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Abstract 
 
Most of existing intrusion detection techniques treat all types of attacks equally without 

any differentiation of the risk they pose to the information system. However, certain 

types of attacks are more harmful than others and their detection is critical to protection 

of the system. This study proposes a novel differentiated anomaly detection method that 

can more precisely detect intrusions of specific types of attacks. 

Although many researchers have been developed many efficient intrusion detection 

methods, fewer efforts have been made to extract effective features for host-based 

intrusion detection. In this study, we propose a new framework based on new viewpoints 

about system activities to extract host-based features, which can guide further exploration 

for new features. 

There are few feature selection methods for anomaly detections although lots of studies 

have been done for the feature selection both in classification and regression problems. 

This study proposes new support vector data description (SVDD)-based feature selection 

methods such as SVDD-R2-recursive feature elimination (RFE), SVDD-RFE and SVDD-

Gradient method. Concrete experiments with both simulated and the Defense advanced 

research projects agency (DARPA) datasets shows promising performance of the 

proposed methods.  
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These achievements in this dissertation could significantly contribute to anomaly 

detection field. In addition, the proposed differentiated detection and SVDD-based 

feature selection methods would benefit even other application areas beyond intrusion 

detection 
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Chapter 1 Introduction 

 

This chapter provides an introduction to the research.  Section 1.1 presents the motivation 

for the research. The contributions of the research are presented in Section 1.2.  The 

organization of the rest of this dissertation is outlined in Section 1.3. 

 

1.1 Motivation 

As Internet and computer networks play an increasingly vital role in modern society, 

intrusions into information systems have become a significant threat to our society with 

potentially severe consequences. To protect information systems from external attackers 

and disgruntled employees, effective and efficient intrusion detection techniques are 

required. As one of defense layers, intrusion detection has been widely studied and 

operated. However, there is still enough room to improve the performance of intrusion 

detection system (IDS) toward perfect detection accuracy and zero false alarm rate. Since 

a typical intrusion detection system first gathers information from a computer of interest 

and attempts to detect intrusions based on the information, more effective information 

and more accurate detection technique are required for better intrusion detection. 
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Compared to many researches on detection technique of IDS, fewer studies on host-based 

features have been carried out although features as input for IDS are as important as the 

techniques. Due to poor interest on feature development, existing host-based features are 

not diverse and are based on only system event type. Since a feature represents one 

viewpoint for user behavior in the information system, more features can help IDS 

produce more reliable and accurate results. Moreover, immensely increased computing 

power has made it significantly easier task than the before that IDS processes high-

dimensional data. Therefore, we need to explore new viewpoints about system activities 

and widen searching range for new host-based features in order to get as many effective 

features as possible. 

There exists a type of attack which causes more severe consequence than other attack 

types when it penetrates the defense layers of information system. In response, the system 

administrator wants to more strictly detect this destructive attack among other attack 

types. However, existing anomaly intrusion detection techniques do not support this task 

since they treat all attacks with equal importance. To more precisely detect intrusions of 

specific attack type, a new approach is required to perform tighter detection on the type 

and ordinary detection on the other attack type. 

Feature selection contributes cost and time reduction in obtaining and processing data by 

identifying, removing unnecessary features and selecting most predictive ones among 

whole features. There are few literatures on feature selection for the anomaly detection 

problem although feature selection has been deeply studied in the classification problem. 

The classification feature selection methods are not applicable directly to the anomaly 
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detection and there is no feature selection method solely dedicated to anomaly detection. 

Novel feature selection methods for anomaly detection techniques are required to take 

advantages of feature selection in the field of anomaly detection.  

 

1.2 Contributions of the Dissertation 

Based on the motivations in Section 1.1, the contributions of this dissertation are as 

follows: 

1. A new approach is proposed to generate features for host-based intrusion detection 

system. The proposed approach has been applied to Defense Advanced Research 

Projects Agency (DARPA) and MIT Lincoln Lab (MITLL) 1998 BSM data set to 

extract features for anomaly intrusion detection. 

2. A new differentiated intrusion detection method is developed to more precisely detect 

more harmful attack type to information system than ordinary attacks. Mathematical 

formulation has been derived for the developed method. Based on the formulation, a 

lemma has been drawn to underpin theoretical base of the differentiated detection. 

3. Novel support vector data description(SVDD)-based feature selection methods such 

as SVDD-R2-RFE, SVDD-RFE and SVDD-Gradient are proposed to take advantages 

of feature selection in anomaly detection area. Mathematical formulations for 

criterion functions of both methods are developed in cases of kernel functions and 

executable algorithms are provided for the proposed methods. 
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1.3 Outlines of the Dissertation 

The remainder of this dissertation is organized as follows: 

Chapter 2 introduces intrusion detection systems on how to collect information and what 

detection techniques are used. Anomaly detection is presented in detail since it is related 

to this dissertation topic. In addition, recent literatures on system features and detection 

techniques are reviewed in Chapter 2. 

In Chapter 3, the concept of new feature framework for host-based intrusion detection 

system is presented. Length, intensity, and event type related features are described under 

the proposed framework. The process of feature extraction from the DARPA 98 BSM 

dataset is also presented. Furthermore, the results of the experiment of new features from 

the DARPA are discussed. 

A differentiated intrusion detection methodology is presented in Chapter 4. Introduction 

to SVDD, formulation for differentiated intrusion detection, and differentiated anomaly 

intrusion detection are also presented. The performance of the proposed method was 

examined with simulated data and the DARPA data. The results on the experiment are 

discussed. 

Chapter 5 presents the motivation of SVDD-based feature selection and introduction to 

feature selection for anomaly detection. Formulations and algorithms for SVDD-R2-RFE, 
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SVDD-RFE and SVDD-Gradient feature selection methods are also presented. 

Experiments with the proposed methods and their results are discussed. 

In Chapter 6, finally, conclusions and future research are presented. 
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Chapter 2 Intrusion Detection System 

 

This chapter provides literature reviews for intrusion detection system. Section 2.1 

presents a background for intrusion detection system. General introduction to intrusion 

detection system is described in Section 2.2. Section 2.3 presents the summary of recent 

research for intrusion detection system. 

 

2.1 Background 

We now live in the information age. It is nearly impossible to imagine our lives without 

the Internet and information systems. We increasingly rely on information systems in 

banking, stock trading, telecommunication, broadcasting, transportation, and many other 

systems which are operated on the computer networks. While the possibilities and 

opportunities afforded by computer information systems are steadily expanding, the risk 

of malicious intrusions such as computer viruses or the theft of data, also, is growing. 

Damage of information systems due to system attacks has been increasing. In 2002, 

companies lost roughly $20 billion to $30 billion from the virus attacks according to a 

ZDNet Security News Article dated January 2004. This figure went up from about $13 
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billion in 2001. In response for these destructive system attacks, financial services 

companies are spending about 6% of their IT budgets for security of their information 

system according to global security survey (Tohmatsu, 2003). Intrusions into information 

systems have become a significant threat to our society with potentially severe 

consequences. 

An intrusion into an information system is defined as compromising its security such as 

availability, integrity and confidentiality through a series of events in the information 

system (Ye & Chen, 2001). In its broadest definition, a computer attack is any malicious 

activity directed at a computer system or the services it provides (Kendall, 1999). There 

are several types of intrusions as follows (Kendall, 1999): 

o viruses, 

o use of a system by an unauthorized individual, 

o denial-of-service by exploitation of a bug or abuse of a feature, 

o probing of a system to gather information, or 

o a physical attack against computer hardware. 

Also, there are categories for attack techniques as in table 2.1. For example of social 

engineering, an attacker can call an individual on the telephone impersonating a 

network administrator in an attempt to convince the individual to reveal confidential 

information including passwords, file names and details about security policies. Specific 

examples of implementation bugs are buffer overflows, race conditions, and mishandled 
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Table 2.1 Categories for attack techniques 
 

Categories Description 

Social 
engineering 

Gaining access to a system by fooling an authorized user into 
providing information that can be used to break into a system.   

Implementation 
bug 

Bugs in trusted programs can be exploited by an attacker to gain 
unauthorized access to a computer system.   

Abuse of feature Legitimate actions that one can perform that when taken to the 
extreme can lead to system failure. 

System 
misconfiguration

An attacker can gain access because of an error in the configuration of 
a system. 

Masquerading In some cases it is possible to fool a system into giving access by 
misrepresenting oneself.   

temporary files. Examples for abuse of feature include opening hundreds of telnet 

connections to a machine to fill its process table, or filling up a mail spool with junk e-

mail. An example of system misconfiguration is that the default configuration of some 

systems includes a “guest” account that is not protected with a password. Masquerading 

example is sending a TCP packet that has a forged source address that makes the packet 

appear to come from a trusted host. 

Defense measures are required to protect computers and networks from unauthorized use 

or malicious attack. Layered defense measures are generally used to reduce the 

possibility of intrusions as possible. Prevention is the first measure to be used. They are 

firewalls and guards, authentication, and encryption. The second measure is intrusion 

detection to identify intrusions being leaked through the fence of prevention. The last one 

is reaction to minimize damage due to intrusions penetrating the defense layers. Among 
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those defense measures intrusion detection has been attracting more attention as backup 

of not-robust prevention. Moreover it is said that intrusion detection has become an 

indispensable defense line in the information security infrastructure (Li et al., 2005). 

 

2.2 General Introduction to Intrusion Detection System 

Generally an intrusion detection system (IDS) detects a possible intrusion and notifies a 

system administrator of its presence (Kendall, 1999) as shown figure 2.1. An IDS 

consists of two functioning parts, information collection and decision. Information 

collection part is to gather data from a computer or network of computers of interest. It is 

important for this part to get more representative features well describing user’s activities. 

Decision part is to attempt to detect an intrusion based on the obtained information. Main 

interest in this part is to develop more effective decision rule to reduce decision errors. 

Key elements for good IDS are to acquire representative features and to apply effective 

detection technique. 

2.2.1 Information collection  

There are two questions to be answered in order to find more representative features: 

o What observable subjects should be selected for monitoring and analyzing user’s 

behavior? 

o What attributes should be considered for characterizing these related subjects? 
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Although there are many observable subjects, most intrusion detection systems in 

existence today use one or more of these three types of data such as sniffed network 

traffic, host-level audit files, and file-system state. The first subject is traffic sent over the 

network. All data that is transmitted over an Ethernet network is visible to any machine 

that is present on the local network segment. Because this data is visible to every machine 

on the network, one machine connected to this Ethernet can be used to monitor traffic for 

all the hosts on the network. Network traffic can be sniffed using a single machine 

running the tcpdump program to save the network traffic. The second object for an 

intrusion detection system is host-level audit data.  Most operating systems offer some 

level of auditing of operating system events. An example is Basic Security Module 

(BSM) data from a Solaris operating system. The third object is information about file 

system state. Daily file system dumps is collected from each machine. An intrusion 

detection system that examines this file system data can alert an administrator whenever a 

system binary file such as the ps, login, or ls program is modified. Normal users have no 

legitimate reason to alter these files, so a change to a system binary file indicates that the 

system has been compromised. Usually network traffic data and host-level audit data are 

frequently used in IDS. Therefore an IDS is categorized into host IDS or network IDS by 

where its data is collected. 

Attributes are data or a group of data describing observable subjects. Attributes for host-

level audit data are command line strings, system call traces, and resource consumption 

patterns while attributes for network traffic data are intrinsic features, traffic features, and  
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Figure 2.1 IDS's role in an information system 
Source: www.genua.de/dateien/gd-installation-en.jpg 

 

IDS 
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content features. Information collection is performed by making data or features from 

those attributes. Many researched are still seeking more practical and effective attributes. 

2.2.2 Detection techniques  

Various detection techniques have been applied into IDS. Those detection techniques are 

in figure 2.2. Signature recognition techniques can find known types of attack while 

bottleneck verification, specification-based detection and anomaly detection techniques 

can find new types of intrusion. Anomaly detection technique requires more computation 

efforts and memories since it is the most sophisticated among detection techniques. 

 

Figure 2.2 Detection Techniques for intrusion detection 
Source: Kendall, 1999 

Signature 
Recognition

Bottleneck
Verification

Specification
-based 

Anomaly 
Detection 

Computation & Memory Requirement 

Find 
new 

intrusions

Find 
only 
old 

intrusions
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Bottleneck verification technique detects illegal transitions between two groups of states. 

However, this technique applies to only situations where there are only a few well 

defined ways to transition between two groups of states. One example of such a well-

defined transition is transitions from a normal user to super-user within a shell. If an 

individual is in the user state, the only way to legally gain root privileges is by using the 

su command and entering the root password. Thus, if a bottleneck verification system can 

detect a shell being launched, determine the permissions of the new shell, and detect the 

successful use of the su command to gain root access, then illegal transitions from normal 

user to root user can be detected (Kendall, 1999).  

Specification-based detection technique detects behavior that violates the security 

specifications. Before monitoring user’s activities, this approach requires written security 

specifications that describe the normal behavior of programs. Then host-based audit 

records are then monitored to detect behavior that violates the security specifications. 

However, there is a limitation to apply because writing security specifications for all 

monitored program which are constantly updated. 

Signature recognition and anomaly detection techniques are popular since bottleneck 

verification specification-based detection techniques are applied only to specific cases. 

Currently existing intrusion detection techniques fall in two major categories: signature 

recognition and anomaly detection. Signature recognition technique looks for an invariant 

sequence of events that match a known type of attack. There are three steps: collection 

the signatures of known intrusion scenarios, matching the observed behavior with these 

intrusion signatures, and notifying signal an intrusion when there is a match (Ye & Chen, 
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2001). An example of signature recognition technique is network security monitor (NSM), 

an early signature-based intrusion detection system that find attacks by searching for 

keywords in network traffic captured using a sniffer (Lippmann et al., 2000; Anderson et 

al., 1995). The advantage of signature recognition technique is that the computation 

required to reconstruct network sessions and search for keywords is not excessive. 

However, the limitation is that it cannot detect novel attacks whose signatures are 

unknown. The limitation of signature recognition techniques can be overcome by using 

anomaly detection techniques as a complement (Ye & Chen, 2001). 

Anomaly detection technique is one of the most frequently suggested approaches to 

detect novel new attacks. Basic idea is that intrusive behavior often shows anomalies 

from normal behavior in an information system and anomalies can be used to detect 

possible intrusions (Ye & Chen, 2001). It first establishes a statistical model of the 

subject's normal behavior and then issue warnings when it observes actions that deviate 

significantly from those models. Examples of anomaly detection technique are NIDES 

and EMERALD. NIDES is one of the first statistical-based anomaly detection systems 

used to detect unusual user and unusual program behavior. It forms a model of a user, 

system, or network activity (Kendall, 1999). EMERALD combines statistical anomaly 

detection from NIDES with signature recognition (Kendall, 1999). Anomaly detection 

technique has advantage to detect both known and novel intrusions if they demonstrate 

departures from a norm profile. Also there are disadvantages for anomaly detection such 

as careful tuning and large computation. Since anomalous behavior does not always mean 

an intrusion, anomaly detection systems need to be carefully tuned to avoid high false 
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alarm rates. A second disadvantage of anomaly detection schemes is the large 

computation and memory resources required to maintain the statistical model (Kendall, 

1999).    

2.2.3 Kinds of anomaly intrusion detection techniques  

Existing anomaly detection techniques are strings, formal logic, production rules and 

statistical-based, stochastic, and data mining as seen in table 2.2.  

In strings approach, a set of detector strings is constructed for a set of normal strings so 

that detector strings do not match self strings. If an incoming string matches any of the 

detector strings for at least the r number of contiguous bits, the detection of an anomaly is 

declared (Forrest et al., 1997). However, strings approach become infeasible when there 

exist normal strings for which it is impossible to generate detector strings.  

Table 2.2 Various kinds of anomaly intrusion detection techniques 
Strings 
Formal logic 
Rule-based / Production rules RIPPER 

SPC EWMA 
Chi square 
Factor analysis 

Statistical-based 

Mahalanobis distance 
Markov process(first-order) Stochastic 
Partial high-order 

SVM 
Classification 

ANN 

Clustering 
Nearest neighbor clustering 

Logistic regression 

Data mining 

Neural network model Self-Organizing Map (SOM) 



16

The logic-based anomaly detection technique has been applied to routers, Domain Name 

System and some privileged programs. However, formal logic is difficult for most system 

administrators to understand and use for specifying a norm profile (Ko et al., 1997). In 

contrast, production rules in expert systems are more natural and understandable than 

formal logic for most system administrators to specify and update a norm profile 

(Anderson et al., 1995). However, it is difficult to enumerate and specify all possibilities 

of normal behavior, especially when multiple subjects are involved. Moreover, the 

behavior of a subject such as a user is generally not fixed but dynamically changing. The 

limitation in using formal logic or production rules is the difficulty to specify the 

dynamically changing behavior in advance (Ye & Chen, 2001). 

Statistical-based anomaly detection approach represents well the expected normal 

behavior of a user and variance due to noises, thereby overcomes the problems with the 

string-based, logic-based and rule-based technique (Jou et al., 2000). However, there is a 

limitation that the computationally intensive procedure of the multivariate techniques 

cannot meet the demands - minimum delay of processing. Many researchers have tried to 

find a multivariate technique with a low computation cost. 

As more advanced statistical tools, data mining techniques are able to deal with huge 

data. They can satisfy the demands for modern intrusion detection technique that should 

deal with large volumes of high-dimensional process data due to a large number of 

behavior measures and process rapidly to ensure an early indication and warning of 

intrusions. Also there is limitation that improper parameter selection might cause the 

over-fitting problem. 
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2.3 Recent Researches 

In recent years, there have been a lot of researches on intrusion detection system (IDS) 

which differentiates an intrusive behavior from ordinary activities on the information 

systems. Those researches have focused on what attributes and data are most suitable for 

the user behavior and what technique is most effective in detecting suspicious activities. 

There has been a ground presumption related to data acquisition that normalcy and 

anomaly of a system be accurately manifested in selected system features (Lee & Stolfo, 

1998).  

2.3.1 System features  

System features or data are collected at a host computer or network linking hosts. 

According to data source location, IDS are categorized into host-based and network-

based IDS’s. Host-based IDS detects an intrusion on the system by monitoring activities 

of only host computer. Various features such as sequence of system events (Forrest et al., 

1996; Lee et al., 1997), event sequential order (Ye et al., 2002), the number of system 

events (Li & Ye, 2002; Ye et al., 2003) and frequency of each system events (Oh & Lee 

2003; Zhang & Shen 2005) have been used for host-based IDS’s.  

Ye and Chen (2001) used intensity of each event for host-based anomaly detection. Audit 

data was obtained from a UNIX-based host machine, specifically a Sun SPARC 10 

workstation with the Solaris operating system. Since there were about 284 different types 
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of BSM audit events on the host machine, 284 event types were considered in this study. 

Intensity of each event was measured from event type with occurring time as follows: 

)1()1(1)( −×−+×= tXtX ii λλ (2.1) 

when the audit event at time t falls into the ith event type and  

)1()1(0)( −×−+×= tXtX ii λλ (2.2) 

when the audit event at time t is different from the ith event type where )(tX i is the 

observed value of the ith variable in the vector of observation at time t, λ is a smoothing 

constant that determines k or the decay rate.  

Chen et al. (2005) introduced tf (term frequency) × idf (inverse document frequency) 

scheme, a common method in text categorization, based on frequency of system events. 

Each system call was treated as a “word” in a document and the set of system calls 

generated by a process was treated as the “document”. This analogy made it possible to 

bring the full spectrum of well-developed text processing methods to apply to the 

intrusion detection problem. In order to apply text categorization, each process was first 

represented as a vector where each entry represents the occurrence of a specific system 

call during the process execution. Frequency-based encoding method was used to 

characterize program behavior. It requires to aggregate system call information over the 

entire execution of a process.  Frequency-based encoding technique reduces the system 

overhead compared to sequence-based encoding techniques which require building a 

profile for each program and checking for attacks at every time frame. Since Frequency-
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based encoding techniques build a profile only for each process and not for each program 

and check for attack instances at the end of the process.  

Network-based IDS monitors traffic data traveling on the communication links and uses 

connection information among hosts as system features. Depren et al. (2005) used only 

six basic features of TCP/IP data while Wang (2005) used 46 variables. Wang (2005) 

reduced the number of independent variables by identifying the risk factors associated 

with individual major attacks. Most previous studies used all possible independent 

variables. Statistically, a model with a large number of independent variables does not 

necessarily have high predictive ability. Unnecessary variables can create bias and lead 

the model either to overestimate or underestimate predicting values but information about 

an individual risk factor associated with the attacks remains unclear. 46 risk factors, that 

is independent variables, with all features summarizing each connection information were 

used. Wu and Zhang (2006) used association rules to get more representative data from 

TCP/IP data. As more and more useful system features as possible are available for IDS, 

the classifier based on the features would be more effective.  

2.3.2 Detection techniques  

Detection techniques are broadly categorized into misuse detection (signature 

recognition) and anomaly detection according to their ideas on detecting intrusions. 

Misuse detection techniques signal an intrusion when an observed behavior matches a 

known attack. Anomaly detection techniques regard anomalies from normal behavior as 
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intrusions. Generally anomaly detection performs better to detect new attacks than misuse 

detection techniques.  

Various detection techniques have been applied into IDS. Ye and Chen (2001) applied a 

multivariate anomaly detection technique based on the chi-square statistics. Many 

intrusions involve multiple subjects and multiple actions having impact on multiple 

behavior measures. Hence, a multivariate anomaly detection technique is needed for 

intrusion detection. However, the computationally intensive procedure of multivariate 

techniques cannot meet the demands of intrusion detection that can process large volumes 

of high-dimensional data within a short processing time. They selected chi-square as a 

statistics for multivariate anomaly detection technique since it has a low computation cost. 

Also, specification-based detection (Sekar et al., 2002), stochastic model (Ye et al., 2002) 

and factor analysis (Wu & Zhang, 2006) have been used as anomaly detection techniques. 

Data mining techniques have become popular in intrusion detection research field since 

Lee and Stolfo (1998) proposed using data mining techniques for IDS. Data mining can 

relatively easily extract structural information and insights from huge datasets. Such an 

advantage of data mining techniques is also very useful to IDS. Li and Ye (2002), Oh and 

Lee (2003), Liu et al. (2004), and Li and Ye (2006) developed clustering methods based 

intrusion detection systems.  

Jiang et al. (2006) proposed a clustering-based method for unsupervised intrusion 

detection (CBUID) to overcome shortages in the all existing unsupervised methods. 

Existing unsupervised methods cannot deal with categorical attributes or their solutions 
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are very complicated, the result of detection is sensitive to the parameters which are 

difficult to be determined and it is not reasonable to assume that the smaller size clusters 

of objects have, the more possible they are anomalous. In CBUID the data classification 

is performed by an improved nearest neighbor method and its time complexity is linear 

with the size of dataset and the number of attributes. 

While Wang (2005) applied multinomial logistic regression modeling approach for 

anomaly intrusion detection. Previous studies focused on a signal binary outcome, that is, 

normal or abnormal, to detect potential attacks. This multinomial logistic regression can 

identify multi-type attacks as an outcome. Zhang and Shen (2005) presented the use of 

support vector machine (SVM) for IDS. SVM is a new technique for solving a variety of 

learning, classification and prediction problems. It is originated as an implementation of 

Vapnik’s structural risk minimization (SRM) principle, which minimizes the 

generalization error, i.e., true error on unseen examples. One remarkable property of 

SVM is being independent of the feature space dimensionality. This means that SVM can 

generalize well in the presence of many features. Chen et al. (2005) proposed application 

of SVM and artificial neural network (ANN) for intrusion detection. ANN is a 

biologically inspired form of distributed computation. It is composed of simple 

processing units, or nodes, and connections between them. The connection has some 

weight, which is used to determine how much one unit will affect the other. The result 

has shown that the SVM performance is better than that for the ANN. 
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Chapter 3 New Framework for Host-based 

Feature Extraction 

 

This chapter provides new framework for host-based feature extraction. Section 3.1 

explains concept of new feature framework. New features developed under the proposed 

framework are discussed in Section 3.2. Section 3.3 presents the process of feature 

extraction from the DARPA 98 BSM dataset. Finally, experiment with the new features 

and the results are presented in Section 3.4.  

 

3.1 New Framework Concept 

Host-based IDS requires information for users’ activities to detect an intrusion into a 

system of interest. The required information is data representing system users’ activities 

and data is a collection of values for features or variables which are defined by specific 

descriptions or equations with output values from system monitoring. For example, 

session length can be a feature defined as session duration time measured in seconds. 

Since a feature represents a kind of sight of system administrator for users’ behavior, 

diverse features mean layered and different points of view for an activity in the system.  
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* @&+%#$0: example symbols representing system event types 

 

Therefore, more features guarantee more reliable performance of IDS. Researchers have 

tried to develop more useful system features as possible for more effective results of IDS. 

Two kinds of general view point for an abject are exterior and interior. Exterior view 

point concerns the shape or size while interior view examines the contents in an object 

and inside shape. Applying this concept into IDS feature development, session dimension 

features come from exterior view whereas session structure and content features come 

from interior view point as in figure 3.1. In the figure a session has three processes with 

four, eight, and two system events, respectively. 

Figure 3.1 New feature framework development concept 

SessionExterior View: Dimension

Interior View:

Structure

Content

Process
Process

Process
Process
Process

Process
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Session dimension features relate with size of a session which means session length and 

the length of its processes. For instance, it is about how long a session last in terms of 

time or the number of system events. Session structure features measure what the session 

looks like, for example, how many processes the session has and how the processes relate 

with one another. Session content features identify the event types while session 

dimension features do not distinguish the event types of a session. The content features 

deal with the occurrence of a specific event type and how many kinds of events appear on 

a session.  

Various features have been used for Host-based IDS. They are sequence of system events 

(Forrest et al., 1996; Lee et al., 1997; Ye et al., 2002), the number of system events (Li & 

Ye, 2002; Ye et al., 2003) and frequency of each system events (Ye & Chen, 2001; Oh & 

Lee, 2003; Zhang & Shen, 2005). Chen et al. (2005) introduced tf(term frequency) × idf 

(inverse document frequency) scheme, a common method in text categorization, based on 

frequency of system events. Existing features can be categorized into three categories 

based on the concept as seen table 3.1. Frequency of each system events and tf × idf 

scheme are a form mixed with session structure and content features. However, there is 

no literature for using session dimension features and all the features from three feature 

categories. To get as many features as possible, we need to more thoroughly explore 

features in the three points of view such as session dimension, structure and content. 
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Table 3.1 Categorizing existing features 
 

Categories Literatures 

Session dimension - 

Session structure 
Forrest et al. (1996)*, Lee et al. (1997)*, Ye & Chen (2001)*  

Li & Ye (2002)*, Ye et al. (2002)*, Ye et al. (2003)* 

Chen et al. (2005)*, Zhang & Shen (2005)* 

Session content 
Forrest et al. (1996)*, Lee et al. (1997)*, Ye & Chen (2001)*  

Li & Ye (2002)*, Ye et al. (2002)*, Ye et al. (2003)* 

Oh & Lee (2003), Chen et al. (2005)*, Zhang & Shen (2005)* 

* Features combined with session structure and content 

3.2 New Feature Development under the Framework 

Three kinds of view for a session can be well described as more practical terms. Since 

session dimension is measured by length of a session, length features are for session 

dimension. Session structure concerns mainly its intensity and intensity features 

represents session structure. As session consists of system events, event features mean 

session content related features. Length and intensity features ignore system event type 

and just count the number of events while event features distinguish a type of event with 

other event types. 
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3.2.1 Length-related features 

Statistics related to length are based on session length and process length. There are three 

subgroups for length-related features such as overall length features, features by process 

duration time, features by number of events in processes. The length of a session is 

measured by duration time in seconds, the number of system event occurrences and the 

number of processes in the session. Also, the length of a process is measured by duration 

time in seconds and the number of system event occurrences in the process. First, last, 

longest, shortest process in a session are considered to have important information for 

user’s behavior. Average values and ratios among features are introduced to carry 

potential information. Table 3.2 shows all possible features related to length and their 

range of values. Five features came from overall length feature subgroup, twelve features 

from feature subgroup by process duration time and twelve features from feature 

subgroup by number of events in processes. There are 29 features related to length in 

total. 

3.2.2 Intensity-related features 

Intensity of a session can be understood by three points of view such as overall intensity, 

process level and system event level. Overall intensity is calculated by average number of 

processes and system events over system length time which gives information for how 

many processes and system events occurs per second. The intensity of process level is 

about how many processes intersect at a given time period and how long they intersect  
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Table 3.2 Length-related features 
 

Subgroup Description Name Range 

Session duration time in seconds “Dur” value≥0

Logarithm Dur “lnDur” value≥0

Number of events  “NumEv” value>0 

Logarithm NumEv  “ln NumEv” value≥0

Overall 
length 

Number of processes “NumPr” value≥1

Average of all processes’ duration time in 
seconds 

“avDurPr” value≥0

Longest duration time among all processes “longDurPr” value≥0

Shortest duration time among all processes “shoDurPr” value≥0

First process’s duration  “DurFirPr” value≥0

Last process’s duration time “DurLasPr” value≥0

ationTimeSessionDur
Average  

“avDurPr%” 0≤value≤1

ationTimeSessionDur
Longest  

“longDurPr%” 0≤value≤1

ationTimeSessionDur
Shortest  

“shoDurPr%” 0≤value≤1

ationTimeSessionDur
First  

“DurFirPr%” 0≤value≤1

ationTimeSessionDur
Last  

“DurLasPr%” 0≤value≤1

Longest
Shortest  

“S/L_DurPr%” 0≤value≤1

By process 
duration 

time 

Last
First  

“F/L_DurPr%” value≥0
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Table 3.2 Continued 

Subgroup Description Name Range 

Average of all processes’ number of events “av#EvPr” value>0 

Largest number of events among all 
processes 

“larg#EvPr” value>0 

Smallest number of events among all 
processes 

“smal#EvPr” value>0 

First process’s number of events “FirPr#Ev” value>0 

Last process’s  number of events “LasPr#Ev” value>0 

SessioninEventsof
Average

#
“av#Ev Pr%” 0<value≤1

SessioninEventsof
estL

#
arg  

“larg#Ev Pr%” 0<value≤1

SessioninEventsof
Smallest

#
“sma#Ev Pr%” 0<value≤1

SessioninEventsof
First

#
“FirPr#Ev %” 0<value≤1

SessioninEventsof
Last

#
“LasPr#Ev %” 0<value≤1

Largest
Smallest  

“S/L_#Ev Pr%” 0<value≤1

By number 
of events in 
processes 

Last
First  

“F/L_#Ev Pr%” value>0 
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together. Figure 3.2 shows how to measure process level intensity based on the process 

intersection. Session B has higher intensity of process level than session A although both 

of sessions have three processes in the figure. 46 Various features related to process level 

intensity are developed from intersection, based on the number of intersecting, 

intersecting time, the number of processes related to an intersection and the number of 

intersections related to a process. 

 

Session A: Seven  
occurrence points 

Time

# of 
system 
calls 

5 10

4

2

Time

# of 
system 
calls 

5 10

4

2

Session B: Three  
occurrence points 

Session A: No intersection 

Process 1 

2

3
Time

Session B: Two intersections 

Process 1 

2

3
Time

Figure 3.2 Example for process level intensity based on the intersection 

Figure 3.3 Example for system event level intensity in a session 
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The intensity of system event level is based on how many event occurrence points are in 

a session. Event occurrence point is the time when a system event or system events 

appear. Given same number of system events and same session duration time, the number 

of event occurrence points can be different. In figure 3.3, session A has seven occurrence 

points and session B has only three occurrence points even though both sessions have 

seven system events with ten second duration time. Session A is denser than session B in 

terms of occurrence points while session B shows more number of system events per a 

occurrence point than session A. 16 features based on the occurrence points are 

developed. Table 3.3 shows 64 features related to intensity. 

 

3.2.3 Event-related features 

Features related to event types are created by using the number of event types which 

depends on the operating systems. Event-related features come from two subgroups such 

as event diversity and event frequency. Event diversity is about how many diverse events 

happen in a session. Event frequency is measured for each event type as how many times 

a specific event appears in a session. Table 3.4 shows event-related features. 
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Table 3.3 Intensity-related features 

Subgroup Description Name Range 

Average number of events per second “AvgNumEv” Value>0 Overall 
intensity Average number of processes per second “AvgNumPr” Value>0 

ationTimeSessionDur
ationTimeprocessDur∑ “IntTime/Ses” value≥1

ationTimeSessionDur
onsIntersecti ofNumber  

“#Int/Time” value≥0

processesof
onsIntersecti ofNumber 

__#
“#Int/Pro” value≥0

SessioninEventsof
onsIntersecti ofNumber 

____#
“#Int/Ev” value≥0

Maximum time of Intersection “MaxIntT” value≥0

Minimum time of Intersection “MinIntT” value≥0

Average time of Intersection “AvgIntT” value≥0

Summation of all Intersection duration times “SumIntT” value≥0

ationTimeSessionDur
onIntersecti anoftime Maximum  “MaxIntT/Time” value≥0

processesof
onIntersecti anoftime Maximum

__#
“MaxIntT/Pro” value≥0

SessioninEventsof
onIntersecti anoftime Maximum

____#
“MaxIntT/Ev” value≥0

ationTimeSessionDur
onIntersecti anoftime Minimum  

“MinIntT/Time” value≥0

processesof
onIntersecti anoftime Minimum

__#
“MinIntT/Pro” value≥0

SessioninEventsof
onIntersecti anoftime Minimum

____#
“MinIntT/Ev” value≥0

ationTimeSessionDur
onIntersecti anoftime Average  

“AvgIntT/Time” value≥0

Process 
level 

intensity 

processesof
onIntersecti anoftime Average

__#
“AvgIntT/Pro” value≥0
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Table 3.3 Continued 
 

Subgroup Description Name Range 

SessioninEventsof
onIntersecti anoftime Average

____#
“AvgIntT/Ev” value≥0

ationTimeSessionDur
duration onIntersecti all ofSum  

“SumIntT/Time” value≥0

processesof
duration onIntersecti all ofSum

__#
“SumIntT/Pro” value≥0

SessioninEventsof
duration onIntersecti all ofSum

____#
“SumIntT/Ev” value≥0

processesof
onIntersectiany  ininvolved processes of#

__#
“IntPro/Pro” value≥0

Maximum number of processes involved in an Intersection “Max#ProInt” value≥0

Minimum number of processes involved in an Intersection “Min#ProInt” value≥0

Average number of processes involved in an Intersection “Avg#ProInt” value≥0

ationTimeSessionDur
onIntersecti anininvolved processes of#Max.  

“Max#ProInt/Time” value≥0

processesof
onIntersecti anininvolved processes of#Max.

__#
“Max#ProInt/Pro” value≥0

SessioninEventsof
onIntersecti anininvolved processes of#Max.

____#
“Max#ProInt/Ev” value≥0

ationTimeSessionDur
onIntersecti anininvolved processes of#Min.  

“Min#ProInt/Time” value≥0

processesof
onIntersecti anininvolved processes of#Min.

__#
“Min#ProInt/Pro” value≥0

SessioninEventsof
onIntersecti anininvolved processes of#Min.

____#
“Min#ProInt/Ev” value≥0

ationTimeSessionDur
onIntersecti anininvolved processes of#Avg.  

“Avg#ProInt/Time” value≥0

processesof
onIntersecti anininvolved processes of#Avg.

__#
“Avg#ProInt/Pro” value≥0

Process 
level 

intensity 

SessioninEventsof
onIntersecti anininvolved processes of#Avg.

____#
“Avg#ProInt/Ev” value≥0
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Table 3.3 Continued 
 
Subgroup Description Name Range 

Maximum number of intersections involved in a process “Max#IntPro” value≥0

Minimum number of intersections involved in a process “Min#IntPro” value≥0

Average number of intersections involved in a process “Avg#IntPro” value≥0

ationTimeSessionDur
processaininvolved onsintersecti of#Max.  

“Max#IntPro/Ti
me” 

value≥0

processesof
processaininvolved onsintersecti of#Max.

__#
“Max#IntPro/Pr
o” 

value≥0

SessioninEventsof
processaininvolved onsintersecti of#Max.

____#
“Max#IntPro/Ev
”

value≥0

ationTimeSessionDur
processaininvolved onsintersecti of#Min.  

“Min#IntPro/Ti
me” 

value≥0

processesof
processaininvolved onsintersecti of#Min.

__#
“Min#IntPro/Pr
o” 

value≥0

SessioninEventsof
processaininvolved onsintersecti of#Min.

____#
“Min#IntPro/Ev
”

value≥0

ationTimeSessionDur
processaininvolved onsintersecti of#Avg.  

“Avg#IntPro/Ti
me” 

value≥0

processesof
processaininvolved onsintersecti of#Avg.

__#
“Avg#IntPro/Pr
o” 

value≥0

Process 
level 

intensity 

SessioninEventsof
processaininvolved onsintersecti of#Avg.

____#
“Avg#IntPro/Ev
”

value≥0

Number of event-occurring times in a session “NumPoints” value≥1

TimeDurationSession
timesOccurringEventofNumber

__
___ − “Points/Time” value>0 

SessionainEventsof
timesOccurringEventofNumber

_____#
___ − “Points/Event” value>0 

Sessionainprocessesof
timesOccurringEventofNumber

_____#
___ − “Points/Process

”
value>0 

Maximum Number of events in a Occurring point of a session “MaxEvPts” value≥1

Minimum Number of events in a Occurring point of a session “MinEvPts” value≥1

System 
event 
level 

intensity 

Average Number of events of Occurring points in a session “AvgEvPts” value≥1
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Table 3.3 Continued 
 
Subgroup Description Name Range 

TimeDurationSession
points Occurring among events ofNumber  Maximum

__
“MaxPts/Time” value>0 

SessionainEventsof
points Occurring among events ofNumber  Maximum

_____#
“MaxPts/Event” value>0 

Sessionainprocessesof
points Occurring among events ofNumber  Maximum

_____#
“MaxPts/Proces
s” 

value>0 

TimeDurationSession
points Occurring among events ofNumber  Minimum

__
“MinPts/Time” value>0 

SessionainEventsof
points Occurring among events ofNumber  Minimum

_____#
“MinPts/Event” value>0 

Sessionainprocessesof
points Occurring among events ofNumber  Minimum

_____#
“MinPts/Process
”

value>0 

TimeDurationSession
points Occurring among events ofNumber  Average

__
“AvgPts/Time” value>0 

SessionainEventsof
points Occurring among events ofNumber  Average

_____#
“AvgPts/Event” value>0 

System 
event 
level 

intensity 

Sessionainprocessesof
points Occurring among events ofNumber  Average

_____#
“AvgPts/Proces
s” 

value>0 
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Table 3.4 Event-related features 
 

Subgroup Description Name Range 

Number of event types occurred in a session “#typeEv” value≥1

ationTimeSessionDur
a Session inoccurred types event of# “#typeEv/T” value>0 

Event 
diversity 

SessionainEventsof
a Session inoccurred types event of#

_____#
“#typeEv/Ev” value>0 

Number of occurrences of event i “NumEv(i)” value≥0Event 
frequency 

SessionainEventsof
ievent ofsoccurrence ofNumber 

_____#
“NumEv(i)%” value≥0

3.3 Feature Extraction from the DARPA 98 BSM Data 

3.3.1 Data source 

The Defense Advanced Research Projects Agency (DARPA) wished to evaluate 

competing algorithms and systems for computer intrusion detection. MIT Lincoln Lab 

(MITLL) built a simulation network at an Air Force base which consisted of models for 

different types of users including secretaries and managers and known attacks or their 

variants such as DOS, R2L, U2R and PROBE. Figure 3.4 shows the simulation network 

comprising about 100 users and 1000 host computers. 

Simulated traffic of an air force local area network was collected into two types of files; 

Transmission Control Protocol (TCP) dump data file and Basic Security Module (BSM) 

data file as seen in figure 3.5. TCP dump data files record information for traffic sent 

over the network by sniffing the network at a machine connected to it. BSM data files 
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record system events made in a victim machine for host-level audit. This simulation had 

been performed for two years beginning in 1998.  

There are two data sets as the result of this DARPA intrusion detection evaluation 

project; 1998 and 1999 data sets. The 1998 data set consists of seven-week training data 

and two-week testing data. The 1999 set contains three-week training data and two-week 

test data. Those data sets have been widely used to evaluate many intrusion detection 

systems newly proposed in the literatures. We used host-based BSM audit data from the 

seven-week training data of the 1998 data set to evaluate our method. 

 

Source: http://www.ll.mit.edu/IST/ideval/docs/1998/introduction/index.htm 
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Internet
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•http
•smtp
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•FTP
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Packet Sniffer
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R o u t e r

1000’s Hosts, 100’s Users

•UNIX Workstations
•CISCO Router

Figure 3.4 DARPA –MITLL simulation network 
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Source: http://www.ll.mit.edu/IST/ideval/docs/1998/introduction/index.htm 

 

3.3.2 Data preprocessing 

BSM records security-relevant events to monitor activities in a host machine. Two files 

are given by BSM; BSM list file and BSM audit data file. BSM list files show 

information for sessions comprising one or more system events of all hosts in the network 

whereas BSM audit files provide information for only system events of a specific host. 

Since a session is a set of system events, BSM list file is a brief summary of activity in 

the network and BSM audit file is a large raw-data file recording the details of activity in 

a certain machine. Table 3.5 shows list and size of the DARPA 98 BSM list files and 
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Table 3.5 List and size of the DARPA 98 BSM list files and audit files 

Date BSM audit file & size BSM list file & size 

Monday bsm.audit    174,618KB bsm.list  26KB 

Tuesday pascal.praudit   180,142KB bsm.list  23KB 

Wednesday bsm.audit    256,927KB bsm.list  59KB 

Thursday bsm.audit    179,754KB bsm.list  42KB 

First week 

Friday bsm.audit    193,231KB bsm.list  33KB 

Monday pascal.praudit   154,870KB bsmout.list  28KB 

Tuesday pascal.praudit   139,984KB bsmout.list  28KB 

Wednesday pascal.praudit   187,613KB bsmout.list  32KB 

Thursday pascal.praudit   182,420KB bsmout.list  29KB 

Second 
week 

Friday pascal.praudit   213,860KB bsmout.list  32KB 

Monday pascal.praudit.gz 552,565KB bsm.list.gz  46KB 

Tuesday pascal.praudit.gz 257,125KB bsm.list.gz  40KB 

Wednesday pascal.praudit.gz 642,188KB bsm.list.gz  38KB 

Thursday pascal.praudit.gz 400,464KB bsm.list.gz  40KB 

Third 
week 

Friday pascal.praudit.gz 212,560KB bsm.list.gz  31KB 

Monday pascal.praudit.gz 221,202KB bsm.list.gz  36KB 

Tuesday pascal.praudit.gz 305,277KB bsm.list.gz  54KB 

Wednesday pascal.praudit.gz 177,834KB bsm.list.gz  24KB 

Thursday pascal.praudit.gz 208,413KB bsm.list.gz  47KB 

Fourth 
week 

Friday pascal.praudit.gz 528,592KB bsm.list.gz  33KB 

Monday pascal.praudit.gz 447,703KB bsm.list.gz  43KB 

Tuesday pascal.praudit.gz 255,600KB bsm.list.gz  47KB 

Wednesday pascal.praudit.gz 195,566KB bsm.list.gz  41KB 

Thursday pascal.praudit.gz 439,921KB bsm.list.gz  49KB 

Fifth week 

Friday pascal.praudit.gz 205,868KB bsm.list.gz  44KB 
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Table 3.5 Continued 

Date BSM audit file & size BSM list file & size 

Monday pascal.praudit.gz 418,010KB bsm.list.gz  35KB 

Tuesday pascal.praudit.gz 257,561KB bsm.list.gz  39KB 

Wednesday pascal.praudit.gz 197,389KB bsm.list.gz  34KB 

Thursday pascal.praudit.gz 214,170KB bsm.list.gz  50KB 

Sixth week

Friday pascal.praudit.gz 194,590KB bsm.list.gz  43KB 

Monday pascal.praudit.gz 227,808KB bsm.list.gz  39KB 

Tuesday pascal.praudit      195,461KB bsm.list.gz  5KB 

Wednesday pascal.praudit.gz 195,461KB bsm.list.gz  35KB 

Thursday pascal.praudit.gz 415,893KB bsm.list.gz  32KB 

Seventh 
week 

Friday pascal.praudit.gz 226,327KB bsm.list.gz  42KB 

1799  06/01/1998 08:07:47 00:01:09 telnet 1814 23 172.016.114.168 
172.016.112.050 0 - 

Figure 3.6 Example of session information on BSM list file of Monday, first week. 
 

header,182,2,ioctl(2),,Mon Jun 01 07:56:56 1998, + 788290611 msec 
path,/devices/pseudo/cn@0:console 
attribute,20620,2122,tty,8388608,11409,0 
argument,2,0x7415,cmd 
argument,3,0xeffff2b0,arg 
argument,2,0x501cd434,strioctl:vnode 
subject,2122,root,other,root,other,273,258,0 0 pascal.eyrie.af.mil 
return,success,0 
trailer,182 

Figure 3.7 Example of description for a system event in BSM audit file of Monday, first 
week. 
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files. In the case of Monday, first week 1998 data set, for example, the size of the BSM 

list file is 26 KB and one of the BSM audit file 174,618 KB.  

BSM list file serves information such as index, start time, duration, source and 

destination IP address, and the nature, normal or attack, of each session in a host 

machine. Figure 3.6 shows that session 1799 started at 08:07:47 June 1, 1998 and lasted 

for one minute and nine seconds and it was a normal session with source IP, 

172.016.114.168, and destination IP, 172.016.112.050. 

A BSM audit file contains information corresponding to each system event made by a 

host. The information such as event type, session ID, process ID, IP address, occurrence 

time and so on for the event is stored in the audit file whenever a system event occurs in a 

host machine. Figure 3.7 shows the information for a system event stored in the audit file 

of Monday, first week. The event was “ioctl(2)” type, occurred on Monday the first of 

June 1998 and belonged to process 273 of session 258 according to the information on 

Figure 3.7. 

Statistics of features from a session were required for our method to judge if the session 

was an attack or a normal session. More possible kinds of statistics for a session extracted 

from BSM files make more useful information available in intrusion detection system. 

Most research has tried to get diverse statistics of a session from BSM audit files and to 

only identify attack or normal sessions from BSM list files. In this study, there were three 

steps to get session statistics for our analysis. We used Microsoft Visual Basic 6.0 
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programming language to process BSM files and obtain statistics of interest from BSM 

audit files and list files. Figure 3.8 shows the procedure of data preprocessing. 

First, events in a BSM audit file were categorized into sessions according to session ID of 

the event. Session-named files, corresponding to each session respectively, were created 

to contain information of system events belonged to the session. Table 3.6 shows how 

many sessions and how many system events appeared in a day from the DARPA 98 BSM 

audit files. For example, 744,085 system events from the BSM audit file of Monday first 

week 1998 data set were allocated into 182 session files.  

Second, various features were extracted from a session file according to the feature 

descriptions in table 3.2, 3.3 and 3.4. Before extracting features related to event types, we 

 

BSM audit Session Files Creation

Session #2 
Session #1 

٠
Feature Extraction 

Labeling  BSM list file

session ID
wk3_Mon_2220
wk1_Mon_1773
wk1_Mon_1799

X1 X2 X3
0 0 0
0 0.314406 6.98E-04
0 5.17E-04 4.73E-06

session ID Attack/Normal X1 X2 X3
wk3_Mon_2220 1 0 0 0
wk1_Mon_1773 1 0 0.314406 6.98E-04
wk1_Mon_1799 0 0 5.17E-04 4.73E-06

Feature data

Labeled data

Figure 3.8 Procedure of data preprocessing

91699,61,Jun 02 11:11:00,998294045,1040,1040,0.0.0.0 
91700,41,Jun 02 11:11:00,998294045,1040,1040,0.0.0.0 
91701,25,Jun 02 11:11:00,998294045,1040,1040,0.0.0.0 
91702,9,Jun 02 11:11:00,998294045,1040,1040,0.0.0.0 
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needed to know what kinds of system events exist in the DARPA 98 BSM data set. It 

turned out that there are 75 types of system events in the BSM files by searching all audit 

data files. Figure 3.9 shows the list of 75 system event types. As a result of feature 

extraction, 246 features were obtained from each session file as seen in table 3.7. 

Third, sessions were labeled with normal or attack by referring a BSM list file. 

Unfortunately, session indices in a BSM list file are not consistent with the session ID’s 

in a BSM audit file and the number of sessions of both BSM files, also, are significantly 

different. Because BSM list file records sequentially session information of all hosts in 

the network whereas BSM audit file stores information for only a specific host. For 

example of Monday first week 1998 data set, there are 308 sessions in the BSM list file, 

compared to 182 sessions in the BSM audit file. We used start time, duration and IP 

address of sessions as matching criteria to relate a session in BSM audit file with a 

session in BSM list file instead of session index. By performing the matching procedure 

on first week Monday 1998 data set, for example, 178 session files were labeled with 

normal and two sessions with attack. We applied our data pre-processing method on 

seven-week training data of 1998 data with about 40,495,000 system events to obtain a 

data set to be ready for our analysis. As a result of the pre-processing, we got data with 

246 variables for 7,632 normal sessions and 456 attack sessions as in table 3.8. 
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Table 3.6 Numbers of sessions and system events in the DARPA 98 BSM audit files 

 

Date Number of sessions Number of system events 

Monday 182 744,085 

Tuesday 148 778,781 

Wednesday 277 1,094,935 

Thursday 194 767,926 

First week 

Friday 184 819,471 

Monday 174 661,129 

Tuesday 150 595,198 

Wednesday 196 800,938 

Thursday 179 780,361 

Second 
week 

Friday 197 906,479 

Monday 431 2,397,774 

Tuesday 205 1,121,967 

Wednesday 204 2,759,945 

Thursday 363 1,713,695 

Third 
week 

Friday 210 891,696 

Monday 330 941,820 

Tuesday 339 1,320,478 

Wednesday 163 768,152 

Thursday 322 903,596 

Fourth 
week 

Friday 184 2,249,503 

Monday 364 1,938,514 

Tuesday 212 1,116,098 

Wednesday 192 845,300 

Thursday 226 1,829,613 

Fifth week 

Friday 196 875,700 
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Table 3.6 Continued 
 

Date Number of sessions Number of system events 

Monday 337 1,815,737 

Tuesday 209 1,108,912 

Wednesday 202 850,350 

Thursday 239 925,079 

Sixth week 

Friday 213 840,072 

Monday 208 948,058 

Tuesday 191 829,151 

Wednesday 191 829,151 

Thursday 331 1,775,358 

Seventh 
week 

Friday 215 950,400 

Table 3.7 Features extracted from the DARPA 98 BSM dataset 

Groups Variable number 

Overall length 1-5 

Length by process duration time  6-17 

Length 

Length by number of system events in a process 18-29 

Overall intensity 30-31 

Process level intensity 32-77 

Intensity 

System event level intensity 78-93 

Event diversity 94-96 Events 

Event frequency 97-246 
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accept(2) kill(2) pathdonf(2) 

access(2) link(2) pipe(2) 

audit(2) login - local putmsg(2) 

auditon(2) - get audit state login - telnet putmsg-connect 

bind(2) logout putpmsg(2) 

chdir(2) lstat(2) readlink(2) 

chmod(2) memcntl(2) recvfrom(2) 

chown(2) mkdir(2) rename(2) 

close(2) mknod(2) rmdir(2) 

connect(2) mmap(2) sendto(2) 

creat(2) munmap(2) setaudit(2) 

doorfs(2) - DOOR_CALL old nice(2) setegid(2) 

doorfs(2) - 
DOOR_CREATE old setgid(2) seteuid(2) 

execve(2) old setuid(2) setgroups(2) 

exit(2) old utime(2) setpgrp(2) 

fchdir(2) open(2) - read setrlimit(2) 

fchmod(2) open(2) - read,write setsockopt(2) 

fchown(2) open(2) - read,write,creat socket(2) 

fcntl(2) open(2) - read,write,creat,trunc stat(2) 

fork(2) open(2) - read,write,trunc statvfs(2) 

fork1(2) open(2) - write su 

getaudit(2) open(2) - write,creat symlink(2) 

getmsg(2) open(2) - write,creat,trunc sysinfo(2) 

inetd open(2) - write,trunc unlink(2) 

ioctl(2) pathconf(2) vfork(2) 

Figure 3.9 List of 75 system event types 
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Table 3.8 Data resulted from pre-processing procedure 

 

Normal Attack Total 

Number of sessions 7,632 456 8,088 

3.4 Experiment based on the DARPA 98 BSM Data 

3.4.1 Experimental setup 

We made a smaller set of data from the larger pre-processed data for our experiment. We 

extracted data of 3051 normal sessions for the last five weeks from seven-week training 

data in the 1998 data set which is considered as more representative for ordinary 

activities than the first two weeks. Data for 456 attacks from the whole seven weeks were 

used in our analysis without any omission of the data since our experiment needed much 

attack data as possible to get more reliable results. Our data set for the experiment 

comprises 3,051 normal session and 456 attack session data.   

We randomly divided the data set into the training data and the testing data for our 

experiment as shown in table 3.9. About 16% of the normal data and 20% of the attack 

data came to be a training data and the remaining of the data became the testing data. 

Table 3.9 shows the number of samples in the training and testing data. 
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Table 3.9 Number of samples in data set 

Training data Testing data 

Normal sessions Attack sessions Normal sessions Attack sessions 

500 91 2551 365 

Support vector data description (SVDD) was used as anomaly detection technique for the 

performance experiment of the proposed feature framework. SVDD is a one-class 

classification originated from the support vector machines (SVMs). One-class 

classification method tries to detect which sample is similar to training data based on a 

description of this training data set. This method is able to detect outliers which have 

different characteristics with training data as well. The basic idea of the SVDD method is 

to find a spherically-shaped small boundary that envelops most of data of interest. The 

hypersphere should have minimum volume as possible and simultaneously contain as 

many data as possible in order to minimize the possibility of accepting outlier data. The 

more details on SVDD are in Tax and Duin (2004) and the application of SVDD in 

intrusion detection is explained in Tao et al. (2004) and Yang et al. (2004). 

An evaluation of intrusion detection system requires the estimation of two quantities: 

false alarm rate and attack detection rate. False alarm occurs when a normal session is 

assigned to attack by the trained SVDD boundary. False alarm rate is calculated by the 

number of false alarm over the number of normal sessions in testing data. Attack 

detection rate is the probability of correctly detecting the presence of the attack session 
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by the boundary. The performance of our method was measured by calculating false 

alarm rates and detection rates for the data set. 

3.4.2 New feature framework results 

Table 3.10 shows the performance results of new feature framework for the data set from 

the 1998 DARPA BSM data compared with the existing features. The results of 

performance are 99.73% of detection rate with 2.63% of false alarm rate for the testing 

data. Chen et al. (2005) applied Support vector machine (SVM) with tf×idf scheme and 

Artificial neural networks (ANN) with frequency scheme for the 1998 DARPA BSM 

data. Compared to the best results in Chen et al., SVDD with the features from the 

proposed new framework showed higher detection rate and lower false alarm rate.  

3.4.3 Performance comparison among three feature groups 

Table 3.11 shows the performances of three individual feature categories and combined 

two feature categories. Among the individual categories, the event type feature group 

achieved the best performance, showing 100% detection rate and reasonable false alarm  

Table 3.10 Detection performance comparison between two existing features and the 
proposed features extracted by the new framework 

Data Attack detection rate False alarm rate 

SVDD with proposed features 99.73% 2.63% 

SVM with tf×idf scheme* 99.60% 2.87% 

ANN with frequency scheme* 99.20% 4.94% 

* Best results of Chen et al. (2005) 
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Table 3.11 Performance comparison among individual feature categories, combined two 
categories, and all three categories 

 

Feature groups Number of 
features used 

Attack detection 
rate (%) 

False alarm rate 
(%) 

Length 29 4.93 1.61 
Intensity 64 97.26 46.18 Individual 

category 
Event type* 153 100.00 3.88 

Length + 
Intensity* 93 99.73 2.78 

Length + 
Event type 182 3.29 1.22 

Combined 
two 

categories Intensity + 
Event type 217 100.00 20.38 

All three categories* 246 99.73 2.63 
* Three feature categories showing best performances. 

 

rate. The intensity feature group brought good detection rate, over 97%, whereas its false 

alarm rate is too high, over 46%. The worst performance among the three groups came 

from the length feature group which showed very low detection rate, under 5%. Both the 

length and intensity categories turned out to be not practical for intrusion detection 

because of their unreasonable low detection rate and high false alarm rate, respectively. 

However, features combined with the two categories showed surprisingly good 

performance, 99.73% detection rates and 2.78% false alarm rate. Individual event type 

category and features combined with length and intensity were as good as all 246 features 

in terms of performance. 
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Chapter 4 Differentiated Intrusion Detection 

 

This chapter provides differentiated intrusion detection methodology. Section 4.1 

presents motivations of the proposed method. Introduction to SVDD is presented in 

Section 4.2. Section 4.3 presents mathematical formulation for differentiated intrusion 

detection. The proposed differentiated anomaly intrusion detection is explained in detail 

in Section 4.4. Finally, experiment with simulated data and the DARPA data and the 

results are presented in Section 4.5.  

 

4.1 Motivation 

There exists more harmful type of attack to an information system among intrusion types. 

According to 2006 CSI/FBI computer crime and security survey, the most common 

attack type was “computer virus” and the attack type causing the biggest loss per case 

was “unauthorized access to information” in the United States as seen in table 4.1. The 

unauthorized access to information is the most critical attack type especially in an 

organization with confidential information on its computer network systems which 
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Table 4.1 Most frequent top seven attack types and their loss amounts 

Types of attacks Percent of 
respondents* 

Losses* 

(Dollars) 

Losses per 
case 

(Dollars) 

Virus 65 15,691,460 241,407 

Laptop/mobile theft 47 6,642,660 141,333 

Insider abuse of Net access 42 1,849,810 44,043 

Unauthorized access to 
information 32 10,617,000 331,781

Denial of service 25 2,922,010 116,880 

System penetration 15 758,000 50,533  

Abuse of wireless network 14 469,010 33,501
* Source: 2006 CSI/FBI computer crime and security survey 

 

should not be released to the public. Because it is expected to bring huge negative 

consequences such as operational trouble, financial loss and reputation damage of the 

organization when the attack passes through its defense layers including authentication, 

encryption, firewall, and intrusion detection system. Therefore, a system administrator 

needs to more strictly detect intrusions of the worst attack type to her organization while 

detecting other ordinary attacks. Existing anomaly intrusion detection techniques do not 

support this task. 

In the existing anomaly detection methods, all attacks are treated with equal importance 

regardless of their types. For example, a denial of service attack which blocks victim 

system’s whole operation and brings severe loss is regarded as only one of anomalies as 
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same as a probe attack which merely searches weak points of the system without 

disturbing the system operation. There is no anomaly detection method which 

differentiates attack types by their harmfulness when training its classifier.  

Although there are anomaly detection techniques which identify the type of attack, they 

still can not perform intrusion detection with different weights on intrusion types. KDD 

’99 classifier learning contest was to create a predictive model to distinguish five 

categories such as normal, probe, denial of service, user-to-root and remote-to-local 

(Levin, 2000). Wang (2005) proposed a multinomial logistic regression approach for 

anomaly intrusion detection in which one record is assigned one of the above five 

categories based on 13 risk factors. Since those approaches aim at classifying intrusion 

types, they are not useful in differentiated detection on attack types. 

This dissertation proposes a novel differentiated detection approach for anomaly intrusion 

detection to perform tighter detection on a targeted attack type and ordinary detection on 

nontargeted attack types. To the best of my knowledge, this is the first such approach for 

anomaly intrusion detection. The main idea is to use regularization parameter in support 

vector data description (SVDD) as a weight factor for a targeted type of attack on how 

strictly it is detected compared to nontargeted types. The higher weight for a targeted 

attack type means that the type is more harmful and needs to be more strictly detected 

than the nontargeted types. SVDD is a one-class classifier which was developed by Tax 

and Duin (2004) and Tao et al. (2004) introduced it as anomaly intrusion detection 

method to the field of intrusion detection for the first time. 
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4.2 Introduction to SVDD 

One-class classification method tries to detect which sample is similar to training data 

based on a description of this training data set. This method is able to detect outliers 

which have different characteristics with training data. It is quite useful in solving a 

classification problem in which samples for one of the classes are plentiful and samples 

for the others are very few. SVDD is a one-class classification originated from the 

support vector machines (SVMs).  

The basic idea of the SVDD method is to find a spherically-shaped small boundary that 

envelops most of data of interest. The hypersphere should have minimum volume as 

possible and simultaneously contain as many data as possible in order to minimize the 

possibility of accepting outlier data. Given N observations of normal data with p

variables { }nxxx ,..,, 21 , the hypersphere of SVDD with a radius R and a center µ is 

subject to  

 
iRi ∀≤− ,22µx (4.1) 

 

to envelop all normal data. Minimizing the volume of the hypersphere is represented with 

minimizing R2 with respect to R and µ. It is possible that there exist a few outliers in 

training data set and we can not distinguish them from normal data, thereby bigger sphere 

may be obtained. To prevent this consequence we need to penalize outliers’ participation 
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in constructing the hypersphere. Therefore, slack variables )0(≥iξ are introduced to 

penalize larger distance between xi and µ. The minimization problem is modified with  

 

∑
=

+
N

i
iCRMin

1

2. ξ (4.2) 

 

where the parameter C gives the trade-off between the volume of the sphere and the 

number of observations outside. Equation (4.1) changes into the following constraints 

that almost all observations are within the sphere: 

 

.,0,22 iR iii ∀≥+≤− ξξµx (4.3) 

 

By introducing the Lagrange multipliers for inequality conditions of equation (4.3), we 

can obtain the Lagrangian function: 
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with 0≥iα and 0≥iβ . The solution of equation (4.4) is obtained by setting partial 

derivatives R, µ, ξi of ),,,,( iiiRL ξβαµ to zero: 
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Since αi = C - βi from equation (4.7), 0≥iα , and 0≥iβ , we can remove the Lagrange 

multipliers βi by producing Ci ≤≤α0 . Applying equations (4.5-7) into equation (4.4) 

results in: 
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)()( xxxx ααα . (4.8) 

 

A set of αi is obtained by maximizing of equation (4.8) with Ci ≤≤α0 . According to the 

Kuhn-Tucker complementarity’s condition, the following equation should be true at the 

optimal solution (Park et al., 2005):  
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iR iii ∀=−−− ,0)( 22 ξα µx (4.9) 

 

When a sample xi satisfies the inequality ii R ξ+<− 22µx , that is, sample xi is within 

the hypersphere, the corresponding Lagrange multiplier is zero, i.e., αi = 0 from equation 

(4.9). For samples satisfying the equality ii R ξ+=− 22µx that are on the boundary or 

outside the sphere, the corresponding Lagrange multipliers are not zero, i.e., αi > 0. The 

center of the sphere µ is a linear combination of the samples according to equation (4.6). 

SVDD needs only samples xi with αi>0 which are called support vectors of the SVDD. 

Once the SVDD is constructed on the training data, we need to decide whether a given 

test sample z is normal or outlier. The criterion for the decision can be stated as:  

 

)()( 22 RzIzf ≤−= µ (4.10) 

 

where I(condition) equals to one if the condition is true and zero otherwise.  

We can get a better description of normal data by incorporating attack samples in the 

SVDD training when they are available. Considering M attacks available in the training 

set, the problem in equation (4.2) with constraint (4.1) changes into:  
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where iξ and kξ are slack variables for normal data ix and attack data kx .

The boundary of the hypersphere around the data is not flexible and often not a good 

description. For more flexible boundaries, inner products of samples )( ji xx ⋅ as shown in 

equation (4.8) is replaced by a kernel function ),( jiK xx , where ),( jiK xx  satisfies 

Mercer’s theorem (Schölkopf et al., 1998). This kernel trick implicitly carries out 

mapping samples into a nonlinear feature space to obtain a tighter boundary. By 

introducing kernel function instead of inner products, equation (4.8) can be expressed as: 
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with constraints Ci ≤≤α0 and ∑ =i i 1α . By the use of a kernel function, the execution 

of the nonlinear mappings and the dot products in a nonlinear feature space becomes 

unnecessary (Cortes & Vapnik, 1995). The most commonly used kernel functions are the 

Gaussian function as in equation (4.13) and the polynomial functions as in equation 

(4.14). 
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( )σ/exp),(
2

jijiK xxxx −−= (4.13) 

d
jijiK )(),( xxxx ⋅= (4.14) 

 

A boundary of the SVDD depends on which kernel function is used to train the 

description. Gaussian kernel produces tighter description than the polynomial function in 

SVDD according to Tax and Duin (2004).  

The value of the regularization parameter C can be determined by using the false alarm 

rate, FA, for the target data and the number of observations, N:

NFA
C

*
1

≤ (4.15) 

 

When C is set to 1, it requests the boundary which should accept all target data and reject 

all outlier data. Figure 4.1 shows the description obtained using Gaussian kernel for a 

simple two dimensional data set with outliers. The closed solid curve is the boundary 

which distinguishes normal data indicated with star symbols from attack data represented 

with plus signs. Normal data on the boundary indicate the support vectors of the 

description. 
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Figure 4.1 Example of data description trained with outliers 

 

4.3 Formulation for Differentiated Intrusion Detection 

Let us consider a training data set with N samples of normal data, L of targeted attack 

type and M of nontargeted attack type. When the targeted attack type needs to be more 

strictly detected than the nontargeted types, the problem in equation (4.11) is represented 

into:  
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where R and µ are a radius and a center of the hypersphere, and C1, C2, C3, iξ , *
jξ , **

kξ

are regularization parameters and slack variables, respectively, for normal data ix ,

targeted attack type data *
jx and nontargeted attack types data **

kx . Equation (4.16) 

changes into the Lagrangian function by using the Lagrange multipliers for its inequality 

conditions:  

 

∑∑

∑∑

∑∑

∑∑∑

==

==

==

===

−+−+⋅−−

−+−+⋅−−

−+⋅−−+−

+++=

M

k
kk

M

k
kkkk

L

j
jj

L

j
jjjj

N

i
ii

N

i
iiii

M

k
k

L

j
j

N

i
ikji

R

R

R

CCCRRL

1

****

1

**22**2****

1

**

1

*22*2**

11

222

1

**
3

1

*
2

1
1

2***

})2{(

})2{(

)}2({

),,,,(

ξβξα

ξβξα

ξβξα

ξξξξξξ

µxµx

µxµx

µxµx

µ

(4.17) 

 

with the Lagrange multipliers 0≥iα , 0≥iβ , 0* ≥jα , 0* ≥jβ , 0** ≥kα and 0** ≥kβ . The 

dual of equation (4.16) is: 
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The terms with partial derivatives set to zero in equation (4.18) produce simplified forms. 

For the partial derivative with respect to R we get equation (4.19): 
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We obtain equation (4.22) from the partial derivative with respect to µ:
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For the partial derivative with respect to iξ , *
jξ and **

kξ :
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Since ii C βα −= 1 from equation (4.23), 0≥iα , and 0≥iβ , we can remove the 

Lagrange multipliers iβ by producing 10 Ci ≤≤α . By doing same processes for *
jα , *

jβ ,

**
kα and **

kβ , 2
*0 Cj ≤≤ α , 3

**0 Ck ≤≤ α .

By incorporating equations (4.20), (4.22) and (4.23) into ),,,,( ***
kjiRL ξξξµ of equation 

(4.18), L results in the function of only iα , *
jα , **

kα , ix , *
jx and **

kx . The terms of R in L

reduce to zero: 

 

01
1

**

1

*

1

22

1

**2

1

*2

1

2 =







++−=++− ∑∑∑∑∑∑

======

M

k
k

L

j
j

N

i
i

M

k
k

L

j
j

N

i
i RRRRR αααααα (4.24) 

 

Also, the terms of iξ , *
jξ and **

kξ in L become to zero: 
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After removing the terms of R, iξ , *
jξ and **

kξ in ),,,,( ***
kjiRL ξξξµ of equation (4.18), it 

is as follows then: 
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After replacing µ with equation (4.22) the second line on equation (4.27) is: 
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And the third line on equation (4.27) is reduced to 2µ by equation (4.20). The 

remaining 2µ is as the following: 
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L in equation (4.27) is rewritten as: 
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The equation (4.18) is transformed into: 
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The solution of equation (4.31) is a set of values for ***,, kji ααα . The following relation 

between the Lagrange multipliers ***,, kji ααα and the constraints of equation (4.16) are 

always true according to the Kuhn-Tucker condition:  
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From equation (4.32), it is true that a normal observation ix satisfies the constraint of 

equation (4.16) when the corresponding Lagrange multiplier iα =0.  ix with iα =0 is 

inside the boundary, ix with 10 Ci <<α is on the boundary, and ix with 1Ci =α is 

outside the boundary: 
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For the targeted attack samples, *
jx , an observation with *

jα =0 is outside the boundary, 

one with 2
*0 Cj <<α on the boundary, and the other with 2

* Cj =α inside the boundary: 
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The same relation holds for the nontargeted attack type, *
jx :
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The following lemma is derived to explain the relationship between the number of 

detected targeted attacks and its regularization parameter value. This lemma can be used 

as a guideline to determine the appropriate value of regularization parameters for a given 

level of detection for the targeted attack type. 

 

Lemma 1: Let fN , uL and uM be the number of false alarms of normal data, the 

number of undetected attacks of the targeted type and nontargeted types, respectively. 

Then, the following relationship holds between these parameters and the regularization 

parameters: 

( )2 1 3
1

f u
u

C N C M C
L

= − + constant    (4.36) 

 

Proof: Summation of the Lagrange multipliers iα , *
jα and **

kα for observations 

can be rewritten: 
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The equation (4.20) combined with the equation (4.37) changes: 

13
0

**
2

0

*
1

0 3
**

2
*

1

=









+−










+−








+ ∑∑∑

<<<<<<

CMCLCN u
C

ku
C

jf
C

i
kji ααα

ααα (4.38) 

From the equation (4.38), the following relationship holds: 
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Assuming that the terms in the second bracket of the equation are constant, the equation 

is reduced into:  

( ) constCMCN
L

C uf
u

+−= 312
1 ■

It is obvious from the lemma 1 that the number of detections of a targeted attack type 

increases by raising the value of its regularization parameter and by fixing the 

regularization parameters for normal data and nontargeted types of attacks. The lemma is 

a theoretical basis for the proposed differentiated anomaly intrusion detection of the 

targeted type of attack. 
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Figure 4.2 shows the effect of the differentiated detection on data set where targeted 

attack type locates in the opposite place of the nontargeted attack type across the normal 

data. The dashed boundary of differentiated detection detects more attacks of targeted 

type but less attacks of nontargeted type than the solid line boundary of the ordinary 

detection. As seen in figure, differentiated detection moved the boundary away from the 

targeted attack type, that is, toward the nontargeted attack type and the resulted boundary 

enclosed more attack data of nontargeted type indicated with small circles. 

 

Figure 4.2 Comparison of the ordinary detection boundary with the boundary for the 
differentiated intrusion detection. Solid line boundary(ordinary detection), dashed line 
boundary(differentiated detection), dots(normal data), asterisks(targeted attack), tiny 

circles(nontargeted attacks) 
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4.4 Differentiated Anomaly Intrusion Detection 

4.4.1 Selecting magnitudes of regularization parameter 2C

The magnitude of regularization parameter for targeted attack represents the power of the 

differentiated detection on the attack. Larger magnitude forces a classifier to detect more 

intrusions of the attack type. Basic unit of the magnitude is the value of 1/[(1 – desired 

detection rate for all attacks) ዊ� (number of attack data in the training data)] which is 

ordinarily set in SVDD training. One unit magnitude of the parameter for targeted attack 

type means that all attack types are treated with same importance. The magnitude of 

larger than one unit gives more weights on targeted attack detection than the nontargeted 

attack type detection. According to our pre-experiments about the maximum magnitude 

with practical meanings, it was between 200 and 500 at most. After the magnitude 

reaches the value, there is no change in the differentiated detection results no matter how 

large the magnitude is over it. Also, the performance of differentiated detection is 

sensitive on the small magnitudes such as two and three units rather than large value like 

100 units. For the differentiated detection to find the best magnitude, we recommend 

setting its range from two to 500 units and using detailed intervals especially on the 

smaller values. 

4.4.2 Monotonic increase and number of training data 

According to the lemma 1, monotonic increase on detections of targeted attacks is 

expected as a regular result of rising regularization parameter. However, it rarely happens 

in the real situation with limited number of data which does not distribute evenly. Only 



72

when there are so many data of targeted attack and normal near the boundary that the 

classifiers from the differentiated detection can be elaborate, the monotonic rising would 

be possible. It is recommended for finer classifiers of the differentiated detection that as 

many available data as possible are used for the training. 

4.4.3 SVDD parameters 

For training its classifiers, SVDD requires parameters to be determined such as desired 

false alarm rate for normal data, desired detection rate of all attacks, type of kernel, and 

parameters of the kernel. Usually, desired false alarm rate and detection rate are set to 5% 

and 90%, respectively. The most commonly used kernel functions are the Gaussian 

function and the polynomial function. The each parameter for the kernels such as the 

bandwidth of Gaussian, σ , and the degree of the polynomial, d , is decided to yield the 

best results by using cross validation on the training data. Selecting a proper kernel type 

for a data set depends on the nature of the data although Gaussian kernel is better than the 

polynomial function in SVDD according to Tax and Duin (2004). The kernel showing 

better result is selected after training the classifier for each kernel function.  

4.4.4 Selecting the level of differentiated detection 

The differentiated detection of a targeted attack type could produce negative effects for 

identifying normal data and nontargeted attack types, despite serving best for detection of 

the targeted attack type. Sometimes, we cannot allow a huge number of false alarms and 

undergo failures to detect nontargeted types of attacks for the sake of only tiny 

improvement in detection of a targeted attack. We need to decide what level of 
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differentiated detection is reasonable while also considering its positive and negative 

effects. This can be determined by calculating the gain and the loss that will result from 

increased detection of targeted attacks or from failing to detect them. The gain is the 

savings from detecting targeted attacks that otherwise would have resulted in losses. The 

loss can be measured in the costs of handling additional false alarms and undetected non-

targeted types of attacks. Let the benefit function of the gain and the loss from 

regularization parameter magnitude i be )(iB . The best level of differentiated detection 

is ∗i that maximizes the value of )(iB over all i .

4.4.5 Steps of differentiated detection 

Step 1. Identifying targeted attack type: Identify which attack type is most harmful to the 

information system and requires differentiated detection. 

Step 2. Data preparation: Prepare a data set to be used for the differentiated detection. 

Based on the required feature formats, data is collected separately for normal activities, 

the targeted attack type, and nontargeted attack types.  

Step 3. Selecting parameters: SVDD parameters, magnitude intervals, and the range of 

the regularization parameter of the targeted attack need to be given proper values for 

differentiated detection. 

Step 4. Running the model up to convergence: Run the SVDD-based differentiated 

detection model and collect the results, such as the number of additional detections of 

targeted attacks and nontargeted attack types, and the increased number of false alarms. If 
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the results do not converge, raise the maximum magnitude of the regularization 

parameter, insert more intervals between the existing and new maximum magnitudes, and 

run the model again. Repeat until the results show convergence. 

Step 5. Choosing the best classifier among trained SVDD classifiers: If the benefit 

function of gain and loss that results from differentiated detection is known, select, based 

on the results of step 4, the classifier with the maximum benefit function value. 

Otherwise, choose from among the trained classifiers the classifier showing the largest 

number of detections of the targeted type of attacks.  

 

4.5 Experiments of Differentiated Intrusion Detection 

4.5.1 Experimental setup 

The experiment for the proposed differentiated intrusion detection method was conducted 

by using two data sets: simulated data and the same data as used in the experiment for the 

new framework. The simulated data was artificially generated from normal and two 

attack classes in a two-dimensional data space for the experiment. The center of normal 

class located at (0, 0) and two attack class centers were at (1, 1) and (-1, -1), respectively. 

Two components of all the samples were independently corrupted by Gaussian noise with 

standard deviations 0.2 and 0.24.  

The performance of the differentiated intrusion detection was demonstrated with the 

simulated data set in which there were four training data sets and one testing data set as 
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seen in table 4.2. There were two factors related to the differentiated detection 

performance: relative magnitude of the regularization parameter for targeted attack type 

compared to one for nontargeted attack types and the number of samples of targeted 

attack in the training data. The magnitude of targeted attack’s regularization parameter 

was set to twelve magnitudes ranging two to 500 times bigger than the nontargeted 

attack’s. For the number of targeted attack samples, four different training data groups 

with 10, 20, 30, and 40 samples of targeted attack, respectively, were considered and 10 

data sets were sampled for each group, thereby getting 40 training data sets in total. Then 

a SVDD classifier was trained with each of 40 data sets combined with one of the twelve 

regularization parameter’s magnitudes. By applying its classifier into the testing data, the 

result for each data set was measured as the number of detections on targeted attack, the 

number of false alarms and the number of detections on nontargeted attack. The 

performance of the differentiated detection for each four training data group was the 

summation of its ten results. 40 runs of SVDD were required to get desired results from 

the simulated data. The pre-processed DARPA-MITLL 1998 BSM data in table 3.9 was 

used to check how well the differentiated intrusion detection works in the real situation. 

In this experiment, all the SVDD trainings were performed with outliers since there were 

attack data available. Polynomial kernel with degree of one was used in training SVDD 

for the DARPA data set whereas Gaussian kernel was used for the simulated data set 

because they achieved better performance. In all the experiments, the fraction rejection 
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Table 4.2 Number of data sets and samples in the simulated data 

Training data 

Group 
#1 

Group 
#2 

Group 
#3 

Group 
#4 

Testing data 

Number of data sets 10 10 10 10 1 

Normal  200 200 200 200 2000 

Targeted 
attack 

10 20 30 40 400 Number of 
samples 

per data set Nontargeted 
attack  

10 20 30 40 400 

for SVDD was set to 0.05, where 5% of normal data is expected to lie on or out of the 

boundary of classifier. The data description toolbox (dd_tools) 1.4.0 of Tax (2005) was 

modified and used as our SVDD running tool. 

4.5.2 Results on simulated data 

The proposed differentiated detection was effective on all the training data sets. The 

detection of targeted attacks was improved by the differentiated detection on the targeted 

type, showing 54 to 188 more detections compared to the ordinary intrusion detection as 

seen in table 4.3.  

The extent of the improvement became larger along with increasing number of targeted 

attack samples in the training data. For example, 5.1% improvement was achieved in the 

training data set number four with 40 targeted attack samples while only 1.5% 

improvement in detection number came out from the group number one with 10 samples. 
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Table 4.3 Number of detected samples of targeted attack by the differentiated detection 
on the targeted type with four training data set groups. 

 
Training data set group Number of detections  

on targeted attack type #1 #2 #3 #4 

Maximum in the weighed detection 3,665 3,691 3,829 3,874 
At ordinary detection* 3,611 3,635 3,653 3,686 

Improvement  
compared to the Ordinary** 

(percent) 

54 
(1.5%) 

56 
(1.5%) 

176 
(4.8%) 

188 
(5.1%) 

* Ordinary detection was performed with the same weights, magnitude=1, for both of 
targeted type and nontargeted attack type 
** (Maximum number of detections on targeted attack type in the weighed detection) – 
(Number of detections on targeted attack type in the ordinary detection) 
 

Figure 4.3 depicts the trends of changing detection rates on the targeted attack resulted 

from magnitude increases for all the four data sets. As the number of targeted attack 

samples increased in the training data, detection rate improved more smoothly with less 

deterioration. In case of training with 10 targeted type samples, there were only four time 

improvements and four time deteriorations on detection rate out of twelve differentiated 

detections. This contrasts to the results of training with 40 samples that all the 

differentiated detections showed better detection rates than the ordinary detection and 

there were only three little deteriorations. Another finding was that detection rates 

converged earlier with smaller number of attack samples in the training data. As seen in 

figure 4.3, the convergences appeared at magnitude 20 in data group number one, at 50 in 

data two, at 100 in data three, and at 200 in data number four. The value of magnitude for 

the convergence is expected to exist between 100 and 200 based on our experimental 

results. 
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Figure 4.3 Change on detection rates of targeted attack type along with increasing 
magnitudes of regularization parameter of the targeted type according to differentiated 

detections on the type with four training data sets. 
 

The differentiated detection with the training data group four showed the most similar 

results as our expectations based on the lemma. More detection of targeted attacks, more 

false alarms, and less detection of the nontargeted attacks which locate in the opposite 

across the normal data were expected as responses to increasing magnitudes in the 

differentiated detection. Figure 4.4 depicts the results of differentiated detections on the 

group four data. As the magnitude of the regularization parameter for targeted attack type 

increased, targeted attack detection increased almost monotonically, nontargeted attacks 

were gradually less detected, and false alarms increased roughly. It is obvious that those 

results are consistent with the expectation. More samples of targeted attack type are 

required to get much finer results of differentiated intrusion detection on the type. 
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Figure 4.4 Changing trend of number of detections on both targeted attack type and 

nontargeted attack type and number of false alarms of normal data with increasing 

magnitudes of regularization parameter of the targeted type resulted from differentiated 

detections on the targeted type with training data group number four 
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4.5.3 Results on the DARPA data 

The differentiated detection on U2R attack type detected at most six more attacks. U2R 

attack type was selected to apply the differentiated detection since it was thought the 

most harmful attack type in our data based on the 1998 DARPA BSM data set. Table 4.4 

shows the results for the differentiated detection of U2R attack type. When the magnitude 

was four, the differentiated detection produced the largest additional detections of U2R 

attack with 22 more false alarms. Also it detected five additional attacks of the 

nontargeted types, which means that nontargeted types of attacks locate near U2R and the 

differentiated detection on U2R is effective on them too. However, there was no further 

improvement on differentiated detection of U2R after magnitudes reached to four. The 

convergence of results appeared from the magnitude 50. Effective results of the 

differentiated detection on U2R came out in only three cases of 2, 4, and 15 magnitudes. 

From the remaining nine cases of all the twelve magnitudes, we found interesting results, 

decreased false alarms without any negative impacts on detecting attacks. It is noticeable 

that these results are better than ordinary intrusion detection because of their less false 

alarms with same detection capability.  
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Table 4.4 Results for the differentiated detection on U2R attack type compared to 
ordinary detection on the type 

 
Regularization 

parameter 
magnitudes 

for the 
targeted attack 

type, U2R 

Additionally detected 
number of U2R 
attacks by the 
differentiated 

detection 

Number of additional 
false alarms resulted 

from the differentiated 
detection  

Additionally detected 
number of nontargeted 

attack types by the 
differentiated 

detection 

2 1 3 0

3 0 -26 0 

4 6 22 5 

5 0 -2 0 

7 0 -26 0 

10 0 -31 0 

15 1 4 0 

20 0 -26 0 

50 0 -11 0 
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Chapter 5 SVDD-based Feature Selection 

 

This chapter provides SVDD-based feature selection methods. Section 5.1 presents 

motivations of the proposed methods. Introduction to feature selection for anomaly 

detection is presented in Section 5.2. Section 5.3, 5.4 and 5.5 presents mathematical 

formulations and algorithms for SVDD-R2-RFE, SVDD-RFE and SVD-Gradient feature 

selection methods, respectively. Finally, experiment of three methods with simulated data 

and the DARPA data and the results are presented in Section 5.6.  

 

5.1 Motivation 

Feature selection in a classification problem is to select most predictive features for 

classification results among whole features. The number of features to be considered for a 

classification can be reduced by using feature selection method. Smaller number of 

features means less effort to get and process data. Therefore, feature selection contributes 

cost and time reduction for solving classification problems. When a problem has huge 

number of features, the trial to get a solution of the problem would fail because of 

impractically large computation. In that case, only feature selection may make the 
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problem practical. Also, feature selection can identify irrelevant or redundant features for 

a problem which does not add any information to the classifier. By removing them from 

the feature set to be considered, the remaining features have more discriminating power 

than whole features. Feature selection is invaluable in data dimension reduction and 

discriminating improvement for classification problems with large number of features. 

There are feature selection methods devoted only for a certain type of classification 

method like SVM-RFE (Support Vector Machine Recursive Feature Elimination) (Youn, 

2004) while some algorithms for feature selection such as SBS (Sequential Backward 

Selection) and SFS (Sequential Forward Selection) are generally applicable in most data 

mining techniques. SVDD is introduced in 2004 and there is no feature selection method 

solely dedicated to SVDD.  In this paper, SVDD-based feature selection method is 

developed. 

 

5.2 Introduction to Feature Selection for Anomaly Detection 

Feature selection has been deeply studied for the application areas in which datasets with 

thousands of features exist. The general objectives of feature selection are to improve the 

performance of the predictors, provide more effective predictors and a better 

understanding of the dataset (Guyon & Elisseeff, 2003). Although many researched have 

been performed for classification problems, there are very few studies of feature selection 

for anomaly detection. 
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General two components of feature selection are criterion function and subset searching 

method. Criterion function is to measure the prediction performance of single feature or 

feature subset. Subset searching method is an algorithm to explore feature subset space to 

find the best subset of features with maximum value of criterion function. Many 

researches for feature selection are to find better criterion function and more efficient 

searching algorithms. 

Feature ranking is a feature selection method to evaluate the prediction power of 

individual feature based on its criterion function. Subset searching algorithm is not 

required in this method because only individual feature rankings are desired.  Since it is 

simple, scalable, and empirically successful, feature ranking has been widely used in 

various literatures (Guyon & Elisseeff, 2003). Examples of feature ranking are 

correlation criteria (Furey et al., 2000; Tusher et al., 2001), single variable classifiers 

(Forman, 2003), and information theoretic ranking criteria (Bekkerman et al., 2003; 

Dhillon et al., 2003).  

Feature subset selection is a genuine feature selection method which needs both criterion 

function and subset searching algorithm. There are three categories in feature subset 

selection: wrappers, filters, and embedded methods. Wrappers proposed by Kohavi and 

John (1997) uses the prediction performance of a given classifiers to measure the 

predictive power of feature subsets. SBS and SFS have been used for wrappers. Filters 

choose feature subset independently of the chosen predictors. Since filters are faster than 

other two methods by using heuristic algorithms, they can be used as a preprocessing step 

to reduce dimensionality. Embedded methods carry out feature selection as a part of the 
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training process and are dependent on given classification method. SVM-RFE is an 

example of embedded methods. 

Those general approaches of feature selection can be applicable to anomaly detection 

area. Wang et al. (2004) proposed the integration of SVM-based anomaly detection 

system with feature selection function using specification. The feature selection of Wang 

et al. (2004) belongs to filters method. However, there is no literature dedicated to the 

anomaly detection method itself to my best knowledge of it. 

 

5.3 SVDD-R2-RFE Feature Selection Method 

5.3.1 Idea 

SVDD constructs a boundary that envelops most of normal data. It detects anomalies 

which locate out of the boundary. The performance of SVDD is dependent on how well 

the established boundary represents normal data and discriminates anomalies from them. 

As seen in equation (4.2), the objective function of SVDD is to minimize the size of the 

boundary that is measured by value of its radius square. Figure 5.1 shows why tighter 

boundary is desirable then larger one. Larger boundary A can not detect anomalies that 

are close to normal data while smaller boundary B can. Therefore, a good feature for 

SVDD is to contribute to making smaller boundary for normal data.  
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Figure 5.1 Contrast of small boundary to large boundary. Tiny triangles represent normal 
and small circles anomalies. 

 

The size of boundary is measured by its radius square. Let )( kJ − be value of the size of 

boundary which was trained with 1−n features excluding feature k . The worst feature is 

*k feature maximizing )( kJ − over all k s. 

The searching method combined with the proposed criterion function is Recursive 

Feature Elimination (RFE) which was introduced in the literature. RFE is an iterative 

procedure: first, train the classifier, second, compute the criterion function for each single 

feature and finally, remove the worst feature with largest value of the criterion function. 

5.3.2 Formulation 

Formulations for SVDD-R2-RFE feature selection method are given for two cases of 

available data: case 1 in which only normal data is available for training and case 2 in 

which both normal and anomaly data exist in training data set. 

 

Boundary A Boundary B 
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5.3.2.1 Case 1: Only normal data 

Let us consider a SVDD problem with only normal training data which has N samples. 

When s is one of support vectors on the boundary, 2R , boundary radius square, is 

represented as follows from equation (4.3) and (4.6); 
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where ix and jα are normal data and its Lagrange multiplier. Since there are small 

differences among 2R values based different support vectors, average of 2R over all 

support vectors is proper as criterion function for the size of boundary. Let ( )psR 2 be 

boundary radius square based on the support vector ps . Now, J , criterion function, is 

calculated as follows: 

 

( )
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t
sR

J
2

(5.2) 

 

where SV is a set of support vectors and there are t support vectors. A kernel function 

( )jiK xx ⋅ can be introduced into the criterion function. By introducing kernel function 

instead of inner product, the criterion function can be expressed as: 
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where SV is a set of support vectors and there are t support vectors. The table 5.1 shows 

criterion functions for SVDD-R2-RFE feature selection method modified by introducing 

kernel functions. 

Let )( kJ − be value of the criterion function for the boundary trained without feature k .

The effect to remove feature k in the criterion function is calculated by the equation 

)()( kJJkDJ −−= . The worst feature is *k minimizing )(kDJ over all feature k s. 

 

Table 5.1 SVDD-R2-RFE criterion functions with only normal data for kernel functions 

Kernel type SVDD-R2-RFE criterion functions 
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5.3.2.2 Case 2: Normal and anomaly data 

Let us consider a SVDD problem with N samples of normal and M samples of anomalies 

in training data. 2R based on ps being one of support vectors on the boundary is 

represented as follows from equation (4.11) and (4.22); 
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where ix , *
kx , iα and *

kα are normal data, anomaly and their Lagrange multipliers. The 

criterion function combined with a kernel function ( )jiK xx ⋅ is as follows: 
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where SV is a set of support vectors and there are t support vectors. The table 5.2 shows 

criterion functions of SVDD-R2-RFE feature selection method for kernel functions. The 

worst feature is obtained by the same way explained in Section 5.3.2.1. 
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Table 5.2 SVDD-R2-RFE criterion functions with anomaly data for kernel functions 

 

Kernel type SVDD-R2-RFE criterion functions 
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5.3.3 Algorithm of SVDD-R2-RFE feature selection 

(a) Initialize:

(a.1) Train SVDD with a given training data, [ ]TmktrnX xxx LL ,,1= under          

 selected kernel function.  

(a.2) Initialize subset of surviving features, [ ]nL,2,1=s , and feature ranking list,  

 [ ]=r

(b) Repeat until [ ]=s :

(b.1) Construct newly reduced training data 

[ ]s:,trnreduced XX = .

(b.2) Train SVDD with reducedX to get s'α

(b.3) Compute the criterion function for each feature k in table 5.1 and 5.2 

)()( kJJkDJ −−=

(b.4) Find the feature i such as  

)(minarg kDJi
k

=

(b.5) Update feature ranking list 

[ ]rsr ),(i=

(b.6) Eliminate feature i in the subset of surviving features 

{ }(i)s-ss =

(c) Output: feature ranking list, r
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5.4 SVDD-RFE Feature Selection Method 

5.4.1 Idea 

SVDD is to try to find as a small boundary as possible that envelops most of normal data. 

The solution of the SVDD problem is given as the form of Lagrange multipliers which 

are a solution to the dual problem of SVDD. SVDD boundary can be obtained from the 

Lagrange multipliers and their corresponding observations. The dual problem is to find 

Lagrange multipliers that maximize its objective function value as seen in equation 

(4.31). Let J and )( kJ − be a value of the objective function in the dual problem of 

SVDD and a recalculated value of the objective function without the feature k . The 

difference between J and )( kJ − becomes larger when feature k is less important and 

smaller when it is a better feature than others. The proposed idea on criterion function to 

evaluate the worth of each feature is that the worst feature is a feature with the smallest 

value of )( kJ − among all features. Let )(kDJ be the difference between J and )( kJ −

such as )()( kJJkDJ −−= . Therefore, the worst feature is *k feature satisfying the 

following equation:  

)(maxarg* kDJk
k

= (5.6) 

Also, Recursive Feature Elimination (RFE) is used as the searching method for the 

proposed criterion.   
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5.4.2 Formulation 

5.4.2.1 Case 1: Only normal data 

The objective function in the dual of a SVDD problem with only normal training data 

was given in equation (4.8). In order to measure the effect in the value of J resulted from 

removing a feature in the training data set, we need to train a SVDD boundary for every 

candidate feature to be excluded. This means that effort to train a boundary for each 

feature monotonically increases as the number of feature rises, thus forcing this process 

being impractical. Based on the fact that Lagrange multiplier α corresponds with each 

observation and does not related with features, we can assume that there are no changes 

in the values of s'α when only one feature is eliminated in the training data set. We can 

easily compute the effect of removing a feature without retraining boundaries by this 

assumption. The following )( kJ − is the value of the objective function in the dual 

without feature k :
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where )( k− means that the component k has been removed. Now, the effect to remove 

feature k is calculated by the following criterion function: 

 

)()( kJJkDJ −−= (5.8) 
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By introducing general kernel function, ),( jiK xx , in the objective function, J is 

changed as follows: 
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The objective functions for linear, Gaussian and polynomial kernel are in table 5.3. 

5.4.2.2 Case 2: Normal and anomaly data 

The objective function in the dual of SVDD problem with training data set including L

samples of normal data and M of attack was given from Tax and Duin (2004) as the 

following: 
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Table 5.3 SVDD-RFE criterion functions with only normal data for kernel functions 

Kernel type SVDD-RFE criterion functions 
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where ix , *
jx , iα and *

jα are normal data, anomaly and their Lagrange multipliers. In 

this case, )( kJ − is as follows: 
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The effect to remove feature k is calculated by the same way in Section 5.4.2.1. By 

introducing general kernel function, ),( jiK xx J is changed as follows: 
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Table 5.4 shows objective functions for linear, Gaussian and polynomial kernels.  
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Table 5.4 SVDD-RFE criterion functions with anomaly data for kernel functions 

 

Kernel type SVDD-RFE criterion functions 
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5.4.3 Algorithm of SVDD-RFE feature selection 

(a) Initialize:

(a.1) Train SVDD with a given training data, [ ]TmktrnX xxx LL ,,1= under          

 selected kernel function.  

(a.2) Initialize subset of surviving features, [ ]nL,2,1=s , and feature ranking list,  

 [ ]=r

(b) Repeat until [ ]=s :

(b.1) Construct newly reduced training data 

[ ]s:,trnreduced XX = .

(b.2) Train SVDD with reducedX to get s'α

(b.3) Compute the criterion function for each feature k

)()( kJJkDJ −−=

(b.4) Find the feature i such as  

)(maxarg kDJi
k

=

(b.5) Update feature ranking list 

[ ]rsr ),(i=

(b.6) Eliminate feature i in the subset of surviving features 

{ }(i)s-ss =

(c) Output: feature ranking list, r
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5.5 SVDD-Gradient Feature Selection Method 

5.5.1 Ideas 

The SVDD decision function to decide whether a test sample z is normal or outlier can be 

rewritten from equation (4.10) as:  

 





 ≤−=≤−=

otherwise
RzwhenRzIzf

0
1)()(

22
22 µµ (5.13) 

Figure 5.2 shows the value of decision function (5.13) in the case of two features. The 

value of decision function is one when a test sample is inside or on the SVDD boundary 

and zero when a sample is outside the boundary. 

The gradient of a scalar function is a vector which points the direction of the greatest rate 

of increase of the function, and whose magnitude is the greatest rate of change according 

to Wikipedia encyclopedia (2006). Figure 5.3 shows the gradient applied into the SVDD 

decision function with two features. The small arrows represent the gradient for only the 

points near-outside and on the boundary while the other points have zero magnitude of 

gradient. It is obvious in figure 5.4 that feature B is the better feature compared to feature 

A since feature B has smaller region than feature A. As we divide all gradients into 

feature A axis and B axis components and sum absolute values of the components for 

each axis, feature B has very larger value than feature A. We can draw a clue for feature 

selection that a feature is important to the SVDD classification if its sum of all the 
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Figure 5.2 Value distribution of SVDD decision function in two-feature case 

 

Figure 5.3 Gradient field of decision function in two-feature case 

 

1: inside & 
boundary

0: outside 

Feature A 

Feature
B

1

0

Feature A 

Feature
B
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Figure 5.4 Gradient field of decision function at ellipse shape boundary 

 

absolute values of gradient components is bigger. In SVDD the boundary is based on the 

support vectors which are objects on the boundary. It is reasonable that gradient is 

calculated for support vectors. Our feature selection is performed by computing axis 

component of gradient on each support vector, summing all absolute values of its 

components for each feature, and sorting them in descending order. The order is 

preference ranking for all features.  

5.5.2 Formulation 

5.5.2.1 Case 1: Only normal data 

The equation of SVDD decision boundary for a test sample z can be written from 

equation (5.13) as:  

 

1

0

Feature A 

Feature
B
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22)( µ−−= zRzg (5.14) 

 

The equation of SVDD (5.14) is as follows by inserting the equation (4.6) for center µ

and (5.1) for radius:  
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By introducing kernel function ),( jiK xx , equation (5.15) is as follows: 
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Calculation of gradient for kernel functions was known by Hermes and Buhmann (2000). 

For the linear kernel, the gradient of equation (5.16) with respect to z is: 
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Using the Gaussian function as a kernel, equation (5.16) becomes: 
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The gradient of equation (5.18) with respect to z is: 
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For polynomial kernel with degree d , the SVDD boundary equation is: 
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The gradient of equation (5.20) with respect to z is: 
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Let ( )iSVg∇ be the gradient computed at the ith support vector among l support vectors. 

Since the gradient is a vector with n dimension which is the number of features in the 

training data, ( )iSVg∇ can be represented with its components as in the following 

equation: 

 

( ) ninjijiii ggggSVg eeee LL +++=∇ 2211 (5.22) 

 

Criterion function for jth feature is the summation of absolute value of jth component 

over gradients of all support vectors. The following equation is for the criterion function 

for jth feature. 

 

∑
∈

=
SVi

ijj gJ (5.23) 

where SV is a set of support vectors. 

5.5.2.2 Case 2: Normal and anomaly data 

The equation for µ can be represented in equation (5.24) when normal data ix and attack 

data *
kx are available. 



104

∑∑
==

−=
M

k
kk

N

i
ii

1

**

1
xxµ αα (5.24) 

 

The equation of SVDD decision boundary for a test sample z can be written as follows by 

inserting the equation (5.24) for center µ and (5.4) for radius:  
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Equation (5.25) can be rewritten as follows by introducing kernel function ),( jiK xx :
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The gradient of equation (5.26) with respect to z for linear kernel is: 
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For Gaussian kernel, equation (5.26) becomes: 
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The gradient of equation (5.28) with respect to z is: 
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The SVDD boundary equation for polynomial kernel with degree d , is: 
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The gradient of equation (5.30) with respect to z is: 
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The criterion function for jth feature is the same in equation (5.23) 

 

5.5.3 Algorithm of SVDD-Gradient feature selection 

 (a) Initialize feature ranking list 

 [ ]=r .

(b) Train SVDD with a given training data under selected kernel function. 

(c) Compute the gradient for each support vectors. Refer to the table 5.5 for  

gradients of kernel functions. 
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Table 5.5 Gradients of kernel functions 
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(d) Calculate the criterion function for jth feature  

∑
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1

(e) Sort 
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nj
JJJ nj

LL

LL

1
1J in descending order of the first row 

(f) Output: feature ranking list 

( )[ ]:,_Jr 2sorted=

5.6 Experiments 

5.6.1 Experimental setup 

Two datasets were used for the experiment of the proposed SVDD-based feature 

selection methods. One is based on the DARPA dataset which was used in the previous 

chapters. We normalized the dataset to reduce variance effect due to range difference 

among its features. The other dataset was artificially generated to make it clear which 

feature is better or worse. It is called simulated dataset. We made up normal and anomaly 

samples in a 20-dimensional data space for the experiment. The center of the normal 

samples was located at ( )T,, 00 L , and anomaly samples were based on one of four centers 

being located at ( )T,, 11L , ( )T,, 11 −− L , ( )T,, 1,1,11 −− L and ( )T,, 1,11,1 −− L . Each feature 

of all the samples was independently corrupted by Gaussian noise with zero mean and 

standard deviations dependent on the feature index i as 12.12.0 −× i (Hermes & Buhmann, 

2000). Table 5.6 shows the Gaussian noise’s mean and sigma charged to the 20 features. 
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Table 5.6 Gaussian noises for features 
 

Feature number Noise Feature number Noise 
1 ( )22.0,0N 11 ( )224.1,0N
2 ( )224.0,0N 12 ( )249.1,0N
3 ( )229.0,0N 13 ( )278.1,0N
4 ( )235.0,0N 14 ( )214.2,0N
5 ( )241.0,0N 15 ( )257.2,0N
6 ( )25.0,0N 16 ( )208.3,0N
7 ( )26.0,0N 17 ( )27.3,0N
8 ( )272.0,0N 18 ( )244.4,0N
9 ( )286.0,0N 19 ( )232.5,0N
10 ( )203.1,0N 20 ( )239.6,0N

By increasing noises along with feature index, the first feature is the most favorable and 

the last becomes the most confusing feature to distinguish anomalies from normal data. 

Figure 5.5 shows the trend for normal and anomaly data to approach closely as the 

feature indices increase. Normal data and anomalies are clearly away from each other in 

the space with feature 1 and 2 as seen in figure 5.5(a). However, anomalies locate in the 

middle of normal data in the figure 5.5 (d), thereby being difficult to distinguish them 

from normal. 

The performances of the proposed three SVDD feature selection methods were compared 

with the performance of SVM-RFE feature selection method that is regarded as one of 

the most effective feature selection method in classification problems. The comparison 

was performed in two cases dependent on available data: case 1 is when only normal data 

is available in training data and case 2 is the situation that normal and anomaly data are 
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(a) Feature 1 & 2                                           (b) Feature 5 & 6 
 

(c) Feature 13 & 14                                          (d) Feature 19 & 20 
 

Figure 5.5  Two-dimensional pictures to show distribution of normal data represented 
with dot and anomaly with plus sign in various feature combinations. 
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available. In the case 1, only proposed SVDD-based feature selection methods were 

evaluated with the simulated data since SVM-RFE feature selection method does not 

work. The DARPA data was not used in the case 1. Since what feature is better or worse 

is clear in the simulated dataset, the performance of the method in the case 1 was tested 

by checking whether SVDD-RFE results agree with the designed feature ranking in the 

dataset. To avoid bias due to randomness of simulated data, 100 data sets were used and 

the average performances were used. In the case 2, three SVDD-based methods and the 

SVM method were compared for the simulated data set in two ways. The first way is 

similar with one in the case 1 that inspects correctness of the selected feature order based 

on the 100 data sets. The second way is to measure the performance of selected features 

by applying detection method to the feature. For the DARPA data in case 2, only SVDD-

RFE method was compared with the SVM-RFE method because the DARPA data is 

heavy and takes long time to run feature selection methods. The performance of feature 

selection methods in the case 2 was measured by false alarm rate and detection rate. In 

addition, Gaussian kernel function was used in all the experiment since the kernel is 

recognized as the best in most of classification cases. Table 5.7 shows the summary of 

this experimental setup.  

5.6.2 Results on Case 1 

Table 5.8 shows results to compare performances of the proposed SVDD-based feature 

selection methods and SVM-RFE feature selection method with simulated data in the 

case 1. The best performance achieved by both of the SVDD-R2-RFE and the SVDD- 
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Table 5.7 Summary of experimental setup and performance measure 

 
Available data situation Case 1 Case 2 

Data set Simulated 
data Simulated data DARPA data 

Proposed 
methods 

False alarm rate 
& detection rate 

by applying 
SVDD to feature 

order output 

False alarm rate 
& detection rate 

by applying 
SVDD to 

feature order 
output Comparison 

SVM-
RFE 

Inspecting 
feature 
order 

Inspecting
feature 
order False alarm rate 

& detection rate 
by applying 

SVDD and SVM 
to feature order 

output 

False alarm rate 
& detection rate 

by applying 
SVDD and 

SVM to feature 
order output 

RFE feature selection methods showing 100% correctness that right order of 20 features 

was identified perfectly without any wrong selection. The second best performance was 

carried out by the SVDD-Gradient individual ranking method that identified correctly 

best 15 out of 20 features. However, it was impossible for the SVM-RFE method to 

perform feature selection for the data set with only normal data. Only the proposed 

SVDD-based feature selection methods are able to perform feature selection for the data 

set like case 1 where anomaly data is not available in training data set. 

5.6.3 Results on Case 2 

Table 5.9 shows feature orders selected by the proposed SVDD-based feature selection 

methods and SVM-RFE with simulated data in the case 2. The best performance achieved 

by both of the SVDD-R2-RFE and the SVDD-RFE feature selection methods showing  
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Table 5.8 Feature order selected by the proposed SVDD-based feature selection methods 
and SVM-RFE with simulated data in the case 1 

SVDD-based feature selection method Best feature 
order R2-RFE SVDD-RFE Gradient 

SVM-RFE 

1 Feature 1 Feature 1 Feature 1 N/A 

2 Feature 2 Feature 2 Feature 2 N/A 

3 Feature 3 Feature 3 Feature 3 N/A 

4 Feature 4 Feature 4 Feature 4 N/A 

5 Feature 5 Feature 5 Feature 5 N/A 

6 Feature 6 Feature 6 Feature 6 N/A 

7 Feature 7 Feature 7 Feature 7 N/A 

8 Feature 8 Feature 8 Feature 8 N/A 

9 Feature 9 Feature 9 Feature 9 N/A 

10 Feature 10 Feature 10 Feature 10 N/A 

11 Feature 11 Feature 11 Feature 11 N/A 

12 Feature 12 Feature 12 Feature 12 N/A 

13 Feature 13 Feature 13 Feature 13 N/A 

14 Feature 14 Feature 14 Feature 14 N/A 

15 Feature 15 Feature 15 Feature 15 N/A 

16 Feature 16 Feature 16 Feature 17 N/A 

17 Feature 17 Feature 17 Feature 18 N/A 

18 Feature 18 Feature 18 Feature 20 N/A 

19 Feature 19 Feature 19 Feature 19 N/A 

20 Feature 20 Feature 20 Feature 16 N/A 
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100% correctness that right order of 20 features was identified perfectly without any 

wrong selection. The second best performance was carried out by the SVDD-Gradient 

individual ranking method that identified correctly 16 out of 20 features. The SVM-RFE 

method showed the worst performance to feature selection for the simulated data set, in 

which identified correctly only 10 out of 20 features.  

Table 5.10 shows performance results in comparison of the proposed SVDD-based 

feature selection methods and SVM-RFE with simulated data in the case 2. The best 

subsets of features with best performance in terms of false alarm rate and detection rate 

are 4-feature set with 100% detection rate and 7.1% false alarm rate from the SVDD-

Gradient, 2-feature set with 100% and 6.9% from the SVDD-R2-RFE, 2-feature set with 

100% and 6.9% from the SVDD-RFE, one-feature set with 87% and 0.2% from the 

SVM-RFE with SVM detection, and 4-feature set with 100% and 7% from the SVM-RFE 

with SVDD detection. The best performance came from the 2-feature subsets of both the 

SVDD-R2-RFE and the SVDD-RFE. The second was the performance of 4-feature 

subset obtained by both of the SVDD-Gradient and the SVM-RFE with SVDD detection. 

Considering the entire performances for all the best feature subset, both of the SVDD-R2-

RFE and he SVDD-RFE are slightly better to anomaly feature selection than the SVDD-

Gradient and the SVM-RFE with SVDD detection. The SVM-RFE with SVM detection 

showed the worst performance in all selected feature subsets. Therefore, the proposed 

SVDD-based feature selection methods are better than or equal performance with the 

SVM-RFE feature selection method.  
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Table 5.9 Feature order selected by the proposed SVDD-based feature selection methods 

and SVM-RFE with simulated data in the case 2 

SVDD-based feature selection method Best feature 
order R2-RFE SVDD-RFE Gradient 

SVM-RFE 

1 Feature 1 Feature 1 Feature 1 Feature 2 

2 Feature 2 Feature 2 Feature 2 Feature 1 

3 Feature 3 Feature 3 Feature 3 Feature 5 

4 Feature 4 Feature 4 Feature 4 Feature 3 

5 Feature 5 Feature 5 Feature 5 Feature 4 

6 Feature 6 Feature 6 Feature 6 Feature 7 

7 Feature 7 Feature 7 Feature 8 Feature 10 

8 Feature 8 Feature 8 Feature 7 Feature 8 

9 Feature 9 Feature 9 Feature 9 Feature 9 

10 Feature 10 Feature 10 Feature 10 Feature 6 

11 Feature 11 Feature 11 Feature 11 Feature 11 

12 Feature 12 Feature 12 Feature 13 Feature 12 

13 Feature 13 Feature 13 Feature 12 Feature 13 

14 Feature 14 Feature 14 Feature 14 Feature 14 

15 Feature 15 Feature 15 Feature 15 Feature 15 

16 Feature 16 Feature 16 Feature 16 Feature 16 

17 Feature 17 Feature 17 Feature 17 Feature 17 

18 Feature 18 Feature 18 Feature 18 Feature 18 

19 Feature 19 Feature 19 Feature 19 Feature 19 

20 Feature 20 Feature 20 Feature 20 Feature 20 
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Table 5.10 Comparison results of the proposed SVDD-based feature selection methods and SVM-RFE with simulated data in the case 2

Criteria
function

SVDD-Gradient SVDD-R2 SVDD-Dual
objective

SVM-Dual objectiveFeature
selection
method Searching

method
Individual ranking RFE RFE RFE

Detection method SVDD SVDD SVDD SVM SVDD
Performance measure FA* DR** FA* DR** FA* DR** FA* DR** FA* DR**

All features 99.6% 100% 99.1% 100% 99.1% 100% 0.3% 0% 99.1% 100%
19 97.8% 100% 93.9% 100% 89.2% 100% 0.2% 0% 89.2% 100%
18 87.2% 100% 72.4% 98% 72.4% 98% 0.3% 1% 72.4% 98%
17 81.3% 100% 55.4% 97% 55.4% 97% 0.2% 6% 58.7% 98%
16 75.9% 100% 36.7% 94% 36.7% 94% 0.1% 7% 36.7% 94%
15 57.0% 99% 24.8% 89% 24.8% 89% 0.0% 7% 33.0% 97%
14 41.6% 99% 23.5% 96% 18.6% 92% 0.0% 6% 23.5% 96%
13 32.1% 99% 17.6% 95% 12.4% 91% 0.0% 11% 14.5% 92%
12 32.4% 100% 12.4% 96% 7.9% 95% 0.0% 15% 7.9% 95%
11 36.7% 100% 8.5% 96% 8.5% 96% 0.0% 19% 10.2% 96%
10 9.3% 99% 9.1% 98% 9.1% 98% 0.0% 26% 9.1% 98%
9 7.9% 100% 7.6% 100% 9.3% 100% 0.0% 23% 9.4% 100%
8 11.7% 100% 12.1% 100% 11.6% 100% 0.0% 34% 12.1% 100%
7 10.5% 100% 10.5% 100% 10.5% 100% 0.0% 33% 11.8% 100%
6 7.7% 100% 9.2% 100% 10.2% 100% 0.0% 34% 7.6% 100%
5 11.0% 100% 7.6% 100% 10.8% 100% 0.0% 51% 10.9% 100%
4 7.1% 100% 9.5% 100% 9.5% 100% 0.0% 52% 7.0% 100%
3 7.9% 100% 10.3% 100% 10.3% 100% 0.0% 79% 7.8% 100%
2 7.3% 99% 6.9% 100% 6.9% 100% 0.0% 58% 7.3% 99%

Number
of best
features

1 10.5% 100% 10.5% 100% 10.5% 100% 0.2% 87% 10.5% 100%
* FA: false alarm rate for normal data
** DR: detection rate for anomaly data
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Table 5.11 shows the comparison results of the proposed SVDD-RFE feature selection 

method and SVM-RFE with the DARPA data in the case 2. The best subsets of features 

are 6-feature set with 100% detection rate and 1.6% false alarm rate from the SVDD-

RFE, 14-feature set with 90.1% and 0.04% from the SVM-RFE with SVM detection, and 

99-feature set with 100% and 2.2% from the SVM-RFE with SVDD detection. The 6-

feature subset of the SVDD-RFE is the best than the other two methods’ in terms of 

number of feature and performance results. The performances of three methods with all 

the features are 100% detection rate and 5.7% false alarm rate from the SVDD-RFE and 

the SVM-RFE with SVDD detection, and 90.7% and 1.1% from the SVM-RFE with 

SVM detection. Both of the SVDD-RFE and the SVM-RFE with SVDD detection 

achieved same performance because they use same detection technique, SVDD, for the 

same data set. They performed better with all the features than the SVM-RFE with SVM 

detection method. As comparing the performances of three methods along with various 

feature subsets, only the SVDD-RFE method achieved reasonable performance until 10 

feature subsets. For example, the method showed 95.6% detection rate with 1% false 

alarm rate from single feature subset and 100% with 4.7% from 10 feature subset. 

However, the SVM-RFE with SVM detection and the SVM-RFE with SVDD detection 

methods showed 0% and 9.3% detection rate, respectively, in both single and 10 feature 

subsets. After 40 feature subset, the SVDD-RFE method showed as good performance as 

the other two methods’. It is clear that the SVDD-RFE method performed much better 

than SVM-RFE with SVM detection and the SVM-RFE with SVDD detection methods. 
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Table 5.11 Comparison results of the proposed SVDD-RFE feature selection method and 

SVM-RFE with the DARPA data in the case 2 
 

Feature selection 
method 

SVDD-RFE SVM-RFE 

Detection method SVDD SVM SVDD 

Performance measure FA* DR** FA* DR** FA* DR** 

All features 5.7% 100% 1.1% 90.7% 5.7% 100% 

Best performance 

(Number of features) 

1.6% 

(6) 

100%  

(6) 

0.04% 

(14) 

90.1% 

(14) 

2.2% 

(99) 

100% 

(99) 

200 5.4% 100% 0.7% 90.7% 5.3% 100% 

160 5.3% 100% 0.6% 90.7% 4.5% 100% 

120 5.0% 100% 0.5% 90.7% 4.0% 100% 

80 5.4% 100% 0.4% 90.7% 10.1% 100% 

40 3.2% 100% 0.1% 90.1% 2.8% 9.9% 

10 4.7% 100% 0% 0% 2.7% 9.3% 

Performance 
by best 
features 

1 1.0% 95.6% 0% 0% 0.1% 9.3% 

* FA: false alarm rate for normal data 
** DR: detection rate for anomaly data 
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Chapter 6 Conclusion and Future Research 

 

This chapter provides conclusion of this dissertation in Section 6.1 and presents future 

research area in Section 6.2. 

 

6.1 Conclusion 

The proposed differentiated anomaly intrusion detection method was effective according 

to the experimental results. The differentiated detection was motivated by the fact that 

there exists more critical type of intrusions against information systems. The system 

administrator needs to focus on detecting as precisely intrusions of the type as possible 

even compromising with false alarms and detection of non-target attack types. With the 

simulated data experiment, our differentiated detection method demonstrated that it had 

enough potential to fit well with those practical needs. It was noticeable that using more 

training samples of target attack type can provide more detailed performance of the 

differentiated intrusion detection. Another experiment with the preprocessed DARPA 

BSM data confirmed our method’s usefulness in the real situation. Since the concept of 

differentiated anomaly detection can be applicable into other anomaly detection areas, 
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this method would be beneficial to broader application areas beyond intrusion detection 

field. 

The new framework for host-based feature extraction showed promising results from the 

experiment with features which were extracted from DARPA_MITLL 98 BSM data set 

by the framework. This new framework was studied to widen feature searching space and 

explore further searching directions for better features. Based on new viewpoints about 

user activities, the framework brought new feature categories such as length, intensity, 

and event type. According to the experiment with SVDD classifiers, event type category 

was the most effective single category among three, and each category of length and 

intensity was not practical. This result supports why most existing researches have used 

event type features. However, another significant finding was that combination of length 

and intensity features could be powerful features. This suggests importance of two 

feature categories and requires further investigation of features combined with the two 

categories. In addition, all features combined from three categories showed better 

performance than existing features. Therefore, the proposed new framework is worthy 

enough to be regarded as an efficient approach for host-based feature development. 

In this dissertation, SVDD-based feature selection methods such as SVDD-R2-RFE, 

SVDD-RFE and SVDD-Gradient have been presented to provide feature selection tools 

for anomaly detection field. The proposed feature selection methods were compared with 

well-known SVM-RFE feature selection method using simulated data and the DARPA 

data set. The results showed that the proposed methods performed much better than 

SVM-RFE for both datasets. Only the proposed methods were able to perform feature 
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selection for training data without anomalies whereas the SVM-RFE was not able to do. 

With the DARPA data, the proposed SVDD-RFE method showed better performance 

than the SVM-RFE. In comparison of the proposed methods, SVDD-R2-RFE and 

SVDD-RFE were better in feature selection than SVDD-Gradient. 

 

6.2 Future Research 

Future research is to examine the strengths and weaknesses of the proposed differentiated 

detection and SVDD-based feature selection methods by applying them to other 

applications in anomaly detection area. The possible application fields are product quality 

inspection, nuclear power plant control management, and medical examination in which 

there are huge normal outputs and very few anomalies. 

Another future work is to explore the effectiveness of the differentiated anomaly 

detection combined with SVDD-based feature selection method. The idea is to make the 

differentiated detection more powerful by using the feature selection method in finding 

more predictive features to distinguish a target attack type from non-target attacks.  
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