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                                                           ABSTRACT 
 
 
Polymer clay nanocomposites are a promising class of multicomponent systems where 

incorporation of small amount of clay results in dramatic improvement of mechanical, 

thermal and barrier properties. However, accomplishment of these properties necessitates 

molecular level dispersion of the clay platelets in the polymer matrix. This thesis presents 

the guidelines for obtaining thermodynamically stable nanocomposites where strong 

specific interactions such as hydrogen bonding between the polymer and the clay can be 

utilized to achieve the desired goal of nanoscale dispersion of clay sheets.  

In first part of the dissertation, optimization of intermolecular hydrogen bonding 

between the polymer and clay is carried out by controlling the distribution of hydroxyl 

groups on the copolymer of styrene and 4-vinyl phenol. Copolymers ranging from 0-

100% vinyl phenol are synthesized by free radical polymerization. Nanocomposites 

containing 50 % poly(vinyl phenol) and 40 % poly(vinyl phenol) show optimum 

dispersion due to large extent of intermolecular hydrogen bonding with drastic 

improvement in glass transition temperature.  

Furthermore, the effect of the nature of clay surfactant on the dispersion of clay 

sheets in the polymer matrix is also studied.  Nanomer I.24 TL and Cloisite 25A show 

similar trends in dispersion for all the copolymer compositions. Increase in vinyl phenol 

content from 0-50% enhances the dispersion of clay platelets. However, Nanomer I.24 

TL and Cloisite 25A show different morphological behavior than Cloisite Na+ towards 

the polymer containing 100% vinyl phenol. This behavior arises due to the fact that 

hydrophobic surfactants of Nanomer I.24 TL and Cloisite 25A do not find themselves 
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very compatible with hydrophilic polymer, poly(vinyl phenol) thus giving rise to 

intercalated morphology in opposition to exfoliation observed for Cloisite Na+ 

nanocomposite with the same polymer. Cloisite Na+ is highly hydrophilic and therefore 

very miscible with 100% vinyl phenol, consequently a nanocomposite with improved 

dispersion is obtained.  

Next, clay loading is also optimized in the nanocomposites to obtain the best 

morphological and thermal improvements.  Clay loadings of 1, 3, 5 and 8 wt % are mixed 

with copolymers ranging from 0-100 % vinyl phenol. 3 and 5 % clay loadings with 

PVPh40 and PVPh50 nanocomposites exhibit optimum dispersion of clay platelets with 

drastic improvement in glass transition temperature. 

. 

 

 
 

 

 

 

 

 

 

 

 

 



 v 
 

                                               TABLE OF CONTENTS 
                                  
CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 Introduction......................................................................................................... 1 
1.2 Properties and Applications of Polymer/Clay nanocomposites.......................... 2 
1.3 Clay Types and Structure.................................................................................... 7 
1.5 Challenges......................................................................................................... 11 
1.6 Different Polymer-Clay Interactions................................................................. 14 
1.7 Theoretical studies ............................................................................................ 18 
1.8 Goals and Strategy ............................................................................................ 23 

 
CHAPTER 2 EXPERIMENTAL TECHNIQUES............................................................ 27 

2.1 Synthesis of copolymers of styrene and vinyl phenol. ..................................... 27 
2.2 Preparation of nanocomposites ......................................................................... 31 
2.3 Characterization of copolymers and Nanocomposites...................................... 31 

2.3.1 Small angle X-ray scattering..................................................................... 34 
2.3.2 Transmission Electron Microscopy .......................................................... 36 
2.3.3 Fourier Transform Infrared spectroscopy ................................................. 38 
2.3.4 Differential Scanning Calorimetry............................................................ 39 

 
CHAPTER 3 OPTIMIZATION OF INTERFACIAL INTERACTIONS TO ACHIEVE 
NANOSCALE DISPERSION OF CLAY SHEETS IN THE POLYMER MATRIX...... 40 

3.1 Introduction....................................................................................................... 40 
3.2 Results and Discussion ..................................................................................... 41 

3.2.1 Morphological Studies .............................................................................. 41 
3.2.2 FTIR studies.............................................................................................. 49 
3.2.3 Correlating Intermolecular hydrogen bonding to the dispersion in 
nanocomposites......................................................................................................... 73 
3.2.4 Thermal behavior of Nanocomposites ...................................................... 75 

3.3 Summary and Conclusion ................................................................................. 77 
 
CHAPTER 4 EFFECT OF CLAY SURFACTANT ON ABILITY TO FORM 
INTERMOLECULAR INTERACTIONS IN POLYMER/CLAY NANOCOMPOSITES
........................................................................................................................................... 79 

4.1 Introduction....................................................................................................... 79 
4.2 Results and Discussion ..................................................................................... 81 

4.2.1 Morphological studies............................................................................... 81 
4.2.2 FT-IR studies of Intermolecular Interactions............................................ 95 
4.2.3 Correlating inter-molecular hydrogen bonding to the dispersion in 
Nanocomposites...................................................................................................... 111 
4.2.4 Correlating the thermal properties to Dispersion and Interactions ......... 113 

4.3 Summary and Conclusion ............................................................................... 116 



 vi 
 

CHAPTER 5 SOLUBILITY PARAMETER STUDIES FOR POLYMER/CLAY   
NANOCOMPOSITES .................................................................................................... 118 

5.1 Introduction..................................................................................................... 118 
5.2 Results and Discussion ................................................................................... 119 
5.3 Summary and Conclusion ............................................................................... 129 

 
CHAPTER 6 EFFECT OF CLAY LOADING ON THE DISPERSION AND THERMAL 
PROPERTIES OF NANOCOMPOSITES ..................................................................... 131 

6.1 Introduction..................................................................................................... 131 
6.2 Results and Discussion ................................................................................... 131 

6.2.1 Thermal Behavior ................................................................................... 131 
6.2.2 Morphological Studies ............................................................................ 136 

6.3 Summary and Conclusion ............................................................................... 154 
 
CHAPTER 7 CONCLUSIONS AND FUTURE WORK............................................... 156 

 
REFERENCES ................................................................................................... 160 
VITA................................................................................................................... 167 

 
 
 

 

 

 
 

 

 
 

 

 



 vii 
 

LIST OF TABLES  
Table 1.1 Applications of Polymer Clay nanocomposites.................................................. 6 
 
Table 2.1 Molecular weight properties of copolymers used in this study ........................ 33 
 
Table 3.1Deconvolution Results of the C=O stretching region of nanocomposites 
containing 20-50% vinyl phenol copolymers measured at 25º C and 180º C to determine 
the absorptivity ratios........................................................................................................ 57 
 
Table 3.2 Results of the curve fitting to the C=O stretching region for nanocomposites 
containing 0-100% vinyl phenol content at room temperature......................................... 59 
 
Table 3.3Percentage of free, monomeric H-bonded and Dimeric H-bonded C=O as a 
function of copolymer composition in the 5% Nanomer I.24 TL nanocomposites.......... 59 
 
Table 3.4 Curve Fitting Analysis of pure copolymers...................................................... 66 
 
Table 3.5 Curve Fitting results for Nanomer I.24TL/ PVPh Nanocomposites................. 71 
 
Table 3.6Change in Glass transition temperature of nanocomposites.............................. 76 
 
Table 4.1 Surfactants of the Clays examined.................................................................... 80 
 
Table 4.2 Curve Fitting Results of Pure Copolymers ..................................................... 101 
 
Table 4.3 Curve Fitting results for Nanomer I.24TL/ PVPh Nanocomposites............... 102 
 
Table 4.4 Curve Fitting results for Cloisite 25A/ PVPh Nanocomposites ..................... 106 
 
Table 4.6 Change in Glass transition temperature of nanocomposites........................... 114 
 
Table 5.1Different Clays used in the study..................................................................... 120 
 
Table 5.2 Solubility parameter of the surfactants in the clays........................................ 121 
 
Table 5.3 Solubility Parameter of the surfactants in the clays........................................ 123 
 
Table 5.4Solubility Parameters of the Copolymers ........................................................ 125 
 
Table 5.5 Solubility parameter Difference for Clay Nanocomposites............................ 125 
 
Table 5.6 Solubility parameter Difference for Nanomer I.24 TL Nanocomposites ....... 126 
 
Table 5.7 Solubility parameter Difference for Cloisite 25A Nanocomposites ............... 127 
 



 viii 
 

Table 5.8 Solubility Parameter Difference for Cloisite Na+ Nanocomposites............... 127 
 
Table 5.9 Interaction of the copolymer PVPh50 with the inorganic clay surface and the 
surfactant......................................................................................................................... 129 
 
Table 6.1 Increase in Glass Transition temperature for the nanocomposites    relative to 
pure copolymers.............................................................................................................. 133 
 
                           
 
 

 

 

 

 



 ix 
 

LIST OF FIGURES 
Figure 1.1 Structure of Montmorillonite Clay .................................................................... 9 
 
Figure 1.2 Morphologies Exhibited by Nanocomposites ................................................. 10 
 
Figure 1.3 Modification of Clay using exchange reaction of inter-gallery cations (Na+, 
Ca++) by organic cations. ................................................................................................. 13 
 
Figure 1.4    F/A versus H for various   values. ................................................................ 21 
 
Figure 1.5   Chemical Structure of the groups grafted on polypropylene......................... 22 
 
Figure 1.6   Structure of the Copolymer of Styrene and 4-vinyl phenol .......................... 26 
 
Figure 1.7 Schematic Showing Hydrogen Bonding between poly(styrene-co-vinyl 
phenol) and clay.    Represents Hydrogen Bonding of Hydroxyl Group of Copolymer 
with the Oxides of Silicate................................................................................................ 26 
 
Figure 2.1 Schematic showing the synthesis of poly(styrene-co-4-vinyl phenol)............ 32 
 
Figure 2.2  (a) 1H-NMR Spectrum of a random copolymer of poly(styrene-co-acetoxy 
styrene); (b) 1H-NMR Spectrum of a random copolymer of poly(styrene-co-(4-vinyl 
phenol)) ............................................................................................................................. 32 
 
Figure 3.1 SAXS patterns for the nanocomposites containing 5 wt%  Nanomer I.24 TL 
clay.................................................................................................................................... 43 
 
Figure 3.2Transmission Electron Micrographs of Nanocomposites containing 5 wt% 
Nanomer I.24 TL clay. (a) PS  (b) PVPh10...................................................................... 45 
 
Figure 3.3Transmission Electron Micrographs of Nanocomposites containing 5 wt % 
Nanomer I.24 TL clay (a) PVPh20 (b) PVPh30 ............................................................... 45 
 
Figure 3.4Transmission Electron Micrographs of Nanocomposites containing 5 wt% 
Nanomer I.24 TL clay (a) PVPh40 (b) PVPh50 ............................................................... 48 
 
Figure 3.5 Transmission electron Micrographs of Nanocomposite containing 5 wt % 
Nanomer I.24 TL clay and PVPh...................................................................................... 49 
 
Figure 3.6 Possible hydrogen bonding interactions in the polymer/clay nanocomposites51 
 
Figure 3.7 Deconvolution of carbonyl stretching region in the clay Nanomer I.24 TL and 
Dodecanoic acid where the peaks are assigned as:  A) Free C=O; B) Monomeric H-
bonded C=O; C) Dimeric C=O......................................................................................... 52 



 x 
 

Figure 3.8 represents the FT-IR spectra of C=O stretching region of Nanocomposites 
containing 5 wt % Nanomer I.24 TL clay and different copolymer compositions (a) 
PVPh10 (b) PVPh20 (c) PVPh30 (d) PVPh40 (e) PVPh50 (f) PVPh .............................. 54 
 
Figure 3.9The percentage of carbonyl groups involved in free, monomeric- and dimeric 
H-bonding as a function of copolymer composition......................................................... 60 
 
Figure 3.10 TIR spectra of  pure copolymers ................................................................... 62 
 
Figure 3.11 Deconvoluted IR spectra of PVPh40............................................................. 63 
 
Figure 3.12 Plot of the ratio of calculated CF / CT and CAS / CT as a function of......... 66 
 
Figure 3.13 FTIR spectra of Nanocomposites containing 5 wt%  Nanomer I.24 TL clay68 
 
Figure 3.14 Deconvoluted IR spectra of PVPh40/Nanomer I.24TL ................................ 69 
 
Figure 3.15Plot of CF / CT, CAS/CT and CI/ CT versus the mol% of vinyl phenol present  
in the 5 % Nanomer I.24 TL nanocomposite. ................................................................... 72 
 
Figure 4.1 SAXS curves for Different clays..................................................................... 82 
 
Figure 4.2  SAXS curves for Nanomer I.24 TL/ PVPh Nanocomposites......................... 85 
 
Figure 4.3 SAXS curves for Cloisite 25A / PVPh Nanocomposites ................................ 86 
 
Figure 4.4 SAXS curves for Cloisite Na+/ PVPh Nanocomposites ................................. 87 
 
Figure 4.5 TEM Micrographs of Polystyrene nanocomposites containing different clays
........................................................................................................................................... 88 
 
Figure 4.6 TEM Micrographs of PVPh30 nanocomposites containing different clays.... 90 
 
Figure 4.7 TEM Micrographs of PVPh50 nanocomposites containing different clays.... 92 
 
Figure 4.8 TEM Micrographs of PVPh nanocomposites containing different clay ......... 94 
 
Figure 4.9 FT-IR Spectra of Nanomer I.24 TL/ PVPh Nanocomposites.......................... 97 
 
Figure 4.10 FT-IR spectra of Cloisite 25A/PVPh Nanocomposites ................................. 98 
 
Figure 4.11 FT-IR Spectra of Cloisite Na+ / PVPh Nanocomposites .............................. 99 
 
Figure 4.12 Deconvoluted IR spectra of PVPh/Nanomer I.24TL Nanocomposite ........ 100 
 



 xi 
 

Figure 4.13 Plot of CF / CT, CAS / CT and CI / CT versus the mol% of vinyl phenol 
present in Nanomer I.24 TL nanocomposite................................................................... 103 
 
Figure 4.14 Plot of CF/CT, CAS/CT and CI/CT versus the mol% of vinyl phenol present 
in Cloisite 25A nanocomposite....................................................................................... 107 
 
Figure 4.15 Plot of CF / CT, CAS/CT and CI/ CT versus the mol% of vinyl phenol 
present in Cloisite Na+ nanocomposite. ......................................................................... 110 
 
Figure 5.1 Plot representing the solubility parameter difference between the copolymer 
and clays versus the vinyl phenol content in the copolymers. ........................................ 128 
 
Figure 6.1 SAXS Pattern for Nanocor I.24 TL Clay ...................................................... 137 
 
Figure 6.2 SAXS Pattern for Polystyrene Nanocomposites ........................................... 137 
 
Figure 6.3 SAXS Pattern for PVPh10 Nanocomposite for different clay loadings........ 138 
 
Figure 6.4 Transmission Electron Micrographs for Polystyrene Nanocomposites (a) 3% 
clay (b) 5% clay (c) 8%clay............................................................................................ 139 
 
Figure 6.5 Transmission Electron Micrographs for PVPh10  Nanocomposites (a) 3% clay 
(b) 5% clay (c) 8%clay ................................................................................................... 140 
 
Figure 6.6 SAXS Pattern for PVPh20 Nanocomposite for different clay loadings........ 142 
 
Figure 6.7 Transmission Electron Micrographs for PVPh20 Nanocomposites (a) 3% clay 
(b) 5% clay (c) 8%clay ................................................................................................... 143 
 
Figure 6.8 SAXS Pattern for PVPh30 Nanocomposites for different clay loadings ...... 144 
 
Figure 6.9 TEM for PVPh30 Nanocomposites for different Clay Loadings (a) 3% clay (b) 
5% clay (c) 8%clay ......................................................................................................... 145 
 
Figure 6.10 SAXS Pattern for PVPh40 Nanocomposites for different clay loadings .... 147 
 
Figure 6.11 TEM for PVPh40 Nanocomposites for different Clay Loadings (a) 3% clay 
(b) 5% clay (c) 8%clay ................................................................................................... 148 
 
Figure 6.12 SAXS Pattern for PVPh50 Nanocomposites for different clay loadings .... 150 
 
Figure 6.13 TEM for PVPh50 Nanocomposites for different Clay Loadings (a) 3% clay 
(b) 5% clay (c) 8%clay ................................................................................................... 151 
 
Figure 6.14 SAXS Pattern for PVPh Nanocomposites for different clay loadings ........ 152 



 xii 
 

Figure 6.15 TEM for PVPh Nanocomposites for different Clay Loadings (a) 3% clay (b) 
5% clay (c) 8%clay ......................................................................................................... 153 
 

                    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 
 

CHAPTER 1 INTRODUCTION 

 
 

1.1 Introduction 

Polymers have revolutionized the field of material science replacing metals, ceramics, 

glass and wood in various applications including structural applications, packaging, 

clothing, electronics, the automotive industry, electrical applications and medical devices 

due to the tailor-ability of properties, high strength to weight ratio, low production costs, 

ease of handling and low transportation costs. Although properties can be tailored by 

changing the monomer structure, synthesizing new polymers for target applications can 

be expensive and time consuming. Developing polymer blends and composites is an 

alternative approach to tailor the properties for various applications. Desired properties in 

such multi-component systems can be attained by judicious choice of proper components 

without having to synthesize new polymers. Blending of two or more polymers can be 

used to produce materials that span a wide spectrum of properties. Various examples of 

commercially successful blends can be found in the industry. NorylTM is an example of a 

commercial polymer blend of Polyphenylene oxide (PPO) and high impact polystyrene. 

PPO is a heat resistant material but very tough to process due to its high glass transition 

temperature (Tg) of 210ºC. Blending PPO with polystyrene lowers the Tg of the resulting 

blend and makes it more processable than pure PPO.  

Polymer composites can also be used to produce a better material with improved 

properties without the need of synthesizing new polymers. Polymer composites involve 

the reinforcement of the thermoplastic or a thermoset polymer matrix by fillers such as 

talc, silica, calcium carbonate, carbon black, carbon fiber, mica or glass to obtain better 
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thermal, mechanical and barrier properties with improved toughness and stiffness 

compared to a neat polymer. Effective reinforcement depends on the filler aspect ratio, 

the filler mechanical properties, filler loading, dispersion of the filler, surface area of the 

filler and the adhesion between the matrix and the filler. Although enhancement in 

properties can mostly be achieved by the incorporation of these fillers, it usually comes 

with some penalties such as loss of transparency, brittleness and large filler loadings (30-

40%). These disadvantages are observed due to the poor adhesion of the matrix and the 

filler and aggregation of the filler in the matrix. Consequentially, the need for materials 

which are transparent and light weight led to the exploration of fillers with nanoscale 

dimensions. Composites where the reinforcement phase has one of its dimensions on the 

order of a nanometer are called “nanocomposites”. Some of the nanofillers in use are 

spherical silica nanoparticles, carbon nanotubes, cellulose whiskers and layered silicates/ 

clays.  

 

1.2 Properties and Applications of Polymer/Clay nanocomposites 

 Single clay layers were proposed to be an ideal reinforcing agent in 1974 due to their 

extremely high aspect ratio and also due to the nanometer filler thickness being 

comparable to the scale of the polymer chain structure.1 Moreover, clay is abundantly 

available and is an inexpensive resource suitable for the production of nanocomposites. 

But it was the introduction of a nylon-6/clay hybrid by Toyota researchers in the 1990’s 

that brought attention to the enormous potential of polymer/clay nanocomposites. They 

were able to achieve drastic improvement in the performance of the nylon-6 with the 

addition of as little as 4.2 wt % montmorillonite clay. The strength in the resulting hybrid 
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increased by 50% and heat distortion temperature increased by 80°C.2  Polymer clay 

nanocomposites since then have become a promising class of muticomponent systems. 

Complete dispersion of clay sheets at the nanoscale level strongly impacts the 

macroscopic properties of the nanocomposites. Such nanocomposites exhibit exceptional 

improvement in such properties as high modulus3-7, increased thermal stability8-10, high 

mechanical strength11-12, improved flame resistance13-14 and outstanding barrier 

property15-19 relative to neat polymers or traditionally filled composites. The complete 

dispersion of clay nanolayers in a polymer nanocomposite optimizes the number of 

available reinforcing elements for carrying an applied load and deflecting cracks. The 

coupling between the tremendous surface area of the clay (~760m2/g) and the polymer 

matrix facilitates stress transfer to the reinforcement phase, allowing for tensile and 

toughening improvements.20 Enhancement in other properties such as barrier 

characteristics, reduced solvent uptake, and flame retardance arise from hindered 

diffusion pathways observed in polymer-clay nanocomposites. The high aspect ratio of 

clay platelets increases the tortuosity or the path of gas or water molecules as they diffuse 

into the nanocomposites increasing the barrier characteristics.21 

All these properties can be attained in the resulting nanocomposite while 

maintaining high optical clarity without inducing brittleness. The nanocomposites 

maintain transparency due to the nanometer length scale of the dispersed clay platelets, 

thus they undergo minimum scattering of light. Optical clarity and excellent barrier 

properties make nanocomposites highly suitable for food packaging applications. They 

also exhibit better recyclability without the need of multipolymer layered design 

otherwise required for obtaining improved barrier properties e.g Aegis® HFX Nylon 
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resin made by Honeywell is a high oxygen barrier Nylon for juice, tea and condiment 

bottles. These bottles provide excellent oxygen protection, glass like clarity and 

recyclability. 22 

Additionally, nanocomposites are light materials in comparison to the 

conventional micron-level composites as the addition of a small amount of clay (≤ 5%) 

provides considerable improvement in the properties of polymers. Production of light 

weight materials is highly advantageous as it cuts down the transportation costs. Weight 

saving is an important factor for automotive applications to improve fuel economy which 

has resulted in the replacement of metal parts with plastics.23 To obtain much better 

performance, polymer composites reinforced with particulate fillers are utilized.24 

Polymer nanocomposites are slowly replacing the conventional microcomposites in the 

automobile industry, as very low filler loading can lead to exceptional improvement in 

properties as opposed to 30-40 wt % loading required in traditionally filled composites. 

This leads to enormous weight reduction.  Toyota, in year 2001, introduced bumpers 

made out of nanocomposites which are 60% lighter and twice as resistant to denting and 

scratching.25 Nanocomposites are also being used in GM safari and Astro vans as “step-

assists”. Polyolefin nanocomposites used in this application are scratch resistant, light 

weight, rust-proof, with significant improvement in strength and reduction in weight 

leading to improved fuel efficiency and increased longevity.26 

Another advantage of nanocomposites is that they are amenable to the major 

processing techniques such as extrusion, injection molding and compression molding, 

making their commercial implementation more feasible. These methods are applicable 

for all kinds of polymers ranging from commodity polymers such as polystyrene and 
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polyethylene to engineering plastics like poly(ethylene terephthalate) and nylon.  

Polymer clay nanocomposites are a green alternative for the production of flame 

resistant polymers, unlike chemicals usually utilized to prepare flame retardant materials 

that can produce poisonous gases on combustion, for instance bromine containing 

chemicals. The dispersal of nanofiller clay in a polymer matrix is an inexpensive and 

environmentally benign method of producing flame retardant plastics. High flame 

retardancy is exhibited by nanocomposites due to the formation of a carbonaceous char 

layer which develops on the outer surface during combustion. This surface-char has a 

high concentration of clay layers and acts as an excellent insulator and and a mass 

transport barrier (slowing the oxygen supply as well as the escape of the combustion 

products generated during decomposition).21  

A wide variety of polymer matrices can be utilized in the preparation of 

nanocomposites which has made them the materials of great choice to be studied 

academically and to be employed for commercial applications. Polymer matrices that 

have been investigated include polyamides27-32, epoxy resins27, 33-36, polypropylene27, 37-39, 

polyethylene27, 40, polyimides41-43, poly (methyl methacrylate)28, 44, 45, polycaprolactam46, 

polyurethane.47 The commercial significance of polymer clay nanocomposites can be 

seen in various applications ranging from thermoplastic polyolefin based exterior 

claddings, barrier beer bottles, nylon packaging films and in paper coating applications. 

Table 1.1 shows the types of polymers used in the preparation of nanocomposites, with 

their benefits and applications.  
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Table 1.1 Applications of Polymer Clay nanocomposites 
Product Characteristics Applications Producer 

Nylon 
Nanocomposites 

improved modulus, 
strength, heat distort 
temperature, barrier 
properties 

automotive parts (e.g. 
timingbelt cover, 
engine cover, barrier, 
fuel line), packaging , 
barrier film 

Bayer Honeywell 
Polymer RTP 
Company Toyota 
Motors Ube Unitika 

Polyolefin 
nanocomposites 

stiffer, stronger, less 
brittle, lighter, more 
easily recycled, 
improved flame 
retardancy 

step-assist for GMC 
Safari and chevrolet 
Astro vans, heavy-
duty electrical 
enclosure 

Basell, Blackhawk 
Automotive, Plastics 
Inc, General Motors, 
Gitto Global 
Corporation, Southern 
Clay Products 

M9 High barrier 
properties 

Juice or beer bottles, 
multi-layer films, 
containers 

Mitsubishi Gas 
Chemical Company 

Durethan KU2-2601 
(nylon 6) 

Doubling of stiffness, 
high gloss and clarity, 
reduced oxygen 
transmission rate, 
improved barrier 
properties 

Barrier films, paper 
coating 

Bayer 

Aegis NC (nylon 
6/barrier nylon) 

doubling of stiffness, 
higher heat distort 
temperature, 
improved clarity 

medium barrier 
bottles and films 

Honeywell Polymer 

Aegis TM OX Highly reduced 
oxygen transmission 
rate, improved clarity 

High barrier beer 
bottles 

Honeywell Polymer 

Forte nanocomposite  improved temperature 
resistance and 
stiffness, very good 
impact properties 

automotive furniture 
appliance 

Nobel Polymer 
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Various methods have been utilized for the production of nanocomposites 

including in situ polymerization, solution and melt blending48-57. Melt blending is an 

environmentally benign and industrially appealing technique which does not require the 

use of any organic solvents but essentially needs favorable polymer-clay interaction and 

shear for obtaining delaminated composites. In this method, polymer and the inorganic 

component can be mixed by any processing technique, such as extrusion, with few 

difficulties due to the low filler loading utilized. In-situ polymerization is highly effective 

in producing exfoliated nanocomposites since the polymerization of monomers is carried 

out in the presence of clay. Monomers are small molecules which easily penetrate the 

clay galleries and as they polymerize in presence of an initiator, push the clay sheets apart 

resulting in exfoliation. In solution blending, polymer chains dissolved in the solvent 

diffuse in between the clay galleries and the removal of solvent often results in an 

intercalated/exfoliated structure. In this process, the entropy gained by desorption of the 

solvent molecules allows the polymer chains to diffuse between the clay layers, 

compensating for their decrease in conformational entropy58. 

 

1.3 Clay Types and Structure 

Clay is a natural, fine grained ceramic material, composed mainly of silica, alumina and 

water. Clay minerals are classified in terms of structure as allophone, kaolinite, 

halloysite, smectite, illite, chlorite, vermiculite and mixed layer minerals.58-59 Smectite 

clays are one of the predominantly used clays for the preparation of nanocomposites 

because of their swelling properties, high cation exchange capacities, high aspect ratio 

and large surface area.60-63 Smectite are a family of clays primarily composed of hydrated 
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sodium calcium aluminium silicates. The crystal lattice of smectite clays is composed of 

units made up of two silica tetrahedral sheets with a central alumina or magnesia 

octahedral sheet. Montmorillonite and hectorite are one of the most common smectite 

clays.62 Their chemical formulae are, respectively, Al4Si8O20(OH)4 . nH2O and 

Mg6Si8O20(OH)4 . nH2O. 

Figure 1.1 represents the structure of montmorillonite clay. It is composed of 

aluminium octahedral sandwiched between two silica tetrahedral with the thickness of 

1nm and lateral dimension ranging from 30 nm to several microns. An isomorphous 

substitution of Al+3 in the octahedral layer by Mg+2 or Fe+2, or Mg+2 by Li+ results in the 

negatively charged surface of montmorillonite clays. The amount of positive ions such as 

Na+ or Ca+2 , which can be taken up by the clay to balance the negative charge in the 

interlayer is a property known as the cation exchange capacity (CEC) which is expressed 

as milliequivalents/100g of clay. 

This clay is inherently hydrophilic due to its charged surface and exhibits high 

specific surface area (700-800 m2/g). The layered morphology of these silicates with a 

Van der Waal gap between the sheets makes them an excellent choice as filler in a 

nanocomposite, as the organic molecules and polymeric chains can intercalate into this 

gap and enable the dispersion of the individual sheets.  

 

1.4 Morphologies in Nanocomposites 

Different morphologies in polymer clay composites are possible depending on the 

level of dispersion of clay sheets (refer Figure 1.2). The morphology depends on the 

method of synthesis, processing technique and clay-polymer interactions.
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Figure 1.1 Structure of Montmorillonite Clay 
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Figure 1.2 Morphologies Exhibited by Nanocomposites 
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If polymer and clay are completely immiscible, phase-separated polymer/silicate 

nanocomposites with poor mechanical properties are usually obtained. This kind of a 

composite is a coarsely blended microcomposite with chemically distinct phases. There is 

poor physical attraction between organic and inorganic components leading to 

agglomeration and weak materials with inferior mechanical properties. In another 

scenario where polymer and clay are compatible, the mixing of a polymer with a layered 

silicate can result in the exfoliation or intercalation of the clay by the polymer.  In the 

intercalated structure, ordering of the clay sheets is retained with a larger spacing (2-3 

nm) due to insertion of a few extended polymeric chains between layers. In this state, the 

clay layers stay parallel to each other with alternate polymer silicate layers but are not 

able to provide optimum level of reinforcement. However, in an exfoliated system, the 

clay mineral particles are completely dispersed in the polymer. Here ordering of clay 

sheets is completely lost due to extensive polymer permeation. In this morphological 

state, there is high interfacial interaction between the clay sheets and the polymer matrix 

due to large surface area of dispersed clay. It is this exfoliated structure which provides 

optimal property improvement making these nanocomposites desired commercially. 

 

1.5 Challenges  

The homogeneous dispersion of clay sheets in a polymer matrix is very critical in 

attaining optimal enhancement of properties in nanocomposites. Most polymers do not 

exfoliate clays due to their incompatibility with hydrophilic clays. Polymers and clay 

tend to remain phase separated without mixing, forming chemically distinct phases. 

Additionally, the interlayer spacing between the clay sheets is on the order of 1 nm which 
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is much smaller than the radius of gyration of a polymer (5-10 nm). As a result, if a 

polymeric chain permeates inside the clay galleries, it cannot adopt as many 

conformations as in the bulk state, which leads to a loss of entropy. These factors inhibit 

the penetration of the polymer into the clay galleries and subsequent exfoliation of the 

clay sheets. 

These difficulties have partially been mitigated by the replacement of the 

interlayer cations with non-polar long chain organic surfactants such as alkyl ammonium 

salts (for example dioctadecyl dimethyl ammonium bromide64) (Figure 1.3). 

Incorporation of these molecules with non-polar long chains results in an increased 

gallery space between individually stacked clay sheets, thus facilitating the penetration of 

polymer chains. Secondly, the strong interaction between the clay sheets is greatly 

reduced lowering the surface energy of the clay and improving the wetting characteristics 

of the clay with the polymer. An increase in the compatibility between the clay sheets and 

the polymer chains also enhances the diffusion of polymer chains into the clay galleries. 

Third, the nature of the organic modifier can be specifically adapted to the matrix 

material, e.g by introducing functional groups at the chain ends, thus fine tuning the 

interfacial interaction between the matrix and the reinforcement.    

But the modification of clay by long chain surfactants is not usually sufficient to 

attain exfoliation. Giannellis and Vaia demonstrated both theoretically and 

experimentally in a series of studies65, 66 that the entropy gain associated with the 

surfactant layer separation cannot compensate for the entropy loss associated with the 

confinement of a polymer melt. Therefore the outcome of the hybrid formation was 

dominated by the energetic factors which include the pair interactions of silicate
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Figure 1.3 Modification of Clay using exchange reaction of inter-gallery cations 
(Na+, Ca++) by organic cations. 
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surface/polymer, silicate surface/ surfactant and surfactant/polymer. To realize the 

intercalation of a polymer into the gallery of clay, the energy released by the change in 

these pair interactions must compensate the entropy loss as the polymer chains try to 

permeate inside the clay galleries as described by the equation: 

                                                           ΔH – TΔS = ΔG < 0 

The enthalpy change ΔH, summarizes the change in the interactions between members of 

the mixture such as polymer and surfactant, polymer and silicate surface, surfactant and                        

silicate surface, upon mixing, while the entropy change ΔS results from the gain in 

releasing the constraint to the surfactant chains and by the loss in confinement of the 

polymer molecules upon forming the clay hybrid and ΔG represents the free energy of 

mixing the polymer and clay. 67 

 

1.6 Different Polymer-Clay Interactions 

It is generally accepted that favorable interaction between the polymer and silicate 

surface is of substantial importance in overcoming the entropic losses on polymer 

permeation and are needed to obtain improved dispersion. These interactions determine 

the morphology of the nanocomposites. Strong specific interactions such as covalent 

bonding, ionic bonding and hydrogen bonding have been used to achieve this purpose. 

Toyota Researchers in the 1990’s showed that the addition of 4.2 wt % montmorillonite 

clay to nylon-6 increases the strength by 50% and heat distortion temperature by 80°C. 68 

The excellent mechanical properties in the hybrid were attributed to the high surface area 

of the dispersed clay and the formation of ionic bonds between the polymer and the 

silicate surface. Nylon-6 molecules have one –COOH and one –NH2 end group. Titration 
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of nylon 6 with hydrochloric acid and sodium hydroxide shows that similar concentration 

of these functional groups coexists in the neat polymer. However, upon formation of a 

nylon clay hybrid, the concentration of –NH2 end groups was found to decrease relative 

to the amount of –COOH groups. The decreased –NH2 concentration was attributed to the 

formation of NH3
+ ionically bonded to the silicate surface. 15N CP-MAS NMR 

spectroscopy was also carried out to study the formation of these ionic bonds.  These 

results indicate that the –NH2 group present in the neat polymer has a 15N NMR chemical 

shift at 7.0 ppm but the nylon-6 clay hybrid exhibited a chemical shift at 11.2 ppm. This 

downfield chemical shift was attributed to the ionic interaction of NH3
+ end-groups of the 

nylon-6 bonded to the negatively charged silicate surface. Thus, by tuning the structure at 

molecular level, they observed drastic improvement in the macroscopic properties of the 

nanocomposite.  

Barber and coworkers69 found that the random incorporation of ionic 

functionalities along a poly(ethylene terephthalate) (PET) chain improved the interactions 

between the polymer and clay resulting in predominantly exfoliated morphology. The 

random ionomers used were sulfonate functionalized PET ranging from 1.8-5.8 mole 

percent. An increase in the ionic content in the copolymer improved the dispersion of 

montmorillonite clay, resulting in the formation of an exfoliated structure as determined 

by X-ray diffraction and TEM. The enhancement in dispersion was obtained due to ionic 

interactions between the negatively charged sulfonate groups on the PET backbone and 

the positively charged edges of the clay platelets. Mechanical properties also showed an 

improvement with increasing ionic content of the copolymer in the nanocomposite.  

Covalent interactions between the polymer and clay have also been utilized to 
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obtain exfoliation. Nanocomposites made of reactive silicate clays and thermoplastic 

urethanes (polyesterpolyol), exhibited a 125% increase in tensile strength, a 100% 

increase in elongation and a 78% increase in tensile modulus.70  Polymer chains 

containing –NCO end groups reacted with the –CH2CH2OH groups on the clay particles. 

Nanocomposites created from polyesterpolyol with –NCO end groups showed exfoliated 

and well-dispersed clay sheets in TEM image, while the composite that was prepared 

using the pristine thermoplastic polyurethane without the –NCO end groups, showed a 

peak at the characteristic clay d-spacing and intercalation at 3.4 nm and TEM also 

showed that clay sheets were present as aggregated regions. The evidence of this 

tethering reaction was monitored by Fourier Transform Infrared spectroscopy (FTIR). In 

another study by Kung-Hwa Wei, 71 reactive organoclay was utilized in preparing 

polyimide nanocomposites. An ion-exchange reaction in sodium-montmorillonite clay 

with p-phenylene diamine created an organoclay capable of undergoing covalent bonding 

with the anhydride end group of poly (amic acid). Complete imidization after heating at 

400º C produced nanostructured materials with a 2.5 fold higher modulus than pure 

polyimide films.  

Hydrogen bonding interactions have also been found effective at dispersing clay 

sheets in polymer matrices. Nanocomposites of functionalized diblock copolymer 

(Polystyrene-block-hydroxylated polyisoprene) were compared to those made with 

unmodified polystyrene-block-polyisoprene copolymer by Lee and improved dispersion 

was observed in the hydroxylated copolymer nanocomposite, which was attributed to 

hydrogen bonding between clay modified with methyl tallow bis (2-hydroxyethyl) 

quaternary ammonium chloride (Cloisite 30B) and the hydroxyl groups on the 
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copolymer.72 The hydroxyl groups on the copolymer can form hydrogen bonds with the 

hydroxyl groups present on the aliphatic tail (2-hydroxy ethyl) of the surfactant as well as 

the silicate surface. Small Angle X-ray scattering showed no observable peak and 

Transmission Electron Microscopy confirmed the presence of well dispersed clay sheets. 

In the nanocomposite that is formed from the unmodified polystyrene-block-polyisoprene 

copolymer, the clay sheets did not effectively disperse in the matrix, as documented by 

the presence of clay aggregates as observed by transmission electron microscopy. The 

presence of strong hydrogen bonding interactions has been verified by comparing the 

linear dynamic viscoelastic properties of the nanocomposites containing hydroxylated 

and unhydroxylated copolymers. An unusual temperature dependence of dynamic storage 

modulus (G’) and complex viscosity |η*| was found for the hydroxylated copolymer 

nanocomposites containing 5% clay where G’ and |η*| increased as temperature was 

increased from 170 to 240º C, while the G’ and |η*| decreased as the temperature was 

increased from 90 to 125 º C for the non-hydroxylated copolymer containing 

nanocomposite. In situ Fourier Transform infrared spectroscopy results indicate that 

hydrogen bonding persisted in the hydroxylated copolymer nanocomposite until 240 ºC, 

which was not observed for the neat copolymer. Much stronger hydrogen bonding 

interactions between the hydroxyl groups of the copolymer and hydroxyls of the clay 

modifier than between the copolymer chains is presented as the cause for this 

observation. Based on these results, they concluded that the unusual temperature 

dependence of G’ and |η*| was due to these specific interactions resulting in enhanced 

dispersion of the clay sheets with high surface area of the dispersed clay.  Further 
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evidence of hydrogen bonding was observed by measuring the area under the absorption 

band 3330 cm-1 at 30 º C which was much higher for the nanocomposite containing 

hydroxylated copolymer than that of the neat copolymer. 

It has also been shown that non-polar polymers such as polypropylene (PP) and 

polyethylene (PE) can produce a well dispersed nanocomposite when the PP or PE is 

modified with maleic anhydride. 73-75 Polypropylene oligomers modified by maleic 

anhydride (PP-MA) were mixed with clays that have octadecylammonium surfactants. 

TEM and XRD showed the presence of highly exfoliated nanocomposites for PP clay 

hybrids containing PP-MA oligomers whereas conventional composites with clay 

aggregates in the hundreds of microns were obtained for the polypropylene clay hybrid 

without the maleic anhydride modified oligomers. Also drastic improvement was 

observed in the mechanical properties of the nanocomposites with PP-MA oligomers. 

Hybrids containing the PP-MA oligomers showed an increase of 57% in storage modulus 

compared to the neat polymer and an increase of 32% with respect to polypropylene clay 

hybrids. This was attributed to better dispersion of clay sheets in the presence of the 

maleic anhydride modified oligomers. The authors believe that the improved dispersion is 

attainable in such nanocomposites due to strong hydrogen bonding interactions between 

the maleic anhydride group and the oxygen groups of silicates, although direct evidence 

of these specific interactions was not provided in the study.   

 

1.7 Theoretical studies 

Self consistent field (SCF) calculations have been completed by Balazs76 to investigate 

the nanoscale interactions between the polymers and silicate sheets. In this treatment, the 
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phase behavior of polymer systems has been modeled by combining Markov chain 

statistics with a mean field approximation for the free energy.  The results of the SCF 

calculations provide guidelines for the determination of the stability and morphology of 

polymer-clay mixtures. In these calculations, the characteristics of the surfactants, 

polymers and substrate were modified and thus the impact of these factors that drive the 

polymers to permeate the clay galleries was isolated.  

As the polymer chains within the clay gallery come into contact with solid 

surfaces, they cannot assume as many conformations against the impenetrable interfaces 

as in the bulk state. Thus the intermixing of polymer and clay is unfavorable and the 

mixture usually phase-separates. It was predicted that if a polymer had a large degree of 

polymerisation and the Flory–Huggins interaction parameter between itself and clay was 

negative, the nanocomposites would only exhibit an intercalated morphology. For easy 

penetration into the gallery, the polymer must contain a segment that is highly attracted to 

the clay surface and a longer segment that is not attracted to the clay layers because 

having a long chain anchored to the clay surface promotes the stability of the exfoliated 

morphology. In the case of organically modified clay surfaces, favorable enthalpic 

interactions between the tethered surfactants and the polymers can overwhelm the 

entropic losses and lead to effective intermixing of the polymer and clay. Figure 1.4 

shows the change in free energy of mixing, F/A versus H (where H is the separation 

between plates) profiles for various values of the polymer-surfactant interaction 

parameter,  with fixed surfactant length and grafting density.  For > 0, the free energy 

change of mixing is positive and so the polymer and clay are immiscible. For 0, the 

plots show a distinct local minimum for F < 0. Such local minimum indicates the 
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formation of an intercalated structure. The lowest free energy state is where the polymers 

penetrate the gallery and enhance the separation between the plates by a fixed amount. 

For < 0, the plot indicates that there is a global minimum at large (infinite) separation. 

Such plots point to an exfoliated structure, where the sheets are effectively separated 

from each other and dispersed within the melt. Using thermodynamic consideration, it 

was shown that increasing the attraction between the polymers and surfactants promotes 

the formation of stable composites and could result in the creation of exfoliated 

structures.  

Minisini and Tsobnang77 performed a molecular dynamics study to analyze the  

interaction energy between an organo-modified clay surface and functionalized 

polypropylene. The interaction energies of polypropylene/montmorillonite 

nanocomposites with different functional groups (Figure 1.5) were analyzed. Comparison 

was also made with neat polypropylene nanocomposites. The energetic interactions 

between the polymer and silicate surface were found to improve with the presence of 

functional group present. Among the three functional groups examined, PPSMA 

(paramethylphenyl maleic anhydride) exhibited optimal interaction with the organically 

modified montmorilllonite. These results demonstrate the capacity of molecular dynamic 

simulations to classify the functional groups as a function of their interactions with 

organomodified clay surface.  
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Figure 1.4    F/A versus H for various   values. 
 

 

 

 

 

 

The parameters are Ngr = 25, = 0.04, N = 100, and surf = 0. The diagram 
on the left shows the reference state, where the grafted chains form a melt 
between the surfaces, and in the diagram on the right, the surfaces are 
separated by the intervening polymers.  
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Figure 1.5   Chemical Structure of the groups grafted on polypropylene 
 

Vaia and Giannelis65, 66 developed a mean-field, lattice-based model of polymer melt 

intercalation into organically-modified silicates. They discussed that the interplay of the 

entropy and energetics of the mixing determines the free energy of the clay hybrid, 

suggesting three possible equilibrium states- immiscible, intercalated, and exfoliated. It 

was determined that the entropic penalty of polymer confinement may be compensated 

for by the increased conformational freedom of the surfactant chain as the layers separate. 

 

Because of this small change in the total entropy, small changes in the system’s internal 

energy determine whether intercalation is thermodynamically possible. Complete layer 

separation depends on the establishment of very favorable polymer-clay surface 

interactions to overcome the penalty of polymer confinement.  In another study, Vaia and 

Giannelis combined experimental observations (effect of silicate functionalization, anneal 

temperature, polymer molecular weight, and constituent interactions on polymer melt 

intercalation of a variety of styrene-derivative polymers in alkylammonium-
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functionalized silicates)  with qualitative predictions of a mean-field lattice-based model 

of polymer melt intercalation to establish general guidelines for hybrid formation. They 

proposed that packing density and chain length of the organic modifier in the silicate 

must be optimized to maximize the configurational freedom of these modifer chains upon 

layer separation while maximizing potential interaction sites with the surface. To 

maximize the layer separation in silicates, favorable interactions between the polymer 

and clay surface are essential. With an increase in the polar / hydrophilic nature of the 

polymer, the chain length of the organic modifier in the silicate needs to be shortened to 

minimize unfavorable interactions between the polymer and the clay. 

 

1.8 Goals and Strategy 

The homogeneous dispersion of clay sheets is highly critical in achieving dramatic 

improvements in the properties of polymer nanocomposites. Various strategies such as 

varying the surfactant length of the clay, processing conditions and polymer-clay 

interaction have been utilized to achieve the desired results. Strong specific interactions 

such as covalent bonding, electrostatic interactions and hydrogen bonding between 

polymer and clay have been examined for their ability to obtain thermodynamically 

stable exfoliated systems. Understanding the role of molecular level interactions between 

the nanofiller and the polymer system on the properties and dispersion of a clay 

nanocomposite still poses a significant challenge. Therefore, this study entails the 

investigation of the effect of the extent of hydrogen bonding between the polymer and 

clay on the nanoscopic structure of polymer/clay nanocomposites and their properties. 

The extent of hydrogen bonding in the polymer-clay nanocomposites can be controlled 
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by changing the composition of the copolymer that is the matrix, poly(styrene-co-

vinylphenol). Although hydrogen bonding interactions have been used to achieve 

miscibility between the polymer and clay, quantification of this interaction has not been 

completed. Quantification of hydrogen bonding between the polymer and clay using FT-

IR spectroscopy provides direct evidence for the underlying physics which controls the 

morphology, which is observed by small angle x-ray scattering (SAXS) and transmission 

electron microscopy (TEM). 

Studies from our group78, 79, 80, 81 and others82, 83 have shown that the use of strong 

specific interactions such as hydrogen bonding has the capability of enhancing the 

dispersion and miscibility of polymers mixed with anisotropic fillers, such as liquid 

crystalline polymers and carbon nanotubes. For instance, Dadmun et al. examined 

methods to control the extent of hydrogen bonding and optimize the dispersion of a rod 

like liquid crystalline polyurethane (LCPU) in an amorphous polymer, PS-co-VPh.  Most 

polymers don’t mix with each other due to the low entropy of mixing long polymer 

chains and the usual unfavorable enthalpy of mixing.84 This tendency to phase separate is 

much more pronounced in the case of a mixture where one of the polymer is a rigid rod 

and the other is a random coil. 85 Flory showed that this occurs due to the structural 

dissimilarity between rigid and flexible polymers, which tends to segregate the rigid rod 

polymer into an anisotropic phase separating out the isotropic flexible polymer. Dadmun 

et al. further demonstrated that the optimization of the extent of intermolecular hydrogen 

bonding through control of polymer chain structure provides a mechanism to create a 

blend with large miscibility window.  In this system, the amount of intermolecular 

hydrogen bonding determined by FTIR was correlated to the phase behavior of the 
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blends. It was determined that the intermolecular hydrogen bonding can be optimized by 

systematically varying the composition of the PS-co-VPh copolymer.   

Based on these guidelines, we intend to investigate if a similar proptocol can be 

applied to our system. Our blend system consists of rigid montmorillonite clay and a 

flexible copolymer of styrene and vinyl phenol. The structures of the clay and the 

copolymer are dissimilar and don’t readily mix. Clay sheets are crystalline in nature and 

prefer a stacked structure, therefore they tend to phase separate from the flexible 

polymer. Through this study, we will examine if the use of strong specific interactions 

such as hydrogen bonding can be utilized to enhance the dispersion of clay in a polymer 

matrix. The clay has oxide ions on its surface with the capability of undergoing hydrogen 

bonding with the hydroxyl groups of the copolymer. The extent of intermolecular 

hydrogen bonding will be controlled by varying the copolymer architecture where the 

copolymer consists of a hydrogen-bonding monomer, 4-vinyl phenol and a non-hydrogen 

bonding monomer, styrene. The mole percentage of these monomers will be varied 

ranging from 0-100% vinyl phenol and the extent of intermolecular hydrogen bonding 

between clay and the copolymer will be studied by FT-IR spectroscopy. The results are 

correlated to the dispersion obtained by SAXS and TEM and thermal properties. 

The structure of the copolymer employed in the studies is shown in Figure 1.6 and 

expected interaction of clay with the copolymer is depicted in Figure 1.7. 
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Figure 1.6   Structure of the Copolymer of Styrene and 4-vinyl phenol 
 
 
 

 

 

 

 

 

 

 

Figure 1.7 Schematic Showing Hydrogen Bonding between poly(styrene-co-vinyl 
phenol) and clay.    Represents Hydrogen Bonding of Hydroxyl Group of 

Copolymer with the Oxides of Silicate. 
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CHAPTER 2 EXPERIMENTAL TECHNIQUES 

In this chapter, the experimental techniques are described in detail, including synthesis 

and characterization of polymers and preparation and characterization of nanocomposites. 

2.1 Synthesis of copolymers of styrene and vinyl phenol.  

Copolymers with varying mole percentages of 4-vinyl phenol (0-50%) are synthesized by 

free radical polymerization. Free radical polymerization is one of the most common 

techniques of synthesizing polymers from vinyl monomers.86   

Initiation: An azo compound, 2,2’-azobis(isobutyronitrile) (AIBN) is used as an 

initiator, which decomposes at relatively low temperatures. The driving force for 

decomposition is the formation of nitrogen and a resonance stabilized cyanopropyl 

radical.  
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`Propagation:  In the propagation step, the radical monomer adds to another monomer 

molecule to form a new radical and this process continues until a reaction occurs that 

terminates the chain growth. 

 

 
 
Termination: There are two principal methods to terminate a free radical 

polymerization- coupling or the combination of chain end radicals or disproportionation 

involving the transfer of an atom, usually hydrogen, from one chain end to another.87 The 

route of termination depends on steric effects and the availability of alpha hydrogens for 

hydrogen transfer.  
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Disproportionation: 

 

At low temperatures, polystyryl radicals primarily undergo termination by coupling but in 

general both the processes occur. 

Free Radical Polymerization Procedure: Random copolymers of styrene and 4-vinyl 
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phenol were prepared by the free radical copolymerization of styrene and 4-

acetoxystyrene using AIBN as the initiator, followed by the hydrolysis of the acetoxy 

groups using hydrazine hydrate. Copolymers containing 0, 10, 20, 30, 40, and 50 mol % 

vinyl phenol were synthesized. 

As an example of the synthesis, for the preparation of 20 % vinyl phenol 

copolymer, styrene (27.593 mL, 0.240 mmol), 4-acetoxystyrene (7.33mL, 0.0480 mmol), 

and AIBN (0.080 g) were transferred into a three-neck round-bottom flask filled with 

dioxane (65 mL). Different compositions were synthesized by varying the ratio of 4-

acetoxy styrene to styrene in the flask. Monomer to initiator weight ratio of (411:1) and 

monomer to solvent weight ratio of (1:2) was used to obtain target molecular weights. 

The mixture was freeze-pump-thawed once and kept in a pre-heated oil bath at 60°C for 

20 h under a mild flow of argon. Precipitation was carried out in cold methanol. The 

polymer was dried in a vacuum oven for 2 days at 80°C. 1H NMR peak assignments: 1.4 

ppm (2H, d, CH2); 1.7 ppm (1H, t, CH); 2.2 ppm (3H, s, -OCOCH3); 6.2-7.2 ppm (9H, m, 

aromatic H). Acetoxy styrene groups are randomly distributed throughout the copolymer, 

since the reactivity ratios of styrene and 4-acetoxy styrene are 0.8 and 1.02, 

respectively.88 

Next, the hydrolysis of the acetoxy groups to hydroxyl groups was carried out by the 

dissolution of 2 g of poly(styrene-co-4-acetoxystyrene) in dioxane (40 mL) in a round-

bottom flask.89 Hydrazine hydrate (6 mL) was then added to this solution and stirred for 

40 h at room temperature. Copolymers with 20% poly(vinyl phenol) or less were 

precipitated into cold methanol and the copolymers with more than 20% poly(vinyl 

phenol) were precipitated into hexanes. They were then dried in a vacuum oven for 48 h. 
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The completion of the hydrolysis was verified by the disappearance of the methyl peak of 

acetoxy group at 2.2 ppm in the NMR spectrum. Figure 2.1 shows a schematic for the 

synthesis of the copolymers of styrene and 4-vinyl phenol. Fig 2.2 (a) and (b) show 

reperesentative NMR spectra of poly(styrene-co-4-acetoxystyrene) and the hydrolyzed 

copolymer poly(styrene-co-4-vinyl phenol) respectively. Table 1 lists the molecular 

weight characteristics and vinyl phenol content of the random copolymers used in this 

study. 

 

2.2 Preparation of nanocomposites 

Nanocomposites with constant clay loading of 5 wt % were prepared by solution 

blending. A suspension of clay in tetrahydrofuran was sonicated for one hour in a 

Branson BH1200 sonicator and the copolymer was then added to the solution, followed 

by sonication for one more hour. Sonication tends to break up the clay agglomerates and 

enhances the dispersion of the clay sheets in the polymer matrix. After sonication, the 

mixture was allowed to stir for seven days. The composite was then precipitated from the 

solution in cold methanol if it contained 0-20% vinyl phenol or in hexane if it contained 

20% -100% poly(vinyl phenol).  The presence of more than 20% poly(vinyl phenol) in 

the copolymer makes it significantly polar to require a non-polar solvent to precipitate it.  

The nanocomposites were then dried in a vacuum oven at 80° C for 48 hrs. 

 

2.3 Characterization of copolymers and Nanocomposites 

Determination of the percentage of 4-acetoxy styrene repeat units in the copolymer and to 

verify its hydrolysis to vinyl phenol were carried out by 300MHz 1H-NMR with TMS as
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Figure 2.1 Schematic showing the synthesis of poly(styrene-co-4-vinyl phenol) 
 
 

 

Figure 2.2  (a) 1H-NMR Spectrum of a random copolymer of poly(styrene-co-
acetoxy styrene); (b) 1H-NMR Spectrum of a random copolymer of poly(styrene-co-

(4-vinyl phenol)) 
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Table 2.1 Molecular weight properties of copolymers used in this study 
 

 Polymer Mn Mw Mw/Mn   % Vinyl Phenol 

Polystyrene 66000 97000 1.47 0 

PSPVPh10 53700 79300 1.45 13.5 

PSVPh 20 66000 135000 1.95 20 

PSVPh30 59900 90000 1.50 30 

PSVPh40 60700 88100 1.45 38 

         PSVPh50 57000 85500 1.50 47.5 

Poly(vinyl 

phenol) 

22000 __ __ 100 
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an internal standard. Deuterated chloroform was used as a solvent for all poly(styrene-co-

acetoxystyrene) compositions and deuterated dimethyl sulfoxide was used for the 30-50% 

poly(styrene-co-vinyl phenol) copolymers because of their higher polarity. A peak at 2.2 

ppm showed the presence of acetoxy groups in the copolymer, due to the presence of the 

-OCOCH3 protons. Integration of the peak area of the acetoxy groups at 2.2 ppm and the 

styrene aromatic peak area at 6.2-7.2 ppm was utilized to determine the percentage of 4-

acetoxy styrene in the copolymer. The compositions of the copolymer (PS-co-4-vinyl 

phenol) were determined using the method of Radmard90 and Coleman and Painter.91 

The normalized area per proton corresponding to the acetoxy styrene repeating unit can 

be determined as: 

Aacetoxy = Area of 2.2 ppm peak / 3 

The broad peaks at 6.2-7.2 ppm correspond to the aromatic protons of styrene (5 

hydrogens) and acetoxy styrene (4 hydrogens). Thus the normalized area per proton 

corresponding to the styrene repeating unit can be calculated as: 

                                   Astyrene = [(Total area of region from 6.2-7.2) – 4 Aacetoxy] / 5 

The percentage of acetoxy styrene repeating units can then be calculated from: 

                                   % acetoxy styrene = 100 * Aacetoxy / (Astyrene + Aacetoxy) 

 

2.3.1 Small angle X-ray scattering  

Small angle x-ray scattering (SAXS) is an analytical technique for the structural 

characterization of solid and fluid materials in the nanometer range. In SAXS 

experiments, the sample is irradiated by a well-defined, monochromatic X-ray beam. 

When a non-homogeneous medium is irradiated, structural information of the 
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scattering particles can be derived from the intensity of the scattered beam as a 

function of scattering angle. Scattering occurs due to the spatial distribution of the 

electron densities of the components in the sample. This technique is fast and 

straightforward and does not require any special sample preparation. It can be utilized 

to analyze most samples under ambient conditions without any chemical or mechanical 

pre-treatment. Bragg’s law states that the scattering from an ordered crystal is given 

by: 

                                       nλ = 2dsinθ                                                            (2.1) 

Where d is the distance between the atomic layers in a crystal, λ is the wavelength of 

incident radiation, θ is half of the scattering angle measured from the incident beam and n 

is an integer. According to Bragg’s law, the structural size is inversely proportional to the 

scattering angle, so high angle relates to smaller structure and low angle relates to larger 

structures.92  

Small angle x-ray scattering can be used as a valuable tool to determine the 

dispersion of clay sheets in a polymer matrix. The interlayer spacing in the clays can be 

determined by plotting the scattering intensity as a function of q (scattering vector), 

where  

                                                 q = 4π/λ sin(θ)                                                               (2.2) 

combining equations 2.1 and 2.2, the relationship between the q-position of a peak in the 

scattering curve and d-spacing of the clay can be obtained as: 

                                                 q = 2π/d                                                                         (2.3) 

The spacing between the clay sheets can thus be determined from a SAXS 
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pattern using equation 2.3. Clay sheets are crystalline in nature and have a stacking 

order, thus they exhibit a characteristic peak in the SAXS pattern at a q that 

corresponds to the van der Waal spacing (d-spacing). Therefore changes in the SAXS 

pattern can be monitored to discern changes in the clay stacking or its d-spacing. This 

d-spacing is affected by the permeation of polymer chains in the clay galleries. If there 

is no discernible change in d-spacing as exhibited in the SAXS pattern, a traditional 

composite with chemically distinct phases (polymer and clay) has been formed. 

However, a shift towards the higher d-spacing reflects the formation of an intercalated 

nanocomposite and the complete loss of a characteristic peak is indicative of an 

exfoliated morphology, which can also be verified using transmission electron 

microscopy (TEM). 

The SAXS pattern shown in this work were recorded on a Molecular Metrology 

small angle x-ray using Cu Kα radiation (λ = 1.5418 A°) equipped with two 

dimensional position sensitive proportional detector of circular shape (diameter = 

2.5cm).  A monochromatic x-ray source from the x-ray sealed tube is focused by a pair 

of Kirkpatrick-Baez microfocusing mirrors. The sample-to-detector distance was 0.5m 

with the q range of 0.018A°-1-0.50 A°-1. The x-ray operating voltage was 45kV with the 

current of 0.66mA. The exposure time for measuring each sample was 1h. 

 

2.3.2 Transmission Electron Microscopy  

Transmission electron microscope is an excellent tool to directly investigate the  

morphology of polymer/clay nanocomposites. The instrument uses a focused beam of 
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electrons instead of light to "see through" a specimen. A "light source" at the top of the 

microscope emits the electrons that travel through vacuum in the column of the 

microscope. Instead of glass lenses focusing the light in the light microscope, the TEM 

uses electromagnetic lenses to focus the electrons into a very thin beam. The electron 

beam then travels through the specimen. Depending on the density of the material 

present, some of the electrons are scattered. At the bottom of the microscope the 

unscattered electrons hit a fluorescent screen, which gives rise to a "shadow image" of the 

specimen with its different parts displayed in varied darkness according to their electron 

density. The image can be studied directly by the operator or photographed with a 

camera. 

TEM is based on the electron density differences in the sample and for our system 

contrast between the layered silicates and the polymer phase was sufficient for imaging 

of the nanocomposites and did not require any additional staining. Clay, due to its higher 

electron density, allows fewer electrons to be transmitted through and appears darker 

relative to the polymer and thus the dispersion in the nanocomposites can be viewed 

directly using this technique. 

Transmission electron Micrographs were obtained on a Hitachi H800 using an 

accelerating voltage of 100 kV. The nanocomposite samples were sectioned into ultrathin 

slices (< 100nm) at room temperature using a Richert microtome equipped with a 

diamond knife and then mounted on 200 mesh carbon coated copper grids.  
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2.3.3 Fourier Transform Infrared spectroscopy 

Electromagnetic (EM) radiation with frequencies between 4000 and 400 cm-1 

(wavenumbers) is termed infrared (IR) radiation. IR spectroscopy is an invaluable tool in 

organic structure determination and verification. Radiation in the region (400-4000cm-1) 

can be absorbed by interatomic bonds in organic compounds. Each chemical bond has 

specific frequencies at which it vibrates corresponding to energy levels. Also, the 

absorption of chemical bonds in different environments will vary transitions intensity 

between distinct frequency. This absorption information is collected and analysed to 

provide information on the state of the bonds within a given compound. 

This technique will be used to examine the system of polymer and clay mixtures 

where the carboxylic acid groups and hydroxyl groups of the clay will be examined, as 

they can undergo hydrogen bonding with hydroxyl groups of the copolymer. Hydrogen 

bonding will affect the bond length of the C=O of carboxylic acid, which is reflected in 

the frequency shift to lower wavenumber of the C=O stretch. Similarly, the hydroxyl 

stretch bond in the FTIR spectra can be analysed through curve fitting and resolved into 

free, intermolecular and intramolecularly hydrogen bonded hydroxyls. The deconvolution 

of the IR peaks was carried out using Peakfit software version 4.11 with baseline 

correction.  Infrared spectra were obtained on a Bio-Rad FTS 6000 Spectrometer using 

4000 scans to obtain sufficient signal to noise ratio at a resolution of 2 cm-1. Samples for 

FTIR studies were obtained by mixing solid polymer sample (10mg) with potassium 

bromide (90mg) which was ground to a fine powder and pressed using a die. Potassium 

bromide is used for sample preparation because it is transparent in the mid-IR region. 

Pressed pellets obtained using the dies were dried in vacuum at 60 ºC for two days to 
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eliminate moisture.  

 

2.3.4 Differential Scanning Calorimetry 

The thermal properties of the nanocomposites were determined using a by Mettler DSC 

821. Calibration of the DSC was completed using indium as a standard (m.p. 156.6°C 

and heat of fusion=28.45 J/g). Measurements were made from 25-160°C at a scanning 

rate of 20°C/min under argon. To eliminate the influence of thermal history, data from 

the first heating was discarded. 
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CHAPTER 3 OPTIMIZATION OF INTERFACIAL INTERACTIONS TO 

ACHIEVE NANOSCALE DISPERSION OF CLAY SHEETS IN THE 

POLYMER MATRIX 

 
3.1 Introduction 

       In this chapter, the optimization of the extent of intermolecular hydrogen bonding in 

a polymer clay nanocomposite is investigated by controlling the distribution of hydroxyl 

groups in a copolymer.  This is realized by synthesizing copolymers of styrene and 4-

vinyl phenol where styrene is a non-hydrogen bonding monomer and 4-vinyl phenol can 

participate in hydrogen bonding via its hydroxyl group. It is expected that the extent of 

intermolecular hydrogen bonding between the polymer and clay can be manipulated by 

controlling the amount of vinyl phenol groups in the copolymers. Moreover, hydrogen 

bonding provides favorable enthalpic interactions between the polymer and clay, which 

in turn will affect the dispersion of the clay in the polymer matrix. Copolymers with 

varying mole percentages of 4-vinyl phenol (0-50%) are synthesized by free radical 

polymerization. The morphological behavior of the nanocomposites is observed using 

small angle x-ray scattering and transmission electron microscopy and correlated to the 

molecular level interaction, which is obtained through fourier transform infrared 

spectroscopy. The carbonyl stretching vibration has been used to quantify the extent of 

inter-molecular hydrogen bonding between the polymer and clay in the nanocomposite 

and further support has been provided by examination of the hydroxyl stretching 

vibration.  The extent of this intermolecular hydrogen bonding between different clays 

and the polymer matrix can provide fundamental information on the underlying physics 
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that governs the ultimate morphology of polymer clay nanocomposites and provide 

guidelines to improve their dispersion for a wide range of polymer matrices. 

 

3.2 Results and Discussion 

3.2.1 Morphological Studies 

Small angle x-ray scattering and transmission electron microscopy are used to 

determine the morphology and dispersion of clay sheets in the nanocomposites. Small 

angle x-ray scattering is a valuable tool to determine the dispersion of clay sheets in the 

polymer matrix. The interlayer spacing of the clays is related to the momentum transfer 

(q) of a peak in the SAXS curve, where q is defined as:  

                                             q = ⎟
⎠
⎞

⎜
⎝
⎛

2
sin4 θ

λ
π  

and λ is the wavelength of the radiation used and θ is the scattering angle. 

The spacing between the clay sheets, d, is related to the q of the peak as (d = 2π/q). A 

peak in the SAXS curve is expected because the clay sheets are crystalline and have a 

stacking order. This stacking order, however, maybe affected by permeation of polymer 

chains in the clay galleries which will alter the obtained SAXS curve. Upon mixing the clay 

with the polymer, characteristic clay peak may stay at the same value q value, indicating poor 

dispersion, or a shift in the peak towards higher d-spacing can take place indicating an 

intercalated morphology. In the case of the complete disappearance of the q peak, this 

indicates the disappearance of order in the clay sheets and an “exfoliated” structure is 

expected. However, these results must be supported by transmission electron microscopy 

experiments, which provide direct visualization of the nanocomposite morphology.  



 42 
 

The clay modified by 12-amino dodecanoic acid (Nanomer I.24 TL) exhibits a 

peak in a small angle x-ray scattering experiment corresponding to a d-spacing of 16.7 Å. 

This is a larger d-spacing compared to sodium montmorillonite clay. Nanomer I.24 TL 

was selected as the nanofiller as its organic modifier has a carboxylic acid group capable 

of undergoing hydrogen bonding with the hydroxyl group of the copolymer that can be 

quantitatively examined with FTIR. The oxide ions present on the clay surface can also 

participate in inter-molecular hydrogen bonding with the polymer. Nanocomposites of 

Nanomer I.24 TL were made with 5 wt% clay mixed with copolymers that ranged in 

composition from 0-100 % vinyl phenol. More specifically, Polystyrene, PVPh10, 

PVPh20, PVPh30, PVPh40, PVPh50 and PVPh (100%) were used as polymer matrices. 

Fig. 3.1 shows the SAXS patterns for these nanocomposites.  

Nanocomposites PS, PVPh10 and PVPh20 show a characteristic peak at 16.7 Å, the same position as the pure clay. 

Thus, no discernible change in the basal spacing of the clay in the composite was observed, indicating that the Nanomer 

I.24 TL has failed to imbibe the polymer chains resulting in a conventional composite with clay tactoids. This is further 

confirmed by Figs.  3.2(a), 3.2 (b) and 3.3 (a), which show their TEM micrographs that exhibit aggregated clay sheets 

suggesting poor dispersion in these nanocomposites. This is not unexpected as these polymers do not have sufficient 

hydrogen bonding to realize effective inter-molecular hydrogen bonding with the clay. It is known that polymer chains lose 

entropy as they intercalate inside a clay gallery thus enthalpic interactions between the polymer and clay are needed to 

obtain significant dispersion of the clay. Apparently the inter-molecular hydrogen bonding is insufficient in these 

composites to realize intercalation giving rise to poor dispersion.
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Figure 3.1 SAXS patterns for the nanocomposites containing 5 wt%  
Nanomer I.24 TL clay 
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 Figure 3.2Transmission Electron Micrographs of Nanocomposites containing 
5 wt% Nanomer I.24 TL clay. (a) PS  (b) PVPh10 

 

Figure 3.3Transmission Electron Micrographs of Nanocomposites containing 5 wt 
% Nanomer I.24 TL clay (a) PVPh20 (b) PVPh30 
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(b) 



 46 
 

On increasing the vinyl phenol content to 30% in the copolymer, the SAXS curve 

of the nanocomposite shows a broad peak in the region of pure clay d-spacing suggesting 

an intermediate structure between intercalation and exfoliation.93 This can be verified by 

referring to Fig. 3.3 (b) where both stacked and exfoliated sheets can be observed in the 

TEM of the sample. The improved dispersion of clay sheets in this sample can be 

attributed to enhanced inter-molecular hydrogen bonding between the polymer and the 

clay. PVPh30 has more hydroxyl groups which increases the propensity to engage in 

inter-molecular hydrogen bonding with the clay. Thus it appears that these enthalpic 

interactions in the form of hydrogen bonding are able to offset some of the entropic 

losses as the polymer chains try to permeate the clay interlayer space.  

The SAXS curve of the nanocomposite containing the 40% poly(vinyl phenol) 

copolymer as the matrix in Fig. 3.1, exhibits no peak at q = 0.376 Å-1, but a small 

shoulder is observed for this nanocomposite at q = 0.26 Å -1. This corresponds to a d 

spacing of 24 Å. Thus some intercalation of the polymer into the clay gallery has 

occurred with a significant portion of the nanocomposite is exfoliated. According to the 

spectra, some intercalation has taken place but mostly the nanocomposite should be 

exfoliated. Additionally, Fig. 3.4 (a) is a TEM image of this PVPh40 nanocomposite, 

demonstrating that individual clay sheets are present, indicating that significant 

disruption of stacked clay sheets has taken place resulting in high delamination. 

Similarly, the SAXS curve of the PVPh50 nanocomposite displayed in Fig. 3.1, shows 

the complete disappearance of the peak in the region of clay d-spacing (q = 0.376 Å -1).  

The absence of any peak suggests that ordering of clay sheets is completely lost and the 

clay sheets are homogeneously distributed in the polymer matrix. Since it is not possible 
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to detect periodicity beyond 8.8 nm using SAXS, we can expect that clay sheets are 

separated by more than 8.8 nm.  At this separation, they are completely exfoliated. 

Figure 3.4 (b) shows the TEM micrograph for the PSVPh50 nanocomposite where the 

clay sheets represented by the dark color are completely separated from each other 

confirming complete exfoliation. It is believed that PVPh40 and PVPh50 have sufficient 

hydroxyl groups, which results in efficient intermolecular hydrogen bonding with the 

clay. These strong specific interactions provide sufficient enthalpic gain to overcome 

entropic losses when penetrating the clay gallery, which in turn, gives rise to a mostly 

exfoliated structure in both nanocomposites. 

As the vinyl phenol percentage in the copolymer is increased to 100% vinyl 

phenol (PVPh), a similar trend may be expected, where complete exfoliation should 

occur. However, an intercalated morphology is observed in the nanocomposite where 

clay sheets are separated by a d-spacing of 20 Å.  The presence of long non-polar alkyl 

chains present as surfactants in the clay galleries in the Nanomer I.24 TL might provide 

some repulsive interaction for the very hydrophilic PVPh chains containing –OH groups 

as they try to diffuse inside the interlayer spacing. The TEM micrograph of this sample is 

shown in Figure 3.5, where the clay sheets maintain their ordered structure with the 

permeation of a few polymer chains. Further support for the observed morphological 

behavior of the nanocomposites will be provided by FTIR analysis of the intermolecular 

interactions of this system. 
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 Figure 3.4Transmission Electron Micrographs of Nanocomposites containing 

5 wt% Nanomer I.24 TL clay (a) PVPh40 (b) PVPh50 
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Figure 3.5 Transmission electron Micrographs of Nanocomposite containing 5 wt % 

Nanomer I.24 TL clay and PVPh 
 

 

3.2.2 FTIR studies 

Infrared spectroscopy is a powerful technique to determine intermolecular hydrogen 

bonding between two polymer components in a mixture. This technique will be used for 

the polymer and clay mixtures in this study, where the carboxylic acid group of the clay 

can undergo hydrogen bonding with hydroxyl groups of the copolymer. Examination of 

the carbonyl stretching vibration of the clay surfactant and the hydroxyl group stretching 

of the copolymer can provide information on the extent of hydrogen bonding in these 

nanocomposites. However, quantitative evaluation of hydrogen bonding by examining 

the hydroxyl region is not possible due to vibration overlap of CH2 asymmetric and 

symmetric vibrations and possible changes in absorption coefficients of intra- and inter- 

associated hydroxyl components.94 This hydroxyl peak is also plagued by the overtone of 

50 nm
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the fundamental carbonyl stretching vibration.95 Based on these observations the carbonyl 

stretching vibrations is examined to quantitatively evaluate the extent of hydrogen 

bonding interactions in the nanocomposite, while qualitative analysis of hydroxyl 

stretching vibrations will provide information to aid in the interpretation of the carbonyl 

results. 

The carbonyl group can be involved in three hydrogen bond interactions including 

intramolecular hydrogen bonding with another carboxylic acid moiety to form a dimer, 

intermolecular hydrogen bonding between the –COOH of the surfactant with the 

hydroxyl group of the copolymer or it can form an hydrogen bond with the –OH of 

another carboxylic acid group, denoted as a monomeric carbonyl. The carbonyls may also 

not participate in hydrogen bonding and be free. Figure 3.6 represents the hydrogen 

bonding interactions possible for the carbonyl present in the clay. 

First, the infrared analysis of the pure clay (Nanomer I.24TL) was carried out to assign 

the peaks of the carbonyl stretching vibration in the samples. The deconvolution of the IR 

peaks was carried out by Peakfit software version 4.11 with baseline correction. After 

resolving the carbonyl peaks using the software, three peaks were revealed and assigned 

to the free C=O at 1805 cm-1, the monomeric C=O hydrogen bonded to the hydroxyl of 

another carboxylic acid group at 1772 cm-1, and the C=O hydrogen bonded to another 

carbonyl of clay in dimeric form at 1714 cm-1 (Figure 3.7). To confirm this assignment, a 

separate infrared study on dodecanoic acid was completed by dissolving  in a non-polar 

solvent heptane (7 mg of dodecanoic acid in 2 mL of heptane) and the deconvolution of 

the C=O peak again showed three peaks at 1715 cm-1, 1769 cm-1 and 1801 cm-1, which 

were attributed to dimeric, monomeric and free carbonyls respectively (Figure 3.7).  
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Figure 3.6 Possible hydrogen bonding interactions in the polymer/clay 
nanocomposites 
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Figure 3.7 Deconvolution of carbonyl stretching region in the clay Nanomer I.24 TL 
and Dodecanoic acid where the peaks are assigned as:  A) Free C=O; B) Monomeric 

H-bonded C=O; C) Dimeric C=O 
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The analysis of these peaks in the nanocomposites is required to determine the percentage 

of carbonyl groups in the clay participating in intermolecular hydrogen bonding with the 

copolymer. Infrared spectral data recorded for the nanocomposites containing 5 wt % 

clay and different copolymers with vinyl phenol content ranging from 0-100 % are 

depicted in Figure 3.8. The spectra shows that on increasing the vinyl phenol content of 

the copolymer in the nanocomposite, the peak observed around 1772 cm-1, which has 

been attributed to monomeric hydrogen bonding, increases in intensity while the free 

C=O at 1805 cm-1 decreases, suggesting that with the availability of more of hydroxyl 

groups in the copolymer, more carbonyl functionalities of the clay participate in 

monomeric hydrogen bonding, thus increasing the extent of intermolecular hydrogen 

bonding. The quantitative analysis of these peaks to extract the % carbonyl that 

participate in the intermolecular interaction is also possible. It is known that the 

absorption coefficients and frequency of the free carbonyl vibrations do not change with  

blend composition.94   However, for the hydrogen-bonded vibration, variations of 1-2 cm-1 

have been observed and have been attributed to changes in hydrogen bond geometry 

distribution and strength as a function of composition in the blends. Based on this 

observation, in the data analysis, the frequency and the width of the free carbonyl 

vibration remain constant and the frequency and width of the hydrogen bonded carbonyl 

varies during the curve fitting. Moreover, since the absorption coefficient of hydrogen- 

bonded carbonyl is greater than that of the free carbonyl in polymer blends, 96, 97 a 

correction factor must be introduced to account for these differences. 
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Figure 3.8 represents the FT-IR spectra of C=O stretching region of 
Nanocomposites containing 5 wt % Nanomer I.24 TL clay and different copolymer 
compositions (a) PVPh10 (b) PVPh20 (c) PVPh30 (d) PVPh40 (e) PVPh50 (f) PVPh 
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The ratio of these absorption coefficients, K1 is calculated using the method of 

Coleman and Painter.93, 96, 97  

                                             K = 
A A

A A
HB
T

HB
T

F
T

F
T

2 1

1 2

−

−
 

where AHB
T2 and AHB

T1 are hydrogen bonded absorption intensities at temperatures T1 and T2 

and AF
T1  and AF

T2 are non-hydrogen bonded absorption intensities at temperatures T1 and 

T2. In our experiments, T1 was room temperature (24 °C) and T2 was 180°C.  

This analysis requires that the change in absorption coefficient with temperature 

be insignificant and there must be a large transformation between free and hydrogen 

bonded groups with temperature change. The absorption coefficient ratio of the 

hydrogen-bonded C=O band to the free C=O band in the C=O stretching mode remains 

low (usually between 1.0 and 1.7) and almost constant with temperature and blend 

composition which makes it convenient for quantitative analysis. For our system, the K 

value was determined for the nanocomposites containing different copolymer 

compositions and then averaged as a whole.  

The curve fitting procedure was carried out for the nanocomposites with different 

copolymer compositions ranging from 10-50% vinyl phenol. The carbonyl stretching 

vibration is resolved into three peaks. A1 is defined as the area of free carbonyl peak, A2 

is the area associated with the monomeric hydrogen bonded carbonyls and A3 is 

associated with dimeric hydrogen bonded carbonyls. Table 3.1 shows how the 

deconvolution results provide the absorptivity ratio for both the dimeric hydrogen bonded 

and monomeric hydrogen bonded carbonyls. An average K value of 1.6 was determined 
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Table 3.1Deconvolution Results of the C=O stretching region of nanocomposites containing 20-50% vinyl phenol 
copolymers measured at 25º C and 180º C to determine the absorptivity ratios. 

 
Monomeric         Free C=O  H-bonded C=O 

Dimeric 
H-bonded C=O 

%vinyl 
phenol 

  
Temp 
  ºC  
  

υ 
cm-1 

W1/2
 cm-

1 
A1 

υ 
cm-1 

W1/2 
cm-1 A2 

 υ  
cm-1 

W1/2 
 cm-1 A3 

Kmonomeric Kdimeric

0.2 25 1805 28.2 8.5 1772 26.3 0.5 1719 27.8 1.6 1.67 1.45 
  180 1805 28.2 8.6 1772 26.3 0.4 1719 27.5 1.5    
0.3 25 1805 24.3 7.6 1770 28.9 1.3 1720 30.4 1.6 1.64 1.41 
  180 1805 24.5 7.7 1770 28.9 1.3 1720 30.2 1.5    
0.4 25 1805 22.6 7.5 1773 32.4 2.0 1722 25.4 0.9 1.63 1.41 
  180 1805 22.8 7.6 1773 32.3 1.9 1722 25.3 0.90    
0.5 25 1805 21.5 6.3 1771 34.6 2.6 1714 28.9 1.4 1.64 1.45 
  180 1805 21.5 6.3 1771 34.2 2.5 1714 28.4 1.4     
                                                                                                                    Average K    1.6       1.4 

 

 

* fixed during curve fitting 
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for monomeric hydrogen bonding and 1.4 for dimeric hydrogen bonding. The absorption 

intensities (A2 and A3) were then corrected by dividing the experimentally determined 

areas by their respective K values (A2’ = A2 / Kinter) and (A3’ = A3 / Kintra). Followed by 

this correction, the percentage of carbonyl groups that participate in monomeric hydrogen 

bonding are then calculated by: 

% C=Omonomeric = 
A

A A A
2

1 2 3

'

' '+ +
                  

And the percentage of C=O groups participating in dimeric hydrogen bonding are 

calculated by using the equation: 

% C=Ointra = 
A

A A A
3

1 2 3

'

' '+ +
 

Table 3.2 shows the curve fitting analysis of carbonyl stretching region to determine the 

amount of free, monomeric and dimeric hydrogen bonded C=O and Table 3.2 represents 

the determination of percentage of free, monomeric and dimeric hydrogen bonded C=O 

as a function of copolymer composition. Figure 3.9 displays the plot of percentage of 

free, monomeric and dimerically hydrogen bonded carbonyls as a function of the 

composition of copolymer in the nanocomposite. This data shows that with the increase 

in the amount of vinyl phenol (10-100%) in the copolymer, the percentage of carbonyl 

groups in the clay that are involved in monomeric hydrogen bonding increase from 2.1 to 

80.5. The percentage of dimerically hydrogen bonded –C=O does not change 

significantly with copolymer composition in the nanocomposite. The free –C=O groups 

decrease dramatically as the monomeric hydrogen bonding increases. 
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Table 3.2 Results of the curve fitting to the C=O stretching region for 
nanocomposites containing 0-100% vinyl phenol content at room temperature. 

 

          Free C=O 
Monomeric 
 H-bonded C=O 

Dimeric 
H-bonded C=O %vinyl 

 
phenol 

υ* 
cm-1 

W1/2 
 cm-1 A1 

υ*  
cm-1 

W1/2 
cm-1 A2 

 υ*  
cm-1 

W1/2 
 cm-1 A3 

10 1805 30.4 9.1 1772 24.6 0.3 1715 22.5 1.4 
20 1805 28.2 8.5 1772 26.3 0.5 1719 27.8 1.6 
30 1805 24.3 7.6 1770 28.9 1.3 1720 30.4 1.6 
40 1805 22.6 7.5 1773 32.4 2.0 1722 25.4 0.9 
50 1805 21.5 6.3 1771 34.6 2.6 1714 28.9 1.4 
100 NA NA NA 1771 37.5 8.3 1714 30.2 1.7 

 

 

Table 3.3Percentage of free, monomeric H-bonded and Dimeric H-bonded C=O as a 
function of copolymer composition in the 5% Nanomer I.24 TL nanocomposites 

 
 
Copolymers 

% 
free 
C=O 

% monomeric 
 H-bonded C=O 

% Dimeric 
 H-bonded C=O 

PVPh10 88.2 2.1 9.7 
PVPh20 86.1 2.9 11.0 
PVPh30 80.2 8.6 11.4 
PVPh40 80.2 12.8 7.0 
PVPh50 70.8 17.8 11.4 
PVPh  0 80.5 19.5 
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Figure 3.9The percentage of carbonyl groups involved in free, monomeric- and 
dimeric H-bonding as a function of copolymer composition. 
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Unfortuantely, it is not possible to resolve the monomeric hydrogen bonding into 

contributions from the hydrogen bonding between the –C=O of the clay and –OH of the 

polymer or hydrogen bonding between -C=O and –OH group of another carboxylic acid 

in the clay. Therefore the carbonyl stretching analysis is ambiguous in defining the extent 

of clay-copolymer intermolecular hydrogen bonding. However, if this data is combined 

with the analysis of the hydroxyl vibration, insight into the extent of intermolecular 

hydrogen bonding is possible.  

Qualitative Analysis of the hydroxyl stretching vibration in the pure copolymers 

and nanocomposites 

Although quantitative evaluation of hydroxyl stretching vibration is difficult due to 

vibrational overlap and and possible changes in absorption coefficients of the intra- and 

inter-associated O-H component, the hydroxyl stretching vibration in the region (3100-

3700 cm-1) can be analysed to provide a qualitative measure of the extent of hydrogen 

bonding interactions in a mixture.  

Peak fitting Analysis of pure copolymers  

The FTIR spectra of pure copolymers are shown in the Figure 3.10. A sharp peak is 

observed for the free hydroxyl groups in the region 3532-3545 cm-1 and a broad peak 

pertaining to intra-molecular hydrogen bonding in the pure copolymers appears between 

3380-3440 cm-1. The hydrogen-bonded –OH peak becomes broader when the molar 

composition of the copolymer increases from PVPh10 to PVPh (100% poly(vinyl 

phenol)), while the area under the free –OH peak decreases. The area under the peak 

provides a qualitative measure of the contribution of the respective absorbances to the 

overall curve. Hydroxyl stretching region in the FTIR spectra has been deconvoluted 
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Figure 3.10 TIR spectra of  pure copolymers 
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Figure 3.11 Deconvoluted IR spectra of PVPh40 
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using Peakfit v.4.11 software. In all fitting procedures, a Gaussian band shape has been 

assumed. The –OH region between 3100-3700 cm-1 was resolved into free and associated 

–OH groups for the pure copolymers.  Figure 3.11 shows the deconvolution carried for 

the PVPh40 copolymer. 

 Similarly, the –OH stretching vibration was resolved using Peakfit software for all 

the copolymers. The contribution from the free and intra-associated hydroxyls was 

assessed using Beer- Lambert law,98 which relates the concentration of the relevant 

vibration groups to the absorbance by the relationship:  

                                         A = a* b * c                                                                          (3.1) 

where A is the absorbance of a given vibration, a represents the absorption coefficient, b 

the thickness of the film, and c is the concentration of the species. In the copolymers of 

styrene and 4-vinyl phenol (PVPh), some of the hydroxyl groups are free and others are 

involved in intra-molecular hydrogen bonding. On varying the vinyl phenol content in the 

copolymer, the concentration of free and associated –OH groups varies. Also the total 

concentration of –OH groups changes with the vinyl phenol content in the copolymer. 

Therefore the total concentration of the hydroxyl groups must be calculated for each 

copolymer. The total –OH concentration in the sample can be calculated from: 

                                         CT = (d*w*fVPh)/ M                                                               (3.2) 

Where d is the density of the polymer, w is the weight fraction of the polymer in the 

nanocomposite, fVPh is the molar fraction of vinyl phenol in the copolymer and M is the 

molar mass of the vinyl phenol repeat unit. The total concentration of –OH in the 

copolymer can also be expressed as: 

                                         CT = CF + CAS                                                                        (3.3) 
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Where CT is the total –OH concentration, CF is the concentration of free –OH groups and 

CAS, is the concentration of –OH that participate in intra-molecular hydrogen bonding. 

The concentration of free OH is calculated by rearranging equation 3.1 as: 

                                               A = a * b * c 

                                               C = A / (b * c) 

 

Therefore,                              CF = AF / (aF* b)                                                               (3.4) 

In this equation, AF represents the absorbance for free –OH peak which is the area under 

this peak. The absorption coefficient for the free –OH vibration (aF) is determined from 

the reported values of free –OH concentration, absorbance, and film thickness of PVPh99 

and is used for all copolymer and nanocomposite samples. Once the concentration of free 

–OH is known using equation 3.4, the concentration of intra-associated –OH is then 

determined by subtracting the concentration of free –OH from the total concentration of –

OH. Table 3.4 displays the deconvolution results for the pure copolymers. Figure 3.12 is 

a plot of the ratios CF / CT and CAS / CT as a function of mol% of vinyl phenol in the 

copolymer. The fraction of free –OH decreases on increasing the vinyl phenol content in 

the copolymer and at the same time the contribution of the intra-molecularly associated –

OH increases. The CF/CT observed in PSVPh10 is 0.75 which decreases to 0.04 in 

PSVPh50 and finally to 0.01 in PVPh. The contribution from intra-molecular association 

observed in case of PSVPh10 is 0.25 and increases to 0.95 in PVPh40. The polymer with 

100% vinyl phenol (PVPh) shows a very high contribution (CAS/ CT = 0.99) from the 

intra-molecular association of the hydroxyl groups.  
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Table 3.4 Curve Fitting Analysis of pure copolymers 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Plot of the ratio of calculated CF / CT and CAS / CT as a function of 

  1.1 Free OH Intra OH 

υ  AF υ  AAS Copolymers 
(cm-

W1/2 
(cm

CF  
(cm-

W1/2

(cm-
CAS  

CF /  
CT 
  

CAS 

CT 
  

PVPh10 3545 65 61.9 102
5 3444 150 38.1 339 0.7 0.2

PVPh20 3545 65 27 447 3417 260 73 157
4 

0.2 0.7

PVPh30 3543 65 16.7 276 3413 272 83.3 275
5 

0.0 0.9

PVPh40 3540 65 11.5 190 3398 279 88.5 364
9 

0.0 0.9

PVPh50 3539 64 11 182 3390 285 89 461
3 

0.0 0.9

PVPh 3532 65 7 7 127 3381 320 92 3 987 0.0 0.9
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Peak fitting Analysis of Nanocomposites 

A similar analysis is completed for the nanocomposites with 5 % Nanomer I.24 TL. 

Figure 3.13 shows the IR spectra of the nanocomposites containing 5 wt % Nanomer I.24 

TL. The IR spectra of the nanocomposites show discernible differences relative to that of 

the pure copolymers in the hydrogen bonded region of hydroxyls. The hydrogen bonded 

hydroxyl peak of the nanocomposites becomes broader and there exists a separation of 

peaks into intra- and inter-molecular association. A representative example of the 

deconvolution of the hydroxyl region of the IR spectrum in the nanocomposite PVPh40 is 

shown in the Figure 3.14. During the deconvolution process of the nanocomposite 

analysis, the position and width of the free and intra-associated hydrogen bonded-OH 

groups were fixed at those observed for the pure copolymer. The position and width of 

the inter-associated –OH were allowed to vary in the fitting process. The presence of 

inter-molecular association in the nanocomposite results in the need to add one more term 

to the relationship of equation 3.3. Thus the total –OH concentration in the 

nanocomposite must be expressed as  

                                      CT = CF + CAS + CI                                                                    (3.5) 

 Where CI and CAS represent the concentration of inter-molecularly hydrogen 

bonded and intra-molecularly associated -OH groups respectively in the nanocomposite.  

The values for CI and CAS are determined using equations 3.6 and 3.7. 

                                      CI = AI/(aas * b)                                                                        (3.6) 

                                     CAS = AAS/(aas * b)                                                                    (3.7) 

In these equations, AI and AAS represent the absorbances for the inter and intra-
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Figure 3.13 FTIR spectra of Nanocomposites containing 5 wt%  
Nanomer I.24 TL clay 

 

3150 3250 3350 3450 3550 3650 3750

 PVPh10 

 PVPh20 

PVPh40 

PVPh30 

PVPh50 

PVPh 

A
bs

or
ba

nc
e

Wavenumber (cm-1)



 69 
 

 

Figure 3.14 Deconvoluted IR spectra of PVPh40/Nanomer I.24TL 
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polymer, the concentration of the associated hydroxyl groups determined by equation 3.7 

varies with copolymer composition. Therefore the absorption coefficient for the 

associated –OH can be calculated for each copolymer system using the concentration of 

associated –OH for that particular copolymer. Then CI (the concentration of inter-

molecularly H-bonded –OH) is calculated for all nanocomposites with different 

copolymer composition, followed by the determination of CF (concentration of free –

OH). The concentration of intra-molecularly associated –OH, CAS is calculated by 

subtracting the sum of CI and CF from the total –OH concentration, which is determined 

using equation 3.5. Table 3.5 summarizes the curve fitting results for all nanocomposites 

in the hydroxyl stretching region. Figure 3.15 shows the plot of CF / CT, CAS /CT and CI/ 

CT as a function of copolymer composition in the nanocomposite. 

The deconvolution results show that the incorporation of clay to the copolymer 

increases the contribution of the free –OH to the total –OH relative to that of the pure 

copolymers. For instance, the CF/CT of the pure PVPh10 increases from 0.75 to 0.87 in 

the PVPh nanocomposite. Similarly, nanocomposites formed with other copolymer 

compositions show an increase in CF / CT on forming nanocomposites. The contribution 

from intra-molecular hydrogen bonding increases with increasing vinyl phenol in the 

copolymer, however the values are significantly lower that those of pure copolymers. For 

instance, CAS /CT of the 40% and 50% neat copolymers were 0.95 and 0.96 respectively, 

while these contributions decrease to 0.36 and 0.24 respectively, on forming 

nanocomposites. This data demonstrates that rather than engaging in intra-molecular 

hydrogen bonding, the –OH groups predominantly engage in inter-molecular hydrogen 

bonding with the clay. The frequency of the inter-molecularly hydrogen bonded –OH is  
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Table 3.5 Curve Fitting results for Nanomer I.24TL/ PVPh Nanocomposites 

Mol% 

Free -OH 
 
 
 

Intra-molecluarly H-bonded OH 
 
 
 

Inter-molecularly H-bonded 
OH 

 
 
       

  υ  AF  υ  Aas  υ  AI  CI  

  
(cm-1) 

W1/

2 (cm-1)
CF  

(cm-1) 
W1/

2 (cm-1)
CAS 

(cm-1) 
W1/

2 (cm
-1)   

CF / 
CT  

CAS 
/  

CT  

CI /  
CT  

10 3545 65 75.7 1123 3444 150 17 120 3390 100 7.34 52 0.87 0.09 0.04 
20 3545 65 46.5 840 3417 260 30.8 621 3385 110 22.7 458 0.43 0.32 0.24 
30 3543 65 24.7 526 3413 272 35.5 1109 3324 130 39.8 1244 0.18 0.39 0.43 
40 3540 65 14.7 315 3398 279 33.7 1316 3341 137 51.6 2015 0.09 0.36 0.55 
50 3539 64 14.3 344 3390 285 22 1081 3319 142 63.7 3130 0.08 0.24 0.69 
100 3532 65 24.0 971 3381 320 42.9 6264 3237 126 33.5 2264 0.14 0.48 0.38 
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Figure 3.15Plot of CF / CT, CAS/CT and CI/ CT versus the mol% of vinyl phenol present  
in the 5 % Nanomer I.24 TL nanocomposite.
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at a lower wavenumber than the intra-molecularly hydrogen bonds. Both –COOH and 

oxide ions of the clay are capable of undergoing stronger hydrogen bonding interaction 

than the –OH------OH hydrogen bond within the copolymer chains. Nanocomposites 

containing PVPh40 and PVPh50 show significant extent of inter-molecular hydrogen 

bonding, with values of CI/CT of 0.55 and 0.69, respectively, in comparison to PVPh10 

and PVPh20 which have values of 0.04 and 0.24. The presence of a large number of 

hydroxyl groups in PVPh40 and PVPh50 copolymers facilitates more of inter-molecular 

hydrogen bonding, resulting in better interaction between the polymer and clay, which 

affects the morphological behavior of these nanocomposites. Correlation of these 

molecular level interactions to the morphology will be discussed in next section. The 

CI/CT in the PVPh nanocomposite is 0.38 and the fraction of hydroxyls involved in intra-

molecular association is much higher, CA/CT is 0.48. On increasing the vinyl phenol 

content in the copolymer, the proximity between the –OH groups increases, presumably 

favoring intra-molecular hydrogen bonding relative to inter-molecular hydrogen bonding. 

  
3.2.3 Correlating Intermolecular hydrogen bonding to the dispersion in 

nanocomposites 

For the nanocomposites containing the copolymers PS, PVPh10 and PVPh20, poor 

dispersion of the clay sheets is observed by SAXS and TEM. Furthermore, semi- 

quantitative analysis of the –OH region indicates minimal inter-molecular association 

between the copolymer and clay. As fewer hydroxyl groups are present in the copolymer 

chain, very little hydrogen bonding is possible with the clay surface. Thus mixing of the 

clay with these polymers does not provide sufficient enthalpic gain for the entry of 
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polymer chains in the interlayers resulting in a conventional composite with clay 

aggregates.  

The nanocomposite containing the 30% poly(vinyl phenol) copolymer with 5% 

Nanomer I.24 TL clay shows a broad peak in SAXS, suggesting an intermediate structure 

between exfoliation and intercalation while the TEM also confirms this interpretation. The 

analysis of its IR spectrum indicates an increase in inter-molecular hydrogen bonding 

(CI/CT=0.43) which improves the molecular dispersion in the nanocomposite to some 

extent corroborating the fact that specific interactions are desired to facilitate the polymer 

permeation in the clay sheets. These results are in accordance with the improved 

morphological behavior of the nanocomposite.  

As the vinyl phenol content increases in the PVPh40 and PVPh50 nanocomposites, 

further increase in inter-molecularly associated –OH is observed (CI/CT = 0.55 and 0.69 for 

PVPh40 and PVPh50, respectively). The SAXS curves of these samples demonstrate that 

these samples are really entirely exfoliated. This improved dispersion is attributed to the 

large number of hydroxyl groups which can orient themselves to the hydrogen acceptor 

group on the clay and form an inter-molecular hydrogen bond. These favorable interactions 

provide the driving force for increased polymer permeation of the clay sheets, leading to 

significant exfoliation. 

Furthermore, the nanocomposite containing 100% Poly(vinyl phenol) shows 

intercalation from TEM and SAXS analysis. It shows better dispersion than PS, PVPh10 

and PVPh20. The results show that the dispersion of the PVPh nanocomposite is between 

that observed in the PVPh20 and PVPh30 nanocomposites. The analysis of IR spectrum 

shows that the extent of inter-molecular hydrogen bonding in this nanocomposite is less 
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than that of the PVPh40 and PVPh50 nanocomposites. The intra-molecular association 

among the polymer chains is found to increase in this sample, presumably hindering 

intermolecular hydrogen bonding and results in an intercalated morphology.  

3.2.4 Thermal behavior of Nanocomposites 

The impact of the extent of intermolecular interaction and morphology on the thermal 

properties of the nanocomposites is also studied. Determination of glass transition 

temperature was carried out for the nanocomposites. The glass transition temperature is 

the temperature where the polymer changes from a hard, glassy state to a rubbery state. 

This transition is marked by increase in the segmental motion of the polymer chains. It is 

known that the segmental mobility of the polymer chains is affected by the presence of a 

filler in the matrix. For instance, the relaxation dynamics of a polymer chain in clay 

nanocomposites is dependent on the size scale of the clay, its morphology and the 

dispersion in the matrix. 100 Local and global conformation of polymer chains within host 

galleries are expected to be different from those observed in the bulk not only due to the 

confinement of the polymer chains but also due to polymer-surface interactions not 

observed in the bulk.101 Polymer-surface interactions play a dominant role in determining 

the relaxation dynamics of the polymer chains thus affecting the glass transition 

temperature. Table 3.6 shows the change in the glass transition temperature as determined 

by DSC for the various nanocomposites. The nanocomposites show excellent correlation 

between the increase in glass transition temperature of the nanocomposite and the degree 

of exfoliation in the nanocomposites. An increase in the hydroxyl content of the 

copolymer from 0-50% results in an increase in the glass transition temperature relative 

to that of the neat polymers. However, for the 
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Table 3.6Change in Glass transition temperature of nanocomposites 
 

Nanocomposite Tg (copolymer) Increase in Tg Structure 
PS 107° C 3 ° C Poor dispersion 
PVPh10 111° C 3 ° C  Poor dispersion 

PVPh 20 114° C 7°C Little exfoliation 

PVPh30 125° C 9° C Mixed structure 
(Intercalated and 
exfoliated) 

PVPh40 122° C 16° C Mostly exfoliated 

PVPh50 127° C 18° C Completely 
exfoliated 

Poly(vinyl 
phenol) 

145° C 8° C Intercalated 

 

 

PVPh nanocomposite, the increase in Tg was less than that of PVPh30 and more than the 

PVPh20 nanocomposite. This correlates well to the morphology which indicate that 

PVPh is intercalated while PVPh30 nanocomposite is mostly exfoliated with some 

intercalated regions temperature. These results suggest that the degree of exfoliation in 

the nanocomposite affects the thermal behavior to large extent. For the PS and PVPh10 

nanocomposites, poorly dispersed morphology results in a slight change in glass 

transition temperature, an increase of 3 °C. As the vinyl phenol content increases to 20 

%, ΔTg increases to 7 °C, where morphology studies suggest some exfoliated regions. 

Further increase in exfoliation, as in PVPh30 nanocomposite, increases the ΔTg. A large 

increase in the glass transition temperature to 16 °C for the PVPh40 nanocomposite and 

18 °C for the PVPh50 nanocomposite suggests that the exfoliated structure is required to 

provide significant improvement in the thermal properties of the polymer at these low 
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loadings of the clay. As the nanoscale dispersion of the clay increases in the polymer 

matrix, this leads to the potential interfacial interaction between the polymer and clay. 

This can result in lower segmental mobility of the polymer chains that interact with the 

stiff clay sheets, thus increasing the glass transition temperature. 

 

3.3 Summary and Conclusion 

The control of hydrogen bonding between clay and polymer provides a mechanism to 

tune the dispersion of nanoparticles in polymer matrix. In this chapter, the results that 

indicate that we have been able to optimize intermolecular hydrogen bonding between the 

polymer and clay are presented. Varying the copolymer composition from 0-50 % poly 

(vinyl phenol) increases the dispersion of the clay sheets in the polymer matrix which can 

be correlated to an increase in the extent of intermolecular hydrogen bonding between the 

clay and the polymer. This extent of inter-molecular hydrogen bonding is determined by 

FT-IR spectroscopy and provides a fundamental explanation for the observed 

morphologies. Nanocomposites containing 0-10 % poly (vinyl phenol) showed poor 

dispersion due to no or very little hydrogen bonding between the polymer and clay. 

Increase in the vinyl phenol content to 20 %, resulted in a decrease in the intensity of the 

clay peak in the SAXS curve suggesting some exfoliation which is also evident in the 

thermal properties which show an increase in the glass transition temperature of 7 °C 

over that of the neat polymer. Nanocomposites containing 50 % poly(vinyl phenol) and 

40 %poly (vinyl phenol) showed very high exfoliation as evident by SAXS and TEM. 

The thermal properties of these nanocomposites were also enhanced showing an 18 °C 

and 16 °C rise in the glass transition temperature relative to that of the neat polymer. The 
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extent of intermolecular hydrogen bonding in these nanocomposites was also the largest 

of all studied.   

However, as the vinyl phenol content increases to 100 %, the dispersion of the 

clay sheets in the polymer matrix is significantly reduced resulting in an intercalated 

morphology due to lower inter-molecular hydrogen bonding. These polymer chains 

preferably engage in intra-molecular hydrogen bonding as shown by semi-quantitative 

analysis of the IR spectrum. This also results in only a modest increase in the Tg of the 

nanocomposite over that of the copolymer (ΔTg = 8 °C). 

Clearly, there exists a correlation between the extent of intermolecular hydrogen 

bonding between the clay and polymer matrix and the morphology and the thermal 

properties of the resulting nanocomposite. Moreover, it appears that the extent of 

intermolecular interaction between the polymer and clay can be controlled by copolymer 

composition and thus these results provide guidelines by which the dispersion and 

properties of polymer clay nanocomposites can be controlled.  
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CHAPTER 4 EFFECT OF CLAY SURFACTANT ON ABILITY TO FORM 

INTERMOLECULAR INTERACTIONS IN POLYMER/CLAY 

NANOCOMPOSITES 

 
 
4.1 Introduction 

In this chapter, the importance of surfactant structure on the formation of intermolecular 

interactions between clay and polymer, and the impact of these interactions on the 

dispersion of polymer/clay nanocomposites will be evaluated. Chapter 3 documents how 

the extent of hydrogen bonding between the polymer and clay impacts the dispersion of 

clay platelets in a polymer matrix, where the extent of the interaction was varied by 

controlling the amount of hydroxyl groups in the polymer matrix. The role of the 

surfactant on this process will be further clarified by completely similar studies with 

clays that contain various surfactants.   

Clays selected for the study (Table 4.1) are organically modified montmorillonites 

(Nanomer I.24 TL and Cloisite 25A) and pristine montmorillonite (Cloisite Na+). Cloisite 

Na+ is pristine clay which does not contain any organic modifier and is highly hydrophilic 

due to the charged surface of clay. On the other hand, Nanomer I.24 TL and Cloisite 25A 

are organophilic in nature which is attributable to the presence of long chain organic 

surfactants. The organophilic clay, Nanomer I.24 TL,  has been modified by 12-

aminododecanoic acid, a long chain surfactant with a polar functional group, –COOH, 

which has the capability to undergo hydrogen bonding with hydroxyl groups, whereas the 

Cloisite 25A does not contain any polar functionality in its organic modifier. The 

importance of the presence of the functional group in Nanomer I.24 TL on the extent of  
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Table 4.1 Surfactants of the Clays examined 
 
Clays Surfactants 

Nanomer I.24 TL 12-amino dodecanoicacid 

Cloisite 25A dimethyl, dehydrogenated tallow, 2-ethylhexyl 
quaternary ammonium 

Cloisite Na+ Na+ 

 

 

hydrogen bonding between the polymer and clay can provide insight into the fundamental 

processes that govern the formation of polymer clay nanocomposite. Montmorillonite 

clay itself has the ability to form hydrogen bonds with polar functionalities of a polymer 

due to the presence of oxide ions on the silicate surface and hydroxyl groups present in 

the interlayers. This affects the ability of the clay to be dispersed as opposed to the one 

having a completely non-polar surfactant in the clay. Therefore, all three clays are 

capable of forming hydrogen bonds with the polymer, regardless of the structure of the 

surfactant. 

 Random copolymers of styrene and vinyl phenol with varying amount of 

hydrogen bonding monomer, 4-vinyl phenol, have been synthesized to prepare the 

nanocomposites. The clay loading was kept constant at 5 wt % and nanocomposites were 
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prepared by dissolving the copolymer and clay in tetrahydrofuran (THF) followed by 

precipitation in a non-solvent.  

Intermolecular interactions between the polymer and clay in the nanocomposites 

were investigated by FT-IR spectroscopy. The understanding of these molecular level 

interactions will provide insight into the thermodynamic stability of the nanocomposites.  

The morphology of the composites and the dispersion of the clay are studied using small 

angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Thermal 

behavior is investigated by differential scanning calorimetry (DSC). 

 

4.2 Results and Discussion 

4.2.1 Morphological studies 

Small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) were 

used to determine the morphology of the resultant nanocomposites. Figure 4.1 shows the 

small angle x-ray scattering curves of the pristine clay and the clays containing different 

surfactants. The peak in the SAXS curve can be utilized to determine the d-spacing of the 

clays as: 

                             d = 2π/q  

 where q (scattering vector) is the position of the peak in the scattering curve and d 

represents the d-spacing of the clay. 

Clay sheets are crystalline in nature and have a stacking order. Thus, they exhibit 

a characteristic peak in the SAXS pattern at a q that corresponds to the Van der Waal 

spacing (d-spacing). Therefore the changes in the SAXS pattern can be monitored to  
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Figure 4.1 SAXS curves for Different clays 
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discern changes in the clay stacking or it’s d-spacing. This d-spacing is affected by the 

permeation of polymer chains in the clay galleries. If there is no discernible change in the 

d-spacing as exhibited in the SAXS pattern, a traditional composite with chemically 

distinct phases (polymer and clay) has been formed. However, a shift towards a higher d-

spacing reflects the formation of an intercalated nanocomposite and the complete loss of 

a characteristic peak is indicative of an exfoliated morphology, which should also be 

verified using transmission electron microscopy.   

 

Small angle x-ray scattering results for the Clays 

Pristine clay (sodium montmorillonite) is highly hydrophilic due to its charged surface. It 

has only sodium ions in its gallery which leads to a peak at a very narrow d-spacing of 

10.8 Å. The other clays have been modified by long chain organic surfactants whose 

presence tends to push the clay sheets apart leading to an increase in the d-spacing. A 

higher d-spacing of the clay plays a vital role in facilitating polymer permeation and, 

thus, the presence of organic surfactant enhances the compatibility between the polymer 

and the clay.   

 Nanomer I.24 TL modified by 12-amino dodecanoic acid has a d-spacing of 16.7 

Å, whereas the d-spacing of Cloisite 25A was 17.4 Å. A higher d-spacing is expected for 

Cloisite 25A due to the presence of long chain surfactant (C-18), whereas carbon chain 

length is twelve in the Nanomer I.24 TL.  

The dispersion of these three clays in a polymer matrix was investigated where 

Polystyrene (0% vinyl phenol), PVPh10 (10% vinyl phenol), PVPh20, PVPh30, PVPh40, 

PVPh50 and PVPh (100%) were used as polymer matrices. The molecular weights, 
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polydispersity indices and actual mole percentage of 4-vinyl phenol present in these 

copolymers are tabulated in chapter 2. 

 

Small Angle X-ray Scattering Results of the nanocomposites 

Figure 4.2 illustrates the SAXS curves for Nanocomposites containing the Nanomer I.24 

TL. Nanomer I.24 TL shows a characteristic peak at the q value of 0.376 Å-1 on forming 

a composite with polystyrene, PS, which is indicative of very little dispersion of the clay 

in the polymer matrix. The observation that the clay sheets retain their stacked structure 

with a similar d-spacing implies that a poor dispersion of clay sheets in the polymer 

matrix is realized. Similarly, PS/Cloisite 25A and PS/Cloisite Na+ composites also exhibit 

peaks that correspond to the d-spacing of the respective clays, indicating that the 

disruption of stacked clay structure has not taken place (refer Figures 4.3 and 4.4). 

TEM images as demonstrated in Figure 4.5 also corroborate the presence of clay 

tactoids for all polystyrene nanocomposites. It is known that mixing clay with a polymer 

is entropically unfavorable as the polymer chains cannot adopt as many conformations in 

the confined state as in bulk. To facilitate mixing, favorable energetics is required 

between the polymer and the clay. In the absence of these favorable energetic 

interactions, polymer chains are restricted from entering the clay galleries as it would 

result in the loss of entropy and therefore poor dispersion is obtained.  

 On increasing the mole percent of vinyl phenol to 10 % in the copolymer,  

Nanomer I.24 TL and Cloisite 25A composites (SAXS Figures 4.2 and 4.3) displayed 

essentially the same results where the d-spacing is in the same region as the neat clay 
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Figure 4.2  SAXS curves for Nanomer I.24 TL/ PVPh Nanocomposites 
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Figure 4.3 SAXS curves for Cloisite 25A / PVPh Nanocomposites 
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Figure 4.4 SAXS curves for Cloisite Na+/ PVPh Nanocomposites 
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Figure 4.5 TEM Micrographs of Polystyrene nanocomposites containing different 
clays 
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with no decrease in the peak intensity, indicating no improvement in the dispersion. This 

is not surprising as the PVPh10 copolymer has fewer –OH groups that can engage in 

inter-molecular hydrogen bonding, thus poor dispersion of the clay results. SAXS curves 

in Figures 4.2, 4.3 and 4.4 for PVPh20 nanocomposites show a slight decrease in the 

intensity of the peaks in for all the clays, indicating the presence of fewer clay aggregates 

than in PS and PVPh10 composites. However, as the mole percentage of vinyl phenol is 

increased in the copolymer to 30%, the Nanomer I.24 TL nanocomposites shows a 

system with both intercalated and exfoliated structures, as revealed by a broad peak in the 

SAXS curve in the region of clay d-spacing (Figure 4.2). This improved dispersion is 

verified by TEM micrographs, depicted in Figure 4.6, where both individually dispersed 

and stacked clay sheets were observed. For the Cloisite 25A nanocomposite, intercalation 

was observed as elucidated by a shoulder in the SAXS curve of this nanocomposite at q, 

0.245 Å-1, which corresponds to a d-spacing of 25.6 Å. 

 The peak has been shifted in the nanocomposite from the original d-spacing of 

17.4 Å exhibited by Cloisite 25A. Additional support for the intercalated structure is 

observed through TEM (Figure 4.6) where the Cloisite 25A/PVPh30 nanocomposite 

shows an intercalated morphology with well-ordered but separated clay sheets present in 

the polymer matrix. Similarly, in the Cloisite Na+/ PVPh30 nanocomposite, a peak shift is 

exhibited from the original d-spacing of 10.8 Å in the clay to 18.6 Å, as shown in Figure 

4.4, which is indicative of an intercalated structure. This is further confirmed by the 

presence of swollen clay sheets in the polymer matrix as manifested by TEM in Figure 

4.6. The increase in the amount of polar hydroxyl groups in PVPh30 is expected to 

provide an increase in the intermolecular hydrogen bonding with the clay functionalities 
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Figure 4.6 TEM Micrographs of PVPh30 nanocomposites containing different clays 
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(-COOH, -OH and oxide ions), which provides favorable enthalpic interactions for the 

permeation of polymer chains into the clay galleries.  

The PVPh40 nanocomposite with Nanomer I.24 TL shows no peak at q = 0.376 

Å-1 in the Figure 4.2. But a small shoulder is observed for this nanocomposite at q = 0.26 

Å -1. This corresponds to a d spacing of 24 Å. According to the spectra, some 

intercalation has taken place but mostly the nanocomposite should be exfoliated. 

Similarly, the cloisite 25A nanocomposite with PVPh40 shows a mostly exfoliated 

structure as evident by the presence of a small shoulder at q = 0.195 Å -1 (d-spacing = 

32.2 Å) on the SAXS curve (Figure 4.3). On increasing the percentage of vinyl phenol 

repeat units in the copolymer to 50% in the Nanomer I.24 TL nanocomposites, a 

complete disappearance of the peak in SAXS curves is observed. This absence of a peak 

indicates a complete loss of registry between the clay layers, and thus, the silicate sheets 

are homogeneously and individually dispersed in the polymer matrix. TEM in Figure 4.7 

further verifies this morphology for the PVPh50 nanocomposites. Nanomer I.24 TL 

nanocomposite shows complete exfoliation. The spacing between the clay sheets as 

observed in TEM is greater than 100 Å and the clay sheets can be considered exfoliated 

at this separation. The Cloisite 25A/PVPh50 nanocomposite also did not show a 

distinguishable peak in the region of the clay d-spacing, indicative of uniform dispersion 

of clay sheets. The PVPh50/Cloisite Na+, however, shows a small broadened peak 

centered at q = 0.468 Å-1 corresponding to a d-spacing of 13.3 Å. Since the pure cloisite 

Na+ has a d-spacing of 10.8 Å, this small shift in the nanocomposite suggests that an 

intercalated morphology has been attained here. Also, the intensity of this peak is small 
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Figure 4.7 TEM Micrographs of PVPh50 nanocomposites containing different clays. 
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relative to the strong peak observed for PVPh30 / Cloisite Na+ nanocomposite, which 

implies that there exist some exfoliated regions of clay in the polymer matrix. The 

improved dispersion in the PVPh40 and PVPh50 nanocomposites may be attributed to the 

enthalpic gain provided by efficient intermolecular hydrogen bonding in these 

nanocomposites. 

When 100% poly(vinyl phenol) (PVPh) was utilized with Nanomer I.24 TL to 

prepare the nanocomposite, a shift in the SAXS peak to indicate a d-spacing of 20 Å 

(Figure 4.2) was observed relative to 16.7 Å was found for this pure clay. The Cloisite 

25A clay has a d-spacing of 17.4 Å and its nanocomposite with PVPh exhibits a peak in 

the SAXS curve that indicates a d-spacing of 23 Å (Figure 4.3). On switching the clay to 

form a Cloisite Na+/ PVPh nanocomposite (Figure 4.4), the peak in the SAXS curve 

completely disappears suggesting an exfoliation of these nanocomposites. The PVPh is 

highly hydrophilic due to the presence of –OH groups on every repeat unit and it is not 

surprising that it very compatible with the hydrophilic clay(Cloisite Na+) leading to a 

superior dispersion of the clay sheets in this polymer matrix. It is expected that the 

charged oxide ions present on the silicate surface can have favorable enthalpic 

interactions with the –OH groups of the polymer, thus promoting the inclusion of 

polymer chains in the clay galleries, which results in a thermodynamically stable 

nanocomposite. This can be further illustrated by TEM (Figure 4.8) where individually 

dispersed clay platelets are observed in the polymer matrix.  

On the other hand, the surfactants in the Nanomer I.24 TL and Cloisite 25A clays 

have long non-polar alkyl chains do not appear to mix well with the hydrophilic polymer. 

Figure 4.8 corroborates these results, where TEM micrographs show clay platelets that 
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Figure 4.8 TEM Micrographs of PVPh nanocomposites containing different clay 
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are intercalated by the polymer in these nanocomposites. The results will be further 

examined by investigating the molecular interactions between clay and polymer by using 

FT-IR and examining the thermal properties of the nanocomposites with differential 

scanning calorimetry (DSC).  

 

4.2.2 FT-IR studies of Intermolecular Interactions 

The polymer and the clay have the ability to undergo hydrogen bonding when mixed with 

each other which plays a critical role in determining the dispersion of the clay sheets in 

the polymer matrix. The hydrogen bonding interaction is stronger than ordinary van der 

Waal interactions with the energy ranging from 2 to10 kcal/mol. Moreover, infra-red 

spectroscopy is a powerful tool to investigate hydrogen bonding interactions. In chapter 

three, the vibration of the carbonyl bond was examined to quantify the extent of hydrogen 

bonding interactions between the polymer and montmorillonite clay. The Nanomer I.24 

TL utilized in that study has a carbonyl group which can act as either proton acceptor or 

proton donor. However, Nanomer I.24TL is the only clay with a carbonyl functional 

group in the surfactant, therefore the analysis of the carbonyl stretch can not be employed 

for a quantitative analysis of these clays. Therefore analysis of the hydroxyl stretching 

region (3100-3700 cm-1) will thus be completed to provide information on the extent of 

hydrogen bonding in these nanocomposites.  

It has already been mentioned in chapter 3 that the quantitative analysis of the 

hydroxyl region is difficult due to vibration overlap coming from the proximity of the 

CH2 assymetric and symmetric vibrations and possible changes in the absorption 

coefficients of intra- and inter- associated hydroxyl groups.94 Therefore, the –OH analysis 
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that will be utilized is only semi-quantitative in nature and can only be utilized in 

comparing the extent of interaction in these nanocomposites. Figures 4.9, 4.10 and 4.11 

show the FT-IR spectra in the hydroxyl region of the nanocomposites formed using 

Nanomer I.24 TL clay, Cloisite 25A and Closite Na+ respectively for the various 

copolymers which range from 0-100 % vinyl phenol. A sharp peak which is characteristic 

of the free hydroxyl groups is observed in the 3532-3545 cm-1 region while the broad 

hydrogen bonded peak in the 3380-3440 cm-1 region comprises the contribution both 

from intramolecular and intermolecularly associated –OH groups. To determine the 

contribution from the free, intra- and inter- associated –OH groups, the FT-IR data in the 

region 3100-3700 cm-1 was deconvoluted using Peakfit v.4.11 software. In all fitting 

procedures, a Gaussian band shape has been assumed. Figure 4.12 shows the 

representative example of the deconvolution for the poly(vinyl phenol) (PVPh)/Nanomer 

I.24 TL clay nanocomposite.  

 

Intermolecular Interactions in Nanomer I.24 TL nanocomposites 

During the deconvolution process, the position and width of the free and intra-

molecularly hydrogen bonded -OH groups were fixed at those observed for the pure 

copolymer. The position and width of the inter-molecularly associated –OH groups were 

allowed to vary in the fitting process. The contributions from free (CF/CT), intra-(CAS 

/CT) and inter-molecularly associated –OH (CI/CT) to the IR curve were calculated using 

the method described in Chapter 3. Tables 4.2 and 4.3 summarize the results obtained 

from this analysis for the pure copolymers and the Nanomer I.24 TL nanocomposites. 

Figure 4.13 shows plots of CF / CT, CAS /CT and CI/ CT as a function of the copolymer
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 Figure 4.9 FT-IR Spectra of Nanomer I.24 TL/ PVPh Nanocomposites 
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Figure 4.10 FT-IR spectra of Cloisite 25A/PVPh Nanocomposites 
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Figure 4.11 FT-IR Spectra of Cloisite Na+ / PVPh Nanocomposites 
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Figure 4.12 Deconvoluted IR spectra of PVPh/Nanomer I.24TL Nanocomposite 
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Table 4.2 Curve Fitting Results of Pure Copolymers 

 

  Free OH Intra OH 
Copolymers υ  

(cm-1) 
W1/2 AF  

(cm-1) 
CF  υ  

(cm-1) 
W1/2 AAS 

(cm-1) 
CAS  

CF /  
CT  
  

CAS /  
CT  
  

PVPh10 
3545 65 61.9 1025 3444 150 38.1 339 0.75 0.25 

PVPh20 
3545 65 27 447 3417 260 73 1574 0.22 0.78 

PVPh30 
3543 65 16.7 276 3413 272 83.3 2755 0.09 0.91 

PVPh40 
3540 65 11.5 190 3398 279 88.5 3649 0.05 0.95 

PVPh50 
3539 64 11 182 3390 285 89 4613 0.04 0.96 

PVPh 3532 65 7.7 127 3381 320 92.3 9872 0.01 0.99 
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Table 4.3 Curve Fitting results for Nanomer I.24TL/ PVPh Nanocomposites 

                  Free -OH 
  
  
  

Intra-molecluarly H-bonded OH 
  
  
  

Inter-molecluarly H-bonded OH 
  
  
  

  
  
  Mol

% 
  
  

υ  
(cm-1) 

W1/2 AF  
(cm-1) 

CF  υ  
(cm-1) 

W1/2 Aas  
(cm-1) 

CAS  υ  
(cm-1) 

W1/2 AI  
(cm-1) 

CI  
  

CF /  
CT  

CAS / 
CT  

CI /  
CT  

10 3545 65 75.7 1123 3444 150 17 120 3390 100 7.34 52 0.87 0.09 0.04 
20 3545 65 46.5 840 3417 260 30.8 621 3385 110 22.7 458 0.43 0.32 0.24 
30 3543 65 24.7 526 3413 272 35.5 1109 3324 130 39.8 1244 0.18 0.39 0.43 
40 3540 65 14.7 315 3398 279 33.7 1316 3341 137 51.6 2015 0.09 0.36 0.55 
50 3539 64 14.3 344 3390 285 22 1081 3319 142 63.7 3130 0.08 0.24 0.69 

100 3532 65 24 971 3381 320 42.9 6264 3237 126 33.5 2264 0.14 0.48 0.38 
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 Figure 4.13 Plot of CF / CT, CAS / CT and CI / CT versus the mol% of vinyl phenol present in Nanomer I.24 TL 
nanocomposite. 
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composition in the nanocomposite. It shows that the extent of inter-molecular hydrogen 

bonding (CI/CT) increases on increasing the vinyl phenol content from 10 to 50%. A 

relatively low fraction of the hydroxyl groups are engaged in inter-molecular hydrogen 

bonding  in the PVPh10 and PVPh20 nanocomposites with CI/CT values of 0.04 and 0.24 

respectively. As the copolymer composition increases to 30% vinyl phenol, the 

contribution from –OH groups involved in intermolecular association, CI/CT, reaches 

0.43. The PVPh50 nanocomposite shows an optimum extent of inter-molecular hydrogen 

bonding with the clay with CI/CT reaching its maximum at 0.69. 

 We have reported previously in Chapter 3 that the pure copolymers display 

greater extent of intra-molecular hydrogen bonding relative to the respective 

nanocomposites. As a representative example, the CAS / CT for the pure copolymers 

(PVPh40 and PVPh50) were 0.95 and 0.96 respectively. But these contributions 

decreased to 0.36 and 0.24 on forming nanocomposites. It was shown that the –OH 

groups are predominantly engaged in inter-molecular hydrogen bonding with the clay in 

the nanocomposite. Moreover, the intermolecular hydrogen bonding between the polymer 

and the clay was found to be stronger than the intra-hydrogen bonding between the 

polymer chains as exhibited by the shift of the broad hydrogen bonded peak towards 

lower wavenumber.  

However, in the PVPh (100% vinyl phenol) nanocomposite, there is a dominating 

tendency to form intra-molecular hydrogen bonds among the polymer chains rather than 

form inter-molecular hydrogen bonding with the clay. Calculated fraction of intra-

molecularly associated –OH increases from 0.24 in the PVPh50 nanocomposite to 0.48 in 

the PVPh nanocomposite. At the same time, the fraction of inter-molecular association 
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decreases from 0.69 in the PVPh50 nanocomposite to 0.38 in the PVPh nanocomposite. 

This can be understood by recalling the interpretation of the SAXS and TEM data, which 

discussed the unfavorable interaction between the non-polar surfactants present in the 

clay and the hydrophilic PVPh. As a result, these polymeric chains predominantly engage 

in intra-molecular association (OH…OH) which results in an intercalated morphology.  

 

Analysis of the Infrared spectra of the Cloisite 25A Nanocomposites 

The Cloisite clay and Nanomer I.24 TL have both oxide ions and hydroxyls which can 

engage in inter-molecular hydrogen bonding with the polymer. Moreover, the Cloisite 

25A nanocomposites show similar morphologies as Nanomer I.24 TL nanocomposites. 

Thus an analysis of the IR spectrum of these nanocomposites can provide insight into the 

role of these moieties on the formation of hydrogen bonding and resultant morphology of 

these nanocomposites. Table 4.4 summarizes the analysis of the IR spectrum of the 

Cloisite 25A nanocomposites. Figure 4.14 shows the plot of CF /CT, CAS/CT and CI/ CT as 

a function of copolymer composition in the Cloisite 25A nanocomposites.  Increasing the 

% VPh in the copolymer from 10 to 50 % results in an increase in the fraction of 

hydroxyl groups involved in inter-molecular hydrogen bonding (CI/CT). The inter-

molecular contribution to the IR curve increases from 0.02 in PVPh10 to 0.54 in PVPh50. 

There is a noticeable change in the calculated fraction of inter-molecularly hydrogen 

bonded –OH groups from PVPh10 to PVPh20, 0.02 to 0.28 which further increases until 

it reaches its maximum value at PVPh50, similar to the Nanomer I.24 TL 

nanocomposites.  
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Table 4.4 Curve Fitting results for Cloisite 25A/ PVPh Nanocomposites 

 

 

 

 

Mol
% 

Free -OH 
 
 
 

Intra-molecularly H-
bonded OH 

 
 
 

Inter-molecularly H-bonded OH 
 
 
 
 
 
 

AF  υ  Aas υ  CI  CF /  CAS / CI /  
  
  

υ (cm-

1) 
W1/

2 (cm-1) 
CF  

(cm-1) 
W1/2 

(cm-

1) 

CAS  
(cm-1) 

W1/2 AI  
(cm-1) 

  
CT  CT CT  

10 3545 65 89.4 1225 3444 150 6.3 45 3387 96 3.7 26 0.95 0.03 0.02 
20 3545 65 59.1 1097 3417 260 13.8 279 3382 102 27 545 0.57 0.15 0.28 
30 3543 65 40.0 973 3413 272 27.7 866 3330 126 33.3 1041 0.34 0.3 0.36 
40 3540 65 28.2 569 3398 279 35.8 1398 3343 140 43 1679 0.16 0.38 0.46 
50 3539 64 24.4 840 3390 285 26 1277 3319 150 49.6 2437 0.18 0.28 0.54 
100 3532 65 23.2 1306 3381 320 49 5716 3237 126 27.7 2477 0.14 0.55 0.31 
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Figure 4.14 Plot of CF/CT, CAS/CT and CI/CT versus the mol% of vinyl phenol present in Cloisite 25A nanocomposite. 
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 On increasing the vinyl phenol content to 100 % in the matrix, the contribution 

from inter-molecular association reduces to 0.31 and the fraction of intra-molecularly 

associated –OH increases to 0.55. Thus, as in the Nanomer I.24 TL nanocomposites, the 

hydroxyl groups in the PVPh are predominantly engaged in intra-molecular hydrogen 

bonding. As in Nanomer I.24 TL, the surfactant on the Cloisite 25A is non-polar, and 

thus does not mix well with the hydrophilic PVPh, mitigating the formation of inter-

molecular hydrogen bonding between the polymer and clay. This correlates well with 

morphological behavior observed through SAXS and TEM where intercalated clay sheets 

were observed. 

 

Infrared Analysis of Cloisite Na+ nanocomposites 

Table 4.5 lists the results of the analysis of the FTIR spectrum for the Cloisite Na+ 

nanocomposites and Figure 4.15 show the fraction of free, inter-molecular, intra-  

molecularly associated –OH to the total –OH concentration as a function of the 

composition of the copolymer matrix. The results reveal that there exists significant 

improvement in the fraction of –OH involved in inter-molecular hydrogen bonding 

(CI/CT) as the vinyl phenol content in the copolymer is increased from PVPh20 (CI/CT = 

0.15 ) to PVPh30 (CI/CT = 0.41) in the copolymers. On further increasing the vinyl 

phenol content of the copolymer to 50%, a maxima in the extent of inter-molecular 

hydrogen bonding (CI/CT = 0.54) is observed followed by a decrease to 0.38 in the PVPh 

nanocomposite. The intra-molecular hydrogen bonding between the polymer chains is 

also enhanced on increasing the mol % of vinyl phenol upto PVPh40 followed by a small 
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Table 4.5 Curve Fitting results for Cloisite Na+/ PVPh Nanocomposites 

Mol% 

Free -OH 
 
 
 

Intra-molecularly H-bonded 
OH 

 
 
 

Inter-molecularly H-bonded 
OH 

 
 
 

  
  
  

  υ  AF  υ  Aas  υ  AI  

  (cm-1) 
W1/2 

(cm-1) 
CF  

(cm-1) 
W1/2 

(cm-1) 
CAS  

(cm-1) 
W1/2 

(cm-1) 
CI  
  

CF /  
CT 

CAS 
/ CT 

CI /  
CT  

20 3545 65 60.5 1015 3417 260 12.8 91 3389 106 26.6 189 0.78 0.07 0.15 
30 3543 65 40 628 3413 272 25.1 506 3332 128 38.9 785 0.33 0.26 0.41 
40 3540 65 17.8 310 3398 279 38.3 1197 3338 146 43.9 1372 0.1 0.42 0.48 
50 3539 64 21.4 538 3390 285 29.6 1156 3320 150 50 1952 0.14 0.32 0.54 
100 3532 65 44.8 133 3381 320 21.8 2152 3237 147 33.2 2270 0.37 0.25 0.38 
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 Figure 4.15 Plot of CF / CT, CAS/CT and CI/ CT versus the mol% of vinyl phenol present in Cloisite Na+ 
nanocomposite. 
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decrease at PVPh50, although the fraction of inter-molecularly associated –OH remains 

larger than the intra-molecularly associated –OH. The Cloisite Na+/ PVPh nanocomposite 

displays a higher contribution from the inter-molecularly associated –OH (0.38) than the 

intra-molecularly associated –OH. This is interpreted to be a result of the fact that there is 

no organic surfactant in this clay and therefore it does not undergo repulsive interactions 

with the hydrophilic PVPh chains as they try to permeate inside the clay galleries. 

Additionally, the Cloisite Na+ clay has oxide ions and hydroxyl groups which can form 

inter-molecular hydrogen bonding with the polar –OH groups of the PVPh chains 

resulting in enhanced dispersion. 

 

4.2.3 Correlating inter-molecular hydrogen bonding to the dispersion in 

Nanocomposites 

The analysis of the hydroxyl vibration in the IR spectrum indicates that the Closite 25A 

and Nanomer I.24 TL show similar trends in the extent of inter-molecular hydrogen 

bonding where the inter-molecular association between the polymer and the clay 

increases on increasing the vinyl phenol content in the copolymer from 10 to 50 %. These 

inter-molecular interactions correlate well with the increase in dispersion displayed by 

the nanocomposite where the Nanomer I.24 TL and Cloisite 25A nanocomposites show 

significant disruption of clay aggregates, resulting in homogeneous dispersion of clay 

platelets in the polymer matrix. When the % vinyl phenol in the copolymer increases 

from 10 to 50 %, an increase in the inter-molecular hydrogen bonding between the 

polymer and clay provides the required energetic gain to overcome the entropic loss 

which occurs as the polymer chains permeate inside the clay gallery.  
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When the vinyl phenol content in the copolymer increases to 100% in the 

nanocomposites, CI / CT (fraction of inter-associated –OH) is 0.38 and 0.31 in the 

Nanomer I.24 TL and Cloisite 25A nanocomposites, respectively. The contribution from 

intra-molecular hydrogen bonding is higher than the intermolecular hydrogen bond in 

these nanocomposites  This tendency to form intra-associated hydrogen bonds within the 

polymer chains dominates the structure of the resulting nanocomposite. As was discussed 

previously, both Nanomer I.24 TL and Cloisite 25A have long hydrophobic alkyl chains 

present in their organic modifiers, which exhibit limited interaction with the hydrophilic 

PVPh. As a result, the association between the segments of polymer chains is favored 

over polymer-clay interaction leading to an intercalated morphology.  

In the absence of any organic modifiers, the Cloisite Na+ clay is highly 

hydrophilic. The nanocomposites containing Cloisite Na+ clay show an increase in the 

extent of inter-molecular association as the vinyl phenol content is increased from 10 % 

to 50 % in the copolymer matrix, similar to that observed for the Nanomer I.24 TL and 

Cloisite 25A nanocomposites. It appears that increasing the number of the hydrogen 

bonding moieties (-OH) in the nanocomposites increases the extent of inter-molecular 

hydrogen bonding between the polymer and clay. These specific interactions result in an 

enthalpic gain, which provides the driving force for the permeation of polymer chains 

into the clay galleries. Further increase of the vinyl phenol content to PVPh (100% vinyl 

phenol), decreases the fraction of inter-molecular association to 0.38. However, this 

contribution from inter-molecular association remains higher than the intra-molecular 

associated –OH, which is 0.25.  

In comparison to the Cloisite 25A and Nanomer I.24 TL nanocomposites, where 
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PVPh nanocomposite exhibits intercalation and a predominance of intra-association 

among the polymer chains, the Cloisite Na+ nanocomposite exhibits significant disruption 

of the clay sheets in the polymer matrix.  PVPh has a hydrogen bonding site (-OH) on 

every repeat unit, making it highly hydrophilic and therefore very compatible with the 

hydrophilic clay, Cloisite Na+. Polymer-clay interactions are thus favored in the Cloisite 

Na+/PVPh nanocomposites, resulting in the formation of a thermodynamically stable 

exfoliated nanocomposite.  

 

4.2.4 Correlating the thermal properties to Dispersion and Interactions 

The Glass transition temperature is the temperature where the polymer changes from a 

hard, glassy state to a rubbery state. It is known that this transition is marked by an 

increase in the segmental motion of the polymer chains. Segmental mobility of a polymer 

chain is affected by the presence of filler in the matrix. For instance, the relaxation 

dynamics of polymer chain in clay nanocomposites is dependent on the size scale of the 

clay, its morphology and the dispersion of the clay in the matrix. 100 Table 4.6 shows the 

change in the glass transition temperature of the nanocomposites examined in this study.  

 It is known that clay sheets have large surface areas (700-800 m2/g), which can 

result in extensive interfacial interaction with the polymer in which it is dispersed. In a 

study carried out by Schiraldi, 101  it was emphasized that the interfacial interactions play 

a dominant role in determining the Tg of a clay composite. On forming an exfoliated 

composite, the large surface area of dispersed clay can lead to extensive interfacial 

interactions between the polymer and clay. This can result in a reduction in the relaxation 

dynamics of the polymer chain and an increase in Tg for the resultant nanocomposites.  
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Table 4.6 Change in Glass transition temperature of nanocomposites 
Nanocomposites Increase in Tg (° C) 

PP0PPP Nanomer I.24 TL Cloisite 25A Cloisite Na+ 

    PSPVPh10 3 3 2 

    PVPh10h20 3 3 3 

    PVPh20 7 5 5 

    PVPh30 9 7 8 

    PVPh50 18 16 23 

    PVPh 8 7 12 

 

 

The glass transition temperature can also be altered by the presence of attractive 

interactions between the polymer and clay such as hydrogen bonding which reduces the 

mobility of polymeric chains and increases the glass transition temperature.  

For all three clays examined, the polystyrene (PS) and PVPh10 nanocomposites 

show no significant improvement of the glass transition temperature (Tg) over that of the 

neat copolymers, where a moderate increase of 3 °C was observed. As the presence of 

any impenetrable surface can raise the Tg of a polymer slightly, thus this change can be 

realized by mixing a polymer with any filler, and its efficient dispersion is not required.   

The FT-IR results, indicate that the PVPh10 nanocomposites display very little inter-

molecular hydrogen bonding. Thus it appears that the mobility of the polymer chains is 

not affected to a great extent by the presence of the clay, presumably due to the lack of 

interaction between the clay and polymer. 
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As the vinyl phenol content is increased to 30 %, an increase in Tg of 7-9 °C is 

observed for all the clays studied. The FTIR analysis indicates that the extent of 

intermolecular hydrogen bonding in the PVPh30 nanocomposites increases which implies 

that hydrogen bonding between the clay and polymer impacts the relaxation dynamics of 

the polymer chains. The PVPh50 nanocomposites show drastic enhancement in the glass 

transition temperature of the polymer matrix for all three clays, which again  correlates 

well with the fraction of inter-molecularly hydrogen bonded –OH (CI/CT). This seems to 

indicate that the strong specific interactions restrict the segmental mobility of the polymer 

chains and thus leads to a significantly higher glass transition temperature. 

A further increase in the content of vinyl phenol (PVPh) in the copolymer results 

in a reduction in the extent of inter-molecular hydrogen bonding between the polymer 

and clay, where intra-molecular association between the polymer chains dominates over 

the inter-molecular hydrogen bonding between the polymer and clay. This reduction in 

the polymer-clay interaction is reflected in a modest increase in glass transition 

temperature of the nanocomposite. The Nanomer I.24 TL and Cloisite 25A 

nanocomposites show changes of 8 and 7 °C, respectively, whereas the Cloisite Na, has a 

slightly larger increase in Tg, 12 °C. This makes sense as this nanocomposite has more 

intermolecular hydrogen bonds than the other PVPh nanocomposites. However, the 

increase is not as large as the PVPh50 nanocomposites as the extent of intermolecular 

hydrogen bonding between clay and polymer is not as large in the PVPh nanocomposite 

than the PVPh50 nanocomposites. This observation is important as it emphasizes the 

importance of the extent of hydrogen bonding between polymer and clay on the change in 

Tg of the nanocomposite. Clearly the extent of hydrogen bonding is the controlling factor 
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in determining the glass transition temperature of the resultant nanocomposite. The extent 

of dispersion is related to this in that it will impact the extent of interface available for the 

formation of hydrogen bonds between the clay and matrix. However, it is not the 

controlling factor in this process.  

 

4.3 Summary and Conclusion 

The role of hydrogen bonding on the morphology and thermal properties of 

nanocomposites containing the organically modified clays, Nanomer I.24 TL and Cloisite 

25A and pristine clay, has been investigated in this chapter.  

The nanocomposites of Nanomer I.24 TL, Cloisite 25A and Cloisite Na+ show 

similar morphological behavior, where the dispersion of the clay sheets is found to 

improve on increasing the vinyl phenol content from 10 to 50 % in the copolymer. The 

results demonstrate that the PVPh50 nanocomposites have a significant number of 

hydroxyl groups that can engage in efficient inter-molecular hydrogen bonding with the 

clay. This results in outstanding improvement in glass transition temperature for these 

nanocomposites and excellent dispersion. The large increase in Tg is related to the 

extensive inter-molecular hydrogen bonding between the polymer and the clay. On 

increasing the vinyl phenol content to 100% in the polymer matrix, inter-molecular 

hydrogen bonding between the polymer and the clay diminished resulting in reduced 

dispersion for the Cloisite 25A and Nanomer I.24 TL where an intercalated morphology 

was attained. In these nanocomposites, intra-molecular association among the polymer 

chains was found to dominate over inter-molecular hydrogen bonding between the 

polymer and clay. This results in reduced polymer-clay interactions and thus intercalation 
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was observed and only modest increases in the glass transition temperature. The Cloisite 

Na+ nanocomposite with PVPh on the other hand, predominantly engages in inter-

molecular hydrogen bonding leading to better polymer-clay interaction and greater 

increase in Tg than the Cloisite 25A and Nanomer I.24 TL nanocomposites. Although 

Closite Na+/PVPh nanocomposite also shows mostly exfoliated morphology like Cloisite 

Na+/PVPh50, but the increase in glass transition temperature was much higher for 

PVPh50 nanocomposite than PVPh nanocomposite. This has been attributed to the 

greater extent of intermolecular hydrogen bonding exhibited by PVPh50 nanocomposite 

than PVPh nanocomposite. Therefore, attractive interactions like inter-molecular 

hydrogen bonding play a crucial role in determining the relaxation dynamics of the 

polymer chains and thus affecting the glass transition temperature.  
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CHAPTER 5 SOLUBILITY PARAMETER STUDIES FOR POLYMER/CLAY   

NANOCOMPOSITES  

5.1 Introduction 

Traditionally, the Hildebrand solubility parameter concept102 has been used to estimate 

the miscibility of two materials. According to the concept, two materials with matching 

solubility parameters have balanced intermolecular interactions and therefore should be 

miscible. To determine the solubility parameter of a compound, the following 

relationship is used: 

                                                   δ = Σ Fi/V                                                            (5.1) 

where Fi is the molar attraction constant, V is the molar volume and δ is the solubility 

parameter. From the solubility parameters, the polymer-polymer interaction parameter, χ 

can be calculated according to102,103: 

                                                 χ = ( )V
RT

r
A Bδ δ−

2
                                                 (5.2) 

where Vr is the molar volume of the the repeat unit, and δA and δB are the solubility 

parameters of the two polymers. This relationship was introduced by Flory104 to describe 

semiempirically the energetic interactions between different polymers and provides a 

measure of the degree of phase separation in a given system of polymers. This parameter 

contributes to the free energy of mixing as: 

                               ΔGm = RTVc[(ΦA/NA)lnΦA + (ΦB/NB)lnΦB + χAB ΦAΦA] 

 

where ΔGm is the Gibbs free energy of mixing, ΦA and ΦB are the volume fractions of 

polymers A and B (ΦA + ΦB =1) and NA and NB are the number of reference units with 
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the molar volume Vc of a given reference unit. 

Thus the determination of the solubility parameters of the polymer and the clay 

for the nanocomposites can provide insight into their interactions, miscibility and the 

morphology. 

Previously, Ho and Glinka105 investigated the effect of the solubility parameter of 

clays on their dispersion in various solvents. Studies were carried out using Small Angle 

neutron scattering (SANS) and Wide Angle X-ray Scattering (WAXS). They observed 

that the dispersion forces present in the solvent are highly significant in determining 

whether the organically modified clay remains suspended in the solvent whereas polar 

and hydrogen bonding interactions determine the degree of exfoliation of the clay in the 

solvent.  

Since dispersive, polar and hydrogen bonding interactions are all essential in 

determining the miscibility of polymer and the clay in a composite, the individual 

contributions of each to the total solubility parameter of the clay must be examined. 

 

5.2 Results and Discussion 

Determination of solubility parameter of the clays 

It must be emphasized that the calculations performed here are only approximate but can 

serve as guidelines to understand polymer-clay interactions. Clay sheets have a 

hydrophilic surface with long chain organic surfactants attached electro-statically to the 

surface. The long chain organic surfactant is expected to play a major role in defining the 

interaction with the polymer, as the hydrophobic tail of the surfactant and styrenic 

(hydrophobic) portion of the copolymer are relatively compatible. Table 5.1 shows the 



 120

structures of the surfactants present in the clays studied here. The Nanomer I.24 TL 

contains 12-amino dodecanoic acid as the long chain surfactant. The polar –COOH 

functionality present in the clay is capable of undergoing polar and hydrogen bonding 

interactions, therefore group contributions for polar forces and hydrogen bonding must be 

considered for the computation of its solubility parameter. On the other hand, Cloisite 

25A has a non-polar surfactant where only dispersive forces are needed to compute its 

solubility parameter.  

Table 5.2 displays the solubility parameters of the surfactants present in the clays 

Nanomer I.24 TL and Cloisite 25A. In the determination of the solubility parameter of 

 

Table 5.1Different Clays used in the study 
Clays Surfactants 

Nanomer I.24 TL 12-amino dodecanoicacid 

Cloisite 25A dimethyl, dehydrogenated tallow, 2-ethylhexyl 
quaternary  
ammonium 

Cloisite Na+ Na+ 

CNH2

O

OH
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Table 5.2 Solubility parameter of the surfactants in the clays 

Clay Surfactant Solubility 
Parameter 
(J1/2/cm3/2) 

Nanomer I.24 TL 12-amino dodecanoic acid 19.3 
Cloisite 25A dimethyl, dehydrogenated 

tallow, 2-ethylhexyl 
quaternary ammonium 
 

17.5 

 

 

 these surfactants, it was assumed that the long chain of the surfactant dominates the 

solubility parameter as the ammonium ion is connected electrostatically to the clay layer 

and therefore shielded. Therefore the ammonium ion was excluded from this calculation. 

To determine of the solubility parameter of the pristine montmorillonite clay with a 

general formula of Al4Si8O20(OH)4, it is assumed that only the silicate tetrahedral sheets 

interact with the polymeric chain. The building blocks of the clay consist of silicon-

oxygen tetrahedral (Si2O5
2-) and aluminium octahedral [Al(OH)6]

-.106 Since the silicon-

oxygen tetrahedra is present at the surface whereas aluminium octahedra is sandwiched in 

between the silicon tetrahedras, only the silicon-oxygen layer interacts with the polymer 

chains as they permeate inside the clay galleries. The silicon-oxygen tetrahedral, with the 

repeat unit of Si2O5, can interact with the polar –OH groups present in the polymeric 

structure through its oxide ions. The solubility parameter of pristine montmorillonite  

clay was calculated to be 35.1 including dispersive, polar and hydrogen bonding 

contributions.  

It must also be noted that in Nanomer I.24 TL and Cloisite 25A both the inorganic 
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clay surface (Si2O5) and the surfactants are capable of interacting with the polymeric 

chains permeating inside the clay galleries. Contributions from both are required in the 

determination of solubility parameter of these clays. But it is imperative to investigate 

how much of the pristine montmorillonite clay surface is covered by the organic 

surfactant in the respective clays to evaluate the contributions of both towards the 

solubility parameter. The cation exchange capacity of the pristine montmorillonite clay 

was calculated based on percent weight loss on ignition to be 388meq/100g clay. This 

means that there are 388 meq of exchangeable Na+ ions in the pristine clay, whereas 

Cloisite 25A has 95meq of organic modifier as reported by Southern Clay Products. 

Based on these values, 24.4 % of Na+ ions in the interlamellar space have been 

substituted by the organic surfactant. Thus the solubility parameter of the clays was then 

calculated using the formula: 

                      δ = (x/100) * δsurfactant + ((100-x)/100) * δinorganic-clay                         (5.3) 

Where x represents the percentage of surface covered by surfactant, δsurfactant is the 

solubility parameter of the long chain surfactant and δinorganic-clay is the solubility 

parameter of Si2O5
2-. δsurfactant for Nanomer I.24 TL was determined to be 19.3 J1/2/cm3/2 

J1/2/cm3/2 and 17.5 for Cloisite 25 A. Table 5.3 exhibits the calculated solubility 

parameters for Nanomer I.24 TL and Cloisite 25A using this method. 

 

Determination of the solubility parameter of the copolymers 

Random copolymers are used as the matrix in these nanocomposites, thus the 

contribution of each repeating unit must be included in the calculation of the solubility  
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Table 5.3 Solubility Parameter of the surfactants in the clays 
Clays Solubility Parameter (J1/2/cm3/2) 

Nanomer I.24 TL 31.1 

Cloisite 25A 30.8 

 

 

parameter of the copolymers. The equation to determine the solubility parameter of the 

random copolymer is thus: 

             δrandom-copolymer = xstyreneδstyrene + xvinylphenolδvinylphenol                                    (5.4) 

Where δstyrene is the solubility parameter of styrene, δvinylphenol is the solubility parameter of 

vinyl phenol, xstyrene is the mole fraction of styrene and xvinylphenol is the mole fraction of 

vinyl phenol in the copolymer. Additionally, partial solubility parameters were 

introduced by Hansen to account for intermolecular interactions in polar substances.107 

The total solubility parameter, δt  is split into three parts, the atomic dispersion forces, δd, 

dipole–dipole forces, δp, and molecular hydrogen bonding, δh. The Hansen parameters 

are correlated to the total (Hildebrand) solubility parameters δt as shown in Eq. (3): 

                                δt = (δd
2 + δp

2 + δh
2)1/2                                                                 (5.5) 

δd, δp, and δh can be calculated as follows: 

                                 δd = ∑  
V
F

m

id,                                                                            (5.6) 

                                δp = 
( )

m

ip

V

2/12
,F∑

                                                                (5.7) 
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                                δh =  
( )

2/1

2/12

m

coh

V
E∑

                                                                                                        (5.8) 

where Fd,i and Fp,i are the group contributions for dispersive and polar forces and Ecoh is 

the group contribution for hydrogen bonding. 

Table 5.4 lists the solubility parameters of the copolymers with vinyl phenol 

content ranging from 0-100%. Using the calculated solubility parameter of the clays and 

copolymers, the difference in solubility parameters is determined for all nanocomposites 

studied, shown in Table 5.5. These calculations reveal that the solubility parameter 

difference decreases on increasing the vinyl phenol content of the copolymers, 

irrespective of the clay utilized, with the minimum occurring at PVPh for all clays. These 

results indicate that the PVPh should exhibit the best compatibility with the clays. 

However, it has been demonstrated that the PVPh50 nanocomposites individually 

disperses the clay platelets. This disparity is expected to be a result of the variation in the 

extent of intermolecular hydrogen bonding among the copolymers which is not taken into 

account in the calculation of the solubility parameter of the copolymers. To account for 

this, the extent of intermolecular hydrogen bonding in each nanocomposites will be 

accounted for in the solubility parameter calculations in this equation: 

                           δt = (δd
2 + δp

2 + (δh* CI/CT) 2)1/2                                                                     (5.9) 

δNanomerClay* , δCloisiteClay* and δPristineClay*  were calculated to be 31.1, 30.8 and 35.1 

respectively. 

Where CI/CT is a measure of the hydroxyls that inter-molecularly hydrogen bond to the 
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Table 5.4Solubility Parameters of the Copolymers 

 
Copolymers Molar Content 

(4-vinyl phenol) 
Molar Content 
(Styrene) 

Solubility 
Parameter 
(J1/2/cm3/2) 

PS 0 1 18.6 

PVPh10 0.135 0.865 19.5 

PVPh20 0.2 0.8 19.9 

PVPh30 0.3 0.7 20.6 

PVPh40 0.38 0.62 21.2 

PVPh50 0.475 0.525 21.8 

PVPh 1 0 25.4 

 

 
Table 5.5 Solubility parameter Difference for Clay Nanocomposites 

 
Copolymers Solubility 

Parameter 
(δCopolymer) 

δNanomerClay* - 
δCopolymer   

δCloisiteClay* - 
δCopolymer   

δPristineClay* - 
δCopolymer   

PS 18.6 12.5 12.2 16.5 

PVPh10 19.5 11.6 11.3 15.6 

PVPh20 19.9 11.2 10.9 15.2 

PVPh30 20.6 10.5 10.2 14.5 

PVPh40 21.2 9.9 9.6 13.9 

PVPh50 21.8 9.3 9.0 13.3 

PVPh 25.4 5.7 5.4 9.7 
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 clay in the nanocomposite. Table 5.6, 5.7 and 5.8 show the solubility parameter 

difference calculations for the nanocomposites after accounting for the extent of 

intermolecular hydrogen bonding in the nanocomposite. Figure 5.1 is a plot of the 

solubility parameter differences between the clays and copolymers as a function of the 

copolymer composition. The solubility parameter difference exhibits a mimimum for the 

copolymers with 50% vinyl phenol irrespective of the clay structure. This indicates that 

the extent of H-bonding is a critical factor in defining the compatibility of the polymer 

and clay.  

This calculation assumes that the cation exchange capacity defines the coverage of the 

surface of the clay by the surfactants. If this is not assumed, the data can also be 

interpreted to provide information on the extent of interaction of the copolymer with the 

clay surface and the surfactant. The PVPh50 copolymer displays the best compatibility  

 

 
Table 5.6 Solubility parameter Difference for Nanomer I.24 TL Nanocomposites 

 
Copolymers Contribution 

towards Inter-
molecular 
hydrogen bonding 

Solubility 
Parameter 
(δCopolymer) 

δNanomerClay* - 
δCopolymer   

PVPh10 
0.04 20.9 10.2

PVPh20 
0.24 21.2 9.9

PVPh30 
0.43 21.8 9.3

PVPh50 
0.49 22.0 9.1

PVPh 
0.38 21.6 9.5
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Table 5.7 Solubility parameter Difference for Cloisite 25A Nanocomposites 

 
Copolymers Contribution 

towards Inter-
molecular 
hydrogen bonding 

Solubility 
Parameter 
(δCopolymer) 

δCloisiteClay* - 
δCopolymer   

PVPh10 
0.02 20.9 9.9 

PVPh20 
0.28 21.3 9.5 

PVPh30 
0.36 21.5 9.3 

PVPh50 
0.54 22.3 8.5 

PVPh 
0.31 21.4 9.4 

 
 
 
 

Table 5.8 Solubility Parameter Difference for Cloisite Na+ Nanocomposites 
Copolymers Contribution 

towards Inter-
molecular 
hydrogen bonding 

Solubility 
Parameter 
(δCopolymer) 

δPristineClay* - 
δCopolymer   

PSVPh10 
0.15 21.0 14.1

PSVPh20 
0.41 21.7 13.4

PSVPh30 
0.48 22.0 13.1

PSVPh50 
0.54 22.3 12.8

PVPh 
0.38 21.6 13.5
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Figure 5.1 Plot representing the solubility parameter difference between the 

copolymer and clays versus the vinyl phenol content in the copolymers. 
 
 
 
with the clay therefore they must have similar solubility parameters. If it is assumed that 

this polymer and the clay have equal solubility parameters, the following equation is 

valid: 

                              δPVPh50 = xsurfactant*δsurfactant + (1-x) clay* δclay                                         

(5.10)Where δPVPh50 is the solubility parameter of PVPh50, δsurfactant is the solubility 

parameter of the surfactant, δclay is the solubility parameter of the clay, xsurfactant  represents 

the percent of the surface that is covered in the surfactant and xclay is the percent of 

inorganic clay surface that is exposed to the copolymer. Table 5.9 displays the solution to 

this equation for the PVPh50 copolymer and inorganic clay surface (Si2O5
2-).   

These results imply that as the polymer chain permeates inside the clay galleries, 

it primarily interacts with the surfactant, but also the clay surface. The interaction with   
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Table 5.9 Interaction of the copolymer PVPh50 with the inorganic clay surface and 

the surfactant 
           Clay          xsurfactant              xclay 

Nanomer I.24 TL 0.805 0.195 

Cloisite 25A 0.69 0.31 

 

 

the clay surface is not insignificant as the oxide ions present on the surface have the 

ability to strongly interact with the –OH groups of the polymer. It can also be seen that in 

the Nanomer I.24 TL clay, the polymer interaction with the surfactant is higher relative to 

that in the non-polar Cloisite 25A. This makes sense as the polar PVPh50 prefers a more 

polar environment. In Cloisite 25A, the non-polar surfactant drives the PVPh50 

copolymer more towards the inorganic surface where more friendly polar oxide ions can 

be found. It should be noted that these trends remain regardless whether the solubility 

parameters in equation 5.10 are equal or differ by a small (<2) factor. 

 

5.3 Summary and Conclusion 

This chapter estimates the solubility parameter of the clays in the nanocomposites in an 

attempt to understand the morphology of the examined systems.  

The solubility parameter difference decreases with the vinyl phenol content of the 

copolymers in the nanocomposites irrespective of the clay utilized, with the minimum 

occurring at PVPh. These results indicated that PVPh should exhibit optimum 

compatibility with the clays. However, PVPh50 shows the best dispersion in these 
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nanocomposites. This deviation is explained by accounting for the extent of 

intermolecular hydrogen bonding in the nanocomposites in the calculation of the 

solubility parameter of the copolymers. This emphasizes the importance of the extent of 

intermolecular interaction between the polymer and clay to obtain miscible polymer/clay 

hybrids. It was also determined that PVPh50 copolymer interacts with the surfactant of 

the Nanomer I.24 TL clay more extensively than in Cloisite 25A clay. The presence of 

the polar -COOH in Nanomer I.24 TL surfactant drives the PVPh50 polymer chains away 

from the hydrophilic inorganic surface, whereas the polymer interacts more with the 

Cloisite 25A surface as it has a non-polar surfactant. 
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CHAPTER 6 EFFECT OF CLAY LOADING ON THE DISPERSION AND 

THERMAL PROPERTIES OF NANOCOMPOSITES 

 

6.1 Introduction 

In Chapter 3, the optimization of the extent of intermolecular hydrogen bonding in a 

polymer clay nanocomposite had been investigated by controlling the distribution of 

hydroxyl groups in a copolymer. This was realized by synthesizing copolymers of styrene 

and 4-vinyl phenol where styrene is a non-hydrogen bonding monomer and 4-vinyl 

phenol can participate in hydrogen bonding via its hydroxyl group. The results indicated 

that tuning the inter-molecular hydrogen bonding tends to optimize the interaction 

between the polymer and the filler resulting in improved dispersion of clay sheets and 

considerable improvement in the thermal properties of the nanocomposites relative to the 

pure polymer. In this chapter, the importance of clay loading on the dispersion and 

thermal properties has been studied where the loadings are varied from 1-8 wt % which 

are being mixed with the various copolymers (0-100) mole percent vinyl phenol. It will 

be determined utilizing SAXS, TEM and DSC, which clay loading provides optimum 

morphological and thermal improvements. 

 

6.2 Results and Discussion 

6.2.1 Thermal Behavior 

The temperature at which the long-range segmental motion of the polymer chains starts is 

termed as glass transition temperature. Cooperative relaxation of chains is affected by the 

presence of stiff filler particles in the polymer matrix, their weight percentage and aspect 
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ratio in the polymer matrix. It has been emphasized in Chapter 4 that the interfacial 

interactions play a dominant role in determining the Tg of a clay composite. On forming 

an exfoliated composite, the large surface area of dispersed clay can lead to extensive 

interfacial interactions between the polymer and clay. This can result in a reduction in the 

relaxation dynamics of the polymer chain and an increase in Tg for the resultant 

nanocomposites. The glass transition temperature can also be altered by the presence of 

attractive interactions between the polymer and clay such as hydrogen bonding which 

reduces the mobility of polymeric chains and increases the glass transition temperature.  

Clay loadings ranging from 1-8 wt % were mixed with the copolymers (0-100 % 

vinyl phenol) using solution blending. Table 6.1 shows the increase in glass transition 

temperature observed for these nanocomposites relative to the pure copolymers. For all 

the polymers examined, 8 wt% clay loading showed least increase in the glass transition 

temperature whereas 3% and 5% clay nanocomposites displayed optimum increase in Tg. 

1% clay loading, although seemingly little has still provided enormous improvement in 

glass transition temperature for all the nanocomposites.  

Considering 3 and 5 wt % clay loadings, where nanocomposites have shown 

optimum increase in Tg, as the vinyl phenol content in the copolymer was increased from 

0-50 %, these clay loadings increase the Tg’s of the nanocomposites significantly. PS and 

PVPh10 show only moderate increase of 3 - 4 ºC. As the presence of any impenetrable 

surface can raise the Tg of a polymer slightly, thus this change can be realized by mixing 

a polymer with any filler, and its efficient dispersion is not required.  The FT-IR results 

indicated that the PVPh10 nanocomposites display very little inter-molecular hydrogen  
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Table 6.1 Increase in Glass Transition temperature for the nanocomposites    
relative to pure copolymers 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nanocomposite Increase in Tg (ºC) with 
different Clay Loading (%) 

    1     3     5     8 

PS     4      3      3    1 

PVPh10     3      4      3    2 

PVPh20     9      9      7    6 

PVPh30     7      7      9    5 

PVPh40   10     16      16    12 

PVPh50    9     16      18    12 

PVPh    3     13       9    5 
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bonding. Thus it appears that the mobility of the polymer chains is not affected to a great 

extent by the presence of the clay, presumably due to the lack of interaction between the 

clay and polymer.  

PVPh20 and PVPh30 nanocomposites with higher vinyl phenol content show 

larger increases in Tg relative to PS and PVPh10 for all the clay loadings. Increase of 7-9 

ºC was observed for PVPh20 and PVPh30 nanocomposites for 1-5 % clay loadings. On 

further increase of the clay loading to 8 wt %, increase in the glass transition temperature 

observed was 5-6 ºC. It is believed that increasing the clay concentration increases the 

clay-clay interaction due to electrostatic interaction between the oxide ions and positively 

charged cations in the interlayer which results in the aggregation of clay sheets and 

reduced intermolecular interaction between the polymer and clay. This diminished 

interfacial interaction affects the relaxation dynamics of polymer chains. Therefore the 

change exhibited by 8% composites in glass transition temperature is lower relative to 3 

and 5% composites. 

PVPh40 and PVPh50 nanocomposites demonstrated remarkable improvement in 

the glass transition temperature. An increase of Tg as high as 18 ºC was recorded for 

PVPh50-5% clay nanocomposite. PVPh40 with 3 and 5% clay loadings shows an 

increase of 16 ºC. Even 8% clay nanocomposites with PVPh40 and PVPh50 show 

significant improvement in Tg. An increase of 12 ºC was observed for both the 

nanocomposites containing 8 % clay. The PVPh40 and PVPh50 nanocomposites show 

drastic enhancement in the glass transition temperature of the polymer matrix for all the 

clay loadings, which correlates well with the fraction of inter-molecularly hydrogen 

bonded –OH (CI/CT). This seems to indicate that the strong specific interactions restrict 
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the segmental mobility of the polymer chains and thus leads to a significantly higher 

glass transition temperature. 

Although on increasing the concentration of clay to 8 %, change in glass 

transition temperature observed for the nanocomposite was less relative to 3 and 5 % but 

was still noteworthy. It is believed that the tendency of clay sheets to aggregate in 

PVPh10 and PVPh20 matrices is much more pronounced than with PVPh40 and PVPh50 

due to the presence of fewer hydrogen bonding sites. Increase in glass transition 

temperature of 12 °C observed at this clay loading for the nanocomposites supports the 

aforementioned explanation.  

A further increase in the content of vinyl phenol (PVPh) in the copolymer results 

in a reduction in the extent of inter-molecular hydrogen bonding between the polymer 

and clay, where intra-molecular association between the polymer chains dominates over 

the inter-molecular hydrogen bonding between the polymer and clay. This reduction in 

the polymer-clay interaction is reflected in a modest increase in glass transition 

temperature of the nanocomposite. It shows an increase of 13 º C for 3% clay loading 

whereas an increase of 9 º C was observed for 5% clay nanocomposite. On further 

increase of clay loading to 8%, increase in Tg observed was 5 º C. Increase in glass 

transition temperature observed for PVPh nanocomposites was not as large as that for 

PVPh40 and PVPh50 nanocomposites due to diminished intermolecular hydrogen 

bonding between the polymer and clay. This observation emphasizes the importance of 

the extent of intermolecular hydrogen bonding between the polymer and clay on the 

change in Tg of the nanocomposite. 
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6.2.2 Morphological Studies  

Random copolymers of poly(styrene-co-vinyl phenol) mixed with 1-8 % clay were 

analysed by SAXS and TEM for their morphology. Figure 6.1 represents the SAXS curve 

for Nanomer I.24 TL which exhibits the d-spacing of 16.7 Å.  Details of how d-spacing 

can be utilized to determine the morphological state of the nanocomposites have been 

described in chapter 4. Figure 6.2 and 6.3 depict the SAXS pattern for PS and PVPh10 

composites for all the clay loadings (1-8 %). 1 and 3 wt % loadings do not show any 

characteristic peak in the region of clay d-spacing of Nanomer I.24 TL for PS and 

PVPh10 composites, but TEM micrographs represented in Figures 6.4 and 6.5 show 

aggregated regions of clay present for all the clay loadings (3-8 wt %) in polystyrene and 

PVPh10 composites suggesting poor dispersion. This is expected as both PS and PVPh10 

do not have sufficient –OH to engage in hydrogen bonding with the clay.  

In the absence of any enthalpic interactions, the ability of clays to be uniformly 

dispersed on the nanoscale level in the polymer matrix of PS and PSVPh10 will be 

hindered irrespective of the clay loading. Entropic loss which occurs as the polymer 

chains try to intercalate cannot be compensated by these none/minimal energetic 

interactions. FT-IR also supports that PVPh10’s contribution towards inter-molecular 

hydrogen bonding (CI/CT = 0.04) with Nanomer I.24 TL is very low. TEM micrographs 

show the formation of more clay aggregates in PS and PVPh10 as the clay loading is 

increased from 3 to 8 wt %. It is believed that an increase in the clay loading enhances 

the interaction between the clay sheets which increases the tendency of clay particles to 

form a distinct phase in the polymer matrix. PS and PVPh10 do not have enough 
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Figure 6.1 SAXS Pattern for Nanocor I.24 TL Clay 
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Figure 6.2 SAXS Pattern for Polystyrene Nanocomposites 
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Figure 6.3 SAXS Pattern for PVPh10 Nanocomposite for different clay loadings 
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Figure 6.4 Transmission Electron Micrographs for Polystyrene Nanocomposites (a) 
3% clay (b) 5% clay (c) 8%clay 

 

 

 

200 nm

200 nm

200 nm

 

(a) (b) 

(c) 



 140

 

Figure 6.5 Transmission Electron Micrographs for PVPh10  Nanocomposites (a) 3% 
clay (b) 5% clay (c) 8%clay 
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hydroxyl groups which can disrupt the like-like interaction between the clay sheets and 

therefore the miscibility between the polymer and the clay is greatly reduced leading to 

poor dispersion. Additionally, increase in the volume fraction of the clay in the 

nanocomposite would lead to greater entropic loss as the polymer chains try to penetrate 

the clay galleries. These two factors would affect the dispersion of the clay sheets in the 

polymer matrix.   

On further increasing the vinyl phenol content to 20 % as in PVPh20, contribution 

towards intermolecular hydrogen bonding with Nanomer I.24 TL clay was found to 

increase relative to PVPh10 as reported by FTIR. SAXS curves in Figure 6.6 show no 

characteristic peak for 3 wt% loading. Also few individual clay platelets are observed in 

the TEM, Figure 6.7 for 3 wt % loading nanocomposite. But on enhancing the clay 

content in the polymer matrix to 8 wt %, tendency of clay sheets to aggregate increased 

and more clay agglomerates could be observed in TEM images relative to 3 and 5 % 

composites. Results observed for 8 % PVPh20 composites are similar to those observed 

for PS and PVPh10 composites. 

On increasing the vinyl phenol content to 30 % in the copolymer PVPh30, TEM 

images reveal good dispersion for 3 % clay loading composite where individually 

dispersed clay sheets could be observed.  At 5 % clay loading, region of clay d-spacing as 

represented by SAXS, Figure 6.8 became broader indicative of the presence of both 

intercalated and exfoliated structures. TEM suggests that clay sheets are better dispersed 

in PVPh30 relative to PVPh20 nanocomposite. However, on increasing the clay loading 

to 8 wt%, more stacked clay platelets were observed in TEM, Figure 6.9. Moreover, at 8 
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Figure 6.6 SAXS Pattern for PVPh20 Nanocomposite for different clay loadings 
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Figure 6.7 Transmission Electron Micrographs for PVPh20 Nanocomposites (a) 3% 

clay (b) 5% clay (c) 8%clay 
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Figure 6.8 SAXS Pattern for PVPh30 Nanocomposites for different clay loadings 
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Figure 6.9 TEM for PVPh30 Nanocomposites for different Clay Loadings (a) 3% 
clay (b) 5% clay (c) 8%clay 
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wt % clay loading, PVPh30 nanocomposite exhibits a distinct peak in the d-spacing 

region of Nanomer I.24 TL clay which is also indicative of poor dispersion relative to 3 

and 5 % PVPh30 composites. The increase in the amount of polar hydroxyl groups in 

PVPh30 is expected to provide an increase in the intermolecular hydrogen bonding with 

the clay functionalities (-COOH, -OH and oxide ions), which provides favorable 

enthalpic interactions for the permeation of polymer chains into the clay galleries.  

For PVPh40 nanocomposites, none of the clay loadings ranging from 1-8 % 

showed any discernible peak in the SAXS pattern, Figure 6.10. 5%-PVPh40 

nanocomposite exhibited a small shoulder but TEM image in Figure 6.11 indicated that 

clay sheets were very well dispersed in the polymer matrix. For the clay loading of 1 wt 

%, clay sheets could not be observed in transmission electron microscopy images due to 

the low concentration of clay. According to the FT-IR analysis carried out in chapter 3, 

optimum inter-molecular association between the polymer and clay at 5 wt % loading 

occurs for PVPh40 and PVPh50. This results in very good dispersion of clay sheets for 

all the clay loadings ranging from 1-8 %. But TEM for 3% and 5% clay loadings 

demonstrated the presence of individual clay platelets dispersed in the polymer matrix. 

Presence of large number of hydroxyl groups in PVPh40  which can undergo inter-

molecular hydrogen bonding with the clay provide favorable enthalpic drive and facilitate 

the penetration of polymeric chains between the clay galleries pushing the clay sheets 

apart resulting in exfoliation where clay sheets are uniformly polymer matrix. As the clay 

loading increases, the like-like forces of attraction between the clay sheets increase 

resulting in the aggregation of clay sheets. But PVPh40 has enough hydroxyl groups to  



 147

 

 

Figure 6.10 SAXS Pattern for PVPh40 Nanocomposites for different clay loadings 
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Figure 6.11 TEM for PVPh40 Nanocomposites for different Clay Loadings (a) 3% 
clay (b) 5% clay (c) 8%clay 
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overpower the like-like attraction between the clay sheets even in case of 8% clay and 

disperse the clay sheets individually on nanoscale. A similar trend was observed for 

PVPh50 nanocomposites due to large number of hydroxyl groups which can hydrogen 

bond with the clay. Figure 6.12 shows the SAXS pattern for all the clay loadings 

containing PVPh50. For the clay loading ranging from 1-5 %, peak in the region of clay 

d-spacing completely disappeared suggesting that we have been successful in breaking up 

the clay agglomerates. When the clay loading was increased to 8 wt %, a small peak is 

observed in the region of d-spacing of the clay but the intensity is very small indicating 

that the clay is mostly present as exfoliated clay platelets dispersed in the polymer matrix. 

This is further confirmed by referring to the Figure 6.13 which represents the TEM 

micrographs for all the clay loadings ranging from 3-8 %.  

 PVPh (100% vinyl phenol) shows intercalated morphology for both 5 and 8 wt % 

clay loading. SAXS curves in Figure 6.14 reveal that clay peak which is observed at the 

d-spacing of 16.7 Å has shifted to 20 Å for both the clay loadings. It was determined in 

chapter 3 by the analysis of hydroxyl vibration in the nanocomposites that there is 

dominating tendency towards intra-molecular association of polymer chains in PVPh. 

Inter-molecular hydrogen bonding between the polymer and clay is dimished leading to 

intercalation. As explained in chapter 4, it is also expected that hydrophobic tail of the 

organic surfactant present in Nanomer I.24 TL shows repulsive interaction for –OH 

groups of the polymer resulting in some hindrance in the permeation of polymer chains in 

clay galleries. Only a few chains are able to permeate inside the clay galleries resulting in 

intercalation. TEM images in Figure 6.15 confirmed intercalated morphology for both  
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Figure 6.12 SAXS Pattern for PVPh50 Nanocomposites for different clay loadings 
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Figure 6.13 TEM for PVPh50 Nanocomposites for different Clay Loadings (a) 3% 
clay (b) 5% clay (c) 8%clay 
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Figure 6.14 SAXS Pattern for PVPh Nanocomposites for different clay loadings 
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Figure 6.15 TEM for PVPh Nanocomposites for different Clay Loadings (a) 3% clay 

(b) 5% clay (c) 8%clay 
 

200 nm

200 nm200 nm

 

(a) 
(b) 

(c) 



 154

clay loadings. On the otherhand, 3 % clay nanocomposite does not show any noticeable 

peak in SAXS pattern. This indicates that it is better dispersed than 5 and 8% 

This is further corroborated by TEM images where some individually dispersed clay 

platelets were observed for 3 % clay loading nanocomposite. 

 

6.3 Summary and Conclusion 

 Nanocomposites with 40 % and 50 % vinyl phenol display very good dispersion 

with all the clay loadings (1- 8 %). SAXS and TEM data illustrate that complete 

dispersion of clay sheets has taken place in the nanocomposites. PVPh40 and PVPh50 are 

capable of undergoing considerable amount of inter-molecular hydrogen bonding with 

the clay which impedes the propensity of clay to phase separate and result in aggregation. 

As a consequence clay sheets are significantly dispersed with high interfacial interaction 

between the polymer and clay in PVPh40 and PVPh50 even at 8% clay loading. 

Additionally, dramatic improvement in glass transition temperature was obtained for 

PVPh40 and PVPh50 nanocomposites for all the clay loadings. This has been attributed 

to strong specific interactions like hydrogen bonding which play a pivotal role in 

reducing the relaxation dynamics of polymer chains thus affecting the glass transition 

temperature. Change in glass transition temperature for 8 % clay nanocompsites was 

lower than 1-5 % clay loadings due to greater aggregation of clay platelets at higher clay 

loading. PS, PSVPh10 do not show good dispersion of clay sheets irrespective of the clay 

loading which is evident through presence of clay aggregates exhibited by TEM. The 

copolymers have none or little hydrogen bonding sites and thus cannot undergo any 

hydrogen bonding with clay resulting in poor dispersion. On increasing the vinyl phenol 
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content to 100 %, the propensity to engage in intra-molecular association increases giving 

rise to intercalation as opposed to expected “exfoliation”. Inter-molecular hydrogen 

bonding between the polymer and clay is reduced affecting the dispersion. 5 and 8 wt % 

clay loading nanocomposites show intercalation but 3 wt% loading exhibits better 

dispersion. With the clay loading of 3 wt%, increase in Tg was 13 °C. Also SAXS data 

and TEM show well dispersed clay platelets in the polymer matrix for 3 wt % clay 

loading as opposed to 5 and 8 wt % clay loading nanocomposites.  

 Our findings indicate that 3 and 5 % clay loadings with PVPh40 and PVPh50 

nanocomposites exhibit optimum dispersion of clay platelets with drastic improvement in 

glass transition temperature. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 
The results observed in this study demonstrate that optimum intermolecular 

interactions play a pivotal role in attaining the molecular dispersion of clay sheets in the 

polymer matrix affecting the morphology and thermal properties of the nanocomposites. 

In Chapter 3, the extent of intermolecular hydrogen bonding is controlled by varying the 

copolymer composition of poly(styrene-co-vinyl phenol). Increase in the copolymer 

composition is found to enhance the energetic interactions between the polymer and clay 

leading to improved dispersion and thermal behavior. Nanocomposites containing 0-10 % 

vinyl phenol do not show any significant improvement in the morphology and glass 

transition temperature which is attributed to none/minimal hydrogen bonding interactions 

occurring between the polymer and the clay. However, on further increase of copolymer 

composition to 50%, completely dispersed clay platelets are observed in the polymer 

matrix as illustrated by TEM and SAXS with dramatic improvement in glass transition 

temperature. FTIR results supported the observations where optimum intermolecular 

hydrogen bonding was exhibited by copolymer with 50% vinyl phenol. Exceptional 

increase in glass transition temperature is a direct result of these interfacial interactions 

which affect the segmental mobility of the polymer chains.  On the other hand, when 

copolymer composition was increased to 100%, dispersion of the clay sheets in the 

polymer matrix significantly reduced resulting in intercalated morphology due to 

diminished inter-molecular hydrogen bonding. 

Additionally, three different montmorillonite clays were also investigated in their 

ability to affect the intermolecular interactions, where the clays had different surfactants. 



 157

The importance of the structure of the surfactant on the dispersion was evaluated. The 

nanocomposites of Nanomer I.24 TL, Cloisite 25A and Cloisite Na+ showed  similar 

morphological behavior, where the dispersion of the clay sheets is found to improve on 

increasing the vinyl phenol content from 10 to 50 % in the copolymer. The PVPh50 

nanocomposites show optimum dispersion with all the clays as the copolymer can engage 

in efficient inter-molecular hydrogen bonding with the clay which results in outstanding 

improvement in glass transition temperature for these nanocomposites and excellent 

dispersion. However, the copolymer with 100% vinyl phenol showed different 

morphology with Cloisite Na+ than with Nanomer I.24 TL and Cloisite 25A. 

PVPh/Nanomer I.TL and PVPh/Cloisite 25A nanocomposites exhibited intercalation 

whereas PVPh/Cloisite Na+ showed exfoliation. Hydrophobic nature of the organic 

modifiers present in Cloisite 25A and Nanomer I.24 TL limits the penetration of 

hydrophilic PVPh chains between the clay platelets thus results in intercalation. On the 

other hand, Cloisite Na+ is highly hydrophilic due to the absence of any surfactant and 

therefore very compatible with hydrophilic PVPh.  Miscibility between Cloisite Na+ and 

PVPh results in the formation of an exfoliated composite. These results are supported by 

FTIR spectroscopy where polymeric chains in Cloisite Na+/PVPh nanocomposite are 

predominantly engaged in intermolecular hydrogen bonding. Contrarily, Nanomer I.24 

TL and Cloisite 25A clays primarly engage in intra-molecular association with PVPh 

chains reducing the inter-molecular hydrogen bonding and as a consequence intercalation 

takes place in the nanocomposite.  

Further support for the results was provided by solubility parameter studies on 

these nanocomposites. Solubility parameter difference between the polymer and clay can 
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be correlated to the interactions and the morphology in the nanocomposites. PVPh 

exhibited a minimum in the solubility parameter difference irrespective of the clay 

utilized of all the copolymer compositions. But this is contradictory to the results 

obtained in Chapter 4 and Chapter 3 where optimum intermolecular interactions between 

the polymer and clay are exhibited by PVPh50 nanocomposite. This discrepancy was 

resolved by accounting for intermolecular interactions and finally PVPh50 showed a 

minimum difference in the solubility parameter. It was also determined that PVPh50 

copolymer interacts with the surfactant of the Nanomer I.24 TL clay more extensively 

than in Cloisite 25A clay. 

Furthermore, in chapter 6, clay wt % is optimized to achieve best morphological 

and thermal improvements. The clay loadings are varied from 1-8 wt % which are being 

mixed with the various copolymers (0-100) mole percent vinyl phenol followed by 

characterization by TEM and SAXS. Nanocomposites with 40 % and 50 % vinyl phenol 

display very good dispersion with all the clay loadings (1- 8 %) with remarkable 

improvement in glass transition temperature. Even at 8 wt% clay, uniformly dispersed 

clay platelets could be observed in the polymer matrix for PVPh40 and PVPh50, due to 

large number of hydroxyl groups capable of undergoing hydrogen bonding with the clay 

thus prohibiting the clay sheets from forming the aggregates. However, PS and PVPh10 

did not show any improvement in dispersion and glass transition temperature irrespective 

of the clay loading due to the presence of none/few hydrogen bonding sites in the 

polymers.  

 In future, mechanical properties of the nanocomposites can be studied by dynamic 

mechanical analysis (DMA) and determine how these results conform to the molecular 
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level dispersion obtained by transmission electron microscopy and small angle x-ray 

scattering. It will also be interesting to find their barrier properties relative to the neat 

copolymers which can further elucidate the nanoscale dispersion of clay platelets in the 

polymer matrix. 
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