational expense is of no importance because the goal is to simply find the 

optimum combination. The optimum combination for data set #1 was found to be 

X dim. = Daub4, Y-dim. = Daub12 and Z-dim. = Daub8. This combination is labeled  
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Figure 9: RGB score image of data set #2 (Parafilm® data cube) acquired by means of 
MIA [ 16 ]. On the left is a piece of Parafilm®; empty background is shown on the right. 
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opt_WT(4, 12, 8). As expected, this optimum wavelet combination was reproducible after 

several test trials.  

Next, N% = 50%, 25%, 10% and 5% of the available test vectors were randomly 

chosen and used as the subsets in the algorithm. In order to assess the reproducibility of 

the selection routine, the algorithm was performed 50 times for each of the subset sizes. 

As less test vectors are included in the subset, deviations from the “benchmark” 

combination (opt_WT(4, 12, 8)) are used as an indication of a test set becoming too 

small to be representative. Histograms are plotted (Figure 10) to display how many times 

the different wavelet types were chosen after the 50 calculations. At N% = 50% the 

optimum combination was selected 25 times out of the 50 trials. Another wavelet 

combination (X-dim. = Daub4, Y-dim. = Daub8 and Z-dim. = Daub8 or WT(4, 8, 8)) 

occurred 14 times showing that competition between the wavelets exists when 

implementing smaller test subsets. This competition indicates that more than one good 

wavelet combination is possible. 

As the percentage of test vectors included in the subset decreases, more wavelet 

types are chosen and the optimum wavelet combination is found less frequently. For 

instance, N% = 25%, WT(4, 8,  8) occurred 15 times and opt_WT(4, 12, 8) occurred 10 

times. For N% = 10%, WT(4,  8,  8) was chosen 13 times and opt_WT(4, 12, 8) was 

found 7 times. Based on these results, N% = 10% was chosen as the appropriate size of 

the subset to be tested by the algorithm. Using N% = 5%, a much broader distribution of 

wavelet types for all dimensions was observed. Such a limited subset size was 

considered to be too small to be representative of the data cube. 

 

3.3.2 Impacts of Wavelet Combinations on Chemometric Models 

 

The main goal of this study is to select an optimum combination of wavelets 

regarding computation speed, model accuracy and compressed data set size. The task 

at hand is to pick one out of 10 x 10 x 10 = 1000 possible wavelet combinations that 

ensures good performance. Further, this selection must be performed without 

introducing large computational burdens.  

Based on the approach of this algorithm, wavelet combinations that are not 

selected are considered to be poor choices of wavelets in which to represent the data. 

Since this algorithm analyzes a subset of the original data, the chosen wavelet  
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Figure 10: Histograms displaying the results of the wavelets chosen for each dimension 
of data set #1. Here, the algorithm picked N% = 50% (left) and 10% (right) test vectors 
and was performed 50 times for each case (see text). A compression level of 90% 
retained information was applied here. 
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combination is an estimate of the true, optimum combination. Thus, selected 

combinations are considered to be near-optimum. In other words, the combinations that 

are chosen by the algorithm are not necessarily the best (optimum) combinations; 

however, as shown below, they are superior to the combinations that are never selected. 

Several parameters (figures of merit, see Chapter 3.1) will be analyzed to determine 

whether or not a selected wavelet combination provides results that are superior to those 

obtained using a non-selected combination. In this section, residual images are 

calculated using both selected and non-selected wavelet combinations and these 

images are compared. Also, a comparison is given of the compressed and 

uncompressed principal components (PCs, see Chapter 2.3) obtained with different 

wavelet combinations. 

Speed: To evaluate the increase in computation speed, an acceleration factor is 

defined:  

 WTs)inversecube compressed of analysisncompressioiondeterminat waveletcomp.time(

analysis) alconventioncomp.time(

on_factoraccelerati

( 60 ) 

Figure 11 shows a plot of the acceleration factors of the two data sets versus the amount 

of retained information (Q%). As the amount of retained information increases the 

acceleration decreases. Data cubes that are compressed less retain more information, 

therefore they are larger in size and more time is needed to complete the desired 

computations. For each data set, ten acceleration factors were calculated at each 

compression level (Q% = 95% - 75%). More than one acceleration factor was calculated 

at each compression level since it is possible that different wavelet combinations can be 

determined during each trial. The different combinations can lead to slightly different 

computation times. Therefore, average acceleration factors are determined and plotted 

along with their corresponding error bars (Figure 11). Error bars were obtained by 

calculating the standard deviation from the ten calculated acceleration factors. An 

acceleration factor of ~21 was reached for data set #2 whereas for data set #1 an 

acceleration factor of only ~2.4 was obtained. The considerably larger acceleration factor 

for data set #2 can be explained by the following formula. This formula relates the 

amount of floating point operations (flops) required to compute a SVD to the dimensions 

of the data matrix NKΧ  [ 38 ]: 
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Figure 11: Acceleration factors ( 60 ) obtained for the two data sets versus the amount 

of retained information Q% (see ( 54 )). As expected, the more information that is 
retained, the less acceleration that can be achieved. For both y-scales, the dash dotted 
lines indicate acceleration factor = 1. In order for the algorithm to be advantageous, the 
acceleration needs to be > 1. Error bars were obtained by calculating the standard 
deviation from the multiple acceleration factors (see text). 
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32 814 NNKNK  SVD flops Χ  

( 61 ) 

The dimensions (X, Y, Z) of the uncompressed data sets are (see Chapter 3.2): 

#1 = (318, 254, 35) and #2 = (64, 64, 311). After unfolding these cubes into data 

matrices their dimensions NK  become (80772 x 35) and (4096 x 311) for data sets 

#1 and #2, respectively. K  is the total number of spectra contained in the original data 

cube and N  is the number of wavelength positions for each of the spectra. Although 

data set #1 is much larger in K  than data set #2, data set #2 is much longer in the 

spectral dimension 1#2# NN . Therefore, data set #2 requires many more flops 

(
9108.5#2flops ) to perform a SVD ( 61 ) than data set #1 (

9104.1#1flops ). 

Hence, a slight compression in the spectral dimension ( N ) for data set #2 can result in 

potentially higher acceleration factors compared to data set #1 since N  decreases in 

second and third order ( 61 ); this was observed (see Figure 11). 

Compressed data set size: To assess how much compression is achieved for a data 

set at a given compression level, size is determined by calculating the total dimension of 

the final compressed cube: 

dim_Zdim_Ydim_Xessed_cubesize_compr  

( 62 ) 

Three different accuracy/size ratios ( 59 ) were chosen (90/10, 50/50 and 10/90) to 

demonstrate the algorithm‟s ability to tailor the optimum wavelet combination according 

to the selected ratio. The 90/10 ratio has a strong emphasis on accuracy whereas size is 

of small importance. At 50/50 there is an equal emphasis on both figures of merit and 

10/90 has a slight emphasis on accuracy and a strong emphasis on size. In order to 

check the reproducibility, all calculations were repeated 25 times at each ratio using data 

set #1. 25 essed_cubesize_compr  ( 62 ) values for each accuracy/size ratio were 

averaged to give a total of three essed_cubesize_compr  values. These values along 

with their respective error bars are plotted in Figure 12. These results show a trend 

following the expectations regarding cube size; however, in this limited study, the 

differences appear not to be significant. 

Accuracy: A measure for information preservation is defined to determine how much 

approximation is introduced by the compression step. Referring again to Chapter 2.5,  
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Figure 12: Average size ( 62 ) and variance  ( 63 ) of compressed data set #1 versus 

accuracy/size importance. Error bars are obtained by calculating the standard deviation 
for each data trial (see text). 
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this step is essentially a denoising process and is required to properly perform the 

inverse transform. Next, a 3D inverse WT is completed using the same hybrid wavelet 

that was used during compression. Now, the original and reconstructed data cubes can 

be compared. All deviations are due to approximations made during compression. To 

measure the model accuracy achieved with each of the different accuracy/size ratios, 

the following variance  is calculated ( 63 ). 

1-Zdimension_Ydimension_Xdimension_

element_belement_a

variance

elements all

1i

ii

2

 

( 63 ) 

In ( 63 ) ielement_a  indicates the 
thi  element of the original data cube; ielement_b  is 

the thi  element of the reconstructed data cube. What is expected is that when a strong 

emphasis is placed on accuracy (i.e. accuracy/size ratio = 90/10), small variance  

values should be calculated. These values should increase as more emphasis is taken 

away from accuracy and placed on compressed data set size (i.e. accuracy/size ratio = 

10/90). These computations were performed only to assess the quality of the 

compression-based models; computation speed was of no importance here.  

In 25 repetitions, the average variance  values calculated for each of the three 

accuracy/size ratios are plotted in Figure 12. The error bars indicate the corresponding 

standard deviations. Again, average variance  values are calculated since it is possible 

for different wavelet combinations to be determined by the algorithm during each 

repetition. The different wavelet combinations can result in slightly different variance  

values. According to Figure 12 a trend between variance  and size is evident; however, 

two ratios may not be significantly different from each other. 

Now we compare results obtained with a wavelet combination selected by this 

novel algorithm to a combination that was never selected. The benchmark is a 

conventionally computed PCA which does not include a compression step. This 

comparison is based on so-called „residual images‟ which contain information removed 

from the data sets during compression. Also, principal components (PCs) obtained from 

the compressed data sets will be compared to those calculated using the uncompressed 

data. 
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It is demonstrated that the proposed wavelet algorithm selects optimum wavelet 

combinations and rejects less optimal wavelets. Wavelet combinations that are never 

selected by the algorithm are considered to be non-optimal. To compare the 

performance between optimal vs. non-optimal combinations, representative 

combinations are manually chosen based on the histograms in Figure 10 and Figure 13 

for data sets #1 and #2, respectively. Again, wavelet combinations returned by the 

algorithm are considered to be better for accurate data representation and compression 

than non-selected combinations. 

At 90% retained information ( 54 ) using 50/50 accuracy/size weighing, the 

combination WT(4, 8, 8) is chosen as an optimal combination for data set #1 since it is 

selected more often than any other wavelet combination (Figure 10). A non-optimal 

combination for data set #1 is selected to be WT(2, 10, 6) because neither of these 

wavelets are picked for the corresponding data set dimensions (Figure 10). For data set 

#2, an optimal combination of WT(2, 4, 2) is chosen for a compression level of 80% 

retained information and 50/50 accuracy/size weighing. A non-optimal combination for 

data set #2 is selected to be WT(6, 12, 4).  

Optimal and non-optimal wavelet combinations have different capabilities of 

preserving information within a data set at a given compression level. This is visualized 

in Figure 14 by means of residual images derived for data set #1. A residual image is 

computed in three steps: first, a reconstructed data cube is subtracted from the original 

cube (compare discussion leading to ( 63 )). Next, all elements of this resulting cube are 

squared to prevent positive and negative elements from canceling in the next step. 

Finally, all frames of this cube are added up along the Z-dimension resulting in a residual 

image. This procedure was performed after compression utilizing both an optimal 

(Figure 14, left) and non-optimal (Figure 14, right) hybrid wavelet combination. In both 

images, dark areas represent points of small differences between the original and 

reconstructed cube; white areas represent strong deviations. It is obvious that using a 

non-optimal combination introduces larger deviations from the original data than when 

using an optimal combination. Unlike the image on the left, the right image contains 

several noticeable white areas which provide evidence of various structures (refer to 

Fig. 3 (top left) in ref [ 36 ] and Fig. 2 in ref [ 60 ] for the original thermal (or IR) image). 

Thus, at the same compression level, the non-optimal wavelet combination cannot 

preserve as much information as the optimal combination. 
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Figure 13: Histograms of the wavelets chosen for each dimension of data set #2. From 
these histograms it can be deduced that one optimal wavelet combination is WT(2, 4, 2). 
The wavelet combination WT(6, 12, 4) is one that is never chosen by the algorithm, i.e. a 
non-optimal combination. A compression level of 80% retained information is applied 
here. 
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Figure 14: Residual images of data set #1; see text (refer to Fig. 3 (top left) in [ 36 ] and 
Fig. 2 in [ 60 ] for thermal images of the shown scene). The image on the left was 
obtained by using the optimal wavelet combination WT(4, 8, 8) chosen by the algorithm 
( N% = 10% test vectors, 50/50 accuracy/size ratio, Q% = 90% retained information 
( 54 )). Darker regions in the images represent areas of small differences between the 
compressed model and the original data. Lighter regions indicate areas of stronger 
differences. The right image was generated from a wavelet combination WT(2, 10, 6) not 
selected by the algorithm (under the same compression conditions as the left image). 
There are noticeable advantages (smaller deviations) when using the selected (optimal) 
hybrid wavelet (left) as opposed to using a combination (right) never chosen by the 
selection algorithm. 
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To further assess the effects a wavelet combination has on a chemometric 

model, the PCs obtained from a conventional PCA are compared to their compression-

based counterparts. The compression based PCs were obtained from data set #1 by 

both an optimal (Figure 15, left) and non-optimal (Figure 15, right) wavelet combination. 

There is enhanced agreement between each PC when the optimal combination is used. 

However, for the non-optimal combination, stronger deviations become visible in the 2nd 

and 3rd PCs (indicated by arrows). A similar comparison is made for the first three PCs of 

data set #2 and again good agreement between the first two PCs is observed for the 

optimal combination (Figure 16, left). However, for the third PC more deviations are 

present. These deviations are attributed to the greater compression level (80% retained 

information) used during evaluation of data set #2. When the non-optimal wavelet 

combination is applied (Figure 16, right) additional features are introduced in the first two 

PCs (indicated by arrows).  

These examples demonstrate the superior results obtained when using an 

optimal hybrid wavelet combination. This combination is automatically determined by 

means of this new selection algorithm. 

 

3.4 Conclusions 

 

Incorporating wavelet transform compression into chemometric data analyses is 

an efficient and practical method to compress large data sets and accelerate 

computations. As a result, decreased data storage requirements, reduced overall 

computation times, and enhanced time resolution, in chemical sensing, can be achieved. 

Hybrid wavelet transforms have been implemented to further fine-tune data compression 

and model accuracy. However, even though hybrid wavelet transforms can be beneficial 

for data analysis purposes, one main question still remained: which wavelet combination 

is best for a data set regarding computation speed, compressed data set size, and 

accuracy of the computed chemometric models? 

In this research, an algorithm is proposed that selects the optimum wavelet 

combination based on a desired compression level and two figures of merit: model 

accuracy and resulting data set size. It was found that test subsets comprising of only 

10% of the data vectors contained within a certain data set dimension are considered to  
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Figure 15: Plots comparing the first three principal components (PCs) for data set #1. 
The left column is a comparison between the PCs obtained from the conventional PCA 
method with no applied compression and the PCs obtained by using an optimal wavelet 
combination. A 50/50 accuracy/size ratio and a compression level of 90% retained 
information ( 54 ) were used for data set #1. The right column shows a similar 
comparison, but instead, using PCs obtained from a non-optimal wavelet combination. 
Arrows indicate stronger deviations from the true PCs when a non-optimal wavelet 
combination is utilized. 
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Figure 16: Plots comparing the first three principal components (PCs) for data set #2. 
The left column is a comparison between the PCs obtained from the conventional PCA 
method with no applied compression and the PCs obtained by using an optimal wavelet 
combination. A 50/50 accuracy/size ratio and a compression level of 80% retained 
information ( 54 ) were used for data set #2. The right column shows a similar 
comparison, but instead, using PCs obtained from a non-optimal wavelet combination. 
Arrows indicate stronger deviations from the true PCs when a non-optimal wavelet 
combination is utilized. 
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be representative of the entire, original data set. From these test subsets, the selection 

algorithm is capable of choosing optimum wavelet combinations that are used to 

transform and compress the original data. Once the optimum wavelet for a certain 

dimension is found it is applied to all the vectors in the corresponding dimension of the 

original data set. The algorithm progresses dimension-wise until the optimum wavelets 

for all dimensions are determined and applied.    

In repeated test runs, it is possible for several wavelet combinations to compete. 

When this occurs, the shorter wavelets are used since they perform WTs (and iWTs) 

faster. However, all of these different combinations are still considered to be suitable. 

Overall computation times are decreased with this algorithm even though the initial 

preprocessing step requires additional computation time. These additional computations 

are later over-compensated since chemometric methods are applied to smaller, 

compressed data sets. Some of the studies produced acceleration factors up to ~22.   

Since the algorithm chooses a wavelet combination based on a representative 

sub-set, only the accelerated methodology is potentially sub-optimal. Nonetheless, the 

results demonstrate that this is an effective technique. Two separate data sets from two 

different experimental setups are studied to demonstrate that the algorithm is applicable 

to different data types. Results show that this optimum wavelet method increases 

acceleration factors for both data sets. Residual images are generated to display the 

enhanced accuracy of the wavelet combinations chosen by the algorithm as opposed to 

the combinations never selected by the algorithm. Also, a comparison of principal 

components (PCs) is performed to demonstrate that the algorithm selects wavelet 

combinations that introduce fewer deviations into the chemometric models. 
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Chapter 4 

 

Accelerating Kernel Principal Component 

Analysis (KPCA): Applications to Spectroscopic 

Imaging 

 

Common linear algorithms such as principal component analysis (PCA) 

(Chapter 2.3) are frequently used to model chemical systems. These linear methods 

have been successful for many applications but are often ill-suited for modeling 

nonlinear processes. For complex data, where nonlinear behavior is often abundant, a 

method named „kernel principal component analysis‟ (KPCA) (Chapter 2.4) [ 39 ], [ 40 ] 

has been developed and applied in a number of fields. Examples include nonlinear 

process monitoring for failure detection in waste water treatment plants [ 41 ] - [ 43 ], 

data denoising [ 44 ], recognition of handwritten digits [ 45 ], and classification of genetic 

data [ 46 ]. Despite the growing popularity of KPCA, its drawback is a high demand for 

computational resources; namely, memory and processing speed. As a consequence, 

calculations on common personal computers become unfeasible for many KPCA 

applications.  

In this chapter, an algorithm is presented that performs two-dimensional (2D) 

wavelet compression of spectroscopic imaging [ 6 ] - [ 8 ] data during KPCA calculations. 

Compared to the aforementioned compression algorithms, the main technical challenge 

of this proposed method is that handling multi-gigabyte data sets has to be avoided 

during all points of the computations. This requires a novel approach which combines 

data handling, compression, and data analysis. In addition, a new way of mean-

centering has to be developed that is compatible with this compression procedure (see 

Chapter 4.1.2).  

This research demonstrates how the introduction of data compression enables 

the routine application of KPCA to large data sets (Chapter 4.1), as acquired, for 

example, in spectroscopic imaging. Chapter 4.2 briefly discusses two experimental 
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setups that have been used for acquiring large real-world data sets. In Chapter 4.3, 

results are presented regarding the figures of merit „reduction in memory requirements‟, 

„quality of compression-based models‟, and „gain in computation speed‟. The KPCA 

algorithm itself is outlined in Chapter 2.4. There, it is also shown how the KPCA 

algorithm compares and contrasts to PCA. 

The computational methods discussed in the following chapter have been 

developed and implemented into C++ source code. All of the results presented in 

Chapter 4.3 were obtained using this code. All calculations were performed under Linux 

on a 64-bit Xeon machine with 32 GB of RAM utilizing an Intel® C++ compiler (version 

9.1.049).  

 

4.1 Kernel Principal Component Analysis (KPCA) Compression 

Method 

 

4.1.1 Incorporating Data Compression into Calibration 

 

Regardless of whether the large or the small covariance matrix is used (see 

Chapter 2.4), PCA can only return a number of principal components that is either equal 

to the number of variables (wavelength positions) or to the number of samples (spectra), 

whichever is smaller. Thus, it is computationally more efficient to always use the smaller 

covariance matrix when applying PCA. However, the “large” covariance matrix (see 

( 39 ) in Chapter 2.4) must be used when applying KPCA. The reason for this is that 

KPCA can extract a number of principal components that exceeds the number of 

variables if the number of samples is greater [ 39 ], [ 40 ]. This is a significant advantage 

KPCA has over PCA. This potentially larger number of principal components KPCA is 

capable of extracting could possibly result in a more representative model for complex 

data sets. 

One of the main steps of KPCA calibration is to solve an eigenproblem for a 

covariance matrix, the so-called Gram matrix, K  ( 47 ), ( 48 ). K  is built using 

measurement spectra that have previously been mapped from the „input space‟ X  into 

the „feature space‟ H  (see ( 40 ), ( 41 ) and related discussion). As outlined in Chapter 

2.4, K  has dimensions MM  with M  being the number of (here) spectra.  
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Since spectroscopic imagers acquire thousands of spectra in parallel, memory 

requirements and the number of floating point operations needed to diagonalize K  

become unrealistic on a personal workstation. For example, one spectroscopic imager 

described in Chapter 4.2.2 features a focal plane array detector of 320 x 256 pixels. This 

setup produces data cubes (see Figure 17 top) that contain 320 x 256 = 81,920 spectra. 

The resulting Gram matrix K  is of dimensions 81,920 x 81,920, or ~50 GB assuming 

double precision (64 bit per element) is used. New approaches are required that enable 

diagonalization of such large matrices on personal computers within reasonable time. 

Already available wavelet-based compression methods [ 1 ], [ 36 ], [ 37 ], [ 55 ] are not 

completely suitable for this study since they load the full data set first then compress it 

while holding all information in memory. Here, this must be avoided at all times due to 

the large data set sizes (i.e. Gram matrices ( 48 )). The novel approach presented in this 

study is based on wavelet-compressing the Gram matrix K  ( 48 ) „on the fly‟ while it is 

generated ( 47 ). All wavelet types could be utilized; however, here, wavelets of the 

Daubechies family [ 19 ], [ 52 ] (see Chapter 2.5) are implemented. They enable a 

perfect reconstruction of the data in the absence of compression and thus ensure that all 

information is transferred into the wavelet domain. A short overview of the novel wavelet-

based compression algorithm is given first, followed by a detailed discussion (also see 

Figure 17 and Figure 18). 

To make KPCA calculations possible on common workstations, 2D wavelet 

compression of the Gram matrix K  ( 48 ) is performed. The compression procedure 

begins by first compressing the X-dimension followed by compression of the Y-

dimension of K . In order to ensure a meaningful wavelet compression in the X-

dimension [ 1 ], [ 36 ], [ 37 ], [ 55 ], the same wavelet coefficients in the X-direction have 

to be removed from all rows of K . If this is not ensured, the subsequent WTs in the Y-

dimension would incorporate wavelet coefficients belonging to different positions of the 

X-dimension WTs. This would cause the final result to be meaningless. In order to 

determine which irrelevant wavelet coefficients can be removed from all rows, the 

algorithm has to wavelet transform each row twice. This two step procedure is 

implemented in order to keep only one vector in memory at a time; this way, very large 

(Gram) matrices can be handled. During the first step, the algorithm determines which 

wavelet coefficients are relevant for all rows and which are irrelevant. In the second step, 

K  is wavelet compressed row-by-row by removing the wavelet coefficients that were  
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Figure 17: From a spectroscopic image cube (top; refer to Chapter 4.2.2) a Gram matrix 

K  ( 47 ), ( 48 ) is derived (bottom, refer to Chapter 2.4). Since Gram matrices are often 
too large to be handled routinely, an algorithm has been developed that performs data 
compression and avoids holding such large matrices in memory (Figure 18). From highly 
compressed Gram matrices an approximation of the KPCA model is computed (see 
text). 
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Figure 18: The main steps of the compression algorithm are: (i) After determining which 
wavelet coefficients are to be preserved in the X-dimension, one row of the Gram matrix 
is built ( 47 ) at a time. This row is then compressed using a 1D WT and stored in an 

intermediate matrix comp_XK . This is performed for all remaining rows, with each row 

being compressed the same way. Although comp_XK  may be large in the Y-dimension 

memory requirements have been reduced to a practical level. (ii) Next, each column of 

comp_XK  is compressed using a 1D WT in the Y-dimension. This results in the final 

compressed Gram matrix comp_XYK . This compressed Gram matrix is diagonalized by an 

EVD (see ( 48 ) in Chapter 2.4.1 and ( 71 ) in Chapter 4.1.1) to obtain its eigenvalues i  

and eigenvectors iα  ( 48 ). (iv) In order to derive eigenvectors in the uncompressed 

feature space, two steps are required. First, a de-compression step is applied by 
inserting zeros at positions where wavelet coefficients were previously removed. Then, a 

1D inverse wavelet transform is applied to all eigenvectors iα  individually. The resulting 

vectors are approximations of the true but often inaccessible eigenvectors. The 

eigenvalues i  in the wavelet domain of the feature space H  ( 40 ) and the feature 

space are equal. 
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found to be irrelevant in the previous step. This two step procedure has been 

implemented in order to keep only one vector at a time in memory; this way, very large 

matrices can be handled. The resulting compressed rows are stored in an “intermediate 

matrix” comp_XK  (Figure 18) which is much smaller than K  and thus can be held in 

memory.  

The same procedure is applied to the Y-dimension. The first step wavelet 

transforms the columns of the intermediate matrix one-by-one and determines which 

wavelet coefficients can be removed from all columns. The second step goes back to the 

intermediate matrix comp_XK  (Figure 18), wavelet transforms its columns again and 

performs the compression by removing the irrelevant wavelet coefficients. This 2D 

wavelet compression results in the final compressed Gram matrix (Figure 18, bottom 

left). The compressed Gram matrix comp_XYK  is then diagonalized to derive its 

eigenvectors iα  and eigenvalues i  required for building a KPCA model ( 44 ), ( 48 ), 

( 51 ), ( 52 ). 

Finally, a decompression step utilizing an inverse WT is applied to the 

eigenvectors obtained in Step iii of Figure 18. This translates the KPCA model from the 

compressed feature space into the uncompressed feature space ( 40 ), ( 41 ). Since 

wavelet coefficients were removed during this procedure, the obtained KPCA model is 

an approximation of the true uncompressed model. In the remainder of this section, the 

compression algorithm is discussed in more detail.  

In order to determine which wavelet coefficients in the X-dimension can be 

removed from all rows of K , a figure of merit _rowK  is defined. For this purpose, once 

a row of K  is built, it is wavelet transformed then added to _rowK . Subsequently, the 

next row of K  is transformed and added to _rowK . This process is continued following 

( 64 ): 

KKK     WT_row ofrowwith
th

M

i

i ii
1

 

( 64 ) 

Absolute values are added in ( 64 ) to avoid large positive and large negative wavelet 

coefficients, from different rows of K , from canceling each other out. This would 

incorrectly specify an overall irrelevant wavelet coefficient. Once a row of K  is 
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computed, wavelet transformed, and added to _rowK , it is removed from the 

computer‟s memory. This procedure only requires two vectors of length M  (or its next 

power of two) to be held in memory, i.e. _rowK  and the currently loaded row of K . 

This ensures that the minimum amount of computer memory is being used during the 

compression process, which is essential for enabling routine application of KPCA to 

large data sets. 

If a certain wavelet coefficient is considered to be relevant for a considerable 

number of rows, its corresponding element in _rowK  ( 64 ) will be large. Again, large 

(positive and negative) wavelet coefficients are more relevant than small coefficients 

(see related discussion in Chapter 2.5). If a wavelet coefficient is irrelevant, _rowK ‟s 

corresponding element will be small. Thus, the size of an element of _rowK  is an 

indication of the overall importance of a certain wavelet coefficient in the X-dimension.  

For measuring the relative importance of a certain element in _rowK , each 

element is compared to the sum of _rowK ‟s elements. This sum has been named „total 

information content (TIC) of X‟ (X is used in this definition since we are analyzing the 

rows of K ): 

M

i

i

1

K_row  X  of  TIC  

If an element of _rowK  is small, its contribution to the „TIC of X‟ is negligible and thus 

irrelevant. If, however, an element of _rowK  contributes considerably to the „TIC of X‟, 

the corresponding wavelet coefficient is relevant and must be retained. In order to adjust 

the level of compression, the user determines what percentage ( X%) of the „TIC of X‟ 

will be retained during the compression of the rows of K : 

X of TIC  X%  X ninformatio retained %  

( 65 ) 

The smaller X% is the more compression that is achieved; however, more 

approximation is introduced into the KPCA model at higher compression levels. X% is 

chosen to be within the range of 50 - 90% to assess the effects various levels of 

compression have on the final KPCA results. 

For determining which wavelet coefficients in _rowK  ( 64 ) are relevant and 

which are irrelevant, the following procedure is implemented. First, a copy of _rowK  is 
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made and its elements are sorted in decreasing order. Once the user has determined 

X ninformatio retained %  ( 65 ), a threshold XTH  can be established. XTH  represents 

the minimum relevant wavelet coefficient in _rowK . To calculate XTH ,  the elements of 

the sorted copy of _rowK  are summed. The last added element that makes this sum 

larger than X ninformatio retained %  is considered to be the smallest relevant element. 

This value is used as the threshold XTH . Once XTH  is known, the elements of _rowK  

are then compared to XTH . Elements in _rowK  that are smaller than XTH  indicate the 

positions of the irrelevant wavelet coefficients that will be removed from each row of K  

during compression. The positions of these irrelevant coefficients are saved in a 

separate vector named 1MRemove_X  ( 66 ). The elements of 1MRemove_X  are 

defined as: 

X

th

X

th

   
TH _row  of element  if     

TH _row  of element  if    
Remove_X

K

K

i

i
Mi

1

0
,,1  

( 66 ) 

1MRemove_X  is used for the subsequent compression of K ‟s M  rows, thus deriving 

comp_XK  (Figure 18). Obviously, the number N  of wavelet coefficients preserved by the 

compression of K ‟s X-dimension equals the sum of 1MRemove_X ‟s elements: 

i

M

i

N _XRemove
1

 

( 67 ) 

Now, all information required for the X-compression of K  is available and can be 

performed. For this purpose, all rows are consecutively rebuilt ( 47 ) and wavelet 

transformed. This is done because previously only one wavelet transformed row was 

held in memory in order to limit memory requirements. Next, a row of K  is compressed 

by copying the wavelet coefficients which have been marked by a „one‟ in Remove_X  

( 66 ) into the appropriate positions of the “intermediate” matrix 
NM comp_XK  (where 

MN , see Figure 18); all other elements are discarded. 

 So far, a detailed description of the compression of K  in the X-dimension has 

been given. This procedure involves building and compressing each row of K  one at a 
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time. This approach keeps memory requirements to a minimum because the Gram 

matrix K  is never handled in its entirety, thus the compression process remains 

computationally efficient. Now that all rows of K  are compressed, giving 
NM comp_XK , 

the columns of 
NM comp_XK  will be compressed; hence 2D wavelet compression 

(see Figure 18). 

The next step performs compression of the columns (Y-dimension) of comp_XK  in 

a way similar to the compression of K ‟s X-dimension. This will result in a final 

compressed Gram matrix comp_XYK  (Figure 18). The algorithm copies the columns of 

comp_XK  one at a time, wavelet transforms them, and adds their absolute values to a 

vector named 1M_colK  (compare ( 64 ) and related discussion): 

comp_X comp_X     ofcolumnwithWT_col KKK
th

N

i
iM ii

1

1  

( 68 ) 

After a column of comp_XK  is copied, it is wavelet transformed, added to _colK  and then 

immediately deleted from memory. The next column comp_XK  is then analyzed following 

the same procedure. Note, only the copies of the columns of comp_XK  are deleted; not 

the original columns themselves. This procedure only requires enough memory to store 

both 1M_colK  ( 68 ) and one wavelet transformed column (copy) of comp_XK . Again, 

the amount of required computer memory needs to be kept to a minimum to make the 

calculations feasible.  

Once this procedure is finalized, a threshold YTH  is determined following a 

similar approach leading to ( 65 ) and ( 66 ). Likewise,  Yninformatio retained %  is 

defined as: 

 Yof content ninformatio total   Y% Y ninformatio retained %  

( 69 ) 

with Y%  being the user-selected amount of information to be retained during 

compression of the Y-dimension of comp_XK  (compare ( 65 )). Y%  is typically chosen to 

be within the range of 50 - 90%. A vector named 1MRemove_Y  similar to ( 66 ) is 
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defined to store the positions of the relevant and irrelevant wavelet coefficients in 

1M_colK . The positions of the irrelevant coefficients (indicated by „0s‟, see ( 66 )) in 

1M_colK  correspond to entire columns in comp_XK  that will be removed during 

compression. The sum of Remove_Y ‟s elements: 

i

M

i

L _YRemove
1

 

( 70 ) 

equals the size of the Y-dimension of the final compressed Gram matrix 
NLcomp_XYK . It 

is common that NL . This is explained by the fact that the second compression step 

is performed on an already partially compressed matrix comp_XK . Remove_Y  is now 

used to compress the columns of comp_XK . Each column of comp_XK  is now copied and 

wavelet transformed again one-by-one. These same columns were previously deleted 

from memory after being used in ( 68 ) to determine which wavelet coefficients can be 

removed. Once a column is transformed, every element is compared to the 

corresponding element of Remove_Y . Only when 11 ,M,i Remove_Y  does the 

corresponding wavelet coefficient in the column of comp_XK  get copied, at the 

appropriate positions, into the final compressed Gram matrix 
NLcomp_XY K .  

comp_XYK  then undergoes an eigenvalue decomposition (EVD) ( 71 ) to derive its 

eigenvalues i  and eigenvectors iα  (see Chapter 2.4 and ( 48 )). If NL  then 

comp_XYK  is square and both sets of eigenvectors contained in the matrices V  and 
T

V  

are identical. This is the standard EVD procedure. If, however, NL  the EVD is based 

on a singular value decomposition (SVD) [ 52 ], ( 39 ). 

T

T

VUK

VVK

NNNNNLNL

NNNNNNNN

NL

NL

SVD

comp_XY

EVD

comp_XY

       case

      case

:

:
 

( 71 ) 

If NL , the columns of U  are longer than the rows of 
T

V . Therefore, these columns 

are chosen as the eigenvectors iα  ( 48 ) because more information has been retained in 
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U . If NL , then more information is preserved in the rows of T
V  and, in this case, 

these rows are used as the eigenvectors. Using the „longer‟ set of eigenvectors will 

reduce approximation error. 

Regardless of which set of eigenvectors is used, the compressed eigenvectors 

are still in the wavelet domain. Therefore, the eigenvectors need to be 1) uncompressed 

and then 2) inverse wavelet transformed to bring them back into the original feature 

space. The eigenvectors are uncompressed by inserting zeros into the positions where 

wavelet coefficients were previously removed. The latter information can be retrieved 

from Remove_X  ( 67 ) if T
V  was utilized or from Remove_Y  if U  was selected. 

 

4.1.2 Incorporating Mean-Centering into Wavelet Compressed KPCA 

 

One standard data pre-processing procedure is to mean-center [ 9 ] the data 

vectors contained in the calibration set. Mean-centering removes any common 

background that may be present in the data; this common feature does not contain any 

chemical information. For KPCA, the conventional mean centering approach would 

require computing: 

M

i

ikk
M 1

1~
xxx     for all  Mk ,,1  

( 72 ) 

However, due to the lengths ( 42 ) of these vectors this procedure can often not be 

applied. To circumvent this, a mathematically equivalent technique has been developed 

[ 39 ], [ 40 ], that directly operates on the Gram matrix MMK  ( 48 ) and derives a 

mean-centered version K
~

 ( 73 ):  

MMMMMM 1K11KK1KK
~

 

( 73 ) 

with: 
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MM

M

MM

MM

11

11







1  

( 74 ) 

For large data sets (i.e. large M ; see Chapters 4.2.1 and 4.2.2), implementing ( 73 ) 

can require multiple gigabytes of memory. Therefore, a new algorithm is derived here 

that enables the element-wise mean-centering of K  and thus avoids handling multiple-

gigabyte matrices.  

 First term on the right-hand side of ( 73 ): One element of the Gram matrix K  is 

derived by means of ( 47 ) and ( 50 ).  

 Second term: All rows of K1M  are equal because the columns of K  are multiplied 

with rows of M1  ( 74 ) which contain identical elements. Thus, calculating one row of 

K1M  is sufficient for element-wise mean centering. This vector of length M  is 

denoted _vectorMeanCenter . Its elements are determined by performing dot 

products of the first (or any) row of M1  ( 74 ) and the corresponding columns of K : 

 ) 50 ( equ. kernels;polynomial for

:with_vectorMeanCenter
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j
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kj
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( 75 ) 

 Third term: M1K  is the transpose of K1M  because M1  ( 73 ) has the same value 

at each position ( 74 ) and K  is symmetric. While K1M  consists of identical rows, 

M1K  consists of identical columns and these rows and columns are identical 

vectors. Thus, _vectorMeanCenter  ( 75 ) can also be used to incorporate the 

contribution of M1K  to the mean centering process.  

 All elements of the fourth term MM 1K1  are identical. This element is determined 

by computing the dot product between K1M_vectorMeanCenter  ( 75 ) and a 

column of M1  ( 74 ). Since all columns of M1  are identical, only one value, referred 
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to as _numberMeanCenter , needs to be determined in order to gain the complete 

information contained in MM 1K1 : 

M

k

M

j

kj

M

k

k

M

M

1 1
2

1

,
1

1

xx

 _vectorMeanCenter_numberMeanCenter

 

( 76 ) 

In conclusion ( 47 ), ( 50 ), ( 73 ) - ( 76 ): 

_numberMeanCenter_vectorMeanCenter_vectorMeanCenter               ijjiMjMi KK ,1,1

~


 

( 77 ) 

As explained in bullet number two, the contribution of K1M  does depend on the 

column index j  but not on the row index i  since all rows of K1M  are identical. 

Similarly (see bullet number three), the contribution of M1K  is independent of the 

column index j , since all columns of  M1K  are equal, and only depends on the row 

index i . 

Utilizing ( 77 ) enables the generation of K
~

 row-wise. This row is then wavelet 

compressed and written into the intermediate matrix comp_XK  (see Chapter 4.1.1 and 

Figure 18). From there, the compression based KPCA follows the procedure introduced 

in Chapter 4.1.1. Thus, mean centering has been incorporated into the wavelet 

compression. 

After finalizing the calibration, Q  unknown spectra in feature space 

Q,,1 unknownx  have to be evaluated (see Chapter 2.4.2). For that purpose, t -vectors 

are calculated, which are equivalent to PCA‟s score vectors (see ( 51 ), ( 52 ) and 

related discussion). But prior to that, the 
Q,,1 unknownx  must be mean-centered, too. 

Again, the 
Q,,1 unknownx  are very long ( 42 ) and would require computation resources 

that are often unavailable. In order to avoid direct mean centering ( 72 ) of the vectors 

Q,,1 unknownx  another Gram matrix denoted 
unknown

MQK  is introduced in equation ( 51 ) 

and ( 52 ). A similar approach [ 39 ], [ 40 ], as utilized in ( 73 ), derives a mean centered 

version 
unknown

K
~

 of 
unknown

K : 
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MMMM 1K11KK1KK
unknownunknownunknown~

 

( 78 ) 

In ( 78 ), M1  denotes a MQ  matrix whose entries are all equal to M/1  (compare 

( 74 )). All other matrices have been defined previously.  

Again, some matrices in ( 78 ) can require several gigabytes of memory and thus 

handling the full equation must be avoided. This is achieved by mean centering 
unknown

K  

element-wise following the same strategy when mean centering K  ( 73 ), ( 77 ). 

 The first term on the right-hand side of ( 78 ) is the Gram matrix 
unknown

K  ( 52 ). An 

element of 
unknown

K  is computed by utilizing ( 51 ). 

 The second, K1M , and the fourth term, MM 1K1 , contain the same values as 

the corresponding terms K1M  and MM 1K1  in equation ( 73 ). The only 

difference is that they have a different number of rows (which are all identical) – they 

are of dimensions MQ . Therefore, _vectorMeanCenter  ( 75 ) and 

_numberMeanCenter  ( 76 ) can be used again.  

 Since 
unknown

K  ( 51 ), ( 52 ) is not equal to K , the third term, M1K
unknown

, needs to 

be calculated. This follows a similar approach that led to ( 75 ). A vector denoted 

ector_unknown_vMeanCenter  of length Q  is derived by:  

) 50 ( equ. kernels; polynomial for
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Finally, using _vectorMeanCenter  ( 75 ), _numberMeanCenter  ( 76 ), and 

ector_unknown_vMeanCenter  ( 79 ), the elements of 
unknown

MQK  are mean centered 

individually to give 
unknown

MQK
~

: 

_numberMeanCenterector_unknown_vMeanCenter_vectorMeanCenter   

unknownunknown

  - ijjiji KK ,,

~

( 80 ) 
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In conclusion, the use of equations ( 77 ) and ( 80 ) instead of ( 73 ) and ( 78 ) 

provides a way to mean center the data in the feature space without requiring unfeasible 

amounts of computer memory. 
unknown

MQK
~

 is then evaluated by means of ( 52 ). 

 

4.2 Experimental 

 

To test the performance and robustness of the compression algorithm developed 

in this thesis, two spectroscopic imaging data sets are utilized which were acquired with 

two different experimental setups. Both data sets were mean-centered prior to all 

calculations following the procedure outlined in Chapter 4.1.2. Daubechies-8 wavelets 

[ 19 ], [ 52 ] are utilized for the X and Y-compression of the Gram matrix K  ( 48 ). 

 

4.2.1 “Bacteria Data” 

 

Data set #1 is a spectroscopic image cube of E. coli K12 bacteria obtained by 

FTIR microscopy (see Figure 2 but note that E. coli B is used for this figure). The cube‟s 

Z-dimension holds the spectral information acquired from different X and Y-positions of 

the sample. A Bruker Optics Vertex 70 spectrometer combined with a Hyperion 1000 

IR/VIS microscope featuring a 64 x 64 pixel MCT focal plane array and a 15x objective is 

utilized in this experiment. Spectra covered the wavenumber range (1922 - 960 cm-1) 

containing 500 data points per spectrum. Thus, the Gram matrix produced by this 

instrument has dimensions 4096 x 4096 (~128 MB). Although this is a rather small data 

set, uncompressed KPCA computations took about one day. 

 

4.2.2 “Remote Sensing Data” 

 

Data set #2, having dimensions X = 320, Y = 256, Z = 35, was acquired via 

remote sensing; details on the experimental setup are discussed in references [ 36 ] and 

[ 59 ] and in Chapter 3.2. This data set consists of 81,920 spectra each containing 35 

wavelength positions covering the 3 - 5 µm atmospheric window. In the Results section 

below, KPCA models derived from both the compressed and the conventional, 
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uncompressed approach will be compared. Based on these comparisons the quality of 

the compression based KPCA method will be assessed. The uncompressed Gram 

matrix contains ~50 GB of data and is therefore too large for applying conventional 

KPCA using the aforementioned workstation. Hence, for proof-of-principle calculations, 

the Gram matrix was restricted to dimensions 12,100 x 12,100 (~1.1 GB). However, the 

workstation can perform the calculations on the full data set when the compression 

based algorithm is applied. 

 

4.2.3 Compression Algorithm Parameter Settings 

 

The main focus will be on the results pertaining to data set #1 (see 

Chapter 4.2.1). Comparable results were obtained for data set #2 (see Chapter 4.2.2). 

Several parameters (i.e. kernel type, kernel variables, wavelet type, compression level, 

etc.) can be adjusted for each application. For proof-of-principle, investigations have 

been limited to polynomial kernels ( 40 ), ( 41 ) of exponent order three. However, similar 

results were observed in studies utilizing a Gaussian radial basis kernel applied to data 

set #1.  

To both data sets a conventional, uncompressed KPCA is applied. These results 

are then compared to those obtained by the compression-based algorithm which makes 

use of a Daub8 wavelet. The following levels of compression have been investigated:  

Compression level 1: 90% retained information (both X and Y dimension, see ( 65 ) 

and ( 69 ))  

Compression level 2: 80% retained information (both X and Y dimension) 

Compression level 3: 70% retained information (both X and Y dimension) 

Compression level 4: 60% retained information (both X and Y dimension) 

Compression level 5: 50% retained information (both X and Y dimension) 

( 81 ) 

 

4.3 Results and Discussion 

 

To evaluate the capabilities of the compression-based algorithm, comparisons 

are made to the uncompressed approach based on the following figures of merit: 
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„reduction in memory requirements‟, „quality of compression-based models‟, and „gain in 

computation speed‟. The following sections discuss each figure of merit individually.  

 

4.3.1 Reducing Memory Requirements 

 

The memory requirements for the compressed Gram matrices ( 81 ) are 

compared to the amount of memory needed to hold the uncompressed Gram matrix. 

Since each element of a Gram matrix is represented by an 8-bytes floating point 

number, the total amount of memory needed to store a Gram matrix is determined by: 

bytes of dimensionY  of dimension X of trequiremenmemory 8KKK  

( 82 ) 

Figure 19 depicts the reduction in memory requirements for data set #1 after application 

of each of the five increasing compression levels ( 81 ). The true Gram matrix for data 

set #1 requires 128 MB of memory. Compression level 1 results in a Gram matrix that is 

approximately 10% (~13 MB) the size of the original Gram matrix. Thus, a considerable 

decrease in memory requirements can be achieved by applying only a low compression. 

This trend continues with increasing compression level resulting in a final compressed 

Gram matrix size of ~0.3 MB (compression level 5). 

 

4.3.2 Analysis of the Quality of the Compression Results 

 

Two figures of merit are required to assess the quality and accuracy of the 

compression-based results: (i) t -values ( 51 ), ( 52 ) obtained from the compression-

based KPCA method are compared to their uncompressed equivalents. These t-values 

are equivalent to the „scores‟ in PCA (see ( 37 )). For this purpose, “relative errors” (or 

deviations) between the two sets of results are calculated. (ii) “Correlation coefficients” 

are calculated between the uncompressed and compressed eigenvectors iα  ( 48 ) of the 

Gram matrix to measure the similarity of both sets of vectors. 

Relative errors: Since different compression methods ( 81 ) derive different 

eigenvectors iα  and eigenvalues i  ( 48 ), each compression method computes a 

different 1Rt  ( 51 ) or RQT  ( 52 ). In order to assess the quality of a compression  
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Figure 19: Memory requirements for storing the Gram matrix of data set #1 in the 
absence of compression and at five increasing compression levels ( 81 ). 
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method a figure of merit has to be defined that measures how close the approximation-

based results are to the uncompressed results. For this purpose, 
eduncompress

RQT  and 

compressed

RQT  are computed from the uncompressed and compression-based KPCA 

methods, respectively. Also, only for comparison purposes, the 4096 spectra contained 

in data set #1 will be used, again, as the „unknown‟ test vectors for calculating both 

eduncompress

RQT  and 
compressed

RQT  (see ( 51 ) and ( 52 ) and related discussion). Relative errors 

(or deviations) are calculated by: 

) vector each in elements score of  #(or rseigenvecto relevant of#          

 only)study  this (for vectors ncalibratio of  # vectors test unknown of     #
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One method for analyzing a large number of relative errors is to plot them in a 

histogram with the x-axis being relative error. For this reason, absolute values are 

calculated using ( 83 ). It can be anticipated that with increasing compression ( 81 ) the 

relative errors ( 83 ) will also increase. That is, in the histograms the center of the 

distribution will shift to high error values. For each of the five compression levels, 

Figure 20 displays the error distributions for all 096,41j  1 kT -values obtained from 

data set #1. For compression levels 1 and 2 it is obvious that the maximum population 

exists at rather low error values. At compression level 3, the maximum population begins 

to shift to higher error values. This trend continues throughout compression levels 4 and 

5 indicating that more and more approximation is being introduced. Figure 21 displays 

the error distribution for all 096,41j  3 kT -values obtained after applying all five 

compression levels. Based on the strong shift to higher relative error values at 

compression levels 4 and 5 it can be concluded that too much approximation is 

introduced after compression level 3. However, increasing compression from level 3 to 4 

does not offer much in terms of reduction in memory requirements for storing the Gram 

matrix (Figure 19). At this point, only a minute reduction in required memory (~1.4 MB to 

~0.6 MB) is achieved for data set #1. Thus, a small improvement memory-wise can 

result in a considerable decrease in model quality. Since there is an obvious limitation of  
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Figure 20: Error distributions of the 096,41j  1 kT -values ( 51 ) for data set #1 

(Chapter 4.2.1) at five increasing compression levels ( 81 ). Also, correlation coefficients 

(Chapter 4.3.2) between the uncompressed and compressed eigenvectors 1  iα  ( 48 ) of 

the Gram matrix are given for each compression level. These correlation coefficients are 
a measure of the closeness of the compression-based eigenvectors to the true, 
uncompressed eigenvectors. 
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Figure 21: Error distribution of the 096,41j  3 kT -values ( 51 ) for data set #1 

(Chapter 4.2.1) at five increasing compression levels ( 81 ). Also shown are the 
correlation coefficients (Chapter 4.3.2) between the uncompressed and compressed 

eigenvectors 3  iα  ( 48 ) of the Gram matrix. These correlation coefficients are a 

measure of the closeness of the compression-based eigenvectors to the true, 
uncompressed eigenvectors. 
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how much compression can be applied and still result in useful models, compression 

must be adapted to a specific application. 

Correlation: Correlation coefficients are used as an indication of how similar 

eigenvectors iα  ( 48 ) of the compressed Gram matrix are to their uncompressed 

counterparts. A decrease in correlation coefficient is expected as the level of 

compression increases. In Figure 20 and Figure 21, the correlation coefficients obtained 

for 1  iα  and 3  iα  of data set #1 (see Chapter 4.2.1) are given in the respective graphs. 

The correlation coefficient for 1  iα  (Figure 20) at compression level 1 is 0.9985 which 

indicates that the compressed eigenvector is a very good approximation of the true (but 

often inaccessible) eigenvector. Good correlation coefficients (0.9932 and 0.9815, 

respectively) are also obtained for the next higher compression levels. Compression 

levels 4 and 5 still resulted in good correlation coefficients although a slight decline in 

value is apparent. A somewhat different trend in correlation coefficients is observed for 

the third eigenvector 3  iα  (Figure 21). Only for compression levels 1 and 2 are good 

correlation values obtained. For higher compression levels the correlation between the 

compressed and uncompressed eigenvector quickly declines. Compression level 3 

results in a correlation coefficient of only 0.8807 which can be considered a borderline 

case. Nonetheless, this level of compression still features a high population at the lower 

relative error values ( 83 ). For compression levels 4 and 5 the quality of the t-values 

quickly drops. In conclusion, there certainly exists a limitation of compression that should 

be applied. In the studied cases, this limitation was found to exist at compression levels 

that allow for a considerable amount of data reduction (Figure 19) while still producing 

reliable results (Figure 20 and Figure 21). Also, it was found that limiting the 

compression to level 3 was sufficient for adequately reducing the amount of required 

memory to enable KPCA to become feasible for large data sets. 

 

4.3.3 Decrease in Computation Time 

 

Aside from making KPCA possible on common personal computers, significant 

decreases in computation time are achieved as well. For demonstration and assessment 

purposes an acceleration factor is defined as: 
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( 84 ) 

Acceleration factors are ratios between the computation time needed for 

performing a conventional KPCA and that required for the compression-based KPCA 

approach. Figure 22 displays the acceleration factors achieved at each of the five 

compression levels for both data sets. Both figures show a significant increase in 

acceleration as compression is increased. For data set #1 a maximum acceleration 

factor of ~22 is obtained; a maximum acceleration factor of ~200 is calculated for data 

set #2. The larger acceleration factor for data set #2 is attributed to the larger 

compression that is achieved for this data set. However, both of these values 

correspond to compression level 5, which is considered to be too much compression for 

these data sets. For compression level 3, which was determined to be the optimal 

amount of compression (see Chapter 4.3.2), acceleration factors of ~10 and ~90 are 

calculated for data sets #1 and #2, respectively.  

 

4.4 Conclusions 

 

Many chemometric methods are only capable of evaluating linear relationships 

within data. This is insufficient for many applications and thus kernel principal 

component analysis (KPCA) has been introduced as a means to model nonlinear data 

[ 39 ], [ 40 ]. However, one major drawback of KPCA is that it involves the eigenvalue 

decomposition of a covariance matrix, or „Gram matrix‟, which has dimensions 

# of samples by # of samples. This „large‟ covariance matrix is decomposed in order to 

derive the maximum number of principal components produced by KPCA [ 39 ], [ 40 ]. 

This amount of principal components can exceed the number of variables (wavelength 

positions) if the number of samples (spectra) is larger. This is not possible in PCA. This 

larger number of principal components achieved with KPCA could lead to a more 

enhanced understanding of complex data. Applying KPCA to large data sets, as 

encountered in spectroscopic imaging, often requires computational resources, 

specifically memory and computation speed, that are not commonly available.  
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Figure 22: Acceleration factors ( 84 ) for data set #1 (top) and data set #2 (bottom) at 
each of the five compression levels ( 81 ). The dashed line in each plot represents 
acceleration factor = 1, which indicates no acceleration. 
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In this study, an algorithm is developed, implemented, and assessed which 

applies a two dimensional (2D) wavelet compression to the Gram matrix. Direct 

compression of the full Gram matrix cannot be accomplished since this would still 

require holding the entire, multiple-gigabyte matrix in memory. This novel approach is 

based on building and compressing one row of the Gram matrix at a time and thus only 

requires amounts of memory that are realistic for workstations. Also, a novel element-

wise mean-centering procedure is developed and is incorporated into the compression. 

Now, KPCA can be routinely applied to large (spectroscopic imaging) data sets. 

Two data sets acquired with two different experimental setups are utilized to 

demonstrate the compression capabilities and robustness of the proposed algorithm. 

The final sizes of the compressed Gram matrices can be handled on common desktop 

computers. The quality of the compressed results is analyzed by plotting relative error 

histograms between corresponding t -values ( 51 ), ( 52 ) obtained from both the 

uncompressed and compressed KPCA methods. The compressed results are further 

assessed by determining correlation coefficients between the true uncompressed 

eigenvectors iα  ( 48 ) and the compressed eigenvectors. Different compression levels 

are studied in order to determine the amount of compression that can be applied and still 

yield reliable results. The resulting compressed KPCA models are in close agreement 

with the uncompressed case. The memory requirements for storing a multi-gigabyte 

Gram matrix are reduced by several orders of magnitude. Also, considerable increases 

in acceleration factors are observed for both data sets.  
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Chapter 5 

 

Summary and Conclusions 

 

 Given its ability to acquire high spatial and spectral resolution data, spectroscopic 

imaging provides a detailed understanding of heterogeneous samples. These data are 

commonly arranged in the form of a three-dimensional (3D) data cube (Figure 1) which 

is then analyzed by means of chemometrics to extract the desired chemical information 

(Figure 2). Chemometrics can determine which analytes are present within a sample, 

their spatial distribution, and how much of the analytes are present. Because of the 

growing number of pixels in modern day imaging detectors, data sets acquired from 

high-resolution spectrometers can easily reach volumes of several gigabytes. 

Performing chemometric calculations on such large amounts of data creates unrealistic 

demands on computational resources; specifically, computer memory and processing 

speed. As measurement techniques advance and the size of multi-dimensional detectors 

continues to increase, the amount of acquired experimental data will often exceed 

computational resources. Also, new data analysis (chemometric) methods are 

persistently being developed. As with KPCA (Chapters 2.4 and 4), new chemometric 

methods may require individualized compression routines. Thus, there will always be a 

need for innovative compression-based chemometric algorithms to accelerate 

calculation times and reduce data storage space. 

 This thesis describes, in detail, two novel compression-based chemometric 

techniques. Both methods utilize multi-dimensional wavelet transforms to accomplish 

accurate data compression, thus increasing computation speed. The first method 

automatically selects the optimum wavelet combination for any multi-dimensional data 

set. Principal component analysis (PCA) is applied during this study to asses the 

capabilities of the algorithm. The second compression technique is developed 

specifically for kernel principal component analysis (KPCA), the nonlinear extension of 

PCA. The unique steps for executing KPCA require a compression method that is 

applied during the KPCA calculations (or „on the fly‟). Both compression procedures are 
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thoroughly tested using multiple 3D data sets obtained from different experimental 

setups. Several degrees of compression are also tested to determine how much 

compression can be applied and still yield reliable chemometric results. Significant 

decreases in both computation times and memory requirements are observed for both 

compression algorithms while simultaneously maintaining accurate data representation. 
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Appendix 1 

 

Enhancing the Prediction of Cotton Micronaire 

Values from Near-infrared (NIR) Absorbance 

Spectra 

 

A.1.1 Experimental Overview 

 

Micronaire is a physical property of cotton that represents the maturity of the 

cellulose fibers within a cotton sample. Simply stated, the more cellulose layers within a 

sample, the greater its maturity (i.e. the higher the micronaire value). The United States 

Department of Agriculture (USDA), Cotton Structure and Research Unit, is currently 

investigating the use of near-infrared (NIR) spectroscopy to predict cotton micronaire 

values. Through collaboration with the USDA we are developing new data analysis 

methods to enhance their current cotton micronaire prediction techniques. For this 

purpose, Principal Component Regression (PCR) [ 3 ], [ 9 ], [ 11 ] - [ 14 ] (Chapter 2.3) is 

applied. Since all of the cotton NIR absorbance spectra contain strong, non-reproducible 

fluctuations, even within the same sample, data processing techniques are developed 

and applied to correct for these random baseline drifts. The goal is to enhance the 

precision of predicted micronaire values. Deviations within ± 0.3 micronaire units for 70% 

of the evaluated data are considered to be ideal. 

In this report, representative results are discussed that reflect what has been 

found to be a general trend. First, single absorption spectra are analyzed individually 

followed by comparative studies involving spectra averaging. This report concludes with 

a performance assessment of the utilized chemometric algorithm, PCR, and its various 

data pre-processing steps. Notation is as follows: we are given NIR spectra for 191 

different cotton samples. Each individual sample consists of 5 repeatedly measured 

spectra giving a total of 955 spectra. 9 different cotton files make up the total 191 
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samples. These cotton files are labeled as cot1, cot2, cot3, cot4, cot5, cot6, cot7, cot8, 

and m38. Thus, each cotton file contained a varying number of samples.   

 

A.1.2 Results without Baseline Correction 

 

Strong background drifts are present in all of the cotton absorbance spectra. 

These drifts are random from spectrum to spectrum; therefore, mean-centering the data 

prior to chemometric evaluation would not enhance the results. Mean-centering is 

successful only when a constant background is present in all spectra being analyzed. 

Thus, mean-centering has not been applied to any of the data. 

A conventional PCR was applied first. All 175 single absorbance spectra 

corresponding to cotton file cot6 were used for calibration. The predicted results of 

selected remaining cotton files (cot4 and cot8) not used for calibration are shown in 

Figure 23. 

Figure 23 shows that there are significant deviations in the predicted micronaire 

values for both cot4 and cot8. Only 42% of the predicted micronaire values for cot4 fell 

into the acceptance range of “true micronaire value” ± 0.3. A better percentage of 69% 

was achieved for cot8. This enhanced percentage is evident by the narrower scatter of 

the predicted micronaire values for cot8 (Figure 23 (b)). Nevertheless, the prediction 

results for both cot4 and cot8 are still below the acceptable limit. Similar trends in 

predicted micronaire values were obtained for all of the remaining cotton spectra not 

used for calibration. Overall, the prediction percentages for each cotton sample were 

very random with most of the prediction percentages falling below 70%. Hence, 

improvements to the prediction algorithm are essential. 

The research objective is to apply different data pre-treatment steps in order to 

reduce the impact of the random baseline fluctuations. Polynomial fitting and Savitzky-

Golay differentiation [ 52 ], [ 61 ] are methods that have been implemented and applied 

on single and averaged spectra. The prediction results obtained with these methods will 

be presented in the remainder. Background correction methods such as poly-PCR and 

pseudo-PCR [ 51 ] have successfully been applied to account for spectral drifts in 

situations when the calibration spectra have a stable baseline and drifts only occur later 

on while measuring unknown samples. This is not the case here and it was found that  
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Figure 23: Predicted versus true micronaire values obtained from non-calibrated cotton 
spectra. (a) cot4 predicted values and (b) cot8 predicted values using cot6 for 
calibration. The red line at 45º indicates predicted = true micronaire value. The blue lines 
represent the „true micronaire value ± 0.3‟ acceptance range. 
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applying poly- and pseudo-PCR to the cotton data did not enhance the prediction 

results. The reason for this is that drifting calibration spectra introduce such drifts into the 

PCR calibration model which in return features an increased number of PCs. These 

additional PCs enable the modeling of drifts in unknown spectra. 

 

A.1.3 Results with Baseline Correction – Polynomial Fitting 

 

The first method estimates the (drifted) baseline by fitting a fourth order 

polynomial to the individual absorbance spectrum. The resulting fit polynomial is then 

subtracted from the spectrum. Figure 24 shows the results of this procedure when 

applied to a cot6 spectrum. After removal of this polynomial feature the resulting spectra 

show a flat baseline that is close to zero absorption; thus, the drift has been removed 

considerably (Figure 24). Since five spectra obtained from a cot6 sample correspond to 

the same micronaire value it is anticipated that, after background correction, they will 

resemble each other closely. As shown in Figure 24, this has been achieved leaving only 

minor differences. Thus, with these random baseline fluctuations removed, an enhanced 

prediction of micronaire values is expected. 

A data set consisting of all cot6 spectra was used for calibration without 

averaging the five repetitions for each sample; the cot4 spectra were used as the 

unknown test spectra for prediction. To all the spectra, fourth order polynomials were 

fitted and subtracted. This resulted in 46% of the predicted cot4 micronaire values to fall 

inside the accepted range. This is only a slight improvement compared to the 42% 

predicted correctly without baseline correction (see A.1.2). A similar trend was found for 

the other data sets. 

 

A.1.4 Results with Baseline Correction – Second Derivatives 

 

As an alternative to baseline polynomial based drift correction the use of 

derivatives has been investigated. The first derivative removes constant offsets from the 

spectra, the second derivative cancels linear slopes and so on. For this purpose, the 

Savitzky-Golay method [ 52 ], [ 61 ] has been utilized. This technique was applied to cot6 

acting as calibration data and cot4 used for prediction. Figure 25 displays three cot6  
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Figure 24: (a) An example of a fourth order polynomial fitted to the first spectrum of cot6. 
(b) First three original absorbance spectra of cot6 before (top) and after (bottom) 
removal of a fourth order fit polynomial. After this baseline correction the spectra 
acquired from the same sample look much more similar. Since these spectra were all 
assigned the same micronaire number, this correction is expected to result in more 
precise micronaire prediction than without baseline correction. 
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Figure 25: (a) The first three absorbance spectra from the cot6 data set. (b) 
Corresponding 2nd-order derivative spectra. The three derivative spectra are similar 
since they all correspond to the same micronaire value. 
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absorbance spectra and the corresponding 2nd-order derivatives. Again, since these 

three cot6 spectra correspond to the same micronaire value, it is expected that the 

spectra will be more similar to each other after background correction. As shown in 

Figure 25 (b) this is the case. After PCR evaluation of the derivative spectra 51% of the 

cot4 micronaire values were predicted correctly within the acceptable threshold range. 

This is only about a 5% increase in prediction compared to the polynomial fitted data 

(46%, see A.1.3). These results indicate that there are more challenges to overcome 

than baseline drifts. This conclusion has been confirmed by the fact that after correcting 

for baseline drifts in the calibration and the unknown spectra, considerable 

improvements in the prediction results were not obtained. 

 

A.1.5 Results Utilizing Spectra Averaging 

 

Thus far, individual spectra have been analyzed. From each cotton sample, five 

spectra have been acquired and the average spectrum of these five spectra will be used 

in the remainder. The goal was to investigate whether averaging derives a more 

representative spectrum for a given cotton sample and its corresponding micronaire 

value. 

Initial studies involving averaged spectra included using the averaged 

absorbance spectra of the „Texas Tech, TT‟ (cot5 - cot8) cotton samples as the 

calibration data and then predicting the micronaire values of selected cotton spectra. A 

standard PCR as well as both the polynomial fitting and Savitzky-Golay derivative 

methods were applied using the averaged „TT‟ absorbance data for calibration. The 

results obtained using averaged cot4 and cot8 absorbance spectra for prediction, 

utilizing all of the different data pre-treatment methods, are given in Table 1. cot4 spectra 

were chosen for evaluation because it was not included in the calibration set, thus giving 

insight of the strength of the prediction capabilities of this approach. The results for cot4 

prove that this method is not adequate for predicting micronaire values, to within the 

stated threshold range, for non-calibrated spectra. Although there is significant 

improvement in prediction after correcting for background drifts (Table 1, center and right 

columns), all of the results are considered to be unacceptable (<70%). cot8 was included 

in the calibration set and all of the prediction results for this data set fell within the 
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Table 1: Prediction results obtained via PCR using averaged Texas Tech („TT‟) spectra for calibration and averaged cot4 and 
cot8 spectra for evaluation, respectively. (left column) results using averaged absorbance, (center column) polynomial fitted, and 
(right column) 2nd-order derivative spectra are given. 

 

 

Texas Tech („TT‟) data (cot5 – cot8) used for calibration 

Calibration & Evaluation: 

ave. absorbance spectra 

Calibration & Evaluation: 

ave. polynomial fitted spectra 

Calibration & Evaluation: 

ave. 2nd-order derivative spectra 

Cotton file used for 

evaluation 
% Prediction % Prediction % Prediction 

cot4 

(not included in calibration) 
9 55 51 

cot8 

(included in calibration) 
74 97 97 
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acceptable prediction range (>70%) as shown in the bottom row of Table 1. There is also 

an improvement in prediction for the cot8 data after correcting for the background drifts 

(Table 1, center and right columns). 

It was observed (Table 1) that using a selected averaged set of spectra for 

calibration (i.e. „TT‟ spectra) resulted in decent prediction results only for the spectra 

included in the calibration (i.e. cot8) and poor prediction results for spectra not included 

in the calibration (i.e. cot4). Therefore, a more drastic approach was taken next that 

used all average spectra for both calibration and prediction. These results are discussed 

next. 

Using all of the averaged absorbance spectra for both calibration and evaluation 

and applying a standard PCR, only two cotton data sets (cot2 and cot8) resulted 

in >70% prediction of micronaire values (left column of Table 2). Next, the averaged 

polynomial fitted absorbance spectra were used both for calibration and prediction and 

the results are listed in the center column of Table 2. There is a slight improvement in 

prediction compared to the left column, but only three sets of samples (cot2, cot7 and 

cot8) gave >70% of acceptable prediction. Finally, the averaged 2nd-order derivative 

spectra were used for both calibration and prediction and these results are shown in the 

right column of Table 2. Although these results are better than the averaged polynomial 

fitted (Table 2, center column) and absorbance data (Table 2, left column), only 4 of the 

9 cotton sample sets were predicted at 70% or greater. In summary, Table 2 shows that 

an overall increase in prediction can be achieved when using the averaged polynomial 

fitted data. The prediction results further improve when the averaged 2nd-order derivative 

spectra are used for PCR evaluation. An explanation for this trend could be the increase 

in total PCs that are gained from using averaged 2nd-order derivative and polynomial 

fitted spectra as opposed to using averaged absorbance spectra. After averaging these 

various data 5 principal components (PCs) were obtained for the absorbance data, 9 

PCs for the polynomial fitted data, and 19 for the derivative data. In the case of non-

averaged absorbance spectra, 5 PCs were obtained for conventional PCR, 11 PCs for 

the single polynomial fitted data and 42 PCs for the derivative data. 

Using all of the averaged data for both calibration and evaluation should have 

resulted in much higher prediction percentages. This was clearly not the case (Table 2). 

Originally, it was assumed that the background drifts in the spectra were the main cause 

for the low prediction results. But, after implementing several background correction 
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Table 2: Prediction results obtained via PCR using averaged cotton absorbance (no baseline correction) (left column), 
polynomial fitted (center column), and 2nd-order derivative (right column) spectra. All of the averaged spectra were used for both 
calibration and prediction. 

 

 
Calibration & Evaluation: 

All ave. absorbance spectra 

Calibration & Evaluation: 

All ave. polynomial fitted spectra 

Calibration & Evaluation: 

All ave. 2nd-order derivative spectra 

Cotton file % Prediction % Prediction % Prediction 

cot2 86 71 86 

m38ng 44 50 61 

cot3 33 33 33 

cot4 64 69 76 

cot5 50 50 50 

cot6 61 67 69 

cot7 56 83 89 

cot8 76 82 95 
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methods significant improvements in prediction were not observed. This is a strong 

indication that something additional to the baseline problem is causing large deviations 

from the true micronaire values. A detailed investigation is required to answer why 

greater prediction results were not achieved (see A.1.6). 

 

A.1.6 “A Closer Look” 

 

The question here is whether or not the chemometric method of choice, PCR, is 

providing reliable results for these data and whether the requirements for a successful 

PCR are met. Therefore, it is necessary to analyze the quality of the PCs and scores 

that are calculated via PCR. 

In order to asses the quality of the PCs, a set of PCs obtained for cotton data set 

will be used to reconstruct the spectra of another cotton data set. Because all of the 

cotton spectra contain the same major spectral features, which are modeled by the PCs, 

the PCs for one cotton file should be able to successfully model the spectral features of 

another cotton file. If this was not the case, the calibration model would not be able to 

predict future unknown samples. As an example, the PCs for cot6 were used to 

reconstruct the spectra for cot4 (see Figure 26). This is done by first calculating the PCs 

for cot6 by PCR. Since any spectrum can be represented as a linear combination of PCs 

and scores (PCR), the scores for cot4 are determined by projecting cot4 spectra onto 

the PCs for cot6. Once the scores for cot4 are known, they are then multiplied by the 

PCs of cot6 giving the reconstructed spectra of cot4. As an example, one reconstructed 

spectrum of cot4 is plotted in Figure 26 along with the corresponding original spectrum. 

Also shown is the residual spectrum (i.e. the difference between the original and 

reconstructed spectra). If the original and reconstructed spectra are very similar then the 

resulting residual spectra will approximately equal zero (see Figure 26 (bottom)). The 

good agreement between the original and reconstructed spectra indicates that the PCs 

acquired from one cotton data set is capable of describing the spectral features of 

another data set very well. Since the PCs do represent the cotton spectral features, the 

scores must now be assessed to see if they correctly represent changes in micronaire 

values. 
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Figure 26: (top) Original vs. reconstructed spectrum 1 of cot4. The reconstructed 
spectrum was calculated using the PCs obtained for cot6. (bottom) The resulting 
residual spectrum. Since the residual values are two orders of magnitude smaller than 
the measurement values, it can be concluded that the PCs of one sample can model the 
spectral features of another sample. 
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Changes in micronaire should induce changes in the cotton spectra. As a result, 

changes in the scores should occur as well since the scores are directly related to the 

micronaire values via PCR (Chapter 2.3.2). Within one sample, however, the score 

values should not change. In other words, all five spectra obtained from the same 

sample (cotton boll) have the same micronaire number. Predicting these micronaire 

numbers from the score values requires that the scores are the same for all five spectra. 

If this is not the case, prediction will fail, thus resulting in a wide spread of predicted 

micronaire values for a single cotton sample. This is illustrated in Figure 27 (a). Further, 

since PCR is a linear algorithm, a linear trend between score values and micronaire 

should exist. If, for instance, upon PCR evaluation a set of spectra all corresponding to 

identical micronaire values produces a wide range of score values then there exists a 

miscorrelation between micronaire and scores. If a direct correlation between micronaire 

and scores is not given, it will hinder the PCR approach considerably. 

To investigate the quality of the scores, various sets of score values are 

calculated for selected sets of cotton data and plotted against micronaire value (see 

Figure 27). Using cot6 for calibration, the scores for cot4 were calculated under four 

different conditions. (i) Single absorbance spectra were used for both calibration and 

prediction and the resulting score values are shown in Figure 27 (a). It is obvious that 

the scores are random and contain no apparent trend with micronaire. (ii) Using 

averaged, instead of single absorbance spectra, improves the results only slightly as 

shown in Figure 27 (b). (iii) Single 2nd-order derivative spectra improve the prediction 

results (Figure 27 (c)) by creating a more obvious linear trend between scores and 

micronaire; however, there is still a considerable spread of scores for any given 

micronaire value. (iv) The spread of score values is reduced when averaged 2nd-order 

derivative spectra (Figure 27 (d)) are used for the analysis, thus enhancing the 

prediction results even further (see Table 2, right column). As shown in Figure 27 (d), 

several different micronaire values correspond to the same score value. In spite of 

correcting for the background drifts present in all of the cotton spectra the scores still 

contain too much variation to accurately predict micronaire values for unknown spectra. 

In conclusion, there are concerns about the correlation between the given 

micronaire values and their associated NIR spectra. The spectra may not be very 

representative of the micronaire values, thus causing imprecise micronaire predictions. 

Therefore, a closer look into the labeling of micronaire values to NIR spectra is  
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Figure 27: cot4 score 1 values vs. micronaire. Results obtained via PCR using cot6 PCs 
and (a) single absorbance, (b) averaged absorbance, (c) single 2nd-order derivative, 
and (d) averaged 2nd-order derivative cotton spectra. 
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suggested as this is a crucial requirement for the success for many chemometric 

methods. 

 

A.1.7 Future Outlook 

 

Given the concern about the quality of the scores obtained from the cotton data, 

we are interested in continuing our efforts in developing new chemometric methods to 

correct for score variations. One option is to replace linear PCR with its non-linear 

extension, Kernel-PCA/PCR (see Chapter 2.4). Deriving a non-linear relation between 

scores and micronaire values might be a feasible way to handle the rather broad spread 

of score values within the same sample. 

If it is common that micronaire values can vary throughout a cotton sample 

(cotton boll), an imaging study may provide a better understanding of the distribution of 

micronaire within cotton. Also, cotton contains strong Raman features in the 3600 -

100 cm-1 spectral region (See Figure 28 and references [ 62 ], [ 63 ]). Hence, Raman 

imaging may lead to an enhanced correlation between micronaire and cotton sample. 

Figure 28 shows a Raman spectrum of a commercial cotton ball. The spectrum was 

acquired with a Bruker Optics Senterra Raman spectrometer equipped with an Olympus 

microscope containing 10, 20, 50, and 100x objectives, and a motorized three-

dimensional translation stage which is programmable for sample mapping applications. 

The spectrum was recorded over a spectral region of 3200 – 70 cm-1 with a spectral 

resolution of 3 – 5 cm-1 using a 785 nm (100 mW) excitation laser and an integration 

time of 90 sec.  
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Figure 28: Raman spectrum of a commercial cotton ball. See text for experimental 
parameters. 
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