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Abstract

In this dissertation, we develop novel computationally efficient model subset selection meth-
ods for multiple and multivariate linear regression models which are both robust and mis-
specification resistant. Our approach is to use a three-way hybrid method which employs the
information theoretic measure of complexity (ICOMP) computed on robust M-estimators
as model subset selection criteria, integrated with genetic algorithms (GA) as the subset
model searching engine.

Despite the rich literature on the robust estimation techniques, bridging the theoretical
and applied aspects related to robust model subset selection has been somewhat neglected.
A few information criteria in the multiple regression literature are robust. However, none
of them is model misspecification resistant and none of them could be generalized to the
misspecified multivariate regression. In this dissertation, we introduce for the first time
both robust and misspecification resistant information complexity (ICOMP) criterion to fill
in the gap in the literature.

More specifically in multiple linear regression, we introduce robust M-estimators with
misspecification resistant ICOMP and use the new information criterion as the fitness func-
tion in GA to carry out the model subset selection. For multivariate linear regression,
we derive the two-stage robust Mahalanobis distance (RMD) estimator and introduce this
RMD estimator in the computation of information criteria. The new information criteria
are used as the fitness function in the GA to perform the model subset selection.

Comparative studies on the simulated data for both multiple and multivariate regression
show that the robust and misspecification resistant ICOMP outperforms the other robust
information criteria and the non-robust ICOMP computed using OLS (or MLE) when the
data contain outliers and error terms in the model deviate from a normal distribution.
Compared with the all possible model subset selection, GA combined with the robust and
misspecification resistant information criteria is proved to be an effective method which can
quickly find the a near optimal subset, if not the best, without having to search the whole
subset model space.
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Chapter 1

Introduction

Model subset selection in linear regression has been playing an important role since the
1960’s. Over the past a few decades of development, many model selection algorithms
and criteria came to existence in the literature. Among them are some classical model
selection procedures and the information theoretic based criteria. However, some critical
issues related to the subset selection have been ignored, such as the misspecification of the
model and robustness of the selection criteria. In this chapter, we will briefly introduce
these subset selection methods in regression and the motivation and contribution of this
dissertation. More details for the model selection algorithms and criteria are discussed in
the next few chapters.

1.1 Subset Selection in Regression Models

Model subset selection in regression is to find out the relationship between the response vari-
able(s) of interest and the potential predictor variables among the candidates of competing
subset models.

1.1.1 Classical Model Subset Selection

Usually, the classical model selection methods are performed through the hypothesis tests.
An arbitrary significance level is selected by the practitioners beforehand to decide whether
the resulting model should include or exclude a certain predictor variable. However, many
statisticians and other scientists have long been aware that the so-called significance levels
used by the subset selection packages are totally without foundation (Linhart and Zucchini,
1986; Burnham and Anderson, 2002). Some scientists find that all the various hypothesis-
testing approaches have no theoretical justification and may often perform poorly (Burnham
and Anderson, 2002).
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Many classical model selection procedures exist in almost all of the popular statis-
tics packages, such as the forward selection, backward elimination and stepwise selection.
However, both forward and backward procedures cannot deal with the collinearity in the
predictor variables. Boyce et al. (1974) criticizes the backward, forward and stepwise selec-
tion that “little or no theoretical justification exists for the order in which variables enter
or exit the algorithm.” A major criticism on stepwise selection is that “it rarely finds the
overall best model or even the best subset of a particular size of the model” (Mantel, 1970;
Hocking, 1976, 1983; Moses, 1986). Another criticism on stepwise selection is that “it, at
the very best, can only produce an ‘adequate’ model” (Sokal and Rohlf, 1981).

All these shortcomings inherent in different classical model selection procedures put
limitations on selecting the optimal subset or nearly optimal subset in the regression models.
Some statisticians and researchers thus prefer the all-possible subset selection procedure to
choose the best model. However, in many cases, this method is not computationally feasible
in a reasonable time and is rather expensive. The total possible number of subsets can reach
over millions (if we have more than 20 predicator variables) or even billions (if we have more
than 30 predictor variables) of models to evaluate.

One big disadvantage of the forward selection, backward elimination, stepwise selection
and all possible subset selection is that the performances of all the procedures depend on
whether the selection criteria are appropriately chosen. The performances will be vulnerable
to the existence of the extreme values or outliers in the data if the selection criteria are not
“robust”; they will be easily contaminated by the misspecified functional form of the model
(such as the departure from the assumption of Gaussian distribution of the residuals) if the
selection criteria are not resistant to the model misspecification.

1.1.2 Information Theoretic Model Selection

In the regression model context, different criteria corresponding to different assumptions
are used to select subset models, such as minimizing the mean squared error, maximizing
the likelihood function, Mallow’s Cp, etc., which are all motivated by the reduction of model
space.

Motivated from a very different point of view, information theoretic criteria are intro-
duced and developed in the model selection literature. The basic idea of these types of crite-
ria is trying to minimize the Kullback-Leibler distance between the distribution of response
variable(s) under the optimal subset model and under the true model. Akaike (1973) firstly
derived the information theoretic criterion known as Akaike’s information criterion (AIC),
which provides a new paradigm of model selection in the analysis of empirical data. Many

2



other information criteria have been proposed since then, such as Bayesian information crite-
rion (BIC or SBC) (Schwarz, 1978), Generalized Akaike’s information criterion (GAIC) (Shi-
bata, 1989; Bozdogan, 2000), Bozdogan’s informational complexity (ICOMP) (Bozdogan,
1988a,b, 1990, 1994a, 2000; Bozdogan and Bearse, 2003) etc. Burnham and Anderson (1998;
2002) recommend the information-theoretic approach for the analysis of data from observa-
tional studies. They state that “Inference from multiple models, or the selection of a single
‘best’ model, by methods based on the Kullback-Leibler distance are almost certainly better
than other methods commonly in use now (e.g., null hypothesis testing of various sorts, the
use of R2, or merely the use of just one available model).”

The form of different information criteria will be discussed in detail in the following
chapter.

1.1.3 Robust Model Selection

Over the past 30 years, many robust estimation procedures are devised as alternatives
to the classical least squares procedures. The purpose of the robustness is to make the
estimation insensitive to small deviations from the model assumptions and resistant to
unusual observations in the data. Numerous works have been done in this area, such
as (Andrews et al., 1972; Huber, 1981, 1996, 2004; Holland and Welsch, 1977; Hampel
et al., 1986; Rousseeuw and Leroy, 1987; Olive, 2005).

Despite the rich literature on the robust estimation techniques, bridging the theoret-
ical and applied aspects related to robust model subset selection has been somewhat ne-
glected (Ronchetti, 1985, 1997). An incomplete list of the robust model selection literature
can be briefly discussed as follows. Both Ronchetti (1985) and Hampel (1983) introduced a
robust version of Akaike’s information criterion on model selection procedures for regression
models. The difference between the two robust versions of AIC is that they used different
penalty terms. Ronchetti and Staudte (1994) presented a robust version of Mallows’s Cp

for regression models. Ronchetti, et al. (1997) presented a cross-validation method for the
robust model selection. Machado (1993) derives a robust version of BIC or SBC by defining
M-estimators on the objective function for a parametric model. Qian and Künsch (1996)
presented a robust criterion on Rissanen’s stochastic complexity (SC).

1.1.4 Model Selection under Misspecification

Researchers may misspecify the regression models in a number of possible ways (God-
frey, 1988). These are: the incorrect functional form of the model; the multicollinearity
among the predictor variables; the skewness and kurtosis in the variables which cause the

3



non-normality of the disturbances; the autocorrelation and heteroskedasticity of the dis-
turbances. In many circumstances, one may not be sure whether the model is “correctly
specified”. The incorrectly specified models may result in inconsistent estimates of param-
eters and the standard inferential techniques can be invalidated (White, 1982).

Some studies have been done to detect model misspecification and investigate the conse-
quences of it. Berk (1966; 1970) considers the consistency question of maximum likelihood
estimators in the frame of Bayesian method and emphasizes the information theoretic in-
terpretation. Huber (1967) considers the same question independently from Berk’s work in
a more classical way under general conditions. He concludes that the maximum likelihood
estimator converges to a well-defined limit even when the probability model is not correctly
specified. However he does not explicitly discuss the information theoretic interpretation
of this limit (White, 1982). Akaike (1973) emphasizes this information theoretic interpre-
tation and indicates that when the true distribution is unknown, the maximum likelihood
estimator is a natural parameter estimator which minimizes the Kullback-Leibler informa-
tion criterion (Kullback and Leibler, 1951). White (1982) studies the consequences and
detection of model misspecification when maximum likelihood techniques are used in less
general conditions than Huber’s. He provides specification robust procedures based on both
inner-product form (also known as “Hessian form”) and outer-product form of the Fisher
information matrix.

Bozdogan as well as his colleagues (Bozdogan, 2004a,b; Howe and Bozdogan, 2007;
Magnus, 2007) develop new ICOMP-type criteria for model subset selection based on his
original work (Bozdogan, 1988a,b, 1990, 1994b, 2000, 2004a). This misspecification resistant
version of ICOMP, known as ICOMPmisspec, allows for non-Gaussian errors. They indicate
in their paper (Howe and Bozdogan, 2007; Magnus, 2007) that “based on the existing
literature, to our knowledge, there is no other criteria to date which penalizes the presence
of skewness and the inflation of kurtosis in the model selection process except ICOMP.”

1.2 Motivation

The linear model subset selection did not make much progress since it first began in the
1960s. In the first edition of his book, Miller (1990) provides a good source of comprehensive
summary of subset selection approaches prior to 1990. But in the second edition of his
book (2002), he indicates that “there has been very little real progress” in the subset
selection since 1990.

The robust model selection problems have been ignored in the literature compared with
the prosperous development in the robust estimation methods in the past three decades
(Ronchetti, 1985, 1997).
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Furthermore, in the literature, there is not much attention paid to the misspecification
of the fitted model (Howe and Bozdogan, 2007) despite its significance. Chatfield (1995)
states the seriousness of the misspecification as “Model misspecification is a major, if it is
not the dominant, source of error in the quantification of most scientific analysis.”

Because of such background, new model selection criteria which can solve both the
robustness and misspecification problems are invoked. In this dissertation, we are to intro-
duce and develop a new hybridized method of model subset selection, which is robust and
at the same time misspecification resistant in both multiple linear regression (MLR) and
multivariate regression (MVR) models.

Our model selection criteria are generated from Bozdogan’s information-theoretic mea-
sure of complexity (Bozdogan, 1988a,b, 1990, 1994a, 2000; Bozdogan and Bearse, 2003) but
put in the context of robust estimators.

For computational efficiency, Genetic Algorithm (GA) is applied to select the optimal
or near optimal subset of predictor variables, in which the robust version of information-
theoretic measure of complexity (ICOMP) is used as the fitness function.

1.3 Contributions

Some critical contributions are made by this dissertation to the model subset selection
literature, which include the following.

Firstly, in this dissertation, we introduce the robust estimators to Bozdogan’s (Bozdogan
and Bearse, 2003) information theoretic measure of complexity (ICOMP) for misspecified
model, so that the new criterion is robust and at the same time misspecification resistant
for the model subset selection. This criterion is proved to be an effective method in the
simulation studies and on real world applications in this dissertation. To our knowledge,
there has not been any work done both on robustness and model misspecification at the
same time in the model selection literature.

Secondly, we generalize the robust and misspecification resistant information criterion
to the multivariate regression (MVR) model selection. No such criterion has been applied
to the multivariate models so far.

Thirdly, the robust and misspecification resistant information criterion is further hy-
bridized with genetic algorithm (GA), which drastically speeds up the model selection pro-
cesses and make them feasible in a timely manner that is not costly. In other words,
genetic algorithm is able to find the optimal or near optimal subset model without having
to search the full model space. The new version of information complexity serves as our
fitness function in GA.
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1.4 Organization of Dissertation

This dissertation consists of 7 chapters. In Chapter 1, we introduce the current model subset
selection techniques in regression models and their pros and cons. The motivation, contri-
bution and organization of this dissertation are proposed. In Chapter 2, different robust
estimation methods which exist in the literature are reviewed with emphasis on four types of
robust M-estimators and their properties. In Chapter 3, we discuss the information criteria
for model subset selection. ICOMP and the misspecification resistant version of ICOMP are
introduced. In Chapter 4, genetic algorithms are developed. The advantages and disadvan-
tages of GA are discussed. The graphical user interface (GUI) of GA used in our MATLAB
programming for this dissertation is given to illustrate how we hybridize GA with robust
and misspecification resistant information criteria. In Chapter 5, we develop the robust and
misspecification resistant of ICOMP(IFIM), namely RICOMP(IFIM)misspec. Comparative
study is performed on a Monte Carlo simulation data using different robust information
criteria. RICOMP(IFIM)misspec outperforms the other robust information criteria and the
non-robust ICOMP(IFIM) computed using OLS estimator. Two real world data examples
are presented to show the effectiveness of the GA subset selection. In Chapter 6, we derive
an iteratively robust Mahalanobis Distance (RMD) estimator for the multivariate linear
regression model. Robust and misspecification resistant ICOMP are developed using RMD
estimator. A three-way hybrid method is presented when we take this robust and misspeci-
fication resistant ICOMP as the fitness function in GA. Comparative study is carried out on
the multivariate Monte Carlo simulation data. In our study, the robust and misspecification
resistant ICOMP outperforms the others. GA for model subset selection method is proved
to be efficient. A real data example is presented at the end. Lastly Chapter 7, consists of
conclusions and suggestions for further future research.
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Chapter 2

Robust Estimators

For a very long time, the least squares approach and its generalizations have been the main
estimation methods for regression models. Without the presence of “outliers,” they have
nice properties and serve us very well. However, these types of estimators are too sensitive
to the outliers so that the resulting residual analysis may be misleading. Outliers are not
uncommon as obtaining data becomes easier nowadays. These outliers are either from
the heavy tailed distributions of the model or the extreme data observations which mostly
results from the errors. Under such circumstances, new alternative approaches were created
to substitute least squares estimation, which are more resistant to outliers and would have
been influenced much less by the outliers. These new approaches are referred to as the
robust estimation methods or techniques.

Since the first creation of the term “robustness” by Box (1953), numerous works have
been done in this area. Huber was among those who contributed the most to this liter-
ature. His fundamental paper (Huber, 1964) can be taken as the milestone of the robust
estimation. Since then, he has provided great details on both mathematical aspects and
summaries in the following articles (Huber, 1972, 1973, 1977). Two of his books (Huber,
1977, 1981) were republished in 1996 and 2004, respectively. A number of books and ar-
ticles besides Huber’s are propagating since the 1960’s. Among them are Tukey (1962;
1972), Hampel (1974), Andrews et al. (1972), Andrews (1974), Hogg (1974; 1979a; 1979b),
Rousseeuw and Leroy (1987), Olive (2005) and most recently, Maronna et al. (2006) etc.,
to mention a few.

Numerous robust procedures are available to the researchers and practitioners, such as
the M-estimator, L-estimator, R-estimator, S-estimator and various generalizations such as
the adaptive versions. In this dissertation, we focus on the M-estimator.
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2.1 M-Estimator (Maximum Likelihood Type Estimates)

M-estimator is introduced by Huber (1964). It is based on the modification of the principle
of maximum likelihood estimation.

Let x1, x2, . . . , xn be a random sample arising from the probability density of f(x | θ),
where θ is a location parameter. The logarithm of the likelihood function of θ is

lnL(θ | x) =
n∑

i=1

ln f(xi | θ). (2.1)

The maximum likelihood estimate (MLE) of θ, denoted by θ̂MLE is given by

θ̂MLE = arg min
θ̂

n∑

i=1

[− ln f(xi | θ)] . (2.2)

The performance of MLE depends on the assumed distribution of the data. It can be
biased and inefficient when distributions depart from normality or are heavy tailed with
outliers.

Huber (1964) generalized the maximum likelihood estimation by using the function
ρ(xi | θ) to substitute [− ln f(xi | θ)] in equation 2.1 and take the latter as a special case.

The generalized maximum likelihood estimation, or in short M-estimation is to minimize

n∑

i=1

ρ(xi | θ).

The M-estimator is given by

θ̂M = arg min
θ̂

n∑

i=1

ρ(xi | θ), (2.3)

where ρ is a symmetric, positive-definite function with a unique minimum at zero (Rousseeuw
and Yohai, 1984). The properties of ρ are therefore given as follows:

1. ρ(x) = ρ(−x)

2. ρ(x) ≥ 0

3. ρ(0) = 0

4. if |xi| > |xj |, ρ(xi) ≥ ρ(xj).
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Suppose that the minimization (min
∑n

i=1 ρ(xi | θ)) can be achieved by differentiating
the ρ function with respect to θ, which gives

n∑

i=1

ψ(xi | θ) = 0, (2.4)

where ψ(x) = ρ′(x), is the first derivative of the ρ function.
When the ψ function is monotonic, the solution to equation 2.4 is called monotonic

M-estimator. When the ψ function is non-monotonic (or “redescending”), the solution to
equation 2.4 is called redescending M-estimator.

The solution of the M-estimators is not equivariant with respect to scale. We need to
find the scale invariant version of the M-estimators, which is to find the solution of

n∑

i=1

ψ

(
xi | θ

σ̂

)
= 0, (2.5)

where σ̂ is a robust estimate of scale. Two possibilities are (Hogg, 1979a):

σ̂1 = 1.4826×MAD, where MAD = median |xi −median(xi)| (2.6)

or
σ̂2 = 0.7413× IQR, where IQR = 75th percentile - 25th percentile. (2.7)

In robust M-estimation, we need to determine a ψ function, so that the resulting estima-
tor will guard against some percentages of outliers and produce efficient estimators (Hogg,
1979a).

For many choices of robust functions ρ and ψ, there are not closed forms for the solu-
tions. Optimization algorithms (such as Newton-Raphson) or iterative methods are required
to compute the M-estimators. In the iterative procedure, a weight function is used to re-
calculate the weight on the observations, which is defined as

wi(xi) =

{
ψ

(
xi
σ̂

)
/
(

xi
σ̂

)
, if xi 6= 0;

1, if xi = 0.
(2.8)

Various M-estimators have been proposed in the literature. Here, we propose the four
of them used in this dissertation.

9



2.1.1 Huber’s Minimax Function

Huber (1964) derives the robust ρ and ψ functions as follows:

ρ(z) =

{
1
2z2, for |z| ≤ k;
k|z| − 1

2k2, for |z| > k.
(2.9)

ψ(z) =

{
z, if |z| ≤ k;
ksgn(z), if |z| > k.

(2.10)

In the above equations, k is a given constant, called “tuning constant”.
The ρ and ψ functions are associated with a distribution that is “normal” in the middle

and “double exponential” in both tails (Hogg, 1979a). The corresponding M-estimator is
the minimax solution of the asymptotic variance of the estimator T .

min
T

max
F

[asym. var(T )],

where F ranges over the set of all F = (1−ε)Φ+εH distributions for fixed ε and symmetric
H (i.e., ε-contaminated normal distribution) and T = Tn(x1, x2, . . . , xn) is the estimator
over the sample (Huber, 1964).

The related weight function can be calculated as

w(z) =

{
1, if |z| ≤ k;
k
|z|, if |z| > k.

(2.11)

One reasonable value for the tuning constant suggested is k = 2 in the Princeton Study (An-
drews et al., 1972). Another reasonable suggestion for k is k = 1.5 (Hogg, 1979b).

2.1.2 Andrews’ Sine Wave Function

Andrews presents the sine wave function of M-estimate in Andrews et al. (1972) and An-
drews (1974):

ρ(z) =

{
c[1− cos(z/c)], if |z| ≤ cπ;
2c, if |z| > cπ.

(2.12)

ψ(z) =

{
sin(z/c), if |z| ≤ cπ;
0, if |z| > cπ.

(2.13)
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The related weight function is given by

w(z) =

{
sin(z/c)

z/c, if |z| ≤ cπ;

0, if |z| > cπ.
(2.14)

The tuning constant c = 1.5 or c = 2.1 is suggested for using this function (Hogg,
1979b).

2.1.3 Tukey’s Biweight Function

Tukey’s biweight function is given by (Beaton and Tukey, 1974)

ρ(z) =

{
z2

2 − z4

2c2
+ z6

6c4
, if |z| ≤ c;

c2

6, if |z| > c.
(2.15)

ψ(z) =





z
(
1− (z/c)2

)2
, if |z| ≤ c;

0, if |z| > c.
(2.16)

The related weight function is

w(z) =





(
1− (z/c)2

)2
, if |z| ≤ c;

0, if |z| > c.
(2.17)

Tuning constant suggested is c = 6.0 (Hogg, 1979a).

2.1.4 Hampel’s Function

Hampel’s ψ function (Andrews et al., 1972; Hampel, 1974) is given by

ρ(z) =





1
2z2, if |z| ≤ a;
a|z| − 1

2a2, if a < |z| ≤ b;
a(c|z|− 1

2
z2)

c−b − (7/6)a2, if b < |z| ≤ c;
a(b + c− a), if |z| > c.

(2.18)

ψ(z) =





z, if |z| ≤ a;
asgn(z), if a < |z| ≤ b;
asgn(z)(c−|z|)

c−b , if b < |z| ≤ c;
0, if |z| > c.

(2.19)
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Figure 2.1: Example ρ Functions of M-estimation: (a) Huber’s ρ function with k=2; (b) An-
drews’ ρ function with c=1; (c) Tukey’s ρ function with c=3; (d) Hampel’s ρ function with
a=1.7, b=3.4, c=8.5.

The related weight function is

w(z) =





1, if |z| ≤ a;
a/|z|, if a < |z| ≤ b;
a(c−|z|)
|z|(c−b) , if b < |z| ≤ c;

0, if |z| > c,

(2.20)

where a = 1.7, b = 3.4, c = 8.5 refers to as Hampel’s 17A function and a = 1.2, b = 3.5,
c = 8.0 refers to as Hampel’s 12A function in the Princeton Study (Andrews et al., 1972).

Interested readers can find more examples of reasonable tuning constant values in Hol-
land and Welsch (1977).

Among the four M-estimates, Huber’s minimax function gives the monotone M-estimators.
The other three robust functions give the redescending M-estimators.

Figures 2.1 and 2.2 show examples of ρ and ψ functions of the four M-estimators with
fixed tuning constants.
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Figure 2.2: Example ψ Functions of M-estimation: (a) Huber’s ψ function with k=2; (b) An-
drews’ ψ function with c=1; (c) Tukey’s ψ function with c=3; (d) Hampel’s ψ function with
a=1.7, b=3.4, c=8.5.
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2.2 Properties of Robust M-estimators

2.2.1 Influence Function

The influence function (IF) or influence curve (IC) is essentially the first derivative of an
estimator (Hampel, 1974). It is used to derive the asymptotic variance and study the
robustness properties of an estimator. It is an asymptotic version of its sensitivity curve.

The influence function of an M-estimator is proportional to the ψ function (Huber, 2004,
page 45). Let T be an M-estimator and let the ψ function exist. Let F be a probability
distribution and T (F ) has definition. The influence function IF is given by

IF (x; F, T ) =
ψ (x; T (F ))

− ∫
(∂/∂θ)ψ (x; T (F ))F (dx)

. (2.21)

2.2.2 Breakdown Point

Simply speaking, the breakdown point (BDP) of an estimator is the largest proportion of
unusual points in the data before destroying the analysis. Intuitively, the largest BDP is
50% since we can not distinguish the good data points and bad data points if more than
half of the data are contaminated. The closer the BDP is to 50%, the more robust the
estimator is.

Hampel (1971) gives the definition of BDP. Donoho and Huber (1983) give the definition
of the breakdown point for the finite sample (FBP). We will focus on the FBP and follow
the definition from Hampel et al. (1986).

The definition of finite breakdown point (FBP) is as follows.

Definition 2.2.1. Let (x1, . . . , xn) be a random sample, the finite-sample breakdown point
ε∗n of the estimator Tn is given by

ε∗n (Tn; x1, . . . , xn) = 1
n max

{
m; max supy1,...,ym

|Tn(z1, . . . , zn)| < ∞}
,

where the sample (z1, . . . , zn) is obtained by replacing the m data points xi1, . . . , xim by
y1, . . . , ym.

The FBP usually does not depend on the random sample and slightly depends on the
sample size.

It is shown that the FBP of monotonic M-estimate is zero (Maronna et al., 2006).

2.2.3 Asymptotic Normality

It is shown in Huber (2004) that M-estimators are asymptotically normally distributed.

Definition 2.2.2. Assume x1, . . . , xn are independent random variables with common dis-
tribution P . Suppose that sequence Tn = Tn(x1, . . . , xn) satisfies 1√

n
Σψ(xi, Tn) → 0 and
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its consistency has already been proved by some other means. Then, Tn in probability is
asymptotically normal.

2.3 Other Robust Estimators

2.3.1 L-Estimator (Linear Combinations of Order Statistics)

Consider a random sample of n observations from a continuous type distribution. The order
statistics of the sample are given by X(1), X(2), . . . , X(n) . An L-estimator is defined to be
a linear combination of these order statistics.

Sample median is the simplest L-estimator. The other examples of L-estimators are:
α-trimmed mean, Gastwirth’s estimator and Tukey’s trimean (Hogg, 1979b). More L-
estimators can be found in Andrews, et al. (1972).

Knoenker and Basset (1978) generalize L-estimators to the regression situation by using
the following definition of quantiles

ρ(ri) =

{
−(1− p)ri, ri < 0;
pri, ri ≥ 0,

(2.22)

where ri is the residual from the ith data observation to the location estimate. It is obvious
that when p = 1/2 , the quantile corresponds to the sample median.

The major disadvantage for L-estimators is that they are relying on the value of noise
contamination rate, 1− p, and are not easy to optimize. Since they ignore part of the data,
they are among the least efficient estimators (Nasraoui, 2004).

2.3.2 R-Estimator (Estimates Derived from Rank Tests)

We illustrate R-estimator by taking linear regression model as an example. R-estimator is to
replace one factor in the residual squares used by OLS estimator by the rank of the residuals.
Mathematically, instead of minimizing the sum of squared residuals (min

∑n
i=1 r2

i ), we
minimize the sum of the product of the residual and the rank of the residual (min

∑n
i=1 riRi

), where ri is the residual for the ith observation; Ri is the rank of the ith residual (Ri =
1, 2, . . . , n). In more generalized form, the rank of the residual in the optimization function is
replaced by a score function of the residual rank. That is, we wish to find min

∑n
i=1 ria(Ri),

where a(·) denotes a nondecreasing score function of the rank of the residuals, such that
a(1) ≤ a(2) ≤ . . . a(n). Two examples of the scores are (Hogg, 1979b):

1. Wilcoxon scores: a(Ri) = Ri, Ri = 1, 2, . . . , n is the rank
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2. Median scores:

a(Ri) =

{
1, if Ri > (n + 1)/2;
−1, if Ri ≤ (n + 1)/2.

One disadvantage of R-estimators is that they are not easy to optimize and the practi-
tioners need prior information about the noise contamination rate (Nasraoui, 2004).

Jurečková (1977) proves that under certain conditions, the R-estimators and M-estimators
are asymptotically equivalent. Because of this, it seems more reasonable to use M-estimators
instead of R-estimators, since they are much easier to compute.

2.3.3 S-Estimator (Estimates Derived from Scale Estimation)

S-estimators for regression were first introduced by Rousseeuw and Yohai (1984). They are
so called “S-estimators” because they are based on estimators of scale. S-estimators are cre-
ated by the motivation of seeking high Breakdown Point (BDP) regression estimators which
at the same time share the nice asymptotic properties of robust M-estimators (Rousseeuw
and Yohai, 1984). Simply speaking, breakdown point (BDP) refers to the fractions of
contaminated data. The highest BDP we can achieve is 50%, since the data can not be
discriminated by “good” or “bad” if more than half (50%) of the data are contaminated.
The rigorous asymptotic definition for the BDP of large samples is given by Hampel (1971).
Donoho and Huber (1983) introduced another version of BDP for finite samples.

S-estimators are obtained through the one-dimensional estimators of scale defined by a
function ρ satisfying (Rousseeuw and Yohai, 1984):

• (R1) ρ is symmetric, continuously differentiable and ρ(0) = 0;

• (R2) There exists c > 0, such that ρ is strictly inceasing on [0, c] and constant on
[c,∞].

For any sample {r1, r2, . . . , rn} of real numbers, the scale estimate s(r1, r2, . . . , rn) is
defined as the solution of

1
n

n∑

i=1

ρ(ri/s) = K, (2.23)

where K = Eφ[ρ], where φ is the standard normal distribution.
The formal definition of S-estimators for regression is given by Rousseeuw and Yohai (1984)

as follows.
Definition. Let (x1, y1), . . . , (xn, yn) be a sample from regression data with p-dimensional
xi. For each vector θ, residuals ri(θ) = yi − xt

iθ of which the dispersion s (ri(θ), . . . , rn(θ))
is calculated by the equation 1

n

∑n
i=1 ρ(ri/s) = K, where ρ satisfies (R1) and (R2).
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The S-estimator θ̂ is defined by

θ̂ = arg min
θ̂

s (r1(θ), . . . , rn(θ)) . (2.24)

And the final scale estimator is given by

σ̂ = s
(
r1(θ̂), . . . , rn(θ̂)

)
. (2.25)

Rousseeuw and Yohai (1984) also give an example of the ρ-function

ρ(x) =

{
x2

2 − x4

2c2
+ x6

6c4
, for |x| ≤ c;

c2

6, for |x| ≥ c.
(2.26)

The derivative of which is Tukey’s biweight function.
In their paper, Rousseeuw and Yohai (1984) also give the breakdown point for S-

estimators along with their asymptotic behavior.
Despite the attractive high BDP and other asymptotic properties of S-estimators, the

main disadvantage of S-estimators is how to find an effective algorithm to calculate them.
Ruppert (1992) is one researcher who tried to make his algorithm (which he called SIR-
REAL) computationally feasible.

2.3.4 Others

Besides the above robust estimators we discussed, there are a lot of other robust estimators
with certain asymptotic properties in the literatures, such as the generalized M-estimators
(or “GM-estimators” in short) (Huber, 1981), the least median of squares (LMS) estima-
tor (Rousseeuw, 1984), the least trimmed sum of squares (LTS) estimator (Rousseeuw,
1983), the MM-estimator (Yohai, 1987) and the τ -estimator (Yohai and Zamar, 1988), to
mention a few.

2.4 Numerical Example - Stack Loss Data

To show the working of M-estimators effectively, we will use the stack loss data as an
example.

The stack loss data is taken from Brownlee (1965, page 454) and was analyzed as a
benchmark data for robust regression and outlier detection by a large number of researchers
(Rousseeuw and Leroy, 1987). The data are measurements of a plant oxidizing ammonia
to nitric acid on 21 consecutive days. The variables are:

• response y: stack loss,
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• predictor x1: air flow,

• predictor x2: cooling water inlet temperature,

• predictor x3: acid concentration.

According to the literature, most researchers conclude that observations 1, 3, 4 and 21
are outliers in this data set. Daniel and Wood (1971) find the unusually large residual of
observation 21, which has considerable influence on the estimated coefficients of the fitted
model. They delete observation 21 and three other observations 1, 3 and 4, and fit the
variables x1, x2 and x2

1 to the remaining 17 observations. Andrews (1974) analyzes these
four unusual observations and fit the variables x1, x2 and x3 by his robust method (Andrews
sine wave function) with and without these four points and compares his results with the
models fitted by OLS method with and without these points.

Here, we analyze the data in a similar way to that of Andrews’. We fit the variables
x1, x2 and x3 by OLS method to all the observations and to the remaining observations
(with points 1, 3, 4 and 21 deleted). Then, we fit the variables x1, x2 and x3 to all the
observations by robust methods (Huber, Andrews, Tukey and Hampel) and compare the
results with that of OLS. The fitted equations for the stack loss data by both OLS methods
and robust methods are summarized in Table 2.1. As seen in the table, the four robust
methods fit the equations consistent with the OLS method with observations 1, 3, 4 and
21 removed, which is denoted as OLS2 in the table. Figure 2.3 shows the plots of the
standardized residuals of all the fitted models. It suggests that the residual plot from
original OLS only indicate observation 21 as a suspicious point. The residual plot from the
OLS2 (with four outliers deleted) and those residual plots from the robust methods are able
to identify all the four unusual data points. Figure 2.4 shows the Quantile-Quantile plots
(QQ plots) of the residuals for all the fitted models. Once again, the QQ plots from robust
methods are identical to the one obtained from the OLS2 analysis with observations 1, 3, 4
and 21 deleted (Figure 2.4b).

Other than M-estimation, there are some other robust methods and generalizations in
the literature that provide good alternatives to least squares estimation.
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Table 2.1: Stackloss Data: Fitted Equations
OLS OLS2

a Huber Andrews Tukey Hampel
Tuning k=1.5 c=1.5 c=6.0 a=1.2;
constants b=3.5;

c=8.0;
β̂0 -39.92 -37.65 -38.79 -37.27 -37.68 -38.42
β̂1 0.716 0.798 0.833 0.813 0.822 0.882
β̂2 1.295 0.577 0.724 0.535 0.545 0.517
β̂3 -0.152 -0.067 -0.110 -0.071 -0.075 -0.098

aOLS with observations 1, 3, 4 and 21 deleted
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Figure 2.3: Stackloss Data: Plots of Standardized Residuals. (a) standardized residual from
least-squares estimation. (b) standardized residual from Huber estimation. (c) standardized
residuals from Andrews estimation. (d) standardized residuals from Tukey estimation.
(e) standardized residuals from Hampel estimation.

19



−2 −1 0 1 2
−10

−5

0

5

10

(a) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

−2 −1 0 1 2
−10

−5

0

5

10

(b) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

−2 −1 0 1 2
−10

−5

0

5

10

(c) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

−2 −1 0 1 2
−10

−5

0

5

10

(d) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

−2 −1 0 1 2
−10

−5

0

5

10

(e) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

−2 −1 0 1 2
−10

−5

0

5

10

(f) Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 d
at

a

Figure 2.4: Stackloss Data: Quantile-Quantile plots of the residuals. (a) QQplot residuals
from least-squares (with all observations). (b) QQplot residuals from least-squares (without
observations 1, 3, 4 and 21). (c) QQplot residuals from Huber estimation. (d) QQplot
residuals from Andrews estimation. (e) QQplot residuals from Tukey estimation. (f) QQ-
plot residuals from Hampel estimation.
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Chapter 3

Information Criteria

3.1 Introduction

Many information theoretic based criteria were developed in the model subset selection and
evaluation literature since the first derivation of Akaike’s information criterion (AIC) (Akaike,
1973).

Akaike’s (1973) AIC makes a compromise between the maximized log likelihood (the
lack of fit component) and the number of free parameters estimated in the model (the
penalty component), which is given by

AIC = −2logL(θ̂) + 2k, (3.1)

where logL(θ̂) is the natural logarithm of maximized likelihood function, θ̂ is the maximum
likelihood estimate of the parameter vector θ and k is the number of free parameters in
the model. AIC is an unbiased estimator of minus twice the expected log likelihood. The
model with minimum AIC will be chosen to be the best to fit the data.

Based on Akaike’s original AIC, many model-selection procedures which take the form
of a penalized likelihood (a negative log likelihood plus a penalty term) have been pro-
posed (Sclove, 1987).

Schwarz’s (1978) Bayesian information criterion (SBC, also known as BIC) is given by

SBC = −2logL(θ̂) + klog(n), (3.2)

where logL(θ̂), θ̂ and k have the same meanings as in AIC; n is the number of observations.
Generalized Akaike’s information criterion (GAIC) (Shibata, 1989; Bozdogan, 2000) is

defined by
GAIC = −2logL(θ̂) + 2tr(F̂−1R̂), (3.3)
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where F̂ is the estimated Fisher information matrix (FIM) in inner product or Hessian form,
R̂ is the estimated Fisher information matrix in outer product. tr(F̂−1R̂) is the Lagrange
Multiplier test (LMT) statistic. GAIC is also known as Takeuchi’s (1976) information
criterion (TIC), or AICT .

There are some other AIC-type information criteria, such as the consistent Akaike’s
information criterion (CAIC) (Bozdogan, 1987b), consistent AIC with Fisher information
(CAICF) (Bozdogan, 1987b), and corrected information criterion (AICc) (Sugiura, 1978;
Hurvich and Tsai, 1990), to mention a few.

3.2 Bozdogan’s Information Theoretic Measure of Complex-

ity - ICOMP

Motivated by the similar considerations in AIC, Bozdogan (1987a; 1988a; 1988b; 1990) in-
troduced a new entropic or information-theoretic measure of complexity called ICOMP as
an alternative criterion for model subset selection, which is based on the structural com-
plexity of a set of random vectors via a generalization of the information-based covariance
complexity index of van Emden (1971). This criterion is an additive composition of two
information-based complexities of the covariance matrix of the parameter estimates of a
model, and the covariance matrix of the residuals (Bozdogan, 1990).

ICOMP is designed to estimate a loss function, which is given in the following form

Loss = lack of fit + lack of parsimony + profusion of complexity. (3.4)

The third term of equation 3.4 refers to the interdependencies or the correlations among
the parameter estimates and the random error term of a model. Equation 3.4 provides a
trade-off between lack of fit and a scalar measure of the accuracy of the parameter esti-
mates (Bozdogan, 2000).

Instead of penalizing the free parameters directly, ICOMP penalizes the covariance
complexity of the model. The definition of ICOMP is given as (Bozdogan, 1988a, 1990)

ICOMP = −2 log L(θ̂) + 2C(Σ̂Model), (3.5)

where log L(θ̂) is the natural logarithm of the maximized likelihood function, θ̂ is the maxi-
mum likelihood estimate of the parameter vector θ. C(·) represents a real-valued complexity
measure and Ĉov(θ̂) = Σ̂Model represents the estimated covariance matrix of the parameter
vector of the model. Two forms of C(·) are defined in Bozdogan’s paper (Bozdogan, 1988a,
1990), which are given in next section.
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Bozdogan (2000) makes some criticisms of AIC-type information criteria and compares
his ICOMP with those criteria. He pointed out that “Although AIC is invariant under
parameter transformations, it does not have the virtue of detecting the problem caused by
the curvature of a model, especially in univariate and multivariate nonlinear models.” This
has also been known by other researchers. AIC often overfits the model. “AIC and AIC-type
criteria are based on MLE’s, which often are biased and they do not fully take into account
the concept of parameter redundancy, accuracy, and the parameter interdependencies in
model fitting and selection process.” The difference between ICOMP class criteria and AIC-
type criteria is that “with ICOMP we have the advantage of working with both biased as well
as unbiased estimates of the parameters and measure the complexities of their covariances
to study the robustness properties of different methods of parameter estimates.” “ICOMP
provides a more judicious penalty term than AIC and AIC-type criteria, since counting and
penalizing the number of parameters in a model is necessary but by no means sufficient.”
“Model complexity depends intrinsically on many factors other than the model dimension,
such as the several forms for parameter redundancy, parameter stability, random error
structure of the model, and the linearity and nonlinearity of the parameters of the model,
etc.”

In some of his recent papers, Bozdogan showed that ICOMP class criteria overwhelm-
ingly agree more often with KL distance than AIC-type criteria (Bozdogan and Haughton,
1998) and that ICOMP class criteria clearly performed better than AIC-type criteria in
model selection, prediction and perturbation studies (Bozdogan, 2000).

3.2.1 Definition of Covariance Complexity

Following Van Emden (1971), we give the initial definition of information complexity of a
covariance matrix Σ for the multivariate distribution as (Bozdogan, 1988a)

C0(Σ) =
1
2

p∑

i=1

log(σjj)− 1
2

log |Σ|, (3.6)

where σjj ≡ σ2
j is the jth diagonal element of Σ, p is the dimension of Σ and |Σ| is the

determinant of Σ. Note that C0(Σ) = 0 when Σ is a diagonal matrix (i.e., the variables
are linearly independent) and C0(Σ) is infinity when there is linear dependency among the
variables. Van Emden (1971) indicated that equation 3.6 is not an effective measure of the
amount of complexity in the covariance matrix Σ since:

• C0(Σ) depends on the marginal and common distributions of the random variables
and

23



• The first term of C0(Σ) in equation 3.6 would change under orthonormal transforma-
tions.

To improve this, Bozdogan proposes an information-theoretic maximal measure of com-
plexity of a covariance matrix Σ of the multivariate normal distribution as (Bozdogan, 1990,
Proposition 3.1)

C1(Σ) =
p

2
log

[
tr(Σ)

p

]
− 1

2
log |Σ|, (3.7)

where tr(Σ) refers to the trace of Σ, |Σ| denotes the determinant of Σ, and p = dim(Σ).
C1(Σ) in equation 3.7 is an upper bound of C0(Σ) in equation 3.6. C1(Σ) is independent

of the coordinate system associated with the variance σ2
j ≡ σjj , j = 1, 2, . . . , p. Different

from C0(Σ), C1(Σ) is invariant to scalar multiplication and orthonormal transformations.
Furthermore, C1(Σ) is a monotonically increasing function of the dimension p of Σ (Magnus
and Neudecker, 1999).

3.2.2 ICOMP(IFIM) – The Sum of Two Kullback-Leibler Distances

When we use the inverse-Fisher information matrix (IFIM) to estimate the covariance ma-
trix Σ in equation 3.7, ICOMP gives its most general form, denoted by ICOMP(IFIM).

For a multivariate normal linear or nonlinear structural model, the general form of
ICOMP(IFIM) is defined as (Bozdogan, 2004a, Proposition 2.2)

ICOMP(IFIM) = −2 log L(θ̂) + 2C1(F̂−1(θ̂)), (3.8)

where F̂−1(θ̂) is the estimated inverse-Fisher information matrix (IFIM) based on the esti-
mated parameter vector θ̂ , which is also known as the Cramér Rao lower bound (CRLB)
matrix (Cramér, 1946; Rao, 1945, 1947, 1948)) and exploits the asymptotic optimality
properties of MLE’s (Bozdogan, 2004a); and C1(F̂−1(θ̂)) denotes the maximal informa-
tional complexity of F̂−1(θ̂). The first component of equation 3.8 measures the lack of fit
of the model and the second term is a scale measure of the complexity of the estimated
inverse Fisher information matrix, which takes into account of the accuracy of the estimated
parameters.

Based on equation 3.7, C1(F̂−1(θ̂)) can be calculated as

C1(F̂−1(θ̂)) =
s

2
log

[
tr(F̂−1)

s

]
− 1

2
log |F̂−1|, (3.9)
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where s = rank(F̂−1) and

F−1 = Cov(θ̂) = −E

[
∂2 log L(θ)
(∂θ)(∂θ′)

]
. (3.10)

Under regularity conditions, θ̂, the MLE of θ, asymptotically follows a normal dis-
tribution with covariance matrix F̂−1. Consequently, C1(F̂−1) measures the Kullback-
Leibler (1951) distance against the independence of the estimated parameters. Therefore,
ICOMP(IFIM) can be viewed as the sum of two KL distances. The first measure of the
KL distance is between the true data and the fitted model and the second measure of the
KL distance is against the independence of the parameter estimates (Bozdogan and Bearse,
2003).

3.3 ICOMP(IFIM) for Regression Models

3.3.1 ICOMP(IFIM) for Multiple Linear Regression (MLR) Models

Consider a multiple linear regression model given in

y = Xβ + ε, (3.11)

where y is a vector of (n × 1) observations on a dependent variable; X is a matrix of
(n× p) nonstochastic predetermined predictor variables (p = k +1); β is a vector of (p× 1)
coefficients and ε is a vector of (n× 1) random errors, which follows εi ∼ N(0, σ2), for i =
1, 2, . . . , n, or equivalently, ε ∼ N(0, σ2I).

The density function of the regression model for a particular sample (x1, x2, . . . , xn) is

f(yi|xi, β, σ2) = (2πσ2)−
1
2 exp

[
−(yi − x′iβ)2

2σ2

]
. (3.12)

The likelihood function of the sample is thus

L(β, σ2|y,X) = (2πσ2)−
n
2 exp

[
−(y −Xβ)′(y −Xβ)

2σ2

]
, (3.13)

and the log likelihood function is

l(β, σ2|y,X) = −n

2
log(2π)− n

2
log σ2 − (y −Xβ)′(y −Xβ)

2σ2
. (3.14)
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The maximum likelihood estimates (MLE’s) of (β, σ2), (β̂, σ̂2) are:

β̂ = (X′X)−1Xy; (3.15)

σ̂2 =
(y −Xβ)′(y −Xβ)

n
=

RSS

n
, (3.16)

where RSS is the residual sum of squares.
The maximum likelihood covariance matrix of the estimated regression coefficients is

Ĉov(β̂)MLE = σ̂2(X′X)−1. (3.17)

The estimated inverse Fisher information matrix (IFIM) is given by (Bozdogan, 2004a)

Ĉov(β̂, σ̂2) = F̂−1 =

[
σ̂2(X′X)−1 0

0 2bσ4

n

]
. (3.18)

Using the estimated inverse Fisher information matrix (IFIM) in equation 3.18 and defin-
ing θ = (β′, σ2), the ICOMP(IFIM) for multiple regression model is given by (Bozdogan,
2004a)

ICOMP(IFIM)reg = −2 log L(θ̂) + 2C1

(
F̂−1(θ̂)

)

= n log(2π) + n log(σ̂2) + n + 2C1

(
F̂−1(θ̂)

)
, (3.19)

where

C1

(
F̂−1(θ̂)

)
=

p

2
log

[
trσ̂2(X′X)−1 + 2bσ4

n

p

]
− 1

2
log |σ̂2(X′X)−1| − 1

2
log

(
2σ̂4

n

)
. (3.20)

In equation 3.18, when (X′X)−1 increases, the variance σ̂2 decreases and when the
variance σ̂2 increases, (X′X)−1 decreases. Thus, C1(F̂−1) obtains a trade-off between the
two extremes and guards against multicollinearity (Bozdogan, 2004a).

3.3.2 ICOMP(IFIM) for Multivariate Linear Regression (MVR) Models

The classical MVR model in compact matrix form is given by

y = XB + E, (3.21)

where

• Y is an (n×m) matrix of n independent observations on m responses;
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• X is an (n × p) matrix of n observations on k nonstochastic independent variables
augmented by a constant column 1, where p = k + 1;

• B is a (p×m) matrix of regression coefficients;

• E is an (n×m) matrix of random errors, which satisfies

Cov(E) = Σ⊗ In, (3.22)

where ⊗ denotes the Kronecker product.

Similar to the work of Howe and Bozdogan, and Magnus (Howe and Bozdogan, 2007;
Magnus, 2007), we do not assume the normal distribution of the observation and get the
maximum likelihood function. However, we obtain the quasi-maximum likelihood estimators
for B and Σ by maximizing the normal likelihood. Suppose θ = ((vecB)′, (vecΣ)′)′, the
normal likelihood function is given by

l(θ) = −nm

2
log(2π)− n

2
log |Σ| − 1

2
tr(Y −XB)Σ−1(Y −XB)′. (3.23)

The quasi-maximum likelihood estimators, B̂ and Σ̂ are

B̂ = (X′X)−1X′y; (3.24)

and

Σ̂ =

(
y −XB̂

)′ (
y −XB̂

)

n
. (3.25)

The information matrix F is given by

F =

(
Σ−1 ⊗X′X 0

0 n
2 D′

m(Σ−1 ⊗Σ−1)Dm

)
. (3.26)

Therefore, the inverse inner product form of the information matrix is

F−1 =

(
Σ⊗ (X′X)−1 0

0 2
nD+

m(Σ⊗Σ)D+
m
′

)
. (3.27)

Where D+
m is the Moore-Penrose inverse of the duplication matrix Dm.

ICOMP(IFIM) for MVR model is defined by

ICOMP(IFIM)MVR = nm log 2π + n log
∣∣∣Σ̂

∣∣∣ + nm + 2C1(F̂−1), (3.28)
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where

C1

(
F̂−1

)
=

s

2
log

(
trF̂−1

s

)
− 1

2
log |F̂−1| (3.29)

Here s = rank(F̂−1) = mp + 1
2m(m + 1),

trF̂−1 = (trΣ̂)
(
tr(X′X)−1

)
+

1
2n


trΣ̂

2
+ (trΣ̂)2 + 2

m∑

j=1

σ2
jj


 , (3.30)

and
|F̂−1| = 2mn−

1
2
m(m+1)|Σ̂|m+p+1|X′X|−m, (3.31)

where σ2
jj is the jth diagonal element of Σ̂.

We refer the readers to Howe and Bozdogan, and Magnus (Howe and Bozdogan, 2007;
Magnus, 2007) for proofs.

3.4 Bozdogan’s Information Criteria under Model Misspeci-

fication

3.4.1 Two Forms of the Fisher Information Matrix

Suppose the probability density function of the underlying model is f(x|θ). Let θ̂ be a
consistent maximum likelihood estimator (MLE) of θ∗. The “inner product form” (or
“Hessian” form) of the Fisher information matrix is defined as

F = −E

[
∂2 log f(X|θ)

∂θ∂θ′

]

θ=θ∗
, (3.32)

and the “outer product form” of the Fisher information matrix is defined as

R = E

[
∂ log f(X|θ)

∂θ

] [
∂ log f(X|θ)

∂θ′

]

θ=θ∗
. (3.33)

These two forms of the Fisher information matrices are useful to check the misspecifi-
cation of the model (Bozdogan, 2004a). For an independently and identically distributed
sample x1, x2, . . . , xn and under standard regularity conditions (Lehmann, 1983), we have

√
n(θ̂ − θ∗) ∼ N(0,F−1RF−1) (3.34)

as n →∞ (Howe and Bozdogan, 2007; Magnus, 2007).
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The covariance matrix
Cov(θ∗) = F−1RF−1 (3.35)

is called robust covariance matrix (or “sandwich” covariance matrix). The estimation of
robust covariance matrix was first introduced by Huber (1967) and White (1982), which pro-
duces an asymptotically consistent covariance matrix estimator for dependent data without
having to make distributional assumptions. In other words, the robust covariance matrix
estimation gives a correct covariance matrix regardless of the correctness of the assumed
model f(x|θ).

3.4.2 Bozdogan’s Misspecification-Resistant Information Criteria

The general form of Bozdogan’s information-theoretic measure of complexity under model
misspecification (Bozdogan, 2004a), ICOMP(IFIM)misspec, is defined by

ICOMP(IFIM)misspec = −2 log L(θ̂) + 2C1(Ĉov(θ̂)misspec), (3.36)

where
Ĉov(θ̂)misspec = F̂−1R̂F̂−1. (3.37)

Note that in equation 3.37, when the model is correctly specified and certain regularity
conditions hold (White, 1982), the inner product form and outer product form of the Fisher
information matrix are the same.

F̂ = R̂

and the information matrix can be expressed by the inverse of either Hessian form F̂−1 or
outer product form R̂−1.

Ĉov(θ̂) = F̂−1 = R̂−1 (3.38)

Equation 3.36 thus reduces to equation 3.8.
In the case of model misspecification, the inner and outer product forms are different

from each other, i.e.,
F̂ 6= R̂

3.5 ICOMP(IFIM)misspec for Regression Models

3.5.1 ICOMP(IFIM)misspec for Multiple Linear Regression Models

Consider the multiple linear regression (MLR) model given in equation 5.1 or 5.2. The
general form of Bozdogan’s information criterion under model misspecification, denoted by
ICOMP(IFIM)misspec (Bozdogan, 2004a), is given by
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ICOMP(IFIM)misspec = n log(2π) + n log(σ̂2) + n + 2C1(Ĉov(θ̂)misspec), (3.39)

where Ĉov(θ̂)misspec is calculated by equation 3.37.
In the regression case, the estimated inverse Fisher information matrix in inner-product

form is

F̂−1 =

[
σ̂2(X′X)−1 0

0 2bσ4

n

]
(3.40)

and the estimated outer-product form of the Fisher information matrix is

R̂ =

[
1
bσ4 X′D2X X′1 Sk

2bσ3(
X′1 Sk

2bσ3

)′ (n−p)(Kt−1)
4bσ4

]
, (3.41)

where D2 = diag(ε̂2
1, ε̂

2
2, . . . , ε̂

2
n) and X is an (n × p) matrix of predictor variables. 1 is an

(n×1) vector of ones. Sk and Kt are the coefficients of skewness and Kurtosis respectively,
which are given by

Sk =

(
1
n

∑n
i=1 ε̂3

i

)

σ̂3
, (3.42)

and

Kt =

(
1
n

∑n
i=1 ε̂4

i

)

σ̂4
. (3.43)

Substituting equations 3.40 and 3.41 to equation 3.37, the estimated robust covariance
matrix is given by

Ĉov(θ̂)misspec =

[
σ̂2(X′X)−1 0

0 2bσ4

n

][
1
bσ4 X′D2X X′1 Sk

2bσ3(
X′1 Sk

2bσ3

)′ (n−p)(Kt−1)
4bσ4

][
σ̂2(X′X)−1 0

0 2bσ4

n

]
.

(3.44)

3.5.2 ICOMP(IFIM)misspec for Multivariate Linear Regression (MVR) Mod-

els

In equation 3.21, we define the standardized y as V = (y −XB)Σ−1/2 so that E(V) = 0
and var(vecV) = Imn. The matrix generalization of skewness Γ1 is given by

Γ1 = E(vecV)
(
vec(V′V − nIm)

)′
, (3.45)

and the matrix generalization of kurtosis Γ2 is given by

Γ2 = E(vecV′V)(vecV′V)′. (3.46)
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The inner product form of the information matrix F is given in equation 3.26 and the
inverse inner product form of the information matrix is given in equation 3.27 respectively.

The outer product form of the information matrix R is

R =

(
Σ−1 ⊗X′X 1

2(Σ−1/2 ⊗X ′)Γ1D
+
m
′∆

1
2∆D+

mΓ′1(Σ
−1/2 ⊗X) 1

4∆D+
mΓ∗2D+

m
′∆

)
. (3.47)

In equation 3.47, ∆ = D′
m

(
Σ−1/2 ⊗Σ−1/2

)
Dm and Γ∗2 = Γ2 − n2(vecIm)(vecIm)′.

When the model is correctly specified, Γ1 is reduced to 0 and Γ∗2 is reduced to 2nNm,
consequently, R = F .

When the model is misspecified, the variance of the quasi-maximum likelihood estimator
of θ, θ̂, can be consistently approximated by V = F−1RF−1 (Gouriéroux, 1995a,b; Hendry,
1995; White, 1996)(see (Howe and Bozdogan, 2007; Magnus, 2007)), which is given by

V =


 Σ⊗ (X′X)−1 1

n

(
Σ1/2 ⊗ (X′X)−1X′

)
Γ1Dp∆−1

1
n∆−1D′

pΓ
′
1

(
Σ1/2 ⊗X(X′X)−1

)
1
n2 ∆−1D′

pΓ
∗
2Dp∆−1


 . (3.48)

The ICOMP(IFIM) for the misspecified model, namely ICOMP(IFIM)misspec is given
by

ICOMP(IFIM)misspec = nm log(2π) + n log |Σ̂|+ nm + 2C1

(
V̂

)
, (3.49)

where

C1(V̂) =
s

2
log

(
trV̂
s

)
− 1

2
log |V̂|, (3.50)

and where s = rank(V̂).
In equation 6.28,

trV̂ = tr(Σ̂)tr
(
(X′X)−1

)
+

1
n2

tr(D+
m)

(
Σ̂

1/2 ⊗ Σ̂
1/2

)
Γ̂
∗
2

(
Σ̂

1/2 ⊗ Σ̂
1/2

)
D+

m
′
, (3.51)

and

∣∣∣V̂
∣∣∣ = 2−m(m−1)n−m(m+1)

∣∣∣Σ̂
∣∣∣
m+p+1∣∣X′X

∣∣−m
∣∣∣D′

m

(
Γ̂
∗
2 − Γ̂

′
1(Im ⊗X(X′X)−1X′)Γ̂1

)
Dm

∣∣∣ .

(3.52)
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Chapter 4

Genetic Algorithms

4.1 Introduction to Genetic Algorithms

A genetic algorithm is an adaptive stochastic optimization algorithm that mimics the pro-
cedure of biological evolution and natural selection. Genetic algorithms were widely used
as optimization methods since they were first introduced by John Holland (1975) in the
mid-1970s.

Traditionally, a genetic algorithm encodes information on a binary string (called “chro-
mosome”). For a given problem, one chromosome represents a solution. The implementation
of a genetic algorithm starts with a randomly generated population of chromosomes and
evolves in generations. In each generation, every chromosome in the population is evaluated
by a certain fitness function. Multiple chromosomes are selected from the current popula-
tion to form a new population by genetic operators such as recombination (or crossover) and
mutation. The better fitness the chromosome has, the more chance it has to be selected.
The procedure is iterated until the condition of the algorithm is satisfied or a maximum
number of generations has been produced.

The GA for model subset selection in regression used in this dissertation follows closely
to the work of Bozdogan (2004a), Bozdogan and Bearse (2003), which are in turn based on
Goldberg’s simple genetic algorithm (SGA) (Goldberg, 1989).

4.2 GA on Model Selection

Before starting the genetic algorithm, we have to define the coding scheme for the possible
subset regression models. Each regression model is encoded as a binary string, in which 1
indicates presence and 0 indicates absence of a certain predictor variable. All stings have
the same length but contain different combinations of predictor variables. For example, in
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a regression model of 6 predictors augmented by a constant term, the binary string 1100110
represents the model including the constant term and predictors x1, x4 and x5, excluding
the predictors x2, x3 and x6.

Here are the steps we follow to implement genetic algorithm in subsetting regression
models:
Step 1. Generate an initial population of regression models

The initial population is generated by selecting N subset regression models from the
model space randomly. Population size N is an important parameter in GA, which repre-
sents the number of models to begin with in the algorithm. The population size is problem
dependent. There is no general rule for how large the population size should be in the
literature. Our GA is flexible to allow one to choose any population size.
Step 2. Evaluate each model in the population

Generally speaking, we may use any model selection criteria described in Chapter 3
as the fitness function to evaluate the models in GA. Particularly in this dissertation,
we use the robust version of Bozdogan’s ICOMP(IFIM), namely, RICOMP(IFIM) and
RICOMP(IFIM)misspec for both the correctly specified model and misspecified model. To
avoid confusion, we will use RICOMP and RICOMPmisspec in short. AIC and AIC-type
information criteria can also be used as fitness function in GA for model evaluation.
Step 3. Create a new population

A new population containing the offsprings of the parents from the previous population
is created by following the substeps below.

[selection] In this dissertation, the parent models are selected by a ratio of the fitness
value, RICOMP (or RICOMPmisspec), which is similar to Bozdogan (2004a). We
illustrate how the models are selected by RICOMP here. The model selected by
RICOMPmisspec will follow the same procedure.

Firstly, the RICOMP based on a certain robust estimate for each of the subset mod-
els in the population is calculated. We then get the difference RICOMP value by
substracting the RICOMP for each model from the maximum RICOMP value in the
population. That is

∆RICOMPi = RICOMPmax −RICOMPi (4.1)

for i = 1, 2, . . . , N , where N is the population size.

Secondly, we compute the average of the difference, which is given by

∆RICOMP =
1
N

N∑

i=1

∆RICOMPi. (4.2)
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Finally, the ratio of each model’s difference value to the average difference value is
calculated by

Ri = ∆RICOMPi/∆RICOMP. (4.3)

The ratio Ri will determine which models will be used to reproduce the models in the
next population. The chance of a model being selected is proportional to this ratio.
This means a model with Ri = 2 will double its chance to be selected to reproduce
its offsprings compared to a model with Rj = 1. This is called the proportional
selection (Bozdogan, 2004a). There is a ranking selection method of ICOMP used by
Bozdogan and Bearse (2003).

[reproduction] New offsprings are reproduced from the selected parents by crossover and
mutation process.

• (crossover) Selected parents are randomly paired. A crossover (or recombination)
process is then used to mate the paired parents and reproduce new offsprings.
There are three choices of crossover (or recombination) operations: single point
crossover, two point crossover and uniform crossover. A crossover probability
between 0 and 1 is used to control the crossover rate, which is chosen by the
researcher. The examples of these three crossover methods are given as follows,
where | refers to the crossover point.

– Single point crossover - There is one crossover point in each parent. The
binary string of the offspring is copied from one parent before crossover point
and copied from the other parent after the crossover point.
Parent A 1000|110010 Offspring A 1000010001

→
Parent B 1100|010001 Offspring B 1100110010

– Two point crossover - There are two crossover points in each parent.
The binary string of the offspring is copied from one parent before the first
crossover point, copied from the other parent between the first and second
crossover point and copied the rest from the first parent.
Parent A 1000|1100|10 Offspring A 1000010010

→
Parent B 1100|0100|01 Offspring B 1100110001

– Uniform Crossover - The binary string of the offspring is copied randomly
from either parent.
Parent A 1000110010 Offspring A 1000010001

m →
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Parent B 1100010001 Offspring B 1100110010

• (mutation) Mutation is used in GA to allow the searching process to jump to
another area instead of being constrained in a limit area so that the algorithm is
not restricted to a local optimum. The mutation rate is specified by a mutation
probability between 0 and 1. Mutation should be used sparingly since it is a
random search operator. Otherwise the algorithm with a high mutation rate will
become little more than a random search (Lin and Lee, 1996). The mutation
probability is selected by the researcher.

• (elitism) The elitism rule is used in our GA. By using elitism rule, at least one
best solution is copied without any change from current population to the next.
In that way, the best solution can survive to the end of the algorithm.

[new population] A new population with new offsprings is now formed and replaces the
old one. This population will be used for further runs of the algorithm in the iteration.

Step 4. Terminate the algorithm and return the best solutions in current pop-

ulation if final condition is satisfied, otherwise go to Step 2

If the solutions in the population satisfy the final condition of the model selection criteria,
stop the algorithm and return the best solutions in current population. Otherwise go to
Step 2 for a new iteration.

There are certain advantages and disadvantages related to genetic algorithms.

4.3 The Advantages and Disadvantages of GA

4.3.1 The Advantages of GA

GA can solve problems with enormous numbers of possible solutions within a reasonable
time. This is particularly valuable in the model subset selection with a large number of
predictor variables.

The optimization procedure of GA does not require the search on the gradient of the
objective function and thus is not likely to be restricted to a local optima (Goldberg, 1989).

The combination of information criteria as a fitness function with GA is more likely
to select “better” models than the classical stepwise selection (Bozdogan, 2004a). The
combination of robustness, information criteria and GA enables us to inexpensively select
the optimal or near optimal models in a robust and misspecification resistant framework.

It is flexible for the researcher to select GA parameters, such as the population size, the
number of generations, crossover method and probability and mutation probability.
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4.3.2 The Disadvantages of GA

There is some uncertainty on how to select the parameters in GA. No guidance in the
literature is available to direct the selection of the parameters of GA. Understanding the
relationships of these factors requires further investigation (Mahfoud, 1994). In this disser-
tation, we practice some combinations of the parameter choices, such as the population size
and the number of generations depending on the problem.

As any other non-exhaustive search methods, GA may not return the overall optima
but only the “good” ones in some situations.

4.4 GA Hybridized with Robust and Misspecification Resis-

tant Information Criteria

To calculation the robust and misspecification resistant model subset selection in GA in
this dissertation, we implemented an easy to use graphical user interface (GUI) software
in Matlab. The GUI used here is developed based on the work of Bozdogan (2004a) un-
der the correctly specified model. In our GUI, we develop and apply the misspecification
resistant version of ICOMP. We provide the flexibility to choose from the fitness values
of RICOMP(IFIM) or RICOMP(IFIM)misspec under both correctly specified model or mis-
specified model assumptions. Furthermore, the parameter estimation method can be chosen
from the ordinary least squares (OLS) method and four robust estimation methods: Hu-
ber’s method, Andrews’ method, Tukey’s method and Hampel’s method, which enable us
to select the model on a robust basis. Therefore, the researcher can apply our GUI for
robust and misspecification resistant model selection using GA.

The GUI inputs and outputs are illustrated in Tables 4.1 and 4.2.
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Table 4.1: GUI Inputs and Descriptions for GA
Inputs Descriptions
No. of Runs
No. of Generations
Population Size
Estimation Method to choose one from the five methods:

OLS, Huber’s, Andrews’, Tukey’s, Hampel’s
Fitness Value to choose one from the two fitness values:

RICOMP(IFIM), RICOMPmisspec
Probability of Crossover a real number value from 0 to 1
Crossover Method to choose one from the three methods:

single point, two-point, uniform
Probability of Mutation a real number from 0 to 1
Elitism check or uncheck the box “Yes”
Input Data Files Y: input the dependent variable Y

X: input the set of independent variables Xs
Go to start the algorithm
Reset to reset the parameters
Exit to exit the algorithm

Table 4.2: GUI Outputs and Descriptions for GA
Outputs Descriptions
View 2D/3D plot to show the 2D/3D plot of criterion values ver-

sus number of generations
Save Figure to pop up the 2D/3D plot and save it
Fitness Chromosome to return the predictor variables in the best

model
Fitness Binary String to return the binary string representing the

best model
Fitness Score to return the best fitness value
Outputs in Matlab the table of generation results for GA; the suc-

cess rate to pick up the best model; the fitness
chromosome, fitness binary string and fitness
score value

Output file to show the same results as the outputs in
Matlab command window
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Chapter 5

Robust and Misspecification

Resistant Model Selection in

Multiple Linear Regression

5.1 Robust Estimates in Multiple Linear Regression

Consider the multiple linear regression model given by

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

= x′iβ + εi (5.1)

for the ith observation, where x′ = (1, xi1, . . . , xik) is the ith row of an n × p (p = k + 1)
design matrix X.

In a compact matrix form
y = Xβ + ε, (5.2)

where y is a vector of (n × 1) observations on a dependent variable; X is a matrix of
(n× p) nonstochastic predetermined predictor variables (p = k +1); β is a vector of (p× 1)
coefficients and ε is a vector of (n× 1) random errors, which follows εi ∼ N(0, σ2), for i =
1, 2, . . . , n, or equivalently, ε ∼ N(0, σ2I).

The least squares (LS) estimator of β is to minimize the sum of the squared residuals

min
β

n∑

i=1

r2
i = min

β

n∑

i=1

(yi − x′iβ)2. (5.3)
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That is,

β̂LS = arg min
β̂

n∑

i=1

r2
i , (5.4)

where ri = yi−ŷi is the residual for the ith observation, and ŷi = β̂0+β̂1xi1+β̂2xi2+· · ·+β̂kxik

is the ith predicted value. In matrix form, the LS estimator of β is given by

β̂LS = (X′X)−1X′y. (5.5)

Least squares estimator is very unstable under slight changes of the underlying distri-
bution. When assuming the normal distribution of the underlying model, the method of
least squares produces a good estimator of the regression coefficients with good properties.
However, in many real world applications, the assumption of normality is not appropriate.
Huber (1972) criticizes this “dogma” of assuming measurement error to be normally dis-
tributed and suggests that “a more rational action would be to check whether they were
compatible with a normal distribution and if not, to develop a different theory of estima-
tion.”

Least squares estimator is also very sensitive to the unusual observations (or “outliers”)
in the data, which either comes from the longer or heavier tailed distribution than normal
or simply they are erroneous data points.

The general M-estimation thus is introduced to the robust regression literature as an
alternative method for the LS estimation. M-estimation replaces the objective function of
minimizing sum of squared residuals used in OLS estimation by another function of the
residuals. The function is a less rapidly increasing loss function than that of the OLS
estimation, and it assigns less importance to outliers. The M-estimator minimizes the
objective function

min
β

n∑

i=1

ρ(ri) = min
β

n∑

i=1

ρ(yi − x′iβ), (5.6)

where ρ : R1 → R1 is a symmetric, positive-definite function with a unique minimum at
zero (Rousseeuw and Yohai, 1984).

That is, the M-estimator of regression coefficient β̂M is given by

β̂M = arg min
β̂

n∑

i=1

ρ(ri). (5.7)
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The M-estimator is not necessarily scale invariant. To obtain a scale invariant version
of M-estimator, we need to solve

min
β

n∑

i=1

ρ
(ri

s

)
= min

β

n∑

i=1

ρ

(
yi − x′iβ

s

)
, (5.8)

where s is a robust estimate of scale (s = σ̂). In this dissertation, we choose the median
absolute deviation (MAD) as our robust scale estimator, which is given by

s = 1.4826×median|ri −median(ri)|. (5.9)

The tuning constant 1.4826 makes s an approximately unbiased estimator of σ if n is large
and the error distribution is normal (Montgomery et al., 2001).

To minimize equation 5.8, let ψ = ρ′ be the first partial derivative of ρ. Differentiating
equation 5.8 with respect to the coefficient βj(j = 0, 1, . . . , k), and setting the partial
derivatives equal to zero, we get a system of k + 1 equations

n∑

i=1

xijψ

(
yi − x′iβ

s

)
= 0, j = 0, 1, . . . , k, (5.10)

where xij is the ith observation on the jth predictor and xi0 = 1.
Rewriting equation 5.10, we have

n∑

i=1

xijψ

(
yi − x′iβ

s

)
=

n∑

i=1

xijwi(yi − x′iβ) = 0, j = 0, 1, . . . , k, (5.11)

where

wi =

{
ψ

(
yi−x′iβ

s

)
/
(

yi−x′iβ
s

)
, if yi 6= x′iβ̂;

1, if yi = x′iβ̂.
(5.12)

Equation 5.11 can be written in matrix form as

X′WXβ = X′Wy, (5.13)

where W is an n × n diagonal matrix, whose diagonal elements (w1, w2, . . . , wn) are the
weights given by equation 5.12. Equation 5.13 is referred to as the weighted least-squares
(WLS) normal equation. The one-step estimator is

β̂ = (X′WX)−1X′Wy. (5.14)

40



In general, the ψ function is nonlinear and iterative methods could be used to solve
equation 5.11. In this dissertation, the iteratively reweighted least-squares(IRLS) method is
employed (Beaton and Tukey, 1974) for solving the ψ function.
The steps of IRLS are as follows:

1. Select initial estimate β̂
(0)

, such as the LS estimate.
2. At each iteration t, calculate the weight w

(t−1)
i using the equation 5.12.

3. Solve for the new weighted least squares estimate

β̂
(t)

= (X′W(t−1)X)−1X′W(t−1)y

4. Repeat steps 2 and 3 until the estimated coefficient (β̂) converges.
Now, our question is how to determine the covariance matrix of β̂ since it is important

to make model subset selections and other model inferences. Huber (1973) shows that
asymptotically β̂ follows an approximately normal distribution with the covariance matrix

Ĉov(β̂) = σ2 E[ψ2(ε/σ)]
{E[ψ′(ε/σ)]}2

(X′X)−1
. (5.15)

One good choice of estimating the covariance matrix of β̂ is

Ĉov(β̂) =
(ns2)

∑n
i=1 ψ2[(yi − x′iβ̂)/s]

(n− p){∑n
i=1 ψ′[(yi − x′iβ̂)/s]}2

(X′X)−1
. (5.16)

The weighted least-squares (WLS) program automatically produces the estimate of the
covariance matrix as

Ĉov(β̂) =
∑n

i=1 wi(yi − x′iβ̂)
2

(n− p)
(X′WX)−1

. (5.17)

Welsch (1975) suggests the combination of the equation 5.16 and 5.17, which gives

Ĉov(β̂) =
(ns2)

∑n
i=1 ψ2[(yi − x′iβ̂)/s]

(n− p){∑n
i=1 ψ′[(yi − x′iβ̂)/s]}2

(X′WX)−1
. (5.18)

We will use the covariance matrix estimation suggested by Welsch in this dissertation.

5.2 Information Criteria on Robust Regression Model Selec-

tion

Ronchetti (1985) proposed a robust regression model selection procedure, known as AICR,
which generalized Akaike Information Criterion (AIC) to the robust linear regression. The
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AICR is defined as

AICR(p; α, ρ) = 2
n∑

i=1

ρc

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+ αp, (5.19)

where p is the number of parameters in the model; ρc is Huber’s ρ function defined in
equation 2.9; β̂ is the corresponding M-estimator and σ̂ is some robust estimate of σ; α is
chosen to be

α = αc = 2
EΦψ2

c

EΦψ′c
,

where ψc is Huber’s ψ function defined in equation 2.10 and Φ is the standard normal
distribution function.

Note that αc < 2 and α∞ = 2 so that AICR(p; α∞, ρ∞) = AIC(p; 2), which is the
classical AIC statistic under normality.

Hampel (1983) proposed his robust version of AIC, named HAIC, by obtaining another
choice for α from Ronchatti’s. He chose α to be

α =
EΦψ2

c

EΦψ′c
+

EΦψ2
c

(EΦψ′c)
2 .

Hampel’s HAIC is defined by

HAIC = 2
n∑

i=1

ρc

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+
{

EΦψ2
c

EΦψ′c
+

EΦψ2
c

(EΦψ′c)
2

}
p. (5.20)

Machado (1993) derives a robust version of Bayesian Information Criterion (BIC or
SBC), based on the objective functions defining M-estimators for parametric models. Its
specific Schwarz Bayesian criterion (SBC) based on Huber’s M-estimator for robust regres-
sion model, RBIC, is given by

RBIC = 2
n∑

i=1

ρc

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+ p log n. (5.21)

We notationally use RBIC instead of RSBC to be compatible with the literature, al-
though Schwarz Bayesian criterion (SBC) is not grounded on information theoretic devel-
opments such as AIC or ICOMP.

In all of Ronchetti’s AICR, Hampel’s HAIC and Machado’s RBIC, they use w(x) = 1.
In this dissertation, when we derive the robust version of ICOMP(IFIM), namely RI-
COMP(IFIM), we generalize w(x) ∈ [0, 1] to allow the criterion better take into account
the influence of outliers.
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The robust version of cross-validation method, RCV, can be defined as (Qian and
Künsch, 1996)

RCV = 2
n∑

i=1

ρc

{
w(xi)

σ̂
(yi − xi

′β̂
(i)

)
}

, (5.22)

where β̂
(i)

represent the M-estimator based on all the observations in the sample except
point (xi, yi).

Qian and Künsch (1996) in their paper proved that based on Hampel’s (1974) heuristic
influence function, RCV is expected to behave similiarly as the AICR if α is a correct
choice and the M-estimator has a bounded influence. Ronchetti et al. (1997) also studied
the cross-validation method in their paper.

Qian and Künsch (1996; 1998) derived the Stochastic Complexity, SC, using the stochas-
tic complexity theory of Rissanen (1989; 1996), as a robust model selection criterion in linear
regression, which is defined as

SC (Yn | xn) =
n∑

i=1

ρc

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+
p

2
log Ef0ψ

′
c +

1
2

log
∣∣X′

nW
2
nXn

∣∣

+ log
p∏

j=1

|β̂j |+ n−1/4

σ
. (5.23)

The first term in equation 5.23 is the robust fitting error which shows the goodness of fit.
The other three terms in the equation represent the model complexity.

5.3 Robust ICOMP for Regression Model

In this dissertation, we define a robust version of Bozdogan’s information-theoretic measure
of complexity as (Bozdogan, 2003; Liu, 2004)

RICOMP(IFIM) = −2 log L(θ̂R) + 2C1(F̂−1
R ), (5.24)

where θ̂R = (β̂R, σ̂2
R) represents the robust estimate of the parameter vector θ = (β, σ2),

which can be obtained from any of the M-estimation methods we discussed in Section 2.1.
L(θ̂R) represents the maximized likelihood function on the robust estimate of the parameter
vector θ̂R. F̂−1

R represents the robust estimate of the inverse Fisher information matrix.
The result in equation 5.24 can be easily generalized to the regression model. Inspired by

QianQian and Künsch (1996; 1998), we employ Huber’s Least Favorable Distribution (Hu-
ber, 1964) to estimate the density function of the random errors ri in the regression model
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and then build the robust lack of fit part (negative log likelihood function of the robust
estimates) in RICOMP(IFIM).

Following Qian and Künsch (1996), the least favorable distribution of ri given xi is

f(ri | xi) =
w(xi)

σ
f0

(
w(xi)ri

σ

)
= (1− λ)

(√
2πσ

)−1
w(xi) exp

{
−ρ

(
w(xi)ri

σ

)}
, (5.25)

where f0(r) = (1− λ)
(√

2π
)−1

exp {−ρ(r)}, λ(0 < λ < 1) is a constant.
Note that in their paper, they use ρ(·) in equation 5.25 as Huber function. Here, we

generalize ρ to all the robust functions stated in Section 2.1.
Based on the above least favorable density function of ri, the likelihood function for the

parameter (β, σ) is given by

L(β, σ | y,X) =
n∏

i=1

f(ri | xi). (5.26)

The log likelihood function of θ is

l(β, σ | y,X) = n log(1−λ)− n

2
log 2π−n log σ +

n∑

i=1

log w(xi)−
n∑

i=1

ρ

{
w(xi)

σ̂
(yi − xi

′β̂)
}

.

(5.27)
Since the first term n log(1− λ) is a constant, it can be dropped when we construct the

RICOMP(IFIM) for the regression model.
The robust version of Bozdogan’s ICOMP(IFIM), RICOMP(IFIM) in equation 5.24 can

be written in the following form for the regression model

RICOMP(IFIM)reg = −2 log L(θ̂R) + 2C1(F̂−1
R ) (5.28)

= n log 2π + 2n log σ − 2
n∑

i=1

log w(xi)

+2
n∑

i=1

ρ

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+ 2C1(F̂−1
R ),

where

Ĉov(β̂R, σ̂2
R) = F̂−1

R =

[
Ĉov(β̂R)R 0

0 2bσ4
R

n

]
, (5.29)

and where

C1(F̂−1
R ) =

s

2
log

[
tr(F̂−1

R )
s

]
− 1

2
log |F̂−1

R |, (5.30)
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and σ̂R is estimated by Median Absolute Deviation (MAD) of residuals.
Note that by asymptotic theory, we have (Bozdogan, 2003)

√
n(β̂R − β) ∼ N(0, Cov(β̂R)), (5.31)

where β̂R is the robust estimate of regression coefficient β and Cov(β̂R) is the robust
covariance matrix.

The estimated covariance matrix Ĉov(β̂R) is given by

Ĉov(β̂R) =
(nσ̂2)

∑n
i=1 ψ2[(yi − x′iβ̂)/σ̂]

(n− p){∑n
i=1 ψ′[(yi − x′iβ̂)/σ̂]}2

(X′WX)−1
. (5.32)

RICOMP(IFIM) in equation 5.24 as well as that in equation 5.28 provides us with a
unified information criterion which combines the robust estimators into Bozdogan’s (1988a;
1990) information-theoretic measure of complexity (ICOMP) in model subset selection liter-
ature. Besides the nice property of ICOMP(IFIM) over the AIC-type information criterion,
this new criterion is also robust to the departure of normality assumption of the model and
unusual observations.

The model with minimum RICOMP(IFIM) value will be chosen as the best among the
competing candidate models. For conciseness and to avoid confusion, we will use RICOMP
to represent RICOMP(IFIM) in the following sections.

5.4 Robust and Misspecification Resistant ICOMP for Re-

gression Model

The robust version for Bozdogan’s misspecification-resistant ICOMP(IFIM), denoted by
RICOMP(IFIM)misspec, is given by

RICOMP(IFIM)misspec = n log 2π + 2n log σ − 2
n∑

i=1

log w(xi) (5.33)

+2
n∑

i=1

ρ

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+ 2C1

(
Ĉov(θ̂)R misspec

)
,

where
Ĉov(θ̂)R misspec = F̂−1

R R̂RF̂−1
R , (5.34)

45



and where

C1

(
Ĉov(θ̂)R misspec

)
=

s

2
log


 tr

(
Ĉov(θ̂)R misspec

)

s


− 1

2
log

∣∣∣Ĉov(θ̂)R misspec

∣∣∣ . (5.35)

In equation 5.34, F̂−1
R and R̂R are the robust versions of the estimates of inner and outer-

product forms of the Fisher information matrix. F̂−1
R is computed using equation 5.29 and

R̂R is computed as

R̂(R) =




1
bσ4

R
X′D2X X′1 Sk

2bσ3
R(

X′1 Sk
2bσ3

R

)′
(n−p)(Kt−1)

4bσ4
R


 , (5.36)

where D2 = diag(ε̂2
1, ε̂

2
2, . . . , ε̂

2
n) and X is an (n × p) matrix of predictor variables. 1 is an

(n×1) vector of ones. Sk and Kt are the coefficients of skewness and Kurtosis respectively,

which are given by Sk = ( 1
n

Pn
i=1 bε3

i )
bσ3 and Kt = ( 1

n

Pn
i=1 bε4

i )
bσ4 . σ̂R is the robust estimate of σ.

Another form of RICOMP(IFIM)misspec is defined as

RICOMP(IFIM)misspec = n log 2π + 2n log σ − 2
n∑

i=1

log w(xi) (5.37)

+2
n∑

i=1

ρ

{
w(xi)

σ̂
(yi − xi

′β̂)
}

+ 2
[
tr(F̂−1

R R̂(R)) + C1(F̂R)
]

which has a different complexity term from that in equation 5.34.

5.5 Robust Model Selection Algorithm

For all possible subset selection of p-dimensional data, we have 2p − 1 models to evaluate.
Here are the steps to choose the best model among the competing candidate models:

1. For a certain subset model, select one of the M-estimation methods described in
Section 2.1.

2. Use iteratively reweighted least-squares (IRLS) algorithm to compute the robust
estimates of the model parameters.

3. Use Welsch’s method in 5.18 to obtain the robust estimate of the covariance matrix
of the model.

4. Compute the RICOMP(IFIM) or the RICOMP(IFIM)misspec value given by equa-
tion 5.28 and 5.34, respectively, for the model depending on whether the model is misspec-
ified.
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5. Repeat steps 1-4 for all possible subset models. Sort the RICOMP(IFIM) or
RICOMP(IFIM)misspec values from the smallest to the largest and choose the best sub-
set model with the minimum RICOMP(IFIM) (or RICOMP(IFIM)misspec value).

The GA model subset selection should follow the steps described in Section 4.2, where
the fitness function is RICOMP(IFIM) or RICOMP(IFIM)misspec.

In the following section, we demonstrate both on a simulation protocol and real world
examples to illustrate the effectiveness of this new information criteria RICOMP(IFIM) and
RICOMP(IFIM)misspec and compare them with the robust model selection methods in the
current literature, AICR, HAIC, and RBIC.

5.6 Numerical Examples

5.6.1 Simulation Example

In this simulation study, we use the following Monte Carlo protocol following Bozdogan and
Haughton (1998) to generate data and calculate the parameter estimates and model subset
selection.

Let z1, z2, z3 and z4 be independent random variables that follow standard normal dis-
tribution N(0, 1). The first three predictor variables are simulated by

x1 =
√

1− α2z1 + αz4, (5.38)

x2 =
√

1− α2z2 + αz4, (5.39)

x3 =
√

1− α2z3 + αz4. (5.40)

It is obvious that the variance of xi(i = 1, 2, 3) is 1, and that the covariance of xi and xj

(i 6= j, i, j = 1, 2, 3) is α2. By assigning different values for α, we can control the degree of
collinearity among the predictor variables. For our simulations, we use α2 = 0.5.

Suppose λmax is the largest eigenvalue of the covariance matrix of x1, x2, x3 with βmax

as the eigenvector corresponding to λmax. We can show that E[(xβmax)2i ] = λmax (Johnson
and Wichern, 1992, page 358). The eigenvector βmax yields a high variability for xβ. The
response variable y is generated from the first three predictor variables,

y = Xβmax + ε, (5.41)

where X = [x1, x2, x3]. In our simulations, we assign different distributions for ε to illus-
trate the model subset selection results under the model misspecification (i.e., the error
distribution deviates from the normal distribution). Five outliers on the response variable
y are arbitrarily introduced to this simulation data, y(53) = −10; y(62) = 15; y(18) =
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−12; y(96) = 10; y(40) = 18. Note that the observations are picked at random to assign the
outliers.

Then, we generate seven redundant variables, x4, x5, . . . , x10 using the uniform random
numbers, which are given by

x4 = 4 ∗ rand(0, 1), · · · , x10 = 10 ∗ rand(0, 1), (5.42)

where rand(0,1) generates the standard Uniform random numbers.
For convenience in showing our model selection results, we define the “full model” (Mf ),

“true model” (Mt), “other correct model” (Moc), “overfitting model” (Mof ), “redundant
model” (Mr) and “wrong model” (Mw) as follows. The “full model” is the model containing
all the predictor variables, which is denoted by Mf = {x1, x2, . . . , x10}. The “true model” is
the one including the first three predictor variables, which is denoted by Mt = {x1, x2, x3}.
We define the “other correct model” Moc as any non-empty strict subset of the true model,
which is denoted by Moc ⊂ Mt. We define the “overfitting model” Mof as the one containing
both the true model and any redundant variable(s). In other words, the true model is a
strict subset of the overfitting model, Mt ⊂ Mof . The “redundant model” Mr, is defined as
the model including both the other correct model and any redundant variable(s). By this
definition, Moc ⊂ Mr. Finally, the “wrong model” Mw is defined as any model containing
redundant variable(s) only.

Parameter Estimation on the True Model

In this part, we estimate the regression coefficients for the true model by using both the OLS
method (with and without the outliers) and the four robust methods assuming the error in
equation 5.41 is normally distributed with N(0, 0.5). The OLS estimate with outliers deleted
is supposed to work well since we only introduce the outliers, but the error distribution is
normal. In this way, we can compare the estimation results of the robust methods with the
OLS estimates. The QQ-plot and histogram of the response variable for one simulation are
given in Figure 5.1, where both plots show the obvious outliers in the raw data.

The estimation results are summarized in Table 5.1, which also include the tuning
constants used for each robust function. We can see from the table that OLS estimates
are far away from the true values indicating the large biases. The OLS2 estimates (OLS
without the outliers) are very close to the true values with small biases. The four robust
estimates work well too, which are close to the true values and the OLS2 estimates. The four
robust methods dramastically reduce the standard deviation of the model compared with
the OLS method. Among them, Huber’s and Andrews’ estimate give the smallest standard
deviation, which may be a sign that Huber or Andrews robust estimations combined with
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Figure 5.1: Simulated Data: QQ-plot and Histogram of the Response for One Simulation.

information criteria will perform the best in the model subset selection. The RICOMP and
RICOMPmisspec values based on robust estimators are reduced to about one third of those
values based on OLS method.

The plots of standard residuals for the OLS estimate and four robust estimates are
shown in Figure 5.2. We can see that the OLS method can unambiguously pick up three of
the outliers, but mask two outliers. The four robust methods can successfully pick up all
the five outliers in the data.

The QQ-plot of the residuals is given in Figure 5.3, which shows the consistency of the
robust estimates with the OLS2 estimate (OLS without the outliers).

All Possible Subset Selection

We simulated data set of size n = 100 observations with the random error term given in
equation 5.41 from 10 different distributions. We repeated this experiment 100 times on each
of the 10 different distributions. Then an all possible subset selection is carried out on each
of these simulations using the information criteria AICR, HAIC, RBIC, RICOMP(IFIM)
and RICOMP(IFIM)misspec. Note that we have four forms for each of the RICOMP(IFIM)
and RICOMP(IFIM)misspec respectively based on four different robust functions. We note
that this is a very high level intensive simulation. We use the same tuning constants for
each of the robust functions as we did in the previous estimation part. The true model
{x1, x2, x3} is desired to be selected. We count how many times each information criterion
hit the true model, other correct model, overfitting model and redundant model in 100 runs.
The results are summarized in Tables 5.2 and 5.3.
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Table 5.1: Simulated Data: Parameter Estimates
TRUE OLS OLS2

a Huber Andrews Tukey Hampel
tuning a=1.2
constants k=1.345 c=1.5 c=6.0 b=3.5

c=8.0
β̂1 0.6523 0.6308 0.6271 0.6155 0.6208 0.6225 0.6158
β̂2 0.5176 0.66 0.5886 0.5851 0.5586 0.5653 0.5664
β̂3 0.5537 0.6636 0.5473 0.5779 0.5706 0.5654 0.5732

-0.0215 -0.0252 -0.0369 -0.0315 -0.0298 -0.0365
bias 0.1423 0.071 0.0674 0.041 0.0477 0.0487

0.11 -0.0063 0.0243 0.0169 0.0118 0.0195
std deviation 2.9921 2.9964 0.4217 0.4212 0.4291 0.4241
RICOMP 503.0906 153.1132 83.1116 115.1337 106.6408
RICOMPmisspec 512.3352 165.8937 95.869 127.8569 119.1623

aOLS with outliers 18, 40, 53, 62 and 96 deleted
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Figure 5.2: Simulated Data: Plots of the Standardized Residuals. (a) standardized residual
from OLS estimation. (b) standardized residual from Huber’s estimation. (c) standardized
residual from Andrews’ estimation. (d) standardized residual from Tukey’s estimation. (e)
standardized residual from Hampel’s estimation.
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Figure 5.3: Simulated Data: QQ-plot of the Residuals. (a) QQplot of residuals from OLS
estimation (with all observations). (b) QQplot of residuals from OLS estimation (without
observations 18, 40, 53, 62 and 96). (c) QQplot of residuals from Huber’s estimation.
(d) QQplot of residuals from Andrews estimation. (e) QQplot of residuals from Tukey
estimation. (f) QQplot of residuals from Hampel estimation.
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Figure 5.4: Probability Density Function of PE Distribution.

Ten different distributions for the error ε in equation 5.41 are chosen in this study to
represent deviations from normality. They are normal distribution N(0, 0.5), contaminated
normal distributions: 0.5N(0, 1)+0.5N(0, 0.5) and 0.5N(0, 1)+0.5N(0, 2), normal distribu-
tion contaminated with t distribution: 0.5N(0, 1) + 0.5t(3) and 0.5N(0, 1) + 0.5t(5), power
exponential distribution, PE(0, 1, 0.85), PE(0, 1, 3) (refer to Appendix A for the details),
skewed power exponential distribution, SPE3(0, 1, 1), SPE3(0, 1, 1.25), SPE2(0, 1, 1) (refer
to Appendix A for the details). The probability plots of power exponential distributions
are shown in Figure 5.4 and those of skewed power exponential distributions are shown in
Figure 5.5. Note that the SPE distributions shown in Figure 5.5 are not the ones we used
in this simulation. Our purpose is to show the skewness feature of the SPE distributions.
From both plots, we see that both PE and SPE distributions deviate considerably from the
normal distribution.

Table 5.2 contains the all possible subset selection results for the ten models generated
from different error distributions using RICOMP(IFIM), AICR, HAIC and RBIC as model
selection criteria. Table 5.3 contains the all possible subset selection results for the ten
models using RICOMP(IFIM)misspec as model selection criteria. All of the information
criteria in both tables make model subset selection on the same 100 simulated data of size
n = 100 so that the results for the information criteria are comparable to each other.
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Table 5.2: Simulated Data: All Possible Subset Model Selection in 100 runs(1)
RICOMP

Error Distribution Model Category OLS Huber Andrews Tukey Hampel AICR HAIC RBIC
True model 12 41 13 45 30 12 15 64

ε ∼ N(0,0.5) Other Correct Model 54 0 0 0 0 0 0 0
Overfitting Model 18 59 86 55 70 88 85 36
Redundant Model 16 0 1 0 0 0 0 0
True model 20 51 21 45 36 16 20 63

ε ∼ 0.5N(0,1)+0.5N(0,0.5) Other Correct Model 35 0 1 0 0 0 0 0
Overfitting Model 25 49 78 55 64 84 80 37
Redundant Model 20 0 0 0 0 0 0 0
True model 22 24 11 27 10 6 5 28

ε ∼ 0.5N(0,1)+0.5N(0,2) Other Correct Model 40 2 2 8 1 0 0 19
Overfitting Model 18 55 59 53 67 69 67 31
Redundant Model 20 19 28 12 22 25 28 22
True model 21 35 24 32 27 15 16 42

ε ∼ 0.5N(0,1)+0.5t(3) Other Correct Model 35 1 0 1 1 0 0 8
Overfitting Model 21 52 70 65 64 75 74 43
Redundant Model 23 12 6 2 8 10 10 7
True model 27 35 20 33 25 8 10 48

ε ∼ 0.5N(0,1)+0.5t(5) Other Correct Model 31 3 0 0 0 3 3 10
Overfitting Model 22 58 76 65 70 81 79 37
Redundant Model 20 4 4 2 5 8 8 5
True model 15 26 7 30 13 5 4 25

ε ∼ PE(0,1,0.85) Other Correct Model 48 6 3 5 4 2 4 19
Overfitting Model 16 54 74 53 61 64 61 33
Redundant Model 21 14 16 12 22 29 31 23
True model 27 41 12 26 21 9 10 55

ε ∼ PE(0,1,3) Other Correct Model 40 1 0 1 3 0 0 7
Overfitting Model 21 54 78 69 69 86 85 33
Redundant Model 12 4 10 4 7 5 5 5
True model 26 49 15 34 35 15 17 52

ε ∼ SPE(3,0,1,1) Other Correct Model 33 0 1 0 0 0 0 2
Overfitting Model 18 50 82 65 64 84 82 45
Redundant Model 23 1 2 1 1 1 1 1
True model 19 39 16 26 28 6 8 50

ε ∼ SPE(2,0,1,1) Other Correct Model 41 2 1 0 0 1 1 8
Overfitting Model 23 59 80 74 68 92 90 41
Redundant Model 17 0 3 0 4 1 1 1
True model 22 13 7 6 7 1 1 14

ε ∼ SPE(3,0,1,1.25) Other Correct Model 51 0 0 0 0 0 0 1
Overfitting Model 17 86 88 92 90 98 98 81
Redundant Model 10 1 5 2 3 1 1 4
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Table 5.3: Simulated Data: All Possible Subset Model Selection in 100 runs(2)
RICOMPmisspec

Error Distribution Model Category OLS Huber Andrews Tukey Hampel
True model 1 98 96 96 96

ε ∼ N(0,0.5) Other Correct Model 93 0 0 0 0
Overfitting Model 0 2 4 4 4
Redundant Model 6 0 0 0 0
True model 2 97 94 98 98

ε ∼ 0.5N(0,1)+0.5N(0,0.5) Other Correct Model 87 0 3 0 1
Overfitting Model 1 3 3 2 1
Redundant Model 10 0 0 0 0
True model 1 67 58 64 54

ε ∼ 0.5N(0,1)+0.5N(0,2) Other Correct Model 90 32 35 31 34
Overfitting Model 3 0 4 2 7
Redundant Model 6 1 3 3 5
True model 2 85 83 85 79

ε ∼ 0.5N(0,1)+0.5t(3) Other Correct Model 87 13 14 13 17
Overfitting Model 1 2 3 2 4
Redundant Model 10 0 0 0 0
True model 0 87 90 93 89

ε ∼ 0.5N(0,1)+0.5t(5) Other Correct Model 94 13 8 7 9
Overfitting Model 0 0 2 0 2
Redundant Model 6 0 0 0 0
True model 1 61 56 63 55

ε ∼ PE(0,1,0.85) Other Correct Model 93 38 41 34 43
Overfitting Model 0 1 3 3 2
Redundant Model 6 0 0 0 0
True model 1 89 72 88 81

ε ∼ PE(0,1,3) Other Correct Model 97 7 24 8 15
Overfitting Model 0 4 3 4 4
Redundant Model 2 0 1 0 0
True model 3 98 90 96 94

ε ∼ SPE(3,0,1,1) Other Correct Model 92 2 8 3 4
Overfitting Model 0 0 2 1 2
Redundant Model 5 0 0 0 0
True model 2 94 85 97 93

ε ∼ SPE(2,0,1,1) Other Correct Model 94 6 10 3 6
Overfitting Model 0 0 5 0 1
Redundant Model 4 0 0 0 0
True model 2 86 70 78 80

ε ∼ SPE(3,0,1,1.25) Other Correct Model 97 2 8 1 3
Overfitting Model 0 11 18 20 16
Redundant Model 1 1 4 1 1
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Table 5.2 shows that the information criteria based on the ordinary least squares esti-
mator (OLS) is not comparable with those based on the robust estimators. The ICOMP
based on OLS estimator tends to both underfit the model by selecting the “other correct
models” and overfit the model by selecting the “overfitting models”. Generally speaking,
the RICOMP based on the robust estimators can pick up the true models more often than
the OLS method but tend to overfit the model. Since AICR, HAIC and RBIC are computed
based on the Huber’s estimation, we focus on comparisons between the RICOMP based on
Huber’s estimation and AICR, HAIC and RBIC. We see that RICOMP based on Huber’s
estimation outperform AICR and HAIC. RBIC is doing better than RICOMP in terms of
hitting the true models more often. But RICOMP is still comparable with RBIC.

Table 5.3 should give us a better idea how the misspecification resistant version of RI-
COMP, RICOMPmisspec, performs on the model subset selection. Since all of the ten models
contain outliers and most of their error distributions are misspecified (deviated from normal
distribution), the results in this table are more reliable. We can see that the RICOMPmisspec

based on the robust estimates definitely outperforms the ICOMPmisspec based on the OLS
estimates. The ICOMPmisspec based on the OLS estimates severely underfit the model by
only selecting the subsets of the true model. The RICOMPmisspec based on the robust
estimates can pick up the true model over 95% of the time for the models with error dis-
tributions N(0, 0.5), 0.5N(0, 1) + 0.5N(0, 0.5), SPE3(0, 1, 1), SPE2(0, 1, 1). For the models
with error distributions of normal contaminated with t distributions (0.5N(0, 1) + 0.5t(3)
and 0.5N(0, 1) + 0.5t(5)) and PE(0,1,3), the RICOMPmisspec can pick up the true model
over 85% of the time.

If we compare the results in both Tables 5.2 and 5.3, we will see that the RICOMPmisspec

based on the robust estimators works the best among all the information criteria. Par-
ticularly, although RICOMP based on Huber’s estimators is not doing as well as RBIC,
RICOMPmisspec based on Huber’s estimators is doing much better than RBIC for all of the
models with different distributions. Since RBIC does not have the misspecification resistant
version, it is completely not comparable with the RICOMPmisspec. We can also see that
both RICOMP and the other three robust information criteria (AICR, HAIC and RBIC)
in Table 5.2 do not work well on the models with error distributions 0.5N(0, 1)+0.5N(0, 2)
and PE(0, 1, 0.85) because of the heavy tailed distribution. However, RICOMPmisspec in
Table 5.3 performs much better. RICOMPmisspec can pick up the true model 50% to 60%
of the time. And they can pick up the “correct model” (including the “true model” and
“other correct model”) over 90% of the time.

One interesting error distribution we should notice is the SPE3(0, 1, 1.25). This SPE
distribution introduces both skewness and kurtosis to the model and makes the model
selection most difficult. If we look at Table 5.2, none of the information criteria, including
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RICOMP does a good job. In particular, all the information criteria tend to overfit the
model. The reason is that the penalty term in all the information criteria do not penalize
enough for the complexity of the model, so that it does not have a balanced trade off with
the lack of fit part of the criteria. After we introduced the misspecification resistant version
of RICOMP, RICOMPmisspec, the case changes. We can see from Table 5.3, RICOMPmisspec

picks up the true model over 80% of the time for this distribution, which is a tremendous
improvement. That is why we prefer the misspecification resistant information criteria
RICOMPmisspec for the complex model subset selection. Unfortunately, the robust version
of AIC and BIC, namely AICR, HAIC and RBIC, are not resistant to the presence of
skewness and kurtosis in the model.

The box plots for the values of RICOMP, RICOMPmisspec, AICR, HAIC and RBIC of
the true models for four of the distributions as examples are displayed in Figures 5.6 and
5.7 (to save space, we did not output the box plots for all error distributions). In both
plots, hub1 and hub2 represent the RICOMP and RICOMPmisspec values based on Huber’s
estimator; and1 and and2 represent the RICOMP and RICOMPmisspec values based on
Andrews’ estimator; tuk1 and tuk2 represent the RICOMP and RICOMPmisspec values
based on Tukey’s estimator; ham1 and ham2 represent the RICOMP and RICOMPmisspec

values based on Hampel’s estimator. Notice that on both figures, we did not plot ICOMP
and ICOMPmisspec values based on the OLS estimators.

GA Subset Selection

In this section, we carry out the model subset selection using Genetic Algorithm (GA) as
the optimization method with the robust and misspecification resistant version of ICOMP,
namely RICOMPmisspec, as its fitness function. Our goal is to test if the three-way hybrid
method can fulfill the selection of true model when the true model exists.

Simulate {x1, x2, x3} from (5.40) and {x4, . . . , x10} from (5.42) with sample size n = 100.
Generate y from (5.41), where ε ∼ SPE3(0, 1, 1.25). The model subset selection is carried
out using GA with RICOMPmisspec as its the fitness function, where the RICOMPmisspec

is computed based on the Huber’s minimax function with tuning constant k = 1.345. The
parameters in GA we used are given in Table 5.4.

We run GA 15 times and see which model is picked up by GA. For each run of GA, new
simulation data set was generated.

The results for the 15 GA runs are shown in Table 5.5. 12 out of these 15 runs picked up
the true model {x1, x2, x3}. Three runs overfit the model with one more predictor (in the
5th run, 7th run and 14th run). This result is reasonable considering that the corresponding
all possible subset selection can identify the true model 86 times in 100 runs.
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Figure 5.6: Simulated Data: Boxplot for the All Possible Model Selection(1).
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Figure 5.7: Simulated Data: Boxplot for the All Possible Model Selection(2).
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Table 5.4: GUI Inputs of GA Parameters for Simulated Data
No. of runs 15
No. of generations 50
Population size 30
Estimation method Huber’s
Fitness value RICOMPmisspec

Probability of crossover 0.5
Crossover Method uniform
Probability of Mutation 0.01
Elitism Yes

Table 5.5: Simulated Data: Model Subset Selection in 15 Runs of the GA
Run Number Variable Selected Binary String RICOMPmisspec

1 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 256.36
2 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 241.7
3 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 259.28
4 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 274.75
5 {x1, x2, x3, x5} 1 1 1 0 1 0 0 0 0 0 245.85
6 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 243.06
7 {x1, x2, x3, x6} 1 1 1 0 0 1 0 0 0 0 244.35
8 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 262.18
9 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 229.5
10 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 238.76
11 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 216.87
12 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 236.3
13 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 266.08
14 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 258.71
15 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 257.41

59



Table 5.6: Simulated Data: Model Subset Selection in One Run of the GA
Generation variable selected Binary String RICOMPmisspe

1 {x1, x2, x3, x8} 1 1 1 0 0 0 0 1 0 0 274.99
2 {x1, x2, x3, x8} 1 1 1 0 0 0 0 1 0 0 274.99
3 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 257.41
4 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 257.41
5 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 257.41
...

...
...

...
50 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 257.41

Table 5.6 shows the result from one run of the GA. The results of 50 generations of GA
procedure are recorded. We can see that in this particular run, GA with RCIOMPmisspec
as fitness function based on Huber’s estimator selected the true model as early as the 3rd
generation.

The 2D and 3D plots for this one run of the GA are shown in Figure 5.8 and 5.9,
respectively, to show the optimization procedure in GA.

Conclusion and Discussion

From this simulation study, we conclude that the robust and misspecification resistant
version of ICOMP, RICOMPmisspec, is an effective information criterion for the model se-
lection. It outperforms the other robust information criteria in the literature, AICR, HAIC
and RBIC, which are vulnerable to the model misspecification, especially when the random
error departs from the normal distribution. When skewness exists in the error, the three
information criteria work poorly in the model subset selection. The information criteria
computed based on the OLS estimator is completely non-comparable with those of the
robust version.

GA combined with the robust and misspecification resistant information complexity,
RICOMPmisspec, is a fast and effective model selection method, which can reach to the
optimal model quickly without having to search the entire model space. This is especially
valuable when applied to large data sets with huge number of predictor variables in high
dimensional data mining and knowledge discovery.
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Figure 5.8: Simulated Data: 2D plot for One Run of the GA.
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Figure 5.9: Simulated Data: 3D plot for One Run of the GA.
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Air Pollution Data: QQ−plot and Histogram on Response
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Figure 5.10: Air Pollution Data: QQ-plot and Histogram of the Response.

5.6.2 Real Data Examples

Example 1: Air Pollution Data

In this example, we consider the air pollution data from Sokal and Rohlf (1981), which were
collected from the United States government publications. It gives the mean values for the
air pollution and related sources for n = 41 U.S. cities over the years 1961− 1971.

The dependent variable is:
y = SO2: Sulfur dioxide content of air in micrograms per cubic meter,

and the six predictor variables are:
x1 = Temp: Average annual temperature in degrees Fahrenheit,
x2 = Man: Number of manufacturing enterprises employing 20 or more workers
x3 = Pop: Population size in thousands from the 1970 census,
x4 = Wind: Average annual wind speed in miles per hour,
x5 = Rain: Average annual precipitation in inches,
x6 = RainDays: Average number of days with precipitation per year.
The QQ-plot and histogram shown in Figure 5.10 give a first glance of the response

variable y, SO2. The distribution of the response variable is extremely right shewed. The
RICOMPmisspec is thus preferred for model selection in the analysis of this data. All possible
subset selection and GA subset selection will be performed on this data and compared.

The correlation matrix between y (SO2) and x′s is given in Table 5.7. We can see
from this table that the response variable is relatively highly correlated with predictor x2
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Table 5.7: Air Pollution Data: Correlation Matrix
y x1 x2 x3 x4 x5 x6

y 1
x1 -0.4336 1
x2 0.6448 -0.19 1
x3 0.4938 -0.0627 0.9553 1
x4 0.0947 -0.3497 0.2379 0.2126 1
x5 0.0543 0.3863 -0.0324 -0.0261 -0.013 1
x6 0.3696 -0.4302 0.1318 0.0421 0.1641 0.4961 1

(Number of manufacturing enterprises) and mildly correlated with x3 (population size) and
x1 (average annual temperature). The predictors x2 (Number of manufacturing enterprises)
and x3 (population size) are highly correlated to each other.

The estimation of parameters for the full model is given in Table 5.8. The estimated
coefficients and their corresponding t statistic are presented in the first part of the table. We
can see that the four robust functions (Huber, Andrews, Tukey and Hampel) give similar
estimators, which are different from the OLS estimator. They agree that the predictor
variable x2 is the most important variable in predicting the response variable with the
highest absolute t value, which is greater than the approximate critical value of 2. The
four robust estimations reduce the standard deviation (root mean squared error) in the
model and also lower the RICOMP and RICOMPmisspec values for the full model. Since
the Hampel’s estimation gives the smallest model standard deviation, we decide to make
model subset selection using RICOMPmisspec based on Hampel’s estimate.

The top 5 subset model selected by the all possible method is given in Table 5.9. As we
expected, x2 is selected as the only predictor for the top 1 subset model and all the rest of
the top 5 models include x2 as a predictor, which is consistent from what we observe from
the full model estimation.

We then ran GA for the model subset selection 100 times using the same information
criterion to compare the results. The parameters used in GA and the results are summarized
in Tables 5.10 and 5.11.

We see from Table 5.11 that the 100 runs of the GA selected only two subset models. It
chose the top 1 subset model in all possible selection for 90 times out 100 runs. It selected
the second best all possible subset model for 10 times. The GA subset selection is consistent
with the all possible subset selection method.

The 3D plot of 100 runs of GA in Figure 5.11 shows the optimization procedure in GA.
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Table 5.8: Air Pollution Data: Estimates of the Full Model Parameters
OLS Huber Andrews Tukey Hampel

β̂0 111.73 (-2.36)a 106.84 (-2.21) 103.30 (-2.12) 99.85 (2.01) 103.55 (2.14)

β̂1 -1.27 (-2.04) -1.12 (-1.76) -1.10 (-1.72) -1.02 (1.57) -1.09 (1.71)

β̂2 0.06 (-4.12) 0.06 (-3.59) 0.06 (-3.53) 0.05 (3.26) 0.06 (3.47)

β̂3 -0.04 (-2.60) -0.03 (-2.02) -0.03 (-1.98) -0.03 (1.71) -0.03 (1.91)

β̂4 -3.18 (-1.75) -3.78 (-2.02) -3.60 (-1.92) -3.79 (1.98) -3.69 (1.98)

β̂5 0.51 (-1.41) 0.40 (-1.07) 0.38 (-1.00) 0.32 (0.83) 0.38 (1.01)

β̂6 -0.05 (-0.32) -0.02 (-0.13) -0.01 (-0.04) 0.01 (0.07) -0.01 (0.07)

σ̂ 14.636 11.9899 11.8332 11.8169 11.7078

RICOMP 396.65 367.0384 353.0385 366.737 367.1705
RICOMPmisspec 402.5282 369.2291 354.433 368.079 368.6085

athe number in the parenthesis is the t statistic

Table 5.9: Air Pollution Data: Top 5 Subsets from All Possible Subset Model Selection
Ranking subset model RICOMPmisspec with Hampel

1 {x0,−, x2,−,−,−,−} 320.0774
2 {x0,−, x2,−, x4,−, x6} 322.5799
3 {x0, x1, x2,−, x4,−,−} 323.6904
4 {x0,−, x2, x3, x4,−, x6} 325.6095
5 {x0,−, x2, x3,−,−,−} 325.6302

Table 5.10: Air Pollution Data: GUI Inputs of GA Parameters
No. of runs 100
No. of generations 30
Population size 20
Estimation method Hampel
Fitness value RICOMPmisspec

Probability of crossover 0.7
Crossover Method uniform
Probability of Mutation 0.01
Elitism Yes

Table 5.11: Air Pollution Data: Model Subset Selection in 100 Runs of the GA
GA Ranking Chromosome Binary String RICOMPmisspec Hit ratioa

1 (1)b 0 - 2 - - - - 1 0 1 0 0 0 0 320.08 90%
2 (2) 0 - 2 - 4 - 6 1 0 1 0 1 0 1 322.58 10%

aHow many times the subset model is selected in 100 runs of GA
bThe parenthesis includes the corresponding all possible model selection rankings for comparison purposes.
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Figure 5.11: Air Pollution Data: 3D-plot of 100 Runs of the GA.
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Figure 5.12: Air Pollution Data: Plot of the Best Subset Model.

Interpretation Both all possible subset selection and GA agree in selecting x2 (number
of manufacturing enterprises employing 20 or more workers) as the only variable to predict
the response. The final fitted model is

SO2 = 15.50 + 0.0277Man

(t-statistics) (4.113) (5.385)

where t statistics are given in the parenthesis. When one more manufacturing enterprise
employing 20 or more workers is constructed in the area, the sulfur dioxide content of air
in the city will increase 0.0277 micrograms per cubic meter. Figure 5.12 shows the plots of
actual versus predicted values, residuals and estimated weights for the best subset model.
The larger residuals are assigned lower weights.

Example 2: Body Fat Data

In this example, we analyze body fat data and determine the best subset of the predictors.
This data is obtained from Statlib dataset (http://lib.stat.cmu.edu/datasets/bodyfat).

It lists estimates of the percentage of body fat determined by underwater weighing and
various body circumference measurements for 252 men.

The response variable is
y: Percent body fat from Siri’s (1956) equation;
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The 13 predictor variables are:
x1: Age (years),
x2: Weight (lbs),
x3: Height (inches),
x4: Neck circumference (cm),
x5: Chest circumference (cm),
x6: Abdomen 2 circumference (cm),
x7: Hip circumference (cm),
x8: Thigh circumference (cm),
x9: Knee circumference (cm),
x10: Ankle circumference (cm),
x11: Biceps (extended) circumference (cm),
x12: Forearm circumference (cm),
x13: Wrist circumference (cm).
The measurement standards are listed in Benhke and Wilmore (1974, page 45-48), where

for instance, the abdomen 2 circumference is measured “laterally, at the level of the iliac
crests, and anteriorly, at the umbilicus”.

These data are used to produce the predictive equations for lean body weight (Penrose
et al., 1985), where the equations were constructed from the first 143 of the 252 observations.

The QQ-plot and histogram of the response variable are shown in Figure 5.13. The
response is approximately normally distributed with one possible outlier. We then con-
struct the histograms for some of the predictors (x2, x3, x4 and x7), which are displayed in
Figure 5.14. There are obvious outliers in these predictors. To save space, we just show the
distributions of four out of thirteen predictors here. We can also observe possible outliers
in some of the other predictors (x6, x8, x9, x10, x12).

The correlation coefficient matrix of response and predictors are given in Table 5.12. It
shows strong collinearities among the predictors of weight and all the body circumference
measurements, which make sense in real life. Specifically, weight (x2) is highly correlated to
all the body circumference measurements (x4 - x13). All the body circumference measure-
ments are positively highly correlated to each other. The age (x1) and height (x3) do not
show strong correlations with the other predictors. The response is relatively highly corre-
lated to the weight and several body circumference measurements. The heavy correlation
structure in the predictor variables make the model subset selection necessary and impor-
tant. Since the model is misspecified in terms of collinearity and presence of an outlier, we
prefer the RICOMPmisspec as our model selection criterion.

The root mean square error (RMSE) of the full model based on each estimation method
is given in Table 5.13. We can see that the RMSE are about the same for both the OLS
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Figure 5.13: Body Fat Data: QQ-plot and Histogram of the Response.
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Figure 5.14: Body Fat Data: Histogram of the Predictors.
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Table 5.12: Body Fat Data: Correlation Matrix
y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y 1
x1 0.29 1
x2 0.61 -0.01 1
x3 -0.09 -0.17 0.31 1
x4 0.49 0.11 0.83 0.25 1
x5 0.70 0.18 0.89 0.13 0.78 1
x6 0.81 0.23 0.89 0.09 0.75 0.92 1
x7 0.63 -0.05 0.94 0.17 0.74 0.83 0.87 1
x8 0.56 -0.20 0.87 0.15 0.70 0.73 0.77 0.90 1
x9 0.51 0.02 0.85 0.29 0.67 0.72 0.74 0.82 0.80 1
x10 0.27 -0.11 0.61 0.26 0.48 0.48 0.45 0.56 0.54 0.61 1
x11 0.49 -0.04 0.80 0.21 0.73 0.73 0.69 0.74 0.76 0.68 0.48 1
x12 0.36 -0.09 0.63 0.23 0.62 0.58 0.50 0.55 0.57 0.56 0.42 0.68 1
x13 0.35 0.21 0.73 0.32 0.74 0.66 0.62 0.63 0.56 0.66 0.57 0.63 0.59 1

estimation and robust estimation. The reason may be that the response variable of this data
is not severely departed from being a normal distribution. Since we have both potential
outliers in the response variable and most of the predictor variables, we prefer the robust
estimation here. Among the robust estimation, Andrews’ sine wave function gives the
relatively smaller RMSE. Therefore, we are going to perform the model subset selection
using the RICOMPmisspec combined with Andrews’ robust estimates.

The top 10 subsets by all possible model selection are given in Table 5.14. The pa-
rameters used in GA and the subset selection results in 100 runs of the GA are given in
Tables 5.15 and 5.16, respectively.

We can see from both tables that the GA subset selection is consistent with the all
possible selection. In 100 runs of the GA, it picks up the first ranking model (in all possible
selection) for 51 times, the second ranking model for 28 times and the third ranking model
for 9 times. It picks up the top 10 models 99 times out of 100 runs of the GA. The last
model GA picked is ranking 47th in the all possible selection, which is not bad considering
we have 213 − 1 = 8191 subset models in total for the all possible subset selection. The
optimization procedure of GA is shown in the 3D plot in Figure 5.15.

Both all possible and GA model selection methods agree to pick up the parsimonious
subset with x1 (Age), x6 (Abdomen 2 Circumference in cm) and x13 (Wrist circumference
in cm).

Interpretation The final fitted model with x1, x6 and x13 is as follows:
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Table 5.13: Body Fat Data: RMSE for the Full Model
RMSE

Full Model OLS Huber Andrews Tukey Hampel
{x1, x2, . . . , x13} 4.3053 4.307 4.3056 4.306 4.306

Table 5.14: Body Fat Data: Top 10 Subsets by All Possible Model Selection
Ranking Selected Variables RICOMPmisspec with Andrews

1 0 1 - - - - 6 - - - - - - 13 1367.5872
2 0 - 2 - - - 6 - - - - - - - 1369.4238
3 0 1 - - 4 - 6 - - - - - - - 1381.6407
4 0 - 2 3 - - 6 - - - - - - - 1384.4165
5 0 - - - - - 6 - - 9 - - - - 1385.4765
6 0 - - - 4 - 6 7 - - - - - - 1386.8336
7 0 - 2 - 4 - 6 - - - - - - 13 1389.5806
8 0 - - 3 - - 6 - - - - - - - 1390.1929
9 0 1 - - 4 - 6 - - - - - - 13 1390.3188
10 0 1 - - - - 6 - - - - 11 - 13 1390.3694

Table 5.15: Body Fat Data: GUI Inputs of GA Parameters
No. of runs 100
No. of generations 50
Population size 50
Estimation method Andrews’
Fitness value RICOMPmisspec

Probability of crossover 0.5
Crossover Method uniform
Probability of Mutation 0.01
Elitism Yes

Table 5.16: Body Fat Data: Model Subset Selection in 100 Runs of the GA
GA Ranking Chromosome Binary String RICOMPmisspec Hit Ratioa

1 (1)b 0 1 - - - - 6 - - - - - - 13 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1367.6 51
2 (2) 0 - 2 - - - 6 - - - - - - - 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1369.4 28
3 (3) 0 1 - - 4 - 6 - - - - - - - 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1381.6 9
4 (6) 0 - - - 4 - 6 7 - - - - - - 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1386.8 7
5 (8) 0 - - 3 - - 6 - - - - - - - 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1390.2 3
6 (10) 0 1 - - - - 6 - - - - 11 - 13 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1390.4 1
7 (47) 0 - 2 3 - 5 6 - - - - - - 13 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1406.8 1

aHow many times the subset model is selected in 100 runs of the GA
bThe parenthesis includes the corresponding all possible model selection ranking for comparison purpose.
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Figure 5.15: Body Fat Data: 3D-plot of 100 Runs of the GA.

Percent Body Fat = −10.25 + 0.083(Age) + 0.756(Abdomen 2 Circ.)− 2.43(Wrist Circ.)

(t-statistics) (−1.771) (3.531) (21.792) (6.176)

where the t statistics are given beneath the fitted equation. When the age increases by
1 year, the body fat estimated in Siri’s (1956) equation will increase by 0.083%. When
the abdomen 2 circumference increases 1 cm, the body fat estimated in Siri’s equation will
increase by 0.756%. When the wrist circumference increases 1 cm, the body fat estimated in
Siri’s equation will decrease by 2.43%. Figure 5.16 shows the plots of actual versus predicted
values, residuals and estimated weights for the best subset model. We see that the larger
residuals were assigned lower weights.
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Figure 5.16: Body Fat Data: Plot of the Best Subset Model.
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Chapter 6

Robust and

Misspecification-Resistant Model

Selection in Multivariate

Regression

6.1 Robust Estimates in Multivariate Linear Regression

Consider the classical multivariate linear regression (MVR) model given in matrix form by

Y = XB + E, (6.1)

where

• Y is an (n×m) matrix of n independent observations on m responses;

• X is an (n× p) matrix of n observations on p nonstochastic independent variables;

• B is a (p×m) matrix of regression coefficients;

• E is an (n×m) matrix of random errors, which satisfies

Cov(E) = Σ⊗ In, (6.2)

where ⊗ denotes the Kronecker product. and E ∼ Nnm(0,Σ⊗ In).

A few robust estimators for the MVR model have been proposed in the literature.
Koenker and Portnoy (1990) first proposed a robust estimate for the MVR model, which
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is actually a robust alternative for the seemingly unrelated regression (SUR) estimator of
Zellner (1962). Rousseeuw et al. (2004) proposed robust estimates for the MVR model based
on a robust estimate of the covariance matrix of the predictor and response variables. Ben
et al. (2006) derives the robust estimates for regression coefficients and covariance matrix
simultaneously by minimizing the determinant of the covariance matrix estimate, subject
to a constraint on a robust scale of the Mahalanobis norms of the residuals.

In this dissertation, we derive the estimators of regression coefficients and the covariance
matrix by minimizing the robust Mahalanobis distance on the residuals, which we called
the RMD estimator. The two stage estimate procedure is illustrated as follows.

Stage 1. Obtain one-step RMD estimates

1. Calculate the MLE estimate of B and Σ

The maximum likelihood estimate for B of MVR model in equation (6.1) is given by

B̂MLE = (X′X)−1X′Y. (6.3)

The estimated response Y is given by

Ŷ = XB̂MLE . (6.4)

The estimated error matrix Ê is given by

Ê = Y − Ŷ, (6.5)

where Ê = (ε̂1, . . . , ε̂n)′ with ε̂′i (i = 1, 2, . . . , n) as the estimated ith row of m-variate
residuals.
The MLE for the covariance matrix is

Σ̂ =
1
n
Ê′Ê. (6.6)

2. Compute the Mahalanobis distance for the residuals

The squared Mahalanobis distance of the estimated ith row of residuals ε̂′i is defined by

di = ε̂′iΣ̂
−1

ε̂i. (6.7)

In this step, we project the m-variate residual matrix Ê(n×m) to the one-dimensional
Mahalanobis distance d = (di)(i = 1, 2, . . . , n), denoted by Ê(n×m) → d(n×1) = (di).

3. Compute the one-step RMD estimator for covariance matrix and coefficients
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The robust estimator of the covariance matrix using the Mahalanobis distance method,
Σ̂rmd is defined by

Σ̂rmd =
1
n

n∑

i=1

W (di)ε̂iε̂
′
i, (6.8)

where W (di) is the weight function given by

W (di) =

{
ψ(di)/di, if di 6= 0;
1, if di = 0

(6.9)

in which the ψ(·) are the robust M functions given in Section 2.1.
The robust M-estimator of regression coefficients, B̂rmd, are defined by

B̂rmd = (X′W(d)X)−1X′W(d)Y. (6.10)

Stage 2. Obtain iterative RMD estimates

In this stage, we compute the RMD estimates of the MVR coefficients and the covariance
matrix using the iteratively reweighted least-squares method similar to what we used for the
MLR model.
1. Select initial estimate

Take the one-step RMD estimate as our initial estimate, denoted by B̂(0) = B̂rmd and
Σ̂

(0)
= Σ̂rmd.

2. At each iteration t, calculate the estimate of the coefficient and covariance

matrix

Ê(t) = Y −XB̂(t−1),

Σ̂
(t)

=
1
n
Ê′(t)Ê(t),

di
(t) = ε̂

′(t)
i Σ̂

(t)−1
ε̂

(t)
i ,

W
(t)
(di)

=

{
ψ(d(t)

i )/d
(t)
i , if d

(t)
i 6= 0;

1, otherwise,

Σ̂
(t)

RMD =
1
n

n∑

i=1

W
(t)
(di)

ε̂
(t)
i ε̂

′(t)
i ,

B̂(t)
RMD = (X′W(t)

(d)X)−1X′W(t)
(d)y.

75



3. Repeat step 2 until B̂RMD converges.

Σ̂
(t)

RMD and B̂(t)
RMD are then the final iterative RMD estimates for the covariance matrix

and regression coefficients.

6.2 Robust Information Criteria for MVR Model Selection

Recall the classic Akaike Information Criterion (AIC) for the multivariate regression model
is given by

AICreg = nm log(2π) + n log |Σ|+ nm + 2[mp + m(m + 1)/2] (6.11)

and the classic Bayesian Information Criterion (BIC or SBC) for the multivariate regression
model is given by

BICreg = nm log(2π) + n log |Σ|+ nm + [mp + m(m + 1)/2] log(n). (6.12)

If we substitute the iterative RMD estimate Σ̂RMD for the covariance matrix Σ in both
equation 6.11 and 6.12, we obtain the robust information criteria for the MVR models,
which are defined as follows:

ROBAICreg = nm log(2π) + n log |Σ̂RMD|+ nm + 2[mp + m(m + 1)/2] (6.13)

and the robust Bayesian Information Criterion (ROBBIC) for the multivariate regression
model is given by

ROBBICreg = nm log(2π) + n log |Σ̂RMD|+ nm + [mp + m(m + 1)/2] log(n), (6.14)

where Σ̂RMD can be estimated using any of the M functions given in Section 2.1.
However, for the simplicity of comparisons in the following data examples, all the

ROBAIC and ROBBIC are computed based on the Huber’s estimator.

6.3 Robust ICOMP for MVR Model Selection

The robust version of Bozdogan’s ICOMP(IFIM) for multivariate regression (MVR) model,
denoted by RICOMP(IFIM)MV R, is defined by

RICOMP(IFIM)MVR = nm log 2π + n log
∣∣∣Σ̂RMD

∣∣∣ + nm + 2C1(F̂−1), (6.15)
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where Σ̂RMD is the covariance matrix estimated by the Robust Mahalanobis distance
(RMD) method. F̂−1 is the estimated inverse Fisher Information matrix, which is given by

F̂−1 =

(
Σ̂RMD ⊗ (X′X)−1 0

0 2
nD+

m(Σ̂RMD ⊗ Σ̂RMD)D+
m
′

)
, (6.16)

where D+
m is the Moore-Penrose inverse of the duplication matrix Dm.

The complexity part C1(F̂−1) can be calculated by

C1

(
F̂−1

)
=

s

2
log

(
trF̂−1

s

)
− 1

2
log |F̂−1|. (6.17)

Here s = rank(F−1) = mp + 1
2m(m + 1).

trF̂−1 = (trΣ̂RMD)
(
tr(X′X)−1

)
+

1
2n


trΣ̂

2

RMD + (trΣ̂RMD)2 + 2
m∑

j=1

σ̂2
jj


 (6.18)

and
|F̂−1| = 2mn−

1
2
m(m+1)|Σ̂RMD|m+p+1|X′X|−m, (6.19)

where σ̂2
jj is the jth diagonal element of Σ̂RMD.

We also introduce the robustness to two other forms of Bozdogan’s information criteria
based on the estimators of posterior expected utility (PEU) (Bozdogan and Haughton, 1998;
Bozdogan, 2007).

RICOMP(IFIM)PEU = nm log 2π + n log
∣∣∣Σ̂RMD

∣∣∣ + nm + s + 2C1(F̂−1) (6.20)

RICOMP(IFIM)LN PEU = nm log 2π + n log
∣∣∣Σ̂RMD

∣∣∣ + nm + s + log(n)C1(F̂−1), (6.21)

where s = mp + 1
2m(m + 1) is the number of parameters estimated in the model.

We can see that RICOMP(IFIM)PEU and RICOMP(IFIM)LN PEU in equation 6.20 and
6.21 can be used for more complex model subset selection than the regular RICOMP(IFIM)MVR

in equation 6.15 since they have more stringent penalty terms.

6.4 Robust and Misspecification-Resistant ICOMP for MVR

Model Selection

In equation 6.1, define the standardized Y as V = (Y −XB)Σ−1/2, where Σ = 1
nE′E, so

that E(V) = 0 and var(vecV) = Imn. The matrix generalization of skewness Γ1 is given
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by
Γ1 = E(vecV)

(
vec(V′V − nIm)

)′
, (6.22)

and the matrix generalization of kurtosis Γ2 is given by

Γ2 = E(vecV′V)(vecV′V)′. (6.23)

The inner product form of the information matrix F is given by

F =

(
Σ−1 ⊗X′X 0

0 n
2 D+

m
′(Σ−1 ⊗Σ−1)D+

m

)
, (6.24)

where D+
m is the Moore-Penrose inverse of the duplication matrix Dm.

The outer product form of the information matrix R is given by

R =

(
Σ−1 ⊗X′X 1

2(Σ−1/2 ⊗X ′)Γ1D
+
m
′∆

1
2∆D+

mΓ′1(Σ
−1/2 ⊗X) 1

4∆D+
mΓ∗2D+

m
′∆

)
. (6.25)

In equation 6.25, ∆ = D′
m

(
Σ−1/2 ⊗Σ−1/2

)
Dm and Γ∗2 = Γ2 − n2(vecIm)(vecIm)′.

When the model is correctly specified, Γ1 is reduced to 0 and Γ∗2 is reduced to 2nNm,
consequently, R = F .

When the model is misspecified, the variance of the quasi-maximum likelihood estimator
of θ, θ̂, can be consistently approximated by V = F−1RF−1 (Gouriéroux, 1995a,b; Hendry,
1995; White, 1996)(see (Howe and Bozdogan, 2007; Magnus, 2007)), which is given by

V =


 Σ⊗ (X′X)−1 1

n

(
Σ1/2 ⊗ (X′X)−1X′

)
Γ1Dp∆−1

1
n∆−1D′

pΓ
′
1

(
Σ1/2 ⊗X(X′X)−1

)
1
n2 ∆−1D′

pΓ
∗
2Dp∆−1


 . (6.26)

The robust and misspecification resistant ICOMP(IFIM), RICOMP(IFIM)misspec is given
by

RICOMP(IFIM)misspec = nm log(2π) + n log |Σ̂RMD|+ nm + 2C1

(
V̂

)
, (6.27)

where Σ̂RMD is the covariance matrix estimated by Mahalanobis distance method.

C1(V̂) =
s

2
log

(
trV̂
s

)
− 1

2
log |V̂|, (6.28)

and where s = rank(V̂).
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In equation 6.28,

trV̂ = tr(Σ̂RMD)tr
(
(X′X)−1

)
+

1
n2

trD+
m

(
Σ̂

1/2

RMD ⊗ Σ̂
1/2

RMD

)
Γ̂
∗
2

(
Σ̂

1/2

RMD ⊗ Σ̂
1/2

RMD

)
D+

m
′

(6.29)
and

∣∣∣V̂
∣∣∣ = 2−m(m−1)n−m(m+1)

∣∣∣Σ̂RMD

∣∣∣
m+p+1∣∣X′X

∣∣−m

∣∣∣D′
m

(
Γ̂
∗
2 − Γ̂

′
1(Im ⊗X(X′X)−1X′)Γ̂1

)
Dm

∣∣∣ . (6.30)

Other robust and misspecification resistant versions of ICOMP(IFIM) are given by

RICOMP(IFIM)misspec PEU = −2 log L(θ̂) + tr(F̂−1R̂) + 2C1

(
F̂−1

)

= nm log(2π) + n log |Σ̂RMD|+ nm + tr(F̂−1R̂)

+2C1

(
F̂−1

)
, (6.31)

and

RICOMP(IFIM)misspec LN PEU = −2 log L(θ̂) + tr(F̂−1R̂) + log(n)C1

(
F̂−1

)

= nm log(2π) + n log |Σ̂RMD|+ nm + tr(F̂−1R̂)

+ log(n)C1

(
F̂−1

)
. (6.32)

6.5 Robust MVR Model Selection Algorithm

For the all possible subset selection of the data with p-dimensional predictor variables, we
have 2p − 1 models to evaluate. Here are the steps to select the best model among the
competing candidate models:

1. For a certain subset model, select one of the M-estimation methods described in
Section 2.1.

2. Estimate the model covariance matrix and regression coefficients using the iterative
Mahalanobis distance method described in Section 6.1.

3. Compute the RICOMP(IFIM) or RICOMP(IFIM)misspec for the model depending on
whether the model is misspecified.

4. Repeat steps 1-3 for all possible subset models. Sort the RICOMP(IFIM) or
RICOMP(IFIM)misspec values from the smallest to the largest and choose the best sub-
set model with the minimum RICOMP(IFIM) (or RICOMP(IFIM)misspec) value.
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The GA model subset selection should follow the steps described in Section 4.2, where
the fitness function is RICOMP(IFIM) or RICOMP(IFIM)misspec.

The numerical examples are given in the next section to demonstrate the effectiveness
of the new proposed information criteria.

6.6 Numerical Examples

6.6.1 Simulation Data Example

This Monte Carlo protocol follows closely to that used in Bozdogan and Haughton (1998)
and is generalized to the multivariate linear regression model.

Let z1, z2, z3 and z4 be independent random variables following standard normal distri-
bution N(0, 1). The first three predictor variables x1, x2, x3 are simulated using

xi =
√

1− α2zi + αz4 for i = 1, 2, 3, (6.33)

where α ∈ [0, 1].
It is obvious that the variance of xi, i = 1, . . . , 3 is 1; the covariance of xi and xj is α2, if

i 6= j, i, j = 1, 2, 3. Thus, we can control the degree of multicollinearity among the predictor
variables by assigning different values on α. In our simulation study, we use α2 = 0.5.

Seven redundant variables x4, . . . , x10 are generated using the uniform random numbers,
which are given by

x4 = 4 ∗ rand(0, 1), · · · , x10 = 10 ∗ rand(0, 1) (6.34)

where rand(0,1) generates the standard Uniform random numbers.
Let X = {x1, x2, x3}. Suppose λmax is the largest eigenvalue of the covariance matrix

of X with βmax as the eigenvector corresponding to λmax; λmin is the smallest eigenvalue
of the covariance matrix of X with βmin as the eigenvector corresponding to λmin. Let

β =

[
βmax

βmin

]

The response variable Y is generated by

Y = Xβ + E (6.35)

To illustrate the performance of the robustness, we introduced five 2-dimensional outliers
in the response variable Y. The observations assigned outliers are selected randomly and
given at the same position for the two response variables:
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y(19,1) = -12; y(19,2) = 16;
y(40,1) = 10; y(40,2) = 20;
y(53,1) = 10; y(53,2) = -15;
y(62,1) = 18; y(62,2) = 20;
y(96,1) = 15; y(96,2) = 16;

where y(i, j)(i = 1, . . . , n, j = 1, 2) is the ith observation in the jth response vector.
For this simulation, we assign different error distributions for E to demonstrate the

performance of model subset selection under the model misspecification.
For convenience in showing our model selection results, we define the “full model” (Mf ),

“true model” (Mt), “other correct model” (Moc), “overfitting model” (Mof ), “redundant
model” (Mr) and “wrong model” (Mw) as follows. The “full model” is the model containing
all the predictor variables, which is denoted by Mf = {x1, x2, . . . , x10}. The “true model” is
the one including the first three predictor variables, which is denoted by Mt = {x1, x2, x3}.
We define the “other correct model” Moc as any non-empty strict subset of the true model,
which is denoted by Moc ⊂ Mt. We define the “overfitting model” Mof as the one containing
both the true model and any redundant variable(s). In other words, the true model is a
strict subset of the overfitting model, Mt ⊂ Mof . The “redundant model” Mr, is defined as
the model including both the other correct model and any redundant variable(s). By this
definition, Moc ⊂ Mr. Finally, the “wrong model” Mw is defined as any model containing
redundant variable(s) only.

Parameter Estimation on the True Model

In this part, we estimate the MVR coefficients and their biases for the true model given
in equation 6.35 for one simulation with sample size n = 200. The MLE method (with
and without outliers) and RMD method based on the four robust functions are used for
the estimation. The error distribution is assumed standard normal so that we can compare
our RMD estimates with the two MLEs. The 2D plot of the response variables in this
simulation is shown in Figure 6.1. The QQ-plot and histogram for each of the response
variables are shown in Figure 6.2. Both of them show that we have multivariate outliers
and the distribution of the response variables is heavy tailed.

The estimation results are summarized in Table 6.1. The true generated regression
coefficients and all estimates are shown in the table for comparison purposes along with
the biases. The tuning constants used by each robust estimator are also given in the
table. We can see that the MLE2 (MLE without outliers) and robust estimates produce
more accurate prediction for the true coefficients in terms of smaller biases than that of
MLE with all observations. In addition, both the MLE2 and robust estimates reduced
the determinant of covariance matrix compare with the MLE. Among them, Tukey’s robust
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Figure 6.1: Multivariate Simulation: 2D plot of the Response for one simulation.
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Figure 6.2: Multivariate Simulation: QQ Plot and Histogram of the Response for One
Simulation.
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Table 6.1: Multivariate Simulation: Parameter Estimates
True MLE MLE2

a

0.5382 0.6117 0.6186 0.4175 0.4875 0.5706
{B̂1, B̂2} 0.5834 0.2261 0.4199 -0.1506 0.599 0.1669

0.6083 -0.7581 0.414 -0.35 0.4739 -0.6265
-0.0804 0.1942 0.0507 0.0411

bias 0.1635 0.3767 -0.0155 0.0592
0.1943 -0.4081 0.1344 -0.1316

|Σ| 44.6778 1.1487
Huber Andrews Tukey Hampel

Tuning a = 1.7
Constant k = 2 c = 2.1 c = 6.0 b = 3.4

c = 8.5
0.4915 0.5626 0.4869 0.5627 0.4867 0.559 0.486 0.5638

{B̂1, B̂2} 0.596 0.1572 0.6013 0.1623 0.6024 0.16 0.6046 0.1611
0.4667 -0.6144 0.4706 -0.615 0.4689 -0.6094 0.4665 -0.6172
0.0467 0.049 0.0513 0.049 0.0515 0.0527 0.0522 0.0478

bias -0.0125 0.0689 -0.0179 0.0639 -0.019 0.0661 -0.0212 0.065
0.1415 -0.1437 0.1377 -0.1431 0.1393 -0.1487 0.1418 -0.1409

|Σ| 1.4866 1.0102 0.9739 1.0306

aMLE with outliers 19, 40, 53, 62 and 96 deleted
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Figure 6.3: Multivariate Simulation: Boxplot of the Mahalanobis Distance of the Residuals.

estimator gives the smallest determinant of the covariance matrix. Therefore, we will use one
of the misspecification resistant versions of ICOMP combined with Tukey’s RMD estimator
to perform the model subset selection in the following section.

The box plots of Mahalanobis distance of the residuals for all the estimators are shown
in Figure 6.3. The average Mahalanobis distances of the residuals from robust estimates
are higher than those from the MLE. Both robust estimates and MLE can identify all the
five outliers.

All Possible Subset Selection

10 simulation data sets are generated with the error term in equation 6.1 from 10 dif-
ferent multivariate distributions. The sample size for each data set is n = 200 and the
replication is 100. All possible subset selection is done on each of the 10 simulation
data sets using the information criteria ROBAIC, ROBBIC, RICOMP(IFIM)LN PEU and
RICOMP(IFIM)misspec LN PEU . Each of the robust ICOMP values can be calculated based
on either the MLE or any four of the robust functions (Huber’s, Andrews’, Tukey’s and
Hampel’s). Thus, all possible subset selection is performed and compared using 12 infor-
mation criteria for each of the 10 simulations. The same tuning constants are used for the
robust functions as those in the parameter estimation section. The true model {x1, x2, x3}
is desired to be selected. In the 100 replications of each simulation data, we count how many
times each information criterion picks up the true model, other correct model, overfitting
model, redundant model and wrong model. The all possible subset selection results are
given in Tables 6.2 and 6.3.
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Ten different distributions for the error term E in equation 6.1 are used in this sim-
ulation study to represent the multivariate normal distribution and the deviation from
normality. The ten error distributions include: multivariate normal (MVN) distribution
with non-correlated and correlated error (denoted as MVN1 and MVN2 in the table), mul-
tivariate t (MVT) distribution with 3 degrees of freedom with non-correlated and corre-
lated errors (denoted as MVT1 and MVT2 in the table), contaminated multivariate nor-
mal distribution with multivariate t distribution (denoted as 0.5MVN1 + 0.5MVT1 and
0.5MVN2 + 0.5MVT2 in the table), multivariate power exponential (MPE) distribution
with kurtosis parameter β = 0.85 with non-correlated and correlated error (denoted as
MPE1 and MPE2 in the table), and multivariate power exponential distribution with kur-
tosis parameter β = 2 with non-correlated and correlated error (denoted as MPE3 and
MPE4 in the table). For the details of the MPE distribution, refer to the Appendix B.
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Table 6.2: Multivariate Simulation: All Possible Subset Model Selection in 100 runs(1)
Error Model RICOMP(IFIM)LN PEU

Distribution Category MLE Huber Andrews Tukey Hampel ROBAIC ROBBIC

Mt
a 65 96 92 92 91 57 98

MVN1 Moc
b 35 0 0 0 0 0 0

Mof
c 0 4 8 8 9 43 2

Mt 68 99 97 97 98 59 100
MVN2 Moc 32 0 0 0 0 0 0

Mof 0 1 3 3 2 41 0

Mt 37 100 99 99 99 56 95
MVT1 Moc 63 0 0 0 0 0 5

Mof 0 0 1 1 1 44 0

Mt 36 99 98 98 98 56 92
MVT2 Moc 64 0 0 0 0 0 5

Mof 0 1 2 2 2 44 3

Mt 60 100 99 98 98 66 100
0.5MVN1+ Moc 40 0 0 0 0 0 0
0.5 MVT1 Mof 0 0 1 2 2 34 0

Mt 62 100 98 97 98 68 100
0.5MVN2+ Moc 38 0 0 0 0 0 0
0.5 MVT2 Mof 0 0 2 3 2 32 0

Mt 60 99 99 98 97 51 99
MPE1 Moc 40 0 0 0 0 0 0

Mof 0 1 1 2 3 49 1

Mt 56 97 97 97 97 54 95
MPE2 Moc 44 0 0 0 0 0 2

Mof 0 3 3 3 3 46 3

Mt 66 99 96 96 97 78 99
MPE3 Moc 34 0 0 0 0 0 0

Mof 0 1 4 4 3 22 1

Mt 74 99 98 98 98 74 100
MPE4 Moc 26 0 0 0 0 0 0

Mof 0 1 2 2 2 26 0
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Table 6.3: Multivariate Simulation: All Possible Subset Model Selection in 100 runs(2)
Error Model RICOMP(IFIM)misspec LN PEU

Distribution Category OLS Huber Andrews Tukey Hampel

Mt 65 96 92 92 91
MVN1 Moc 35 0 0 0 0

Mof 0 4 8 8 9

Mt 68 99 97 97 98
MVN2 Moc 32 0 0 0 0

Mof 0 1 3 3 2

Mt 37 100 99 99 99
MVT1 Moc 63 0 0 0 0

Mof 0 0 1 1 1

Mt 36 99 98 98 98
MVT2 Moc 64 0 0 0 0

Mof 0 1 2 2 2

Mt 60 100 99 98 98
0.5MVN1+ Moc 40 0 0 0 0
0.5 MVT1 Mof 0 0 1 2 2

Mt 62 100 98 97 98
0.5MVN2+ Moc 38 0 0 0 0
0.5 MVT2 Mof 0 0 2 3 2

Mt 60 99 99 98 97
MPE1 Moc 40 0 0 0 0

Mof 0 1 1 2 3

Mt 56 97 97 97 97
MPE2 Moc 44 0 0 0 0

Mof 0 3 3 3 3

Mt 66 99 96 96 97
MPE3 Moc 34 0 0 0 0

Mof 0 1 4 4 3

Mt 74 99 98 98 98
MPE4 Moc 26 0 0 0 0

Mof 0 1 2 2 2
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Table 6.2 shows the all possible subset selection results using the ROBAIC, ROB-
BIC and RICOMP(IFIM)LN PEU based on MLE and four robust estimators. Table 6.3
shows the all possible subset selection results using the RICOMP(IFIM)misspec LN PEU based
on MLE and four robust estimators for the same 100 replications. Comparing the re-
sults from both tables, we see that the robust version of information criteria outper-
forms the non-robust version of information criteria (those computed on MLE). Specifi-
cally, RICOMP(IFIM)LN PEU and RICOMP(IFIM)misspec LN PEU based on all four robust
estimates and ROBBIC outperform ROBAIC and ICOMP computed on MLE. Because of
the large sample size (n = 200), RICOMP(IFIM)misspec LN PEU asymptotically approaches
to RICOMP(IFIM)LN PEU. Thus, they give the same model subset selection results. It
is worth noticing that when the error distribution is MVN, ROBBIC picks up the true
model more often(98% and 100% of the time) than the other robust information criteria
although it is significantly better than the robust ICOMP. When the error distribution is
MVT, RICOMP(IFIM)LN PEU and RICOMP(IFIM)misspec LN PEU pick up the true model
more often than the other criteria. When the error distribution is from contaminated MVN
and MVT, both robust ICOMP and ROBBIC performs the best. When the error distribu-
tion is from MPE distribution, the robust ICOMP and ROBBIC outperforms the others.
ROBAIC does not work well. It tends to overfit the model. Non-robust ICOMP based on
MLE does not work well either since it tends to underfit the model. However, when the
error distributions deviate from normality, ROBAIC outperforms ICOMP based on MLE.
In other words, the information criterion based on MLE is not resistant to the departure
from the normality assumption.

The box plots of the information criteria for the true models are given in Figure 6.4.
We just show two of the ten error distributions as examples. In the plot, the MLE1
and MLE2 represent the RICOMP(IFIM)LN PEU and the RICOMP(IFIM)misspec LN PEU

values computed on MLE; HUB1 and HUB2 represent the RICOMP(IFIM)LN PEU and
the RICOMP(IFIM)misspec LN PEU values based on Huber’s estimator; AND1 and AND2
represent the RICOMP(IFIM)LN PEU and the RICOMP(IFIM)misspec LN PEU values based
on Andrews’ estimator; TUK1 and TUK2 represent the RICOMP(IFIM)LN PEU and the
RICOMP(IFIM)misspec LN PEU values based on Tukey’s estimator; HAM1 and HAM2 rep-
resent the RICOMP(IFIM)LN PEU and the RICOMP(IFIM)misspec LN PEU values based on
Hampel’s estimator. RAIC and RBIC represent ROBAIC and ROBBIC respectively. We
can see that the values of information criteria based on the robust estimates are lower than
those based on MLE.
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Figure 6.4: Multivariate Simulation: Boxplot for Information Criteria.
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Table 6.4: GUI Inputs of GA Parameters for Multivariate Simulated Data
No. of runs 15
No. of generations 60
Population size 30
Estimation method Tukey’s
Fitness value RICOMP(IFIM)misspec LN PEU

Probability of crossover 0.5
Crossover Method uniform
Probability of Mutation 0.01
Elitism Yes

GA Subset Selection

In this section, we performed the model subset selection using Genetic Algorithm (GA).
Our goal is to conduct the model subset selection via GA and compare the results with
those of the all possible subset selection and see if the three-way hybrid method can fulfill
the selection of the true model when the true model exists.

Generate the simulation data from the Monte Carlo protocol in equation 6.33 and 6.34
with sample size n = 200. Generate response variables Y from equation 6.35, where the
error term E follows the multivariate t distributions with 3 degrees of freedom and error
terms are non-correlated. The fitness function of GA to carry out the subset selection is the
RICOMP(IFIM)misspec LN PEU based on Tukey’s estimator with tuning constant c = 6.0.
All the parameters used in GA are given in Table 6.4.

We ran GA for 15 times. For each run of the GA, a new simulated data set was generated
and the subset model picked by GA was recorded. The results for the 15 runs of the GA are
shown in Table 6.5. 14 out of the 15 runs picked up the true model {x1, x2, x3}. One run
out of the 15 runs overfitted the model with one redundant predictor (the 13th run). Recall
that the all possible subset selection method with the same information criterion picked up
the true model 99 times in the 100 runs. Therefore, this GA result is reasonable.

One run of the GA result is shown in Table 6.6. The optimization procedure for 60
generations of the GA is presented in detail. In this particular run of the GA, the robust
and misspecification resistant ICOMP can pick up the true model as early as the 19th

generation and retain it until the last 60th generation.
The 2D and 3D plots for this one run of GA are shown in Figures 6.5 and 6.6, respec-

tively, to show this optimization process.
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Table 6.5: Multivariate Simulation: Model Subset Selection in 15 Runs of the GA
Run Variable Selected Binary String RICOMPmisspec LN PEU

1 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1285.6
2 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1283.7
3 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1195.2
4 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1277.6
5 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1297.1
6 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1240.9
7 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1333.8
8 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1311.2
9 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1315.9
10 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1274.1
11 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1315.3
12 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1225.6
13 {x1, x2, x3, x7} 1 1 1 0 0 0 1 0 0 0 1349.8
14 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1353.4
15 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1292.7

Table 6.6: Multivariate Simulation: Model Subset Selection in One Run of the GA
Generation Variable Selected Binary String RICOMPmisspec LN PEU

1 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
2 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
3 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
4 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
5 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
6 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
7 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
8 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
9 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
10 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
11 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
12 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
13 {x1, x2, x3, x4, x7} 1 1 1 1 0 0 1 0 0 0 1311.7
14 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 1301.3
15 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 1301.3
16 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 1301.3
17 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 1301.3
18 {x1, x2, x3, x4} 1 1 1 1 0 0 0 0 0 0 1301.3
19 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1292.7
20 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1292.7
...

...
...

...
60 {x1, x2, x3} 1 1 1 0 0 0 0 0 0 0 1292.7
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Figure 6.5: Multivariate Simulation: 2D plot for One Run of the GA.
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Figure 6.6: Multivariate Simulation: 3D plot for One Run of the GA.
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Conclusion and Discussion

From this comparative study on the multivariate simulation data, we conclude that the
robust and misspecification resistant version of ICOMP outperforms the other information
criteria in the model subset selection, especially for those models with non-normal random
errors. The RICOMP, RICOMPmisspec and ROBBIC work better than ROBAIC and non-
robust ICOMP computed on MLE.

GA combined with the robust and misspecification resistant version of ICOMP is a quick
and effective model selection method. It can pick up the true model or optimal model very
quickly in the early generation and retain it to the final result.

6.6.2 Real Data Example

Plasma-Retinol Data

Observational studies have suggested that low dietary intake or low plasma concentra-
tions of retinol, beta-carotene, or other carotenoids might be associated with increased
risk of developing certain types of cancer. Nieremberg et al. (1989) studied the deter-
minant of plasma levels of these micronutrients. In an unpublished study, they collected
data on 14 variables of 315 patients to investigate the relationship between the personal
characteristics and dietary factors and plasma concentrations of retinol, beta-carotene
and other carotenoids. Ben et al. (2006) used this data to illustrate the performance of
his robust τ estimation on the multivariate linear regression. The data is available at
http : //lib.stat.cmu.edu/datasets/P lasma Retinol.

There are 315 observations (patients) in this data. The two dependent variables are:
Y1 BETAPLASMA: Plasma beta-carotene (ng/ml)
Y2 RETPLASMA: Plasma Retinol (ng/ml)
And the fourteen independent variables are:
X1 AGE: Age (years);
X2 SEX: Sex (1=Male, 2=Female);
X3 SMOKSTAT1: Smoking status (1=Never);
X4 SMOKSTAT2: Smoking status (1=Former);
X5 QUETELET: Quetelet (weight/(height2));
X6 VITUSE1: Vitamin Use (1=Yes, fairly often);
X7 VITUSE2: Vitamin Use (1Yes, not often);
X8 CALORIES: Number of calories consumed per day;
X9 FAT: Grams of fat consumed per day;
X10 FIBER: Grams of fiber consumed per day;
X11 ALCOHOL: Number of alcoholic drinks consumed per week;
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Figure 6.7: Plasma-Retinol Data: QQ-plot and Histogram of the Response Variables.

X12 CHOLESTEROL: Cholesterol consumed (mg per day);
X13 BETADIET: Dietary beta-carotene consumed (mcg per day);
X14 RETDIET: Dietary retinol consumed (mcg per day).
The QQ-plots and histograms for the two response variables are shown in Figure 6.7.

Both response variables BETADIET and RETDIET are right skewed. The histograms for
the nine continuous predictor variables are given in Figure 6.8. We can see from the plots
that almost all of the continuous predictor variables are right skewed to some extent and
contain outliers. The robust and misspecified version of ICOMP thus is appropriate for the
model subset selection.

The correlation matrix among the response variables and predictor variables is given
in Table 6.7. From the table, we see that the two response variables are not correlated to
each other. None of the response variables has strong correlation with any of the predic-
tor variables. Predictor x8 (Calories), x9 (Fat) and x12 (Cholesterol) are highly positively
correlated to each other. x8 (Calories) is mildly correlated to x10 (Fiber), x11 (Alcohol)
and x14 (Retdiet). x13 (Betadiet) is mildly correlated to x10 (Fiber). The lack of correla-
tional relation between the response variables and predictor variables may result from the
complicated data structure.
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Table 6.7: Plasma Data: Correlation Matrix
y1 y2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y1 1.00
y2 0.07 1.00
x1 0.10 0.21 1.00
x2 0.09 -0.18 -0.28 1.00
x3 0.09 -0.09 0.07 0.15 1.00
x4 0.01 0.15 0.03 -0.13 -0.76 1.00
x5 -0.23 0.01 -0.02 -0.01 0.09 -0.03 1.00
x6 0.22 0.04 0.09 0.06 0.13 -0.05 -0.09 1.00
x7 -0.01 -0.02 -0.17 0.13 -0.01 0.00 0.05 -0.47 1.00
x8 -0.02 -0.07 -0.18 -0.21 -0.12 0.07 0.00 0.00 0.02 1.00
x9 -0.09 -0.09 -0.17 -0.20 -0.14 0.09 0.05 -0.03 0.00 0.87 1.00
x10 0.24 -0.04 0.04 -0.05 0.07 0.04 -0.09 0.09 -0.01 0.47 0.28 1.00
x11 -0.02 0.02 0.05 -0.23 -0.13 0.03 -0.07 -0.09 -0.03 0.45 0.19 -0.02 1.00
x12 -0.13 -0.07 -0.11 -0.26 -0.11 0.05 0.11 -0.03 0.01 0.66 0.71 0.15 0.18 1.00
x13 0.22 -0.01 0.07 0.00 0.01 0.09 -0.01 0.10 -0.02 0.24 0.14 0.48 0.04 0.12 1.00
x14 -0.05 -0.06 -0.01 -0.07 0.01 0.01 0.03 0.02 -0.02 0.40 0.41 0.21 0.04 0.44 0.05 1.00
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Figure 6.9: Plasma Data: Boxplot of the Mahalanobis Distance of the Residuals.

On the full model, we compute and compare two types of estimates of the regression
coefficients: the MLE and multivariate robust estimates. We use the same tuning constants
for the robust estimates as we did in the Monte Carlo simulation study. The side-by-side
box-plot of the Mahalanobis distance of the residuals di = ε̂′iΣ̂

−1
ε̂i, where 1 ≤ i ≤ 315

for both MLE and robust estimates are shown in Figure 6.9. We see that on average, the
residuals from the robust estimates are larger than that from the MLE. More outliers are
shown in the box plot of the robust estimates than that of the MLE. In other words, the
robust estimates can identify more outliers than the MLE. In fact, if we define the outliers as
those observations whose Mahalanobis of the residuals di >

√
χ2

2,0.99, the MLE reveals only
12 outliers; multivariate Huber’s estimate can reveal 25 outliers; multivariate Andrews’
estimate can reveal 31 outliers; multivariate Tukey’s estimate can reveal 33 outliers and
multivariate Hampel’s estimate can reveal 31 outliers. Ben et al. (2006) in his paper claims
that his τ estimate reveals 27 outliers, which is in-between the outliers our robust estimates
can identify.

The determinant of the covariance matrix of the full model computed on each estimation
method are given in Table 6.8. We see that the determinant of the covariance matrix calcu-
lated from robust estimates is smaller than that calculated from the MLE. Among all the
robust estimates, the Tukey estimate gives the smallest determinant of the covariance. We
decided to perform the model subset selection using RICOMPmisspec based on multivariate
Tukey’s estimator.

The best subset model selected by RICOMPmisspec with multivariate Tukey’s estimator
is given in Table 6.9, along with the subset models selected by multivariate robust BIC
and multivariate τ -estimate given in Ben et al. (2006) for the purpose of comparison. We
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Table 6.8: Plasma Data: Determinant of Covariance Matrix for the Full Model
|Σ|

Full Model MLE Huber Andrews Tukey Hampel
{x1, . . . , x14} 1.0466× 109 0.2012× 109 0.13× 109 0.1061× 109 0.1276× 109

Table 6.9: Plasma Data: Best Subset Model
Best Subset Model Selection Method
{x1, x2, x3, x4, x5, x7, x10} RICOMPmisspec with Tukey’s estimator
{x1, x2, x3, x5, x13} ROBBIC
{x1, x2, x5, x6, x10, x13} τ -estimator

should be aware that Ben et al. (2006) did not perform the “formal” all possible model
subset selection in their paper. They simply fitted the full model and picked up all the
variables “that are statistically significant at level 0.05 for at least one equation.” We can
see that all these three methods agree to choose x1 and x2 as the best predictors.

The top 16 subset models selected by RICOMPmisspec with multivariate Tukey’s esti-
mator using all possible subset selection technique is given in Table 6.10.

The parameters used in GA are given in Table 6.11 and the subset selection results in
15 runs of GA are given in Table 6.12. For each run of the GA results, the corresponding
ranking of all possible subset selection is given in the parenthesis in Table 6.12. We see that
12 out of 15 runs of the GA hit the top 10 models chosen by all possible subset selection. 14
out of 15 runs of the GA hit the top 15 models and 15 out of 15 runs of the GA hit the top
20 models. These results are optimal since we have 214 − 1 = 16, 383 all possible subsets in
total in the model space. These results show that GA is an effective way to perform model
subset selection.

The 2D plot and 3D plot of GA show the optimization process are given in Figures 6.10
and 6.11.

Interpretation The final fitted subset model with x1, x2, x3, x4, x5, x7 and x10 is as follows

y1 = −8.13 + 1.62x1 + 66.59x2 + 57.89x3 + 21.49x4 − 4.51x5 + 9.38x7 + 3.14x10

y2 = 413.58 + 2.77x1 + 6.70x2 + 43.16x3 + 91.96x4 − 0.48x5 + 19.53x7 − 3.07x10.

(6.36)
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Table 6.10: Plasma Data: Top 16 Subsets by All Possible Model Selection
Ranking Selected Variables RICOMPmisspec with Tukey

1 0 1 2 3 4 5 - 7 - - 10 - - - - 7755.8764
2 0 1 - 3 4 5 6 7 - - 10 - - - - 7758.1327
3 0 1 2 3 4 - 6 - - - 10 - - - - 7759.011
4 0 1 2 3 4 5 6 7 - - - - - - - 7762.8166
5 0 1 2 3 - 5 6 7 - - 10 - - - - 7763.0988
6 0 1 2 3 4 5 6 7 - 9 10 - - - - 7763.8668
7 0 - - 3 4 - 6 7 - - 10 - - - - 7764.4676
8 0 1 2 3 4 - - - - - 10 - - - - 7764.5677
9 0 1 - 3 4 - 6 7 - 9 10 - - - - 7764.9857
10 0 1 2 3 4 5 6 - - 9 10 - - - - 7765.4471
11 0 1 2 - 4 - 6 7 - - 10 - - - - 7766.6372
12 0 1 - 3 - 5 6 7 - - 10 - - - - 7766.6897
13 0 - 2 3 4 5 6 - - - 10 - - - - 7767.6668
14 0 1 - 3 4 - 6 - - 9 10 - - - - 7767.7774
15 0 1 2 3 4 5 - - - - 10 11 - - - 7768.4374
16 0 - 2 - 4 5 6 7 - - 10 - - - - 7768.6484

Table 6.11: Plasma Data: GUI Inputs of GA Parameters
No. of runs 15
No. of generations 120
Population size 50
Estimation method Tukey’s
Fitness value RICOMPmisspec

Probability of crossover 0.5
Crossover Method uniform
Probability of Mutation 0.01
Elitism Yes
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Table 6.12: Plasma Data: Model Subset Selection in 15 Runs of the GA
GA Ranking Variables Selected Binary String Scores
1 (1)a 0 1 2 3 4 5 - 7 - - 10 - - - - 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 7755.9
2 (2) 0 1 - 3 4 5 6 7 - - 10 - - - - 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 7758.1
3 (16) 0 - 2 - 4 5 6 7 - - 10 - - - - 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 7768.6
4 (7) 0 - - 3 4 - 6 7 - - 10 - - - - 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 7764.5
5 (11) 0 1 2 - 4 - 6 7 - - 10 - - - - 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 7766.6
6 (15) 0 1 2 3 4 5 - - - - 10 11 - - - 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 7768.4
7 (6) 0 1 2 3 4 5 6 7 - 9 10 - - - - 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 7763.9
8 (7) 0 - - 3 4 - 6 7 - - 10 - - - - 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 7764.5
9 (6) 0 1 2 3 4 5 6 7 - 9 10 - - - - 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 7763.9
10 (3) 0 1 2 3 4 - 6 - - - 10 - - - - 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 7759
11 (3) 0 1 2 3 4 - 6 - - - 10 - - - - 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 7759
12 (9) 0 1 - 3 4 - 6 7 - 9 10 - - - - 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 7765
13 (1) 0 1 2 3 4 5 - 7 - - 10 - - - - 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 7755.9
14 (3) 0 1 2 3 4 - 6 - - - 10 - - - - 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 7759
15 (1) 0 1 2 3 4 5 - 7 - - 10 - - - - 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 7755.9

aThe parenthesis includes the corresponding all possible model selection ranking for the purpose of com-
parison.
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Figure 6.10: Plasma Data: 2D-plot of 15 Runs of the GA.
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The contents of plasma beta-carotene (y1) and plasma retinol (y2) are affected by the follow-
ing factors: age (x1), sex (1=Male, 2=Female) (x2), smoking status1 (1=never) (x3), smok-
ing status2 (1=Former) (x4), QUETELET (weight/(height2)) (x5), vitamin use2 (1=Yes,
not often) (x7) and grams of fiber consumed per day (x10).

Holding the other factors constant, both plasma contents increase with the increasing
of patients’ age. The female patients have higher contents of both plasma than the male
patients. Current smokers reduce the contents of both plasma the most. The increasing of
QUETELET index results in the decreasing of both plasma contents. There is no difference
in plasma contents between the patients who do not use vitamin and those who use vitamin
fairly often. However, if the patients use vitamin but not often, both of their plasma
contents will increase. The more fiber is consumed by the patients per day, the more
plasma beta-carotene is and the less plasma retinol is.
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Chapter 7

Future Research

7.1 Conclusions

In this dissertation, we propose a novel computationally efficient model subset selection
method for multiple and multivariate linear regression models which is both robust and
misspecification resistant. Basically speaking, our approach is a three-way hybrid method
which employs the information theoretic measure of complexity (ICOMP) computed on
robust M-estimators as model subset selection criteria, and integrates genetic algorithms
(GA) as the subset model searching engine.

For the first time in the literature, we introduce both robustness and misspecification re-
sistance to the computation of information criteria, which makes the model subset selection
procedure robust to unusual observations in the data and deviations from the assumption
of normality.

For the first time in the literature, we introduce robust and misspecification resistant
information criteria to genetic algorithms (GA) as its fitness function. The three-way hybrid
approach is heuristically shown to be efficient.

For the multiple linear regression, we develop robust versions of Bozdogan’s information-
theoretic measure of complexity (ICOMP) and name them ‘RICOMP’ and ‘RICOMPmisspec’
for the correctly specified model and misspecified model respectively. We compare the
performance of RICOMP and RICOMPmisspec in the Monte Carlo simulation data with
other robust information criteria existing in the literature, namely AICR, HAIC and RBIC.
The conclusion is that our robust versions of ICOMP are more efficient than the robust
versions of AIC and BIC in terms of picking up the simulated true model. Particularly,
when the error term in the simulation data departs from normal distribution with skewness
and kurtosis, the robust and misspecification resistant version of ICOMP outperforms all
the other information criteria. Of course, when we compare the robust information criteria
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with the non-robust information criteria, or those computed based on OLS estimator, the
robust version of information criteria performs much better. The non-robust information
criteria are sensitive to the outliers and non-normality assumption of the error term.

For multivariate regression, we derive the two-stage iteratively robust Mahalanobis dis-
tance (RMD) estimator and then introduce this RMD estimator to the computation of
information criteria. This is the first time in the multivariate regression literature, we com-
bine both robustness and misspecification resistance to the information criteria. Firstly,
we introduce this RMD estimator to AIC and BIC and get the robust version of AIC and
BIC, called ROBAIC and ROBBIC. Secondly, we introduce this RMD estimator to Boz-
dogan’s ICOMP and get the robust version of ICOMP in the multivariate framework. In
the comparative study on the multivariate simulation data, the robust and misspecification
resistant version of information criteria outperforms the non-robust version of information
criteria.

In the simulation study conducted by the three-way hybrid method, GA combined with
the robust and misspecification resistant information criteria is proved to be an effective
model selection method. It can reach the optimal, if not the best, solution quickly without
having to search the whole subset model space.

7.2 Future Research

A few follow up researches are suggested to be done in the future.
Firstly, more robust estimators other than robust M-estimator can be introduced to the

computation of information criteria. There are some robust estimators in the literature with
nice properties, such as the high breakdown point, which could be used if one can overcome
the computational complexity of these estimators. However, the robust estimators for the
multivariate literature is still the big challenge.

Secondly, the robust and misspecification resistant information criteria could be gen-
eralized to the robust SUR (Seemingly Unrelated Regression) model, which allows one to
select different predictors for different responses. In this way, we can increase the flexibility
of the model subset selection techniques.

Finally, the robust and misspecification resistant information criteria for model subset
selection could be generalized to other areas of statistics, such as the logistic regression,
discriminant analysis, cluster analysis and time series etc.
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Appendix A

Power Exponential Distribution

The Power Exponential (PE) distribution is a generalized error distribution by introducing
a kurtosis parameter to the Normal distribution. It is first developed by Subbotin (1923)
and popularized in the 1970’s (Box and Tiao, 1973).

Suppose random variable x follows PE distribution with parameters µ, σ, β. The prob-
ability density function of x is given by

f(x; µ, σ, β) =
1

σΓ
(
1 + 1

2β

)
21+ 1

2β

exp

(
−1

2

∣∣∣∣
x− µ

σ

∣∣∣∣
2β

)
, (A.1)

where µ(µ ∈ R) is the location parameter , σ(σ > 0) is the scale parameter and β(β > 0)
is the kurtosis parameter.

Different values of β are related to different unimodal symmetric curves. β = 1 gives
Normal distribution; β = 0.5 gives Laplace distribution; β → ∞ gives the Uniform distri-
bution. The distribution of x is denoted as x ∼ PE(µ, σ, β).

When the PE distribution is specified with mean µ = 0 and scale σ = 1, it is called
standard PE distribution. Figure A.1 plots the pdf of a few standard PE distributions with
different β values and compares the PE distribution with Standard Normal Distribution.

Skewed Power Exponential Distribution

Azzalini (1986) developed the Skewed Power Exponential (SPE) Distribution to introduce
both skewness and kurtosis. Here, we present the form of Fernandez and Steel (1998).
Suppose x follows SPE distribution with parameters α, θ, σ and κ. The probability density
function of x is defined as

fSPE(x) =
α

σ

κ

1 + κ2
exp

(
−κα

σα

[
(x− θ)+

]α − 1
σακα

[
(x− θ)−

]α
)

, (A.2)
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Figure A.1: PDF Plots of Standard PE Distributions.

where θ(θ ∈ R) is the location parameter; σ(σ > 0) is the scale parameter; κ(κ > 0) is
the skewness parameter; and α(α > 0) is the shape parameter, which accommodates the
kurtosis. And

u+ =

{
u, if u ≥ 0;
0, if u < 0.

u− =

{
-u, if u ≤ 0;
0, if u > 0.

The distribution of x is denoted by x ∼ SPEα(θ, σ, κ). For κ = 1, the distribution is
symmetric about θ.

Figure A.2 plots the pdf of a few SPE distributions with the same θ, σ and κ and different
α values and compares them with the Standard Normal Distribution. Note that this figure
is the same as Figure 5.5 in Chapter 5. We present it here for our convenience.
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Appendix B

Multivariate Power Exponential Distribution

Gómez et al. (1998) generalized the power exponential family of distributions to the multi-
variate case. A continuous random vector x is said to have a p-variate power exponential
distribution if its probability density function is defined by

f(x; µ,Σ, β) =
pΓ(p/2)

πp/2Γ
(
1 + p

2β

)
21+p/2β

| Σ |−1/2 exp
{
−1

2
(
(z− µ)′Σ−1(z− µ)

)β
}

.

(B.1)
where x = (x1, . . . , xp)′ is the p-dimensional vector, parameters µ ∈ Rp, Σ is a (p × p)
positive definite symmetric matrix and 0 < β < ∞. We denote x ∼ PEp(µ,Σ, β). When
p = 1, equation B.1 reduces to the density function of univariate PE distribution given A.1.

Sánchez-Manzano et al. (2002) proposed a definition of the matrix variate power expo-
nential distribution . A random (p × n) matrix X is said to have a (p × n)-variate power
exponential distribution with parameters M, a (p×n) matrix; Σ, a (p×p) definite positive
matrix; Φ, a (n× n) definite positive matrix and β ∈ (0,∞), if

V ec(X′) ∼ PEpn

(
V ec(M′),Σ⊗Φ, β

)
(B.2)

where V ec(·) refers to the vector operator. We denote X ∼ MPEp×n(M,Σ,Φ, β).
The density function of X is defined by

f(X,Σ,Φ, β) = k | Σ |n/2| Φ |−p/2 exp
{
−1

2
(
tr((X−M)′Σ−1(X−M)Φ−1)

)β
}

, (B.3)

where
k =

pnΓ(pn/2)
πpn/2Γ(1 + pn/2β)21+pn/2β

.

If X ∼ MPEp×n(M,Σ,Φ, β), then X′ ∼ MPEn×p(M′,Σ,Φ, β).
When n = 1, the matrix variate PE distribution given in equation B.3 reduces to the

multivariate PE distribution in equation B.1.
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Figure B.1: PDF Plots for Multivariate PE Distributions.

Figure B.1 shows the pdf plots of a few matrix multivariate PE distributions with
p = 2, n = 1,Φ = I1,Σ = I2 and different β values.

When β = 1, the density in equation B.3 is reduced to multivariate normal distribution;
when β = 0.5, the density is reduced to a matrix generalization of the double exponential
distribution; when β →∞, the density is reduced to multivariate uniform distribution.
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