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Abstract

The zero-divisor graph of a commutative ring is the graph whose ver-
tices are the nonzero zero-divisors of the ring such that distinct vertices
are adjacent if and only if their product is zero. We use this construc-
tion to study the interplay between ring-theoretic and graph-theoretic
properties. Of particular interest are Boolean rings and commutative
rings of quotients.
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Chapter 1

Introduction

During the last century, graph theory has been found to have appli-
cations in many areas. Physics, chemistry, computer science, and the
behavioral sciences have all made use of graphs. More recently, graph
theory has emerged as a model for studying the zero-divisor structure
of a commutative ring. Specifically, the nonzero zero-divisors of a ring
constitute vertices of a graph, where distinct vertices are adjacent if and
only if their product is zero. The result is a simple connected graph,
called the zero-divisor graph.

This dissertation utilizes the above construction to study the in-
terplay between ring-theoretic and graph-theoretic properties. Given a
zero-divisor graph, one can investigate what ring-theoretic properties
can be associated to the given graph. In Chapter 2, graph-theoretic
criteria are given which completely characterize zero-divisor graphs of
Boolean rings. On the other hand, one can start with an arbitrary graph
and investigate whether the graph is realizable as the zero-divisor graph
of a ring. In Chapter 3, an algorithm is given to characterize graphs
that are realizable as zero-divisor graphs of direct products of integral
domains. Moreover, it is determined when a graph is realizable as the
zero-divisor graph of a Boolean ring. This is accomplished by defining
a partial order on the vertices of a graph and providing graph-theoretic
conditions which make the partial ordering a Boolean algebra. The
correspondence between Boolean algebras and Boolean rings is then
used to show that any graph satisfying the given conditions is the zero-
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divisor graph of a Boolean ring. This correspondence is used in Chapter
6 to provide a graph-theoretic characterization of complete Boolean al-
gebras.

Of great interest are particular extensions of total quotient rings
known as rings of quotients. The elements of such extensions can be
described as equivalence classes of homomorphisms (in the sense of
modules) defined on ideals without nonzero annihilators. Some of the
main results of Chapters 2, 4, and 6 determine when the zero-divisor
graph of a ring is isomorphic to the zero-divisor graphs of its rings of
quotients. A graph-theoretic condition is introduced in Chapter 2 which
characterizes the zero-divisor graphs of complete rings of quotients of
Boolean rings. In Chapter 4, a similar characterization is given for
certain rings without nonzero nilpotents. These results are generalized
to arbitrary commutative rings in Chapter 6, where sufficient conditions
are given for determining when an isomorphism exists between the zero-
divisor graph of any ring and that of any of its rings of quotients.

The results of Chapter 5 are purely ring-theoretic. They examine
the behavior of rings of quotients with respect to iteration and di-
rect products. Furthermore, the investigation in Chapter 4 yields set-
theoretic results on Boolean algebras. Specifically, it is proved that the
cardinality of the set of partitions of an infinite complete Boolean alge-
bra does not exceed the cardinality of the Boolean algebra. Through-
out, a significant amount of attention is given to examples which illus-
trate the implications of each result.

The results of this dissertation are numbered in the order that they
appear in the chapter. Each chapter is an article with its own bibli-
ography. Moreover, chapters are arranged in the order that they were
submitted for publication. Incidentally, this arrangement is logical in
the sense that results and definitions become increasingly more general.
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Chapter 2

Complemented Zero-Divisor

Graphs and Boolean Rings

Abstract. For a commutative ring R, the zero-divisor graph of R is

the graph whose vertices are the nonzero zero-divisors of R such that the

vertices x and y are adjacent if and only if xy = 0. In this paper, we classify

the zero-divisor graphs of Boolean rings, as well as those of Boolean rings

that are rationally complete. We also provide a complete list of those rings

whose zero-divisor graphs have the property that every vertex is either an

end or adjacent to an end.
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2.1 Introduction

The idea of a zero-divisor graph was introduced by I. Beck in [3]. While
he was mainly interested in colorings, we shall investigate the interplay
between ring-theoretic properties and graph-theoretic properties. This
approach begun in a paper by D. F. Anderson and P. S. Livingston
[2], and has since continued to evolve (e.g., [2], [1], [5], [7], [13], [12],
and [16]). For example, in [2, Theorem 2.3], it is shown that every
zero-divisor graph is connected (i.e., there is a path between any two
vertices) and that the distance between any two vertices is at most
three (i.e., any two vertices can be joined by less than four edges). In
particular, every vertex of a zero-divisor graph is adjacent to some other
vertex if and only if the zero-divisor graph has at least two vertices.

Throughout, R will always be a commutative ring with 1 6= 0. Let
Z(R) denote the set of zero-divisors of R and T (R) = RR\Z(R) its total
quotient ring. As in [2], we define Γ(R) to be the (undirected) graph
with vertices V (Γ(R)) = Z(R)\{0}, such that distinct v1, v2 ∈ V (Γ(R))
are adjacent if and only if v1v2 = 0. Note that Γ(R) is the empty graph
if and only if R is an integral domain. Moreover, a nonempty Γ(R) is
finite if and only if R is finite and not a field [2, Theorem 2.2].

We will call a ring reduced if nil(R) = (0). A ring R with 1 6= 0
is Boolean if x2 = x for all x ∈ R. It is well known that Boolean
rings are commutative and reduced with characteristic 2. Moreover,
R\Z(R) = {1}, and thus V (Γ(R)) = R\{0, 1}, whenever R is Boolean.
A commutative ring R with 1 6= 0 is von Neumann regular if for each
x ∈ R, there is a y ∈ R such that x = x2y or, equivalently, R is reduced
and zero-dimensional [6, Theorem 3.1]. Clearly a Boolean ring is von
Neumann regular, but not conversely. For example, let {Fi}i∈I be a
family of fields. Then

∏

i∈I Fi is always von Neumann regular, but it is
Boolean if and only if Fi ∼= Z2 for all i ∈ I.

Let Γ be a graph and let v ∈ V (Γ). As in [1], w ∈ V (Γ) is called
a complement of v if v is adjacent to w, and no vertex is adjacent to
both v and w, i.e., the edge v−w is not an edge of any triangle in Γ. In
such a case, we write v⊥w. In ring-theoretic terms, this is the same as
saying v⊥w in Γ(R) if and only if 0 6= v, w ∈ R are distinct, vw = 0, and
ann(v)∩ann(w) ⊆ {0, v, w}. Moreover, we will follow the authors in [1]
and say that Γ is complemented if every vertex has a complement, and is
uniquely complemented if it is complemented and any two complements
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of a vertex are adjacent to the same vertices. From [1, Theorems 3.5
and 3.9], we know that Γ(R) is uniquely complemented if and only if
either R is nonreduced and Γ(R) is a star graph (i.e., a graph with at
least two vertices such that there exists a vertex which is adjacent to
every other vertex, and these are the only adjacency relations), or R is
reduced and T (R) is von Neumann regular. While, in the reduced case,
this hypothesis yields information about the total quotient ring of R,
a slightly stronger assumption on Γ(R) will reveal information about
R (see Theorem 2.5). Moreover, a stronger assumption is necessary
since the relation Γ(R) ∼= Γ(T (R)) [1, Theorem 2.2] implies that the
zero-divisor structure of a ring will not detect the von Neumann regular
property. For example, let R = Z × Z. Then R is not von Neumann
regular, but T (R) ∼= Q × Q is von Neumann regular and Γ(R) ∼=
Γ(T (R)).

Let B(R) = {e ∈ R : e2 = e}, the set of idempotents of R. Then the
relation “≤” defined by a ≤ b if and only if ab = a partially orders B(R),
and makes B(R) a Boolean algebra with inf as multiplication in R, 1
as the largest element, 0 as the smallest element, and complementation
defined by a′ = 1 − a. One checks that a ∨ b = (a′ ∧ b′)′ = a + b− ab,
where “+” is addition in R. For a reference on the Boolean algebra of
idempotents, see [11].

An ideal D of a ring R is called dense if r ∈ R with rD = {0}
implies r = 0. Let D1 and D2 be dense ideals of R and let fi ∈
HomR(Di, R) (i = 1, 2). To define Q(R), the complete ring of quotients
of R, note that f1+f2 is an R-module homomorphism on the dense ideal
D1 ∩D2, and f1 ◦ f2 is an R-module homomorphism on the dense ideal
f−1

2 (D1) = {r ∈ R : f2(r) ∈ D1}. Then Q(R) = F/∼ is a commutative
ring, where F = {f ∈ HomR(D,R) : D ⊆ R is a dense ideal} and ∼ is
the equivalence relation defined by f1 ∼ f2 if and only if there exists
a dense ideal D ⊆ R such that f1(d) = f2(d) for all d ∈ D; we will
denote the equivalence class of f by [f ]. For all a/b ∈ T (R), the ideal
bR of R is dense and fa/b ∈ HomR(bR,R), where fa/b(br) = ar. One
checks that the mapping a/b 7→ [fa/b] is a ring monomorphism, and
that [f0] and [f1] are the additive and multiplicative identities of Q(R),
respectively. However, this mapping need not be onto. Moreover, unlike
the case for T (R), it may happen that Γ(R) 6∼= Γ(Q(R)) (e.g., Example
2.12). For S ⊆ T (R), let [S] denote the image of S in Q(R). A ring
R is called rationally complete if [R] = Q(R) (i.e., if r 7→ [fr] is an
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isomorphism). Note that Q(R) is von Neumann regular if and only
if R is reduced [11, Proposition 2.4.1]. Thus every reduced rationally
complete ring is von Neumann regular. Also, Q(R) is Boolean if and
only if R is Boolean [11, Lemma 2.4.4]. It is a gentle exercise to show
that Q(R) = lim−→(HomR(D,R)), where the direct limit is taken over the
family of all dense ideals of R, with D1 ≤ D2 if and only if D2 ⊆ D1,
and f 7→ f |D2

whenever f ∈ HomR(D1, R) with D1 ≤ D2 [4, 1.7]. This
is the definition of Q(R) used in [9]. A detailed exposition of Q(R) can
be found in [11].

In this paper, we continue the investigation in [1] of complemented
zero-divisor graphs. We shall investigate the zero-divisor structure of
Boolean rings, as well as ring-theoretic properties that arise when a ring
has a specifically classified zero-divisor graph. In Section 2.2, we see
that if R is Boolean, then the atoms of B(R) are precisely the elements
of V (Γ(R)) that are adjacent to an end (an end being a vertex that is
adjacent to precisely one other vertex). Also, we show that every vertex
of the zero-divisor graph of a Boolean ring (not isomorphic to Z2) has
a unique complement. By excluding the rings Z9 and Z3[X]/(X2),
we see that the converse is also true. In Section 2.3, we describe the
elements that belong to the rational completion Q(R) of a Boolean ring
R, but not R, whenever R is not rationally complete. Also, we show
that a reduced rationally complete ring has the property that every
nonzero annihilator ideal I contains an element with complements in
Γ(R) that annihilate I. Moreover, this property is sufficient to conclude
that a Boolean ring is rationally complete. However, there are rings
whose zero-divisor structures do not detect rational completeness (see
Example 2.10). In Section 2.4, we observe that a zero-divisor graph
has a complete subgraph that contains every vertex adjacent to an
end, and give both a graph-theoretic and a ring-theoretic proof. Also,
we provide a complete list of those rings whose zero-divisor graphs have
the property that every vertex is either an end, or adjacent to an end.
In particular, unless R ∼= Z2×Z2×Z2, the zero-divisor graph Γ(R) has
a vertex of a cycle that is not adjacent to an end if and only if Γ(R)
contains a cycle.
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2.2 The Zero-Divisor Graph of a Boolean

Ring

The goal of this section is to characterize the zero-divisor graph of a
Boolean ring. Recall that an atom in a Boolean algebra B is an element
0 6= a ∈ B such that 0 6= b ∈ B with b ≤ a implies b = a. Then in
B(R), the Boolean algebra of idempotents, 0 6= a ∈ B(R) is an atom
if and only if b = a whenever 0 6= b ∈ B(R) with ba = b. We shall call
a vertex v ∈ Γ an end if v is adjacent to exactly one vertex. Thus, in
ring-theoretic terms, v ∈ R is an end if and only if v is nonzero and
ann(v) \ {0, v} = {w} for some w ∈ R. Note that if R is a Boolean
ring, then R = B(R) (as sets).

Lemma 2.1. Let R be a Boolean ring. An element 1 6= b ∈ B(R) is
an atom if and only if 1 − b is the unique end adjacent to b in Γ(R).

Proof. Suppose that 1 6= b is an atom in B(R). If 1 − b 6= x ∈ R with
xb = 0, then 1− b−x 6= 0 with (1− b−x)x = 0 = (1− b−x)b. Since R
is reduced, 1 − b− x 6∈ {0, x, b}, and hence x is not an end. So if 1 − b
is an end, then it is the unique end that is adjacent to b. But if x 6= 0
with x(1− b) = 0, then x = bx. Thus x ≤ b, and hence x = b since b is
an atom. So 1 − b is an end.

Conversely, suppose that 1 − b is the unique end adjacent to b. If
0 6= x ∈ B(R) with x ≤ b, then x = bx, and hence x(1 − b) = 0. Thus
x ∈ {0, b, 1 − b}, and hence x = b since R is reduced. Thus b is an
atom.

Theorem 2.2. Let R 6∼= Z2 be a Boolean ring. Then the atoms of B(R)
are precisely the elements of V (Γ(R)) that are adjacent to an end.

Proof. The atoms of B(R) are adjacent to an end by Lemma 2.1. If x
is an end and b 6= 0 with bx = 0, then x(1 − x) = 0 implies b = 1 − x
(R is reduced), and thus x = 1− b. So 1− b is the unique end which is
adjacent to b, and hence b is an atom by Lemma 2.1.

Lemma 2.3. Let R 6∼= Z2 be a Boolean ring. Then every element of
V (Γ(R)) has a unique complement.

Proof. Let r ∈ R \ {0, 1}. Note that r(1− r) = 0. If rt = 0 = (1− r)t,
then t = rt = 0. Hence r⊥(1−r). Suppose that r⊥t. Then t(1−r−t) =
0 = r(1 − r − t) implies 1 − r − t = 0; that is, t = 1 − r.
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Remark 2.4. Suppose that R is a ring with nonzero zero-divisors such
that every element of V (Γ(R)) has a unique complement. In particular,
R is uniquely complemented. Clearly either |V (Γ(R))| = 2 or Γ(R) is
not a star graph. In the former case, R is isomorphic to one of the rings
in the set {Z2 × Z2,Z9,Z3[X]/(X2)} [2, Theorem 3.2]. In the latter,
T (R) is von Neumann regular [1, Corollary 3.10]. Therefore, if r ∈
T (R), say r = r2t for some t ∈ R, then rt is idempotent and ann(r) =
ann(rt). Also, if e ∈ T (R) is idempotent with ann(e) = ann(rt), then
1− rt ∈ ann(e) and 1− e ∈ ann(rt) implies e = ert = rt. Thus, for all
r ∈ T (R), there is a unique idempotent e of T (R) with ann(r) = ann(e)
(c.f. the discussion prior to Theorem 4.1 in [1]). But every element
of V (Γ(T (R))) has a unique complement since Γ(R) ∼= Γ(T (R)) [1,
Theorem 2.2], and thus ann(r) = ann(e) if and only if r = e. Hence
every element of T (R) is idempotent. Thus T (R) is Boolean, and hence
so is R (= T (R)).

Although the previous argument is more compact, we shall provide
an elementary proof, independent of the above remark. Note that we
have omitted the rings Z9 and Z3[X]/(X2) below since their zero-divisor
graphs are isomorphic to Γ(Z2×Z2), the zero-divisor graph of a Boolean
ring.

Theorem 2.5. A ring R is Boolean if and only if either R ∼= Z2, or
Γ(R) is not the empty graph, R 6∈ {Z9,Z3[X]/(X2)}, and Γ(R) has the
property that every vertex has a unique complement. In particular, if
|V (Γ(R))| ≥ 3, then R is Boolean if and only if every vertex of Γ(R)
has a unique complement.

Proof. If R is Boolean, then the stated conditions follow from Lemma
2.3. To prove the converse, we first show that R\Z(R) = {1}. Suppose
not; say 1 6= r ∈ R \ Z(R). Then R 6∼= Z2, and thus Γ(R) is not
the empty graph by hypothesis. Also, there is a g ∈ V (Γ(R)) and
k ∈ V (Γ(R)) \ {0, g} with g⊥k. Note that R = Z2 × Z2 satisfies
R \ Z(R) = {1}, and so we can assume that R 6∼= Z2 × Z2.
Case 1 : Suppose that rg = g. Note that rk 6= g since otherwise rk = rg
so that r(k − g) = 0; this cannot happen since k 6= g. Suppose that
rk 6= k. So rk 6∈ {0, g, k} and rk ∈ Z(R) since rkg = 0. Then, by
uniqueness of complements, there is a t ∈ V (Γ(R)) \ {0, g, rk} with
tg = 0 = trk. Also, t 6= k since g⊥k. But trk = 0 implies tk = 0,
a contradiction. Thus we may assume rk = k. Then k(r − 1) = 0 =

8



g(r − 1). Since k⊥g and r 6= 1, either r − 1 = k or r − 1 = g. If
r− 1 = k, then k2 = (r− 1)k = 0. If k+ g = 0, then k = −g, and thus
|V (Γ(R))| = 2 since Γ(R) is connected, k⊥g, and ann(k) = ann(g).
Then, as in Remark 2.4, R is isomorphic to one of three rings, two of
which are excluded by hypothesis. Hence, in this case, R ∼= Z2 × Z2, a
contradiction. Then we have k+ g 6= 0, and thus k+ g 6∈ {0, k, g} since
k 6= 0 6= g. Thus k(k + g) = 0 and uniqueness of complements implies
there is a t ∈ V (Γ(R))\{0, k, k+g} with tk = 0 and t(k+g) = 0. Also,
t 6= g since g⊥k. But then tg = tg+ tk = t(g+k) = 0 contradicts g⊥k.
Thus r − 1 6= k, and a symmetric argument shows r − 1 6= g. Hence
case 1 cannot happen, and so we may assume
Case 2 : Suppose that rg 6= g for all r ∈ R \

(

Z(R) ∪ {1}
)

. Suppose
that rg 6= k. Then rg 6∈ {0, g, k} and rgk = 0. Since complements are
unique, there is a t ∈ V (Γ(R)) \ {0, rg, k} with trg = 0 = tk. Also,
t 6= g since g⊥k. But trg = 0 implies tg = 0, contradicting g⊥k. So
assume rg = k. As before, we can assume |V (Γ(R))| 6= 2. Then, since
Γ(R) is connected, there is a t ∈ V (Γ(R)) \ {0, g, k} with either tg = 0
or tk = 0. If tg = 0, then tk = trg = 0, contradicting g⊥k. If tk = 0,
then trg = tk = 0 implies that tg = 0, contradicting g⊥k. Now all
possibilities have been exhausted. Therefore R \ Z(R) = {1}.

It now follows that R is reduced since r 6= 0 with rn = 0 implies
that 1 + r is a unit, and hence 1 + r ∈ R \ Z(R) with 1 + r 6= 1, a
contradiction. Choose g ∈ R \ {0, 1}; say g⊥k for some k ∈ V (Γ(R)).
Note that g2 6= 0 and g2k = 0. Also, g2 6= k since otherwise k2 = 0,
a contradiction. Then if g2 6= g, uniqueness of complements implies
that there is a t ∈ V (Γ(R)) \ {0, g2, k} with tg2 = 0 = tk. But g2 6= 0
and k2 6= 0 implies that tg 6∈ {g, k}. Also, tgg = 0 = tgk. Hence
g⊥k implies tg = 0. But nil(R) = (0) implies that t 6= g, and this
contradicts g⊥k. So g2 = g, and we have that R is Boolean.

The “in particular” statement in the theorem is clear.

2.3 Rationally Complete Boolean Rings

This section contains two main results: Proposition 2.6 examines the
nature of an element of Q(R) \ [R] whenever R is a Boolean ring which
is not rationally complete, and Theorem 2.9 characterizes the zero-
divisor graphs of rationally complete Boolean rings. For a set S ⊆ R,
let annR(S) = {r ∈ R : rs = 0 for all s ∈ S}. When R is reduced,
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I + annR(I) is dense for any ideal I ⊆ R. Note that if D is dense in
R, then its image [D] in Q(R) is dense (as a set) in Q(R). To see this,
suppose that D′ is a dense ideal of R and f ∈ HomR(D′, R) such that
[f ] 6= [f0] = 0. Then there is a d′ ∈ D′ such that f(d′) 6= 0. Therefore,
since D is dense, there is a d ∈ D such that f(dd′) = f(d′)d 6= 0. It
follows that

[f ][fd][fd′ ] = [f ◦ fd ◦ fd′ ] = [ff(dd′)] 6= 0.

Thus [f ][fd] 6= 0 and hence [f ][D] 6= {0}. Since [f ] ∈ Q(R) was cho-
sen arbitrarily, [D] is dense in Q(R). Recall that a Boolean algebra is
complete if every subset has an infimum. A Boolean ring R is ratio-
nally complete if and only if B(R) (and hence B([R])) is complete [9,
Theorem 12.3.4]. It is well known that every Boolean algebra B is a
subalgebra of a complete Boolean algebra D(B), where the infimum of
a set in B (when it exists) is the same as its infimum in D(B). Here,
D(B) is the “so called” Dedekind-MacNeille completion of B [11, c.f.
Section 2.4].

Proposition 2.6. Let R be a Boolean ring. Then R is not rationally
complete if and only if there exists a nonempty family S ⊆ B(R) such
that [f ] = inf[S] ∈ B(Q(R)) \ B([R]), where f ∈ HomR(D,R) with
D =

∑

s∈S R(1−s)+annR
(
∑

s∈S R(1−s)
)

is defined by f(r1+r2) = r2
for all r1 ∈

∑

s∈S R(1 − s) and r2 ∈ annR
(
∑

s∈S R(1 − s)
)

. Moreover,
this property characterizes every element of Q(R) \ [R].

Proof. Note that D is a dense ideal of R and that the function f is
well-defined since

(
∑

s∈S R(1 − s)
)

∩ annR
(
∑

s∈S R(1 − s)
)

= (0).
The given conditions are sufficient to conclude that R is not rationally
complete since B(Q(R)) \B([R]) 6= ∅ means Q(R) \ [R] 6= ∅. To prove
that these conditions are necessary, suppose that R is not rationally
complete. Then B([R]) is not complete, and hence there is an S ⊆ B(R)
with [f ] = inf[S] ∈ B(Q(R)) \ B([R]) for some f ∈ F (indeed, Q(R)
is rationally complete [11, Proposition 2.3.5]). Let D and f be as
in the statement of the proposition. Since [f ] ≤ [fs] for all s ∈ S,
we have [f ][f1−s] = [f ]([f1] − [fs]) = [f0] = 0 for all s ∈ S, and
therefore [f ]

[
∑

s∈S R(1 − s)
]

= {0}. But [f ] 6∈ B([R]) implies [f ] 6= 0;
thus annR

(
∑

s∈S R(1 − s)
)

6= (0) since D is a dense ideal of R. Let
0 6= r ∈ annR

(
∑

s∈S R(1−s)
)

. Then [fr] ≤ [fs] for all s ∈ S, and hence

10



[fr] ≤ [f ]. That is, [f ][fr] = [fr]. It follows that ([f ] − [f ])[D] = {0},
and therefore [f ] − [f ] = 0 since [D] is dense, i.e., [f ] = [f ].

The “moreover” statement of the proposition follows sinceB(Q(R)) ∼=
D(B([R])), and every element of D(B([R])) is the infimum of some
[S] ⊆ B([R]) [11, Proposition 2.4.5 and the corollary to Proposition
2.4.6].

In [4, Theorem 10.9], it is shown that B(R) is complete whenever
R is reduced and rationally complete. Alternatively, this fact can be
established by noting that the “sufficiency” portion of the above proof
only requires that R be reduced.

Since there is no longer any danger of losing precision, we shall, for
the remainder of this section, identify R with its image in Q(R). The
following statement follows from the proof of Proposition 2.6.

Corollary 2.7. Let R be a Boolean ring. If S ⊆ B(R) has no infimum,
then annR({1 − s}s∈S) 6= (0).

Let R be a von Neumann regular ring. If x ∈ R, say x = x2y
for some y ∈ R, then ex = xy ∈ B(R). Clearly ann(x) = ann(ex)
for all x ∈ R. Also, (1 − ex)⊥x since (1 − ex)x = 0 and tx = 0 =
t(1 − ex) implies t = t(xy) = 0. By [1, Theorem 3.5], Γ(R) is uniquely
complemented. Thus ann(x′) = ann(1− ex) for every complement x′ of
x.

If S ⊆ V (Γ(R)) is a family of vertices, we shall call v a central vertex
of S if v is adjacent to s for all s ∈ S. Recall that a reduced rationally
complete ring is von Neumann regular, and thus its zero-divisor graph
is uniquely complemented.

Lemma 2.8. Let R be a reduced rationally complete ring. If a nonempty
set S ⊆ V (Γ(R)) has a central vertex, then there is a central vertex v
of S that possesses a complement adjacent to every central vertex of S
(and hence, since Γ(R) is uniquely complemented, every complement of
v is adjacent to every central vertex of S).

Proof. Suppose that the stated conditions fail for some reduced ratio-
nally complete (hence von Neumann regular) ring R; that is, suppose
that there is a ∅ 6= S ⊆ V (Γ(R)) with central vertices such that, if
v is any central vertex of S, then there exists a central vertex w of
S with (1 − ev)w 6= 0. Let S ′ = {1 − es ∈ B(R) : s ∈ S}, and let
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C = {b ∈ B(R) \ {0} : be = b for all e ∈ S ′}. Note that C 6= ∅ since
if v is any central vertex of S, then ev ∈ C. Also, every element of
C is a central vertex of S. Thus, to every b ∈ C there corresponds a
central vertex w of S such that (1− b)w 6= 0; hence (1− b)ew 6= 0. Let
f = inf S ′ (in D(B(R))). Note that C 6= ∅ forces f 6= 0 since b ∈ C
means b ≤ e for all e ∈ S ′. So if f ∈ B(R), then f ∈ C, and hence
there is a central vertex w of S such that few 6= ew. Since ew ∈ C,
this contradicts ew ≤ f . Hence f 6∈ B(R). Since the infimum of a set
taken in B(R) agrees with the infimum taken in D(B(R)), we have that
B(R) is not complete. Thus, by the comments that follow the proof of
Proposition 2.6, R is not rationally complete.

Note that the “reduced” hypothesis cannot be dropped from Lemma
2.8. For example, consider the ring R = F4[X]/(X2). Then R is ratio-
nally complete (see the first paragraph of the proof of Theorem 2.9),
but Γ(R) is the complete graph on three vertices. In particular, com-
plements do not exist in Γ(R).

Recall from Theorem 2.5 that every vertex v of the zero-divisor
graph of a Boolean ring has a unique complement, namely, 1−v. Thus
half of the following theorem is immediate.

Theorem 2.9. Let R be a Boolean ring. Then R is rationally complete
if and only if whenever ∅ 6= S ⊆ V (Γ(R)) is a family of vertices that has
a central vertex, there exists a central vertex of S whose complement is
adjacent to all of the central vertices of S.

Put more formally, Theorem 2.9 says that a Boolean ring R is ra-
tionally complete if and only if whenever S is a family of vertices with
C = {v ∈ V (Γ(R)) : v is adjacent to s for all s ∈ S} 6= ∅, there is a
v∗ ∈ C such that the complement 1 − v∗ of v∗ is adjacent to every
v ∈ C.

Proof. Note that the only dense ideal of a finite ring R is R itself (e.g.,
[9, Theorem 80]), and every R-module homomorphism f ∈ HomR(R,R)
is determined by f(1); that is, f ∼ ff(1). So every finite ring is ratio-
nally complete. Therefore Theorem 2.9 holds for Z2 vacuously. Let us
now assume that R is a Boolean ring which is not isomorphic to Z2; in
particular, V (Γ(R)) 6= ∅.

Suppose that R is rationally complete. Since Boolean rings are
reduced, the stated conditions hold by Lemma 2.8. Conversely, suppose
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that the stated conditions on V (Γ(R)) are satisfied. Let ∅ 6= S ⊆ R
be any family of elements. In B(R), it is clear that inf S = 0 if 0 ∈ S.
Suppose that 0 6∈ S. If S = {1}, then inf S = 1. If S 6= {1} and contains
1, then we may remove 1 from S without changing inf S. Thus we may
assume 0, 1 6∈ S. If S has no infimum, then C = {v ∈ V (Γ(R)) :
v is adjacent to 1− s for all s ∈ S} 6= ∅ by Corollary 2.7. In this case,
by hypothesis, there is a v∗ ∈ C such that 1− v∗ is adjacent to v for all
v ∈ C. Since v∗ ∈ C, we have v∗(1−s) = 0 for all s ∈ S; that is, v∗ ≤ s
for all s ∈ S. Moreover, if v ≤ s for all s ∈ S, then v ∈ C so that
v(1−v∗) = 0; that is, v ≤ v∗. But this shows that inf S = v∗ ∈ B(R), a
contradiction. Thus every ∅ 6= S ⊆ R has an infimum, and hence B(R)
is a complete Boolean algebra. Therefore R is rationally complete by
[9, Theorem 12.3.4].

We conclude this section with three examples: Example 2.10 shows
that a von Neumann regular ring may satisfy the condition of Lemma
2.8 without being rationally complete. Moreover, in contrast to Boolean
rings, rationally complete von Neumann regular rings cannot be char-
acterized in terms of their zero-divisor graphs. Examples 2.11 and 2.12
illustrate the necessity and sufficiency, respectfully, of the condition
stated in Theorem 2.9. Also, if R is the ring defined in Example 2.12,
then Γ(R) 6∼= Γ(Q(R)) by Theorem 2.9. Alternatively, suppose that
R is a reduced total quotient ring which is not von Neumann regular
(e.g., [6, Example 6]). Then Γ(R) is not uniquely complemented. How-
ever, Q(R) is von Neumann regular, and hence Γ(Q(R)) is uniquely
complemented [1, Theorem 3.5]. Therefore, Γ(R) 6∼= Γ(Q(R)).

Example 2.10. Let ∆ denote the space of real numbers endowed with
the discrete topology, and let C(∆) be the usual ring of real-valued con-
tinuous function on ∆ (in this case, the ring of all real-valued func-
tions on ∆). Let F (∆) = {f ∈ C(∆) : f(∆) is finite}. Clearly
F (∆) is a von Neumann regular ring, but is not Boolean. By [4, 4.3],
Q(F (∆)) ∼= C(∆). Moreover, F (∆) is not rationally complete. To see
this, let D =

∑

i∈∆ eiF (∆), where ei : ∆ → R is defined by

ei(j) =
{ 1, i = j

0, i 6= j
.

Clearly D is dense in F (∆). Note that every nonzero proper ideal
of F (∆) contained in D is of the form

∑

i∈I eiF (∆), where I is a
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nonempty proper subset of ∆. In particular, D does not properly con-
tain any dense ideal of F (∆). Therefore, we will have that F (∆) is not
rationally complete if we can produce an element ϕ ∈ HomF (∆)(D,F (∆))
such that, for all f ∈ F (∆), there exists a d ∈ D with ϕ(d) 6= fd. But
one can easily check that the homomorphism ϕ : D → F (∆) defined by

ϕ(ei)(j) =
{ i, j = i

0, j 6= i

is such an element (let d = eα, where α 6∈ f(∆)). Finally, we will show
that F (∆) satisfies the condition in Lemma 2.8, and that Γ(F (∆)) ∼=
Γ(Q(F (∆))).

Suppose that ∅ 6= S ⊆ V (Γ(F (∆))) has a central vertex. Then there
is an i ∈ ∆ such that f(i) = 0 for all f ∈ S. Let K = {i ∈ ∆ : f(i) =
0 for all f ∈ S}. Clearly a function 0 6= g ∈ F (∆) is a central vertex
of S if and only if g vanishes on ∆ \K. Define g : ∆ → R by

g(i) =
{ 0, i 6∈ K

1, i ∈ K
.

Then g ∈ F (∆) is a central vertex of S, and h ∈ F (∆) is a complement
of g if and only if

h(i) =
{ ri, i 6∈ K

0, i ∈ K
,

where each ri ∈ R \ {0}. Thus every complement of g is adjacent to
every central vertex of S.

Finally, Γ(F (∆)) ∼= Γ(Q(F (∆))) by [1, Theorem 4.1] since B(F (∆)) =
B(C(∆)) and |{f ∈ F (∆) : f(i) = 0 ⇔ i ∈ K}| = |{f ∈ C(∆) : f(i) =
0 ⇔ i ∈ K}| for every K ⊆ ∆.

Example 2.11. Let R be the Boolean ring
∏

i∈I Z2 for some nonempty
indexing set I. Since Z2 is rationally complete, so is R [11, Proposition
2.3.8]. (Alternatively, it is easy to show that B(R) is complete.) We
will show that the conditions given in Theorem 2.9 are satisfied.

Suppose that S = {(rij)i∈I}j∈J ⊆ V (Γ(R)) has a central vertex.
Then there is an i ∈ I such that rij = 0 for all j ∈ J . Let I∗ = {i ∈ I :
rij = 0 for all j ∈ J}, and let v = (vi), where

vi =
{ 0, i 6∈ I∗

1, i ∈ I∗
.
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If w = (wi) is any central vertex of S, then wi = 0 for all i ∈ I \ I∗.
Then since 1 − vi = 0 for all i ∈ I∗, we have (1R − v)w = 0R for
every central vertex w of S; that is, v is a central vertex of S whose
complement is adjacent to every central vertex of S.

Example 2.12. Let R = {N ⊆ N : |N | < ∞ or |N \N | < ∞}, where
N is the set of natural numbers. It is well known that R is a Boolean
ring with addition defined as “symmetric difference” and multiplication
defined as “intersection.” Moreover, B(R) is not complete: Let S =
{sn}

∞
n=1, where sn = N \ {2i}ni=1, and let f = {2i − 1}∞i=1. Then inf

S = f 6∈ B(R) (note that f and S are the same as in Proposition
2.6). Since B(R) is not complete, R is not rationally complete [9,
Theorem 12.3.4]. Let S ′ =

{

{2i}ni=1

}∞

n=1
. Clearly S ′ ⊆ V (Γ(R)), and

C =
{

{2i − 1}i∈I : I ⊆ N with |I| < ∞
}

is the set of central vertices
of S. But for any v ∈ C, 1R − v (i.e., N \ v) contains 2i− 1 for some
i ∈ N, and thus (1R − v){2i − 1} 6= 0R. Since {2i − 1} ∈ C, we have
shown that R does not satisfy the conditions of Theorem 2.9.

2.4 Zero-Divisor Graphs with Ends

The goal of this section is to answer the following question:

Which rings have the property that every element of V (Γ(R)) is
either an end or is adjacent to an end?

Of course, all star graphs have this property. As noted in [2, Remark
2.4], Γ(R) is a star graph if and only if either R ∼= A, where A ∈ {Z9,
Z3[X]/(X2), Z8,Z2[X]/(X3), Z4[X]/(2X,X2−2)}; R ∼= Z2×A, where
A is an integral domain; or there exists a 0 6= x ∈ R such that Z(R) =
ann(x), nil(R) = {0, x}, and R/nil(R) is an infinite integral domain
(e.g., Z[X]/(2X,X2)). We will see that only two other graphs that have
this property are realizable as zero-divisor graphs (see Figure 2.1).

In [1, Theorem 4.1], it is shown that the zero-divisor graphs of
two von Neumann regular rings R and S are isomorphic if and only if
there is a Boolean algebra isomorphism ϕ : B(R) → B(S) such that
|[e]| = |[ϕ(e)]| for all 1 6= e ∈ B(R), where [e] = {r ∈ R : eR = rR}. If
one of the rings is Boolean, we can say even more:
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(a) (b)

Figure 2.1: Γ(Z2 × Z4) and Γ(Z2 × Z2 × Z2)

Theorem 2.13. Let R be a ring with nonzero zero-divisors, not iso-
morphic to Z9 or Z3[X]/(X2). If S is a Boolean ring such that Γ(R) ∼=
Γ(S), then R ∼= S. In particular, if R and S are Boolean rings, then
Γ(R) ∼= Γ(S) if and only if R ∼= S.

Proof. By Theorem 2.5, we have that R is a Boolean ring. By [1,
Theorem 4.1], there is a Boolean algebra isomorphism ϕ : B(R) →
B(S). Since B(R) = R and B(S) = S, the map ϕ : R → S is a bijection
such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R. Note that ϕ(1R − a) =
ϕ(a′) = ϕ(a)′ = 1S − ϕ(a) for all a ∈ R. Since a Boolean ring has
characteristic 2, we have

ϕ(a+ b) = ϕ(a+ b− 2ab)

= ϕ
(

a(1R − b) ∨ b(1R − a)
)

= ϕ(a)ϕ(1R − b) ∨ ϕ(b)ϕ(1R − a)

= ϕ(a)
(

1B − ϕ(b)
)

∨ ϕ(b)
(

1B − ϕ(a)
)

= ϕ(a) + ϕ(b).

Therefore ϕ is an isomorphism of rings.
The “in particular” statement in the theorem is clear.

Note that Z2 × R and Z2 × C are non-isomorphic von Neumann
regular rings that have isomorphic zero-divisor graphs, where R and C
denote the set of real and complex numbers, respectively. For this, as
well as examples with rings whose characteristic is finite, see [13].
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For a ∈ V (Γ(R)), set E(a) = {x ∈ V (Γ(R)) \ {a} : ann(x) ⊆
{0, a, x}}. Call an element of E(a) an end of a. For A ⊆ V (Γ(R)),
set E(A) = {x ∈ Γ(R) : x ∈ E(a) for some a ∈ A}. Call an element
of E(A) an end of A. Call an element of E(V (Γ(R))) an end. (This
agrees with the definition that was given at the beginning of Section
2.2.) Thus, since zero-divisor graphs are connected, x ∈ E(a) means a
is the only vertex adjacent to x. It follows that if 0 6= a, b ∈ Z(R) are
distinct, then E(a) ∩ E(b) = ∅. Also, E(a) ⊆ ann(ar) for all r ∈ R.

Suppose that a, b ∈ V (Γ(R)) are distinct with E(a) 6= ∅ 6= E(b);
say x ∈ E(a) and y ∈ E(b). Then a is adjacent to b since otherwise
the shortest path from x to y has at least four edges. This gives a
graph-theoretic proof of the following lemma. A ring-theoretic proof is
given below.

Lemma 2.14. Let R be a ring and V = {v ∈ V (Γ(R)) : E(v) 6= ∅}.
Then the subgraph of Γ(R) induced by V is complete.

Proof. Suppose that a, b ∈ V are distinct. Then for all x ∈ E(a) and
y ∈ E(b), the inclusion E(a) ∪ E(b) ⊆ ann(ab) implies that

ab ∈ ann(x) ∩ ann(y) ⊆ {0, a, x} ∩ {0, b, y} = {0}.

Thus a and b are adjacent.

We now provide the answer to the question posed at the beginning
of this section. Observe that if R satisfies (1) or (3) below, then Γ(R) is
isomorphic to the graph in Figure 2.1(a) or Figure 2.1(b), respectively.

Theorem 2.15. Let R be a ring with the property that every element
of V (Γ(R)) is either an end or is adjacent to an end. Then exactly one
of the following holds:

(1) R ∼= A, where A ∈ {Z2 × Z4, Z2 × Z2[X]/(X2)}.

(2) Γ(R) is a star graph.

(3) R ∼= Z2 × Z2 × Z2.

Note that the hypothesis of Theorem 2.15 implies |V (Γ(R))| ≥ 2.
If a, b ∈ V (Γ(R)) are nonends with a⊥b, then {a, b} = V (Γ(R)) \
E(V (Γ(R))); for, if c is a nonend distinct from a and b, then ac = 0 = bc
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by Lemma 2.14, a contradiction. Then a and b are vertices that are
not contained in any cycle and hence, since E(a) 6= ∅ 6= E(b) and
E(a) ∩ E(b) = ∅, the ring R is isomorphic to one of the rings in (1)
by [16, (2.0) (ii)]. Thus a ring that satisfies the hypothesis of Theorem
2.15, but does not satisfy (1), has the property that a⊥b implies either
a ∈ E(b) or b ∈ E(a). Therefore, since the zero-divisor graph of any ring
satisfying the hypothesis of Theorem 2.15 is complemented, Theorem
2.15 will be established upon proving

Theorem 2.16. Let R be a ring such that Γ(R) is complemented, and
a⊥b if and only if either a ∈ E(b) or b ∈ E(a). Then R satisfies one
of (2) or (3) from Theorem 2.15.

Proof. If a, b, and c are distinct vertices with a⊥b and a⊥c, then b, c ∈
E(a), and hence ann(b) \ {b} = {0, a} = ann(c) \ {c}. Therefore,
Γ(R) is uniquely complemented. By [1, Corollary 3.10], either Γ(R)
is a star graph or T (R) is von Neumann regular. Suppose that Γ(R)
is not a star graph. Then T (R) is von Neumann regular, and hence
nil(R) = (0). In particular, E(a) = {x ∈ V (Γ(R)) : ann(x) ⊆ {0, a}}.
Let a ∈ V (Γ(R)), and let b ∈ E(a). Then a2b = 0 implies a2 ∈ {0, a},
and hence a2 = a since nil(R) = (0). So V (Γ(R)) \ E(V (Γ(R))) is a
set of idempotents. It now follows that |V (Γ(R)) \ E(V (Γ(R)))| ≤ 3:
Suppose that this claim is false, and let a, b, c, d ∈ V (Γ(R)) be distinct
nonends. Lemma 2.14 implies that a(c + d) = 0; so c + d ∈ Z(R). In
fact, c + d ∈ E(V (Γ(R))). If not, then c + d 6= c (since d 6= 0) and
Lemma 2.14 imply that c2 = c(c + d) = 0, a contradiction. The same
reasoning forces c + d 6= 0. But then {a, b} ⊆ ann(c + d) contradicts
that c+ d is an end. So Γ(R) has at most three nonends.

If Γ(R) has precisely zero or one nonend, then clearly (2) holds. If
Γ(R) has two nonends, then (1) holds by [16, (2.0) (ii)], contradicting
the condition that a⊥b means either a ∈ E(b) or b ∈ E(a). Suppose
that |V (Γ(R))\E(V (Γ(R)))| = 3. If a and b are distinct nonends, then
a + b 6= 1 (a + b ∈ Z(R) since it is annihilated by the third nonend)
and, using Lemma 2.14 together with the observation that nonends are
idempotent, we see that (a + b)(1 − (a + b)) = 0. Just as above, we
have that a + b is an end, and therefore {1 − (a + b), a, b} is the set
of nonends of Γ(R). Let c ∈ E(a). Then c(1 − b) ∈ ann(a + b), and
thus c(1 − b) = 1 − (a + b) since a + b ∈ E(1 − (a + b)) (note that
c(1 − b) 6= 0 since 1 − b ∈ E(b)). That is, c(1 − b) = (1 − a)(1 − b),
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and hence (c + a − 1)(1 − b) = 0. Thus c + a − 1 ∈ {0, b} since
1− b ∈ E(b). But c+ a− 1 = b implies that bc+ ba− b = b2 = b = −b
(b = −b since (1 − b)(b + b) = 0 implies b + b ∈ {0, b}). Then bc = 0,
a contradiction since c ∈ E(a). So c + a − 1 = 0, i.e., c = 1 − a.
Symmetrically, E(b) = {1− b} and E(1− (a+ b)) = {a+ b}. Therefore,
Γ(R) = Γ(Z2 ×Z2 ×Z2). Thus R ∼= Z2 ×Z2 ×Z2 by Theorem 2.13.

Corollary 2.17. Let R 6∼= Z2 × Z2 × Z2 be a ring with nonzero zero-
divisors. Then Γ(R) has a vertex of a cycle that is not adjacent to an
end if and only if Γ(R) contains a cycle.

Proof. The necessity of the statement is trivial. Suppose that Γ(R)
contains a cycle. By contradiction, assume that every vertex of every
cycle is adjacent to an end. By [16, (2.1) (i)], we have that every vertex
of Γ(R) that is not contained in a cycle must be an end. Then clearly R
satisfies the hypothesis of Theorem 2.15. Therefore, since Γ(R) contains
a cycle, R ∼= Z2 × Z2 × Z2, a contradiction.
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Chapter 3

On Realizing Zero-Divisor

Graphs

Abstract. An algorithm is presented for constructing the zero-divisor

graph of a direct product of integral domains. Moreover, graphs which are

realizable as zero-divisor graphs of direct products of integral domains are

classified, as well as those of Boolean rings. In particular, graphs which

are realizable as zero-divisor graphs of finite reduced commutative rings are

classified.
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3.1 Introduction

Let R be a commutative ring (with 1 6= 0) and let Z(R) be its set of
zero-divisors. If R does not contain any nonzero nilpotents, then R will
be called reduced. As usual, the set of positive integers will be denoted
by N, and Fq will be the finite field with q elements. We associate
a (undirected) graph Γ(R) to R whose vertices are the elements of
Z(R) \ {0}, such that distinct vertices v1 and v2 are adjacent if and
only if v1v2 = 0. Thus, Γ(R) is the empty graph if and only if R is an
integral domain. The graph Γ(R) is called the zero-divisor graph of R.

The notion of a zero-divisor graph was introduced by I. Beck in [3].
While he was mainly interested in colorings, we shall investigate the
interplay between ring-theoretic and graph-theoretic properties. This
approach begun in [2] and has since continued to evolve (cf. [1], [2], [1],
[5], [6], [7], [11], [13], [12], [16], [14], and [9]).

A graph will be called realizable if it is isomorphic to Γ(R) for some
ring R. There are many results which imply that most graphs are
not realizable. For example, it is known that zero-divisor graphs are
connected with diameter at most three (i.e., any two vertices can be
joined by three or less edges) [2, Theorem 2.3]. More generally, one uses
ring-theoretic properties of a class of rings to reveal invariant graph-
theoretic properties. On the other hand, there are algebraic properties
of a ring that can be deduced when particular characteristics of Γ(R) are
known. For example, a reduced total quotient ring is zero-dimensional
if and only if every vertex of its zero-divisor graph is incident with an
edge that is not an edge of any triangle [1, Theorem 3.5]. However,
it is easy to construct non-realizable graphs that are connected, have
diameter at most three, and have the property that every vertex is
incident with an edge which is not an edge of any triangle. For example,
take any complete graph on n vertices where either n = 2 or n ≥ 4, and
assign an end to each vertex (an end being a vertex that is adjacent to
precisely one other vertex) [11, Theorem 4.3]. On the other hand, this
construction yields the zero-divisor graph of F2 × F2 × F2 when n = 3.

If R and S are finite reduced rings which are not fields, then Γ(R) ∼=
Γ(S) if and only if R ∼= S [2, Theorem 4.1]. This result fails for infinite
reduced rings. For example, in [1, Theorem 2.1] it is shown that if
{Ai}i∈I and {Bj}j∈J are two families of integral domains (with |I| ≥ 2),
then Γ(

∏

i∈I Ai)
∼= Γ(

∏

j∈J Bj) if and only if there exists a bijection
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ϕ : I → J such that |Ai| = |Bϕ(i)| for all i ∈ I. Of course, it is easy to
find non-isomorphic integral domains of the same infinite cardinality.
These findings are implicit in the results of this article.

In Section 3.2, we present an algorithm to construct realizable graphs.
In particular, we classify graphs that are realizable as zero-divisor
graphs of direct products of integral domains. It follows that the zero-
divisor graph of any reduced ring is necessarily a subgraph of a member
of a particular class of graphs (see Corollary 3.4). In [14], Redmond
calculates every zero-divisor graph on n vertices, for all n ≤ 14. More-
over, he gives an algorithm to find all finite reduced rings that have a
zero-divisor graph on n vertices, for any n ∈ N. These results are com-
plemented by Corollary 3.4, which classifies graphs that are zero-divisor
graphs of finite reduced rings. Furthermore, the results of Section 3.2
facilitate a lucid and timely construction of otherwise complicated zero-
divisor graphs (see Example 3.5). In Section 3.3, graphs which are re-
alizable as zero-divisor graphs of Boolean rings are characterized. This
classification of graphs generalizes [1, Theorem 3.5] and [11, Theorem
2.5], which characterize zero-divisor graphs of commutative von Neu-
mann regular rings and Boolean rings, respectively.

3.2 Direct Products of Integral Domains

In this section, we present an algorithm for constructing the zero-divisor
graph of a direct product of integral domains. In [1, Theorem 2.2], it
is shown that the zero-divisor graph of a ring is isomorphic to the
zero-divisor graph of its total quotient ring. Suppose that R is a direct
product of fields. Then [1, Proposition 4.5] implies that the zero-divisor
graph induced by the set of idempotents of R is obtained by identifying
vertices of Γ(R) which share the same adjacency relations. These results
motivate a less complicated representation of the zero-divisor graph of
a direct product of integral domains.

Throughout, the letters κ, λ, and µ will denote (possibly infinite)
cardinal numbers. If the set of vertices of a graph can be partitioned
into a pair of nonempty disjoint sets A and B such that two vertices
are adjacent if and only if one belongs to A and the other belongs to
B, then the graph is called complete bipartite. We will refer to such
graphs as (κ, λ)-bipartite when |A| = κ and |B| = λ.

Let the labeled graph in Figure 3.1(a) denote the (κ, λ)-bipartite
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graph, and the labeled graph of Figure 3.1(b) denote the graph result-
ing from the obvious “gluing” of the (κ, λ)-bipartite graph with the
(λ, µ)-bipartite graph (every bijective identification of the λ vertices
will result in the same graph, up to isomorphism). One can denote a
graph composed of an arbitrary set of “compatible” complete bipartite
graphs in a similar fashion. For example, the labeled graph in Fig-
ure 3.3 represents a graph composed of twenty-five complete bipartite
graphs.

Note that a graph may have many such representations. For exam-
ple, the graph represented by Figure 3.1(a) with κ = 2 and λ = 1 is iso-
morphic to the graph represented by Figure 3.1(b) with κ = λ = µ = 1.
Given a graph Γ, define the minimal representation of Γ to be the la-
beled graph obtained by identifying vertices which share precisely the
same adjacency relations, and then assigning the cardinality of the set
of all such vertices to the corresponding representative vertex. For
example, letting κ = 2 and λ = 1 in Figure 3.1(a) yields the min-
imal representation of the graph represented by Figure 3.1(b) with
κ = λ = µ = 1. In terms of zero-divisor graphs of reduced rings,
one obtains a minimal representation by identifying vertices v1 and
v2 if and only if ann(v1) = ann(v2), and then assigning the cardinal
|ann(v1) \ {0}| to the corresponding representative vertex.

Recall that a ring R is Boolean if x2 = x for all x ∈ R. It is
well-known that every Boolean ring has characteristic 2. Also, the
set B(R) = {x ∈ R | x2 = x} of idempotents of a commutative ring
R becomes a Boolean ring with multiplication defined the same as in
R, and addition defined by the mapping (a, b) 7→ a + b − 2ab. The

κ λ

(a)

κ

λ

µ

(b)

Figure 3.1: Representations of complete bipartite graphs
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following lemma is an immediate consequence of [11, Lemma 2.3], but
is presented with an independent proof (also cf. [1, p. 232]).

Lemma 3.1. Let R 6= F2 be a Boolean ring. Then the figure obtained
by assigning the label 1 to each vertex of Γ(R) is the minimal represen-
tation of Γ(R).

Proof. Suppose that v1 and v2 are vertices of Γ(R) with ann(v1) =
ann(v2). Then 1 − v2 ∈ ann(v2) = ann(v1) and 1 − v1 ∈ ann(v1) =
ann(v2). Thus v1(1 − v2) = 0 and v2(1 − v1) = 0. Hence v1 = v1v2 =
v2.

We now present the algorithm mentioned above for constructing the
zero-divisor graph of a direct product of integral domains. Recall that
the direct product

∏

i∈I F2 is isomorphic to the power set of I, endowed
with addition as “symmetric difference” and multiplication as “inter-
section.” This fact motivates (1) through (3). The last two steps are
motivated by [1, Theorem 2.2, Proposition 4.5, and p. 233]. We define
[I]µ = {J ⊆ I | |J | = µ}.

1. Construct the complete graph on κ ≥ 2 vertices. Denote the
set of vertices of this graph by A = {ai}i∈I , where I is an index-
ing set with |I| = κ. If κ = 2, then go to (4). Otherwise, go to (2).

2. For each nonempty subset A′ ⊆ A such that |A \ A′| ≥ 2, intro-
duce a new vertex v(A′) such that v(A′) is adjacent to ai ∈ A if
and only if ai ∈ A′.

3. If A′ and A′′ are subsets of A as in (2), then declare v(A′) to be
adjacent to v(A′′) if and only if A′ ∪ A′′ = A.

(*) The resulting graph is the zero-divisor graph of the Boolean
ring

∏

i∈I F2. If κ is finite, this graph has 2κ−2 vertices and

Σκ
µ=2(2

µ−1 − 1)
( κ
µ

)

edges.
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4. Label a vertex ai of A with a nonzero cardinal λi such that λi is
finite if and only if λi = pni

i − 1 for some prime number pi and
integer ni ∈ N. Do this for all ai ∈ A. If κ = 2, then stop.
Otherwise, go to (5).

5. For each subset A′ of A as in (2), label the vertex v(A′) with
Πai∈A\A′λi.

(**) The resulting figure is the minimal representation of the
zero-divisor graph of the ring

∏

i∈I Di, where Di is any in-
tegral domain of cardinality λi + 1. If κ is finite, this graph
has

Σκ−1
µ=1ΣJ∈[I]µΠj∈Jλj = Πi∈I(λi + 1) − Πi∈Iλi − 1

vertices and

Σκ
µ=2(2

µ−1 − 1)ΣJ∈[I]µΠj∈Jλj

edges.

Note that (**) implies (*) by letting λi = 1 for all i ∈ I. However,
(*) will be verified implicitly in the proof of the following theorem.
We will say that a graph is representable if either it is empty, or it
is represented by a graph that can be constructed via the previous
algorithm.

Theorem 3.2. If a ring R is a direct product of integral domains, then
Γ(R) is representable. Moreover, a graph Γ is realizable as the zero-
divisor graph of a direct product of integral domains if and only if Γ is
representable.

Proof. We first observe that it suffices to prove (**). Since Γ(R) is
empty if and only if R is an integral domain, we only need to consider
nonempty graphs and direct products with at least two factors. Suppose
that (**) is true. If R is a direct product of µ ≥ 2 integral domains,
say R =

∏

i∈J Ri (where J is an indexing set with |J | = µ), then carry
out (1) through (3) with κ = µ and I = J . Carry out (4) through
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(5) by letting λi = |Ri| − 1 (i ∈ I). Then (**) implies that Γ(R)
is representable. This verifies the necessity portion of each statement
in the theorem. The sufficiency portion of the last statement is an
immediate consequence of (**).

To prove (**), let R =
∏

i∈I Di, where I is an indexing set with
|I| = κ ≥ 2, and Di is any integral domain of cardinality λi +1 (i ∈ I).
Let B(R) ⊆ R be the set of elements (ri) ∈ R such that ri ∈ {0, 1}
for all i ∈ I (B(R) is the set of idempotents of R). Let A(R) ⊆ B(R)
be the set of all elements with a 1 in precisely one coordinate and 0
elsewhere. Then the subgraph of Γ(R) induced by A(R) is complete on
κ vertices.

Let ∅ 6= A′ ⊆ A(R). If A′ = A(R), then there is no vertex of the
graph induced by B(R) that is adjacent to every element of A′. Suppose
that A′ ( A(R). Let v(A′) be the element of B(R) that has a 0 in the
i-coordinate if and only if there exists an element of A′ with a 1 in the
i-coordinate. Then v(A′) is the unique element of B(R) that satisfies
the following property: The vertex v(A′) is adjacent to a ∈ A(R) if
and only if a ∈ A′. Since every zero-divisor of B(R) annihilates some
element of A(R), it follows that every vertex of the subgraph induced
by B(R) is of the form v(A′) for some nonempty proper subset A′ of
A(R). Moreover, v(A′) ∈ B(R) \ A(R) if and only if v(A′) has a 1 in
at least two coordinates, i.e., if and only if v(A′) is not adjacent to at
least two elements of A(R), i.e., if and only if |A(R) \ A′| ≥ 2.

Finally, two elements v(A′) = (ri) and v(A′′) = (si) of B(R) are
adjacent in the subgraph induced by B(R) if and only if {i ∈ I | ri =
0 or si = 0} = I, i.e., if and only if {a ∈ A(R) | a is adjacent to
(ri)} ∪ {a ∈ A(R) | a is adjacent to (si)} = A(R), i.e., if and only if
A′∪A′′ = A(R). Therefore, the subgraph induced by B(R) is the graph
that one obtains by carrying out steps (1) through (3) with A = A(R).

Observe that Γ(R) can be represented by the subgraph induced by
B(R); indeed, a vertex (ri) of Γ(R) is represented by the element of
B(R) that has a 0 in the i-coordinate if and only if ri = 0. It is clear
that the labeling of the elements of A(R) is consistent with (4). In fact,
if A′ is any nonempty proper subset of A(R), then v(A′) represents

Πai∈A(R)\A′ |Di \ {0}| = Πai∈A(R)\A′λi

vertices of Γ(R), where ai denotes the element ofA(R) whose i-coordinate
is a 1. Thus v(A′) attains the desired label for every nonempty proper
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subset A′ of A(R). Therefore, Γ(R) is represented by the figure ob-
tained when (1) through (5) is carried out with A = A(R) and the
appropriate choice of λi (i ∈ I). Since the unlabeled version of this
representation is the zero-divisor graph of the Boolean ring induced by
B(R), this representation is minimal by Lemma 3.1. Theorem 3.2 is
now justified. To finish the proof of (**), it remains to verify the last
statement.

If J is a proper nonempty subset of I, then the above argument
shows that a vertex v({ai}i∈I\J) of the representative graph gets la-
beled with Πj∈Jλj ; that is, for each proper nonempty subset J ⊂ I,
there corresponds a vertex vJ representing Πj∈Jλj vertices. Moreover,
every vertex of Γ(

∏

i∈I Di) is represented by a unique vertex of the rep-
resentative graph. Therefore, Γ(

∏

i∈I Di) has Σκ−1
µ=1ΣJ∈[I]µΠj∈Jλj ver-

tices. Furthermore, since
∏

i∈I Di has Πi∈Iλi elements which are not
zero-divisors, it has Πi∈I(λi + 1) − Πi∈Iλi − 1 nonzero zero-divisors.

Finally, suppose that v is a vertex of the representative graph. Let
Iv = {i ∈ I | ai is not adjacent to v}. It has been shown that the
vertices v(A′) and v(A′′) (A′, A′′ ( A) are adjacent if and only if A′ ∪
A′′ = A. Then taking complements shows that two distinct vertices v
and w of the representative graph are adjacent if and only if Iv∩Iw = ∅.
Moreover, it is clear that an edge v − w of the representative graph
corresponds to Πi∈Iv∪Iwλi edges of Γ(

∏

i∈I Di). But each subset J of I
with |J | ≥ 2 can be decomposed into nonempty (hence proper) subsets
H1, H2 ⊆ J such that H1 ∪ H2 = J and H1 ∩ H2 = ∅. Moreover,
such a decomposition is determined by the nonempty proper subset
H1 ( J , since then H2 = J \ H1. So if |J | = κ, then there are
2κ − 2 nonempty proper subsets of J , and thus half as many (that is,
2κ−1−1) pairs of nonempty subsets H1, H2 of J such that H1∪H2 = J
and H1 ∩ H2 = ∅. Since a set H ⊆ I can be written as H = Iv for
some representative vertex v if and only if ∅ 6= H ( I, this shows that
every subset J ( I with |J | ≥ 2 corresponds to (2κ−1 − 1)Πj∈Jλj edges
of Γ(

∏

i∈I Di). Moreover, every edge of Γ(
∏

i∈I Di) is represented by
a unique edge of the representative graph. Therefore, Γ(

∏

i∈I Di) has
Σκ
µ=2(2

κ−1 − 1)ΣJ∈[I]µΠj∈Jλj edges.

Note that the converse to the first statement in the theorem is false.
For example, Γ(F3[X]/(X2)) ∼= Γ(F2 × F2), but F3[X]/(X2) is not a
product of integral domains (it has nilpotents). However, it is shown
in [1, Theorem 5] that if a finite ring R is a direct product of integral
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domains and S is a ring which is not an integral domain, then Γ(R) ∼=
Γ(S) implies that R ∼= S unless S is a local ring and either R ∼= F2×F2

or R ∼= F2 × F3. In particular, the converse to the first statement in
Theorem 3.2 is true whenever R is finite and not isomorphic to either
of the rings F2 × F2 and F2 × F3.

Remark 3.3. The above proof justifies the algorithm, from which the
validity of Theorem 3.2 is attained. On the other hand, the following
remarks outline a direct proof showing that a zero-divisor graph is the
unlabeled minimal representation of the zero-divisor graph of a direct
product of integral domains if and only if it is the graph induced by the
power set of some set I (that is, the zero-divisor graph of

∏

I F2). Al-
ternatively, this observation is an immediate consequence of [1, Propo-
sition 4.5] (cf. the comments prior to Question 3.6 in Section 3.3).
However, note that the labeling of the minimal representation of a zero-
divisor graph is not arbitrary. Therefore, a graph need not be the zero-
divisor graph of any ring, and yet its unlabeled minimal representation
could be induced by the power set of some set (e.g., let κ = 5 and λ = 1
in Figure 3.1(a)).

Let R =
∏

i∈I Di, where |I| ≥ 2 and each Di is an integral domain.
Define the set P∗(I) = P(I) \ {I, ∅}. For all r ∈ R, let J(r) = {i ∈
I | r(i) 6= 0}. Then V (Γ(R)) = {r ∈ R | J(r) ∈ P∗}. Moreover, it is
straightforward to check that the vertices r and s are adjacent in Γ(R)
if and only if J(r)∩J(s) = ∅, and are represented by the same vertex in
the minimal representation of Γ(R) if and only if J(r) = J(s). That is,
the minimal representation of Γ(R) is the graph Λ with vertex set P∗,
such that distinct vertices are adjacent if and only if their intersection
is empty (i.e., Λ = Γ(

∏

I F2)).

Let R be a reduced ring. If P is the set of all prime ideals of R,
then R can be regarded as a subring of

∏

P∈P R/P via the embedding
r 7→ (r + P ). If R is finite, then this mapping is onto (via the Chinese
Remainder Theorem). Moreover, a nonempty zero-divisor graph Γ(R)
is finite if and only if R is a finite ring with nonzero zero-divisors [2,
Theorem 2.2]. Therefore, we have the following descriptions of zero-
divisor graphs of reduced rings.

Corollary 3.4. The zero-divisor graph of a reduced ring is a subgraph
of a representable graph. Moreover, a graph Γ is realizable as the zero-
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divisor graph of a finite reduced ring if and only if it is finite and rep-
resentable.

We conclude this section with an example to illustrate the applica-
bility of the above results. Note the virtual absence of any reference to
algebraic properties of the given ring.

Example 3.5. Let R = F2 × F27 × F31 × F125. We shall construct the
minimal representation of Γ(R).

1. Since R is a product of four integral domains, construct the com-
plete graph on a 4-element set A.

2. Choose a 2-element subset of A. Form a vertex that is adjacent to
each element of that subset. Do this for each of the six 2-element
subsets of A. Repeat this step for each of the four 1-element sub-
sets of A.

3. Draw a line connecting any pair of nonadjacent vertices (not in
A) which have the property that every vertex in A is adjacent to
at least one of the elements in the pair.

Note that the resulting graph is the zero-divisor graph of the Boolean
ring F2 × F2 × F2 × F2. It has fourteen vertices and twenty-five
edges (see Figure 3.2).

4. Uniquely assign to each vertex in A an element from the set
{1, 26, 30, 124}.

5. Choose a vertex not contained in A. Label this vertex with the
product of the labels assigned to those vertices of A which are not
adjacent to this vertex. Do this for each vertex not contained in A.

The resulting figure is the minimal representation of Γ(R). It
represents a graph with 112,529 vertices and 998,276 edges. (see
Figure 3.3).
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Figure 3.2: The zero-divisor graph of F2 × F2 × F2 × F2

124 30 3224

780

26

3224

124 30

26 1

3720

3720

96720

780

Figure 3.3: The minimal representation of Γ(F2 × F27 × F31 × F125)
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3.3 Boolean Rings

The results in the previous section completely characterize graphs which
are realizable as zero-divisor graphs of direct products of integral do-
mains. In particular, the zero-divisor graphs of direct products of fields
are characterized. In this section, the zero-divisor graphs of rings be-
longing to the “larger” class of commutative von Neumann regular rings
(i.e., for all r ∈ R there exists an s ∈ R such that r = r2s) are examined.

Let Γ be an (undirected) graph. For any ∅ 6= V ⊆ V (Γ), let C(V )
denote the set of all vertices of Γ which are adjacent to every element of
V . When V = {v1, ..., vn} is finite, we shall write C(V ) = C(v1, ..., vn).
Clearly distinct v, w ∈ V (Γ) satisfy v ∈ C(w) if and only if w ∈ C(v).
Also, if R is a ring and Γ = Γ(R), then C(V ) = annR(V ) \ (V ∪ {0}).

Given elements v, w ∈ V (Γ), define v ∼ w if and only if v and w
share the same adjacency relations in Γ. That is, v ∼ w if and only
if C(v) = C(w). Then the graph Γ/∼, defined such that [v] and [w]
are adjacent if and only if v and w are adjacent in Γ, is the unlabeled
minimal representation of Γ.

Suppose that R is a commutative von Neumann regular ring. Recall
that B(R) is the Boolean ring induced by the idempotents of R. In
[1, Proposition 4.5], it is shown that that mapping V (Γ(B(R))) →
V (Γ(R)/ ∼) defined by e 7→ [e] is a graph isomorphism. This result,
Lemma 3.1, and the fact that Boolean rings are von Neumann regular
imply that a graph Γ is the zero-divisor graph of a Boolean ring if and
only if Γ is the unlabeled minimal representation of a von Neumann
regular ring. Therefore, solutions to the problem of determining which
graphs are realizable as von Neumann regular rings are given when the
following two questions are answered:

Question 3.6. Which graphs are realizable as Boolean rings?

Question 3.7. Given a Boolean ring R, when does a labeling of Γ(R)
induce the minimal representation of a von Neumann regular ring?

Question 3.7 is examined in [1]. In this section, we provide a com-
plete answer to Question 3.6

A partially ordered set B is called a Boolean algebra if it is a
bounded distributive lattice such that all of its elements have comple-
ments, that is, a complemented distributive lattice. Given any a, b ∈ B,
denote the supremum of a and b by a ∨ b and the infimum of a and b
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by a∧ b. Recall that b is a complement of a if and only if a∨ b = 1 and
a∧ b = 0 (by definition), where 1 and 0 denote the largest and smallest
elements of B, respectively. By [9, Theorem I.6.4], a complemented
lattice is a Boolean algebra if and only if all of its elements satisfy the
condition

a ∧ b = 0 if and only if a ≤ b′,

where b′ is the complement of b (the antisymmetry of ≤ implies that
b′ is unique). Of course, using the associativity of ∧, one checks that
a∧b = 0 follows from a ≤ b′ in any complemented lattice. The converse,
however, is a consequence of distributivity. Note that a Boolean algebra
becomes a Boolean ring by defining ab = a∧b and a+b = (a′∧b)∨(a∧b′).
The Boolean algebra can then be recovered from the Boolean ring by
declaring a ≤ b if and only if ab = a. In particular, to each Boolean
ring there corresponds a Boolean algebra, and vice versa.

In what follows, a given element may be regarded as member of a
ring, Boolean algebra, or vertex-set. We designate the characters r, s,
t, and x to represent such elements. The class from which an operation
or relation is considered shall be made explicit.

Let Γ 6= ∅ be a graph and ϕ : V (Γ) → V (Γ) a bijection. Define ≤ϕ

on V (Γ) by r ≤ϕ s if and only if r ∈ C(ϕ(s)). It is straightforward to
check that ≤ϕ is a partial order on V (Γ) if and only if ϕ satisfies the
following properties:

(i) The containment r ∈ C(ϕ(r)) holds for all r ∈ V (Γ).

(ii) If r, s ∈ V (Γ) are distinct and r ∈ C(ϕ(s)), then s 6∈ C(ϕ(r)).

(iii) If r, s, x ∈ V (Γ) with r ∈ C(ϕ(s)) and s ∈ C(ϕ(x)), then r ∈
C(ϕ(x)).

Thus, we will say that the bijection ϕ is order-inducing when (i)-(iii)
are satisfied.

Theorem 3.8. Let Γ 6= ∅ be a graph. Then Γ = Γ(R) for some Boolean
ring R if and only if there exists an order-inducing bijection ϕ : V (Γ) →
V (Γ) which satisfies the following properties:

(1) The map ϕ2 is the identity on V (Γ) (that is, ϕ can be defined
by partitioning V (Γ) into sets of order 2).
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(2) For all r, s ∈ V (Γ), either C(r, s) = ∅ or there exists an x ∈
C(r, s) such that C(r, s) ⊆ C(ϕ(x)).

(3) If r, s ∈ V (Γ), then r ∈ C(s) if and only if C(ϕ(r), ϕ(s)) = ∅.

Proof. Suppose that Γ = Γ(R) for some Boolean ring R. Define a map
ϕ : V (Γ(R)) → V (Γ(R)) by ϕ(r) = 1 − r. It is routine to show that
ϕ is well-defined and bijective. Let r, s ∈ V (Γ(R)). In the Boolean
algebra corresponding to R, r ≤ s if and only if r ∧ s = r. Since ∧
is defined by multiplication in R, it follows that r ≤ s if and only if
r ∈ C(1 − s) = C(ϕ(s)); that is, r ≤ s if and only if r ≤ϕ s. Thus ϕ is
order-inducing.

Clearly (1) holds. For (2), let r, s ∈ V (Γ(R)) such that C(r, s) 6= ∅.
Let x = 1 − (r + s− rs). If t ∈ C(r, s), then t 6= 0 and tx = t. Hence
C(r, s) 6= ∅ implies x 6= 0. But xr = xs = 0, and thus x ∈ C(r, s).
Finally, if t ∈ C(r, s), then tϕ(x) = t(r+ s+ rs) = 0, that is, C(r, s) ⊆
C(ϕ(x)).

It remains to prove (3). Let r, s ∈ V (Γ(R)). Then rs(1 − r) =
rs(1−s) = 0, that is, rsϕ(r) = rsϕ(s) = 0. Therefore, C(ϕ(r), ϕ(s)) =
∅ implies that rs 6∈ V (Γ(R)). Thus rs = 0 since V (Γ(R)) = R \ {0, 1}
whenever R is a Boolean ring. That is, r ∈ C(s).

Conversely, suppose that r ∈ C(s). Let t ∈ R such that tϕ(r) =
tϕ(s) = 0, i.e., t(1 − r) = t(1 − s) = 0. Then t = tr = ts. Hence
t = tr = (tr)r = (ts)r = 0. It follows that C(ϕ(r), ϕ(s)) = ∅. This
completes the “necessity” portion of the proof.

To prove the converse, let Γ be a graph with an order-inducing
bijection ϕ : V (Γ) → V (Γ) which satisfies (1)-(3). Let 0 and 1 be
any two distinct elements which do not belong to V (Γ), and set R =
V (Γ) ∪ {0, 1}. Extend the map ϕ : R → R by letting ϕ(1) = 0 and
ϕ(0) = 1. Define the relation ≤ on R by declaring 0 ≤ 0 ≤ r ≤ 1 ≤ 1
for all r ∈ V (Γ), and r ≤ s for all r, s ∈ V (Γ) such that r ≤ϕ s. It
follows that ≤ is a partial order on R. To finish the proof, we shall
utilize the following lemma, which is proved below.

Lemma 3.9. The partial order ≤ makes R a Boolean algebra with
complementation defined by r′ = ϕ(r) for all r ∈ R.

By Lemma 3.9, R can be regarded as a Boolean ring with additive
identity 0 and multiplicative identity 1, where multiplication in R is
defined as rs = r ∧ s for all r, s ∈ R. Let r, s ∈ V (Γ). By definition,
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r ∈ C(s) = C(ϕ(ϕ(s))) if and only if r ≤ ϕ(s). But if r ≤ ϕ(s), then
r∧s ≤ ϕ(s)∧s = s′∧s = 0, i.e., r∧s = 0. Conversely, if r∧s = 0, then
ϕ(s) = ϕ(s)∨(r∧s) = (ϕ(s)∨r)∧(ϕ(s)∨s) = (ϕ(s)∨r)∧1 = ϕ(s)∨r,
that is, r ∧ s = 0 implies that r ≤ ϕ(s). Therefore, r ∈ C(s) if and
only if r ∧ s = 0, i.e., r is adjacent to s in Γ if and only if rs = 0 in the
Boolean ring R. Since V (Γ(R)) = R \ {0, 1} = V (Γ), it follows that
Γ = Γ(R).

Proof of Lemma 3.9. To prove that every pair of elements in R has
a supremum and infimum, let r, s ∈ R. If 1 ∈ {r, s}, then r ∨ s = 1.
If r = 1, then r ∧ s = s, and if s = 1, then r ∧ s = r. Suppose that
1 6∈ {r, s}. If 0 ∈ {r, s}, then r∧s = 0. If r = 0, then r∨s = s; similarly,
r ∨ s = r whenever s = 0. Therefore, assume that {r, s} ⊆ R \ {0, 1},
that is, {r, s, ϕ(r), ϕ(s)} ⊆ V (Γ).

Suppose that the set {r, s} has an upper bound t ∈ R with t 6= 1.
Then 0 � r, s ≤ t implies that t ∈ V (Γ) and {r, s} ⊆ C(ϕ(t)), i.e.,
ϕ(t) ∈ C(r, s). This shows that r ∨ s = 1 whenever C(r, s) = ∅.

Suppose that C(r, s) 6= ∅. Then (2) implies that there exists an
x ∈ C(r, s) such that C(r, s) ⊆ C(ϕ(x)). In particular, {r, s} ⊆ C(x) =
C(ϕ(ϕ(x))), and thus r, s ≤ ϕ(x). Suppose that t ∈ R with r, s ≤ t.
Then t 6= 0. If t = 1, then ϕ(x) ≤ t. Suppose that t 6= 1. Then the
containment {r, s} ⊆ C(ϕ(t)) follows since r, s ≤ t, i.e., ϕ(t) ∈ C(r, s),
and therefore ϕ(t) ∈ C(ϕ(x)), that is, ϕ(x) ∈ C(ϕ(t)). Therefore
ϕ(x) ≤ ϕ(ϕ(t)) = t. Thus r ∨ s = ϕ(x), and every pair of elements in
R has a supremum.

The relations ϕ(r), ϕ(s) ≤ ϕ(r)∨ ϕ(s) imply that ϕ(ϕ(r)∨ϕ(s)) ≤
r, s; this is clear when ϕ(r) ∨ ϕ(s) = 1, and otherwise the former rela-
tions imply that {ϕ(r), ϕ(s)} ⊆ C(ϕ(ϕ(r)∨ϕ(s))), i.e., ϕ(ϕ(r)∨ϕ(s)) ∈
C(ϕ(r)) ∩ C(ϕ(s)). Thus ϕ(ϕ(r) ∨ ϕ(s)) ≤ ϕ(ϕ(r)) = r, and similarly
ϕ(ϕ(r) ∨ ϕ(s)) ≤ s.

Suppose that t ≤ r, s. Hence t 6= 1. If t = 0, then t ≤ ϕ(ϕ(r)∨ϕ(s)).
Suppose that t 6= 0. Then t ∈ V (Γ), and therefore t ≤ r, s implies that
t ∈ C(ϕ(r), ϕ(s)). By (2), there exists an x ∈ C(ϕ(r), ϕ(s)) such that
C(ϕ(r), ϕ(s)) ⊆ C(ϕ(x)). In particular, t ∈ C(ϕ(x)). That is, t ≤
ϕ(ϕ(x)) = ϕ(ϕ(r)∨ϕ(s)), where the last equality holds since the above
argument shows that ϕ(x) = ϕ(r)∨ϕ(s). Thus r ∧ s = ϕ(ϕ(r)∨ϕ(s)),
and it follows that every pair of elements in R has an infimum.

Let r ∈ R. It is easy to check that ϕ(r) is a complement of r
when r ∈ {0, 1}. Suppose that r 6∈ {0, 1}, i.e., r ∈ V (Γ). Note that
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r ∈ C(ϕ(r)) since ϕ is order-inducing, and therefore C(ϕ(r), r) = ∅
by (3). Hence r ∨ ϕ(r) = 1 by the above argument. Thus r ∧ ϕ(r) =
ϕ(ϕ(r) ∨ ϕ(ϕ(r))) = ϕ(ϕ(r) ∨ r) = ϕ(1) = 0. Therefore, ϕ(r) is a
complement of r.

Let r, s ∈ V (Γ). If r ≤ ϕ(s), then r ∧ s ≤ ϕ(s) ∧ s = 0, that is,
r∧s = 0. But if r∧s = 0, then ϕ(r)∨ϕ(s) = ϕ2(ϕ(r)∨ϕ(s)) = ϕ(r∧s) =
1, and therefore C(ϕ(r), ϕ(s)) = ∅ by the above argument (indeed,
C(ϕ(s), ϕ(r)) 6= ∅ implies that ϕ(r) ∨ ϕ(s) ∈ V (Γ)). Thus r ∈ C(s)
by (3), i.e., r ≤ ϕ(s). Clearly the statement “r ∧ s = 0” is equivalent
to “r ≤ ϕ(s)” whenever 0 ∈ {r, s}, and hence these statements are
equivalent for all r, s ∈ R.

It has been verified that R is a lattice such that ϕ(r) is a comple-
ment of r for all r ∈ R. Moreover, r ∧ s = 0 if and only if r ≤ ϕ(s).
By [9, Theorem I.6.4], R is a Boolean algebra with complementation
defined by r′ = ϕ(r) for all r ∈ R.

Let Γ be a graph with order-inducing bijections ϕ1, ϕ2 : V (Γ) →
V (Γ). It is known that if R and S are Boolean rings, then Γ(R) ∼= Γ(S)
if and only if R ∼= S [11, Theorem 4.1]. It follows that if ϕ1 and ϕ2

satisfy (1)-(3), then the induced Boolean rings (given by the proof of
Lemma 3.9) are isomorphic. However, a stronger result is obtained
from the following observation: If R is a Boolean ring and r ∈ R,
then 1 − r is the unique element of R such that r(1 − r) = 0 and
annR(r, 1 − r) = (0) (cf [11, Lemma 2.3]). Clearly r(1 − r) = 0. Let
t ∈ R. Then tr = t(1 − r) = 0 implies that t = tr = 0. Moreover, if
tr = 0, then (1 − r − t) ∈ annR(r, t). Therefore, either t = 1 − r or
annR(t, r) 6= (0). This proves the observation.

Suppose that ϕ is an order-inducing bijection on the vertices of a
graph Γ satisfying (1)-(3). Let R be the Boolean ring induced by ϕ. By
the above theorem, C(V ) = annR(V ) \ (V ∪{0}) for all ∅ 6= V ⊆ V (Γ).
Then the above observation together with (i) and (3) force ϕ(r) = 1−r
for all r ∈ R. This gives a ring-theoretic proof of the following corollary.
A graph-theoretic proof is given below.

Corollary 3.10. Let Γ 6= ∅ be a graph with order-inducing bijections
ϕ1, ϕ2 : V (Γ) → V (Γ) which satisfy (1)-(3). Then ϕ1 = ϕ2. In particu-
lar, the Boolean rings induced by ϕ1 and ϕ2 are equal (up to the choice
of 0 and 1).
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Proof. Suppose that r ∈ V (Γ) such that ϕ1(r) 6= ϕ2(r). Recall that
C(r, ϕ2(r)) = ∅ by (i) and (3). That is, C(ϕ2

1(r), ϕ
2
1(ϕ2(r))) = ∅. Then

(3) implies that ϕ1(r) ∈ C(ϕ1(ϕ2(r))). Thus (ii) implies that ϕ2(r) 6∈
C(ϕ1(ϕ1(r))) = C(r), contradicting (i). Therefore, ϕ1(r) = ϕ2(r), and
it follows that ϕ1 = ϕ2.

The “in particular” statement is clear.
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Chapter 4

The Cardinality of an

Annihilator Class in a Von

Neumann Regular Ring

Abstract. One defines an equivalence relation on a commutative ring R

by declaring elements r1, r2 ∈ R to be equivalent if and only if annR(r1) =

annR(r2). If [r]R denotes the equivalence class of an element r ∈ R, then

it is known that |[r]R| = |[r/1]T (R)|, where T (R) denotes the total quotient

ring of R. In this paper, we investigate the extent to which a similar equality

will hold when T (R) is replaced by Q(R), the complete ring of quotients of

R. The results are applied to compare the zero-divisor graph of a reduced

commutative ring to that of its complete ring of quotients.

43



4.1 Introduction

Let R be a commutative ring. One easily checks that an equivalence
relation on R is given by declaring elements r1, r2 ∈ R to be equivalent if
and only if annR(r1) = annR(r2). The cardinalities of such equivalence
(annihilator) classes were considered in [13], where the authors were
interested in ring-theoretic properties shared by von Neumann regular
rings with identical zero-divisor structures. In [1], the authors show
that every ring has the same zero-divisor structure as its total quotient
ring. The proof of this result demonstrates that the cardinality of
the annihilator class of an element does not change when the element
is regarded as a member of its total quotient ring. We examine the
degree to which this result can be generalized to a particular extension
of a reduced total quotient ring.

Throughout, R will always be a commutative ring with 1 6= 0. Let
Z(R) denote the set of zero-divisors of R and T (R) = RR\Z(R) its total
quotient ring. A ring R will be called reduced if nil(R) = (0). A
commutative ring R with 1 6= 0 is von Neumann regular if for each
x ∈ R, there is a y ∈ R such that x = x2y or, equivalently, R is reduced
with Krull dimension zero [6, Theorem 3.1].

A subset D ⊆ R is dense in R if annR(D) = (0). Let D1 and D2

be dense ideals of R and let ϕi ∈ HomR(Di, R) (i = 1, 2). Note that
ϕ1 +ϕ2 is an R-module homomorphism on the dense ideal D1∩D2, and
ϕ1 ◦ ϕ2 is an R-module homomorphism on the dense ideal ϕ−1

2 (D1) =
{r ∈ R | ϕ2(r) ∈ D1}. Then Q(R) = F/∼ is a commutative ring,
where F = {ϕ ∈ HomR(D,R) | D ⊆ R is a dense ideal} and ∼ is
the equivalence relation defined by ϕ1 ∼ ϕ2 if and only if there exists
a dense ideal D ⊆ R such that ϕ1(d) = ϕ2(d) for all d ∈ D [11,
Proposition 2.3.1]. In [11], J. Lambek calls Q(R) the complete ring of
quotients of R.

Let ϕ ∈ Q(R) denote the equivalence class containing ϕ. For all
a/b ∈ T (R), the ideal bR of R is dense and ϕa/b ∈ HomR(bR,R), where
ϕa/b(br) = ar. One checks that the mapping a/b 7→ ϕa/b is a ring
monomorphism, and that ϕ0 and ϕ1 are the additive and multiplicative
identities of Q(R), respectively. In particular, the mapping R→ Q(R)
defined by r 7→ ϕr is an embedding. However, these mappings need not
be onto (see [11]). If the mapping R → Q(R) is onto (i.e., r 7→ ϕr is an
isomorphism), then R is called rationally complete. Note that Q(R) is
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von Neumann regular if and only if R is reduced [11, Proposition 2.4.1].
Thus every reduced rationally complete ring is von Neumann regular.

A ring extension R ⊆ S is called a ring of quotients of R if f−1R =
{r ∈ R | fr ∈ R} is dense in S for all f ∈ S. In particular, T (R) is
a ring of quotients of R. If S is a ring of quotients of R, then there
exists an extension of the mapping R → Q(R) which embeds S into
Q(R) [11, Proposition 2.3.6]. Therefore, every ring of quotients of R
can be regarded as a subring of Q(R). It follows that a dense set in R
is dense in every ring of quotients of R. Also, R has a unique maximal
(with respect to inclusion) ring of quotients, which is isomorphic to
Q(R) [11, Proposition 2.3.6]. In recognition of this observation, we
shall abuse notation and denote the maximal ring of quotients of R by
Q(R). It is not hard to check that Q(R) = Q(T (R)) for any ring R.
In fact, if R ⊆ S ⊆ Q, then Q is a ring of quotients of R if and only if
Q is a ring of quotients of S and S is a ring of quotients of R (e.g., see
the comments prior to Lemma 1.5 in [4]).

Let B(R) = {e ∈ R | e2 = e}, the set of idempotents of R. Then the
relation “≤” defined by a ≤ b if and only if ab = a partially orders B(R),
and makes B(R) a Boolean algebra with inf as multiplication in R, the
largest element as 1, the smallest element as 0, and complementation
defined by a′ = 1 − a. One checks that a ∨ b = (a′ ∧ b′)′ = a + b− ab,
where “+” is addition in R. A set E ⊆ B(R) is called a set of orthogonal
idempotents if e1e2 = 0 for all distinct e1, e2 ∈ E. For a reference on
the Boolean algebra of idempotents, see [11].

A Boolean algebra B is complete if inf E exists for every subset
E ⊆ B. If B is a complete Boolean algebra, then supE = inf{b | b ∈
B and b ≥ e for all e ∈ E}. It is well known that every Boolean alge-
bra B is a subalgebra of a complete Boolean algebra D(B), where the
infimum of a set in B (when it exists) is the same as its infimum in
D(B). Here, D(B) is the “so called” Dedekind-MacNeille completion
of B [11, c.f. Section 2.4]. Note that D(B(R)) = B(Q(R)) for every
von Neumann regular ring R [4, Theorem 11.9]. In particular, B(Q(R))
is complete. Moreover, B(R) = B(Q(R)) whenever B(R) is complete.

In this paper, we continue the investigations of [1] and [11]. We
will denote the annihilator class of an element r in R by [r]R, i.e.,
[r]R = {s ∈ R | annR(s) = annR(r)}. As in [2], we define the zero-
divisor graph of R, Γ(R), to be the (undirected) graph with vertices
V (Γ(R)) = Z(R)\{0}, such that distinct v1, v2 ∈ V (Γ(R)) are adjacent
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if and only if v1v2 = 0. It is shown in [1, Theorem 2.2] that Γ(R) ∼=
Γ(T (R)) for any commutative ring R; the equality |[r]R| = |[r]T (R)| for
all r ∈ R follows directly from the proof of this theorem (where we have
identified R with its canonical image in T (R)). Both of these results
fail when T (R) is replaced by Q(R) (e.g., Examples 4.10 and 4.11). In
Section 4.2, we give necessary and sufficient conditions for the equality
|[r]R| = |[r]Q(R)| to hold, where R is a von Neumann regular ring such
that B(R) is complete and 2 6∈ Z(R) (see Theorem 4.15). If either B(R)
is not complete or 2 ∈ Z(R), then the equality may or may not hold
(see Examples 4.11, 4.17, and Corollary 4.16). This result is applied
in Section 4.3 to give sufficient conditions for Γ(R) ∼= Γ(Q(R)) to hold
when R is a reduced ring. In particular, we provide a characterization
of zero-divisor graphs which satisfy Γ(R) ∼= Γ(Q(R)), where R is a
reduced ring such that |Z(R)| < ℵω and 2 6∈ Z(R) (see Theorem 4.20).

4.2 The Cardinality of [e]Q(R)

The investigation in this section involves a set-theoretic treatment of
elements in a ring. The main theorems are numbered 4.4, 4.8, 4.15, and
4.16. The results numbered 4.1 through 4.8 develop useful relations
within Q(R), and ultimately provide an interpretation of elements in
Q(R) as subsets of a set. The results numbered 4.9 through 4.17 provide
answers regarding the cardinalities of [e]R and [e]Q(R).

Throughout this section, R will always be a von Neumann regular
ring unless stated otherwise. If r ∈ R, say r = r2s, then er = rs is the
unique idempotent that satisfies [r]R = [er]R (c.f. the discussion prior
to Theorem 4.1 in [1], or Remark 2.4 of [11]). Moreover, r = uer for
some unit u of R [6, Corollary 3.3].

The following proposition shows that a nonzero element of a ring
of quotients of R will map some idempotent of R into R nontrivially.
Recall that f−1R is dense in S whenever f is a nonzero element of a
ring of quotients S of R. In particular, there is an r ∈ R such that
fr ∈ R \ {0}.

Proposition 4.1. Let R be a von Neumann regular ring. If R ⊆ S is a
ring of quotients of R, then for all 0 6= f ∈ S there exists an e ∈ B(R)
such that e ≤ ef and 0 6= fe ∈ R.
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Proof. Let 0 6= f ∈ S. Choose r ∈ R such that 0 6= fr ∈ R. There is a
unit u of R such that r = uer, and hence fer = u−1fr ∈ R \ {0}. Let
e = efer (note that it makes sense to talk about ef since S ⊆ Q(R) and
Q(R) is von Neumann regular). Let s ∈ Q(R) and t ∈ R be elements
such that f = f 2s and r = r2t. Then

e = efer = (fs)(rt) = (fr)(st) = efr ∈ R.

Moreover, e ≤ ef and fe = fer ∈ R \ {0}.

For any set A ⊆ R, let EA = {er ∈ B(R) | r ∈ A}. If e ∈ B(R),
then consider the set Re(R) = {∅ 6= A ⊆ R | er1er2 = 0 for all distinct
r1, r2 ∈ A, and supEA = e}. Note that Re(R) 6= ∅ since {e} ∈ Re(R).
Also, if supEA = e and 0 6= e′ ∈ B(R) with e′ ≤ e, then there exists an
e′′ ∈ EA such that e′e′′ 6= 0. Otherwise, e′′ ≤ 1− e′ for all e′′ ∈ EA, and
thus e = supEA ≤ 1−e′. But this implies that e′e = 0, a contradiction.
This fact is generalized in (1) of the following proposition.

Proposition 4.2. Suppose that E ⊆ B(R) is a set of orthogonal idem-
potents in a von Neumann regular ring R.

(1) Let e′ ∈ B(R). Then e′ supE = 0 if and only if E ∪ {e′} is a
set of orthogonal idempotents. In particular, r supE = 0 if and
only if re′ = 0 for all e′ ∈ E (r ∈ R).

(2) Suppose that E is finite; say E = {e1, ..., en}. Then supE =
∑n

j=1 ej.

(3) Let e′ ∈ B(R). If f ∈ Q(R) such that e′ ≤ ef , then fe′ ∈
[e′]Q(R).

(4) Let e′, e ∈ B(R) such that e′ ≤ e and 2e′ ∈ [e′]R. Then e′ +e ∈
[e]R.

Proof. Note that supE ∈ B(Q(R)).
(1): If e′e′′ 6= 0 for some e′′ ∈ E, then e′e′′ ≤ e′′ ≤ supE implies that

e′e′′ supE = e′e′′ 6= 0; in particular, e′ supE 6= 0. Conversely, suppose
that e′ supE 6= 0. Since e′ supE ≤ supE, the above comments show
there exists an e′′ ∈ E such that (e′ supE)e′′ 6= 0; in particular, e′e′′ 6= 0.
Thus E ∪ {e′} is not a set of orthogonal idempotents.

The “in particular” statement holds since [r]R = [er]R for all r ∈ R.
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(2): It is easy to check that e =
∑n

j=1 ej ∈ B(R). Also, eje = ej for
all j ∈ {1, ..., n}. Hence supE ≤ e. But ej ≤ supE for all j ∈ {1, ..., n},
and thus e supE = e; that is, e ≤ supE. Therefore, e = supE.

(3): Clearly annQ(R)(e
′) ⊆ annQ(R)(fe

′). Let a ∈ annQ(R)(fe
′).

Then ae′ ∈ annQ(R)(f) = annQ(R)(ef ). Thus 0 = ae′ef = ae′; that is,
a ∈ annQ(R)(e

′). Hence annQ(R)(e
′) = annQ(R)(fe

′), i.e., fe′ ∈ [e′]Q(R).
(4): If r ∈ annR(e), then re = 0 and re′ = ree′ = 0. Hence

r ∈ annR(e′ + e), and therefore annR(e) ⊆ annR(e′ + e). To show the
reverse inclusion, let r ∈ annR(e′+e). Note that 0 = re′(e′+e) = r(2e′).
Then 2e′ ∈ [e′]R implies that re′ = 0, and therefore re = re′ + re =
r(e′ + e) = 0. Hence annR(e′ + e) ⊆ annR(e).

In order to investigate cardinality, we shall translate the elements
of an equivalence class [e]Q(R) into sets of elements of Re(R). Such
a correspondence is given in Theorem 2.4, and is motivated by the
following example.

Example 4.3. Let F be an infinite field and J an infinite indexing set.
Let Fj = F for all j ∈ J . Define R = {(rj) ∈

∏

j∈J Fj | {rj}j∈J ⊆
{s1, ..., sn} for some {s1, ..., sn} ⊆ F , for some n ∈ N} (c.f. [11, Ex-
ample 3.5]). Note that R is von Neumann regular. Let D be the dense
ideal of R generated by the minimal nonzero idempotents of R (that
is, the elements with a 1 in precisely one coordinate and 0 elsewhere).
Then D is contained in f−1R for all f ∈

∏

j∈J Fj. Thus
∏

j∈J Fj is a
ring of quotients of R. Moreover,

∏

j∈J Fj is rationally complete [11,
Proposition 2.3.8]. Therefore, Q(R) =

∏

j∈J Fj.

Consider R from Example 4.3. Suppose that F = Q, J = N, and
let e be the multiplicative identity of R (the largest element of B(R)).
Note that there is a correspondence between Re(R) and [e]Q(R), which
is defined by taking the “sum” of the elements of a set in Re(R). For
example, the set

{(1, 0, 0, ...), (0, 2, 0, ...), (0, 0, 3, ...), ...} ∈ Re(R)

corresponds to the element (1, 2, 3, ...) ∈ Q(R). This correspondence is
generalized in the following theorem.

Theorem 4.4. Let R be a von Neumann regular ring and suppose that
e ∈ B(R). The mapping σe : Re(R) → [e]Q(R) defined by

σe(A) = f if and only if f ∈ [e]Q(R) with fer = r for all r ∈ A

48



is a well-defined function. Moreover, σe(A) ∈ R if and only if σe(A) =
σe(A

′) for some A′ ∈ Re(R) with |A′| <∞.

Proof. Fix e ∈ B(R). To show that σe is well-defined, we first show
that every element of Re(R) corresponds to some element in [e]Q(R).
Let A ∈ Re(R). Note that D = (1 − e, EA) is a dense ideal of R: Any
element r ∈ R \ {0} that annihilates 1 − e satisfies re = r 6= 0, and
therefore does not annihilate all of EA by Proposition 4.2 (1). Define
ϕ ∈ HomR(D,R) by

ϕ
(

t(1 − e) +
∑

er∈EA

trer
)

=
∑

er∈EA

trr.

(Indeed, ϕ is well-defined since multiplication by the appropriate idem-
potent will show that equal elements of D have equal “like terms,” and
clearly trer = t′rer implies that trr = t′rr.) Then ϕ(1 − e) = 0 and
ϕ(er) = r for all r ∈ A. Therefore, there exists an element f ∈ Q(R)
such that f(1− e) = 0 and fer = r for all r ∈ A. It follows that ef ≤ e
(in B(Q(R))). To prove the reverse inequality, let r ∈ A. Then

r = fer = effer = efr.

Thus r(1−ef ) = 0, which implies that er ≤ ef . Hence e = supEA ≤ ef ,
and therefore e = ef . This shows that f ∈ [e]Q(R), and therefore
σe(A) = f . It remains to show that σe is single-valued. Suppose that
A maps to both f and g. Then (f − g) annihilates D. But D is dense
in Q(R), and thus f − g = 0, i.e., f = g. Therefore, σe is well-defined.

To see that the “moreover” statement is true, suppose that σe(A) ∈
R. Then σe(A) = σe(A

′), where A′ = {σe(A)}. Conversely, suppose
that A′ ∈ Re(R) with |A′| <∞; say A′ = {r1, ..., rn}. Then

σe(A
′) = σe(A

′)e = σe(A
′)(

n
∑

j=1

erj ) =

n
∑

j=1

(σe(A
′)erj) =

n
∑

j=1

rj ∈ R,

where the second equality follows from Proposition 4.2 (2) (c.f. the last
paragraph prior to the statement of this theorem).

By the last part of the previous proof, we have

Corollary 4.5. Let R be a von Neumann regular ring. If A ∈ Re(R)
is a finite set, then σe(A) =

∑

r∈A r ∈ [e]R.
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Let e ∈ B(R) and define the set

Ee(R) = {EA | A ∈ Re(R)}.

We shall write f ≺ E whenever E ∈ Ee(R) and σe(A) = f for some
A ∈ Re(R) with EA = E. By Proposition 4.2 (3), this is equivalent
to declaring f ≺ E if and only if E is a set of orthogonal idempotents
such that supE = ef = e and fe′ ∈ R for all e′ ∈ E (indeed, let
A = {fe′}e′∈E , c.f. the second paragraph in the proof of Theorem
4.8). In particular, if r ∈ [e]R, then r ≺ E for all E ∈ Ee(R), i.e.,
{r ∈ [e]R | r ≺ E} = [e]R for all E ∈ Ee(R).

Corollary 4.6. Let R be a von Neumann regular ring and suppose that
e ∈ B(R). If E ∈ Ee(R), then

|{A ∈ Re(R) | EA = E}| = |{f ∈ [e]Q(R) | f ≺ E}|.

Proof. The mapping {A ∈ Re(R) | EA = E} → {f ∈ [e]Q(R) | f ≺ E}
defined by A 7→ σe(A) is a well-defined surjection by Theorem 4.4 and
the definition of ≺. It is injective since if A1, A2 ∈ {A ∈ Re(R) | EA =
E} with σe(A1) = σe(A2), then

A1 = {σe(A1)e
′}e′∈E = {σe(A2)e

′}e′∈E = A2.

Therefore,

|{A ∈ Re(R) | EA = E}| = |{f ∈ [e]Q(R) | f ≺ E}|.

Suppose that R is a reduced ring. Then the mapping annQ(R)(J) 7→
annR(J ∩R) (J ⊆ Q(R)) is a well-defined bijection of Ann(Q(R)) onto
Ann(R), where Ann(R) = {annR(J) | J ⊆ R} [11, Proposition 2.4.3];
in particular, [r]R ⊆ [r]Q(R) for all r ∈ R. Alternatively, suppose that
R is a von Neumann regular ring. Then [e]R = {r ∈ [e]R | r ≺ E} for
all E ∈ Ee(R). Since σe(Re(R)) ⊆ [e]Q(R), we have

Proposition 4.7. Let R be a von Neumann regular ring and suppose
that e ∈ B(R). Then [e]R ⊆ {f ∈ [e]Q(R) | f ≺ E} for all E ∈ Ee(R).
In particular, [e]R ⊆ [e]Q(R).
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Of course, the “in particular” statement of the above proposition
can be justified by the simpler argument that r = ue for some unit u
of R (and hence of Q(R)), for all r ∈ [e]R. However, we will apply the
first part of the proposition in the proof of Lemma 4.12.

Note that Theorem 4.4 implies that some of the elements of [e]Q(R)

correspond to elements of Re(R). The next theorem shows that every
element in [e]Q(R) is of this type.

Theorem 4.8. Let R be a von Neumann regular ring. Suppose that
e ∈ B(R). Then σe is surjective. In particular, |[e]Q(R)| ≤ |Re(R)|.

Proof. Fix e ∈ B(R). The result is trivial for the case e = 0. Suppose
that e 6= 0. To show that σe is onto, choose any f ∈ [e]Q(R). Let
C = {∅ 6= E ⊆ B(R) | e′e′′ = 0 for all distinct e′, e′′ ∈ E, e′ ≤ e for all
e′ ∈ E, and fe′ ∈ R for all e′ ∈ E}. Note that C 6= ∅ since {0} ∈ C.
Let C be partially ordered by inclusion; then an application of Zorn’s
lemma shows that C has a maximal element, call it E. We will show
that supE = e. If not, then consider 0 6= e′ = e − supE ∈ B(Q(R)).
Note that fe′ ∈ [e′]Q(R) by Proposition 4.2 (3). Hence Proposition
4.1 implies that there exists an e′′ ∈ B(R) such that e′′ ≤ e′ and
fe′′ = fe′e′′ ∈ R \ {0}. Also, e′ ≤ e implies e′′ ≤ e, and thus

e′′ supE = e′′(e− e′) = e′′ − e′′ = 0.

But then E ∪ {e′′} ∈ C by Proposition 4.2 (1), contradicting the maxi-
mality of E. Therefore, supE = e.

Let A = {fe′ | e′ ∈ E}. Then Proposition 4.2 (3) implies EA = E,
and thus A ∈ Re(R). Also, efe′ = e′ implies that fefe′ = fe′ for all
fe′ ∈ A. Hence σe(A) = f .

The “in particular” statement is clear.

We now turn our attention to the cardinality of [e]R. The previous
theorem allows one to derive information about the cardinality of [e]Q(R)

from the set Re(R). We will be able to relate the cardinalities of [e]Q(R)

and [e]R if we can find a way to use the set Re(R) to reveal information
about |[e]R|. The next three lemmas accomplish this by considering
elements of the subset Ee(R) of Re(R).

Lemma 4.9. Let R be a von Neumann regular ring. Suppose that
E ⊆ B(R) \ {0} is a set of orthogonal idempotents with supE = e.
Moreover, assume that B(R) is complete and 2e′ ∈ [e′]R for all e′ ∈ E.
Then |[e]R| ≥ 2|E|.
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Proof. Define the mapping ρ : P(E) → [e]R by

ρ(E ′) = supE ′ + e,

where P(E) is the “power set” of E. Let E ′ ⊆ E. It is clear that
annR(supE ′) ⊆ annR(2 supE ′). Conversely, let r ∈ annR(2 supE ′).
Then 2r ∈ annR(supE ′), and hence 2re′ = 0 for all e′ ∈ E ′ by Propo-
sition 4.2 (1). Thus r ∈ annR(2e′) = annR(e′) for all e′ ∈ E ′, and
therefore Proposition 4.2 (1) implies that r ∈ annR(supE ′). This shows
that annR(supE ′) = annR(2 supE ′), i.e., 2 supE ′ ∈ [supE ′]R. Hence
ρ is well-defined by Proposition 4.2 (4). To show that ρ is injective,
suppose that E1, E2 ⊆ E with E1 6= E2; say 0 6= e′ ∈ E1 \ E2. Then

e′ supE1 = e′ 6= 0 = e′ supE2,

where the last equality holds by Proposition 4.2 (1). It follows that
supE1 6= supE2. Thus E1 6= E2 implies that ρ(E1) 6= ρ(E2). Therefore,
ρ is injective, and hence

|[e]R| ≥ |P(E)| = 2|E|.

For the remainder of this section, it will be necessary to recall some
facts from set theory. In what follows, we will assume the generalized
continuum hypothesis. Given any cardinal m, let cf(m) denote the
cofinality of m. Note that cf(m) ≤ m, and cf(m) is infinite whenever m

is infinite (e.g., see [7, Theorem 21.10]). An infinite cardinal m is called
regular if m = cf(m). If m is not regular, then it is called singular. Note
that every successor cardinal is regular. Recall that m

m
′

is defined to
be the cardinal number |AB|, where A and B are sets of cardinality m

and m
′, respectively, and AB is the set of all functions from B into A.

If ℵα and ℵβ are infinite cardinals, then

ℵ
ℵβ
α =

{

ℵα, ℵβ < cf(ℵα)
ℵα+1, cf(ℵα) ≤ ℵβ ≤ ℵα
ℵβ+1, ℵα < ℵβ

[7, Theorem 23.9]. Also, mℵβ = ℵβ+1 for every 2 ≤ m <∞ [7, Theorem
22.13]. The notation

∑

i∈I mi is used to express the cardinality of the

52



disjoint union
∐

i∈I Ai, where |Ai| = mi for each i ∈ I. If I is an
infinite indexing set with mi infinite for some i ∈ I, then

∑

i∈I mi =
|I| supi∈I mi. A detailed exposition of cardinal numbers can be found
in chapter four of [7].

It is our goal to find conditions that ensure the equality |[e]Q(R)| =
|[e]R|. We will see that it suffices to impose restrictions on the elements
of the set Ee(R). The next two examples motivate such restrictions.

Example 4.10. Let F be a field such that |F | = ℵω and set J = N.
Suppose that R is the ring in Example 4.3. Choose an infinite subset I
of N, and let e be the idempotent with 1 in all coordinates i ∈ I and 0
elsewhere. Then

|[e]R| = ℵω < ℵω+1 = ℵℵ0

ω = |[e]Q(R)|,

where the second equality holds since cf(ℵω) = ℵ0 [7, Theorem 22.11].

Example 4.11. Let K = Z2(X), and define the ring R =
∏

N
Z2 +

⊕

N
K. As in the Example 4.3, we have Q(R) =

∏

N
K. Choose an in-

finite subset I of N, and let e be the idempotent with 1 in all coordinates
i ∈ I and 0 elsewhere. Then |[e]R| = ℵ0 < ℵ1 = |[e]Q(R)|.

In Example 4.10, we found an element e ∈ B(R) with an infinite set
E ∈ Ee(R) such that cf(|[e′]R|) ≤ |E| < |[e′]R| for some e′ ∈ E (namely,
E was the set of minimal nonzero idempotents less than e, and e′ could
have been any element of E). In Example 4.11, we found an element
e ∈ B(R) with a set E ∈ Ee(R) such that 2e′ 6∈ [e′]R for some e′ ∈ E
(as before, E was the set of minimal nonzero idempotents less than e,
and e′ could have been any element of E). As a result, Lemma 4.9 fails
for the element e. When R is a von Neumann regular ring such that
B(R) is complete, the desired equality will necessarily be obtained in
the absence of such scenarios.

We shall say that an element E ∈ Ee(R) is regular if the relation
|E| < sup{|[e′]R| | e

′ ∈ E} implies that either sup{|[e′]R| | e
′ ∈ E} is

finite or |E| < cf(sup{|[e′]R| | e
′ ∈ E}). As a special case, E ∈ Ee(R) is

regular if |E| < sup{|[e′]R| | e
′ ∈ E} implies that sup{|[e′]R| | e

′ ∈ E}
is either finite or a regular cardinal. Clearly E is regular if it is finite.

Lemma 4.12. Let R be a von Neumann regular ring, e ∈ B(R), and
E ∈ Ee(R). Assume that B(R) is complete and 2e′ ∈ [e′]R for all
e′ ∈ E. If E ∈ Ee(R) is regular, then |[e]R| = |{f ∈ [e]Q(R) | f ≺ E}|.
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Proof. If E is finite, then {f ∈ [e]Q(R) | f ≺ E} ⊆ [e]R by Theorem 4.4.
The reverse inclusion holds by Proposition 4.7, and hence the result
follows. Suppose that E is infinite; say |E| = ℵα for some ordinal α.
Let sup{|[e′]R| | e

′ ∈ E}| = m. Define

F : {A ∈ Re(R) | EA = E} →
(

∪ {[e′]R | e′ ∈ E}
)E

by the rule

F (A)(e) = r if and only if e ∈ E with e = er for some r ∈ A.

Note that if r1, r2 ∈ A with r1 6= r2, then er1er2 = 0. In particular, r1 6=
r2 implies that er1 6= er2 , and therefore F is well-defined by definition.
Also, F is injective since if F (A1) = F (A2), then r = F (A1)(er) ∈ A1

for all r ∈ A2, and similarly we have A1 ⊆ A2 so that A1 = A2. Hence

|{A ∈ Re(R) | EA = E}| ≤ |
(

∪ {[e′]R | e′ ∈ E}
)E

| = (ℵαm)ℵα ,

where the equality holds since the union is disjoint. Therefore,

|{f ∈ [e]Q(R) | f ≺ E}| ≤ (ℵαm)ℵα =
{ m, m > ℵα

ℵα+1, m ≤ ℵα
,

where the inequality follows by Corollary 4.6, and the equality follows
since E is regular.

Let e′ ∈ E and r ∈ [e′]R. Then er = e′ and e − e′ ∈ B(R). Using
Proposition 4.2 (2), it is easy to check that {r, e − e′} ∈ Re(R), and
thus Corollary 4.5 implies that r+ (e− e′) ∈ [e]R. This shows that the
mapping [e′]R → [e]R given by r 7→ r + (e− e′) is well-defined. Clearly
it is also injective. Hence |[e′]R| ≤ |[e]R| for all e′ ∈ E, and therefore
m ≤ |[e]R|. Also, |E \ {0}| = ℵα, and thus

|[e]R| ≥ 2ℵα = ℵα+1

by Lemma 4.9. Therefore, we have |[e]R| = |{f ∈ [e]Q(R) | f ≺ E}| since
Proposition 4.7 implies that the reverse inequality always holds.

Remark 4.13. Although the following arguments generalize to arbi-
trary Boolean algebras, we shall assume that B is the Boolean alge-
bra of idempotents of a commutative ring. Suppose that B is com-
plete, and let b ∈ B. Then B|b = {e ∈ B | e ≤ b} is a complete
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Boolean algebra, where the partial order on B|b is inherited from B.
Let s(b) denote the least cardinal such that there is no set E ⊆ B|b
of orthogonal idempotents with |E| = s(b). Suppose that B is infi-
nite. In [1, Corollary 2.7], it is shown that there exists a finite set of
orthogonal idempotents {b1, ..., bn} ⊆ B with sup{b1, ..., bn} = 1, such
that |B|bi| =

∑

m<s(bi)
|B|bi|

m for each i = 1, ..., n. (In [1], this result
is stated in the context of compact extremely disconnected topological
spaces.) We will show that this implies |Ee(R)| ≤ |B(R)|e| whenever e
is an element of a complete Boolean algebra B(R) such that |B(R)|e| is
infinite.

Suppose that B is complete and infinite. Let E = {E ⊆ B | e1e2 =
0 for all distinct e1, e2 ∈ E and supE = 1}. It suffices to show that
|E| ≤ |B|. Note that the number of subsets of cardinality less than n of
a set J is at most

∑

m<n
|J |m. Using [1, Corollary 2.7], choose a set of

orthogonal elements {b1, ..., bn} ⊆ B such that sup{b1, ..., bn} = 1, and

|B|bi| =
∑

m<mi

|B|bi|
m

for each i ∈ {1, ..., n}, where mi is the least cardinal such that there
is no set E ⊆ B|bi of orthogonal elements with |E| = mi. By the
choice of mi together with the fourth sentence of this paragraph, we
have |Ebi| ≤

∑

m<mi
|B|bi|

m = |B|bi|, where Ebi = {E ⊆ B|bi | e1e2 =
0 for all distinct e1, e2 ∈ E, and supE = bi}. Let mj = max1≤i≤n{mi}.
Note that mj is infinite (and hence so is B|bj) since B is infinite (this
is an application of König’s Lemma, e.g., see [10, Exercise 25.12]).
Let E∗ = {E ∈ E | e ≤ bi for some i ∈ {1, ..., n} for all e ∈ E}. Not-
ing that {b1, ..., bn} ⊆ B is a set of orthogonal idempotents such that
sup{b1, ..., bn} = 1, we see that E ∈ E∗ if and only if E = ∪ni=1Ei
for some Ei ∈ Ebi (namely, Ei = B|bi ∩ E). Then |E∗| ≤ Πn

i=1|Ebi| ≤
max1≤i≤n(|B|bi|), where the second inequality follows since |Ebi| ≤ |B|bi|
for each i ∈ {1, ..., n}.

The mapping ψ : E → E∗ given by E 7→ {bbi | b ∈ E and i ∈
{1, ..., n}} is well-defined. Let E∗ ∈ E∗; say E∗ = ∪ni=1Ei, (Ei ∈ Ebi).
Note that every element belonging to a member of ψ−1({E∗}) is a sum
(that is, supremum), b = bb1 + · · · + bbn, with bbi ∈ Ei ∪ {0} for each
i ∈ 1, ..., n. Then an element b ∈ B belongs to a member of ψ−1({E∗})
if and only if b = e1 + · · ·+ en for some ei ∈ Ei ∪ {0}. This shows that
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the mapping

(E1 ∪ {0}) × · · · × (En ∪ {0}) → ∪{E | E ∈ ψ−1({E∗})}

given by the rule (e1, ..., en) 7→
∑n

i=1 ei is a well-defined surjection.
Since the elements of E∗ are orthogonal, this mapping is also injective.
Hence,

| ∪ {E | E ∈ ψ−1({E∗})}| = Πn
i=1|Ei ∪ {0}| < mj ≤ |B|bj |,

where the last inequality holds since a complete Boolean algebra is al-
ways strictly larger than any of its sets of orthogonal elements. (Indeed,
if E ⊆ B is a set of nonzero orthogonal elements, then the mapping
E ′ 7→ supE ′ defines an injection from the power set of E into B. In
particular, |E| < |B| for any set E ⊆ B of orthogonal elements.) Also,
if E ′ ∈ ψ−1({E∗}), then

|E ′| ≤ | ∪ {E | E ∈ ψ−1({E∗})}| < mj .

Since | ∪ {E | E ∈ ψ−1({E∗})}| < |B|bj |, it follows that the num-
ber of subsets of cardinality less than mj of ∪{E | E ∈ ψ−1({E∗})} is
at most

∑

m<mj
|B|bj |

m. But it has been shown that every member of

ψ−1({E∗}) has cardinality strictly less than mj, and thus

|ψ−1({E∗})| ≤
∑

m<mj

|B|bj |
m = |B|bj |.

Therefore,

|E| = | ∪E∗∈E∗ ψ−1({E∗})|

=
∑

E∗∈E∗

|ψ−1({E∗})|

= |E∗| sup{|ψ−1({E∗})| | E∗ ∈ E∗}

≤
(

max
1≤i≤n

(|B|bi|)
)

|B|bj |

= max
1≤i≤n

(|B|bi|)

≤ |B|.

If 2e′ ∈ [e′]R for all e′ ≤ e, then Proposition 4.2 (4) implies that the
mapping B(R)|e → [e]R given by e′ 7→ e′+e is well-defined. It is clearly
injective, and thus the following lemma holds by the above remark.
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Lemma 4.14. Let R be a von Neumann regular ring. Suppose that
B(R) is complete and choose e ∈ B(R). Assume that 2e′ ∈ [e′]R for all
e′ ≤ e. If |B(R)|e| is infinite, then |Ee(R)| ≤ |[e]R|.

Note that Lemma 4.14 can fail if B(R)|e is finite. For example, let
R =

∏5
i=1 Z3 and let e = (1, 1, 1, 1, 1). Then Ee(R) = 52 (the fifth Bell

number), but |[e]R| = 32.
Given any element e of the complete Boolean algebra B(R), we

will say that a cardinal m is achieved by regular elements of Ee(R) if
there exists a set of regular elements {Ei}i∈I ⊆ Ee(R) with | ∪i∈I {f ∈
[e]Q(R) | f ≺ Ei}| = m. Let R be the ring in Example 4.10. Note that
the regular elements of Ee(R) are precisely the finite elements. Letting
{Ei}i∈I denote the family of all regular elements of Ee(R), we have
∪i∈I{f ∈ [e]Q(R) | f ≺ Ei} = [e]R, and hence |[e]Q(R)| is not achieved
by regular elements.

We now state and prove the main theorem of this section.

Theorem 4.15. Suppose that R is a von Neumann regular ring such
that B(R) is complete. Let e ∈ B(R) be an element such that 2e′ ∈ [e′]R
for all e′ ≤ e. Then |[e]Q(R)| = |[e]R| if and only if |[e]Q(R)| is achieved
by regular elements of Ee(R).

Proof. The necessity is clear since |[e]Q(R)| = |[e]R| implies that |[e]Q(R)|
is achieved by the regular element E = {e} (indeed, [e]R ⊆ [e]Q(R) and
r ≺ {e} for all r ∈ [e]R).

To prove the converse, note that if |E| <∞ for all E ∈ Ee(R), then
[e]Q(R) = [e]R by Theorems 4.4 and 4.8. In particular, |[e]Q(R)| = |[e]R|.

Suppose that Ee(R) contains an infinite element. Then |[e]R| is
infinite by Lemma 4.9. Suppose that I is an indexing set such that
{Ei}i∈I ⊆ Ee(R) is a family of regular elements with | ∪i∈I {f ∈
[e]Q(R) | f ≺ Ei}| = |[e]Q(R)|. Then

|[e]Q(R)| = | ∪i∈I {f ∈ [e]Q(R) | f ≺ Ei}|

≤ |I| sup
i∈I

|{f ∈ [e]Q(R) | f ≺ Ei}|

= |I||[e]R|

≤ |Ee(R)||[e]R|

= |[e]R|,
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where the second equality follows by Lemma 4.12 and the last equality
follows by Lemma 4.14. Thus |[e]Q(R)| = |[e]R| since Proposition 4.7
implies that the reverse inequality is always true.

It is known that Q(
∏

i∈I Ri) =
∏

i∈I Q(Ri) for any family of rings
{Ri}i∈I [11, Proposition 2.3.8]. It is easy to see that |[(ei)]Qi∈I Ri

| =
∏

i∈I |[ei]Ri
| for any such product. Therefore, if |[ei]Ri

| = |[ei]Q(Ri)| for
all i ∈ I, then |[(ei)]Qi∈I Ri

| = |[(ei)]Q(
Q

i∈I Ri)|.
Note that a ring may have |[e]R| = |[e]Q(R)| without satisfying the

condition “2e′ ∈ [e]R for all e′ ≤ e.” For example, the equality is auto-
matic whenever R = Q(R). The following application of the previous
theorem shows that a ring R 6= Q(R) can have an idempotent e such
that 2e 6∈ [e]R, and yet |[e]R| = |[e]Q(R)|. Moreover, this equality can
hold even if B(R) is not complete.

Recall that a ring R is Boolean if x = x2 for all x ∈ R, i.e., R = B(R)
(as sets). In particular, a Boolean ring is von Neumann regular, and
has characteristic 2. Moreover, a ring R is Boolean if and only if Q(R)
is Boolean [11, Lemma 2.4.4].

Corollary 4.16. Suppose that I is an indexing set, {Fi}i∈I is a family
of rationally complete rings, A is a von Neumann regular ring with
B(A) complete, |A| < ℵω, 2 6∈ Z(A), and B is a Boolean ring. Let S
be a nonempty subset of {A,B,

∏

i∈I Fi}. If R ∼=
∏

S∈S S, then |[e]R| =
|[e]Q(R)| for all e ∈ B(R).

Proof. We might as well assume that R =
∏

S∈S S. By the above com-
ments, it suffices to show that the result is true when S is a singleton set.
Clearly it is true when S = {

∏

i∈I Fi} since
∏

i∈I Fi =
∏

i∈I Q(Fi) =
Q

(
∏

i∈I Fi
)

. To see that it holds for S = {B}, recall that each equiv-
alence class of a von Neumann regular ring is represented by a unique
idempotent. Thus, since Q(B) is Boolean, |[e]B| = 1 = |[e]Q(B)| for all
e ∈ B.

It remains to show that the result holds for S = {A}. Since ℵω
is the smallest singular cardinal, every element of Ee(A) is regular. In
particular, Theorem 4.8 implies that |[e]Q(A)| is achieved by regular
elements of Ee(A) for all e ∈ A. Finally, 2 is a unit of A since it is
not a zero-divisor, and thus 2e ∈ [e]A for all e ∈ B(A). Therefore,
|[e]A| = |[e]Q(A)| for all e ∈ B(A) by Theorem 4.15.
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It is easy to illustrate the convenience of the previous corollary.
For example, let F = Q and J = N in Example 4.3. Then R is a von
Neumann regular ring, B(R) is complete, |R| = ℵ1 < ℵω, and 2 6∈ Z(R)
(here, 2 is the element of R with the integer 2 in all coordinates).
Therefore, |[e]R| = |[e]Q(R)| for all e ∈ B(R) by Corollary 4.16. Note
that we were able to draw this conclusion without knowing anything
about Q(R).

Several of the previous results were proved under the assumption
that “B(R) is complete.” We conclude this section with an example
showing that this “completeness” statement must be included in all of
those results. However, we only emphasize the necessity for Theorem
4.15.

Example 4.17. Let Fn = Q for all n ∈ N. Define R ⊆
∏

n∈N
Fn

to be the ring such that (rn) ∈ R if and only if there exists N ∈ N
such that rn = rN for all n ≥ N . As in Example 4.3, one shows that
Q(R) =

∏

n∈N
Fn. For any n ∈ N, let e(n) be the element of B(R)

with 1 in the coordinate n and 0 elsewhere. Let N ∈ N and define
E = {e(n) ∈ B(R) | n ≥ N}. Then the idempotent e = supE is
clearly an element of B(R) (e is the element with 1 in all coordinates
n ≥ N and 0 elsewhere). Note that B(R) is not complete since the set
{e(2n + 1)}∞n=N ⊆ B(R) has no supremum in B(R). It is easy to see
that E ∈ Ee(R) is regular and |[e]Q(R)| is achieved by E. However,

|[e]R| = ℵ0 < ℵ1 = |[e]Q(R)|.

4.3 Zero-Divisor Graphs

The idea of a zero-divisor graph was introduced by I. Beck in [3]. While
he was mainly interested in colorings, we shall investigate the interplay
between ring-theoretic properties and graph-theoretic properties. This
approach begun in a paper by D.F. Anderson and P.S. Livingston [2],
and has since continued to evolve (e.g., [2], [1], [5], [7], [11], [13], [12],
and [16]).

Let Γ be a graph and let v ∈ V (Γ). As in [1], a vertex w ∈ V (Γ)
is called a complement of v if v is adjacent to w, and the edge v − w
is not an edge of any triangle in Γ. In ring-theoretic terms, this is
the same as saying that w is a complement of v in Γ(R) if and only if
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0 6= v, w ∈ R are distinct, vw = 0, and ann(v) ∩ ann(w) ⊆ {0, v, w}.
As in [1], we will say that Γ is complemented if every vertex has a
complement, and is uniquely complemented if it is complemented and
any two complements of a vertex are adjacent to the same vertices.
Note that Γ(R) is uniquely complemented if and only if either R is
nonreduced and Γ(R) is a star graph (i.e., a graph with at least two
vertices such that there exists a vertex which is adjacent to every other
vertex, and these are the only adjacency relations), or R is reduced and
T (R) is von Neumann regular [1, Theorems 3.5 and 3.9]. Moreover, [1,
Theorem 3.5] shows that a reduced ring is uniquely complemented if
and only if it is complemented.

Suppose that R is a von Neumann regular ring. Let x ∈ R. Then
there is a unit u ∈ R such that xu = ex, the unique idempotent satisfy-
ing [x]R = [ex]R. Hence 1−ex is a complement of x since (1−ex)x = 0,
and tx = 0 = t(1−ex) implies t = tex = t(xu) = (tx)u = 0. By [1, The-
orem 3.5], Γ(R) is uniquely complemented. Thus ann(x′) = ann(1−ex)
for every complement x′ of x.

In this section, we explore some consequences of the results given
in Section 4.2. Theorem 4.19 gives sufficient conditions to conclude
that a reduced ring R satisfies Γ(R) ∼= Γ(Q(R)). In Theorem 4.20, we
explain precisely when Γ(R) ∼= Γ(Q(R)) for “small” reduced rings with
2 6∈ Z(R). Finally, Theorem 4.21 shows that a Boolean ring R satisfies
Γ(R) ∼= Γ(Q(R)) if and only if R ∼= Q(R). Moreover, the zero-divisor
graphs of such Boolean rings are completely characterized.

Let S ⊆ V (Γ(R)) be a family of vertices. As in [11], we shall call v
a central vertex of S if v is adjacent to s for all s ∈ S. The following
lemma is implicit in the proofs of Lemma 3.3 and Theorem 3.4 of [11].

Lemma 4.18. Let R be a von Neumann regular ring. Then B(R)
is complete if and only if whenever ∅ 6= S ⊆ V (Γ(R)) is a family of
vertices that has a central vertex, there exists a central vertex v of S
possessing a complement that is adjacent to all of the central vertices of
S (and hence, since Γ(R) is uniquely complemented, every complement
of v is adjacent to every central vertex of S).

Proof. To prove the necessity of the stated conditions, suppose that
there is a ∅ 6= S ⊆ V (Γ(R)) with central vertices such that, if v is
any central vertex of S, then there exists a central vertex w of S with
(1 − ev)w 6= 0. Let S ′ = {1 − es ∈ B(R) | s ∈ S}, and let C = {b ∈
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B(R) \ {0} | bes = 0 for all s ∈ S}. Note that C 6= ∅ since ev ∈ C
whenever v is a central vertex of S. Moreover, every element of C is
a central vertex of S. Therefore, to every b ∈ C there corresponds a
central vertex w of S such that (1−b)w 6= 0. In particular, (1−b)ew 6= 0.
Let f = inf S ′ (in D(B(R))). Note that f 6= 0 since b ≤ f whenever
b ∈ C. Thus, if f ∈ B(R), then f ∈ C and hence there is a central
vertex w of S such that few 6= ew. But ew ∈ C, and hence ew ≤ f .
This is a contradiction, and therefore f 6∈ B(R). Since the infimum
of a set taken in B(R) agrees with the infimum taken in D(B(R)), we
have that B(R) is not complete.

Conversely, suppose that the stated conditions on V (Γ(R)) are sat-
isfied. Let ∅ 6= S ⊆ B(R) be any family of elements. It is clear that
inf S = 0 if 0 ∈ S. Suppose that 0 6∈ S. If S = {1}, then inf S = 1.
If S 6= {1} and contains 1, then we may remove 1 from S without
changing inf S. Thus we may assume 0, 1 6∈ S.

Since R is reduced, D = annR({1−s}s∈S)+({1−s}s∈S) is dense in R,
and hence in Q(R). Let inf S = f ∈ B(Q(R)). Then f({1 − s}s∈S) =
(0). Suppose that S has no infimum in B(R). Then f 6= 0 since
f 6∈ B(R). Evidently, annR({1−s}s∈S) 6= (0) since otherwise fD = (0).
That is, C = {v ∈ V (Γ(R)) | v is adjacent to 1 − s for all s ∈ S} 6= ∅.
By hypothesis, there is a v∗ ∈ C whose complements are adjacent to
every element of C. In particular, v(1 − ev∗) = 0 for all v ∈ C. Since
v∗ ∈ C, it follows that ev∗(1 − s) = 0 for all s ∈ S; that is, ev∗ ≤ s for
all s ∈ S. Moreover, if 0 6= v ∈ B(R) with v ≤ s for all s ∈ S, then
v ∈ C so that v(1 − ev∗) = 0; that is, v ≤ ev∗ . But this shows that
f = inf S = ev∗ ∈ B(R), a contradiction. Thus every ∅ 6= S ⊆ B(R)
has an infimum, and hence B(R) is a complete Boolean algebra.

Let R be any ring. We shall say that Γ(R) is central vertex com-
plete, or c.v.-complete, if Γ(R) satisfies the condition of Lemma 4.18.
Thus Lemma 4.18 can be restated as follows:

Let R be a von Neumann regular ring. Then B(R) is complete if
and only if Γ(R) is c.v.-complete.

As already noted, every ring R satisfies Γ(R) ∼= Γ(T (R)) by [1,
Theorem 2.2]. In [1, Theorem 4.1], it is shown that the zero-divisor
graphs of two von Neumann regular rings R and S are isomorphic if
and only if there is a Boolean algebra isomorphism ϕ : B(R) → B(S)
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such that |[e]R| = |[ϕ(e)]S| for all 1 6= e ∈ B(R). Therefore, Examples
4.10 and 4.11 illustrate that a von Neumann regular ring R may fail
to satisfy the condition Γ(R) ∼= Γ(Q(R)). (Indeed, if R is the ring in
Example 4.10, then |[e]R| < ℵω+1 for all e ∈ B(R). If R is the ring in
Example 4.11, then |[e]R| < ℵ1 for all e ∈ B(R).)

Recall that a von Neumann regular ringR satisfies B(R) = B(Q(R))
if and only if B(R) is complete [4, Theorem 11.9].

Theorem 4.19. Let R be a reduced ring. Suppose that Γ(R) is a
complemented c.v.-complete graph. If 2e ∈ [e]T (R) and |[e]Q(T (R))| is
achieved by regular elements of Ee(T (R)) for all e ∈ B(T (R)) \ {1},
then Γ(R) ∼= Γ(Q(R)).

Proof. Suppose that Γ(R) is a complemented c.v.-complete graph. Note
that it makes sense to speak of Ee(T (R)) since T (R) is von Neumann
regular by [1, Theorem 3.5]. Also, Γ(R) ∼= Γ(T (R)) implies that
B(T (R)) is complete by Lemma 4.18 . Thus B(T (R)) = B(Q(T (R)))
by [4, Theorem 11.9]. Suppose that 2e ∈ [e]T (R) and |[e]Q(T (R))| is
achieved by regular elements of Ee(T (R)) for all 1 6= e ∈ B(T (R)).
Then Theorem 4.15 implies that |[e]T (R)| = |[e]Q(T (R))| for all 1 6= e ∈
B(T (R)). Thus Γ(T (R)) ∼= Γ(Q(T (R))) = Γ(Q(R)), where the iso-
morphism follows by [1, Theorem 4.1] and the equality follows since
Q(T (R)) = Q(R); hence Γ(R) ∼= Γ(Q(R)) by [1, Theorem 2.2].

To apply the previous result, one must have information regarding
the zero-divisor graph of R, as well as information about the total
quotient ring ofR. However, information regarding T (R) is unnecessary
when R is “small.”

Theorem 4.20. Let R be a reduced ring. Suppose that |V (Γ(R))| <
ℵω. If 2 6∈ Z(R), then Γ(R) ∼= Γ(Q(R)) if and only if Γ(R) is a
complemented c.v.-complete graph.

Proof. Note that |V (Γ(T (R)))| < ℵω since Γ(R) ∼= Γ(T (R)). Also, 2 is
a unit in T (R) since 2 6∈ Z(R) implies that 2 6∈ Z(T (R)). Finally,

|T (R)| ≤ |Z(T (R))|2 = (|V (Γ(T (R)))| + 1)2 < ℵω

(the first inequality is an application of the first isomorphism theorem
on the T (R)-module homomorphism T (R) → T (R)r defined by s 7→ sr,
where 0 6= r ∈ Z(T (R))).
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If Γ(R) ∼= Γ(Q(R)), then Γ(R) is complemented since Q(R) is
von Neumann regular, and is c.v.-complete since B(Q(R)) is complete.
Conversely, suppose that Γ(R) is a complemented c.v.-complete graph.
Then Γ(R) ∼= Γ(T (R)) implies that T (R) is von Neumann regular and
B(T (R)) is complete. Therefore, B(T (R)) = B(Q(T (R))). Moreover,
|[e]T (R)| = |[e]Q(T (R))| for all e ∈ B(T (R)) by Corollary 4.16. Thus

Γ(R) ∼= Γ(T (R)) ∼= Γ(Q(T (R))) = Γ(Q(R)),

where the second isomorphism follows from [1, Theorem 4.1].

Note that a Boolean ring R is rationally complete if and only if
B(R) is a complete Boolean algebra [9, Theorem 12.3.4]. The following
theorem was proved in [11, Theorem 3.4 and Theorem 4.1]. However,
a simpler proof is available with the aid of Lemma 4.18.

Theorem 4.21. Let R be a Boolean ring. Then the following conditions
are equivalent:

(1) R is rationally complete.

(2) Γ(R) is c.v.-complete.

(3) Γ(R) ∼= Γ(Q(R)).

Proof. (1)⇔(2): Lemma 4.18 implies that B(R) is complete if and only
if Γ(R) is c.v.-complete; that is, R is rationally complete if and only if
Γ(R) is c.v.-complete.

(3)⇒(2): Since B(Q(R)) is complete, (3) implies that Γ(R) is c.v.-
complete by Lemma 4.18.

(1)⇒(3): This is obvious.

We end this section by observing that the zero-divisor graphs of
rationally complete Boolean rings are completely characterized: It is
known that a ring R is Boolean if and only if either R ∼= Z2 or R 6∈
{Z9,Z3[X]/(X2)} and Γ(R) 6= ∅ has the property that every vertex has
a unique complement [11, Theorem 2.5]. Taking this together with the
previous theorem, we have the following corollary.

Corollary 4.22. Suppose that R is a ring which is not isomorphic to
either of the rings in the set {Z9,Z3[X]/(X2)}. Then R is a rationally
complete Boolean ring if and only if either R ∼= Z2 or Γ(R) 6= ∅ is a
c.v.-complete graph such that every vertex has a unique complement.
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Chapter 5

Rationally ℵα-Complete

Commutative Rings of

Quotients

Abstract. If {Ri}i∈I is a family of rings, then it is well-known that

Q(Ri) = Q(Q(Ri)) and Q
(
∏

i∈I Ri

)

=
∏

i∈I Q(Ri), where Q(R) denotes

the maximal ring of quotients of R. This paper contains an investigation of

how these results generalize to a particular class of rings of quotients of a

commutative ring.

67



5.1 Introduction

Let R be a commutative ring with identity. Define the set of zero-
divisors of R to be Z(R) = {r ∈ R | rs = 0 for some 0 6= s ∈ R}.
The total quotient ring T (R) of R is the ring RR\Z(R). Multiplication
by any element a/b of T (R) defines an R-module homomorphism from
the principal ideal bR into R. More generally, there are ring extensions
of R consisting entirely of elements which can be viewed as R-module
homomorphisms from dense ideals of R (a set D ⊆ R is dense in R
if annR(D) = {0}) into R. When R is an integral domain, any such
homomorphism can be defined by elements of T (R). For example, if d ⊆
R is a dense ideal and f ∈ HomR(d, R), then f can be identified with
f(d)/d ∈ T (R) for any 0 6= d ∈ d. Similarly, any such homomorphism
whose domain contains an element of R\Z(R) can be identified with an
element of T (R). However, if d ⊆ Z(R) is dense, then HomR(d, R) may
have elements which cannot be defined as multiplication by a member
of T (R). In what follows, we define a class of ring extensions of T (R)
whose elements can be described asR-module homomorphisms on dense
ideals having generating sets that meet certain cardinality restrictions.
Motivated by two well-known results, we then inspect the way that
passing to these extensions behaves with respect to iteration and direct
products.

To begin the construction, let d1 and d2 be dense ideals of R, and
suppose that fi ∈ HomR(di, R) (i = 1, 2). Then d1d2 is a dense ideal
of R, and {f1 + f2, f1 ◦ f2} ⊆ HomR(d1d2, R). Let F = ∪dHomR(d, R),
where the union is taken over all dense ideals of R. Then Q(R) = F/∼
is a commutative ring, where f1 ∼ f2 if and only if f1|D = f2|D for some
dense set D of R. In Section 2.3 of [11], Q(R) is called the complete
ring of quotients of R. One checks that R is embedded in Q(R) by
identifying any element r ∈ R with the equivalence class containing
the homomorphism defined via multiplication by r.

A ring extension R ⊆ S is called a ring of quotients of R if f−1R =
{r ∈ R | fr ∈ R} is dense in S for all f ∈ S. For example, T (R)
is a ring of quotients of R. Suppose that S is a ring of quotients of
R. Then the correspondence given by identifying any element f ∈ S
with the equivalence class containing (r 7→ fr) ∈ HomR(f−1R,R) is an
extension of the mapping R → Q(R) described above, and embeds S
into Q(R). Therefore, every ring of quotients of R can be regarded as
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a subring of Q(R). It follows that any dense set in R is dense in every
ring of quotients of R. Also, R has a unique maximal (with respect to
inclusion) ring of quotients, which is isomorphic to Q(R) [11, Proposi-
tion 2.3.6]. In this paper, isomorphic rings will not be distinguished.
In particular, we shall denote the maximal ring of quotients of R by
Q(R).

Let R ⊆ S ⊆ T be rings. Then T is a ring of quotients of R if
and only if T is a ring of quotients of S and S is a ring of quotients of
R [4, 1.4]. It follows that Q(R) = Q(S) whenever R ⊆ S is a ring of
quotients. For more on rings of quotients, see [4] and [9].

Recall that a cardinal number, or cardinal for short, is any ordinal
number that is not in bijective correspondence with any strictly smaller
ordinal. The cardinality |I| of a set I is the unique cardinal which is in
bijective correspondence with I. We shall use the “aleph” notation to
denote infinite cardinals. That is, any infinite cardinal will be denoted
by ℵα for some ordinal α, where ℵα ≤ ℵβ if and only if α ≤ β. Note
that ordinals are sets, and that the relation α < β is equivalent to α ∈ β
for any ordinals α and β. Every infinite cardinal is a limit ordinal. A
cardinal ℵα is a limit cardinal if α is a limit ordinal. If ℵα is a limit
cardinal with α 6= 0, then the set {ℵθ}θ<α is cofinal in ℵα. In particular,
the cofinality of any infinite limit cardinal ℵα (i.e., the smallest cardinal
that is cofinal in ℵα) with α 6= 0 is at most |α|, that is, cf(ℵα) ≤ |α|. A
cardinal ℵα is called singular if cf(ℵα) < ℵα. Any cardinal which is not
singular (i.e., any cardinal that is equal to its cofinality) is called regular.
Every infinite singular cardinal is necessarily a limit cardinal. If {Ai}i∈I
is a family of sets, then | ∪i∈I Ai| ≤ |I| sup{|Ai| | i ∈ I}. In particular,
if | ∪i∈I Ai| is infinite, then | ∪i∈I Ai| ≤ max{|I|, sup{|Ai| | i ∈ I}}.
Also, if |I| < cf(ℵα) and |Ai| < ℵα for all i ∈ I, then | ∪i∈I Ai| < ℵα;
we shall refer to this fact as the pigeonhole principle. For a detailed
exposition on infinite cardinals, see [7].

Let α be any ordinal. Given any infinite subsets D1 andD2 of a com-
mutative ring, note that |{d1d2 | d1 ∈ D1, d2 ∈ D2}| ≤ max{|D1|, |D2|}.
It follows that the set Qα(R) = {f ∈ Q(R) | there exists a D ⊆ f−1R
such that annR(D) = {0} and |D| < ℵα} is a commutative ring. Clearly
Qα(R) is a ring of quotients of R. Moreover, the inclusions

R ⊆ Qα(R) ⊆ Qβ(R) ⊆ Q(R)

hold for all α ≤ β. Also, there exists an ordinal α such that Qβ(R) =
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Q(R) whenever α ≤ β (e.g., choose α so that |R| < ℵα). We will say
that R is rationally ℵα-complete if R = Qα(R). If R is rationally ℵα-
complete, then it is easy to see that R is rationally ℵβ-complete for all
β ≤ α. If R is rationally ℵα-complete for all α (i.e., R = Q(R)), then
we will say that R is rationally complete.

The ring Q0(R) was studied by T.G. Lucas in [12], where the main
focus was on integral closure. For a ring of continuous functions R, the
relationship between Qα(R) and certain topological properties of the
underlying space was examined by A.I. Singh and M.A. Swardson in [8].
In [5], A.W. Hager and J. Martinez study the ring Qα(R) for a regular
uncountable cardinal ℵα. The results in [5] are mainly concerned with
the case when R is an Archimedean f -ring. The investigation in this
paper is motivated by, and has a significant role in the development
of [4]. In [4], the author is interested in zero-divisor graphs of rings of
quotients of a commutative ring.

The following two results are well-known: The ring Q(R) is ra-
tionally ℵα-complete for every ordinal α, i.e., Q(Q(R)) = Q(R) [11,
Proposition 2.3.5]. Also, Q(

∏

i∈I Ri) =
∏

i∈I Q(Ri), where {Ri}i∈I is
any family of rings [11, Proposition 2.3.8]. In this paper, we seek to
generalize these two results by examining the rational ℵα-completion
of a ring Qβ(R), where α and β are ordinal numbers. In particular,
we provide set-theoretic bounds on the ring Qα(Qβ(R)), and give suffi-
cient conditions to conclude that Qα(Qβ(R)) = Qθ(R) for some ordinal
θ (e.g., Theorem 5.1 and Corollary 5.10). Also, set-theoretic bounds are
given on the ring

∏

i∈I Qα(Ri), and sufficient conditions are provided
to conclude that Qα(

∏

i∈I Ri) =
∏

i∈I Qα(Ri) for a given family of com-
mutative rings {Ri}i∈I (see Theorem 5.3). Examples are presented to
illustrate the implications of each result.

5.2 The Rational ℵα-Completion of Qβ(R)

The two main theorems of this paper are established in this section
(Theorem 5.1 and Theorem 5.3). However, these results raise natural
questions, which are studied in Section 5.3. We begin with a theorem
which suggests that one may have Qβ(Qβ(R)) 6= Qβ(R) for some ordinal
β. Indeed, the existence of such a ring is proved by letting α = β = ω
in Example 5.8 (recall that ω is the smallest infinite ordinal, and ℵω is
the least infinite singular cardinal).
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In [12, Lemma 5], it is shown that an element f ∈ Q(R) is neces-
sarily a member of Q0(R) whenever f−1Q0(R) contains a dense finite
set. The author accomplishes this by viewing Q0(R) as a subring of
T (R[X]) [12, Lemma 4]. Since Q(Q0(R)) = Q(R), it follows that
Q0(Q0(R)) ⊆ Q0(R). But Q0(R) ⊆ Q0(Q0(R)) is always true, and
therefore Q0(Q0(R)) = Q0(R). In [5, Proposition 2.2], it is shown that
Qα(Qα(R)) = Qα(R) whenever ℵα is a regular cardinal. These facts
are generalized in the following theorem.

Theorem 5.1. Let R be a commutative ring. Suppose that α and β are
ordinal numbers, and let θ = max{α, β}. Then Qθ(R) ⊆ Qα

(

Qβ(R)
)

⊆
Qθ+1(R). If Qθ(R) ( Qα

(

Qβ(R)
)

, then the following must hold:

(1) β is a limit ordinal.

(2) α ≤ β.

(3) ℵα > cf(ℵβ).

In particular, if ℵβ is a regular cardinal, then Qθ(R) = Qα(Qβ(R)).

Proof. If θ = β, then Qθ(R) = Qβ(R) ⊆ Qα

(

Qβ(R)
)

. Suppose that
θ = α, and let f ∈ Qθ(R). In particular, f ∈ Q(R) = Q

(

Qβ(R)
)

. It
is easy to see that f−1R ⊆ f−1Qβ(R), and hence f−1Qβ(R) contains
a dense set D such that |D| < ℵα. Therefore, f ∈ Qα

(

Qβ(R)
)

. Thus
Qθ(R) ⊆ Qα

(

Qβ(R)
)

.
Let f ∈ Qα

(

Qβ(R)
)

. There is a dense set D ⊆ f−1Qβ(R) such
that |D| < ℵα. Let d ∈ D. Then d ∈ Qβ(R) implies that there exists
a dense set Ed ⊆ d−1R such that |Ed| < ℵβ. Also, fd ∈ Qβ(R) and
hence there exists a dense set Fd ⊆ (fd)−1R such that |Fd| < ℵβ. Let
Gd = {eg | e ∈ Ed and g ∈ Fd}. Then Gd is dense, Gd ⊆ (fd)−1R,
and |Gd| < ℵβ. Thus |dGd| < ℵβ for all d ∈ D. Also, dGd ⊆ R,
and therefore dGd ⊆ f−1R. Let H = ∪d∈DdGd. Then H ⊆ f−1R.
Moreover, H is dense since if rH = {0}, then rdGd = {0} for all
d ∈ D; but each Gd is dense, and therefore rd = 0 for all d ∈ D. That
is, r ∈ annR(D) = {0}. It follows that f ∈ Qθ+1(R) since

|H| ≤ |D| sup{|dGd| | d ∈ D} ≤ ℵθ,

and therefore Qα(Qβ(R)) ⊆ Qθ+1(R). This proves the first claim.
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Note that if (2) fails, then sup{|dGd| | d ∈ D} ≤ ℵβ < ℵα. Thus

|H| ≤ |D| sup{|dGd| | d ∈ D} < ℵα = ℵθ.

If (3) fails to hold, then the inequalities |dGd| ≤ |Gd| < ℵβ and
|D| < ℵα ≤ cf(ℵβ) imply that |H| < ℵβ by the pigeonhole princi-
ple. Therefore, if (2) or (3) fail, then |H| < ℵθ. If (2) and (3) hold,
then cf(ℵβ) < ℵα ≤ ℵβ. In particular, ℵβ is a singular cardinal, and
thus (1) holds. So if (1) fails, then either (2) or (3) must fail, and hence
|H| < ℵθ. Therefore, if any of (1), (2), or (3) fails, then f ∈ Qθ(R),
and it follows that Qθ(R) = Qα(Qβ(R)).

The “in particular” statement holds since either (2) or (3) fails
whenever ℵβ is a regular cardinal.

Corollary 5.2. Let R be a commutative ring. Then Qα(Qβ(R)) =
Qβ(Qα(R)) = Qθ(R) for any ordinals α, β < ω, where θ = max{α, β}.
Moreover, Q0(Qβ(R)) = Qβ(Q0(R)) = Qβ(R) for every ordinal β.

Proof. Both statements are immediate consequences of Theorem 5.1.
The first statement follows since ℵα and ℵβ are regular cardinals when-
ever α, β < ω. The second statement holds since the cofinality of any
infinite cardinal is at least ℵ0; that is, ℵ0 ≤ cf(ℵβ) for every ordinal
β.

We now turn our attention to rational ℵα-completions of direct prod-
ucts. Note that Corollary 5.5 is a special case of a more general theo-
rem of Utumi for noncommutative rings. In fact, the “ Qα

(
∏

j∈J Rj

)

⊆
∏

j∈J Qα(Rj)” portion in the proof of the following theorem is a close
mimicry of the proof given in [11, Proposition 4.3.9].

Theorem 5.3. Let {Rj}j∈J be a family of commutative rings. Then
Qα

(
∏

j∈J Rj

)

⊆
∏

j∈J Qα(Rj) ⊆ Qα+1

(
∏

j∈J Rj

)

. If Qα(
∏

j∈J Rj) (
∏

j∈J Qα(Rj), then the following must hold:

(1) α is a limit ordinal.

(2) |J | ≥ cf(ℵα).

Proof. Let α be an ordinal and suppose that f ∈ Qα(
∏

j∈J Rj). There

exists a dense set D ⊆ f−1
∏

j∈J Rj with |D| < ℵα. For every i ∈ J ,
let ιi : Ri →

∏

j∈J Rj and πi :
∏

j∈J Rj → Ri be the usual injection
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and projection maps. Let i ∈ J . If rπi(D) = {0} for some r ∈ Ri,
then the element of

∏

j∈J Rj with r in the i-coordinate and 0 elsewhere
annihilates D. Since D is dense, this element must be (0); in particular,
r = 0. Thus πi(D) is dense in Ri. Clearly |πi(D)| ≤ |D| < ℵα. Let
F ∈ HomQ

j∈J Rj
(〈D〉,

∏

j∈J Rj) be given by F (d) = fd, where 〈D〉 is the

ideal of
∏

j∈J Rj generated by D. Then πi◦F ◦ιi ∈ HomRi
(πi(〈D〉), Ri).

Therefore, there exists an ri ∈ Qα(Ri) such that ridi = (πi ◦ F ◦ ιi)(di)
for all di ∈ πi(D). Consider the element (rj) ∈

∏

j∈J Qα(Rj), where
each rj is defined as above. Let ej ∈

∏

j∈J Rj be the element with 1
in the j-coordinate and 0 elsewhere. Then the map ιj ◦ πj is given via
multiplication by ej , and πj(ej) = 1. If d ∈ D, then

(

rj
)

d =
(

rjπj(d)
)

=
(

(πj ◦ F ◦ ιj)(πj(d))
)

=
(

(πj ◦ F )(ejd)
)

=
(

πj(ej)πj(F (d))
)

=
(

1πj(fd)
)

= fd.

Since D is dense, it follows that f = (rj) ∈
∏

j∈J Qα(Rj). Therefore,
Qα(

∏

j∈J Rj) ⊆
∏

j∈J Qα(Rj).
Suppose that f ∈

∏

j∈J Qα(Rj). Given any j ∈ J , let Dj ⊆

πj(f)−1Rj be dense such that |Dj | < ℵα. Also, let ψj : |Dj| → Dj

be a bijection, and define Ψj : ℵα → Dj ∪ {0} by

Ψj(β) =
{ ψj(β), β < |Dj|

0, |Dj| ≤ β < ℵα
.

For a fixed β < ℵα, let rβ =
(

Ψj(β)
)

∈
∏

j∈J Rj . Define

D = {rβ | β < ℵα}.

Note that the element rβ ∈ D is the βth row of the ℵα× |J | matrix
(mβj), where mβj = Ψj(β). As a set, the jth column of (mβj) is
Dj ∪ {0}. Suppose that r ∈

∏

j∈J Rj with rD = {(0)}. If j is any
element of J , then πj(r)Ψj(β) = 0 for all β < ℵα. But {Ψj(β) | β <
ℵα} = Dj ∪ {0} is dense, and thus πj(r) = 0. Hence r =

(

πj(r)
)

= (0).
Therefore, D is dense. Let β < ℵα. Then frβ =

(

πj(f)Ψj(β)
)

∈
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∏

j∈J Rj , and it follows that D ⊆ f−1
∏

j∈J Rj. Clearly |D| ≤ ℵα.

Hence f ∈ Qα+1

(
∏

j∈J Rj

)

. Thus
∏

j∈J Qα(Rj) ⊆ Qα+1

(
∏

j∈J Rj

)

.
If (1) fails, then |Dj| ≤ ℵα−1 for all j ∈ J , and therefore, rβ = (0)

for all ℵα−1 ≤ β < ℵα. It follows that D′ = {rβ | β < ℵα−1} is
dense. Also, D′ ⊆ D ⊆ f−1

∏

j∈J Rj . Clearly |D′| < ℵα, and thus

f ∈ Qα

(
∏

j∈J Rj

)

.
If (2) fails, then | ∪j∈J Dj| < ℵα by the pigeonhole principle. In

particular, there exists a β0 < α such that |Dj| ≤ ℵβ0
for all j ∈ J . As in

the above case, the set D′ = {rβ | β < ℵβ0
} is dense, D′ ⊆ f−1

∏

j∈J Rj ,

and |D′| < ℵα. Hence f ∈ Qα

(
∏

j∈J Rj

)

. Therefore, if either (1) or (2)

fails to hold, then Qα

(
∏

j∈J Rj

)

=
∏

j∈J Qα(Rj).

Corollary 5.4. If J is a finite set, then Qα

(
∏

j∈J Rj

)

=
∏

j∈J Qα(Rj)
for every ordinal α.

Proof. The cofinality of any infinite cardinal is at least ℵ0. Therefore,
if J is finite, then Theorem 5.3 (2) fails for every ordinal α.

As a second corollary to Theorem 5.3, we obtain the following well-
known result.

Corollary 5.5. Let {Rj}j∈J be a family of commutative rings. Then
Q

(
∏

j∈J Rj

)

=
∏

j∈J Q(Rj).

Proof. Let α be an ordinal such that Q
(
∏

j∈J Rj

)

= Qα

(
∏

j∈J Rj

)

and
Q(Rj) = Qα(Rj) for all j ∈ J . Then Theorem 5.3 (1) fails for α + 1,
and thus

Q
(

∏

j∈J

Rj

)

= Qα+1

(

∏

j∈J

Rj

)

=
∏

j∈J

Qα+1(Rj) =
∏

j∈J

Q(Rj).

5.3 Applications and Examples

It is natural to question whether any of the inclusions in Theorem 5.1 or
Theorem 5.3 can be replaced by “equality” or “proper inclusion.” The
following examples show that, in general, the answer is “no.” However,
this section contains results which strengthen Theorem 5.1 under some
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additional hypotheses (see Theorem 5.6, Corollary 5.9, and Corollary
5.10).

In [6], a ring R is said to satisfy (a.c.) (the annihilator condition) if
for any finite set of elements ∅ 6= A ⊆ R there exists an element r ∈ R
such that annR(r) = annR(A). This definition can be generalized by
lifting the “finite” condition. We shall say that R satisfies (g.a.c.) (the
generalized annihilator condition) if for every ∅ 6= A ⊆ R there exists
an r ∈ R such that annR(r) = annR(A). Moreover, R will be called
reduced if it has no nonzero nilpotents.

Theorem 5.1 provides a list of sufficient conditions to conclude that
Qα(Qβ(R)) = Qθ(R), where θ = max{α, β}. In particular, the equality
is guaranteed when θ = α > β. On the other hand, it may happen that
Qβ(R) ( Qα(Qβ(R)) ( Qβ+1(R) (see Example 5.13). The following
result gives sufficient conditions for the equality Qα(Qβ(R)) = Qβ+1(R)
to hold.

Theorem 5.6. Let R be a reduced commutative ring. Suppose that
α and β are ordinals such that Qβ(R) ( Qα(Qβ(R)). If R satisfies
(g.a.c.), then Qα(Qβ(R)) = Qβ+1(R).

Proof. Let f ∈ Qβ+1(R). Since Theorem 5.1 implies that the inclusion
Qα(Qβ(R)) ⊆ Qβ+1(R) is always true, the desired result will hold if
f ∈ Qα(Qβ(R)). If f ∈ Qβ(R), then f ∈ Qα(Qβ(R)). Suppose that
f ∈ Qβ+1(R) \ Qβ(R). Then there exists a dense set E ⊆ f−1R such
that |E| = ℵβ. Let {Eθ}θ<cf(ℵβ) be a family of subsets of E such that
|Eθ| < ℵβ for all θ < cf(ℵβ), and ∪θ<cf(ℵβ)Eθ = E. Let θ < cf(ℵβ).
Since Eθ ⊆ R and R satisfies (g.a.c.), there exists a dθ ∈ R such that
annR(dθ) = annR(Eθ). Let D = {dθ}θ<cf(ℵβ). Then D is dense in R
since

annR(D) = ∩θ<cf(ℵβ)annR(dθ)

= ∩θ<cf(ℵβ)annR(Eθ)

= annR
(

∪θ<cf(ℵβ) Eθ
)

= annR(E)

= {0}.

In particular, D is dense in Qβ(R). Moreover, |D| ≤ cf(ℵβ) < ℵα,
where the last inequality holds by Theorem 5.1. Thus, the desired
result will follow if D ⊆ f−1Qβ(R). Since D ⊆ R ⊆ Qβ(R), it remains
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to show that fdθ ∈ Qβ(R) for all θ < cf(ℵβ). Fix some θ < cf(ℵβ).
Since R satisfies (g.a.c.), there exists a d ∈ R such that annR(d) =
annR

(

annR(dθ)
)

. Let D′ = Eθ ∪ {d}. Then

annR(D′) = annR(Eθ) ∩ annR(d)

= annR(Eθ) ∩ annR
(

annR(dθ)
)

= annR(Eθ) ∩ annR
(

annR(Eθ)
)

= {0},

where the last equality holds since R is reduced. Thus D′ ⊆ R is
dense. Also, |D′| < ℵβ since |Eθ| < ℵβ. Clearly dθ ∈ annR(d), and thus
(fdθ)d = f(dθd) = f(0) = 0 ∈ R. If e ∈ Eθ, then (fdθ)e = (fe)dθ ∈ R,
where the containment follows since Eθ ⊆ E ⊆ f−1R and dθ ∈ R.
Hence D′ ⊆ (fdθ)

−1R. Therefore, fdθ ∈ Qβ(R), and the proof is
complete.

Recall that the inclusions R ⊆ S ⊆ Q(R) imply that S is a ring of
quotients of R [4, 1.4]. In particular, a subset D ⊆ R is dense in R if
and only if it is dense in S. Clearly f−1R ⊆ f−1S for all f ∈ Q(R).
Therefore, the inclusions R ⊆ S ⊆ Q(R) imply that Qα(R) ⊆ Qα(S)
for every ordinal α. Also, note that Q(K) = K for any field K since
every dense set in K contains a unit (if f ∈ Q(K) and 0 6= u ∈ f−1K,
then f = (fu)u−1 ∈ K). In particular, Corollary 5.5 implies that every
direct product of fields is rationally complete.

A commutative ring R with 1 6= 0 is von Neumann regular if for
each x ∈ R, there is a y ∈ R such that x = x2y or, equivalently,
R is reduced and zero-dimensional [6, Theorem 3.1]. It is well-known
that von Neumann regular rings do not properly contain any finitely
generated dense ideals. To prove this, suppose that R is von Neumann
regular, and let d ⊆ R be an ideal with generating set {r1, ..., rn}; say
ri = r2

i si for some si ∈ R (i = 1, ..., n). It is easy to check that (1 −
r1s1) · · · (1− rnsn) ∈ annR({r1, ..., rn}), and therefore (1− r1s1) · · · (1−
rnsn) = 0 whenever {r1, ..., rn} is dense. In particular, if d is dense,
then 1 = f(r1, ..., rn) ∈ d for some f(X1, ..., Xn) ∈ R[X1, ..., Xn]. It
follows that Q0(R) = R for every von Neumann regular ring R.

Let K be an infinite field, β an ordinal, I an indexing set with
|I| = ℵβ, and define R1(β,K) = R1 ⊆ S1 =

∏

I K to be the ring
R1 = {r ∈ S1 | |{r(i)}i∈I | < ∞}. Fix an r ∈ R1, and suppose that
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s ∈ S1 is the element such that

s(i) =
{ r(i)−1, r(i) 6= 0

0, r(i) = 0
.

The mapping {r(i)}i∈I → {s(i)}i∈I given by r(i) 7→ s(i) is easily
checked to be a well-defined bijection. Thus s ∈ R1 since r ∈ R1

and |{r(i)}i∈I | = |{s(i)}i∈I |. Clearly r = r2s. Therefore, R1 is von
Neumann regular.

Let D ⊆ R1 be the set consisting of all elements in R1 with 1 in
precisely one coordinate and 0 elsewhere. An element of R1 having a
nonzero j-coordinate does not annihilate the element of D that has a
1 in the j-coordinate. Therefore, D is dense. If f ∈ S1 and d ∈ D, say
d(j) = 1, then {(fd)(i)}i∈I ⊆ {0, f(j)}. This shows that D ⊆ f−1R1

for all f ∈ S1. Thus R1 ⊆ S1 ⊆ Q(R1), and therefore S1 ⊆ Q(R1) ⊆
Q(S1) = S1, where the equality holds since S1 is a product of fields.
That is, Q(R1) = S1. Clearly |D| = ℵβ. Hence Qβ+1(R1) ⊆ Q(R1) =
S1 ⊆ Qβ+1(R1), that is, Qβ+1(R1) = Q(R1).

Proposition 5.7. Let α be an ordinal and suppose that R1 is the ring
defined above. Then Qα(R1) = {f ∈ S1 | |{f(i)}i∈I | < ℵα}. In par-
ticular, if |K| = ℵα, then R1 = Q0(R1) ( Q1(R1) ( Q2(R1) ( · · · (
Qθ+1(R1) = Q(R1), where θ = min{α, β}.

Proof. Let α be an ordinal and suppose that f ∈ S1 with |{f(i)}i∈I | <
ℵα. For each j ∈ I, let ej ∈ R1 be the element such that

ej(i) =
{ 1, f(i) = f(j)

0, f(i) 6= f(j)
.

Note that ei(i) = 1 for all i ∈ I. So if r ∈ R1 with r{ei}i∈I = {(0)}, then
r(i) = r(i)ei(i) = 0 for all i ∈ I; that is, r = (0). Hence {ei}i∈I is dense.
Also, it is easy to check that the mapping {f(i)}i∈I → {ei}i∈I given by
f(i) 7→ ei is a well-defined bijection. Thus |{ei}i∈I | = |{f(i)}i∈I | < ℵα.
But if j ∈ I, then {(fej)(i)}i∈I ⊆ {0, f(j)}; a set of finite cardinality.
Hence {ei}i∈I ⊆ f−1R1. Therefore, f ∈ Qα(R1), and it is proved that
{f ∈ S1 | |{f(i)}i∈I | < ℵα} ⊆ Qα(R1).

To verify the reverse inclusion, suppose that f ∈ S1 such that
|{f(i)}i∈I | ≥ ℵα. Let D ⊆ f−1R1 be dense. Fix a d ∈ D, and suppose
that d′ ∈ S1 is the element such that

d′(i) =
{ d(i)−1, d(i) 6= 0

0, d(i) = 0
.
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As before, d′ ∈ R1. Then fd ∈ R1 implies that fdd′ = (fd)d′ ∈ R1.
Also, if d(i) 6= 0, then (fdd′)(i) = f(i)d(i)d(i)−1 = f(i). But for every
i ∈ I there exists a d ∈ D such that d(i) 6= 0; otherwise, there exists an
i ∈ I such that d(i) = 0 for all d ∈ D, and hence the element of R1 with
a 1 in the i-coordinate and 0 elsewhere annihilates D, contradicting
that D is dense. Thus {f(i)}i∈I ⊆ ∪d∈D{(fdd

′)(i)}i∈I . Therefore,
ℵα ≤ |{f(i)}i∈I | ≤ | ∪d∈D {(fdd′)(i)}i∈I |, where the first inequality
holds by hypothesis. But fdd′ ∈ R1 implies that {(fdd′)(i)}i∈I is finite
for all d ∈ D, and therefore |D| ≥ ℵα. Since the dense set D ⊆ f−1R1

was chosen arbitrarily, it follows that f 6∈ Qα(R1). Hence Qα(R1) ⊆
{f ∈ S1 | |{f(i)}i∈I | < ℵα}, and the proof of the first claim is complete.

To prove the “in particular” statement, suppose that θ = α. Since
{f(i)}i∈I ⊆ K, it follows that |{f(i)}i∈I | ≤ ℵα for all f ∈ S1. There-
fore, the above argument shows that Qα+1(R1) = Qα+2(R1) = · · · =
Qβ+1(R1) = Q(R1). The proper inclusions Q0(R1) ( · · · ( Qα+1(R1)
follow from the above since for all κ ≤ α, there exists an f ∈ S1 such
that |{f(i)}i∈I | = ℵκ. Finally, suppose that θ = β; that is, |K| ≥ ℵβ.
Then for all κ ≤ β, there exists an f ∈ S1 such that |{f(i)}i∈I | = ℵκ.
Thus Qκ(R1) ( Qκ+1(R1) for all κ ≤ β. It has already been observed
that Qβ+1(R1) = Q(R1). In either case, the equality R1 = Q0(R1)
holds since R1 is von Neumann regular.

Example 5.8. Let R1 be the ring defined above, where I and K sat-
isfy |I| = |K| = ℵβ for some ordinal β. If cf(ℵβ) < ℵα ≤ ℵβ, then
Qβ(R1) ( Qα(Qβ(R1)) = Qβ+1(R1).

Proof. Let ∅ 6= A ⊆ R1. Then annR1
(A) = annR1

(r), where r ∈ R1 is
the element such that

r(i) =
{ 0, a(i) = 0 for all a ∈ A

1, otherwise
.

Thus R1 satisfies (g.a.c.). Therefore, it suffices to verify the proper
inclusion Qβ(R1) ( Qα(Qβ(R1)) by Theorem 5.6.

Let f ∈ S1 be any element which is bijective as a function from I
onto K; in particular, |{f(i)}i∈I | = ℵβ. Then f 6∈ Qβ(R1) by Proposi-
tion 5.7. To show that f ∈ Qα(Qβ(R1)), let ψ : I → ℵβ be a bijection,
and τ : cf(ℵβ) → ℵβ a mapping onto a cofinal set in ℵβ. For each
θ < cf(ℵβ), let eθ ∈ R1 be the element such that

eθ(i) =
{ 1, ψ(i) < τ(θ)

0, ψ(i) ≥ τ(θ)
.
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Then {eθ}θ<cf(ℵβ) ⊆ R1 ⊆ Qβ(R1). Clearly |{eθ}θ<cf(ℵβ)| ≤ cf(ℵβ) < ℵα.
Suppose that r ∈ Qβ(R1) with r{eθ}θ<cf(ℵβ) = {(0)}. Let i ∈ I. Since
ℵβ is a limit ordinal, there exists a θ < cf(ℵβ) with ψ(i) < τ(θ). It
follows that r(i) = r(i)eθ(i) = 0 for any such θ. Then r = 0 since
i ∈ I was chosen arbitrarily. Thus {eθ}θ<cf(ℵβ) is dense. Fix some
θ < cf(ℵβ). Then {(feθ)(i)}i∈I = {f(i) | ψ(i) < τ(θ)} ∪ {0}; thus
|{(feθ)(i)}i∈I | ≤ |τ(θ)| + 1 < ℵβ. Hence feθ ∈ Qβ(R1) by Proposition
5.7, and it follows that {eθ}θ<cf(ℵβ) ⊆ f−1Qβ(R1). Therefore, f ∈
Qα(Qβ(R1)) \Qβ(R1). The inclusion Qβ(R1) ⊆ Qα(Qβ(R1)) is always
true, and thus Qβ(R1) ( Qα(Qβ(R1)).

Suppose that R and S are rings which satisfy (g.a.c.). Define πR :
R× S → R and πS : R × S → S to be the usual projection maps. Let
A ⊆ R×S, and choose elements r ∈ R and s ∈ S such that annR(r) =
annR(πR(A)) and annS(s) = annS(πS(A)). Then it is straightforward
to check that annR×S

(

(r, s)
)

= annR×S(A). Therefore, R × S satisfies
(g.a.c.).

The proper inclusion Qβ(R) ( Qα(Qβ(R)) implies that cf(ℵβ) <
ℵα ≤ ℵβ by Theorem 5.1. Therefore, the following corollary is stronger
than Theorem 5.6.

Corollary 5.9. Let R be a reduced ring, and suppose that cf(ℵβ) <
ℵα ≤ ℵβ. If R satisfies (g.a.c.), then Qα(Qβ(R)) = Qβ+1(R).

Proof. Let R1 be the ring defined in Example 5.8. As an application of
Corollary 5.4, it follows that

Qβ(R1 ×R) = Qβ(R1) ×Qβ(R)

( Qα

(

Qβ(R1)
)

×Qα

(

Qβ(R)
)

= Qα

(

Qβ(R1) ×Qβ(R)
)

= Qα

(

Qβ(R1 × R)
)

,

where the proper inclusion holds by Example 5.8. If Qα(Qβ(R)) (
Qβ+1(R), then a similar argument shows that Qα(Qβ(R1 × R)) (
Qβ+1(R1 × R). But the proof of Example 5.8 shows that R1 sat-
isfies (g.a.c.). Also, R satisfies (g.a.c.) by hypothesis, and therefore
R1 ×R satisfies (g.a.c.). Hence the proper containment Qβ(R1 ×R) (
Qα(Qβ(R1×R)) implies that Qα(Qβ(R1×R)) = Qβ+1(R1×R) by The-
orem 5.6, a contradiction. It follows that Qα(Qβ(R)) is not properly
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contained in Qβ+1(R). But the inclusion Qα(Qβ(R)) ⊆ Qβ+1(R) holds
by Theorem 5.1, and therefore Qα(Qβ(R)) = Qβ+1(R).

Note that the converse to the second assertion in Theorem 5.1 is false
(see Example 5.12). However, the criteria given in (1)-(3) of Theorem
5.1 is equivalent to the inequalities cf(ℵβ) < ℵα ≤ ℵβ, since conditions
(2) and (3) imply that ℵβ is a limit cardinal. Therefore, Corollary
5.9 gives a partial converse to the second assertion in Theorem 5.1:
If R is a reduced ring satisfying (g.a.c.) and Qθ(R) 6= Qθ+1(R), then
Qα(Qβ(R)) = Qθ+1(R) if and only if cf(ℵβ) < ℵα ≤ ℵβ. From this we
obtain the following corollary, which exploits the rigidity of Qα(Qβ(R))
for reduced rings R satisfying (g.a.c.).

Corollary 5.10. Let R be a reduced ring which satisfies (g.a.c.). Sup-
pose that α and β are ordinals, and set θ = max{α, β}. Then

Qα(Qβ(R)) ∈ {Qθ(R), Qθ+1(R)}.

Proof. Either α and β fail some of the criteria given in (1)-(3) of The-
orem 5.1, or cf(ℵβ) < ℵα ≤ ℵβ. In particular, θ = β in the latter case.
Thus Qα(Qβ(R)) ∈ {Qθ(R), Qθ+1(R)} by Theorem 5.1 and Corollary
5.9.

The following example shows that the converse to Corollary 5.9 is
false.

Example 5.11. Let R1 ⊆ S1 be the rings defined above, where I and
K satisfy |I| = |K| = ℵω. Define R ⊆ R1 to be the ring {r ∈ R1 |
there exists a subset Ir ⊆ I such that |I \ Ir| < ℵω and r(i) = r(i′) for
all i, i′ ∈ Ir}. Then Qω(R) ( Q1(Qω(R)) = Qω+1(R), but R does not
satisfy (g.a.c.).

Proof. To prove that Qω(R) ( Q1(Qω(R)) = Qω+1(R), it suffices to
show that Q1(R) = Q1(R1); then it follows that

Qα(R) = Qα(Q1(R)) = Qα(Q1(R1)) = Qα(R1)

for every ordinal α ≥ 1, where the first and last equalities hold by
Theorem 5.1 (since 1 is not a limit ordinal). In particular, Example
5.8 implies that Qω(R) = Qω(R1) ( Q1(Qω(R1)) = Q1(Qω(R)) and
Q1(Qω(R)) = Q1(Qω(R1)) = Qω+1(R1) = Qω+1(R).
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Let {Iα}α<ω be a family of subsets of I such that |Iα| < ℵω for all
α < ω and ∪α<ωIα = I. For each α < ω, define eα ∈ R1 by

eα(i) =
{ 1, i ∈ Iα

0, i ∈ I \ Iα
.

Note that each eα is an element of R since the set Ieα = I \ Iα satisfies
the conditions which define R. Suppose that (0) 6= r ∈ R, say r(i) 6= 0.
Since ∪α<ωIα = I, there exists an α < ω such that i ∈ Iα. Thus
r(i)eα(i) 6= 0, and hence r{eα}α<ω 6= {(0)}. Then {eα}α<ω is dense.

Suppose that f ∈ R1. For each α < ω, let Ifeα = I \ Iα. Then Ifeα

satisfies the conditions given in the definition of R. Thus {eα}α<ω ⊆
f−1R. This shows that R1 is a ring of quotients of R. It follows
that Q1(R) ⊆ Q1(R1). But clearly |{eα}α<ω| = ℵ0 < ℵ1, and hence
R1 ⊆ Q1(R). Moreover, R1 ⊆ Q1(R) ⊆ Q1(R1) implies that Q1(R) is
a ring of quotients of R1. Then Q1(R1) ⊆ Q1(Q1(R)) = Q1(R), where
the equality follows from Theorem 5.1. Therefore, Q1(R) = Q1(R1).
Hence Qω(R) ( Q1(Qω(R)) = Qω+1(R).

It remains to show that R does not satisfy (g.a.c.). Let J1 and J2

be disjoint sets, each having cardinality ℵω. Then |J1 ∪ J2| = ℵω. Let
ψ : I → J1 ∪ J2 be a bijection. For each j ∈ J1, let ej ∈ R be the
element such that

ej(i) =
{ 1, ψ(i) = j

0, ψ(i) 6= j
.

Suppose that r ∈ R with annR(r) = annR({ej}j∈J1
). Let i ∈ I. Then

r(i) = 0 if and only if ej(i) = 0 for all j ∈ J1; otherwise the element
of R with a 1 in the i-coordinate and 0 elsewhere annihilates either
r or {ej}j∈J1

, but not both. Thus {i ∈ I | r(i) 6= 0} = ψ−1(J1) and
{i ∈ I | r(i) = 0} = ψ−1(J2). Since r ∈ R, there exists a subset
Ir ⊆ I such that |I \ Ir| < ℵω and r(i) = r(i′) for all i, i′ ∈ Ir. Then
|ψ−1(J2)| = ℵω implies that ψ−1(J2) * I \ Ir; that is, ψ−1(J2)∩ Ir 6= ∅.
It follows that r(i) = 0 for all i ∈ Ir. The same reasoning shows that
ψ−1(J1) ∩ Ir 6= ∅, and thus r(i) 6= 0 for some i ∈ Ir, a contradiction.
Hence no such r exists. Therefore, R does not satisfy (g.a.c.).

The remainder of this section is devoted to showing that the inclu-
sions implied by Theorem 5.1 and Theorem 5.3 cannot be improved
without additional hypotheses. It has already been shown that there
exists a ring R such that Qβ(R) ( Qα(Qβ(R)) = Qβ+1(R) for some
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ordinals α and β (see Example 5.8). To proceed, we shall introduce an-
other ring. Let I be an indexing set with |I| = ℵω, and define R2 ⊆ S2 =
∏

i∈I Z2 by R2 = {r ∈ S2 | either {i | r(i) = 0} is finite or {i | r(i) =
1} is finite}. As with R1, one shows that S2 = Q(R2).

Example 5.12. Let R2 be the ring defined above. Then

R2 = Qω(R2) = Q1(Qω(R2)) ( Qω+1(R2).

Proof. Let f ∈ Qω(R2), and suppose that D ⊆ f−1R2 is a dense set
with |D| < ℵω. Note that I = ∪d∈D{i | d(i) = 1}; otherwise, there
exists an i ∈ I such that d(i) = 0 for all d ∈ D. But then the el-
ement of R2 with a 1 in the i-coordinate and 0 elsewhere annihilates
D, contradicting that D is dense. Then D contains an element d′ such
that {i | d′(i) = 0} is finite. If not, then {i | d(i) = 1} is finite for all
d ∈ D, and hence the equality I = ∪d∈D{i | d(i) = 1} forces |D| = ℵω,
a contradiction. If d′ = 1, then f = fd′ ∈ R2. Therefore, assume that
d′ 6= 1. Suppose that {i | d′(i) = 0} = {i1, ..., in}. Since D is dense,
there exists d1, ..., dn ∈ D (not necessarily distinct) such that dk(ik) = 1
(k = 1, ..., n). Then {d′, d1, ..., dn} ⊆ f−1R2 is dense and finite. Thus
f ∈ Q0(R2) = R2, where the equality holds since R2 is von Neumann
regular. This shows that Qω(R2) ⊆ R2. Hence Qω(R2) = R2. Then

R2 = Qω(R2) ⊆ Q1(Qω(R2)) = Q1(R2) ⊆ Qω(R2) = R2.

Therefore, R2 = Qω(R2) = Q1(Qω(R2)).
The proper inclusion is clear by the equalities Q1(Qω(R2)) = R2 and

Qω+1(R2) = Q(R2) = S2 (indeed, the dense set consisting of elements
with 1 in precisely one coordinate and 0 elsewhere has cardinality ℵω <
ℵω+1).

Example 5.13. Let R = R1 × R2, where R1 is the ring defined above
with β = ω. Then Qω(R) ( Q1(Qω(R)) ( Qω+1(R).

Proof. Letting R = R2, α = 1, and β = ω, the result follows from the
first three sentences in the proof of Corollary 5.9.

It has been shown that the inclusions implied by Theorem 5.1 can-
not be improved without additional hypotheses. The following three
examples demonstrate that the same is true for Theorem 5.3. The rings
R1(β,K) and R2 defined above are used to accomplish this task. Ob-
serve that some notational inconveniences are dealt with in Example
5.16 by changing the shorthand from R1 to Rβ.
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Example 5.14. Let R2 be the ring defined above. Then

Qω(
∏

ω

R2) =
∏

ω

Qω(R2) ( Qω+1(
∏

ω

R2).

Proof. Note that ω+1 is not a limit ordinal, and thus Qω+1(
∏

ω R2) =
∏

ωQω+1(R2) by Theorem 5.3. Therefore, the proper inclusion is an im-
mediate consequence of Example 5.12. Moreover, Example 5.12 shows
that Qω(R2) = R2, and thus

∏

ω

Qω(R2) =
∏

ω

R2 ⊆ Qω(
∏

ω

R2) ⊆
∏

ω

Qω(R2),

where the last inclusion holds by Theorem 5.3. Hence Qω(
∏

ω R2) =
∏

ωQω(R2).

Example 5.15. Let R1 be the ring defined above, where I and K satisfy
|I| = |K| = ℵω. Then Qω(

∏

ω R1) (
∏

ωQω(R1) ( Qω+1(
∏

ω R1).

Proof. Note that ω+ 1 is not a limit ordinal. Therefore,
∏

ωQω(R1) (
∏

ωQω+1(R1) = Qω+1(
∏

ω R1), where the proper inclusion holds by
Example 5.8, and the equality holds by Theorem 5.3.

Let α < ω. By Proposition 5.7, there exists an fα ∈ Qα+1(R1) \
Qα(R1). Let f ∈

∏

ωQω(R1) be the element such that f(α) = fα for
all α < ω. Since Qω(

∏

ω R1) ⊆
∏

ωQω(R1) holds by Theorem 5.3, it
suffices to show that f 6∈ Qω(

∏

ω R1).
Suppose that D ⊆ f−1

∏

ω R1 is dense. As in the proof of Theorem
5.3, πα(D) is dense in R1 for each α < ω. But fD ⊆

∏

ω R1 implies
that fαπα(D) ⊆ R1 for each α < ω. Then fα 6∈ Qα(R1) implies that
|πα(D)| ≥ ℵα for all α < ω. Thus |D| ≥ ℵα for all α < ω. Therefore,
|D| ≥ ℵω. This verifies that f 6∈ Qω(

∏

ω R1), and completes the proof.

Example 5.16. Let K be a field such that |K| = ℵω. For each β < ω,
let R1(β,K) be the ring defined above. For convenience, set Rβ =
R1(β,K). Then Qω(

∏

β<ω Rβ) (
∏

β<ωQω(Rβ) = Qω+1(
∏

β<ω Rβ).

Proof. If β < ω, then Qβ(Rβ) ( Qβ+1(Rβ) = · · · = Q(Rβ) by Proposi-
tion 5.7. In particular, Qω(Rβ) = Qω+1(Rβ) for all β < ω. Note that
ω + 1 is not a limit ordinal. Hence

∏

β<ωQω(Rβ) =
∏

β<ωQω+1(Rβ) =
Qω+1(

∏

β<ω Rβ), where the last equality follows by Theorem 5.3. The
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proof of the first proper inclusion in Example 5.15 extends to show that
Qω(

∏

β<ω Rβ) (
∏

β<ωQω(Rβ), where the element f is chosen such that
fβ ∈ Qβ+1(Rβ) \Qβ(Rβ) for all β < ω.
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Chapter 6

Invariants and Isomorphism

Theorems for Zero-Divisor

Graphs of Commutative

Rings of Quotients

Abstract. Given a commutative ring R with 1 6= 0, the zero-divisor

graph Γ(R) of R is the graph whose vertices are the nonzero zero-divisors of

R, such that distinct vertices are adjacent if and only if their product in R

is 0. It is well-known that the zero-divisor graph of any ring is isomorphic

to that of its total quotient ring. This result fails for more general rings of

quotients. In this paper, conditions are given for determining whether the

zero-divisor graph of a ring of quotients of R is isomorphic to that of R. Ex-

amples involving zero-divisor graphs of rationally ℵ0-complete commutative

rings are studied extensively. Moreover, several graph invariants are studied

and applied in this investigation.
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6.1 Introduction

Let R be a commutative ring with 1 6= 0, and let Z(R) denote the set
of zero-divisors of R. The zero-divisor graph Γ(R) of R is the simple
undirected graph with vertices V (Γ(R)) = Z(R)\{0}, such that distinct
vertices v, w ∈ V (Γ(R)) are adjacent if and only if vw = 0. The notion
of a zero-divisor graph was first introduced by I. Beck in [3]. While
he was mainly interested in colorings, we shall investigate the interplay
between ring-theoretic and graph-theoretic properties. This approach
begun in a paper by D. F. Anderson and P. S. Livingston [2], and has
since continued to evolve.

Let Γ1 and Γ2 be simple undirected graphs. Then Γ1 is isomorphic
to Γ2 if there exists an isomorphism ϕ : V (Γ1) → V (Γ2); that is, a
bijection ϕ : V (Γ1) → V (Γ2) such that v, w ∈ V (Γ1) are adjacent if
and only if ϕ(v), ϕ(w) ∈ V (Γ2) are adjacent. If Γ1 is isomorphic to Γ2,
then we will write Γ1 ≃ Γ2.

In [1], it is shown that the zero-divisor graph of any ring is iso-
morphic to that of its total quotient ring. Related theorems on more
general rings of quotients are given in [7] and [9]. While the latter in-
vestigations treat rings without nonzero nilpotents, this paper extends
results to arbitrary commutative rings. However, rings without nonzero
nilpotents shall be considered as well.

A ring R is called reduced if it does not have any nonzero nilpotents.
We will say that R is decomposable if R ∼= R1 ⊕ R2 for some nonzero
rings R1 and R2. If R is not decomposable, then R is indecomposable.
A commutative ring R with 1 6= 0 is von Neumann regular if for each
r ∈ R, there exists an s ∈ R such that r = r2s or, equivalently, R is
reduced with Krull dimension zero [6, Theorem 3.1].

Given rings R ⊆ S and a subset A of S, define annR(A) = {r ∈
R | ra = 0 for all a ∈ A}. If A = {a}, then we will write annR(A) =
annR(a). An equivalence relation on R is given by declaring elements
r, s ∈ R equivalent if and only if annR(r) = annR(s). The equivalence
class of an element r ∈ R will be denoted by [r]R; that is, [r]R = {s ∈
R | annR(r) = annR(s)}. Suppose that R is von Neumann regular. If
r ∈ R, say r = r2s, then er = rs is the unique idempotent that satisfies
[r]R = [er]R (cf. [7, Remark 2.4] or the discussion prior to [1, Theorem
4.1]).

In [6], a ring R is said to satisfy (a.c.) (the annihilator condition)
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if, given any r, s ∈ R, there exists an x ∈ R such that annR(r, s) =
annR(x). It follows (by induction) that if A ⊆ R is any finite sub-
set, then there exists an r ∈ R such that annR(A) = annR(r). We
extend this definition, and say that a ring R satisfies ℵα-(g.a.c.) (the
ℵα-generalized annihilator condition) if, given any subset A ⊆ R with
|A| < ℵα, there exists an r ∈ R such that annR(A) = annR(r). We say
that R satisfies (g.a.c.) if it satisfies ℵα-(g.a.c.) for every ordinal α. Note
that the definition in [6] coincides with our definition of ℵ0-(g.a.c.).

A set D ⊆ R is dense in R if annR(D) = {0}. Let d1 and d2 be
dense ideals of R, and suppose that fi ∈ HomR(di, R) (i = 1, 2). Then
d1d2 is a dense ideal of R, and {f1 + f2, f1 ◦ f2} ⊆ HomR(d1d2, R). Let
F = ∪dHomR(d, R), where the union is taken over all dense ideals of R.
Then Q(R) = F/∼ is a commutative ring, where f1 ∼ f2 if and only if
f1|D = f2|D for some dense set D of R. One checks that R is embedded
in Q(R) by identifying any element r ∈ R with the equivalence class
containing the homomorphism (s 7→ rs) ∈ HomR(R,R). In [11], J.
Lambek calls Q(R) the complete ring of quotients of R.

A ring extension R ⊆ S is called a ring of quotients of R if f−1R =
{r ∈ R | fr ∈ R} is dense in S for all f ∈ S. For example, the total
quotient ring T (R) of R is a ring of quotients of R. To see this, observe
that sR is dense in T (R) whenever r/s ∈ T (R). Suppose that S is a
ring of quotients of R. Then the correspondence given by identifying
an element f ∈ S with the equivalence class containing (r 7→ fr) ∈
HomR(f−1R,R) is an extension of the mapping R → Q(R) described
above, and embeds S into Q(R). Therefore, every ring of quotients of
R can be regarded as a subring of Q(R). It follows that a dense set in R
is dense in every ring of quotients of R. Also, R has a unique maximal
(with respect to inclusion) ring of quotients, which is isomorphic to
Q(R) [11, Proposition 2.3.6]. In this paper, isomorphic rings will not
be distinguished. In particular, we shall denote the maximal ring of
quotients of R by Q(R). Note that a ring R is reduced if and only if
Q(R) is von Neumann regular [4, 1.11].

Let α be an ordinal. Given any subsets D1 and D2 of R such that
|Di| < ℵα (i = 1, 2), it follows that |{d1d2 | d1 ∈ D1 and d2 ∈ D2}| <
ℵα. Therefore, the set Qα(R) = {f ∈ Q(R) | there exists a D ⊆ f−1R
such that annR(D) = {0} and |D| < ℵα} is a commutative ring. Clearly
Qα(R) is a ring of quotients of R. Also, there exists an ordinal β such
that Qα(R) = Q(R) for all α ≥ β. As in [10], we will say that R is
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rationally ℵα-complete if R = Qα(R). If R is rationally ℵα-complete,
then it is easy to see that R is rationally ℵβ-complete for all β ≤ α.
If R is rationally ℵα-complete for all α (i.e., R = Q(R)), then we will
say that R is rationally complete. In [12], T.G. Lucas calls Q0(R) the
ring of finite fractions of R. In [5], A.W. Hager and J. Martinez refer
to Qα(R) as the ring of ℵα-quotients of R. Examples and fundamental
properties of rational ℵα-completions of commutative rings are given in
[10].

Let R ⊆ S ⊆ T be rings. Then T is a ring of quotients of R if
and only if T is a ring of quotients of S and S is a ring of quotients
of R [4, 1.4]. It follows that Q(S) = Q(R) whenever R ⊆ S is a ring
of quotients. Moreover, given any ordinal α, it is easy to check that
f−1R ⊆ f−1S for all f ∈ Qα(R). Therefore, if S is a ring of quotients
of R, then Qα(R) ⊆ Qα(S) for every ordinal α.

The main focus of this paper is on the relationship between the zero-
divisor graphs of R and Qα(R) for a commutative ring R. In particular,
criteria is sought for determining when these graphs are isomorphic.
Using the fact that any ring of quotients of R can be embedded in
Qα(R) for some α, our results extend to all rings of quotients of R.

The ring-theoretic foundation for this study is established in a series
of lemmas given in Section 6.2. Furthermore, these results motivate a
ring-theoretic characterization of ℵα-complete Boolean algebras (Theo-
rem 6.4). In [8, Lemma 3.1], a graph-theoretic condition (see Theorem
6.7(4)) is presented for determining when the relation Γ(R) ≃ Γ(Q(R))
holds for a von Neumann regular ring R. However, this condition is
meaningful only when certain graph-theoretic assumptions (known to
be possessed by zero-divisor graphs of von Neumann regular rings) are
met. In particular, this condition cannot be employed in the study of
zero-divisor graphs of arbitrary rings. In Section 6.3, we expose the
underlying mechanics of this condition. It turns out that ℵα-(g.a.c.) is
an appropriate generalizing criterion (Remark 6.12(1) and Theorem
6.13). In fact, if R is a von Neumann regular ring, then the key graph-
theoretic condition of [8, Lemma 3.1] is possessed by Γ(R) if and only if
R satisfies (g.a.c.) (Theorem 6.7). In an effort to determine the relation
Γ(R) ≃ Γ(Qα(R)) based on characteristics of Γ(R), we investigate the
graph-theoretic implications of the property ℵα-(g.a.c.). Any ring that
satisfies ℵα-(g.a.c.) has a weak central vertex ℵα-complete zero-divisor
graph. If R is a decomposable ring, then R satisfies ℵα-(g.a.c.) if and
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only if Γ(R) is a weak central vertex ℵα-complete graph (Theorem 6.18
and Corollary 6.19). On the other hand, if R is any reduced ring, then
R satisfies ℵα-(g.a.c.) if and only if Γ(R) is a central vertex ℵα-complete
graph (Theorem 6.5 and Corollary 6.17). We conclude Section 6.3 with
a lemma which provides sufficient conditions for the zero-divisor graphs
of direct sums to be isomorphic. In Section 6.4, the results in Section
6.3 are applied to examples involving Γ(Q0(R)), where R is a total
quotient ring such that R ( Q0(R) ( Q(R). In particular, four of
the five possible relations between Γ(R), Γ(Q0(R)), and Γ(Q(R)) are
shown to exist (Theorem 6.22). Furthermore, examples are constructed
to show that ℵα-(g.a.c.) is not a necessary condition for the relation
Γ(R) ≃ Γ(Qα(R)) to hold (Example 6.35 and Example 6.36).

6.2 Rings of Quotients and the Annihila-

tor Conditions

In this section, we study the annihilator ideals of a ring of quotients.
In particular, it is shown that the annihilator of an element in a ring of
quotients of R is the annihilator of an element in R whenever R satisfies
(g.a.c.) (Lemma 6.3). We conclude this section with a theorem which
characterizes ℵα-complete Boolean algebras (Theorem 6.4).

In [8], the inclusion [r]R ⊆ [r]Q(R) is justified for a reduced ring by
noting that the mapping annQ(R)(J) 7→ annR(J ∩ R) (J ⊆ Q(R)) is a
well-defined bijection of {annQ(R)(J) | J ⊆ Q(R)} onto {annR(J) | J ⊆
R} [11, Proposition 2.4.3]. Elementary proofs are given when R is von
Neumann regular [8, Proposition 2.7]. The following lemma generalizes
this observation with a simpler proof.

Lemma 6.1. Let R be a commutative ring. Suppose that S is a ring
of quotients of R, and let f1, f2 ∈ S. Then annR(f1) = annR(f2) if and
only if annS(f1) = annS(f2).

Proof. Clearly annS(f1) = annS(f2) implies that annR(f1) = annR(f2).
Suppose that annR(f1) = annR(f2), and let g ∈ annS(f1). Then
g(g−1R) ⊆ annR(f1) = annR(f2), and hence f2g ∈ annS(g

−1R) = {0}.
That is, g ∈ annS(f2). A symmetric argument shows that annS(f2) ⊆
annS(f1), and therefore the desired equality holds.
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Lemma 6.2. Let R be a commutative ring. Suppose that S is a ring
of quotients of R, and let D be a dense set in R. If f ∈ S, then

annR(f) = ∩d∈DannR(fd) = annR
(

∪d∈D {fd}
)

.

Proof. To prove the first equality, suppose that r ∈ ∩d∈DannR(fd).
Then rfd = 0 for all d ∈ D. That is, rf ∈ annS(D) = {0}, where the
equality holds since D is dense in every ring of quotients of R. Thus
r ∈ annR(f). This shows that ∩d∈DannR(fd) ⊆ annR(f). The reverse
inclusion is obvious, and therefore the equality holds.

The second equality is clear.

Lemma 6.3. Let R and S be commutative rings with R ⊆ S ⊆ Qα(R).
Suppose that R satisfies ℵα-(g.a.c.). If f ∈ S, then there exists an
r ∈ R such that [f ]S = [r]S.

Proof. The inclusion S ⊆ Qα(R) implies there exists a dense set D ⊆
f−1R such that |D| < ℵα. Since R satisfies ℵα-(g.a.c.), there exists an
r ∈ R such that annR

(

∪d∈D {fd}
)

= annR(r). But R ⊆ S ⊆ Qα(R)
implies that S is a ring of quotients of R. Then by Lemma 6.2, it
follows that annR(f) = annR(r). Therefore, Lemma 6.1 implies that
annS(f) = annS(r), i.e., [f ]S = [r]S.

Given a commutative ring R, let B(R) = {r ∈ R | r2 = r}; that
is, let B(R) denote the set of idempotents of R. Then the relation
≤, defined by r ≤ s if and only if rs = r, partially orders B(R), and
makes B(R) a Boolean algebra with inf as multiplication in R, the
largest element as 1, the smallest element as 0, and complementation
defined by r′ = 1 − r. A Boolean algebra B is called ℵα-complete if
inf A exists in B for all A ⊆ B with |A| ≤ ℵα. If B is ℵα-complete for
every ordinal α, then B is called complete. By the de Morgan Laws,
it follows that B is ℵα-complete if and only if supA exists in B for all
A ⊆ B with |A| ≤ ℵα (e.g., see Section 20 in [13]).

Suppose thatR is von Neumann regular. LetA ⊆ B(R) ⊆ B(Q(R)).
It is known that B(Q(R)) is a complete Boolean algebra [4, The-
orem 11.9]. Thus, inf A ∈ B(Q(R)). If R satisfies (g.a.c.), then
Lemma 6.3 implies that there exists an element r ∈ R such that
[r]Q(R) = [inf A]Q(R). But inf A is idempotent, and thus inf A = er ∈ R.
Hence B(R) is complete whenever R satisfies (g.a.c.). The converse is
also true. The following theorem generalizes these observations (with-
out the hypothesis “B(Q(R)) is complete”).
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Theorem 6.4. Let R be a von Neumann regular ring. Then B(R) is
ℵα-complete if and only if R satisfies ℵα+1-(g.a.c.).

Proof. Suppose that B(R) is ℵα-complete. Let A ⊆ R such that
|A| < ℵα+1. Since |A| ≤ ℵα, there exists an e ∈ B(R) such that
e = sup{ea | a ∈ A}. In particular, e ≥ ea for all a ∈ A. That is,
ea = eea for all a ∈ A.

Clearly annR(e) ⊆ annR(ea) = annR(a) for all a ∈ A. Hence
annR(e) ⊆ annR(A). To show the reverse inclusion, suppose that
r ∈ annR(A). Then ea(1 − er) = ea for all a ∈ A. That is, ea ≤ 1 − er
for all a ∈ A. Therefore, e ≤ 1 − er, i.e., e(1 − er) = e. Then eer = 0,
and therefore r ∈ annR(e). Thus annR(e) = annR(A), and it follows
that R satisfies ℵα+1-(g.a.c.).

Conversely, suppose that R satisfies ℵα+1-(g.a.c.). Let A ⊆ B(R)
such that |A| ≤ ℵα. Since |A| < ℵα+1, there exists an r ∈ R such
that annR(r) = annR({1 − a | a ∈ A}). Hence annR(er) = annR({1 −
a | a ∈ A}). In particular, (1 − er)(1 − a) = 0 for all a ∈ A. It
follows that 1 − er ≤ a for all a ∈ A. Suppose that b ∈ B(R) with
b ≤ a for all a ∈ A. Then b(1 − a) = 0 for all a ∈ A; that is,
b ∈ annR({1 − a | a ∈ A}) = annR(er). Thus b(1 − er) = b, i.e.,
b ≤ 1 − er. Hence inf A = 1 − er ∈ B(R). Therefore, B(R) is ℵα-
complete.

Note that Theorem 6.4 gives ring-theoretic conditions which char-
acterize ℵα-complete Boolean algebras. Every Boolean algebra is of the
form B(R) for some Boolean ring R (that is, a ring R such that r2 = r
for all r ∈ R), cf. [11, Proposition 1.1.3]. Therefore, a Boolean algebra
B(R) is ℵα-complete if and only if R satisfies ℵα+1-(g.a.c.). In Section
6.3, this ring-theoretic property will be translated into a graph-theoretic
property (Theorem 6.5 and Theorem 6.18).

6.3 Invariants and Isomorphism Theorems

Let Γ be a graph, V (Γ) the set of vertices of Γ, and ∅ 6= A ⊆ V (Γ). As
in [8], a vertex v ∈ V (Γ) will be called a central vertex of A if every
element of A is adjacent to v. Let C(A) ⊆ V (Γ) denote the set of all
central vertices of A. If A = {a}, then we will write C(A) = C(a).
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Note that, if Γ = Γ(R) for some ring R, then

C(A) = annR(A) \
(

A ∪ {0}
)

.

A graph Γ is said to be central vertex ℵα-complete, or c.v.-ℵα-
complete, if for all ∅ 6= A ⊆ V (Γ) with |A| < ℵα and C(A) 6= ∅, there
exists a v ∈ V (Γ) such that C(A) = C(v). If Γ is c.v.-ℵα-complete for
every ordinal α, then we will say that Γ is c.v.-complete. The following
theorem translates the this definition into ring-theoretic terms.

Theorem 6.5. Let R be a reduced ring. Then Γ(R) is c.v.-ℵα-complete
if and only if R satisfies ℵα-(g.a.c.).

Proof. Observe that, since R is reduced, C(A) = annR(A) \ {0} for
every ∅ 6= A ⊆ V (Γ(R)). Therefore, the equality C(A) = C(B) holds
for nonempty sets A,B ⊆ V (Γ(R)) if and only if annR(A) = annR(B).

Suppose that R satisfies ℵα-(g.a.c.). Let ∅ 6= A ⊆ V (Γ(R)) with
|A| < ℵα and C(A) 6= ∅. Then C(A) = C(r), where r ∈ R is an element
such that annR(A) = annR(r). Hence Γ(R) is a c.v.-ℵα-complete.

Suppose that Γ(R) is c.v.-ℵα-complete. Let ∅ 6= A ⊆ R with
|A| < ℵα. If annR(A) = {0}, then annR(A) = annR(1). Suppose that
annR(A) 6= {0}. If A = {0}, then annR(A) = annR(0). Suppose that
A 6= {0}. Then annR(A) 6= {0} implies that ∅ 6= A \ {0} ⊆ V (Γ(R))
and C(A \ {0}) 6= ∅. Therefore, annR(A) = annR(A \ {0}) = annR(r),
where r is any element which satisfies C(A \ {0}) = C(r). Thus R
satisfies ℵα-(g.a.c.).

Note that Theorem 6.5 can fail for rings with nonzero nilpotents.
For example, the zero-divisor graph of Z25 is the complete graph on
four vertices. In particular, Γ(Z25) is not c.v.-ℵ0-complete. However,
Z25 satisfies (g.a.c.) since the annihilator of any set in Z25 is either
{0} = annZ25

(1) or Z(R) = annZ25
(5).

By Theorem 6.4 and Theorem 6.5, we have

Corollary 6.6. Let R be a von Neumann regular ring. Then B(R) is
ℵα-complete if and only if Γ(R) is c.v.-ℵα+1-complete.

Let Γ be a graph, and suppose that v ∈ V (Γ). As in [1], an element
w ∈ V (Γ) will be called a complement of v if w is adjacent to v, and no
element of V (Γ) is adjacent to both v and w. A graph Γ is complemented
if every element of V (Γ) has a complement. If Γ is a simple graph, then
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v is a complement of w if and only if the edge v − w is not an edge of
any triangle in Γ. It is known that any reduced total quotient ring R is
von Neumann regular if and only if Γ(R) is complemented [1, Theorem
3.5].

Note that Corollary 6.6 is a generalization of [8, Lemma 3.1], which
states the following: If R is a von Neumann regular ring, then B(R) is
a complete Boolean algebra if and only if whenever ∅ 6= A ⊆ V (Γ(R))
is a family of vertices with C(A) 6= ∅, there exists a v ∈ C(A) such that
every complement of v is adjacent to every element of C(A). In fact,
the terminology c.v.-complete was first given in [8], where a zero-divisor
graph was said to be c.v.-complete if it satisfied condition (4) of the
following theorem.

Theorem 6.7. The following statements are equivalent for a von Neu-
mann regular ring R.

(1) For all ∅ 6= A ⊆ R, there exists a v ∈ annR(A) such that
annR(A) = annR(1 − ev).

(2) R satisfies (g.a.c.).

(3) Γ(R) is c.v.-complete.

(4) If ∅ 6= A ⊆ V (Γ(R)) is a family of vertices with C(A) 6= ∅,
then there exists a v ∈ C(A) such that every complement of v is
adjacent to every element of C(A).

Proof. Observe that (1) implies (2) by definition, (2) implies (3) by
Theorem 6.5, and (3) implies (4) by Corollary 6.6 together with [8,
Lemma 3.1]. It remains to show that (4) implies (1).

If annR(A) = {0}, then let v = 0. Suppose that annR(A) 6= {0}.
If A = {0}, then let v = 1. If A 6= {0}, then we can regard A as a
nonempty subset of V (Γ(R)) since annR(A) = annR(A \ {0}). Also,
annR(A) 6= {0} implies that C(A) 6= ∅, and therefore there exists a
v ∈ C(A) such that every complement of v is adjacent to every element
of C(A). But annR(v) = annR(ev) implies that v is adjacent to 1−ev ∈
B(R). Moreover, if r ∈ R with rv = 0 = r(1 − ev), then r = rev = 0.
This shows that 1−ev is a complement of v, and thus 1−ev is adjacent
to every element of C(A). It follows that annR(A) ⊆ annR(1−ev). But
if r ∈ annR(1 − ev), then r = rev ∈ annR(A), where the containment
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holds since v ∈ C(A) and annR(v) = annR(ev). Thus annR(1 − ev) ⊆
annR(A). Hence annR(A) = annR(1 − ev).

Suppose that R is a von Neumann regular ring such that 2 6∈ Z(R)
and |R| < ℵω. By [8, Theorem 3.3], Γ(R) ≃ Γ(Q(R)) if and only if
Γ(R) satisfies condition (4) of Theorem 6.7. Then Theorem 6.7 gives
several efficient ways to determine whether the zero-divisor graph of
a von Neumann regular ring R is isomorphic to that of Q(R). For
example, we have

Corollary 6.8. Suppose that R is a von Neumann regular ring such
that 2 6∈ Z(R) and |R| < ℵω. Then Γ(R) ≃ Γ(Q(R)) if and only if R
satisfies (g.a.c.).

Given any v ∈ V (Γ), define Vv(Γ) = {w ∈ V (Γ) | C(w) = C(v)}.
If Γ = Γ(R) for some ring R, then we will write Vr(Γ(R)) = Vr(R).
Note that the relation ∼ on V (Γ) defined by v ∼ w if and only if
Vv(Γ) = Vw(Γ) is an equivalence relation. Let Γ∗ be the graph with
vertices {Vv(Γ) | v ∈ V (Γ)}, such that Vv(Γ) and Vw(Γ) are adjacent in
Γ∗ if and only if v and w are adjacent in Γ. The graph Γ∗ was considered
in [1], where it was shown that Γ(R)∗ is the zero-divisor graph of a
Boolean ring whenever R is von Neumann regular [1, Proposition 4.5].
In [9], the minimal representation of a graph Γ was defined as the
graph Γ∗, where the vertex Vv(Γ) was labeled with the cardinal number
|Vv(Γ)|.

If Γ is a simple graph, then every edge of Γ∗ represents a complete
bipartite graph (see Figure 6.1). In particular, any zero-divisor graph
can be recovered from its minimal representation. Note that, if R is
reduced, then Γ(R)∗ is the graph with vertices {[r]R | r ∈ Z(R) \ {0}},
such that [r]R is adjacent to [s]R if and only if rs = 0. In fact, [r]R =
Vr(R) for all r ∈ Z(R) \ {0}.

Clearly Γ1 ≃ Γ2 implies that Γ∗
1 ≃ Γ∗

2. Although the converse is
false, there are certain properties of Γ which are preserved by Γ∗. For
example, if n > 2 is an integer, then the diameter of Γ is n if and only
if the diameter of Γ∗ is n (indeed, no two vertices of a minimal path in
Γ having length n > 2 can belong to the same vertex in Γ∗). Also, a
vertex w is a complement of v in Γ if and only if Vw(Γ) is a complement
of Vv(Γ) in Γ∗. Furthermore, it is a routine exercise to show that a
graph Γ is c.v.-ℵα-complete if and only if Γ∗ is c.v.-ℵα-complete.
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(a) Γ

1 1 3 2

(b) Γ∗

Figure 6.1: A graph Γ and its minimal representation Γ∗

On the other hand, the following proposition gives necessary and
sufficient conditions for Γ1 ≃ Γ2. Although it was not formally stated,
the idea behind Proposition 6.9 was utilized in [1, Theorem 2.2], show-
ing that Γ(R) ≃ Γ(T (R)) for any commutative ring R. Moreover, [1,
Theorem 4.1] is a special case of this proposition.

Proposition 6.9. Let Γ1 and Γ2 be simple undirected graphs. Then
Γ1 ≃ Γ2 if and only if there exists an isomorphism ϕ : V (Γ∗

1) → V (Γ∗
2)

such that |v∗| = |ϕ(v∗)| for all v∗ ∈ V (Γ∗
1).

Proof. If ψ : V (Γ1) → V (Γ2) is an isomorphism, then it is easy to check
that the mapping ϕ : V (Γ∗

1) → V (Γ∗
2) given by ϕ

(

Vv(Γ1)
)

= Vψ(v)(Γ2)
has the desired properties. Conversely, suppose that ϕ : V (Γ∗

1) →
V (Γ∗

2) is an isomorphism such that |v∗| = |ϕ(v∗)| for all v∗ ∈ V (Γ∗
1).

For every v∗ ∈ V (Γ∗
1), let ψv∗ : v∗ → ϕ(v∗) be a bijection. Then one

checks that the mapping ψ : V (Γ1) → V (Γ2), given by ψ(v) = ψv∗(v)
if and only if v ∈ v∗, is an isomorphism.

It is evident from Proposition 6.9 that the cardinality of Vr(R) is
valuable in determining whether two zero-divisor graphs are isomor-
phic. If the index of nilpotency of a ring-element r ∈ R is 2, then the
cardinality of Vr(R) is necessarily equal to 1. This claim is made precise
in the following theorem.

Theorem 6.10. Let R be a commutative ring. Suppose that 0 6= r ∈ R
with r2 = 0. Then Vr(R) = {r}.
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Proof. Suppose that x ∈ Vr(R) \ {r}. Then annR(x) \ {x} = annR(r) \
{r}. In particular, xr 6= 0. Thus r(1 + x) 6= r. Since r2 = 0, it
follows that r(1 + x) ∈ annR(r) \ {r} = annR(x) \ {x}. If 1 + x is not
a zero-divisor, then the equality xr(1 + x) = 0 implies that xr = 0, a
contradiction. Hence 1 + x is a zero-divisor. In particular, x is not a
nilpotent element. Thus annR(r) \ {r} = annR(x).

Suppose that rx 6= r. Then rx ∈ annR(r) \ {r} = annR(x) implies
that x2 ∈ annR(r). But x2 6= r since x is not a nilpotent. Thus
x2 ∈ annR(r) \ {r} = annR(x), contradicting that x is not a nilpotent.
Therefore, it must be the case that rx = r.

If 1 − x = r, then 1 = x+ r = x + rx = x(1 + r). This contradicts
that x is a zero-divisor. Therefore, 1 − x 6= r. Then rx = r implies
that 1 − x ∈ annR(r) \ {r} = annR(x). That is, x2 = x. Hence
1 + r − x ∈ annR(r) and x(1 + r − x) = r 6= 0. Since annR(r) \ {r} =
annR(x), it follows that 1 + r − x = r. But then 1 − x = 0, and
hence x = 1. This contradicts that x is a zero-divisor, and we have
exhausted all possibilities. Therefore, no such element x exists. Thus
Vr(R) \ {r} = ∅. Clearly r ∈ Vr(R), and hence Vr(R) = {r}.

Corollary 6.11. Let R ⊆ S be commutative rings. If the mapping ϕ :
V (Γ(R)∗) → V (Γ(S)∗) defined by ϕ(Vr(R)) = Vr(S) is an isomorphism,
then {r ∈ R | r2 = 0} = {f ∈ S | f 2 = 0}.

Proof. Suppose that 0 6= f ∈ S with f 2 = 0. Since ϕ is surjective,
there exists an r ∈ R such that Vr(S) = Vf(S). But Theorem 6.10
shows that Vf(S) = {f}, and it follows that f = r ∈ R.

For a von Neumann regular ring R, condition (4) of Theorem 6.7 is
necessary and sufficient to conclude that the mapping ϕ : V (Γ(R)∗) →
V (Γ(Q(R))∗) defined by ϕ(Vr(R)) = Vr(Q(R)) is an isomorphism ([1,
Proposition 4.5], [4, Theorem 11.9], and [8, Lemma 3.1]). When trying
to generalize this result to arbitrary rings, one is forced to seek other
criteria. For example, any application of Theorem 6.7(4) is contingent
upon the assumption that elements of V (Γ(R)) have complements. Re-
mark 6.12(1) and Theorem 6.13 provide generalizations by considering
condition (2) of Theorem 6.7.

Remark 6.12. (1) Let R ⊆ S be commutative rings. Suppose that
the correspondence {[r]R | 0 6= r ∈ Z(R)} → {[f ]S | 0 6= f ∈ Z(S)}
given by [r]R 7→ [r]S is a bijection, and that |[r]R| = |[r]S| for all 0 6=

98



r ∈ Z(R). Then a proof similar to that of the converse statement in
Proposition 6.9 shows that Γ(R) ≃ Γ(S) (this is precisely the method
of proof used in [1, Theorem 2.2]). In particular, suppose that R ⊆
S ⊆ Qα(R), and that R satisfies ℵα-(g.a.c.). Then the correspondence
{[r]R | 0 6= r ∈ Z(R)} → {[f ]S | 0 6= f ∈ Z(S)} described above is
a well-defined bijection by Lemma 6.1 and Lemma 6.3. Therefore, if
|[r]R| = |[r]S| for all 0 6= r ∈ Z(R), then Γ(R) ≃ Γ(S).

(2) Suppose that the mapping ϕ given in Corollary 6.11 is an iso-
morphism. Using Corollary 6.11, it is easy to see that [f ]S ⊆ R for all
0 6= f ∈ S with f 2 = 0. Also, Vf(S) = [f ]S whenever 0 6= f ∈ Z(S)
with f 2 6= 0. Therefore, if ϕ is an isomorphism and |Vr(R)| = |Vr(S)|
for all 0 6= r ∈ Z(R), then the correspondence {[r]R | 0 6= r ∈ Z(R)} →
{[f ]S | 0 6= f ∈ Z(S)} described above induces an isomorphism from
V (Γ(R)) onto V (Γ(S)). The converse is false (e.g., by the proof of
[1, Theorem 2.2] and Corollary 6.11, the converse fails for the rings
R = Z4[X] and S = T (R)). In this sense, the isomorphisms in-
duced by ϕ are stronger than the isomorphisms induced by the mapping
{[r]R | 0 6= r ∈ Z(R)} → {[f ]S | 0 6= f ∈ Z(S)} described above.

Theorem 6.13. Let α be an ordinal, and suppose that R and S are
commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R satisfies
ℵα-(g.a.c.). Then the mapping ϕ : V (Γ(R)∗) → V (Γ(S)∗) defined by
ϕ(Vr(R)) = Vr(S) is an isomorphism if and only if {r ∈ R | r2 = 0} =
{f ∈ S | f 2 = 0}.

Proof. If ϕ is an isomorphism, then the desired equality holds by Corol-
lary 6.11. Conversely, suppose that {r ∈ R | r2 = 0} = {f ∈ S | f 2 =
0}. To show that ϕ is well-defined, suppose that r, x ∈ R with Vr(R) =
Vx(R). That is, annR(r) \ {r} = annR(x) \ {x}. Let f ∈ annS(r) \ {r}.
If f ∈ R, then f ∈ annR(x) \ {x} ⊆ annS(x) \ {x}. Therefore, assume
that f ∈ S \R.

By Lemma 6.3, there exists an element t ∈ R such that annS(t) =
annS(f). If t = r, then f 2 = 0 since fr = 0 and annS(r) = annS(f).
But this contradicts that f ∈ S \ R since {r ∈ R | r2 = 0} = {f ∈
S | f 2 = 0}. Hence, t 6= r. Since fr = 0, it follows that t ∈ annR(r).
Then t ∈ annR(r) \ {r} = annR(x) \ {x}. Thus tx = 0, and therefore
f ∈ annS(x). Then the containments f ∈ S \ R and x ∈ R imply
that f ∈ annS(x) \ {x}. This shows that annS(r) \ {r} ⊆ annS(x) \
{x}. A symmetric argument proves the reverse inclusion, and thus
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annS(r) \ {r} = annS(x) \ {x}. That is, Vr(S) = Vx(S). Therefore, ϕ
is well-defined.

Clearly the equality annS(r) \ {r} = annS(x) \ {x} implies that
annR(r) \ {r} = annR(x) \ {x}. Thus ϕ is injective. Also, it is straight-
forward to verify that ϕ preserves and reflects adjacency relations. It
only remains to verify that ϕ is surjective.

Let Vf(S) ∈ V (Γ(S)∗). By Lemma 6.3, there exists an element
t ∈ R such that annS(t) = annS(f). If f 2 = 0, then f ∈ R. Thus Vf(S)
is the image of Vf(R). Suppose that f 2 6= 0. Then t2 6= 0. Therefore,

annS(t) \ {t} = annS(t) = annS(f) = annS(f) \ {f}.

Thus Vf(S) is the image of Vt(R). Hence ϕ is surjective.

Remark 6.14. Note that the proof of the converse statement in The-
orem 6.13 does not assume the fact that Vr(R) = {r} for any 0 6= r ∈
Z(R) with r2 = 0. Of course, this fact is guaranteed by Theorem 6.10.
Therefore, the mapping ϕ given in Theorem 6.13 can be shown to be
a well-defined bijection by applying Lemma 6.1 and Lemma 6.3 to el-
ements Vr(R) with r2 6= 0, and then applying Theorem 6.10 to such
elements with r2 = 0.

If R is reduced, then Q(R) satisfies (g.a.c.) by Theorem 6.4 and [4,
Theorem 11.9]. However, this observation does not generalize. For ex-
ample, there exists a reduced ring R such that Q0(R) does not satisfy
ℵ0-(g.a.c.) (see Example 6.36). Moreover, there exists a ring R contain-
ing nonzero nilpotents such that Q(R) does not satisfy ℵ0-(g.a.c.) (see
Example 6.35). In particular, the hypothesis ℵα-(g.a.c.) is not a neces-
sary condition for the conclusion of Theorem 6.13.

The following corollary is an immediate consequence of Proposition
6.9, Corollary 6.11, and Theorem 6.13.

Corollary 6.15. Let α be an ordinal, and suppose that R and S are
commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R satisfies
ℵα-(g.a.c.) and {r ∈ R | r2 = 0} = {f ∈ S | f 2 = 0}. If |Vr(R)| =
|Vr(S)| for all r ∈ Z(R) with r2 6= 0, then Γ(R) ≃ Γ(S).

If R is reduced, then the hypotheses of Theorem 6.13 are reflected
by Γ(R). This is made evident in the following corollary.

100



Corollary 6.16. Let α be an ordinal, and suppose that R and S are
reduced commutative rings such that R ⊆ S ⊆ Qα(R). If Γ(R) is c.v.-
ℵα-complete, then the mapping ϕ : V (Γ(R)∗) → V (Γ(S)∗) defined by
ϕ([r]R) = [r]S is an isomorphism.

Proof. Observe that {r ∈ R | r2 = 0} = ∅ = {f ∈ S | f 2 = 0} since
R and S are reduced. Moreover, [r]R = Vr(R) and [r]S = Vr(S) for all
0 6= r ∈ Z(R). The result now follows from Theorem 6.5 and Theorem
6.13.

Note that Example 6.36 shows that the converse to Corollary 6.16 is
false. The following corollary is an immediate consequence of Corollary
6.16 and Proposition 6.9.

Corollary 6.17. Let α be an ordinal, and suppose that R and S are
reduced commutative rings such that R ⊆ S ⊆ Qα(R). If Γ(R) is c.v.-
ℵα-complete and |[r]R| = |[r]S| for all r ∈ Z(R) \ {0}, then Γ(R) ≃
Γ(S).

Let Γ be a graph. We will say that Γ is weakly central vertex ℵα-
complete, or w.c.v.-ℵα-complete, if for all ∅ 6= A ⊆ V (Γ) with |A| < ℵα,
either C(A) = ∅ or there exists a v ∈ V (Γ) such that

C(v) \ A = C(A) \ {v}.

A graph Γ will be called w.c.v.-complete if it is w.c.v.-ℵα-complete
for every ordinal α. Note that every simple c.v.-ℵα-complete graph is
w.c.v.-ℵα-complete. In particular, every c.v.-ℵα-complete zero-divisor
graph is w.c.v.-ℵα-complete. The converse is false. For example, if Γ is
a complete graph on at least three vertices, then Γ is w.c.v.-complete,
but not c.v.-complete.

If Γ = Γ(R) for some ring R, then Γ is w.c.v.-ℵα-complete if and
only if for all ∅ 6= A ⊆ R with |A| < ℵα, there exists a v ∈ R such that

annR(v) \
(

A ∪ {v}
)

= annR(A) \
(

A ∪ {v}
)

.

Therefore, if R satisfies ℵα-(g.a.c.), then Γ(R) is w.c.v.-ℵα-complete.
The following theorem shows that the converse holds whenever R is
decomposable.

Theorem 6.18. Let α be an ordinal, and suppose that R is a decom-
posable commutative ring. Let R1 and R2 be nonzero rings such that
R ∼= R1 ⊕R2. Then the following statements are equivalent.

101



(1) R1 and R2 satisfy ℵα-(g.a.c.).

(2) R satisfies ℵα-(g.a.c.).

(3) Γ(R) is w.c.v.-ℵα-complete.

In particular, if Γ(R) is a w.c.v.-ℵα-complete graph, then every di-
rect summand of R has a w.c.v.-ℵα-complete zero-divisor graph.

Proof. Without loss of generality, assume that R = R1 ⊕ R2.
To prove (1) implies (2), suppose that R1 and R2 satisfy ℵα-(g.a.c.).

Let ∅ 6= A ⊆ R such that |A| < ℵα. Note that |πi(A)| < ℵα, where
πi is the usual projection mapping (i = 1, 2). Let ri ∈ Ri be an
element such that annRi

(ri) = annRi
(πi(A)). It is routine to check

that annR((r1, r2)) = annR(A). Thus R satisfies ℵα-(g.a.c.).
Note that (2) implies (3) by the above comments. To show (3)

implies (1), suppose that Γ(R) is w.c.v.-ℵα-complete. Let ∅ 6= A ⊆ R1

with |A| < ℵα. We need to show that there exists an element r ∈ R1

such that annR1
(r) = annR1

(A). Then R2 will satisfy ℵα-(g.a.c.) by
symmetry.

If A = {0}, then let r = 0. Suppose that A 6= {0}. Then
annR1

(A) = annR1
(A \ {0}), and hence we can assume that 0 6∈ A.

If annR1
(A) = {0}, then let r = 1. Suppose that annR1

(A) 6= {0}.
Then A × {1} ⊆ V (Γ(R1 ⊕ R2)). Also, (x, 0) ∈ C(A × {1}) for all
0 6= x ∈ annR1

(A). Since Γ(R) is w.c.v.-ℵα-complete, there exists an
element (r1, r2) ∈ R such that

C((r1, r2)) \ (A× {1}) = C(A× {1}) \ {(r1, r2)}.

Suppose that 0 6= x ∈ annR1
(A). Then (x, 0) ∈ annR(A × {1}). If

(x, 0) = (r1, r2), then 0 6∈ A implies (0, 1) ∈ C((r1, r2))\ (A×{1}). But
clearly (0, 1) 6∈ C(A× {1}), contradicting the choice of (r1, r2). Hence
(x, 0) 6= (r1, r2), and therefore (x, 0) ∈ C(A × {1}) \ {(r1, r2)}. Thus
(x, 0) ∈ C((r1, r2)). In particular, x ∈ annR1

(r1). Since 0 ∈ annR1
(r1),

this shows that annR1
(A) ⊆ annR1

(r1).
If 0 6= x ∈ annR1

(r1), then (x, 0) ∈ C((r1, r2)) \ (A × {1}). Thus
(x, 0) ∈ C(A × {1}). Hence x ∈ annR1

(A). Since 0 ∈ annR1
(A),

this verifies the inclusion annR1
(r1) ⊆ annR1

(A), and it follows that
annR1

(r1) = annR1
(A). Therefore, R1 satisfies ℵα-(g.a.c.).

To prove the “in particular” statement, suppose that Γ(R) is w.c.v.-
ℵα-complete. Then the result follows from the above argument since
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every ring satisfying ℵα-(g.a.c.) has a w.c.v.-ℵα-complete zero-divisor
graph.

Note that “decomposable” cannot be omitted from the hypoth-
esis in the previous theorem. Specifically, Γ(R) may be w.c.v.-ℵα-
complete while R does not satisfy ℵα-(g.a.c.). For example, let R =
Z4[X]/(X2). Then Γ(R) is w.c.v.-complete (see Figure 6.2). More-
over, annR({2, 2 +X}) = {0, 2X}. Suppose that annR(f) = {0, 2X}
for some f ∈ R. Then f ∈ {0, 2X} since f 2 = 0 for all f ∈ Z(R).
But then 2 ∈ annR(f), a contradiction. Therefore, no such f exists.
Thus R does not satisfy ℵ0-(g.a.c.). Incidently, we have proved that
R is an indecomposable ring. Moreover, any ring having R as a direct
summand does not have a w.c.v.-ℵα-complete zero-divisor graph.

Corollary 6.19. Let α be an ordinal, and suppose that R and S are
commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R is
decomposable and {r ∈ R | r2 = 0} = {f ∈ S | f 2 = 0}. If Γ(R) is
w.c.v.-ℵα-complete and |Vr(R)| = |Vr(S)| for all r ∈ Z(R) with r2 6= 0,
then Γ(R) ≃ Γ(S).

Proof. This result is a restatement of Corollary 6.15, where the ℵα-
(g.a.c.) hypothesis has been translated into its graph-theoretic counter-
part.

In Section 6.4, there are several examples that are constructed by
passing to direct sums. We conclude this section with a lemma which
will be useful in such constructions.

Figure 6.2: Γ(Z4[X]/(X2))
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Lemma 6.20. Let ϕ1 : V (Γ(R1)) → V (Γ(R′
1)) and ϕ2 : V (Γ(R2)) →

V (Γ(R′
2)) be isomorphisms. If |Ri \ V (Γ(Ri))| = |R′

i \ V (Γ(R′
i))| for

each i ∈ {1, 2}, then Γ(R1 ⊕ R2) ≃ Γ(R′
1 ⊕ R′

2).

Proof. Let ψi : Ri \ V (Γ(Ri)) → R′
i \ V (Γ(R′

i)) be bijections with
ψi(0Ri

) = 0R′

i
(i = 1, 2). Let Φi : Ri → R′

i be defined by

Φi(r) =
{ ϕi(r), r ∈ V (Γ(Ri))
ψi(r), otherwise

.

Finally, let Ψ : R1 ⊕ R2 → R′
1 ⊕ R′

2 be defined by the rule

Ψ(r1, r2) = (Φ1(r1),Φ2(r2)).

Then it is straightforward to show that

Ψ|V (Γ(R1⊕R2)) : V
(

Γ(R1 ⊕ R2)
)

→ V
(

Γ(R′
1 ⊕ R′

2)
)

is an isomorphism.

6.4 The Zero-Divisor Graph of Q0(R)

Let R be a commutative ring. The zero-divisor graph of Q(R) was stud-
ied in [7], where the relations Γ(R) ≃ Γ(Q(R)) and Γ(R) 6≃ Γ(Q(R))
were shown to be realizable by von Neumann regular rings satisfying
R ( Q(R). With the results of Section 6.3, we are now equipped to
identify relations between more general rings of quotients. In this sec-
tion, we consider the zero-divisor graphs of R, Q0(R), and Q(R). In
particular, we examine the following hypotheses.

Relation 6.21. The following scenarios will be considered for a com-
mutative ring R.

(1) Γ(R) 6≃ Γ(Q0(R)) 6≃ Γ(Q(R)), and Γ(R) 6≃ Γ(Q(R)).

(2) Γ(R) ≃ Γ(Q0(R)) 6≃ Γ(Q(R)).

(3) Γ(R) 6≃ Γ(Q0(R)) ≃ Γ(Q(R)).

(4) Γ(R) ≃ Γ(Q0(R)) ≃ Γ(Q(R)).

(5) Γ(R) ≃ Γ(Q(R)) 6≃ Γ(Q0(R)).
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Note that the existence of rings which satisfy (2), (3), or (4) of
Relation 6.21 can be easily verified: Any ring R such that R = Q0(R)
and Γ(R) 6≃ Γ(Q(R)) will satisfy Relation (2) (e.g., [7, Example 3.7]).
Any ring R such that Γ(R) 6≃ Γ(Q0(R)) and Q0(R) = Q(R) will satisfy
(3) (see Example 6.30). Any rationally complete ring will satisfy (4)
(e.g., any finite ring). Furthermore, if T (R) is the total quotient ring
of R, then Γ(R) ≃ Γ(T (R)) by [1, Theorem 2.2]. Therefore, it is
easy to construct examples which satisfy R ( T (R) = Q0(R) and
Γ(R) ≃ Γ(Q0(R)) (e.g., let R =

∏

N
Z). We shall avoid such trivialities,

and consider total quotient rings which satisfy R ( Q0(R) ( Q(R).
If α is any ordinal, then Q0(Qα(R)) = Qα(R) by [10, Corollary

2.2]. Therefore, if T (Qα(R)) is the total quotient ring of Qα(R), then
Qα(R) ⊆ T (Qα(R)) ⊆ Q0(Qα(R)) = Qα(R). Thus T (Qα(R)) =
Qα(R). That is, Qα(R) is a total quotient ring for every ordinal α.

The results of this section prove the following theorem.

Theorem 6.22. Let n ∈ {1, 2, 3, 4}. Then Relation 6.21(n) can be
realized by a total quotient ring R such that R ( Q0(R) ( Q(R).

The following examples involve versions of “A+B rings” and “ide-
alizations,” as described in Sections 25 and 26 of [6]. All of the graph-
isomorphisms of this section are “strong” in the sense of Remark 6.12(2).
Let F be an infinite field. Set D1 = F [X, Y, Z] andD2 = F [{XZn, Y Zn

| n ≥ 0}], where X, Y , and Z are algebraically independent indeter-
minates. Throughout, P will be a set of prime ideals of D1 containing
infinitely many principal ideals. Let I be an indexing set for P. Set
I = I × N. If α = (i, n) ∈ I, then set Pα = Pi and let Kα denote the
quotient field of D1/Pα.

Let Ωk = {f ∈ Dk | f 6∈ ∪α∈IPα} (k = 1, 2), and define ϕ :
(D1)Ω1

→
∏

α∈I Kα to be the canonical homomorphism. Note that
∩α∈IPα = {0} since D1 is a unique factorization domain and P contains
infinitely many principal ideals. In particular, ϕ is an embedding. Let
R1 = ϕ

(

(D1)Ω1

)

+
⊕

α∈I Kα and R2 = ϕ
(

(D2)Ω2

)

+
⊕

α∈I Kα. Then
R2 ⊆ R1 ⊆

∏

α∈I Kα.
Suppose that ϕ(f/g) + b ∈ Rk \ Z(Rk) (f ∈ Dk, g ∈ Ωk, b ∈

⊕

α∈I Kα, k = 1, 2). Then (ϕ(f/g) + b)(α) 6= 0 for all α ∈ I. Since
b(α) = 0 for all but finitely many α, it follows that ϕ(f/g)(α) 6= 0 for
almost all α. Thus f 6∈ P for all P ∈ P. That is, f ∈ Ωk. Hence
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(ϕ(f/g) + b)−1 = ϕ(g/f) + b′ ∈ Rk, where

b′(α) =
{ −ϕ(g/f)(α) +

(

(ϕ(f/g) + b)(α)
)−1

, b(α) 6= 0
0, otherwise

.

Therefore, R1 and R2 are total quotient rings. In fact, it will be shown
that R1 = Q0(R1) (Proposition 6.27).

Let J be a subset of (Dk)Ωk
(k = 1, 2). If an element of Rk with a

nonzero α-coordinate annihilates ϕ(J), then J ⊆ (Pα)Ωk
. Conversely,

if J ⊆ (Pα)Ωk
, then the element of Rk having a 1 in the α-coordinate

and 0 elsewhere annihilates ϕ(J). Therefore, ϕ(J) is dense in Rk if and
only if J \ PΩk

6= ∅ for all P ∈ P.
The dense set E ⊆ R2 of elements having a 1 in precisely one

coordinate and 0 elsewhere satisfies E ⊆ r−1R2 for all r ∈
∏

α∈I Kα.
Thus

∏

α∈I Kα ⊆ Q(R2). Being a direct product of fields,
∏

α∈I Kα

is rationally complete. Hence Q(R2) =
∏

α∈I Kα. Similarly, Q(R1) =
∏

α∈I Kα.
The results of this section numbered 6.23 through 6.27 are derived

from proofs found in [6] and [12]. The reader may wish to pass straight
to Example 6.28. The following proposition shows that R1 satisfies ℵ0-
(g.a.c.) whenever P consists entirely of principal ideals (cf. [6, Example
2]).

Proposition 6.23. Let D be a subring of D1, and suppose that P ⊆
{fD1 | f ∈ D}. Set Ω = {f ∈ D | f 6∈ P for all P ∈ P}. Then
ϕ(DΩ) +

⊕

α∈I Kα satisfies ℵ0-(g.a.c.). In particular, the isomorphism

Γ
(

ϕ(DΩ) +
⊕

α∈I Kα

)∗
≃ Γ

(

Q0(ϕ(DΩ) +
⊕

α∈I Kα)
)∗

holds.

Proof. Let T = ϕ(DΩ) +
⊕

α∈I Kα, and suppose that t1, t2 ∈ T ; say
tk = ϕ(fk/gk) + bk (fk ∈ D, gk ∈ Ω, bk ∈

⊕

α∈I Kα, k = 1, 2). Note
that the set I ′ = {α ∈ I | either b1(α) 6= 0 or b2(α) 6= 0} is finite.
Let I ′′ = {α ∈ I ′ | t1(α) = t2(α) = 0}. If f1/g1 = f2/g2 = 0, then let
f = 0; otherwise, by hypothesis, there exists a (finite) set J ⊆ D such
that {P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J}. If J = ∅, then let f = 1.
Otherwise, let f = Πp∈Jp ∈ D. Define b ∈

∏

α∈I Kα to be the element
such that

b(α) =
{

−ϕ(f)(α), α ∈ I ′′

1 − ϕ(f)(α), α ∈ I ′ \ I ′′

0, otherwise
.
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Note that b ∈
⊕

α∈I Kα since I ′ is finite. In particular, ϕ(f) + b ∈ T .
If α ∈ I ′′, then t1(α) = t2(α) = (ϕ(f) + b)(α) = 0. If α ∈ I ′ \ I ′′, then
(ϕ(f) + b)(α) = 1, and either t1(α) 6= 0 or t2(α) 6= 0. Suppose that
α 6∈ I ′. Then b1(α) = b2(α) = b(α) = 0. But clearly

{P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J} = {P ∈ P | f ∈ P}.

It follows that ϕ(f)(α) = 0 if and only if ϕ(f1/g1)(α) = ϕ(f2/g2)(α) = 0
(α ∈ I). Therefore, (ϕ(f) + b)(α) = 0 if and only if t1(α) = t2(α) = 0.
Thus annT (t1, t2) = annT (ϕ(f) + b), and it follows that T satisfies ℵ0-
(g.a.c.).

Clearly T is reduced, and hence the “in particular” statement fol-
lows from Theorem 6.13.

Proposition 6.24. Suppose that P is an infinite set of principal prime
ideals of D1 such that ZD1 ∈ P. Then R2 does not satisfy ℵ0-(g.a.c.).

Proof. If R2 satisfies ℵ0-(g.a.c.), then there exists a t ∈ R2 that satisfies
annR2

(ϕ(XZ), ϕ(Y Z)) = annR2
(t). If f/g ∈ (D2)Ω2

and P ∈ P, then
f/g ∈ PΩ2

if and only if f ∈ P . It follows that t can be chosen such
that t = ϕ(f) + b for some f ∈ D2 and b ∈

⊕

α∈I Kα. Suppose that
there exists a Pα ∈ P such that either {XZ, Y Z} ⊆ Pα or f ∈ Pα, but
not both. Say α = (i0, n). Choose an N ∈ N such that b(i0, N) = 0.
Then the element of R2 having a 1 in the (i0, N)-coordinate and 0
elsewhere annihilates either {ϕ(XZ), ϕ(Y Z)} or t, but not both. This
is a contradiction. Therefore, {XZ, Y Z} ⊆ P if and only if f ∈ P
(P ∈ P). But {XZ, Y Z} ⊆ P ∈ P if and only if P = ZD1. Thus
f = uZn for some 0 6= u ∈ F and n ≥ 1. This contradicts the
containment f ∈ D2. Therefore, no such f exists. Hence R2 does not
satisfy ℵ0-(g.a.c.).

For any subset J ⊆ (D1)Ω1
, let J−1 denote the set of elements in the

quotient field of (D1)Ω1
that map J into (D1)Ω1

under multiplication.
Note that the proofs of Lemma 6.25 and Proposition 6.27 are valid for
any set P of prime ideals of D1 which intersect in {0}.

Lemma 6.25. Let J ⊆ (D1)Ω1
be a set such that J \ PΩ1

6= ∅ for all
P ∈ P. Then J−1 = (D1)Ω1

.

Proof. Let a/b ∈ J−1. We can assume that a, b ∈ D1 such that a
greatest common divisor of a and b is 1. Suppose that a/b 6∈ (D1)Ω1

.
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Then there exists a P ∈ P with b ∈ P . Let r/q ∈ J \PΩ1
. In particular,

r 6∈ P . But (ar)/(bq) ∈ (D1)Ω1
⊆ (D1)P implies that ars = bqt for some

s, t ∈ D1 with s 6∈ P . Since D1 is a unique factorization domain and
gcd(a, b) = 1, it follows that b divides rs. This contradicts that rs 6∈ P .
Therefore, a/b ∈ (D1)Ω1

. This verifies that J−1 ⊆ (D1)Ω1
. The reverse

inclusion is obvious.

Lemma 6.26. Suppose that P is an infinite set of principal prime
ideals. Then Q0(R1) = Q0(R2).

Proof. There is no principal prime ideal containing both X and Y .
Also, every element of D1 maps the set {X, Y } into D2 under mul-
tiplication. Therefore, {ϕ(aX), ϕ(bY )} is dense in R2 for all a, b ∈
Ω1. Let s ∈ R1; say s = ϕ(f/g) + b for some f ∈ D1, g ∈ Ω1,
and b ∈

⊕

α∈I Kα. Then {ϕ(gX), ϕ(gY )} ⊆ ϕ(f/g)−1R2. Clearly
{ϕ(gX), ϕ(gY )} ⊆ b−1R2 (indeed, b ∈ R2), and thus {ϕ(gX), ϕ(gY )} ⊆
s−1R2. Hence s ∈ Q0(R2). This shows that R1 ⊆ Q0(R2). Moreover,
the inclusions R2 ⊆ R1 ⊆ Q0(R2) ⊆ Q(R2) imply that

Q0(R2) ⊆ Q0(R1) ⊆ Q0(Q0(R2)) = Q0(R2),

where the equality holds by [10, Corollary 2.2]. Therefore, Q0(R1) =
Q0(R2).

The ring Q0(R) is calculated in [12, Theorem 11], where R is a ring
constructed using the principle of idealization. The proof of the follow-
ing proposition is a close mimicry of the one given for [12, Theorem
11(d)].

Proposition 6.27. Let R1 and R2 be defined as above. Then Q0(R1) =
R1. If P consists entirely of principal ideals, then Q0(R2) = R1.

Proof. By Lemma 6.26, it suffices to show that Q0(R1) = R1. Suppose
that s ∈ Q0(R1). There exists a finite set J = {j1, ..., jn} ⊆ (D1)Ω1

\{0},
and elements bk ∈

⊕

α∈I Kα (k = 1, ..., n), such that the set

{ϕ(j1) + b1, ..., ϕ(jn) + bn}

is dense and contained in s−1R1. It follows that ϕ(J) is dense. If not,
then J ⊆ (Pβ)Ω1

for some β = (i0, m) ∈ I. But the set {α ∈ I | bk(α) 6=
0 for some k ∈ {1, ..., n}} is finite. Hence there exists an integer N such
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that bk
(

(i0, N)
)

= 0 for all k ∈ {1, ..., n}. Then the nonzero element
of R1 having a 1 in the (i0, N)-coordinate and 0 elsewhere annihilates
{ϕ(j1) + b1, ..., ϕ(jn) + bn}, a contradiction. Therefore, J \ PΩ1

6= ∅ for
all P ∈ P. Thus ϕ(J) is dense.

Clearly sbk ∈
⊕

α∈I Kα ⊆ R1 for each k ∈ {1, ..., n}. Hence
sϕ(jk) = s(ϕ(jk) + bk) − sbk ∈ R1 for all k ∈ {1, ..., n}; say

sϕ(jk) = ϕ(fk/gk) + ek

for some fk ∈ D1, gk ∈ Ω1, and ek ∈
⊕

α∈I Kα (k = 1, ..., n).
Consider the mapping ψ :

∑n
k=1 ϕ

(

jk(D1)Ω1

)

→ ϕ
(

(D1)Ω1

)

defined
by

ψ
(

n
∑

k=1

ϕ(jkrk/qk)
)

=

n
∑

k=1

ϕ
(

(fk/gk)(rk/qk)
)

, rk ∈ D1, qk ∈ Ω1.

Note that ψ is well-defined since
∑n

k=1 ϕ(jkrk/qk) = (0) implies

n
∑

k=1

ϕ
(

(fk/gk)(rk/qk)
)

+
n

∑

k=1

ekϕ(rk/qk) = s
n

∑

k=1

ϕ(jkrk/qk) = (0),

and thus

n
∑

k=1

ϕ
(

(fk/gk)(rk/qk)
)

∈ ϕ
(

(D1)Ω1

)

∩
⊕

α∈I

Kα = (0).

Hence ψ
(

(0)
)

= (0). Then clearly

ψ ∈ Hom
ϕ
(

(D1)Ω1

)

(

n
∑

k=1

ϕ
(

jk(D1)Ω1

)

, ϕ
(

(D1)Ω1

))

.

Choose an element j ∈ J . Then s1 = ψ(ϕ(j))/ϕ(j) belongs to the
quotient field of ϕ

(

(D1)Ω1

)

, and

s1ϕ(jk) = ψ(ϕ(jk)) = ϕ(fk/gk) ∈ ϕ
(

(D1)Ω1

)

for all k ∈ {1, ..., n}. Also, J−1 = (D1)Ω1
by Lemma 6.25, and it follows

that s1 ∈ ϕ
(

(D1)Ω1

)

.
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Consider the mapping ρ :
∑n

k=1 ϕ
(

jk(D1)Ω1

)

→
⊕

α∈I Kα defined
by

ρ
(

n
∑

k=1

ϕ(jkrk/qk)
)

=

n
∑

k=1

ekϕ(rk/qk), rk ∈ D1, qk ∈ Ω1.

Note that ρ is well-defined since the above computations show that the
equality

∑n
k=1 ekϕ(rk/qk) = (0) holds whenever

∑n
k=1 ϕ(jkrk/qk) = (0).

Hence

ρ ∈ Hom
ϕ
(

(D1)Ω1

)

(

n
∑

k=1

ϕ
(

jk(D1)Ω1

)

,
⊕

α∈I

Kα

)

.

For each α ∈ I, choose an element tα ∈ ϕ
(

J \ (Pα)Ω1

)

. Let jk ∈ J .
Then

tα(α)
(

ρ(ϕ(jk))(α)
)

=
(

ϕ(jk)(α)
)(

ρ(tα)(α)
)

.

This shows that ρ(ϕ(jk)) = s2ϕ(jk) for all jk ∈ J , where s2 ∈
∏

α∈I Kα

is the element such that s2(α) = tα(α)−1
(

ρ(tα)(α)
)

for all α ∈ I. That
is,

s2ϕ(jk) = ek ∈
⊕

α∈I

Kα

for each k ∈ {1, ..., n}.
Since J \ PΩ1

6= ∅ for all P ∈ P, it follows that

{α ∈ I | s2(α) 6= 0} = ∪nk=1{α ∈ I |
(

s2ϕ(jk)
)

(α) 6= 0}.

But s2ϕ(jk) ∈
⊕

α∈I Kα for all k ∈ {1, ..., n}, and therefore {α ∈
I | s2(α) 6= 0} is a finite union of finite sets. Thus {α ∈ I | s2(α) 6= 0}
is finite. Hence s2 ∈

⊕

α∈I Kα.
By the above arguments, it follows that s and s1 + s2 are elements

of
∏

α∈I Kα = Q(R1) which agree on the dense set ϕ(J). Thus s =
s1 +s2. But the above arguments also show that s1 +s2 ∈ ϕ

(

(D1)Ω1

)

+
⊕

α∈I Kα = R1. Hence s ∈ R1, and it follows that Q0(R1) ⊆ R1. The
reverse inclusion is clear, and therefore Q0(R1) = R1.

Example 6.28. Suppose that P is the set of all principal prime ideals
of D1. Then R2 is a total quotient ring which satisfies R2 ( Q0(R2) (
Q(R2) and Relation 6.21(1).

Proof. The discussion prior to Proposition 6.23 shows that R2 is a total
quotient ring. The proper inclusions will follow immediately upon es-
tablishing the validity of Relation 6.21(1). Note that Q0(R2) = R1 by
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Proposition 6.27. That Γ(R2) 6≃ Γ(Q0(R2)) follows from Theorem 6.5,
Proposition 6.23, and Proposition 6.24. Also, [1, Theorem 3.5] shows
that a reduced total quotient ring is von Neumann regular if and only
if its zero-divisor graph is complemented. In particular, Γ(Q(R2)) is
complemented. On the other hand, R2 is a total quotient ring which is
not von Neumann regular (e.g., the prime ideal ϕ({0}) +

⊕

α∈I Kα is
not maximal), and hence Γ(R2) is not complemented. Thus Γ(R2) 6≃
Γ(Q(R2)). Similarly, Γ(Q0(R2)) 6≃ Γ(Q(R2)).

Example 6.29. Let P be the family of principal prime ideals belonging
to the set {fD1 | f ∈ D2}. Then R2 is a total quotient ring which
satisfies R2 ( Q0(R2) ( Q(R2) and Relation 6.21(2).

Proof. The discussion prior to Proposition 6.23 shows that R2 is a total
quotient ring. The containment R2 ( Q0(R2) holds since Proposition
6.27 shows that ϕ(Z) ∈ Q0(R2) \ R2. That Γ(Q0(R2)) 6≃ Γ(Q(R2))
follows as in Example 6.28. This also verifies that Q0(R2) ( Q(R2).
Note that Γ(R2) is c.v.-ℵ0-complete by Theorem 6.5 and Proposition
6.23. By Corollary 6.17, it only remains to show that |[r]R2

| = |[r]Q0(R2)|
for all r ∈ Z(R2) \ {0}.

Let r ∈ Z(R2) \ {0}. Observe that |F | ≤ |[r]R2
| since ϕ(u)r ∈ [r]R2

for all u ∈ F . Also, the inequality |[r]R2
| ≤ |[r]Q0(R2)| follows from

Lemma 6.1. Furthermore, P consists entirely of principal ideals, and
hence |I| ≤ |D1| = |F |. Since Q0(R2) = R1, it follows that |Q0(R2)| =
|F |. Therefore,

|F | ≤ |[r]R2
| ≤ |[r]Q0(R2)| ≤ |Q0(R2)| = |F |.

Thus |[r]R2
| = |[r]Q0(R2)| for all r ∈ Z(R2) \ {0}.

Let R be a commutative ring and M an (unitary) R-module. The
idealization R(+)M of M is the commutative ring (with unity) R×M ,
where addition is defined componentwise and multiplication is defined
by the rule (r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1). Note that (1, 0) is
the multiplicative identity in R(+)M .

Define S1 = (D1)Ω1
(+)

⊕

α∈I Kα and S2 = (D2)Ω2
(+)

⊕

α∈I Kα.
Making the appropriate modifications to Proposition 6.27 will show
that S1 = Q0(S1). Alternatively, this is an immediate consequence
of Lemma 6.25 taken together with [12, Theorem 11(f)]. If P consists
entirely of principal ideals, then Q0(S2) = S1. To see this, note that the
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set {
(

X, (0)
)

,
(

Y, (0)
)

} is dense and contained in s−1S2 for all s ∈ S1.
Therefore,

S1 ⊆ Q0(S2) ⊆ Q0(S1) = S1.

Hence Q0(S2) = S1.
If (r,m) ∈ S2, then

annS2

(

(r,m)
)

=
{

(s, n) ∈ S2 | rs = 0 and {rn, sm} ⊆ {(0)}
}

,

where the inclusion {rn, sm} ⊆ {(0)} holds since rs = 0 forces either
r = 0 or s = 0. Then it is straightforward to check that the non-zero-
divisors of S2 are precisely those elements of the form (f/g, a), where
f, g ∈ Ω2. Any such element is a unit in S2 with (f/g, a)−1 = (g/f, b),
where b(α) = −(g/f)2a(α) for all α ∈ I. Thus S2 is a total quotient
ring.

Example 6.30. Let P be the set of all principal prime ideals of D1.
Then S2 is a total quotient ring which satisfies Γ(S2) 6≃ Γ(Q0(S2)) =
Γ(Q(S2)).

Proof. The above comments show that S2 is a total quotient ring. Let
D ⊆ S2. Suppose that there exists a P ∈ P such that f ∈ P for
all (f, a) ∈ D. Then (0, b) ∈ annS2

(D), where b is any element which
satisfies b(α) = 0 for all α ∈ I with Pα 6= P . Conversely, if no such
P exists, then for all (0) 6= b ∈

⊕

α∈I Kα there exists an element
(f, a) ∈ D such that fb 6= (0). It follows that a set D ⊆ S2 is dense if
and only if it has the property that, for all P ∈ P, there exists elements
f ∈ D2 \P and a ∈

⊕

α∈I Kα such that (f, a) ∈ D. But any element of
D2 is contained in only finitely many members of P. Therefore, D ⊆ S2

is dense if and only if it contains a finite set {(fi, ai)}
n
i=1 such that, for

all P ∈ P, there exists a j ∈ {1, ..., n} with fj 6∈ P . In particular, every
dense set in S2 contains a finite dense set. Thus Q0(S2) = Q(S2), and
hence Γ(Q0(S2)) = Γ(Q(S2)).

Note that Γ(Q0(S2)) is w.c.v.-ℵ0-complete. To see this, suppose
that {(f, a), (g, b)} ⊆ Q0(S2). If either f 6= 0 or g 6= 0, then let h be a
greatest common divisor of f and g in D1. If f = g = 0, then let h = 0.
Suppose that c ∈

⊕

α∈I Kα is the element defined by

c(α) =
{ 0, a(α) = b(α) = 0

1, otherwise
.
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Since P is a set of principal ideals, it follows that {f, g} ⊆ P if and
only if h ∈ P (P ∈ P). Using this fact, it is straightforward to check
that

annQ0(S2)

(

(h, c)
)

= annQ0(S2)

(

(f, a), (g, b)
)

.

It follows that Q0(S2) satisfies ℵ0-(g.a.c.). Hence Γ(Q0(S2)) is w.c.v.-
ℵ0-complete by the comments prior to Theorem 6.18.

It remains to show that Γ(S2) is not w.c.v.-ℵ0-complete. Consider
the set A = {(XZ, (0)), (Y Z, (0))} ⊆ V (Γ(S2)). Note that

annS2
(A) = {(0, a) ∈ S2 | a(α) = 0 whenever Pα 6= ZD1}.

Therefore, if
C(A) \ {(f, b)} = C((f, b)) \ A

for some (f, b) ∈ S2, then

{P ∈ P | f ∈ P} = {ZD1}.

But then f = uZn for some u ∈ F and n ≥ 1. This contradicts that
f ∈ D2, and hence no such element exists. Thus Γ(S2) is not w.c.v.-
ℵ0-complete.

Let R be a von Neumann regular ring. Then R does not properly
contain any finitely generated dense ideals. To see this, let {r1, ..., rn} ⊆
R be dense. For each i ∈ {1, ..., n}, there exists an si ∈ R such that
ri = r2

i si. Then

(1 − r1s1) · · · (1 − rnsn) ∈ annR(r1, ..., rn) = {0}.

Thus 1 = f(r1, ..., rn) ∈ r1R + ... + rnR for some f(X1, ..., Xn) ∈
R[X1, ..., Xn]. It follows that Q0(R) = R whenever R is von Neumann
regular.

Let α be an ordinal. Then Qα(R ⊕ S) = Qα(R) ⊕ Qα(S) for any
rings R and S [10, Corollary 2.4]. This property will be used freely in
the following examples.

Example 6.31. Suppose that P is the set of all principal prime ideals
of D1. Let R be any von Neumann regular ring such that R 6= Q(R),
the isomorphism Γ(R) ≃ Γ(Q(R)) holds, and |R \ V (Γ(R))| = |Q(R) \
V (Γ(Q(R))|. Define W = S2 ⊕ R. Then W is a total quotient ring
which satisfies W ( Q0(W ) ( Q(W ) and Relation 6.21(3).
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Proof. Note that there exists a ring R possessing the properties given
in the hypothesis (e.g., [7, Example 3.5]). Being the direct sum of total
quotient rings, W is a total quotient ring. Also, the above comments
show that Q0(W ) = Q0(S2)⊕Q0(R) = Q0(S2)⊕R ( Q(S2)⊕Q(R) =
Q(W ). The proper inclusion W ( Q0(W ) will follow upon establishing
Relation 6.21(3).

The isomorphism Γ(Q0(S2) ⊕R) ≃ Γ(Q0(S2) ⊕Q(R)) follows from
Lemma 6.20. Also, Example 6.30 shows that Q0(S2) = Q(S2). Thus

Γ(Q0(W )) = Γ(Q0(S2) ⊕Q0(R))

= Γ(Q0(S2) ⊕ R)

≃ Γ(Q0(S2) ⊕Q(R))

= Γ(Q(S2) ⊕Q(R)))

= Γ(Q(W )).

Note that B(Q(R)) is a complete Boolean algebra by [4, Theorem
11.9]. Thus Q(R) satisfies (g.a.c.) by Theorem 6.4. Since Γ(Q0(R)) =
Γ(R) ≃ Γ(Q(R)), Theorem 6.7 implies that Q0(R) satisfies (g.a.c.).
In particular, Q0(R) satisfies ℵ0-(g.a.c.). The proof of Example 6.30
shows that Q0(S2) satisfies ℵ0-(g.a.c.). Therefore, Γ(Q0(W )) is w.c.v.-
ℵ0-complete by Theorem 6.18. However, the proof of Example 6.30
also shows that Γ(S2) is not w.c.v.-ℵ0-complete. Hence, Theorem 6.18
implies that Γ(W ) is not w.c.v.-ℵ0-complete. Thus Γ(W ) 6≃ Γ(Q0(W )).

Example 6.32. Suppose that P is the family of principal prime ideals
belonging to the set {fD1 | f ∈ D2}. Then S2 is a total quotient ring
which satisfies Γ(S2) ≃ Γ(Q0(S2)) = Γ(Q(S2)).

Proof. The comments prior to Example 6.30 show that S2 is a total
quotient ring. The equality Γ(Q0(S2)) = Γ(Q(S2)) holds as in Ex-
ample 6.30. Let {(f1/g1, b1), (f2/g2, b2)} ⊆ S2 (fk ∈ D2, gk ∈ Ω2,
bk ∈

⊕

α∈I Kα, k = 1, 2). If f1/g1 = f2/g2 = 0, then let h = 0. If either
f1/g1 6= 0 or f2/g2 6= 0, then there exists a (finite) set J ⊆ D2 such
that {P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J}. If J = ∅, then let h = 1.
If J 6= ∅, then let h = Πp∈Jp ∈ D2. Clearly {f1, f2} ⊆ P if and only
if h ∈ P (P ∈ P). Thus S2 satisfies ℵ0-(g.a.c.) by the same argument
used for the ring Q0(S2) in Example 6.30. Also, {t ∈ S2 | t2 = 0} =
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{(0, a) | a ∈
⊕

α∈I Kα} = {f ∈ Q0(S2) | f 2 = 0}. An argument similar
to the one given in Example 6.29 shows that

|F | ≤ |Vt(S2)| ≤ |Vt(Q0(S2))| ≤ |Q0(S2)| = |F |

for all t = (f/g, a) ∈ Z(S2) with f/g 6= 0. Therefore, Corollary 6.15
implies that Γ(S2) ≃ Γ(Q0(S2)).

Example 6.33. Suppose that P is the family of principal prime ideals
belonging to the set {fD1 | f ∈ D2}. Let R be any von Neumann
regular ring such that R 6= Q(R), the isomorphism Γ(R) ≃ Γ(Q(R))
holds, and |R \ V (Γ(R))| = |Q(R) \ V (Γ(Q(R))|. Define W = S2 ⊕ R.
Then W is a total quotient ring which satisfies W ( Q0(W ) ( Q(W )
and Relation 6.21(4).

Proof. There exists a ring R possessing the properties given in the hy-
pothesis (e.g., [7, Example 3.5]). Being the direct sum of total quotient
rings, W is a total quotient ring. Observe that (Z, (0)) ∈ Q0(S2) \ S2,
and hence W ( Q0(S2) ⊕ Q0(R) = Q0(W ). The inclusion Q0(W ) (
Q(W ) holds as in Example 6.31. It remains to verify Relation 6.21(4).

Observe that Sk\V (Γ(Sk)) = {(f/g, a) ∈ Sk | f, g ∈ Ωk}∪{
(

0, (0)
)

}
for each k ∈ {0, 1} (cf. the comments prior to Example 6.30). But
F ⊆ Ωk ⊆ D1 and |F | = |D1|. Hence |Ω1| = |Ω2|. It is now easy
to check that |S1 \ V (Γ(S1))| = |S2 \ V (Γ(S2))|. That is, |Q0(S2) \
V (Γ(Q0(S2)))| = |S2 \ V (Γ(S2))|. By Lemma 6.20 and Example 6.32,
it follows that Γ(S2 ⊕R) ≃ Γ(Q0(S2) ⊕ R). Thus

Γ(W ) ≃ Γ(Q0(S2) ⊕ R) = Γ(Q0(W )),

where the equality holds since Q0(R) = R. Finally, note that the
isomorphism Γ(Q0(W )) ≃ Γ(Q(W )) holds as in Example 6.31.

It has been shown that (1), (2), (3), and (4) of Relation 6.21 can be
met, in fact, by total quotient ringsR which satisfy R ( Q0(R) ( Q(R).
However, we do not know the answer to the following question.

Question 6.34. Does there exist a ring R which satisfies Relation
6.21(5)?

The remaining two examples show that an ℵα-rationally complete
ring may have a zero-divisor graph whose vertices do not satisfy any
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of the completeness criteria introduced in this paper. Using the fact
that finite rings are rationally complete (indeed, finite rings do not
properly contain any dense ideals), the comments prior to Corollary
6.19 show that it is easy to construct a rationally complete ring whose
zero-divisor graph is not w.c.v.-ℵ0-complete. A less trivial example is
provided in Example 6.35. Every reduced rationally complete ring has
a c.v.-complete zero-divisor graph (cf. the comments prior to Corol-
lary 6.15). However, Example 6.36 shows that a reduced ℵα-rationally
complete ring need not have a w.c.v.-ℵα-complete zero-divisor graph.
In particular, the zero-divisor graph of such a ring need not be c.v.-
ℵα-complete. Since a graph Γ is c.v.-ℵα-complete if and only if Γ∗ is
c.v.-ℵα-complete, the converse to Corollary 6.16 is false. Moreover, Ex-
ample 6.35 shows that the conclusion of Corollary 6.19 can hold without
the w.c.v.-ℵα-complete hypothesis.

Example 6.35. Let P ′ be the set of all principal prime ideals of D1,
and let P = P ′ ∪ {Y D1 + ZD1}. Then S1 = Q(S1), but Γ(S1) is not
w.c.v.-ℵ0-complete. In particular, Q(S1) does not satisfy ℵ0-(g.a.c.).

Proof. The equality S1 = Q0(S1) holds by Lemma 6.25 together with
[12, Theorem 11(f)], and Q0(S1) = Q(S1) holds as in Example 6.30.

Note that XD1 is the only principal prime ideal containing the set
{XY,XZ}. Therefore, if f ∈ D1 and a ∈

⊕

α∈I Kα such that

annS1

(

(f, a)
)

= annS1

(

(XY, (0)), (XZ, (0))
)

,

then f = uXn for some u ∈ F and n ≥ 1. But then f 6∈ Y D1 +ZD1, a
contradiction. Thus no such f exists. This proves the “in particular”
statement. Since D1 is an integral domain, it immediately follows that
Γ(S1) is not w.c.v.-ℵ0-complete.

Example 6.36. Let P ′ be the set of all principal prime ideals of D1,
and let P = P ′ ∪ {Y D1 + ZD1}. Then R1 = Q0(R1), but Γ(R1) is not
w.c.v.-ℵ0-complete. In particular, Q0(R1) does not satisfy ℵ0-(g.a.c.).

Proof. Note that R1 = Q0(R1) by Proposition 6.27. Replacing S1,
(f, a), (XY, (0)), and (XZ, (0)) by R1, ϕ(f) + a, ϕ(XY ), and ϕ(XZ),
respectively, the desired results follow from the proof of Example 6.35.
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