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ABSTRACT 
  

The purpose of this dissertation research was to investigate the extent of natural 

and anthropogenic impacts on declining whitebark pine communities. My research used 

dendroecology to study multicentury changes in these threatened communities to assess 

current and past forest dynamics and the overlapping effects of white pine blister rust, 

mountain pine beetle, and climate change in the northern Rocky Mountains.  

I created whitebark pine (host) and subalpine fir (nonhost) chronologies and 

collected species composition, stand structure, and forest health data in sites along a 

latitudinal transect through the Rocky Mountains in western Montana. The stand-

structure data indicate over 70% of whitebark pines at all sites are declining or dead. The 

high mortality of whitebark pines was caused by the overlapping effects of past (1880s, 

1920s, and 1970s) and current mountain pine beetle outbreaks, and more recently by 

white pine blister rust infection. Whitebark pine populations, in the majority of our sites, 

are being successionally replaced by subalpine fir, grand fir, and Engelmann spruce in all 

levels of the forest strata (trees, saplings, and seedlings). Shade-tolerant trees began 

establishing between 150 and 300 years ago at all sites, a finding that suggests 20th 

century fire suppression is not responsible for the successional replacement of whitebark 

pine forests.  

Whitebark pine and subalpine fir growth respond strongly to drought and 

precipitation. This indicates wet conditions from precipitation and snowpack melt in the 

previous summer enhance tree growth during the following growing season. My climate 

reconstruction results support other climate reconstructions, east of the Continental 
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Divide, that found precipitation and Palmer Drought Severity Index (PDSI) have more of 

an influence on subalpine forest growth than temperature. The reconstruction data 

contribute an important high-elevation component to existing drought reconstructions 

from lower elevations in the northern Rocky Mountains. Whitebark pine communities 

should continue to be monitored as continued periods of drought will likely make 

whitebark pines more susceptible to mountain pine beetle attack and weaken their 

resistance to white pine blister rust infection. 
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose 

The purpose of this dissertation research is to investigate the extent of natural and 

anthropogenic impacts on declining whitebark pine (Pinus albicaulis Engelm.) 

communities in Montana using ecological and dendrochronological methods. Whitebark 

pine is limited in distribution to high elevations in the mountains of western North 

America, where it has been present through most of the Holocene (Tomback et al. 2001). 

Whitebark pine is a subalpine keystone species of critical importance for maintaining 

biodiversity in mountain ecosystems and for supporting wildlife species such as Clark’s 

nutcrackers (Nucifraga columbiana Wilson), black bears (Ursus americana Pallas), and 

grizzly bears (Ursus arctos L.), and exists in areas that are highly sensitive to climate 

change (Tomback et al. 2001). I studied multicentury changes in these threatened 

communities by evaluating whitebark pine tree-ring patterns to assess current and past 

forest dynamics and the overlapping effects of human disturbances, fire exclusion, white 

pine blister rust, mountain pine beetle, and global climate change. A lack of research on 

these topics has hindered the response of land managers to the dramatic decline in 

whitebark pine communities. Consequently, an urgency exists to implement management 

practices that will slow the succession to shade-tolerant species, and decrease the severity 

of decline in whitebark pine communities in western North America. 
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1.2 Biogeography of Whitebark Pine 

Whitebark pine is a long-lived tree species found in many high elevation and 

subalpine forest communities of western North America (Arno and Hoff 1989). 

Whitebark pine forms extensive contiguous stands in high elevation forests in the Rocky 

Mountains of Wyoming, Idaho, and Alberta, and smaller disjunct populations in eastern 

and southwestern Oregon, California, and Nevada. The species is restricted at its upper 

elevations by severe climate conditions and at lower elevations by competition from other 

tree species (Arno and Hammerly 1984). Whitebark pine is a pioneer species that fills a 

crucial niche in watershed protection, catching and retaining snow, and stabilizing rock 

and soil in harsh and recently disturbed areas (Tomback et al. 2001) (Figure 1.1).  

Whitebark pine fossil pollen records suggest the species survived the last 

glaciation south of its present range in North America (Nowak et al. 1994). These 

southern populations may have been the seed source for postglacial colonization of 

whitebark pine in the Sierra Nevada (Anderson 1990). Less is known about whitebark 

pine in the northern Rocky Mountains as only trace amounts of haploxylon pine pollen 

have been found before 12,000 BP (Anderson 1990, Beiswenger 1991, Whitlock et al. 

1995). Warmer and drier postglacial climates, initiated approximately 10,000 BP, 

restricted whitebark pine and associated conifers to higher elevations across mountain 

ranges in North America (Whitlock 1993). Subfossil wood, over 8,000 years old, has 

been found above current treeline, indicating that whitebark pine grew above its current 

elevation in the early Holocene (Luckman 1988, Clague and Mathewes 1989). During the 

late  
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Figure 1.1. Whitebark pine tree on Ajax Peak, in the Beaverhead-
Deerlodge National Forest (photograph taken by Saskia van de Gevel). 
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Holocene, whitebark pine populations have extended to lower elevations in montane 

forests (Mehringer et al. 1977, MacDonald et al. 1998). 

Whitebark pine is also a food source of critical importance to Clark’s nutcrackers, 

red squirrels (Tamiasciurus hudsonicus Erxleben), grizzly bears, and black bears 

(Mattson et al. 2001, Tomback 2001). Whitebark pine seeds are picked and cached by 

nutcrackers and squirrels, and bears rely upon these seed caches in the northern Rocky 

Mountains (Mattson et al. 2001). Cached seeds that escape predation are in turn a major 

source of regeneration for whitebark pine (Tomback et al. 2001). The availability of 

whitebark pine seeds directly influences the number of human conflicts with grizzly bears 

that result in management actions. In the Yellowstone Basin, more conflicts occur 

between grizzly bears and humans during low seed crop years, and grizzly bears 

experience higher mortality at these times (Mattson and Reinhart 1986). 

 

1.3 Natural and Anthropogenic Disturbances in Whitebark Pine Ecosystems 

The combination of advancing encroachment by fire-intolerant species such as 

subalpine fir (Abies lasiocarpa (Hook.) Nutt.) and Engelmann spruce (Picea engelmannii 

Parry ex Engelm.), infestation by mountain pine beetle (Dendroctonus ponderosae 

Hopk.), and the epidemic of white pine blister rust (Cronartium ribicola JC Fischer) have 

devastated whitebark pine populations north of 45° N latitude in western North America 

(Kendall and Keane 2001, Tomback et al. 2001). Due to natural (mountain pine beetle) 

and anthropogenic (climate change, fire suppression, and the introduction of white pine 

blister rust) disturbances, the whitebark pine ecosystem of the northern Rockies is 
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diminishing. If whitebark pine conservation efforts are not successful in the next 15 to 20 

years, this species will likely become extinct (Tomback et al. 2001). 

Ecologists recognize that natural disturbance cycles that involve fire, wind, or 

pathogens are important components in most landscapes, and that few ecosystems ever 

achieve a steady-state climax (Bormann and Likens 1979, White 1979, Christensen 

1989). Tree reproduction in many forest ecosystems occurs in episodes associated with 

major disturbances. Thus, the distribution of ages in a population is often a sensitive 

indicator of the history of disturbance in a stand (Christensen 1989). Conventional 

models of succession show that whitebark pine dominates during early stages of 

succession and regenerates after stand-level fires that occur at long return intervals of 200 

years or more (Fischer and Bradley 1987). The long lifespan (up to 1000 yrs) of 

whitebark pine makes it an important component of mid- and late-successional forests. 

Research shows that this ecosystem experiences both stand-replacing fires, which occur 

at long intervals and initiate forest succession, and low-severity surface fires, which occur 

throughout stand development and create and maintain an open canopy (Arno and 

Peterson 1983, Fischer and Bradley 1987, Larson 2005, Larson et al. 2008). Stand- 

replacing fires kill most trees and result in juvenile recruitment, which alters the age 

structure of the stand. Low-severity fires produce fire scars on trees but do not 

dramatically change stand composition. 

 

1.4 White Pine Blister Rust Distribution 

White pine blister rust is an exotic pathogen first discovered in North America on 

a currant plant (Ribes spp.) in Geneva, New York, in 1906. The pathogen  soon spread 
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to the Great Lakes region and British Columbia. Eastern white pine seedlings that had 

been exposed to white pine blister rust were sold from tree nurseries in Germany and 

France to North America from 1890 to 1914 (Tomback et al. 2001). Blister rust first 

appeared on whitebark pine in the coastal range of British Columbia in 1926 and spread 

to northern Idaho by 1938 (Childs et al. 1938). Soon after the discovery of blister rust, 

infected white pine trees were destroyed and a Ribes eradication program was begun 

(Tomback et al. 2001). Millions of Ribes shrubs were pulled out of stream bottoms, 

forested uplands, and mountain slopes on public lands across western North America 

(Hoff 1992). Herbicides such as actidione and phytoactin were also used during the Ribes 

eradication program, although with limited success. The eradication effort of removing 

Ribes shrubs was abandoned in 1966 due to the complex life cycle of white pine blister 

rust.  

Blanchard and Tattar (1997) reported that white pine blister rust is now found 

throughout the entire range of five-needled pines in North America. Worsening the 

situation, whitebark pine is also the most vulnerable white pine species, with fewer than 

one in 10,000 trees showing resistance to blister rust (Kendall 1994). The range of 

whitebark pine affected by white pine blister rust is expanding and infection is 

intensifying. Currently, the degree of infestation of whitebark pine decreases southward 

throughout all parts of its range, including the Cascade-Sierra Nevada chain, the 

Bitterroot Mountains, and along the Continental Divide of the Rocky Mountains (Hoff 

1992). In Washington State, northern Idaho, northwest Montana, southern Alberta, and 

British Columbia, 40–100% of whitebark pine are dead in most forest stands, and 50–

100% of the living trees are infested with white pine blister rust (Tomback et al. 2001). 
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Keane (1995) found that 98% of the whitebark pine populations in the Columbia River 

Basin have disappeared since the turn of the century. During a project to reconstruct 

landscape patterns of whitebark pine in western Montana, Arno et al. (1993) found that 

14% of the stands were dominated by whitebark pine around 1900, but none of these 

stands were dominated by whitebark pine in the 1990s. Of the remaining living trees in 

these whitebark pine stands, 80% were infected with white pine blister rust, and more 

than one-third of their cone-bearing crowns were dead (Arno et al. 1993). Furthermore, 

the extent of forest stands with cone-bearing trees had declined by half.  

 

1.4.1 Blister Rust Disease Cycle 

White pine blister rust alternates between five-needle pines and Ribes species. 

White pine blister rust is a heteroecious rust fungus that produces several spore types and 

requires two host types to complete its life cycle (Bega 1978, Blanchard and Tatter 1997) 

(Figure 1.2). The disease initially infests a tree through the needles and girdles branches, 

but can travel to the main stem, where it usually leads to trunk girdling and death of the 

tree. Disease infection takes place through white pine needle stomata in the fall, grows 

into the branches and stems, and erupts as spore-producing cankers that kill the branches, 

thus ending cone production, and ultimately killing the tree (Bega 1978, Blanchard and 

Tatter 1997).  

The first symptoms of white pine blister rust on white pines are yellow brown 

cankers that appear on infected pine branches (Figure 1.3). The fungus grows in the 

phloem and bark with no visible symptoms for at least three years before spores are 

produced. In the spring of the 3rd or 4th years, spermatia are formed, followed by the  
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Figure 1.2. White pine blister rust life cycle (photographs 
taken by Saskia van de Gevel). 
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Figure 1.3. Yellow cankers caused by white pine blister rust evident on the 
bark of a whitebark pine tree (photograph taken by Saskia van de Gevel). 
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production of aeciospores in white blisters that break through the bark. Aeciospores, 

which can be wind-dispersed up to 1300 km, are capable of infecting only Ribes species. 

Approximately ten days after infection, urediniospores develop on the lower surface of 

Ribes leaves and continue to accumulate throughout the summer. Urediniospores are able 

to reinfect Ribes species, thus intensifying the disease on this host. In the fall, teliospores 

and basidiospores are produced on Ribes species and are dispersed to Pinus species, 

thereby completing the life cycle.  

 

1.4.2 Blister Rust Resistance 

The loss of whitebark pine trees from white pine blister rust has significantly 

reduced whitebark pine regeneration. Tomback et al. (2001) described the situation as 

being so grim that land managers are faced with several difficult decisions. If fire or 

cutting techniques are used to open the whitebark pine stands for regeneration, the few 

remaining whitebark pine trees may be an inadequate seed source. Clark’s nutcrackers 

may also complicate the whitebark pine regeneration efforts because they could consume 

the limited supply of unripened seeds before the seeds ripen. Currently, a combination of 

using blister rust-resistant whitebark pine, prescribed fire, and silvicultural techniques is 

in use to conserve whitebark pine ecosystems (Tomback et al. 2001). 

Exotic invasive species, such as white pine blister rust, have produced major 

changes in forest ecosystems (Salwasser and Huff 2001). Eradication of white pine blister 

rust has failed, but management actions can be used to change the severity of its effect on 

whitebark pine ecosystems. Increasing the level of genetic resistance is one option to 

reverse severe losses in whitebark pine caused by white pine blister rust. In areas where 
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blister rust has infected and killed most of the whitebark pine, one or more trees often 

have no visible cankers, which suggests the possibility of genetically controlled 

resistance to blister rust (Hoff et al. 2001). Hoff et al. (2001) performed a test in 1989 to 

investigate the level of resistance to blister rust in whitebark pine seedlings in high 

mortality whitebark pine stands. The results suggested that surviving whitebark pine 

seedlings possessed usable levels of heritable resistance. The researchers proposed that 

the next step was to use seed collection, seed transfer, and gene conservation to 

incorporate the resistance genes into future generations of whitebark pine, with the 

limitation that whitebark pine material (seeds, seedlings, or pollen) be transferred no 

more than 80 km from the point of origin. However, land managers must consider that 

planting genetically-resistant whitebark pine seedlings could eliminate unknown 

desirable genetic qualities and variation (Salwasser and Huff 2001).  

 

1.5 Mountain Pine Beetle Ecology 

Mountain pine beetle outbreaks have killed millions of Pinus trees over thousands 

of square kilometers in the northern Rockies during the 20th century (Romme et al. 1986). 

The mountain pine beetle is the most destructive of the native biotic agents in mature 

Pinus forests in western North America (Safranyik and Carroll 2006). The major hosts 

for mountain pine beetle include, in addition to whitebark pine, ponderosa pine (Pinus 

ponderosa Douglas ex C. Lawson), lodgepole pine (Pinus contorta Douglas ex Loudon), 

and western white pine (Pinus monticola Douglas ex D. Don). Extensive mountain pine 

beetle outbreaks in the northern Rockies occurred between 1925 and 1935 and between 

1970 and 1980 (Arno and Hoff 1989), and more recently in the early 2000s. The series of 
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outbreaks that occurred from 1925 to 1935 in Idaho and Montana killed an estimated 1.4 

billion lodgepole pines and vast numbers of whitebark pines (Safranyik and Carroll 

2006). Extensive outbreaks in the western US and Canada during the late 1970s and early 

1980s killed almost 2 million hectares of Pinus trees. A massive infestation, extending 

over 12 million hectares, also devastated lodgepole and whitebark pine stands in the 

northern Rocky Mountains and in central British Columbia in the early 2000s (Safranyik 

and Carroll 2006).  

This native bark beetle constructs “J” shaped egg galleries in the infected tree’s 

inner phloem (Figure 1.4), and the larvae feed on the phloem tissue (Amman et al. 1989). 

The beetle galleries impede water and nutrient transport within the tree and can introduce 

a secondary pathogen, a blue staining fungus (Ophiostoma spp.) that clogs the sapwood 

of living trees (Kipfmueller and Swetnam 2002). The combination of beetle galleries and 

blue staining fungus girdles trees and cuts off nutrient flow, leading to the death of the 

tree. The beetles tend to selectively attack larger, older trees that have a thicker phloem. 

Because mountain pine beetle larvae develop within the phloem tissue of their hosts, 

large-diameter trees with their thicker phloem are the optimal resource for the beetle 

(Amman et al. 1989). Younger trees are usually not killed because they lack an adequate 

food supply for the beetles.  

  

1.5.1 Mountain Pine Beetle Life Stages 

The mountain pine beetle has four life stages: egg, larvae, pupa, and adult. All of 

the life stages occur behind the bark of the host tree with the exception of adult beetle 
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Figure 1.4. Mountain pine beetle J-shaped galleries on a whitebark 
pine log in the Beaverhead-Deerlodge National Forest (photograph 
taken by Saskia van de Gevel). 
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dispersal (Safranyik and Carroll 2006). Adult beetles construct egg galleries in the 

phloem of the tree in a direction parallel to the stem. Once female beetles have mated, 

they deposit their eggs (approximately 60 eggs per female) in niches cut in the sides of  

the galleries and cover them with boring dust. Larvae pass through four instar stages, 

each of which is separated by moulting. During the last instar stage, the feeding areas 

around the parental galleries are cleared of debris. The prepupal and pupal growth periods 

are passed in this chamber. Adults first appear pale and soft, until they become harder 

and turn a dark brown color before they emerge. Adult beetles range in length from 3.7 to 

7.5 mm and have strong cylindrical bodies. Beetle populations normally have one 

generation per year. Temperatures affect the number of generations per year. During 

warm summers, parent adults may re-emerge to establish a second brood. In cooler 

summers, and at higher elevations, some or all of the brood may require two years to 

mature (Safranyik and Carroll 2006).  

 

1.5.2 Mountain Pine Beetle Control 

Several natural factors affect abundance of mountain pine beetles, including sub-

zero winter temperatures, nematodes, woodpeckers, predaceous insects, and insect 

parasites. The current latitudinal and elevational range of mountain pine beetle is not 

limited by available host trees (Carroll et al. 2003). The potential of the mountain pine 

beetle to expand north and east has been restricted by climatic conditions unfavorable for 

brood development. Temperature and moisture are the two most important abiotic factors 

that affect mountain pine beetle development and survival (Thompson and Shrimpton 

1984, Safranyik and Carroll 2006). For a mountain pine beetle outbreak to develop, two 
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requirements must be met. First, a sustained period of favorable weather must occur over 

several years (Safranyik 1978), such as summer heat accumulation and winter minimum 

temperatures. In areas where summer heat accumulation is limited or where winter 

minimum temperatures are below a critical threshold, mountain pine beetle infestations 

cannot establish and persist (Safranyik and Carroll 2006). The second requirement for 

outbreak development is that an abundance of susceptible host trees must be present 

(Safranyik 1978). The physiological effects of temperature are important for establishing 

and regulating beetles’ growth and development rates, cold-hardiness, and in determining 

survival. An increase in the number of infestations since 1970 in formerly climatically 

unsuitable habitats indicates that mountain pine beetle populations have expanded into 

high-elevation areas (Safranyik and Carroll 2006). Given the rapid colonization by 

mountain pine beetles of former climatically unsuitable areas during the last several 

decades, continued warming in the northern Rockies associated with climate change will 

allow the beetle to further expand its range northward, eastward, and toward higher 

elevations. 

Direct mountain pine beetle control measures, such as cutting and burning 

infested trees, applying oil or chemical sprays, or thinning dense Pinus forests, were used 

for decades in many parts of western North America (Safranyik and Carroll 2006). In 

addition to thinning stands to reduce susceptibility, individual high-value trees were 

successfully protected by applications of pesticides to uninfested tree boles. However, the 

control techniques have been proven limited in Pinus forests because the outbreaks have 

occurred over large areas in short periods of time. Most control measures are now 

considered generally uneconomical, although beetle populations have been manipulated 
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with pheromone technology to avoid outbreaks in some large Pinus stands (Bentz and 

Kegley 2005).  

 

1.6 Dendroecology 

Trees are dependable annual biorecorders of environmental processes during the 

Holocene in portions of North America (Brubaker and Cook 1983, Luckman and 

Kearney 1986, Luckman 1988, Benson et al. 2002, Barclay et al. 2006). In most 

geographic regions, climate patterns in any year cause a response by trees in the volume 

of wood the tree produces which varies the widths of tree rings. Changing year‐to-year 

environmental conditions cause fluctuations in tree growth over time, which allow 

dendrochronologists to compare ring patterns in trees at the forest stand, landscape, and 

regional spatial scales. Crossdating uses the year-to-year fluctuations in tree growth by 

matching patterns of ring widths from one tree with corresponding patterns for the same 

years from another tree (Fritts 1976, Schweingruber 1988). Crossdating is possible 

because climate is largely a regional phenomenon, affecting trees within a geographic 

region in a similar way, so that related patterns of ring widths are produced among many 

trees. Dendrochronologists accurately assign calendar dates to tree rings by matching the 

sequence of tree‐ring widths against a known reference chronology. Eventually, 

sequences from individual trees are combined into a reference chronology for a particular 

location, so that any new tree‐ring samples collected can be crossdated against the 

reference chronology. Crossdating the chronologies of dead and living trees makes it 
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possible to recreate forest landscapes on century and millennial scales (Grissino-Mayer 

2001).  

Furthermore, crossdating helps identify problematic rings, such as false rings (a 

dark band of cells within the ring that is not a true ring), and helps identify locally absent 

or discontinuous rings (produced when growth regulators do not reach certain points in 

the trunk of the tree), both of which could reduce the temporal accuracy of ecological 

reconstructions (Stokes and Smiley 1996, Grissino-Mayer 2001). To ensure a high level 

of confidence in the dates assigned to tree rings, dendrochronologists inspect both visual 

and statistical relationships to identify a probable match. Only after a tree-ring series has 

been accurately crossdated, both graphically and statistically, can calendar dates for the 

tree rings in a wood sample be assigned with annual resolution (Stokes and Smiley 1996, 

Grissino-Mayer 2001). Dendroecological techniques help evaluate the age structure and 

tree-growth patterns to document changing stand conditions related to disturbance, stand 

development, or climatic variation (Payette et al. 1990, Foster et al. 1996). Such analyses 

can also help assess relationships between climate, site conditions, and tree growth to 

evaluate factors that influence the growth of a plant community (Cook and Kairiukstis 

1989).  

The longevity of whitebark pine trees provides an opportunity for temporally 

extensive tree-ring reconstructions of past disturbance regimes and ecological events. In 

addition, the sensitivity of many subalpine species to changes in their environment 

suggests whitebark pine may also be an excellent indicator of global climate change 

(LaMarche and Stockton 1974, Fritts 1976, Perkins and Swetnam 1996, Luckman and 

Youngblut 1999, Kipfmueller 2003, Mann 2008). The annual nature of tree-ring 
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formation and the ability to statistically link tree growth with climate are important tools 

for understanding climate variability on a temporal scale (Kipfmueller 2003).  

 

1.6.1 Northern Rocky Mountains 

Dunwiddie (1977) was the first dendrochronologist to study whitebark pine. He 

investigated tree invasion of a subalpine meadow in the Wind River Mountains of 

western Montana. He dated approximately 340 trees and saplings of whitebark pine, 

lodgepole pine, and Engelmann spruce in a 13 m by 8 m plot that extended along a clear 

edge of mature forest, to determine the age and growth trends within the samples. Tree 

growth rates increased with increased distance from the forest edge, which indicated that 

factors other than climate may have restricted tree regeneration within the meadow. Tree 

invasion was slow and relatively steady between 1889 and1940, after which a significant 

acceleration in tree establishment rates occurred until a sudden cessation of establishment 

after 1962. When compared to the grazing records, meadow invasion increased slightly 

when the area was heavily grazed, and the shift to rapid invasion occurred when grazing 

pressure was reduced, but still present on the landscape. Cattle were removed from the 

landscape in the early 1960s. Grazing facilitated the establishment of young trees by 

removing competition with meadow vegetation. With the complete removal of cattle 

from the area, seedlings could no longer out-compete the meadow grasses and shrubs, 

and trees could not become established. 

Arno (1976) developed tree ring-based fire histories for study areas in the 

Bitterroot National Forest in western Montana. The study areas covered a wide range of 

elevations and forest types. He used non-crossdated fire-scarred samples collected from 
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living trees and age-structure data to describe the frequency and severity of fires in the 

Bitterroot Mountains. Arno mentioned that numerous whitebark pine trees in the study 

area contained multiple fire scars. Age structure data were relatively uneven-aged, but 

still indicated post-fire tree establishment cohorts. He emphasized the spatial variability 

in the fire regimes of the study areas, and suggested mixed-severity fires played a more 

important role in the northern Rockies than was previously recognized. Fire activity and 

instrumental meteorological data were compared and showed a correlation between 

drought conditions and years of widespread fires. Arno concluded that fire has and will 

continue to be a major ecological component of forests in the Bitterroot National Forest 

and suggested several management techniques for reducing fuel loads and maintaining 

forest health. Arno and Pederson (1983) later used these results and reanalyzed them 

spatially to emphasize the importance of using the appropriate scale when reporting 

results of fire history research. 

Romme (1982) examined the diversity and evenness of species after fires in a 

subalpine watershed in Yellowstone National Park, Wyoming. Romme found 15 fires 

since 1600, seven which were major fires that burned more than four ha, and initiated 

secondary forest succession. Although whitebark pine was only a small component of the 

subalpine forest, many of the whitebark pines showed multiple fire scars. Most of the 

upland forest area was burned by large fires in the middle and late 1700s. Fires in the 

1800s and 1900s were smaller and occurred at longer intervals. Fire frequency in the 

Yellowstone study area is partly controlled by fuels in the understory and forest floor. 

Typically, fuels capable of supporting a crown fire usually do not develop until a stand is  

over 300 years old. Therefore, fire ignitions in younger stands usually extinguished 
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naturally before spreading more than a few hectares. Crown fires became more likely 

whenever lightning ignites small fuels during warm, dry, windy weather. The subalpine 

plateaus of Yellowstone National Park had a natural fire cycle between 300 and 400 years 

when large areas burned during a short period, followed by a long, relatively fire-free 

period. Landscape diversity was highest in the early 1800s, which followed the large fires 

in the 1700s, then declined in the late 1800s during a 70-year period when no major fires 

occurred and the landscape was dominated by even-aged forests. Romme interpreted 

these landscape reconstructions to indicate that the Yellowstone subalpine ecosystem is a 

nonsteady-state system characterized by long-term disturbance regimes that changed 

landscape composition and diversity.  

Mattson and Reinhardt (1990) also examined the fire history of subalpine forests 

in the Greater Yellowstone Ecosystem. They evaluated stands using aerial photographs, 

age-structure, stand composition, and site characteristics in 5–26 variable radius forest 

inventory plots evenly distributed throughout each stand. The fire history was derived 

from stand age-structure and indicated a MFI of 80–300 years. The distribution of 

whitebark pine was closely related to a site warmth index, as opposed to subalpine fir and 

Engelmann spruce that were more sensitive to wind exposure. Whitebark pine and 

lodgepole pine were highly competitive where they coexisted, gained early dominance of 

most stands, and eventually lost stand dominance to shade-tolerant fir and spruce. 

Extremely cold and exposed sites were dominated by whitebark pine.  

Barrett (1994) investigated the fire history of three forest types on the Absaroka 

Mountains in the northeast corner of Yellowstone National Park. Fire-scar and age 

structure data were gathered in low-elevation Douglas-fir forests, mid-elevation 
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lodgepole pine forests, and high-elevation whitebark pine forests, and composite fire 

chronologies were constructed for all sites. The MFI was over 350 years in most 

whitebark pine forests. Barrett noted, however, that several whitebark pines contained 

multiple fire scars, and that tree age was highly variable in whitebark pine stands, 

indicating a mixed-severity fire regime. Four stands of whitebark pine at treeline 

experienced MFIs of 66−204 years. Fire suppression had not influenced high-elevation 

whitebark pine ecosystems. 

Keane et al. (1994) conducted a landscape assessment of the effects of blister rust 

and fire suppression on whitebark pine forests in the Bob Marshall Wilderness Complex, 

Montana. The study combined satellite imagery with field reconnaissance and stand data 

to evaluate the disturbance history and recent shifts in whitebark pine populations. The 

fire history was determined using non-crossdated, fire-scarred samples and age-structure 

data. Blister rust infections were identified on 83% of the 32 inventoried whitebark pine, 

and high mortality rates due to blister rust were reported for 22% of the landscape 

containing whitebark pine. The study documented little to no whitebark pine 

regeneration. Subalpine fir dominated 14% of the total subalpine landscape, 

approximately 7% more than its historical composition. Regeneration throughout the 

study area was almost exclusively subalpine fir. Fire suppression and the blister rust-

induced mortality of whitebark pine allowed subalpine fir to establish throughout the Bob 

Marshall Wilderness Complex. 

Morgan and Bunting (1990) crossdated 14 fire-scarred samples and found MFIs 

of 13−46 years for whitebark pine forests on Russell Peak, Wyoming. The fire history 

showed a period of frequent fire activity between 1700 and 1850 that corresponded with 
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the establishment of a large cohort of whitebark pine. Fire activity began to decrease after 

1850, and the last fire occurred in 1894. Morgan and Bunting hypothesized that 

whitebark pine forests burn often when young with abundant fine fuels under an open 

canopy, go through a period of relatively infrequent fires as the canopy closes, and then 

burn in old age as fuel loads develop. Subalpine fir encroachment and insect-caused 

mortality also contributed to fuel loading. 

Perkins and Swetnam (1996) successfully built a whitebark pine tree-ring 

chronology over 1000 years in length, and while they found their samples difficult to 

date, they suggested that whitebark pine could be used to relate disturbance regimes and 

climate on a multi-millennial scale. They constructed tree-ring chronologies from four 

sites in central Idaho that all extended at least 700 years, and included the oldest known 

living whitebark pine at the time (> 1270 years old). Crossdating with other tree-ring 

chronologies from the region was problematic due to relatively low inter-annual ring-

width variability (chronology mean sensitivity ranged from 0.12−0.17), but the authors 

succeeded by using several distinct marker rings. Correlation coefficients within and 

between sites ranged from 0.5−0.6, which indicated strong statistical crossdating for 

high-elevation trees. The peak mortality caused by a mountain pine beetle outbreak was 

determined by the outer ring of sampled snags to be 1930, and was synchronous at all 

four sites.  

Murray et al. (1998) reconstructed the fire history of subalpine forests of the 

West Big Hole mountain range to determine if their isolated study area would be more 

affected by fire suppression than larger mountain ranges. The study area straddles the 

Continental Divide along the southwestern border of Montana and Idaho and includes six 
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watersheds, three to the east and three to the west of the divide. Fire-scar and age-

structure data were collected in plots centered along a transect from the base to the head 

of each watershed. Fire dates were estimated to be accurate within 10 years. Fire history 

data extended back to 1754 for all sites. West side historical fire regimes were classified 

as mixed-severity and smaller relative to the more widespread, non-stand-replacing fires 

that characterized the east side fire regimes. A dramatic shift toward smaller fires 

occurred on both sides of the divide in 1874, with west side fires shifting toward non-

stand replacing and east side fires becoming more mixed-severity. The authors suggested 

that fire suppression was not likely the cause of these landscape level changes, but that 

the widespread introduction of cattle and sheep may have reduced fuels sufficiently to 

affect the fire regimes of the area. Compared to larger mountain ranges, fires in the West 

Big Hole area were generally smaller and more frequent, due to a concentration of 

lightning strikes and close proximity of the range to steppe communities. 

Murray et al. (2000) used data from their 1998 study to compare over 200 years 

of whitebark pine growth to successional trends in six areas of the West Big Hole 

mountain range. The authors found a decrease in whitebark pine dominance that they 

attributed to successional replacement by fire-intolerant species, grazing, and fire 

suppression. Size class and species composition data were collected along an elevational 

transect in each watershed, and species dominance was calculated at 20-year intervals 

using ring-width-derived basal areas for distinct size classes. Mid-seral forests dominated 

all six watersheds until 1950, when late-seral stands became more dominant on the 

landscape. Overall, an 85% increase in basal area was found among all species since the 

1870s, while whitebark pine dominance had decreased steadily over the same period. The 



 24

authors suggested fire suppression and grazing may be the cause of advancing 

succession, and proposed active management may be required to maintain the historically 

whitebark pine dominated structure and composition of this landscape. 

 Kipfmueller (2003) conducted a fire history of subalpine forests that contained 

whitebark pine, and examined the fire-climate relationships in four watersheds in the 

Selway Bitterroot Wilderness Area, on the border between Montana and Idaho. Fire dates 

were obtained from 96 crossdated fire-scarred samples collected from lodgepole pine, 

whitebark pine, and Douglas fir, and fire extent was estimated using stand boundaries 

coupled with stand age-structure data. The fire history data illustrated mixed-severity fire 

regimes in all four watersheds, with numerous small fires and seventeen widespread fire 

years identified over the past 800 years. MFI values ranged from 20−170 years at the 

watershed scale to 139−341 years for individual stands. A reduction in fire activity 

occurred across all four sites ca. AD 1935, and was likely the result of fire suppression. 

Superposed epoch analyses (SEA) were used to assess the influence of climate prior to 

the fire events, and revealed a significant relationship between two consecutive dry years 

and widespread fire events.  

 Kipfmueller and Kupfer (2005) analyzed over 1,100 tree cores from 23 stands in 

four watersheds to better understand successional processes in subalpine forests for 

establishment patterns after fires. The data for this study came from Kipfmueller's (2003) 

dissertation work in the Selway Bitterroot Wilderness Area, on the border between 

Montana and Idaho. Successional changes were quantified by using the time-since-fire to 

determine the length of time the stand developed without fire as a disturbance. Stand 

composition and structural traits were compared using nonmetric multidimensional 
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scaling and ordination with respect to environmental variables, including time-since-fire, 

topographic relative moisture index, slope, aspect, and elevation. The authors created a 

conceptual model of the multiple successional pathways that are evident in the study 

sites. Whitebark pine was the most important tree species in the overstory in only two of 

the 23 sites. Surprisingly, whitebark pine was an important species in the understory of 

two other sites with lodgepole pine as the most important associated overstory species. 

The authors found lodgepole pine dominated sites after fire events, but as the stand aged, 

other disturbance events altered succession through host-specific mortality. In the 

absence of stand-initiating disturbance over long periods of time, whitebark pine 

historically had a chance to dominate the forest canopy. Whitebark pines were present in 

old stands, but many were dead from mountain pine beetle outbreaks in the 1930s and 

1980s.  

 Bunn et al. (2003) compared strip-bark and entire-bark high-elevation whitebark 

pine trees in the Greater Yellowstone Ecosystem. Their dataset contained 27 pairs of 

strip-bark and entire-bark trees, and allowed direct comparisons of the influence of tree 

growth form on tree-ring growth rates over time and space. The authors conducted a 

temporally and spatially explicit analyses of tree locations and growth rates related to the 

abiotic environment. After finding spatial structure to the strip-bark tree distribution, they 

assessed the relationship between environmental variables and presence or absence of 

strip-bark trees using a spatially explicit regression. Growth patterns of the strip-bark 

trees were compared to neighboring entire-bark trees. The whitebark pine samples 

showed the complexity of climate-growth relationships within a species and 

demonstrated the importance of considering tree physiognomy and microsite variation in 
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developing climatically sensitive tree-ring chronologies. Time-series plots were 

constructed from the 15 datable strip-bark chronologies and their neighboring entire-bark 

trees showed nearly identical growth rates and coherent trends until 1875. The strip-bark 

time series also showed a consistent pattern of postindustrial increased growth rates 

similar to studies in the White and Sierra Nevada Mountains of California.  

 Larson (2005) and Larson et al. (2008) created an extensive fire history for three 

mountains in the Lolo National Forest. The three sites differed significantly in fire 

regimes, topography, and local climate. Fire suppression was evident after ca. 1920, 

although tree establishment at the sites was related to major fire events that occurred in 

the late 1800s. The fire regimes of each site were considered mixed-severity fire regimes, 

but distinct differences in fire frequency and severity existed between them. The forest on 

one of the sites, Point Six, was outside of its historical range of variability and may 

provide a suitable site for a prescribed burn. The forests on Morrell Mountain and 

Mineral Peak remained within their historical ranges and likely do not warrant 

management intervention at this time. All three sites contained at least one post-

disturbance tree establishment cohort and had experienced at least one widespread fire 

over their histories. 

 Grissino-Mayer et al. (2006) and Daniels et al. (2006) used dendroecological 

methods to assess whitebark pine fire and disturbance histories during the 13th Annual 

North American Dendroecological Fieldweek on Morrell Mountain in western Montana. 

Grissino-Mayer collected 21 fire-scarred whitebark pine samples and found a fire return 

interval approximately every 50 years. Daniels found living whitebark pine over 500 

years old but many of the whitebark pine had died from mountain pine beetle and white 
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pine blister rust. The basal area increment of living whitebark pine trees significantly 

decreased between 1951 and 2000. Some subalpine fir trees were over 300 years old, 

suggesting that a stand-replacing fire had not burned that site in the past 300 years.  

 Mann (2008) reconstructed climate and assessed the effects of climate variability 

on specific environmental processes in the subalpine ecosystem of western Montana 

using whitebark pine and subalpine fir. This study also examined the climate response of 

whitebark pine and subalpine fir to treeline dynamics and fire history. Trees in excess of 

400 years of age were found at the western Beaverhead, Gravely Range, and Mineral 

Peak sites. Numerous deadwood remnants of whitebark pine were also found at all sites. 

The most long-lived tree in all chronologies was obtained at the western Beaverhead site 

and contained 607 rings.         

The growth response of whitebark pine and subalpine fir to PDSI was more 

significant than the growth response to precipitation and temperature. The author found 

the most significant relationship between whitebark pine growth and PDSI found in the 

previous year’s June and July. The PDSI indices were strongly correlated to growth from 

June to August, with July having the highest correlation. Drought conditions late in the 

previous year (August-September) affected bud break and the initiation of growth more 

than climate during the current year’s growing season. The reconstructed June–July PDSI 

revealed both interannual and decadal trends for the period 735–2005. Since AD 750, 

eight periods of protracted extreme drought and five periods of extreme wetness have 

occurred. The most severe extended drought occurred between 1434 and 1462, a period 

that had an average PDSI of –2.21 for the 28-year period. Two additional periods of 

extended drought, AD 1145–1167 and AD 764–782, lasted 23 and 19 years, respectively. 
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In terms of wetness, the most extreme period and longest in duration occurred between 

AD 894 and 918.  

 

1.6.2 Sierra Nevadas/Cascades 

Peterson et al. (1990) conducted a dendroecological assessment of long-term 

growth trends in the subalpine forests of the central Sierra Nevada. They focused on 

high-elevation lodgepole pine and whitebark pine because these trees were sensitive to 

small changes in the environmental factors that impacted their growth. The study 

examined changes in basal area of each species, calculated from ring widths, for the late 

1700s up to the 1980s. Principle components analyses found climate explained between 

22−40% of the variance in basal area for whitebark pine, depending on age class. 

Climate-response analyses found tree growth was significantly affected by spring 

temperature and annual precipitation. A trend of increasing basal area at an increasing 

rate, independent of climate, was found in the whitebark pine chronologies, similar to 

patterns of increased growth found in Great Basin bristlecone pine (Pinus longaeva D.K. 

Bailey) in the nearby White Mountains (Graybill and Idso 1993). The authors suggested a 

possible effect of atmospheric CO2 fertilization on growth in upper-elevation trees. 

Garfin (1998) used whitebark pine tree-ring data to examine the relationship of 

shifting pressure systems and tree growth in the Sierra Nevada of California. He 

found winters that preceded years of high growth in whitebark pine were warm and wet, 

caused by anomalously low pressure in the northern Pacific Ocean, anomalously high 

pressure over northwestern Canada, and anomalously low pressure across the southern 

United States, all of which leads to a southwesterly flow of warm maritime air into 
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California. Extreme low growth in whitebark pines was associated with a shift in the 

Westerlies north of their mean position and enhanced ridging in the northeast Pacific, 

which advects cool dry air into the Sierra Nevada. Garfin concluded that synoptic 

dendroclimatological studies such as his may provide insight about atmospheric 

circulation that will increase understanding of past climate variability derived from tree-

ring studies. 

 Millar et al. (2004) is the only whitebark pine study to examine annual branch 

growth of krummholz whitebark pine in the Sierra Nevada. The authors studied 

whitebark pine establishment on formerly persistent snowfields and dated vertical branch 

emergence in krummholz whitebark pine. Mean annual branch growth at six treeline sites 

increased significantly over the 20th century (ranged 130–400%), with significant 

accelerations in rate from 1920 to 1945 and after 1980. Growth stabilized from 1945 to 

1980. Similarly, invasion of six snowfield slopes began in the early 1900s and continued 

into snowfield centers throughout the 20th century, with significantly accelerated mean 

invasion from 1925 to 1940 and after 1980. The lack of new vertical branches growth 

after 1980 and the death of seven vertical branches around 1980 showed unfavorable  

growing conditions in the Sierra Nevada. All ecological responses were significantly 

correlated with minimum temperature fluctuations.  

 

1.6.3 Canadian Rockies 

Luckman et al. (1984) was the first to document several whitebark pines with 

ages in excess of 700 years in the Canadian Rockies. Luckman followed his preliminary 
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assessment with several projects that used evidence obtained from subalpine tree species 

to describe periods of glacial advance in the Canadian Rockies (Luckman 1994, 1995, 

2000). Luckman examined the fluctuation in glacial advance and retreat during the 

Neoglacial period, when glaciers were at their Holocene minimum. Studies of Holocene 

glacial activity have shown that the Neoglacial period was asynchronous, with advances 

ranging from 8,000 B.P. (Denton and Karlen 1973) to 3,000 years B.P. (Luckman et al. 

1993). Luckman found glaciers throughout the region were advancing down valley 

between 3,300 and 2,800 years ago. Following this advance, most glaciers appear to have 

retreated up valley and may have only begun to readvance during the Little Ice Age 

(LIA) glacial events of the last 900 years (Luckman 1986, 1993, 1995, 2000). 

In studies within the southern Canadian Rockies, exposed stumps have been used 

to distinguish Holocene glacial advances by crossdating floating tree-ring series to living 

tree-ring chronologies (e.g. Luckman 1995, Smith and Laroque 1996) or by assigning 

14C dates to perimeter wood samples (Luckman 1996, 1998). Luckman used 

establishment dates of tree stands on moraines to estimate the date of glacial advance and 

retreat. Remnant and sub-fossil trees and stumps were also crossdated to construct death-

date charts, thereby giving an estimate of both the timing and rate of glacial advance. 

These data were synthesized and compared to reconstructions of temperature and 

precipitation. They provided evidence of region-wide glacial advances during 1200−1300 

and 1400−1600, and abundant evidence of regionally synchronous advances in the early 

1700s and early 1800s (Luckman and Villalba 2001). Summer temperature was the 

primary driver of these fluctuations, but precipitation also played a strong role in some 

areas. Luckman also directed research on extending chronologies throughout the 
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Canadian Rockies, and eventually found two whitebark pine trees that were at least 1,013 

and 1,049 years of age (Luckman and Youngblut 1999). The vegetation of the Columbia 

Icefield area, in the Canadian Rockies, was characterized by subalpine forests and 

expansive alpine tundra, with most valley bottoms characterized by Engelmann spruce 

and lodgepole pine forests. Restricted stands of subalpine fir, whitebark pine and 

krumholtz spruce characterized treeline (Luckman and Kavanagh 1998, 2000, Luckman 

and Youngblut 1999). 

 

1.7 Fire Regimes in Whitebark Pine Ecosystems 

Research shows that the whitebark pine ecosystem experiences both 

stand‐replacing fires, which occur at long intervals and initiate forest succession, and 

low‐severity surface fires, which occur throughout stand development and suppress the 

establishment of fire-intolerant species (Arno and Peterson 1983, Larson 2005). Studies 

focused on frequent, low-severity fires have found that active fire suppression and 

grazing in the late 1800s and early 1900s led to decreased fire activity (e.g., Kilgore and 

Taylor 1979, Dieterich 1983, Barrett 1994, Touchan et al. 1995, Grissino‐Mayer et al. 

1996, Swetnam and Betancourt 1998, Grissino‐Mayer et al. 2004) and resulted in 

dramatic increases in forest density and fuel loads (Brown and Wu 2005). Other 

researchers highlight the important role of climatic variations as a source for recent 

changes in fire activity (Mast et al. 1998, Schoennagel et al. 2005, Sibold et al. 2006). 

Regardless of the source of these changes, the recent increases in large wildfire activity 

(Stephens 2005, Westerling et al. 2006) have amplified pressure on land managers in the 
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western United States to implement thinning practices, prescribed fire programs, and 

wildland fire use programs to restore the historical structure and disturbance processes to 

forests. The term “restoration” should be used carefully because comparing current 

wildfire activity with the historical range in variability of wildfires in these forest systems 

is complicated. Forests are affected by many ecological processes in addition to the 

influence of humans and climate on their fire regimes (Larson et al. 2008). 

 

1.8 Climate Change in the Northern Rocky Mountains 

 Climate change assessments based on computer models, paleoecological studies 

of past climatic conditions, and small-scale experiments suggest extensive disruptions of 

most ecological communities occurring under generally accepted future climate scenarios 

(McCarty 2001). Atmospheric CO2 levels will most likely double from preindustrial 

values within 100 years (Korner et al. 1996). The doubling of CO2 and other greenhouse 

gases could increase average temperatures 1.4–5.6 °C, which will affect precipitation 

patterns, soil moisture, snow and ice cover, and other environmental variables (IPCC 

2001). The Earth’s mean global temperature has increased 0.6 ºC since 1900, and the rate 

of warming has varied, occurring most rapidly between 1925 and 1944 and between 1978 

and 2004 (Walther et al. 2002). Temperature changes vary geographically and tend to be 

greatest during the coldest months (McCarthy 2001). Temperature records developed 

from valley floor meteorological stations in the Canadian Rockies indicate that 

significant temperature differences occur between seasons (Luckman and Kavanagh 

2000). Winter (January–March) conditions show the largest interannual range (12.7 °C) 

and the greatest warming trend (3.4 °C per 100 years) rather than the spring and summer 
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(Luckman and Kavanagh 2000). The differences in seasonality are important because 

most proxy climate records use biological indicators that respond primarily to growing 

season conditions.  

Climate changes more rapidly with elevation (about 1 °C per 160 m) than with 

latitude (about 1 °C per 150 km)( IPCC 2001), so rapid changes in mountain 

communities are expected as climate continues to warm (McCarty 2001). Treeline 

advances upslope in response to climate warming have been observed in mountain 

vegetation studies (Prentice 1992, Mann 2008), but site (e.g. aspect) and species 

differences influence the rate of advance (Luckman and Kavanagh 2000). The effects of 

global and regional climate changes on vegetation will be moderated by microclimate 

effects, local topography, and site conditions (Luckman and Kavanagh 2000). 

Asymmetry in warming between regions will contribute to the heterogeneity in 

ecological responses across systems (Walther et al. 2002). Climate will change over a 

few decades while the response of many species might take centuries. The modern 

fragmented landscape provides little flexibility for ecosystems to adjust to rapid climate 

changes (Walther et al. 2002). Areas that may become climatically suitable to support 

species may be too disjunct or remote from their current distributions for successful 

dispersal. Integrating species’ responses to land use and land cover changes, the effects of 

CO2 fertilization, and the effects of climate change, are important when assessing the 

resiliency of complex ecosystems, such as whitebark pine.  

The highly irregular topography of the northern Rocky Mountains results in a 

wide range of weather conditions, as well as unique microclimates. Terrain ranges from 

rugged ridges and glacial features to gentle slopes. Mountains in the northern Rockies are 
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influenced by North Pacific weather patterns and are located in a transitional zone 

between continental and maritime climates (Arno and Hammerly 1984). Continental 

atmospheric patterns likely affect the relationship between the ecology of mountain pine 

beetles, white pine blister rust, and whitebark pine growth. The interacting feedbacks 

between these variables and climate are important for understanding changing fire 

regimes in whitebark pine ecosystems. One of the most widespread concerns of global 

warming on whitebark pine ecosystems is an overall reduction in area, with a loss of 

disjunct whitebark pine communities (Haslett 1997).  

Instrumental climate records are limited in length, therefore proxy climate data, 

such as from tree rings, have been useful in extending precipitation and temperature 

records (Woodhouse 2001). Perkins and Swetnam (1996) used climate-response analyses 

with whitebark pine and found a similar signal among their four sites in Idaho, with a 

positive correlation between ring width and winter/spring precipitation, and a negative 

correlation between ring width and summer (May–July) temperatures, indicating tree 

growth at these sites is both moisture and temperature limited. The study concluded that 

whitebark pine has excellent potential for dendroclimatological and dendroecological 

research. 

Biondi et al. (1999) used tree ring data from whitebark pines (Perkins and 

Swetnam 1996) and Douglas firs, to develop an 858-year proxy record of July 

temperatures for east-central Idaho. The correlation of their proxy series with 

instrumental July temperatures was 0.47 (1895–1992) with this value improving to 0.55 

when the 1895–1903 period was removed.  
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Kipfmueller (2003) found his whitebark pine chronologies correlated to 

temperature, snowpack conditions, and PDO. Whitebark pine growth was significantly 

related to warm July temperatures, but a potential climate switch was identified in the 

mid 1900s, when the response of whitebark pine to warmer summer temperatures 

diminished and was replaced by a negative relationship to spring temperatures. 

Kipfmueller hypothesized that this shift may be related to changing snow pack conditions 

and resulting moisture stress, and is potentially an expression of shifting PDO signal. 

Despite the shifting climate-tree growth relationship, the climate reconstruction of the 

whitebark pine chronology explained 36% of the variance in summer temperature over 

the calibration period.  

Luckman and Wilson (2005) used tree-ring data from Engelmann spruce to 

reexamine summer temperatures (May–August) in the Canadian Rockies for the last 

millennium. The maximum temperature reconstruction, which explained 53% of the 

variation, revealed warm intervals during the first half of the eleventh century, the late 

1300s, and the early 1400s. A portion of the reconstruction, however, showed below-

normal temperatures for the period between 1901 and 1980, with prolonged cool periods 

between 1200 and 1350 and between 1450 and the late 1800s. The most extreme cool 

period was observed in the late 1690s. The reconstructed cool periods agreed with 

regional records of glacial advances between 1150 and the 1300s, and in the early 1500s, 

early 1700s, and 1800s.    

Wilson et al. (2007) studied temperature divergence between cooler reconstructed 

and warmer instrumental large-scale temperatures in the Extratropical Northern 

Hemisphere (ENH). They hypothesized that the temperature divergence in the 1980s is 
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partly related to chronologies used from previous reconstructions that showed divergence 

against local temperatures in the recent period. The authors only used tree-ring data and 

published local/regional reconstructions that showed no divergence against local 

temperatures. One of the datasets used in the reconstruction was a whitebark pine 

summer temperature reconstruction from Idaho (Biondi et al.1999). The authors found 

that these correlations were generally consistent back into the 19th century (r = 0.41, 

1868–1992). The tree-ring proxy time series were chosen because they showed relatively 

robust estimates of local/regional temperatures, showed no divergence in the recent 

period with the instrumental records, and allowed replication up to the year 2000 in the 

final reconstructed time series. The authors hypothesized that the use of tree-ring based 

proxies that show no divergence at the local-scale could result in better estimates of 

hemispheric temperatures in the recent (post-mid-1980s) period where all other tree-ring 

based ENH hemisphere reconstructions diverge below the increasing trends in the 

instrumental data. The authors developed a new, completely independent reconstruction 

of ENH annual temperatures from 1750 to 2000. 

 

1.9 Objectives 

Knowledge of the complex dendroecology and stand dynamics of whitebark pine 

ecosystems is essential to the long-term management and conservation of this declining 

foundation species. The primary objectives of my research are to: 

1. Construct whitebark pine tree-ring chronologies from long-lived trees and 

subfossil wood from six mountains in the Beaverhead-Deerlodge, Lolo, and 

Flathead National Forests, in western Montana. 
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2.   Analyze the relationship between climate and whitebark pine growth. 

3.   Reconstruct climate variables using the whitebark pine chronologies. 

4. Compare climate with fluctuations in tree growth associated with disturbance 

events. 

5. Reconstruct the age structure of whitebark pine forests in the Beaverhead-

Deerlodge, Lolo, and Flathead National Forests. 

6. Assess the successional status of subalpine fir and Engelmann spruce in 

subalpine areas historically dominated by whitebark pine. 

7. Compare the long-term impacts of human-related (climate change, fire-

suppression and the introduction of white pine blister rust) and natural 

(mountain pine beetle) disturbances in the Beaverhead-Deerlodge, Lolo, and 

Flathead National Forests. 

8. Compare tree growth patterns in whitebark pine and subalpine fir 

chronologies from the Beaverhead-Deerlodge, Lolo, and Flathead National 

Forests. 

9. Determine whether distinct spatial and/or temporal patterns exist in the 

disturbance regimes of these forests locally, at the individual site level, and 

regionally, by comparing and contrasting the sites with each other. 

10. Compare methods in dendroecology to distinguish suppression and release 

patterns in whitebark pine growth related to landscape-level disturbance 

events. 
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1.10 Organization of the dissertation 

The remainder of my dissertation consists of five chapters. In Chapter 2, I provide 

site descriptions, geologic history, and land-use history of the six study sites in the Lolo, 

Flathead, and Beaverhead-Deerlodge National Forests in western Montana. In Chapter 3, 

I compare six whitebark pine chronologies developed from the study sites to evaluate 

landscape level trends on a multicentury scale. I separate the tree-ring variance explained 

by disturbance regimes and climate changes in the whitebark pine chronologies. The tree-

ring data from the Lolo, Flathead, and Beaverhead-Deerlodge National Forests are 

analyzed separately, but comparisons are made between them to examine the 

spatiotemporal scale of disturbance events in the whitebark pine ecosystem. Chapter 4 

provides an in-depth comparison of whitebark pine and subalpine fir chronologies from 

three study sites: Morrell Mountain in the Lolo National Forest, Ajax Peak in the 

Beaverhead-Deerlodge National Forest, and Hornet Peak in the Flathead National Forest.  

I examine growth suppression and release events caused by climate, white pine blister 

rust, and mountain pine beetle. Resulting forest composition and structure changes are 

statistically analyzed and discussed. Chapter 5 focuses on the relationship between 

drought and mountain pine beetle outbreaks. I statistically analyze the relationship 

between mountain pine beetle outbreaks with climate factors (temperature, precipitation, 

and PDSI). I summarize the major finding of my dissertation in Chapter 6 and suggest 

recommendations for future research. The Appendices contain details of chronologies 

developed from the dendroecological samples. 
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CHAPTER 2 

DESCRIPTION OF THE NORTHERN ROCKY MOUNTAINS 

 

2.1 The Northern Rocky Mountains 

 The Northern Rocky Mountains are characterized by generally north to south-

oriented mountain ranges separated by wide flat valley floors. Weather conditions are 

affected by slope and aspect along the Continental Divide, becoming progressively cooler 

and more humid from lower to higher elevations. Climatic zones range from the semiarid 

and relatively warm valley bottoms through a range of cool, moist conditions in the 

middle elevations, to the cold, moist subalpine and alpine region characterized by 

bedrock escarpments, talus slopes, and glacial features from the Pleistocene epoch (Arno 

and Hammerly 1984, Overbay 1986). The topographic variety in the northern Rockies 

facilitates the development of diverse plant and animal communities (Figure 2.1). 

 

2.1.1 Geology and Soils 

Tectonic forces elevated the Rocky Mountain area during the Laramide orogeny 

in the Late Cretaceous, approximately 40–70 million years ago (mya), and also caused 

the differential uplift of individual mountain ranges (Johns 1970, Peterson 1986). The 

mountain-building process formed collinear folds and subparallel faults that run 

throughout the northern Rockies. Although tectonic activity had its greatest impact on the 

Northern Rocky Mountains during the Late Cretaceous, folding and faulting still occur 

today on a much smaller scale. 
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Figure 2.1 Terrain map of western Montana. The Continental Divide is marked 
by a black dashed line. Map produced by Tracy Pollock, from the University Of 
Tennessee Department of Geography Cartographic Laboratory. 
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The ice advance of the Wisconsin glaciation, which ended approximately 10,000 

years ago, removed evidence of earlier glaciations (Johns 1970). The Cordilleran ice 

sheet entered Montana from Canada as individual lobes that filled the valleys, but at its 

glacial maximum, ice covered most of western Montana. Alpine glaciers merged with the 

Cordilleran ice sheet during the glacial advance. The advance and retreat of the glaciers 

were irregular and experienced relatively brief reversals. At the Montana/Canadian 

boundary, the ice reached a maximum altitude of over 2200 m (Daly 1912). Cirques, U-

shaped valleys, moraines, and mountain lakes are the most common glacial features 

visible today in the Northern Rocky Mountains. 

The Precambrian Belt, consisting of mainly quartzites and argillites, is evident in 

the surface geology of northwestern Montana (Pfister et al. 1977). The Bitterroot Range 

west of the Bitterroot Valley, the Sapphire and Anaconda-Pintlar Ranges, and the 

Continental Divide from Butte to Helena are comprised of the Idaho and Boulder 

Batholiths. The Continental Divide area is the most geologically complex area of the 

northern Rockies (Perry 1962). Composition of the batholiths is predominantly granitic 

with inclusions of schist and gneiss. The remainder of the mountains in the Montana 

Rockies consists of volcanic and sedimentary rocks (Pfister et al. 1977). The valleys 

contain a thick layer of alluvium deposits from streams and past glaciations.  

Montana forest soils are rocky and prone to erosion from wind and water. In high-

elevation sites in the Montana Rockies, Cryochrepts (well drained with moderately rapid 

permeability and slow runoff) are the major soil subgroup (Pfister et al. 1977). The Typic 

Cryochrepts are the most common, although thick deposits of volcanic ash in some areas 

form Andic Cryochrepts (Nimlos 1963).  These soil types are generally found in glacial 
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till areas and are deep to very deep. Large stones and boulders are present on the surface 

and in the soil profile. Surface soils at high elevations are acidic, gravelly loams and silts, 

with duff depths not exceeding 4 cm (Pfister et al. 1977). The surface soils are young, 

showing less leaching, weathering, and horizon development than Spodosols, although 

they are strongly acidic. Mean pH values of 4.8 to 5.0 were found for the upper soil 

horizons in high-elevation forest types, largely composed of Typic Cryochrepts (Pfister et 

al. 1977).  

 

2.1.2 Climate 

The Rocky Mountains provide a barrier to the flow of air across western North 

America and profoundly influence local climates. The northern Rockies are influenced by 

North Pacific weather patterns and are located in a transition zone between continental 

and maritime climates (Arno and Hammerly 1984). The area west of the Continental 

Divide has mild, wet, cloudy weather throughout the year, with the exception of a dry 

period in July and August. The climate east of the Continental Divide is continental, with 

warm summers and precipitation falling between May and September. Winter conditions 

are influenced by subzero Arctic air followed by warm, dry chinook winds (Pfister et al. 

1977). Mountain weather is much cooler than in the valleys. High elevations receive 2 to 

3 times the amount of annual precipitation, mainly in the form of snow. Mean annual 

precipitation ranges from 64–114 cm. Thus, the lower elevational limits for tree growth 

are controlled by moisture while the upper elevational limits are controlled primarily by 

temperature (Pfister et al. 1977).  
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2.1.3 Vegetation 

Plant succession and disturbance regimes affect the processes of change as 

vegetation communities develop over time. In the northern Rockies, forests rarely 

progress toward a steady-state or climax condition. In a traditional succession model, 

forests are initiated after a major disturbance, such as a stand-replacement fire (Peet 

2000). The disturbed site enters a relatively short period in which grasses, forbs, or 

shrubs dominate. The initial disturbed period is typically followed by the dominance of 

tree species that require open sunlight (shade-intolerant or early seral species). In the final 

forest succession stage, shade-tolerant or climax species germinate below the shade-

intolerant species and eventually dominate the site. Forest types in the northern Rockies 

experience frequent disturbances from fire, insects, and disease, amplified by periodic 

drought conditions (Monnig 1992). Depending on the site, the interval between 

disturbances can range from less than a decade to more than a century.  

Forested portions of northern Idaho and western Montana have distinct forest 

communities (Peet 2000) (Table 2.1). Stands of open, old-growth ponderosa pine (Pinus 

ponderosa Douglas ex C. Lawson) cover the lower montane slopes of the Rockies. At 

mid-elevation montane communities, vast areas are covered by stands of western white 

pine (Pinus monticola Douglas ex D. Don), usually mixed with western larch (Larix 

occidentalis Nutt.), grand fir (Abies grandis (Douglas. ex D. Don) Lindl.), and other 

conifers. Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) is also present but seldom 

abundant. In the subalpine ecotone, mixed stands of subalpine fir (Abies lasiocarpa 

(Hook.) Nutt.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), and 
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Moisture 
Classification 

Forest Climate 
Type Habitat Type Groups Species in Habitat Types 

Dry Warm Dry Forest Warm and Dry ponderosa pine, Douglas-fir, grass types 
    Moderately Warm and Dry mostly Douglas-fir and dry grand fir types 

    
Moderately Warm and 
Moderately Dry 

Douglas-fir, twinflower, and mostly grand fir 
types 

Moist Warm Moist Forest 
Moderately Warm and 
Moist grand fir, queencup, beadlily types 

    Moderately Cool and Moist
western redcedar, western hemlock, 
queencup, beadlily types 

  Cool Moist Cool and Moist 
subalpine fir, queencup, beadlily, menziesia 
types 

  Cold Moist Cool and Moderately Dry 
subalpine fir, beargrass, dwarf huckleberry 
types 

  Riparian Moderately Cool and Wet western red cedar, devil's club types 
    Cool and Wet subalpine fir, bluejoint types 

Cold Cold Cold and Moderately Dry 
subalpine fir, grouse whortleberry, woodrush 
types 

    Cold whitebark pine and alpine larch types 

 
Table 2.1 Vegetation classification by climate and habitat in the northern Rocky Mountains. Adapted from Peet (2000). 
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whitebark pine (Pinus albicaulis Engelm.) are present at high elevations. The understory 

of the subalpine ecotones is dominated by grouse whortleberry (Vaccinium scoparium 

Leib. ex Coville), Geyer’s sedge (Carex geyeri Boot.), beargrass (Xerophyllum tenax 

Nutt.), and slender hawkweed (Hieracium gracile Hook.) (Peet 2000). 

Tree reproduction in many forest ecosystems occurs in episodes associated with 

major disturbances.  Thus, the distribution of ages in a population is often a sensitive 

indicator of the history of disturbance in the stand (Christensen 1989). Tree size is highly 

dependent on the growth site and is not indicative of tree age. Although whitebark pine 

diameters may not exceed 30 cm due to harsh high-elevation environments, many of 

these trees are hundreds of years old. Healthy whitebark pine and other old-growth 

forests in the high elevations of the Northern Rocky Mountains are uncommon, but have 

several distinct characteristics:  

• The age of the dominant trees are significantly older than the average time 

between disturbance events. 

• The dominant trees are approaching their average life expectancy.  

• Forest composition and structure are more complex than younger stands.  

• The rate of change in these older stands is slower than younger stands. 

• Defects and broken crowns are evident in both living and dead trees (Pfister et al. 

1977, Peet 2000).  

• Abundant snags and dead woody debris are also common in old-growth forests. 
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2.1.4 Land-Use History 

Land-use studies provide a background for understanding the development of 

modern vegetation (Christensen 1989, Foster 1992).  Land-use history has been used to 

analyze the change from pre-European to present forest conditions (Foster 1992, Orwig 

and Abrams 1994, Ruffner and Abrams 1998).  Land management agencies are 

recommending the application of land-use history techniques to quantify the range and 

variability of ecological processes since pre-European settlement (Swetnam et al. 1999).  

Historical ecologists emphasize the context of land-use history to compare past locations 

and times with current conditions (Swetnam et al. 1999). Combining historical 

information from different sources has proven to be an effective tool for evaluating land-

use practices (Christensen 1989, Foster et al. 1998, Motzkin et al. 1999).  Information 

about 19th and 20th century forest and landscape conditions can be attained from 

regional surveys, journals and legal documents, regional histories, and long-term 

permanent plots (Foster 1988, Foster 1992).   

Settlers of European origin from the eastern U.S. began to occupy the Rocky 

Mountains after the Lewis and Clark expedition in 1805–1806 (Parks et al. 2005). The 

arrival of railroads in the late 19th century created an economy for farming and industrial 

mining for the industrial revolution in the eastern U.S and Europe. The mining and 

agricultural economy drew a diverse population to the northern Rockies (Parks et al. 

2005). Ranchers began to spread across the federal grasslands of the region, which led to 

the growth of the wheat farming industry. The valleys of the northern Rockies were 

moderately grazed and logged in the early 20th century (Pfister et al. 1977). The low-

elevation forests by streams and open areas were used by cattle, horses, and sheep. 
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Although livestock grazing intensity has decreased in most of the northern Rockies, 

livestock grazing is still permitted on portions of most public lands. In addition to 

ranching, timber also became an important natural resource industry (Parks et al. 2005). 

Heavy logging was associated with mining, railroad building, and settlement in the 

1870s. Logging continues today with the exception of several wilderness areas in 

Montana. Approximately 50% of low-elevation Montana forests have been logged 

(Pfister et al. 1977).  

Wilderness areas are an important part of the Northern Rocky Mountains. The 

expansive roadless areas are linked by minimally-roaded mountain ranges (Parks et al. 

2005). The wilderness areas provide an important habitat for many animal species, 

including large carnivores such as the grizzly bear, wolf (Canis lupus L.), and other 

animals that rely on large tracts of land (Ament and Craighead 1998). The wilderness 

areas in the northern Rockies are surrounded by an increasingly fragmented landscape 

from road building, development, and recreational activities (Johnson et al. 2003).  

 

2.2 The Flathead National Forest  

The Flathead National Forest (FNF) occupies over 930,700 ha in the Northern 

Rocky Mountains of northwestern Montana (Alt and Hyndman 1986, McCay 1994). The 

FNF is 89% forest land and 11% nonforest or water. Over 45% of the forest land in FNF 

is designated as wilderness (O'Brien 1999). The Canada/United States border is the 

northern boundary of FNF. Approximately 210 kilometers of the FNF boundary is shared 

with Glacier National Park along the Flathead River. The Flathead Indian Reservation is 

located west of the southern portion of the forest. The FNF also shares boundaries with 



 48

the Lewis and Clark National Forest on the east, the Lolo National Forest on the south, 

and the Kootenai National Forest on the west.  

 

2.2.1 Geology and Soils 

 The topography of the FNF is typical of glaciated lands, featuring high alpine 

basins and broad U-shaped valleys (McCay 1994). Continental, alpine, and valley 

glaciations occurred in the FNF. The Wisconsin glaciation influenced the shape of the 

land as well as the composition of the soils. During the last ice age, the glacier that filled 

the Rocky Mountain Trench pushed south through the Flathead Valley and into the 

Mission Valley. Ice that filled the Flathead Valley was about 2000 m thick at the 

Canadian border (Alt and Hyndman 1986). The ice thinned so rapidly southward that the 

glacier ended just south of Flathead Lake. Eventually, the ice age summers were warm 

enough to melt enormous volumes of ice. 

 The soils in the FNF are young and have a silty texture (Fenneman 1931). A 

volcanic ash surface mantle ranges from 10–20 cm in thickness. The bedrock is mostly 

meta-sedimentary argillites, quartzites, and limestones from the Precambrian era. Most of 

the mountain ranges have been formed by block faults. A vertical component of over 

2000 m related to the Lewis Thrust also contributes to the elevation of the ranges east of 

the Rocky Mountain Trench, specifically where the FNF adjoins Glacier National Park 

(Fenneman 1931). Most of the mountain ranges run north-south and stand 1500–2100 m 

above sea level, with the highest peaks reaching altitudes of 2200 to 2700 m. The slopes 

of these mountain ranges are typically greater than 60%.  

 



 49

2.2.2 Climate 

The weather in the FNF is cool and maritime influenced. The forest lies within the 

National Oceanic and Atmospheric Administration’s Montana Climate Division 1 

(Western). Annual precipitation varies from 40 cm in the valley bottoms to more than 

250 cm on the mountain tops. In the valleys, 50% of the precipitation falls as snow, while 

in higher elevations, 80% of the precipitation is snow. Air temperatures range from –40 

°C to over 38 °C. The growing season ranges from 60 to 90 days, depending primarily on 

the elevation and aspect (O’Brien 1999).  

 

2.2.3 Vegetation 

The most common forest types in the FNF are spruce-fir (47%), Douglas-fir 

(19%), lodgepole pine (17%), Engelmann spruce (6%), larch (5%), and whitebark pine 

(3%) (O’Brien 1999). Grand fir, ponderosa pine, and aspen forest types are uncommon 

but do occur. Over 81% of all trees in the FNF are less than 10 cm diameter breast height 

(DBH), and almost half of those are subalpine fir. The FNF has over 66 million snags 

(i.e., dead, standing trees) greater than 10 cm DBH. The largest snags (greater than 48 cm 

DBH) are estimated at 1.2 snags per hectare. The most abundant species of snags in this 

largest size class are Engelmann spruce and western larch (O’Brien 1999).  

Habitat types describe the potential of a site to support various plant communities 

as determined by climatic, soil, topographic characteristics. Habitat types are subdivided 

by specific combinations of potential overstory and understory indicator plant species 

(Pfister et al. 1977) (Table 2.1). The most common habitat type group in the FNF is the 

cool moist group, occurring in 48% of the forest area, and consists of spruce, fir, 
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Douglas-fir, lodgepole pine, Engelmann spruce, larch, and whitebark pine (O’Brien 

1999). Whitebark pine is part of the cool vegetation groups and has both even-aged and 

uneven-aged stands at high elevations that extend treeline. Whitebark pines are only 

found at higher elevations in the FNF, specifically from 1800 m to 2400 m. 

 

2.2.4 Land-Use History 

Fur trappers started to settle in the FNF area in the early 1820s (McKay 1994). 

However, the hostility of the Blackfeet and other tribes in the plains east of the Rocky 

Mountains led to a slower exploration of northwestern Montana by the fur companies and 

independent fur traders. Fur companies entered the western slopes of the Rocky 

Mountains through British Territory in the north to avoid conflict with the Blackfeet 

Indians. The Hudson Bay Company established trading posts in the valleys from 1846–

1870 (Barbouletos 1998). In 1846, Fort Connah was built to provide supplies (such as 

buffalo meat, pemmican, horse accessories, saddle blankets, and animal skins) to 

travelers in the region (McKay 1994). A population survey was conducted when Fort 

Connah was built and the majority of the area was populated by Native Americans: 450 

Flatheads, 600 Kalispels, and 350 Kootenais. Only 15 European settlers were surveyed at 

that time. The Hellgate Treaty of 1855 established the Flathead Indian Reservation in the 

Flathead Valley for the Flathead, Kalispel, and Kootenai tribes. After the reservation was 

established, the fur traders could not prevent the exploration and eventual settlement of 

western Montana by miners, ranchers, and other Europeans. During the flow of miners 

into the area in the 1860s, the settlement of towns and communities depended on the 

location of trading posts, topography, and government land policies. Many of these 
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settlers were French-Canadian, Scottish, or of Iroquois heritage. The most significant 

impact on the settlement of the Flathead area was the building of the Great Northern 

Railroad in 1891. By 1895, the Upper Flathead Valley had approximately 3,000 

occupants (McKay 1994). The Forest Homestead Act in 1906 also encouraged settlement 

of agricultural lands within the boundary of the Flathead Forest Reserve.  

The earliest forest surveys were conducted from 1898–1899, after the Forest 

Reserves in Montana were established on February 22, 1897 as part of The Organic Act 

(McKay 1994). John Muir and Gifford Pinchot traveled together to the Flathead Valley 

for the National Forest Commission in the late 1890s and commented on the natural 

beauty of the area and the abundant wildlife (Muir 1898). The Forest Reserves were 

managed by the General Land Office until 1905, when the USDA Forest Service was 

created (McKay 1994). The reserved land was mainly used for grazing, not for harvesting 

timber.  

Fires have been recorded by the Forest Service in the FNF since the late 1800s. 

The 1889 fire in Montana burned approximately 35,600 hectares, but the area had not 

been settled, so the effects of the fire were not devastating (Ensign 1889). The 1889 fire 

year was exceptionally dry and is a year of widespread fire across the northwestern 

United States (Barrett et al. 1997, Kipfmueller and Swetnam 2000, Heyerdahl et al. 2001, 

Hessl et al. 2004). The 1910 fire, in comparison, burned over 1,214,050 hectares in 

Montana and Idaho, and destroyed entire towns. Over half of the fires in 1910 were 

started by railroad operations and people who wanted work (Pyne 1982). After the 1910 

fire, the Forest Service built fire towers on high peaks and started coordinating 

transportation and communication systems (McKay 1994). The majority of the fires on 
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the FNF have been caused by lightning rather than human ignitions (McKay 1994). In the 

northern Rockies, approximately one in every 25 lightning strikes has the necessary 

characteristics to start a fire (Pyne 1982). Large wildfires occurred in the FNF in 1910, 

1919, 1926, 1929, 1931, 1934, 1940, 1946, and 1958 (Wolff 1980). More recent fires 

have also been recorded, such as the fires that occurred in 2003 when over 125,450 ha of 

forests in northwestern Montana burned (Peterson 2007). The Robert Fire and Wedge 

Canyon Fire burned approximately 5,260 hectares and 8,500 hectares, respectively, on 

the FNF from July to September of 2003. The FNF has since salvage harvested 

approximately 1,820 hectares of trees killed or injured from the fires (EPA 2004). 

 

2.3 The Beaverhead-Deerlodge National Forest 

The Beaverhead-Deerlodge National Forest (BDNF), located in southwestern 

Montana, encompasses 1,356,600 hectares divided into nine separate management 

sections (DeBlander 2001). The BDNF ranges in elevation from 1400 m at the 

Beaverhead River to 4000 m at the summit of Tweedy Mountain in the East Pioneer 

Range (Klepper 1950). The East Pioneer, Tobacco Root, Pintlar, Beaverhead, Gravelly, 

Snowcrest, Tendoy, and Centennial Ranges all experienced Pleistocene alpine glaciations 

(DeBlander 2001). Southwestern Montana is semiarid and the cold, frost-prone climate is 

unsuitable for the establishment of tree species that are not cold-adapted. The diverse 

topography of the BDNF, high relief, and climatic variability result in diverse alpine 

environments (DeBlander 2001).  
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2.3.1 Geology and Soils 

The Big Hole Valley, which dissects the BDNF, is the highest and widest of the 

broad mountain valleys in western Montana (Alt and Hyndman 1986). The valley 

separates the two large mountain ranges on BDNF, the Pioneer and Bitterroot Ranges. 

Volcanic rocks filled the bottom of the valley, while much of the bedrock on the 

Bitterroot Range is granite (Alt and Hyndman 1986). The Big Hole Valley was created 

over 70 million years ago when a portion of the upper crust detached and moved east 

from the Idaho Batholith. The Big Hole Valley is deeper than surrounding valleys with 

fill sediments, with areas over 4,200 m deep.  

More than half of the 27 mountain ranges in Montana are on the BDNF (Cooper 

et al. 1997). The crests of the southern Beaverhead, Gravelly, Snowcrest, and Tendoy 

Mountains are composed of Mesozoic and upper Paleozoic limestones, sandstones, and 

quartzites. The southern end of the Beaverhead Mountains is composed of calcareous 

Beaverhead Conglomerate. The highest point in the Gravelly Mountains, Black Butte, is 

composed of Quaternary basalt. The high country of the Tobacco Root Mountains is 

composed of the Tobacco Root Batholith. Most of the alpine terrain in the Pioneer 

Mountains is underlain by granite of the Pioneer Batholith. However, the high peaks at 

the northern end of the Pioneer Range have both intrusive igneous and Paleozoic 

limestones and dolomites. The majority of the Anaconda Mountains is granitic. The 

Madison Mountains are composed primarily of Precambrian gneiss and schist with part 

of the eastern side underlain by Mesozoic limestone (Cooper et al. 1997). Elevations in 

the Beaverhead and Gravelly Mountains range from 1750 to 3400 m (DeBlander 2001).  
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2.3.2 Climate 

The climate of the BDNF is typical of higher elevations in southwestern Montana 

with very cold, dry winters and mild summers. The forest lies within the National 

Oceanic and Atmospheric Administration’s Montana Climate Division 2 (Western). The 

BDNF is in the rainshadow of Oregon’s Blue Mountains and central Idaho’s high 

mountain mass, resulting in lower amounts of precipitation from Pacific storm systems 

when compared to areas in northern Montana (Ross and Hunter 1976). Mean annual 

precipitation varies from 36–120 cm with the majority of precipitation falling in the 

winter as snow (Ross and Hunter 1976). Summers are typically dry with orographically 

generated precipitation events (DeBlander 2001). The mean January temperature is 

approximately 5 °C, while the mean July temperature is 15 °C (DeBlander 2001). Local 

climate in the BDNF is modified by elevation, aspect, topographic position, and position 

relative to prevailing westerly winds and large-scale topographic features.  

 

2.3.3 Vegetation 

Southwestern Montana is the most floristically diverse region of the state (Cooper 

et al. 1997). Forest composition in the BDNF consists mostly (78%) of smaller-diameter 

tree (less than 10 cm DBH), while the remaining 22% are larger diameter trees (greater 

than 10 cm DBH). Snags and downed woody debris are an important component of forest 

ecosystems by providing habitat for wildlife species and acting as carbon sinks. The 

BDNF has over 71 million snags greater than 10 cm DBH. The largest snags (greater than 

48 cm DBH) have a density estimated at 0.2 snags per hectare. The most abundant 
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species of snags in this largest size class are whitebark pine, followed by Douglas-fir and 

Engelmann spruce (DeBlander 2001).  

The BDNF has different forest types, with lodgepole pine (Pinus contorta Dougl. 

ex Loud.) being the most common species at 47% of the total forest land area. Lodgepole 

pine is followed in abundance by Douglas-fir (22%), spruce and fir (12%), whitebark 

pine (11%), Engelmann spruce (5%), and limber pine (Pinus flexilis James) (2%).  

Whitebark pines are only found at higher elevations in the BDNF, specifically from 

2130–3020 m. Past glaciation and modern periglacial climates have resulted in 

environmental gradients that produce communities with high diversity (Peet 2000).  The 

BDNF has more than 70 forest habitat types grouped by temperature gradients and 

moisture availability. The most common habitat group is the cool and dry group, 

composed of lodgepole pine, Douglas-fir, spruce, fir, whitebark pine, and Engelmann 

spruce (DeBlander 2001). Whitebark pine stands are most abundant (over 80,900 ha) in 

the cold habitat type, with lodgepole pine, spruce, fir, and Engelmann spruce as the 

associated species. Understory vegetation includes mountain grasslands dominated by 

Idaho fescue (Festuca idahoensis Elmer) and shrublands dominated by mountain big 

sagebrush (Artemisia tridentata Nutt.) (Peet 2000). 

 

2.3.4 Land-Use History 

USDA Forest Inventory Analysis crews noted considerable impacts from both 

anthropogenic and natural disturbances in the BDNF forest stands (DeBlander 2001). The 

field crews found that 27% of the forested area in the BDNF had no visible signs of 

disturbance, 26% of the forest showed signs of disease damage, 15% of the stands had 



 56

been logged, 12% had signs of wind and weather damage, 9% had evidence of fire, and 

8% showed signs of insect and animal damage. The remaining 3% of the BDNF had been 

disturbed through road building, land clearing, and mining. 

The Lemhi, Flathead, Shoshoni, Bannock, Crow, Blackfeet, and Nez Perce Indian 

tribes used the BDNF as hunting grounds prior to the arrival of European settlers 

(Burlingame 1942). The year-round Lemhi presence in the BDNF was caused by raiding 

by the Blackfeet which pushed them into the southwestern corner of Montana 

(Burlingame 1942). The Nez Perce maintained buffalo hunting grounds in the valleys of 

the BDNF. On August 9, 1877, Colonel Joseph Gibbon and the U.S. Army ambushed and 

attacked the Nez Perce encampment in the Big Hole Valley, driving the tribe across the 

Continental Divide and into north-central Montana (Munday 2001).  

The first record of European movement into the BDNF occurred in August 1805 

when the Lewis and Clark expedition traveled through the Big Hole Valley and made 

contact with the Lemhi Indian tribe (Appleman 1975). By 1830, the American Fur 

Company began operations in the area; buffalo hides were also an important source of 

trade (Burlingame 1957). Fur trappers also brought the smallpox epidemic which 

decimated the Blackfeet Indians and other tribes in the area (Munday 2001). 

Homesteaders were slow to settle in the area because many were afraid of grizzly bear 

attacks on their milking cows or in their houses. Therefore, many settlers did not have 

doors on their houses (Silve 2005). Gold was discovered in the BDNF in 1863 and within 

a year 10,000 miners had begun working these deposits (Barsness 1962). Hydraulic 

mining operations began in the 1870s and their effect on the landscape can still be seen 

today in the form of exposed talus slopes (Burlingame 1957). 
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2.4  The Lolo National Forest 

The Lolo National Forest (LNF) administers 841,400 hectares, of which 95% is 

forest land and 5% is nonforest or water resources (DeBlander 2000). Wilderness areas 

are designated as 8% of the total managed area. The LNF is approximately 190 km long 

and 60–180 km wide, segmented by valleys (Overbay 1986). The forest is located west of 

the Continental Divide and is influenced by both continental and maritime climates 

(DeBlander 2000). These climates provide a wide range of environmental gradients that 

produce highly-diverse forests. Elevation ranges from less than 732 m at the Clark Fork 

River to 2743 m at Lolo Peak (Overbay 1986).  

 

2.4.1 Geology and Soils 

The topography of the LNF has been sculpted by the weathering, erosion, and 

past glaciation (Peterson 1986). The bedrock of the region is composed of Proterozoic 

igneous rock, overlain in places with Devonian and Cambrian sedimentary rock (Alt and 

Hyndman 1972) and Quaternary sediments from glacial activity (Alt 2001). The LNF is 

located on the western end of the Garnet Range and at the northern edge in the Sapphire 

tectonic block at the junction of the Clark Fork fault and the Blackfoot thrust plate (Alt 

2001). The Clark Fork fault and Blackfoot thrust plate are overlaid by the Belt formation 

which consists mostly of Precambrian sedimentary rock formations made up of the 

Snowslip Formation and the Mount Shields Formation (Alt 2001). The Snowslip 

Formation consists of argillite and siltite with thin beds of fine-grained quartzite (Alt 

2001). Thin beds of limestone and flat pebble conglomerate also occur. Soils are poorly 
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developed in high elevations of the LNF, and the underlying geology is composed of a 

mix of Quaternary and Cenezoic glacial deposits, Precambrian shales and siltstones, and 

Precambrian argillites and quartzites (Ross et al. 1955)  

 

2.4.2 Climate 

The climate of the LNF is representative of higher elevations in western Montana, 

with very cold, dry winters and mild summers. The forest lies within the National 

Oceanic and Atmospheric Administration’s Montana Climate Division 1 (Western). 

Average annual temperature is 6° C, with summer and winter temperatures averaging 13° 

C and –2° C, respectively (NCDC 2007). Average annual precipitation is 42 cm, with the 

majority falling in the winter and early spring. Precipitation increases with elevation and 

over two-thirds of the precipitation falls as snow. The snowmelt, which is approximately 

half of the annual precipitation, is the primary source of ground water recharge and 

streamflow (Overbay 1986).  The western section of the LNF lies in the rainshadow of 

the Bitterroot Mountains and results in lower amounts of precipitation from Pacific storm 

systems when compared to areas in the eastern section of the LNF (Overbay 1986). 

Summers are typically dry with orographically-generated precipitation events.  

 

2.4.3 Vegetation 

Tree sizes in the LNF resemble an inverse-J distribution of many smaller-

diameter trees (less than 10 cm DBH), and fewer larger-diameter trees (greater than 10 

cm DBH). The LNF has over 66 million snags greater than 10 cm DBH. The largest 

snags (greater than 48 cm DBH) are estimated at 0.44 snags per hectare. The most 
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abundant species of snags in this largest size class are whitebark pine, Douglas-fir, and 

western larch (DeBlander 2000).  

The most common forest type is Douglas-fir, which is 41% of the total forest land 

area. Douglas-fir is followed in abundance by lodgepole pine (21%), spruce and fir 

(18%), larch (6%), ponderosa pine (4%), western red cedar (3%), and grand fir, 

Engelmann spruce, and whitebark pine (each 2%). Whitebark pines are only found at 

higher elevations in the LNF, specifically from 1830–2710 m. The LNF includes more 

than 80 forest habitat types (DeBlander 2000). The forest habitat types are grouped by 

temperature gradients and moisture availability in the biophysical environment. The most 

common habitat group is the moderate warm/dry, composed of Douglas-fir, ponderosa 

pine, grand fir, and lodgepole pine. Second most common are the cool/moist and 

cool/moderate dry habitat type groups which include Douglas-fir, Engelmann spruce, 

spruce, fir, mountain hemlock (Tsuga mertensiana (Bong.) Carr.), larch, and lodgepole 

pine. Whitebark pine is not a major component of any habitat type group but is found in 

the cold and cold/moderate dry groups with spruce, fir, and lodgepole pine.  

Common understory plants include grouse whortleberry, red mountain-heath 

(Phyllodoce empetriformis (Sm.) D. Don), woodrush (Carex luzulina Olney), and 

beargrass (Peet 2000). Areas above treeline are dominated by shrub and herbaceous plant 

communities of elk sedge (Carex garberi Fern.), pinegrass (Calamagrostis rubescens 

Buckl.), twin flower (Linnaea borealis L.), shooting star (Dodecatheon L.), yellow 

avalanche-lily (Erthronium grandiflorum Pursh), mountain arnica (Arnica montana L.), 

arrowleaf ragwort (Senecio triangularis Hook.), and dwarf blueberry (Vaccinium 

caespitosum Michx.) (Peet 2000).   
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2.4.4 Land-Use History 

The LNF was used by the Blackfeet, Kootenai, and the Salish Indian tribes before 

European settlers arrived in the 1800s (Sutton 2000). In September 1805, the Lewis and 

Clark Expedition passed through the LNF on the Lolo Trail with great difficulty as the 

game was scarce and the snowfall was early (Devlin 2001). On the expedition’s return 

trip through the area, the Blackfeet attacked and killed a number of party members 

(Appleman 1975). However, by 1830, the Blackfeet population had been reduced to 

10,000 people as a result of smallpox (Hafen 1982). The Lolo Trail was historically used 

by the Salish Indians to travel from the west to dig for camas roots and to access salmon 

and steelhead fishing on the Clearwater and Snake Rivers (Devlin 2001). The Nez Perce, 

from the plateaus of central Idaho, came east on the Lolo Trail to hunt buffalo (Devlin 

2001). In the summer of 1877, over 750 Nez Perce tried to escape General Oliver Otis 

Howard’s army by crossing the trail into northwestern Montana (McWhorter 1984). This 

trail was regularly maintained with intentionally-set fires (Lewis and Ferguson 1999, 

Barrett 2000). Although the importance of fires set by American Indians in the West is 

still debated (Vale 2002, Pyne 2003, Barrett et al. 2005), significant impacts to local 

vegetation structure and communities around occupied sites have been documented in the 

LNF region (Arno et al. 1997, Barrett and Arno 1999). 

The LNF is relatively rich in mineral resources, and mining operations have 

existed in the region nearly continuously following a gold and silver rush in the mid-

1860s (Harrison et al. 1969, Safford 2004). Prospecting occurred throughout the region, 

and several abandoned mines are now scattered across the landscape. Following the 

initial rush for precious metals, mining interests broadened to include numerous mineral 
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resources including antimony, barite, copper, sapphire, gold, and silver. By the late 

1980s, mining activity occurred on 107 ha of the LNF. Sand and gravel extraction also 

occurred at several sites, and while oil and gas have not yet been exploited within the 

forest, large-scale exploration began in the mid-1980s with over 372,310 ha under lease 

for mining (Overbay 1986). 

Large-scale logging was restricted by terrain and did not begin until the region 

was opened to railroads in the late 19th century (DeBlander 2000). Since the 1920s, 

logging operations have focused on clear-cutting operations at low and mid-elevation 

forests of ponderosa pine, Douglas-fir, western larch, and lodgepole pine (Overbay 

1986). Due to inaccessibility, many high-elevation forests in the LNF have never been 

logged (DeBlander 2000). However, over 410,000 ha have been deemed appropriate for 

future harvesting (Overbay 1986). 
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CHAPTER 3 

TRENDS IN WHITEBARK PINE GROWTH RELATED TO 
CLIMATE AND MOUNTAIN PINE BEETLE OUTBREAKS IN 

THE MONTANA ROCKY MOUNTAINS 
 

Portions of this chapter that refer to whitebark pine ecology and study site 
descriptions were taken from Chapters 1 and 2 of this dissertation. The use of “we” in 
this chapter refers to Dr. Henri Grissino-Mayer and Evan Larson, who will be co-authors 
on the manuscript submitted from this chapter. Dr. Grissino-Mayer and Evan Larson 
assisted in the identification of relevant literature, location of sample sites, field 
collection, and verifying the accuracy of dated samples.  

In this chapter, we compare six whitebark pine chronologies to evaluate 
multicentury radial growth and climate trends along a north-south transect in the Montana 
Rocky Mountains. Our objective was to use the whitebark pine chronologies to partition 
the proportion of tree-ring variance explained by mountain pine beetle outbreaks and the 
proportion of variance explained by climate in the 20thcentury. Manuscript to be 
submitted to Ecological Applications. 
 

3.1 Introduction 

Whitebark pine (Pinus albicaulis Engelm.) ecosystems have been shown to be 

highly sensitive to climate variability (Perkins and Swetnam 1996, Biondi et al. 1999, 

Luckman and Villalba 2001, Tomback et al. 2001, Kipfmueller 2003), with relatively 

small changes in temperature and precipitation having significant effects on species 

productivity and community disturbance regimes (Tomback and Resler 2007). Our 

understanding of how whitebark pine communities have been influenced by changing 

climate conditions is therefore critical in understanding the current decline of whitebark 

pine throughout its range. Studying climate and vegetation dynamics at multicentury 

scales may provide insight into the resiliency of complex ecosystems in the northern 

Rocky Mountains of the western U.S.  



 63

Dendroclimatological studies on whitebark pine have shown the complexity of 

climate-growth relationships within this species and demonstrated the importance of 

considering microsite variation in developing climatically-sensitive whitebark pine 

chronologies (Perkins and Swetnam 1996, Kipfmueller 2003, Bunn et al. 2003). Previous 

studies have been conducted on whitebark pine climate response in the northern Rocky 

Mountains west of the Continental Divide in Idaho (Perkins and Swetnam 1996, 

Kipfmueller 2003), but little is know about the response to climate in whitebark pine east 

of the Continental Divide in Montana (Mann 2008). West of the Continental Divide, 

summer temperatures have been the primary driver of whitebark pine growth fluctuations 

(Perkins and Swetnam 1996, Luckman et al. 1997, Biondi et al. 1999, Kipfmueller 2003), 

but drought has shown a stronger relationship to whitebark pine growth patterns east of 

the Continental Divide (Mann 2008). More dendroclimatological research is needed to 

compare climate-growth response in whitebark pine populations on a landscape-level 

scale in the northern Rocky Mountains.  

Climate patterns affect the relationship between the ecology of mountain pine 

beetles (Dendroctonus ponderosae Hopk.) and whitebark pine mortality.  Mountain pine 

beetle attacks occur more frequently during periods with warmer temperatures (Campbell 

et al. 2007). Warming climate conditions expand the geographic range of mountain pine 

beetles by increasing the area available for the beetles to complete their life cycle. An 

increase in the number of infestations since 1970 in formerly climatically unsuitable 

habitats indicates that mountain pine beetle populations have expanded into high-

elevation areas (Carroll et al. 2003). Therefore, whitebark pine may be more vulnerable 

to mountain pine beetle outbreaks under current warming conditions than during previous 
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outbreaks between 1920 and 1940 and between 1970 and 1980. Whitebark pine is already 

in peril due to white pine blister rust (Cronartium ribicola JC Fischer), and the 

overlapping effects of the current mountain pine beetle outbreak will likely intensify its 

decline. The effects of climate change are important when assessing the flexibility of 

whitebark pine ecosystems to recover from mountain pine beetle outbreaks and other 

landscape-level disturbances. Consequently, an urgency exists to understand the 

influence of climate change on the severity of mountain pine beetle outbreaks and white 

pine blister rust infections, both of which are contributing to the decline in whitebark pine 

ecosystems.  

Mountain pine beetle epidemics killed a large proportion of mature whitebark 

pine trees in the Rocky Mountains of the United States during the 20th century (Ciesla 

and Furniss 1975, Furniss and Carolin 1977, Romme et al. 1986), and the insect is 

considered the most destructive of the native biotic agents in mature Pinus forests in 

western North America (Safranyik and Carroll 2006). The major hosts for mountain pine 

beetle include whitebark pine, ponderosa pine (Pinus ponderosa Douglas ex C. Lawson), 

lodgepole pine (Pinus contorta Douglas ex Loudon), and western white pine (Pinus 

monticola Douglas ex D. Don). Extensive mountain pine beetle outbreaks in western 

North America occurred in the 1880s, 1930s, and 1970s, and more recently in the early 

2000s (Arno and Hoff 1989, Taylor et al. 2006). The series of outbreaks that occurred 

from 1920 to 1940 in Idaho and Montana killed an estimated 1.4 billion lodgepole pines 

and vast numbers of whitebark pine (Safranyik and Carroll 2006). Extensive outbreaks in 

western North America during the late 1970s and early 1980s killed almost 2 million 

hectares of Pinus trees. A massive infestation, extending over 12 million hectares, also 
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devastated lodgepole and whitebark pine stands in the northern Rocky Mountains and in 

central British Columbia in the early 2000s (Safranyik and Carroll 2006).  

Dendroecological methods for detecting mountain pine beetle outbreaks in 

whitebark pine and lodgepole pine forests have relied mostly on growth release periods 

beginning almost a decade after the outbreak event (Heath and Alfaro 1990, Alfaro et al. 

2004, Taylor et al. 2006, Campbell et al. 2007). In lodgepole pine forests, climate-tree 

growth relationships have been explored that compared mountain pine beetle outbreak 

periods using correlation analysis and ordination techniques (Campbell et al. 2007). The 

inter-relationships between whitebark pine growth, climate response, and mountain pine 

beetle outbreak periods, however, have not yet been studied. We propose to contribute to 

these dendroecological methods by developing a new approach for decoupling radial-

growth signatures related to climate and mountain pine beetle outbreaks in the northern 

Rocky Mountains. 

In this study, we interpret radial growth patterns of six whitebark pine 

chronologies to distinguish the relative influence of climate response and mountain pine 

beetle outbreaks in whitebark pine populations in western Montana. The specific 

objectives of this study were to: (1) develop tree-ring chronologies for whitebark pine 

along a latitudinal transect through western Montana, (2) determine which climate 

variables exert the most influence on whitebark pine growth and reconstruct climate over 

the length of the chronologies, and (3) partition the response of whitebark pines to that 

caused by known mountain pine beetle outbreaks during the 20th century, and to that 

caused by climate in the 20th century. 
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3.2 Study Site 

We sampled whitebark pine-dominated forests located on a north-south transect 

that extended from the Montana/Canada border to the western side of Yellowstone 

National Park. We chose to sample along a north-south transect to evaluate landscape-

level climate and mountain pine beetle outbreak trends. Our study sites were located in 

whitebark pine forests that cover six peaks in western Montana (Figure 3.1). The sites 

varied in elevation from 2,040 m to 2,535 m (Table 3.1). Mean annual temperature ranges 

are similar, but a gradient of decreasing precipitation exists from west to east that creates 

different precipitation regimes among the six sites. Soils are poorly developed at all sites. 

The underlying geology is composed of a mix of Quaternary and Cenozoic glacial 

deposits, Precambrian shales and siltstones, and Precambrian argillites and quartzites 

(Ross et al.1955, Raines and Johnson 1996). Subalpine fir, Engelmann spruce, and 

lodgepole pine were present in the stands we examined. Forest cover on Point Six and 

Ajax Peak were relatively continuous, although the forests on Morrell Mountain, Big 

Hole Pass, and Hornet Peak were broken by a few alpine meadows, and the forest on 

Mineral Peak was dissected by open talus. Herbaceous cover on the sites was dominated 

by grouse whortleberry (Vaccinium scoparium Leib. ex Coville), red mountain-heath 

(Phyllodoce empetriformis (Sm.) D. Don), smooth woodrush (Luzula hitchcockii Hamet-

Ahti), bear grass (Xerophyllum tenax (Pursh) Nutt.), and elk sedge (Carex geyeri Boott).  

Evidence of disturbances was common at each site. Whitebark pine had 

experienced differing rates of mortality in each stand, predominantly from mountain pine 

beetle activity that we identified by the presence of J-shaped galleries on the boles of  
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Figure 3.1. Terrain map of six study sites in western Montana. The Continental 
Divide is marked by a black dashed line. Map produced by Tracy Pollock, from 
the University of Tennessee Department of Geography Cartographic Laboratory. 
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Study Site 

 
National Forest 

Elevation 
(m) 

Latitude 
(Degrees N) 

Longitude 
(Degrees W) 

Hornet Peak Flathead 2040 48.52.44 114.31.33 

Mineral Peak Lolo 2250 47.00.13 113.48.51 

Morrell Mountain Lolo 2370 47.11.53 113.21.25 

Point Six Lolo 2350 47.02.34 113.59.14 

Ajax Peak Beaverhead-
Deerlodge 2535 45.20.25 113.42.57 

Big Hole Pass Beaverhead-
Deerlodge 2255 45.31.14 113.48.16 

 

Table 3.1. Study site locations in Montana. 
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dead trees. We also observed several dead trees with what appeared to be old blister rust 

cankers at the sites in our northern (Flathead National Forest) and central (Lolo National 

Forest) sites. Blister rust was abundant in all sites, with living whitebark pine trees 

exhibiting open cankers or flagging (red needles due to the recent mortality of a branch or 

stem) in their upper canopies. Evidence of past fires was common, especially in our 

central sites, with whitebark pine trees displaying multiple fire scars. We did not observe 

any fire-scarred fir or spruce. 

 

3.2.1 Land-Use History 

Fires have been recorded by the USDA Forest Service in the Flathead, Lolo, and 

Beaverhead-Deerlodge National Forests since the late 1800s. The 1889 fire in Montana 

burned approximately 35,600 hectares (Ensign 1889). The 1889 fire year was 

exceptionally dry and is a year of widespread fire across the northwestern United States 

(Barrett et al. 1997, Kipfmueller and Swetnam 2000, Heyerdahl et al. 2001, Hessl et al. 

2004). The 1910 fire, in comparison, burned over 1,214,050 hectares in Montana and 

Idaho (McKay 1994). After the 1910 fire, the USDA Forest Service built fire towers on 

high peaks and started coordinating transportation and communication systems (McKay 

1994). Fire towers were built on Hornet Peak (northern site), Mineral Peak, and Morrell 

Mountain (central sites) in the 1920s. A radio tower was constructed on Point Six (central 

site) in the early 1960s. Point Six site is also fragmented by several ski runs and a utility 

road to the radio facility on the peak of the mountain. More recent fires have been 

recorded in the northern and central sites, such as the fires that occurred in 2003 when 

over 125,450 ha of forests in northwestern Montana burned (Peterson 2007). Fire towers 
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were not present on Ajax Peak and Big Hole Pass (southern sites). However, gold was 

discovered at Ajax Peak in 1863, which led to hydraulic mining operations in the 1870s 

(Barsness 1962). The effects of mining on the landscape can still be seen today in the 

form of exposed talus slopes (Burlingame 1957, Barsness 1962). 

 

3.3  Methods 

3.3.1  Field Methods 

The whitebark pine samples used in this study were part of a larger project 

designed to study the current status of the whitebark pine ecosystem in Montana. Many 

of the whitebark pine samples selected for dendroclimatological analysis were affected 

by the mountain pine beetle and some samples exhibited fire scars that could diminish the 

strength of the overall climate signal. Whitebark pine tree-ring data were collected in four 

0.05 ha fixed-radius (r = 12.66 m) plots on each of the six mountains selected (24 

overstory plots total). We collected increment cores from two radii of each tree in the plot 

by either coring the tree twice on opposite sides of the tree, or by coring straight through 

the tree. All cores were taken at or below 30 cm above the root collar and along the 

contour of the slope to minimize the effects of reaction wood on the growth patterns in 

each sample (Fritts 1976). Core samples were labeled and placed in paper straws for 

storage and protection. We used a chainsaw to collect 5 to 10 cross-sections from 

whitebark pine snags, stumps, and logs to extend the tree-ring information from the cores 

back in time, and examined cross-sections for fire and mountain pine beetle scars at each 

of the six mountain sites (Arno and Sneck 1977). We visually examined each cross-

section and noted the presence or absence of fire (i.e., internal fire scars), mountain pine 
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beetle galleries, and blue-stain fungus on each sample. All samples were labeled and then 

wrapped with plastic wrap for transport back to the laboratory. 

 

3.3.2  Laboratory Methods 

All samples were frozen at –40 °C for 48 hours to kill any pathogens and/or 

insects that may have been transported along with the samples. After allowing all samples 

to dry, fragile cross-sections were glued to plywood for stabilization. Cores were allowed 

to air-dry completely in the straws and were then glued to wooden core mounts with cells 

vertically aligned to ensure a transverse view of the wood surface. Cores and cross-

sections were examined for blue-stain fungus in the outer tree rings, indicating mountain 

pine beetle presence. Cross-sections were given an initial flat surface using a band saw to 

remove deep chain saw cuts prior to sanding, then each cross-section and core sample 

was sanded using a belt sander, beginning with ANSI 80-grit (177−210 μm) and using 

progressively finer-grit belts until ANSI 400-grit (20.6−23.6 μm) (Orvis and Grissino-

Mayer 2002). This process produced a wood surface with cellular features clearly defined 

under 10x magnification for clear ring identification.  

 

3.3.3 Crossdating and Chronology Construction 

We used visual, graphical, and statistical crossdating to assign precise calendar 

years to the growth rings of the core and cross-section samples. Visual crossdating relied 

on recognition of characteristic patterns of wide and narrow rings common to each study 

site that were likely related to regional climate (Fritts1976), graphical crossdating was 

accomplished using the skeleton-plot method (Stokes and Smiley 1996), and statistical 
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crossdating was accomplished using ring-width measurements and the computer program 

COFECHA (Holmes 1983, Grissino-Mayer 2001).  

We drew two radii on each cross-section extending from the pith to the outermost 

complete ring, and measured along each radius, bypassing particularly eroded and 

degraded portions of the surface. We measured the ring widths on all samples to 0.001 

mm accuracy with a Velmex measuring stage coupled with MEASURE J2X software. 

We confirmed the graphical crossdating and relative placements of all tree-ring series 

using COFECHA, which uses segmented time-series correlation techniques to confirm 

the previously-assigned temporal placements of all tree rings (Grissino-Mayer 2001). 

Because crossdating is a high-frequency process (pattern matching of sequences of 

individual rings), COFECHA removes all low-frequency trends using both spline-fitting 

algorithms and autoregressive modeling (Grissino-Mayer 2001). Such trends could also 

be caused by natural (e.g., mountain pine beetle outbreaks and fire events) and human 

(e.g., blister rust infestation, logging, and mining) disturbances that otherwise could mask 

the climate signal desirable for accurate crossdating. We tested consecutive 50-year 

segments (with 25-year overlaps) on each series with a master chronology created from 

all other series at each of the six study sites. We also tested our six whitebark pine 

chronologies with other chronologies from Montana and Idaho. Crossdating was verified 

when the correlation coefficient for each tested segment exceeded 0.32 (p < 0.01), 

although coefficients were usually much higher. The final suggested placement made by 

COFECHA had to be convincing both graphically (similar patterns in wide and narrow 

rings) and statistically (correlation significant at p < 0.001) (Grissino-Mayer 2001).  
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Crossdating quality was assessed by two statistical descriptors. The average mean 

sensitivity was used to measure the strength of the year-to-year variability in all series. 

Values of 0.25 or higher are common for tree-ring data from the western U.S. (DeWitt 

and Ames 1978). We also used the interseries correlation as the average of all Pearson 

correlation coefficients calculated for each series to compare to all other series in the 

chronology (Grissino-Mayer 2001).  

We standardized all measurement series in the six chronologies to remove effects 

from age-related growth trends that could add noise to the series unrelated to the climate 

signal desired in chronology development (Cook 1987, Fritts 2001). We removed the 

age-related growth trend of each sample using the program ARSTAN (Cook 1985), 

which fits a negative exponential trend curve or straight line to the growth of the sample 

using the least squares technique.  ARSTAN then creates an index for that year by 

dividing the actual ring-width by the value predicted by the regression (Fritts 1976, Cook 

1985). The indices were then averaged for each year across all series to create a single 

index series for each site (Cook 1985).  

 

3.3.4  Instrumental Climate Data 

The climate-tree growth relationships for each of the six chronologies were 

analyzed using divisional climate data obtained from the National Climatic Data Center 

(NCDC 2007). For the Beaverhead-Deerlodge National Forest chronologies, we used 

climate data from NOAA Climate Division Montana 2 (Southwestern). For the Flathead 

and Lolo National Forest chronologies, we used climate data from NOAA Climate 

Division Montana 1 (Western). The climate variables used in the climate response 
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analysis included monthly average temperature, monthly total precipitation, and monthly 

Palmer Drought Severity Index (PDSI). PDSI is used by the National Weather Service to 

monitor drought and wetness conditions in the United States and is a measure of the 

moisture conditions during the growing season. PDSI describes the severity of both wet 

and dry periods and incorporates temperature, precipitation, and evapotranspiration as an 

estimate of soil moisture availability as a monthly index (Palmer 1965). The index is a 

weighted average of estimated soil moisture conditions for the current and preceding 

months resulting in a strong month-to-month autocorrelation that represents soil moisture 

condition changes over time (Stahle et al. 1988). PDSI generally ranges from –6 to +6, 

with negative values indicating dry periods and positive values indicating wet periods. 

PDSI values from –2.0 to –3.0 are considered a moderate drought, values from –3.0 to –

4.0 are considered a severe drought, and values less than –4.0 are considered an extreme 

drought. PDSI has been used in dendroclimatic studies and is often significantly 

correlated with tree-ring indices in North America (Grissino-Mayer and Butler 1993, 

Watson and Luckman 2001, Woodhouse 2001). 

We also compared whitebark pine growth with precipitation, maximum 

temperature, minimum temperature, and dewpoint temperature using the PRISM data set. 

PRISM (parameter-elevation regressions on independent slopes model) is a regression-

based model that uses point data, a digital elevation model, and climate parameterization 

to generate repeatable estimates of annual, monthly, and event-based climate parameters 

for locations at any given point (Daly et al. 1994, 2002, Johnson et al. 2000). These 

estimates are represented on a regular grid, making them GIS-compatible. PRISM data 

provide 103 years of high-resolution monthly temperature and precipitation maps for the 
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contiguous 48 states (Daly et al. 2002), as well as detailed precipitation and temperature 

maps for Canada, China and Mongolia (Daly et al. 2000a,b) and the European Alps. 

 

3.3.5 Statistical Analysis of Climate Response and Reconstructions 

Climatic variables that influence whitebark pine growth were assessed using both 

biological and statistical modeling.  The program PRECON (Fritts and Shashkin 1994) 

was used to conduct correlation analysis and response function analysis (RFA) for each 

of the ARSTAN tree-ring chronologies from 1895 to 2004. We wanted to use the longest 

possible climate record for the biological models of tree growth. We used the ARSTAN 

chronologies instead of the STANDARD and RESIDUAL chronologies because we 

found stronger relationships between climate variables and the ARSTAN chronologies. 

RFA was used in conjunction with correlation analysis to examine the climatic effects on 

ring widths by applying a multivariate, biological model of tree growth (Grissino-Mayer 

and Fritts 1995). The RFA examines the climatic effects on tree growth using principal 

components of the normalized climate dataset to reduce the effects resulting from 

covariance among the independent variables (Grissino-Mayer et al. 1989). Included with 

the climate data as possible predictors were growth indices from prior years to assess 

biological inertia in the tree-ring record (Grissino-Mayer and Fritts 1995). A bootstrap 

method provides confidence intervals for the response coefficients. The resulting 

response function coefficients indicate the separate influences that precipitation and 

temperature have on monthly tree growth (Grissino-Mayer et al. 1989). RFA and 

stepwise regression were conducted using the six whitebark pine chronologies and 30 

monthly variables: 15 variables for mean monthly temperature and 15 variables for 
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monthly total precipitation. The 15 months began with the June of the previous growing 

season and ended with August of the current growing season. We chose to begin the 

interval in the previous June because summer (June–August) climate conditions are likely 

to impact whitebark pine growth during the subsequent growing season.  

Correlation analysis was used as a complement to response function analysis by 

statistically determining the strength of association between climate variables and 

whitebark pine growth. Pearson correlation coefficients were calculated between growth 

indices and climate variables (temperature, precipitation, and PDSI) for a 20-month 

period (previous May–current December). Seasons were determined for each climate 

variable based on sequences of months during which the climatic variable exhibited 

statistically significant relationships with whitebark pine growth. Seasonalizing climate 

data are important because they illustrate the longer period during which a climatic 

variable has the greatest effect on tree growth (Grissino-Mayer and Butler 1993, 

Grissino-Mayer 1995).  

We selected the seasonal variable with the strongest relationship with tree growth 

to develop a regression equation that predicted the selected climatic variable for the full 

length of the whitebark pine chronologies. We tested different subsets of climate data and 

found the earlier periods (1895–1939) were sparse and less consistent when compared to 

recorded climate data beginning in 1940. Therefore, we used the strongest period of 

instrumental records (1940–present) to compute a transfer function and reconstruct the 

seasonal climate variable over the length of the chronologies. Standard regression 

diagnostics (Studentized residuals and Cook’s d) ensured that our reconstructions 

minimized violations of the least squares regression. Outliers that exceeded tolerances 
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after inspection of the Studentized residuals (< –2 or > +2) and Cook’s d (approximately 

0.1) statistics were evaluated for possible removal from the model (Grissino-Mayer 

1995).  

 

3.3.6 Separating Disturbance from Climate 

We used PRECON to develop 100-year time series plots that incorporated the 

results from the stepwise regression. The stepwise regression uses the months with 

significant climate effects to show those periods during the 20th century when tree 

growth was above or below that modeled from the observed climate variables. Declines 

in growth not associated with climate could be caused by large-scale disturbances, such 

as mountain pine beetle outbreaks, that contribute to the mortality of mature whitebark 

pines within a stand. Smaller-diameter whitebark pines that survived the periodic 

mountain pine beetle outbreaks were expected  to show an increase in growth within a 

decade following the outbreak (Taylor et al. 2006, Campbell et al. 2007). The mountain 

pine beetle outbreaks between 1925 and 1935 and between 1970 and 1980 are expected 

to have influenced whitebark pine growth, thus reducing the strength of the overall 

climate signal. We used PRECON to create residual chronologies (actual tree growth 

minus predicted tree growth) in the 20th century to distinguish the separate influences of 

mountain pine beetle outbreak periods and climate in whitebark pine growth. Creating 

such residual chronologies also allowed us to infer mountain pine beetle outbreak trends 

along a latitudinal transect through western Montana.  

 

 



 78

3.4  Results 

 3.4.1  Chronology Development 

The six whitebark pine chronologies developed from the Flathead, Lolo, and 

Beaverhead-Deerlodge National Forests in Montana were developed using 322 series 

(Table 3.2). The site chronologies varied in length, with the shortest record from Ajax 

Peak (1832–2005) and the longest from Mineral Peak (1171–2003). Individual tree series 

ranged from 50–726 years in length. Interseries correlation and mean sensitivity were 

used to compare statistical quality in each site chronology. Mean sensitivity values 

between 0.20 and 0.24 are common for whitebark pine tree-ring data from Montana and 

Idaho (Perkins and Swetnam 1996, Biondi et al. 1999, Kipfmueller 2003, Larson 2005, 

Mann 2008). Our chronology mean sensitivities ranged from 0.21 to 0.24. Interseries 

correlations for whitebark pine chronologies in the northern Rocky Mountains range 

between 0.41 and 0.70 (Perkins and Swetnam 1996, Biondi et al. 1999, Kipfmueller 

2003, Larson 2005, Mann 2008). The Ajax Peak chronology had the highest interseries 

correlation (0.52), followed by Morrell Mountain (0.51), Big Hole Pass (0.50), Hornet 

Peak (0.48), Mineral Peak (0.47), and Point Six (0.47). The interseries correlation and 

mean sensitivity of our six whitebark pine chronologies were representative of other 

whitebark pine chronologies from Montana (Larson 2005, Mann 2008). We compared 

our six site chronologies with other whitebark pine and Douglas-fir chronologies from the 

northern Rocky Mountains and found the correlation coefficients were significant (p < 

0.001) (Table 3.3). The strong relationship between our sites in Montana and neighboring 

sites in Idaho indicates a similar climate signal across the Continental Divide.  
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Study Site 

National 
Forest 

Period of 
Record 

Number of 
Samples 

Interseries 
Correlation 

Mean 
Sensitivity

Hornet Peak Flathead 1682–2005 64 0.48 0.23 

Mineral Peak Lolo 1171–2003 76 0.47 0.21 

Morrell Mountain Lolo 1489–2003 60 0.51 0.24 

Point Six Lolo 1581–2003 62 0.47 0.22 

Ajax Peak Beaverhead-
Deerlodge 1832–2004 33 0.52 0.21 

Big Hole Pass Beaverhead-
Deerlodge 1778–2004 27 0.50 0.22 

 Table 3.2. Summary data of the six whitebark pine chronologies from Montana.  
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Study Site Species 

Correlation 
Coefficient 

Number 
of Years P-value 

         
Hornet Peak        
Upper Sand Pass, Idaho whitebark pine 0.38 314 p < 0.001
(Perkins 1996)        

Mineral Peak     
 

  
Selway-Bitterroot, Idaho whitebark pine 0.46 831 p < 0.001
(Kipfmueller 2003)        

Morrell Mountain     
 

  
Selway-Bitterroot, Idaho whitebark pine 0.39 511 p < 0.001
(Kipfmueller 2003)       

Point Six     
 

 
Selway-Bitterroot, Idaho whitebark pine 0.37 421 p < 0.001
(Kipfmueller 2003)       

Ajax Peak     
 

  

Selway-Bitterroot, Idaho 
(Kipfmueller 2003) whitebark pine 0.36 171 p < 0.001

Helena, Montana 
(Ferguson 1965) Douglas-fir 0.41 134 p < 0.001

Big Hole Pass     
 

  

Selway-Bitterroot, Idaho whitebark pine 0.40 225 p < 0.001

(Kipfmueller 2003)        
 

Table 3.3. Correlation coefficients between our six whitebark pine chronologies and  
other tree-ring chronologies from Montana and Idaho.  
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A few similar marker rings occurred in the chronologies, but we found noticeable 

differences among the six whitebark pine chronologies, likely due to differences in 

microclimates and disturbance histories. Visual and graphical crossdating were aided by 

especially narrow growth rings formed in AD 1601, 1641, 1698, 1782, 1838, 1899, and 

1906. A pattern of consecutive narrow rings in 1753, 1754, and 1755, followed by a wide 

ring in 1756, also provided a strong ring signature in the three central sites in the Lolo 

National Forest. Figures 3.2–3.7 illustrate the entire length of the six whitebark pine 

chronologies.  

 

3.4.2  Climate Response 

Whitebark pine showed different climate responses at each site, but results from 

the response function analysis (RFA) showed that monthly climate variables were less 

important to whitebark pine growth than prior years’ growth in these biological models. 

In the most northern site, Hornet Peak, the RFA showed 54% of the whitebark pine 

variance was explained by climate (r2 = 0.23) and prior growth (r2 = 0.31). The central 

sites had similar results with over 40% of the variance explained by climate and prior 

growth. At Mineral Peak, 58% of the variability was explained by climate (r2 = 0.26) and 

prior growth (r2 = 0.32). For Morrell Mountain, 44% of the variance was explained by 

climate (r2 = 0.16) and prior growth (r2 = 0.28). Of the central sites, Point Six had the 

most variance explained, 72%, by climate (r2 = 0.16) and prior growth (r2 = 0.56). The 

southern sites, Ajax Peak and Big Hole Pass, had over 50% of the whitebark pine 

variance explained by climate and prior growth. For Ajax Peak, 52% of the variance was  
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Hornet Peak 

Figure 3.2. Hornet Peak whitebark pine chronology. 
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Figure 3.3. Mineral Peak whitebark pine chronology. 

Mineral Peak 
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Figure 3.4. Morrell Mountain whitebark pine chronology. 

Morrell Mountain 
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Figure 3.5. Point Six whitebark pine chronology. 

Point Six 
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Figure 3.6. Ajax Peak whitebark pine chronology. 

Ajax Peak 
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Figure 3.7. Big Hole Pass whitebark pine chronology. 

Big Hole Pass 
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explained by climate (r2 = 0.17) and prior growth (r2 = 0.35). At Big Hole Pass, 56% of 

the variability was explained by climate (r2 = 0.41) and prior growth (r2 = 0.15). Of the 

whitebark pine chronologies, the Big Hole Pass chronology had the strongest response to 

climate in comparison to prior growth. 

The RFA revealed which climate variables were impacting whitebark pine growth 

and showed the importance of further investigation of the influence of drought, 

seasonalizing climate variables, and creating lagged climate variables. Specifically, the 

RFA showed a significant positive relationship between whitebark pine growth and the 

previous year’s summer precipitation and the current year’s spring temperature in most of 

the sites (Figures 3.8–3.10). Hornet Peak, the most northern site, responded differently 

from the central and southern sites with significant temperature and precipitation 

relationships in the previous fall season (Figure 3.8).  Morrell Mountain, one of the 

central sites, showed a strong positive relationship with November precipitation, but the 

response was weaker than with the previous year’s summer precipitation (Figure 3.9b).  

The correlation analysis indicated a strong response between whitebark pine 

growth and precipitation and PDSI in our site chronologies from 1940–2005 (Figures 

3.11–3.13). Ajax Peak and Big Hole Pass had the highest positive correlations between 

tree growth and spring and previous summer PDSI. The positive correlation indicates that 

these sites are responding well to a combination of precipitation, temperature, and 

available soil moisture. The growing season (June to September) begins when 

temperatures warm and snowpack begins to thaw. Whitebark pine seem to respond well  
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Figure 3.8. Results from the response function analysis for Hornet Peak, showing 
the effects of temperature and precipitation (1906–2005) on whitebark pine 
growth. Statistically significant relationships are indicated by * (p < 0.05).  

*

* *

* *
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Figure 3.9. Results from the response function analysis for (A) Mineral Peak, (B) Morrell 
Mountain, and (C) Point Six, showing the effects of temperature and precipitation (1904–
2003) on whitebark pine growth. Statistically significant relationships are indicated by * 
(p < 0.05).  

* * 
* 

* 

* 

* 

* 
* 

* * 

* * 

* 

* 

* 
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Figure 3.10. Results from the response function analysis for (A) Ajax Peak, and 
(B) Big Hole Pass showing the effects of temperature and precipitation (1905–
2004) on whitebark pine growth. Statistically significant relationships are 
indicated by * (p < 0.05).  

*

*

*

*

*

*

*
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Figure 3.11. Correlation analysis between the Hornet Peak chronology and regional 
precipitation. Month abbreviations preceded with a “P” indicate the previous year. 
Gray solid bars indicate significant values of p < 0.05, and black solid bars indicate 
higher significant values of p < 0.01.   

Hornet Peak  
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Figure 3.12. Correlation analysis for the Lolo National Forest between (A) Mineral 
Peak and precipitation, (B) Morrell Mountain and precipitation, and (C) Point Six 
PDSI. Month abbreviations preceded with a “P” indicate the previous year. Gray solid 
bars indicate significant values of  p < 0.05, and black solid bars indicate higher 
significant values of p < 0.01.   
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 Figure 3.13. Correlation analysis for the Beaverhead-Deerlodge National Forest 
between the (A) Ajax Peak chronology and regional PDSI and the (B) Big Hole 
Pass chronology and PDSI. Month abbreviations preceded with a “P” indicate the 
previous year. Gray solid bars indicate significant values of  p < 0.05,  and black 
solid bars indicate higher significant values of  p < 0.01.   

A. Ajax Peak  

B. Big Hole Pass  
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to the available soil moisture in the current spring and also the previous spring in the 

Beaverhead-Deerlodge National Forest. Conversely, Point Six had a strong negative 

relationship with tree growth and PDSI for previous and current months. The whitebark 

pine at Point Six had an inverse relationship with PDSI that shows trees respond well 

during dry periods in the spring.  

Hornet Peak, Morrell Mountain, and Mineral Peak had the highest correlations 

between tree growth and precipitation. The positive correlations in the previous summer 

indicate that an increase in precipitation in the previous year’s summer results in 

increased tree growth during the current growing season. We found a strong negative 

relationship with tree growth at Hornet Peak, Mineral Peak, and Point Six during the 

winter months when precipitation is in the form of snow and snowpack levels are high. 

Hornet Peak also had a strong positive correlation to June precipitation. We also analyzed 

site-specific PRISM climate parameter data and found the strongest relationships between 

our whitebark pine chronologies and PRISM precipitation data (Figures 3.14–3.16). 

However, correlations between our chronologies and PRISM data were weaker than with 

the divisional climate data from NOAA.  

Seasonalized variables were developed and analyzed using the results from the 

correlation analysis for PDSI at Ajax Peak, Big Hole Pass, and Point Six, and 

precipitation at Hornet Peak, Mineral Peak, and Morrell Mountain. The seasons during 

which precipitation and PDSI exhibited the strongest statistical relationship with tree 

growth occurred in the previous summer and current spring. The Big Hole Pass whitebark 

pines responded the strongest to climate (PDSI, r = 0.51, p < 0.001) of all the sites, 

followed by Mineral Peak (precipitation, r = 0.44, p < 0.001), Hornet Peak (precipitation,  
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Figure 3.14. Correlation analysis for the Flathead National Forest, between the Hornet 
Peak chronology and PRISM precipitation. Month abbreviations preceded with a “P” 
indicate the previous year. Gray solid bars indicate significant values of p < 0.05, 
while black solid bars indicate higher significant values of p < 0.01.   

Hornet Peak  
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Figure 3.15. Correlation analysis for the Lolo National Forest between (A) 
Mineral Peak, (B) Morrell Mountain, and (C) Point Six and chronologies and 
PRISM precipitation data. Month abbreviations preceded with a “P” indicate the 
previous year. Gray solid bars indicate significant values of  p < 0.05,  while 
black solid bars indicate higher significant values of p < 0.01.   
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Figure 3.16. Correlation analysis for the Beaverhead-Deerlodge National Forest 
between (A) Ajax Peak and (B) Big Hole Pass chronologies and PRISM 
precipitation data. Month abbreviations preceded with a “P” indicate the previous 
year. Gray solid bars indicate significant values of  p < 0.05,  while black solid 
bars indicate higher significant values of  p < 0.01.   

A. Ajax Peak  

B. Big Hole Pass  
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r = 0.36, p < 0.01), Ajax Peak (PDSI, r = 0.35, p < 0.01), Point Six (PDSI, r = -0.35, p < 

0.01), and Morrell Mountain (precipitation, r = 0.30, p < 0.05) (Table 3.4).  

Regression models were based on our calibration period from 1940–2005. Our 

climate reconstruction models explained between 12% and 36% of the variability in our 

chronologies (Table 3.5). Outlier observations identified by high Studentized residuals 

were removed from the calibration models. Outlier years in the Ajax Peak and Big Hole 

Pass chronologies were 1985and 1989. Hornet Peak only had one outlier year in 1993. 

Point Six did not have any outlier years, Morrell Mountain had outlier years in 1940 and 

1961, and Mineral Peak had outliers in 1950, 1972, and 1973. These outlier years may 

have been caused by disturbance events, such as fire or mountain pine beetle outbreaks,  

that corrupted the relationship between climate and tree growth during that year.  Models 

showed a relatively close fit between the actual and estimated precipitation and PDSI 

values (Figures 3.17–3.19), with the exception of years influenced by exogenous 

disturbances. We used the regression equation developed from the calibration period 

(1940–2005) to reconstruct precipitation or PDSI for the entire period for each of the six 

whitebark pine chronologies (Figure 3.20–3.25). 

Early portions of the six site reconstructions showed high variability characteristic 

of low sample depth in the tree-ring chronologies. The higher level of variance in the 

early portion of the reconstruction does not necessarily reflect a climate period with high 

variability and exceptional events shifting to a more moderate climate regime (Mann 

2008). We retained these early portions of the reconstructions, however, to help 

differentiate between climate anomalies and possible disturbance events.  
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Study Site 

 
Period 

Climate 
Variable 

 
Season 

Correlation 
Coefficient 

Hornet Peak  1940–2005 Precipitation June–July 0.36** 
Mineral Peak  1940–2003 Precipitation January–March 0.44*** 
Morrell Mountain  1940–2003 Precipitation pJune 0.30 * 
Point Six 1940–2003 PDSI January–May -0.35** 
Ajax Peak  1940–2004 PDSI pJuly–pOctober 0.35** 
Big Hole Pass 1940–2004 PDSI pAugust–pSeptember 0.51*** 

 

 

     Table 3.5. Seasonal climate reconstruction equations for each site. 

Study Site Reconstruction Equation 
Hornet Peak  Reconstructed (June–July precipitation)t = 2.62(TR)t + 0.90 
Mineral Peak  Reconstructed (January–March precipitation)t = –3.48(TR)t + 8.03 
Morrell Mountain  Reconstructed (pJune precipitation)t = 8.90(TR)t – 8.68 
Point Six Reconstructed (January–May PDSI)t = –4.91(TR)t + 4.87 
Ajax Peak  Reconstructed (pJuly–pOctober PDSI)t = 8.90(TR)t – 8.65 
Big Hole Pass Reconstructed (pAugust–pSeptember PDSI)t = 12.20(TR)t – 11.77 

 
     TR is the tree-ring index for year t 
 

 

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3.4. Seasonal climate data for each site. 
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Figure 3.17. Observed (black line) and reconstructed (gray line) Hornet Peak 
precipitation (June–July). 
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 Figure 3.18. Observed (black line) and reconstructed (gray line): (A) Mineral 
Peak precipitation (January–March), (B) Morrell Mountain precipitation 
(previous June), and (C) Point Six PDSI (January–May).  
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Figure 3.19. Observed (black line) and reconstructed (gray line): (A) Ajax 
Peak PDSI (previous July–previous October), and (B) Big Hole Pass PDSI 
(previous August–previous September).  
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Figure 3.20. Reconstructed Hornet Peak June–July precipitation for the period AD 1682–2005. The thick black 
line is a 10-year moving average that shows interannual trends in the reconstruction. 

Hornet Peak 
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Figure 3.21. Reconstructed Mineral Peak January–March precipitation for the period AD 1171–2003. The thick 
black line is a 10-year moving average that shows interannual trends in the reconstruction. 

Mineral Peak 
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Figure 3.22. Reconstructed Morrell Mountain previous June precipitation for the period AD 1489–2003. The thick 
black line is a 10-year moving average that shows interannual trends in the reconstruction. 

Morrell Mountain 
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Figure 3.23. Reconstructed Point Six January–May PDSI for the period AD 1581–2003. The thick black line is a 10-
year moving average that shows interannual trends in the reconstruction. 

Point Six 
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Figure 3.24. Reconstructed Ajax Peak previous July–previous October PDSI for the period AD 1832–2004. The thick 
black line is a 10-year moving average that shows interannual trends in the reconstruction. 

Ajax Peak 
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Figure 3.25. Reconstructed Big Hole Pass previous August–previous September PDSI for the period AD 1778–
2005. The thick black line is a 10-year moving average that shows interannual trends in the reconstruction. 

Big Hole Pass 
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Therefore, climate trends in the data where the sample depth is low should be considered  

more carefully. 

The PDSI reconstructions showed periods of moderate drought (PDSI values from 

–2 to –3) on a multicentury scale. An 1883 drought was present in both the Ajax Peak 

and Big Hole Pass reconstructions. Other common drought patterns include the early 

1920s and the early 2000s. Point Six provided the longest PDSI reconstruction and 

showed moderate droughts that pre-dated the other reconstructions in 1602, 1605, and 

1739. We also found a common extremely wet year (PDSI values above 3.0) in 1817 in 

the Big Hole Pass and Point Six reconstructions.  

Hornet Peak and Morrell Mountain precipitation reconstructions showed a 

relatively dry period at both sites in the 1970s. Earlier dry periods at Hornet Peak 

included the mid-1700s, 1869–1873, 1883, and the 1920s. Morrell Mountain experienced 

less frequent dry years (1494, 1604, 1754, 1838, and 1899) when compared to Hornet 

Peak and Mineral Peak. Mineral Peak was the longest precipitation reconstruction but 

only had one dry year (1739) in common with another reconstructions (Point Six PDSI). 

Other dry years in the Mineral Peak reconstruction included 1174, 1202, 1211, 1263, 

1328, 1451, 1528, 1853, 1879, 1948, and 1992.  

 

3.4.3  Separating Disturbance Events and Climate Response 

Mountain pine beetle outbreaks may have caused anomalous growth patterns in 

our climate reconstructions. In the site climate models used for the reconstructions, some 

of the identified outliers appeared to have been related to mountain pine beetle outbreaks 

in the western United States during the period from 1940 to 2005. Between 1970 and 
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1985, an extensive pine beetle outbreak occurred in the western United States and Canada 

(Safranyik and Carroll 2006). The whitebark pine chronologies at Morrell Mountain and 

Point Six showed below-average growth from 1970 to 1975 while precipitation and PDSI 

were relatively high in the early 1970s. Mineral Peak shows an inverse relationship in the 

early 2000s, with whitebark pine growth declining during a period of increasing 

precipitation. The next step was to explore whitebark pine growth without the influence 

of climate to examine the mountain pine beetle outbreak periods in the chronologies more 

closely. 

The residual chronologies developed to examine the periodicity of departures 

from the mean, independent of climate, showed disturbance patterns at each site 

throughout the 20th century (Figures 3.26–3.28). The time series plot for our most 

northern site, Hornet Peak, indicated that actual whitebark pine growth agreed relatively 

well with predicted growth, although positive departures (indicating non-climate growth 

releases) were found in the 1940s and 1980s, a decade after known mountain pine beetle 

outbreaks (Figure 3.26). The three central sites showed different patterns of growth 

unrelated to climate over the past 100 years (Figure 3.27). The Mineral Peak time series 

plot revealed a close relationship between actual and predicted whitebark pine growth, 

but the residual chronology showed peaks in growth in the 1940s and 1990s. The Morrell 

Mountain time series plot showed that the predicted whitebark pine growth deviated from 

actual growth between 1965 and 1980. This 15-year growth suppression indicated a 

possible mountain pine beetle outbreak. Following the growth suppression, whitebark 

pines at Morrell Mountain showed a release from 1982 to 1986. Point Six exhibited a 

growth suppression beginning in 1952 and ending in 1975.
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Figure 3.26. Actual and estimated indices of tree growth and their residuals 
developed for whitebark pines growing on Hornet Peak. “Actual” indicates the 
actual whitebark pine growth, “estimated” indicates the estimated annual 
whitebark pine growth based on the significant climate variables, and “residual” 
is the difference between the actual and estimated chronologies. 
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Figure 3.27. Actual and estimated indices of tree growth and their residuals developed 
for whitebark pines growing on (A) Mineral Peak, (B) Morrell Mountain, and (C) 
Point Six. “Actual” indicates the actual whitebark pine growth, “estimated” indicates 
the estimated annual whitebark pine growth based on the significant climate variables, 
and “residual” is the difference between the actual and estimated chronologies. 
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Figure 3.28. Actual and estimated indices of tree growth and their residuals 
developed for whitebark pines growing on (A) Ajax Peak, and (B) Big Hole 
Pass. “Actual” indicates the actual whitebark pine growth, “estimated” indicates 
the estimated annual whitebark pine growth based on the significant climate 
variables, and “residual” is the difference between the actual and estimated 
chronologies. 



 115

Our southern sites also showed asynchronous growth patterns, similar to the 

central sites (Figure 3.28). In comparison to the other sites, whitebark pines at Ajax Peak 

were the least responsive to temperature and precipitation over the 20thcentury (Figure 

3.28). Therefore, more periodic positive and negative growth departures are evident at 

this site. Ajax Peak experienced growth suppressions in the 1920s, 1940s, and the 1980s. 

Growth releases at Ajax Peak occurred in 1970 and in the late 1990s. Conversely, the 

time series plot for Big Hole Pass indicated that the actual whitebark pine growth closely 

matched the predicted growth, with only one growth suppression period in the 1920s. 

 

3.5 Discussion 

3.5.1 Chronology Development  

Interseries correlations were highly significant at all six sites, with an average of 

0.49. Whitebark pine chronologies in Idaho had higher interseries correlations, but these 

sites were located at higher elevations in open-canopied forests (Perkins and Swetnam 

1996, Kipfmueller 2003). Our chronologies were developed as part of a larger study to 

examine successional dynamics in the subalpine forest. Therefore, our interseries 

correlations were lower because the majority of whitebark pines chosen for chronology 

development were not from park-like treeline stands, but were from closed groupings in 

which trees influenced by competition from other individuals, in addition to natural and 

anthropogenic disturbances. All sites chronologies had average mean sensitivities, 

signifying that necessary variability exists in the tree-ring patterns from climatic factors 

to ensure successful crossdating and extraction of the dominant climate signal. The 

commonality of marker rings along our latitudinal transect and the significant 
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correlations between neighboring chronologies in Montana and Idaho further indicate a 

regional climatic influence.  

 

3.5.2 Climate Analyses 

Response function analysis for the six sites resulted in different climate 

signals likely related to differences in elevation, microclimate conditions, and 

disturbances at the sites. In the northern Rocky Mountains, climate-response models 

typically explain 30–55% of the variance in ring-width indices (Kipfmueller 2003, Gray 

et al. 2004, Mann 2008), because tree growth is related to moisture availability in high-

elevation sites. The whitebark pine growth data from all sites had between 16% and 41% 

of the variance explained by climate, which makes these data sets less climatically-

sensitive than other northern Rocky Mountain sites. With the exception of Big Hole Pass, 

one of the most southern sites, the whitebark pines in our study were more responsive to 

prior growth than climate. Big Hole Pass had 41% of the whitebark pine variance 

explained by climate, making it a more climatically sensitive site compared to the other 

sites. Whitebark pines at Big Hole Pass are the most climatically sensitive in our study 

because the site is located on the Continental Divide in a semiarid region with an open, 

grassy understory, and little competition from competing shade-tolerant species.   

Although the growing season for whitebark pine only lasts from June to 

September, we found growth correlated with drought and precipitation patterns 

throughout the year. Tree growth is clearly responsive to drought and precipitation and its 

seasonal distribution, but to varying degrees along the latitudinal transect. Whitebark pine 

growth at most of the study sites (with the exception of Point Six), showed a statistically 



 117

significant positive relationship between tree growth and previous summer precipitation 

or PDSI. This indicates wet conditions from precipitation and snowpack melt in the 

previous summer months enhance whitebark pine growth during the following growing 

season. Previous year's precipitation affects water and nutrient storage, and the initiation 

of growth in the current growing season (Fritts 1976). During the winter season, when 

available moisture is low due to accumulated snowpack conditions, whitebark pines may 

favor respiration over photosynthesis. When low precipitation and soil moisture levels 

occur, trees experience water stress which results in decreased photosynthesis. Water 

stress causes lower amounts of carbohydrate storage and lower amounts of growth 

hormones to be produced which causes a reduction in cambial growth and results in the 

formation of a narrow ring (Fritts 1976). If favorable precipitation and snowmelt 

conditions occur in the previous summer, the carbohydrate reserves are available for the 

current year's growth (Fritts 1976). The seasonal fluctuations in precipitation and drought 

also reflect the fluctuations in snowpack. Snowpack variability is a central force that 

limits tree growth at high-elevation sites (Peterson 1998), therefore the timing of 

snowpack melt is important in understanding wet conditions in whitebark pine forests.  

Whitebark pine growth response to PDSI at Point Six, Ajax Peak, and Big Hole 

Pass (central and southern sites) was more significant than with precipitation at Hornet 

Peak, Mineral Peak, and Morrell Mountain (northern and central sites). PDSI represents 

the overall environmental conditions by incorporating temperature, precipitation, and the 

available water content of soil, which better represents the conditions necessary for tree 

growth more than the precipitation and temperature indices alone (Fritts 1976, Cook et al. 

2004). Point Six showed a completely different response to PDSI than the other sites. 
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Although Point Six PDSI response was significant in the previous May, and from 

January–May, it was a negative response. Given whitebark pine’s short growing season, 

any extended period of snowpack (October–June) would result in lower than average 

growth at the microsite level which could create noise in the climate signal. The inverse 

climate-growth relationship at Point Six may also reflect complex microsite conditions. 

Point Six is dissected by ski runs and artificial snow is blown early during the ski season 

which contributes to snowpack accumulation throughout the winter. Snow was still on 

the ground in late June when we sampled this site during our field seasons, indicating that 

heavy snow accumulation persists into the growing season and likely causes an extended 

photosynthetically inactive period and delays the beginning of tree growth (Fritts 1976). 

Tree growth in any year in moisture-stressed trees is often related to a climatic window 

that includes part of the previous and current summers (Watson and Luckman 2002). 

Therefore, if the June–September growing season is further shortened due to high 

accumulations of snowpack, the window for whitebark pine photosynthesis is narrower. 

Although precipitation in the form of snow occurs throughout the year at Point Six, the 

water is not available to whitebark pines until the late summer when temperatures are 

warmer and snowpack begins to melt. The longer snowpack period at Point Six 

contributes to the inverse relationship between tree growth and PDSI. Point Six is an 

example of the important influence of land-use history on climate-growth response in 

whitebark pine forests.   

In contrast to Point Six, the most significant positive relationship between 

whitebark pine growth and PDSI found in this study occurred in the previous year’s 

summer in Ajax Peak and Big Hole Pass in the southern portion of the study area. This 
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indicates that drought (precipitation and temperature) conditions are critical during the 

previous growing season and, to a lesser extent, during the winter season in our southern 

sites. Moisture conditions late in the previous year’s growing season may affect the 

current year’s bud break and the initiation of growth more than climate during the current 

year’s growing season. Drought may cause a reduction in current growth, but cause an 

increase in carbohydrate storage for the following year’s growth (Fritts 1976). Our 

seasonal PDSI correlation results from these southern sites are similar to the results 

obtained by Mann (2008) from the same region, except he found stronger relationships 

between tree growth and current summer PDSI.  

The northern and central sites (Hornet Peak, Mineral Peak, and Morrell 

Mountain) responded to precipitation during different periods throughout the year, 

indicating microsite conditions may influence the amount of available precipitation for 

tree growth. Hornet Peak is the lowest in elevation of the study sites and therefore may 

experience an earlier snowpack melt, which could explain the strong positive correlation 

to previous July precipitation and current June precipitation. Morrell Mountain whitebark 

pines also responded favorably to snowmelt in the previous June. Hornet Peak and 

Mineral Peak had a significant negative response to precipitation during December and 

January, indicating that winter snowpack conditions are important for understanding tree 

growth at these sites.  

Future snowpack conditions will directly influence the significant relationship 

between whitebark pine growth and available moisture (precipitation and PDSI). Climate 

change will reduce the depth, duration, and distribution of snowpack in the northern 

Rocky Mountains (Marshall et al. 2008). Snow cover has already significantly decreased 
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every month (except November and December) from 1966 to 2005 in western North 

America (IPCC 2007). Continued warming will cause snowpack to melt earlier during 

the year which will lengthen the whitebark pine growing season. Photosynthesis and 

transpiration by whitebark pine and other high-elevation plant species will remove the 

available soil moisture earlier in the summer and will therefore experience drought stress 

later in the summer causing reduced tree growth in any given year. Large snowpack 

reductions will also eliminate the insulation that prevents soil from freezing during winter 

cold waves in high elevations (Marshall et al. 2008), which will further negatively affect 

whitebark pine growth. 

 

3.5.3 Climate Reconstruction  

The reconstructed PDSI and precipitation values revealed specific dry years and 

longer drought periods during the entire length of the reconstructions. The climate 

reconstruction results support other climate reconstructions, east of the Continental 

Divide, that found precipitation and PDSI have a greater influence on subalpine forest 

growth than temperature (Cook et al. 2004, Gray et al. 2004, Mann 2008). We compared 

our results to a regional summer PDSI reconstruction (data points 68 and 84 from Cook 

et al. 2004) from lower-elevation sites in the northern Rocky Mountains, and found a few 

similar dry years between the lower-elevation PDSI reconstruction and our high-elevation 

PDSI and precipitation reconstructions across western Montana. Similar dry years 

between our studies included 1174, 1263, 1328, 1583, 1739, 1782, 1883, and 1992. These 

years are important because the mixed-conifer chronologies used in the Cook et al. 

(2004) reconstructions were not affected by the same disturbance events that could have 
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affected our reconstructions. Therefore, dry years and droughts in common between our 

PDSI reconstructions and the Cook et al. (2004) PDSI reconstructions are independent of 

mountain pine beetle disturbance.  

A few of our driest single years (1263, 1274, 1278, and 1583) from our longest 

precipitation reconstruction (Mineral Peak) also matched other regional drought 

reconstructions. Drought records from the western United States that span the 13th-

century indicate a severe, multidecadal drought at this same time (Woodhouse and 

Overpeck 1998). Tree-ring chronologies from Nebraska, New Mexico, the Great Basin, 

and northeastern Utah also showed sharp decreases in tree growth around this time 

(Grissino-Mayer 1996, Hughes and Graumlich 1996, Woodhouse and Overpeck 1998, 

Gray et al. 2004). We also noted the influence of the late-1500s megadrought (Grissino-

Mayer 1996, Cook et al. 1999, Stahle et al. 2000) in the Mineral Peak reconstruction. Our 

reconstructed winter precipitation dropped over 1.5 cm from 1572 to 1600. Many tree-

ring records have described the spatial and temporal extent of this megadrought. Stahle et 

al. (2000) conducted an analysis of tree-ring chronologies during the late 1500s and 

found strong evidence for this same drought extending from the southwestern United 

States through the Rocky Mountains. Grissino-Mayer (1996) also suggested that this 

drought was the most severe drought in the Southwest over the past 2000 years.  

Our reconstruction data contribute an important high-elevation component to 

existing drought reconstructions in the northern Rocky Mountains. Further analysis 

should be conducted on the links between Pacific modes and high-elevation precipitation 

to understand the influence of multidecadal oscillations on drought regimes in our sites. 

For example, the Mineral Peak winter precipitation reconstruction could be further 
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explored to reconstruct snowpack conditions and examine the influence of the Pacific 

Decadal Oscillation (PDO) on long-term snowpack fluctuations. Detailed analysis and 

testing of specific hypotheses regarding the effects of PDO on long-term precipitation 

and PDSI trends are necessary for understanding the influence of teleconnections on 

whitebark pine tree growth in western Montana. 

 

3.5.4 Distinguishing Climate Response from Mountain Pine Beetle Response 

The PDSI and precipitation reconstructions showed a strong relationship between 

the preconditioning effects of drought on disturbance events at our study sites. For 

example, Hornet Peak and Morrell Mountain experienced a drought in the 1970s, during 

a mountain pine beetle outbreak. Hornet Peak, Point Six, Ajax Peak, and Big Hole Pass 

also had a drought period in the mid-1920s which may have caused the whitebark pines 

to be more susceptible to the mountain pine beetle outbreak that occurred from 1920 to 

1940. The effects of disturbance events are difficult to distinguish from the climate signal 

in our reconstructions prior to the early 1900s. However, multiple sites experienced a dry 

year in 1883 which would have made whitebark pine trees more susceptible to a 

mountain pine beetle attack during a reported 1880s outbreak period (Alfaro et al. 2004, 

Taylor et al. 2006). Therefore, earlier values derived from the reconstructions should be 

interpreted conservatively in the context of possible disturbance events. Further 

dendroclimatological research should be conducted on sites where the mountain pine 

beetle influence appears to be minimal. Whitebark pines at Big Hole Pass had the 

strongest response to climate and the least amount of influence from disturbance events 
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of our sites. This would be an ideal site for further studies using whitebark pine for 

climate reconstructions in the Rocky Mountains of Montana.  

Asynchronous patterns between the actual and expected climate response in 

the time series plots, particularly in Hornet Peak, Morrell Mountain, Point Six, and Ajax 

Peak, are most likely due to mountain pine beetle outbreaks. The departure from expected 

growth during the 1970s and 1980s is clearly seen at these sites and is interpreted here as 

an indication of the landscape-level mountain pine beetle outbreak. An earlier mountain 

pine beetle outbreak from 1920 to1940 affected whitebark pine growth at Hornet Peak, 

Mineral Peak, Ajax Peak, and Big Hole Pass. Hornet Peak and Ajax Peak were the only 

two sites that exhibited growth departures from both mountain pine outbreaks during the 

20th century.  

In addition to mountain pine beetles outbreaks, other landscape-level patterns in 

the whitebark pine chronologies were evident. The whitebark pine chronologies showed a 

sharp growth decline in the study sites from 1998–2005. This decrease in radial growth is 

likely related to a contribution of drought, mountain pine beetle outbreaks, and white pine 

blister rust infections. Although both white pine blister rust and mountain pine beetle 

were present at each site, the megadrought from 1999–2007 has also impacted these sites. 

According to Cook et al. (2004), over 50% of the United States experienced moderate to 

severe drought conditions in 2002, with record or near-record precipitation deficits 

throughout the western United States. Severe drought conditions have continued to affect 

the western United States through 2007 (Marshall et al. 2008). Droughts restrict 

biological activity in whitebark pine and change processes within the whitebark pine 

ecosystem. Continued periods of drought will likely stress whitebark pines and make 



 124

them more susceptible for mountain pine beetle attack and weaken their resistance to 

white pine blister rust infection. The results of this study substantiate the importance of 

drought in whitebark pine communities. We suggest that climate change, especially 

increased periods of drought, may increase the threat to whitebark pine survival by 

changing biological processes, reducing whitebark pine productivity, and increasing 

stress which makes whitebark pines more susceptible to insects and pathogens. Further 

research should be conducted on the climate-growth relationships of subalpine tree 

species that are non-hosts for the mountain pine beetle and white pine blister rust, to 

examine community-level drought and disturbance responses in Montana. 
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CHAPTER 4 

RESPONSE BY WHITEBARK PINE AND SUBALPINE FIR TO 
NATURAL AND ANTHROPOGENIC DISTURBANCES IN THE 

NORTHERN ROCKY MOUNTAINS, U.S.A. 
 

Portions of this chapter that refer to whitebark pine ecology and study site 
descriptions were taken from Chapters 1 and 2 of this dissertation. The use of “we” in 
this chapter refers to Dr. Henri Grissino-Mayer and myself who will be co-authors on the 
manuscript submitted from this chapter. Dr. Grissino-Mayer assisted in the identification 
of relevant literature, field collection, and verifying the accuracy of dated samples.  

In this chapter, we compare current stand conditions in whitebark pine 
communities in the Flathead, Lolo, and Beaverhead-Deerlodge National Forests in the 
northern Rocky Mountain of western Montana. We compare whitebark pine and 
subalpine fir chronologies from three study sites (one site from each national forest: 
Hornet Peak from the Flathead National Forest, Morrell Mountain from the Lolo National 
Forest, and Ajax Peak from the Beaverhead-Deerlodge National Forest) to examine 
changes in tree growth patterns that could possibly be attributed to fire suppression, white 
pine blister rust, and mountain pine beetle disturbance events. Changes in forest 
composition and structure are statistically analyzed and discussed. Manuscript to be 
submitted to Canadian Journal of Forest Research. 
 

4.1 Introduction 

Ecologists recognize that natural disturbance cycles that involve fire, insects, or 

pathogens are important components in most landscapes, and that few ecosystems ever 

achieve a steady-state climax (Bormann and Likens 1979, White 1979, Christensen 

1989). By understanding disturbance regimes, we can identify the spatiotemporal trends, 

variations, and periodicities of events and processes that affect forest ecosystems 

(Swetnam et al. 1999). The types, frequencies, and spatial scales of disturbances are 

important variables that influence the structure and composition of high-elevation 

ecosystems in the northern Rocky Mountains (Veblen et al. 1991). Few ecosystems 

warrant more attention from managers and have greater research needs than do whitebark 

pine (Pinus albicaulis Engelm.) forests. 
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Whitebark pine is a long-lived tree species found in many high elevation and 

subalpine forest communities of western North America (Arno and Hoff 1989). 

Whitebark pine forms extensive contiguous stands in high-elevation forests in the Rocky 

Mountains of Montana, Wyoming, Idaho, and Alberta, as well as smaller disjunct stands 

in eastern and southwestern Oregon, California, and Nevada. The species is restricted at 

its upper elevations by severe climate conditions and at lower elevations by competition 

from other tree species (Arno and Hammerly 1984). It is a pioneer species that fills a 

crucial niche in watershed protection, catching and retaining snow, and stabilizing rock 

and soil in harsh and recently disturbed areas (Tomback et al. 2001). Whitebark pine is 

also a food source of critical importance to Clark’s nutcrackers (Nucifraga columbiana 

Wilson), red squirrels (Tamiasciurus hudsonicus Erxleben), grizzly bears (Ursus arctos 

L.), and black bears (Ursus americana Pallas) (Mattson et al. 2001, Tomback 2001).  

Conventional models of succession show that whitebark pine dominates during 

early stages of succession and regenerates after stand-level disturbances (i.e., fire) that 

occur at long return intervals of 200 years or more (Fischer and Bradley 1987, Larson 

2005, Larson et al. 2008). However, the long lifespan (up to 1000 years) of whitebark 

pine makes it an important component of mid- and late-successional forests. Currently, a 

successional shift is occurring in whitebark pine-dominated forests (Keane and Arno 

1993, Kendall and Keane 2001, Tomback et al. 2001). Subalpine fir (Abies lasiocarpa 

(Hook.) Nutt.) and Engelmann spruce (Picea engelmannii Parry ex Engelm.) are two 

species successionally replacing whitebark pine-dominated forests in the northern Rocky 

Mountains. Advancing succession has been observed in whitebark pine forests 

throughout their range and these forests are currently outside the historical range of 
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variability for the species (Keane and Arno 1993, Murray et al. 2000). This divergence 

from historical conditions is likely the result of a combination of natural and 

anthropogenic changes in the disturbance regimes of whitebark pine communities. 

The overlapping effects of mountain pine beetle, fire suppression, advancing 

encroachment by fire-intolerant plant species, and the introduction of white pine blister 

rust have contributed to the ongoing demise of the whitebark pine ecosystem of the 

northern Rocky Mountains of western North America. A relatively large body of research 

has been conducted on whitebark pine ecosystems to examine the relationship between 

fire suppression and white pine blister rust (Arno et al. 1993, Keane and Arno 1993, 

Tomback et al. 1995, Murray et al. 2000, Zeglen 2002, Kipfmueller and Kupfer 2005, 

Kearns and Jacobi 2007, Smith et al. 2008 ) and mountain pine beetle and white pine 

blister rust interactions (Campbell and Antos 2000, Campbell et al. 2007)  in portions of 

British Columbia, Idaho, northwestern Montana, Wyoming, and Colorado. Although 

mountain pine beetle outbreaks and whitebark pine mortality have been examined in 

portions of Idaho and Montana (Perkins and Swetnam 1996, Murray et al. 2000, 

Kipfmueller 2003), the extent of the white pine blister rust epidemic has not been 

quantified throughout the Rocky Mountains of western Montana. More temporally-

precise, site-specific data on the extent of white pine blister rust infection, past and 

current mountain pine beetle outbreaks, and resulting successional trends in whitebark 

pine communities throughout western Montana are needed to understand landscape-level 

declines in these whitebark pine communities.  

Extensive mountain pine beetle outbreaks affected whitebark pine communities in 

the northern Rockies between 1925 and 1935 and between 1970 and 1980 (Arno and 
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Hoff 1989), and more recently in the early 2000s. The series of outbreaks that occurred 

from 1925 to 1935 in Idaho and Montana killed an estimated 1.4 billion lodgepole pines 

(Pinus contorta Douglas ex Loudon) and vast numbers of whitebark pine (Safranyik and 

Carroll 2006). Extensive outbreaks in the western U.S. and Canada during the late 1970s 

and early 1980s killed almost 2 million hectares of Pinus trees. A massive infestation, 

extending over 12 million hectares, has also devastated lodgepole and whitebark pine 

stands in the northern Rocky Mountains and in central British Columbia in the early 

2000s (Safranyik and Carroll 2006).  

An additional stressor currently affecting whitebark pine is white pine blister rust 

(Cronartium ribicola J.C. Fischer), an exotic pathogen first discovered in North America 

on a currant plant (Ribes spp.) in Geneva, New York, in 1906. The fungus soon spread to 

the Great Lakes region and British Columbia. White pine blister rust is now found 

throughout the entire range of five-needled pines in North America (Blanchard and Tattar 

1997). Worsening the situation, whitebark pine is also the most vulnerable of the several 

white pine species, with fewer than one in 10,000 trees showing resistance to blister rust 

(Kendall 1994). The range of whitebark pine affected by white pine blister rust is 

expanding and infection is intensifying (Campbell and Antos 2000, Zeglen 2002, 

McKinney and Tomback 2007, Smith et al. 2008). Currently, the degree of infection in 

whitebark pine populations decreases southward throughout all parts of its range, 

including the Cascade-Sierra Nevada chain, the Bitterroot Mountains, and along the 

Continental Divide of the Rocky Mountains (Hoff 1992). In Washington State, northern 

Idaho, northwest Montana, southern Alberta, and British Columbia, 40–100% of 

whitebark pine are dead in most forest stands, and 50–100% of the living trees are 
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infected with white pine blister rust (Arno et al. 1993, Campbell and Antos 2000, Kendall 

and Keane 2001, Tomback et al. 2001, Zeglen 2002, Smith et al. 2008). The extent of 

whitebark pine stands with cone-bearing trees has also declined by half (Tomback et al. 

2001, McKinney and Tomback 2007).  

Dendroecological techniques have only been used in a limited scope to study the 

current effects of mountain pine beetle, white pine blister rust, and fire suppression on 

whitebark pine growth (Perkins and Swetnam 1996, Kendall and Keane 2001, 

Kipfmueller and Kupfer 2005). Previous dendroentomological studies have analyzed  

radial growth patterns to examine the effects of insect disturbances on tree growth, such 

as defoliation episodes during spruce budworm and pandora moth outbreaks (Swetnam 

and Lynch 1993, Speer et al. 2001) and species-specific mortality events from spruce and 

mountain pine beetles (Veblen et al. 1991, Campbell and Antos 2000, Girardin et al. 

2002, Sherriff 2006, Safranyik and Carroll 2006, Berg et al. 2006, Campbell et al. 2007). 

No research has been conducted that compared growth between the insect-host whitebark 

pine with nonhost species such as subalpine fir. Many studies exist that describe potential 

reasons behind the decline of whitebark pine forests (Keane and Arno 1993, Kendall and 

Keane 2001, Tomback et al. 2001, Kipfmeuller and Kupfer 2005), but one key approach 

that is lacking is an analysis that combines radial growth patterns from whitebark pine 

and from competing species. Growth comparisons between whitebark pine (host species 

to mountain pine beetle and white pine blister rust) and nonhost species could further 

clarify stand dynamics that affect whitebark pine communities throughout western North 

America. Such research could also clarify how these dynamics may have changed in the 

modern environment with the introduction of white pine blister rust.  



 130

In this study, we analyzed differential species’ responses to natural and 

anthropogenic disturbances in subalpine forests of the northern Rocky Mountains in 

Montana. The specific objectives of this study were to: (1) examine growth suppression 

and release events caused by white pine blister rust and mountain pine beetle disturbance 

events in whitebark pines (host species) and subalpine firs (nonhost species), (2) 

quantitatively describe the current species composition and stand structure, (3) 

reconstruct the disturbance history of whitebark pine communities using forest inventory 

measures and dendroecological techniques, and (4) assess whitebark pine health along a 

latitudinal transect through the Rocky Mountains of western Montana. 

 

4.2  Study Site 

Our study sites were located in whitebark pine forests on eight peaks across three 

national forests in Montana, located on a north-south transect that extended from the 

Montana/Canada border to the western side of Yellowstone National Park. We chose to 

sample along a north-south latitudinal transect to evaluate landscape-level white pine 

blister rust and mountain pine beetle outbreak trends. The sites varied in elevation from 

1,770 m to 2,535 m (Table 4.1). Mean annual temperature ranges are similar, but a 

gradient of decreasing precipitation exists from west to east that creates different 

precipitation regimes among the study sites. Soils are poorly developed at all sites. The 

underlying geology is composed of a mix of Quaternary and Cenozoic glacial deposits, 

Precambrian shales and siltstones, and Precambrian argillites and quartzites  
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Table 4.1. Study site locations in Montana. 

Study Site National Forest 
Elevation 
(meters) 

Latitude 
(Degrees N) 

Longitude 
(Degrees W) 

Big Mountain Flathead 1770 48.31.25 114.22.50 
Challenge  Flathead 1770 48.12.37 113.20.53 
Hornet Peak Flathead 2040 48.52.44 114.31.33 
Mineral Peak Lolo 2250 47.00.13 113.48.51 
Morrell Mountain Lolo 2370 47.11.53 113.21.25 
Point Six Lolo 2350 47.02.34 113.59.14 
Ajax Peak Beaverhead-Deerlodge 2535 45.20.25 113.42.57 

Big Hole Pass Beaverhead-Deerlodge 2255 45.31.14 113.48.16 



 132

(Ross et al.1955, Raines and Johnson 1996). Subalpine fir, Douglas-fir, lodgepole pine, 

Engelmann spruce, and grand fir (Abies grandis (Douglas. ex D. Don) Lindl.) were  

present in the stands we examined. Forest cover on Big Mountain, Challenge, Point Six, 

and Ajax Peak was relatively continuous, although the forests on Morrell Mountain, Big 

Hole Pass, and Hornet Peak were broken by a few alpine meadows. The forest on 

Mineral Peak was dissected by open talus. Common herbaceous plants on all sites 

included grouse whortleberry (Vaccinium scoparium Leib. ex Coville), red mountain-

heath (Phyllodoce empetriformis (Sm.) D. Don), smooth woodrush (Luzula hitchcockii 

Hamet-Ahti), bear grass (Xerophyllum tenax (Pursh) Nutt.), and elk sedge (Carex geyeri 

Boott).  

Evidence of disturbance was common at each site. The whitebark pines had 

experienced differing rates of mortality in each stand, predominantly from mountain pine 

beetle activity that we identified by pitch tubes and red boring dust on tree stems, by the  

presence of J-shaped galleries on the boles of dead trees, and by blue-staining fungus 

(Ceratocystis montia (Rumb.) Hunt.) in the outer tree rings once cross-sections were 

collected. We also observed several recently dead trees with what appeared to be old 

blister rust cankers at the sites in the Flathead and Lolo National Forests. Blister rust was 

abundant, with whitebark pine trees exhibiting open cankers or flagging (red needles due 

to the recent mortality of a branch or stem) in their upper canopies and on lower 

branches. Evidence of past fires was limited to northern sites, where many whitebark pine 

trees displayed multiple fire scars. We did not observe any fire-scarred fir or spruce.



 133

4.3  Methods 

4.3.1 Field Methods 

Forest composition and age-structure data were collected in four 0.05 ha fixed-

radius (r = 12.66 m) plots at the eight sites (32 overstory plots total). We sampled vertical 

forest structure (trees, saplings, and seedlings) within each fixed-radius overstory plot. 

The center of the plots were located from a random point within a whitebark pine-

dominated stand by walking 50 m in a direction selected by the second hand of a watch. 

We tallied all trees by species and recorded diameter at breast height (DBH; height = 1.47 

m) of all trees ≥ 5.0 cm DBH within each plot. Living tree crowns were classified into 

four categories (dominant, codominant, intermediate, and suppressed) based on the 

amount and direction of intercepted light (Oliver and Larson 1996).  

Each whitebark pine was evaluated for tree health (healthy, declining, or dead), 

severity of white pine blister rust, and the presence or absence of mountain pine beetle. 

Overall tree health was based on the amount of dead needles in the crown. A tree was 

considered healthy if less than 5% of the tree crown was faded or had flagged branches. 

Whitebark pines that showed only one flagged branch from white pine blister rust were 

categorized as healthy because the crowns of the trees were still healthy overall. A tree 

was considered declining if more than 5% of the crown was showing stress. The presence 

of white pine blister rust was evaluated on the health of tree crowns as well (brown 

needles and flagged branches), and on the presence of cankers on the branches and stems 

of whitebark pine, following the methods of the Whitebark Pine Ecosystem Foundation 

(Tomback et al. 2005). Specific attention was given to finding active cankers (orange-

yellow aecial blisters) on flagged branches during our early summer field months. We 
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also examined trees for signs of rodent chewing as another indicator of white pine blister 

rust presence (Hoff 1992). Rodents chew on the branches and trunks of whitebark pine 

that have produced streams of resin during advanced white pine blister rust infections. 

Agents of whitebark pine mortality were distinguished between mountain pine beetle, 

white pine blister rust, or other causes. 

Saplings less than 5.0 cm DBH but greater than 1.3 cm diameter at ground level 

(DGL) were tallied by species in the 32 overstory plots. We cut 4–8 subalpine fir saplings 

in each plot to obtain general ages of subalpine fir saplings at each site. Seedlings (less 

than 1.3 cm DGL) were tallied by species in nested fixed-radius 0.01 ha plots (r = 5.66 

m). All understory data were later grouped by national forest and converted to saplings or 

seedlings per hectare. We also recorded UTM coordinates, percent slope, and aspect at 

each overstory plot center.  

Dendroecological techniques and analyses were used to provide temporally 

precise information that would be helpful for assessing the ecological status of whitebark 

pine ecosystems.  We sampled all living and standing dead trees in each plot for age 

using increment borers. We obtained two cores from each standing tree (healthy, 

declining, and dead) in each plot. All cores were taken at or below 30 cm above the root 

collar and along the contour of the slope to minimize the effects of reaction wood on the 

growth patterns in each sample (Fritts 1976). Core samples were labeled and placed in 

paper straws for storage and protection.  

We used a chainsaw to collect 5 to 10 cross-sections from whitebark pine snags, 

stumps, and logs to extend the tree-ring information obtained from the cores back in time. 

A variety of disturbances can injure trees in the subalpine environment (Burrows and 
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Burrows 1976, Stuart et al. 1983, Butler et al. 1986, Morgan and Bunting 1990) causing 

erratic but characteristic patterns in the tree-ring record. We visually examined each 

cross-section and noted presence or absence of fire (i.e., internal fire scars), mountain 

pine beetle galleries, and blue-staining fungus (Arno and Sneck 1977). All samples were 

labeled and then wrapped with plastic for transport back to the laboratory. 

The mountain pine beetle is the most destructive of the native biotic agents in 

mature Pinus forests in western North America (Safranyik and Carroll 2006). During 

endemic mountain pine beetle infestations, beetles tend to select weaker, less vigorous 

trees for attack. However, tree size selection is not evident during epidemic conditions 

(Safranyik and Carroll 2006). Infested whitebark pines were recognized first by pitch 

tubes on their trunk and red boring dust in bark crevices and on the ground at the root 

collar. We also examined whitebark pine foliage for discoloration, as it changes from 

green to light greenish yellow, and then to reddish brown. The sapwood of attacked trees 

soon becomes discolored by blue-staining fungus. This blue-staining fungus is readily 

apparent in tree-ring samples, and is one type of evidence for past beetle activity 

(Amman et al. 1989, Perkins and Swetnam 1996). We also expected to find episodes of 

tree establishment temporally clustered around outbreak dates. Because mountain pine 

beetle do not infest subalpine fir, we expected to see release events in the subalpine fir 

ring widths following whitebark pine growth decline. 

 

4.3.2  Laboratory Methods 

All samples were frozen at –40 °C for 48 hours to kill any pathogens and/or 

insects that may have been transported along with the samples. After allowing all samples 
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to dry, fragile cross-sections were glued to plyboard for stabilization. Cores were allowed 

to air-dry completely in the straws and were then glued to wooden core mounts with cells 

vertically aligned to ensure a transverse view of the wood surface. Cross-sections and 

cores were given an initial flat surface using a band saw to remove deep chain saw cuts 

prior to sanding, then the cross-sections and core samples were sanded using a belt 

sander, beginning with ANSI 80-grit (177−210 μm) and using progressively finer-grit 

belts until ANSI 400-grit (20.6−23.6 μm) (Orvis and Grissino-Mayer 2002). This process 

produced a wood surface with cellular features clearly defined under 10x magnification 

for clear ring identification.  

 

4.3.3 Crossdating and Chronology Construction 

We used visual, graphical, and statistical crossdating to assign exact calendar 

years to the tree rings of the whitebark pine and subalpine fir cores and whitebark pine 

cross-section samples. Visual crossdating relied on recognition of characteristic patterns 

of wide and narrow rings common to each site that were likely related to regional climate 

(Fritts 1976). Graphical crossdating was accomplished using the skeleton plot method 

(Stokes and Smiley 1996). Statistical crossdating was accomplished using ring-width 

measurements and the computer program COFECHA (Holmes 1983, Grissino-Mayer 

2001).  

We measured the ring widths on all samples to 0.001 mm accuracy with a Velmex 

measuring stage coupled with MEASURE J2X software. We confirmed the graphical 

crossdating and relative placements of all tree-ring series using COFECHA, which uses 

segmented time-series correlation techniques to confirm the previously-assigned temporal 
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placements of all tree rings to the exact year each was formed (Grissino-Mayer 2001). 

Because crossdating is a high-frequency process (pattern matching of sequences of 

individual rings), COFECHA removes all low-frequency trends using both spline-fitting 

algorithms and autoregressive modeling (Grissino-Mayer 2001). Such trends could also 

be caused by natural (e.g. mountain pine beetle outbreaks and fire events) and human 

(e.g. blister rust infestation, logging, and mining) disturbances that otherwise could mask 

the climate signal desirable for accurate crossdating. We tested consecutive 50-yr 

segments (with 25-yr overlaps) on each series with a master chronology created from all 

other series by site.  

Crossdating was verified when the correlation coefficient for each tested segment 

exceeded 0.32 (p < 0.01), although coefficients were usually much higher. The final 

suggested placement made by COFECHA had to be convincing both graphically (similar 

patterns in wide and narrow rings) and statistically (correlation significant at p < 0.001) 

(Grissino-Mayer 2001). Crossdating quality was assessed by two statistical descriptors. 

The average mean sensitivity was used to measure the strength of the year-to-year 

variability in all series and is an indicator of climate responsiveness (Fritts 1976). Values 

of 0.25 or higher are common for tree-ring data from the western U.S. (DeWitt and Ames 

1978). We also used the interseries correlation as the average of all correlation 

coefficients calculated for each series to compare to all other series in the chronology 

(Grissino-Mayer 2001). The average interseries correlation is calculated by averaging the 

Pearson correlation coefficients calculated for each measurement series when correlated 

against a master chronology created from the remaining series (Grissino-Mayer 2001). 
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We standardized all measurement series in the six chronologies to remove effects 

from age-related growth trends that could add noise to the series unrelated to the climate 

signal desired in chronology development (Cook 1987, Fritts 2001). We removed the 

age-related growth trend of each sample using the program ARSTAN (Cook 1985), 

which fits a negative exponential trend line to the growth of the sample using the least 

squares technique.  ARSTAN then creates an index for that year by dividing the actual 

ring-width by the value predicted by the regression (Fritts 1976, Cook 1985). The indices 

were then averaged for each year across all series to create a single index series for each 

site (Cook 1985).  

 

4.3.4 Disturbance Regimes 

We chose one representative site from each national forest to develop whitebark 

pine and subalpine fir chronologies, and to examine disturbance regimes in whitebark 

pine communities more closely. Subalpine fir was chosen as the nonhost species to 

compare to whitebark pine because of its abundance in whitebark pine communities. Tree 

reproduction in many forest ecosystems occurs in episodes associated with major 

disturbances. Thus, the distribution of ages in a population is often a sensitive indicator of 

the history of disturbance in a stand (Christensen 1989). Forest stand dynamics and 

disturbance patterns can also be inferred from suppression-release patterns in tree rings 

(Brubaker 1987, Lorimer and Frelich 1989, Nowacki and Abrams 1997, Ruffner and 

Abrams 1998, Rubino and McCarthy 2004). To quantify the extent of the disturbance 

(fire events, mountain pine beetle, or white pine blister rust) on stand and landscape 

scales, we calculated releases of tree growth over time in each of our samples from the 
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whitebark pine and subalpine fir chronologies. The growth release events, defined as 

changes in radial growth relative to a pre-determined criterion, were identified for each 

tree-ring series in each chronology using the program JOLTS (Holmes 1999). We 

analyzed changes in ring width with respect to the running mean of the previous and 

subsequent 10 years.  Release events were identified as periods in which ring width for a 

given year was at least 50% greater than the mean ring width of the 10 preceding and 

superseding years. The JOLTS program parameters were a release factor of 1.5 (i.e., 

50%), a 10-year moving average, and a five year minimum between release events 

(Veblen et al. 1991, Girardin et al. 2002, Berg et al. 2006). These criteria were chosen to 

reduce the number of release events caused by climatic anomalies and to isolate releases 

more likely caused by natural and anthropogenic disturbances. 

The occurrence of releases in trees within and between study sites can identify 

disturbances as either a regionally extensive or localized event (Veblen et al. 1991). To 

determine if release events were stand-wide or local, we analyzed the temporal pattern of 

release episodes. Stand-wide disturbances were defined as release episodes where a 

minimum of 20% of individuals experienced simultaneous release.  A stand-wide release 

event indicates an exogenous disturbance that removed or damaged overstory trees at a 

large spatial scale (e.g., stand-replacing fires, mountain pine beetle outbreaks, and white 

pine blister rust).  

Individual disturbance events in our whitebark pine-dominated stands were later 

disentangled by inspecting tree cores for blue-staining fungus from mountain pine beetle 

outbreaks and by quantifying declines in tree growth over a decade, indicating a possible 

white pine blister rust signature. We compared sites that are heavily infested with white 
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pine blister rust (the Flathead and Lolo National Forests) to stands where white pine 

blister rust was thought to be absent (Beaverhead-Deerlodge National Forest) to find a 

unique tree-ring pattern indicative of when white pine blister rust first became present 

within the whitebark pine stands. For example, blister rust is known to have affected a 

small percentage of whitebark pines in the Flathead and Lolo National Forests in the 

1960s (Hoff and Hagle 1990), therefore releases in surviving whitebark pines and all 

subalpine firs that occured in the 1970s could be a function of a white pine blister rust 

presence. However, known periods of mountain pine beetle outbreaks also occurred in 

the 1970s and 1980s. Unless these disturbances caused tree mortality, it is impossible for 

us to distinguish if releases in tree growth were associated with white pine blister rust 

infection, mountain pine beetle attack, or both during the 1970s and 1980s. If the 

mountain pine beetle outbreak did kill an individual tree, we would expect to see blue-

staining fungus in the sapwood. The southern sites, in the Beaverhead-Deerlodge 

National Forest, are higher-elevation and have a cool, dry climate that is thought to be 

poorly suited for blister rust infection. We will compare the southern sites that have not 

been affected by blister rust since the 1960s with the central and northern sites where 

blister rust has been present during the past 40 years. We will also compare the mountain 

pine beetle outbreaks between 1925 and 1935 and between 1970 and 1980 in the 

whitebark pine (host) and subalpine fir (nonhost) chronologies at all sites. We would 

expect to see releases in surviving whitebark pines and all subalpine firs within a decade 

of know mountain pine beetle outbreaks in each of the sites. 

Relative importance values were calculated for each species in each national 

forest as the average of the relative density (number of individuals) and relative 
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dominance (basal area) (Cottam and Curtis 1956, Abrams et al. 2001). Importance values 

helped describe past and current forest composition as a function of tree density and size 

(dominance). Dominance values are particularly useful for projecting future overstory 

composition after stand-wide disturbances. Canopy class structure was also analyzed for 

species composition in the dominant, codominant, intermediate, and suppressed canopy 

classes in each national forest. 

 

4.4  Results 

4.4.1 Forest Composition 

The dominant species in Montana subalpine forests were whitebark pine, 

subalpine fir, and grand fir (Table 4.2).  Living whitebark pine composed 59% of the 

dominant trees in the Beaverhead-Deerlodge National Forest (BDNF). Basal area (m2/ha) 

for living whitebark pine ranged from 26 m2/ha in the BDNF to 5 m2/ha in the FNF.  

Subalpine fir had the second highest basal area as a species and ranged from 8 m2/ha in 

the Lolo National Forest (LNF) to 6 m2/ha in the BDNF. Grand fir was only important in 

the Flathead National Forest (FNF) and had a relatively high basal area (6 m2/ha). The 

BDNF had the highest basal area of the national forests (45 m2/ha), which reflected the 

large size of the living whitebark pine and other species present in our study sites. High 

whitebark pine mortality was evident in the FNF and LNF where dead whitebark pines 

had the second highest importance values in both forests, even above living whitebark 

pines (Table 4.2). In healthier whitebark pine stands in the BDNF, living whitebark pines 

had the highest importance value (60%) compared to associated species. 
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Table 4.2. Density, dominance, and importance of trees (≥ 5 cm DBH) from the Flathead, 
Lolo, and Beaverhead-Deerlodge National Forests in Montana. Values shown are per 
hectare. 
 

FLATHEAD NATIONAL FOREST       

Species 
Trees/ 

Ha 
Rel 

Density Ba/Ha 
Rel 

Dominance 
Rel 

Importance 
grand fir 193 23.87 6.26 21.79 22.83 
subalpine fir 221 27.37 8.00 27.84 27.60 
lodgepole pine 25 3.09 1.53 5.32 4.20 
Engelmann spruce 55 6.79 1.47 5.13 5.96 
Douglas-fir 2 0.21 0.07 0.26 0.23 
whitebark pine (living) 118 14.61 5.09 17.73 16.17 
whitebark pine (dead) 194 24.07 6.30 21.93 23.00 
TOTAL 807 100 28.72 100 100 
            
LOLO NATIONAL FOREST       

Species 
Trees/ 

Ha 
Rel 

Density Ba/Ha 
Rel 

Dominance 
Rel 

Importance 
subalpine fir 609 51.11 8.84 29.71 40.41 
Engelmann spruce 8 0.70 0.65 2.19 1.44 
lodgepole pine 5 0.42 0.18 0.60 0.51 
whitebark pine (living) 168 14.07 7.17 24.09 19.08 
whitebark pine (dead) 402 33.70 12.92 43.41 38.56 
TOTAL 1192 100 29.77 100 100 
            
BEAVERHEAD-DEERLODGE NATIONAL FOREST   

Species 
Trees/ 

Ha 
Rel 

Density Ba/Ha 
Rel 

Dominance 
Rel 

Importance 
subalpine fir 113 12.13 6.15 13.72 12.92 
lodgepole pine 85 9.16 3.60 8.04 8.60 
Douglas-fir 73 7.82 5.09 11.35 9.58 
whitebark pine (living) 563 60.65 26.36 58.83 59.74 
whitebark pine (dead) 95 10.24 3.61 8.06 9.15 
TOTAL 928 100 44.80 100 100 
            

   Ha is hectare 
   Rel Density is Relative Density (relative stems per hectare) 
   Ba is basal area (m2) 
   Rel Dominance is Relative Dominance (relative m2/ha) 
   Rel Importance is Relative Importance ((Rel Density + Rel Dominance) / 2)  
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 The most abundant species in the tree layer (individuals ≥ 5 cm DBH) based on 

relative density were also whitebark pine, subalpine fir, and grand fir.  Whitebark pine  

relative density was highest in the BDNF (61%) where whitebark pine mortality was 

relatively low (10%).  The FNF and LNF had low relative densities of living whitebark 

pine (15% and 14%). Subalpine fir had the highest density in the LNF (51%), even over 

living and dead whitebark pine trees combined. Compared to the FNF and LNF, the 

BDNF had the lowest densities of subalpine fir (12%) and the highest densities of living 

whitebark pine (61%). 

The understory densities and species varied across the national forests (Figure 

4.1). Six species were found in the sapling layer: whitebark pine, subalpine fir, 

Engelmann spruce, grand fir, lodgepole pine, and Douglas-fir (Figure 4.1).  Of these 

species, subalpine fir had the highest number per hectare in the LNF (1,522 saplings/ha). 

Whitebark pine saplings were most abundant in the LNL (300 saplings/ha) but many of 

these showed signs of white pine blister rust. The BDNF had a rather low but even 

distribution of saplings and seedlings between five species. The FNF and LNF had the 

highest number of subalpine fir seedlings (2,699 and 2,432 seedlings/ha). The relatively 

high number of grand fir seedlings (1,866 seedlings/ha) in the FNF contributed to the 

national forest having the highest number of seedlings per hectare (5,006). Whitebark 

pine seedlings were most abundant in the LNF with 750 seedlings per hectare.  

Subalpine forest species were grouped and values were standardized at the hectare 

level to reveal canopy class distribution patterns between the national forests (Figure 4.2). 

Whitebark pine was the leading dominant canopy species in subalpine sites in each  
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Figure 4.1. Density for: (A) saplings and (B) seedlings per hectare by national forest in 
Montana. Saplings: less than 5.0 cm DBH but greater than 1.3 cm DGL; Seedlings: less 
than 1.3 cm DGL. Note: y-scale varies. 
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 Figure 4.2. Canopy class distributions per hectare by group.  Canopy class categories 
are based on the amount and direction of intercepted light (Oliver and Larson 1996).  
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national forest. Historically, whitebark pine would have been represented by more trees 

per hectare in the dominant and codominant canopy classes, similar to the pattern found 

 in the BDNF (Figure 4.2c), where whitebark pine was the most abundant species in all 

canopy classes. Although whitebark pine was also the most abundant in dominant and 

codominant canopy positions in the FNF (Figure 4.2a), the number of trees per hectare is 

low compared to the LNF and BDNF. The number of trees per hectare is highest in the 

intermediate and suppressed canopy classes in the FNF and LNF (Figure 4.2a,b). In the 

LNF, subalpine fir was the most abundant species in the suppressed, intermediate, and 

codominant canopy classes. Subalpine fir was the second most abundant species, after 

whitebark pine, in the dominant canopy class (Figure 4.2b). 

 

4.4.2 Forest Health  

We completed health surveys on 805 whitebark pine trees (≥ 5 cm DBH) in our 

32 overstory plots in the FNF, LNF, and BDNF. Of the 805 whitebark pines examined, 

30% (n = 238) were alive, 20% were declining (n = 159), and 50% were dead (n = 407). 

In general, many of the larger diameter (≥ 30 cm DBH) dead whitebark pines showed 

evidence of mountain pine beetle in the form of  “J”-shaped egg galleries in the phloem 

of the affected tree. The smaller diameter whitebark pines (5–30 cm DBH) that were 

recently dead or declining had evidence of white pine blister rust in the form of new and 

old cankers, rodent chewing, and flagged branches. 

The BDNF had the highest number of living whitebark pines (563/ha), compared 

to the LNF (168/ha) and FNF (118/ha) (Table 4.3). Although the BDNF had the 

healthiest population of whitebark pines, approximately 40% had white pine blister rust 
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(n = 228).  Over half of the living whitebark pines in the LNF (78%) and the FNF (56%) 

showed symptoms of white pine blister rust (Table 4.3). Most of the whitebark pines in 

the FNF and the LNF are declining or dead (Figure 4.3). Almost 75% of the whitebark 

pines in the BDNF remain healthy, but only 14% of the whitebark pines in the FNF and 

7% in the LNF are healthy. The LNF had the highest percentage of dead whitebark pines 

(71%), followed by the FNF (62%), and the BDNF (14%).  

 

4.4.3  Disturbance History 

The six whitebark pine and subalpine fir chronologies were developed using 229 

samples from the FNF, LNF, and BDNF (Table 4.4). The site chronologies varied in 

length, with the shortest whitebark pine record from Ajax Peak (1832–2005) and the 

longest from Morrell Mountain (1489–2003). Subalpine fir chronologies ranged from 

1797–2004 at Ajax Peak to 1860–2005 at Hornet Peak. Subalpine fir chronologies had 

low sample depth and proved difficult to crossdate because many of the samples were 

from interior forest trees that were in intermediate or suppressed canopy classes.  

The interseries correlation and mean sensitivity of our three whitebark pine chronologies 

were representative of other whitebark pine chronologies from Montana (Larson 2005, 

Mann 2008). Interseries correlations for whitebark pine chronologies in the northern 

Rocky Mountains range between 0.41 and 0.70 (Perkins and Swetnam 1996, Biondi et al. 

1999, Kipfmueller 2003, Larson 2005, Mann 2008). Mean sensitivity values between 

0.20 and 0.24 are common for whitebark pine tree-ring data from Montana and Idaho 

(Perkins and Swetnam 1996, Biondi et al. 1999, Kipfmueller 2003, Larson 2005, Mann 
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Table 4.3. Living whitebark pine and white pine blister rust status by national forest in 
Montana. Values are per hectare.  

National Forest 
Living 

whitebark pine 
Whitebark pine 
with blister rust 

Percent of whitebark 
pine with blister rust 

Flathead (FNF) 118 66 56 

Lolo (LNF) 168 131 78 

Beaverhead-Deerlodge 
(BDNF) 563 228 40 

 

 

Table 4.4. Summary data of whitebark pine and subalpine fir chronologies from 
Montana. 

Study Site Species 
Period of 
Record 

Number of 
Samples 

Interseries 
Correlation 

Mean 
Sensitivity 

Hornet Peak 
(FNF) 

whitebark pine 1682–2005 64 0.48 0.23 

  subalpine fir 1860–2005 20 0.43 0.24 

Morrell Mountain 
(LNF) 

whitebark pine 1489–2003 60 0.51 0.24 

  subalpine fir 1830–2003 23 0.50 0.28 

Ajax Peak 
(BDNF) 

whitebark pine 1832–2004 33 0.52 0.21 

  subalpine fir 1797–2004 29 0.49 0.22 
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Figure 4.3. Comparing the health status of whitebark pine populations between 
national forests in Montana.  FNF = Flathead National Forests, LNF = Lolo National 
Forest, and BDNF = Beaverhead-Deerlodge National Forest.  
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2008). The mean sensitivity for the whitebark pine chronologies from western Montana 

ranged from 0.21 to 0.24.The Ajax Peak chronology had the highest interseries 

correlation (0.52), followed by Morrell Mountain (0.51), and Hornet Peak (0.48).  Our 

subalpine fir chronologies had lower interseries correlations (0.43 at Hornet Peak, 0.50 at 

Morrell Mountain, and 0.49 at Ajax Peak) than a recent study that used subalpine fir to 

reconstruct treeline advancement in Glacier National Park (interseries correlation was 

0.55), but we found the Morrell Mountain subalpine fir mean sensitivity was higher 

(0.28) than that found in the other study (0.26) (Bekker 2005). 

Hornet Peak, our northern-most site in the FNF, showed continual establishment 

of all species from 1675–1850 (Figure 4.4a). The last whitebark pine to establish at 

Hornet Peak occurred in 1854 after a pulse of tree establishment from 1790 to 1850. 

Subalpine fir and grand fir have continued to establish since 1850. The whitebark pine 

and subalpine fir chronologies showed above-average growth in 1880 but then did not 

show similar growth patterns again until both showed a decrease in growth between 1998 

and 2005 (Figure 4.4 b,c). Whitebark pine had below-average growth in 1698, 1795, 

1806, 1870, 1883, the 1920s, 1939, and the 1970s. A steady decrease in growth also 

occurred from 1948 to 1960. Subalpine fir had years of below average growth in 1867, 

1914, 1924, 1938, and 1989.  

Morrell Mountain, in the eastern LNF, showed two discrete patterns of whitebark 

pine establishment over the last 500 years (Figure 4.5a). The first cohort established over 

a 50-year period starting in 1500. Continual tree establishment has occurred since 1700, 

with a group of whitebark pines becoming established around 1800. A large number of 

subalpine firs have established since 1700, including a pulse of small diameter trees in  
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 Figure 4.4. (A) Age-diameter relationships for cored trees, (B) the ARSTAN 
chronology for whitebark pine, and (C) subalpine fir from Hornet Peak in the 
Flathead National Forest. 
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Figure 4.5. (A) Age-diameter relationships for cored trees, (B) the 
ARSTAN chronology for whitebark pine, and (C) subalpine fir from 
Morrell Mountain in the Lolo National Forest. 
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the 1970s. Many of the subalpine firs, independent of tree age, had diameters less than 15 

cm DBH. The smaller-diameter subalpine firs were not included in the subalpine fir 

chronology because crossdating quality was poor in the interior forest trees. The 

whitebark pine and subalpine fir chronologies showed a similar growth decline from 

1977 to 1984 (Figure 4.5 a,b). Both chronologies showed peaks in growth during the 

1990s, but whitebark pine began a steady decrease in growth in 1997. While subalpine fir 

experienced a period of decreased growth from 1852 to 1868, whitebark pine growth 

experienced a peak in growth in 1863. Years of low growth in whitebark pine occurred in 

1604, 1754, 1838, 1899, 1930, 1956, 1971, and 1979. Subalpine fir also had below-

average growth in 1956.  

Ajax Peak, on the Continental Divide in the Beaverhead-Deerlodge National 

Forest, has had continual tree establishment since the 1830s (Figure 4.6a). A few older 

whitebark pine, subalpine fir, and Engelmann spruce individuals were found that 

established in the 1700s. Whitebark pine trees continued to establish into the 1970s, 

which is later than both Hornet Peak (1860s) and Morrell Mountain (1950s). Although 

establishment of whitebark pine has been steady, whitebark pine growth has significantly 

decreased since 1998 (Figure 4.6b). Similar patterns emerged between whitebark pine 

and subalpine fir in the 1800s (Figure 4.6 b,c). The years 1838 and 1899 showed 

particularly low growth, while both chronologies experienced a growth peak in 1863. The 

same 1800s trend also occurred in the Morrell Mountain whitebark pine chronology, 

which indicates a similar climate signal between the Ajax Peak and Morrell Mountain 

sites. Whitebark pine had periods of below-average growth from 1930–1940 and 1970–

1983. Subalpine fir experienced low growth from 1972 to 1974, but had average growth
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Figure 4.6. (A) Age-diameter relationships for cored trees, (B) the ARSTAN 
chronology for whitebark pine, and (C) subalpine fir from Ajax Peak in the 
Beaverhead-Deerlodge National Forest. 
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in the 1980s. A growth pulse occurred from 1997 to 2003, during a sharp decrease in 

whitebark pine growth. 

Of the 229 whitebark pine and subalpine fir trees analyzed using the 10-year 

running mean method, 183 (80%) exhibited release events.  A total of 566 release events 

were detected from the 229 individuals with some trees experiencing multiple releases 

during their lifespan. All release events detected using the 10-year running mean method 

were visually checked for accuracy using the raw ring-width measurements for the 229 

whitebark pine and subalpine fir individuals. Ajax Peak had the lowest number of 

releases per tree in whitebark pine (1.39) and subalpine fir (2.28), while Morrell 

Mountain had the highest frequency of release events per tree in both species (3.12) 

(Table 4.5).  

Our sites experienced very few stand-wide release events, although we observed 

distinct cohorts of release events throughout the length of the chronologies (Figures 4.7–

4.9). Whitebark pines from Hornet Peak experienced frequent releases between 1690–

1710, 1730–1745, 1790–1810, 1930–1945, and 1960–1990 (Figure 4.7a). The largest 

release cohort occurred from 1960–1990 when individual whitebark pines were 

experiencing an average growth increase of over 50% almost every year. In 1980, 20% of 

the whitebark pines experienced a growth release. Subalpine firs at Hornet Peak had a 

stand-wide disturbance in 1880, followed by a high frequency of releases from 1930 to 

1990. Over 20% of the subalpine firs experienced releases in 1944, 1946, 1954, and 1962 

(Figure 4.7b).  

Whitebark pines at Morrell Mountain experienced stand-wide releases between 

1500 and 1506, 1525, 1973, 1979, and 1984 (Figure 4.8a). Other periods of release 
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Study Site Species 

Number 
of 

Samples

Series 
with 

Releases 

Releases 
in all 
Trees 

Mean Number 
of Releases 

per Tree 

Hornet Peak whitebark pine 64 46 142 2.22 
  subalpine fir 20 18 52 2.60 

Morrell Mountain whitebark pine 60 55 187 3.12 
  subalpine fir 23 20 73 3.12 

Ajax Peak whitebark pine 33 21 46 1.39 
  subalpine fir 29 23 66 2.28 

Table 4.5. Growth release data from 229 whitebark pine and subalpine fir series in study 
sites from Montana.  
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Figure 4.7. Detected release events using the 10-yr running mean method for 
whitebark pine and subalpine fir individuals sampled from Hornet Peak. Each black 
bar represents the percentage of trees that experienced a release event by year. The 
black line represents the sample depth. 
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Figure 4.8. Detected release events using the 10-yr running mean method for 
whitebark pine and subalpine fir individuals sampled from Morrell Mountain. Each 
black bar represents the percentage of trees that experienced a release event by year. 
The black line represents the sample depth. 
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  Figure 4.9. Detected release events using the 10-yr running mean method for 
whitebark pine and subalpine fir individuals sampled from Ajax Peak. Each black bar 
represents the percentage of trees that experienced a release event by year. The black 
line represents the sample depth. 
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occurred from 1890–1910 and 1920–1950. Subalpine fir and whitebark pine did not 

experience releases during the same years, but they both had a release pulse in the mid-

1980s. Subalpine fir had stand-wide releases in 1843, 1848, 1870, and 1900 (Figure  

4.8b). Over 20% of the subalpine firs experienced releases in 1875, 1938, 1985, and 

1990. Whitebark pines from Ajax Peak experienced stand-wide releases in 1843, 1848, 

and 1853 (Figure 4.9a). Ajax Peak and Morrell Mountain both had stand-wide releases in 

1843 and 1848, which indicates regionally important disturbance or climatic events that 

affected western Montana in the mid-1840s (Figures 4.8 and 4.9). Periods of release 

pulses in whitebark pines included 1927–1933 and 1944–1947. Subalpine fir only 

responded similarly to whitebark pine at Ajax Peak in 1863 (Figure 4.9b). Other years 

that showed a release pulse in subalpine fir included 1900, 1975, 1982, and 1994.  

 

4.5 Discussion 

4.5.1 Forest Composition 

High-elevation subalpine forests in the Rocky Mountains of western Montana 

were historically dominated by whitebark pine. Currently, the combination of advancing 

encroachment by fire-intolerant species such as subalpine fir and Engelmann spruce, 

mountain pine beetle outbreaks, and the epidemic of white pine blister rust have 

devastated whitebark pine populations north of 45 °N in western North America (Kendall 

and Keane 2001, Tomback et al. 2001). Whitebark pine populations, in the majority of 

our sites, were being successionally replaced by subalpine fir, grand fir, and Engelmann 

spruce in all levels of the forest strata (trees, saplings, and seedlings).  Our southern-most 

sites in the BDNF had the highest number of living whitebark pine in all canopy classes. 
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These sites also had the lowest densities of competing species which may contribute to 

their relatively healthy whitebark pine populations.  Shade-tolerant species, such as 

subalpine fir, grand fir, and Engelmann spruce, established throughout the stand history 

of our whitebark pine-dominated sites, with individual subalpine firs having established 

in the early 1700s.  

The establishment of shade-tolerant species over the past 300 years shows that 

forest succession in whitebark pine communities in not a result of 20th century fire 

suppression, contrary to what has been suggested by previous studies (Tomback et al. 

1995). The age structure of our sites indicates that tree establishment is linked with stand-

replacing fires during the 1700s and 1800s and that 20th century fire suppression and 

stand-thinning disturbances, such as mountain pine beetle outbreaks, have not 

significantly affected tree establishment. This suggests fire suppression may not be 

responsible for the advanced succession found in these whitebark pine forests in western 

Montana. Although canopy disturbances by mountain pine beetles are predicted to favor 

tree establishment, our understory results do not generally show pulses of tree 

establishment after known mountain pine beetle outbreaks. However, subalpine fir 

establishment did occur during a mountain pine beetle outbreak in the 1970s at Morrell 

Mountain. Overall, we expected to see distinct cohorts of tree establishment during the 

20th century as a result of fire suppression and stand-thinning disturbances at our sites in 

western Montana, but found there was little new establishment of either whitebark pine or 

shade-tolerant species since 1940. 

Our canopy class and understory results show the future trajectory of these 

historically whitebark pine-dominated forests. In the absence of stand-wide disturbance, 
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shade-tolerant species will likely increase in dominance as understory individuals are 

recruited to larger size and canopy classes and shade-tolerant species will continue to 

successionally replace whitebark pine. In the understory, subalpine fir, whitebark pine, 

grand fir, and Douglas-fir were the most abundant species in the sapling and seedling 

plots. However, many of the understory whitebark pines showed signs of white pine 

blister rust in the form of flagged branches and cankers on the stem, indicating that most 

understory whitebark pines will not survive the next decade.  

Our results on understory composition in whitebark pine communities of western 

Montana support the reported lack of healthy whitebark pine regeneration that has been 

documented throughout western North America (Keane et al. 1994, Kendall and Keane 

2001, Tomback 2001, Tomback et al. 2001, Zeglen 2002, Smith et al. 2008).  Subalpine 

fir and Engelmann spruce are shade-tolerant species that can competitively exclude 

whitebark pine in the understory and lower canopy classes because they can remain 

suppressed in the understory until the occurrence of disturbance events allows them to 

recruit. Many subalpine fir saplings in our study sites were over 100 years old and still 

remained healthy in the understory. As more shade-tolerant individuals crowd the 

understory, and as trees in the suppressed and intermediate canopy positions reach 

codominant and dominant positions in the canopy, the forest will change from a 

whitebark pine-dominated forest to a spruce-fir forest. Whitebark pines will continue to 

be competitively excluded from successful recruitment into larger canopy classes by 

shade-tolerant species. In addition to the loss of whitebark pine as an important subalpine 

species, dense spruce-fir forests can lead to more severe fire regimes (Keane et al. 2001).  
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4.5.2 Forest Health 

The process of tree death is complex and is commonly a result of numerous 

contributing factors that overlap in time (Manion 1981, van Mantgem et al. 2004). For 

example, blister rust infection may not directly lead to whitebark pine mortality, but may 

weaken tree defense mechanisms, leading to lethal mountain pine beetle infestations 

(Smith et al. 2008, Tomback and Resler 2008, Tomback and Achuff 2008). Many of the 

larger whitebark pines (> 30 cm DBH) in the FNF and LNF exhibited signs of both white 

pine blister rust infection and attack from the mountain pine beetle. Therefore, we can 

hypothesize that the presence of both of these mortality agents will lead to the death of 

declining whitebark pines in our sites within the next decade. Furthermore, weakened 

whitebark pines are actually more susceptible to attack by mountain pine beetles (Six and 

Adams 2007). Unlike mountain pine beetles which prefer to attack larger trees, blister 

rust threatens multiple aspects of the regeneration process by not only reducing available 

cone crops before a tree dies, but also by causing sapling and seedling mortality 

(McDonald and Hoff 2001). Whitebark pines in the overstory and understory at all of our 

sites showed branch or stem cankers from white pine blister rust. We agree with the 

current opinion that white pine blister rust is threatening the sustainability of high-

elevation whitebark pine stands throughout its range (Tomback and Achuff 2008). Our 

results support the effort to understand the current status of white pine blister rust in 

whitebark pine forests throughout its range. We are the first to report white pine blister 

rust presence in whitebark pine forests in the BDNF, which should alert land managers to 

monitor and assess blister rust spread throughout southwestern Montana.  
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The high frequency of white pine blister rust and mountain pine beetle outbreaks, 

together with the contributing effects of fire suppression, all suggest the significant role 

of disturbance in determining whitebark pine population trajectories over the next few 

decades. Infection and mortality levels varied considerably across western Montana, but 

over 70% of the whitebark pine in all sites were either declining or dead. The high 

mortality of whitebark pine in the FNF and LNF was caused by the overlapping effects of 

past and current mountain pine beetle outbreaks, and more recently by white pine blister 

rust infection. We observed recently dead trees with what appeared to be old blister rust 

cankers at the sites in the FNF and LNF. Blister rust was abundant in all our sites, with 

whitebark pine trees exhibiting open cankers or flagging in their upper canopies and on 

lower branches. Most of the whitebark pines in the BDNF had cankers form directly on 

the main stem that will likely cause mortality within 10 years (Hunt 1991, Zeglen 2002).  

Our study was the first to find a white pine blister rust signature in whitebark pine 

chronologies. Although whitebark pine may not show immediate external symptoms of 

blister rust infection, the tree-ring record can show radial growth declines from blister 

rust before external tree symptoms appear. Since 1998, we observed a steady decline in 

whitebark pine growth at all our sites, but the decline in the BDNF was different because 

there were no overlapping effects from mountain pine and blister rust, only blister rust 

was present at these sites. Blister rust had expanded significantly in BDNF sites from the 

2003 to 2004 field seasons, but growth in these trees had been declining since 1998. We 

found that using dendroecological methods on whitebark pine and possibly other blister 

rust host tree species could be used to detect blister rust presence before visible external  

symptoms appear at least three years after a tree has been infected (Hoff 1992). More 
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dendroecological research should be conducted in whitebark pine populations in 

southwestern Montana and other areas where blister rust is thought to be limited or 

absent, to determine if blister rust is present in these forests. Early blister rust detection 

could help land managers find blister rust-resistant whitebark pines earlier for 

conservation purposes.  

 

4.5.3. Disturbance History 

Hornet Peak has been heavily influenced by natural and anthropogenic 

disturbances throughout the stand history. Hornet Peak and the surrounding Flathead 

National Forest experienced wildfires in 1910, 1919, 1926, 1929, 1931, 1934, 1940, 

1946, and 1958 (Wolff 1980), but these fires were not large enough to influence 

whitebark pine establishment because most of the trees established from 1675 to 1850. 

The largest cohort of tree establishment at Hornet Peak occurred around 1810, indicating 

a large fire could have created conditions favorable for tree establishment. In fact, many 

of the whitebark pines in the chronology established in 1817. We would have expected to 

see cohorts of tree establishment following fires in the early 20th century but only a few 

subalpine firs and grand firs established during this period. The last whitebark pine to 

establish at Hornet Peak occurred in 1854 at the end of a large 1810–1850 establishment 

period. However, subalpine fir and grand fir have continued to establish since 1850, 

indicating a lack of fire or other stand-wide disturbance to facilitate whitebark pine 

establishment. A large disturbance occurred around 1880 that favorably affected growth 

in the whitebark pine and subalpine fir chronologies. This disturbance could be a 

mountain pine beetle outbreak that affected larger (>30 cm DBH) whitebark pines but 
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created favorable conditions for release in smaller whitebark pines and competing shade-

tolerant species. Alfaro et al. (2004) also found an 1880s mountain pine beetle outbreak 

signal from lodgepole pines in British Columbia. Whitebark pines at Hornet Peak had 

below-average growth periodically throughout the length of the chronology but most 

notably during mountain pine beetle outbreaks in the 1920s, 1930s, and the 1970s. 

Surviving whitebark pines and nonhost trees, such as subalpine firs, showed a cohort of 

release events from 1960 to 1990, during a period of a mountain pine outbreak. Our 

nonhost species, subalpine fir, also had asynchronous years of below average growth in 

the chronology indicating that the growth reductions in whitebark pine are likely due to 

mountain pine beetle outbreaks and white pine blister rust infection.  

Morrell Mountain had a similar pulse of release events from 1960 to 1990 which 

were also caused by the mountain pine beetle. Morrell Mountain experienced fires in 

1711, 1751, 1754, 1796, 1830, 1836, 1843, 1898, and 1919 (Larson 2005, Larson et al. 

2008). Fires in the early 1700s likely influenced forest age-structure by creating 

conditions that favored tree establishment. Mountain pine beetle-caused mortality peaked 

in the 1970s and 1980s, but a cluster of mortality dates in the late 1920s suggests the 

stand may have been affected by previous outbreaks. The whitebark pine and subalpine 

fir chronologies showed a similar growth decline from 1977 to 1984, during a mountain 

pine beetle outbreak. Further research should focus on climate data during this mountain 

pine beetle outbreak to isolate drought conditions or other climatic anomalies that 

affected both host and nonhost species. Morrell Mountain had the highest frequency of 

release events from natural and anthropogenic disturbances throughout the length of the 

chronologies.  
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Fire history information was not available for Ajax Peak. However, a large cohort 

of tree establishment in the mid-1800s indicates a possible stand-replacing fire occurred. 

Gold mining was also conducted near Ajax Peak in the late 1800s (Burlingame 1957) and 

exposed talus slopes from mining are still evident today. Ajax Peak had the shortest 

chronology, with many of the living trees in the chronologies establishing in the 1870s. 

Murray et al. (2000) also found similar establishment dates in the 1870s in the West Big 

Hole mountain range. They found a decrease in whitebark pine dominance that they 

attributed to successional replacement by fire-intolerant species, grazing, and fire 

suppression. Whitebark pines at Ajax Peak and Morrell Mountain showed similar growth 

suppression patterns in 1838 and 1899, while both chronologies experienced a growth 

peak in 1863. The growth trends in the 1800s indicate a similar climate signal between 

the Ajax Peak and Morrell Mountain sites. The similar growth trends between Morrell 

Mountain and Ajax Peak is interesting because Ajax Peak had the lowest frequency of 

release events of the study sites. Although mountain pine beetle mortality occurred in the 

late 1920s–1930s, the outbreak did not cause a large growth release in the surviving 

whitebark pines or in the subalpine firs, which indicates the 1930s outbreak might not 

have had a severe impact on the high-elevation whitebark pines at Ajax Peak. Although 

Ajax Peak had the healthiest population of whitebark pine, the Ajax Peak chronology 

showed a decrease in growth since the late 1990s caused by white pine blister rust 

presence at the site. 

Stand-wide release episodes occurred in the study sites, usually early or late in the 

site release records when sample size was small. However, similarities in the LNF and 

BDNF release record in 1843 and 1848 indicate regionally important disturbance or 
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climatic events that affected western Montana in the mid-1840s. In the northern Rocky 

Mountains, such disturbance events may have included fires, mountain pine beetle 

outbreaks, and extreme climatic events, among other factors. We also found release 

cohorts following mountain pine beetle outbreaks during the 20th century at our sites. In 

contrast to stand-replacing fires, mountain pine beetle outbreaks are selective mortality 

agents that do not create extensive areas of exposed mineral soil. Plant responses to insect 

disturbances include growth suppressions in attacked trees and growth releases in 

understory or competing trees (Veblen et al. 1991). Release responses in our whitebark 

pine and subalpine fir series were largely asynchronous, which is what we would expect 

from host and nonhost trees during host-specific mortality periods. Our study found that 

using release episodes between species and sites was necessary to interpret mountain pine 

beetle outbreaks on a landscape scale. The chronologies only showed a small spike in 

growth during mountain pine beetle outbreaks compared to episodic periods of release in 

the whitebark pine and subalpine fir series. Therefore, we would recommend further 

research into using both suppression and release measures of host and nonhost series and 

mortality dates of host trees to clarify the extent and intensity of mountain pine beetle 

outbreaks in whitebark pine communities in western North America. 

The overlapping effects of mountain pine beetle and white pine blister rust are 

hastening the decline of whitebark pine in our northern and central sites in western 

Montana. The mountain pine beetle will continue to move south until it attacks our 

southern sites as well. Whitebark pine currently has very little resistance to mountain pine 

beetle and white pine blister rust, and is unlikely to evolve more resistance before 

populations are dramatically reduced across western North America (Campbell and Antos 
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2000, Tomback et al. 2001). However, conservation efforts in the form of planting blister 

rust-resistant whitebark pine seedlings and prescribed fire are currently being used by 

land managers in select whitebark pine communities (Hoff et al. 2001). The data from 

this study can be used by land managers to prioritize areas for conservation on a 

landscape scale. For example, our northern and central sites with high levels of infection, 

canopy kill, and overstory and understory mortality could be replanted with blister rust-

resistant trees. These replanted trees would later need protection from mountain pine 

beetle by applying semiochemicals (Kegley and Gibson 2004).  
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CHAPTER 5 

DIFFERENTIATING THE EFFECTS OF CLIMATE AND 
MOUNTAIN PINE BEETLE ON GROWTH  OF WHITEBARK 

PINE AND SUBALPINE FIR IN THE NORTHERN ROCKY 
MOUNTAINS, U.S.A. 

 
Portions of this chapter that refer to whitebark pine ecology, study site 

descriptions, and methods were taken from Chapters 1, 2, and 3 of this dissertation. The 
use of “we” in this chapter refers to Dr. Henri Grissino-Mayer and myself who will be 
co-authors on the manuscript submitted from this chapter. Dr. Grissino-Mayer assisted in 
the identification of relevant literature, field collection, and verifying the accuracy of 
dated samples.  

In this chapter, we examine whitebark pine and subalpine fir response to climate 
and mountain pine beetle outbreaks in the Flathead, Lolo, and Beaverhead-Deerlodge 
National Forests in the northern Rocky Mountain of western Montana. We compare 
whitebark pine and subalpine fir chronologies from three study sites (one site from each 
national forest: Hornet Peak from the Flathead National Forest, Morrell Mountain from 
the Lolo National Forest, and Ajax Peak from the Beaverhead-Deerlodge National 
Forest) to understand the contributing effects of climate to host and non-host species 
response to mountain pine beetle outbreaks in the 20th century. Manuscript to be 
submitted to Dendrochronologia. 
 

 

5.1 Introduction 

The interacting and entangled relationships between climate, mountain pine beetle 

(Dendroctonus ponderosae Hopk.) outbreak periods, and growth of whitebark pine 

(Pinus albicaulis Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) has not yet 

been studied. This research was initiated to first evaluate the climate-tree growth 

relationship of these two subalpine tree species, and then attempt to separate the effects 

caused by mountain pine beetle. Although climate is known to affect high-elevation 

whitebark pine ecosystems (Perkin and Swetnam 1996, Biondi et al. 1999, Luckman and 

Villalba 2001, Kipfmueller 2003, Mann 2008), little is known about which climate 

variables affect the growth of these two species in Montana. Understanding climate 
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response in subalpine forests is important because climatic fluctuations may increase or 

decrease the vulnerability of whitebark pine to mountain pine beetle outbreaks, and affect 

the advancing succession of subalpine fir in declining whitebark pine forests. This 

approach to disentangling the effects of both climate and mountain pine beetle is possible 

because whitebark pine is the host species (and should therefore harbor the signal caused 

by mountain pine beetle) while subalpine fir is the nonhost species (and should therefore 

contain a stronger climate signal). 

Climate patterns (both short-term (annual to interannual) and long-term (decadal 

and interdecadal)) affect the relationship between the ecology of mountain pine beetles 

and whitebark pine mortality.  Attacks by mountain pine beetles occur more frequently 

during periods with warmer temperatures and drought conditions (Campbell et al. 2007). 

Warming climate conditions expand the geographic range of mountain pine beetles by 

increasing the area available for the beetles to complete their life cycle. An increase in the 

number of infestations since 1970 in formerly climatically unsuitable habitats indicates 

that mountain pine beetle populations have expanded into high-elevation subalpine 

forests (Carroll et al. 2003). Therefore, whitebark pine may be more vulnerable to 

mountain pine beetle outbreaks under current warming conditions than during previous 

outbreaks between 1920 and 1940 and between 1970 and 1980. Whitebark pine is already 

in peril due to white pine blister rust (Cronartium ribicola JC Fischer), and the 

overlapping effects of the current mountain pine beetle outbreak will likely intensify its 

decline. The effects of these changes in climate are important when assessing the 

flexibility of whitebark pine ecosystems to recover from mountain pine beetle outbreaks 

that may be intensified, infestations of blister rust that are geographically extensive, and 
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other landscape-level disturbances, including thos caused by humans (e.g., logging and 

fire exclusion practices). Consequently, an urgency exists to understand the influence of 

climate change on the severity of mountain pine beetle outbreaks and white pine blister 

rust infections that contribute to the decline in whitebark pine ecosystems.  

Mountain pine beetle epidemics killed a large proportion of mature whitebark 

pine trees in the Rocky Mountains of the United States during the 20th century (Ciesla 

and Furniss 1975, Furniss and Carolin 1977, Romme et al. 1986). The insect is 

considered the most destructive of the native biotic agents in mature Pinus forests in 

western North America (Safranyik and Carroll 2006). The major hosts for mountain pine 

beetle include whitebark pine, ponderosa pine (Pinus ponderosa Douglas ex C. Lawson), 

lodgepole pine (Pinus contorta Douglas ex Loudon), and western white pine (Pinus 

monticola Douglas ex D. Don). Extensive mountain pine beetle outbreaks in western 

North America occurred in the 1880s, 1930s, and 1970s, and more recently in the early 

2000s (Arno and Hoff 1989, Alfaro et al. 2004, Taylor et al. 2006). The series of 

outbreaks that occurred from 1920 to 1940 in Idaho and Montana killed an estimated 1.4 

billion lodgepole pines and vast numbers of whitebark pine (Safranyik and Carroll 2006). 

Extensive outbreaks in western North America during the late 1970s and early 1980s 

killed almost 2 million hectares of Pinus trees. A massive infestation, extending over 12 

million hectares, has also devastated lodgepole and whitebark pine stands in the northern 

Rocky Mountains and in central British Columbia in the early 2000s (Safranyik and 

Carroll 2006).  

Tree-ring reconstructions of defoliating insects have used both host and nonhost 

species to differentiate the response in tree growth caused by insect outbreaks from the 
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response in growth caused by climate (Fritts 1976, Brubaker and Greene 1979, Ferrel 

1980, Swetnam et al. 1985, Fritts and Swetnam 1991, Swetnam and Lynch 1993, Speer 

2000, Campbell et al. 2005). These studies sampled separate tree species that were 

susceptible and unsusceptible to the insect, and examined tree-ring characteristics 

associated with known insect outbreaks. Multicentury tree-ring chronologies are ideal for 

differentiating long-term growth patterns associated with both climate and insects 

because they provide replicated observations of multiple past outbreaks and multiple 

short-term and long-term climatic fluctuations that may be synchronous or asynchronous 

(Swetnam and Lynch 1993). Dendroecological methods for detecting mountain pine 

outbreaks in whitebark pine and lodgepole pine forests have relied mostly on detecting 

periods of growth releases beginning almost a decade after the outbreak event (Heath and 

Alfaro 1990, Alfaro et al. 2004, Taylor et al. 2006, Campbell et al. 2007), but no  study 

hascompared whitebark pine growth with growth of a nonhost species to determine 

outbreak periods and climatic influences. Therefore, we propose to use a new technique 

to identify discrete mountain pine beetle outbreak periods by first minimizing the over-

riding effects of climate by comparing host and nonhost tree species. 

The objectives of this study were to: (1) develop tree-ring chronologies for both 

whitebark pine (host) and subalpine fir (nonhost) along a latitudinal transect through 

western Montana, (2) determine which climate variables exerted the most influence on 

whitebark pine and subalpine growth during the 20th century, and (3) using the host and 

nonhost chronologies, determine mountain pine beetle outbreak characteristics, such as 

timing, frequency, as well as evaluate possible relationships between climatic patterns 

and outbreaks. 
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5.2 Study Site 

Our study sites were located in whitebark pine forests on three peaks across three 

national forests in Montana, located on a north-south transect that extended from the 

Montana/Canada border to the western side of Yellowstone National Park. We chose to 

sample along a north-south latitudinal transect to evaluate trends in landscape-level 

mountain pine beetle outbreaks. The sites varied in elevation from 2,040 m to 2,535 m 

(Table 5.1). Ranges of mean annual temperature are similar, but a gradient of decreasing 

precipitation exists from west to east that creates different precipitation regimes among 

the study sites. Soils are poorly developed at all sites. The underlying geology is 

composed of a mix of Quaternary and Cenozoic glacial deposits, Precambrian shales and 

siltstones, and Precambrian argillites and quartzites (Ross et al.1955, Raines and Johnson 

1996). Subalpine fir, Douglas-fir, lodgepole pine, Engelmann spruce, and grand fir (Abies  

grandis (Douglas. ex D. Don) Lindl.) were present in the stands we examined. Forest 

cover on Ajax Peak was relatively continuous, although the forests on Morrell Mountain 

and Hornet Peak were broken by a few alpine meadows. Common herbaceous plants on 

all sites included grouse whortleberry (Vaccinium scoparium Leib. ex Coville), red 

mountain-heath (Phyllodoce empetriformis (Sm.) D. Don), smooth woodrush (Luzula 

hitchcockii Hamet-Ahti), bear grass (Xerophyllum tenax (Pursh) Nutt.), and elk sedge 

(Carex geyeri Boott).  

Evidence of disturbances was found at each site. The whitebark pines had 

experienced differing rates of mortality in each stand, predominantly from mountain pine 

beetle activity that we identified by pitch tubes and red boring dust on tree stems, 
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Table 5.1. Study site locations in Montana. 

Study Site National Forest 
Elevation 
(meters) 

Latitude 
(Degrees N) 

Longitude 
(Degrees W) 

Hornet Peak Flathead 2040 48.52.44 114.31.33 

Morrell Mountain Lolo 2370 47.11.53 113.21.25 

Ajax Peak Beaverhead-Deerlodge 2535 45.20.25 113.42.57 
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the  presence of J-shaped galleries on the boles of dead trees, and by blue-staining fungus 

(Ceratocystis montia (Rumb.) Hunt.) in the outer tree rings once cross-sections were 

collected. We also observed several recently dead trees with what appeared to be old 

blister rust cankers our sites, particularly at Ajax Peak. Blister rust was abundant, with 

whitebark pine trees exhibiting open cankers or flagging (red needles due to the recent 

mortality of a branch or stem) in their upper canopies and on lower branches. Evidence of 

past fires was limited to Hornet Peak and Morrell Mountain, where many whitebark pine 

trees displayed multiple fire scars. We did not observe any fire-scarred subalpine fir trees. 

 

5.3  Methods 

5.3.1  Field Methods 

The whitebark pine and subalpine fir samples used in this study were part of a 

larger project designed to study the stand histories of the whitebark pine ecosystem in 

Montana. Many of the whitebark pine samples selected for analysis were affected by the 

mountain pine beetle that could diminish the strength of the overall climate signal. 

Whitebark pine and subalpine fir tree-ring data were collected in four 0.05 ha fixed-

radius (r = 12.66 m) plots on each of the three mountains selected (12 overstory plots 

total). We collected increment cores from two radii of each tree in the plot by either 

coring the tree twice on opposite sides of the tree, or by coring straight through the tree. 

All cores were taken at or below 30 cm above the root collar and along the contour of the 

slope to minimize the effects of reaction wood on the growth patterns in each sample 

(Fritts 1976). Core samples were labeled and placed in paper straws for storage and 

protection. We used a chainsaw to collect 5 to 10 cross-sections from whitebark pine 
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snags, stumps, and logs to extend the tree-ring information from the cores back in time, 

and examined cross-sections for fire and mountain pine beetle scars at each of the three 

mountain sites (Arno and Sneck 1977). We visually examined each cross-section and 

noted the presence or absence of fire (i.e., internal fire scars), mountain pine beetle 

galleries, and blue-stain fungus on each sample. All samples were labeled and then 

wrapped with plastic wrap for transport back to the laboratory. 

 

5.3.2  Laboratory Methods 

All samples were frozen at –40 °C for 48 hours to kill any pathogens and/or 

insects that may have been transported along with the samples. After allowing all samples 

to dry, fragile cross-sections were glued to plywood for stabilization. Cores were allowed 

to air-dry completely in the straws and were then glued to wooden core mounts with cells 

vertically aligned to ensure a transverse view of the wood surface. Cores and cross-

sections were examined for blue-stain fungus in the outer tree rings, indicating the 

presence of mountain pine beetles. Cross-sections were given an initial flat surface using 

a band saw to remove deep chain saw cuts prior to sanding, then each cross-section and 

core sample was sanded using a belt sander, beginning with ANSI 80-grit (177−210 μm) 

and using progressively finer-grit belts until ANSI 400-grit (20.6−23.6 μm) (Orvis and 

Grissino-Mayer 2002). This process produced a wood surface with cellular features 

clearly defined under 10x magnification for clear ring identification.  
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5.3.3 Crossdating and Chronology Construction 

We used visual, graphical, and statistical crossdating to assign precise calendar 

years to the growth rings of the core and cross-section samples. Visual crossdating relied 

on recognition of characteristic patterns of wide and narrow rings common to each study 

site that were likely related to regional climate (Fritts1976); graphical crossdating was 

accomplished using the skeleton-plot method (Stokes and Smiley 1996); and statistical 

crossdating was accomplished using ring-width measurements and the computer program 

COFECHA (Holmes 1983, Grissino-Mayer 2001).  

We measured the ring widths on all samples to 0.001 mm accuracy with a Velmex 

measuring stage coupled with MEASURE J2X software. We confirmed the graphical 

crossdating and relative placements of all tree-ring series using COFECHA, which uses 

segmented time-series correlation techniques to confirm the previously-assigned temporal 

placements of all tree rings to the exact year each was formed (Grissino-Mayer 2001). 

Because crossdating is a high-frequency process (pattern matching of sequences of 

individual rings), COFECHA removes all low-frequency trends using both spline-fitting 

algorithms and autoregressive modeling (Grissino-Mayer 2001). Such trends could also 

be caused by natural (e.g. mountain pine beetle outbreaks and fire events) and human 

(e.g. blister rust infection, logging, and mining) disturbances that otherwise could mask 

the climate signal desirable for accurate crossdating. We tested consecutive 50-yr 

segments (with 25-yr overlaps) on each series with a master chronology created from all 

other series by site.  

Crossdating was verified when the correlation coefficient for each tested segment 

exceeded 0.32 (p < 0.01), although coefficients were usually much higher. The final 
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suggested placement made by COFECHA had to be convincing both graphically (similar 

patterns in wide and narrow rings) and statistically (correlation significant at p < 0.001) 

(Grissino-Mayer 2001). Crossdating quality was assessed by two statistical descriptors. 

The average mean sensitivity was used to measure the strength of the year-to-year 

variability in all series and is an indicator of climate responsiveness (Fritts 1976). Values 

of 0.25 or higher are common for tree-ring data from the western U.S. (DeWitt and Ames 

1978), although the International Tree-Ring Data Bank (ITRDB, 2008) reports average 

values of 0.21 for both subalpine fir and whitebark pine. We also used the average 

interseries correlation calculated in COFECHA by averaging the correlation coefficients 

for each measurement series when correlated against a master chronology created from 

the remaining series (Grissino-Mayer 2001). The average interseries correlation for 33 

subalpine fir chronologies in the ITRDB is 0.59, while the average value for 12 whitebark 

pine chronologies is 0.53 (ITRDB 2008). 

We developed a whitebark pine and subalpine fir chronology for each of our three 

sites (six chronologies total). We standardized all measurement series in the six 

chronologies to remove effects from age-related growth trends that could add noise to the 

series unrelated to the climate signal desired in chronology development (Cook 1987, 

Fritts 2001). We removed the age-related growth trend of each sample using the program 

ARSTAN (Cook 1985), by first fitting either a negative exponential trend curve or 

straight line to the growth series of the sample using the least squares technique. 

ARSTAN then creates an index for that year by dividing the actual ring-width by the 

value predicted by the regression (Fritts 1976, Cook 1985). The indices were then 
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averaged for each year across all series to create a single index series for each site for 

each species (Cook 1985).  

 

5.3.4 Instrumental Climate Data 

The climate-tree growth relationships for each of the six chronologies were 

analyzed using divisional climate data obtained from the National Climatic Data Center 

(NCDC 2007). For the Beaverhead-Deerlodge National Forest chronologies, we used 

climate data from NOAA Climate Division Montana 2 (Southwestern). For the Flathead 

and Lolo National Forest chronologies, we used climate data from NOAA Climate 

Division Montana 1 (Western). The climate variables used in the climate response 

analysis included monthly average temperature, monthly total precipitation, and monthly 

Palmer Drought Severity Index (PDSI). PDSI is used by the National Weather Service to 

monitor drought and wetness conditions in the United States and is a measure of the 

moisture conditions during the growing season. PDSI describes the severity of both wet 

and dry periods and incorporates temperature, precipitation, and evapotranspiration as an 

estimate of soil moisture availability as a monthly index (Palmer 1965). PDSI has been 

used in dendroclimatic studies and is often significantly correlated with tree-ring indices 

in North America (Grissino-Mayer and Butler 1993, Watson and Luckman 2001, 

Woodhouse 2001). The index is a weighted average of estimated soil moisture conditions 

for the current and preceding months resulting in a strong month-to-month 

autocorrelation that represents soil moisture condition changes over time (Stahle et al. 

1988). PDSI generally ranges from –6 to +6, with negative values indicating dry periods 

and positive values indicating wet periods. PDSI values from –2.0 to –3.0 are considered 
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a moderate drought, values from –3.0 to –4.0 are considered a severe drought, and values 

less than –4.0 are considered an extreme drought.  

 

5.3.5 Statistical Analysis of Climate Response  

Correlation analysis was used to statistically determine the strength of association 

between climate variables and tree growth of both whitebark pine and subalpine fir. 

Correlation coefficients were calculated between growth indices and climate variables 

(temperature, precipitation, and PDSI) for a 20-month period from previous May to 

current December. Seasons were determined for each climate variable based on 

sequences of months during which the climatic variable exhibited statistically significant 

(p < 0.05) relationships with whitebark pine and subalpine fir tree growth. Seasonalizing 

climate data is important because these seasons illustrate the longer period over which a 

climatic variable has the greatest effect on tree growth (Grissino-Mayer and Butler 1993, 

Grissino-Mayer 1995).  

 

5.3.6 Separating Disturbance from Climate 

We used the program OUTBREAK (Holmes and Swetnam 1994) for comparing 

our whitebark pine (host) and subalpine fir (nonhost) chronologies to detect mountain 

pine beetle outbreaks between1860 and 2005. First, we developed tree-level ARSTAN 

chronologies from 20 whitebark pine trees and 20 subalpine fir trees for each site. 

Although we had more series in each of the six chronologies used for climate analyses, 

the program OUTBREAK requires each tree analyzed be represented by two radii. The 

tree-level chronologies were important because they give a better representation for 
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growth within a tree and assure that individual trees are not overrepresented in the final 

chronology (Swetnam et al. 1995, Speer et al. 2001, Speer 2007). The climatic variation 

contained in the whitebark pine chronologies was removed by subtracting the variation 

found in the subalpine fir chronologies by assigning growth suppression parameter values 

in OUTBREAK. We assigned a 100% growth suppression period of at least five years to 

identify a mountain pine beetle outbreak. OUTBREAK automates the correction of host 

chronologies and applies growth suppression criteria to identify dates of insect outbreaks 

(Swetnam et al. 1995, Speer et al. 2001, Campbell et al. 2005). 

The corrected indices (OUTBREAK chronology) record radial growth in the host 

species after reduction or elimination of the climate signal found in the nonhost species 

chronology. Although OUTBREAK has not previously been used to detect mountain pine 

beetle outbreaks, we felt confident that the program would detect outbreaks after 

examining the whitebark pine cores for periodic growth suppressions during the 20th 

century. The timing of mountain pine beetle outbreaks in western North America is 

known to have been in the 1880s, 1920–1940, and 1970–1980 (Alfaro et al. 2004, 

Safranyik and Carroll 2006, Taylor et al. 2006). We were also expecting to see the tree-

ring signature of the mountain pine beetle outbreak that is currently spreading through 

western North America.  

 

5.4 Results 

5.4.1 Chronology Development 

The six whitebark pine and subalpine fir chronologies developed from Hornet 

Peak, Morrell Mountain, and Ajax Peak represented 229 samples (Table 5.2). The site 
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chronologies varied in length, with the shortest whitebark pine record from Ajax Peak 

(1832–2005) and the longest from Morrell Mountain (1489–2003). Subalpine fir 

chronologies ranged from 1800–2004 at Ajax Peak to 1860–2005 at Hornet Peak. 

Subalpine fir chronologies had low sample depth and proved difficult to crossdate 

because many of the samples were smaller diameter trees (< 15 cm diameter breast 

height).  

The interseries correlation and mean sensitivity of our three whitebark pine 

chronologies were representative of other whitebark pine chronologies from Montana 

(Larson 2005, Mann 2008) and typical for whitebark pine chronologies in the western 

U.S. (ITRDB 2008). Average interseries correlations for whitebark pine chronologies in 

the northern Rocky Mountains range between 0.41 and 0.70 (Perkins and Swetnam 1996, 

Biondi et al. 1999, Kipfmueller 2003, Larson 2005, Mann 2008), while we observed 

values between 0.48 and 0.52. Mean sensitivity values between 0.20 and 0.24 are 

common for whitebark pine tree-ring data from Montana and Idaho (Perkins and 

Swetnam 1996, Biondi et al. 1999, Kipfmueller 2003, Larson 2005, Mann 2008). The 

mean sensitivity for the whitebark pine chronologies from western Montana ranged from 

0.21 to 0.24, typical of values found for other regional whitebark pine chronologies. 

The Ajax Peak chronology had the highest interseries correlation (0.52), followed 

by Morrell Mountain (0.51), and Hornet Peak (0.48). Our subalpine fir chronologies had 

lower interseries correlations (0.43 at Hornet Peak, 0.50 at Morrell Mountain, and 0.49 at 

Ajax Peak) than a recent study that used subalpine fir to reconstruct treeline advancement 

in Glacier National Park (interseries correlation was 0.55), but we found the Morrell 

Mountain subalpine fir chronology mean sensitivity was higher (0.28 in comparison to 
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Table 5.2. Summary data of whitebark pine and subalpine fir chronologies from 
Montana. FNF is the Flathead National Forest, LNF is the Lolo National Forest, and 
BDNF is the Beaverhead-Deerlodge National Forest. 

Study Site Species 
Period of 
Record 

Number of 
Samples 

Interseries 
Correlation 

Mean 
Sensitivity

Hornet Peak 
(FNF) 

whitebark pine 1682–2005 64 0.48 0.23 

  subalpine fir 1860–2005 20 0.43 0.24 
      

Morrell Mountain 
(LNF) 

whitebark pine 1489–2003 60 0.51 0.24 

  subalpine fir 1830–2003 23 0.50 0.28 
      

Ajax Peak 
(BDNF) 

whitebark pine 1832–2004 33 0.52 0.21 

  subalpine fir 1800–2004 29 0.49 0.22 
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0.26) than the other study (Bekker 2005). 

A few similar marker rings occurred in the whitebark pine and subalpine fir 

chronologies, but we found noticeable differences among the chronologies, likely due to 

differences in microclimates and disturbance histories. Visual and graphical crossdating 

were aided by especially narrow growth rings that formed in whitebark pines in AD 

1601, 1641, 1698, 1782, 1838, 1899, and 1906. A pattern of consecutive narrow rings in 

1753, 1754, and 1755, followed by a wide ring in 1756, also provided a strong tree-ring 

signature in the Morrell Mountain chronology. Marker rings among the subalpine fir 

chronologies included 1867, 1899, 1972, 1974, and 1993. The narrowest rings in both the 

whitebark pine and subalpine fir chronologies occurred in 1838 and 1899. Figures 5.1–

5.3 illustrate the entire length of the whitebark pine and subalpine fir chronologies.  

 

5.4.2 Climate Response 

The correlation analysis indicated a strong response between whitebark pine and 

subalpine fir growth and precipitation and PDSI in our site chronologies from 1940–2005 

(Figure 5.4). Whitebark pines at Hornet Peak and Morrell Mountain had the highest 

correlations between tree growth and precipitation. The positive correlations in the 

previous summer indicate that an increase in precipitation in the previous year’s summer 

result in increased tree growth. We found a strong negative relationship with whitebark 

pine growth at Hornet Peak during the winter months when precipitation is in the form of 

snow and snowpack levels are high. The growing season (June to September) begins 

when temperatures warm and snowpack begins to thaw. 
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Figure 5.1. The ARSTAN chronology for: (A) whitebark pine and (B) subalpine 
fir from Hornet Peak in the Flathead National Forest. 
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Figure 5.2. The ARSTAN chronology for: (A) whitebark pine and (B) subalpine fir 
from Morrell Mountain in the Lolo National Forest. 
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Figure 5.3. The ARSTAN chronology for: (A) whitebark pine and (B) subalpine fir 
from Ajax Peak in the Beaverhead-Deerlodge National Forest. 
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Figure 5.4. Correlation analysis for our three sites: (A) Hornet Peak and precipitation, 
(B) Morrell Mountain and precipitation, and (C) Ajax Peak and PDSI. Month 
abbreviations preceded with a “P” indicate the previous year. Black solid bars are 
whitebark pine and white solid bars are subalpine fir. * is p < 0.05, ** is p < 0.01  
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Whitebark pines at Hornet Peak also had a strong positive correlation to June 

precipitation. The climate response of subalpine firs at Hornet Peak was opposite of the 

whitebark pines during the winter. The positive correlations between subalpine fir growth 

during December and January precipitation show that subalpine firs respond favorably to 

high snowpack accumulations. We also found a strong positive correlation between 

subalpine firs and available moisture in the summer (June and July). 

Tree growth at Morrell Mountain was less responsive to fluctuations in 

precipitation than at Hornet Peak. We found a strong positive relationship between 

whitebark pines and precipitation in the previous June, and significantly negative 

response in subalpine firs to snowpack accumulation during December. Whitebark pines 

at Ajax Peak had the highest positive correlations between tree growth and spring and 

previous summer PDSI. The positive correlation indicates that these sites are responding 

well to a combination of precipitation, temperature, and available soil moisture. The 

subalpine firs at Ajax Peak responded negatively to available moisture from August to 

October when there is likely a late summer drought from snowpack melting and new 

snow beginning to accumulate. 

Seasonalized variables were developed for PDSI at Ajax Peak and precipitation at 

Hornet Peak and Morrell Mountain. The seasons during which precipitation and PDSI 

exhibited the strongest statistical relationship with whitebark pine growth occurred in the 

previous summer and current spring (Table 5.3). Whitebark pines at Hornet Peak 

responded the strongest to climate of the three sites (precipitation, r = 0.36, p < 0.01), 

followed by Ajax Peak (PDSI, r = 0.35, p < 0.01), and Morrell Mountain (precipitation, r 

= 0.30, p < 0.05). Subalpine firs at two of the study sites had inverse relationships with 
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    Table 5.3. Seasonal climate data for whitebark pine and subalpine fir chronologies at        
    each study site (1940–2005). 

 
Study Site 

 
Species 

Climate 
Variable 

 
Season 

Correlation 
Coefficient 

Hornet Peak  whitebark pine Precipitation June–July 0.36** 
 subalpine fir Precipitation June–July 0.34** 

Morrell Mountain  whitebark pine Precipitation pJune 0.30* 
 subalpine fir Precipitation December–March –0.31* 

Ajax Peak  whitebark pine PDSI pJuly–pOctober 0.35** 
 subalpine fir PDSI August–October –0.31* 

 
    * p < 0.05; ** p < 0.01 
 
     



 192

PDSI (Ajax Peak) and precipitation (Morrell Mountain).  Although the subalpine 

firs responded significantly to seasonalized variables at each site, each site was different. 

Hornet Peak was the site that showed the strongest positive relationship between summer 

precipitation and tree growth of both tree species, but Morrell Mountain and Ajax Peak 

had different inverse seasonal growth responses between species. Subalpine firs at Hornet 

Peak responded the strongest to climate of the three sites (precipitation, r = 0.34, p < 

0.01), followed by Ajax Peak (PDSI, r = –0.31, p < 0.05), and Morrell Mountain 

(precipitation, r = –0.31, p < 0.05).   

The relationships between tree growth and the significant seasonal climate 

variables were different in each site from 1940–2005 (Figures 5.5–5.7). Hornet Peak had 

the strongest association between tree growth and summer temperatures. Patterns of years 

with low summer precipitation in 1960, 1978, and in the 1990s also corresponded to 

years of low growth in whitebark pines and subalpine firs at Hornet Peak (Figure 5.5). 

Whitebark pines at Morrell Mountain responded to favorable summer precipitation from 

1940 to 2003 but a few years of low growth in 1956 and 1971 do not correspond to the 

precipitation record (Figure 5.6). Whitebark pine growth during 1971 could be a response 

to a mountain pine beetle outbreak. Subalpine firs at Morrell Mountain had an inverse 

relationship to winter precipitation that is obvious in years 1956, 1972, and 1982. 

However, we found some years where subalpine firs responded positively to increases in 

precipitation in 1962 and 1968. Ajax Peak whitebark pines and subalpine firs had the 

most complex relationship with seasonalized climate variables. We found a highly 

significant positive relationship between whitebark pines and the previous summer/fall 

PDSI, that can be seen clearly in 1970, 1994, and 1996. Subalpine firs at Ajax Peak  
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Figure 5.5. Hornet Peak (A) whitebark pine and (B) subalpine fir chronologies 
and significant seasonal precipitation variables from 1940 to 2005. 
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Figure 5.6. Morrell Mountain (A) whitebark pine and (B) subalpine fir 
chronologies and significant seasonal precipitation variables from 1940 to 2003. 
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Figure 5.7. Ajax Peak (A) whitebark pine and (B) subalpine fir chronologies and 
significant seasonal PDSI variables from 1940 to 2004. 
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showed an inverse relationship to current summer/fall PDSI, most clearly in 1966, 1982, 

1993, and 1996 (Figure 5.7).  

 

5.4.3 OUTBREAK chronologies and whitebark pine mortality 

The OUTBREAK chronologies helped identify years of extreme low growth in the 

whitebark pines attributed to non-climatic influences in the Rocky Mountains of western 

Montana. A comparison of these chronologies with known mountain pine beetle 

outbreaks in the 1880s, 1920–1940 and 1970–1980 indicates that a few of these low 

growth years do correspond with known outbreaks (Figure 5.8). Periods of reduced 

growth were common between the OUTBREAK chronologies in the 1880s, 1920s 

(except Morrell Mountain), and the 1970s. The year 1883 was one of the lowest growth 

years in the chronologies and corresponds with a mountain pine beetle outbreak that 

occurred in Canada in the 1880s (Alfaro et al. 2004, Taylor et al. 2006). The 1880s 

mountain pine beetle outbreak has yet to be documented in the western U.S. However, 

the 20th century mountain pine beetle outbreaks were less synchronous. Hornet Peak and 

Ajax Peak showed low growth in the 1920s, particularly in 1926 and 1925, respectively. 

Low growth years at these sites in 1977 and 1980 also coincided with a known outbreak 

period. Whitebark pines at Morrell Mountain responded similarly to whitebark pines at 

Hornet Peak and Ajax Peak in the 1970s, but low growth in 1906, 1909, 1916, 1918, the 

1940s, and 1958 were asynchronous with the other sites, which could be from a different  

type of exogenous disturbance at Morrell Mountain. The Morrell Mountain and Ajax 

Peak OUTBREAK chronologies also showed a recent sharp decrease in growth since 

1998. The patterns of outbreaks were clear in our site OUTBREAK chronologies, but we 
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Figure 5.8. OUTBREAK chronologies from: (A) Hornet Peak, (B) Morrell 
Mountain, and (C) Ajax Peak. These chronologies have had climatic effects 
removed or minimized. 
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found no major differences in duration and intensity of mountain pine beetle outbreaks 

between the three sites (Table 5.4). The duration of the outbreaks is consistent with other 

findings in whitebark pine ecosystems in Idaho (Perkins and Swetnam 1996) and 

lodgepole pine studies in western North America (Cole and Amman 1980, Safranyik and 

Carroll 2006).  

Mortality by decade for 65 whitebark pine trees that died during the 20th century 

revealed that the timing of tree death was asynchronous throughout western Montana 

(Figure 5.9). Whitebark pine mortality occurred every decade during the 20th century at 

Hornet Peak and Morrell Mountain, although the current decade shows the highest 

mortality rates of whitebark pines in the past century. Hornet Peak showed the largest 

cohort of tree death in the 1980s, after the mountain pine beetle outbreak that occurred 

from 1970 to 1980. Morrell Mountain had the highest frequency of whitebark pine death 

during the 1940s, after the mountain pine beetle outbreak from 1920 to 1940. Ajax Peak 

had the healthiest whitebark pine population and only showed one tree death in the 1960s 

and 1990s. However, eight whitebark pines died recently at Ajax Peak from 2000 to 

2004.  

 

5.5 Discussion 

5.5.1 Chronology Development  

The average interseries correlations for whitebark pines were highly significant at 

our three sites, with an average of 0.49. Our whitebark pine chronologies were developed 

as part of a larger study to examine successional dynamics in subalpine forests. 

Therefore, our interseries correlations were lower than neighboring whitebark pine    
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    Table 5.4. Duration and severity of mountain pine beetle outbreaks at each site, as    
    estimated from ring-width suppression in corrected (OUTBREAK) chronologies.  

Study Site  Period 

Average 
Duration 
(years) 

Average 
Departure  

Average Maximum 
Growth Reduction 

(%) 

Hornet Peak 1860–2005 9.06 –1.7 48 

Morrell Mountain 1868–2002 10.05 –2.3 77 

Ajax Peak 1880–2003 9.80 –2.3 69 

 

 

 

Figure 5.9. Crossdated mortality dates of 65 whitebark pine trees during the 20th 
century by site. 



200 

 chronologies in Idaho (Perkins and Swetnam 1996, Kipfmueller 2003) because the 

majority of whitebark pines chosen for chronology development were not from park-like 

treeline stands, but were influenced by competition from other species and other stand 

effects, in addition to natural and anthropogenic disturbances. The whitebark pine 

chronologies had average mean sensitivities, signifying that necessary variability exists in 

the tree-ring patterns from climatic factors to ensure successful crossdating and extraction 

of the dominant climate signal. The commonality of marker rings between sites along our 

latitudinal transect indicates a regional climatic influence. 

The subalpine fir chronologies proved to be more difficult to crossdate than the 

whitebark pine chronologies. Although we were able to build subalpine chronologies for 

each site, sample size was relatively low. One of the reasons we had between 20 and 30 

subalpine firs in each chronology is that many of the smaller-sized subalpine firs 

common in each site would not crossdate due to erratic tree-ring patterns likely caused by 

particular stand dynamics processes. In most cases, these smaller-diameter subalpine firs 

were over 100 years old and showed little ring-width variability because subalpine fir is a 

shade-tolerant species that grows well in the intermediate and suppressed canopy classes. 

Subalpine firs can live in the lower canopy classes and understory up to 300 years at 

these sites, but these trees cannot be used successfully to study subalpine fir growth 

trends in dendroecological studies. Only subalpine firs greater than 15 cm diameter breast 

height were successfully crossdated.  
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5.5.2 Climate Analyses 

We were expecting to see different relationships between tree growth and climate 

variables between the three sites due to microsite conditions such as elevation, aspect, 

and slope, but we were surprised to find different species’ responses to climate within 

two of our sites. Unlike the whitebark pines and subalpine firs at Hornet Peak, which 

both responded well to summer precipitation, the subalpine firs at Morrell Mountain and 

Ajax Peak responded to different seasons than the whitebark pines and had inverse 

relationships with precipitation and PDSI. The negative relationships between subalpine 

fir growth and drought stress in the late summer and snowpack accumulations in the 

winter were different than the whitebark pine growth response to the same climate 

variables. Whitebark pine and subalpine fir are the two most common species at Morrell 

Mountain and Ajax Peak but they react differently to climatic conditions. The differences 

between the climate-growth relationships of whitebark pines and subalpine firs could also 

be related to added noise from stand dynamics and disturbance events. 

Although the growing season for high-elevation subalpine forest only lasts from 

June to September, we found growth correlated with different climate variables 

throughout the previous summer and current year (Fritts 1976). Whitebark pine and 

subalpine fir growth rates in Montana are influenced by drought and precipitation 

patterns during the previous summer, previous winter, and current summer. Tree growth 

is clearly responsive to drought and precipitation and its seasonal distribution. Whitebark 

pine growth at most of the study sites showed a statistically significant positive 

relationship between whitebark pine growth and previous summer precipitation or PDSI. 

Subalpine fir growth showed a negative relationship between tree growth and previous 
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fall/winter precipitation and PDSI. This indicates wet conditions from precipitation and 

snowpack melt in the previous summer months enhance tree growth during the following 

growing season, but that late in the growing season and into the fall/winter, trees become 

stressed. The seasonal fluctuations in precipitation and drought also reflect the 

fluctuations in snowpack. Snowpack variability is a central force that limits tree growth at 

high-elevation sites (Peterson 1998), therefore the timing of snowpack melt is important 

in understanding wet conditions in subalpine forests.  

Whitebark pines and subalpine firs responded to seasonalized precipitation and 

PDSI data differently during the instrumental climate record (1940–2005). Growth 

anomalies occurred at each site that could not be explained by precipitation and PDSI. 

These asynchronous years were clear in the whitebark pine chronologies with some of 

them matching periods of mountain pine beetle outbreaks in the 1970s. Morrell Mountain 

was the site where this trend was most apparent and was also the most difficult site to 

interpret because climate-growth relationships were relatively weak for both species. 

Only one month was significant with whitebark pine and subalpine fir growth, which 

indicates that disturbance regimes could be affecting this site more than climate.  

Whitebark pine growth and subalpine fir response to precipitation at Hornet Peak 

was more significant than with precipitation at Morrell Mountain and PDSI at Ajax Peak. 

Subalpine fir response to precipitation and PDSI was inverse at two sites (Morrell 

Mountain and Ajax Peak) during the fall and winter seasons. Fall and winter precipitation 

and PDSI variation has a large impact on tree growth in our sites. Given the short 

growing season at these high-elevation sites, any extended period of snowpack (October–

June) would result in lower than average growth at the microsite level which could create 
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noise in the climate signal. The inverse climate-growth relationship of subalpine firs at 

Morrell Mountain and Ajax Peak may also reflect a heavy snow accumulation that 

persists into the growing season and likely causes an extended photosynthetically inactive 

period and delays the beginning of tree growth (Fritts 1976). In contrast to subalpine firs 

at Morrell Mountain and Ajax Peak, the most significant positive relationship between 

whitebark pine and subalpine fir growth and precipitation and PDSI occurred in the 

current summer and previous year’s summer. This indicates that drought (precipitation 

and temperature) conditions are critical during the current and previous growing season 

in our sites. Moisture conditions late in the previous year’s growing season may affect 

this year’s bud break and the initiation of growth more than climate during the current 

year’s growing season. Drought may cause a reduction in current growth, but an increase 

in the tree’s reserves for the following year’s growth (Fritts 1976). Our seasonal PDSI 

correlation results from whitebark pines at Ajax Peak are similar to those found by Mann 

(2008) from the same region, except he found stronger relationships between whitebark 

pine growth and current summer PDSI.  

Tree growth in these subalpine forests will undoubtedly become more stressed 

with continued changes in temperature, precipitation, and snowpack. Climate models for 

the Rocky Mountains of Montana show an average reduction in snowpack of 

approximately 33% over the next 80 years (Zimmerman et al. 2006). Continued warming 

will cause snowpack to melt earlier in year which will lengthen the subalpine forest 

growing season. Photosynthesis and transpiration by whitebark pine, subalpine fir, and 

other high-elevation plant species will remove the available soil moisture earlier in the 

summer and trees will experience drought stress later in the summer. We already see the 
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negative relationship between late summer drought stress and subalpine fir growth at 

Ajax Peak. Longer growing seasons with less available moisture at the end of the summer 

will negatively impact growth of both whitebark pine and subalpine fir. Continued 

periods of drought will likely stress subalpine forests and make whitebark pines more 

susceptible to mountain pine beetle attack and weaken their resistance to white pine 

blister rust infection. The results of this study substantiate the importance of drought in 

whitebark pine communities. We suggest that climate change, especially increased 

periods of drought, may increase the threat to whitebark pine survival by changing 

biological processes, reducing whitebark pine productivity, and increasing stress which 

makes whitebark pines more susceptible to insects and pathogens.  

 

5.5.3 OUTBREAK chronologies and whitebark pine mortality 

This was the first study conducted that used the program OUTBREAK to examine 

mountain pine beetle outbreaks in western North America. Our results did show 

mountain pine beetle outbreaks that matched the historical record, but our results were 

clouded by other disturbance events that appeared as outbreaks at one of our sites 

(Morrell Mountain). We would recommend using OUTBREAK for disturbance detection 

in whitebark pine forests, but the mountain pine beetle parameters should be changed 

from a minimum 5-year growth suppression to a minimum 9-year growth suppression to 

exclude other exogenous disturbances from being recorded as mountain pine beetle 

outbreaks. Although whitebark pine trees provide long tree-ring records of climate 

fluctuations and disturbance events, more calibration of the effects of mountain pine 
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beetle outbreaks on whitebark pine growth should be conducted in OUTBREAK before 

multicentury mountain pine beetle outbreak reconstructions should be attempted. 

One of the assumptions of OUTBREAK is that the nonhost species has a similar 

climatic response as the host species (Swetnam and Lynch 1993, Speer 2007). We 

showed that only one of our sites had a similar climatic response between species (Hornet 

Peak), and that the whitebark pines and subalpine firs at the other two sites had 

completely different climatic responses. Therefore, we would recommend examining 

climate response by site and perhaps choosing a different nonhost species that might be 

more climatically sensitive, which could have possibly helped omit disturbances that 

were unrelated to mountain pine beetle outbreak periods. Other species that might be 

more climatically sensitive that were abundant in the whitebark pine communities in 

Montana included Engelmann spruce and grand fir.  

The recorded growth suppressions in the 1880s, 1920s (except Morrell Mountain), 

and the late 1970s–early 1980s at our sites are interpreted here as an indication of 

landscape-level mountain pine beetle outbreaks. Morrell Mountain has been impacted by 

disturbances such as logging, road-cutting, and fire during the 20th century (Larson et al. 

2008), therefore this site is not ideal for determining a mountain pine beetle outbreak 

signature. However, Hornet Peak and Ajax Peak had less anthropogenic disturbance and 

were more reliable sites for mountain pine beetle outbreak detection. These two sites also 

exhibited growth suppressions from all three mountain pine outbreaks between 1860 and 

2005. We also found the first record in the western U.S. of the 1880s mountain pine 

beetle outbreak that was only recently discovered in British Columbia (Alfaro et al. 2004, 

Taylor et al. 2006), in our sites in western Montana. More research should be conducted 
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on the extent of the 1880s outbreak throughout the range of whitebark pine communities 

throughout the western U.S. Our results support other studies on the landscape-level 

periodicity of mountain pine beetle outbreaks that have been conducted in western North 

America (Perkins and Swetnam 1996, Heath and Alfaro 1990, Alfaro et al. 2004, Taylor 

et al. 2006, Campbell et al. 2007).  

Previous mountain pine beetle studies have used dendroecological methods such 

as growth releases in surviving whitebark pine and lodgepole pine trees and tree mortality 

dates to help identify mountain pine beetle outbreaks (Heath and Alfaro 1990, Alfaro et 

al. 2004, Taylor et al. 2006, Campbell et al. 2007). Because mountain pine beetles tend 

to kill larger trees and avoid smaller trees, we would recommend examining both 

suppression (from attacked trees) and release periods (from surviving trees) to pinpoint 

outbreak occurrence more precisely. Mortality dates were also useful in determining the 

severity of mountain pine beetle outbreaks by site. We found that the mountain pine 

outbreak from 1970–1980 was more severe in terms of whitebark pine mortality at our 

sites than the mountain pine beetle outbreak from 1920–1940. More whitebark pines that 

died during the 19th and 20th centuries should be analyzed for mortality dates and growth 

departures during and after mountain pine beetle outbreak periods, to compare the 

severity of outbreaks across western North America.  

In addition to mountain pine beetles outbreaks, other landscape-level patterns in 

the whitebark pine chronologies were evident. The Morrell Mountain and Ajax Peak 

whitebark pine chronologies showed a sharp growth decline in the study sites from 1998–

2004. This decrease in radial growth at Morrell Mountain is likely related to the 

overlapping effects of drought, mountain pine beetle outbreaks, and white pine blister 
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rust infections. We did not see any evidence of mountain pine beetle attack at Ajax Peak 

but white pine blister rust was apparent. Therefore, we hypothesize the recent decline in 

whitebark pine growth at Ajax Peak is not related to the current mountain pine beetle 

outbreak but is a signature of white pine blister rust.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 

 The overall purpose of this study was to integrate ecological and 

dendrochronological methods to investigate the extent of natural and anthropogenic 

impacts on declining whitebark pine communities in the northern Rocky Mountains of 

Montana. Previous research on whitebark pine ecosystems has been limited because 

investigators have not examined the overlapping effects of stand dynamics, disturbance 

regimes, and climate patterns in the northern Rocky Mountains.  Thus, this research fills a 

void in our knowledge of the long-term record of climate and disturbance history of 

whitebark pine ecosystems in Montana. This chapter summarizes the major findings and 

makes recommendations for future research. 

 

6.1 Whitebark pine growth, climate, and mountain pine beetle outbreaks 

1.  Our six whitebark pine chronologies crossdated well with neighboring tree-ring 

chronologies from Montana and Idaho. 

Interseries correlations were highly significant at all six research sites, with an 

average of 0.49. Our interseries correlations were slightly lower than neighboring 

whitebark pine chronologies because the majority whitebark pines chosen for chronology 

development were not from park-like treeline stands, but were in mixed-conifer stands, in 

addition to natural and anthropogenic disturbances. Our multicentury chronologies had 

significant mean sensitivities, signifying that necessary variability exists in the tree-ring 

patterns from climatic factors to ensure successful crossdating and extraction of the 
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dominant climate signal. The commonality of marker rings along our latitudinal transect 

and the significant correlations between neighboring chronologies in Montana and Idaho 

further indicate a regional climatic influence.  

 

2.  Climate response function analysis revealed differences in our sites related to 

elevation, microclimate conditions, and disturbance histories.   

The whitebark pine growth data from all sites had between 16% and 41% of the 

variance explained by climate, which makes these datasets less climatically-sensitive than 

other northern Rocky Mountain sites. With the exception of Big Hole Pass, one of the 

most southern sites, the whitebark pines in our study were more responsive to prior 

growth than climate. Big Hole Pass had 41% of the whitebark pine variance explained by 

climate, making it the most climatically sensitive site in our study.  

 

3.  Previous summer and current spring precipitation and PDSI were the most 

important seasonal climate variables affecting whitebark pine growth. 

Whitebark pine growth in Montana is influenced by drought and precipitation 

patterns during the previous summer and current spring. Tree growth is clearly 

responsive to drought and precipitation and its seasonal distribution. This indicates wet 

conditions from precipitation and snowpack melt in the previous summer and spring 

months enhance whitebark pine growth during the following growing season. The 

seasonal fluctuations in precipitation and drought also reflect the fluctuations in 

snowpack. 
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4.  Reconstructed PDSI and precipitation values revealed dry years and drought 

periods during the length of the reconstructions.  

Our climate reconstruction results support other climate reconstructions, east of 

the Continental Divide, that found precipitation and PDSI have more of an influence on 

subalpine forest growth than temperature. We compared our results to regional summer 

PDSI reconstructions from lower-elevation sites in the northern Rocky Mountains, and 

found a few similar dry years between the lower-elevation PDSI reconstruction and our 

high-elevation PDSI and precipitation reconstructions across western Montana. Similar 

dry years between our studies included 1174, 1263, 1328, 1583, 1739, 1782, 1883, and 

1992. Our reconstruction data contribute an important high-elevation component to 

existing drought reconstructions from lower elevations in the northern Rocky Mountains. 

 

5.  Asynchronous patterns between the actual and expected climate response in 

whitebark pine during the 20th century are most likely due to mountain pine beetle 

outbreaks.  

The departure from expected whitebark pine growth during the 1970s and 1980s 

is clearly seen at these sites and is interpreted here as an indication of the landscape-level 

mountain pine beetle outbreak. An earlier mountain pine beetle outbreak from 1920 to 

1940 affected whitebark pine growth at Hornet Peak, Mineral Peak, Ajax Peak, and Big 

Hole Pass. Hornet Peak and Ajax Peak were the only two sites that exhibited growth 

departures from both mountain pine outbreaks during the 20th century.  
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6.   The 1998–2005 decrease in whitebark pine radial growth is likely related to 

drought, mountain pine beetle outbreaks, and white pine blister rust infections. 

Although both white pine blister rust and mountain pine beetle were present at 

each site, the megadrought from 1999–2007 also impacted these sites. Droughts restrict 

whitebark pine’s biological activity and change processes within the whitebark pine 

ecosystem. Continued periods of drought will likely stress whitebark pines and make 

them more susceptible for mountain pine beetle attack and weaken their resistance to 

white pine blister rust infection. The results of this study substantiate the importance of 

drought in whitebark pine communities. We suggest that climate change, especially 

increased periods of drought, may increase the threat to whitebark pine survival by 

changing biological processes, reducing whitebark pine productivity, and increasing 

stress, that make whitebark pines more susceptible to insects and exotic pathogens. 

 

6.2 Whitebark pine and subalpine response to disturbance 

1.  Successional shift from whitebark pine-dominated forests to shade-tolerant forests. 

This study supports other research that has found whitebark pine communities are 

being successionally replaced by subalpine fir, grand fir, and Engelmann spruce in all 

levels of the forest strata (trees, saplings, and seedlings).  Our southern-most sites in the 

BDNF had the highest number of living whitebark pine in all canopy classes. These sites 

also had the lowest densities of competing species which may contribute to their 

relatively healthy whitebark pine populations.  Shade-tolerant species, such as subalpine 

fir, grand fir, and Engelmann spruce, established throughout the stand history of our 

whitebark pine-dominated sites, with individual subalpine firs having established in the 
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early 1700s. An important finding of our study is that the establishment of shade-tolerant 

species over the past 300 years indicates that forest succession in whitebark pine 

communities in not a result of 20th century fire suppression, contrary to what has been 

suggested by previous studies.  

 

2. Whitebark pine are declining throughout our sites from mountain pine beetle and 

white pine blister rust. 

The high frequency of white pine blister rust and mountain pine beetle outbreaks, 

suggest the significant role of insects and pathogens in determining whitebark pine 

population trajectories over the next few decades. Infection and mortality levels varied 

considerably across western Montana, but over 70% of the whitebark pine in our sites 

were either declining or dead. The high mortality of whitebark pine in our sites was 

caused by the overlapping effects of past and current mountain pine beetle outbreaks, and 

more recently by white pine blister rust infection.  

 

3. White pine blister rust can be detected using dendroecological techniques before 

external symptoms appear on whitebark pines. 

Our study was the first to find a white pine blister rust signature in whitebark pine 

chronologies. Although whitebark pine may not show immediate external symptoms of 

blister rust infection, the tree-ring record can show radial growth declines from blister 

rust before external tree symptoms appear. Since 1998, there has been a steady decline in 

whitebark pine growth at all our sites, but the decline in the southern sites was different 

because there were no overlapping effects from mountain pine and blister rust as only 
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blister rust was present at these sites. Blister rust had expanded significantly in the 

southern sites from the 2003 to 2004 field seasons, but growth in these trees had been 

declining since 1998.  

 

4. Release events from mountain pine beetle outbreaks and climate events were evident 

in the tree-ring record, but the releases were asynchronous and not standwide. 

Only a few stand-wide release episodes occurred in the study sites, usually early 

or late in the site release records. Similarities in the central and southern release records 

in 1843 and 1848 indicate regionally important disturbance or climatic events affecting 

western Montana in the mid-1840s. Release responses in our whitebark pine and 

subalpine fir series were largely asynchronous, which is what we would expect from host 

and non-host trees during host-specific mortality periods, such as mountain pine beetle 

outbreaks.  

 

6.3 Comparing whitebark pine and subalpine growth to climate and response to 

mountain pine beetle outbreaks 

1. Subalpine fir chronologies were more difficult to crossdate than whitebark pine 

The subalpine fir chronologies proved to be more difficult to crossdate than the 

whitebark pine chronologies. One of the reasons we had between 20 and 30 subalpine firs 

in each chronology is that many of the smaller-sized subalpine firs common in each site 

would not crossdate due to stand dynamics. A few similar marker rings occurred in the 

whitebark pine and subalpine fir chronologies, but we found noticeable differences 

among the chronologies, likely due to differences in microclimates and disturbance 
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histories. Visual and graphical crossdating were aided by especially narrow growth rings 

that formed in whitebark pines in AD 1601, 1641, 1698, 1782, 1838, 1899, and 1906. 

Marker rings among the subalpine fir chronologies included 1867, 1899, 1972, 1974, and 

1993. The narrowest rings in the whitebark pine and subalpine fir chronologies did 

respond similarly in 1838 and 1899. 

 

2. Whitebark pine and subalpine fir responded differently to drought 

Whitebark pine and subalpine fir growth in Montana are influenced by drought 

and precipitation patterns during the previous summer, previous winter, and current 

summer. Subalpine fir response to precipitation and PDSI was inverse at two sites during 

the fall and winter seasons. Given the short growing season at these high-elevation sites, 

any extended period of snowpack (October–June) results in lower than average growth at 

the microsite level which adds noise to the climate signal. The most significant positive 

relationship between whitebark pine and subalpine fir growth and precipitation and PDSI 

occurred in the current summer and previous year’s summer. This indicates that drought 

(precipitation and temperature) conditions are critical during the current and previous 

growing season in western Montana. The results of this study substantiate the importance 

of drought in whitebark pine communities. 

 

3. A new technique was used to examine mountain pine beetle outbreaks 

This was the first study conducted that used the program OUTBREAK to examine 

mountain pine beetle outbreaks in western North America. Our results did show 

mountain pine beetle outbreaks that matched the historical record (in the 1880s, 1920s, 
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and 1970s). We would recommend using OUTBREAK for disturbance detection in 

whitebark pine forests, but the mountain pine beetle parameters should be changed from a 

minimum 5-year growth suppression to a minimum 9-year growth suppression to exclude 

other exogenous disturbances from being recorded as mountain pine beetle outbreaks. 

Although whitebark pine trees provide long tree-ring records of climate fluctuations and 

disturbance events, more calibration of the affects of mountain pine beetle outbreaks on 

whitebark pine growth should be conducted in OUTBREAK before multicentury 

mountain pine beetle outbreak reconstructions should be attempted. 

 

6.4 Recommendations for Future Research 

 This study demonstrated the importance of climate on natural and anthropogenic 

disturbances that impact the development of whitebark pine communities.  This work 

contributes to ecological data on forest succession and forest health in whitebark pine 

communities, and adds new knowledge on the application of dendroecological techniques 

to separate climate and disturbance on a landscape scale. Major areas for future studies 

include: (1) the influence of multidecadal oscillations on drought regimes in high-

elevation whitebark pine forests in Montana, (2) the preconditioning effects of drought on 

mountain pine beetle outbreaks, and (3) the comparison of the severity of mountain pine 

beetle outbreaks and white pine blister rust infection in whitebark pine communities 

across western North America. 

Instrumental climate records suggest that summer precipitation and winter 

snowpack in western Montana vary significantly over decadal to multidecadal temporal 

scales. Because instrumental climate records are limited to the 20th century, and are from 
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low-elevation climate stations, knowledge of the range of variability associated with 

these moisture anomalies and their impacts on high-elevation ecosystems and physical 

processes are limited. Understanding long-term climate trends can show decadal and 

multidecadal- scale shifts between persistent drought and wet events prior to the 

instrumental period (before 1900). Decadal-scale dry and wet events, in conjunction with 

periods of high and low snowpack, are drivers of whitebark pine ecosystem processes in 

the northern Rocky Mountains in Montana.  

Our reconstructed climate data contribute an important high-elevation component 

to existing drought reconstructions in the northern Rocky Mountains. Further analyses 

should be conducted on the trends in Pacific modes and high-elevation precipitation to 

understand the influence of multidecadal oscillations on drought regimes in whitebark 

pine ecosystems. For example, our longest precipitation reconstruction from Mineral 

Peak should be used to reconstruct snowpack conditions and examine the influence of the 

Pacific Decadal Oscillation (PDO) on long-term snowpack fluctuations. Detailed analysis 

and testing of specific hypotheses regarding the affects of PDO on long-term 

precipitation and PDSI trends is necessary for understanding the influence of 

teleconnections on whitebark pine tree growth in the northern Rocky Mountains. 

Research questions that should be explored include: (1) Do large-scale climatic 

anomalies from El Niño Southern Oscillation (NIÑO3) and PDO indices have differential 

affects on snowpack and drought stress across the northern Rocky Mountains?, (2) Do 

combined warm phases (positive PDO during El Niño) or combined cool phases 

(negative PDO during La Niña) promote drought stress, fire occurrence, or mountain pine 

beetle outbreaks in the northern Rocky Mountains, and (3) How do these oscillations 
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affect winter season length, timing of the first snowfall, and snowpack depth, which 

would significantly impact whitebark pine biological function?   

We also suggest additional research should be conducted on the preconditioning 

effects of drought on mountain pine beetle outbreaks. Climate change may affect the 

dynamics mountain pine beetle populations directly, through the physiological processes 

of individual insects, and indirectly, through their host trees. Water stress on host trees 

induced by drought has been proposed as a cause of mountain pine beetle outbreaks in 

several studies in western North America. Changes in climate, particularly towards drier 

conditions, may increase the frequency of outbreaks. Dendroecologists can use tree-ring 

techniques to help determine if droughts do precondition trees for mountain pine beetle 

outbreaks. Whitebark pine growth comparisons before and after drought years could be 

used to examine mountain pine beetle outbreak periodicity in western North America. 

Superposed epoch analysis (SEA) could be used to identify how many years whitebark 

pines have experienced growth suppressions associated with drought before a mountain 

pine beetle outbreak occurred. SEA would superimpose disturbance events present in the 

whitebark pine chronologies into a composite history and then average the climate 

characteristics prior to, during, and after the disturbance events into a common window. 

The timing of mountain pine beetle outbreaks in the 1880s, 1920, and 1970s and 

associated droughts could be compared using SEA in the Dendrochronology Program 

Library software, EVENT (Holmes and Swetnam 1994).  

In addition to the study of historical mountain pine beetle outbreaks and their 

impact on whitebark pine communities, continued monitoring of the ecological status of 

whitebark pine ecosystems is also important. If we do lose whitebark pine as a major 
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component in subalpine forests in western North America, what are the ecological effects 

of this loss in terms of biodiversity, landscape vegetation patterns, and habitat loss? We 

can study examples of forest ecosystems that have already severely declined as a result of 

exotic pathogen and insect introduction to hypothesize about the future of whitebark pine 

ecosystems. In the eastern U.S., we have two examples of forest ecosystems that now 

differ in structure, composition, and function, as a result of exotic species introduction 

during the 20th century. First, American chestnut (Castanea dentata) forests were 

replaced by oaks (Quercus spp.) and eastern hemlock (Tsuga canadensis) in the 

Appalachian Mountains after the introduction of chestnut blight (Cryphonectria 

parasitica). Second, eastern hemlock is now disappearing due to an introduced insect, the 

hemlock woolly adelgid (Adelges tsugae). This rapidly spreading insect kills hemlocks of 

all sizes and age-classes within 4–15 years of infestation (Orwig et al. 2002). Hemlock 

has no apparent resistance to the adelgid and rarely recovers from attack (Orwig et al. 

2002). What has happened to these tree species exemplifies the worst possible scenario 

for whitebark pine ecosystems.  

Conservation efforts on the part of the Whitebark Pine Ecosystem Foundation, 

land managers, and ecologists throughout western North America are using different 

forest management techniques to mitigate the loss of whitebark pine through its range. 

Their efforts will hopefully prevent whitebark pine from becoming another functionally-

extinct species. Planting blister rust-resistant whitebark pine seedlings and prescribed fire 

are conservation techniques currently being used by land managers in select whitebark 

pine communities. However, in order to preserve a viable seed source of whitebark pines, 

these conservation efforts should be focused rangewide. The data from this study can be 
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used by land managers to prioritize areas for conservation on a landscape scale. For 

example, sites with high levels of infection, canopy kill, and overstory and understory 

mortality could be replanted with blister rust-resistant trees. These replanted trees would 

later need protection from mountain pine beetle by applying semiochemicals (Kegley and 

Gibson 2004).  

In conclusion, this study showed the importance of using dendroecological 

techniques to separate the influence of climate and disturbance events on whitebark pine 

growth in the northern Rocky Mountains. To understand climate and disturbance patterns 

on a larger spatial scale, studies could use similar techniques to determine the 

preconditioning effects of climate on the spatial distribution, periodicity, and severity of 

mountain pine beetle outbreaks across western North America. More research should also 

focus on reconstructing drought and mountains pine beetle outbreaks in the northern 

Rocky Mountains. Therefore, we should develop longer and more robust (i.e., high 

sample depth back in time) whitebark pine tree-ring chronologies from sites that are 

climatically sensitive (Big Hole Pass) and from sites that are not as climatically sensitive 

but have recorded all known mountain pine beetle outbreaks (Ajax Peak and Hornet 

Peak). This is especially important in southwestern Montana where little research has 

been conducted in whitebark pine communities. Subalpine fir proved to be a promising 

nonhost tree species in most sites and should continue to be explored as a control for 

mountain pine beetle outbreak detection in whitebark pine communities in the northern 

Rocky Mountains. Additional studies are needed to further monitor disturbance processes 

and successional changes throughout the range of whitebark pine in western North 

America. 
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APPENDIX A1. Statistical descriptions for whitebark pine series from Hornet Peak,  
Flathead National Forest, Montana. 
 

 
Seq Series     Interval 

No. 
Years 

Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 horn009A 1797 2005 209 0.500 0.221 0.372 -0.012 2 
2 horn009B 1797 1999 203 0.472 0.239 0.346 -0.015 1 
3 horn013A 1820 2005 186 0.557 0.200 0.382 -0.024 1 
4 horn013B 1820 2005 186 0.576 0.251 0.484 -0.016 1 
5 horn014A 1811 2005 195 0.451 0.213 0.494 -0.019 1 
6 horn015A 1745 2005 261 0.449 0.177 0.420 0.008 1 
7 horn021A 1822 2005 184 0.452 0.253 0.456 -0.019 1 
8 horn030A 1820 2005 186 0.586 0.224 0.579 0.014 2 
9 horn030B 1820 2005 186 0.573 0.212 0.467 -0.020 2 
10 horn035A 1832 2002 171 0.425 0.253 0.354 -0.048 1 
11 horn035B 1832 1999 168 0.524 0.231 0.502 -0.015 2 
12 horn055A 1825 1986 162 0.473 0.389 0.463 -0.077 1 
13 horn057A 1848 2005 158 0.489 0.238 0.437 0.022 1 
14 horn057B 1848 2005 158 0.607 0.241 0.413 -0.015 1 
15 horn060A 1808 2005 198 0.485 0.248 0.496 -0.070 2 
16 horn060B 1817 2005 189 0.408 0.258 0.516 -0.006 2 
17 horn003A 1814 2002 189 0.393 0.236 0.466 0.004 1 
18 horn003B 1814 2002 189 0.463 0.252 0.338 -0.043 1 
19 horn006A 1815 2001 187 0.472 0.245 0.466 -0.038 1 
20 horn008a 1785 1944 160 0.477 0.267 0.392 -0.007 1 
21 horn008b 1785 1933 149 0.380 0.249 0.352 -0.008 2 
22 horn012A 1822 1943 122 0.509 0.220 0.414 0.020 1 
23 horn015A 1835 1976 142 0.499 0.202 0.323 -0.080 2 
24 horn016B 1791 1979 189 0.493 0.202 0.409 -0.032 1 
25 horn022A 1844 1975 132 0.521 0.235 0.468 -0.009 1 
26 horn024a 1730 1900 171 0.389 0.133 0.426 0.008 1 
27 horn033A 1809 1934 126 0.534 0.227 0.402 -0.026 1 
28 horn033B 1808 1932 125 0.398 0.239 0.344 -0.021 1 
29 horn034A 1819 1957 139 0.506 0.195 0.428 -0.039 2 
30 horn034B 1819 1966 148 0.645 0.224 0.372 0.016 1 
31 horn036A 1824 1952 129 0.568 0.259 0.386 -0.009 1 
32 horn037A 1854 1998 145 0.622 0.242 0.439 -0.039 2 
33 horn037B 1854 1989 136 0.469 0.255 0.422 -0.005 1 
34 horn038A 1837 1968 132 0.602 0.227 0.397 -0.047 1 
35 horn038B 1837 1958 122 0.519 0.277 0.431 -0.008 2 
36 horn039A 1829 1985 157 0.512 0.235 0.421 0.042 1 
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APPENDIX A1. continued 
 
          
 
Seq Series 

 
Interval 

No. 
Years 

Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

37 horn040A 1830 1981 152 0.604 0.236 0.412 -0.002 1 
38 horn040B 1830 1979 150 0.520 0.283 0.434 0.002 1 
39 horn041A 1835 1974 140 0.573 0.262 0.439 -0.076 1 
40 horn044A 1846 1993 148 0.590 0.225 0.456 0.009 1 
41 horn049A 1817 1986 170 0.556 0.231 0.364 -0.064 1 
42 horn049B 1817 1962 146 0.550 0.198 0.340 -0.031 2 
43 horn061A 1815 1963 149 0.493 0.283 0.522 0.024 1 
44 horn064A 1826 1952 127 0.454 0.259 0.448 -0.044 2 
45 horn067A 1833 2002 170 0.559 0.257 0.427 0.022 1 
46 horn074A 1802 1981 180 0.394 0.219 0.440 0.007 1 
47 horn080A 1814 1909 96 0.523 0.254 0.402 -0.053 1 
48 Horn409A 1686 1933 248 0.436 0.206 0.418 -0.004 1 
49 Horn409B 1685 1895 211 0.551 0.189 0.412 -0.029 1 
50 Horn410A 1684 1922 239 0.421 0.205 0.376 -0.023 1 
51 Horn410B 1684 1899 216 0.485 0.214 0.375 -0.043 1 
52 Horn411A 1700 1954 255 0.483 0.200 0.524 0.003 2 
53 horn402A 1685 1924 240 0.379 0.225 0.243 -0.040 1 
54 horn402B 1685 1815 131 0.442 0.254 0.500 -0.012 2 
55 horn403A 1684 1968 285 0.391 0.229 0.415 0.023 1 
56 horn403B 1685 1820 136 0.423 0.231 0.432 0.004 1 
57 Horn404A 1682 1820 139 0.442 0.222 0.496 0.020 1 
58 Horn404B 1683 1820 138 0.403 0.216 0.495 -0.038 1 
59 horn406A 1684 1826 143 0.451 0.226 0.421 -0.014 4 
60 horn406B 1685 1840 156 0.474 0.331 0.464 -0.007 1 
61 Horn407A 1685 1820 136 0.453 0.254 0.349 -0.005 1 
62 Horn412A 1693 1916 224 0.376 0.192 0.467 0.010 1 
63 Horn412B 1693 1885 193 0.400 0.208 0.355 -0.032 1 
64 Horn419B 1710 1953 244 0.370 0.180 0.400 0.001 2 
Total or Mean   10951 0.482 0.231 0.423 -0.015  
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APPENDIX A2. Statistical descriptions for whitebark pine series from Mineral Peak,  
Lolo National Forest, Montana. 
 
 

Seq Series           Interval 
No. 

Years 
Corr. w/ 
master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 mp1001a 1560 1696 137 0.505 0.154 0.246 -0.069 1 
2 mp1001b 1521 1733 213 0.488 0.146 0.406 -0.037 1 
3 mp1002a 1603 1776 174 0.382 0.203 0.140 -0.055 1 
4 mp1003a 1672 1962 291 0.437 0.186 0.255 -0.035 1 
5 mp1003b 1670 1962 293 0.415 0.203 0.225 0.012 1 
6 mp1004a 1351 1867 517 0.473 0.188 0.223 0.008 1 
7 mp1004b 1344 1957 614 0.490 0.184 0.210 -0.007 2 
8 mp1008a 1541 1673 133 0.444 0.206 0.353 -0.021 1 
9 mp1008b 1531 1686 156 0.434 0.164 0.338 0.014 2 
10 mp1009c 1791 1983 193 0.402 0.222 0.375 -0.015 1 
11 mp1010a 1623 1971 349 0.557 0.230 0.354 -0.018 1 
12 mp1010b 1622 1785 164 0.564 0.216 0.307 0.017 1 
13 mp1010c 1812 1974 163 0.499 0.209 0.355 -0.010 1 
14 mp1011a 1600 1712 113 0.498 0.151 0.354 -0.031 1 
15 mp1011b 1587 1771 185 0.434 0.189 0.494 -0.010 2 
16 mp1012a 1171 1396 226 0.628 0.243 0.658 -0.009 3 
17 mp1012b 1179 1383 205 0.604 0.232 0.505 -0.021 1 
18 mp1013a 1687 1922 236 0.431 0.288 0.470 -0.025 1 
19 mp1013b 1678 1922 245 0.438 0.258 0.424 -0.011 1 
20 mp1014a 1613 1742 130 0.646 0.197 0.435 -0.039 2 
21 mp1014b 1619 1738 120 0.663 0.157 0.467 -0.039 1 
22 mp1017a 1467 1736 270 0.427 0.234 0.178 0.002 1 
23 mp1017b 1441 1690 250 0.423 0.235 0.259 -0.005 1 
24 mp2002a 1562 1786 225 0.508 0.213 0.577 -0.057 1 
25 mp2002b 1562 1970 409 0.404 0.200 0.444 0.006 1 
26 mp2004a 1664 1892 229 0.423 0.227 0.189 -0.016 1 
27 mp2009c 1785 1962 178 0.414 0.228 0.325 -0.064 1 
28 mp2010a 1554 1823 270 0.392 0.208 0.441 -0.056 1 
29 mp2010b 1555 1790 236 0.436 0.226 0.428 -0.033 2 
30 mp2012a 1404 1497 94 0.571 0.237 0.241 -0.010 1 
31 mp2012b 1419 1976 558 0.541 0.208 0.225 -0.011 2 
32 mp2012c 1508 1976 469 0.608 0.194 0.303 -0.008 1 
33 mp2013a 1537 1952 416 0.565 0.176 0.273 -0.009 1 
34 mp2013b 1588 1952 365 0.562 0.170 0.242 -0.015 1 
35 mp3001c 1891 1997 107 0.460 0.221 0.542 -0.072 1 
36 mp3003a 1522 1984 463 0.408 0.169 0.280 -0.017 2 
37 mp3003b 1526 1816 291 0.421 0.169 0.305 -0.008 1 
38 mp3004a 1506 1816 311 0.521 0.193 0.154 -0.015 1 
39 mp3004b 1464 1679 216 0.557 0.233 0.198 0.007 1 
40 mp3006a 1434 1951 518 0.490 0.206 0.145 -0.001 1 
41 mp3006b 1434 1853 420 0.526 0.200 0.190 -0.013 1 
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APPENDIX A2. continued  
          

 
Seq 

 
Series 

           
      Interval   

 
No. 

Years 

 
Corr. w/ 
master 

 
Mean 
Sens. 

 
Std. 
Dev. 

 
Auto 
Corr. 

 
AR 
() 

42 mp3007a 1265 1409 145 0.476 0.180 0.215 -0.050 1 
43 mp3007b 1263 1805 543 0.416 0.179 0.213 0.005 1 
44 mp3009a 1591 1832 242 0.476 0.186 0.267 -0.041 1 
45 mp3011a 1579 1828 250 0.382 0.246 0.304 -0.010 1 
46 mp3011b 1579 1832 254 0.466 0.242 0.552 0.004 1 
47 mp3011c 1845 1998 154 0.433 0.255 0.412 -0.048 1 
48 mp3012a 1754 1956 203 0.428 0.225 0.301 0.017 1 
49 mp3012b 1754 1828 75 0.380 0.233 0.150 -0.126 1 
50 mp3013a 1400 1762 363 0.484 0.223 0.292 -0.028 2 
51 mp3013b 1267 1801 535 0.430 0.229 0.285 -0.015 2 
52 mp3015a 1630 1964 335 0.494 0.186 0.436 -0.010 1 
53 mp3015b 1628 1830 203 0.510 0.183 0.463 -0.009 1 
54 mp3016a 1620 1982 363 0.441 0.276 0.141 -0.005 2 
55 mp3016a 1620 1981 362 0.476 0.271 0.153 -0.023 1 
56 mp4042A 1865 1992 128 0.472 0.266 0.739 -0.074 1 
57 mp1017a 1912 2003 92 0.401 0.291 0.382 -0.021 1 
58 mp1040a 1889 2003 115 0.396 0.213 0.437 -0.083 1 
59 mp1042a 1910 2002 93 0.406 0.254 0.351 -0.076 1 
60 mp1052a 1930 2002 73 0.479 0.277 0.270 -0.024 1 
61 mp1053a 1926 2002 77 0.455 0.222 0.226 0.072 1 
62 mp1063a 1913 2003 91 0.411 0.291 0.442 -0.037 1 
63 mp2017a 1908 2002 95 0.414 0.203 0.484 -0.045 1 
64 mpr002A 1550 1953 404 0.405 0.201 0.208 -0.009 1 
65 mp4027A 1367 1506 140 0.375 0.250 0.333 0.021 1 
66 mp4042A 1865 1992 128 0.472 0.266 0.739 -0.074 1 
67 mpr002B 1536 1958 423 0.439 0.225 0.214 0.033 1 
68 mpr105A 1536 1791 256 0.408 0.302 0.367 -0.023 1 
69 mpr005A 1252 1451 200 0.363 0.190 0.168 -0.043 1 
70 mp2007A 1527 1883 357 0.490 0.203 0.128 -0.004 1 
71 mp2007B 1504 1870 367 0.451 0.204 0.194 -0.007 2 
72 mp1004A 1555 1712 158 0.428 0.204 0.600 -0.004 1 
73 mp1004B 1555 1707 153 0.394 0.213 0.565 0.016 1 
74 mpr001A 1557 1816 260 0.549 0.230 0.179 -0.006 1 
75 mp1002A 1580 1883 304 0.473 0.272 0.133 0.009 1 
76 mp1002B 1568 1793 226 0.503 0.213 0.118 -0.012 1 
Total or Mean   19319 0.471 0.231 0.298 -0.014  
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Seq Series 
  

Interval 
No. 

Years 
Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 mmt3008a 1732 1969 238 0.543 0.261 2.620 -0.035 1 
2 mmt3008b 1697 1968 272 0.539 0.307 2.590 -0.018 1 
3 mmt022a 1490 1960 471 0.441 0.212 2.520 -0.010 1 
4 mmt022b 1490 1925 436 0.444 0.223 2.680 0.011 1 
5 mmt2014b 1743 1900 158 0.399 0.255 2.810 -0.022 1 
6 mmt2013b 1780 1948 169 0.476 0.250 2.780 -0.033 1 
7 mmt3006a 1624 1840 217 0.515 0.200 2.570 -0.024 2 
8 mmt2002a 1489 1974 486 0.432 0.199 2.750 -0.058 1 
9 mmt2002b 1489 1977 489 0.477 0.273 2.670 -0.007 1 
10 mmt2003a 1599 1764 166 0.479 0.259 2.680 0.011 1 
11 mmt2006a 1643 1943 301 0.448 0.281 2.740 -0.043 2 
12 mmt2006b 1652 1857 206 0.494 0.257 2.810 -0.009 1 
13 mmt2007a 1625 1750 126 0.437 0.207 2.590 -0.002 1 
14 mmt2007b 1584 1800 217 0.499 0.197 2.860 -0.053 1 
15 mmt2007c 1659 1800 142 0.471 0.238 2.580 -0.034 1 
16 mmt2008a 1678 1820 143 0.503 0.183 2.660 0.005 1 
17 mmt2008b 1678 1844 167 0.469 0.209 2.460 0.028 1 
18 mmt2009a 1685 1865 181 0.571 0.202 2.650 -0.073 1 
19 mmt2009b 1705 1875 171 0.574 0.203 2.490 -0.067 1 
20 mmt2016a 1728 1871 144 0.396 0.304 2.760 -0.045 1 
21 mmt2016b 1770 1852 83 0.388 0.291 2.740 -0.001 1 
22 mmt3004a 1725 1860 136 0.538 0.206 2.790 0.038 1 
23 mmt3004b 1701 1882 182 0.542 0.220 2.630 -0.022 1 
24 mmt001a 1541 1947 407 0.422 0.244 2.870 -0.051 1 
25 mmt003a 1567 1885 319 0.565 0.210 2.740 -0.021 1 
26 mmt003b 1591 1887 297 0.535 0.248 2.500 -0.028 1 
27 mmt004a 1521 1880 360 0.503 0.215 2.790 -0.013 1 
28 mmt004b 1600 1900 301 0.485 0.204 2.390 -0.038 1 
29 mmt008a 1646 1820 175 0.661 0.325 2.600 -0.062 1 
30 mmt008b 1628 1851 224 0.572 0.339 2.630 -0.044 1 
31 mmt011a 1801 1946 146 0.543 0.220 2.600 -0.059 2 
32 mmt011b 1802 1946 145 0.534 0.211 2.420 -0.041 3 
33 mmt012a 1519 1916 398 0.609 0.218 2.550 -0.001 1 
34 mmt012b 1521 1697 177 0.511 0.191 2.620 -0.009 1 
 
          

APPENDIX A3. Statistical descriptions for whitebark pine series from Morrell Mountain,  
Lolo National Forest, Montana. 
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Seq Series Interval 
No. 

Years 
Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR
() 

35 mmt012c 1790 1900 111 0.571 0.289 2.690 -0.025 1 
36 mmt013b 1520 1839 320 0.551 0.236 2.560 -0.027 2 
37 mmt014a 1587 1917 331 0.560 0.290 2.740 -0.017 2 
38 mmt014b 1550 1831 282 0.477 0.263 2.740 -0.038 1 
39 mmt015a 1515 1865 351 0.587 0.255 2.620 -0.001 1 
40 mmt015b 1521 1930 410 0.582 0.222 2.540 -0.042 1 
41 mmt016a 1521 1982 462 0.610 0.233 2.660 -0.010 1 
42 mmt016b 1600 1983 384 0.586 0.220 2.710 -0.039 1 
43 mmt017a 1572 1958 387 0.490 0.224 2.980 -0.019 1 
44 mmt017b 1563 1946 384 0.512 0.285 2.590 -0.019 1 
45 mmt018a 1514 1713 200 0.453 0.239 2.860 -0.036 1 
46 mmt018b 1515 1680 166 0.568 0.196 2.650 -0.020 1 
47 mmt019a 1603 1879 277 0.475 0.175 2.450 -0.027 1 
48 mmt019b 1557 1843 287 0.470 0.164 2.700 -0.032 1 
49 mmt020a 1518 1976 459 0.623 0.193 2.620 -0.047 1 
50 mmt020b 1509 1825 317 0.546 0.214 2.830 -0.039 1 
51 mmt021a 1521 1760 240 0.545 0.234 2.750 -0.024 1 
52 mmt1004a 1662 1733 72 0.434 0.304 2.910 -0.066 1 
53 mmt1101a 1831 1944 114 0.413 0.213 2.840 -0.046 1 
54 mmt2003a 1857 1998 142 0.396 0.347 2.630 -0.074 1 
55 mmt2024a 1525 1615 91 0.356 0.228 2.710 -0.049 2 
56 mmt1004b 1835 1960 126 0.443 0.338 2.820 -0.037 1 
57 mmt1057a 1776 1923 148 0.420 0.326 2.510 -0.031 1 
58 mmt1061a 1800 1900 101 0.349 0.294 2.830 0.021 1 
59 mmt2023a 1647 1718 72 0.361 0.241 2.550 0.013 2 
60 mmt2027a 1800 2002 203 0.423 0.257 2.590 -0.038 1 
Total or Mean   14687 0.509 0.237 2.980 -0.026  
         

 

APPENDIX A3. continued 
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Seq Series 
  

Interval 
No. 

Years 
Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 ps1001a 1753 1950 198 0.523 0.206 0.473 -0.044 1 
2 ps1001c 1753 1957 205 0.457 0.201 0.398 -0.037 1 
3 ps1002a 1735 1898 164 0.471 0.194 0.493 -0.035 1 
4 ps1002b 1735 1949 215 0.410 0.231 0.391 -0.056 1 
5 ps1003a 1764 1878 115 0.478 0.173 0.409 -0.043 1 
6 ps1003b 1764 1926 163 0.631 0.204 0.354 0.001 1 
7 ps1003c 1764 1923 160 0.565 0.189 0.290 -0.035 2 
8 ps1004a 1759 2003 245 0.451 0.202 0.322 -0.032 1 
9 ps1004b 1818 1996 179 0.544 0.180 0.366 -0.027 1 
10 ps1005a 1760 2002 243 0.433 0.207 0.388 -0.025 1 
11 ps1006a 1757 1952 196 0.493 0.216 0.444 -0.017 1 
12 ps1006b 1757 1816 60 0.527 0.135 0.546 0.045 4 
13 ps1007b 1761 1976 216 0.434 0.233 0.333 0.038 1 
14 ps1008a 1617 2003 387 0.524 0.280 0.417 -0.022 2 
15 ps1008b 1617 1808 192 0.468 0.311 0.395 0.004 1 
16 ps1008c 1824 2003 180 0.499 0.246 0.437 -0.044 1 
17 ps1009b 1650 1812 163 0.460 0.240 0.396 -0.010 1 
18 ps1009c 1828 1985 158 0.394 0.210 0.383 -0.038 1 
19 ps1009d 1828 1985 158 0.417 0.222 0.398 -0.022 1 
20 ps1013a 1633 1811 179 0.477 0.237 0.354 -0.042 1 
21 ps1013b 1633 1929 297 0.424 0.238 0.334 -0.048 2 
22 ps1014a 1608 1897 290 0.429 0.213 0.302 -0.008 3 
23 ps1014b 1608 1846 239 0.462 0.217 0.408 -0.040 1 
24 ps1015a 1581 1928 348 0.433 0.229 0.319 0.010 1 
25 ps1016a 1618 1976 359 0.514 0.222 0.443 -0.044 1 
26 ps1016b 1618 1816 199 0.495 0.236 0.361 -0.006 1 
27 ps2001a 1629 1913 285 0.500 0.250 0.383 0.025 1 
28 ps2001b 1643 1906 264 0.470 0.221 0.394 -0.030 1 
29 ps2002a 1662 1926 265 0.471 0.184 0.291 -0.021 2 
30 ps2002b 1671 1814 144 0.455 0.185 0.361 0.024 1 
31 ps2003c 1882 1973 92 0.403 0.248 0.504 -0.038 4 
32 ps2004a 1655 1926 272 0.433 0.294 0.278 -0.018 1 
33 ps2004b 1654 1816 163 0.453 0.231 0.478 -0.068 1 
34 ps2011a 1621 1731 111 0.486 0.256 0.523 0.008 1 
35 ps2011c 1867 1985 119 0.426 0.272 0.541 -0.034 2 
        

APPENDIX A4. Statistical descriptions for whitebark pine series from Point Six,  
Lolo National Forest, Montana. 
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Seq Series 

  
Interval 

No. 
Years 

Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

36 ps2012a 1762 1972 211 0.537 0.182 0.324 -0.033 1 
37 ps2012b 1643 1813 171 0.404 0.231 0.421 -0.033 1 
38 ps2013a 1606 1816 211 0.416 0.228 0.335 0.005 1 
39 ps2013b 1606 1980 375 0.435 0.226 0.397 -0.040 1 
40 ps2014a 1621 1979 359 0.473 0.205 0.365 -0.055 1 
41 ps2014b 1621 1979 359 0.473 0.190 0.354 -0.023 1 
42 ps2016a 1659 1776 118 0.431 0.177 0.369 0.014 2 
43 ps2016b 1672 1929 258 0.519 0.186 0.304 -0.010 1 
44 ps2016c 1671 1897 227 0.570 0.195 0.306 -0.020 1 
45 ps3001a 1821 1949 129 0.407 0.297 0.465 -0.025 1 
46 ps3001b 1756 1938 183 0.442 0.255 0.388 -0.058 1 
47 ps3002b 1734 1852 119 0.501 0.195 0.301 -0.036 1 
48 ps3003c 1763 1885 123 0.441 0.208 0.560 -0.005 3 
49 ps3004a 1742 1877 136 0.448 0.218 0.425 -0.068 2 
50 ps3004b 1742 1889 148 0.432 0.225 0.409 0.028 1 
51 ps3005a 1743 1845 103 0.480 0.232 0.301 0.001 1 
52 ps3006b 1737 1837 101 0.455 0.181 0.383 -0.055 1 
53 ps3007a 1768 1925 158 0.464 0.216 0.365 0.001 1 
54 ps3007b 1768 1924 157 0.441 0.184 0.493 -0.009 1 
55 ps3008a 1757 1929 173 0.488 0.239 0.386 0.014 2 
56 ps3008b 1757 1929 173 0.451 0.291 0.361 0.011 1 
57 ps3009a 1762 1929 168 0.495 0.192 0.455 -0.003 1 
58 ps3009b 1762 1901 140 0.468 0.158 0.419 -0.025 2 
59 ps3010a 1750 1930 181 0.607 0.239 0.374 -0.014 1 
60 ps3010b 1750 1929 180 0.546 0.241 0.405 -0.050 1 
61 psx013a 1760 1952 193 0.468 0.231 0.349 -0.025 1 
62 psx019a 1644 1928 285 0.466 0.273 0.321 -0.044 1 
Total or Mean  12362 0.473 0.223 0.381 -0.022  

 

APPENDIX A4. continued 
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Seq Series 
  

Interval 
No. 

Years
Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 AJX3002A 1875 2002 128 0.533 0.188 0.535 -0.039 5 
2 AJX3002b 1875 2000 126 0.547 0.229 0.280 -0.022 1 
3 ajx3003a 1844 2004 161 0.464 0.242 0.276 -0.031 1 
4 AJX3012a 1852 1999 148 0.387 0.208 0.369 -0.035 1 
5 AJX3012B 1852 2002 151 0.507 0.178 0.430 -0.059 2 
6 ajx3014a 1832 2002 171 0.560 0.226 0.380 -0.027 1 
7 ajx3017a 1868 2002 135 0.556 0.232 0.257 -0.092 1 
8 ajx3017b 1868 1969 102 0.610 0.223 0.433 -0.062 1 
9 AJX3030a 1850 1997 148 0.481 0.225 0.445 -0.036 1 
10 AJX3030b 1850 1960 111 0.477 0.206 0.519 -0.042 1 
11 ajx3031a 1869 2004 136 0.526 0.236 0.317 -0.052 1 
12 ajx3031b 1869 2003 135 0.683 0.211 0.396 -0.036 1 
13 ajx3036a 1854 2003 150 0.399 0.186 0.393 0.029 1 
14 ajx3036b 1873 2001 129 0.578 0.244 0.280 -0.063 3 
15 ajx3059a 1845 2004 160 0.484 0.181 0.424 -0.020 1 
16 ajx3060a 1843 2004 162 0.563 0.187 0.362 -0.060 1 
17 ajx3060b 1843 2004 162 0.574 0.213 0.440 -0.095 1 
18 ajx4006a 1922 2002 81 0.566 0.216 0.429 0.046 1 
19 ajx4006b 1921 2002 82 0.492 0.219 0.294 -0.083 1 
20 ajx4015a 1880 2000 121 0.668 0.200 0.341 -0.099 1 
21 ajx4027a 1892 2003 112 0.583 0.176 0.421 -0.043 1 
22 ajx4027b 1892 2003 112 0.606 0.193 0.464 -0.017 1 
23 ajx4026a 1876 2003 128 0.533 0.163 0.480 -0.011 1 
24 ajx4046b 1876 2003 128 0.558 0.144 0.519 -0.065 1 
25 ajx3004a 1876 1969 94 0.500 0.200 0.519 0.024 1 
26 ajx3023a 1841 2001 161 0.413 0.209 0.394 -0.016 1 
27 aj3046a 1876 2003 128 0.473 0.180 0.303 -0.050 1 
28 ajx3038a 1866 2003 138 0.530 0.247 0.505 0.029 1 
29 ajx4012a 1879 2003 125 0.454 0.225 0.390 -0.050 1 
30 ajx4021a 1880 2003 124 0.432 0.257 0.472 -0.024 1 
31 ajx4036a 1879 2004 126 0.462 0.236 0.403 -0.033 1 
32 ajx3016a 1880 2002 123 0.570 0.207 0.389 -0.116 1 
33 ajx3058a 1899 2004 106 0.407 0.221 0.421 0.062 1 
Total or Mean:   4304 0.518 0.209 0.400 -0.037  

 

APPENDIX A5. Statistical descriptions for whitebark pine series from Ajax Peak,  
Beaverhead-Deerlodge National Forest, Montana. 
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Seq Series 
  

Interval 
No. 

Years 
Corr. w/ 
Master 

Mean 
Sens. 

Std. 
Dev. 

Auto 
Corr. 

AR 
() 

1 BIG3004b 1956 1992 37 0.465 0.242 0.558 -0.081 1 
2 BIG3005A 1870 2003 134 0.553 0.198 0.445 0.010 1 
3 BIG3013b 1801 2002 202 0.649 0.240 0.284 -0.029 1 
4 big3033a 1852 2004 153 0.482 0.217 0.450 -0.055 1 
5 BIG3037a 1820 1933 114 0.608 0.192 0.289 -0.004 1 
6 BIGF53 1869 1982 114 0.432 0.284 0.360 -0.040 1 
7 BIGF53B 1885 1985 101 0.371 0.151 0.609 0.000 1 
8 big2001a 1865 1949 85 0.512 0.219 0.406 -0.044 2 
9 big2009a 1931 2004 74 0.494 0.190 0.498 0.031 1 
10 big2010a 1952 2004 53 0.453 0.155 0.498 0.006 1 
11 big2016a 1876 1948 73 0.384 0.255 0.544 0.039 1 
12 big2044a 1943 1969 27 0.435 0.172 0.548 -0.116 1 
13 big2048a 1926 1967 42 0.410 0.266 0.510 -0.009 1 
14 big3039a 1930 2004 75 0.500 0.187 0.483 -0.056 1 
15 big4021a 1778 2003 226 0.572 0.254 0.254 -0.039 1 
16 big2001a 1865 1949 85 0.512 0.219 0.406 -0.044 2 
17 big2004a 1922 1999 78 0.491 0.216 0.489 0.000 1 
18 BIG3005b 1870 2004 135 0.540 0.194 0.449 -0.009 1 
19 big3011a 1886 2004 119 0.635 0.261 0.520 -0.059 1 
20 big3012a 1866 1904 39 0.451 0.204 0.485 -0.010 1 
21 BIG3012b 1863 1885 23 0.621 0.332 0.878 -0.059 1 
22 big3017a 1842 1907 66 0.391 0.181 0.553 -0.046 1 
23 BIG3022b 1844 1940 97 0.399 0.200 0.463 -0.011 2 
24 BIG3050a 1837 1927 91 0.424 0.199 0.422 -0.037 1 
25 big3086a 1888 2004 117 0.539 0.216 0.381 -0.045 1 
26 big4016a 1832 1961 130 0.373 0.345 0.346 -0.047 1 
27 big4017a 1882 1991 110 0.461 0.164 0.394 -0.033 2 
Total or Mean   2600 0.502 0.223 0.422 -0.028  

 
 

 

 

APPENDIX A6. Statistical descriptions for whitebark pine series from Big Hole Pass,  
Beaverhead-Deerlodge National Forest, Montana. 
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